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Preface 

Multicriterion optimization refers to problems with two or more objectives (normally in 
conflict with each other) which must be simultaneously satisfied. Evolutionary 
algorithms have been used for solving multicriterion optimization problems for over 
two decades, gaining an increasing attention from industry.  

The 4th International Conference on Evolutionary Multi-criterion Optimization 
(EMO2007) was held during March 5–8, 2007, in Matsushima/Sendai, Japan. This was 
the fourth international conference dedicated entirely to this important topic, following 
the successful EMO 2001, EMO 2003 and EMO 2005 conferences, which were held in 
Zürich, Switzerland in March 2001, in Faro, Portugal in April 2003, and in Guanajuato, 
México in March 2005. EMO2007 was hosted by the Institute of Fluid Science, 
Tohoku University. EMO2007 was co-hosted by the Graduate School of Information 
Sciences, Tohoku University, the Japan Aerospace Exploration Agency (JAXA), and 
the Policy Grid Computing Laboratory, Kansai University. 

The EMO2007 scientific program included four keynote speakers: Hirotaka 
Nakayama on aspiration level methods, Kay Chen Tan on large and computationally 
intensive real-world MO optimization problems, Carlos Fonseca on decision making, 
and Gary B. Lamont on design of large-scale network centric systems. 

In response to the call for papers, 124 papers from 30 countries were submitted, 
each of which was independently reviewed by at least three members of the Program 
Committee. This volume contains the 65 papers that were accepted for presentation at 
the conference, together with contributions based on the invited talks. It is worth 
noting that the number of submissions to the EMO conference has steadily increased 
over the years. For EMO 2001, 87 papers were submitted (from which 45 were 
accepted). For EMO 2003, 100 papers were submitted (from which 56 were 
accepted). For EMO 2005, 115 papers were submitted (from which 59 were 
accepted). This is a clear indication of the growing interest in this research field. 

We would like to express our appreciation to the keynote speakers for accepting 
our invitation. We thank all the authors who submitted their work to EMO 2007, and 
the members of the Program Committee for their thorough reviews. We wish to thank 
the Air Force Office of Scientific Research, Asian Office of Aerospace Research and 
Development for their contribution to the success of this conference. The organizers 
are particularly thankful to industrial sponsors, CD-adapco JAPAN Co., Ltd., 
Engineous Japan, Inc. and Honda Research Institute Japan Co., Ltd. for Dinner 
Sponsorship, Itochu Techno-Solutions Corporation and Sumisho Computer Systems 
Corporation for Lunch Sponsorship, BestSystems Co., Ltd. Fujitsu Limited, Hitachi, 
Ltd., Mitsubishi Heavy Industries, Ltd., SGI Japan, Ltd., for Refreshment 
Sponsorship, and Honda Research Institute Europe GmbH., Platform Computing Inc. 
and Microsoft Co., Ltd. for Student Support Sponsorship. 
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We also thank Alfred Hofmann and Ronan Nugent of Springer for their continued 
support in publishing EMO proceedings. 

March 2007                                                                                          Shigeru Obayashi  
Carlo Poloni  

Kalyanmoy Deb  
Tomoyuki Hiroyasu  

Tadahiko Murata 
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Aspiration Level Methods in Interactive Multi-objective 
Programming and Their Engineering Applications 

(Abstract of Invited Talk) 

Hirotaka Nakayama 

Konan University 
8-9-1, Okamoto, Higashinada-ku, Kobe Hyogo, 658-8501, Japan 

nakayama@konan-u.ac.jp 

Abstract. One of the most important tasks in multi-objective optimization is 
"trade-off analysis" which aims to make the total balance among objective 
functions. The trade-off relation among alternatives can be shown as Pareto 
frontier. In cases with two or three objective functions, the set of Pareto optimal 
solutions in the objective function space (i.e., Pareto frontier) can be depicted 
relatively easily. Seeing Pareto frontiers, we can grasp the trade-off relation 
among objectives totally. Therefore, it would be the best way to depict Pareto 
frontiers in cases with two or three objectives. (It might be difficult to read the 
trade-off relation among objectives with three dimension, though). In cases with 
more than three objectives, however, it is impossible to depict Pareto frontier. 
There are some cases with a large number (e.g., a few hundreds) of objective 
functions in engineering applications such as erection management of cable 
stayed bridges and optical lens design. Under this circumstance, interactive 
methods can help decision makers (DMs) to make local trade-off analysis 
through interaction of DMs and computers by showing a Pareto solution nearest 
to their desire. Along this line, aspiration level methods were developed, and 
have been observed to be effective in many practical problems in various fields. 
Satisficing Trade-off Method proposed by the author is one of aspiration level 
methods, and has several devices for making trade-off analysis easily, i.e., 
automatic trade-off and exact trade-off. This paper discusses those methods for 
multi-objective optimization, in particular, from a viewpoint of engineering 
application. 
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Improving the Efficacy of Multi-objective Evolutionary 
Algorithms for Real-World Applications 

(Abstract of Invited Talk) 

Kay Chen Tan 

National University of Singapore 
4 Engineering Drive 3, Singapore 117576 

eletankc@nus.edu.sg 

Abstract. Multi-objective evolutionary algorithms (MOEAs) are a class of 
stochastic optimization techniques that simulate biological evolution to solve 
problems with multiple objectives. Multi-objective (MO) optimization is a 
challenging research topic because it involves the simultaneous optimization of 
several (and normally conflicting) objectives in the Pareto optimal sense. It 
requires researchers to address many issues that are unique to MO problems, 
such as fitness assignment, diversity preservation, balance between exploration 
and exploitation, elitism and archiving. In this talk, a few advanced features for 
handling large and computationally intensive real-world MO optimization 
problems will be presented. These include a distributed cooperative 
coevolutionary approach to handle large-scale problems via a divide-and-
conquer strategy by harnessing technological advancements in parallel and 
distributed systems and a hybridization scheme with local search heuristics for 
combinatorial optimization with domain knowledge. The talk will also discuss 
the application of these techniques to various engineering problems including 
scheduling and system design, which often involve different competing 
specifications in a large and highly constrained search space. 
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Decision Making in Evolutionary Optimization 
(Abstract of Invited Talk) 

Carlos M. Fonseca 

Universidade do Algarve 
Campus de Gambelas, 8005-139 Faro, Portugal 

cmfonsec@ualg.pt 

Abstract. Current evolutionary multiobjective optimization (EMO) approaches 
tend to emphasize the approximation of the Pareto-optimal front as a whole, 
thereby dissociating the optimization process from the selection of the final 
compromise solution by a decision maker. This has the advantage of removing 
subjective preference information from the optimization problem formulation, 
but it also makes the resulting problem computationally more demanding. In 
order to concentrate the search effort on the regions of potential interest to the 
decision maker, techniques for the progressive articulation of preferences in 
EMO have been proposed, casting EMO as the interaction between an 
evolutionary search mechanism and a decision maker. It is worth noting that 
even the promotion of diversity across the Pareto-optimal front, which is 
generally regarded as an optimizer design issue, may be successfully addressed 
by the decision maker within this framework, as it has been proposed recently 
by others. Regarding the evolutionary search mechanism, the main question at 
each iteration consists of determining the next candidate solution(s) to be 
evaluated, given the information acquired since the beginning of the run. This 
may be seen as another decision-making problem, but one with (very) 
incomplete attribute information, since objective values are generally not 
known for most potential alternatives. Alternatively, it may be seen as a control 
problem, where actions (new solutions) are to be selected based on the feedback 
provided by the decision maker. Either way, some model, however weak, of the 
underlying optimization problem must be assumed. In this talk, both the 
evaluation of current solutions and the generation of new candidate solutions in 
EMO will be discussed from a decision making perspective. From the 
discussion, opportunities for incorporating more explicit decision making in 
EMO will be identified. 
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MOEAs in the Design of Network Centric Systems  

(Abstract of Invited Talk) 

Gary B. Lamont 

Air Force Institute of Technology 
2950 Hobson Way, Wright-Patterson AFB, Dayton, OH 45433-7765, USA 

Gary.Lamont@afit.edu 

Abstract. Advances in information and communications technology are 
changing network design techniques quantitatively and qualitatively. This 
technology is supporting the design of large scale network centric systems 
which are required in many contemporary real-world situations. These high-
level robust centric systems by definition must provide improved information 
sharing and collaboration between network entities. Such systems enhance the 
quality of information awareness, improving sustainability, and mission 
effectiveness and efficiency. The hierarchical development of network centric 
systems includes all dynamic information elements and is applied so as to 
maximize the desired decision and action impact. Associated network 
information flow problems can have as objectives costs, delays, robustness, 
vulnerability, and reliability with related constraints of network flow capacities, 
rates, and quantities of information. The optimization of coupled complex 
capacitated network flow problems is therefore an integral and basic element of 
network centric systems design. Thus, the focus of the discussion is on the 
efficacy of multiobjective evolutionary algorithms (MOEAs) to solve 
effectively and efficiency variations of associated network flow problems, 
given sophisticated mathematical models. Also to be addressed are dynamic 
network environments where various information channels become non-
available, change their characteristics, or information priorities are modified. 
Discrimination between possible MOEA operators (recombination, mutation, 
selection) and associated MOEA parameter values is discussed as related to 
solving effectively variations of multiobjective network centric information 
flow problems including real-time behavior. Example network flow 
applications provide insight to choosing appropriate MOEA characteristics. 
Included is a discussion of opportunities for future MOEA research in this 
arena. 
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Abstract. This work proposes a method to control the dominance area
of solutions in order to induce appropriate ranking of solutions for the
problem at hand, enhance selection, and improve the performance of
MOEAs on combinatorial optimization problems. The proposed method
can control the degree of expansion or contraction of the dominance area
of solutions using a user-defined parameter S. Modifying the dominance
area of solutions changes their dominance relation inducing a ranking
of solutions that is different to conventional dominance. In this work
we use 0/1 multiobjective knapsack problems to analyze the effects on
solutions ranking caused by contracting and expanding the dominance
area of solutions and its impact on the search performance of a multi-
objective optimizer when the number of objectives, the size of the search
space, and the complexity of the problems vary. We show that either
convergence or diversity can be emphasized by contracting or expanding
the dominance area. Also, we show that the optimal value of the area
of dominance depends strongly on all factors analyzed here: number of
objectives, size of the search space, and complexity of the problems.

1 Introduction

Multiobjective evolutionary algorithms (MOEAs) [1,2] are being increasingly
investigated for solving multiobjective optimization problems. MOEAs are par-
ticularly suitable for this task because they evolve simultaneously a population
of potential solutions to the problem in hand, which allows us to search a set of
Pareto non-dominated solutions in a single run of the algorithm.

Some important features of the latest generation MOEAs are that selection
incorporates elitism and it is biased by Pareto dominance and a diversity pre-
serving strategy in objective space. Pareto dominance based selection is thought
to be effective for problems with convex and non-convex fronts and has been
successfully applied, especially in two and three objective problems. However,
some current research reveals that ranking by Pareto dominance on problems
with an increased number of objectives might not longer be effective [3,4,5]. It
has been shown that the characteristics of multiobjective landscapes viewed in
terms of non-dominated fronts (that are found in the process of non-domination
sorting) can change drastically as the number of objectives increases, i.e. the
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number of fronts reduces substantially and become denser (more solutions per
front) just by increasing the number of objectives [5]. In this case, most sampled
solutions at a given time turn to be non-dominated. That is, most solutions are
assigned the same rank of non-dominance and Pareto selection weakens since it
has to discriminate mostly based on diversity of solutions. Another factor that
affects the density of the fronts is the complexity of the individual single objec-
tive landscapes. It has been shown that the top non-dominated fronts become
denser as the complexity of the landscapes reduces, and vice-versa [5]. This has
been observed for multiple and many objectives landscapes and affects the be-
havior and effectiveness of Pareto selection in two ways. First, although the effect
of the landscapes complexity on front density is not as strong as the effect of
increasing the number of objectives, in practice the increased density of the top
non-dominated fronts combined with elitism could make the instantaneous elite-
population to be mostly composed of individuals with the same non-domination
rank since early generations. In this case, again, selection has to rely mostly
on diversity rather than on Pareto dominance ranking. Second, on problems of
increased complexity could happen that there are too many but sparse fronts,
in which case Pareto selection could become too strong increasing the likelihood
that the algorithm gets trapped in local fronts. These studies suggest that for
selection to be effective a more careful analysis of Pareto dominance relation is
required when dealing with problems that have more than three objectives. In
addition, for any number of objectives, the dominance relation should be appro-
priately revised according to the characteristics of the multi-objective landscape.

There are a few works on relaxed forms of Pareto dominance, such as ε-
dominance [6] and α-domination [7]. ε-dominance acts as an archiving strategy
and was proposed as a way of regulating convergence of a MOEA. The algorithm
maintains a finite-size archive of non-dominated solutions, in which new points
are only accepted if they are not ε-dominated by any other point of the current
archive. ε-dominance strengthens selection during the archiving process. On the
other hand, α-domination permits a solution x to dominate a solution y if x
is slightly inferior to y in an objective but largely superior to y in some other
objectives. α-domination was tried on an ad hoc continuous problem created
specifically to illustrate a potential problem that Pareto selection could face. In
addition, α-domination only introduces a method to strengthen selection and its
effects have not been explained nor tested on standard test suit problems.

In this work, we propose a method to control the dominance area of solutions
in order to induce appropriate ranking of solutions for the problem at hand, en-
hance selection, and improve the performance of MOEAs on combinatorial op-
timization problems. The proposed method can control the degree of expansion
or contraction of the dominance area of solutions using a user-defined parameter
S. Modifying the dominance area of solutions changes their dominance relation
inducing a ranking of solutions that is different to conventional dominance. Con-
trary to ε-dominance and α-domination, the proposed method can strengthen
or weaken selection by expanding or contracting the area of dominance and
conceptually can be considered as a generalization of Pareto dominance. In
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addition, the motivation and method itself of the proposed approach is different
to ε-dominance and α-domination. See 3 and 4 for a detailed explanation about
ε-dominance, α-domination, and the proposed method.

In this work we analyze the effects on solutions ranking caused by contracting
and expanding the dominance area of solutions and its impact on the search per-
formance of a multi-objective optimizer when the number of objectives, the size
of the search space, and the complexity of the problems vary. We chose NSGA-
II as a representative elitist algorithm that uses dominance [8] and compare its
performance with NSGA-II enhanced by the proposed method. We conduct our
study on 0/1 multiobjective knapsack problems with m = {2, 3, 4, 5} objectives
varying the number of items n (size of search space is given by 2n) and the
feasibility ratio φ of the search space, which is a good indicator of the com-
plexity of the landscapes in this kind of problems. This work clearly shows that
either convergence or diversity can be emphasized by contracting or expanding
the dominance area. Also, this work shows that the optimal value of S∗ that
controls the area of dominance depends strongly on all factors analyzed here:
number of objectives, size of the search space, and complexity of the problems.

2 Multiobjective Optimization Concepts and Definitions

A multiobjective optimization problem including m kinds of objective functions
is defined as follows:{

Maximize f(x) = (f1(x), f2(x), . . . , fm(x))
subject to x ∈ F (1)

where, x ∈ F is a feasible solution vector in the solution space S(F ⊆ S), and
fi(i = 1, 2, · · · , m) are the m objectives to be maximized. That is, we try to find
a feasible solution vector x ∈ F in the solution space maximizing each objective
function fi(i = 1, 2, . . . , m) in a vector fitness function f . Important concepts
used in determining a set of solutions for multiobjective optimization problems
are dominance, Pareto optimality, Pareto set and Pareto front. Next we define
dominance between solutions x, y ∈ F as follows: If

∀i ∈ {1, 2, . . . , m} : fi(x) ≥ fi(y) ∧
∃i ∈ {1, 2, . . . , m} : fi(x) > fi(y). (2)

are satisfied, x dominates y. In the following, x dominates y is denoted by
f(x) � f (y). A solution vector x is said to be Pareto optimal with respect to F
if it is not dominated by other solution vectors in F . The presence of multiple
objective functions, usually conflicting among them, gives rise to a set of optimal
solutions. The set of Pareto optimal solutions (POS) is defined as

POS = {x ∈ F | ¬∃y ∈ F : f(x) � f (y)} , (3)

and the Pareto front is defined as

Front = {f(x) | x ∈ POS} . (4)
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A convenient method to assign rank to solutions is by classifying them into
non-dominated fronts [8]. Let us denote Z the set of solution we want to classify.
The first front Front1 is obtained from Z and corresponds to the set of POS in
Z. Let us denote this set as POS1. The subsequent fronts Frontj ; j > 1, contain
lower level non-dominated solutions and are obtained by disregarding solutions
corresponding to the previous higher non-dominated fronts, i.e. Frontj ; j > 1,
is obtained from the set Z −

⋃j−1
k=1 POSk.

3 Related Works

Recently, some researchers have proposed the use of relaxed forms of Pareto
dominance as a way of regulating convergence of a MOEA. Laummans et al. [6]
proposed a relaxed form of dominance for MOEAs called ε-dominance seeking
to ensure both properties of convergence towards the Pareto-optimal set and
properties of diversity among the solutions found. A solution x ε-dominates a
solution y for some ε > 0, assuming maximization in all objectives, if

∀i ∈ {1, 2, . . . , m} : (1 + ε) · fi(x) ≥ fi(y). (5)

ε-dominance acts as an archiving strategy, where new points are only accepted
if they are not ε-dominated by any other point of the current archive. Thus,
it strengthens Pareto selection during the archiving process. In addition, ε-
dominance uses a set of boxes to cover the Pareto front, where the size of such
boxes is set by the user-defined parameter ε. Within each box only one non-
dominated solution is retained. Thus, by using a larger value of ε the user can
accelerate convergence, while sacrificing the quality (preciseness) of the Pareto
front obtained. In contrast, if a high quality of the front is required, a small value
of ε must be adopted. The definition of ε is very important. However, it is not
simple to find the most appropriate value of ε, especially if nothing is known in
advance about the shape of the Pareto front. Also, to correlate the number of
desired solutions with the value of ε chosen is not easy. In addition, ε-dominance
eliminates the extreme points of the Pareto front, which may be undesirable in
some cases.

Another strategy that relaxes Pareto dominance is α-domination proposed by
Ikeda et al. [7] to strengthen selection. The fundamental idea of α-domination
is setting upper/lower bounds of trade-offs rates between two objectives. α-
domination permits a solution x to dominate a solution y if x is slightly inferior
to y in an objective but largely superior to y in some other objectives. To cal-
culate α-dominance, first a relative fitness vector g(x, y) between two solutions
must be established. The i-th component of g(x, y) is calculated by

gi(x, y) = fi(x) − fi(y) +
m∑

j �=i

αij(fi(x) − fi(y)) (6)

where fi(x) is the fitness value of solution x on the i-th objective, and αij is the
trade-off rate between the i-th and j-th objectives.



Controlling Dominance Area of Solutions 9

i
ω

x

i
ϕ

)(x
i

f )(' x
i

f

r

i
f

Fig. 1. Fitness modification to change the covered area of dominance

A solution x α-dominates a solution y, assuming maximization in all objec-
tives, if

∀i ∈ {1, 2, . . . , m} : gi(x, y) ≥ 0 ∧
∃i ∈ {1, 2, . . . , m} : gi(x, y) > 0.

(7)

To calculate α-domination, αij trade-off rates must be properly set for each pair
of objectives. Assessing the appropriate trade-offs between objectives could be a
difficult problem, especially if nothing is known in advance about the landscape
and shape of Pareto front. In addition, note that α-domination strengthens se-
lection only.

4 Proposed Method

4.1 Contraction and Expansion of Dominance Area

In this work, we try to control the covered area of dominance. Normally, the domi-
nance area is uniquely determined with a fitness vector f (x) = (f1(x), f2(x), · · · ,
fm(x)) in the objective space when a solution x is given. To contract and expand
the dominance area of solutions, we modify fitness value for each objective func-
tion by changing the user defined parameter Si in the following equation

f ′i(x) =
r · sin(ωi + Si · π)

sin(Si · π)
(i = 1, 2, · · · , m) (8)

where ϕi = Si · π. This equation is derived from the Sine theorem. We illustrate
the fitness modification in Fig. 1, where r is the norm of f(x), fi(x) is the fit-
ness value in the i-th objective, and ωi is the declination angle between f (x) and
fi(x). In this example, the i-th fitness value fi(x) is increased to f ′i(x) > fi(x)
by using ϕi < π/2 (Si < 0.5). In case of ϕi = π/2 (Si = 0.5), fi(x) does not
change and f ′i(x) = fi(x). Thus, this case is equivalent to the conventional dom-
inance. On the other hand, in case of ϕi > π/2 (Si > 0.5), fi(x) is decreased
so f ′i(x) < fi(x). Such fitness modification changes the dominance area of solu-
tions. We show an example in Fig. 2 (a)-(c), where three solutions a, b and c are
distributed in 2-dimensional objective space. In Fig. 2 (a), a dominates c, but
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Fig. 2. Conventional dominance (a), examples of expanding (b) and contracting (c)
the dominance area of solutions, and solutions per front varying the parameter S (d)

a and b, and b and c do not dominate each other. However, if we modify fitness
values for each solution by using Eq. (8), the location of each solution moves in
the objective space, and consequently the dominance relationship among solu-
tions changes. For example, if we use S1 = S2 < 0.5 as shown in Fig. 2 (b), the
dominance area of solutions a′, b′ and c′ is expanded from the original one of
a, b and c. This causes that a′ dominates b′ and c′, and b′ dominates c′. That
is, expansion of dominance area by smaller Si(< 0.5) works to produce a more
fine grained ranking of solutions and would strengthen selection. On the other
hand, if we use S1 = S2 > 0.5 as shown in Fig. 2 (c), the dominance area of
solutions a′, b′ and c′ is contracted from the original one of a, b and c. This
causes that a′, b′ and c′ do not dominate each other. That is, contracting the
area of dominance by larger Si(> 0.5) works to produce a coarser ranking of
solutions and would weaken selection.
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4.2 Effects of Controlling Dominance Area

As indicated above, expanding or contracting the dominance area of solutions
change the dominance relation of some solutions and therefore modify the dis-
tribution of the fronts (number of fronts and solutions per front). Since front
distribution significantly relates to selection, we verify and illustrate the effect
of expanding or contracting the dominance area on the distribution of the fronts
changing the parameter Si in Eq. (8). Here, we randomly generate 100 solutions
in the 2-dimensional objective space of [0, 1]2, calculate dominance among them
after recalculating fitness with Eq. (8), and perform a non-domination sorting
to obtain the fronts. We repeat the above steps a 1000 times and calculate the av-
erage number of fronts and solutions per front, for each value of Si. In this work,
we use a common parameter S = Si(i = 1, 2, · · · , m) for all objective functions,
because we assume that all objective functions are normalized. Fig. 2 (d) shows
the fraction of number of solutions per front varying S in the range [0.25, 0.75]
in intervals of 0.1 along with results for conventional dominance (S = 0.5).

From this figure, note that if we gradually expand the area of dominance by
decreasing S below 0.5, the number of fronts increases and the ranking of solu-
tions by non-dominance can be fine grained. Note that for maximum expansion of
the dominance area S = 0.25 there is one solution per front. On the other hand,
if we gradually contract the area of dominance by increasing S above 0.5, the
number of fronts decreases and ranking of solutions by non-dominance becomes
coarser. Note that for maximum contraction of the dominance area S = 0.75
there is only one front that contains all solutions. Since different rankings can be
produced, we can expect that the optimum parameter S∗ that yields maximum
search performance exists for a given kind of problem.

5 Benchmark Problems, Metrics, and Parameters

In this paper we use multiobjective 0/1 knapsack problems [9] as benchmark
problems to study and compare the effects on search performance of ranking
solutions by expanding or contracting their dominance area. The problem (KPn-
m) is formulated to maximize the function

fj(x) =
n∑

i=1

xi · pi,j (9)

subject to

gj(x) =
n∑

i=1

xi · wi,j ≤ Wj (10)

where xi ∈ {0, 1} (i = 1, 2, · · · , n) are elements of solution vector x = (x1, x2, · · · ,
xn), which gives a combination of items. Thus, we use binary representation in this
work. Note that here we are interested in finding a set of non-dominated Pareto
solutions. Also, pi,j and wi,j(j = 1, 2, · · · , m) denote profit and weight of item i ac-
cording to knapsack (objective) j. Wj is the capacity of knapsack j, and solutions



12 H. Sato, H.E. Aguirre, and K. Tanaka

not satisfying this condition are considered as infeasible solutions F̄ = (S − F).
In this paper, we use benchmark problems with m = {2, 3, 4, 5} objectives, n =
{100, 250, 500, 750} items and feasibility ratio φ = {0.75, 0.5, 0.25} downloaded
from [10], for which we know the true Pareto non-dominated set only in case of
two objectives m = 2. In these particular problems, we use a constant S for all
objectives because the scale of each objective function is similar.

The hypervolume is used as a metric to evaluate sets of non-dominated solutions
obtained by MOEAs. The hypervolume measures the m-dimensional
volume of the region in objective space enclosed by the obtained non-dominated
solutions and a dominated reference point [11]. Here we use (f1, f2, · · · , fm)=(0, 0,
· · · , 0) as the reference point to calculate the hypervolume.A set of non-dominated
solutions showing higher value of hypervolume can be considered as a better set of
solutions from both convergence and diversity viewpoints. The hypervolume met-
ric is a reliable metric and it is among the few recommended metrics to compare
non-dominated sets [12]. To provide additional information separately on conver-
gence and diversity of the obtained solutions in this work we also use Inverse Gen-
erational Distance (IGD) [13] and Spread (SP ) [1], respectively. IGD takes the
average distance for all members in the true Pareto front to their nearest solu-
tions in the obtained set of non-dominated solutions (exactly the inverse process
followed by Generational Distance GD [14]).

In our study we compare the performance of a conventional NSGA-II [8] with
NSGA-II enhanced by the proposed method. We adopt two-point crossover with
a crossover rate pc = 1.0 for recombination, and apply bit-flipping mutation with
a mutation rate pm = 1/n. In the following experiments, we show the average
performance with 30 runs, each of which spent 2,000 generations. Population
size is set to |P | = 200 and the parent and offspring population sizes |Q| and |R|
are set to half the population size |P |, i.e. |Q| = |R| = 100.

6 Experimental Results and Discussion

6.1 Performance Varying the Number of Objectives

In the following sections we observe the effects of varying the parameter S that
controls the area of dominance of the solutions on the performance of the algo-
rithm measured by the hypervolume. Recall that S = 0.5 indicates conventional
dominance, values of S > 0.5 indicate contraction of the dominance area of the
solutions, and values of S < 0.5 indicate expansion of the dominance area of the
solutions.

First, we observe the effect of varying S on problems with different number
of objectives. Fig. 3 shows the values of the hypervolume achieved varying S
in the range [0.25, 0.75] in intervals of 0.05 on problems with m = {2, 3, 4, 5}
objectives, n = 500 items, and feasibility ratio φ = 0.50. From this figure
important observations are as follow. First, there is an optimum value S∗ for
each number of objectives that maximizes the hypervolume. Note however that
the maximum value of hypervolume is not achieved by conventional dominance
(S = 0.5) for any number of objectives. Second, to achieve the maximum value
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Fig. 3. Hypervolume as we increase the number of objectives m for problems with
n = 500 items and φ = 0.5 feasibility ratio
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of hypervolume, the degree of expansion or contraction of dominance area of
solutions should be adjusted accordingly to the number of objectives. Note
that maximum values of the hypervolume are achieved for two and three ob-
jectives by contracting the dominance area of the solutions (S > 0.5), whereas
for four and five objectives the maximum hypervolume values are achieved by
expanding the dominance area of the solutions (S < 0.5). Third, as a gen-
eral trend in problems with n = 500 items and feasibility ratio φ = 0.50,
we observe that the optimum value S∗ reduces as we increase the number
of objectives. That is, increasing the number of objectives the area of domi-
nance should be expanded by using smaller values of S∗ to achieve maximum
hypervolume.

Fig. 4 (a) and (b) show the front distribution over generation by conven-
tional dominance (S = 0.5) and by contracting dominance with the optimum
parameter (S∗ = 0.65), respectively, on m = 2 objectives, n = 500 items and
feasibility ratio φ = 0.5. Similarly, Fig. 5 (a) and (b) show on m = 4 objectives
the front distributions by conventional dominance (S = 0.5) and by expanding
dominance with the optimum parameter (S∗ = 0.45), respectively. Results are
presented for the ten top fronts obtained from the combined population of par-
ents and offspring before truncation. The horizontal line indicates the truncation
point after front non-domination sorting. These figures illustrate and corrobo-
rate our expectation that contraction or expansion of area of dominance changes
the ranking of solutions. Remember that contraction of the area of dominance
weakens selection and induces a coarse ranking of solution, as illustrated in Fig.
4 (a) and (b), which works better for two and three objectives. Also, remember
that an expansion of the area of dominance strengthen selection and induces
a fine grained ranking of solutions, as illustrated in Fig. 5 (a) and (b), which
works better for four and five objectives.

6.2 Performance Varying the Size of the Search Space

Second, we observe the effects of varying S on problems with different number
of items n. Note that the size of the search space is given by 2n. Fig. 6 shows
the hypervolume varying S on problems with n = {100, 250, 500, 750} items
and feasibility ratio φ = 0.5 for m = {2, 3, 4, 5} objectives. From Fig. 6 (a)
we can see that in the case of m = 2 objectives the optimum S∗ is similar
for all n, around 0.65. However, from Fig. 6 (b),(c), and (d) we observe that
increasing the number of items n produces a clear shift of the optimum S∗

towards smaller values (greater expansion of area of dominance), especially in
the case of m = 4 and m = 5 objectives. For example, for m = 4, note the
optimal S∗ = {0.55, 0.5, 0.45, 0.45} on n = {100, 250, 500, 750}, respectively. In
the previous section, fixing the number of items to n = 500, results suggested
that the degree of expansion or contraction of dominance area of solutions should
be adjusted according to the number of objectives. The results presented in this
section suggest that the degree of expansion or contraction of dominance area
of solutions should also be adjusted according to the size of the search space,
especially for an increased number of objectives.
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Fig. 6. Hypervolume as we increase the number of items n for problems with m =
{2, 3, 4, 5} objectives and φ = 0.5 feasibility ratio

6.3 Performance Varying the Search Space Feasibility Ratio φ

Third, we observe the effects of varying S on problems with different feasibility
ratio φ. Fig. 7 shows the hypervolume varying S on problems with feasibility
ratio φ = {0.75, 0.5, 0.25} and n = 500 items for m = {2, 3, 4, 5} objectives.
From Fig. 7 (a)-(d) note that the effects on problems with different feasibility
ratio φ resemble those observed on problems with different number of items.
That is, in m = 2 objectives the optimum S∗ is the same for all φ. However,
reducing the feasibility ratio φ from 0.75 to 0.25, there is a shift of the optimum
S∗ towards smaller values, which becomes more notorious for m = 4 and m = 5
objectives. For example, for m = 4, note the optimal S∗ = {0.55, 0.45, 0.4} on
φ = {0.75, 0.5, 0.25}, respectively. These results suggest that the optimum degree
of expansion or contraction of dominance area of solutions also depends on the
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Fig. 7. Hypervolume as we decrease feasibility ratio for problems with m = {2, 3, 4, 5}
objectives and n = 500 items

feasibility ratio of the search space (complexity of the landscapes), especially for
an increased number of objectives.

Summarizing, the optimum degree of expansion or contraction of the dom-
inance area depends on the three aspects investigated in this work; that is,
number of objectives, size of the search space, and feasibility ratio of the search
space. For most real world combinatorial problems we can know in advance the
number of objectives and size of the search space. Based on these information,
we can use the results presented here as a good initial guidelines to properly
set the degree of expansion or contraction of the area of dominance in order to
achieve higher performance. However, the feasibility ratio (or complexity of the
single objective landscapes) is usually unknown. It would be interesting to find
adaptive ways to fine tune the parameter S for problems of different complexity.
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6.4 Results on Complementary Metrics and Obtained Solutions

Fig. 8 (a) and (b) show the Inverse Generational Distance IGD and Spread SP ,
respectively, varying the number of items on problems with m = 2 objectives
and feasibility ratio φ = 0.5. From these figures note that optimum IGD and SP
(smaller values) are achieved when the dominance area of solutions is contracted
(S > 0.5) rather than by conventional dominance (S = 0.5), similar to the
results shown in Fig. 6 (a). The values S achieving minimum IGD are almost
coincident with S∗ = 0.65 achieving maximum hypervolume. However, in case
of SP the values S are slightly shifted towards larger values. Also, note that the
graph of SP shows a maximum peak in the area of S < 0.5 and a minimum
peak in the area of S > 0.5.

To analyze the above observations further, Fig. 9 illustrates the obtained
solutions in the final generation for all 30 simulations by conventional dominance
S = 0.5, contracting dominance S∗ = 0.65, and expanding dominance S = 0.4 for
m = 2 objectives, n = 500 items, and φ = 0.5 feasibility ratio. Note that solutions
obtained by conventional dominance are close to the true Pareto front but are
clustered in a limited region of objective space. By contracting dominance with
the optimum parameter S∗ = 0.65, we can spread the obtained solutions showing
the maximum hypervolume, although convergence of some of them seems to
deteriorate. On the other hand, by expanding dominance with S = 0.4 showing
the maximum SP (worst spread), we can further enhance convergence of the
solutions within a narrower region of objective space.

7 Conclusions

In this work we have proposed a method that can control dominance area of so-
lutions by a user defined parameter S. We showed that contracting or expanding
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Fig. 9. Obtained solutions by conventional dominance S = 0.5, contracting dominance
S∗ = 0.65, and expanding dominance S = 0.4 for m = 2 objectives, n = 500 items,
and φ = 0.5 feasibility ratio

the dominance area of solutions changes their dominance relation, modifying the
distribution of solutions (number of fronts and number of solutions per front) in
the multiobjective landscape. Since front distribution significantly relates to se-
lection, we analyzed the effects on solutions ranking caused by contracting and
expanding the dominance area of solutions and its impact on the search per-
formance of a multi-objective optimizer. We used 0/1 multiobjective knapsack
problems as benchmark problems and showed that the optimum value of S∗ de-
pends strongly on number of objectives, size of the search space, and feasibility
ratio of the search space (complexity). In addition, we showed that significantly
better performance can be achieved either on convergence or diversity of ob-
tained solutions by contracting or expanding the dominance area rather than by
using conventional dominance.
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In this work, we have assumed a constant parameter Si = S on all objectives
(i = 1, 2, · · · , m) to control the expansion or contraction of dominance area.
It would be interesting in the future to investigate the effect of varying Si for
each objective and control S adaptively, especially for problems of unknown
characteristics. In addition, it could be valuable to combine this approach with
the inclusion of preferences to guide the search towards a particular region of
objective space. With the proposed method, we can improve either convergence
or diversity of solutions but not simultaneously both. Therefore, we would like
to combine the proposed method with other selection methods to achieve higher
convergence while covering the whole true Pareto front. Furthermore, we should
try our method on other kind of problems with more objectives and compare our
method with other approaches that aim to solve many objective optimization
problems.
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Abstract. In this paper, we propose a new conceptual method for the
design, investigation, and evaluation of multi-objective variation opera-
tors for evolutionary multi-objective algorithms. To this end, we apply
a modified predator-prey model that allows an independent analysis of
different operators. Using this model problem specific operators can be
combined to more complex operators. Additionally, we review the sim-
plex recombination, a new rotation-independent recombination scheme,
and examine its impact concerning our design method. We show ex-
emplarily as a first attempt the advantageous combination of several
standard variation operators that lead to better results for selected test
functions.

Keywords: Predator-Prey Model, Multi-Objective Operators, Evolu-
tionary Multi-Objective Algorithm, Operator Design.

1 Introduction

In the last years of research several multi-objective evolutionary algorithms have
been proposed for the simultaneous optimization of multiple and competing ob-
jectives. The manifold experiences with different algorithms and multi-objective
optimization problems reveal that only an adroit combination and problem spe-
cific adjustment of the different evolutionary operators decide on the system’s
success or failure. All the more, this insight is ubiquitous in the case of single-
objective optimization.

It is therefore even more astonishing that within the multi-objective optimiza-
tion, the conceptual approaches are still mainly concerned with the selection op-
erator. Instead of adapting all evolutionary operators, like in the single-objective
algorithms, external or internal archives [18], metrics as new selection criteria [11]
or other even more complicated and time consuming procedures are developed.
Consequently, the selection operators are in most cases not well concerted with
the rest of the applied operators. Büche [3] shows for some state-of-the-art evolu-
tionary multi-objective algorithms that the approximation of the set of efficient
solutions cannot be done with an arbitrary precision. The distance between the
true Pareto front and the approximated set can be reduced only by a noticeable
rise of the size of the archives - otherwise stagnation occurs.
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However, research focusing on the field of variation operators or represen-
tations remains rare, so only a few approaches can be found in literature: Kur-
sawe [8] examined for example the use of diploid representations for two objective
test functions while Rudolph [13] and Hanne [7] are concerned with the problem
of finding an appropriate controlling mechanism for the mutation strength in
the multi-objective case. Only Rudenko and Schoenauer [12] design a special
recombination operator for real value coded multi-objective problems.

One fact that is emerging from those studies is that traditional single objec-
tive operators are not suitable for the multi-objective case. It is therefore quite
conceivable that interaction between the evolutionary operators cannot be taken
over from the single-objective case and the exclusive change of the selection op-
erator is not sufficient to meet the requirements of multi-objective optimization.
Those requirements can be formulated as the simultaneous ability of diversity
preservation and a good convergence to the optimum. In contrast to existing
selection schemes we try to avoid complex and time consuming computations
for the variation operators.

The scope of this paper is the analysis and development of variation operators
for multi-objective optimization. To this end, we provide a model for the analy-
sis of single-objective operators in a multi-objective problem context. Our model
is based on the predator-prey model of Laumanns et al. [9] but includes many
modifications. With this analysis environment it is possible to identify potential
advantageous properties of single-objective operators for multi-objective prob-
lems. Therefore, this model can be applied for the design of a multi-objective
variation operator by the tunable combination of several operators.

The remainder of the paper is organized as follows. First we describe our
predator-prey model that consists of many modifications compared to Laumans’
original model. Those changes are described and explained in Section 3. Further,
in Section 4 we motivate and sketch a recombination scheme that has already
been proposed by Grimme and Schmitt [6]. Afterwards, in Section 5 we show how
existing variation operators can be combined to a problem specific adapted multi-
objective operator. The paper ends with a brief conclusion and a motivation for
future work.

2 Background

This section provides a relatively short introduction into the predator-prey model
of Laumanns et al. [9]. Additionally, some existing extensions are reviewed and
problems of this model are outlined which motivate modifications done to the
model later on.

2.1 Laumanns’ Predator-Prey Model

The idea that individuals interact in time and space within their own species as
well as with other species forms the basis of Laumanns’ asynchronous spatial
structured predator-prey model, as shown in Figure 1 (a). The ”prey” are the
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usual individuals of the evolutionary multi-objective algorithm representing the
possible solutions of the multi-objective optimization problem. These prey are
placed at vertices of a two-dimensional toroidal grid as the spatial population
structure. One advantage of the toroidal structure is that by a random walk in
this structure all places can be reached with equal probability [9]. Further advan-
tages of spatial structured populations are broadly discussed by Tomassini [17]
and will be omitted here. Due to this population structure the neighborhood
of a particular grid point v is defined in terms of the number of steps taken
from that grid point. The number of steps will be further on called radius r of
neighborhood N(v, r) which is given generally by the recursive Equation (1).

N(v, r = 0) = v

N(v, r) =
⋃

(v,ν)∈E

N(ν, r − 1) (1)

This holds if the torus is considered to be represented by a graph G(V, E) with
V as set of vertices and E as set of edges. The amount of neighbors enclosed by
N(v, r) is given by Equation (2).

cneighbors = (r + 1)2 + r2 (2)

The selection mechanism is realized by the predators where each one represents
a single objective of the multi-objective problem. Thus, if there are m objectives
for a multi-objective problem there have to be exactly m predator species.

The behavior of the predators is illustrated in Figure 1 (a). They move across
the spatial structure according to a random walk which is retained as a uniformly
distributed movement in the direct neighborhood of the position of a predator.
The predator chases the prey only within its current neighborhood and according
to the objective assigned to it. In Figure 1, N(v, 1) as a neighborhood of r = 1
is depicted. The worst prey within this neighborhood is ”eaten”. As soon as the
grid point for the prey becomes free, a reproduction neighborhood is spanned
around the empty vertex. The actual reproduction refills the empty place. The
new prey is created using standard recombination of (cneighbors − 1) enclosed
prey. In addition, a mutation operator is applied to the created offspring.

It is important to annotate that the recombination neighborhood (RN) and
the selection neighborhood (SN) do not contain necessarily the same set of prey
since the neighborhoods are constructed from the predator grid point and the
freed grid point respectively.

Because there are several predators for different objectives those prey which
perform best with respect to all objectives are able to survive and represent the
approximated Pareto set after a while.

2.2 Extensions to the Original Model

In the original study two major problems were observed: loss of diversity and
stagnation of the process of convergence to the true Pareto front. The results of
the preliminary study made obvious that suitable search operators were missing
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Fig. 1. Schematic illustration of the original predator-prey model by Laumanns (a)
and of the modified predator-prey model which is be used in this paper (b)

to develop a simple evolutionary multi-objective algorithm. Nevertheless, only
few extensions were proposed.

Deb [4], for example, macerates the strict mapping of one predator to one
objective with an individual weighted vector in each predator. This individ-
ual selection allows each predator to steer prey to a specific region on the
Pareto front. Based on both approaches, Li proposed a real-coded predator-
prey (RCPPGA) [10] model. In his approach, he uses a genetic algorithm as
the underlying search heuristic. Additionally, he applies a dynamic population,
where predators as well as prey are able to move within the structured environ-
ment. Due to this behavior recombination only takes place if two prey individuals
are in the same neighborhood. If a prey has no neighbors, no duplication is al-
lowed. Consequently, Li has to define a special migration for both species to
prevent extermination of them. Another model was developed by Schmitt [14].
Here the steady-state approach of the predator-prey model was replaced by the
well-known controlling mechanism of the self-adapting evolution strategy [15]. In
addition the weighted intermediate recombination operator proposed by Schwefel
and Rudolph [16] was used.

Viewed together, all existing extensions so far mainly concentrate on the se-
lection mechanism. Unfortunately, only little attention has been payed to the
design of suitable variation operators.

3 A Model for Variation Operator Design

The lack of adequate variation operators for evolutionary multi-objective algo-
rithms may arise from several difficulties in designing such complex methods.
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Obviously, considering the large amount of variation operators this claim does
not hold for the single-objective case. In this context, there is only a need for con-
verging as close as possible to one optimum solution. However, multi-objective
problems always have a whole set of optimal solutions so that a degree of di-
versity is desired for the optimization result. As a first step towards a design
concept for multi-objective variation operators we construct an environment for
the analysis of single-objective variation operators in a multi-objective problem
context. To this end, we first modify the previously introduced predator-prey
model. Second, we propose a methodology for the development of composed
multi-objective operators from the analyzed single-objective operators.

3.1 Adaptation of the Predator-Prey Model

In order to make the predator-prey model suitable for our purpose we have to
introduce some changes which are detailed next.

Combining Selection and Reproduction Neighborhoods: Since the re-
production mechanism of Laumanns’ model works with two different neighbor-
hoods, evolutionary operators may fail due to the often rather different sets of
individuals in these neighborhoods. The prey removed by the predator is chosen
from the selection neighborhood SN while the new prey is bred from individ-
uals out of the reproduction neighborhood RN . This is shown in Figure 2 for
r = 1 (left) and r = 2 (right). Hence, an individual is placed at the boundary
of SN . Then, it is replaced by almost only unknown individuals from RN i.e.
by individuals which did not take part in the selection process. Consequently, if
SN �= RN , individuals from RN \{SN∩RN} (those individuals that are labeled
with a question mark in Figure 2) must be looked upon as being of uncertain
nature. Therefore, they are possibly worse than the removed individual. To come
along with this drawback we consider an identical recombination neighborhood
(SN = RN) for our model, see Figure 1 (b).

Separation of Operators by Speciation: Our modified model provides the
possibility to realize various evolutionary operators independently of each other.
Therefore, it becomes easier to investigate the effect of different variation opera-
tors on the computation of solutions. However, it may be necessary to switch off
other operators to margin or eliminate their influence in the evolutionary search
process.

In order to achieve this property for the predator-prey model the selection
mechanism represented by the predators is split up in several species. That is a
predator triggers the application of only one evolutionary operator. Although the
operators are still strongly associated with the selection mechanism, they now
perform independently. Thus, it becomes possible to apply even an arbitrary
ratio of mutation and recombination predators to the model by chasing the prey
with a different number of specific predators. Such a flexible ratio is considered
to reach better solutions with respect to convergence and diversity. This ratio
serves as the basic idea for the operator design concept proposed here.
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Fig. 2. Illustration of Laumanns’ selection and reproduction neighborhood for r = 1
(left) and r = 2 (right). Individuals labeled with exclamation tags are known due to the
selection process while those with question marks are of uncertain quality. Symmetric
cases are obtained for clarity.

3.2 A Building Block Approach for Variation Operator Design

With our decoupled predator-prey model we are able to associate the single-
objective selection with several different variation operators, that is each preda-
tor is specifically sensitive for one objective and causes exclusively one variation
in the population. Naturally, different predators may trigger a variety of variation
operators for the same objective, as schematically depicted in Figure 3. Preda-
tors that are configured in the described fashion perform their random walk
independently on the torus. Thereby, we are able to investigate several effects
on the population. First, in an experiment a single variation operator is applied
to observe its impact on different objectives. In this way it is possible to identify
advantageous properties of an operator for the multi-objective case. Second, we
can apply the gained knowledge for the combination of multiple operators to
possibly benefit from the positive effects of every single operator. Finally, the
impact of the single operators on the composition is flexibly tunable. This is
realized by introducing more identically configured predators in the system and
adjusting their ratio which makes the whole configuration scalable.

4 Standard Recombination Operators on Multi-objective
Problems

As mentioned in the previous section our aim is the composition of several stan-
dard variation operators. For the recombination of parent individuals a large
variety of operators is available. Therefore, we have to make a first selection
in order to give a proof of our concept. Note that of course the selection is not
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Fig. 3. Schematic depiction of exemplary predator configurations. Every predator is
assigned to an objective as well as a variation operator.

restricted to the operators presented here. Any other set of variations may be
possible as well.

The discrete recombination [16] is the first selected operator as it is consid-
ered to preserve good diversity within the population. Concurrently, we have
learned from experience that a lack of convergence comes along with the appli-
cation of this variation scheme. Furthermore, we decide to apply the simplex
recombination [6] as this scheme combines the properties of intermediate and
weighted intermediate [16] recombination for high dimensional problems. More-
over, simplex recombination solves the drawback of intermediate recombination
that arises by choosing only one point in the center of gravity. Similar to inter-
mediate recombination, simplex recombination is insensible to rotations within
decision space. Furthermore, it is a quite new operator that has not been investi-
gated comprehensively so far. We briefly introduce simplex recombination in the
following paragraph to use it for experiments in the predator-prey environment
later on.

Simplex Recombination

In order to tackle the problem of equal distributed selection of an offspring and
to coordinate rotation in an n-dimensional space we want to focus on utilizing a
geometric shape to restrict the reproduction within the search space similar to
weighted intermediate recombination. To this end, we consider a triangular or
in general an n-simplex which is defined as an n-dimensional polytop with n+1
points. However, it is difficult to choose a descendant uniformly distributed out
of the n-dimensional simplex. The general technique to generate a random point
in an n-simplex is presented here.

Definition 1 (Barycentric Coordinates). Hence (n+1) vectors p1, . . . , pn+1
in the n-dimensional space. If p2 − p1 . . . pn+1 − p1 are linear independent ev-
ery point q may be represented as a (n + 1)-tupel of barycentric coordinates
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(β1, . . . , βn+1) qualifying q by

q = β1p1 + · · · + βn+1pn+1 and β1 + · · · + βn+1 = 1

To understand how to pick a random point from an n-simplex it is essential
to know the representation of a point P in a 1-simplex which is a line between
two points A and B. The set of points between A and B is given by

[A, B] := {aA + bB|a, b ∈ IR+, a + b = 1}.

If we choose a = (1 − λ) and b = λ then P ∈ [A, B] results from

P = (1 − λ)A + λB (3)

The tupel ((1−λ), λ) yields the barycentric coordinates of P . This construction
procedure can be used in n-simplizia as well. As depicted in Figure 4 for a
triangle, one creates, starting from a point A, two points P ′ and P ′′ with the
same barycentric coordinates. Finally, point P is created on the line between
these new points in an analogous way. For a tetrahedron a third point P ′′′ is
created to form a triangle. Then P is generated as described before.

Fig. 4. Schematic procedure to generate a random point in a simplex depicted for a
1-, 2-, and 3-simplex.

The described recursive procedure can easily be transformed to an iterative
one. Generally, the point PnS in an n-simplex is yielded by:

PnS =
n+1∑
i=1

⎛
⎝(1 − λi)

i−1∏
j=0

λj

⎞
⎠Ai with λ0 := 1 and λn+1 := 0 (4)

Using Equation (4) the new recombined offspring can be computed rather effi-
cient as it has a complexity of O(n2).

The vectors Ai with i = {1, . . . , n+1} span the actual simplex. To choose PnS

uniformly distributed for every λj ∈ {λ1, . . . , λn} a random number zj ∼ U(0, 1)
is generated and applied in:

λj = k
√

zj with k = (n + 1) − j. (5)
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The square root till n-th root is taken to weight all portions of the simplex
equally. In a two-dimensional space the area ratio v2 = VΔ1/VΔ2 of two similar
triangles Δ1(g1, h1) and Δ2(g2, h2) is equal to the ratio of the corresponding
triangle sides v = h1

h2
= g1

g2
. This is followed from the theorem of intersecting

lines and can be extended to hypervolumes in an n-dimensional space.

5 An Operator Design Case Study

Within this section we show exemplarily the application of our proposed design
concept for new multi-objective variation operators. To this end, we first define
two simple multi-objective problems with two and three objectives respectively.
Both of them are based on the multisphere problem which is defined in Equa-
tion (6). While n is the dimension of the decision space, m denotes the number
of objectives.

Fm : IRn → IRm with x ∈ IRn, n, m ∈ IN

Fm(x) =

⎛
⎜⎝

f1(x)
...

fm(x)

⎞
⎟⎠ =

⎛
⎜⎝

(x − c1)2
...

(x − cm)2

⎞
⎟⎠ (6)

The c1, . . . , cm ∈ IRn are constant values. The special problem F2(x), as defined
in Equation (7), has constants c1 = (0, 0)T and c2 = (2, 0)T while F3(x), see
Equation (8), has constants c1 = (0, 0, 0)T , c2 = (2, 0, 0)T , and c3 = (0, 0, 2)T .
Both problems are convex and the corresponding Pareto sets are defined by a
single line given as 0 ≤ x1 ≤ 2 and x2 = 0 as well as a triangular shaped plain
spanned between (0,0,0), (2,0,0), and (0,0,2) respectively.

F2(x) =

(
x2

1 + x2
2

(x1 − 2)2 + x2
2

)
with x ∈ [−10, 10]2 (7)

F3(x) =

⎛
⎜⎝

x2
1 + x2

2 + x2
3

(x1 − 2)2 + x2
2 + x2

3

x2
1 + x2

2 + (x3 − 2)2

⎞
⎟⎠ with x ∈ [−10, 10]3 (8)

For investigation purpose we construct our new complex variation operator from
simple standard operators. The applied operators are discrete recombination
and standard mutation as described by Schwefel and Rudolph [16]. Further, we
incorporate our previously described simplex recombination. The predator-prey
set up is characterized by a torus size of 40 × 40 and we performed 50,000
function evaluations per experiment. As performance metric we compute the
average euclidean distance from the true Pareto set. Note that we do not aim
to outperform other approaches for multi-objective optimization. This metric
is only used to compare the performances of different examined operators and
their corresponding combination. First, we show the design method for the two
objectives problem F2(x).
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5.1 Operator Design for Two Objectives

In order to design a complex operator for a two objective problem we first an-
alyze the impact of the simple mutation as well as the simplex recombination.
The optimization results are shown in Figure 5. Obviously, the mutation opera-
tor favors the extrema solutions of each objective, see Figure 5(a). By contrast,
the simplex recombination crowds the population in the center of gravity of the
initial solution space. This is due to the definition of the simplex recombination
scheme as a new offspring is only located within the convex hull of the participat-
ing parental solutions. This property is desirable to achieve a good convergence
to the optimum. In order to preserve all properties of both operators a weighted
combination is used for our predator-prey model. A suitable ratio of mutation
and simplex recombination is achieved by the different number of predators, as
described in Section 3.1. Figure 5(f) shows the results for the combined operator
of mutation and simplex recombination. Apparently, all advantageous properties
can be combined to achieve both convergence and diversity.

(a) Only Mutation (b) Only Simplex (c) Both Operators

(d) Only Mutation (e) Only Simplex (f) Both Operators

Fig. 5. Optimization results for test problem F2(x). From left to right we applied only
mutation, only simplex recombination and both operators in combination. The upper
row displays the Pareto sets while the lower row shows the corresponding Pareto fronts.

5.2 Operator Design for Three Objectives

To confirm the results from the last section for a slightly more complex prob-
lem we conduct an analogous experiment for test problem F3(x). Here, we
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(a) Only Mutation (b) Only Simplex (c) Mutation and Simplex

(d) Mutation and Dis-
crete Recombination

(e) Combined Operator

Fig. 6. Optimized Pareto front results for test problem F3(x). From left to right we
applied only mutation, only simplex recombination, and mutation combined with sim-
plex recombination in the upper row. In the lower row the combination of discrete
recombination and mutation is shown as well as the finally composed operator.

consider the discrete recombination operator as well. As shown in Figure 6(a)
mutation alone favors convergence to an extrema solution of one objective.
Again, the simplex recombination is strongly collapsing the population while
the solutions are very close to the true Pareto front in this area, see Fig-
ure 6(b). The combination of both operators yields the result shown in Fig-
ure 6(c). The influence of mutation is dominant, so that most solutions are
still tending to one objective which leads to a loss of diversity. Nevertheless,
the convergence behavior is quite better which can be attributed to the sim-
plex recombination’s influence. To overcome the diversity problem an alterna-
tive combination of mutation and discrete recombination is reviewed so that
the diversity preserving properties of discrete recombination can be examined,
see Figure 6(d). Finally, the combination of all three operators composes the
previously observed properties of all examined simple operators as well. It is
shown in Figure 6(e) that the resulting Pareto front favors no objective any-
more, preserves diversity, and has a good convergence behavior, see also
Table 1.
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5.3 Discussion

In the presented figures the quality of diversity can be observed for the different
operators and their combination. To be more precise with respect to the con-
vergence to the optimum we provide the average distance from the Pareto set
in Table 1. Noteworthy, we have not applied single discrete recombination as
it is not possible to converge to the optimum. For discrete recombination addi-
tional mutation is always required as otherwise only an interchange of parental
solutions takes place. Furthermore, the examination of discrete recombination
has been omitted for problem F2(x). It should be apparent from the presented
results that we are able to find a good combination of the different operators
for these simple test functions. Although the test problems are rather simple
they suffice as a first proof of concept. For completeness, Table 2 shows the
applied configurations of predators for the different experiments. Note that all
these parameters are tuned manually.

As already mentioned in the introduction, Rudenko and Schoenauer [12] pro-
posed a recombination operator for the multi-objective case which is mainly
based on the BLX-α operator [5] for real coded genetic algorithm. For (α > 0)
BLX-α can be decomposed into a recombination and mutation part as this
scheme allows also the discovery of new points within the search space. There-
fore, also BLX-α fits our approach conceptional as it also combines two standard
variations into one complex operator.

However, the main problem arises in finding a good ratio of those operators in
general. As mentioned above, the predator-prey model allows an arbitrary ratio
of different operators but it does not support any external or self-adaptation of
this ratio yet. Thus, it is necessary to tune not only each single operator by the
number of predators for each objective but also their interaction. It cannot be
taken for granted that a configuration that supports the desired properties of
a single operator also performs well for the combination. Apparently, there are
many side effects that may originate from the superposition of different varia-
tion operator characteristics. One possible way to adjust the different optimal

Table 1. Average euclidean distance of the solutions from the Pareto set for the two
test problems, the different operators, and their combinations

Avg. Dist. to Pareto set

Problem F2(x) F3(x)

Only Mutation 0.01098 0.09062

Only Simplex Recombination 0.01286 0.04243

Only Discrete Recombination - -

Mutation + Simplex Recombination 0.00705 0.06669

Mutation + Discrete Recombination - 0.10924

Mutation + Simplex Recomb. + Discrete Recomb. - 0.06064
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Table 2. The amount of predators for the conducted experiments of this paper. Tuples
(f1, f2) and (f1, f2, f3) denote the number of predators chasing for objective f1 and f2

or f1, f2, and f3 respectively. The predator’s type is given by the column heading.

PMut PSimplex PDiscrete

F2(x) (f1, f2) (f1, f2) (f1, f2)
Fig. 5(a) (1,1) - -
Fig. 5(b) - (3,5) -
Fig. 5(c) (2,2) (2,3) -

F3(x) (f1, f2, f3) (f1, f2, f3) (f1, f2, f3)
Fig. 6(a) (1,1,3) - -
Fig. 6(b) - (2,2,2) -
Fig. 6(c) (1,1,3) (2,2,2) -
Fig. 6(d) (1,1,3) - (1,1,1)
Fig. 6(e) (1,1,2) (2,2,1) (1,1,2)

ratios is the application of parameter optimization techniques. Besides all well
known evolutionary methods [1] also statistical procedures like SPO [2] might
be sufficient to tune those ratios.

6 Conclusion and Future Work

So far we have proposed a predator-prey model based design concept for multi-
objective variation operators. Our approach allows to analyze single-objective
variation operators for the multi-objective case and easily combine them to more
complex but powerful operators. Thereby, every arbitrary ratio of various recom-
bination and mutation schemes can be applied to the population. Additionally,
as every possible variation scheme is represented by one predator all composi-
tions can be realized. We have shown exemplarily that it is possible to combine
properties of different single-objective mutation and recombination operators for
the optimization of a test problem with two and three objectives.

Looking ahead, the model could be applied to more difficult test problems
to analyze different variation operators’ behavior. With these tools at hand one
could identify reasonable combinations for different problems and perform a step
towards a more general design pattern for multi-objective variation operators. To
this end, the problem of finding good ratios of variations must be tackled, which
leads to an underlying optimization problem of steering the search operators’
collaboration. This may be solved by external optimization technique as well as
self-adaptation strategies.

For future research it is possible to apply our model to genetic algo-
rithms, evolution strategies, and related operators in general. After all, it seems
to be promising to design specialized operators for solving more complex multi-
objective real world problems. This is due to the capability to integrate specific
knowledge into a larger problem context in a modular fashion.
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Abstract. Recent works in evolutionary multiobjective optimization
suggest to shift the focus from solely evaluating optimization success in
the objective space to also taking the decision space into account. They
indicate that this may be a) necessary to express the users requirements
of obtaining distinct solutions (distinct Pareto set parts or subsets) of
similar quality (comparable locations on the Pareto front) in real-world
applications, and b) a demanding task for the currently most commonly
used algorithms. We investigate if standard EMOA are able to detect and
preserve equivalent Pareto subsets and develop an own special purpose
EMOA that meets these requirements reliably.

1 Introduction

Almost all publications about evolutionary multiobjective algorithms (EMOA)
put their emphasis on approximating the Pareto front in the objective space
whereas the relevance of an appropriate approximation of the Pareto set is widely
neglected. The knowledge about the Pareto front is important for the product
designer. But as soon as a solution in objective space has been selected it is
important to know for the product engineer if there are alternative solutions in
the decision space that lead to the same objective vector. Such Pareto-optimal
solutions in decision space exist if there are symmetries in the objective function.
This phenomenon occurs for example in the test problems considered by Chan
and Ray [1] or Preuss et al. [2]. Basically, the Pareto set could be partitioned
into subsets where the images of each subset are identical, i.e., each Pareto
subset of this partition represents the entire Pareto front. Figure 1 illustrates
and distinguishes different cases that may occur in multiobjective problems.

Apart from artificial test problems, there are of course real-world problems
that exhibit such symmetries. For example, consider the problem of designing
a proper diet for people with special needs. Besides taking into account nutri-
ent and non-nutrient requirements, there are also aesthetic standards regarding
shape, colors and others (cf. Seljak [3]). Of course, there are numerous ways to
compile alternative but equally valuable meals that differ only in the exchange
of some vegetables.

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 36–50, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Capabilities of EMOA to Detect and Preserve Equivalent Pareto Subsets 37

Here, we are interested in the capabilities of standard EMOA of detecting
and/or preserving Pareto subsets of equivalent quality. A more detailed view of
our aims and methods is given in section 2. For our analysis, we construct an
artificial problem class that exploits symmetries in the objective function in an
extreme manner along with various geometric transformations. The same blue
print can be used to construct further test classes in future. This approach is pre-
sented in section 3, which is enriched with an experimental investigation of the
problem hardness via design of experiment (DOE) methods. Section 4 evaluates
standard EMOA and a special purpose EMOA on this problem class which leads
to the observation that standard EMOA and even the special purpose EMOA
do not provide fully satisfying results. Therefore, we develop a new EMOA ap-
proach that is based on the multistart technique along with several scalarization
methods. We can show empirically that this approach delivers a reliable and
accurate approximation of all Pareto subsets with equivalent quality. We finish
with our conclusions in section 6.

Fig. 1. Different Pareto set and Pareto front type combinations: One Pareto set and
one Pareto front (type I), one Pareto set and multiple Pareto front parts (type II),
multiple Pareto subsets and one Pareto front (type III), and multiple Pareto subsets
and Pareto front parts (type IV). Type III problems are rarely investigated, although
they potentially provide multiple preimages for every objective vector of interest.

2 Aims and Methods

To investigate the behavior of EMOA and their operators in presence of multiple
Pareto set parts (type III problems), we concentrate on three main questions:

– Which properties make these problems especially hard or simple for standard
EMOA?

– What are the mechanisms in EMOA that lead to better or worse performance
in terms of Pareto set preservation and Pareto front approximation?

– How can Pareto set preservation in EMOA be improved?

Obviously, standard performance measures for multiobjective optimization
algorithms disregard how Pareto sets are dealt with; they only refer to population
distributions in the objective space. We therefore define two simple new measures
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which require knowledge about Pareto subset numbers and locations and are thus
not applicable to real-world application problems.

Covered sets (cs): The number of covered Pareto subsets (which comprise at
least one individual in their vicinity).

cs(P, S) := |{set ∈ S : ∃ind ∈ P, near(ind, set)}| (1)

Set population spread (sps): The standard deviation of the Pareto subset
population counts (the number of individuals found on a Pareto subset).

sps(P, S) :=
√

VAR({∀set ∈ S : |ind ∈ P, near(ind, set)|})
(2)

The formal definitions refer to a population P of points (ind) in decision space
and a set S of Pareto subsets (set). The boolean function near(ind,set) becomes
true if the tested individual reaches the vicinity of the tested set. For determining
when exactly this is the case, the concrete problem must be taken into account.
VAR stands for the sample variance s2, determined to s2 = 1

n−1

∑n
i=1(xi −x)2 .

For measuring the Pareto front approximation quality of a population, we
utilize the common S-metric (hypervolume). Furthermore, standard experiment
layout and visualization techniques from the design of experiments (DOE) field
(see Montgomery [4]) are employed.

3 A Test-Problem Class: SYM-PART

In a previous work [2], a configurable type III test problem with two distinct
Pareto sets, overlapping only in the decision space origin, has been investigated.
These distinct Pareto sets were caused by the point symmetry of the bi-modal
objective function. It is easy to see that such property entails loss of surjec-
tiveness by creating two or more preimages of the optima and search points in
their vicinity. As soon as at least the global optimum of one objective function
(which is by definition part of the Pareto front of the resulting multiobjective
function) is affected, multiple, possibly connected Pareto subsets emerge. In the
following, we use this reasoning to construct SYM-PART (symmetrical parts)
test problems with a controllable number of Pareto subsets, heavily relying on
symmetry properties of the underlying singleobjective functions.

3.1 Construction of the Test Problems

Starting point is a very simple and well known test problem with two objectives
and two-dimensional search space, namely,

f(x1, x2) =
(

(x1 + a)2 + x2
2

(x1 − a)2 + x2
2

)
(3)

for some a > 0. The Pareto set X ∗ = {x ∈ R
2 : x = (x1, 0)′ with x1 ∈

[−a, a]} maps to the Pareto front F∗ = f(X ∗) = {z ∈ R
2 : z = (4 a2 ν2, 4 a2
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c

c
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c

c

c

b b b

b b b

Fig. 2. Blue print of the initial test problem: Each subset of the Pareto set is a line
of length 2 a. Parameter b specifies the vertical distance between neighboring Pareto
subsets, whereas parameter c specifies the distance to the next Pareto subset on the
horizontal line. Each Pareto subset maps to the same Pareto front.

(1−ν)2)′ with ν ∈ (0, 1)}. Our idea is to translate the problem above to different
regions in search space (see Fig. 2), such that each of these Pareto subsets are
of equivalent quality since each Pareto subset maps to the same Pareto front.

For this purpose we define test problem (3) only in a certain neighborhood.
Such a neighborhood will be called tile hereinafter (see Fig. 3).

b

2a + c

tile (-1,-1) tile ( 0,-1) tile ( 1,-1)

tile (-1, 0) tile ( 0, 0) tile ( 1, 0)

tile (-1, 1) tile ( 0, 1) tile ( 1, 1)

Fig. 3. Tile pattern for function (3) translated to tiles (i, j) that are defined by a
rectangular region with width 2 a+c and height b. Here, (i, j) denotes the tile identifier.

The tile identifiers are determined via

t̂1 = sgn(x1) ×
⌈ |x1| − (a + c

2 )
2 a + c

⌉
(4)

t̂2 = sgn(x2) ×
⌈ |x2| − b

2

b

⌉
(5)

where a, b and c are the parameters for specifying the tile pattern. We restrict
the problem to 9 tiles, i.e., the tile identifiers ti only attain values in {−1, 0, 1}
by using the relation ti = sgn(t̂i) × min{| t̂i|, 1}. Now we are in the position to
define the first test problem instance:
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f (1)(x1, x2) = f(x1 − t1 (c + 2 a), x2 − t2 b)

The second test problem instance requires that x is rotated by ω = 45◦ via

r(x) =
(

cosω − sinω
sin ω cosω

)
x

before calculating the tile identifiers t1, t2 in (4) and (5). This leads to (see Fig. 4,
left)

f (2)(x1, x2) = f (1)(r1(x), r2(x)) .

Finally, we add a transformation that distorts the shape of the Pareto subsets:

d(x1, x2) = x1 ×
(

x2 − L + ε

U − L

)−1

for some small ε > 0 and where U and L denote the upper and lower bound
of the search space, respectively. When transforming x1 prior to calculating the
tile identifiers, the third test problem instance is defined by (see Fig. 4, right)

f (3)(x1, x2) = f (2)(d(x1, x2), x2) .

x1

x2
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SYM−PART rot.+ trans., Pareto set

Fig. 4. Empirically detected (randomly enumerated) Pareto sets of SYM-PART test
problems instances 2 and 3 (instance 1 refers to the original problem depicted in Fig. 3).
Instance 2: 45◦ rotation, no transformation (left), instance 3: 45◦ rotation with trans-
formation (right). Note that Pareto subset sizes differ here.

Needless to say, we are aware of the weaknesses of these test instances since
they exploit only one type of symmetry and since they are defined only for two
dimensions in search and objective space. But as can be seen shortly, these simple
test problems can be used to demonstrate interesting phenomena occurring in
standard EMOA and some special purpose EMOA presented here.
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3.2 Experimental Investigation of Problem Hardness

In the following sections, several EMOA are tested for their ability to reach
and preserve many or all existing Pareto subsets. It is therefore necessary to
establish differently difficult problem instances of the SYM-PART problem class.
In particular, the three problem instances developed in §3.1 shall be assessed.
Apart from the fact that we do not employ any evolutionary algorithm but
simple, deterministic, grid-based search methods, exploring the effect of problem
modifications onto optimization methods is related to the approach of Langdon
and Poli [5].

Experiment 1 relies on the utilization of design of experiments (DOE) tech-
niques as first introduced by Fisher [6]. The controllable input variables or
factors—in this case problem properties—are varied systematically in discrete
levels. Observing the resulting performance changes then enables estimating the
impact of single properties (main effects) and combined properties (interaction
effects). An experimental layout that requires to actually test all possible factor
level combinations is called a fully factorial design. For larger numbers of factors,
one often uses fractional factorial designs. These reduce the number of runs by
ignoring certain factor level combinations at the expense of explanatory power
regarding higher-order interaction effects. For a more thorough introduction into
DOE methods we refer to standard textbooks (e.g. Montgomery [4]).

Experiment 1: Problem hardness of different SYM-PART configurations.
Pre-experimental planning: First experiments revealed that a standard op-
erator/value NSGA2 (see Tab. 3) performs reasonably well in preserving Pareto
sets over a long time (30,000 evaluations). Replacing search operators or pa-
rameter values seems to weaken this ability. The NSGA2 is therefore chosen as
constant base algorithm when modifying the treated problem.
Task: Detect which SYM-PART modifications have a large impact on the ability
of an EMOA to discover and preserve as many Pareto sets as possible. Recom-
mend few considerably different SYM-PART instances for further use.
Setup: We apply a full factorial design: NSGA2 is run with 30 repeats on each
factor level combination (16). Low and high factor levels are given in Tab. 1.
Bounds refers to the rectangular search space bounds, shift stands for translation
of the whole tile structure relative to the origin, rotation and transformation are
as stated in §3.1.
Results/Visualization: The mean number of covered sets (cs) and the set
population spread (sps) are used to compute main and interaction effects. These

Table 1. SYM-PART problem designs, made of combinations of 4 factors, each of
which has a low (left) and high (right) level. Chosing all 4 low levels results in the
original problem as described in §3.1.

parameter bounds (L:U) shift vs. origin rotation angle transformation

factor levels −50:50/−20:20 (0, 0)/(2, 2) 0◦ / 45◦ no / yes
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Fig. 5. DOE main effects, original mean values, without adjustment towards the av-
erage. As the standard deviations of the observed cs(P ,S) values are almost 1 (up to
≈ 5 for the largest values of sps(P ,S)), all but the largest two effects are insignificant.
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Fig. 6. DOE interaction effects, as Fig. 5 at the original location, but differently scaled,
without adjustment. All except the trans-bound and rot-trans interactions are insignif-
icant due to the high variance level.

are depicted in Fig. 5 and Fig. 6, respectively. Due to space limitations and to
enhance comparability, all effects are plotted into one diagram, thereby deviating
from standard DOE practice. Higher-order interaction effects (of more than two
factors) are disregarded.

Observations: The strongest main effects are caused by the transformation
and the extent of decision space bounds (trans and bounds in Fig. 5). Measures
cs(P, S) and sps(P, S) return consistent values: For smaller decision spaces, less
Pareto subsets are kept, and the spread of set populations increases. The trans-
formation has a similar effect and obviously makes the problem harder if switched
on. Shift and rotation apparently do not affect problem hardness. The interaction
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effect plots Fig. 6 document that only two interactions need to be considered:
Trans-bound and rot-trans. Both interaction effects are much weaker than the
important main effects. Whereas trans-bound signals harder problems if both
factors are either set to their low or to their high levels, rot-trans points into
the other direction. If only rotation or only transformation is switched on, the
problem appears to be harder than if both are on or off.

Discussion: Surprisingly, changing decision space bounds has a large effect on
performance in terms of cs(P, S) and sps(P, S). If the relative amount of search
space that must be covered for placing individuals in all Pareto subsets ap-
proaches 1, the EMOA gets more and more difficulties. We attribute this behav-
ior at least in part to the polynomial mutation (PM) operator which uses the
upper and lower bounds for adjusting its step size distribution. We must how-
ever state that the PM operator works reasonably well even under very tight
bounds around the Pareto subsets. As setting the bounds to the high factor
level (-20/20) greatly increases problem difficulty, we consider only these in the
following.

Dissecting the impact of the 4 possible combinations of rotation and trans-
formation leads to an unexpected order of increasing hardness: ¬rot ∧ ¬trans
(mean/stddev(cs)=8.83/0.33) < rot ∧ ¬trans (8.49/0.49) < rot ∧ trans (8/0.60)
< ¬rot ∧ trans (7.71/0.76). To keep the number of problem instances for fur-
ther testing as low as possible, we select only 3 of these, namely the simple one
(¬rot∧¬trans), the rotated one (rot∧¬trans), and the rotated and transformed
one (¬rot ∧ ¬trans). Instead of the latter, one could also chose the not rotated
but transformed instance. However, we refrained from doing so because the dif-
ference between these two is rather small, and it is currently not clear why the
instance without rotation may be more difficult.

4 Evaluation of Standard EMOA on SYM-PART

Compared to §3.2, we now follow the opposite approach and test several common
EMOA on the three previously selected SYM-PART problem instances.

Experiment 2: Investigate convergence/diversity tradeoff for different EMOA.

Pre-experimental planning: First results confirmed the expected behavior:
Standard techniques do not perform well even on the simplest instance of the
SYM-PART problem. The algorithms only kept a very limited number of tiles
(cs(P ,S)).

Later, it was discovered that this unwanted behavior was seemingly caused
by adaptive mutation featuring n = 2 step sizes [7]. After changing the variation
operator to polynomial mutation [8], which became the standard mutation oper-
ator within EMOA in recent years, the quality of results increased significantly.
This is indicated by the average number of tiles preserved by different EMOA, in
turn using the two mentioned mutation operators. Mean values for cs(P ,S) are
given next to the corresponding standard deviations (in brackets) in Tab. 2. As
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Table 2. Test of standard EMOA with different mutation operators, namely polyno-
mial mutation (PM) and adaptive mutation with two step sizes (AM). The values give
average cs(P ,S) values of 18 runs with 10,000 evaluations each (standard deviations
are given in brackets).

algorithm AM PM

NSGA-II 1.65 (0.745) 8.61 (0.608)
SPEA2 1.94 (0.873) 8.94 (0.236)

polynomial mutation performed much better, this operator was applied in the
investigation of different EMOA on all instances of the SYM-PART problem.

Task: The performance of EMOA is to be tested on all instances of the SYM-
PART problem. More detailedly, we look for drawbacks of the standard tech-
niques in contrast to an algorithm that is explicitly developed to keep diversity
in solution space as well as in decision space. Are the algorithms able to discover
new tiles and can they keep the new tiles for the rest of the optimization run?

Setup: We invoke two standard techniques next to a new development within
the field. The Pisa framework1 is used to conduct the referred optimization runs
with the standard techniques. Here, all specifications of the SYM-PART problem
have been implemented as a variator, which can be optimized with respect to
different objectives and multiple selectors. Among the set of available selectors,
NSGA-II and SPEA2 are chosen, because these appear to be the currently most
well-known and commonly used algorithms in the field [8,9]. Additionally, the
more recent KP1 by Chan and Ray [1] is tested.

KP1 was designed for maintaining diversity in decision space as well as in
objective space. Therefore, two criteria to measure the diversity of solutions
in the corresponding spaces are defined and applied in each generation. These
are dominated hypervolume of each individual for the objective space and a
neighborhood counting approach for the decision space. Both are described in
detail by Chan and Ray [1]. The OMNI-Optimizer by Deb et al. [10] considers
only one of such measurements in the different space at a time and is not included
in this study.

The parameters of the variation operators are set to standard values, i.e. SBX
and PM with distribution indices ηc = 15 and ηm = 20, respectively. Crossover
and mutation probability are set to one. Selection is performed using a (100+100)
selection scheme for 300 generations in either cases, resulting in 30,000 fitness
function evaluations per run (see Tab. 3).

The additional effort for a third algorithm in the study seems to be justified
as the development aims of this algorithm directly address the difficulties of the
chosen test problems.

Results/Visualization: Tab. 4 and 5 give average final results of the 30 runs
performed for every algorithm on every instance of the SYM-PART problem.

1 PISA - Platform and Programming Language Independent Interface for Search Al-
gorithms, ETH Zurich, www.tik.ee.ethz.ch/pisa/
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Table 3. Parameter setting for standard EMOA depicting mutation and crossover
probabilities (mut.prop. and cross.prob.), distribution indices (ηm and ηc), and the
selection scheme in use.

parameter mut.prob. ηm cross.prob. ηc selection

value 1 20 1 15 (100 + 100)

Table 4. Test of different algorithms on all instances of the SYM-PART problem.
The values give the average cs(P, S) of 30 runs with 30,000 evaluations each (standard
deviations are given in brackets).

algorithm simple rotated rot.+trans.

NSGA-II 6.333 (1.446) 5.633 (1.450) 4.667 (1.124)
SPEA2 6.3 (1.022) 5.2 (1.157) 5 (1.364)
KP1 8.3 (1.290) 6.733 (1.818) 6.5 (0.9738)

Table 5. Test of different algorithms on all instances of the SYM-PART problem. The
values give the average dominated hypervolume after 30 runs with 30,000 evaluations
each (standard deviations are given in brackets).

algorithm simple rotated rot.+trans.

NSGA-II 22.254 (0.00353) 22.255 (0.00305) 22.254 (0.00358)
SPEA2 22.257 (0.00237) 22.257 (0.00243) 22.255 (0.00278)
KP1 22.241 (0.00712) 22.231 (0.00689) 22.220 (0.00781)

Tab. 4 more detailedly depicts the average number of tiles preserved by the
indicated algorithm after 30,000 evaluations. The mean hypervolume received
after the corresponding runs is contained in Tab. 5. But, these averaged values of
the final results do not give evidence for the behavior of the different algorithms
during the runs. This aspect is tackled in Fig. 7, where all repetitions of runs have
been averaged generation by generation. For example, the upper left diagram of
Fig. 7 depicts three curves, one for each instance of the SYM-PART problem.
Each curve is generated averaging the results achieved after the first generation,
the second one, up to the 300th one. The same holds for all other curves within
all diagrams in Fig. 7. The middle row holds SPEA2 results while the lower one
displays the results of KP1 by Chan and Ray. The upper row is dedicated to
NSGA2 and the left column to the generation-wise averaged number of tiles kept
as can be seen from the example above.

The right column gives the generation-wise average values of the dominated
hypervolume. Here, the displayed area is shortened to the starting phase of the
runs up to generation 50. This is done to highlight the interesting developments
during the runs and implies that no major changes in the behavior take place
after the depicted interval of the run. The final results of the averaged runs can
be taken from Tab. 4 and 5 as described above.
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Fig. 7. Average runs of NSGA-II, SPEA2 and KP1 of Chan and Ray (labeled KP1)
on all instances of the SYM-PART function. The left column presents the average
cs(P, S) values over the evaluations while the right one gives the average dominated
hypervolume. The average runs have been received from 30 runs performed, 30,000
fitness function evaluations each. Only the first part up to 5,000 evaluations is presented
in case of the hypervolume plot due to better observability of results.

Observations: With respect to the number of tiles kept, Tab. 4 shows the ex-
pected behavior of the algorithms within this study: The number of tiles kept
decreasing with growing hardness of the considered instance of the SYM-PART
problem. This means, most of the tiles are kept on SYM-PART 1 by all algo-
rithms. Here, KP1 clearly outperforms the other algorithms keeping 8.3 of 9
tiles on average. This is the highest value achieved within all experiments. The
lowest number of tiles is received for SYM-PART 3, the rotated and transformed
instance and therefore the most difficult one. On this problem, NSGA2 receives
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the lowest value achieved within all experiments (4.667). For all algorithms, the
values for SYM-PART 2 are greater than the ones for SYM-PART 3 and smaller
than the ones for SYM-PART 1. KP1 performs better than the other algorithms
on all instances. Interestingly, NSGA2 is better than SPEA2 on SYM-PART 1
and SYM-PART 2, while SPEA2 performs better on SYM-PART 3.

The behavior of the algorithms changes when taking the dominated hypervol-
ume into account (see Tab. 5). SPEA2 receives the best results on all instances,
followed shortly by NSGA2. KP1 clearly achieves the worst values of dominated
hypervolume on all instances. Furthermore, the values from this algorithm de-
crease with problem complexity. This behavior can not be observed for NSGA2
and SPEA2. Here, the largest dominated hypervolume is obtained on the rotated
instance of SYM-PART, while the lowest values are achieved on the rotated and
transformed SYM-PART 3.

More dramatic differences in the behavior of KP1 in contrast to NSGA2 and
SPEA2 can be observed in the diagrams of Fig. 7 considering the average cs(P, S)
values per generation. In contrast to the behavior of KP1, NSGA2 and SPEA2
loose tiles during the averaged optimisation runs. KP1 first looses tiles as well but
turns its behavior after about 20 generation on all three instances. Starting here,
KP1 almost constantly captures tiles back. Interestingly, steps can be observed
even in the averaged runs. This is due to increasing as well as decreasing cs(P, S)
values within single runs. As a consequence, also KP1 is not able to keep all
newly discovered tiles for the rest of the run. Some are lost again after only a
few generations. But, in contrast to NSGA2 and SPEA2, this algorithm is able
to keep more tiles than get lost. This leads to the over all increasing number of
tiles on average.

The curves depicting the hypervolume do not yield such interesting results.
The values here increase rapidly to almost optimal values for all algorithms.
More detailedly, NSGA2 and SPEA2 act almost comparable on SYM-PART 1
and SYM-PART 2. The dominated hypervolume increases a bit more slightly
on SYM-PART 3. This also holds for KP1, where a more distinct difference can
be observed between SYM-PART 1 and SYM-PART 2. Over all, the results for
KP1 seem to converge to the almost optimal values for the run a bit faster. But,
as can be seen from Tab. 5, these values are worse than the ones for SPEA2 and
NSGA2.

Discussion: With respect to the course of the tiles kept, an important difference
in the behavior of the algorithms is observed. While this course decreases for
NSGA2 and SPEA2, it increases for KP1. The final conclusion that all but one
tile are lost after more generations of NSGA2 and SPEA2 while all tiles are
captured back using KP1 is not shown, but is an self-evident assumption.

The values for the dominated hypervolume reveal that the more tiles are kept,
the less hypervolume is achieved. This leads to the assumption that both criteria
are conflicting. The fact that no hypervolume is lost with increasing number of
tiles in the KP1 runs contradicts this assumption. Therefore, KP1 can be stated
to be the best algorithm within this study, although not dominating all the
hypervolume the other algorithms do. This is due to KP1 preserving diversity
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not only in the solution space, but also in the decision space. Considering both
criteria, it would be better to stop the runs of the standard algorithms more
early, i.e. after about 50 generations. At his point, they already dominate almost
all possible hypervolume and occupy the highest number of tiles.

What is not tackled in this investigation is the distribution of individuals over
tiles sps(P, S). In the most comprehensive algorithms, the user would like the
number of individuals to grow on newly occupied tiles. At the end of a run, a
uniform distribution of individuals over all Pareto sets within tiles is aspired.

5 A Multistart Approach for Pareto Subset Detection

An alternative approach to detect and maintain several Pareto subsets of equiv-
alent quality is provided by the multistart technique. The algorithm described
here is still of experimental state but very promising. The main idea is as follows:
We run a singleobjective optimizer for each objective function. Since the optimal
solution of each objective function is Pareto-optimal we have a kind of anchor
that can be used to approximate the associated Pareto subset successively by
deploying some singleobjective optimizer repeatedly with different weights of the
scalarized multiobjective function.

Let f(x) = ( f1(x), . . . , fd(x) ) be the objective function with x ∈ R
n. At first,

N runs with a standard (1, λ)-ES are made for each of the d objectives. The
ES stops if the standard deviation σ of the mutation operator is below some
threshold δ > 0. Each solution x∗ is stored and annotated with the index of
the objective function used: (x∗, k) ∈ R

n × {1, . . . , d}. Thus, we obtain N · d
candidate solutions in this manner.

Suppose there are s ∈ N Pareto subsets with equivalent quality. If all Pareto
subsets are hit by the multistart approach then we need only s·d anchor solutions
as starting points of the singleobjective search with the scalarized multiobjective
function to approximate all Pareto subsets. Since the number s of the equivalent
Pareto subsets is unknown in general, we deploy an unsupervised clustering
method to reduce the N · d candidate solutions to s · d anchor solutions required
for the next step. Actually, it is possible to reduce the number of anchor solutions
to s since we can apply the clustering method to the N solutions of each objective
separately (recall that we have annotated each candidate solution with the index
of the objective function used). Since the different objective functions may be
of varying difficulty for the optimization, we can use the d outcomes of the
clustering method as a consistency check. This idea, however, is currently not
implemented. We simply cluster the candidate solutions of the objective function
with index 1 and proceed with ŝ estimated anchor solutions.

The scalarization used in the sequel is known as the weighted Tchebycheff
method [11]: The multiobjective function f : R

n → R
d is scalarized via

f<s>(x) = max
i=1,...,d

{ wi |fi(x) − u∗i | }

where u∗ ∈ R
d is the utopian solution. Since we have made N singleobjective

optimizations of each objective fi : R
n → R in the first phase of our algo-
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rithm, we have obtained an accurate estimator of the ideal solution z∗ with
z∗i = min{fi(x) : x ∈ R

n} for i = 1, . . . , d. As a consequence, we may set
u∗i = z∗i − 1 to get a valid utopian solution required for the weighted Tcheby-
cheff method (WTM). We have chosen WTM because of its ability to find also
solutions whose images are on a concave Pareto front. Needless to say, here we
tacitly assume that the Pareto subsets are connected.

The user may choose how many representatives of each Pareto subset are
desired. Suppose we like to obtain k representatives. Then for each of the ŝ
anchor solutions x∗ we start a standard (1, λ)-ES with initial σ0 = 10 δ, seeding
point x∗, and weights that cover all possible weight assignments with maximal
uniformity. In case of d = 2 objectives the weights are given by w1 = j/(k − 1)
and w2 = 1 − w1 for j = 1, . . . , k − 1. Notice that the anchor solution x∗ is used
as initial parent of the ES for j = 1 only. The best solution found in this run
serves as initial parent for j = 2. And so forth until j = k − 1. In this vein, we
finally arrive at an approximation of all Pareto subsets that were detected in the
first phase of the algorithm.

For an assessment of this approach, we made some experiments for the three
test instances introduced previously. The parametrization was as follows: λ = 5,
N = 50, δ = 10−5, k = 10. The initialization of the ES in the first phase
used σ0 = 20/6 and the starting point was sampled uniformly from the region
[−20, 20]2.

Each run out of 30 in total detected the 9 Pareto subsets reliably and approx-
imated the Pareto subset with high accuracy. In the first phase each run of the
(1, λ)-EA stops on average in less than 60 generations. Thus, we required less
than 60 × λ × N × d = 30, 000 function evaluations of the single-objective func-
tions, which is equivalent to 15, 000 function evaluations of the multiobjective
function. The second phase (clustering) does not evaluate the objective function.
The third phase required less than 5, 000 function evaluations of the scalarized
multiobjective function. Thus, this approach required less than the equivalent of
20, 000 multiobjective function evaluations for a reliable and accurate approxi-
mation of all Pareto subsets for all test instances. Figure 8 shows typical results
for the three test instances.
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problem (from left to right: instances 1, 2, and 3, as described in §3.1)
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6 Conclusions and Future Work

We have shown that standard EMOA are not able to reliably detect and/or
preserve all Pareto subsets of equivalent quality. This is not surprising as they
have not been designed for this purpose. Moreover, this property is not required
in some cases. But if we need this property we have to deploy special purpose
EMOA. We have tested one such EMOA given in the literature and we have
developed another EMOA that is based on a multistart approach which meets
our requirements. It is imaginable that EMOA with niching can be successful in
this case, too. But this analysis remains for future research, as well as the devel-
opment of additional problem classes that exploit different types of symmetries
and that are defined in higher-dimensional decision and objective spaces.
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Abstract. This paper proposes an idea of using evolutionary multiobjective op-
timization (EMO) to optimize scalarizing functions. We assume that a scalariz-
ing function to be optimized has already been generated from an original mul-
tiobjective problem. Our task is to optimize the given scalarizing function. In 
order to efficiently search for its optimal solution without getting stuck in local 
optima, we generate a new multiobjective problem to which an EMO algorithm 
is applied. The point is to specify multiple objectives, which are similar to but 
different from the scalarizing function, so that the location of the optimal solu-
tion is near the center of the Pareto front of the generated multiobjective prob-
lem. The use of EMO algorithms helps escape from local optima. It also helps 
find a number of alternative solutions around the optimal solution. Difficulties 
of Pareto ranking-based EMO algorithms in the handling of many objectives are 
avoided by the use of similar objectives. In this paper, we first demonstrate that 
the performance of EMO algorithms as single-objective optimizers of scalariz-
ing functions highly depends on the choice of multiple objectives. Based on this 
observation, we propose a specification method of multiple objectives for the 
optimization of a weighted sum fitness function. Experimental results show that 
our approach works very well in the search for not only a single optimal solu-
tion but also a number of good alternative solutions around the optimal solution. 
Next we evaluate the performance of our approach in comparison with a hybrid 
EMO algorithm where a single-objective fitness evaluation scheme is probabil-
istically used in an EMO algorithm. Then we show that our approach can be 
also used to optimize other scalarizing functions (e.g., those based on constraint 
conditions and reference solutions). Finally we show that our approach is appli-
cable not only to scalarizing functions but also other single-objective optimiza-
tion problems. 

1   Introduction 

Evolutionary multiobjective optimization (EMO) is one of the most active research 
areas in the field of evolutionary computation. EMO algorithms have been success-
fully applied to various application areas involving multiple objectives [2]. In some 
cases, EMO algorithms can outperform single-objective evolutionary algorithms even 
when they are used to solve single-objective problems. It was reported in some  
studies on multiobjectivization [15], [18] that better results were obtained by  
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transforming single-objective problems into multiobjective ones (see [15] for multiob-
jectivization). 

Motivated by these studies on multiobjectivization, we examined the use of EMO 
algorithms to optimize the sum of multiple objectives in our former studies [8], [10]. 
We obtained promising results when we used NSGA-II [3] to optimize the simple 
sum fitness function for a two-objective 500-item (i.e., 2-500) knapsack problem of 
Zitzler & Thiele [19]. That is, NSGA-II outperformed its single-objective version in 
finding the optimal solution of the sum of the two objectives. This is because the use 
of NSGA-II helps escape from local optima.  

Usually EMO algorithms are very good at finding Pareto-optimal or near Pareto-
optimal solutions around the center of the Pareto front of a two-objective problem. 
EMO algorithms, however, are not always good at finding good solutions near the 
edge of the Pareto front. This is illustrated in Fig. 1 where NSGA-II was applied to 
the 2-500 knapsack problem [19] using two different settings. In Fig. 1 (a), standard 
parameter values were used (i.e., 0.8 crossover probability and 1/500 mutation prob-
ability). In this case, we observe a good convergence of solutions to the Pareto front. 
Actually NSGA-II outperformed its single-objective version in finding the optimal 
solution of the simple sum fitness function: fitness(x) = f1(x)+ f2(x). On the other 
hand, lower crossover and higher mutation probabilities were used in Fig. 1 (b) in 
order to increase the diversity of solutions. The increase in the diversity of solutions 
in Fig. 1 (b) was achieved at the cost of the deterioration in the convergence to the 
Pareto front. Experimental results in Fig. 1 suggest that the direct use of EMO algo-
rithms is not a good choice for finding the optimal solution of a weighted sum fitness 
function with very different weight values such as fitness(x) = 0.1 f1(x)+0.9 f2(x). 
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(a) Crossover 0.8 and mutation 1/500 (b) Crossover 0.2 and mutation 5/500 

Fig. 1. Experimental results of NSGA-II on the 2-500 knapsack problem using two different 
settings of the crossover and mutation probabilities 

Another weakness of EMO algorithms is the difficulty in the handling of many ob-
jectives. Most EMO algorithms are based on Pareto ranking to evaluate the fitness of 
each solution. Pareto ranking-based EMO algorithms, however, do not work well on 
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many-objective problems (e.g., see [6], [7], [14], [17]). This is because solutions 
rarely dominate other solutions in the presence of many objectives. Hughes [7] 
showed that multiple runs of single-objective optimizers outperformed a single run of 
EMO algorithms in their applications to many-objective problems. Similar results 
were also reported in Jaszkiewicz [14]. These results in the literature suggest that the 
use of EMO algorithms is not a good choice for finding the optimal solution of a 
scalarizing function generated from many objectives such as the simple sum fitness 
function of four objectives: fitness(x) = f1(x)+ f2(x)+ f3(x)+ f4(x). 

The above-mentioned experimental results can be summarized as follows: 

(1) EMO algorithms work well for optimizing a scalarizing function if the location of 
its optimal solution is near the center of the Pareto front of a two-objective optimi-
zation problem. For example, EMO algorithms can easily find good solutions in 
the region A in Fig. 2 (a) as shown in Fig. 1 (a). 

(2) EMO algorithms do not always work well for optimizing a scalarizing function if 
the location of its optimal solution is near the edge of the Pareto front of a two-
objective optimization problem. For example, EMO algorithms do not always eas-
ily find good solutions in the region B or C in Fig. 2 (a) as shown in Fig. 1 (b).  

(3) EMO algorithms are not likely to work well for optimizing a scalarizing function 
if they are applied to a many-objective problem. 

In this paper, we propose an idea of using an EMO algorithm to efficiently opti-
mize a scalarizing function even in the last two cases: (2) and (3). We generate a new 
multiobjective problem to which an EMO algorithm is applied. The point is to specify 
multiple objectives, which are similar to but different from the given scalarizing func-
tion, so that the location of the optimal solution is near the center of the Pareto front 
of the generated multiobjective problem. Our idea is illustrated in Fig. 2 (b) where we 
generate two objectives g1 and g2 in order to efficiently find good solutions in the 
region B. Slow convergence of EMO algorithms in the case of many objectives is 
remedied by the use of similar objectives as we will show later in this paper. 
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(a) Three regions in the objective space (b) Newly generated objectives: g1 and g2 

Fig. 2. Illustration of the proposed idea 
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In this paper, we first demonstrate that the performance of EMO algorithms as sin-
gle-objective optimizers of scalarizing functions highly depends on the choice of 
multiple objectives in Section 2. Based on this observation, we propose a specifica-
tion method of multiple objectives for the optimization of a weighted sum fitness 
function in Section 3. Experimental results show that our approach works very well in 
the search for not only a single optimal solution but also a number of alternative solu-
tions around the optimal solution. We also show that EMO algorithms work well as 
single-objective optimizers even in the case of many objectives. In Section 4, the 
effectiveness of our approach is compared with a hybrid EMO algorithm where a 
single-objective fitness evaluation scheme is probabilistically used in an EMO algo-
rithm. Then we show that our approach is applicable not only to weighted sum fitness 
functions but also other scalarizing functions (e.g., those based on constraint condi-
tions and reference solutions) and more general single-objective optimization prob-
lems in Section 5. Finally we conclude this paper in Section 6. 

2   Optimization of Scalarizing Functions by EMO Algorithms 

In this section, we examine the effectiveness of EMO algorithms as single-objective 
optimizers of scalarizing functions through computational experiments on multiobjec-
tive 0/1 knapsack problems in Zitzler & Thiele [19]. As a representative EMO algo-
rithm, we use NSGA-II [3]. For comparison, we also use its single-objective version. 

2.1   Scalarizing Functions 

Let us consider the following k-objective maximization problem:  

Maximize ))(...,),(),(()( 21 xxxxf kfff= , (1) 

where f(x) is the k-dimensional objective vector, and x is the decision vector.  
One of the frequently used scalarizing functions is the weighted sum fitness func-

tion with the non-negative weight vector w = (w1 , w2 , ..., wk): 

)(...)()()( 2211 xxxx kk fwfwfwfitness ⋅++⋅+⋅= . (2) 

We assume that the weight vector w is normalized (i.e., the sum of the weight values 
is 1). The weight vector w in (2) is usually supposed to be given by human users. 

The weighted sum fitness function with various weight vectors was successfully 
used to directly realize various search directions in multiobjective genetic local search 
(MOGLS) algorithms [9], [11], [12]. High performance of MOGLS of Jaszkiewicz 
[12] was reported [1], [13], [16]. The weighted sum fitness function was also used in 
hybrid or multi-stage EMO algorithms (e.g., see [8], [10], [16]). 

When a reference vector f * = ( f1
*, f2

*, ..., fk
*) is given as a desired point in the ob-

jective space, the distance from f * can be used as a scalarizing function:  

))(,()( * xffx distancefitness = . (3) 

In this paper, we use the Euclidean distance. The incorporation of reference points 
into EMO algorithms was examined in Deb & Sundar [4]. 
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Another scalarizing function is based on the transformation of some objectives into 
inequality conditions. Let us assume that the minimum requirement level for each of 
the first (k − 1) objectives is given as an inequality condition: 

iif ε≥)(x  for 1...,,2,1 −= ki . (4) 

The following scalarizing fitness function is usually formulated from the maximiza-
tion problem of fk(x) with the (k − 1) inequality conditions in (4): 

∑
−

=
−−=

1

1
)}(,0max{)()(

k

i
iik fffitness xxx εα , (5) 

where α is the unit penalty with respect to the violation of the inequality conditions in 
(4). In computational experiments of this paper, we specified α  as α = 1. 

2.2   NSGA-II and Its Single-Objective Version 

NSGA-II is an elitist EMO algorithm with the (μ + λ)-ES generation update mecha-
nism. The outline of NSGA-II can be written as follows:  

[NSGA-II] 
Step 1: P = Initialize(P) 
Step 2: While the stopping condition is not satisfied, do 
Step 3:           P’ = Parent Selection(P) 
Step 4:           P’’ = Genetic Operations(P’) 
Step 5:           P = Generation Update(P∪P’’) 
Step 6: End while 
Step 7: Return Non-dominated(P) 

In NSGA-II, each solution in the current population P is evaluated using Pareto 
ranking and a crowding measure in the following manner for parent selection in Step 
3. First the best rank is assigned to all the non-dominated solutions in the current 
population. Solutions with the best rank are tentatively removed from the current 
population. Next the second best rank is assigned to all the non-dominated solutions 
in the remaining population. In this manner, ranks are assigned to all solutions in the 
current population. The rank of each solution is used as the primary criterion in parent 
selection. A crowding measure is used to compare solutions with the same rank as the 
secondary criterion in parent selection (for details, see [2], [3]). 

A prespecified number of pairs of parent solutions are selected from the current 
population by binary tournament selection to form a parent population P’ in Step 3. 
An offspring solution is generated from each pair of parent solutions by crossover and 
mutation to form an offspring population P’’ in Step 4. The current population P and 
the offspring population P’’ are merged to form an enlarged population. Each solution 
in the enlarged population is evaluated by Pareto ranking and the crowding measure 
as in the parent selection phase. A prespecified number of the best solutions are cho-
sen from the enlarged population as the next population P in Step 5. Usually the  
number of offspring solutions is the same as the population size (i.e., μ = λ in the 
(μ + λ)-ES generation update mechanism). 
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We can easily implement a single-objective version (single-objective genetic algo-
rithm: SOGA) of NSGA-II by using a scalarizing fitness function for parent selection 
and generation update. Such an SOGA has the (μ + λ) -ES generation update mecha-
nism with μ = λ. We compare NSGA-II with SOGA through computational experi-
ments on multiobjective 0/1 knapsack problems in Zitzler & Thiele [19]. 

2.3   Computational Experiments 

As in Fig. 1 (a), we applied NSGA-II to the 2-objective 500-item (i.e., 2-500) knap-
sack problem [19] using the following parameter specifications: 

Population size: 200 (i.e., μ = λ  = 200), 
Crossover probability: 0.8 (uniform crossover), 
Mutation probability: 1/500 (bit-flip mutation) where 500 is string length, 
Termination condition: 2000 generations. 

Average results over 50 runs of NSGA-II are summarized as the 50% attainment 
surface [5] in Fig. 3 (a) where average results of SOGA are also shown for compari-
son. The weight vector, the reference vector and the minimum requirement level were 
specified in SOGA as w = (0.5, 0.5), f * = (19250, 19250) and ε1 = 18750 in Fig. 3 (a), 
respectively. We can observe that NSGA-II outperformed SOGA in Fig. 3 (a). 
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(a) Comparison between NSGA-II and SOGA (b) SOGA with the weighted sum fitness 

Fig. 3. Experimental results of NSGA-II and SOGA on the 2-500 knapsack problem 

In Fig. 3 (b), we show two intermediate and final populations during a single run of 
SOGA with the weighted sum fitness function with w = (0.5, 0.5). It should be noted 
that SOGA in Fig. 3 (b) was executed under the same parameter specifications as 
NSGA-II in Fig. 1 (a). From the comparison between these two figures, we can see 
that NSGA-II maintained a larger diversity of solutions. The decrease in the diversity 
of solutions during the execution of SOGA seems to be the main reason of the inferior 
performance of SOGA in Fig. 3 (a) in comparison with NSGA-II.  
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NSGA-II and SOGA are further compared with each other in Fig. 4 (a) for the 2-
500 knapsack problem using the weighted sum fitness function with w = (0.5, 0.5). 
Fig. 4 (a) shows the distribution of obtained solutions from 50 runs of each algorithm. 
Whereas good solutions were almost always obtained by NSGA-II, the quality of the 
final solution by each run of SOGA seems to highly depend on the initial population.  

In Fig. 3 (a) and Fig. 4 (a), NSGA-II outperformed SOGA when they were used to 
optimize the three scalarizing functions. The advantage of NSGA-II over SOGA, 
however, disappears as the increase in the number of objectives. In Fig. 4 (b), we 
show experimental results on the four-objective knapsack problem. The performance 
of NSGA-II as a single-objective optimizer was deteriorated in Fig. 4 by the increase 
in the number of objectives from two in Fig. 4 (a) to four in Fig. 4 (b). Pareto ranking-
based EMO algorithms usually do not work well on many-objective problems.  
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(a) Results on the two-objective problem (b) Results on the four-objective problem 

Fig. 4. Comparison between NSGA-II and SOGA. The 2-500 knapsack problem with w = (0.5, 
0.5) in (a) and the 4-500 knapsack problem with w = (0.25, 0.25, 0.25, 0.25) in (b). 

The advantage of NSGA-II over SOGA also disappears when the location of the 
optimal solution of a scalarizing function is near the edge of the Pareto front as we 
have already explained using Fig. 1. For example, NSGA-II did not work well on the 
2-500 knapsack problem as a single-objective optimizer of scalarizing functions in the 
following cases: w = (0.1, 0.9), f * = (16750, 20500) and ε1 = 17000. In each case, the 
location of the optimal solution is close to the top-left edge of the Pareto front (see 
Fig. 1 for the spatial relation between the obtained solutions by NSGA-II and the 
Pareto front). NSGA-II had difficulties in efficiently searching for good solutions near 
the edge of the Pareto front in comparison with SOGA in these cases. 

In the above-mentioned three difficult cases, the performance of NSGA-II as a sin-
gle-objective optimizer was improved when we used the following two objectives:  

)(5.0)(5.0)( 211 xxx ffg += , (6) 

)(3.1)(3.0)( 212 xxx ffg +−= , (7) 

where f1(x) and f2(x) are the original two objectives of the 2-500 knapsack problem. 
Average results over 50 runs of NSGA-II and SOGA are summarized in Fig. 5 (a) 
where NSGA-II was applied to the two-objective problem in (6) and (7). In Fig. 5 (a), 



58 H. Ishibuchi and Y. Nojima 

NSGA-II outperformed SOGA in their applications to the optimization of the scalariz-
ing functions in the above-mentioned three difficult cases. Fig. 5 (b) shows two in-
termediate and final populations during a single run of NSGA-II. The multiobjective 
search of NSGA-II was appropriately driven toward the desired region by the two 
objectives in (6) and (7) as we can see from the comparison of Fig. 5 (b) with Fig. 1 
(a). As a result, NSGA-II found better solutions of the scalarizing functions than 
SOGA in Fig. 5 (a). 

Experimental results in Fig. 5 suggest that the performance of NSGA-II as a single-
objective optimizer highly depends on the specification of multiple objectives. In the 
next section, we propose a specification method of multiple objectives for the optimi-
zation of a weighted sum fitness function. The proposed idea can be used for other 
scalarizing functions as shown in Section 4. 
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(a) Comparison between NSGA-II and SOGA (b) NSGA-II with the new two objectives 

Fig. 5. Experimental results of NSGA-II and SOGA on the 2-500 knapsack problem 

3   Handling of Weighted Sum Fitness Functions 

When we use EMO algorithms to optimize a scalarizing function, it is essential to 
generate multiple objectives so that the location of the optimal solution is near the 
center of the Pareto front of the generated multiobjective problem. In this section, we 
show how we can generate such a multiobjective problem to optimize a weighted sum 
fitness function. 

3.1   Weighted Sum Fitness Function of Two Objectives 

Our task in this subsection is to optimize the weighted sum of two objectives: 

)()()( 2211 xxx fwfwfitness ⋅+⋅= . (8) 
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Two objectives can be newly generated by changing the weight vector as follows: 

)()()()()( 22111 xxx fwfwg ββ −++= , (9) 

)()()()()( 22112 xxx fwfwg ββ ++−= . (10) 

For example, the weight vectors of the newly generated two objectives are specified 
as (0.2, 0.8) and (0.4, 0.6) from the weight vector w = (0.3, 0.7) when β = 0.1. 

Using various specifications of β, we applied NSGA-II to the two-objective prob-
lem in (9) and (10) generated from the weighted sum fitness function with w = (0.3, 
0.7) for the 2-500 knapsack problem. Average results over 50 runs of NSGA-II are 
summarized in Fig. 6 (a). It should be noted that NSGA-II with β = 0 is the same as 
SOGA because g1(x) and g2(x) become the same as the original weighted sum fit-
ness function. We also show experimental results for the case of w = (0.1, 0.9) in 
Fig. 6 (b). We can observe in Fig. 6 that the multiobjectivization by (9) and (10) 
clearly improved the quality of the obtained solutions. We can also observe that the 
performance of NSGA-II as a single-objective optimizer was not sensitive to the 
value of β. 
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(a) Average results with w = (0.3, 0.7) (b) Average results with w = (0.1, 0.9) 
Fig. 6. Weighted sum optimization by NSGA-II for the 2-500 knapsack problem 

The multiobjectivization by (9) and (10) is effective in the search not only for a 
single optimal solution but also for multiple good solutions around the optimal solu-
tion. In each plot of Fig. 7, we show two intermediate and final populations during a 
single run of NSGA-II for each of the two cases: β = 0.3 and β = 0.5. In both cases, 
the weight vector of the original weighted sum fitness function was specified as w = 
(0.3, 0.7). In Fig. 7, multiple solutions were obtained along the Pareto front of the 
original 2-500 knapsack problem. Moreover, the spread of the finally obtained solu-
tion set in each plot depended on the value of β. These observations suggest that the 
multiobjectivization by (9) and (10) can drive the population toward an appropriate 
search region and adjust its diversity. This means that the proposed idea has a poten-
tial usefulness as an approach to the focused search by EMO algorithms.  
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(a) β = 0.3 with w = (0.3, 0.7) (b) β = 0.5 with w = (0.3, 0.7) 

Fig. 7. Behavior of NSGA-II with the newly generated two objectives from the 2-500 problem 

3.2   Weighted Sum Fitness Function of Many Objectives 

The proposed idea in the previous subsection can be easily generalized to the case of 
more than two objectives. Let us consider the weighted sum of three objectives with 
the weight vector w = (w1 , w2 , w3). Three objectives can be generated by changing 
the weight vector w = (w1 , w2 , w3) toward the three directions: (1, 0, 0), (0, 1, 0) and 
(0, 0, 1). More specifically, the weight vectors of the three objectives are generated in 
the following manner: 

||||A a
a

ww ⋅+= β ,  
||||B b

b
ww ⋅+= β ,  and  

||||C c
c

ww ⋅+= β , (11) 

where || a || denotes the length of the vector, and a, b, c are specified as follows: 

wa −= )0,0,1( ,  wb −= )0,1,0( ,  and  wc −= )1,0,0( . (12) 

This method can be directly generalized to the case with more objectives. We ap-
plied NSGA-II to the weighted sum fitness function with w = (0.8, 0.1, 0.1) for the 3-
500 knapsack problem. We also applied SOGA to the same problem. When we used 
NSGA-II, we generated a new three-objective problem using (11) and (12) with β = 
0.2. The distribution of the obtained solutions by 50 runs of each algorithm is shown 
in Fig. 8 (a). We can see from Fig. 8 (a) that NSGA-II outperformed SOGA in their 
applications to the optimization of the weighted sum of the three objectives. It should 
be noted that NSGA-II did not work well for the same task as a single-objective opti-
mizer when it was applied to the original 3-500 knapsack problem.  

We also performed the same computational experiments on the weighted sum fit-
ness function with w = (0.25, 0.25, 0.25, 0.25) for the 4-500 knapsack problem. Ex-
perimental results are shown in Fig. 8 (b). As in Fig. 8 (a), NSGA-II outperformed 
SOGA in Fig. 8 (b). The comparison between Fig. 4 (b) and Fig. 8 (b) clearly  
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demonstrates the effect of the proposed idea on the performance of NSGA-II as a  
single-objective optimizer of the weighted sum fitness function. It should be noted 
that the difficulty of Pareto ranking-based EMO algorithms in the handling of many 
objectives was remedied by the use of similar objectives in our approach as shown in 
Fig. 8.  
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(a) 3-500 with w = (0.8, 0.1, 0.1) (b) 4-500 with w = (0.25, 0.25, 0.25, 0.25) 
Fig. 8. Weighted sum optimization by NSGA-II using the proposed approach with β = 0.2 
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(a) Projection onto the f1-f2 space (b) Projection onto the f3-f4 space 

Fig. 9. Obtained solutions by a single run of NSGA-II on the modified 4-500 problem 

As shown in Fig. 8 (b), NSGA-II worked very well as a single-objective optimizer 
to search for the optimal solution of the weighted sum of the four objectives of the 4-
500 knapsack problem. It also has the ability to find multiple non-dominated solutions 
as an EMO algorithm. In Fig. 9, we show the obtained non-dominated solution set by 
a single run of NSGA-II on the modified 4-500 knapsack problem, which was gener-
ated from the 4-500 knapsack problem with w = (0.25, 0.25, 0.25, 0.25) using (11) 
and (12) with β = 0.2. Each plot in Fig. 9 shows the projection of the obtained  
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non-dominated solution set from the original four-dimensional objective space onto a 
two-dimensional space. From Fig. 9, we can see that a number of non-dominated 
solutions were obtained by a single run of NSGA-II. 

4   Application of a Hybrid EMO Algorithm 

In our former studies [8], [10], we proposed a hybrid EMO algorithm where a 
weighted sum fitness function was probabilistically used in NSGA-II. We introduced 
two probabilities PPS and PGU, which specified how often the weighted sum fitness 
function was used for parent selection and generation update in the hybrid EMO algo-
rithm, respectively. In this section, we compare our approach (i.e., application of 
NSGA-II to modified multiobjective problems) with the hybrid EMO algorithm. 

One extreme case of the hybrid EMO algorithm with PPS = PGU = 0.0 is exactly 
the same as NSGA-II since the weighted sum fitness function is never used. Another 
extreme case with PPS = PGU = 1.0 is the same as SOGA since the weighted sum 
fitness function is always used. The balance between single-objective and multiobjec-
tive search can be adjusted between the two extreme cases using the two probabilities. 

In our computational experiments in this section, we examined the following 
11x11 combinations of the two probabilities: 

Probability PPS: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 
Probability PGU: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. 

We applied the hybrid EMO algorithm to the 4-500 knapsack problem to optimize 
the weighted sum fitness function with the weight vector w = (0.25, 0.25, 0.25, 0.25). 
This weighted sum fitness function was used for parent selection with the probability 
PPS and generation update with the probability PGU in the hybrid EMO algorithm. 
When the weighted sum fitness function was not used, the multiobjective fitness 
evaluation scheme in NSGA-II was invoked to evaluate each solution based on the 
original four objectives in the 4-500 knapsack problem. Average results over 50 runs 
are summarized in Fig. 10 (a). The bottom-left bar with PPS = PGU = 0.0 shows the 
result of NSGA-II while the top-right bar with PPS = PGU = 1.0 shows the result of 
SOGA. Whereas the performance of NSGA-II was very poor in Fig. 10 (a), it was 
significantly improved by the probabilistic use of the weighted sum fitness function. 
Better results than SOGA were obtained by the hybrid EMO algorithm in the top-left 
corner with PPS = 0.0 and PGU = 1.0 in Fig. 10 (a). We also applied the hybrid EMO 
algorithm to the same problem after modifying the 4-500 knapsack problem using the 
proposed approach with β = 0.2. Experimental results were shown in Fig. 10 (b) 
where good results were obtained even when the weighted sum fitness function was 
not used (i.e., the bottom-left bar with PPS = PGU = 0.0). That is, the hybridization is 
not necessary in Fig. 10 (b) where we modified the 4-500 knapsack problem by the 
proposed approach. Moreover, we can observe that better results were obtained in Fig. 
10 (b) after the modification of the 4-500 problem than Fig. 10 (a). 
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(a) Original 4-500 problem (b) Modified 4-500 problem 

Fig. 10. Effect of our approach on the performance of the hybrid EMO algorithm 

5   Handling of Other Scalarizing Fitness Functions 

The basic idea of our approach is to generate multiple objectives, which are similar to 
but different from the given scalarizing function, so that the location of its optimal 
solution is near the center of the Pareto front of the generated multiobjective problem. 
This idea can be also implemented for other scalarizing functions. 

For example, let us assume that we have a reference vector (19000, 20000) for the 
2-500 knapsack problem. In this case, we can generate two objectives by specifying 
two reference vectors around (19000, 20000). Experimental results with newly gener-
ated two reference vectors (18000, 21000) and (20000, 19000) are shown in Fig. 11 
(a). On the other hand, when we have a minimum requirement level (e.g., 18000) for 
the first objective of the 2-500 knapsack problem, we can generate two objectives by 
specifying two minimum requirement levels around 18000 (e.g., 17000 and 19000). 
Experimental results with the newly generated minimum requirement levels 17000 
and 19000 are shown in Fig. 11 (b). We can observe in Fig. 11 that the search of 
NSGA-II was appropriately directed by the newly generated multiple objectives. We 
can also observe that good alternative solutions were obtained around the optimal 
solution of the original scalarizing function in each plot in Fig. 11. 

Our approach is applicable not only to the optimization of scalarizing function but 
also to other optimization problems. For example, let us consider the maximization of 
f(x). If we have another objective g (x), we can generate two objectives as f(x) + 

⋅w g (x) and f(x) − ⋅w g (x). In this case, the choice of g (x) is not so important be-
cause its effect can be adjusted by the weight w. The direct use of f(x) and g (x) as 
two objectives is not a good strategy for optimizing f(x) because the optimal solution 
of f(x) is located at the edge of the Pareto front of the two-objective problem with 
f(x) and g (x). In Fig. 12, we show experimental results on the optimization of f2(x) of 
the 2-500 knapsack problem. We used f1(x) and f2(x) as two objectives in Fig. 12 (a), 
which is not a good strategy. On the other hand, we used f2(x) + 0.3 f1(x) and f2(x) − 
0.3 f1(x) in Fig. 12 (b), which is a good strategy as multiobjectivization.  
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(a) Results based on two reference vectors (b) Results based on two requirement levels 

Fig. 11. Experimental results on the 2-500 knapsack problem using other scalarizing functions 
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Fig. 12. Optimization of f2(x) of the 2-500 knapsack problem by NSGA-II 

6   Conclusions 

In this paper, we proposed an idea of using an EMO algorithm to optimize a scalariz-
ing function. Our approach generates multiple objectives, which are similar to but 
different from the given scalarizing function, so that the location of the optimal solu-
tion of the scalarizing function is near the center of the Pareto front of the generated 
multiobjective problem. The effectiveness of our approach was examined through 
various computational experiments using NSGA-II. Experimental results showed that 
the performance of NSGA-II as a single objective optimizer highly depends on the 
choice of multiple objectives. One interesting observation is that NSGA-II worked 
very well even when it was applied to a four-objective 0/1 knapsack problem gener-
ated by our approach (whereas NSGA-II usually does not work well for many-
objective problems). This is because our approach generates similar objectives. 

This work was partially supported by Grant-in-Aid for Scientific Research on Pri-
ority Areas (18049065) and for Scientific Research (B) (17300075). 
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Abstract. Uncertainties in design variables and problem parameters
are inevitable and must be considered in an optimization task including
multi-objective optimization, if reliable optimal solutions are to be found.
Sampling techniques become computationally expensive if a large relia-
bility is desired. In this paper, first we present a brief review of statistical
reliability-based optimization procedures. Thereafter, for the first time,
we extend and apply multi-objective evolutionary algorithms for solving
two different reliability-based optimization problems for which evolution-
ary approaches have a clear niche in finding a set of reliable, instead of
optimal, solutions. The use of an additional objective of maximizing the
reliability index in a multi-objective evolutionary optimization proce-
dure allows a number of trade-off solutions to be found, thereby allowing
the designers to find solutions corresponding to different reliability re-
quirements. Next, the concept of single-objective reliability-based opti-
mization is extended to multi-objective optimization of finding a reliable
frontier, instead of an optimal frontier. These optimization tasks are il-
lustrated by solving test problems and a well-studied engineering design
problem. The results should encourage the use of evolutionary optimiza-
tion methods to more such reliability-based optimization problems.

1 Introduction

For practical optimization studies, reliability-based techniques are getting in-
creasingly popular, due to their ability to handle uncertainties involved in realiz-
ing decision variables and stochasticities involved in various problem parameters.
For a canonical deterministic optimization task, the optimum solution usually
lies on a constraint surface or at the intersection of more than one constraint
surfaces. However, if the design variables or some system parameters cannot be
achieved exactly and are uncertain with a known probability distribution of vari-
ation, the deterministic optimum (lying on one or more constraint surfaces) will
fail to remain feasible in many occasions [5,10]. In such scenarios, a stochastic
optimization problem (also known as chance programming) is usually formed

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 66–80, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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and solved, in which the constraints are converted into probabilistic constraints
meaning that probability of failures (of being a feasible solution) is limited to a
pre-specified value (say (1 − R)) [6], where R is called the reliability of design.

Existing reliability-based optimization techniques vary from each other in the
manner they handle the probabilistic constraints. One simple-minded approach
would be to use a Monte-Carlo simulation technique to create a number of sam-
ples following the uncertainties and stochastitices in the design variables and
problem parameters and evaluate them to compute the probability of failure
[12,2]. However, such a technique becomes computationally expensive when the
desired probability of failure is very small. To alleviate this computational prob-
lem, more sophisticated sampling techniques are suggested.

Recently, optimization-based methodologies, instead of sampling methods, are
suggested to take care of the probabilistic constraints. In these methods, stochas-
tic variables and parameters are transformed into the standard normal variate
space and a separate optimization problem is formulated to compute the largest
probability of failure and equate it with the desired value. At least three different
concepts – double-loop methods, single-loop methods and decoupled methods –
have been followed. In this paper, for the first time, we extend one of these
methodologies and apply it with an evolutionary algorithm to solve two differ-
ent types of optimization problems and demonstrate by solving test problems
and an engineering design problem that the evolutionary optimization based
reliability consideration is quite appropriate for these problems.

2 Existing Reliability-Based Methodologies

We consider here a reliability-based single-objective optimization problem of the
following type:

Minimize
(x,d)

f(x,d,p),

Subject to gj(x,d,p) ≥ 0, j = 1, 2, . . . , J,
hk(d) ≥ 0, k = 1, 2, . . . , K,

x(L) ≤ x ≤ x(U), d(L) ≤ d ≤ d(U).

(1)

Here, x is a set of design variables which are uncertain, d is a set of deterministic
design variables, and p is a set of uncertain parameters (which are not design
variables). Thus, the stochasticity in the optimization problem comes from two
sets of variables: x and p. Here, we only consider inequality constraints. This is
because if an equality constraint involves x or p, there may not exist a solution
for any arbitrary desired reliability against failure. All inequality constraints can
be classified into two categories: (i) stochastic (or chance) constraints gj involves
at least one random variables (x, p or both) and (ii) hk involves no random vari-
ables. Figure 1 shows a hypothetical problem with two inequality constraints.
Typically, the optimal solution lies on a constraint boundary or at the the inter-
section of more than one constraints, as shown in the figure. In the event of uncer-
tainties in design variables, as shown in the figure with a probability distribution
around the optimal solution, in many instances such a solution will be infeasible.
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Fig. 1. The concept of reliability-based
optimization procedure is illustrated

In order to find a solution which is more
reliable (meaning that there is a very
small probability of instances producing
an infeasible solution), the true optimal
solution must be sacrificed and a solu-
tion interior to the feasible region may
be chosen. For a desired reliability mea-
sure R, it is then desired to find that fea-
sible solution which will ensure that the
probability of having an infeasible solu-
tion instance created through uncertain-
ties from this solution is at most (1−R).
To arrive at such a solution, the above
optimization problem can be converted
to a deterministic optimization problem.
Since the objective function f and constraints gj are also random due to the
randomness in variables x and parameter p, usually the following deterministic
formulation is made:

Minimize
(μx,d)

μf (μx,d, μp),

Subject to P (gj(x,d,p) ≥ 0) ≥ Rj , j = 1, 2, . . . , J,
hk(d) ≥ 0, k = 1, 2, . . . , K,

x(L) ≤ μx ≤ x(U), d(L) ≤ d ≤ d(U).

(2)

where μf is the function value computed at the mean of variable vector x and
random parameters p. The quantity Rj is the required reliability (within [0, 1])
for satisfying j-th constraint. A computational method is used to estimate the
probability term P (), which we discuss next. Since the above formulation con-
tains all deterministic expressions, any existing optimization methodology can
be used to solve the problem.

The only difficulty the above problem poses is to compute the probability,
P (). The existing reliability-based design optimization procedures can be clas-
sified into four classes [1], mainly based on the way the probability term P () is
computed:

1. Simulation methods
2. Double-loop methods
3. Decoupled methods, and
4. Single-loop methods

2.1 Simulation Methods

In this procedure, a set of N different solutions can be created by following
the known distribution of variation of x and p. Thereafter, for each sample
each constraint gj can be evaluated and checked for its violation. If r cases (of
N) satisfy all gj constraints, the probabilistic constraint can be substituted by a
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deterministic constraint as follows: r
N ≥ R. Such a method is simple and works

well when the desired reliability R is not very close to one [11]. However, a
major bottleneck of this approach is that the sample size N needed for finding
r must be of the order of at least O(1/(1 − R)), such that at least one infeasible
case is present in the sample. This may be too computationally expensive to
be of any practical use. Although better procedures with a biased Monte-Carlo
simulation procedure exist [2], the use of reliability techniques [13,14] to evaluate
probabilistic constraints is getting increasingly popular in the recent past, which
we discuss next.

2.2 Double-Loop Methods

In the double-loop method, a nested optimization is used. To compute the prob-
ability of success of each constraint, an optimization procedure (an inner-level
optimization) is used. The outer loop optimizes the original objective function
and the inner loop finds an equivalent deterministic version of each probabilistic
constraint by formulating and solving an optimization problem. There are two
approaches used for this purpose: (i) Performance measure approach (PMA)
and (ii) Reliability index approach (RIA). Because of the nested optimization
procedures, double-loop methods are computationally expensive.

To find whether a given hard constraint (gj) is satisfied at a design point, we
need to compute the following probability of the complementary failure event:

Pj =
∫

gj(x,d,p)<0
fX(X)dX, (3)

where fX is the joint probability density function of X = (x,p). The relia-
bility can be computed as Rj = 1 − Pj . It is usually impossible to find an
analytical expression for the above integral. Thus, we first convert the X coordi-
nate system into an independent standard normal coordinate system U, through
the Rosenblatt transformation [15]. The standard normal random variables are
characterized by zero mean and unit variance. In this space, we approximate the
curve (gj(x,d,p) = 0 or equivalently Gj(U) = 0) by a first-order approximation
at a suitable point known as the MPP (most probable point) of failure. In other
words, the MPP point corresponds to a reliability index βj , which makes a first-
order approximation of Pj = Φ(−βj), where Φ() is the standard normal density
function. To compute the MPP (or βj), we have the following two approaches.

Performance Measure Approach (PMA). To find the MPP in the PMA
approach, the following optimization problem is solved:

Minimize Gj(U), Subject to ‖U‖ = βr
j , (4)

where βr
j is the required reliability index, computed from the required reliability

Rj as follows: βr
j = Φ−1(Rj). The above formulation finds a U∗ point which lie

on a circle of radius βr
j and makes Gj(U) minimum. The original probability

constraint is replaced by
Gj(U∗) ≥ 0. (5)
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Fig. 3. The RIA approach

Figure 2 illustrates this approach on a hypothetical problem. The figure shows a
probabilistic constraint gj into the U-space (for ease of illustration, two variables
are considered here). The corresponding constraint Gj(u1, u2) and the feasible
region are shown. The circle represents U solutions which corresponds to a re-
liability index of βr

j . Thus, the PMA approach finds a point U∗ on the circle
for which the function Gj(U) takes the minimum value. Then, if the corre-
sponding constraint function value is non-negative, the probabilistic constraint
P (gj(x,d,p) ≥ 0) ≥ Rj is considered to have been satisfied.

Although the procedure involves an equality constraint, a special optimization
procedure can be used to consider solutions only on the ‖U‖ = βr

j surface,
thereby making every solution a feasible solution. For multiple such probabilistic
constraints, ideally the above problem can be solved for each constraint at a time
and the minimum of Gj(U∗) value for all constraints (j = 1, 2, . . . , J) can be
used in equation 5.

Reliability Index Approach (RIA). In this method, the following optimiza-
tion problem is solved:

Minimize ‖U‖, Subject to Gj(U) = 0. (6)

Here, the MPP is calculated by finding a point which is on the constraint curve
in the U-space and is nearest to the origin. The optimum point U∗ is used to
replace the original probability constraint as follows:

‖U‖ ≥ βr
j . (7)

Figure 3 illustrates the procedure. During the optimization procedure, the de-
sired reliability index βr

j is ignored and the minimum U-vector on the constraint
boundary is found. Thereafter, the minimal U∗ is compared with βr

j .
This approach also involves an equality constraint. Although this method

is computationally inferior compared to the PMA approach, a nice aspect is
that the optimization problem does not involve the supplied reliability index
value. For multiple such constraints, the above procedure can be applied for
each constraint and the minimum U∗ can be considered in equation 7.
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2.3 Single-Loop Methods

The single-loop methods [12] combine both optimization tasks together by not
exactly finding the optimum of the inner-level optimization task. An approxi-
mation procedure is used for the task. As an example, Liang [12] suggested the
following replacement of the original probabilistic constraint:

gj(x,p,d) ≥ 0, (8)

where x and p are computed from the derivatives of gj with respect to x and p
at the means respectively, as follows:

x = μx − βr
j σ

∇xgj√
‖∇xgj‖2 + ‖∇pgj‖2

, p = μp − βr
j σ

∇pgj√
‖∇xgj‖2 + ‖∇pgj‖2

.

Since the above is only an approximation to the double-loop procedure, the
single-loop methods often cannot produce accurate results, but are computa-
tionally quicker methods than the double-loop methods.

2.4 Decoupled Methods

In the decoupled methods, two optimization (outer and inner-level) approaches
are applied one after another in a sequence. Decoupled methods are shown to
be the best of the three optimization approaches in a number of recent studies.
These methods are started by first finding the best solution in the search space
(without considering any uncertainty on design variables x or parameters p and
using the mean of x as decision variables). Thereafter, the most-probable point
(MPP) for each constraint gj is found using the PMA or RIA approach. Then
in the next iteration, the constraints are shifted according to their MPP points
found in the last inner-level optimization. This dual optimization continues in
tandem till no further improvement in the current solution is achieved. Figure 4
shows a particular approach (Sequential Optimization and Reliability Assess-
ment (SORA) method) suggested elsewhere [8], in which the PMA approach is
used as the second optimization problem.

Next, we discuss and show simulation results of two different problems in
which one of the above methodologies coupled with an evolutionary multi-
objective optimization algorithm make an efficient and useful search procedure.

3 Optimization for Seeking Multiple Solutions for
Different Reliability Values

In most reliability-based optimization studies, the aim is to find the reliable op-
timum corresponding to a given failure probability (or a given reliability index).
However, in the context of design optimization, it would be educative to learn
how the reliable solutions would change with different levels of reliability index, as
shown in Figure 5. When reliability is not considered, the deterministic optimum
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Minimize
((μx,d)

f(μx,d, μp),

Subject to gj(μx − sj ,d,pk
MPP,j) ≥ 0, j = 1, 2, . . . , J,

hk(d) ≥ 0, k = 1, 2, . . . , K,

x(L) ≤ μx ≤ x(U),

d(L) ≤ d ≤ d(U).

(μkx,dk
)

⏐⏐�
�⏐⏐ k = k + 1

sj = μk
x − xk

MPP,j

For j = 1, 2, . . . , J
PMA Approach to find MPP for j-th constraint → (xk

MPP,j , p
k
MPP,j)

Fig. 4. A specific decoupled method (SORA) [8]. Initial value of sj is set equal to zero
for all j.
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Fig. 5. Different reliability index
may provide useful information

is the desired solution. As discussed earlier,
when the optimization is performed for a par-
ticular reliability (say R = 0.9), an original
feasible (inactive) solution becomes the de-
sired reliable solution. As the reliability value
is increased, a different solution somewhat
more inside into the feasible region is likely to
be the desired solution. That is, if we can lo-
cate the reliable optimum for small (say 80%)
to large value (say 99.99%) of reliability, it
would be worthwhile to analyze the solutions
and investigate if they all bring out any com-
mon design principles (marked by the solid
line connecting the reliable solutions). Such
multiple optimal solutions can be deciphered
by treating the problem as a two-objective optimization problem of optimizing
the original objective and in addition maximize the reliability index (R or β)
and by finding a number of Pareto-optimal solutions using an evolutionary multi-
objective optimization (EMO) strategy to this bi-objective optimization problem.
Multiple independent optimization tasks can be eliminated by a single bi-objective
optimization task, if a two-objective optimization problem having the original ob-
jective function and an additional objective of maximizing reliability R dictated
by the solution is formulated and solved for (μx,d):

Minimize μf (μx,d, μp), Maximize R(μx,d, μp) = minJ
i=1 Rj(μx,d, μp),

Subject to hk(d) ≥ 0, k = 1, 2, . . . , K, x(L) ≤ μx ≤ x(U), d(L) ≤ d ≤ d(U).
(9)

where Rj(μx,d, μp) = P (gj(x,d,p) ≥ 0). The evolutionary multi-objective
optimization (EMO) procedure is capable of finding multiple Pareto-optimal
solutions for such a bi-objective optimization problem, thereby finding multiple
reliable solutions corresponding to differing reliability values.
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3.1 Reliability-Based Evolutionary Approach

For handling the above problem, the RIA-based approach is used here. This is be-
cause, for every solution it is desired to find the reliability value it corresponds.
We use a relatively faster yet an approximate approach here for finding the MPP.
First, we find the MPP (U∗) on a unit-circle (assuming βr

j = 1) based on the
above PMA-based fast approach. Thereafter, we perform a uni-directional search
along U∗ and locate the point for which Gj(U) = 0. We employ the Newton-
Raphson approach for performing the uni-directional search. Here also, we use
a tolerance of 0.001 for terminating the uni-directional search. Due to a single-
variable search, the computation is usually quick, requiring only a derivative of
the constraint function in the U-space. However, the MPP point obtained by this
procedure may be an approximate solution and more sophisticated methods may
be necessary. For handling multiple constraints, the above procedure of finding
U∗ and then performing the Newton-Raphson method to locate the point on
Gj(U) = 0 is repeated for each constraint one at a time. Thus, the inner-level
optimization procedure using all design variables needed in the classical double-
loop method is replaced by a fast procedure of finding the U∗ direction and then
performing a single-variable line search. Such a technique can be employed with a
classical optimization procedure or with any other non-classical methods as well.

3.2 Simulation Results

First, we consider the following two-variable test problem [1]:

Maximize x + y,
Subject to g1(x, y) ≡ 1

20x2y − 1 ≥ 0,
g2(x, y) ≡ 1

30 (x + y − 5)2 + 1
120 (x − y − 12)2 − 1 ≥ 0,

g3(x, y) ≡ 80
x2+8y+5 − 1 ≥ 0,

0 ≤ x, y ≤ 10.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(10)

Here, x = (x, y). To find a set of trade-off optimal solutions, we use the elitist
non-dominated sorting GA or NSGA-II [4]. Figure 6 shows the non-dominated
solutions obtained by NSGA-II with a population size of 100 and run for 100
generations. The SBX recombination operator with a probability of 0.9 and
distribution index of 2 and the polynomial mutation with a probability of 1/n
with a distribution index of 50 are used here [3]. Here, we have restricted the
reliability index to vary between 0.5 and 5.0, causing a reliability of 69.14625% to
99.99997%. We have used σ1 = σ2 = 0.3 for this problem. It is interesting to note
that to achieve a better reliable solution, a compromise of the optimal objective
function value must be made. Such a variation of optimal objective value and
reliability is important to decision-makers, as this will provide a deeper insight
into the trade-off between these two important parameters.

To investigate whether NSGA-II solutions are optimal, we have solved the
same problem with single-objective SORA method (decoupled method discussed
above) for different β values. These solutions are also shown in Figure 6 with a
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‘diamond’. Since these solutions lie close to the obtained NSGA-II front, the near-
optimality of other NSGA-II solutions can be ensured from the figure. Figure 7
shows how the optimal solutions move away from the deterministic optimum
with an increase in the reliability index. The constraints g1 and g3 are active
at the deterministic optimum. The inset figure shows that even for βr = 0.5,
the reliable solution is inside the feasible region (marked shaded). Thereafter, as
βr increases up to 5, the reliable solutions move inside the feasible space. The
manner in which the solutions move inside also reveals important insights about
the dependency of optimal solutions on the reliability index.

Car Side-Impact Problem. Next, we consider the car side-impact problem [9].
A car is subjected to a side impact based on European Enhanced Vehicle-Safety
Committee (EEVC) procedures. There are 11 design variables. Their description
and the standard deviation of their variations are shown below:
x1:Thk. of B-Pillar inner (0.03) x6: Thk. of door reinforcement (0.03)
x2:Thk. of B-Pillar reinforcement (0.03)x7: Thk. of roof rail (0.03),
x3:Thk. of floor side inner (0.03), x8: Material of B-Pillar inner (0.006),
x4:Thk. of cross members (0.03), x9: Material of floor side inner (0.006),
x5:Thk. of door beam (0.05), x10:Barrier height (10),

x11:Barrier hitting position (10).
The problem formulation is as follows:

Minimize
(x1,...,x7)

f(x) = Weight,

Subject to g1(x) ≡ Abdomen load ≤ 1 kN, g2(x) ≡ V ∗ Cu ≤ 0.32 m/s,
g3(x) ≡ V ∗ Cm ≤ 0.32 m/s, g4(x) ≡ V ∗ Cl ≤ 0.32 m/s,
g5(x) ≡ Dur upper rib deflection ≤ 32 mm,
g6(x) ≡ Dmr middle rib deflection ≤ 32 mm,
g7(x) ≡ Dlr lower rib deflection ≤ 32 mm,
g8(x) ≡ F Pubic force ≤ 4 kN,

(11)
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g9(x) ≡ VMBP Velocity of V-Pillar at middle point ≤ 9.9 mm/ms,
g10(x) ≡ VFD Velocity of front door at V-Pillar ≤ 15.7 mm/ms,
0.5 ≤ x1 ≤ 1.5, 0.45 ≤ x2 ≤ 1.35, 0.5 ≤ x3 ≤ 1.5,
0.5 ≤ x4 ≤ 1.5, 0.875 ≤ x5 ≤ 2.625, 0.4 ≤ x6 ≤ 1.2, 0.4 ≤ x7 ≤ 1.2.

In this problem, we partition the 11-variable vector x into two sets: uncertain
decision variables x = (x1, . . . , x7) and uncertain parameters p = (x8, . . . , x11).
Here, all variables/parameters (in mm) are assumed to be stochastic with a
standard deviations (in mm) marked above. Problem parameters x8 to x11 are
assumed to take a particular distribution with a fixed mean of 0.345, 0.192,
0, and 0 mm, respectively. Thus, the stochastic optimization problem involves
seven decision variables, whereas all 11 quantities vary with normal distribution
around their mean values and are assumed to be independent. This functional
forms of the objective function and constraints are given in the appendix.

We use a population of size 100 and run NSGA-II to optimize two objectives
f(x) and R for 100 generations. Figure 8 shows the trade-off between f∗ and
R. Here, we restrict β to vary between 0.5 and 3 (reliability of 99.865%). The
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corresponding SORA solutions, marked with ‘diamonds’ in Figure 9), confirm
the near-optimality of the obtained solutions. Interestingly, in this problem, a
larger than linear sacrifice in f∗ needs to be made for an increase in β. The
deterministic minimum (f∗) – without any variation in variables – is also shown
in the figure. Figure 9 also shows how all seven variables vary with the reliability
coefficient. Interestingly, x5, x6 and x7 remains fixed for all reliable solutions.
Variables x5 and x7 are fixed at their lower bounds and x6 gets fixed at its
upper bound. The optimal strategy in all solutions seems to use the smallest
dimension for thickness of door beam (x5) and roof rail (x7) and the largest
possible dimension for the door beltline reinforcement (x6). For solutions up to
around β = 2 (corresponding to 97.725% reliability), x1 and x3 remain fixed to
their lower bounds and thereafter they increase with reliability. These variables
represent the thickness of B-Pillar inner and floor side inner, respectively. On
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the other hand, till about this critical reliability requirement, x2 (thickness of
B-Pillar reinforcement) and x4 (thickness of cross members) take large values
and increase with reliability. After a critical reliability index, these values get
fixed to their allowed upper limit. Thus, overall it seems that a good recipe to
obtain an optimal yet reliable solution is to make the reinforcements stronger,
while compromising the weight by using thinner members of other components.
The figure also reveals that if no upper bound is used for these variables, the
optimal strategy would be to use a monotonically increased dimension of x2 and
x4 with increased reliability requirement. Such information about the nature
of solutions and their interactions with the reliability index are interesting and
provide valuable knowledge about the problem to a design engineer.

4 Multi-objective Reliability-Based Optimization

The concept of reliability-based optimization methods can also be applied to
solve multi-objective reliability-based optimization problems:

Minimize
(x,d)

(f1(x,d,p), . . . , fM (x,d,p)),

Subject to gj(x,d,p) ≥ 0, j = 1, 2, . . . , J,
hk(d) ≥ 0, k = 1, 2, . . . , K,

x(L) ≤ x ≤ x(U), d(L) ≤ d ≤ d(U).

(12)

In such cases, instead of a single reliable solution, a reliable frontier is the target,
as shown in Figure 10. When reliability aspects are considered, the corresponding

Pareto−optimal
front

Reliable
front

f_1

f_2

sensitive region

Less sensitive
region

Fig. 10. Reliable front in a multi-
objective reliability-based optimization
problem
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reliable Pareto-optimal front will be different from the original front and is placed
inside the feasible region. As the reliability index is increased (to get more reliable
solutions), the front is expected to move further inside the feasible region in the
objective space.
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An use of EMO procedure can be applied directly on the following determin-
istic optimization problem:

Minimize
(μx,d)

(μf1(μx,d, μp), . . . , μfM (μx,d, μp)),

Subject to P (gj(x,d,p) ≥ 0) ≥ Rj , j = 1, 2, . . . , J,
hk(d) ≥ 0, k = 1, 2, . . . , K,

x(L) ≤ μx ≤ x(U), d(L) ≤ d ≤ d(U).

(13)

The probability constraint P () can handled as before by using any of the four
methods. The advantage of finding the complete reliable frontier is that the rela-
tive sensitivity of different regions of the frontier can be established with respect
to the uncertainties in design variables and parameters. These information will
be useful to the designers and decision-makers in choosing a solution from a
relatively insensitive region of the trade-off frontier.

4.1 Reliability-Based Evolutionary Procedure

For the first time, we suggest here a reliability-based optimization procedure
using evolutionary optimization algorithms. Here, we suggest a quick procedure
of computing the MPP based on the PMA approach. Figure 11 illustrates this
procedure. A gradient vector, ∇g0

j , of each probabilistic constraint gj is first
computed at the origin of the U-space. Its intersection (point A) with a circle
of radius βr

j is computed and a new gradient (∇g1
j ) is recomputed at this point

(A). Thereafter, the intersection (point B) of this new gradient direction from
the origin with the circle is recomputed and a new gradient vector ((∇g2

j ) is
computed at B. This procedure is continued till a convergence of the norm of
two consecutive gradient vectors with a predefined tolerance (of 0.001) is met. At
this point, we have an approximate solution (U∗) to the PMA approach. Such
a procedure is already suggested elsewhere [7]. In our approach, we redo the
above procedure for each probabilistic constraint and a deterministic constraint
is formulated using equation 5. Thereafter, an EA with a penalty-parameter-less
constraint handling approach [3] is used to handle all deterministic constraints.
The above procedure can also be used with other EMO approaches and classical
multi-objective optimization algorithms.

4.2 Simulation Results

We use the car side-impact problem discussed earlier, but now use an additional
objective of minimizing the average rib deflection, calculated by taking the aver-
age of three deflections g5(x), g6(x) and g7(x). All 10 constraints are considered.
Figure 12 shows the reliable front as a function of β. Once again, with an in-
crease in the reliability index, the optimal frontier gets worse. We observe the
following features from the figure:

– The figure indicates the rate at which the front deteriorates. In this problem,
the rate of deterioration seems to be faster than linear, as was also discussed



78 K. Deb et al.

Fixed

3 σ

2 σ1.28 σ

Weight vs. beta

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 22  24  26  28  30  32  34  36

A
v
e
r
a
g
e
 
D
e
f
l
e
c
t
i
o
n

Weight

Fig. 12. Trade-off frontiers between f1

and f2 for different β for the car side im-
pact problem

x3

x1

x5

x6

x2

x4

x7

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 25  26  27  28  29  30  31  32  33
Weight

V
a
r
i
a
b
l
e
s

Fig. 13. Reliable solutions correspond-
ing trade-off frontiers for β = 2 in the
car side impact problem

in Section 3.2. Thus, an unnecessary large reliability index corresponds to
solutions which are far from being optimum. Designers must carefully set a
reliability index to make a good compromise on the optimality of solutions.

– An interesting fact about this problem is that the front moves inside the
feasible objective space parallel to each other, indicating that the whole
front is uniformly sensitive to a change in the reliability index.

– The minimum-weight solutions are found to be sensitive to the chosen re-
liability index. The optimal solutions obtained in Figure 9 in Section 3.2
are also plotted in Figure 12 (marked as ‘Weight vs. beta’). Interestingly,
these solutions mark the boundary to the obtained NSGA-II solutions of
this section. This fact provides confidence in the accuracy of the obtained
solutions.
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Figure 13 shows the variation of de-
sign variables for the solutions of the re-
liable frontier with β = 2. It is interest-
ing to note that the optimal way to have
the trade-off between the weight and rib-
deflection is to have changes in variables
x1 (thickness of B-Pillar inner) and x7
(thickness of roor rail). All other vari-
ables remain fixed to either their lower
or their upper bounds. The minimum
weight solution corresponds to the low-
est allowable values of x1 and x7, as
were found in section 3.2. For better rib-
deflection solutions, the thickness of B-
Pillar inner (x1) must be increased steadily. When its value reaches its upper
limit (1.5 mm), the thickness of roof rail (x7) must be increased by keeping x1
at its upper limit. The kink in the Pareto-optimal front occurs when x1 hits its
upper bound. Since a different pattern in the variables (now x1 is kept fixed and
x7 is increased), the Pareto-optimal behavior changes. Figure 14 (above) shows



Reliability-Based Multi-objective Optimization 79

variation of x1 and x7 for cases with different β values. In all cases, a similar
pattern of changes in these two variables is observed.

Such a study also indicates the differential sensitivities of Pareto-optimal so-
lutions, a matter which is useful for designers and practitioners to make a bet-
ter multi-criterion decision-making by concentrating on the portion of the Pareto-
optimal frontwhich is less sensitive to design variable and parameter uncertainties.

5 Conclusions

In this paper, we have combined the classical reliability optimization techniques
with evolutionary multi-objective optimization (EMO) approaches for better
handling problems having uncertainties in decision variables and problem pa-
rameters. The first approach exploits an EMO approach to find multiple reliable
solutions, each corresponding to a different reliability value. The second EMO
approach directly finds the reliable frontier, instead of the optimal frontier, in a
multi-objective stochastic problem. On a number of problems, the proposed pro-
cedures have shown their efficacy in quickly finding the desired reliable solution.
In a car side-impact design problem, a number of interesting properties about the
optimal and reliable solutions have been revealed. The study would encourage
researchers and practitioners in the area of reliability-based design optimiza-
tion to pay more attention to EA-based search and optimization procedures,
a process which may lead to the development of hybrid evolutionary-classical
reliability-based approaches in the coming years.
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g1(x) = 1.16− 0.3717x2x4 − 0.00931x2x10 − 0.484x3x9 + 0.01343x6x10,

g2(x) = 0.261− 0.0159x1x2 − 0.188x1x8 − 0.019x2x7 + 0.0144x3x5 + 0.87570.001x5x10

+0.08045x6x9 + 0.00139x8x11 + 0.00001575x10x11,

g3(x) = 0.214 + 0.00817x5 − 0.131x1x8 − 0.0704x1x9 + 0.03099x2x6 − 0.018x2x7

+0.0208x3x8 + 0.121x3x9 − 0.00364x5x6 + 0.0007715x5x10 − 0.0005354x6x10

+0.00121x8x11 + 0.00184x9x10 − 0.018x2x2,

g4(x) = 0.74− 0.61x2 − 0.163x3x8 + 0.001232x3x10 − 0.166x7x9 + 0.227x2x2,

g5(x) = 28.98 + 3.818x3 − 4.2x1x2 + 0.0207x5x10 + 6.63x6x9 − 7.77x7x8 + 0.32x9x10,

g6(x) = 33.86 + 2.95x3 + 0.1792x10 − 5.057x1x2 − 11x2x8 − 0.0215x5x10 − 9.98x7x8 + 22x8x9,

g7(x) = 46.36− 9.9x2 − 12.9x1x8 + 0.1107x3x10,

g8(x) = 4.72− 0.5x4 − 0.19x2x3 − 0.0122x4x10 + 0.009325x6x10 + 0.000191x11x11,

g9(x) = 10.58− 0.674x1x2 − 1.95x2x8 + 0.02054x3x10 − 0.0198x4x10 + 0.028x6x10,

g10(x) = 16.45− 0.489x3x7 − 0.843x5x6 + 0.0432x9x10 − 0.0556x9x11 − 0.000786x11x11.
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Abstract. Spatially structured populations have been used in evolu-
tionary computation for many years. Somewhat surprisingly, in the mul-
tiobjective optimization domain, very few spatial models have been pro-
posed. In this paper, we introduce a new multiobjective evolutionary
algorithm on complex networks. Here, the individuals in the evolving
population are mapped onto the nodes of alternative complex networks
– regular, small-world, scale-free and random. A selection regime based
on a non-dominance rating and a crowding mechanism guides the evolu-
tionary trajectory. Our model can be seen as an extension of the stan-
dard cellular evolutionary algorithm. However, the dynamical behaviour
of the evolving population is constrained by the particular network archi-
tecture. An important contribution of this paper is the detailed analysis
of the impact that the structural properties of the network – node de-
gree distribution, characteristic path length and clustering coefficient –
have on the behaviour of the evolutionary algorithm using benchmark
bi-objective problems.

1 Introduction

In many real-world search and optimization tasks, we are often confronted with
a problem involving several incommensurable and often conflicting objectives. A
family of equivalent non-dominated compromises – the Pareto-optimal set – rep-
resent solutions for this class of problem [1,2]. These solutions are optimal in the
wider sense that no other solution in the search space is superior to them when
all objectives are considered. The goal of any multiobjective optimization tech-
nique is to generate a diverse set of points distributed along the non-dominated
front.

Evolutionary algorithms are now an established technique for solving mul-
tiobjective optimization problems [1,2] (such algorithms will be referred to as
MOEAs). Well known MOEAs include NSGA-II [3], SPEA2 [4] and PAES [5].
Typically, these models evaluate a population of candidate solutions with respect
to each objective. Non-dominated solutions are identified and form the mating
pool, which then undergoes evolutionary transformations. As the model is it-
erated, the non-dominated set converges towards the true Pareto-optimal set.

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 81–95, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Non-dominated sorting routines, the use of an external archive with appropriate
niching and elitism mechanisms are often incorporated into the model to help
ensure that the algorithm produces a uniformly distributed non-dominated front
at the end of the search.

It has long been recognized that parallelism offers important advantages for
evolutionary computation systems [6,7]. However, in the MOEA domain, there
has only been a relatively small number of parallel models described as compared
with the single objective domain (see [8] for a review). In recent years, there has
been an increased interest in the study of complex networks in many areas in-
cluding communication networks, biological networks and sociology [9,10,11,12].
Recent results reported from evolutionary game theory [13,14] and evolutionary
algorithms evolving on both regular and small-world networks for single objec-
tive problems [6,15,16], suggest that the topology of the network influences the
overall behaviour of the evolving population. In this study, we extend this work
into the multiobjective optimization domain.

We present a new MOEA where the individuals of the population are mapped
onto the nodes of alternative complex networks – regular lattice, small-world,
scale-free and random (see Section 4 for an overview). A key component of the
model is that individuals only interact with their local neighbours. Here, the net-
work topology defines the local neighbourhood size. Thus, for different network
architectures there will be different local neighbourhood sizes and average path
lengths between individuals. The key hypothesis we investigate here, is that the
structural characteristics of a given network will influence the quality of solutions
generated by a MOEA.

The remainder of the paper is organized as follows: In Section 2, we for-
mally describe multiobjective optimization problems. This is followed by a brief
review of parallel evolutionary algorithms in Section 3, with an emphasis on
cellular-based models. In Section 4, we describe complex networks, including a
description of the particular network architectures used in this study. In Sec-
tion 5, the new MOEA on complex networks is presented. This is followed by
a description of the simulation experiments and results in Section 6. Finally, in
Section 7 a discussion of the results is presented in terms of the impact of the
underlying network topology and future research directions are identified.

2 Multiobjective Optimization

Multi-objective problems are problems that consist of a set of objective functions
to be minimized or maximized subject to specified constraints. A multi-objective
optimization problem can be stated generally as follows [2]:

Minimize f(x) = [f1(x), f2(x), . . . , fk(x)]T

subject to: gi(x) ≥ 0 , i ∈ [1, . . . , q]
hi(x) = 0 , i ∈ [1, . . . , p] (1)

where x is a vector of decision variables, gi is an inequality constraint, and hi is an
equality constraint. A solution is said to dominate another if, for all objectives,
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Fig. 1. A sample Pareto-optimal front for a two-objective minimization problem

it is as good as the other solution and better in at least one objective. That is,
a solution x∗ dominates a solution x (or x∗ ≺ x) iff

∀i fi(x∗) ≤ fi(x) ∧ ∃j fj(x∗) < fj(x) , i ∈ [1, . . . , m] (2)

The set of non-dominated solutions with respect to all other feasible solutions
form the Pareto-optimal set. Figure 1 illustrates a Pareto-optimal set for a sam-
ple two-objective minimization problem. Solutions A, B and C are optimal solu-
tions on the Pareto-optimal set but solution D is a dominated solution. A and B
are said to dominate solution D since they are superior in at least one objective
and no worse in any of the others.

3 Spatial Evolutionary Models

A range of structured or parallel evolutionary algorithms have been proposed
where the population is decentralized in some way (see [6,7,8,16] for an overview).
The models may be loosely classified into one of four types: single-population
master-slaves, multiple populations (island model), cellular (diffusion model)
and hierarchical combinations. In this study, the diffusion models are the most
relevant, thus we limit our discussion to a brief review of specific applications in
both single and multi objective optimization domains.

3.1 Single Objective Models

Recent studies from the single objective domain using cellular-based models are
directly related to this study. For example, Sarma and De Jong [17] have de-
scribed how the shape (and in particular the radius) of the local neighbourhood
influences the takeover time of good solutions. Alba and Dorronsoro [6] also
provide a comprehensive analysis of the trade-off between exploration and ex-
ploitation in dynamic models. In related work, Giacobini and co-workers [16]
investigate the impact of selection intensity in cellular models. More recently,
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they have also compared elite solution takeover times in regular lattice models
and small-world networks.

It is clear from the work described above that the topology of the network
has an influence on the overall behaviour of the evolving population. In the
fine-grained cellular models, the relatively small local neighbourhoods help to
maintain population diversity as “good solutions” slowly diffuse across the net-
work.

3.2 Multiobjective Models

Perhaps the first significant cellular-based MOEA was the predator-prey model
introduced by Laumanns and co-workers [18], where solutions were mapped to
a 2D lattice. In our own previous work, we have developed novel parallel algo-
rithms, which relied on phase shifts in the connectivity of the solution space
to provide a balance between exploration (global search) and exploitation (lo-
cal search) [19]. The metapopulation evolutionary algorithm described in [20]
employs these ideas and utilizes a flexible population structure based on a 2D
“pseudo landscape”. In other work, Mehnen and co-workers [21] introduced a
hypergraph inspired parallel version of NSGA-II, with the aim of scaling freely
between fine-grained and coarse-grained population structures. The flexibility of
their model was demonstrated by allowing comparisons between different popu-
lation structures to be made and an appropriate number of islands chosen for a
given problem.

The main motivation of this current study is to combine relevant work from
the complex networks domain with evolutionary computation in order to evolve a
set of non-dominated solutions for a given multiobjective optimization problem.

4 Complex Networks

4.1 Definitions

A network can be modelled as a graph G(N, E) where N is a finite set of nodes
(vertices) and E a finite set of edges (links) such that each edge is associated
with a pair of nodes i and j. G can be represented by an N × N adjacency (or
connection) matrix whose entry aij is 1 if there is an edge joining node i to node
j and is 0 otherwise.

Three measures are typically used to characterize the structural properties of
a network: the node degree distribution (P (k)), the characteristic path length
(L), and the clustering coefficient (C).

The degree ki of a node i is usually defined to be the total number of edges
between node i and all other nodes. The larger the degree, the “more important”
the node is in a network. The node degree distribution function P (k) is the
probability that a randomly selected node has exactly k edges.

The characteristic path length measures the average separation between any
two nodes in the network, and thus represents the “effective size” of the network.



Multiobjective Evolutionary Algorithms on Complex Networks 85

The distance dij between two nodes, labelled i and j respectively, is defined as
the number of edges along the shortest path connecting them, thus:

L =
1

N(N − 1)

∑
i�=j

dij (3)

The clustering coefficient is the probability that two nearest neighbours of a
node are also nearest neighbours of each other – so called “friends of friends.”
Ci of node i is then defined as the ratio between the number Ei of edges that
actually exist among these ki nodes and the total possible number ki(ki − 1)/2,
that is:

Ci =
2Ei

ki(ki − 1)
(4)

The clustering coefficient C of the whole network is the average of Ci over all i.
C = 1 only in fully connected networks. In all other cases, C < 1.

4.2 Network Models

A brief description of the four alternative network models (see Fig. 2) that
provide the scaffolding for the MOEA investigated in this study is provide below.
A comprehensive discussion of the networks can be found in [10].

Regular networks may be defined as nearest-neighbour coupled networks (reg-
ular lattice) in which every node in the network is joined by a few of its neigh-
bours. Regular networks have a high clustering coefficient and characteristic path
length. The node degree distribution is constant (delta function).

At the opposite end of the spectrum from regular networks are completely
random networks (see [22] cited in [10]). A random network is created by speci-
fying that each pair of nodes is connected by an edge with uniform probability p.
The degree distributions of random networks are approximately Gaussian (Pois-
son, in the limit of large n) and the shape falls off exponentially away from the
peak value < k >. Random networks have a relatively low clustering coefficient
(C ≈ p) and have short average path lengths [12].

The transition from a regular lattice to a random graph best describes small-
world networks [12,23]. Starting from a base regular lattice, a small–world net-
work can be generated by re-wiring each edge with some probability p. For p = 0
the result is a completely regular network. For p = 1 the result is a completely
random network. However, for low but nonzero p, the effect of re-wiring is the
substitution of some short-range connections with long-range connections. Con-
sequently, even though there may be relatively few long-range connections, the
shortest path length between two individual nodes is likely to be relatively small,
hence the “small-world” description. Small-world networks have a high cluster-
ing coefficient. The shape of the degree distribution is similar to that of a random
graph.

Scale-free networks are characterized by their distinctive connectivity distri-
butions – the probability that a node selected uniformly at random has a cer-
tain number of links (degree) follows a power law governed by the relationship
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Fig. 2. Complex network models. Here, we illustrate the structure of the alternative
networks using 25 nodes. (a) Regular 2D lattice, (b) Small-world, (c) Random, and (d)
Scale-free.

P (k) ∼ k−γ . Many real-world networks have been shown to exhibit this “scale-
free” behaviour, where γ lies somewhere between 2 and 3 [9]. An important
feature of the scale-free model is that most nodes in the network have very few
links and yet a small number of nodes are very highly connected. The clustering
coefficient of the scale-free model is typically larger than the corresponding value
of a random graph and the average path length is smaller than in a corresponding
random graph.

5 The Model

The MOEA proposed in this study is an extension of the standard cellular evolu-
tionary algorithm. A key component of the model is the communication topology
determined by the network architecture. Here, the individuals are mapped to the
nodes of alternative complex networks and interact in their local neighbourhood.
Algorithm 1 provides an overview of the key steps.

An important feature of the model is the variation in local neighbourhood
size between networks – and within particular networks. The size of the local
neighbourhood is determined by the degree ki of the current node i. Thus, the
selection pressure will also vary. The exception to this rule is when a 2D regular
lattice with Moore neighbourhood (8 nearest neighbours) is used. In the selection
phase, a relative non-dominance ranking mechanism is used to generate a pool
of potential mates from the local neighbourhood. A crowding measure is then
used to rank individuals in the mating pool. Here, the least crowed individual is
viewed as better. This selection regime results in the identification of a “best”
mate, j, for the current individual i. After the recombination stage, the resulting
offspring are mutated. The parent occupying node i and the resultant offspring
are then compared using the dominance ranking mechanism. The non-dominated
individual is then copied into the auxilary population. In the event of a tie, one
of the children or parent is selected randomly to enter the auxiliary population.
After all nodes in the network have been processed, the auixluary population is
copied to the main population and the evolutionary cycle continues.

On each iteration of the model, the network is scanned and non-dominated
solutions are added to an external archive. A non-dominated sort and crowding
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initializeModel()
evaluatePopulation()
updateArchive()
while NOT terminationCriteria

outputParetoFront()
for individual (node) i in network do in parallel

j = findBestNeighbour() //using non-domination/crowding
o∗ = applyGeneticOperators( i,j )
evaluate(o∗)
w = compare(i,o∗) //using non-domination
addToAuxPopulation(w)

end for
updateArchive()
population = AuxPopulation

end while
outputParetoFront()

Algorithm 1. Complex network based MOEA

procedure based on the NSGA-II implementation is then used to truncate the
archive population size.

The complex network MOEA is fundamentally a parallel algorithm, however,
parallel implementation is not a requirement. A sequential implementation can
be used in order to take advantage of the spatial properties of the model.

6 Experiments and Results

To examine the impact that the network topology has on the quality of the
Pareto-set found, a number of scenarios (network architecture–benchmark prob-
lem combinations) were investigated. The details are described below.

6.1 Model Parameters

Six complex networks with different node degree distributions, characteristic
path lengths and clustering coefficients were used as the scaffolding for the spa-
tial MOEA. Table 1 lists the networks’ structural properties. Figure 3 shows the
degree distributions P (k) v k for each of the networks. A range of alternative
networks were generated by “tweaking” the parameters used to construct the
networks. However, the experimental results obtained were not significantly dif-
ferent between classes of network, thus we report results using the six networks
described in the table.

Our network-based MOEA has many features in common with NSGA-II, sub-
sequently we have used real-encoding with SBX crossover and the mutation
probability was set to 1/n, where n is the number of decision variables. The
selection regime was descibed in Section 5. Given the emphasis in our model on
local interactions, it was necessary to work with population sizes that are larger
than typical population sizes used in panmictic models. Here, we have set the
number of nodes in the network and archive size to 1024.
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Table 1. Complex network models

Network Description < ki > L C
SF Scale-free network generated using

the preferential attachment model.
3.9 4.4 0.007

M Regular 2D network with Moore
neighbourhood.

8.0 10.7 0.429

SWA Small-world network, base 2D reg-
ular lattice, radius=1, p = 0.05.

8.0 5.3 0.355

SWB Small-world network, base 3D reg-
ular lattice, radius=1, p = 0.05.

24.0 3.2 0.449

SWC Small-world network, base 3D reg-
ular lattice, p = 0.05.

48.0 2.6 0.469

R Erdös and Rényi random graph
with p = 0.01.

50.7 2.0 0.049
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Fig. 3. Complex network degree distributions P (k) v k

Table 2 lists the five benchmark multiobjective problems used in this study.
For each network-test problem combination, the model was run for a maximum
of 200 time steps. Thirty independent trials were completed for each scenario.

6.2 Results

In order to compare the performance of alternative network architectures, we
need to examine both the convergence time and spread of solutions across the
Pareto-front. To do this comparison, we have constructed a reference set, R,
by merging all of the archival non-dominated solutions found by each of the
network-based models and NSGA-II for a given problem across all output Pareto-
fronts and trials. We then use two dominance compliance indicators, I−H , the
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Table 2. Multiobjective test functions from Zitzler et al., [24]

Test function format: Minimize T (x) = (f1(x1), f2(x))
with f2(x) = g(x2, . . . , xm)h(f1(x1), g(x2, . . . , xm))
subject to x = (x1, . . . , xm)

ZDT1
f1(x1) = x1 m = 30
g(x2, . . . , xm) = 1 + 9 ·

∑m
i=2 xi/(m − 1) xi ∈ [0, 1]

h(f1, g) = 1 −
√

f1/g

ZDT2
f1(x1) = x1 m = 30
g(x2, . . . , xm) = 1 + 9 ·

∑m
i=2 xi/(m − 1) xi ∈ [0, 1]

h(f1, g) = 1 − (f1/g)2

ZDT3
f1(x1) = x1 m = 30
g(x2, . . . , xm) = 1 + 9 ·

∑m
i=2 xi/(m − 1) xi ∈ [0, 1]

h(f1, g) = 1 −
√

f1/g − (f1/g) sin(10πf1)

ZDT4
f1(x1) = x1 m = 30
g(x2, . . . , xm) = 1 + 10(m − 1) +

∑m
i=2(x

2
i − 10 cos(4πxi)) x1 ∈ [0, 1]

h(f1, g) = 1 −
√

f1/g x2, . . . , xm ∈ [−5, 5]

ZDT6
f1(x1) = 1 − exp(−4x1) sin6(6πx1) m = 30

g(x2, . . . , xm) = 1 + 9 ·
((∑m

i=2 xi

)
/ (m − 1)

)0.25
xi ∈ [0, 1]

h(f1, g) = 1 − (f1/g)2

hypervolume difference indicator and the Iε unary epsilon indicator. The hyper-
volume indicator, IH , measures the portion of the objective space that is weakly
dominated by R [24]. Here, we use I−H , which measures differences in the value.
The Iε indicators gives the minimum factor a solution set must be adjusted to
arrive at R [25].

Convergence plots. Figures 4 and 6 show the indicator convergence rates for
each of the network models on test problem ZDT6. The data points at time t
were found by calculating the I−H and Iε values using the archive at time t (across
all trials) and the reference set R. The relative ordering of the convergence rate
follows the mean degree distributions < ki > listed in Table 1. That is, networks
with higher < ki > values converge towards R faster than networks with lower
< ki > values. The box plots in Figures 5 and 7 provide snapshots of differences
in solution quality in terms of I−H and Iε respectively, at time t = 40 and t = 200
(the end of the run). Similar trends are evident between networks at each time
value, however there is significant improvment in the SF network results as the
number of generations increases.

The trends in performance evident in the ZDT6 plots were very similar to
the other test problems. Space constraints preclude the inclusion of plots for
the other test problems. However, performance comparisons at the end of runs
(t = 200) are listed below.
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H indicator values for problem ZDT6

Comparing final solution quality. A non-parametric Kruskal-Wallis test was
used to test for significance differences between scenarios. Tables 3 and 4 presents
a pair-wise statistical comparison between the complex network based MOEAs
and NSGA-II for I−H and Iε respectively. We test the null hypothesis that the
indicator value for the row entry is significantly better than the column entry
(p−value < 0.05). If the result for a given problem is statistically significant, the
problem number is listed in the cell. Box plots of I−H and Iε values at the end of
runs (t = 200) for each scenario are presented in Figure 8. (Note: box plots for
ZDT6 were listed previously).

7 Discussion and Conclusion

The main focus of this study was to investigate the relationship between the
structural characteristics of complex networks and the evolutionary dynamics of
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a MOEA. The underlying hypothesis on which this work was based was that
as we move away from the regular structure of a 2D lattice, with a constant
local neighbourhood size, there would be a corresponding improvement in the
performance of the algorithm. However, once the level of randomness exceeded
some threshold and/or the network structure included a small number of highly
connected nodes the performance may taper off.

In our MOEA, the specific topological features of a network, characterized
by its connectivity, influences the evolutionary dynamics. By varying the degree
distribution, characteristic path length and clustering coefficient it is possible
to control the rate of diffusion across the network. It is to be expected that
the population diversity would be greater in spatial models compared with a
globally coupled network (base NSGA-II model), which has the smallest average
path length and the largest clustering coefficient.
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Fig. 8. Box plots for each of the indicators I−
H and Iε for each of the test problems
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Table 3. Pair-wise statistical analysis for I−
H

SF M SWA SWB SWC R NSGA-II

SF ˜ 1,2,3,6 1,2,3,6
M ˜

SWA 4 1,3,6 ˜
SWB 1,2,3,4,6 1,2,3,4,6 1,2,3,4,6 ˜ 6
SWC 1,2,3,4,6 1,2,3,4,6 1,2,3,4,6 1,2,3,4,6 ˜ 2,3,4,6

R 1,2,3,4,6 1,2,3,4,6 1,2,3,4,6 1,2,3,4,6 1,2,3,4,6 ˜ 1,2,3,4,6
NSGA-II 1,2,3,4,6 1,2,3,4,6 1,2,3,4,6 1,2,3 ˜

Table 4. Pair-wise statistical analysis for Iε

SF M SWA SWB SWC R NSGA-II

SF ˜ 1,2,3,6 1,3,6
M ˜

SWA 4 2,3,6 ˜
SWB 1,2,3,4,6 1,2,3,4,6 1,2,3,4,6 ˜
SWC 1,2,3,4,6 1,2,3,4,6 1,2,3,4,6 1,2,3,6 ˜ 6

R 1,2,3,4,6 1,2,3,4,6 1,2,3,4,6 1,2,3,4,6 3 ˜ 6
NSGA-II 1,2,3,4,6 1,2,3,4,6 1,2,3,4,6 1,2,3,4,6 1,2,3,4 1,2,3,4 ˜

A systematic analysis of performance of the algorithm in terms of its ability
to generate a range of non-dominated solutions distributed along the Pareto-
optimal front was conducted. Using alternative complex networks and bench-
mark test problems, we were able to show that our spatially-structured MOEA
was comparable with, and in some cases out-performed, it’s panmictic equiva-
lent in terms of I−H and Iε. As expected, the results obtained using the regular
lattice and small-world models with small re-wiring probabilities were similar. As
“shortcuts” were introduced (as a result of link re-wiring), some improvement in
performance in I−H and Iε can be observed across all problems. However, networks
with relatively high < ki > values tended to produce higher quality solutions.

The convergence rate is obviously an important property of any MOEA. The
simulation results indicate that in the early stages of a run (t < 50), the quality of
the solutions found was directly correlated with the magnitude of < ki >. Large
values of < ki > indicate increased selection intensity. However, as the number
of generations increased, the performance differences in terms of I−H and Iε was
not as significant. This suggests that the rate of diffusion of genetic information
– the balance between exploration and exploitation of the search space – is an
important quality indicator. In the long run, high < ki > values may limit the
range of solutions found. In addition, for larger values of t, the magnitude of
the average path length and clustering level of the network directly effect the
ability of the MOEA to find solutions distributed along the Pareto-front. That
is, small average path lengths and clustering coefficient values limit the rate of
diffusion, thus local (but possibly not global) non-dominated solutions have the
opportunity to survive and reproduce. This increased population diversity may
result in a wider range of non-dominated solutions being identified by the end
of the run.
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The indicator values for the scale-free network suggest that this particular
architecture does not outperform the other network models. Generally, as the
number of generations increased, the performance of the scale-free network also
improved. The small number of highly connected nodes may act as “selection
amplifiers” for local non-dominated solutions. Similarly, the degree distribution
of random networks may also promote the spread of non-dominated solutions. As
a consequence of the initial random placement of the individuals across the net-
works, large spreads in performance metrics are to be expected. In the event that
a high quality solution occupies a highly connected node, it is not unreasonable
to expect that the individual could take-over and spread its genetic information,
which could possibly lead to premature convergence and a degradation in so-
lution quality. Clearly, the outcomes are sensitive to the selection pressure and
the choice of niching parameters. It is necessary to conduct further sensitivity
analysis of the results before firm conclusions can be drawn.

This study has raised many questions, which will be addressed in future work.
For example, how can we exploit the structural properties of the network to guide
the search? The highly connected nodes of scale-free networks and the relatively
high mean degree of nodes in the random network could act as sinks for migrants
(selected from an external archive). Obviously, time-scales associated with fix-
ation would have to be considered. However, the results presented here suggest
that by controlling the rate of diffusion we can guide the evolutionary trajectory.
It would be interesting to examine how an alternative crowding/niching mecha-
nism could be used to divide the search space (decision/objective) into different
geographical regions of the network. Finally, there is a need to investigate the
scalability of the algorithm for problems with a larger number of objectives.
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Abstract. Evolutionary algorithms have been adequately applied in
solving single and multi-objective optimization problems. In the single-
objective case various studies have shown the usefulness of combining
gradient based classical methods with evolutionary algorithms. However
there seems to be limited number of such studies for the multi-objective
case. In this paper, we take two classical methods for unconstrained
multi-optimization problems and discuss their use as a local search oper-
ator in a state-of-the-art multi-objective evolutionary algorithm. These
operators require gradient information which is obtained using finite dif-
ference method and using a stochastic perturbation technique requiring
only two function evaluations. Computational studies on a number of
test problems of varying complexity demonstrate the efficiency of result-
ing hybrid algorithms in solving a large class of complex multi-objective
optimization problems. We also discuss a new convergence metric which
is useful as a stopping criteria for problems having an unknown Pareto-
optimal front.

1 Introduction

Multi-objective optimization is a rapidly growing area of research and applica-
tion in modern-day optimization. There exist a plethora of non-classical methods
which follow some natural or physical principles for solving multi-objective op-
timization problems, see for example the book by [5]. On the other hand a large
amount of studies have been devoted to develop classical methods for solving
multi-objective optimization problems ([8]).

Evolutionary algorithms use stochastic transition rules using crossover and
mutation search operators to move from one solution to another. In this way
global structure of search space is exploited. Classical methods, on the other
hand, usually use deterministic (usually gradient based) transition rules to move
from one solution to another. Classical methods effectively use local information
thus ensuring fast convergence. This however comes up at the cost of requir-
ing gradient or Hessian information which requires a large number of function
evaluations. Hence one sees that there is a trade-off between fast convergence
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and number of function evaluations. Hybrid implementations thus continue to
be developed and tested (see for example [1,2,10,11]).

In this contribution we take two classical gradient based Pareto front generat-
ing methods and use their search principles as mutation operators in a state-of-
the-art multi-objective evolutionary algorithm to create a powerful hybrid multi-
objective metaheuristics algorithm. We demonstrate their efficiency in solving
real valued differentiable problems of varying complexity.

This paper is structured as follows. The next section present an overview
of various classical generating methods and the gradient estimation technique,
while the third section presents the simulation results. Conclusions as well as
extensions which emanated from this study are presented in the end of this
contribution.

2 Classical Generating Methods

For the present study we take two classical algorithms and use their search oper-
ators as mutation operator in the elitist non-dominated sorting GA or NSGA-II
developed by [6]. The gradients of objective functions are numerically computed
by two methods: one-sided finite difference method and a stochastic perturbation
method. These gradient estimation methods and the classical search operators
used in this study are described in this section.

2.1 Gradient Estimation Methods

In almost all classical algorithms (for both single and multi-objective problems)
the gradient of a function (say in general h) are required. The standard approach
for estimating the gradient is the Finite Difference (FD) method (one-sided or
two-sided). Let ei denote a unit vector in the ith direction, then for a variable
(say x) of dimension n the one-sided FD method of gradient estimation requires
(n + 1) function evaluations and is given by

gi(x) =
f(x + cei) − f(x)

c
,

This is costly in terms of function evaluations (of the order O(n)). The Simulta-
neous Perturbation (SP) method [16] on the other hand requires function evalu-
ation independent of n. The one-sided SP method required only one additional
function measurement and is thus O(1)) as follows

gi(x) =
f(x + cΔ) − f(x)

cΔi
,

where the ith component of the gradient is denoted by gi(x), Δ is a n dimen-
sional vector (Δi is its ith component) of random perturbations satisfying certain
statistical conditions ([16]). A simple (and theoretically valid) choice for each
component of Δ is to use a Bernoulli distribution ±1 with probability of 0.5 for
each ±1 outcome. The step size c at each iteration (denoted by ck) is given as
ck = c0/(k+1)γ. Practically effective (and theoretically valid [16]) values of c0, γ
are 0.001 and 1/6 which are used here.
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2.2 Schäffler’s Stochastic Method (SSM)

This method [13], is based on the solution of a set of stochastic differential equa-
tions. It requires the objective functions to be twice continuously-differentiable.
In each iteration, a trace of non-dominated points is constructed by calculating
at each point x a direction (−q(x)) in the decision space which is a direction of
descent for all objective functions (note that we consider m to be the number
of objective functions denoted by fi for all i = 1, 2, · · · , m). The direction of
descent is obtained by solving a quadratic subproblem. Let α̂ be the minimizer.
Then q(x) :=

∑m
i=1 α̂i∇fi(x). A set of non-dominated solution is obtained by

perturbing the solution (minimum along the direction of descent) using a Brow-
nian motion concept. The following stochastic differential equation (SDE) is
employed for this purpose:

dXt = −q(Xt)d(t) + εdBt, X0 = x0, (1)

where ε > 0 and Bt is a n-dimensional Brownian motion. As the first search
operator we use Equation 1 to create a child instead of the mutation operator.
The gradients are obtained using one-sided FD and one-sided SP method. We
name the hybrid algorithm with new mutation operator using FD and SP gra-
dient estimates as S-NSGA-FD and S-NSGA-SP respectively. In all simulations
here, to solve the above equation numerically, we employ the Euler’s method
with a step size σ. The approach needs two parameters to be set properly: (i)
the parameter ε which controls the amount of global search and (ii) the step size
σ used in the Euler’s approach which controls the accuracy of the integration
procedure.

2.3 Timmel’s Population Based Method (TPM)

As early as in 1980, [17,18] proposed a population-based stochastic approach for
finding multiple Pareto-optimal solutions of a differentiable multi-objective op-
timization problem. In this method, first, a feasible solution set (we call it a pop-
ulation) is randomly created. The non-dominated solutions (X0 = {x0

1,x
0
2, . . . ,

x0
s}) are identified and they serve as the first approximation to the Pareto-

optimal set. Thereafter, from each solution x0
k, a child solution is created in the

following manner:

x1
k = −

M∑
i=1

t1ui∇fi(x0
k), (2)

where ui is the realization of a uniformly distributed random number (between
0 and 1) and t1 is step-length in the first generation. It is a simple exercise to
show that the above formulation ensures that not all functions can be worsened
simultaneously. The variation of the step-length over iterations must be made
carefully to ensure convergence to the efficient frontier. The original study sug-
gested the following strategy for varying the step-length tj with generation j:
tj = C/j (where C is a positive constant). As the second search operator we use
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Equation 2 to create a child instead of the mutation operator. As in S-NSGA-
II the gradients are obtained using one-sided FD and SP methods. We name
the hybrid algorithm with new mutation operator using FD and SP gradient
estimates as T-NSGA-FD and T-NSGA-SP respectively.

3 Simulation Results

In this section, we compare the above two hybrid methods with the elitist non-
dominated sorting GA or NSGA-II [6] on a number of unconstrained test prob-
lems. The test problems are chosen in such a way so as to systematically in-
vestigate various aspects of an algorithm. We consider two-objective ZDT test
problems discussed in [5]. In their initial form these test problems are box con-
strained ones as the Pareto-optimal set lies on box constrains. The test problems
are slightly modified so that they become unconstrained multi-objective opti-
mization problems. Also the box constraints are slightly modified so that the
functions are twice continuously differentiable in the entire feasible region (re-
quired as per SSM). Similar such modifications are also proposed in [14]. Table 1
present these test problems.

For all problems solved, we use a population of size 100. We set the num-
ber of function evaluations as 5000 for ZDT1, ZDT2, ZDT3 since in about 5000
function evaluations the population reaches the Pareto-optimal front by the best
algorithm. For ZDT4 and ZDT6 we set the number of function evaluation to be
15000 for the same reason. For the NSGA-II, we use a standard real-parameter
SBX and polynomial mutation operator with ηc = 10 and ηm = 10, respec-
tively [5] (unless otherwise stated). For both T-NSGA-FD and T-NSGA-SP the
parameter C = 10.0 is used (unless otherwise stated). For S-NSGA-FD and S-
NSGA-SP the parameters σ = 1.0 along with ε = 0.1 is used for all the test
problems.

Convergence and diversity are two distinct goals in multi-objective optimiza-
tion. In order to evaluate convergence we use the Inverted Generational Dis-
tance (IGD) metric [5]. This measure of convergence indicated how far is the
true Pareto-optimal front from the obtained front by each of the algorithms.
Diversity of solutions is evaluated using the Spread (denoted by S) metric [5].
Algorithms A is better than Algorithm B in terms of convergence (diversity)
if IGD (S) of Algorithm A is less than IGD (S) of Algorithm B. We run each
algorithm for 20 times (using same initial population) and the final combined
non-dominated solutions are used for calculating the average, best worst and
standard deviation of IGD and S metric values.

These unary metrices for convergence and diversity are used together with two
binary metrices which can detect whether an approximation set is better than
another. We use the multiplicative binary ε indicator discussed by Zitzler [20] and
the two Set Coverage (SC) ([19]) to assess the performance of the algorithms.
Given two outcomes A and B, of different algorithms, the binary ε indicator
Iε(A, B) gives the factor by which an approximation set is worse than another
with respect to all objectives. The Set Coverage (SC) metric IC calculates the
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proportion of solutions produced by Algorithm B, which are weakly dominated
by solutions produced by Algorithm A. We use these binary metrices to conclude
whether an approximation set produced by an algorithm strictly dominates,
dominates, better, weakly dominates or is incomparable with the approximation
set produced by another algorithm (see [20] and Table 2 for definitions). For
example, if Iε(A, B) ≤ 1 and Iε(B, A) > 1 occurs then we can conclude that
Algorithm A is better than Algorithm B. These conditions are quite difficult to
satisfy using binary ε indicator values. We will use the binary Iε indicator values
to conclude partial results: we will say that Algorithm A is relatively better as
per Iε metric than Algorithm B if Iε(A, B) < Iε(B, A). For the SC metric we
will say that Algorithm A is relatively better as per SC metric than Algorithm
B if SC(A, B) > SC(B, A). We run each algorithm for 5 times (using same
initial population) and the final combined non-dominated solutions are used for
calculating the binary performance metrices and for producing the plots shown.

For statistical evaluation we use attaintment surface based statistical metric
([9]). We run each algorithm for 21 times (using same initial population) and
the median attaintment surface (11th) plots are shown.

Table 1. Unconstrained test problems used in this study

Name Objective functions g(·) function/ Optimal solu-
tions

Variable bounds/
Type

ZDT1 f1(x) = x1 g(x) = 1 + 9
n−1

∑ 30
i=2 x2

i [0.01, 1]× [−1, 1]29

f2(x) = g(x)
[
2−

√
x1

g(x)

]
x1 ∈ [0.01, 1], xi = 0∀i �= 1 convex

ZDT2 f1(x) = x1 g(x) = 1 + 9
n−1

∑ 30
i=2 x2

i [0.01, 1]× [−1, 1]29

f2(x) = g(x)
[
2−

(
x1

g(x)

)2
]

x1 ∈ [0.01, 1], xi = 0∀i �= 1 non-convex

ZDT3 f1(x) = x1 g(x) = 1 + 9
n−1

∑ 30
i=2 x2

i [0.01, 1]× [−1, 1]29

f2(x) = g(x)
[
2−

√
x1

g(x) −
x1

g(x) sin(10πx1)
]

x1 ∈ [0.01, 1], xi = 0∀i �= 1 convex, discon-
nected

ZDT4 f1(x) = x1 g(x) = 1 + 10(n − 1) +∑10
i=2(x2

i − 10 cos(4πxi))
[0.01, 1]× [−5, 5]9

f2(x) = g(x)
[
2−

√
x1

g(x)

]
x1 ∈ [0.01, 1], xi = 0∀i �= 1 convex, multi-

modal

ZDT6 f1(x) = 1− exp(−4x1) sin6(4πx1) g(x) = 1+9
( ∑10

i=2 x2
i

n−1

)0.25

[0.01, 1]× [−1, 1]9

f2(x) = g(x)
[
2−

(
f1(x)
g(x)

)2
]

x1 ∈ [0.01, 1], xi = 0∀i �= 1 non-convex, non-
uniform density

The unconstrained ZDT1 problem has a convex efficient front for which so-
lutions correspond to 0.01 ≤ x∗1 ≤ 1 and x∗i = 0 for i = 2, 3, . . . , 30. In this
problem the algorithms face difficulty in tackling a large number of variables.
Figure 1 shows the performance of all the algorithms after 5000 function eval-
uations. From the figure it can be visually concluded that all the algorithms
perform well on this problem in maintaining a diverse set of solutions close to
the efficient front. Table 3 shows the IGD convergence metric values. In terms
of average IGD values T-NSGA-FD performs the best while S-NSGA-FD and
S-NSGA-SP along with T-NSGA-FD perform better than NSGA-II. Table 4
shows the S diversity metric values. In terms of average S values T-NSGA-FD



On Gradient Based Local Search Methods 101

Table 2. Description of relations used to compare algorithms

Relation Conditions Description

strictly domi-
nates

Iε(A,B) < 1 every b ∈ B is strictly dominated by
at-least one a ∈ A

dominates IC(A, B) = 1, IC(B, A) = 0 every b ∈ B is dominated by at-least
one a ∈ A

better Iε(A,B) ≤ 1, Iε(A,B) > 1;
IC(A, B) = 1, IC(B, A) < 1

every b ∈ B is weakly dominated by
at-least one a ∈ A and A �= B

weakly domi-
nates

Iε(A,B) ≤ 1; IC(A, B) = 1 every b ∈ B is weakly dominated by
at-least one a ∈ A

incomparable Iε(A,B) > 1, Iε(B, A) > 1;
IC(A, B) ∈ (0, 1), IC(B, A) ∈
(0, 1)

neither A weakly dominates B nor
B weakly dominates A

relatively better Iε(A,B) < Iε(B, A);IC(A, B) >
IC(A, B)

approximation set A is relatively
better than set B

better in terms
of convergence

IGD(A) < IGD(B) convergence of approximation set A
is better than that of set B

better in terms
of diversity

S(A) < S(B) diversity of approximation set A is
better than that of set B

still performs the best while S-NSGA-FD, S-NSGA-SP, T-NSGA-SP along with
T-NSGA-FD perform better than NSGA-II. Hence as far as convergence and di-
versity separately are considered almost all the hybrid algorithms perform better
than original NSGA-II. The binary performance metrices values of all the algo-
rithms are shown in Table 5. For a particular test problem, an element (i, j) in
this table (rows and columns corresponding to different algorithms) represents
Iε(algorithm j, algorithm i) while the IC(algorithm j, algorithm i) values are
shown in italics. From the table one obtains that the efficient front obtained
by T-NSGA-FD dominates that of NSGA-II. Moreover the front produced by
T-NSGA-FD, S-NSGA-FD and S-NSGA-SP are relatively better than that of
NSGA-II. Figure 2 shows the median attaintment surface plots of all the algo-
rithms. It can be visually seen that with the possible exception of T-NSGA-SP
and S-NSGA-SP all the other algorithms perform better stochastically.

The unconstrained ZDT2 problem has a non-convex efficient front. Figure
3 shows the performance of all the algorithms after 5000 function evaluations.
From the figure it can be visually concluded that with the possible exception
of S-NSGA-SP all the other algorithms perform better that NSGA-II on this
problem in maintaining a diverse set of solutions close to the efficient front. In
terms of average IGD values (Table 3) T-NSGA-SP performs the best while all
the other algorithms perform better than NSGA-II. Similar results are obtained
from Table 4 in terms of S spread metric values. Hence as far as convergence
and diversity separately are considered all the hybrid algorithms perform better
than original NSGA-II. Next we consider the binary performance metrices on this
problem (Table 5). From the table one obtains that the efficient front obtained
by T-NSGA-FD and T-NSGA-SP dominates that of NSGA-II. Moreover the
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Fig. 4. Median attaintment surface plots
of the five algorithms on ZDT2

front produced by S-NSGA-SP is relatively better than that of NSGA-II. One
may wonder why does some of the algorithms for example T-NSGA-SP does
not strictly dominates NSGA-II (i.e. the condition Iε(A, B) < 1 is never met).
This is due to the presence of some solutions by NSGA-II on the f1 = 0.01
weak efficient front, in this case there cannot exist any feasible points which are
strictly better in all objective values. Figure 4 shows the median attaintment
surface plots of all the algorithms. It can be visually seen that with the possible
exception of T-NSGA-SP all the other algorithms perform better stochastically.

Next we consider unconstrained ZDT3, this problem has a convex discon-
tinuous efficient frontier. Figure 5 shows the performance of all the algorithms
after 5000 function evaluations. From the figure it can be visually concluded
that all the algorithms perform well on this problem in maintaining a diverse
set of solutions close to the efficient front. In terms of average IGD values (Ta-
ble 3) T-NSGA-SP performs the best while NSGA-II outperforms all the other
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Table 3. Inverted generational distance metric values for test problems

ZDT1 NSGA-II T-NSGA-FD T-NSGA-SP S-NSGA-FD S-NSGA-SP
best 0.0432 0.0162 0.0520 0.0256 0.0349
worst 0.3321 0.0213 0.2625 0.0558 0.0657

average 0.1065 0.0180 0.1071 0.0339 0.0539
std. dev. 0.1264 0.0020 0.8790 0.0124 0.0125

rank. 4 1 5 2 3
ZDT2 NSGA-II T-NSGA-FD T-NSGA-SP S-NSGA-FD S-NSGA-SP
best 0.0627 0.0241 0.0084 0.0317 0.0718
worst 0.6363 0.0347 0.0103 0.0523 0.0969

average 0.2250 0.0308 0.0093 0.0421 0.0835
std. dev. 0.2420 0.0041 0.0006 0.0085 0.0126

rank. 5 2 1 3 4
ZDT3 NSGA-II T-NSGA-FD T-NSGA-SP S-NSGA-FD S-NSGA-SP
best 0.0303 0.0178 0.0288 0.0600 0.0277
worst 0.0436 0.0375 0.0501 0.1085 0.0600

average 0.0370 0.0294 0.0409 0.0848 0.0455
std. dev. 0.0055 0.0082 0.0076 0.0212 0.0142

rank. 2 3 1 5 4
ZDT6 NSGA-II T-NSGA-FD T-NSGA-SP S-NSGA-FD S-NSGA-SP
best 0.1270 0.0098 0.0207 0.2655 0.0193
worst 0.3771 0.0134 0.0382 0.4007 0.0377

average 0.2354 0.0114 0.0259 0.3432 0.0273
std. dev. 0.0951 0.0116 0.0071 0.0485 0.0090

rank. 4 1 2 5 3

Table 4. Spread metric values for test problems

ZDT1 NSGA-II T-NSGA-FD T-NSGA-SP S-NSGA-FD S-NSGA-SP
best 0.6052 0.0351 0.0520 0.6488 0.4434
worst 0.8349 0.6574 0.7417 0.7259 0.5437

average 0.7022 0.4604 0.6723 0.6997 0.4910
std. dev. 0.0909 0.1182 0.0922 0.0314 0.0482

rank. 5 1 3 4 2
ZDT2 NSGA-II T-NSGA-FD T-NSGA-SP S-NSGA-FD S-NSGA-SP
best 0.6416 0.6455 0.3924 0.6779 0.6771
worst 1.2529 0.7495 0.4312 0.7465 0.7722

average 0.9059 0.7034 0.4178 0.7232 0.7444
std. dev. 0.2398 0.0401 0.0173 0.0282 0.0404

rank. 5 2 1 3 4
ZDT3 NSGA-II T-NSGA-FD T-NSGA-SP S-NSGA-FD S-NSGA-SP
best 0.6695 0.6316 0.5738 0.6442 0.5848
worst 0.7271 0.7467 0.6569 0.7665 0.6846

average 0.7006 0.6833 0.6123 0.7072 0.6320
std. dev. 0.0277 0.0568 0.0318 0.0550 0.0360s

rank. 4 3 1 5 2
ZDT6 NSGA-II T-NSGA-FD T-NSGA-SP S-NSGA-FD S-NSGA-SP
best 0.6267 0.3700 0.3655 0.7304 0.3459
worst 0.8011 0.4844 0.4428 0.8216 0.4334

average 0.7098 0.4304 0.3969 0.7782 0.3931
std. dev. 0.0629 0.0416 0.0284 0.0362 0.0316

rank. 4 3 2 5 1

algorithms. Except S-NSGA-SP all other algorithms perform better than NSGA-
II in terms of S spread metric values (Table 4). Next we consider the binary per-
formance metrices on this problem (Table 5). From the table one obtains that the
front produced by T-NSGA-FD and S-NSGA-SP is relatively better than that of
NSGA-II while NSGA-II is relatively better than T-NSGA-SP and T-NSGA-FD.
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Figure 6 shows the median attaintment surface plots of all the algorithms. It can
be visually seen that with the possible exception of S-NSGA-SP all the other
algorithms perform almost the same stochastically.

The problem unconstrained ZDT4 has a total of 100 distinct local efficient
fronts in the objective space. The global Pareto-optimal solutions correspond to
0.01 ≤ x∗1 ≤ 1 and x∗i = 0 for i = 2, 3, . . . , 10. Since ZDT4 is a complex multi-
modal problem in this problem all the algorithms are run till 15000 function
evaluations. Figure 7 shows the performance of all the algorithms. It can be seen
that only NSGA-II is able to overcome many local efficient fronts. All the other
algorithms are stuck at some of local efficient fronts. In this problem we can
visually conclude that NSGA-II outperforms all other algorithms and thus other
performance metric values are not computed.

Next we consider another difficult problem, ZDT6. This problem has a non-
convex and non-uniformly spaced Pareto-optimal solutions. The Pareto-optimal
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Fig. 10. Median attaintment surface plots
of the five algorithms on ZDT6
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Fig. 12. Performance of three algorithms
in the Ω1-Ω2 objective space

solutions correspond to 0.01 ≤ x∗1 ≤ 1 and x∗i = 0 for i = 2, 3, . . . , 10. In this
problem also we set the number of function evaluations to be 15000. A limited
parametric study has also been done for this problem and we can see from
Figure 8 that in the case of NSGA-II the algorithm performs much better with
parameter value as ηc = ηm = 1.0 rather than ηc = ηc = 10.0 and thus these
values are used for NSGA-II. Similarly in the case of T-NSGA-FD and T-NSGA-
SP it is seen that the parameter C = 0.5 performs better than C = 10.0 and
hence these values are used here. The parameter values does not influence to a
large extent the S-NSGA-FD and S-NSGA-SP algorithms and hence we use the
original parameter values for these algorithms. Figure 9 shows the performance
of all the algorithms after 15000 function evaluations. From the figure it can be
visually concluded that with the possible exception of S-NSGA-FD all the other
algorithms perform much better that NSGA-II on this problem in maintaining
a diverse set of solutions close to the efficient front. In terms of average IGD
values (Table 3) T-NSGA-FD performs the best while all the other algorithms
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except S-NSGA-FD perform better than NSGA-II. In terms of average S values
(Table 4) S-NSGA-SP performs the best while all the other algorithms except
S-NSGA-FD perform better than NSGA-II. Hence as far as convergence and
diversity separately are considered all the hybrid algorithms except S-NSGA-FD
perform better than original NSGA-II. Next we consider the binary performance
metrices on this problem (Table 5). From the table one obtains that the efficient
front obtained by T-NSGA-FD, T-NSGA-SP and S-NSGA-SP dominates that
of NSGA-II while NSGA-II dominates S-NSGA-FD in this problem. Figure 10
shows the median attaintment surface plots of all the algorithms. It can be
visually seen that with the exception of S-NSGA-FD all the other algorithms
perform much better stochastically than NSGA-II.

Next we show how these hybrid methods can be effectively combined in the
Guided Domination Approach ([3,4]). In the Guided Dominated Approach, a
weighted sum of the objectives is formed. For example in the case of two objec-
tives f1 and f2 following two weighted objectives are formed.
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Table 5. Epsilon and coverage metric values for test problems

ZDT1 NSGA-II T-NSGA-FD T-NSGA-SP S-NSGA-FD S-NSGA-SP
Iε IC Iε IC Iε IC Iε IC Iε IC

NSGA-II 1.00 1.00 1.00 1.00 1.02 0.07 1.01 0.97 1.01 0.46
T-NSGA-FD 1.04 0.00 1.00 1.00 1.04 0.00 1.02 0.12 1.04 0.00
T-NSGA-SP 1.02 0.75 1.00 1.00 1.00 1.00 1.00 0.99 1.02 0.84
S-NSGA-FD 1.03 0.00 1.00 0.66 1.03 0.00 1.00 1.00 1.02 0.00
S-NSGA-SP 1.02 0.32 1.00 1.00 1.02 0.03 1.00 0.99 1.00 1.00

ZDT2 NSGA-II T-NSGA-FD T-NSGA-SP S-NSGA-FD S-NSGA-SP
Iε IC Iε IC Iε IC Iε IC Iε IC

NSGA-II 1.00 1.00 1.00 1.00 1.00 1.00 1.01 0.98 1.01 0.11
T-NSGA-FD 1.08 0.00 1.00 1.00 1.00 0.97 1.04 0.12 1.10 0.00
T-NSGA-SP 1.11 0.00 1.02 0.00 1.00 1.00 1.06 0.00 1.12 0.00
S-NSGA-FD 1.03 0.00 1.01 0.72 1.00 1.00 1.06 1.00 1.12 0.00
S-NSGA-SP 1.01 0.67 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00

ZDT3 NSGA-II T-NSGA-FD T-NSGA-SP S-NSGA-FD S-NSGA-SP
Iε IC Iε IC Iε IC Iε IC Iε IC

NSGA-II 1.00 1.00 1.01 0.85 1.02 0.38 1.24 0.04 1.01 0.41
T-NSGA-FD 1.12 0.05 1.00 1.00 1.10 0.05 1.40 0.00 1.10 0.02
T-NSGA-SP 1.01 0.46 1.00 0.84 1.00 1.00 1.26 0.02 1.01 0.40
S-NSGA-FD 1.01 0.94 1.00 1.00 1.00 0.93 1.00 1.00 1.00 0.97
S-NSGA-SP 1.01 0.34 1.00 0.86 1.01 0.19 1.27 0.00 1.00 1.00

ZDT6 NSGA-II T-NSGA-FD T-NSGA-SP S-NSGA-FD S-NSGA-SP
Iε IC Iε IC Iε IC Iε IC Iε IC

NSGA-II 1.00 1.00 1.00 1.00 1.00 1.00 1.13 0.00 1.00 1.00
T-NSGA-FD 1.15 0.00 1.00 1.00 1.01 0.00 1.30 0.00 1.01 0.00
T-NSGA-SP 1.13 0.00 1.00 1.00 1.00 1.00 1.28 0.00 1.00 0.51
S-NSGA-FD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
S-NSGA-SP 1.13 0.00 1.00 0.99 1.00 0.21 1.28 0.00 1.00 1.00

Ω1(f1, f2) = f1 + a12f2,

Ω2(f1, f2) = a21f1 + f2.

The domination check is now made in the Ω = (Ω1, Ω2) space rather than in
(f1, f2) space. This approach is used to guide an evolutionary algorithm towards
some parts of the efficient front for convex problems. We show next that when
using the TPM and SSM classical search operators with the Ω function instead
of the usual SBX operator in Guided NSGA-II (G-NSGA-II) discussed in ([5,4])
we can improve the algorithms. For this we take the unconstrained ZDT1 test
problem and use the Guided NSGA-II to find a region near the minimum of
f2 (with a21 = 0, a12 = 1/ arctan(0.75π) as weights, the same as used in [7]).
For T-NSGA-FD and S-NSGA-FD algorithms we use the SSM and TPM search
operators on the weighted objectives (i.e. Ω). Figures 11 and 12 show the perfor-
mance of the algorithms in the f1-f2 and Ω1-Ω2 space. From the figures it can
be visually concluded that T-NSGA-FD and S-NSGA-FD perform better than
original Guided NSGA-II finding a portion of the efficient front. The new muta-
tion operators help additionally the Guided NSGA-II by pushing the solutions
towards the portion to be discovered by these algorithms.

These use of classical gradient based local search methods have other advan-
tages too. Since now we use gradient information, this can be further used to
check the KKT conditions for the test problems without any knowledge of the
efficient frontier. We can use the norm of q(x) =

∑m
i=1 α̂i∇fi(x). If the norm

equals zero we are sure that the obtained solution lies on the efficient frontier
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for convex problems and we are more confident in the case of non-convex prob-
lems. The norm can be also taken as a measure of deviations from the distance
from the unknown efficient front [15]. We propose the following new KKT condi-
tion based running convergence metric (which can be obtained from the hybrid
algorithms once gradients are known) as follows:

εi
KKT =

ni
m∑

k1

‖q(x)‖
ni

m

where ni
m if the number of mutations (based on TPM and SSM operators) in gen-

eration i. An advantage of this running performance metric is that the efficient
front need not be known. For all existing convergence metrices the knowledge
of the exact efficient front is required which limits their application to only test
problems. Moreover this εKKT can be used as a stopping criteria for differen-
tiable problems having an unknown efficient front. Figure 13 and Figure 15 shows
how plot of running performance metric εKKT on ZDT1 and ZDT2 test problem
for T-NSGA-FD and S-NSGA-FD algorithms. Since the mutation probability is
usually very less only few solutions are used in the computation of the above
metric and thus the values fluctuate. For this we suggest taking a running aver-
age for last 5 generations and using this values (we call it εav) instead. Figure
14 and Figure 16 shows how plot of running performance metric εav on ZDT1
and ZDT2 test problem for T-NSGA-FD and S-NSGA-SP algorithms. It can be
seen that the values quickly go to zero.

4 Conclusions

This study brings into light how the local search operators of two classical gen-
erating methods which can be effectively used in a state-of-the-art evolution-
ary algorithm. These local search methods require gradient information which
is numerically evaluated using the Forward Finite-Difference technique and a
Stochastic Perturbation method. These local search methods are used instead of
the normal mutation operator. The comparison of these methods with NSGA-II
on a number of test problems have adequately demonstrated that these meth-
ods perform very well when the problem size and search space complexity is
large. Among the three hybrid algorithms, the T-NSGA-FD and T-NSGA-SP
use a random directional weighted objective gradient which produced a non-
dominated or better child. S-NSGA-FD and S-NSGA-SP produce child which is
always superior to the parent.

On a number of two-objective test problems, it has been observed that the
using the TPM and SSM search operators as local search operators is benefi-
cial for uni-modal problems. In fact they perform much better than NSGA-II
on a uni-modal difficult problem with non-uniform density. However for prob-
lems with multi-modal fronts these methods in their present form fail. However
these classical methods are designed for solving multi-modal problems and thus
efficient methods for parameter variation needs to be designed for multi-modal
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problems. For example better methods of numerically solving the stochastic dif-
ferential equation, adaptive parameter variation scheme for TPM needs to be
designed.

On the other hand, on all other problems considered here, T-NSGA-FD and
T-NSGA-SP has performed well. These classical hybrid algorithms are also ef-
fectively used in Guided NSGA-II. A convergence metric and stopping criteria is
also introduced in the present study. This is effective for differentiable problems
having an unknown efficient front. Finally it is to be mentioned that although
this study has focussed on only differentiable problems there exists techniques
for non-differentiable problems also which needs to be explored ([12]). Some such
extensions would be an immediate focus for useful research and application in
the area of multi-objective optimization.
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Abstract. Archives are used in Multi-Objective Evolutionary Algorithms to es-
tablish elitism. Depending on the optimization problem, an unconstrained archive
may grow to an immense size. With the growing number of nondominated solu-
tions in the archive, testing a new solution for nondominance against this archive
becomes the main bottleneck during optimization. As a remedy to this problem,
we will propose a new data structure on the basis of Binary Decision Diagrams
(BDDs) that permits a nondominance test with a runtime that is independent from
the archive size. For this purpose, the region in the objective space weakly dom-
inated by the solutions in the archive is represented by a BDD. We will present
the algorithms for constructing the BDD as well as the nondominance test. More-
over, experimental results from using this symbolic data structure will show the
efficiency of our approach in test cases where many candidates have to be tested
but only few have to be added to the archive.

1 Introduction

Multi-Objective Evolutionary Algorithms [1,2] using elitism to prevent nondominated
solutions from being deleted during generations can be proven to converge to the true
Pareto front [3]. Moreover, elitism increases the probability of creating better offspring
[1]. Hence, keeping nondominated solutions in an archive A is an important issue in
multi-objective optimization. In general there are two strategies for handling archives:
(1) using so called constrained archives requires a method for limiting the number
of nondominated solutions in the archive. (2) so called unconstrained archives, i.e.,
archives for storing an unlimited number of nondominated solutions, rely on efficient
data structures. Constrained archives are afflicted with the problem of shrinking the
Pareto front or oscillating between different approximations of the Pareto front [4]. On
the other hand, keeping an archive dominant-free has a large influence on the computa-
tional complexity of the optimization and, thus, narrowing the benefits from using huge
or even unconstrained archives.

As a remedy to this problem, several data structures have been proposed in the recent
years. Most of these data structures are tree-based [4,5,6]. Unfortunately, the worst case
behavior of the nondominance test using these data structures is similar to the complex-
ity of using linear lists, i.e., a new solution, called candidate, has to be compared with
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each solution already in the archive A resulting in |A| comparisons. In this paper, we
will present a novel data structure on the basis of Binary Decision Diagrams (BDDs)
[7]. Instead of explicitly storing all members in the archive, we encode the region in
the objective space weakly dominated by the nondominated solutions as a BDD. A new
solution can be tested for nondominance by traversing the BDD. This operation returns
a value true or false and is independent from the archive size, thus allowing a faster
nondominance test than any up to now reported archive data structure.

The rest of the paper is organized as follows: Section 2 discusses data structures
for archive representation and Section 3 will formally state the problem this paper is
dedicated to. In Section 4 our novel symbolic data structure based on BDDs together
with the most important algorithms will be presented. First experimental results from
comparing our symbolic representation with a linear list data structure will be discussed
in Section 5 before we conclude the paper in Section 6.

2 Related Work

While implementing an archive A as linear list requires in the worst case |A| tests to
check the nondominance of a candidate resulting in a complexity of O(|A| · m) in a
m-dimensional objective space, tree-like data structures showed improved runtimes: In
[6], Mostaghim and Teich proposed the use of so called quad trees (cf. [8]). A quad tree
is a tree-based data structure where each node has at most 2m successors where m is the
number of objectives. A new vector can be inserted in the quad tree if it is not dominated
by any node in the tree. Therefore, a nondominance test is done against the root. If it
is not dominated by the root it will be tested against all nodes in the k-th subtree of
the root. Here, k is the binary encoding of the ≥-relation of the vector’s components
to the root’s components. The dominance test is recursive, i.e., the new solution is next
tested against the root of the k-th subtree. If the k-th subtree does not exist the new
vector will be inserted. A more sophisticated algorithms is needed in order to keep the
data structure dominant-free, e.g., if the new solution dominates nodes already in the
quad tree. Mostaghim and Teich present experimental results from a comparison of
quad trees with linear lists. As a result quad trees outperform linear lists in case of large
populations and small archives.

In [5], Schütze proposed the use of a data structure based on m-ary trees, called
dominance decision trees, as well as algorithms to test for dominance and tree update.
Each node has at most m successors where again m is the number of objectives. For the
k-th successor of a given node the following properties hold: The first k − 1 objectives
fulfill the ≤-relation between the k-th successor and the node. The k-th objective of the
k-th successor is greater than the k-th objective of the given node. In [5], several ex-
perimental results from comparing dominance decision trees with quad trees and linear
lists are presented. In many cases, the dominance decision tree outperforms the linear
list and quad trees. Considering problem instances with more than three objectives, the
quad trees perform better.

Both data structures have some common disadvantages: The worst case computa-
tion time is similar to the case using linear lists, i.e., O(|A| · m). This is due to the fact
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that the depth of the trees depends on the order in which nondominated candidates are
added to the archive.

A combination of two new data structures, called dominated trees and nondominated
trees, avoids the above mentioned problem and was proposed by Fieldsend et al. [4].
Both data structures are based on the notion of so called composite points where each
composite point represents a set of so called constituent points with a maximum car-
dinality m, where m is the number of objectives. Composite points can be constructed
from a set of vectors by successively determining the maximum (minimum) for each
dimension (starting with the first objective) and removing the corresponding vector (a
constituent point) from the set. Having m objectives, a maximum of m constituent
points contribute to a composite point. Dominated trees allow an efficient nondomi-
nance check whereas nondominated trees permit an efficient computation of dominated
points. In the best case, the nondominance test using dominated trees can be done in
log2(|A|/m) comparisons between the candidate and the composite points with |A| be-
ing the cardinality of the archive. However, in general k additional tests with individual
solutions in the archive are required, leading to a complexity of O(log2(|A|/m)+k m).
Hence, the computational complexity is still dependent on the archive size |A|. Before
we will present our approach for a nondominance test that is independent from the
archive size through representing the region in the objective space weakly dominated
by the solutions in the archive by binary decision diagrams, we first will start with a
formal introduction to the problem.

3 Problem Formulation

Given the following multi-objective optimization problem:1

min f : X ⊂ R
n → R

m (1)

The goal in multi-objective optimization is to find all Pareto-optimal solutions Xp ⊆ X
[9]. A solution x1 is said to be Pareto-optimal if it is not dominated by any solution
x2 ∈ X .

Definition 1 (Pareto dominance (cf. [10])). For any two solutions x1 and x2,

x2 � x1 (x2 dominates x1) if ∀i : fi(x2) ≤ fi(x1) ∧ ∃i : fi(x2) < fi(x1)
x2 � x1 (x2 weakly dominates x1) if ∀i : fi(x2) ≤ fi(x1)
x2 ∼ x1 (x2 is indifferent to x1) if ∀i : fi(x2) = fi(x1)
x2 ‖ x1 (x2 is incomparable to x1) if ∃i, j : fi(x2) > fi(x1) ∧ fj(x2) < fj(x1).

The so called Pareto-optimal front is given by Yp = f(Xp) = {y | y = f(x) ∧ x ∈
Xp}. Thus the goal in multi-objective optimization can also be stated as: Sort out the
nondominated objective vectors y ∈ Yp from a set of all objective vectors Y = f(X) =
{y | y = f(x)∧x ∈ X}. X is called the decision space. Y is called the objective space.
In the following, we will limit our discussion to the objective space.

1 Without loss of generality, we consider minimization problems in this paper.
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This so called nondominance problem can be divided into two classes (cf. [5]): The
static nondominance problem is to find the subset of nondominated solutions Yp in a
given set Y [11]. The dynamic nondominance problem arises during the archive update
in Multi-Objective Evolutionary Algorithms: Given a dominant-free archive A ⊆ Y
and a sequence of candidate solutions (y1, y2, . . . , yl). Each candidate solution in this
sequence has to be tested for nondominance against the solution in A. If a candidate
solution yi is not weakly dominated by any solution in the archive, yi has to be added
to A. In addition, if yi dominates solutions from the archive, these solutions have to be
removed from the archive keeping it dominant-free.

The most intuitive solution for the dynamic nondominance problem is using a linear
list as data structure. In that case, the computational complexity of testing whether a
candidate is weakly dominated is linear in the size of the archive, i.e., O(|A| · m).
Removing dominated solutions from A has the same complexity as well.

In the following, we will show how to use Binary Decision Diagrams (BDDs) as
data structure to represent the region in the objective space weakly dominated by the
solutions in the archive. However, by using BDDs we will not substitute the linear list
but rather give a support to it. A Binary Decision Diagram (BDD) is a data structure that
can be used to represent Boolean functions [7,12]. By extending the linear list archive
with BDDs, the costs for adding a new candidate increase. On the other hand, the test if
a candidate is weakly dominated by a solution in the archive and whether it should be
added to the archive is independent from the archive size.

4 Using BDDs for a Fast Nondominance Test

In addition to save the nondominated solutions y ∈ A in the linear, we encode the region
that is weakly dominated by these solutions in a single BDD. To test a candidate vector
for weak dominance, the binary encoding of its objective values is used to traverse this
BDD. This traversal returns true, i.e., the BDD is satisfied, if the candidate solution is
weakly dominated by at least one solution in the archive A. Otherwise, the traversal
returns false.

A BDD is a data structure to represent Boolean functions as rooted directed acyclic
graphs. Each node in the BDD has either exactly two or none successor. Nodes without
successors are called terminal nodes and are labeled true or false. All other nodes are
called decision nodes and are labeled with a binary variable x of the Boolean function.
One edge from the node to one of its successors is labeled 0, the other edge connecting
the second successor is labeled 1. This labeling corresponds to the assignment to x.
Hence, a path from the root of the BDD to a terminal node is an assignment to the
variables of the Boolean function. Moreover, the label of the terminal node determines
if the Boolean function is satisfied (true) or not satisfied (false) under the given variable
assignment. On each path from the root to one terminal node each variable appears at
most once. The corresponding BDD of the Boolean function (x0 ∧ x1 ∧ x2) ∨ (x0 ∧
x1) ∨ (x1 ∧ x2) is shown in Figure 1.

To clarify the goal of our methodology we assume the example from Figure 2.
Given is a three-dimensional problem (x, y, z) in which the values are natural num-
bers in the range from 0 to 15. Therefore, for each dimension exactly four binary
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Fig. 1. A Binary Decision Diagram (BDD) of the Boolean function (x0 ∧x1 ∧x2)∨ (x0 ∧x1)∨
(x1 ∧ x2). A dotted (solid) edge corresponds the case where the decision variable is 0 (1). The
variable order is (x0, x1, x2).

variables are needed to encode a natural number, i.e., for the dimension x we have
x3, x2, x1, x0 where x3 is the most significant bit and x0 the least significant bit. For
the set A = {(15, 12, 4), (6, 12, 8), (2, 2, 14), (2, 5, 13)} of nondominated solutions
the BDD is given in Figure 2. To test if a candidate vector is weakly dominated by any
vector from A we have to use its binary representation to traverse the BDD. For in-
stance the binary representation of the candidate vector v = (8, 12, 8) is (x0 = 0, x1 =
0, x2 = 0, x3 = 1, y0 = 0, y1 = 0, y2 = 1, y3 = 1, z0 = 0, z1 = 0, z2 = 0, z3 = 1)
and by traversing the BDD with that assignment the result is true which means that v
is weakly dominated by some vector in A.

By using BDDs, it is mandatory that the objective values are encoded by a binary
representation. Although our methodology does not limit the objective values to be
natural numbers, we will assume that the objective space is given by Y ⊂ N0

m. Ad-
ditionally it is recommended that the upper and lower bounds for the values in each
dimension are known, such that the minimal number of variables can be used in the
BDD. With the known upper bound hii and lower bound loi for the values in each
dimension i ∈ {1, ..., m} the number of required binary variables is given by:

m∑
i=1

�log2(hii − loi + 1)� (2)

Before each objective value is converted to its binary representation, it is normalized by
subtracting the corresponding lower bound. To decrease the number of required binary
variables even more, all objective values occurring in the i-th dimension are divided
by their greatest common divisor. An effect on the number of required binary variables
will only take place if the greatest common divisor is greater than 1.

Using the binary encoding of the objective values, we start to construct the Binary
Decision Diagram which encodes the region in the objective space weakly dominated
by the archive A. In the following, we assume that we use ki variables to encode the
i-th objective value. We start by introducing an algorithm that constructs a BDD with ki

binary variables vari[ki −1], . . . , vari[0]. This BDD returns true if the binary encoding
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Fig. 2. An example of the BDD that represents the weakly dominated space in a three-dimensional
(x, y, z) problem. The variable order is (x3, x0, x1, x2, y3, y2, y0, y1, z0, z1, z2, z3). A dotted
(solid) edge corresponds the case where the decision variable is 0 (1).
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Algorithm 1. The function bdd greater&equal constructs a BDD with the variables
vari[ki − 1], . . . , vari[0]. The BDD is satisfied, i.e., it returns true, if a binary encoded
objective value assigned to the variables vari[ki−1], . . . , vari[0] is greater than or equal
to the given constant value represented by a binary number ci = (ci[ki − 1], . . . , ci[0]).
Otherwise, it will return false. If vari = (vari[ki −1], . . . , vari[0]) is a list of variables
with the length ki, the first element vari[0] is the least significant bit and the last element
vari[ki − 1] is the most significant bit.

The algorithm operates from the least to the most significant bit. The if-condition
determines whether the k-th position of ci is 1 or 0. If the if-condition is true and ci[k]
is 1, it is mandatory that the corresponding variable vari[k] is also 1 in order to fulfill the
greater or equal condition. Therefore, the variable is appended by a logical AND (∧). If
ci[k] is 0 a 1 for the corresponding variable vari[k] fulfills the greater or equal condition
albeit the variable assignment of the less significant bits. Therefore, the variable in the
else-branch is appended by a logical OR (∨).

bdd greater&equal(vari, ci)
{

bdd b = true;

for(k = 0; k < ki; k++){
if(ci[k] == 1) {

b = b ∧ vari[k];
} else {

b = b ∨ vari[k];
}

}

return b;
}

of the i-th objective value of a candidate solution is assigned to the variables vari and
the value is greater than or equal to a given constant value represented by the binary
number ci[ki − 1], . . . , ci[0]. Otherwise, it will return false. One can think of ci being
the i-th objective value of a solution stored in the archive. That means the BDD covers
the statement

2ki−1vari[ki − 1] + · · · + 20vari[0] ≥ 2ki−1ci[ki − 1] + · · · + 20ci[0].

The construction of this BDD is shown in Algorithm 1.
By Definition 1, a solution x1 is weakly dominated by a solution x2 if ∀i : fi(x2) ≤

fi(x1). For a given solution x2 it is possible to construct a BDD that returns true if
a candidate solution x1 is weakly dominated by x2. Otherwise, it will return false.
As we are only interested in improving the set of solutions in the archive A, domi-
nated and moreover weakly dominated candidate vectors can be disregarded. The binary
encoding of f(x2) is given by c = (c0, . . . , cm−1) with m being the number of
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Algorithm 2. The function bdd weakdominated constructs a BDD that returns true
if the binary encodings of the objective values f(x1) of a candidate solution x1 are
assigned to var = (var0, . . . , varm−1) and x1 is weakly dominated by x2 with its
objective values f(x2) = c = (c0, . . . , cm−1). Otherwise, it will return false. m is the
number of objectives.

In particular, weak dominance is detected if the candidate vector is greater or equal
to c in all m dimensions. Therefore, the greater or equal condition has to be fulfilled in
each dimension. This is reached by appending the single dimension conditions with a
logical AND (∧).

bdd weakdominated(var, c)
{

bdd b = true;

for(i = 0; i < m; i++){
b = b ∧ bdd greater&equal(vari, ci);

}
return b;

}

objectives and ci = (ci[ki − 1], . . . , ci[0]). The BDD is constructed with the variables
var = (var0, . . . , varm−1) which are the binary encodings of the m objective values
where vari = (vari[ki − 1], . . . , vari[0]). Following Definition 1, if all values fi(x1)
are greater than or equal to the objective values fi(x2) for each dimension x1 is weakly
dominated by x2. For this reason the BDDs constructed by the bdd greater&equal func-
tion from Algorithm 1 have to be connected by applying the logical AND operation.
This is shown in Algorithm 2.

Finally, we can construct a BDD that will validate if a candidate solution x1 is weakly
dominated by any solution in the archive A. This can be easily done by combining the
BDDs constructed by Algorithm 2. For each solution in the archive A a BDD is created
by Algorithm 2 and connected by a logical OR (see Algorithm 3). If the resulting BDD
is interpreted as the entire region in the objective space that is weakly dominated by the
solutions in the archive, the OR operation is equivalent to a union of the regions weakly
dominated by each solution. Note that the weakly dominated region can only grow
monotonously in the dynamic nondominance problem. Thus, we do not need to remove
any solutions from the BDD even if they are dominated by new candidate solutions.
This is illustrated in Figure 3.

With the ability to iteratively add new solutions to our BDD archive, it is possible to
test any candidate solution x1 if it is weakly dominated by any solution in the archive.
If the BDD is satisfied by the assignment the variables of the binary encoding of the
objective values f(x1), x1 is weakly dominated by at least one solution in the archive
A. Testing the satisfiability of a BDD is done by traversing it with the given variable
assignment. As in BDDs each variable from the root to terminal node appears at most
once, the costs of this operation are linear related to the number of used variables. As
the number of used variables only depends on the number of objectives (m) and the
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Fig. 3. Objective space with two dimensions. The entire weakly dominated region is built by the
union of the regions weakly dominated by each solution vector in the archive. (a) A new candidate
solution v incomparable to any other solution in the archive is added. (b) A new candidate solution
w which dominates solutions in the archive is added. Note that the dominated solutions need not
be removed from the BDD.

ranges of the objective values, this test has a computational complexity O(m) which
is independent from the number of solutions in the archive A. On the other hand, the
size of the BDD can grow exponentially in the worst case. But even if it does not, we
should expect that constructing the BDD or adding solutions to the BDD will be a time
consuming operation. Algorithm 3 shows the two main functions for the BDD archive,
i.e., adding and testing a candidate solution with its objective values represented by the
vector v = (v0, . . . , vm−1) with vi = (vi[ki − 1], . . . , vi[0]).

The BDD archive only encodes the region weakly dominated by the solutions in the
archive. There is no easy way to extract the solutions y ∈ A from the BDD. Thus,
it can not completely replace the data structure for storing the solutions. Hence, the
BDD gives support to the archive in determining whether a candidate solution should
be added or not, and this independently from the archive size. As adding solutions to
the BDD causes runtimes much greater than adding solution to a linear list, the rate
between added and denied candidates should be small.

In our experiments, we extended a linear list archive by our BDD data structure in
such a way, that for each candidate solution a test for weak dominance is carried out
with the BDD archive. If the candidate solution is weakly dominated, it is rejected. If
the candidate solution is incomparable to or dominates solutions in the archive, it has
to be added to the linear list as well as to the BDD archive. Furthermore, the dominated
solutions have to be removed from the linear list archive.

5 Experimental Results

In this section, we will present experimental results from using our BDD archive in
combination with a linear list archive. One of the key factors for the success of the
BDD archive implementation is the performance of the used BDD library. The chosen
library for the tests is Buddy 2.4 [13]. In order to create appropriate test functions, we
use adapted versions of some DTLZ functions from [14] (compare Table 1).
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Table 1. The used test functions are based on the DTLZ test functions from [14]: Test function
1 (based on DTLZ1) converges to a linear front, test function 2 (based on DTLZ2) to a sphere,
test function 3 (based on DTLZ2) to an inverse sphere, and test function 4 (based on DTLZ7)
has a disconnected set of Pareto-optimal regions. With the random values z1, · · · , zm the func-
tions construct vectors in a m-dimensional space. By scaling the objectives fi(z) as needed and
rounding them to integers appropriate test cases are generated. The function g(zm) determines
the distance of the generated vectors to the Pareto-optimal front. It is scaled with the factor r.

Test Function 1 (TF1)
min f1(z) = 1

2 (1 + g(zm))z1z2 · · · zm−1

min f2(z) = 1
2 (1 + g(zm))z1z2 · · · (1 − zm−1)

...
...

min fm−1(z) = 1
2 (1 + g(zm))z1(1 − z2)

min fm(z) = 1
2 (1 + g(zm))(1 − z1)

Test Function 2 (TF2)
min f1(z) = (1 + g(zm))cos(z1π/2) · · · cos(xm−2π/2)cos(xm−1π/2)
min f2(z) = (1 + g(zm))cos(z1π/2) · · · cos(xm−2π/2)sin(xm−1π/2)
min f3(z) = (1 + g(zm))cos(z1π/2) · · · sin(xm−2π/2)
...

...
min fm(z) = (1 + g(zm))sin(x1π/2)

Test Function 3 (TF3)
min f1(z) = (1 + g(zm))(1 − cos(z1π/2) · · · cos(xm−2π/2)cos(xm−1π/2))
min f2(z) = (1 + g(zm))(1 − cos(z1π/2) · · · cos(xm−2π/2)sin(xm−1π/2))
min f3(z) = (1 + g(zm))(1 − cos(z1π/2) · · · sin(xm−2π/2))
...

...
min fm(z) = (1 + g(zm))(1 − sin(x1π/2))

Test Function 4 (TF4)
min f1(z) = z1

min f2(z) = z2

...
...

min fm−1(z) = zm−1

min fm(z) = 2m −
∑m−1

i=1 [ fi(z)
1+g(zm) (1 + sin(3πfi(z)))]/m

where z = (z1, · · · , zm) and 0 ≤ zi ≤ 1, i = 1, · · · , m
and g(zm) = zm · r

First, we will analyze how the size of the archive affects the size of the BDD focusing
on the dynamic variable reordering. The reorder algorithm we used is called Sifting [15]
and is activated each time the BDD size doubles. Figure 4 shows that dynamic variable
reordering has a huge effect on the BDD archive. By using the reorder algorithm the
size of the BDD is halved, but it even has a bigger effect on the runtime. The reordering
algorithm itself is time consuming. It can be recognized in Figure 4 on the right as a
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Algorithm 3. The main functions that are provided by the BDD archive. var is con-
taining the lists of variables for each dimension. The region that is weakly dominated
by the archive A is encoded in the BDD b.

Adding a new nondominated vector equals a union on the weak dominated region.
Therefore, new weak dominated regions are added by applying a logical OR where
v = (v0, . . . , vm−1) with vi = (vi[ki − 1], . . . , vi[0]) corresponds the added candidate
vector.

By traversing the BDD with a binary representation of the candidate vector v =
(v0, . . . , vm−1) with vi = (vi[ki − 1], . . . , vi[0]) weak dominance is detected by a
resulting true. Otherwise, the traversal returns false.

var;
bdd b=false;

add(v){
b = b ∨ bdd weakdominated(var, v);

}

is weakdominated(v){
return b.traverse(v);

}

vertical characteristic. On the other hand, the runtime of the reordering algorithm is
just a fraction of the whole runtime. This is due to the minimization of the BDD size.
Thus, it is recommended to use dynamic variable reordering, which is also used in all
following test cases.

In the following all four test functions were used and an appropriate average was
calculated over 100 test runs. Figure 5 shows that the BDDs in our test cases are never
growing exponentially. The difference in BDD size and time consumption is insignif-
icant between the four test functions as they are all in the same order of magnitude.
With a growing archive the size of the BDDs shows in fact an increase that is similar
to the logarithmic function. Adding solutions to the archive seems to be a constant time
operation independent of the archive size if the curves are considered as linear.

In many cases an increasing number of variables in a BDD leads to a growth of the
BDD. In our test cases the number of variables increases if the range of one dimen-
sion increases or if the number of dimensions is increased. Therefore, we examined the
effect of additional bits for the encoding of the objective values. For this purpose, the
test functions were analogous scaled. Table 2 shows the increases in size and time con-
sumption. In our testcases the growth of time consumption and BDD size were linear
in the number of variables of the BDD, if the number of dimensions is kept constant.

To test which effect will take place with a growing number of dimensions, test cases
with a constant number of BDD variables were created. Table 3 shows that an in-
creasing number of dimensions leads to additional runtime and an increased BDD size.
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Fig. 4. Example with m = 3, r = 10−2 and 10 bit encoding per dimension. 10, 000 nondom-
inated solutions from TF1 were added iteratively to the BDD archive. The figures illustrate the
size of the BDD and the time consumption with and without dynamic variable reordering.
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Table 2. Example with m = 3, r = 10−2, the number of bits per dimension is varied. The
number of variables in the BDD is increasing from 27 over 36 to 45. The time consumption and
BDD size are listed for adding 2, 500 nondominated solutions from all test functions to the BDD
archive. The small numbers indicate the standard deviation for 100 runs.

m bits per dimension TF1 time[s] TF2 time[s] TF3 time[s] TF4 time[s]
3 9 3.87 (0.02) 4.41 (0.04) 4.43 (0.04) 4.15 (0.03)

3 12 12.3 (0.98) 12.9 (0.54) 12.4 (0.23) 13.2 (0.43)

3 15 18.08 (1.69) 20.55 (1.13) 20.47 (0.83) 21.36 (0.70)

m bits per dimension TF1 size[nodes] TF2 size[nodes] TF3 size[nodes] TF4 size[nodes]
3 9 8875 (124) 10829 (88) 10729 (138) 7034 (58)

3 12 32646 (213) 35639 (143) 34765 (184) 30892 (299)

3 15 59167 (363) 62569 (301) 61479 (236) 58427 (224)
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Table 3. Example with r = 10−2, the number of dimensions m and the the number of bits
per dimension was scaled so that the number of variables in the BDD is constantly 36. The time
consumption and BDD size are listed for adding 2, 500 nondominated solutions from all test
functions to the BDD archive. The small numbers indicate the standard deviation for 100 runs.

m bits per dimension TF1 time[s] TF2 time[s] TF3 time[s] TF4 time[s]
2 18 7.9 (0.81) 7.7 (0.77) 7.5 (0.50) 5.7 (1.03)

3 12 12.3 (0.98) 12.9 (0.54) 12.4 (0.23) 13.2 (0.43)

4 9 23.6 (0.92) 25.1 (2.02) 17.5 (0.92) 21.7 (0.93)

m bits per dimension TF1 size[nodes] TF2 size[nodes] TF3 size[nodes] TF4 size[nodes]
2 18 15593 (576) 14861 (174) 14709 (98) 12535 (143)

3 12 32646 (213) 35639 (143) 34765 (184) 30892 (299)

4 9 64929 (761) 91755 (1456) 79888 (1468) 74875 (940)

Therefore, a constant number of variable is not a guarantee for a constant time con-
sumption and BDD size. Hence, a growing number of dimensions leads to a worse than
linear growth of time consumption and BDD size.

In the next test, we compared the performance of a simple linear list archive with a
linear list archive extended by our BDD archive. As all test functions had similar traits
for the BDD archive, all following test cases are based on TF1. The test is separated
in adding nondominated solutions to an empty archive and testing random candidate
solutions for weak dominance with the filled archive. Although it is known that the
added solutions are nondominated, a test for weak dominance is needed before they
can be added to the linear list archive. In Figure 6 this is illustrated in comparison to
the archive size. As expected, Figure 6 shows that filling the archive is much slower
in the case when using the BDD archive extension. However, using the BDD archive
extension, also the check for weak dominance turned out to be a constant time operation
for our test case, i.e., it is in fact independent of the archive size.
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solutions for weak dominance. The used archives are a simple linear list archive and a linear list
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Fig. 7. Example with m = 3 and 10 bit encoding per dimension. In the figure on the left the value
r is 10−1 in the figure on the right r = 10−2. 1, 000, 000 candidate solutions were generated by
TF1 and iteratively tested and, if not dominated, added to the archive. The used archives are a
simple linear list archive and linear list archive extended by the BDD archive. Additional to the
runtime of the archives the rate of added candidate solutions is stated.

Finally, we created a dynamic nondominance problem with TF1. The used number
of dimensions is three while 10 bits for each dimension are used to encode the binary
values. With the factor r, the quality of the adopted optimization algorithm is biased.
One million candidate solutions are created and iteratively added to both variants of the
archive. Figure 7 shows the result. In both cases the BDD extended linear list archive
turns out to be the better solution for the chosen test cases on long term run. The reason
is that the archive is getting fuller and the weak dominance test is getting more expen-
sive if the simple linear list archive is used. On the other hand, the number of added
solutions to the archive decreases. In the case that r is 10−1 the archive grows slower
compared to the value r = 10−2 and the gain of the BDD extended archive is not so
clear. But with a growing number of candidate solutions it should get more distinct.

6 Conclusions

In this paper, we have shown that extending an archive by a BDD representation of the
region weakly dominated by the solutions in the archive can improve the runtime behav-
ior in the dynamic nondominance problem as it occurs in Multi-Objective Evolutionary
Algorithms using archives to establish elitism. Using our symbolic representation, the
nondominance test of a candidate is independent from the size of the archive. On the
other hand, adding new candidates to the archive is more costly, than using other data
structures. Our experimental results have shown that using our proposed nondominance
test in case of many candidate tests but only few archive updates clearly outperforms an
archive based on a linear list.

In future work, we will combine our symbolic data structure with quad trees [6]
and dominance decision trees [5] and integrate it in a Multi-Objective Evolutionary
Algorithm.
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Abstract. In this paper we study a number of issues related to the
design of a cellular genetic algorithm (cGA) for multiobjective optimiza-
tion. We take as an starting point an algorithm following the canonical
cGA model, i.e., each individual interacts with those ones belonging to its
neighborhood, so that a new individual is obtained using the typical se-
lection, crossover, and mutation operators within this neighborhood. An
external archive is used to store the non-dominated solutions found dur-
ing the evolution process. With this basic model in mind, there are many
different design issues that can be faced. Among them, we focus here on
the synchronous/asynchronous feature of the cGA, the feedback of the
search experience contained in the archive into the algorithm, and two
different replacement strategies. We evaluate the resulting algorithms us-
ing a benchmark of problems and compare the best of them against two
state-of-the-art genetic algorithms for multiobjective optimization. The
obtained results indicate that the cGA model is a promising approach
to solve this kind of problem.

1 Introduction

Most optimization problems in the real world are multiobjective in nature. This
feature, along with the facts that function evaluations can require a significant
computation time and the search spaces tends to be very large, make metaheuris-
tics popular techniques to solve multiobjective optimization problems (MOPs).
Among them, evolutionary algorithms have been investigated by many authors,
and some of the most well-known algorithms for solving MOPs belong to this
class (e.g. NSGA-II [1], PAES [2], SPEA2 [3]). Nevertheless, in recent years there
is a trend to adapt other kinds of metaheuristics (sometimes called “alternative
methods”, with reference to evolutionary algorithms) to the multiobjective field,
such as tabu search [4] or scatter search [5].

Many evolutionary algorithms for solving MOPs are some kind of genetic algo-
rithm (GA). These algorithms work over a set (population) of potential solutions
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(a) (b) (c)

Fig. 1. Panmictic (a), distributed (b), and cellular (c) GAs

(individuals) which undergoes stochastic operators in order to search for better
solutions. These operators are typically selection, crossover, and mutation. Most
GAs use a single population (panmixia) of individuals and apply the operators
to them as a whole (see Fig. 1a). Conversely, there exist the so-called structured
GAs, in which the population is decentralized somehow. Among the many types
of structured GAs, the distributed and cellular models are two popular variants
[6,7] (see Fig. 1b and Fig. 1c, respectively). In many cases, these decentralized al-
gorithms provide a better sampling of the search space, resulting in an improved
numerical behavior with respect to an equivalent algorithm in panmixia.

In this work, we focus on the cellular model of GAs (cGAs). This kind of GAs
uses the concept of (small) neighborhood in the sense that an individual may
only interact with its nearby neighbors in the breeding loop [8,9,10]. The over-
lapped small neighborhoods of cGAs help in exploring the search space because
the induced slow diffusion of solutions through the population provides a kind
of exploration (diversification), while exploitation (intensification) takes place
inside each neighborhood by genetic operations. It is worth mentioning that the
neighborhood is defined among tentative solutions in the algorithm, with no
relation to the geographical neighborhood definition in the problem space.

cGAs have proven to be very effective tools for solving a diverse set of sin-
gle objective optimization problems from both classical and real world settings
[11,12], but little attention has been paid to their use in the multiobjective opti-
mization field [13,14,15,16,17]. In [18] we proposed the MultiObjective Cellular
(MOCell) algorithm, which, together with cMOGA [16] is the unique existing
adaptation of the canonical cGA model to the multiobjective field. MOCell uses
an external archive to store the non-dominated solutions found during the exe-
cution of the algorithm, like many other multiobjective evolutionary algorithms
do (e.g., PAES, SPEA2).

MOCell is characterized by selecting a fixed number of individuals from the
archive to replace the same number of randomly chosen individuals from the
population (archive feedback) at the end of each iteration of the algorithm.
This is carried out with the hope of taking advantage of the search experience
in order to find a Pareto front with good convergence and spread. This new
replacement coexists with the typical replacement of a canonical cGA, in which
the newly generated individual replaces the current one if the latter is worse
than the former. However, there are many other different strategies that could
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be applied in the context of MOCell. In this paper we explore three possibilities.
Firstly, MOCell is a synchronous cGA, in the sense that the cell updates are
carried out simultaneously; we consider here the alternative of implementing an
asynchronous approach, in which the cell updates are performed in a sequential
order [12]. Secondly, we study an alternative way to explicit feedbacking which
lies in the selection of an individual from the archive to be matched to the one
taken from the neighborhood in the reproductive cycle. Thirdly, in the context
of an asynchronous cGA, instead of considering the current individual to be
replaced, it is possible to consider all the neighborhood, i.e., the new individual
replaces the worst one in the neighborhood.

The contributions of our work can be summarized as follows:

– We explore three different design issues in the MOCell algorithm to study
their influences in the accuracy of the algorithm.

– The resulting configurations are validated using two benchmarks: the ZDT
family of MOPs [19], which is used in many studies in the field, and a bench-
mark constructed using the WFG Toolkit [20].

– The experiments are carried out using a rigorous statistical analysis around
three performance metrics.

– In order to determine how competitive the resulting algorithm is, we compare
the MOCell version yielding the best results against NSGA-II and SPEA2.

The remaining of the paper is organized as follows. In Section 2, we discuss
related works concerning cGAs and multiobjective optimization. In Section 3,
we describe MOCell and propose six variants of it, resulting from combining
three different features. Experimental results are presented in Section 4. Finally,
in Section 5 we give some conclusions and lines for future research.

2 Related Work

In this section we discuss related works about cGAs and multiobjective opti-
mization. As mentioned in the introduction, only few works can be found in the
literature.

In [13,17], two multiobjective evolution strategies following a predator-prey
model are presented. This is a model similar to a cGA, because solutions (preys)
are placed on the vertices of an undirected connected graph, thus defining neigh-
borhoods, where they are ‘caught’ by predators.

Murata and Gen presented in [14] an algorithm in which, for an n-objective
MOP, the population is structured in an n-dimensional weight space, and the
location of individuals (called cells) depends on their weight vector. Thus, the
information given by the weight vector of individuals is used for guiding the
search. Notice that in this work the neighborhoods are defined in the objective
space, instead of in the location of individuals in the topology of the population,
as it is in classical cGAs.

A metapopulation evolutionary algorithm (called MEA) is presented in [15].
This algorithm follows a cellular model with the peculiarity that disasters can
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occasionally happen in the population, thus killing all the individuals located
in the disaster areas (extinction). Additionally, these empty areas produced by
disasters can also be occupied by individuals (colonization). Thus, this model
allows a flexible population size, combining the ideas of cellular and spatially
distributed populations.

Alba et al. proposed in [16] cMOGA, a cellular multiobjective algorithm
which, in contrast to the aforementioned works, is based on the canonical cGA
model. This algorithm uses an external archive to store the non-dominated solu-
tions found during the search. This feature was included in MOCell [18], which
can be considered as an evolution of cMOGA in which a feedback from the
archive to the population has been included. MOCell was compared in [18] to
the algorithms NSGA-II and SPEA2 using a benchmark of both unconstrained
and constrained bi-objective MOPs, obtaining competitive results in convergence
and clearly outperforming the other algorithms in terms of diversity.

3 The Algorithm

In this section we first detail a description of a canonical cGA; then, we describe
the algorithm MOCell and its different configurations that we intend to study.

3.1 Canonical cGA Model

A canonical cGA follows the pseudo-code included in Algorithm 1. In this basic
cGA, the population is usually structured in a regular grid of d dimensions (d =
1, 2, 3), and a neighborhood is defined on it. The algorithm iteratively considers
as current each individual in the grid (line 3). An individual may only interact
with individuals belonging to its neighborhood (line 4), so its parents are chosen
among its neighbors (line 5) with a given criterion. Crossover and mutation
operators are applied to the individuals in lines 6 and 7, with probabilities Pc

and Pm, respectively. Afterwards, the algorithm computes the fitness value of
the new offspring individual (or individuals) (line 8), and inserts it (or one of
them) into the equivalent place of the current individual in a new auxiliary
population (line 9) following a given replacement policy. After each generation
(or loop), the auxiliary population is assumed to be the population for the next
generation. This loop is repeated until a termination condition is met (line 2).
The most usual termination conditions are to reach the optimal value, to perform
a maximum number of fitness function evaluations, or a combination of both of
them.

According to this canonical cGA, all the cells can be updated in parallel,
yielding the so-named synchronous cGA. The alternative is the asynchronous
cGA, in which the cells are updated one at a time in some sequential order. An
asynchronous cGA can be easily obtained from Algorithm 1 assuming that the
cells are sequentially updated, so the auxiliary population is not needed in the
algorithm.
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Algorithm 1. Pseudocode for a Canonical cGA
1: proc Steps Up(cga) //Algorithm parameters in ‘cga’
2: while not Termination Condition() do
3: for individual ← 1 to cga.popSize do
4: n list←Get Neighborhood(cga,position(individual));
5: parents←Selection(n list);
6: offspring←Recombination(cga.Pc,parents);
7: offspring←Mutation(cga.Pm,offspring);
8: Evaluate Fitness(offspring);
9: Replace(position(individual),offspring,cga,aux pop);
10: end for
11: cga.pop←aux pop;
12: end while
13: end proc Steps Up;

Algorithm 2. Pseudocode of MOCell
1: proc Steps Up(mocell) //Algorithm parameters in ‘mocell’
2: Pareto front = Create Front() //Creates an empty Pareto front
3: while not TerminationCondition() do
4: for individual ← 1 to mocell.popSize do
5: n list←Get Neighborhood(mocell,position(individual));
6: parents←Selection(n list);
7: offspring←Recombination(mocell.Pc,parents);
8: offspring←Mutation(mocell.Pm,offspring);
9: Evaluate Fitness(offspring);
10: Replacement(position(individual),offspring,mocell,aux pop);
11: Insert Pareto Front(offspring);
12: end for
13: mocell.pop←aux pop;
14: mocell.pop←Feedback(mocell,ParetoFront);
15: end while
16: end proc Steps Up;

3.2 A Multiobjective cGA: MOCell

In this section we describe MOCell, a multiobjective metaheuristic based on
the previously explained cGA model. Its pseudo-code is given in Algorithm 2.
We can observe that Algorithms 1 and 2 are very similar. One of the main
differences between the two algorithms is the existence of a Pareto front in
the multiobjective case. The Pareto front is just an additional population (the
external archive) composed of the non-dominated solutions found. The archive
has a maximum size and, therefore, the insertion of solutions in the Pareto front
has to be carefully managed to obtain a diverse set. Hence, a density estimator
is needed to remove solutions from the archive when it becomes full.

MOCell starts by creating an empty Pareto front (line 2 in Algorithm 2).
Individuals are arranged in a 2-dimensional toroidal grid, and the genetic op-
erators are successively applied to them (lines 7 and 8) until the termination
condition is met (line 3). Hence, for each individual, the algorithm selects two
parents from its neighborhood, recombines them in order to obtain an offspring,
mutates this offspring, and evaluates the resulting individual; then the algorithm
decides whether the new offspring replaces the current one (line 10). The next
step (line 11) is to insert the offspring into the external archive, if appropriate.



Design Issues in a Multiobjective Cellular Genetic Algorithm 131

Finally, after each generation, the old population is replaced by the auxiliary one
(line 13), and a feedback procedure is invoked to replace a number of randomly
chosen individuals by a number of solutions from the archive (line 14).

In this algorithm, the resulting offspring replaces the individual at the current
position if the former is better than the later, but, as it is usual in multiobjective
optimization, we need to define the concept of “best individual”. Our approach
is to replace the current individual if it is dominated by the offspring or both the
two are non-dominated and the current individual has the worst crowding distance
(as defined in NSGA-II) in a population composed of the neighborhood plus the
offspring. This criterion is also used to decide whether the offspring solutions are
added to the external archive (line 11 in Algorithm 2). For inserting individuals in
the Pareto front, the solutions in the archive are ordered according to the crowding
distance; then, when inserting a non-dominated solution, if the Pareto front is al-
ready full, the solution with the worst (lowest) crowding distance value is removed.

MOCell has been implemented in Java using the jMetal framework [21]. It
can be downloaded from: http://neo.lcc.uma.es/metal/index.html.

3.3 MOCell Configurations

The MOCell algorithm, as just described, was designed to fit as far as possible
into the canonical cGA model. However, we can envision many different variants
or configurations, although many of them could lead to a non-orthodox cGA.
Our interest is not only to design a pure cGA per se, but also an efficient and
accurate multiobjective metaheuristic. So, we propose here a number of possible
variants with the aim of studying whether they outperform the base cGA model
of MOCell.

We focus on three features of MOCell: synchronicity, archive feedback, and
replacement. Let us start with the first of these. The algorithm described in Al-
gorithm 2 is a synchronous cGA, but an asynchronous version can be obtained
as explained in Section 3.1: the cells can be updated in sequential order, using a
unique population. In the context of mono-objective cGAs, asynchronous algo-
rithms can be more efficient (faster) that synchronous ones, while synchronous
algorithms can be more effective (in terms of hit rate) [12]; a goal of this paper
is to study the influence of synchronicity in MOCell. The asynchronous update
policy we consider here is the so called Line Sweep [12], the simplest one, which
sequentially updates the individuals in the same order as they are placed in the
population, line by line.

As is usual in those multiobjective metaheuristics using an external archive,
the solutions contained in it are re-used somehow with the idea in mind of
progressing towards the Pareto optimal front. In MOCell this is carried out by
explicitly selecting a number of individuals from the archive and inserting them
into the population, replacing randomly selected cells. An alternative way to use
the information in the archive is to use a simple scheme: in the selection method
of the algorithm, one parent is taken from the neighborhood, while the other one
will be randomly chosen from the archive, thus removing the explicit feedback
from the algorithm.
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Finally, in the canonical cGA, the replacement policy (line 9 in Algorithm 1)
defines whether the offspring individual will be inserted into the population
instead of the current one, replacing it. In the context of an asynchronous cGA, a
possible variation is to compare the offspring individual not only with the current
one but also with its whole neighborhood, thus replacing the worst neighbor.

Taking into consideration these design issues, we propose six new configura-
tions for our algorithm. They are summarized in the following list:

– sMOCell1: The original synchronous MOCell algorithm.
– sMOCell2: MOCell + archive feedback through parent selection.
– aMOCell1: Asynchronous version of sMOCell1.
– aMOCell2: aMOCell1 + archive feedback through parent selection.
– aMOCell3: aMOCell1 + replacing of the worst neighbor.
– aMOCell4: Combination of aMOCell2 and aMOCell3.

4 Computational Results

This section is devoted to the evaluation of MOCell and its variants. For that, we
have chosen several test problems taken from the specialized literature, and, in
order to assess how competitive MOCell is, we decided to compare it against two
algorithms that are representative of the state-of-the-art, namely NSGA-II and
SPEA2. Next, we briefly comment on the main features of these two algorithms,
including the parameter settings used in the subsequent experiments.

The NSGA-II algorithm was proposed by Deb et al. [1]. It is characterized by
a Pareto ranking of the individuals and the use of a crowding distance as density
estimator. A crossover probability of pc = 0.9 and a mutation probability pm =
1/n (where n is the number of decision variables) are used. The operators for
crossover and mutation are SBX and polynomial mutation [22], with distribution
indexes of ηc = 20 and ηm = 20, respectively. The population and archive sizes
are 100 individuals. The algorithm stops after 25000 function evaluations.

SPEA2 was proposed by Zitler et al. in [3]. In this algorithm, each individual
has assigned a fitness value that is the sum of its strength raw fitness and a
density estimation based on the distance to the k-th nearest neighbor. We have
used the following values for the parameters. Both the population and the archive
have a size of 100 individuals, and the crossover and mutation operators are the
same as used in NSGA-II, using the same values concerning their application
probabilities and distribution indexes. As in NSGA-II, the stopping condition is
to compute 25000 function evaluations.

Both algorithms have been implemented, as MOCell has, using the jMetal
framework. This way, the three techniques share the same internal code, so
we can make a fair comparison avoiding problems derived from using different
implementations. See [21] for further details.

In Table 1 we show the parameters used by MOCell. A square toroidal grid of
100 individuals has been chosen for structuring the population. The neighbor-
hood used is composed of nine individuals: the considered individual plus those
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Table 1. Parameterization used in MOCell

Population Size 100 individuals (10 × 10)
Stopping Condition 25000 function evaluations
Neighborhood 1-hop neighbors (8 surrounding solutions)
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/n

(n = number of decision variables)
Replacement rep if better individual (NSGA-II crowding)
Archive Size 100 individuals
Density estimator crowding distance (NSGA-II crowding)
Feedback (for sMOCell1 & aMOCell1) 20 individuals

located at its North, East, West, South, NorthWest, SouthWest, NorthEast, and
SouthEast (see Fig. 1c). We have also used SBX and polynomial mutation with
the same distribution indexes as NSGA-II and SPEA2. Crossover and mutation
rates are pc = 0.9 and pm = 1/n, respectively. To set the number of individuals
to be inserted from the archive to the population in the feedback procedure in
sMOCell1 and aMOCell1, we carried out a number of preliminary experiments;
as a result, we choose a value of 20.

We have made 100 independent runs of each experiment, and we have ob-
tained the median, x̃, and interquartile range, IQR, as measures of location (or
central tendency) and statistical dispersion, respectively. Since we are dealing
with stochastic algorithms and we want to provide the results with confidence,
the following statistical analysis has been performed in all this work [23]. Firstly,
a Kolmogorov-Smirnov test is performed in order to check whether the values of
the results follow a normal (gaussian) distribution or not. If so, an ANOVA test
is done, otherwise we perform a Kruskal-Wallis test. We always consider in this
work a confidence level of 95% (i.e., significance level of 5% or p-value under
0.05) in the statistical tests, which means that the differences are unlikely to
have occurred by chance with a probability of 95%. Successful tests are marked
with “+” symbols in the last column in all the tables; conversely, “−” means
that no statistical confidence was found (p-value > 0.05). The best result for
each problem has a gray colored background.

4.1 Test Problems

We have selected for our tests two benchmarks, the ZDT problems and a set of
MOPs defined using the WFG Toolkit. The ZDT benchmark [19] is a family of
bi-objective MOPs which have been widely used to assess the performance of
metaheuristics for multiobjective optimization; they are formulated in Table 2.
The WFG Toolkit allows the user to define benchmarks of MOPs having different
properties; in this study, we use the bi-objective version of the nine problems,
WFG1 to WFG9, defined in [20]. The properties of these problems are detailed
in Table 3.



134 A.J. Nebro et al.

Table 2. The ZDT test functions

Problem Objective functions Variable bounds n

ZDT1
f1(x) = x1

f2(x) = g(x)[1−√
x1/g(x)]

g(x) = 1 + 9(
∑ n

i=2 xi)/(n − 1)
0 ≤ xi ≤ 1 30

ZDT2
f1(x) = x1

f2(x) = g(x)[1− (x1/g(x))2]
g(x) = 1 + 9(

∑ n
i=2 xi)/(n − 1)

0 ≤ xi ≤ 1 30

ZDT3
f1(x) = x1

f2(x) = g(x)
[
1−

√
x1

g(x) −
x1

g(x) sin (10πx1)
]

g(x) = 1 + 9(
∑ n

i=2 xi)/(n − 1)
0 ≤ xi ≤ 1 30

ZDT4
f1(x) = x1

f2(x) = g(x)[1− (x1/g(x))2]
g(x) = 1 + 10(n− 1) +

∑n
i=2[x2

i − 10 cos (4πxi)]

0 ≤ x1 ≤ 1
−5 ≤ xi ≤ 5

i = 2, ..., n
10

ZDT6
f1(x) = 1− e−4x1 sin6 (6πx1)
f2(x) = g(x)[1− (f1(x)/g(x))2]
g(x) = 1 + 9[(

∑ n
i=2 xi)/(n− 1)]0.25

0 ≤ xi ≤ 1 10

Table 3. Properties of the MOPs created using the WFG toolkit

Problem Separability Modality Bias Geometry

WFG1 separable uni polynomial, flat convex, mixed
WFG2 non-separable f1 uni, f2 multi no bias convex, disconnected
WFG3 non-separable uni no bias linear, degenerate
WFG4 non-separable multi no bias concave
WFG5 separable deceptive no bias concave
WFG6 non-separable uni no bias concave
WFG7 separable uni parameter dependent concave
WFG8 non-separable uni parameter dependent concave
WFG9 non-separable multi, deceptive parameter dependent concave

4.2 Performance Metrics

For assessing the performance of the algorithms on the test problems, two dif-
ferent issues are normally taken into account: (i) to minimize the distance of the
Pareto front generated by the proposed algorithm to the exact Pareto front, and
(ii) to maximize the spread of solutions found, so that we can have a distribution
of vectors as smooth and uniform as possible. This way, the performance metrics
can be classified into three categories depending on whether they evaluate the
closeness to the Pareto front, the diversity in the obtained solutions, or both
factors [24]. We have adopted one metric of each type: Generational Distance
(GD) [25], Spread (Δ) [1], and Hypervolume (HV ) [26].

4.3 Comparison of the MOCell Variants

In this section we analyze and compare the results obtained when executing the
different versions of MOCell. Let us now start with the GD metric, whose values
are included in Table 4. Here, aMOCell4 gets the best (lowest) values in six out
of the fourteen problems, and with statistical confidence in five of them (see “+”
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Table 4. Different MOCell versions: median and interquartile range of the GD metric

sMOCell1 sMOCell2 aMOCell1 aMOCell2 aMOCell3 aMOCell4
MOP x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

ZDT1 6.288e-4 1.5e-4 2.749e-4 7.5e-5 4.207e-4 7.2e-5 2.518e-4 4.5e-5 2.222e-4 4.1e-5 1.753e-4 2.0e-5 +
ZDT2 5.651e-4 2.0e-4 1.778e-4 1.1e-4 2.884e-4 1.9e-4 1.111e-4 1.1e-4 1.197e-4 5.3e-5 5.629e-5 2.5e-5 +
ZDT3 3.326e-4 8.5e-5 2.493e-4 3.0e-5 2.644e-4 4.4e-5 2.427e-4 2.8e-5 2.077e-4 2.0e-5 2.008e-4 1.8e-5 +
ZDT4 9.668e-4 6.4e-4 3.848e-4 2.9e-4 7.847e-4 5.9e-4 4.235e-4 3.3e-4 6.179e-4 4.0e-4 3.293e-4 2.0e-4 +
ZDT6 3.963e-3 1.3e-3 1.080e-3 2.0e-4 2.397e-3 7.8e-4 9.334e-4 1.3e-4 8.778e-4 1.3e-4 6.323e-4 3.4e-5 +
WFG1 1.962e-4 8.0e-3 1.859e-4 1.9e-5 1.906e-4 6.5e-3 1.889e-4 2.0e-5 1.921e-4 8.1e-3 2.052e-4 1.0e-2 +
WFG2 4.408e-4 1.4e-4 4.339e-4 1.2e-4 4.410e-4 1.3e-4 4.316e-4 1.3e-4 4.337e-4 1.3e-4 4.336e-4 7.1e-5 +
WFG3 1.372e-4 1.4e-5 1.349e-4 1.5e-5 1.375e-4 1.8e-5 1.340e-4 1.3e-5 1.367e-4 1.5e-5 1.354e-4 1.4e-5 +
WFG4 6.423e-4 2.2e-5 6.259e-4 2.6e-5 6.396e-4 2.6e-5 6.252e-4 2.4e-5 6.341e-4 2.6e-5 6.253e-4 3.2e-5 +
WFG5 2.634e-3 2.6e-5 2.633e-3 1.4e-5 2.636e-3 3.4e-5 2.631e-3 1.4e-5 2.633e-3 1.2e-5 2.635e-3 1.1e-5 +
WFG6 4.984e-4 4.3e-4 1.210e-3 2.1e-3 5.146e-4 7.1e-4 1.268e-3 3.4e-3 5.976e-4 7.1e-4 1.906e-3 3.4e-3 +
WFG7 3.069e-4 2.2e-5 3.048e-4 2.3e-5 3.025e-4 2.1e-5 3.038e-4 2.7e-5 3.067e-4 2.4e-5 3.011e-4 2.4e-5 -
WFG8 1.009e-2 6.6e-3 1.460e-2 5.4e-3 1.000e-2 6.0e-3 1.468e-2 3.3e-3 1.434e-2 5.2e-3 1.474e-2 4.9e-3 +
WFG9 1.072e-3 6.1e-5 1.055e-3 5.3e-5 1.081e-3 5.5e-5 1.067e-3 6.6e-5 1.067e-3 5.8e-5 1.065e-3 6.0e-5 +

Table 5. Different MOCell versions: median and interquartile range of the Δ metric

sMOCell1 sMOCell2 aMOCell1 aMOCell2 aMOCell3 aMOCell4
MOP x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

ZDT1 1.541e-1 2.1e-2 9.645e-2 1.4e-2 1.345e-1 1.9e-2 9.161e-2 1.3e-2 1.011e-1 1.7e-2 7.493e-2 1.3e-2 +
ZDT2 1.753e-1 3.8e-2 9.907e-2 1.9e-2 1.363e-1 3.5e-2 9.089e-2 2.4e-2 1.003e-1 2.1e-2 8.095e-2 1.3e-2 +
ZDT3 7.106e-1 7.5e-3 7.073e-1 7.4e-3 7.091e-1 7.8e-3 7.069e-1 7.0e-3 7.039e-1 4.0e-3 7.054e-1 5.4e-3 +
ZDT4 1.964e-1 9.1e-2 1.257e-1 3.6e-2 1.854e-1 6.3e-2 1.324e-1 4.5e-2 1.419e-1 3.1e-2 1.089e-1 2.5e-2 +
ZDT6 3.806e-1 1.1e-1 1.513e-1 2.5e-2 2.953e-1 7.3e-2 1.363e-1 1.9e-2 1.536e-1 1.8e-2 9.234e-2 1.1e-2 +
WFG1 5.469e-1 9.3e-2 5.653e-1 7.6e-2 5.298e-1 1.0e-1 5.571e-1 7.3e-2 4.679e-1 1.2e-1 5.790e-1 8.6e-2 +
WFG2 7.490e-1 1.1e-2 7.468e-1 1.0e-2 7.474e-1 1.1e-2 7.468e-1 9.9e-3 7.468e-1 1.0e-2 7.471e-1 8.5e-3 +
WFG3 3.698e-1 9.8e-3 3.657e-1 8.0e-3 3.725e-1 8.2e-3 3.634e-1 7.3e-3 3.684e-1 7.2e-3 3.648e-1 8.7e-3 +
WFG4 1.349e-1 1.9e-2 1.341e-1 1.7e-2 1.335e-1 1.7e-2 1.336e-1 1.9e-2 1.335e-1 1.7e-2 1.333e-1 1.7e-2 -
WFG5 1.311e-1 2.5e-2 1.298e-1 1.7e-2 1.377e-1 2.3e-2 1.289e-1 2.3e-2 1.300e-1 2.3e-2 1.293e-1 1.8e-2 +
WFG6 1.178e-1 2.1e-2 1.339e-1 3.4e-2 1.167e-1 2.7e-2 1.344e-1 4.6e-2 1.190e-1 2.7e-2 1.348e-1 4.1e-2 +
WFG7 1.059e-1 1.8e-2 1.096e-1 1.7e-2 1.033e-1 1.6e-2 1.069e-1 2.1e-2 1.040e-1 1.7e-2 1.084e-1 2.1e-2 +
WFG8 5.596e-1 6.3e-2 5.664e-1 8.4e-2 5.710e-1 7.2e-2 5.691e-1 5.0e-2 5.531e-1 6.4e-2 5.703e-1 6.7e-2 +
WFG9 1.597e-1 1.8e-2 1.449e-1 1.8e-2 1.609e-1 2.1e-2 1.482e-1 1.8e-2 1.606e-1 1.8e-2 1.435e-1 1.7e-2 +

Table 6. Different MOCell versions: median and interquartile range of the HV metric

sMOCell1 sMOCell2 aMOCell1 aMOCell2 aMOCell3 aMOCell4
MOP x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR x̃IQR

ZDT1 6.543e-1 2.0e-3 6.592e-1 7.3e-4 6.573e-1 1.1e-3 6.595e-1 7.3e-4 6.603e-1 5.2e-4 6.610e-1 2.7e-4 +
ZDT2 3.216e-1 2.8e-3 3.265e-1 1.6e-3 3.256e-1 2.6e-3 3.274e-1 1.7e-3 3.276e-1 8.1e-4 3.284e-1 5.1e-4 +
ZDT3 5.111e-1 2.2e-3 5.135e-1 8.2e-4 5.132e-1 1.2e-3 5.137e-1 8.1e-4 5.152e-1 2.8e-4 5.152e-1 4.0e-4 +
ZDT4 6.487e-1 9.6e-3 6.573e-1 4.3e-3 6.517e-1 8.4e-3 6.568e-1 4.5e-3 6.539e-1 5.9e-3 6.580e-1 3.2e-3 +
ZDT6 3.487e-1 1.7e-2 3.885e-1 3.1e-3 3.699e-1 1.0e-2 3.909e-1 2.0e-3 3.920e-1 2.4e-3 3.970e-1 8.4e-4 +
WFG1 5.491e-1 1.1e-1 6.047e-1 5.8e-2 5.906e-1 1.2e-1 5.983e-1 1.0e-1 6.115e-1 1.2e-1 5.043e-1 1.7e-1 +
WFG2 5.616e-1 2.9e-3 5.616e-1 2.7e-3 5.616e-1 2.8e-3 5.616e-1 2.7e-3 5.616e-1 2.7e-3 5.616e-1 1.1e-3 -
WFG3 4.420e-1 2.0e-4 4.420e-1 1.6e-4 4.420e-1 3.0e-4 4.420e-1 1.6e-4 4.420e-1 2.5e-4 4.420e-1 1.6e-4 +
WFG4 2.187e-1 3.1e-4 2.186e-1 3.2e-4 2.186e-1 2.8e-4 2.186e-1 2.9e-4 2.187e-1 2.9e-4 2.188e-1 2.6e-4 +
WFG5 1.961e-1 7.5e-5 1.962e-1 5.4e-5 1.961e-1 7.5e-5 1.962e-1 6.9e-5 1.962e-1 7.4e-5 1.962e-1 4.7e-5 +
WFG6 2.051e-1 7.0e-3 1.949e-1 2.8e-2 2.049e-1 1.1e-2 1.940e-1 4.3e-2 2.036e-1 1.1e-2 1.859e-1 4.2e-2 +
WFG7 2.104e-1 1.7e-4 2.104e-1 1.7e-4 2.104e-1 1.6e-4 2.104e-1 2.0e-4 2.104e-1 2.0e-4 2.105e-1 1.6e-4 +
WFG8 1.456e-1 2.1e-2 1.472e-1 3.0e-3 1.459e-1 4.9e-3 1.466e-1 2.5e-3 1.462e-1 2.8e-3 1.479e-1 2.8e-3 +
WFG9 2.380e-1 2.2e-3 2.389e-1 2.4e-3 2.375e-1 3.1e-3 2.390e-1 2.0e-3 2.380e-1 2.3e-3 2.381e-1 3.6e-3 +

symbols in the last column). If we compare synchronous vs. asynchronous ver-
sions, the latter ones are able to compute sets of non-dominated solutions which
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are closer to the exact Pareto fronts of the MOPs. Indeed, asynchronous versions
of MOCell reach the best GD value in eleven out of the fourteen problems.

The results of the Δ metric are shown in Table 5. Again, aMOCell4 gets the
best values in six (out of fourteen) MOPs. Concerning this metric, asynchronous
versions of MOCell also outperform the synchronous ones, reaching in this case
the best distribution of non-dominated solutions along the Pareto front in thir-
teen out of fourteen problems.

Finally, the HV metric reinforces the results of the two previous metric (Ta-
ble 6). Firstly, aMOCell4 achieves the best (highest) values in eight out of the
fourteen MOPs of the benchmark and, secondly, asynchronous versions overcome
synchronous ones (sMOCell1 in WFG6 is the on exception).

Regarding the feedback policy used, the results show that selecting one parent
from the archive yields better results than the original feedback policy of MOCell
(in which a number of solutions were copied from the archive into the population)
in the cases of both synchronous (sMOCell2 outperforms sMOCell1 in 12, 10,
and 9 problems for the GD, Δ, and HV metrics, respectively) and asynchronous
(aMOCell2 is better than aMOCell1 in 11, 10, and 11 problems for the GD, Δ,
and HV metrics, respectively) update policies.

We also want to remark that, even though differences in all the metric val-
ues among the optimizers are very small, they are due to the normalization
process that the resulting non-dominated sets of solutions undergo before the
corresponding metric is computed. In fact, they are rather meaningful and most
of the comparisons are supported with statistical confidence (“+” symbols in
the last columns of the tables). Consequently, we can state that the combina-
tion of the replacement and feedback strategies leads aMOCell4 to be the best
algorithm out of the six different proposed configurations over the considered
benchmark. Now, in order to determine how competitive this algorithm is, we
proceed to compare it against NSGA-II and SPEA2 in the next section.

Table 7. Comparison against NSGA-II and SPEA2. Median and interquartile range
of the GD metric.

aMOCell4 NSGA-II SPEA2
MOP x̃IQR x̃IQR x̃IQR

ZDT1 1.753e-4 2.0e−5 2.198e-4 4.8e−5 2.211e-4 2.8e−5 +
ZDT2 5.629e-5 2.5e−5 1.674e-4 4.3e−5 1.770e-4 4.8e−5 +
ZDT3 2.008e-4 1.8e−5 2.126e-4 2.1e−5 2.320e-4 2.0e−5 +
ZDT4 3.293e-4 2.0e−4 4.353e-4 3.2e−4 5.753e-4 4.4e−4 +
ZDT6 6.323e-4 3.4e−5 1.010e-3 1.3e−4 1.750e-3 2.9e−4 +
WFG1 2.052e-4 1.0e−2 1.967e-4 8.3e−3 6.438e-4 1.0e−2 +
WFG2 4.336e-4 7.1e−5 5.196e-4 1.7e−4 4.474e-4 1.2e−4 +
WFG3 1.354e-4 1.4e−5 1.553e-4 1.9e−5 1.448e-4 1.2e−5 +
WFG4 6.253e-4 3.2e−5 6.870e-4 1.4e−4 6.377e-4 3.0e−5 +
WFG5 2.635e-3 1.1e−5 2.655e-3 3.2e−5 2.718e-3 1.7e−5 +
WFG6 1.906e-3 3.4e−3 5.539e-4 6.5e−4 4.654e-4 6.7e−4 +
WFG7 3.011e-4 2.4e−5 3.444e-4 4.7e−5 3.020e-4 4.5e−5 +
WFG8 1.474e-2 4.9e−3 1.446e-2 5.3e−3 1.569e-2 6.0e−3 +
WFG9 1.065e-3 6.0e−5 1.223e-3 2.1e−4 9.313e-4 9.1e−5 +
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Table 8. Comparison against NSGA-II and SPEA2. Median and interquartile range
of the Δ metric.

aMOCell4 NSGA-II SPEA2
MOP x̃IQR x̃IQR x̃IQR

ZDT1 7.493e-2 1.3e−2 3.753e-1 4.2e−2 1.486e-1 1.8e−2 +
ZDT2 8.095e-2 1.3e−2 3.814e-1 3.9e−2 1.558e-1 2.8e−2 +
ZDT3 7.054e-1 5.4e−3 7.458e-1 2.0e−2 7.099e-1 7.7e−3 +
ZDT4 1.089e-1 2.5e−2 3.849e-1 5.3e−2 2.612e-1 1.7e−1 +
ZDT6 9.234e-2 1.1e−2 3.591e-1 4.6e−2 2.268e-1 3.0e−2 +
WFG1 5.790e-1 8.6e−2 7.170e-1 4.5e−2 6.578e-1 7.0e−2 +
WFG2 7.471e-1 8.5e−3 7.968e-1 1.5e−2 7.519e-1 1.1e−2 +
WFG3 3.648e-1 8.7e−3 6.101e-1 3.8e−2 4.379e-1 1.3e−2 +
WFG4 1.333e-1 1.7e−2 3.835e-1 4.3e−2 2.681e-1 3.1e−2 +
WFG5 1.293e-1 1.8e−2 4.077e-1 4.0e−2 2.805e-1 2.7e−2 +
WFG6 1.348e-1 4.1e−2 3.807e-1 4.2e−2 2.506e-1 2.4e−2 +
WFG7 1.084e-1 2.1e−2 3.836e-1 4.4e−2 2.453e-1 2.7e−2 +
WFG8 5.703e-1 6.7e−2 6.472e-1 5.1e−2 6.108e-1 5.7e−2 +
WFG9 1.435e-1 1.7e−2 3.994e-1 3.9e−2 2.945e-1 2.4e−2 +

Table 9. Comparison against NSGA-II and SPEA2. Median and interquartile range
of the HV metric.

aMOCell4 NSGA-II SPEA2
MOP x̃IQR x̃IQR x̃IQR

ZDT1 6.610e-1 2.7e−4 6.594e-1 4.0e−4 6.600e-1 3.5e−4 +
ZDT2 3.284e-1 5.1e−4 3.261e-1 4.8e−4 3.263e-1 7.4e−4 +
ZDT3 5.152e-1 4.0e−4 5.148e-1 2.7e−4 5.141e-1 3.4e−4 +
ZDT4 6.580e-1 3.2e−3 6.552e-1 4.7e−3 6.518e-1 1.0e−2 +
ZDT6 3.970e-1 8.4e−4 3.887e-1 2.2e−3 3.785e-1 4.3e−3 +
WFG1 5.043e-1 1.7e−1 5.140e-1 1.5e−1 4.337e-1 1.4e−1 +
WFG2 5.616e-1 1.1e−3 5.631e-1 2.9e−3 5.615e-1 2.9e−3 -
WFG3 4.420e-1 1.6e−4 4.411e-1 3.2e−4 4.418e-1 2.2e−4 +
WFG4 2.188e-1 2.6e−4 2.173e-1 5.3e−4 2.181e-1 3.4e−4 +
WFG5 1.962e-1 4.7e−5 1.948e-1 4.8e−4 1.956e-1 1.5e−4 +
WFG6 1.859e-1 4.2e−2 2.033e-1 9.9e−3 2.056e-1 1.1e−2 +
WFG7 2.105e-1 1.6e−4 2.088e-1 4.3e−4 2.098e-1 2.7e−4 +
WFG8 1.479e-1 2.8e−3 1.470e-1 2.3e−3 1.469e-1 1.7e−3 +
WFG9 2.381e-1 3.6e−3 2.372e-1 2.2e−3 2.386e-1 2.2e−3 +

4.4 Comparison Against NSGA-II and SPEA2

The results of aMOCell4, NSGA-II, and SPEA2 for the GD, Δ, and HV met-
rics are included in Tables 7, 8, and 9, respectively. If we start by analyzing the
closeness to the exact Pareto fronts, Table 7 shows that our cellular approach
obtains the best (lowest) values of the GD metric in ten out of the fourteen
MOPs. aMOCell4 is especially well suited for solving the ZDT family, where it
is the best algorithm on the five problems. In the case of the WFG functions,
NSGA-II and SPEA2 obtain the closest approximated fronts in two problems
each (out of nine), but aMOCell4 is still able to reach the best results in five of
these MOPs. It is therefore clear that, in terms of convergence, the cellular algo-
rithm outperforms both NSGA-II and SPEA2 over the considered benchmark.
Note that these claims are supported with statistical confidence (“+” symbols
in the last column).

If we turn to compare the distribution of the non-dominated solutions along
the Pareto front computed by the optimizers, Table 8 points out that aMOCell4
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Fig. 2. Approximated fronts of aMOCell4, NSGA-II, and SPEA2 when solving WFG6

clearly outperforms NSGA-II and SPEA2 over all the considered MOPs. The
most important differences come out in the ZDT family, where the Δ values of
aMOCell4 in ZDT1, ZDT2 and ZDT6 are one order of magnitude lower than
those reached by NSGA-II and SPEA2. In order to illustrate this fact, Fig. 2
displays the approximated WFG6 front of each algorithm which reported the
best Δ value out of the 100 trials. (We have chosen this MOP because it is
one in which aMOCell4 is the best neither in GD nor in HV .) As it can be
seen, aMOCell4 presents an almost perfect distribution of non-dominated solu-
tions along the Pareto front, whereas some gaps exits in the fronts computed by
NSGA-II and SPEA2. This is especially important when comparing aMOCell4
against NSGA-II, because they are implemented within the jMetal framework
and hence they share the same ranking and crowding procedures. This shows
the enhanced search capabilities of our cellular approach.

The results of the HV metric are included in Table 9. As in the GD metric,
aMOCell4 gets the best (now highest) values in ten out of the fourteen considered
MOPs. It is clearly the best algorithm for the ZDT family and it reaches the
best values in five out of the nine problems of the WFG toolkit (NSGA-II and
SPEA2 are the best in two problems each). At this point, we want to remind the
reader again that the small differences among the optimizers are because of the
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normalization process performed before calculating the metrics. However, these
small differences lead to discernible differences in the Pareto fronts, as shown in
Fig. 2.

5 Conclusions and Future Work

In this work we have proposed and studied several issues in the design of MOCell
in order to improve its performance. The basic MOCell algorithm is a multiob-
jective cGA which uses an external archive to store the non-dominated solutions
found during the search. The studied design issues are related to the synchronic-
ity in the update of individuals, the feedback from the archive, and the replace-
ment policy.

Six variants of MOCell have been compared using a standard methodology
which is currently used in the evolutionary multiobjective optimization com-
munity. We have selected two benchmark of MOPs, the classical ZDT set of
problems, usually used in similar studies in the area, and the recent benchmark
obtained by using the WFG toolkit. Three metrics were used to assess the per-
formance of the algorithms. The obtained results indicate that an asynchronous
version, combined with replacing the worst cell in the neighborhood and using
an individual from the archive in the selection operator leads to the best variant
of the six analyzed versions of MOCell.

To assess how competitive the most promising variant of MOCell is, we have
compared it against two state-of-the-art evolutionary algorithms for solving
MOPs, NSGA-II and SPEA2. The results of the comparison reveal that, in the
context of the problems, the metrics, and the parameter settings used, aMOCell4
clearly outperforms the other two algorithms.

A deeper study of MOCell, using problems of more than two dimensions, as
well as an analysis of other design issues, such as different cell update strategies
in the asynchronous versions, are matters for future work.
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Abstract. We present a new multiobjective evolutionary algorithm (MOEA), 
called fast Pareto genetic algorithm (FastPGA). FastPGA uses a new fitness 
assignment and ranking strategy for the simultaneous optimization of multi-
ple objectives where each solution evaluation is computationally- and/or fi-
nancially-expensive. This is often the case when there are time or resource 
constraints involved in finding a solution. A population regulation operator is 
introduced to dynamically adapt the population size as needed up to a user-
specified maximum population size. Computational results for a number of 
well-known test problems indicate that FastPGA is a promising approach. 
FastPGA outperforms the improved nondominated sorting genetic algorithm 
(NSGA-II) within a relatively small number of solution evaluations. 

Keywords: multiobjective optimization, evolutionary algorithms, Pareto opti-
mality, fast convergence. 

1   Introduction 

Most real-world problems often involve multiple conflicting objectives, where improv-
ing one objective may degrade the performance of one or more of the other objectives. 
Traditional approaches for solving MOPs typically try to scalarize the multiple objec-
tives into a single objective using a vector of user-defined weights. This transforms the 
original multiple objective optimization problem formulation into a single objective 
optimization problem yielding a single solution. Several disadvantages of using such 
traditional methods have motivated researchers and practitioners to seek alternative 
techniques to find a set of Pareto optimal solutions rather than just a single solution [2, 
3]. A solution is Pareto optimal if there exists no feasible solution for which an im-
provement in one objective does not lead to a simultaneous degradation in one (or more) 
of the other objectives. In other words, the solution is a nondominated solution. 

1.1   Evolutionary Algorithms for Multiobjective Optimization 

Many Pareto-based heuristic search algorithms have been developed to solve MOPs 
including simulated annealing, tabu search, scatter search, and evolutionary algorithms 
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(EAs). EAs, the focus of this study, are population-based stochastic search algorithms 
inspired by Darwinian evolutionary theory (i.e., the survival of the fittest). It has been 
shown that EAs are able to balance exploration and exploitation of the solution search 
space [6]. 

Several variations of multiobjective evolutionary algorithms (MOEAs) have been 
developed to handle MOPs [2, 3]. Many of the suggested MOEAs have been em-
ployed in a variety of real-world applications [1]. Among the existing algorithms, an 
improved version of the nondominated sorting genetic algorithm (NSGA-II) of Deb et 
al. [4], a newer version of strength Pareto EA (SPEA2) of Zitzler et al. [14], an im-
proved version of multiobjective messy GA (MOMGA) of Zydallis et al. [16], and 
Pareto-archived evolution strategy (PAES) of Knowles and Corne [8] are the more 
popular MOEAs. Given the variations of MOEAs, the idea of using dynamic popula-
tion sizing has not been thoroughly investigated, and to date only a few studies have 
explored this idea. For example, Tan et al. [9] introduce an incrementing MOEA that 
uses dynamic population sizing based on the online discovered Pareto front and its 
desired population distribution density. In another study, Yen and Lu [12] propose a 
dynamic MOEA, called DMOEA, which incorporates cell-based rank and density 
estimation strategy to efficiently compute dominance and diversity information when 
the population size varies dynamically. 

After developing many effective MOEAs for solving inexpensive MOPs, there is 
now a growing need for designing MOEAs capable of dealing with expensive MOPs 
in that there are computational and financial resource constraints. Few multiobjective 
optimization algorithms exist for expensive MOPs. Most recently, Knowles [7] intro-
duces a hybrid algorithm with online landscape approximation, called ParEGO, for 
expensive MOPs where only 100 and 250 solution evaluations are permitted. 

1.2   Purpose of Research 

In many previous real-world applications of MOEAs, the time to perform a single 
solution evaluation is typically of the order of minutes or even hours resulting in a 
limited number of solution evaluations that can be performed. This is especially rele-
vant when implementation of the discovered solutions is time-sensitive. Additionally, 
many real-world problems involve complicated objective functions making a large 
number of solutions evaluations computationally-prohibitive [7]. Specifically, our 
motivation comes from simulation-based optimization research. Computer simulation 
of real-world systems tend to involve construction of complicated models that capture 
the complex, nonlinear interrelationships between independent and dependent vari-
ables and can report the value of several system performance objectives simultane-
ously. These models are used to evaluate candidate system design solutions in search 
of the best solution (or set of solutions) according to several performance objectives. 
A multiobjective optimization algorithm capable of rapidly finding a diverse set of 
Pareto optimal solutions would be greatly beneficial in such a situation. The purpose 
of this research is to propose a multiobjective optimization methodology that finds 
evenly-distributed Pareto optimal solutions in a computationally-efficient manner. 

The remainder of this paper is organized as follows. Section 2 describes the pro-
posed MOEA. This description includes the introduction of a new fitness assignment  
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and ranking strategy and population regulation operator. The proposed MOEA and a 
benchmark MOEA are used to solve a diverse suite of published test problems. Sec-
tion 3 and Section 4 present the experimental design and computational results, re-
spectively. Conclusions and future research directions are discussed in Section 5. 

2   Proposed Methodology – Fast Pareto Genetic Algorithm 
(FastPGA) 

The proposed framework named Fast Pareto genetic algorithm (FastPGA) is a popula-
tion-based evolutionary algorithm. A real-coded multiobjective GA is implemented to 
avoid the difficulties associated with binary representation and bit operations, particu-
larly when dealing with continuous search spaces with large dimension. 

The framework of the proposed algorithm incorporates a new fitness assignment 
and ranking strategy. An elitism operator is implemented to ensure the fast propaga-
tion of the Pareto optimal solution set. A population regulation operator is introduced 
to dynamically adapt the population size as needed up to a user-specified maximum 
population size, which is the size of the set of nondominated solutions in this study. 
The population regulation operator improves the proposed algorithm’s convergence 
behavior and reduces the required computational effort. Fig. 1 shows the pseudocode 
of the logic of FastPGA. 

Initialize user decision parameters (numvars, numobjs, maxpopsize, maxsoleval, 
pc, pm, …) 

t := 0 
create initial population { }1 2 3, , ,t t t

t =P x x x …  

evaluate(Pt) 
do while (stopping criterion is not met) 
{ 

t := t +1 
{ 

t
′P  := select(Pt-1)  // select pairs of solutions for reproduction 

Ot := crossover( t
′P ) 

Ot := mutate(Ot) 
evaluate(Ot) 
CPt := Pt-1 ∪ Ot // form composite population 
rank(CPt) 
regulate(CPt) 
Pt := generate(CPt) 

} 
}end do 

Fig. 1. Pseudocode of fast Pareto genetic algorithm 

The major steps of FastPGA are as follows: 

1. Initialize all decision parameters to user-specified values; 
2. Create an initial population of candidate solution vectors Pt randomly at the first 

generation; however, FastPGA can be easily modified to generate the initial 
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population heuristically, seeded with user-defined solution vectors, or using a 
combination of these approaches; 

3. If it is the first generation, go to Step 5; otherwise, increment the generation num-
ber and select pairs of solutions ′

tP  as parents from the previous population Pt-1 in 
the reproduction operation using binary tournament selection; 

4. Perform the crossover and mutation operations to generate new candidate solu-
tions (offspring) Ot ; 

5. Evaluate the candidate solution vectors for the m objective functions and record 
them; 

6. Combine generated candidate solutions Ot with the previous population Pt-1 to 
form a composite population CPt; 

7. Rank the composite population of solutions CPt based on the new ranking strategy 
using their fitness values; 

8. Regulate the population size according to the number of nondominated solutions 
and generate a new population Pt from the composite population CPt by discarding 
the inferior solutions; and 

9. Terminate the search if the stopping criterion is met; otherwise, return to Step 3. 

A detailed discussion of the primary features of FastPGA is provided in the sections 
that follow. 

2.1   FastPGA Initialization and Solution Evaluation 

After initializing the user-specified parameter settings (e.g., number of decision vari-
ables, number of objectives, maximum population size, maximum number of solution 
evaluations, etc.), the initial population is created by random sampling of each deci-
sion variable within its defined range of variation. The evaluation of new solutions in 
terms of the objective functions is accomplished by calculating the complicated 
mathematical, closed-form expressions specified by the published test problems dis-
cussed later. At each generation, the obtained solutions with their corresponding ob-
jective values are all recorded. If a solution advances to subsequent generations, its 
corresponding attributes are retrieved and copied to the new generations. In FastPGA, 
before ranking and fitness assignment is performed, the new solution set Ot generated 
by crossover and mutation operations are combined with the previous population Pt-1 
to form a composite population CPt, i.e., CPt = Pt-1 ∪ Ot, where ∪ denotes the union 
of the two sets. 

2.2   Solution Ranking and Fitness Assignment 

The new ranking strategy is based on the classification of candidate solutions of the 
composite population CPt into two different categories (ranks) according to solution 
dominance. All nondominated solutions are identified as the first rank, which implies 
that there is no solution that is better than these solutions with respect to all objectives 
simultaneously. All dominated solutions are identified as the second rank. These 
ranks are used to evaluate solution fitness for the purpose of solution reproduction. 

The fitness of the nondominated solutions in the first rank is calculated by compar-
ing each nondominated solution with one another and assigning a fitness value. These 
values are computed using the crowding distance approach suggested by Deb et al. [4], 
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which has been shown to help maintain diversity among the nondominated solutions 
in the Pareto optimal front. 

Each dominated solution in the second rank is compared to all other solutions and 
assigned a fitness value depending on the number of solutions it dominates. The idea 
here is similar to the strength concept employed in SPEA and SPEA2 [13, 14]; how-
ever, in our work, it has been generalized. More precisely, the fitness assignment 
takes into account both dominating and dominated solutions for any dominated solu-
tion xi. Here, each solution xi in the composite population CPt is assigned a strength 
value S(xi) indicating the number of solutions it dominates, where 

( ) { }|i j j t i jS j i= ∀ ∈ ∧ ∧ ≠x x x CP x x . (1)

The cardinality of a set is denoted as | · |, and the expression xi  xj means that so-
lution xi dominates solution xj. Then, the fitness value of each dominated solution is 
its net strength, which is calculated as 

( ) ( ) ( ) , , .
i j k i

i j k j k tF S S j i k= − ∀ ∈ ∧ ≠ ≠∑ ∑
x x x x

x x x x x CP  
(2)

In other words, a fitness value assigned to each dominated solution xi is equal to the 
summation of the strength values of all solutions it dominates minus the summation of 
the strength values of all solutions by which it is dominated. In contrast to SPEA and 
SPEA2, where the strength values of only solutions that xi is dominated by (second 
term in Eq. 2) is considered, FastPGA takes into account both the dominating and 
dominated solutions with respect to solution xi. This strategy provides more informa-
tion on Pareto dominance and niching relations among solutions in the composite 
population and reduces the chance that two solutions will have the same fitness value. 
Thus, no additional diversity preservation mechanism is used among the dominated 
solutions in the second rank requiring less computation (unlike SPEA2, which re-
quires higher computation for the density estimator). We note that if most solutions 
do not dominate one another, it is implied that they are in the first rank where the 
crowding distance operator is invoked to maintain the diversity among them. 

After the fitness values of all candidate solutions in CPt are calculated, the solu-
tions are compared, where one of three different scenarios occurs. In the first sce-
nario, two solutions with different ranks are selected. In this situation, the solution 
with the better rank is preferred. In the second scenario, two selected solutions have 
the same rank but different fitness values. In this case, the solution with the larger 
fitness value is preferred. Lastly, two solutions may have the same rank and the same 
fitness value, where one of them is randomly preferred. 

2.3   Elitism and Population Regulation 

An elitism operator with relatively high intensity is implemented to ensure propaga-
tion of the nondominated solutions to subsequent generations. This is accomplished 
by copying all solutions in the population in the previous generation Pt-1 to the com-
posite population CPt. The combination of Pt-1 with generated offspring Ot provides 
an opportunity to preserve the superior solutions in the next generation and discard 
the inferior solutions depending on the number of nondominated solutions obtained in 
the composite population. 



146 H. Eskandari, C.D. Geiger, and G.B. Lamont 

The number of nondominated solutions usually increases over generations result-
ing in low elitism intensity in early generations if the population size is quite large 
and kept fixed. Moreover, the fluctuations of the number of nondominated solutions 
over generations demand an adaptive population sizing strategy to place appropriate 
emphasis of elitism intensity on nondominated solutions. If elitism intensity is too 
high, premature convergence may occur and if elitism intensity is too low, conver-
gence may be too slow and computationally-expensive. Therefore, FastPGA employs 
a regulation operator to dynamically adjust the population size until it reaches a user-
specified maximum population size as calculated by 

{ }{ }is nondominatedmin | ,t t t i i t i popsizea b max⎡ ⎤= + × ∈ ∧⎢ ⎥P x x CP x , (3)

where |Pt| is the population size at generation t, at is a positive integer variable that 
can change over generations, bt is a positive real variable that might change over 
generations, x⎡ ⎤⎢ ⎥  is the smallest integer that is greater than or equal to the real number 

x, and maxpopsize is the user-specified maximum population size. In this study, we 
set at = 20, bt = 1 and maxpopsize = 100. Thus, we get 

{ }{ }is nondominatedmin 20 | , 100t i i t i= + ∈ ∧P x x CP x . (4)

In other words, the population size at generation t is 20 plus the number of nondomi-
nated solutions in the composite population if it is not larger than the user-specified 
maximum population size. Otherwise, it is kept (truncated) equal to the maximum 
population size. 

FastPGA generates a small number of offspring using crossover and mutation op-
erations. The number of offspring to generate is computed as 

{ }{ }is nondominatedmin | ,t t t i i t i solevalc d max⎡ ⎤= + × ∈ ∧⎢ ⎥O x x CP x , (5)

where |Ot| is the number of offspring created at generation t, ct is a positive integer 
variable that might change over generations, dt is a positive real variable that might 
change over generations, and maxsoleval is the user-specified maximum number of 
solution evaluations at each generation. In this study, we set ct = 20, dt = 0 and max-
soleval = 100. Thus, we get |Ot| = 20 meaning that the number of offspring created at 
each generation is small, but constant during the search process. This feature makes 
FastPGA capable of saving a significant number of solution evaluations early in the 
search and utilizes exploitation in a more efficient manner at later generations. This 
conservative offspring generation scheme makes FastPGA very appropriate for solv-
ing computationally-expensive MOPs. Creating a large number of offspring at early 
generations consumes a considerable number of solution evaluations limiting the total 
number of generations, which results in no extensive utilization of exploitation. Bear 
in mind that in expensive MOPs where only a small number of solution evaluations is 
allowed, more emphasis on exploitation and less emphasis on exploration could be 
extremely beneficial. During a single run, FastPGA requires, on average, fewer solu-
tion evaluations per generation allowing more generations to be used for search  
exploitation. The values for at, bt, ct and dt are obtained by performing several pilot  
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runs. As the intent of this research is to introduce a novel approach that conservatively 
generates offspring, any serious attempt to determine the best parameter values is left 
for future study. 

2.4   Search Stopping Criterion 

Different approaches have been used to stop the search process of EAs including 
those that consider the landscape of the response surface, the desired solution quality, 
the specific number of solution evaluations and the required computation time. De-
signed for dealing with expensive MOPs, FastPGA uses a new stopping criterion that 
considers the convergence speed towards the true Pareto optimal front. Here, when 
the number of nondominated solutions reaches the pre-specified maximum population 
size and, thereafter, no changes are made in the number of nondominated solutions 
within a certain number of solution evaluations1, the search stops. For better under-
standing of the suggested stopping criterion for expensive MOPs, a velocity measure 
is defined. 
 
Definition 1: The Pareto production ratio (PPR) is the ratio of the number of nondo-
minated solutions to the current population size at any given generation t and is calcu-
lated as 

t
t

t

PPR =
NP

P
, (6)

where Pt is the population at generation t, and |NPt| denotes the number of nondomi-
nated solutions belonging to population Pt. When PPRt reaches one (i.e., all solutions 
in the population are nondominated) and it does not make any changes over a pre-
specified number of solution evaluations implying no promising nondominated solu-
tions are found within this period, the search stops. Based upon our experiments on 
several real-variable test problems, PPRt consistently reaches one. However, if in a 
rare case PPRt does not reach one, the search could easily be stopped after a pre-
specified maximum number of solution evaluations. 

3   Experimental Study 

In this section, we evaluate the performance of FastPGA on a suite of published test 
problems having two objectives and no coupled constraints. In all test problems, the 
functions are to be minimized. The results of FastPGA are also benchmarked against 
one of the state-of-the-art MOEAs – the real-coded NSGA-II of Deb et al. [4]. It has 
been reported that NSGA-II outperforms most of its competitors including SPEA and 
PAES, and it competes closely with SPEA2 in terms of convergence to the true Pareto 
optimal front while maintaining solution diversity [e.g., 4, 5, 13]. However, SPEA2 
requires higher computational complexity of O(mN2logN) [14] compared to that of 
NSGA-II, O(mN2), raising the question of whether the computationally-expensive 
fitness assignment strategy and truncation operator in SPEA2 is of great worth. The m 
                                                           
1 The expression “solution evaluations” could be replaced by “generations” if the MOEA has identi-

cal population size over generations. 
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and N are the number of objectives and the population size, respectively. Some stud-
ies report that there is no statistically significant difference between the performance 
of SPEA2 and NSGA-II, although SPEA2 requires significantly higher computational 
time [e.g., 5]. 

3.1   Test Problems 

The suite of test problems consists of four well-known ZDT real-variable problems 
[15]. Note that the ZDT problems have two objectives and no coupled constraints. 
The test problems ZDT1 and ZDT3 have 30 decision variables each. The former has a 
convex Pareto optimal front and the latter has five discontinuous Pareto optimal 
fronts. The 10-decision variable test problem ZDT4 is a multi-frontal (multi-modal) 
problem having a large number of local Pareto optimal fronts and a single global 
Pareto optimal front. The test problem ZDT6 has 10 decision variables and a noncon-
vex Pareto optimal front. Moreover, the density of solutions across its Pareto optimal 
front is non-uniform and the density towards the Pareto optimal front gets thin. These 
test problems possess extremely challenging Pareto optimality characteristics includ-
ing nonconvex, discontinuous, non-uniformly spaced properties. Many researchers 
use these problems to evaluate their proposed algorithms [e.g., 4, 5]. 

3.2   Algorithm Parameter Settings 

For both FastPGA and NSGA-II, all of the parameter settings, except the maximum 
number of solution evaluations, are used according to the suggested values in the 
original study of Deb et al. [4]. They are summarized in Table 1. In order to make 
better comparisons, the maximum population size for FastPGA is set to the suggested 
population size used by Deb et al. [4]. The number of solution evaluations shown in 
Table 1 depends on the characteristics and complexity of the underlying problem. In 
this study, the number of solution evaluations is kept small. This is appropriate 
 

Table 1. Parameter settings for FastPGA and the real-coded NSGA-II 

Algorithm Parameter FastPGA and Real-Coded NSGA-II 

Test Problem ZDT1 ZDT3 ZDT4 ZDT6 

No. of Solution Evaluations 6,500 6,000 10,000 10,000 

Initial Population Size 100 

Maximum Population Size 100 

Crossover Probability 1 

Mutation Probability 1/n (where n is number of variables) 

Crossover Type Simulated Binary Crossover (ηc=15) 

Mutation Type Polynomial Mutation (ηm=20) 

Selection Scheme Binary Tournament 
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since an aim of this research is to evaluate the performance of each algorithm for 
expensive, real-world MOPs that only allow a small number of solution evaluations. 

3.3   Performance Metrics 

Generally, when solving MOPs, there are three primary goals: 1) fast convergence to 
the true Pareto frontier solution set in the objective space, 2) close proximity to the 
true Pareto frontier solution set, and 3) diversity and even dispersion of the obtained 
nondominated solutions along the true Pareto optimal front. Many performance met-
rics have been introduced within the last decade [e.g., 2, 3, 10-12]. Most previous 
studies emphasize only the closeness and diversity measures. Fast convergence to 
optimal solutions for computationally-expensive MOPs is very important and fast 
convergence towards Pareto optimal solutions is a highly desired feature of any prom-
ising algorithm. This is especially the case in real-world problems where finding 
optimal or even near-optimal solutions is often computationally-prohibitive. 

In this study, four performance metrics are used to measure the convergence be-
havior and diversity of FastPGA and NSGA-II. Two metrics are newly introduced in 
this study. They are the diversity metric and the delineation metric. Two of the four 
metrics (the delineation and the hypervolume ratio metrics) are employed for the 
simultaneous evaluation of both the proximity of the obtained solutions to the true 
Pareto front and the diversity of the obtained solutions. For each test problem, each 
algorithm is run with 30 different seed values and the mean, standard deviation and 
95% confidence interval are computed. The lower and upper bounds of the 95% con-
fidence interval are calculated by 

/ 2, 1x t sα η η−± , where x  is the sample mean, s is the 

sample standard deviation, α is the significance level and is equal to 0.05, and η is the 
sample size and is equal to 30. Given the fact that in expensive MOPs, the time re-
quired for solution evaluations is a significant portion of the actual CPU time of any 
approach, no attempt is made to measure the computation time needed to run each 
algorithm. However, the computational complexity of both FastPGA and NSGA-II is 
O(mN2) meaning that there should be no appreciable difference between their compu-
tation times. 

Distance from the Pareto Optimal Front. Distance metric is originally introduced by 
Van Veldhuizen and Lamont [10], which evaluates the convergence to a known 
Pareto optimal frontier set. To calculate the distance metric, a set of H evenly-spaced 
solutions from the true Pareto optimal set in the objective space must be known. The 
set of H solutions should be large enough such that it well reflects the true Pareto 
optimal front. In this study, a set of 500 Pareto optimal solutions is used for each of 
the four test problems. Deb [4] presents a variation of distance metric ϒ in which the 
minimum Euclidean distance from each obtained nondominated solution to the H 
solutions is calculated and the average of these distances is used as the distance 
metric. It is important to note that all solutions obtained by an algorithm including 
those that are dominated are considered for the calculation of this metric. The goal of 
this metric is to identify how close a set of obtained solutions are to the true Pareto 
optimal set. The smaller the value of this metric, the closer the solutions are to the 
true Pareto optimal frontier set. 
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Diversity of Nondominated Solutions. We define the diversity metric Δ to evaluate 
both the spread and the uniform spacing of dispersion of the obtained nondominated 
solutions in the objective space. Here, the goal is to obtain a set of nondominated 
solutions that are both widely- and uniformly-distributed along the Pareto optimal 
front at the end of the search. To compute the diversity metric Δ, the Euclidean 
distance di between consecutive nondominated solutions is calculated in the objective 
space, where i = 1, ..., |NPT|-1 and |NPT| is the number of nondominated solutions at 
the end of the search. Then, the standard deviation of these distances σd is calculated 
representing the degree of non-uniformity of the nondominated solutions. The 
minimum Euclidean distance of the two extreme Pareto solutions of the true Pareto 
optimal set from the nondominated solutions, denoted by dp and dq, is calculated. Note 
that the distances dp and dq are the distances from the closest nondominated solutions, 
not necessarily the endpoints of nondominated solutions, to the two extreme Pareto 
solutions. The diversity of the set of nondominated solutions is 

( ) ( )
1

2

1

1

1

T

T p q i
iT

d d d d
−

=
Δ = + + −

− ∑
NP

NP
NP

. (7)

Delineation of Pareto Optimal Front. The delineation metric Φ is introduced to 
evaluate the extent of both convergence and diversity to a known Pareto optimal 
front. The goal of this study is to identify a set of solutions that well represent the 
Pareto optimal set. The idea behind this metric is how well each solution on the 
Pareto optimal front is represented by the obtained nondominated solutions. To 
calculate the delineation metric Φ, a large set of H evenly-spaced solutions from the 
Pareto optimal set that well reflects the true Pareto optimal front must be known. The 
same set of H solutions used in calculating the distance metric ϒ is used here. The 
minimum Euclidean distance from each Pareto optimal solution to the obtained 
solutions li is calculated and the average of these distances is used as the delineation 
metric Φ, i.e., 

( )
1

1 H

T i
i

l
H =

Φ = ∑P . (8)

It is important to note that all solutions obtained by an algorithm including those 
that are dominated are considered for the calculation of this metric. 

Hypervolume Ratio. The hypervolume metric HV, originally suggested by Zitzler and 
Thiele [13], calculates the volume of the objective space dominated by the 
nondominated solutions having the reference point R. The goal of this measure is to 
identify the proportion of the volume enclosed by reference point and Pareto optimal 
front covered by the nondominated solutions obtained at the end of the search. To be 
consistent with other performance metrics used in this study (i.e., the smaller value of 
the metric, the better), a modification of hypervolume metric is employed here. We 
use the hypervolume ratio (HVR). Here, the proportion of the volume enclosed by the 
reference point R and true Pareto optimal front that is not covered by the 
nondominated solutions is of interest, and is given by 
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( ) ( )
( )

1 T
T

HV
HVR

HV
= −

NP
NP

PF
. (9) 

PF is the set of solutions on the true Pareto optimal front. HVR returns a value in the 
range [0, 1].  

4   Computational Results 

Table 2 and Table 3 show the output statistics including mean, standard deviation and 
95% confidence interval (CI) of the four performance metrics obtained from generat-
ing 30 random runs for each test problem using FastPGA and NSGA-II. The ϒ and ∆ 
metrics are shown in Table 2, and Φ and HVR are given in Table 3. Recall that lower 
values are preferred for all four metrics. 

Table 2. Mean, standard deviation and 95% confidence interval of distance and diversity met-
rics with FastPGA and NSGA-II (over 30 random runs) 

Distance ϒ Diversity ∆ Test 
Problem Algorithm Avg. Std. Dev. 95% CI Avg. Std. Dev. 95% CI 

FastPGA 0.0210 0.0110 [0.0169, 0.0251] 0.0769 0.0296 [0.0659, 0.0879] 
ZDT1 

NSGA-II 0.0659 0.0128 [0.0612, 0.0707] 0.1324 0.0220 [0.1242, 0.1406] 

FastPGA 0.0200 0.0092 [0.0166, 0.0235] 0.2017 0.1036 [0.1631, 0.2403] 
ZDT3 

NSGA-II 0.0297 0.0091 [0.0263, 0.0331] 0.1968 0.0233 [0.1882, 0.2055] 

FastPGA 0.0332 0.0262 [0.0234, 0.0430] 0.3812 0.1804 [0.3140, 0.4485] 
ZDT4 

NSGA-II 0.7677 0.3414 [0.6404, 0.8950] 1.5111 0.5797 [1.2950, 1.7273] 

FastPGA 0.0445 0.0082 [0.0414, 0.0475] 0.1393 0.0256 [0.1297, 0.1488] 
ZDT6 

NSGA-II 0.2647 0.0380 [0.2506, 0.2789] 0.7239 0.1063 [0.6843, 0.7636] 

Table 3. Mean, standard deviation and 95% confidence interval of delineation and hyper-
volume ratio metrics with FastPGA and NSGA-II (over 30 random runs) 

Delineation Φ Hypervolume Ratio HVR Test 
Problem Algorithm Avg. Std. Dev. 95% CI Avg. Std. Dev. 95% CI 

FastPGA 0.0208 0.0097 [0.0172, 0.0244] 0.0443 0.0198 [0.0369, 0.0517] 
ZDT1 

NSGA-II 0.0599 0.0111 [0.0557, 0.0640] 0.1259 0.0226 [0.1175, 0.1343] 

FastPGA 0.0269 0.0255 [0.0174, 0.0364] 0.0850 0.0345 [0.0722, 0.0979] 
ZDT3 

NSGA-II 0.0286 0.0084 [0.0255, 0.0318] 0.1086 0.0252 [0.0992, 0.1180] 

FastPGA 0.0701 0.0457 [0.0531, 0.0872] 0.0910 0.0479 [0.0732, 0.1089] 
ZDT4 

NSGA-II 0.6557 0.3128 [0.5391, 0.7724] 0.8173 0.2123 [0.7381, 0.8964] 

FastPGA 0.0415 0.0079 [0.0385, 0.0444] 0.1083 0.0190 [0.1012, 0.1154] 
ZDT6 

NSGA-II 0.2538 0.0396 [0.2391, 0.2686] 0.5731 0.0690 [0.5473, 0.5988] 
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The results shown in Table 2 indicate that FastPGA significantly outperforms 
NSGA-II with respect to the convergence to the Pareto front. There is no overlap of 
the confidence intervals of the distance metric ϒ for FastPGA and NSGA-II in all 
problems. Compared to FastPGA, NSGA-II exhibits poor convergence in the ZDT4 
and ZDT6 test problems. Both MOEAs have acceptable standard deviations for ϒ on 
most problems. An exception occurs on ZDT4, where NSGA-II has a very high stan-
dard deviation for ϒ. 
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Fig. 2. The populations with FastPGA and NSGA-II on ZDT1 (top left), ZDT3 (top right), 
ZDT4 (bottom left) and ZDT4 (bottom right) 

To illustrate the convergence behavior of FastPGA and NSGA-II, the sample ob-
tained populations at the end of the search together with the Pareto optimal front for 
ZDT1, ZDT3, ZDT4 and ZDT6 are shown in Fig. 2. This figure shows the superiority 
of FastPGA over NSGA-II in rapidly converging to the true Pareto optimal solution set 
while preserving a diverse set of nondominated solutions. Within the given number of 
solution evaluations, FastPGA obtains the population of nondominated solutions while a 
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significant proportion of solutions in NSGA-II are dominated solutions, indicating that 
FastPGA converges much faster than NSGA-II. It is interesting to note that all obtained 
nondominated solutions yielded by NSGA-II at the end of the search are dominated by 
the nondominated solutions of FastPGA in most problems. The favorable performance 
of FastPGA is most likely due to high elitism intensity and regulation operator employ-
ment. These settings help to improve search space exploitation and to save a consider-
able number of solution evaluations for further investigation at later generations. 

Table 2 shows that FastPGA has significantly better performance than NSGA-II in 
terms of the diversity metric ∆ for most problems. There is no overlap of the confi-
dence intervals of ∆ for FastPGA and NSGA-II in ZDT1, ZDT4 and ZDT6 problems. 
NSGA-II performs only slightly better than FastPGA for ZDT3 with respect to this 
metric. It is surprising to note that FastPGA has a better ∆ than NSGA-II in many 
replications for ZDT3, but its performance is actually poor in few replications. The 
reason for this happening is most likely due to the employment of high elitism inten-
sity resulting in biasedness towards some particular regions of the Pareto front in a 
few of the random runs. 

Table 3 indicates that FastPGA has better performance than NSGA-II in terms of 
the delineation metric Φ for most problems. There is no overlap of the confidence 
intervals of Φ for FastPGA and NSGA-II in ZDT1, ZDT4 and ZDT6 problems. Fast-
PGA has a slightly better average performance than NSGA-II on ZDT3, but there is a 
considerable overlap of their confidence intervals. The standard deviations of Φ 
across all problems for both MOEAs are small, except for FastPGA on ZDT3 (due to 
the poor diversity in a few replications) and for NSGA-II on ZDT4. 

For the hypervolume ratio HVR, the reference point R is set at (1, 1.1) for all test 
problems, except for KUR where it is set at (-14, 1). Here, R is selected as a very 
close point to the Nadir objective vector for each test problem so that a more precise 
comparative analysis can be performed. The results shown in Table 3 indicate that 
FastPGA outperforms NSGA-II with respect HVR. There is no overlap of the confi-
dence intervals of HVR for FastPGA and NSGA-II in all problems. It is interesting to 
note that, although there is considerable overlap of the confidence intervals of the 
delineation metric of FastPGA and NSGA-II on ZDT3, FastPGA outperforms NSGA-
II with respect to HVR. Regarding the obtained results, it is implied that, although the 
nondominated solutions generated by FastPGA in few replications do not represent 
the Pareto fronts of ZDT3 well, they dominate a considerable portion of the hyper-
volumes enclosed by the Pareto fronts and reference point R. 

5   Conclusions and Future Work 

This research presents a MOEA, called FastPGA, for dealing with MOPs where each 
solution evaluation is computationally- and/or financially-expensive. This approach 
incorporates a Pareto-based multiobjective optimization method into a genetic algo-
rithm. Population regulation operator is introduced to enhance the algorithm’s per-
formance in finding Pareto optimal solutions while minimizing computational effort. 
Computational results for a number of well-known test problems with different Pareto 
optimality characteristics indicate that FastPGA is capable of efficiently and effec-
tively direct the search toward Pareto optimal front. Analysis shows that, within a 
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relatively small number of solution evaluations, FastPGA outperforms NSGA-II in 
most problems in terms of rapidly converging to the true Pareto optimal solution set 
while preserving a diverse, evenly-distributed set of nondominated solutions. Adap-
tive population sizing is most likely one of the main factors resulting in the superior-
ity of FastPGA over NSGA-II in this study. 

Future research includes additional testing and benchmarking FastPGA on several 
other MOPs higher in dimension of objective space. The attempt to find the best Fast-
PGA parameter settings will also be pursued in the next step of this study. Finally, 
more precise statistical analyses of the results will be performed. 

References 

1. Coello, C.A.C., and G.B. Lamont. (2004). Applications of Multi-Objective Evolutionary 
Algorithms. Singapore: World Scientific.  

2. Coello, C.A.C., D.A. Van Veldhuizen and G.B. Lamont. (2002). Evolutionary Algorithms 
for Solving Multi-Objective Problems. 1st Ed. New York: Kluwer Academic Publishers.  

3. Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. 1st Ed. 
Chichester, UK: John Wiley & Sons.  

4. Deb, K., A. Pratap, S. Agarval and T.A. Meyarivan. (2002). “Fast and Elitist Multiobjec-
tive Genetic Algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computing 6, 
182−197. 

5. Deb, K., M. Mohan and S. Mishra. (2005). “Evaluating the epsilon-Domination Based 
Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal So-
lutions.” Evolutionary Computation 13(4), 501−525. 

6. Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimisation and Machine Learn-
ing. Addison Wesley. 

7. Knowles, J., (2006).  “ParEGO: a hybrid algorithm with on-line landscape approximation 
for expensive multiobjective optimization problems,” IEEE Transactions on Evolutionary 
Computation 10(1), 50-66.  

8. Knowles, J. and D. Corne. (1999). “The Pareto Archived Evolution Strategy: A New Base-
line Algorithm for Multiobjective Optimization.” Proceedings of the 1999 Congress on 
Evolutionary Computation (CEC'1999), Washington, D.C., July 1999, IEEE Service Cen-
ter, pp. 98−105. 

9. Tan, K. C., T.H. Lee, and E.F. Khor. (2001). “Evolutionary algorithm with dynamic popu-
lation size and local exploration for multi-objective optimization,” IEEE Transactions on 
Evolutionary Computation 5(6), 565-588. 

10. Van Veldhuizen, D.A., and G.B. Lamont. (2000). “Multiobjective Evolutionary Algo-
rithms: Analyzing the State-of-the-Art,”   Evolutionary Computation, 7(3), 1-26.  

11. Van Veldhuizen, D.A., and G.B. Lamont. (2000). “On Measuring Multiobjective Evolu-
tionary Algorithm Performance,” 2000 IEEE Congress on Evolutionary Computation, 1, 
204-211. 

12. Yen, G.G. and H. Lu (2003). “Dynamic multiobjective evolutionary algorithm: adaptive 
cell-based rank and density estimation,” IEEE Transactions on Evolutionary Computa-
tions 7(3), 253-274. 

13. Zitzler, E. and L. Thiele. (1999). “Multiobjective Evolutionary Algorithms: A Compara-
tive Study and Strength Pareto Approach.” IEEE Transactions on Evolutionary Computa-
tion 3(4), 257−271. 



 FastPGA: A Dynamic Population Sizing Approach 155 

14. Zitzler, E., M. Laumanns and L. Thiele. (2001). “SPEA2: Improving the Strength Pareto 
Evolutionary Algorithm.” Technical Report 103, Computer Engineering and Networks 
Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, 
CH-8092 Zurich, Switzerland. 

15. Zitzler, E.,  K. Deb and L. Thiele. (2000). “Comparison of Multiobjective Evolutionary 
Algorithms: Empirical Results.” Evolutionary Computation 8(2), 173−195. 

16. Zydallis, J.B., D.A. Van Veldhuizen, and G.B. Lamont. (2001). “A Statistical Comparison 
of Multiobjective Evolutionary Algorithms Including the MOMGA-II,” First International 
Conference on Evolutionary Multi-Criterion Optimization, 226-240. 



Constraint-Handling Method for

Multi-objective Function Optimization:
Pareto Descent Repair Operator

Ken Harada, Jun Sakuma, Isao Ono, and Shigenobu Kobayashi

Department of Computational Intelligence and Systems Science,
Tokyo Institute of Technology,

4259 Nagatsuta-cho Midori-ku Yokohama-shi Kanagawa-ken 226-8502, Japan
{ken,jun}@fe.dis.titech.ac.jp,{isao,kobayasi}@dis.titech.ac.jp

http://www.fe.dis.titech.ac.jp/

Abstract. Among the multi-objective optimization methods proposed
so far, Genetic Algorithms (GA) have been shown to be more effective
in recent decades. Most of such methods were developed to solve pri-
marily unconstrained problems. However, many real-world problems are
constrained, which necessitates appropriate handling of constraints. De-
spite much effort devoted to the studies of constraint-handling methods,
it has been reported that each of them has certain limitations. Hence,
further studies for designing more effective constraint-handling methods
are needed.

For this reason, we investigated the guidelines for a method to effec-
tively handle constraints. Based on these guidelines, we designed a new
constraint-handling method, Pareto Descent Repair operator (PDR), in
which ideas derived from multi-objective local search and gradient pro-
jection method are incorporated. An experiment comparing GA that use
PDR and some of the existing constraint-handling methods confirmed
the effectiveness of PDR.

1 Introduction

Multi-objective optimization (MOO) has many real-world applications, e.g. port-
folio optimization, for which multiple conflicting objective functions are to be
simultaneously optimized. MOO whose variables are real-valued is called multi-
objective function optimization, which is the subject of this paper. Genetic Al-
gorithms (GA) are known to be relatively efficient and effective MOO methods
[1]. GA applies crossover and selection to a set of solutions and converge them
to entire Pareto-optimal solutions. Selection for MOO consists of ranking, which
brings solutions closer to Pareto-optimal solutions, and sharing, which enhances
the diversity of solutions.

Most MOO methods, including GA, were designed for solving primarily un-
constrained problems. However, real-world problems often have constraints, and
the handling of them can substantially influence the performance of the opti-
mization methods. When GA is applied to constrained problems, two major
difficulties arise.
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One of them is that some GA require feasible solutions to start with. The
most naive way of obtaining feasible solutions is to randomly generate solutions
until a prespecified number of them are found. However, this approach fails
when the probability of obtaining a feasible solution in such a way is very low.
Therefore, feasible solutions must be explicitly searched for, which is one role
that constraint-handling methods play.

The other difficulty is that, on problems whose Pareto-optimal solutions lie
on feasible region boundaries (boundaries hereafter), GA may not be able to
obtain solutions close to the Pareto-optimal solutions. The most commonly used
constraint-handling method in GA is death penalty (DP), which simply discards
infeasible solutions. The solutions that GA generates can be mostly infeasible on
problems whose Pareto-optimal solutions lie on boundaries. Extreme examples
of such problems are ZDT1 and ZDT2 [1] whose Pareto-optimal solutions form
line segments at which 29 constraint boundaries intersect perpendicularly. When
the solutions that GA maintains come near the Pareto-optimal solutions, most
of the solutions that GA generates are infeasible and discarded by DP, which
implies that GA cannot obtain solutions close to the Pareto-optimal solutions.
Therefore, effective constraint-handling methods which facilitate searching for
Pareto-optimal solutions on boundaries are necessary.

One class of constraint-handling methods modify solution representation
and/or crossover so that infeasible solutions can never be generated [2]. However,
these methods are not applicable to general problems. Another class of methods
attempt to search for feasible solutions from infeasible solutions by reducing con-
straint violations. The existing methods of this kind are known to have certain
limitations as described in Sect. 2.2.

In order to design an effective constraint-handling method, we first investigate
the guidelines for a method to effectively handle constraints. We then explain
the concepts and calculations necessary to meet these guidelines and propose
them as Pareto Descent Repair operator (PDR).

Section 2 formulates constrained multi-objective function optimization, ex-
plains Pareto-optimality, and reviews existing constraint-handling methods. Sec-
tion 3 presents the guidelines for effective constraint handling and explains the
details of PDR. To demonstrate the effectiveness of PDR, Sect. 4 shows the
results of experiments comparing PDR and other constraint-handling methods
when they are used in GA. Lastly, Sect. 5 summarizes this paper.

2 Constraint Handling in Multi-objective Function
Optimization

2.1 Constrained Multi-objective Function Optimization

Formulation. Constrained multi-objective function optimization problem can
generally be formulated as

Minimize f(x) subject to x ∈ S , (1)
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where x ∈ IRN , and f = (f1, f2, . . . , fM )T is a vector of M objective functions.
Feasible region S is the region that satisfies inequality constraints g(x) ≤ 0,
where g = (g1, g2, . . . , gP )T is a vector of P constraint functions. Solutions that
satisfy all constraints are said to be feasible, and those that do not, infeasible.
Objective functions are defined for arbitrary feasible solutions, and constraint
functions, for arbitrary solutions. Constraint functions are assumed to be con-
tinuously differentiable in this paper, since there are a considerable number of
problems for which analytical or approximate gradients of constraint functions
are available and continuous.

If gj(x) = 0 holds for solution x, x lies on the boundary of the corresponding
constraint, and the constraint is said to be active at x. If a direction d ∈ IRN

satisfies d · ∇gj(x) ≤ 0, d is said to be feasible w.r.t. the active constraint. The
constraint violation of constraint gj(x) ≤ 0 at x can be defined as g+

j (x) =
max(gj(x), 0). By reducing the positive components of g+ = (g+

1 , g+
2 , . . . , g+

P )T ,
feasible solutions can be searched for.

Pareto-Optimality and the Objective of MOO methods. If, for x1, x2 ∈ S,

∀i ∈ {1, 2, . . . , M}, fi(x1) ≤ fi(x2) ∧ ∃i ∈ {1, 2, . . . , M}, fi(x1) < fi(x2)

holds, x1 is said to be superior to x2, which is denoted by x1 � x2. If a solution
x in a set of solutions is not inferior to any other solution in the set, x is said to
be non-inferior within the set. If x′ ∈ S such that x′ � x does not exist, x is
said to be Pareto-optimal. If a solution x′ such that x′ � x does not exist in the
feasible ε-vicinity of x, x is said to be locally Pareto-optimal. There are often
multiple Pareto-optimal and locally Pareto-optimal solutions.

The objective of MOO methods is to find a set of solutions which are close
to Pareto-optimal solutions (proximity) and which evenly cover entire Pareto-
optimal solutions (diversity) [1,3].

2.2 Existing Constraint-Handling Methods

This section reviews prominent constraint-handling methods which search fea-
sible solutions by reducing constraint violations, and explains their drawbacks
regarding the abilities to find feasible solutions and to search Pareto-optimal
solutions on boundaries.

Penalty Methods. A vector of penalty functions P (x) = (P1(x), P2(x), . . . ,
PM (x))T , each of whose components represents the degree of overall constraint
violation at a solution, is defined, and the unconstrained optimization problem

Minimize f(x) + P (x)

is solved. It has been pointed out that it is difficult to design appropriate penalty
functions [2]. In addition, penalty methods cannot be used when there are in-
feasible solutions for which objective functions are undefined.
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Objectivization of Constraint Violations. Constraint violations are re-
garded as additional objective functions, and the unconstrained problem

Minimize f̃(x), where f̃ = (f1, f2, . . . , fM , g+
1 , g+

2 , . . . , g+
P )T , (2)

is solved [2]. Many methods that use GA for the optimization of (2) have been
proposed [4,2]. We call such methods OCV(e) since constraint violations and
objective functions are treated equally. It has also been proposed to redefine
superiority relationship in OCV so that the regular superiority relationship is
used for feasible solutions, the multi-objective superiority relationship w.r.t con-
straint violations is used for infeasible solutions, and feasible solutions are always
superior to infeasible solutions [5,6]. Such variants of OCV are called OCV(ne)
in this paper.

Regardless of whether or not constraint violations and objective functions are
treated equally, OCV may not be able to find feasible solutions. Consider the 2-
variable-22-constraint problem shown in Fig. 1. Assume that the feasible region is
sufficiently small, and, when solutions are randomly generated, at least one solu-
tion is inside each of the 22 dark-shaded areas which violate two constraints. In
this situation, at least one non-inferior solution w.r.t. constraint violations exists
in each of the dark-shaded areas, and there are at least 22 of them in total. On
a similar problem with N variables, the number of such solutions is at least 2N .
When N is big, almost all of the randomly-generated solutions are non-inferior,
for which ranking does not function. Sharing, in the meantime, attempts to in-
crease the diversity of solutions and, as a result, disperses the solutions. Hence,
OCV may not find feasible solutions, which will be demonstrated in Sect. 4.

The entire region
that solutions
can represent

Non-inferior
w.r.t. constraint
violations

Fig. 1. A problem on which OCV fails when
the dimension of the variable space becomes
big. Dashed lines denote constraint bound-
aries. Infeasible regions are shaded, and, the
more constraints they violate, the darker
they are shaded.

Infeasible
solution

Feasible
sollution
closest to
feasible
solultion

g2

O g1

Fig. 2. Feasible solutions closest to
infeasible solutions in the constraint
function space

Another drawback of OCV(e) is that, on problems whose Pareto-optimal
solutions lie on boundaries, infeasible solutions remain in the set of solutions
throughout the entire search [2]. Furthermore, in some cases, not even one fea-
sible solution may be found, as demonstrated in Sect. 4. In addition, OCV(e)
itself is infeasible when there are some infeasible solutions for which objective
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functions are undefined. Although OCV(ne) does not have these drawbacks, it
can practically reduce to DP: when most of the offspring solutions that GA gen-
erates are infeasible, they are simply discarded since their parent solutions are
feasible and superior to them. Therefore, OCV(ne) cannot facilitate searching
for Pareto-optimal solutions on boundaries, either.

Repair Operators. Repair operators for function optimization search for fea-
sible solutions by reducing constraint violations, without considering objective
functions. Such repair operators have a great potential since they are applicable
to any function optimization problems. However, there have been a very small
number of such studies [2]. Although GENOCOP III [7] is proposed as a repair
operator, it cannot be used to search for feasible solutions since it assumes that
some feasible solutions are available.

3 Pareto Descent Repair Operator

3.1 Guidelines for Effective Constraint Handling

This section gives the guidelines for designing an effective constraint-handling
method that circumvents the problems pointed out in Sect. 2.2.

Guideline 1: Take the Repair Operator Approach. It is difficult to define appro-
priate penalty functions for penalty methods, and OCV may find no feasible
solutions, as pointed out in the previous section. In addition, some of these
methods themselves are infeasible if objective functions are undefined for some
infeasible solutions. These imply that the approach of repair operators is more
promising.

Guideline 2: Monotonically Decrease the Number of Violated Constraints and
Constraint Violations. A feasible solution can be searched for by reducing con-
straint violations, as mentioned earlier. Since there are multiple constraint vi-
olations, it can be regarded as an MOO problem. Note that, since constraint
functions are assumed to be continuous, there is a region, surrounding each fea-
sible region, in which constraint functions can be regarded as unimodal. In fact,
when constraint functions are linear or quadratic, constraint functions are uni-
modal in the entire infeasible region. Note also that infeasible solutions generated
during GA’s search are often near feasible regions, and constraint functions can
be regarded as unimodal around the infeasible solutions. Being able to repair
infeasible solutions in such regions is important in terms of both improving the
probability of obtaining initial feasible solutions and facilitating GA’s search on
problems whose Pareto-optimal solutions lie on boundaries. In order to repair
infeasible solutions in such regions, it is appropriate to monotonically decrease
both the number of violated constraints and constraint violations.

Guideline 3: Search for the Feasible Solution Closest in the Constraint Function
Space. Since constraint violations represent the degrees of violation of constraints,
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it is reasonable to search for the feasible solution at which violated constraint func-
tions are as close to zero as possible, that is, the feasible solution closest to the in-
feasible solution in the constraint function space. This repairing approach in the
case of two constraints is shown schematically in Fig. 2.

3.2 Strategies for Meeting the Guidelines

Guideline 1 implies the use of repair operators for constraint handling. This
section explains what are necessary for meeting Guidelines 2 and 3.

Decrease Constraint Violations using Multi-objective Local Search. To monoton-
ically decrease constraint violations, a multi-objective local search can be used
with violated constraint functions regarded as objective functions. In this paper,
Pareto Descent Method (PDM) [8,9] is used, which, as mentioned in the ap-
pendix, calculates appropriate Pareto descent directions and descent directions
with relatively small computational cost and efficiently decreases all objective
functions simultaneously. PDM consists of search direction calculation and linear
search, and a repair operator based on it has a similar structure.

Search for Feasible Solutions on Boundaries. When no violated constraints have
been satisfied yet, there is no active unviolated constraints (active constraints
hereafter), and the search direction should be a Pareto descent direction of vi-
olated constraint functions so that they are decreased efficiently. When there
are active constraints, violated constraint functions have to be reduced on the
boundaries of the active constraints, since the feasible solutions closest to infea-
sible solutions in the constraint function space are on the boundaries of initially
violated constraints. For this purpose, we can draw on the ideas of gradient
projection method [10]. In the constraint-handling context, the search direction
must be in the null-space of the gradients of active constraint functions. In order
to decrease constraint violations in the null-space, the search direction should be
a Pareto descent direction of the violated constraint functions in the null-space
if such a direction exists, and a descent direction in the null-space otherwise.
Linear search must be conducted while moving solutions in the search direction
back onto the boundaries of active constraints.

Even when there are no descent directions in the null-space, the number of vi-
olated constraints and constraint violations may be further reduced by regarding
some of the active constraints as inactive (inactivation). Consider the 2-variable-
3-constraint problem shown in Fig. 3. Since there are two active constraints at
x1, no descent directions of c3 exist in the null-space. When c1 is considered
inactive, there are descent directions of c3 in the null-space that are feasible
w.r.t. c1. Hence, feasible solution x2 can be obtained by inactivating c1. Note
that, when some active constraints are inactivated, not all violated constraint
functions can be zero at the resulting feasible solution.

The details of these direction calculations and linear search are described in
the following sections.
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c2

x2

x1c1

c3

Fig. 3. Inactivation. At infeasible solution x1, there are no descent directions of the
violated constraint functions in the null-space of the gradients of the active constraint
functions. Inactivation of c1 allows for obtaining feasible solution x2.

3.3 Search Direction Calculation

When No Active Constraints Exist. Pareto descent directions of violated
constraint functions can be obtained using PDM, if they exist. If they do not,
PDM detects it [8,9]. In this case, descent directions do not exist either, which
implies that constraint violations cannot be locally decreased any further.

When Active Constraints Exist. Denote the active constraint functions by
ĝu

j (j = 1, 2, . . . , P̂ u) and those of violated constraints by gv
j (j = 1, 2, . . . , P v).

In order for a search direction d ∈ IRN to be a descent direction of the violated
constraint functions in the null-space of the gradients of the active constraint
functions, d has to satisfy

ĜuT d = 0 , where Ĝu = [∇ĝu
1 , . . . , ∇ĝu

P̂u ] and (3)

GvT d ≤ 0 , where Gv = [∇gv
1 , . . . , ∇gv

Pv ] . (4)

The following sections detail the calculations of Pareto descent directions and
descent directions in the null-space.

Pareto Descent Directions in the Null-space. The condition for a descent direc-
tion d in the null-space to be a Pareto descent direction is that there exists a
convex combination weight α = (α1, α2, . . . , αPv)T ∈ IRPv

+ , where IR+ is the set
of non-negative real numbers, such that

d = −Gvα . (5)

Substituting this into (3) gives

Gα = 0 , where G = −ĜuT Gv . (6)

Denote the rank of G by r(G). When r(G) = P v, the sole solution α = 0 of
(6) represents d = 0, which implies that no Pareto descent directions exist.
When r(G) = 0, the gradients of violated constraint functions are already in the
null-space, and the search direction should simply be a Pareto descent direction
of the violated constraint functions. When 0 < r(G) < P v, (6) implies that
α exists in a subspace of dimension P v − r(G). Denote the basis vectors of
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the subspace by u1, u2, . . . , uPv−r(G) ∈ IRPv
and the coordinates of α in the

subspace by β ∈ IRPv−r(G). Now α can be expressed as α = Uβ, where U =[
u1, u2, . . . , uPv−r(G)

]
. Substituting this into (5) and then substituting the result

into (4) gives
−GvT GvUβ ≤ 0 . (7)

The constraint Uβ ≥ 0 that each component of α is non-negative and (7)
are homogeneous linear inequalities of β. This is of the same form as that for
calculating Pareto descent directions in PDM. PDM calculates α that maximizes
αi for each i = 1, 2, . . . , M to obtain Pareto descent directions. Similarly, β that
maximizes αi for each i = 1, 2, . . . , M can be calculated, which give Pareto
descent directions in the null-space.1

Descent Directions in the Null-space. When r(ĜuT ) = N , the sole solution d = 0
of (3) implies that no descent directions exist. When r(ĜuT ) < N , (3) implies
that d exists in a subspace of dimension N − r(ĜuT ). Denote the basis vectors
of the subspace by e1, e2, . . . , eN−r(ĜuT ) ∈ IRN and the coordinates of d in

the subspace by γ ∈ IRN−r(ĜuT ). Now d can be expressed as d = Eγ, where
E =

[
e1, e2 . . . , eN−r(ĜuT )

]
. Substituting this into (4) gives

GvT Eγ ≤ 0 . (8)

This is a homogeneous linear inequality of γ and is the same form as that for
calculating descent directions in PDM. Therefore, descent directions in the null-
space can be obtained as descent directions are calculated in PDM.

Inactivation. Denote the set of active constraints by Ĉu, its subset by Ću, and
the constraint functions of constraints in Ću by ǵu

j (j = 1, 2, . . . , Ṕ u). In order
for Guideline 2 to be satisfied when Ću is inactivated, there must exist descent
directions in the null-space of the gradients of the constraint functions of the
constraints in Ĉu\Ću that are feasible w.r.t. Ću, i.e.,

ǴuT d ≤ 0 , where Ǵu = [∇ǵu
1 , . . . , ∇ǵu

Ṕu ] . (9)

Equation (9) can be incorporated into the above-mentioned calculations of de-
scent directions and Pareto descent directions, and their existence can be tested
by PDM. Hence, the possibility of inactivation of Ću can be determined using
PDM.2

When multiple subsets of Ĉu can be inactivated, the one to be inactivated
should be chosen based on the following rules according to Guideline 3:
1 Some of the thus found Pareto descent directions may be redundant. Such redun-

dant directions can be identified and removed as done in the calculation of descent
directions in PDM [8,9].

2 In order to find subsets that can be inactivated, every subset of Ĉu must be examined.
When the cardinality of Ĉu is big, however, not all subsets can be examined, and
some compromise has to be made.



164 K. Harada et al.

1. Choose the subset with the smallest cardinality, and
2. If there are more than one such subsets, choose the one for which there

exist Pareto descent directions of the violated constraints in the null-space
of the gradients of the active constraint functions that are feasible w.r.t. the
inactivated constraints.

3.4 Linear Search over Active Constraint Boundaries

Moving Solutions back onto Active Constraint Boundaries. In order to
move a solution y in a search direction back onto active constraint boundaries, we
can search for a solution that satisfies active constraints by small margins using
y as the initial solution.3 Consider using golden section method for the linear
search in the optimization. The length of closed linear search interval and the
number of iterations determine the maximum error ε that can transpire in the

linear search. Minimizing
∑P̂u

j=1

(
dĝu

j
(x) − (−ε)

)2
gives a solution that satisfies

active constraints by the distance of at most 2ε, where ĝu
j (x) (j = 1, 2, . . . , P̂ u)

are active constraint functions, and dĝu
j
(x) is the signed distance of x from the

j-th boundary. Since dĝu
j
(x) cannot usually be calculated precisely in practice,

it has to be approximated. Applying Taylor expansion to ĝu
j (x) and ignoring the

terms of order greater than two, dĝu
j
(x) can be approximated [11] by

d̃ĝu
j
(x) =

∇ĝu
j (x) · x + ĝu

j (x)
||∇ĝu

j (x)|| . (10)

Linear Search. Since the number of violated constraints and constraint vio-
lations must be monotonically decreased according to Guideline 2, the step-size
must be chosen so that the solution in the search direction is 1) just before
any of the unviolated constraints is violated or 2) just before any of the vio-
lated constraint functions increases. Additionally, the step-size must be chosen
so that the solution in the search direction is 3) just after any of the violated
constraints is satisfied, since the next iteration searches over the boundaries of
active constraints including the one just satisfied.

3.5 Proposal of Pareto Descent Repair Operator

We propose the repair operator consisting of the above-mentioned search direc-
tion calculations and linear search as Pareto Descent Repair operator (PDR).
PDR efficiently decreases constraint violations by calculating an appropriate
search direction for each case it may encounter: active constraints may or may
not exist, and Pareto descent directions and descent directions may or may not
exist. The most computationally intense part of PDR is that of solving linear
3 We can alternatively search for a solution which minimizes the distance to each

boundary. The optimum, however, may violate the active constraints by small mar-
gins since the linear search used in that optimization always transpires a small error.
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programming problems for direction calculations. Since computationally efficient
linear programming solvers such as simplex method [12] can be used, the com-
putational complexity of PDR is accordingly small.

3.6 Use of PDR in GA

When a repair operator is used in GA, infeasible solutions can be replaced by
their corresponding feasible solutions (Lamarckian). They can also be stored and
used in crossover, and their corresponding feasible solutions are used for evalu-
ations of objective functions (non-Lamarckian) [2]. Consider solving a problem
with a single feasible region using a crossover operator such as UNDX [13] which
generates offspring solutions around the center of mass of parent solutions. Note
that, when GA generates infeasible offspring solutions, Pareto-optimal solutions
are likely to lie on boundaries. When Lamarckian PDR (PDR(l) hereafter) is
used, parent solutions are either inside the feasible region or on boundaries,
and their offspring solutions therefore are inside the feasible region. When non-
Lamarckian PDR (PDR(nl) hereafter) is used, parent solutions are both inside
and outside the feasible region, and their offspring solutions are more likely to be
generated near the boundaries. This difference becomes prominent on problems
such as ZDT2 on which a number of boundaries intersect at the Pareto-optimal
solutions. Therefore, Pareto-optimal solutions on boundaries are expected to
be obtained with higher precision when PDR(nl) is used than when PDR(l) is
used. Even if there are multiple feasible regions, a similar argument applies when
mating restriction is imposed so that solutions close to each other, which often
belong to the same feasible region, are chosen for mating.

4 Experiments

In order to verify the effectiveness of PDR, GA that use PDR(l), PDR(nl),
OCV(e), and OCV(ne) are compared on some well-known multi-objective bench-
mark problems. The results of death penalty (DP) will also be shown just for a
reference, since it is the standard constraint-handling method for GA.

4.1 Experiment Setup

Performance Metrics. In order to evaluate the proximity and diversity of so-
lutions, we use generational distance (GD) and D1R, which are used in many
existing studies. GD is defined as the mean of the distances from each solu-
tion to its nearest Pareto-optimal solution in the normalized objective space [1]
and measures proximity. D1R is defined as the mean of the distances from each
Pareto-optimal solution to its nearest solution in the normalized objective space
[14] and measures both proximity and diversity.

Pareto-optimal solutions are necessary to evaluate GD and D1R. We assume
that the solutions obtained by running GA with a large population size and many
generations are Pareto-optimal, as existing studies do. Note that, when OCV is
used, the set of solutions may contain infeasible solutions. Since the number
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of non-inferior solutions, which are necessarily feasible, is sometimes used as a
performance metric [1], obtaining more feasible solutions is better than obtaining
less. Since infeasible solutions only deteriorate both proximity and diversity, GD
and D1R are calculated using all the solutions in the solution set.

Benchmark Problems. Since the methods being compared are applicable to prob-
lems with arbitrary numbers of objective functions and feasible regions, the
benchmark problems in Table 1 are used, each of which has two objective func-
tions and a single feasible region. These problems with relatively simple con-
straints were chosen so that the behaviors of the constraint-handling methods
can be examined in detail.

Table 1. The properties of the benchmark problems used in the experiment [1]

GA. Population size is 100, which is commonly used for MOO. Initial solutions
are generated uniformly at random in [−100, 100]N. For DP, however, initial so-
lutions are generated uniformly at random in feasible regions. 50 parent pairs are
formed at each generation. Since it has been reported that proximity is improved
as the number of offspring solutions for each parent pair is increased [15,16], 20
offspring solutions are generated for each pair. Since it has also been reported
in [15,16] that, although the best-performing crossover is problem dependent,
UNDX [13] performs relatively well on many problems, UNDX is used in the
experiment. SPEA2 [17] is known to exhibit good performance as a survival se-
lection [18]. However, since the original SPEA2 requires substantial computation
and memory space, modified SPEA2 [15,16] is used, which approximates crowd-
edness around a solution with the Euclidean distance from the solution to the
other solution nearest to it in the normalized objective space.

PDR. Gradients are approximated by forward difference with the difference of
10−4. To move a solution in a search direction back onto active constraint bound-
aries, steepest descent method is used. For linear search, golden section method is
used, with the closed linear search interval length of 10−2, the maximum number
of extension of the interval of 20, and the basic number of iterations of 20. When
active constraints are Ĉu = {ĉu

1 , . . . , ĉ
u
P̂u}, Ĉu and {ĉu

i } for each i = 1, 2, . . . , P̂ u

are considered for inactivation. In order to accommodate a solution violating 30
linear constraints, search direction calculation and linear search are applied at
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most 30 times. Unrepairable infeasible solutions are discarded. Infeasible initial
solutions are repaired in the Lamarckian way for PDR(nl) as well.

OCV. Since diversity w.r.t. constraint violations is unnecessary, sharing is ap-
plied in the original objective space.

4.2 Results

Figure 4 shows the transitions of GD and D1R, averaged over 10 trials, against
the number of objective function evaluations when GA with constraint-handing
methods are applied to the benchmark problems. For the methods that diverged
GD, the lines of both GD and D1R are omitted.

BNHand TNK. RegardingGD, PDR(nl) performed the best, followedby PDR(l).
PDR(nl) performed better because part or all of the Pareto-optimal solutions of
these problems lie on boundaries, and GA’s search for the Pareto-optimal solu-
tions was better facilitated by PDR(nl), as explained in Sect. 3.6. No performance
difference regarding D1R can be observed between PDR(l) and PDR(nl).

DP and OCV(ne) performed worse than PDR w.r.t. GD since it is difficult
for DP to search for solutions on boundaries, and OCV(ne) behaves practically
the same as DP, as explained in Sect. 2.2. Regarding D1R, PDR performed no
worse than DP and OCV(ne).

On BNH, OCV(e) performed the worst. This is because OCV(e) maintains
infeasible solutions throughout the entire search. OCV(e) performed poorly in
D1R because its GD is not good. OCV(e) diverged GD on TNK. The entire third
quadrant of TNK is Pareto-optimal w.r.t. constraint violations and objective
functions, and solutions in the second and fourth quadrants can also be non-
inferior. Therefore, ranking did not function on TNK, and crossover and sharing
dispersed solutions.

ZDT2. Again, PDR(nl) performed the best regarding both GD and D1R since
PDR(nl) better facilitates the search of the Pareto-optimal solutions on bound-
aries than DP and PDR(l) do, as explained in Sect. 1 and Sect. 3.6, respectively.
OCV diverged GD as predicted in Sect. 2.2. Since this was observed despite
the strong interpolating property of UNDX, similar results are expected to be
observed when other less interpolative crossovers are used.

On the Whole. Experimental results confirmed that GA performs the best when
PDR is used, which requires additional computational complexity comparable to
that of linear programming solvers. They have also shown that OCV(ne) exhibits
performance similar to that of DP on low dimensional problems, and OCV(e) and
OCV(ne) can disperse solutions on problems with many constraints. In addition,
it has been confirmed that, on problems whose Pareto-optimal solutions lie on
boundaries, GA’s search is better facilitated and solutions are obtained with
higher precision when PDR is applied in the non-Lamarckian way.



168 K. Harada et al.

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 0  0.2  0.4  0.6  0.8  1

O
bj

. S
p.

 G
D

Function evaluation (x100,000)

OCV(e)

DP

OCV(ne)

PDR(l) PDR(nl)
 0.001

 0.01

 0.1

 0  0.2  0.4  0.6  0.8  1

O
bj

. S
p.

 D
1R

Function evaluation (x100,000)

OCV(e)

PDR(l), PDR(nl),

DP

OCV(ne)

BNH

 0.0001

 0.001

 0.01

 0.1

 0  0.2  0.4  0.6  0.8  1

O
bj

. S
p.

 G
D

Function evaluation (x100,000)

OCV(ne)

DP

PDR(l) PDR(nl)

 0.001

 0.01

 0.1

 0  0.2  0.4  0.6  0.8  1

O
bj

. S
p.

 D
1R

Function evaluation (x100,000)

PDR(l), PDR(nl)

OCV(ne)

DP

TNK

 0.001

 0.01

 0.1

 1

 10

 0  1  2  3  4  5

O
bj

. S
p.

 G
D

Function evaluation (x100,000)

DP

PDR(l)

PDR(nl)
 0.001

 0.01

 0.1

 1

 10

 0  1  2  3  4  5

O
bj

. S
p.

 D
1R

Function evaluation (x100,000)

DP

PDR(l)

PDR(nl)

ZDT2

Fig. 4. Transitions of GD and D1R, averaged over 10 trials, when GA combined with
constraint-handling methods are applied to the benchmark problems

5 Conclusions

This paper first presented the guidelines for designing effective constraint-handling
methods. It thenproposedParetoDescentRepair operator (PDR) thatmeets these
guidelines.PDR’s effectivenesswasverified throughexperiments comparing itwith
other constraint-handling methods. It was also confirmed that Pareto-optimal so-
lutions on the boundaries are obtained with higher precision when PDR is applied
in the non-Lamarckian way.

Although this paper proposed PDR as a repair operator for MOO, it can
also be applied to single-objective optimization problems. Hence, it remains to
investigate the effectiveness of PDR on single-objective optimization problems.
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Appendix: Pareto Descent Method

Denote the normalized gradients of objective functions at solution x by ∇̄fi(x)
(i = 1, 2, . . . , M). If a direction d ∈ IRN satisfies

d · (−∇̄fi(x)) ≥ 0 (i = 1, 2, . . . , M) , (11)

all objective functions can be simultaneously decreased by moving x in direc-
tion d. Such directions are called descent directions for MOO. There are often
multiple descent directions. The descent directions to which no other descent
directions are superior in improving all objective functions are called Pareto
descent directions [8,9]. There are often multiple Pareto descent directions. A
descent direction is a Pareto descent direction if it can be expressed as a convex
combination of the steepest descent directions of objective functions. Descent
directions and Pareto descent directions of a 2-variable-2-objective problem are
shown in Fig. 5.

Descent directions
x Pareto descent directions

- f1 - f2

Fig. 5. Descent directions and Pareto descent directions of a 2-variable-2-objective
problem

Since objective functions can be efficiently decreased by searching in Pareto-
descent directions, several methods that calculates such directions were pro-
posed in recent years, which include Multi-objective Steepest Descent Method
(MSDM) [19] and Pareto Descent Method (PDM) [8,9]. PDM calculates feasible
Pareto descent directions or descent directions, as appropriate, by solving linear
programming problems, which has less computational complexity than MSDM
does. Therefore, PDM can both effectively and efficiently decrease all objective
functions simultaneously.
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Abstract. The multi-objective covariance matrix adaptation evolution
strategy (MO-CMA-ES) combines a mutation operator that adapts its
search distribution to the underlying optimization problem with multi-
criteria selection. Here, a generational and two steady-state selection
schemes for the MO-CMA-ES are compared. Further, a recently pro-
posed method for computationally efficient adaptation of the search dis-
tribution is evaluated in the context of the MO-CMA-ES.

1 Introduction

Evolution strategies (ES) for real-valued optimization rely on Gaussian random
variations. Appropriately adapting the covariance matrices of these mutations
during optimization allows for learning a variable metric for the search distribu-
tion. It is well known that such an automatic adaptation of the mutation dis-
tribution drastically improves the search performance on non-separable and/or
badly scaled single-objective functions [1,2,3,4].

In [5], we incorporated the step size and covariance matrix adaptation from
the covariance matrix adaptation ES (CMA-ES, [3]) into a multi-objective frame-
work. The resulting MO-CMA-ES used generational selection based on [6] com-
bined with the sorting criterion proposed in [7,8]. We chose generational selection
in order to make our performance comparisons with alternative methods easier
to interpret. However, in [7,8] steady-state selection is used with good results
and the question arises whether the MO-CMA-ES would profit from this selec-
tion scheme. In [9], we presented a new, computationally efficient update scheme
for covariance matrices. The complexity reduction from O(n3) to O(n2) per up-
date of the mutation distribution, where n is the dimensionality of the search
space, comes at the cost of slower adaptation rates. However, as in the MO-
CMA-ES many mutation distributions need to be traced, this approach seems
to be particularly promising for the MO-CMA-ES.

In this work, we first investigate the computationally efficient update proposed
in [9] within the framework of the MO-CMA-ES. Second, we compare variants of
the MO-CMA-ES with different steady-state selection schemes and generational
selection, respectively.
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2 Covariance Matrix Adaptation

Let us consider an additive mutation v
(g)
i ∈ R

n of individual i in generation
g. The mutation v

(g)
i is a realization of an n-dimensional random vector dis-

tributed according to a zero-mean Gaussian distribution with covariance ma-
trix C

(g)
i , that is, v

(g)
i ∼ N

(
0, C

(g)
i

)
. To sample this mutation distribution,

n independent standard normally distributed random numbers are drawn to
generate a realization of an n-dimensional normally distributed random vector
z

(g)
i ∼ N (0, I) with unit covariance matrix and zero mean. Then this random

vector is rotated and scaled by a linear transformation A
(g)
i ∈ R

n×n such that

A
(g)
i z

(g)
i ∼ N (0, C

(g)
i ) for z

(g)
i ∼ N (0, I) .

Thus, for sampling the mutation distribution the covariance matrix C
(g)
i has

to be decomposed into Cholesky factors C
(g)
i = A

(g)
i A

(g)
i

T
. One of the decisive

features of ES is that the covariance matrices are subject to adaptation. The
general policy is to alter the covariance matrices such that steps promising larger
fitness gain are sampled more often. Here we consider matrix updates of the form
C(g+1) = αC(g) + βV (g), where V (g) ∈ R

n×n is positive definite and α, β ∈ R
+

are weighting factors (e.g., see [3,10]). Let v(g) ∈ R be a step in the search space
promising large fitness gain. To increase the probability that v(g) is sampled in
the next iteration, the rank-one update

C(g+1) = αC(g) + βv(g)v(g)T
(1)

can be used. This update rule shifts the mutation distribution towards the line
distribution N

(
0, v(g)v(g)T )

, which is the distribution with the highest proba-
bility to generate v(g) among all normal distributions with zero mean [3].

In general, each factorizing of a covariance matrix requires O(n3) operations.
Thus, in an ES with additive covariance matrix update the Cholesky factoriza-
tion of the covariance matrix is the computationally dominating factor apart
from the fitness function evaluations. In [9] we therefore proposed not to fac-
torize the covariance matrix, but to use an incremental rank-one update rule
for the Cholesky factorization. This reduces the computational complexity to
O(n2). The idea is not to compute the covariance matrix explicitly, but to op-
erate on Cholesky factors only. Setting v(g) = A(g)z(g) with z(g) ∼ N (0, I) we
can rewrite the rank-one update of the covariance matrix equation (1) as

C(g+1) = αC(g) + βA(g)z(g)
[
A(g)z(g)

]T

. (2)

Using the following theorem, we turn this update for C(g) into an update for
A(g).

Theorem 1 ([9]). Let Ct ∈ R
n×n be a symmetric nonnegative definite matrix

with Cholesky factorization Ct = AtAt
T . Assuming that Ct is updated using

Ct+1 = αCt + βvtv
T
t ,
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with vt = Atzt, where zt is a column vector and α, β ∈ R
+. Then, the Cholesky

factorization Ct+1 = At+1At+1
T is given by

At+1 =
√

αAt +
√

α

‖zt‖2

(√
1 +

β

α
‖zt‖2 − 1

)
[Atzt] zT

t .

The new update rule guarantees a positive-definite covariance matrix. The nu-
merical stability of the new update is likely to be better than an update requiring
decompositions (e.g., see the discussion in [11, chapter 6]).

3 Generational and Steady-State Multi-objective
Selection

Our multi-objective selection schemes is based on the non-dominated sorting
approach used in NSGA-II [12,6] and the selection scheme used in SMS-EMOA
[7,8].

First of all, the elements in a population A of candidate solutions are ranked
according to their level of non-dominance. Let the non-dominated solutions in A
be denoted by ndom(A) = {a ∈ A | �a′ ∈ A : a′ ≺ a}, where a′ ≺ a means that
a′ dominates a. The Pareto front of A is then given by {(f1(a), . . . , fM (a)) | a ∈
ndom(A)}, where the fi are the M real-valued objective functions. The elements
in ndom(A) get rank 1. The other ranks are defined recursively by considering
the set without the solutions with lower ranks (cf. [6,9]). Formally, let dom0(A) =
A, doml(A) = doml−1(A) \ ndoml(A), and ndoml(A) = ndom(doml−1(A)) for
l ∈ {1, . . .}. For a ∈ A we define the level of non-dominance r(a, A) to be i iff
a ∈ ndomi(A).

A second sorting criterion is needed to rank the solutions having the same level
of non-dominance. This criterion is very important, as usually (in particular in
real-valued optimization of continuous objective functions) after some genera-
tions there are more non-dominated solutions in the population than solutions to
be selected. We consider the contributing hypervolume as second sorting crite-
rion, which gave better results than the crowding-distance [6] in the experiments
in [9]. The hypervolume measure or S-metric was introduced by [13] in the do-
main of evolutionary MOO. It can be defined as the Lebesgue measure Λ (i.e.,
the volume) of the union of hypercuboids in the objective space:

Saref (A
′) = Λ

( ⋃
a∈ndom(A′)

{(f1(a′), . . . , fM (a′)) | a ≺ a′ ≺ aref}
)

,

where aref is an appropriately chosen reference point. The contributing hyper-
volume of a point a ∈ ndom(A′) is given by

ΔS(a, A′) := Saref (A
′) − Saref (A

′ \ {a}) .

The rank s(a, A′) of an individual a can be defined recursively based on its con-
tribution to the hypervolume, where ties are broken at random. The individual
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contributing least to the hypervolume of A′ gets the worst rank. The individ-
ual contributing least to the hypervolume of A′ without the individual with
the worst rank is assigned the second worst rank and so on. We call a ∈ A′

a boundary element if ΔS(a, A′) depends on the choice of the reference point
aref. We choose aref such that all elements in A′ dominate aref and that for
any boundary element a ∈ A′ and any non boundary element a′ ∈ A′ we have
ΔS(a, A′) > ΔS(a′, A′). That is, the individuals at the “boundaries” of the
Pareto front of A′ are preferably selected. Let a lower rank be worse. For-
mally (assuming that argmin breaks ties randomly), for a ∈ ndom(A′) we
have s(a, A′) = 1 if a = argmina′∈A′{ΔS(a′, A′)} and s(a, A′) = k if a =
argmina′∈A′{ΔS(a′, A′ \ {a′′ | s(a′′, A′) < k})}. Based on this ranking and the
level of non-dominance we define the relation

a ≺A a′ ⇔ r(a, A) < r(a′, A) or[
(r(a, A) = r(a′, A)) ∧ (s(a, ndomr(a,A)(A)) > s(a′, ndomr(a′,A)(A)))

]
,

for a, a′ ∈ A. That is, a is better than a′ when compared using ≺A if either
a has a better level of non-dominance or a and a′ are on the same level but a
contributes more to the hypervolume when considering the points at that level
of non-dominance.

In the following, we consider three reproduction and selection schemes based
on this ranking. First, in generational selection (μ+μ) as described in [9] each of
the μ parents generates one offspring per generation. The resulting 2μ individuals
are sorted as described above and the μ best form the next parent population.

Then we consider two steady-state [14,15] selection schemes, in which only a
single parent creates one offspring per generation. If this offspring a is better
than the worst individual in the parent population A w.r.t. ≺A∪{a}, a replaces
the worst individual. Otherwise the offspring is discarded. The two steady state
variants differ in the way the parent of the offspring is selected. In the first
variant (μ+1), the parent is chosen uniformly at random from A. In the second
version (μ≺+1), the parent is chosen uniformly at random from ndom(A). The
idea behind the second approach, which can be regarded as more greedy, is
that it is more promising to allow reproduction of non-dominated individuals
than of dominated. Because the individuals A \ ndom(A) do not influence the
evolutionary process anymore, they can be discarded. That is, the second variant
is an algorithm with varying population (or archive) size. Only non-dominated
individuals remain in the population while the size of the population is still
upper bounded by μ.

4 MO-CMA-ES

In the MO-CMA-ES with standard covariance matrix update the kth individual
in generation g is a 5-tuple denoted by a

(g)
k = [x(g)

k , p
(g)
succ,k, σ

(g)
k , p

(g)
c,k, C

(g)
k ]. Here,

x
(g)
k ∈ R

n is the point in the search space, p
(g)
succ,k ∈ R

+
0 the average success rate,
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σ
(g)
k ∈ R

+ the global step size, p
(g)
c,k ∈ R

n the evolution path, and C
(g)
k ∈ R

n×n

the covariance matrix.
The standard version of the generational MO-CMA-ES reads as follows (ig-

noring lines 5b and 10b for a moment):

Algorithm 1. generational MO-CMA

1 g = 0, initialize a
(g)
k for k = 1, . . . , μ

2 repeat
3 for k = 1, . . . , μ do
4 a′(g+1)

k ← a
(g)
k

5a x′(g+1)
k ∼ N

(
x

(g)
k , σ

(g)
k

2
C

(g)
k

)

5b x′(g+1)
k ∼ N

(
x

(g)
k , σ

(g)
k

2
A

(g)
k A

(g)
k

T
)

6 Q(g) =
{
a′(g+1)

k , a
(g)
k

∣∣ 1 ≤ k ≤ μ
}

7 for k = 1, . . . , μ do

8 updateStepSize
(
a
(g)
k ,�[a′(g+1)

k ≺Q(g) a
(g)
k ]

)

9 updateStepSize
(
a′(g+1)

k ,�[a′(g+1)
k ≺Q(g) a

(g)
k ]

)

10a updateCovariance

(
a′(g+1)

k ,
x′(g+1)

k − x
(g)
k

σ
(g)
k

)

10b updateCholesky

(
a′(g+1)

k ,
x′(g+1)

k − x
(g)
k

σ
(g)
k

)

11 for i = 1, . . . , μ do a
(g+1)
i ← Q

(g)
≺:i

12 g ← g + 1
until stopping criterion is met

Each of the μ parents generates one offspring (lines 3–5) . Parents and off-
spring form the set Q(g) (line 6). The step sizes of a parent and its offspring are
updated depending on whether the mutations were successful (lines 7–9), that
is, whether the offspring is better than the parent according to the relation ≺Q(g)

(the indicator function �[·] is 1 if its argument is true and 0 otherwise).
The covariance matrix of the offspring (line 10a) is adjusted taking into ac-

count the mutation that has led to its genotype. Both step size and covariance
matrix update are the same as in the single-objective (1+1)-CMA-ES, see [5,9]
for details. The best μ individuals in Q(g) sorted by ≺Q(g) form the next parent
generation (line 11, where Q

(g)
≺:i is the ith best offspring in Q(g) w.r.t. ≺Q(g)).

The update rule for the global step size is rooted in the 1/5-success-rule
proposed in [1] and is an extension from the rule proposed in [4]:
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Procedure updateStepSize(a = [x, psucc, σ, pc, C], psucc)

psucc ← (1 − cp) psucc + cppsucc1

σ ← σ · exp
(

1
d

psucc − ptarget
succ

1 − ptarget
succ

)
2

This rule implements the well-known heuristic that the step size should be
increased if the success rate of mutation is high, and the step size should be
decreased if the success rate is low. The damping parameter d controls the rate
of the step size adaptation.

Then the covariance matrices are adapted (see main routine line 10a):

Procedure updateCovariance(a = [x, psucc, σ, pc, C], xstep ∈ R
n)

if psucc < pthresh then1

pc ← (1 − cc)pc +
√

cc(2 − cc) xstep2

C ← (1 − ccov)C + ccov · pcpc
T3

else4

pc ← (1 − cc)pc5

C ← (1 − ccov)C + ccov ·
(
pcpc

T + cc(2 − cc)C
)

6

The update of the evolution path pc depends on the value of psucc. If the
smoothed success rate psucc is high, that is, above pthresh < 0.5, the update
of the evolution path pc is stalled. This prevents a too fast increase of axes of
C when the step size is far too small, for example, in a linear surrounding. If
the smoothed success rate psucc is low, the update of pc is accomplished with
exponential smoothing. The constants cc and ccov (0 ≤ ccov < cc ≤ 1) are
learning rates for the evolution path and the covariance matrix, respectively. The
factor

√
cc(2 − cc) normalizes the variance of pc viewed as a random variable

(see [3]). The evolution path pc is then used to update the covariance matrix.
The new covariance matrix is a weighted mean of the old matrix and the outer
product of pc. In the second case (line 5), the second summand in the update
of pc is missing and the length of pc shrinks. Although of minor relevance, the
term cc(2 − cc)C (line 6) compensates for this shrinking in C.

The (external) strategy parameters are the population size, target success
probability ptarget

succ , step size damping d, success rate averaging parameter cp,
cumulation time horizon parameter cc, and covariance matrix learning rate ccov.
Default values, as given in [9] and used in this paper, are: d = 1 + n/2, ptarget

succ =
(5 +

√
1/2)−1, cp = ptarget

succ /(2 + ptarget
succ ), cc = 2/(n + 2), ccov = 2/(n2 + 6), and

pthresh = 0.44.
The elements of the initial individual, a

(0)
parent are set to psucc = ptarget

succ , pc = 0,
and C = I. The initial candidate solution x ∈ R

n and the initial σ ∈ R
+ must
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be chosen problem dependent. The optimum should presumably be within the
cube x ± 2 σ (1, . . . , 1)T .

4.1 Cholesky Update

In the standard generational MO-CMA-ES, denoted by (μ+μ) in the following,
there are up to μ covariance updates (in an efficient implementation only covari-
ance matrices of those offspring that will be in the next parent population are
updated). Therefore, computation time could be significantly reduced using the
concepts described in [9] and Section 2—if objective function evaluation is fast
and the dimensionality n of the search space is large.

In the generational MO-CMA with “Cholesky update”, denoted by (μ+μ)chol

in the following, the kth individual in generation g consists of a 4-tuple a
(g)
k =

[x(g)
k , p

(g)
succ,k, σ

(g)
k , A

(g)
k ], where the Cholesky factor A

(g)
k ∈ R

n×n is stored instead
of the covariance matrix. The update of the Cholesky factor is given by applying
Theorem 1:

Procedure updateCholesky(a = [x, psucc, σ, pc, A], xstep ∈ R
n))

if psucc < pthresh then1

A ←
√

1 − ccov A +
√

1 − ccov

‖xstep‖2

⎛
⎝

√
1 +

ccov‖xstep‖2

1 − ccov
− 1

⎞
⎠AxstepxT

step
2

Because this update rule does not work with an evolution path (see [5]), the
covariance adaptation usually slows down in terms of the number of generations
needed to learn the metric of the underlying problem [9]. However, how strong
this effect is depends on the optimization problem.

The algorithmic description of the (μ+μ) is obtained from Algorithm 1 using
lines 5b and 10b instead of 5a and 10a. The replacement allows for a simple
implementation of the (μ+μ), because it avoids the otherwise necessary matrix
decomposition of the standard generational MO-CMA-ES.

4.2 Steady-State Selection

In steady-state selection schemes only one offspring is generated per generation.
Here, we consider two different variants of steady-state selection. The first one,
denoted by (μ≺+1) in the remainder of this article, selects the parent among
the non-dominated solutions in the population. As the dominated solutions in
the parent population do not influence the evolutionary dynamics, they can be
removed from the population. Thus, this variant can be viewed as an evolutionary
algorithm with adaptive population size, where the number of individuals equals
the number of non-dominated solutions upper bounded by μ.

The second steady-state algorithm, denoted by (μ+1) in the following, consid-
ers all μ members of the population as potential parents and hence is less greedy
than the first variant. This corresponds to the selection scheme used in [7,8].
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Both variants are described in Algorithm 2 and are quite similar to the gen-
erational MO-CMA. The main difference is the selection of the parent for repro-
duction in line 4a for the (μ≺+1) and in line 4b for the (μ+1), respectively.

Algorithm 2. steady-state MO-CMA

1 g = 0, initialize a
(g)
k for k = 1, . . . , μ

2 repeat

3 Q(g) =
{
a
(g)
k

∣∣ 1 ≤ k ≤ μ
}

4a i ← U(1, | ndom(Q(g))|)
4b i ← U(1, |Q(g)|)
5 a(g+1) ← Q

(g)
≺:i

6 a′(g+1) ← a(g+1)

7 x′(g+1) ∼ N
(
x(g+1), σ(g)2C(g)

)
8 Q(g) ← Q(g) ∪ {a′(g+1)}
9 updateStepSize

(
a(g),�[a′(g) ≺Q(g) a(g)]

)

10 updateStepSize
(
a′(g+1)

,�[a′(g) ≺Q(g) a(g)]
)

11 updateCovariance

(
a′(g+1)

,
x′(g+1) − x(g)

σ(g)

)

12 for i = 1, . . . , μ do a
(g+1)
i ← Q

(g)
≺:i

13 g ← g + 1
until stopping criterion is met

5 Experiments

In the following, we empirically evaluate the different variants of the MO-CMA-
ES presented in the previous section. In [9] we compared the generational MO-
CMA-ES with other multi-objective evolutionary algorithms, namely NSGA-II
and the multi-criteria differential evolution algorithm NSDE [16]. Because of
the good performance of the MO-CMA-ES in [9], we do not consider any other
reference algorithm in the present study.

5.1 Evaluating the Performance of MOO Algorithms

Many ways of measuring the performance of MOO algorithms have been pro-
posed. Here we follow recommendations in [17] and use unary quality indicators,
for a detailed description of the methods we refer to [18,17,5].

An unary quality indicator assigns a real valued quality to a set of solutions.
Here, the hypervolume indicator [13] and the ε-indicator [18] are measured. We
use the performance assessment tools contributed to the PISA [19] software pack-
age with standard parameters. The hypervolume indicator w.r.t. reference set
Aref (see below) is defined as IS,Aref(A) = Saref (Aref)−Saref(A) where aref denotes
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a (hypothetical) reference point having in each objective an objective function
value worse than all considered individuals. The additive unary ε-indicator Iε,Aref

w.r.t. reference set Aref is defined as the smallest offset by which the fitness val-
ues of the elements in A have to be shifted such that the resulting set dominates
Aref. Both a small IS,Aref and a small Iε,Aref are preferable.

Before the performance indicators are computed, the data are normalized.
We want to compare k algorithms on a particular optimization problem after g1
and g2 fitness evaluations (here, 25000 and 50000) and we assume that we have
conducted t trials. We consider the non-dominated individuals of the union of
all 2 · k · t populations after g1 and g2 evaluations. These individuals make up
the reference set Aref. Their objective vectors are normalized such that for every
objective the smallest and largest objective function value are mapped to 1 and
2, respectively, by an affine transformation. The mapping to [1, 2]M is fixed and
applied to all objective vectors under consideration. The reference point aref is
chosen to have an objective value of 2.1 in each objective. Note that the set Aref
is comprised of rather well performing individuals, whereas the point aref has
bad objective function values.

5.2 Benchmark Functions

We consider three groups of test functions. The first group comprises six com-
mon benchmark problems taken from the literature, namely the function FON
proposed in [20] and the test functions ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6
proposed in [21]. All functions have box constraints also given in the table. As
most components of the optimal solution lie on the boundary of these box con-
straints, we question the general relevance of these test functions. In accordance
with [22,23], we believe that “rotated” functions, which are less aligned with
the coordinate system of the search space, are more appropriate. This led to the
definition of the two other groups of benchmark functions, see [5] for details.

Table 1. Unconstrained benchmark problems to be minimized, with a = 1000, b = 100,
y = O1x, and z = O2x, where O1 and O2 are orthogonal matrices

Problem n Initial Objective
region functions

ELLI1 10 [−10, 10] f1(y) = 1
a2n

∑n
i=1 a2 i−1

n−1 y2
i

f2(y) = 1
a2n

∑n
i=1 a2 i−1

n−1 (yi − 2)2

ELLI2 10 [−10, 10] f1(y) = 1
a2n

∑n
i=1 a2 i−1

n−1 y2
i

f2(z) = 1
a2n

∑n
i=1 a2 i−1

n−1 (zi − 2)2

CIGTAB1 10 [−10, 10] f1(y) = 1
a2n

[
y2
1 +

∑n−1
i=2 ay2

i + a2y2
n

]
f2(y) = 1

a2n

[
(y1 − 2)2 +

∑n−1
i=2 a (yi − 2)2 + a2(yn − 2)2

]
CIGTAB2 10 [−10, 10] f1(y) = 1

a2n

[
y2
1 +

∑n−1
i=2 ay2

i + a2y2
n

]
f2(z) = 1

a2n

[
(z1 − 2)2 +

∑n−1
i=2 a (zi − 2)2 + a2(zn − 2)2

]
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The second group of benchmarks are functions where for each objective the ob-
jective function is quadratic (a quadratic approximation close to a local optimum
is reasonable for any smooth enough fitness function), see Table 1. They are of the
general form fm(x) = xT Qx = xT OT

mAOmx, where x ∈ R
n, Q, Om, A ∈ R

n×n

with Om orthogonal and A diagonal and positive definite. There are two types
of functions, ELLI and CIGTAB, which differ in the eigenvalue spectrum of
Q. In each optimization run the coordinate system of the objective functions
is changed by a random choice of Om (see [9] for details). In the case of the
test functions ELLI1 and CIGTAB1 the same rotation is used for both objective
functions (i.e., O1 = O2). In the more general case of ELLI2 and CIGTAB2 two
independent rotation matrices O1 and O2 are generated, which are applied to
the first and second objective function, respectively.

Table 2. New benchmark problems to be minimized, y = Ox, where O ∈ R
n×n

is an orthogonal matrix, and ymax = 1/maxj(|o1j |). In the case of ZDT4’, o1j =
oj1 = 0 for 1 < j ≤ n and o11 = 1. The auxiliary functions are defined as h :

R → [0, 1], x �→
(
1 + exp

(
−x√

n

))−1
, hf : R → R, x �→

{
x if |y1| ≤ ymax

1 + |y1| otherwise
, and

hg : R → R
+
0 , x �→ x2

|x|+0.1 .

Problem n Variable Objective
bounds function

ZDT4’ 10 x1 ∈ [0, 1] f1(x) = x1

xi ∈ [−5, 5] f2(x) = g(y)
[
1 −

√
x1/g(y)

]
i = 2, . . . n g(y) = 1 + 10(n − 1) +

∑n
i=2

[
y2

i − 10 cos (4πyi)
]

IHR1 10 [−1, 1] f1(x) = |y1|
f2(x) = g(y) hf

(
1 −

√
h(y1)/g(y)

)
g(y) = 1 + 9

(∑n
i=2 hg(yi)

)
/ (n − 1)

IHR2 10 [−1, 1] f1(x) = |y1|
f2(x) = g(y) hf

(
1 − (y1/g(y))2

)
g(y) = 1 + 9

(∑n
i=2 hg(yi)

)
/ (n − 1)

IHR3 10 [−1, 1] f1(x) = |y1|
f2(x) = g(y) hf

(
1 −

√
h(y1)/g(y) − h(y1)

g(y) sin (10πy1)
)

g(y) = 1 + 9
(∑n

i=2 hg(yi)
)
/ (n − 1)

IHR4 10 [−5, 5] f1(x) = |y1|
f2(x) = g(y) hf

(
1 −

√
h(y1)/g(y)

)
g(y) = 1 + 10(n − 1) +

∑n
i=2

[
y2

i − 10 cos (4πyi)
]

IHR6 10 [−1, 1] f1(x) = 1 − exp (−4 |y1|)) sin6 (6πy1)

f2(x) = g(y) hf

(
1 − (f1(x)/g(y))2

)
g(y) = 1 + 9

[(∑n
i=2 hg(yi)

)
/ (n − 1)

]0.25
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The third group of problems shown in Table 2 are new benchmarks that
generalize the ZDT problems to allow a rotation of the search space as in the
second group. In the first function ZDT4’ the rotation is applied to all but
the first coordinate. That is, we consider y = Ox, where O ∈ R

n×n is an
orthogonal matrix with o1j = oj1 = 0 for 1 < j ≤ n and o11 = 1. In the
other functions the rotation matrices are not restricted. Compared to the ZDT
functions, the search space is expanded and the Pareto front is not completely
located on the boundaries anymore. The lower end y1 = 0 of the Pareto front is
induced by the absolute value in the definition of f1. The ends y1 = ±ymax of
the Pareto front are determined by hf . The value ymax can be chosen between 1
and 1/ maxj(|o1j |), and in the latter case the Pareto optimal solution y1 = ymax
lies on the search space boundary. The function h : R → [0, 1] is monotonic
and emulates the original variable boundary x1 ∈ [0, 1]. Similar, the function
hg : R → R

+
0 emulates the original lower variable boundary of xi ≥ 0 for

i = 2, . . . , n.

Table 3. Median results over 100 trials on standard benchmark functions after 25000
and 50000 evaluations, respectively. Superscripts indicate significant differences; I:
(μ+μ), . . . , IV: (μ+1), two-sided Wilcoxon rank sum test, normal font p < 0.001,
slanted p < 0.01.

hypervolume indicator
algorithm FON ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

25000 evaluations

(μ+μ) 0.00480II 0.00377 0.00483 0.00139 0.17444III 0.00052

(μ+μ)chol 0.00482 0.00377 0.00484 0.00140 0.16218III 0.00052

(μ≺+1) 0.00448I,II,IV 0.00357I,II,IV 0.00451I,II,IV 0.00129I,II,IV 0.39748 0.00050I,II

(μ+1) 0.00448I ,II 0.00363I ,II 0.00466I ,II 0.00137 0.17113III 0.00050I ,II

50000 evaluations

(μ+μ) 0.00473II 0.00365 0.00472 0.00132 0.12979III 0.00052

(μ+μ)chol 0.00476 0.00365 0.00473 0.00134 0.13068III 0.00052

(μ≺+1) 0.00448I,II 0.00349I,II 0.00445I,II,IV 0.00125I,II,IV 0.35486 0.00050I,II

(μ+1) 0.00448I ,II 0.00350I ,II 0.00452I ,II 0.00129I ,II 0.15571III 0.00050I ,II

ε-indicator
algorithm FON ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

25000 evaluations

(μ+μ) 0.00698 0.00624 0.00707 0.00345 0.16344III 0.00147

(μ+μ)chol 0.00695 0.00615 0.00703 0.00342 0.15132III 0.00149
(μ≺+1) 0.00497I,II 0.00491I,II 0.00541I,II,IV 0.00285I,II,IV 0.35884 0.00106I,II

(μ+1) 0.00501I ,II 0.00501I ,II 0.00569I ,II 0.00306I ,II 0.15800III 0.00106I ,II

50000 evaluations

(μ+μ) 0.00694 0.00607 0.00699 0.00354 0.13596III 0.00149

(μ+μ)chol 0.00690 0.00613 0.00697 0.00355 0.12269III 0.00150
(μ≺+1) 0.00487I ,II 0.00460I ,II 0.00514I,II,IV 0.00269I,II 0.33336 0.00101I,II

(μ+1) 0.00487I,II 0.00460I,II 0.00526I ,II 0.00273I ,II 0.14155III 0.00101I ,II
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5.3 Experiments

We used the same parameters in the MO-CMA-ES as in [9]. For the functions
FON, ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 we set σ(0) equal to 60% of the
feasible region xu

2 −xl
2 (we rescaled the first component of ZDT4 to [−5, 5]). In the

unconstrained problems, Table 1, we set σ(0) equal to 60% of the initialization
range of one component. In all algorithms the population size μ was set to 100.
For each test problem, 100 trials were conducted per algorithm.

6 Results and Discussion

The results are summarized in Tables 3 to 5. In general, the MO-CMA with
Cholesky update performed worse than the MO-CMA using an evolution path,
although the differences are often not significant. After 50000 evaluations the
methods differ significantly in at least one indicator on FON, ELLI2, CIGTAB1,
CIGTAB2, IHR1, and IHR6. On the multi-modal problems, where the results are
dominated by the global search performance, the (μ+μ)chol results look slightly
better than those with (μ+μ), while the differences are not apparent in our

Table 4. Median results over 100 trials on rotated quadratic benchmark functions after
25000 evaluations and 50000 evaluations, respectively

hypervolume indicator
algorithm ELLI1 ELLI2 CIGTAB1 CIGTAB2

25000 evaluations

(μ+μ) 0.003931 0.000037 0.003466 0.000037
(μ+μ)chol 0.004050 0.000037 0.003486 0.000042

(μ≺+1) 0.003771II 0.000018I,II,IV 0.003092I,II,IV 0.000015I,II,IV

(μ+1) 0.003963 0.000039 0.003132I ,II 0.000031I ,II

50000 evaluations

(μ+μ) 0.003468IV 0.000012II 0.003382II 0.000004
(μ+μ)chol 0.003611 0.000019 0.003400 0.000004

(μ≺+1) 0.003575 0.000005I,II,IV 0.003068I,II 0.000002I,II,IV

(μ+1) 0.003592 0.000012II 0.003077I ,II 0.000004

ε-indicator
algorithm ELLI1 ELLI2 CIGTAB1 CIGTAB2

25000 evaluations

(μ+μ) 0.006015 0.000120 0.005835 0.000196
(μ+μ)chol 0.005981 0.000134 0.005897 0.000214

(μ≺+1) 0.004717I,II,IV 0.000060I,II,IV 0.004294I,II,IV 0.000145I,II,IV

(μ+1) 0.005191I ,II 0.000122 0.004463I ,II 0.000185I ,II

50000 evaluations

(μ+μ) 0.005742 0.000056II 0.005779 0.000149II

(μ+μ)chol 0.005823 0.000073 0.005759 0.000152

(μ≺+1) 0.004261I,II 0.000045I,II,IV 0.004030I,II 0.000142I,II,IV

(μ+1) 0.004313I ,II 0.000047II 0.004030I ,II 0.000148II
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Table 5. Median results over 100 trials on new rotated benchmark functions after
25000 evaluations and 50000 evaluations, respectively

hypervolume indicator
algorithm ZDT4’ IHR1 IHR2 IHR3 IHR4 IHR6

25000 evaluations

(μ+μ) 0.18487III 0.00750 0.04023 0.02678 0.00484III 0.17635

(μ+μ)chol 0.19488III 0.00759 0.03960 0.02686 0.00496III 0.18078
(μ≺+1) 0.48206 0.00119I,II,IV 0.03877I,II,IV 0.02634IV 0.01753 0.03198I,II,IV

(μ+1) 0.21022III 0.00813 0.03927I ,II 0.02654 0.00521III 0.13856I ,II

50000 evaluations

(μ+μ) 0.14438III,IV 0.00161II 0.03799 0.02633 0.00415III ,IV 0.03522II

(μ+μ)chol 0.16716III 0.00658 0.03789I 0.02633 0.00402III,IV 0.03928
(μ≺+1) 0.42775 0.00082I,II,IV 0.03785I,II 0.02633IV 0.01746 0.02749I,II

(μ+1) 0.18228III 0.00115I ,II 0.03787I ,II 0.02633 0.00501III 0.03034I ,II

ε-indicator
algorithm ZDT4’ IHR1 IHR2 IHR3 IHR4 IHR6

25000 evaluations

(μ+μ) 0.18533III 0.01440 0.14304 0.04360 0.00526III 0.18192

(μ+μ)chol 0.19352III 0.01446 0.14269 0.04367 0.00533III 0.18782
(μ≺+1) 0.45294 0.00444I,II,IV 0.14268I,II,IV 0.04321IV 0.01666 0.06542I,II,IV

(μ+1) 0.20867III 0.01515 0.14284I ,II 0.04340 0.00537III 0.15154I ,II

50000 evaluations

(μ+μ) 0.14594III,IV 0.00553II 0.14066 0.04320 0.00393III,IV 0.05598II

(μ+μ)chol 0.16683III 0.01345 0.14046 0.04320 0.00408III 0.06493

(μ≺+1) 0.37796 0.00362I,II,IV 0.14043I ,II 0.04320 0.01665 0.06490

(μ+1) 0.17945III 0.00446I ,II 0.14046 0.04320 0.00474III 0.05340II

statistics. After 25000 evaluations, where the covariance matrix adaptation did
not pay off yet, the differences are not significant, except for the FON function,
where covariance matrix adaptation is faster due to the low dimensionality. These
results are in accordance with those in [9].

The newly developed covariance matrix update rule reduces the computa-
tional complexity of the rank-one covariance matrix adaptation from O(n3) to
O(n2). This is a significant improvement on high dimensional, but fast com-
putable fitness functions. However, in practice it is not necessary to perform the
covariance matrix decomposition, as required in the original covariance matrix
adaptation, each generation, but only every τ generations. Then the computa-
tional complexity becomes O(n3/τ + n2). For τ = o(n) the Cholesky approach
is still faster for large n, while τ = ω(n) is not advisable. Apart from that, the
new update rule is much simpler to implement (e.g., allowing for easy implemen-
tations in hardware and in low level programming languages) and is completely
specified without any hidden, numerically involved procedures such as a singular
value decomposition.
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On the unimodal problems, the steady-state algorithms perform better than
the generational MO-CMA-ES. Here the greedy steady-state (μ≺+1)-MO-CMA-
ES performs best. But on the multi-modal problems, the generational algorithms
are superior. However, the (μ+1)-MO-CMA-ES is not significantly worse, whereas
the performance of the greedy (μ≺+1)-MO-CMA-ES is so bad that it should not
be considered as an alternative to the generational MO-CMA despite its good per-
formance on the other test problems.

Thus, we recommend the (μ+1)-MO-CMA-ES. The selection strategy of this
variant is equal to the strategy in the SMS-EMOA proposed in [7,8], only the
variation operators and the strategy adaptation differ between SMS-EMOA and
(μ+1)-MO-CMA.
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1 Introduction

In 2000, Zhores Alferov and Herbert Kroemer received a share of the Nobel Prize
in Physics for their work in developing a semiconductor laser using interband
transitions in a double heterostructure. These types of lasers are now quite com-
mon, and can be found in everyday devices such as laser printers, compact disk
players, and laser pointers. Unfortunately, these devices can only operate in a
limited range of wavelengths, a fundamental limitation imposed by the bandgap
of the constituent materials. For wavelengths greater than 2 microns, suitable
semiconductor materials have yet to be developed that can enable interband
lasing at room temperature [1].

Quantum cascade lasers (QCL) are semiconductor lasers that are not based
on the heterostructure design, but on quantum mechanics. In these devices,
lasing is based upon intersubband transitions with properties that are tailored
through the careful epitaxial growth different semiconductor layers. Therefore,
a QCL does not have the same limitations as the traditional double heterostruc-
ture laser. As such, QCLs are used in applications where the standard double
heterostructure cannot be utilized [2].

This research focuses on developing good QCL designs in the terahertz fre-
quency range. A terahertz QCL can have potential applications in spectroscopy,
astronomy, medicine, free-space communication, near-space radar, and possi-
bly chemical/biological detection [3]. Of particular interest is its potential use
as a sensor for security purposes, particularly in the realm of homeland
security.

Our previous QCL research [4,3] using multiobjective evolutionary algorithms
(MOEAs) found valid designs, which had to be manually adjusted in order
to find more stable designs. This is a tedious process that can be remedied
by adding a local search technique. We initially implemented a neighborhood
search into our MOEA, but this failed to provide us with the type of results
we were looking for. We then implemented an innovative multi-tiered neighbor-
hood search that utilizes problem domain knowledge. This new local search
technique focuses its search on a specific region based on the stage of the
algorithm. The results detailed below empirically show that our multi-tiered
memetic MOEA is more effective than a memetic MOEA designed without
domain knowledge.

This paper also compares the results of implementing the multi-tiered memetic
MOEA on only the non-dominated solutions, the top 10 ranked solutions, and on
all current population members. The results show that the multi-tiered memetic
MOEA works best when the local search is applied to only the current non-
dominated solutions.

Section 2 presents the basics of QCL design. Section 3 discusses generic
memetic MOEAs and describes the ones created for the QCL problem. Sec-
tion 4 describes the algorithm that was extended with local search. Section 5
presents an analysis of the results.
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2 Quantum Cascade Laser Overview

The first QCL was experimentally realized in 1994 by researchers from Bell
Laboratories [5]. A QCL uses only one type of charge carrier, typically negatively
charged electrons and not more massive positively charged holes, so it is classified
as a unipolar laser. The laser name comes from its operation. It operates using
quantum mechanics and a cascading electronic waterfall, hence the name. The
semiconductor crystals are grown in such a way that identical energy steps are
created for the electrons to cascade down. At each energy step, the electrons emit
photons. A normal diode laser can only emit one photon in per cycle where a
QCL can emit many more. In fact, a QCL operating at the same wavelength can
outperform a diode laser by a factor greater than 1000 in terms of power because
of both the cascading effect and its ability to carry large currents [6]. Further,
the QCL can can be designed to emit wavelengths over a broad spectrum of
frequencies using the same combination of materials in the active region.

Since QCLs have demonstrated near Watt-level output powers at room tem-
perature in the mid-infrared portion of the spectrum, they are ideal candidates
to be used as sensors. Many pollutants, explosives, industrial chemicals, and
medical substances can only be detected with high accuracy with mid-infrared
lasers [7]. Given the wide range of capabilities listed, QCLs can be applied in
the environmental, military, security, and medical fields.

Lasers work by controlling the photon emissions of atoms as electrons move
from higher energy states to lower ones. The wavelength of a laser is determined
by the electrons change in energy state. In the case of a QCL, such energy states
are formed through careful design of one or more quantum wells (QWs), which
may form a coupled state system. In such a case, the ensemble properties of
the coupled QWs can differ from the individual structures. In general, QWs are
formed in semiconductors by placing a thin layer of narrow bandgap semiconduc-
tor between two potential barriers with a higher energy bandgap. In one stage of
a QCL laser an electron is captured and makes a transition from a higher energy
state to a lower energy state through the emission of a photon. The electron
is subsequently collected and injected into the next stage, performing the same
processes, giving rise to similar photon emissions. This is a continuous process
and is illustrated in Figure 1. This cascading, which causes emission of photons
and in turn lasing, is the attribute of the quantum cascade laser that gives it
its name, QCL [8]. In addition to these attributes, QCLs are unique because
their performance is not directly related to the properties of the specific semi-
conductor used, but rather is governed by the thickness of the fabricated layer.
In essence, this means a QCL is tunable to a desired terahertz frequency.

We are currently investigating QCL designs that have five QWs per period.
Banerjee et al [10] have investigated QCL designs that utilize three wells, and
Friedrich [11] investigates five well designs, but neither discuss how they devel-
oped their design parameters. This research, along with that from [4,3], are the
first to describe how QCL designs can be discovered using an MOEA.

The QCL problem domain description utilizes two fitness functions that at-
tempt to model two of the most important properties of a QCL. The first fitness
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Fig. 1. Cascading Scheme of a QCL [9]

function determines how well the energy levels are lining up. The goal is to have
good injection of electrons at the top of each quantum well, but at the same time,
have good drainage at the bottom of the well. If a laser has good injection, but
poor drainage, then the electrons at the top of the well won’t be able to jump to
the next energy state since it drains slower than the injection process. The second
fitness function determines the overlap ratios. This describes how electrons jump
from one state to another. In essence, the fitness function is a measure of how close
states are and the ability of the electron to transfer between the states.

3 Memetic MOEAs

GAs typically have difficulty fine-tuning chromosomes that are close to the op-
timal solution [12]. Memetic MOEAs (also called hybrid MOEAs, genetic local
search, and cultural algorithms) are designed as an attempt to find better solu-
tions in these instances. The algorithm is typically a combination of an MOEA
and a local search algorithm. By balancing the genetic global search and local
search, researchers can improve their results for some problem instances. Permu-
tation problems are one example of where memetic MOEAs have performed well.
The landscape of the QCL design problem also suggests that infusing local search
into the algorithm would generate better solutions. This section discusses how re-
searchers have integrated local search into their MOEAs and how we integrated
local search into our MOEA. Additionally, Table 1 lists a few of the varying ap-
proaches that researchers have applied a local search technique to an MOEA.

3.1 Lamarckian vs. Baldwinian

The local search technique used by researchers typically hinges on one of two
approaches: Lamarckian search and Baldwinian search. The Lamarckian search
technique uses a local search operator on the chromosomes generated by a GA
in an effort to find a better solution in the genotype neighborhood. If a better
solution is found in a nearby chromosome, that chromosome takes the place of
the original. The Baldwinian search technique performs a local search around
each chromosome and the best fitness from the local search results is recorded
with the chromosome, but the chromosome remains the same. So the fitness
value represents search neighborhoods that have the most promise instead of
actual good solutions.
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Researchers typically apply the Lamarckian search approach for memetic al-
gorithms: If a better solution is found by local search, that chromosome takes
the place of the original. For example, GAs that repair chromosomes in an effort
to satisfy constraints apply a Lamarckian approach [13]. Several researchers have
examined these two approaches on various problems, but there is no consensus
on which method is superior [13,14,15,16]

For this research effort, the focus is on finding good solutions with a an ap-
proximation model of a QCL so a more accurate model can be used to validate
that the solution is good. We use an approximation model because it produces
solutions much faster than the accurate model, which must make many com-
pound loops in the code until it reaches a steady state. Using the approximation
model allows us to search many more areas in the landscape. Since the goal is
finding the best solutions to analyze further, a Lamarckian approach is the most
appropriate method to use. With the Lamarckian method, the best solution from
the local search is saved, and this is the solution that we analyze in depth with
the more accurate model.

3.2 Application of Local Search Approaches

An evolutionary algorithm can generally implement local search in three differ-
ent ways: after each generation, on the final generation, and after a predefined
number of generations. Goel and Deb [17] compared how a purely posterior ap-
proach fared against an online (local search after every generation) approach.
The methods were run for a fixed number of evaluations using NSGA-II as the
guiding MOEA and a bit-wise hill-climbing strategy as the local search tech-
nique. The algorithm is used to find the optimal engineering shape design for
a cantilever plate and a simply-supported plate. The research showed that the
posterior approach found better solutions than the online approach.

The posterior approach is able to generate better diversity and convergence.
The results, in [17], show that applying local search after each generation applies
too much emphasis on local search and not enough on the evolutionary search.

Based on the results found in [17], this research applies local search after
predefined generations throughout the search process. While their research only
addresses applying local search techniques at the two extremes (all generations
or the last generation only), we take the middle road and apply local search
after predetermined intervals. By applying local search at set intervals, good
early solutions can be improved multiple times by the algorithm through local
search techniques as opposed to only once at the end. Since a stochastic local
search method is used in this research, the multiple local searches have a better
chance of finding good solutions in a very rugged search landscape.

3.3 Type of Local Search

A researcher can apply several different types of local search techniques to an al-
gorithm. Forms of simulated annealing (SA) and neighborhood search (NS) have
been successful local search enhancements to MOEAs[18,19,20,21,22]. Neighbor-
hood search has been successfully applied by numerous researchers in the MOEA
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community [18,19,20,21]. They found that adding a neighborhood search in the
decision space to their MOEA improved their results. Table 1 lists a few of the
memetic MOEAs that have been implemented.

Simulated annealing (SA) allows for a larger local search area early in the
run and slowly decreases the area as the algorithm continues. Leiva et al [22]
compared a simulated annealing approach to a neighborhood search and found
that neighborhood search performed better than SA for their problem instance.
They based these results on how many nondominated points one algorithm found
compared to the other. But their research in no way suggests that neighborhood
search should be used in all instances.

The local search (LS) algorithm used in this research is a ”multi-tiered” neigh-
borhood search algorithm. The neighborhood search selects an individual from
the global search algorithm and uses that individual as a baseline for the neigh-
borhood. The LS algorithm only varies a specified allele in the chromosome.
After the results are gathered for the associated neighborhood, another allele is
varied. This continues until all specified alleles have been varied. We call this
a multi-tiered neighborhood search because the alleles that are varied is depen-
dent upon how many generations the MOEA has run. This type of neighborhood
search was selected based our knowledge of the problem domain and landscape.
We have found the QCL landscape to be very rugged and noted that certain
design parameters affect the solution more than others, specifically the electric
field.

Therefore, the experiments in this research only vary the electrical field allele
in the earlier runs of the algorithm. So if our algorithm runs for 200 generations,
our neighborhood search would only vary the electrical field allele at the 50th
and 100th generations. At the 150th and 200th generation, the neighborhood
search would vary the barrier wall and width first, and then vary the electrical
field. This multi-tiered approach is used because the electrical field has many
possible solutions and it can play a major role in finding good solutions. So we
focus our earlier searches solely on the electrical field in order to narrow the
search region. In the later generations, we fine tune our search by attempting
to match up the best physical characteristics with the electrical field. Then we
slightly tweak the electrical field in order to find the best solutions in that region.
The multi-tiered neighborhood searches are limited to how far they can search
from the original allele value.

3.4 How Local Search Is Applied

Researchers have attempted to apply local search to the population of individuals
in a variety of ways. Many have applied it to all the individuals in the population
[18,23,19,17], while others have applied it to only the non-dominated individuals
[22,24]. This research looks at how the these two methods compare. We also
compare the results of taking the top 10 ranked individuals (all nondominated
individuals and all individuals dominated by 9 points or less). By doing this one
is gaining additional insight into their problem domain. For example, if there are
individuals who are slightly dominated, they may contain good genetic material
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in their chromosome that the local search may be able to use and create a new
individual that could not be created using a nondominated point.

3.5 Method of Selecting Individuals from Local Search

Researchers predominately use two different methods for selecting individuals
from the local search to continue on to the next generation. Many use a weighted
vector method [23,25,19,24,17,21], where a weighting is applied to each objec-
tive function and the local search attempts to find the best solution that fits
that weighting. After a solution is found the weighting is typically changed in
a random fashion and the new results are plotted. The goal is to have enough
variation in the weighting process to obtain solutions across the Pareto front.

The dominance method selects an new individual only if it is nondominated.
There are many ways a researcher can handle the occurrence of multiple nondom-
inated points. They can either add all of them into the population or use some
method to determine which individual should be picked. We chose to use the dom-
inance method because we didn’t want the possibility of missing good solutions
because we picked the wrong weighting for an individual. Plus, we knew that a lo-
cal search in the solution space can generate diverse points in the objective space.
Therefore keep all nondominated solutions that were found. This problem domain
typically generates a limited number of nondominated points, so we knew that
there wouldn’t be too many solutions if we kept all of the solutions.

4 Algorithm Selection

For the QCL problem, the general multi-objective parallel (GENMOP) algo-
rithm was selected because it incorporates some of the major operators of the
NSGA-II [27], SPEA2 [28], and GENOCOP [29] algorithms. The algorithm is
extended to include both local search procedures - the neighborhood search and
the multi-tiered neighborhood search. GENMOP has been applied successfully to
a broad range of problems ranging from in-situ bioremediation of contaminated
groundwater [30] to solving the aircraft engine maintenance scheduling problem
[31]. The initial MOEA was applied to the QCL problem twice before [4,3], but
with mixed results. The solutions received in the earlier research obtained good
solutions, but they required tedious tweaking in order to find better, more sta-
ble solutions. This was due to our algorithm providing a good global search, but
inadequate local search. To alleviate this problem, a local search technique was
added to the algorithm as indicated.

This section first discusses the particulars of the GENMOP algorithm. Then
the two local search algorithms are discussed in more detail.

4.1 GENMOP Description

GENMOP is a Pareto-based algorithm that utilizes real values for crossover and
mutation operators. The algorithm also employs fitness sharing through a niche
radius and a ranking structure that is similar to the one employed in NSGA-II.
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Table 1. Memetic MOEAs

Local Search Where How
Algorithm Used applied applied Method

Simulated After Non-dominated
MSPC-LS1 [22] Annealing (SA) MOEA individuals Dominance

Each All
MSPC-LS2 [22] SA Generation individuals Dominance

Neighborhood After Non-dominated
MSPC-LS3 [22] Search (NS) MOEA individuals Dominance

All Dominance
M-PAES [18] NS Continually individuals (archive)

Mutation Random Single
Thomson EA [20] NS operator individuals Objective

Polar Polar Each All
Dominance [26] dominance generation Subpopulations Dominance

Each All Weighted
S-MOGLS [23] NS Generation individuals vector

Each All Weighted
C-MOGLS [25] NS Generation individuals vector

Each All Weighted
PGS-WLS [19] NS Generation individuals vector

Each All
WGS-PLS [19] NS Generation individuals Dominance

Each All
PGS-PLS [19] NS Generation individuals Dominance

Non-dominated Weighted
M-NSGA-II [24] NS After MOEA individuals vector

Each All Weighted
M-NSGA-II [17] NS Generation individuals vector

Each All Weighted
EDWA [21] NS Generation individuals vector

After x Top 10 ranked
GENMOP-MTLS Tiered NS generations individuals Dominance

For the QCL problem, the individual chromosomes are encoded with values
denoting the physical size of the multiple barriers and wells for the cascading
region of the semiconductor, as well as the electrical field that is applied to the
laser. Auxiliary genes are also associated with the individual chromosomes to
define fitness values and Pareto ranking. All GA operations, to include mutation
and crossover, are performed solely on the chromosome without interaction from
the auxiliary genes.

There are six parameters that the user has the ability to specify with GEN-
MOP (parameter values used in this paper are shown): mutation probability,
pm = .25, initial population size, Pop0 = 25, number of generations, N = 200,
mating pool size, MP = 10, the niche radius, σshare = .6, and save generations.
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If no input file is specified to begin GENMOP execution a population of
size Pop0 is randomly initialized. Instead of utilizing a repair function after new
individuals are created, all parameters have minimum and maximum values that
constrain the chromosome construction. These initial chromosomes are stored in
the cumulative population, Popcum. Each individual within this population is
evaluated for its fitness and then these fitnesses are given a Pareto ranking. This
rank corresponds to the number of chromosomes that dominate the particular
individual. A non-dominated chromosome would hold the Pareto rank of zero.
This is the Pareto ranking scheme as developed by Fonseca and Fleming [32].

Selection for the mating pool occurs after the Pareto ranking has terminated.
Individuals are selected first based on their Pareto rank. When more individuals
are similarly ranked than the spaces left in the mating pool, defined by MP, then
the equivalence class sharing technique [33] is used to measure crowding within
the objective space. Chromosomes from less crowded areas of the objective space
are chosen for the mating pool to help preserve diversity within the population.

The GENMOP software flows from the required input to population initial-
ization, through a preliminary evaluation, ranking and normalization of this
population. If the maximum number of user specified generations has not been
reached, then GENMOP fills the mating pool with individuals from the cu-
mulative population maintaining the highest rank. Crossover and mutation are
performed on these individuals, followed by an evaluation. Once all the individu-
als are returned to the cumulative population, ranking takes place. The children
are saved in an output file. If the maximum number of generations are reached,
the program terminates and writes all the individuals in the cumulative popu-
lation to an additional output file. If the maximum number of generations has
not been reached, the GA loops back, refills the mating pool, performs crossover
and mutation, evaluates the new individuals, places them back in the cumula-
tive population and ranks the whole population. This loop continues until the
maximum number of generations is reached and the program is terminated.

Crossover. The entire mating pool is now subjected to crossover and mutation
operators developed in GENOCOP [34]. Crossover occurs in one of four ways
∀ xi ∈ the mating pool, where i = {1,2,3,...,|MP|}. For the first three types of
crossover described below a second individual, xr, is chosen at random from MP
to be crossed with xi.

1) Whole Arithmetical Crossover : All genes of xi and xr are linearly com-
bined to form chromosomes x1 and x2. GENMOP retains x1 and discards x2.

2) Simple Crossover : One gene is chosen in both xi and xr and swapped to
form chromosomes x1 and x2. GENMOP retains x1 and discards x2.

3) Heuristic Crossover : Individuals xi and xr are combined to form one
individual � x1 = R · (xr - xi) + xr, where R is a uniform random number
between zero and one and the rank of xr ≤ xi.

4) Pool Crossover : Randomly chooses genes from individuals in the mating
pool and combines them to create x1.

The type of crossover to be performed on the two individuals is chosen based
upon an adaptive probability distribution. Each of the four crossover types
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described above begins with the same probability of being chosen. As the al-
gorithm progresses through generations these probabilities are adapted through
the fitness of the individuals they create. If the newly created individual domi-
nates xi, then the fitness of the newer individual was increased over the previous
through use of this particular crossover operator. Consequently, because of the
success of the new individual the crossover operator’s selection probability in-
creases [34].

Mutation. The new individuals created through a crossover operation are now
subject to mutation with a probability defined by the user, pm. If a number, n
is randomly selected from a uniform distribution, so that 0 < n < 1 and n <
pm, then one of three mutation operators described below is chosen to perform
on the individual.

1) Uniform Mutation: Chooses a gene existing in the chromosome to reset
to a random value within its specified ranges.

2) Boundary Mutation: Chooses a gene existing in the chromosome to reset
to either its maximum or minimum value.

3) Non-uniform Mutation: Chooses a gene to modify by some random value
decreases probabilistically, until it equals zero, as the generation number ap-
proaches the maximum generations.

The mutation operator is selected using the same adaptive probability dis-
tribution described previously for crossover operations. Between these two op-
erators a new population is developed, Popnew which is equal to |MP|. Each
individual in Popnew is evaluated for fitness and then placed in Popcum. This is
an archive that contains the chromosomes created in previous generations.

4.2 Local Search Description

In the research, a baseline local search procedure was added to the algorithm.
This initial approach, which is not much different from the neighborhood searches
listed in Table 1, was intended to be used as a baseline method for comparison
with the innovative multi-tiered MOEA. In this baseline local search procedure,
the algorithm explores for allele values in the neighborhood of the initial value.
Specifically, the procedure limits its search to the area that is within α = 0.1 of
the total values that the allele can take on. The algorithm stochastically selects
an equal number of neighbors that are above the current allele value and below.
The local search is applied at set generations. It is applied after every generation,
every 20 generations, every 50 generations, and at the end of the algorithm. This
setting is changed to see the effect. The GENMOP-LS algorithm is typically run
on only the nondominated points, but it is run once to include some of the best
dominated points in order to determine if that method performs better.

4.3 Multi-tiered Local Search Description

The multi-tiered local search addition to GENMOP, nicknamed GENMOP-
MLTS, focuses the first search on the electrical field. The neighborhood search
in this tier, uses a neighborhood size that is 4% the size of the actual electrical
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field search space. This neighborhood size was chosen because it balances effi-
ciency (limit the number of fitness evaluations) with effectiveness. This first tier
of local search is run after generations 50 and 100. We chose to run the local
search at these intervals because it provided the algorithm with a good balance
of local search and global search. The goal in this first tier of local search is to
focus the attention, and fitness evaluations, on the search region that has the
most influence on creating good solutions. Through previous experimentation
and problem domain knowledge, we determined that the electrical field had the
biggest impact on creating good solutions.

The second tier of GENMOP-MLTS applies the neighborhood search first to
the width of the quantum wells and then to the electrical field. The neighborhood
for the wells is 20% of the size of the wells. This neighborhood is larger because
the actual search area for the quantum wells is much smaller than the electrical
field. The electrical field is then varied with a much smaller neighborhood (1%)
than used in the first tier. This second tier is run after generations 150 and 200.
The second tier of neighborhood searches are more for fine-tuning the solutions
that are generated in the earlier portion of the algorithm. So the first tier is
used for larger adjustments in the solution and the second tier is used to fine
tune our results. This is similar to the principles of simulated annealing, but this
approach also directs the search to different regions of the decision space based
on what stage the algorithm has reached.

5 Results and Analysis

Each implementation of memetic GENMOP is run 100 times in order to be able
to effectively compare the results with previous results found in [4,3]. The Pareto
front generated by the best results are compared to the other runs. Each imple-
mentation is run for 200 generations and starts with 25 individuals. We again
chose these numbers in order to better compare these research results with pre-
vious results. To compare GENMOP-LS to the multi-tiered GENMOP-MTLS,
each MOEA is run with local search applied every 50 generations (local search
applied a total of 4 times during the run). In all instances, the GENMOP-MTLS
was able to find high quality solutions (which are designs that can be effectively
fabricated into a stable QCL). Figure 2 shows graph comparing GENMOP-LS
with GENMOP-MTLS.

The values in the graph are overlap ratios and energy level differences. These
are described in further detail in Section 2. The overlap ratios are unitless while
the energy level difference is measured in Angstroms. A zero level is considered
the best and a one is the worst. We are interested in finding solutions that
are at roughly 0.25 or less. Any values that reach 0.1 are highly desirable. As
Figure 2 shows, numerous values from both algorithms are considered acceptable
solutions. But it is easy to note that all 11 points generated by GENMOP-MTLS
were nondominated while only 1 out of 34 point were nondominated using the
baseline GENMOP-LS. This figure empirically confirms that the GENMOP-
MTLS is more effective at finding higher quality solutions. One disadvantage is
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Fig. 2. Comparison of GENMOP-LS with a local search applied every 50 generations
and the improved, multi-tiered, GENMOP-MTLS
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Fig. 3. Comparison of results based on the number of individuals having the multi-
tiered memetic GENMOP applied to them

that fewer points are found along the GENMOP-MTLS Pareto front. This is
probably due to the landscape, where multiple solutions may lead to the same
nondominated point.

Next, we compared the runs that the local search was applied to all indi-
viduals, nondominated individuals, and only individuals that were dominated
by 10 points or less. These experiments were run in the same fashion as the
previous experiments (200 generations, 25 individuals in the initial population,
local search applied every 50 generations). Figure 3 shows the results. It appears
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that for this problem domain, applying GENMOP-MTLS to only the nondom-
inated solutions works the best. The results are all very similar, but applying
GENMOP-MTLS to the nondominated points only appears to generate better
compromise solutions, while applying it to all ranks appears to do a better job at
finding solutions on the edges of the Pareto front. While many of these values fall
out of our 0.25 criteria for acceptable solutions, it is an interesting phenomenon
that should be investigated in the future.

6 Conclusion

Memetic MOEAs are a key tool for researchers to use to apply more local search
to MOP domains. In this paper, we empirically validate that our innovative,
multi-tiered memetic MOEA, GENMOP-MTLS, is capable of generating better
solutions than a standard memetic MOEA - much like those listed in Table 1.
By applying problem domain knowledge, and changing the local search focus in
stages, we are able to more effectively generate solutions. This multi-tiered ap-
proach can be useful in other problem domains, where several alleles play a major
role in determining the fitness of an individual. Various other alleles can be used
to ”fine tune” the results. Understanding the problem domain search landscape
can play a major role in how a memetic algorithm should be implemented.

The authors wish to acknowledge former Air Force Institute of Technology
student Traci Keller and Researcher Andrés F. Rodŕıguez , whose initial work
on this problem enabled us to have better insight on the problem domain and
enabled us to develop better fitness functions and improve our algorithm.
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Abstract. In this paper, we propose a memetic EMO algorithm that enhances 
the similarity of two sets of non-dominated solutions. We employ our algorithm 
in vehicle routing problems (VRPs) where the demand of customers varies. We 
consider two periods of different demand in a problem that are Normal Demand 
Period (NDP) and High Demand Period (HDP). In each period, we can find a 
set of non-dominated solutions with respect to several objectives such as 
minimizing total cost for delivery, minimizing maximum cost, minimizing the 
number of vehicles, minimizing total delay to the date of delivery and so on. 
Although a set of non-dominated solutions can be searched independently in 
each period, drivers of vehicles prefer to have similar routes in NDP and HDP 
in order to reduce their fatigue to drive on a different route. In this paper, we 
propose a local search that enhance the similarity of routes in NDP and HDP. 
Simulation results show that the proposed memetic EMO algorithm can find a 
similar set of non-dominated solutions in HDP to the one in NDP. 

Keywords: memetic algorithm, local search, solution similarity, vehicle routing 
problem. 

1   Introduction 

Although we have various approaches in EMO (Evolutionary Multi-criterion 
Optimization) community [1-3], there are few research works that investigate the 
similarity among obtained sets of non-dominated solutions. Deb considered 
topologies of several non-dominated solutions in Chapter 9 of his book [4]. He 
examined the topologies or structures of three-bar and ten-bar truss. He showed that 
neighboring non-dominated solutions on the obtained front are under the same 
topology, and NSGA-II can find the gap between the different topologies. While he 
considered the similarity of solutions in a single set of non-dominated solutions from 
a topological point of view, there is no research work relating to EMO that considers 
the similarity of solutions in different sets of non-dominated solutions. In this paper, 
we propose a memetic EMO algorithm that enhances the similarity of solutions in 
different sets of non-dominated solutions. 
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We employ Vehicle Routing Problems (VRPs) to consider the similarity in 
different sets of solutions. The VRP is a complex combinatorial optimization problem 
that can be seen as a merge of two well-known problems: Traveling Salesman 
Problems (TSP) and Bin Packing Problems (BRPs). This problem can be described as 
follows: Given a fleet of vehicles, a common depot, and several customers scattered 
geographically. Find the sets of routes for the fleet of vehicles. As for objective 
functions considered in VRPs, many research works [5-9] on the VRP try to minimize 
the total route cost that is calculated using the distance or the duration between 
customers. Among them the research works in [7-9] are related to multi-objective 
optimization. Tan et al. [7] and Saadah et al. [8] employed the travel distance and the 
number of vehicles to be minimized. Chitty and Hernandez [9] tried to minimize the 
total mean transit time and the total variance in transit time.  

In this paper, we employ three objectives. One is to minimize maximum routing 
time and another is to minimize the number of vehicles in VRPs. It should be noted 
that we don’t employ the total routing time of all the vehicles, but use the maximum 
routing time among the vehicles. We employed it in order to minimize the active 
duration of the central depot. Even if the total routing time is minimized, the central 
depot should be opened until the last vehicle comes back to the depot. In order to 
minimize the active duration of the central depot, the maximum routing time should 
be minimized. 

As for the third objective, we consider the similarity of solutions. In this paper, we 
suppose two periods with different demands. One period has a normal demand of 
customers. The other has a higher demand. We refer the former period and the latter 
period as Normal Demand Period (NDP) and High Demand Period (HDP), 
respectively. We define the demand in the HDP as an extended demand of the NDP in 
this paper. For example, we assume that the demand in the HDP is a demand 
occurring in a high season such as Christmas season. In that season, the depot may 
have an extra demand as well as the demand in the normal season. In order to avoid 
big changes of each route from the depot, a solution (i.e., a set of route) in HDP 
should be similar to a solution in NDP. This situation requires us to consider the 
similarity of solutions on different non-dominated solutions in multi-objective VRPs. 

In order to find a set of non-dominated solutions in the HDP that is similar to a set 
of non-dominated solutions in the NDP, we apply a two-fold EMO algorithm [10] to 
the problem. In a two-fold EMO algorithm, first we find a set of non-dominated 
solutions for the NDP by an EMO algorithm. In order to enhance the similarity 
between sets of non-dominated solutions in NDP and HDP, we showed the 
effectiveness of utilization of a solution set in NDP for population initialization in 
HDP [10]. In this paper, we propose a local search method in a memetic EMO 
algorithm to enhance the solution similarity in HDP to a solution set in NDP. 

We organize this paper as follows: Section 2 gives the problem model for multi-
objective VRPs. We define a measure of the similarity between solutions in Section 3. 
The outline of our two-fold EMO algorithm is described in Section 4. In section 5, we 
propose a local search algorithm that enhances the solution similarity introduced in 
the second phase of the two-fold memetic EMO algorithm. Section 6 describes 
simulation results that show the effectiveness of the proposed local search algorithm. 
Conclusions are drawn in Section 7. 
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2   Multi-objective Vehicle Routing Problems 

The domain of VRPs has large variety of problems such as capacitated VRP, multiple 
depot VRP, periodic VRP, split delivery VRP, stochastic VRP, VRP with backhauls, 
VRP with pick-up and delivering, VRP with satellite facilities, VRP with time 
windows and so on. These problems have the basic architecture of the VRP except 
their own constraints. Those constraints are arisen in practical cases. Please see for the 
detail of the VRP problem in  [11]. 

A solution of the VRPs is represented by a permutation of N customers, and we 
split it into M parts as shown in Figure 1. It shows eight customers that are served by 
three vehicles. The first vehicle denoted 1v  in the figure visits three customers in the 
order of Customers 1, 2, and 3. Each solution is divided by a closed triangle. 
Therefore the driving duration for 1v  is calculated by DD cccc ,33,22,11, +++ . Figure 
2 shows an example of three routes depicted on the map of eight customers and the 
depot. It should be noted that, we consider only problems with symmetric cost where 

1,22,1 cc =  in this paper. 
The objective employed in many VRPs is to minimize a total cost is described as 

follows: 

                                                      Min. ∑ =
M
k kc1 ,                                                        (1) 

where M is the number of vehicles that start from the depot and is routed by a 
sequence of customers, then return to the depot. The cost of k-th vehicle is denoted by 

kc  and described as follows: 

                                          Dn
n
i iiDk k

k cccc ,
1

1 1,1, ++= ∑ −
= + ,                                         (2) 

where jic ,  means the cost between Customers i and j. Let us denote D  as the index 

for the depot in this paper. Equation (2) indicates the sum of the cost between the 
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Fig. 1. An example of eight customers visited 
by three vehicles. Each triangle shows the 
split between the routes for vehicles. 
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Fig. 2. An example of eight customers visited 
by three vehicles 
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depot and the first customer assigned to the k-th vehicle (i.e., 1,Dc ), the total cost 
from the 1st customer to the kn -th customer (i.e., ∑ −

= +
1

1 1,
kn

i iic ), and the cost between 
the final customer kn  and the depot. Each vehicle is assigned to visit kn  customers, 
thus we have ∑ == M

k knN 1  customers in total. The aim of this VRP is to find a set of 
sequences of customers that minimizes the total cost. Each customer should be visited 
exactly once by one vehicle. 

While the total cost of all the vehicles is ordinarily employed in the VRP, we 
employ the maximum cost to be minimized in this paper. When the cost jic ,  is 
related to the driving duration between Customers i and j in Equation (2), the total 
cost kc  for the k-th vehicle means the driving duration from the starting time from the 
depot to the returning time to the depot. In order to minimize the activity duration of 
the depot, the maximum duration of the vehicles should be minimized since the depot 
should wait until all the vehicles return to the depot. We also consider the 
minimization of the number of vehicles in our multi-objective VRP. The objectives in 
this paper can be described as follows: 

Min. k
k

cmax ,                                                        (3) 

Min. M .                                                            (4) 

When we have a solution with 1=M , our problem becomes the traveling salesman 
problem, the TSP. In that case, the other objective, to minimize the maximum driving 
duration in Equation (3), becomes just to minimize the total driving duration by one 
vehicle. On the other hand, the maximum driving duration becomes minimum when 
the number of vehicles equals to the number of customers (i.e., NM = ). In that case, 
each vehicle visits only one customer. The driving duration for each vehicle in (2) can 
be described as follows: 

DDk kk
ccc ,]1[]1[, += ,                                                 (5) 

where k]1[  denotes the index of the customer visited by the k-th vehicle. The 
maximum driving duration in (5) over M vehicles becomes the optimal value of that 
objective in the case of NM = . Therefore we face the trade off between these two 
objectives: the minimization of the maximum driving duration and the minimization 
of the number of vehicles. 

We consider two periods with different demands: NDP and HDP. In NDP, a 
normal demand of customers should be satisfied. On the other hand, extra demands 
should also be satisfied in HDP. In this paper, we increase the number of customers in 
HDP. That is, HDPNDP NN < , where NDPN  and HDPN  are the number of customers 
in NDP and HDP, respectively. We can obtain a set of non-dominated solutions for 
each problem. We refer a set of non-dominated solutions for NDP as NDPΨ , and that 
for HDP as HDPΨ . These two sets of non-dominated solutions can be obtained by 
applying one of EMO algorithms such as NSGA-II [12]. But if we apply the 
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algorithm to each of NDP and HDP independently, we can not expect to obtain a set 
of solutions with similar routes in HDP to that obtained for NDP. 

3   Similarity Between Sets of Non-dominated Solutions 

We define a similarity measure between a non-dominated solution HDPΨ  obtained 
for HDP and NDPΨ  for NDP. Since the aim of measuring the similarity is to find a 
solution in HDP that is similar to one in NDP, we measure the similarity of a solution 
in HDP to the one in NDP. We measure it by a ratio of the number of the same edges 
to the number of all edges in a solution of NDP. 

We define the similarity of solution x  in HDP is as follows: 

)
)(

),(
(max)),((max)(

yedges

yxsames
yxsimilarityxsimilarity

NDPNDP yy Ψ∈Ψ∈
== , HDPx Ψ∈ , (6) 

where ),( yxsimilarity  is the similarity of the solution x  to the solution y , that is 
calculated by ),( yxsames  (i.e., the number of the same edges) and )(yedges  (i.e., the 
number of edges in a solution y ). Figure 3 shows an example to calculate the 
similarity of solution x  (5, 1, 2, 3, 6, 4 with four vehicles) to three non-dominated 
solutions (2, 1, 3 with one vehicle, 1, 2, 3 with two, and 1, 3, 2 with three) obtained 
for NDP. The similarity of solutions x  becomes the maximum similarity 0.8 through 
the calculation. 

4   Two-Fold EMO Algorithm for Multi-objective VRPs 

In this section, we show a Two-Fold EMO algorithm for our multi-objective VRPs 
[10]. Then we show how we apply a two-fold EMO algorithm to obtain a similar set 
of solutions in NDP and HDP. 

 

(D1, 12, 2D, D3, 3D)

(D5, 5D, D1, 12, 2D, D3, 36, 6D, D4, 4D) 

5 1 2 3 6 4Solution for HDP 

1 2 3

Solutions for NDP

2 1 3 1 3 2

0.0 0.8 0.5 

(D1, 1D, D3, 3D, D2, 2D) (D2, 21, 13, 3D) 

 

Fig. 3. The similarity of a solution for HDP that is calculated as the maximum similarity among 
three similarities 
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4.1   Genetic Operators 

[Crossover] 
We employ the edge exchange crossover (EXX) [13] as a crossover operator. This 
crossover produces offspring only by exchanging edges in parents chromosome, 
where an edge means a segment between two customers. Therefore offspring 
chromosomes preserve segments between customers well. The following is the 
algorithm of this crossover: 

Step 1) Select an edge randomly from one parent (Parent 1), and let 1i  be the 
position of the edge. Let 2i be the position of the edge of the other parent 
(Parent 2) whose origin customer is the same as that of the 1i -th edge in 
Parent l. 

Step 2) Let 2j  be the position of the edge of Parent 2 whose origin customer is the 
same as the destination customer of the 1i -th edge in Parent l, and 1j  be the 
position of the edge of Parent l whose origin city is the same as the 
destination customer of the 2i -th edge in Parent 2. 

Step 3) Exchange the 1i -th edge of Parent l and the 2i -th edge of Parent 2. If the 
destination customers of them are the same, terminate the algorithm. 

Step 4) Invert the order of the edges and their origin and destination customers of 
Parent 1 between the positions 1i  and 1j , and those of Parent 2 between the 
positions 2i  and 2j . 

Step 5) Let 11 ji =  and 22 ji =  and go to Step 2. 

Figure 4 shows the above procedure between the following parents with one 
vehicle: 

Parent 1: (1 2 3 4 5 6 7 8),  and Parent 2: (2 5 4 1 6 7 3 8). 

Their edges can be represented as follows: 

Parent 1: (12 23 34 45 56 67 78 81), and Parent 2: (25 54 51 16 67 73 38 82). 

As an example where the edge 23 of Parent l is taken as the starting edge in Step 1 of 
the above procedure. We have the following offspring after the crossover operation 

Offspring 1: (1 2 5 4 3 8 7 6), and Offspring 2: (7 3 2 8 1 4 5 6). 

In this paper, we consider any chromosome with multiple vehicles as that with one 
vehicle. Thus the following cases have the same result in the order of the customers 
while their positions of Depot do not change between parent and offspring. 
 
Case A: Parent 1: (1 2 | 3 4 5 6 | 7 8), and Parent 2: (2 5 4 1 | 6 7 3 8). 
Case B: Parent 1: (1 2 3 | 4 5 6 7 8), and Parent 2: (2 | 5 4 | 1 6 7 | 3 8). 
 
Case A: Offspring 1: (1 2 | 5 4 3 8 | 7 6), and Offspring 2: (7 3 2 8 | 1 4 5 6). 
Case B: Offspring 1: (1 2 5 | 4 3 8 7 6), and Offspring 2: (7 | 3 2 | 8 1 4 | 5 6). 
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12 23 34 45 56 67 78 81

25 54 41 16 67 73 38 82

1i

2i 2j

1j  

12 25 34 45 56 67 78 81

23 54 41 16 67 73 38 82

12 25 54 43 56 67 78 81

23 37 76 61 14 45 38 82

1i  

2i

1j

2j  

12 25 54 43 38 67 78 81 

23 37 76 61 14 45 56 82 

12 25 54 43 38 87 76 81 

73 32 28 61 14 45 56 67 

1i  

2i

1j

2j

12 25 54 43 38 87 76 61 

73 32 28 81 14 45 56 67 

 
 

Fig. 4. Examples of Edge Exchange Crossover [13] 

 

8 1 3 4 7 2 5 6

8 1 3 4 5 2 7 6

8 1 3 4 7 2 5 6

Split Mutation

Order Mutation

 
 

Fig. 5. Examples of two mutation operators. In the order mutation, a selected route is inversed 
its order of customers. In the split mutation, locations of splits are changed randomly.  

[Mutation] 
As for the mutation, we employ two kinds of operators in order to modify the order of 
customers and the locations of splits in a selected route. Figure 5 shows examples of 
these mutations. It should be noted that the order mutation itself does not affect the 
two objectives (i.e., the maximum driving duration and the number of vehicles). But it 
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can be useful to increase the variety of solutions when it is used with the crossover 
and the split mutation. 

It should be noted that through crossover and mutation in this paper, the number of 
vehicles does not change. Therefore if there is no individual with a certain number of 
vehicles, no solution with that number of vehicles is generated through genetic search. 

4.2   Two-Fold EMO Algorithm 

In our multi-objective VRP, we have two periods, NDP and HDP. Since HDP has 
extra demands of customers with the demands of NDP, we have two approaches to 
search a set of non-dominated solutions for each of NDP and HDP. One approach is 
to apply an EMO algorithm individually to each of them. The other is to apply a two-
fold EMO algorithm [10] to them. In the two-fold EMO algorithm, first we find a set 
of non-dominated solutions for the NDP by an EMO algorithm. Then we generate a 
set of initial solutions for the HDP from the non-dominated solutions for the NDP. 
We apply an EMO algorithm to the HDP with initial solutions that are similar to those 
of the NDP problem. In our former study [10], we showed that the two-fold EMO 
algorithm has the better performance than applying an EMO algorithm individually. 
The procedure of the two-fold EMO algorithm is described as follows: 

[Two-Fold EMO Algorithm] 

Step 1: Initialize a set of solutions randomly for the NDP. The number of vehicles 
and the order of customers in each solution are defined randomly. 

Step 2: Apply an EMO algorithm to find a set of non-dominated solutions until the 
specified stopping condition is satisfied. 

Step 3: Obtain a set of non-dominated solutions for the NDP. 
Step 4: Initialize a set of solutions for the HDP using a set of non-dominated 

solutions of the NDP. 
Step 5: Apply an EMO algorithm to find a set of non-dominated solutions until the 

specified stopping condition is satisfied. 
Step 6: Obtain a set of non-dominated solutions for the HDP. 

In Step 4, we initialize a set of solutions as follows: 

Step 4.1: Obtain a set of non-dominated solutions of the NDP. 
Step 4.2: Specify a solution of the set. 
Step 4.3: Insert new customers randomly into the solution. 
Step 4.4: Repeat Steps 4.2 and 4.3 until all solutions in the set of non-dominated 

solutions of the NDP are modified. 
 
It should be noted that the number of vehicles of each solution is not changed by this 
initialization. The number of vehicles of each solution is changed by the crossover 
operation. Using this initialization method, we found that the similarity between  
non-dominated solutions for the NDP and those for the HDP can be increased [10]. 
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Fig. 6. The obtained non-dominated solutions in the HDP with ten customers. The similarity is 
to be maximized, the maximum duration to be minimized, and the number of vehicles to be 
minimized. 

We applied the two-fold EMO algorithm to a VRP that has five customers in NDP 
and ten customers in HDP. As for an EMO algorithm, we employed NSGA-II [12]. 
Figure 6 shows the results of the two-fold EMO, and the EMO applied the HDP with 
a population initialized randomly. In this problem, we consider only two objectives: 
the maximum duration and the number of vehicles. We obtained the average 
maximum duration of a set of non-dominated solutions over 100 trials. We calculate 
the average similarity after obtaining a set of non-dominated solutions for HDP. In the 
first figure of Figure 6, we can find that the two-fold EMO can find better non-
dominated solutions with respect to the minimization of the maximum duration and 
the number of vehicles. From the second figure, we can find that the similarity of non-
dominated solutions obtained by the two-fold EMO algorithm is better than that 
obtained by the EMO algorithm. In this experiment, we can see that improving 
solutions with respect to the maximum duration does not lead to deterioration of the 
similarity of non-dominated solutions to those in NDP. Therefore we can say that the 
two-fold EMO could find the better solutions compared to the EMO for HDP without 
initial solutions from NDP. 
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5   Two-Fold Memetic EMO Algorithm 

In this paper, we propose a local search that enhances the similarity of non-dominated 
solutions for HDP. In order to increase the similarity of a solution for HDP, we 
incorporate segments between customers from a solution of NDP to a solution of 
HDP. Therefore we introduce this procedure in an EMO search for HDP not for NDP. 
The algorithm of the proposed local search can be described as follows: 

[Local Search Algorithm] 

Step 1:  Select a solution x  from the current HDPΨ . 

Step 2: Select a non-dominated solution y  from NDPΨ  that is used for the 

calculation of the maximum similarity of a solution x . 
Step 3: Select an edge between two customers in y . Therefore the edge should be 

selected within a vehicle. 
Step 4: Find a start customer of the selected edge in x . 
Step 5: Incorporate the edge to x  at the position of the first customer in x . Since the 

following customer to the first customer in x  is replaced by the second 
customer in the edge, a repairing process should be followed. Find the 
second customer in x , and replace that with the following customer. 

Step 6: Return to Step 3 until all edges in y  is incorporated in x . 
 
Figure 7 shows an example of this local search. We apply this local search to each 
solution of the current set of non-dominated solutions. Since this local search process 
is introduced to an EMO search in HDP, the two-fold memetic EMO algorithm can be 
depicted as Figure 8. 

 
3 1 4 5 2

Solution for HDP 
(Before LS) 

Non-dominated
 Solution for NDP

1 2 3 4

3 4 1 5 2 1 2 3 4

3 4 1 2 5

Solution for HDP 
(After 1st LS) 

Solution for HDP  
(After 2nd LS) 

Non-dominated
 Solution for NDP

 
 

Fig. 7. Local search applied to a solution for HDP. An edge (3,4) in a non-dominated solution 
for NDP is incorporated to a solution for HDP. Since (3,1) in the solution for HDP is replaced 
with (3,4) the customers 1 and 4 in the solutions for HDP should be exchanged in a repairing 
process. Since the solution for NDP has two edges in its string, the local search process 
terminates at the second time. 
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Local Search 

First Phase: EMO for NDP 

Second Phase: EMO for HDP

Memetic EMO Algorithm

 
 

Fig. 8. Two-Fold Memetic EMO Algorithm. A local search is introduced in the second phase of 
EMO search for HDP. 

Table 1. The parameter specifications in EMO algorithms 

# of population 30 
Crossover rate 1.0 
Order mutation rate 0.04 
Split mutation rate 0.02 
Terminal Generation 2000 

6   Simulation Results by Two-Fold Memetic EMO Algorithm 

We show the simulation result on a multi-objective VRP with NDP and HDP. In that 
problem, there are five customers in NDP, and ten customers in HDP. Table 1 shows 
the parameter specifications in our two-fold memetic EMO algorithm. We apply our 
two-fold memetic EMO algorithm to the problem with 100 different initial solution 
sets. That is, we obtain average results over 100 trials in a problem. In this section, 
first we examine the effect of introducing the similarity as third objective. Then we 
show the effectiveness of the proposed local search to enhance the similarity. 

6.1   Effect of Similarity 

We apply two EMO algorithms to a problem in HDP. One is the two-fold EMO 
algorithm with three objectives (2F-EMO-3). The other is the two-fold EMO 
algorithm with two objectives (2F-EMO-2). We don’t employ the proposed local 
search in this section. Therefore both algorithms have an initial population generated 
by a non-dominated solutions for NDP. The same result is obtained by Two-Fold 
EMO in Figure 6 by 2F-EMO-2. We calculate the similarity of non-dominated 
solutions obtained by 2F-EMO-2 after the search. Figure 9 shows the simulation 
results obtained by these algorithms. Since the 2F-EMO-3 finds non-dominated 
solutions on the surface of three objectives, we project them onto the two objective 
space in Figure 9. Therefore they are projected between two lines. We depicted two 
lines of extreme cases. That is, the lowest and the highest similarity on the space with 
the maximum duration and the number of vehicles. On the other hand, the shortest 
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and the longest maximum duration on the space with the similarity and the number of 
vehicles. From Figure 9, we can see that slightly better solutions are obtained by the 
2F-EMO-2 with respect to the minimization of the maximum duration. On the other 
hand, the 2F-EMO-2 finds worse solutions with respect to the maximization of the 
similarity. As for the 2F-EMO-3, it produces slightly better non-dominated solutions 
in the similarity when their maximum duration becomes near to those of the 2F-EMO-
2. On the other hand, when the 2F-EMO-3 sacrifices the minimization of the 
maximum duration, the similarity of non-dominated solutions becomes much better 
than the 2F-EMO-2. Through this figure, we can find that the similarity of non-
dominated solutions has the trade-off relationship with the maximum duration. 
Therefore the introduction of the similarity as third objective is needed for those who 
wants to have similar routes in HDP to NDP. 

6.2   Effect of Local Search to Enhance the Similarity in HDP 

In this section, we examine the effectiveness of the proposed local search to enhance 
the similarity of non-dominated solutions for HDP. We compare the 2F-EMO-3 and 
the two-fold memetic EMO algorithm (2F-mEMO). From Figure 10, We can see that 
the 2F-EMO-3 could find better solutions with respect to the maximum duration when 
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Fig. 9. The effect of the similarity 
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it sacrifices the similarity. On the other hand, almost similar maximum durations are 
obtained by both the algorithms when they seek to maximize the similarity. Although 
both the algorithms have similar maximum durations in the case of high similarity, 
the degree of the similarity of these algorithms is quite different in the latter figure of 
Figure 10. Using the proposed local search, the 2F-mEMO could enhance the 
similarity especially in non-dominated solutions with two through six vehicles. As for 
the solutions with more than seven vehicles the similarity is not improved well. This 
is because each vehicle should not visit so many customers when the number of 
vehicles is similar to the number of customers. Similar routes are required when each 
vehicle has several customers to visit. From Figure 10, we can see that the proposed 
local search is very much effective in enhancing the similarity with a slight 
deterioration in the maximum duration. 

7   Conclusion 

In this paper, we proposed a local search that can be used in a two-fold memetic EMO 
algorithm for multiple-objective VRPs with different demands. The simulation results 
show that the proposed method have the fine effectiveness to enhance the similarity of 
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obtained routes for vehicles. Although the local search slightly deteriorates the 
maximum duration, we can see the effectiveness of the similarity of the routes 
because the possibility of getting lost the way of drivers may be decreased. If drivers 
get lost their ways during their delivery, the cost of his routes may increase. The 
enhancing the similarity of set of non-dominated solutions seems important when we 
apply EMO algorithms to practical problems. 

Since the algorithm of the proposed local search to enhance the similarity depends 
on the problem specifications, we should make further research on the similarity of a 
set of non-dominated solutions with different problems. We may define similarity on 
the genotype, and it on the phenotype. Since the similarity on the phenotype may 
depend on problems, we should research further on the similarity on the genotype of 
various problems. 
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Abstract. When multi-objective genetic algorithms are applied to real-
world problems for deriving Pareto-optimal solutions, the high calcula-
tion cost becomes a problem. One solution to this problem is to use a
small population size. However, this often results in loss of diversity of the
solutions, and therefore solutions with sufficient precision cannot be de-
rived. To overcome this difficulty, the solutions should be replaced when
they have converged on a certain point. To perform this replacement,
inverse analysis is required to derive the design variables from objects
as the solutions are located in the objective space. For this purpose, an
Artificial Neural Network (ANN) is applied. Using ANN, the solutions
concentrating on certain points are replaced and the diversity of the so-
lutions is maintained. In this paper, a new mechanism using ANN to
maintain the diversity of the solutions is proposed. The proposed mech-
anism was introduced into NSGA-II and applied to test functions. In
some functions, the proposed mechanism was useful compared to the
conventional method. In other numerical experiments, the results of the
proposed algorithm with large populations are discussed and the effec-
tiveness of the proposed mechanism is also described.

1 Introduction

Since Schaffer developed the genetic algorithm for multi-objective optimization
problems [14], many evolutionary multi-objective algorithms that can derive
good solutions have been introduced in this field [7,19]. Recently, these algo-
rithms have been applied to real-world problems and effective results have been
obtained. [3,16] One of the most important points to obtain solutions in real-
world problems is to derive a superior solution within a reasonable time. Usually,
it takes a large amount of time to evaluate one parameter set in a real-world
problem. Therefore, even with a strong algorithm, satisfactory results cannot be
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derived if the calculation time is of insufficient length. In this case, an algorithm
that can derive reasonable solutions with a small number of evaluation calls
should be used. There are two approaches to develop such algorithms.

The first approach is to use the response surface methodology [17], which is a
technique for approximating objective functions. This method reduces the cal-
culation costs by generating approximations of objective function and treating
these approximations as objective functions for each evaluation. There are several
response surface methodologies, such as the quadratic polynomial model [1], neu-
ral network model [2,6,11], and Kriging model [12]. Among these, the quadratic
polynomial model is commonly used, because it is the simplest and has low cal-
culation costs for approximation. Although the costs associated with the other
models for approximation are greater than those for the quadratic model, the
neural network model and Kriging model allow approximation of more compli-
cated objective functions [18].

On the other hand, the method discussed here involves a search with a small
number of individuals. For MOGA search, it is critical to search the Pareto-
optimal solutions with keeping the diversity of individuals, because it is more
likely that solutions with high accuracy and diversity will be obtained. This
approach can reduce the calculation cost, but the solutions often converge on a
certain point in the search process and the diversity of the solutions may be lost.
In this paper, we propose a mechanism that eases the reduction of diversity of
solutions during the search process by using an Artificial Neural Network (ANN).
This mechanism is expected to reduce the calculation cost, and provide a good
set of Pareto-optimum solutions with a high degree of diversity and accuracy,
even when the search is performed with a small number of individuals.

In this paper, we discuss in detail a mechanism to ease the reduction of di-
versity using ANN. The proposed mechanism is introduced into NSGA-II [7], a
typical MOGA, and its effectiveness and influence on the search are investigated
for mathematical test functions.

2 Problem of Multi-Objective Genetic Algorithms with a
Small Population

The advantage of multi-objective optimization using a MOGA is that it can de-
rive several Pareto-optimum solutions in one calculation trial. However, a num-
ber of function evaluations are required before the Pareto-optimum solution can
be obtained. The calculation cost can be reduced when using a small number of
individuals or a small number of generations. However, with this approach, the
diversity of individuals is often lost. This may have a negative influence on the
progress of the search, as in MOGA it is important to maintain the diversity dur-
ing the search. In some cases, it may become difficult to obtain non-dominated
solutions with high accuracy and diversity. To overcome this difficulty, whenever
solutions are converged they are relocated evenly on an interpolated line.

However, it is very difficult to determine the parameters of these target solu-
tions, as the target solutions exist in the objective field but not in the design field.
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Therefore, the problem of how to determine the design variable values of the solu-
tions is very important. For example, the objective function values of the relocated
solutions are known, and the design variable values are not. Thus, the design vari-
able values must be determined through inverse analysis. Here, ANN is used for
this inverse analysis. ANN is a powerful approach to modeling stochastic and noisy
patterns of data to produce predicted values of unknown systems [13]. In recent
years, there have been many studies on multi-objective optimization using ANN.
They are mainly classified into two types: methods that reduce the calculation
cost for each evaluation by obtaining an approximation function of the objective
function [15], and those to obtain the approximation function that is the inverse
of the objective function and apply it for local searches [5,13]. Multilayer percep-
trons, i.e., feedforward neural networks that use back propagation [2,6,10] for the
learning algorithm, are often used for ANN.

3 Maintaining the Solution Diversity Mechanism Using
Neural Network

In this paper, a method of maintaining the solution diversity using a neural
network is proposed. The concept of the proposed mechanism is shown in Fig. 1.

In this mechanism, whenever the solutions are converged, they are relocated
on the Pareto front line and MOGA search is performed using these relocated
solutions. Iterating this process is expected to maintain the diversity and obtain
good Pareto-optimal solutions with a smaller number of individuals.
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Fig. 1. Concept of the proposed method
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The proposed method using both MOGA and ANN aims to reduce the calcu-
lation cost and to obtain solutions with high accuracy by maintaining diversity
during the search process, even in a search with a small number of individuals.
The algorithm of the proposed method is as follows:

N : Number of executions of ANN.
tmax : Max number of generations .

t : Number of generations .
k : Number of non-dominated solutions.

Step 1: NSGA-II search is performed up to i × tmax/N generations.(i=1)
Step 2-1: A set of non-dominated solutions is obtained, and a linear line passing

through the set of non-dominated solutions is obtained through interpolation.
Step 2-2: A set of non-dominated solutions is used as a data set for training the

ANN, and an approximation function is created.
(Input: objective function values; Output: design variable values)

Step 2-3: In a set of n non-dominated solutions , all individuals are removed
except those on both ends , then n− 2 target individuals are created so that
the distances regarding f1 between adjacent individuals are equal.

Step 2-4: The approximation function created by ANN is used to obtain the
design variable values corresponding to the objective function values of the
target individuals.

Step 2-5: The design variable values obtained by ANN are evaluated using the
real objective function, not the approximation function.

Step 2-6: Individuals and archives obtained from ANN are combined and the
archive update mechanism of NSGA-II is executed.

Step 2-7: End if all the end conditions are satisfied. If not, return to Step 1(i =
i + 1).

The processes using interpolation mentioned in Steps 2-3 and 2-4 are dis-
cussed. An approximation function that is the inverse of the objective function
is created by the ANN, which is trained based on individual data derived by the
MOGA. Using the approximation function, all non-dominated solutions will be
relocated except those on both ends, as it is better to obtain as many individuals
as possible at equal distances to the Pareto front.

Next, we describe how to determine the objective function values of the tar-
get individuals. There are two steps to obtain these values. In the first step, a
linear interpolation line is obtained (Step 2-1). A linear interpolation method
is adopted, because it showed more positive results in preliminary experiments
than two-dimensional interpolation. In the second step, target individuals are
relocated so that they satisfy the following two conditions: 1) individuals lie on
the interpolation line; 2) individuals are at equal distances with regard to f1. As
it is difficult to set the target individuals for interpolation in many objectives
(more than three), this paper focuses on two-objective optimization problems.
Many objectives problems (more than three) will be examined in future studies.
The scheme of the process is shown in Fig. 2. The left diagram in Fig. 2 shows the
Pareto-optimal solution obtained from the MOGA, and the relocation concept
is illustrated on the right in Fig. 2.
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4 Effectiveness of Diversity Maintenance Mechanism
Using ANN

4.1 Examination Environment

In this section, we report testing of the proposed mechanism to examine its effec-
tiveness. Here, NSGA-II is applied for the basic MOGA and the ANN mechanism
is attached to NSGA-II.

The proposed hybridized method with MOGA and ANN is designed for real-
world problems that require large computational cost for each evaluation. As an
initial study, we chose a problem where the landscape of the function is relatively
smooth. ZDT6 [4] unimodal test problems with a non-convex Pareto front are
selected as a test function. The equation of test functions is shown in Table 1.

In this experiment, the ratio of non-dominated individuals (RNI) [9] is used
to evaluate a set of non-dominated solutions obtained using various methods.
RNI measures the accuracy in objective function space. This method compares
two sets of non-dominated solutions, and counts the number of solutions that
are inferior to those obtained by the other method. This method evaluates items
with regard to accuracy. The method used by Tan and colleagues [8] is expanded
to compare two sets of non-dominated solutions to create this method. The
comparison procedure of this method is as follows. The union of the solution
sets X and Y obtained by the two methods is set as SU . Next, solutions not

Table 1. Test Problem(ZDT6)

Problem Functions

ZDT6 min f1 = 1 − exp(−4x1)sin
6(6πx1)

min f2 = g × h
g = 1 + 9[(

∑n
i=2 xi)/9]

0.25

h = 1 − (f1/g)2

xi ∈ [0, 1], n=2
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dominated by any solution are selected from SU , and the selected set of solutions
is set as SP . Then, the ratio of SP of each method is derived as RNI(X,Y). The
closer this ratio is to the maximum, 100%, the better it is compared to the other
method, indicating that a solution that is closer to the true solution is being
obtained.

4.2 Assessment of Approximation Ability of ANN

An archive obtained from a MOGA is used as a training data set for ANN. There
are two methods of training: one is to use all of the archive, and the other is
to use only the non-dominated solutions from the archive as training data. The
two methods are compared. The test data for ANN are shown in Fig. 3. In this
data, the non-dominated and dominated solutions are mixed. The results from
the method using the whole archive are shown in Fig. 4(a), while the results
using only the non-dominated solutions are shown in Fig. 4(b).

As shown in Fig. 4(b), the developed ANN has sufficient efficiency to derive
the solutions, as the derived solutions are very close to the Pareto front. At the
same time, as shown in Fig. 4, when all the solutions in the archive are used, those
solutions except the non-dominated solutions become noise, and thus solutions
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are derived in the area away from the target Pareto front. On the other hand,
when only non-dominated solutions are used in the training data set, target
solutions are derived appropriately on the Pareto front. Thus, we use only the
non-dominated solutions in the archive as a training data set for ANN.

4.3 Examination of Diversity Improvement Using ANN

We next examine whether the reduced diversity of solutions can be improved by
hybridized NSGA-II. The archive size is set to 10, which showed good results in
a preliminary experiment. The parameters used are shown in Table 2.

Table 2. Parameter settings in examination of diversity improvement using ANN

Population size 6

Number of generations 60

Archive size 10

Number of dimensions 2

Crossover rate 1.0

Method of crossover Two-point crossover

Number of times ANN applied 2

Number of trials 30

Fig. 5(a) shows thenon-dominated solutions obtainedbyNSGA-II, andFig. 5(b)
shows the target individuals relocated according to these non-dominated solutions.
Individuals obtained using the proposed mechanism are shown in Fig. 5(c).

Comparison of Fig. 5(a) and (c) indicates that a more uniform solution distri-
bution was achieved after application of the diversity maintenance mechanism
using ANN.

In the next experiment, conventional NSGA-II and hybridized NSGA-II are
compared to examine their effectiveness. The parameters used are shown in
Table 3. ANN is applied evenly during the search (e.g., 20th and 40th generations).

RNI of conventional NSGA-II and hybridized NSGA-II are shown in Fig. 6.
In addition, plots of each method are shown.

Table 3. Parameter settings in examination of diversity improvement using ANN

Search technique Hybrid NSGA-II

Number of generations 60 61

Number of evaluations 368 366

Number of times ANN applied 2 None

The results shown in Fig. 6 indicate that RNI of hybridized NSGA-II is higher
than that of conventional NSGA-II. In addition, hybridized NSGA-II can derive
solutions close to the region of the Pareto-optimum solutions in more trials than
the conventional NSGA-II. The above observations indicate that the issue of re-
duced diversity by the conventional NSGA-II with a small number of individuals
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can be resolved using the proposed method and it is possible to execute a search
while maintaining its diversity.

4.4 Examination of Number of Times ANN Is Applied

The diversity mechanism using ANN is introduced into NSGA-II, and the influ-
ence of the number of times ANN is applied is examined. The parameters used
are shown in Table 4. The results of this experiment are shown in Fig. 7. RNI
is obtained by comparing the various number of times ANN is applied with the
same number of evaluations.
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Table 4. Parameter settings in examination of number of times ANN applied

Number of generations 30

Number of times ANN applied 0,3,6,10,15,30
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Fig. 7 shows that RNI is better when ANN is applied often during the search.
This indicates that the diversity maintenance mechanism using ANN has a pos-
itive effect on the search.

4.5 Comparison of a Search with Small and Large Numbers of
Individuals

In the previous sections, we described examination of searches with a small num-
ber of individuals. Here, we examine the effectiveness of the proposed method
related to the reduction of calculation cost. In this experiment, the diversity
maintenance mechanism is introduced into NSGA-II and the search is executed
with a small number of individuals. The results are compared with those ob-
tained using a conventional NSGA-II with a large number of individuals. The
parameters used are shown in Table 5.

RNI and plot diagrams of all non-dominated solutions of each method are
shown in Fig. 8.

Fig. 8 shows that the performance of the hybridized NSGA-II with a smaller
number of individuals is equivalent to conventional NSGA-II with a larger popu-
lation size. The hybridized NSGA-II used 300 evaluations, while the conventional
NSGA-II required 540. In this numerical example, a simple test function was
used and the calculation cost was very small. Our target is real-world problems,

Table 5. Parameter settings in examination of comparison of a search with small and
large number of individuals

Search technique Hybrid NSGA-II

Population size 6 18

Number of generations 30

The number of evaluations 300 540

Archive size 10 18

Number of times ANN applied 30 None
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and these often take a huge amount of time. For example, if evaluation takes
around 1 h at each fitness, our method can save about 240 h. These observa-
tions indicated that when a conventional MOGA search with a small number
of individuals is performed, the search ability can be improved by using our di-
versity maintenance mechanism. This is comparable to a conventional MOGA
search with a larger number of individuals when the number of evaluations is
small. Therefore, this mechanism allows reduction of the calculation cost. With
this search, the calculation cost required by the ANN must be considered. When
large computational cost for evaluation in GA is needed, the relative calculation
cost of ANN is negligible; examples of such problems include airplane design and
automobile collision analysis.

5 Conclusions

In this paper, a mechanism is proposed for a MOGA search that maintains its di-
versity during the search process, even when the search is performed with a small
number of individuals. It can restore the reduced diversity of solutions by using
ANN, whenever the diversity is lost. The mechanism of maintaining diversity
by ANN creates an approximation function, which is used to obtain the design
variable values corresponding to the objective function values of target individ-
uals. The target objective values are determined by relocating the individuals
so that they are equally distanced. The proposed method is expected to derive
individuals with a high degree of accuracy and diversity. Here, the proposed
mechanism was introduced into NSGA-II, and its effectiveness was examined for
mathematical test functions. The results of numerical experiments indicated that
the search performance of the proposed hybrid method is comparable to that
of the conventional method. Using the hybrid method, it is possible to derive
solutions with high accuracy and diversity with a small number of evaluations,
even when performing the search with a small number of individuals.
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Abstract. The Pareto-based Differential Evolution (PDE) algorithm is
one of the current state-of-the-art Multi-objective Evolutionary Algo-
rithms (MOEAs). This paper describes a series of experiments using
PDE for evolving artificial neural networks (ANNs) that act as game-
playing agents. Three systems are compared: (i) a canonical PDE system,
(ii) a co-evolving PDE system (PCDE) with 3 different setups, and (iii)
a co-evolving PDE system that uses an archive (PCDE-A) with 3 differ-
ent setups. The aim of this study is to provide insights on the effects of
including co-evolutionary techniques on a well-known MOEA by investi-
gating and comparing these 3 different approaches in evolving intelligent
agents as both first and second players in a deterministic zero-sum board
game. The results indicate that the canonical PDE system outperformed
both co-evolutionary PDE systems as it was able to evolve ANN agents
with higher quality game-playing performance as both first and second
game players. Hence, this study shows that a canonical MOEA without
co-evolution is desirable for the synthesis of cognitive game AI agents.

Keywords: Game AI, Co-Evolution, Evolutionary Artificial Neural Net-
works, Pareto Differential Evolution, Evolutionary Multi-Objective
Optimization.

1 Introduction

Artificial intelligence for games (game AI) represents one of the most useful
and practical platforms for studying evolutionary computation systems. Game
has well defined rules that make them easier to simulate on a computer and its
applications to many real world problems in economics, politics, biology, and
countless other areas. Zero-sum board games provide a simple yet interesting
testing-bed to study both the machine learning and the optimization aspects of
soft computing systems. Firstly, these games have perfectly defined sets of rules
that limit the possible behaviors of the players, thereby simplifying the problem
at hand. Furthermore, games have a clear objective for the players to reach.
In addition, games have enough information to allow a wide range of possible
behaviors to emerge as represented by the various strategies of the game players.
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In spite of the additional complexities of co-evolutionary models, they hold
some significant advantages that have been exploited within the context of EAs
to support the generation of solutions to a series of complex problems. Co-
evolutionary techniques have been successfully applied to a number of games,
for instance, Awari [1], Pong [2], Nim [3], and Go [4,5]. Evolutionary Program-
ming (EP) has also been used to create ANNs that are capable of playing Tic-
Tac-Toe (TTT) [6,7]. Although many single-objective evolutionary techniques
have been successfully applied to many different kinds of games, a large num-
ber of research issues and questions still remain for multi-objective evolutionary
techniques when applied to games.

In previous work, an enhanced version of a hybrid co-evolutionary imple-
mentation using the Pareto Differential Evolution (PDE) algorithm known as
the Pareto Co-evolutionary Differential Evolution (PCDE) algorithm [8]. This
algorithm was reported to be able to automatically synthesize neural network
game-playing agents both as the first and second players with reasonable playing
strength through the introduction of Pareto multi-objective evolution [8]. In this
study, the main objective is to look into the effects of the introduction of the
co-evolution technique and whether it is actually beneficial or otherwise to the
Pareto evolutionary optimization process. A comprehensive empirical compari-
son of performance between the previous system of PCDE, a new archived-based
version of PCDE called PCDE-A and the canonical PDE without co-evolution is
carried out. All of the above implementations do not require an explicit evalua-
tion function for the purpose of automatically generating the game AI for TTT
since the scoring from playing against a rule-based player is used as the objective
evaluation method during evolution. Finally, the performance of the respective
approaches will be measured according to the playing strength of the evolved
ANN game-playing agents pitted against three different levels of players (expert,
medium and random players).

1.1 Tic-Tac-Toe

TTT is a standard two-player zero-sum game, in which two players alternately
put crosses and circles in one of the compartments of a 3 by 3 board. The objec-
tive of the game is to get a row of 3 crosses or 3 circles before the opponent does.
Player one is the player that moves first, making a cross, followed by player two,
making a circle. If at the end of the game both players cannot meet the objec-
tive, it means that a draw is awarded to both players. There are 4 player types
in TTT. The novice player makes random moves, the intermediate player will
block their opponent from winning, the experienced player knows that playing
in certain first squares will lose the game, and the expert player will never lose.
When both players are at the expert level, the purpose of a TTT first player
is to force a win or a draw; however a second player should force a draw by
blocking the winning moves of first player. This is because if the first player
starts the game with an optimal first move, it will never lose if no mistake is
made for following moves, so the second player can only force a tie. The only
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chance for a second player to force a win is when the first player did not make
a best first move, or making a mistake during subsequent moves.

2 Methods

2.1 Pareto Differential Evolution (PDE)

The multi-objective optimization method used here was an adaptation of a well
known multi-objective evolutionary algorithm (MOEA) which is the PDE algo-
rithm proposed in [9]. Evolved artificial neural networks (ANNs) act as the cog-
nitive game AI agents in the game. The system was initialized with a population
of 100 ANNs, each one having its weight connections and bias term value set at
random in a uniform distribution ranging over [−0.5, 0.5]. Parent created an off-
spring through mutation of each weight and bias term value by adding a Gaussian
random variable with zero mean and a standard deviation of 1 (GaussianF (0, 1)).
Based on the mutation rate, the number of nodes in hidden layer was allowed to
vary, subject to the constraints on the maximum and minimum number of nodes.
All new added node weights and the bias terms are set to 0.0. A crossover func-
tion that implements the DE concept was used in the creation of new offspring.
The scaling factor (F) is a random real value between [0.0, 0.5]. All layers (l) of
ANN (the input layer, hidden layer and output layer) and all the synapses (con-
nection between input layer and hidden layer, and also between hidden layer and
output layer, bl) are involved in both operations of reproduction (mutation and
crossover). Criteria for marking non-dominated solutions will be done directly
based on the scores gained from these two payoff functions (see sub-section 2.1).
The algorithm works as described in the following section.

Pseudocode of PDE

1. Randomly initialize population of 100 ANNs, each with its weight (W)
connections and bias term (B) value set at random in a uniform
distribution ranging over [−0.5, 0.5].

2. Repeat:
a. Evaluate individuals in the population and mark non-dominated ANNs.
b. If the number of non-dominated ANNs is less then 50, repeat the

following until the number of non-dominated ANNs is greater than
or equal to 50:

i. Find the next layer of non-dominated solutions among
those marked ANNs.

ii. Re-mark the ANN as non-dominated.
c. Delete all dominated ANNs from the population.
d. Repeat:

i. Randomly pick an ANN as the main parent p1, and
two ANNs, p2, p3, as supporting parents.

ii. Crossover:
If within the probability of CrRate, Then do
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Bchild
l ←Bp1

l + F (Bp2
l −Bp3

l )
Wchild

bl ←Wp1
bl + F (Wp2

bl −Wp3
bl )

Else
Bchild

l ←Bp1
l

Wchild
bl ←Wp1

bl

iii. Mutation:
If within the probability of MtRate, Then do

Bchild
l ←Bp1

l + GaussianF (0, 1)
Wchild

bl ←Wp1
bl + GaussianF (0, 1)

Else
Bchild

l ←Bp1
l

Wchild
bl ←Wp1

bl

And With probability of MtRate, do
NumberNode ← V ary(NumberNode)

iv. Evaluate the child, if the child dominates p1,
place it into the population.

e. Until the population size is maximum (100).
3. If termination conditions are satisfied then end, else return to (2).

Evaluation of individuals (in PDE). Each ANN will compete with the
same rule-based procedure as the first player “X” in 2 sets of 8 games and
the second player “O” in 2 sets of 9 games. The first move of the rule-based
player will not be repeated in each set of games, based on all possible moves
being stored in an array at the beginning of the particular set of games. Two
different payoff functions were used to reward each agent performance as the
first and second player. For grading the performance of the ANN as the first
player, the payoff function {+1, −10, 0} are the rewards for winning, losing, and
drawing, respectively (as in [6]). However, for grading the performance of the
ANN as the second player, the payoff function {+2, −5, 3} are the rewards for
winning, losing, and drawing, respectively (which was obtained from preliminary
testing). Marking non-dominated solutions will be done directly based on the
scores gained from these two payoff functions.

2.2 Pareto Co-evolutionary Differential Evolution (PCDE)

The PCDE algorithm introduced co-evolutionary techniques into PDE (see 2.1),
where the force of evolution is from the competition among the (evolving) ANNs.
The main difference between PDE and PCDE was on the evaluation of each
individual. For implementation of PCDE, after completing the evaluation using
the rule-based agent and grading with payoff function similar with PDE, each
ANN will then be compared with a constant number of randomly picked ANNs
from the population of the current generation. If the score of the ANN was
greater than or equal to its opponent (the randomly picked ANN), it will receive
a win. Furthermore, the ranking of first Pareto layer (by marking non-dominated
solutions) will be based on the number of wins as the main evaluation criterion.
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2.3 Pareto Co-evolutionary Differential Evolution with an Archive
(PCDE-A)

Similar to PCDE, after grading each ANN using the payoff functions, a sec-
ond competition is held. However, PCDE-A has an extra archive, which is used
to store Pareto solutions at every 50th generation. Consequently, each ANN is
compared to a minimum number of randomly picked ANNs (without repetition)
from the archive. Only if the number of ANNs in the archive is less than the
minimum required number of random opponents, then the opponent list will
be filled with randomly picked ANNs from the population. Similarly, an ANN
will receive a win, if its score was greater than or equal to its competitor. The
number of wins will then be used as the main evaluation criterion for marking
non-dominated solutions to rank the first Pareto layer. This evaluation value
will be less dependent on luck for marking of dominated solutions because of the
bounded set of evaluators.

2.4 Adaptive Evolution

In adaptive evolution, direction and/or magnitude of the strategy parameters’
modification is decided using some form of feedback from the EA. However, in
self-adaptive evolution, self-adaptation of parameters is the implementation of
the evolution of evolution idea. A hybrid adaptive/self-adaptive evolution
combines two adaptation methods mentioned above. Parameters consisting of
the mutation rate and crossover rate are encoded into the chromosomes of indi-
viduals. Instead of undergoing genetic operations of mutation and recombination,
these parameters will be varied by some deduction within a range. The highest
ANN’s score value of the current generation is used as the feedback from the EA.
If the feedback comprises of a non-negative value, a deduction within a range
will be applied to the strategy parameters. For all the experiments in this study,
the probability of the initialization value and deduction range (for mutation rate
and crossover rate) are 1 and between 0.0001 and 0.0005, respectively.

2.5 Cognitive Game AI Representation

The cognitive game AI is represented by a standard multi-layered feed-forward
ANN. A board pattern is received as the input of ANN, and the output of ANN
is a position of the board as the corresponding move. Each node of the hidden
layer and output layer performs a sum of the weighted input strengths, subtracts
off an adaptable bias term and passes the result through a sigmoid filter as shown
in (1),

1
1 + e −x

(1)

where x is the sum of the weighted input strengths.
The ANN’s input layer consisted of nine input nodes (with an additional bias

unit), a hidden layer of varying size (between 1 and 10 hidden nodes with an
additional bias unit) and the output layer consisted of nine nodes, where each
of the input and output nodes corresponded to a square in the TTT grid. The
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3 by 3 matrix board state is represented as a 2-dimensional 3 by 3 array of nine
values. A blank open space was denoted by the value 0.0, an “X” was denoted
by the value 1.0, and an “O” was denoted by the value (minus) -1.0. The two-
dimensional array represents the current board pattern and is presented to the
ANN to determine the move of the opposing player and correspondingly, the
relative strengths of the nine output nodes were examined to determine the
equivalent counter-move by the game AI system. An empty square’s position
with the maximum output strength was chosen as the output. This is to ensure
only legal moves are made. Placed squares were ignored and selection pressure
was not applied to force the output to zero [6].

3 Experimental Setup

This series of experiments was designed to examine and observe the effects of
synthesizing TTT agents with and without the introduction of co-evolutionary
techniques into the PDE algorithm. Settings of implementations of PCDE and
PCDE-A involved in all experiments were directly adopted from the PDE setup
(see section 2.1). Each experiment was repeated for 50 trial runs, each run was
run for 800 generations (as in [6]). Table 1 shows the details of the experimental
setup, the number and target location of randomly picked opponents.

Table 1. Experimental setup details. The main differences between each system were
the number of opponents (that will compete with each candidate ANN in the popula-
tion) and where the opponents were picked from.

System No. of opponents Origin of Opponent
PDE 0 None

PCDE1 30 Population

PCDE2 50 Population

PCDE3 70 Population

PCDE-A1 30 Archive & Population

PCDE-A2 50 Archive & Population

PCDE-A3 70 Archive & Population

After completing all of the experiments, all agents representing Pareto so-
lutions at the 800th generation from each experiment are selected to be the
representatives of each system. Non-dominated ANNs from all the Pareto multi-
objective optimization systems mention above are able to synthesize both first
and second players in a single run. Consequently, each selected ANN has to
compete with three different levels of evaluation players, that are a near-perfect
expert player (VS Expert), an average player (VS Medium) and a random player
(VS Random). A competition consists of a set of 20 games for each level of player.
A selected ANN will thus play a total of 60 games firstly as a first player and
secondly as a second player.
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4 Experimental Results and Discussion

4.1 Overall Performance of All Experiments

Figure 1 shows the overall performance of all experiments and is summarized
by focusing on the number of lost games only. It clearly shows all experiments
successfully produced agent(s) that never lost any games to all three level of
players as the first player. Nevertheless, only PDE, PCDE2, PCDE3 and PCDE-
A1 successfully produced intelligent agent(s) that never lost any game to the
expert level of player as the second player. Figure 2 shows the global Pareto
solution(s) layer for all the experiments in this study. Figures 3, 4, 5, 6 and
Table 2 show details of the overall performances of the selected agents from each
system involved in the competition against all three level of players as the first
and second players.
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Fig. 1. This figure shows minimum and maximum number of games lost as the first
player (Lost1st) and the second player (Lost2nd), respectively

4.2 The Introduction of Co-evolution

Figures 3 and 4 show the details of the overall performances of implementa-
tions from the PCDE system competing as the first and second players against
three different levels (expert, medium and random) of evaluation players. Over-
all, PCDE2 was successful in outperforming PCDE1 and PCDE3 in terms of
producing good performing agents both as first and second players.

Based on the results of the competition against the expert-level player, PCDE2
and PCDE3 were successful in producing agent(s) that never lost to the expert-
level player as the first and second players. PCDE1 was successful in producing
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Fig. 3. Minimum (Min) and maximum (Max) number of games won (Win1st,
Win2nd), drawn (Draw1st, Draw2nd) and lost (Loss1st, Loss2nd) as the first player,
respectively from ANNs of PCDE

agent(s) that never lost any game to the expert-level player as the first player
but its best second player lost 6 games to the expert-level player.

Based on the results obtained after competing with the medium-level player,
PCDE2 performed slightly better than PCDE1 and PCDE3. Each selected agent
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Fig. 4. Minimum (Min) and maximum (Max) number of games won (Win1st,
Win2nd), drawn (Draw1st, Draw2nd) and lost (Loss1st, Loss2nd) as the second player
from ANNs of PCDE

from PCDE2 had the lowest maximum number of lost games as the first player,
and the lowest minimum number of lost games as the second player. Similarly,
PCDE2 and PCDE3 were performing better then PCDE1, where both had the
highest maximum number of games won as the first player. Nevertheless, PCDE3
was performing slightly better then PCDE1 and PCDE2 when competing against
the random player. The minimum number of wins as the first and second player
of the selected agent(s) from PCDE3 was slightly higher then other agents. In
addition, the maximum number of losses as the first player of selected networks
from PCDE3 was also slightly lower than other representatives as well.

The only difference between each implementation of this algorithm (PCDE)
is the number of randomly picked opponent. The increase (from 30 to 50 com-
parisons) successfully improved the performance of PCDE but the performance
decreased for PCDE3, which is closer to a round-robin (70 comparisons). The
marking of dominated agents in PCDE is based on the number of wins obtained
from the evaluation against a constant number of randomly picked opponents from
the population of the current generation. This evaluation is only presenting “per-
formance of the current generation” with a high probability of luck involved. All
implementations of PCDE did not have a good spread of global non-dominated
solution. Furthermore, PCDE3 and the other two implementations of PCDE
converged into two and a single non-dominated point(s) respectively (see
Figure 2). Hence, it proves that the PCDE systems were not able to fully exploit
the range of good solutions between the first and second players offered by the
Pareto evolutionary optimization process. Furthermore, although it may appear
that the other systems’ solutions dominate the canonical PDE solutions, post-
evolution empirical evaluation proves otherwise (see Section 4.5).



236 Y.J. Yau, J. Teo, and P. Anthony

4.3 Co-evolution with an Archive

Figure 5 shows details of the overall performances of implementations from
PCDE-A competing as the first and second players against three different lev-
els of evaluation players. Overall, PCDE-A1 was the best implementation from
PCDE-A, outperforming PCDE-A2 and PCDE-A3. Selected agents from PCDE-
A1 were able to perform very well when competing against the expert-level
player. Furthermore, the best agent from PCDE-A1 never lost any game as the
first and second player. However, the best second-player agent from PCDE-A2
lost 3 games as the second player and the best second-player agent from PCDE-
A3 lost even more games as the second player (6 games).

The discussion will continue based on the results obtained from the com-
petition against the medium-level evaluator. Representatives from PCDE-A1
successfully outperformed representatives from the other setups. They have the
lowest minimum number of losses as the second player (9 games) and the low-
est maximum number of losses as first player (8 games). Similarly, agents from
PCDE-A3 have the lowest minimum number of losses as the second player. How-
ever, PCDE-A2 did not perform well, since its agents have the highest minimum
number of losses as the second player (12 games). Moving the focus of this dis-
cussion to the competition against the random player, PCDE-A1 again had the
best performance compared with the other two implementations of PCDE-A.
Representatives from PCDE-A1 have the lowest number of minimum losses as
the second player (as well as PCDE-A2, 2 games) and the lowest maximum num-
ber of losses as the first player (5 games). The maximum number of losses as
the second player of PCDE-A3’s agent(s) was slightly lower (13 games), whereas
the maximum number of losses as the second player of PCDE-A1’s agents and
PCDE-A2’s agent(s) were both 15 games.

The PCDE-A has an embedded archive, that stores Pareto solution(s) of ev-
ery 50th generation. At generation of 800th, the number of agents stored in
the archive can approach 50. The addition of an archive is to have a better
quality of evaluation in terms of play strength representation and fairness by
having the comparison against a similar set of opponents. Overall, PCDE-A1
was the best implementation of PCDE-A, outperforming the other two PCDE-
A systems. PCDE-A2 and PCDE-A3 were initialized with a larger number of
randomly picked opponents (50 and 70 opponents, respectively). Hence, PCDE-
A2 and PCDE-A3 may still be randomly picking opponents from the population
of current generation for comparison until the 800th generation. However, since
PCDE-A1 was initialized with a smaller number of comparisons (30 opponents),
the archive will contain more non-dominated opponents compared to randomly
picked opponents much earlier in the evolutionary run compared to the other
two systems with larger archives. Thus, the most important observation in the
success of the evolution of PCDE-A1 is that the number of randomly picked op-
ponent was lower. The number of randomly picked opponent of PCDE-A1 was
almost zero after the 500th generation.
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Fig. 5. Selected ANNs from implementations of PCDE-A competing against a near-
perfect expert player (VS Expert), an average player (VS Medium) and a random player
(VS Random). This figure shows the minimum (Min) and maximum (Max) number of
games won (Win1st, Win2nd), drawnDraw1st, Draw2nd) and lost (Loss1st, Loss2nd)
as the first and second players, respectively.
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4.4 Performance With/Without the Additional Archive

PCDE2 and PCDE-A1 were the best systems among implementations of its
own algorithm. To look into the effects of the additional archive, the discussion
continues with the comparison between PCDE-A1 and PCDE2 only, because the
performance of PCDE2 and PCDE-A1 were the same in the competition with
the expert-level player.
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Fig. 6. Minimum (Min) and maximum (Max) number of games won (Win1st,
Win2nd), drawn (Draw1st, Draw2nd) and lost (Loss1st, Loss2nd) as the first and
second players, respectively from ANNs of PCDE2 and PCDE-A1

Figure 6 shows the details of the performances of PCDE2 and PCDE-A1 com-
peting against average and random players. The PCDE-A1 performed better than
PCDE2 in competing against the random player. The number of maximum losses
as the first player of PCDE-A1 (5 games) was smaller than PCDE2 (9 games).
Furthermore for the competition against the random player, PCDE-A1 also has a
slightly higher minimum number of wins and maximum number of wins as the
first and second players, respectively. However for the competition against the
medium-level player, PCDE2 performed slightly better than PCDE-A1.

Continues with the focus on the suitability of both algorithms in terms of
Pareto multi-objective optimization. Figure 6 clearly shows the suitability of
PCDE-A1 was significantly higher than the PCDE2. Implementations of PCDE-
A (especially PCDE-A1) have a significantly better spread of global
non-dominated solution compared to implementations of PCDE. Marking of
dominated solutions in PCDE-A was based on the number of wins obtained from
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evaluation against agent(s) from the archive (as well as randomly picked agent(s)
from population of the current generation, only if the size of the archive is less
then the required minimum number of comparisons). This evaluation method is
thus presenting more than the “performance of the current generation”, more
global (over the whole process of co-evolution) and less elements of luck, since
the evaluation is using the same set of Pareto solutions. PCDE-A1 was randomly
picking agent(s) from the population before the 500th generation approximately.
However, for the rest of the evolution, PCDE-A1 was evaluated using agents
from the archive only, since the size of the archive had already exceeded the
minimum number of comparisons.

4.5 Performance Without Co-evolution

Table 2 shows the overall performances of PDE, PCDE2 and PCDE-A1 compet-
ing against three different levels of evaluation players. PCDE2 and PCDE-A1
were the best systems among implementations of its own algorithm. Overall,
PDE was successful in outperforming PCDE2 and PCDE-A1 in terms of pro-
ducing good performing agents as both the first player and second player. Com-
pared to agents from PCDE2 and PCDE-A1, agent(s) from PDE were performing
better as a second player, since they have the lowest minimum and maximum
number of losses when competing against the medium and random players as the
second player. However, compared to representatives of PDE, agents of PCDE2

Table 2. Minimum (Min) and maximum (Max) number of games won (Win1st,
Win2nd), drawn (Draw1st, Draw2nd) and lost (Loss1st, Loss2nd) as the first and
second players, respectively from ANNs of PDE, PCDE2 and PCDE-A1

As 1st Player As 2nd Player
Win Draw Lost Win Draw Lost

Maximum

PDE
VS Expert 0 20 20 0 20 20
VS Medium 17 18 8 6 17 19
VS Random 20 7 8 14 9 14

PCDE2
VS Expert 0 20 20 0 20 20
VS Medium 17 19 6 5 12 20
VS Random 20 7 9 14 9 15

PCDE-A1
VS Expert 0 20 20 0 20 20
VS Medium 17 18 8 6 11 20
VS Random 20 7 5 16 9 15

Minimum

PDE
VS Expert 0 0 0 0 0 0
VS Medium 2 0 0 0 0 3
VS Random 8 0 0 2 0 1

PCDE2
VS Expert 0 0 0 0 0 0
VS Medium 1 2 0 0 0 7
VS Random 9 0 0 2 0 3

PCDE-A1
VS Expert 0 0 0 0 0 0
VS Medium 1 3 0 0 0 9
VS Random 11 0 0 1 0 2
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and PCDE-A1 performed slightly better as the first player when competing
against the medium-level player and random player, respectively.

Furthermore, PDE uses the fitness values from the payoff functions directly
to mark dominated solutions, which is more suitable in Pareto multi-objective
optimization as justified by the results of the comprehensive testing above. The
PDE has the best spread of global non-dominated solutions on the Pareto frontier
compared with frontiers from other systems.

5 Conclusion

This paper reports the first comprehensive study in evolving cognitive systems
for game AI of TTT using Pareto evolution as well as co-evolutionary techniques.
Overall, the canonical PDE system was able to automatically synthesize ANN
as game-playing TTT agents successfully both as the first and second players
without the introduction of co-evolution. Furthermore, PDE was successful in
outperforming all the other systems in terms of producing high play-strength
game agents as the second player. Moreover, using an archive in PCDE-A did
not produce significantly better results as first expected. Using an evaluation
value which represents a bigger picture as PDE (not the current generation
only) and is less dependent on luck for marking of dominated solutions should
introduce significant effects on the performance of the Pareto multi-objective
optimization process.

The poor performance of the PCDE systems, even those utilizing an archive,
in producing a good spread of solutions along the Pareto front is further proof
that co-evolutionary methods are not particularly beneficial for synthesizing in-
telligent agents for game AI in Pareto evolution. In terms of playing strength,
PCDE2 was successful in outperforming PCDE1 and PCDE3, similarly PCDE-
A1 was the best system compared with PCDE-A2 and PCDE-A3. Only PDE,
PCDE2 and PCDE-A1 were successful in outperforming all other systems in
terms of producing high play-strength game agents that never lost any game to
the expert-level player both as the first and second players. Based on the perfor-
mances of PCDE and PCDE-A systems, the co-evolution process was very sen-
sitive to the number of randomly picked opponents. Initializing the co-evolution
process with a suitably small number to limit the number of randomly picked
opponents early enough in the evolutionary process can cause significant effects
on the performance of co-evolutionary process.

Lastly, it is also shown clearly here that all the implementations of the co-
evolutionary algorithms faced one problem, that is the “forgetting” problem. Al-
though the majority of agents can win or draw against an expert-level player, they
“forgot” how to win or draw against medium-level and random players. This is one
of the known problems in co-evolutionary techniques. This problem is particularly
obvious when the focus is on the synthesis of intelligent agents that act as the sec-
ond player. As such, this should be investigated further in future work and may
be utilized at the same time as a suitable test bed for evaluating new methods
proposed for solving the “forgetting” problem in co-evolutionary algorithms.
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Abstract. The reliance of Tabu Search (TS) algorithms on a local
search leads to a logical development of algorithms that use more than
one search concurrently. In this paper we present a multi-threaded TS al-
gorithm employing a number of threads that share information. We assess
the performance of this algorithm compared to previous multi-objective
TS algorithms, via the results obtained from applying the algorithms to
a range of standard test functions. We also consider whether an optimal
number of threads can be found, and what impact changing the num-
ber of threads used has on performance. We discover that, contrary to
the popular belief that multi-threading is usually beneficial, performance
only improves in a few special cases.

1 Introduction

Whilst there has been much research into other types of algorithms for multi-
objective optimization [1], Tabu Search remains an option under-represented in
the volume of research in this area. Following the recent development of a multi-
objective TS algorithm, presented in [2], there is an opportunity to investigate
variants of this algorithm. We are specifically interested in a multi-threading TS
algorithm. The integral part played by a local search in the TS algorithm points
towards potential benefit from using many local searches at once. These parallel
searches are known as threads, and together they form a multi-threaded algo-
rithm. Single-objective multi-threading strategies have been heavily researched.
An overview is given in [3] (see particularly Type 3 parallelisation), and examples
of specific implementations of multi-threaded single-objective TS are presented
in [4,5]. Research in multi-objective meta-heuristics is currently following the
pattern of studies previously undertaken for single-objective problems, and the
fact that multi-threaded single-objective TS implementations exist provides us
with more motivation to develop multi-objective variants of such algorithms.

2 Background

2.1 Multi-objective Optimization

The problem we seek to solve is that of multi-objective optimization. We wish
to find a vector x that minimizes all the components of the vector F (x) =

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 242–256, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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(f1(x), f2(x), f3(x), ...). The components of x are known as design variables and
each fi(x) is an objective function. We usually seek values for design variables
only in a predetermined range, and there may also be functional constraints on
the variables.

Each set of vectors, those of design variables and those of objective functions,
forms a vector space. We call these variable/decision/design space and objective
space respectively. When we talk of searching a space we mean variable space,
whilst when we consider the outcomes of our optimization algorithm we almost
always refer to objective space.

Our aim is to minimize all our objective functions. However, we almost always
work with situations where different points in variable space minimize different
objective functions. We therefore must use the idea of Pareto dominance. Con-
sider two points in variable space, x and y, with objective functions F (x) and
F (y). We say x dominates y if no component of F (x) is greater than the corre-
sponding component in F (y) and at least one component is smaller. If neither x
dominates y nor y dominates x the two points are said to be Pareto equivalent.

Now our aim is clearer – we wish to find a set of Pareto equivalent points not
dominated by any point outside the set. This represents the trade-off surface
between objective functions, and it is impossible to say that any one point is
better than another within this set without weighting the objectives.

2.2 Tabu Search

The basic idea of Tabu Search is that of a local search looking at one point at
a time before moving to the next, and maintaining three memories along the
way. These are termed respectively the Short. Medium and Long Term Mem-
ories (STM, MTM, LTM). TS was developed for single-objective optimization
problems and this is reflected in the original use of these memories. The STM
is used to store the points that have been recently visited and then stops the
search from revisiting these points, hence the method’s name. The MTM stores
optimal and near-optimal points found during search. The LTM stores informa-
tion about all points visited. An important feature of TS is that an ‘uphill’ move
will be made in preference to converging at a local minimum, as “a bad strategic
choice can yield more information than a good random choice”[6].

The implementation of a multi-objective TS algorithm in this paper follows
closely that presented by Jaeggi et al. in [2]. The functions of the three memories
change, and a fourth – an Intensification Memory (IM) – is added. These changes
are detailed in Sect. 3.1. The functions of the memories must change slightly to
be compatible with a multi-threading algorithm which shares information, but
all changes endeavour to remain consistent with the basic tenets of TS.

3 Multi-threaded Multi-objective TS Implementation

The algorithm presented in [2] has a single thread starting at a given point. The
search then proceeds in an iterative manner; at each iteration a new point is
selected via a variety of methods. The standard method is the Hooke and Jeeves
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(H&J) move [7]. After each of these, a pattern move is attempted. The other
types of move occur less often. If a certain numbers of iterations pass without
an addition to the MTM, intensification, diversification or step-size reduction
(SSR) moves occurs. Each of these moves will be explained in more detail in the
following sections.

A multi-threaded multi-objective TS algorithm can intuitively be considered
as a number of these local searches working in parallel. However, this on its
own gives very little advantage over the single-threaded search. Therefore we
must change the structure of the algorithm such that information collected by
one search thread is available to all of the threads thereafter. We do this by
introducing a master program, which keeps some of the memories globally. Each
thread retains its own STM and an individual list of points it has ever visited.
The MTM, IM and LTM are kept by the master program, and in this way a
thread may intensify, diversify or reduce step-size with knowledge of the progress
of all threads. It also prevents interference between the threads – we now can be
sure a thread will not diversify, for example, to an area already heavily searched
by another thread. The new implementation still has, within each local search
thread, the possibility of H&J, pattern, intensification, diversification and SSR
moves. The difference lies in the memory usage, and the consequent sharing of
information between threads.

3.1 The Memories

During the search, the algorithm maintains four memories: the STM, MTM,
LTM and IM. Our use of these memories differs notably from that in single-
objective TS and will now be described.

The STM retains its functionality as a list (of user-specified size) of points
recently visited by the search thread, updated on a first-in, first-out basis. The
thread is not allowed to revisit these points.

The MTM is an unbounded set of globally non-dominated solutions found by
all threads. As new points are evaluated they become candidates for addition
to this set. Points dominated by newly added points are removed. The MTM is
used by the search during a SSR move, and its final contents represent the main
output from the optimization.

The LTM records the regions of the search space which have been explored,
and is used on diversification, directing the thread to regions which are under-
explored. Information is recorded by dividing the allowed range for each design
variable into a certain number of regions and counting the number of solutions
evaluated by all threads in those regions.

Like the MTM, the IM is an unbounded set of Pareto equivalent points. All
points that are added the MTM are also added to the IM (and IM points dom-
inated by them removed). However, if a point in the IM is then chosen to be
the next point in a thread as a result of any type of move (H&J, intensifica-
tion, SSR etc.), then it is removed from the IM. Thus the IM maintains a list of
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non-dominated points found by the threads but not subsequently explored, which
are then available for further exploration when intensification occurs.

There is also an important difference made to the way in which points are
rendered tabu. On the consideration of any point, we deem it tabu if it is in the
STM of any thread. In this way two threads are prevented from searching in the
same area simultaneously.

3.2 The Hooke and Jeeves Move and Pattern Move

Each local search at each stage has a current position in variable space, and
moves are used to change this position, and to consider new points for addition
to the MTM and IM. In the algorithm the standard move used is a H&J move
[7]. This is performed by creating a set of neighbouring points, each determined
through either adding or subtracting a given step-size from the value of one
variable. This new set is then checked for points that violate constraints or are
tabu, and these are removed. Having evaluated the objectives for these remaining
points, the Pareto-optimal set (POS) among them is identified, and a random
point from this set is chosen as the next point for the local search thread, while
the other set members are considered as candidates for addition to the IM. Note
that this means that even if the POS of the neighbours does not dominate the
current point, we still move, in an ‘uphill’ direction.

This basic move is, in our implementation, augmented by a roulette wheel
sampling strategy. At initialization, after an intensification, diversification or
SSR, and also every so many iterations (as a user-set parameter), the distance
of each neighbour from the current POS in the MTM is calculated, as in the Path
Relinking strategy outlined in [2]. Then each neighbour is assigned a probability
inversely proportional to this distance, and a random neighbour is chosen with
these probabilities. This process is repeated until we have chosen the desired
number of neighbours to sample.

This means that at each move, a random sample of a given size is taken from
the set of neighbouring points, and objective function evaluations are only per-
formed on these points. If the POS of sampled neighbours does not dominate
the current point then another sample is taken, and so on. If all neighbours are
considered and none are found to dominate the current point, then an ‘uphill’
move is made, as before, by considering the POS of the entire set of neighbours.
This sampling strategy uses at worst the number of objective function evalua-
tions employed in the standard H&J move, and at best many fewer evaluations.
This serves to improve the performance of the algorithm in terms of speed by
sacrificing the best direction for simply a better one, in an intelligent manner.

After each H&J move, a pattern move is performed. This checks only the point
found by incrementing the variable changed in the preceding move by the same
amount again. This point’s objective functions are evaluated. If it dominates
the current point, it becomes the new current search point; if it does not, the
previous point is retained. This serves to accelerate motion once a ‘downhill’
direction has been found.
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3.3 Intensification, Diversification and Step-Size Reduction

If specified numbers of iterations pass without a successful addition to the MTM
by an individual thread (each thread has its own independent counter for this
purpose), we conclude that the thread’s current strategy needs to be changed.
This is the rationale behind the intensification, diversification and SSR moves.

When intensification occurs, a random point is chosen from the IM as the
next point of search. This point is removed from the IM so that it is not chosen
again or by a different thread. Tabu points are not allowed to be chosen.

Diversification is slightly more complicated. The search space is divided into
distinct regions, with the number of solutions from all threads evaluated in each
region being tallied in the LTM. At diversification a number of candidate next
points are generated by choosing regions, with the probability of selection being
proportionately higher for less explored regions, and then choosing a point ran-
domly within the chosen region. Tabu and infeasible points are removed and the
remaining points evaluated. The POS of these solutions is identified and one of
these randomly chosen as the next position for the thread.

The SSR move simply multiplies the step-sizes used for finding the neighbours
in a H&J move by some given number between 0 and 1. The thread then proceeds
anew from a point randomly selected from the MTM.

3.4 Parallelisation Strategy

As real-world problems are likely to have computationally expensive objective
functions and many design variables, optimizations are likely to be run on clus-
tered processors to ensure a viable run-time. We have therefore designed our
algorithm for such use, using an MPI/LAM environment.

There are now two possibilities for parallelisation: functional decomposition
or separation of threads (Type 1 or 3 parallelisation [3]). The second approach
could follow the structure of the algorithm very closely: the threads could work
not only independently but on separate processors, sending back information
to the master program. However, despite offering a large potential increase in
speed, this requires a complicated system of information exchange. In this study
we consider the algorithm parallelised via functional decomposition, and suggest
parallelisation of threads as holding much potential for future study.

Functional decomposition effectively means that at each move, there is a spe-
cific point where all the possible positions to which each thread may move are
known by the master program. At this time, all of the function evaluations are re-
quested at once, and farmed out to all the slave processors (and to the processor
on which the master program runs). This allows an approximately linear increase
in speed with the addition of more slave processors, up to nthreads × nsample
processors – the maximum number of requested points at each move.

3.5 Constraint Handling

Throughout the investigations in this study, we use a method of binary con-
straint handling – where points are either allowed or not. This is very suitable to
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the kinds of constraints considered in our test problems, which are simple and
solely serve to bound variable space. However, TS lends itself well to highly con-
strained problems due to its use of a local search, which reduces the likelihood
of violating constraints once feasible space has been located, and our algorithm
is easily adapted to the use of penalty functions or modified dominance relations
necessary for handling complex constraints.

4 Test Procedures

To assess the performance of the multi-threading version of our multi-objective
TS algorithm, we undertook a rigorous series of tests on benchmark problems.

4.1 Test Functions

The problems chosen are Zitzler, Deb and Thiele’s suite of six problems [8],
excluding number 5. The design rationale behind these problems is given in
[9]. They are chosen here as they are easy to implement and relatively fast to
compute, whilst still providing a challenge for the optimizers. Their relevance to
real-world problems is debatable, but they serve as a useful starting point for
performance assessment.

4.2 Performance Assessment Using Unary Indicators

The key idea in assessing the performance of an optimizer is assigning a measure
of quality to an approximation set (the Pareto front found in a single run). We
therefore wish to reduce a run of our algorithm to a single number representing
how ‘good’ it was, which we can then compare to other algorithms or variants
run on the same problem. We use two such indicators in this study, the unary
epsilon indicator, and the hypervolume indicator. These both require a reference
set with respect to which we measure the quality of the approximation set.

In this study we reject the idea of using an ideal set as a reference set, as it is
rare that this can be generated analytically in any real-world situation – if the
answer is already known there is little point solving the problem! Instead we use
a 50% attainment surface of 1000 runs of a random search. The random search
simply picks a single point in the search space and evaluates the objective func-
tions at it, so after 1000 runs we have 1000 points each forming an approximation
set on their own. An n% attainment surface is formed of those points that are
dominated by n% of the approximation sets under consideration. It is possible
to represent an attainment surface using a finite set of points at its corners. As
each approximation set is finite – this is always the case with any set generated
by an optimization algorithm taking a finite amount of time, but is particularly
easy to see in this case as each set has size 1 – and there are a finite number of
them, any attainment surface will take the form of a stepped line in objective
space with a finite number of vertices. These are then the points taken as the
reference set for use in calculating unary indicators for all algorithms under test.
The 50% attainment surface we are using converges quickly with respect to the
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Table 1. Bounds chosen for the calculation of indicator values

Problem Upper Bound Lower Bound

ZDT1 (1,7) (0,0)
ZDT2 (1,7) (0,0)
ZDT3 (1,7) (-1,0)
ZDT4 (1,700) (0,0)
ZDT6 (1,10) (0,0)

number of runs considered [11], so 1000 runs should be enough to render our
results comparable to others taken using this reference set.

In order to eliminate weighting of the objective functions in the calculation
of indicator values, we must normalize our approximation set. We now think of
our set as points in objective space. We must perform operations which leave
all coordinates of all points in our reference set and approximation sets lying
between 1 and 2. In this way each coordinate contributes a comparable amount
to the distances or volumes in objective space used in calculating indicators.
In order to normalize the coordinates in this way we must choose bounds in
objective space with respect to which we transform the space. These are the
points that will become (1,1,...) and (2,2,...). In this study we explicitly choose
these points globally, instead of normalizing with respect to the bounds of the
approximation sets given by runs of a specific algorithm, in order to ensure that
comparisons between indicators assigned to runs of different algorithms are the
same. See Table 1 for the values chosen for each test problem.

Unary Epsilon Indicator. The additive unary epsilon indicator, proposed by
Zitzler et al. [10], makes direct use of Pareto dominance, and hence is highly
intuitive. For two approximation sets A and B, the epsilon indicator can be
thought of as a measure of the minimum distance we must shift set B by so that
A only just dominates it. If set A dominates set B then the indicator value will
be negative, and if B dominates A then the value will be positive. In the case of
Pareto equivalence it could be either.

We transform this binary indicator into a unary indicator by fixing one of the
sets compared, set B. We then call this set a reference set and label it R. We
use the 50% attainment surface described above as our reference set. As for any
reference set, a lower indicator value indicates a (possibly) better approximation
set. However, we must be careful, as we expect that our approximation sets will
be a definite improvement upon our reference set, and therefore our indicator
values will be negative. We consider lower, and so larger, values to be better.

Hypervolume Indicator. For a given point in an approximation set and a
given reference point, considering both in objective space, we can define a unique
hyper-rectangle with these two points at opposite vertices (defining its orienta-
tion as parallel to our axes). If we do this for all points in the approximation
set, and take the hypervolume of the union of the hyper-rectangles given, this
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gives us an indicator of the quality of the approximation set [10]. In this study
we choose the point (2,2,...) as our reference point. This indicator can also be
used in conjunction with a reference set – the hypervolume for each set is found
and then the difference is taken. We make use of this with our 50% attainment
surface of the random search as the reference set.

The Kruskal-Wallis Test. In order to compare indicator values obtained from
the different algorithms rigorously, we use a statistical test called the Kruskal-
Wallis test. This is an extension of the Mann-Whitney test which allows more
than two sets of data to be compared at once. This test is chosen as we wish
to make no assumptions about the distribution of the approximation sets and
so must use a nonparametric test. There are two main types of nonparametric
tests – rank tests and permutation tests [11]. Here we choose a rank test as it is
computationally cheaper. The output of the test is in the form of p-values – these
represent the certainty with which we can say that one algorithm’s indicator
values are better than another’s. We take our null hypothesis to be that all of
the algorithms tested perform equally well. We only accept that one is better
than another if the p-values are in the ranges [0,0.05] and [0.95,1], thus carrying
out a two-tailed test at a 10% significance level. Full details of this test (and the
Mann-Whitney test) can be found in [12].

4.3 Details of the Procedure

Each algorithm was run 45 times on each test problem for each stopping criterion.
The random number generator for each run was initialised with a different seed.

The algorithms tested were the original single-threaded multi-objective TS
algorithm (termed MOTS), based on that in [2], and the multi-threaded variant
presented here with between 1 and 6 threads (MTMOTS1-6).

MOTS and MTMOTS1 have been extensively tested using seeding of the
random number generators to ensure that they perform identically. They have
been both included in the results tables to illustrate the level of uncertainty to
which we are exposed in comparing the results of different algorithms, due to
the random selection occurring throughout the implementation.

The stopping criterion used was a limit on the number of points in variable
space for which the (two in the case of each of our test problems) objective
functions are evaluated. Runs were performed with this limit set at 1000, 5000
and 10000 evaluations. (The other MOTS and MTMOTS parameter settings
are detailed in Table 2. Advice about appropriate choices for these parameter
settings can be found in [13] and [2].)

This means that, for the multi-threaded algorithms, each thread may only
perform 1000/nthreads evaluations. We are therefore setting a high target for a
multi-threaded algorithm to outperform the original MOTS algorithm – it must
find a better POS in the same overall number of evaluations, meaning that each
thread has many fewer. We rely on the benefits of intercommunication between
threads and the advantage of considering more of the search space at once to
gain performance improvements.
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Table 2. MOTS and MTMOTS parameter settings

Parameter Description Value

nstm Size of the STM 10
nregions Search space split into nvar × nregions regions in the LTM 4

nsample Number of points randomly sampled at each move 6

ntasks Number of diversify points considered 6
iintensify Number of iterations after a successful addition to the 25

MTM at which an intensification move is performed
idiversify Number of iterations after a successful addition to the 45

MTM at which a diversification move is performed
ireduce Number of iterations after a successful addition to the 90

MTM at which a SSR move is performed
iselect Re-evaluate the distance of neighbours to the Pareto front 20

every iselect iterations
h Step-size (as a percentage of the range of each variable) 8%
δh Step-size reduction factor 0.5

Table 3. Indicator value summary for tests at 1000 evaluations

Problem ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
MOTS hyp mean -0.47189861 -0.48296787 -0.24807474 -0.47282969 -0.58526265

std dev 0.03379669 0.00163838 0.00059581 0.01395013 0.04665498
eps mean -0.57978382 -0.48296787 -0.24807474 -0.47282969 -0.58526265

std dev 0.04564560 0.00163838 0.00059581 0.01395013 0.04665498
MTMOTS1 hyp mean -0.46170811 -0.63888054 -0.28958053 -0.51768275 -0.31132050

std dev 0.03994537 0.04726613 0.02531064 0.02899083 0.04785066
eps mean -0.56829806 -0.44377244 -0.23126602 -0.13501031 -0.38764545

std dev 0.05329170 0.03683993 0.01066563 0.02314708 0.06473030
MTMOTS2 hyp mean -0.42155799 -0.66066378 -0.29790510 -0.53065500 -0.28508967

std dev 0.02523835 0.03463798 0.01657247 0.02953229 0.05478347
eps mean -0.52871405 -0.46555037 -0.23336463 -0.48376550 -0.34037449

std dev 0.04117396 0.01258062 0.01120566 0.01470215 0.07162364
MTMOTS3 hyp mean -0.39276954 -0.61003153 -0.25719158 -0.52037129 -0.27124040

std dev 0.02672701 0.04793333 0.03163013 0.03058630 0.04381376
eps mean -0.48826261 -0.43763577 -0.20646111 -0.48149464 -0.32478213

std dev 0.04041251 0.05131813 0.04161739 0.01979420 0.04722428
MTMOTS4 hyp mean -0.37342153 -0.51284643 -0.23662673 -0.53146441 -0.26822716

std dev 0.02737189 0.05098687 0.02015291 0.02437211 0.04058641
eps mean -0.46254002 -0.38467187 -0.21076098 -0.14486690 -0.30225486

std dev 0.03886867 0.05561409 0.02543820 0.02349137 0.06412030
MTMOTS5 hyp mean -0.35064797 -0.45925508 -0.20942130 -0.53204800 -0.26747420

std dev 0.02056303 0.04259167 0.01490424 0.02360550 0.03895329
eps mean -0.42753125 -0.34071154 -0.18955525 -0.14440422 -0.31403610

std dev 0.02972445 0.04594956 0.02425446 0.02128838 0.05028005
MTMOTS6 hyp mean -0.35326050 -0.43212912 -0.19853758 -0.53037486 -0.28331800

std dev 0.01618564 0.04293036 0.01228371 0.02805780 0.03053868
eps mean -0.42756207 -0.31251449 -0.17569703 -0.14612598 -0.33820096

std dev 0.02755102 0.04515031 0.02442164 0.02239561 0.04578612

5 Results and Discussion

The values of both the epsilon and hypervolume indicators for all runs are sum-
marised in Tables 3, 4 and 5 through their means and standard deviations over
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Table 4. Indicator value summary for tests at 5000 evaluations

Problem ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
MOTS hyp mean -0.75771113 -0.77604662 -0.34128927 -0.47282969 -0.47189861

std dev 0.01080879 0.02368686 0.01946946 0.01395013 0.03379669
eps mean -0.48614000 -0.47885986 -0.24595268 -0.47282969 -0.57978382

std dev 0.02130317 0.00532947 0.00202096 0.01395013 0.04564560
MTMOTS1 hyp mean -0.74546818 -0.77465641 -0.34000247 -0.57349963 -0.46170811

std dev 0.03029480 0.02610753 0.01995945 0.01783768 0.03994537
eps mean -0.49272115 -0.47796028 -0.24539430 -0.17291130 -0.56829806

std dev 0.00535743 0.00677950 0.00272025 0.01751066 0.05329170
MTMOTS2 hyp mean -0.74021378 -0.74698593 -0.33980378 -0.57489295 -0.42155799

std dev 0.01804256 0.02304431 0.01810125 0.01645429 0.02523835
eps mean -0.48075048 -0.47302125 -0.24577017 -0.17716111 -0.52871405

std dev 0.01352368 0.01042583 0.00216076 0.01626620 0.04117396
MTMOTS3 hyp mean -0.73204179 -0.74413296 -0.33247867 -0.57260769 -0.39276954

std dev 0.02057182 0.02588503 0.01353899 0.02004265 0.02672701
eps mean -0.47460730 -0.47336821 -0.24367137 -0.49707953 -0.48826261

std dev 0.01864253 0.00992169 0.00452546 0.00406652 0.04041251
MTMOTS4 hyp mean -0.72444517 -0.73243387 -0.32650285 -0.56678358 -0.37342153

std dev 0.01835684 0.03057232 0.01676906 0.01419364 0.02737189
eps mean -0.46866599 -0.47382256 -0.24438498 -0.49591891 -0.46254002

std dev 0.01626027 0.01159641 0.00448835 0.00635217 0.03886867
MTMOTS5 hyp mean -0.71613364 -0.72588713 -0.32269983 -0.56905458 -0.35064797

std dev 0.02223144 0.03955106 0.01418449 0.01640497 0.02056303
eps mean -0.46199537 -0.47443139 -0.24352935 -0.17478283 -0.42753125

std dev 0.02137072 0.01098106 0.00502267 0.01606452 0.02972445
MTMOTS6 hyp mean -0.71892105 -0.73547479 -0.32559845 -0.57060564 -0.35326050

std dev 0.01653063 0.03553801 0.01313763 0.01452726 0.01618564
eps mean -0.46492066 -0.47583449 -0.24502034 -0.17650711 -0.42756207

std dev 0.01614469 0.00977956 0.00387710 0.01440561 0.02755102

each set of 45 runs. The results of the Kruskal-Wallis tests for each set of indica-
tors are presented in Tables 6, 7 and 8. For compactness, in the latter set of tables
the algorithms MTMOTS1-6 are notated MT1-6. The epsilon and hypervolume
indicator values are all negative, indicating that in general the approximation
set is better than the reference set, as we would expect. A larger, more nega-
tive value in both cases indicates that the approximation set is further from the
reference set and therefore closer to the true Pareto front.

As we are using the same reference set and bounding points for every run on
a given problem, we may freely compare indicator values for different numbers
of evaluations or algorithms on that problem. The testing has been designed to
be as transparent as possible, for ease of comparison of our results with others’.

For the most part, either MOTS or MTMOTS1 seem to be the best algo-
rithms. However, there are significant exceptions to this.

Although we know the MOTS and MTMOTS1 algorithms to be functionally
identical, the Kruskal-Wallis test nevertheless chooses a winner between the two
each time. We notice that, in almost all of such cases, the p-value that MOTS is
better than MTMOTS1 is not significant for a 10% two-tailed test between them.
This reassures us that the parameters we have set for our tests are sensible.

We find two cases where MOTS does win significantly over MTMOTS1, and
one where MTMOTS1 wins significantly over MOTS. The two former cases
are both with 1000 evaluations, and the latter is at 5000 evaluations. As the
two algorithms under comparison are identical, this points to the fact that the
random seed used in initialization is more significant to the end result than which
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Table 5. Indicator value summary for tests at 10000 evaluations

Problem ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
MOTS hyp mean -0.75804522 -0.79038349 -0.34670252 -0.49205272 -0.49205272

std dev 0.02861861 0.02150583 0.02161375 0.04517364 0.04517364
eps mean -0.48611454 -0.48296787 -0.24807474 -0.58526265 -0.58526265

std dev 0.02668620 0.00163838 0.00059581 0.04665498 0.04665498
MTMOTS1 hyp mean -0.76420495 -0.78934388 -0.34562586 -0.49752378 -0.49752378

std dev 0.02078507 0.02216047 0.01986500 0.03068751 0.03068751
eps mean -0.49191725 -0.48309933 -0.24794868 -0.58502840 -0.58502840

std dev 0.01920746 0.00164277 0.00086166 0.04035133 0.04035133
MTMOTS2 hyp mean -0.76031847 -0.78424399 -0.35241522 -0.49742877 -0.49742877

std dev 0.01792981 0.02376584 0.01324688 0.01285745 0.01285745
eps mean -0.49053026 -0.48050908 -0.24649687 -0.59839771 -0.59839771

std dev 0.01688889 0.00380593 0.00211902 0.00357564 0.00357564
MTMOTS3 hyp mean -0.75603023 -0.76955898 -0.34772538 -0.46111812 -0.46111812

std dev 0.00971037 0.02164517 0.01103327 0.01554581 0.01554581
eps mean -0.49163574 -0.47937156 -0.24628508 -0.58113050 -0.58113050

std dev 0.00609305 0.00403372 0.00202930 0.02302866 0.02302866
MTMOTS4 hyp mean -0.75185899 -0.76907325 -0.34513998 -0.43699462 -0.43699462

std dev 0.00790369 0.02727055 0.01070044 0.02216875 0.02216875
eps mean -0.49026121 -0.47715134 -0.24571855 -0.55088889 -0.55088889

std dev 0.00485044 0.00731959 0.00288883 0.03212537 0.03212537
MTMOTS5 hyp mean -0.74732437 -0.76383152 -0.34381879 -0.41948442 -0.41948442

std dev 0.01005336 0.02892708 0.00789131 0.01741343 0.01741343
eps mean -0.48585004 -0.47740937 -0.24469911 -0.52484087 -0.52484087

std dev 0.01040263 0.00731432 0.00300585 0.02962981 0.02962981
MTMOTS6 hyp mean -0.74413543 -0.76351363 -0.34045766 -0.40218758 -0.40218758

std dev 0.01238293 0.02310450 0.01094006 0.01701943 0.01701943
eps mean -0.48465399 -0.47673877 -0.24553331 -0.49944897 -0.49944897

std dev 0.01090706 0.00678134 0.00251925 0.02569089 0.02569089

Table 6. Kruskal-Wallis test values for tests at 1000 evaluations

Test Indicator ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
hyp eps hyp eps hyp eps hyp eps hyp eps

p(MOTS>MT1) 0.105556 0.346889 0.620349 0.816576 0.816786 0.992924 H0 0.993142 0.274042 0.381567
p(MOTS>MT2) 0.080925 0.130265 0.005423 0.000766 0.107537 0.935704 0.000000 0.982873 0.999889
p(MOTS>MT3) 1.000000 1.000000 0.999349 0.824997 1.000000 1.000000 0.000000 0.999806 1.000000
p(MOTS>MT4) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.672640 0.999944 1.000000
p(MOTS>MT5) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.711272 0.999969 1.000000
p(MOTS>MT6) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.534900 0.992000 0.999852
p(MT1>MT2) 0.440777 0.232023 0.002195 0.000026 0.016295 0.173034 0.000000 0.996629 0.999966
p(MT1>MT3) 1.000000 1.000000 0.998227 0.512864 1.000000 0.999997 0.000000 0.999982 1.000000
p(MT1>MT4) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.021546 0.999996 1.000000
p(MT1>MT5) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.027817 0.999998 1.000000
p(MT1>MT6) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.008697 0.998646 0.999954
p(MT2>MT3) 1.000000 1.000000 1.000000 0.999977 1.000000 1.000000 0.497769 0.927409 0.937168
p(MT2>MT4) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.962719 0.997312
p(MT2>MT5) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.972951 0.990474
p(MT2>MT6) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.616193 0.470359
p(MT3>MT4) 1.000000 0.998119 1.000000 1.000000 0.999982 0.670996 1.000000 0.628719 0.897106
p(MT3>MT5) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.681716 0.793954
p(MT3>MT6) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.122520 0.054209
p(MT4>MT5) 0.999979 0.998450 0.999991 0.999977 1.000000 0.999999 0.543778 0.557281 0.327748
p(MT4>MT6) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.359552 0.068170 0.002141
p(MT5>MT6) 0.996554 0.978707 0.990596 0.973026 0.997049 0.974458 0.319332 0.051255 0.007806

Winning Algorithm MT2 MT2 MT2 MT2 MT2 MOTS MT3 MT1 MT1

algorithm is used! This applies more so for fewer evaluations. It is significant
that there are no cases where either MOTS or MTMOTS1 significantly win over
each other at 10000 evaluations. We therefore must be careful when drawing
conclusions about results for runs with fewer evaluations.

The most striking results are for ZDT4. For the epsilon indicators, we see that
for 10000 evaluations MTMOTS6 is a clear winner, for 5000 evaluations MT-
MOTS3 is the winner closely followed by MTMOTS4, and for 1000 evaluations
MTMOTS3 is also the winner. The p-values for these indicator values show that
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Table 7. Kruskal-Wallis test values for tests at 5000 evaluations

Test Indicator ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
hyp eps hyp eps hyp eps hyp eps hyp eps

p(MOTS>MT1) 0.991387 0.031571 0.628211 0.669757 0.659320 H0 0.733933 0.770235 0.945943 0.941797
p(MOTS>MT2) 0.999999 0.999897 1.000000 0.998999 0.715541 0.533915 0.268905 1.000000 1.000000
p(MOTS>MT3) 1.000000 1.000000 1.000000 0.998923 0.999269 0.761078 0.000000 1.000000 1.000000
p(MOTS>MT4) 1.000000 1.000000 1.000000 0.981008 0.999998 0.995667 0.000000 1.000000 1.000000
p(MOTS>MT5) 1.000000 1.000000 1.000000 0.952175 1.000000 0.961834 0.560861 1.000000 1.000000
p(MOTS>MT6) 1.000000 1.000000 1.000000 0.876979 1.000000 0.932913 0.415977 1.000000 1.000000
p(MT1>MT2) 0.988556 1.000000 0.999999 0.996086 0.563216 0.294699 0.087829 0.999995 0.999886
p(MT1>MT3) 0.999992 1.000000 1.000000 0.995822 0.997283 0.533915 0.000000 1.000000 1.000000
p(MT1>MT4) 1.000000 1.000000 1.000000 0.949436 0.999991 0.977687 0.000000 1.000000 1.000000
p(MT1>MT5) 1.000000 1.000000 1.000000 0.890514 1.000000 0.875077 0.278727 1.000000 1.000000
p(MT1>MT6) 1.000000 1.000000 1.000000 0.764752 0.999999 0.809236 0.170687 1.000000 1.000000
p(MT2>MT3) 0.981167 0.969488 0.647191 0.491073 0.995652 0.733933 0.000000 0.999997 0.999985
p(MT2>MT4) 0.999982 0.999973 0.988984 0.151308 0.999981 0.994476 0.000000 1.000000 1.000000
p(MT2>MT5) 1.000000 1.000000 0.997682 0.074720 1.000000 0.954283 0.779084 1.000000 1.000000
p(MT2>MT6) 1.000000 1.000000 0.946050 0.025783 0.999998 0.921197 0.656915 1.000000 1.000000
p(MT3>MT4) 0.981921 0.986244 0.972323 0.156602 0.938325 0.972813 0.528685 0.999806 0.998888
p(MT3>MT5) 0.999870 0.999923 0.993052 0.077913 0.997748 0.856757 1.000000 1.000000 1.000000
p(MT3>MT6) 0.999739 0.999762 0.890984 0.027142 0.980736 0.785270 1.000000 1.000000 1.000000
p(MT4>MT5) 0.943992 0.946603 0.708884 0.340109 0.905503 0.194266 1.000000 0.999999 0.999993
p(MT4>MT6) 0.919277 0.905525 0.245649 0.178685 0.702795 0.127573 1.000000 0.999992 0.999997
p(MT5>MT6) 0.424625 0.381849 0.108000 0.305484 0.216979 0.391154 0.357436 0.346757 0.562926

Winning Algorithm MOTS MT1 MOTS MOTS MOTS MOTS MT3 MOTS MOTS

Table 8. Kruskal-Wallis test values for tests at 10000 evaluations

Test Indicator ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
hyp eps hyp eps hyp eps hyp eps hyp eps

p(MOTS>MT1) 0.121011 0.152397 0.509236 0.261613 0.884989 0.629323 H0 0.518490 0.249132 0.714321
p(MOTS>MT2) 0.973477 0.982249 0.967079 0.999965 0.303948 0.999999 0.233605 0.545664 0.153195
p(MOTS>MT3) 1.000000 0.999868 1.000000 1.000000 0.993803 1.000000 0.177433 1.000000 0.999999
p(MOTS>MT4) 1.000000 1.000000 0.999998 1.000000 0.999947 1.000000 0.120832 1.000000 1.000000
p(MOTS>MT5) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.639767 1.000000 1.000000
p(MOTS>MT6) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.000000 1.000000 1.000000
p(MT1>MT2) 0.998991 0.999073 0.965356 0.999998 0.043557 0.999997 0.219665 0.785758 0.056297
p(MT1>MT3) 1.000000 0.999998 1.000000 1.000000 0.904892 1.000000 0.165661 1.000000 0.999986
p(MT1>MT4) 1.000000 1.000000 0.999998 1.000000 0.996581 1.000000 0.111794 1.000000 1.000000
p(MT1>MT5) 1.000000 1.000000 1.000000 1.000000 0.999946 1.000000 0.622284 1.000000 1.000000
p(MT1>MT6) 1.000000 1.000000 1.000000 1.000000 0.999999 1.000000 0.000000 1.000000 1.000000
p(MT2>MT3) 0.999497 0.942294 0.999377 0.906584 0.998670 0.785605 0.421331 1.000000 1.000000
p(MT2>MT4) 1.000000 0.999508 0.997536 0.996922 0.999994 0.923291 0.328256 1.000000 1.000000
p(MT2>MT5) 1.000000 0.999999 0.999859 0.990395 1.000000 0.999852 0.860856 1.000000 1.000000
p(MT2>MT6) 1.000000 1.000000 0.999959 0.997988 1.000000 0.979562 0.000000 1.000000 1.000000
p(MT3>MT4) 0.988419 0.959294 0.335161 0.923915 0.920252 0.738280 0.402726 0.999995 0.999999
p(MT3>MT5) 0.999832 0.999573 0.660612 0.848289 0.995273 0.997780 0.900078 1.000000 1.000000
p(MT3>MT6) 0.999996 0.999762 0.767400 0.941867 0.999741 0.895889 0.000000 1.000000 1.000000
p(MT4>MT5) 0.909995 0.946850 0.799401 0.343022 0.884741 0.986682 0.936634 0.999348 0.998805
p(MT4>MT6) 0.988004 0.962282 0.875984 0.555472 0.981639 0.732908 0.000000 1.000000 1.000000
p(MT5>MT6) 0.822077 0.565092 0.624153 0.706661 0.814676 0.054740 0.000000 0.999348 0.996217

Winning Algorithm MT1 MT1 MOTS MT1 MT2 MOTS MT6 MT1 MT2

we may regard these wins as highly significant. These are the only cases where
the wins over both MOTS and MTMOTS1 are “significantly” significant.

Interestingly, although the conclusions drawn for ZDT4 from the epsilon in-
dicators are clear, the hypervolume indicators disagree – for 1000 and 10000
evaluations, in fact, the null hypothesis is accepted. This points to the fact that
the Pareto fronts found by the multi-threading algorithms are better in some
ways but not in others. Inspecting the plots of the Pareto fronts found in Figs. 1
and 2, we see that, in general, those for the winning algorithms find the whole of
a global or local Pareto front. The shape of these fronts in objective space is such
that partial convergence to a front can still give a high hypervolume value, and
thus algorithms are hard to distinguish on this basis. We also see that, in gen-
eral, local fronts closer to the global front are found by the winning algorithms.
We conclude that for ZDT4 multi-threading is beneficial. Our results indicate
that the optimal number of threads increases with the number of evaluations
allowed, and this would provide a good avenue for further study. We must note,
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Fig. 1. All 45 Pareto fronts found by various MTMOTS algorithms for the test problem
ZDT4, 5000 evaluations

however, that the true Pareto front is still not consistently found, even with the
improved results of the multi-threaded algorithm.

The reason why the new algorithm makes such a difference on ZDT4 may be
attributed to the fact that it is a deceptive problem with many local fronts. It
makes sense that a multi-threaded algorithm would be advantageous here – as
soon as one thread finds that the front in which it was stuck is only local, all
threads are alerted, and then, if another thread becomes stuck, intensification
will occur, moving it onto the new front. On a non-deceptive problem the sharing
of information may not help the individual threads very much; they have to find
their way to the Pareto front independently.

We might also expect multi-threading to improve results for problems with
discontinuous Pareto fronts, on the basis that different threads could more effi-
ciently find and explore different parts of the front. Of the problems tested in this
study ZDT3 has this characteristic, but the results are not very compelling. At
10000 evaluations and 1000 evaluations MTMOTS2 wins, but not significantly,
for the hypervolume indicators only, and elsewhere MOTS or MTMOTS1 win. It
is hard to draw any conclusions from the results, except that the higher numbers
of threads (above 4 threads) definitely make things worse.

The other notable feature in the results is that for 1000 evaluations MT-
MOTS2 wins more often than not. These tests are significant over MTMOTS1,
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Fig. 2. All 45 Pareto fronts found by various MTMOTS algorithms for the test problem
ZDT4, 10000 evaluations

but not MOTS. We must therefore treat them with caution as MOTS and MT-
MOTS1 are the same but for their random number seeds each run. However, we
may tentatively suggest that adding an extra thread may improve initial progress
and may therefore be particularly beneficial if, for some reason, operation of the
algorithm is limited to a small number of evaluations. Again, this is an area
which could be further investigated.

6 Conclusions

The performance of seven algorithms, MOTS and MTMOTS1-6, on five bench-
mark test problems, ZDT1-4 and ZDT6, was investigated. The results show a
clear improvement with multi-threading on ZDT4, indicating that this may be
beneficial in general for problems with deceptive local Pareto fronts. Our re-
sults indicate that there may be a relationship between the optimal number of
threads to use and the number of evaluations allowed. It also seems that, if only
a small numbers of evaluations are permitted, adding one thread may provide
small advantages. However, overall we must conclude that on most problems the
implementation of a multi-threaded algorithm, as specified in this paper, does
not result in an improvement in optimiser performance.
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Abstract. This paper presents a comprehensive comparison between
the performance of state-of-the-art genetic algorithms NSGA-II, SPEA2
and IBEA and their differential evolution based variants DEMONS-II,
DEMOSP2 and DEMOIB. Experimental results on 16 numerical multi-
objective test problems show that on the majority of problems, the algo-
rithms based on differential evolution perform significantly better than
the corresponding genetic algorithms with regard to applied quality in-
dicators. This suggests that in numerical multiobjective optimization,
differential evolution explores the decision space more efficiently than
genetic algorithms.

1 Introduction

Differential Evolution (DE) [1] is a simple yet powerful algorithm that outper-
forms Genetic Algorithms (GAs) on many numerical singleobjective optimiza-
tion problems [2]. In this paper we show that DE can achieve better results than
GAs also on numerical multiobjective optimization problems (MOPs). To this
end, we compare three state-of-the-art Multiobjective Evolutionary Algorithms
(MOEAs), namely NSGA-II [3], SPEA2 [4] and IBEA [5], to their counterparts
– algorithms that use the same environmental selection, but DE instead of GAs
for exploring the decision space. While DE-based algorithms for multiobjective
optimization have already been proposed in the past (see Related Work in Sec-
tion 3), comparisons between these approaches and GA-based algorithms lack:
(a) a wide choice of difficult test problems with more than two objectives, (b)
performance assessment with Pareto compliant indicators, and (c) inferences
about algorithm performance based on statistical tests. The comparison in this
paper includes all these usually omitted features.

The paper is further organized as follows. Section 2 introduces the basic GA
as the underlying algorithm for NSGA-II, SPEA2 and IBEA, while the proposed
algorithm DEMO is explained in detail in Section 3. Section 4 outlines the ex-
periments, whose results are presented and discussed in Section 5. Section 6
concludes the paper with a summary of the results.

2 Multiobjective Optimization with the Basic GA

Most of the efforts spent on adapting GAs to multiobjective optimization have
been focusing on finding new approaches for environmental selection. These

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 257–271, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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approaches try to produce good approximations of the Pareto optimal front
by incorporating different preferences. For example, the environmental selection
in NSGA-II [3] first ranks the individuals using nondominated sorting. To distin-
guish between individuals with the same rank, the crowding distance metric is
used, which prefers individuals from less crowded regions of the objective space.
SPEA2 [4] works similarly, calculating the raw fitness of the individuals accord-
ing to Pareto dominance relations between them and using a density measure to
break the ties. The individuals that reside close together in the objective space
are discouraged from entering the archive of best solutions. IBEA [5], on the
other hand, uses a different approach. The fitness of individuals is determined
only according to the value of a predefined indicator. This indicator has to be
dominance preserving and no other explicit diversity preserving mechanism (such
as crowding in NSGA-II or density in SPEA2) is applied.

While directing all attention to environmental selection, the popular
algorithms NSGA-II, SPEA2 and IBEA use practically the same algorithm for
exploring the decision space. It is therefore possible to describe all three algo-
rithms using a unifying framework, which will be called Basic Genetic Algo-
rithm in the remainder of this paper. This algorithm is presented in Fig. 1.
After initialization of the populations P and Q, which is slightly different in
NSGA-II, SPEA2 and IBEA1, the evolutionary steps of selection, crossover and
mutation are repeated until a stopping criterion is met. In environmental selec-
tion, one of the previously described approaches is used to calculate the fitness
of the individuals. This fitness is used again when comparing individuals in
tournament selection. Figure 2 shows the variation operators on individuals en-
coded as real vectors. In case of combinatorial MOPs, different operators need to
be used.

Basic Genetic Algorithm for Multiobjective Optimization
1. Initialize populations P0 and Q0.
2. Set t = 0.
3. Repeat:

3.1. Set t = t + 1.
3.2. Calculate the objectives for new individuals from Pt−1 and Qt−1.
3.3. Get Pt from Pt−1 and Qt−1 with environmental selection.
3.4. If stopping criterion met, return nondominated individuals from Pt.
3.5. Fill the mating pool Mt using tournament selection on Pt.
3.6. Apply variation to individuals from Mt to get Qt (see Fig. 2).

Fig. 1. Outline of the basic genetic algorithm

1 While NSGA-II initializes the population P0 with randomly created individuals and
sets Q0 to be empty, in SPEA2, P0 represents the archive of best solutions and
is therefore initially empty, while Q0 is filled with randomly created individuals.
IBEA originally uses a single population of variable size instead of two separate
populations. Without altering its performance, we can assume that IBEA uses two
populations, which are initialized in the same way as in NSGA-II.
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Variation
Input: Mating pool Mt

1. Create empty population Qt.
2. For each pair of individuals Ii, Ii+1 (i = 1, 3, . . . ) from Mt do:

2.1. Modify the individuals Ii, Ii+1 with uniform crossover.
2.2. Modify the individuals Ii, Ii+1 with simulated binary crossover.
2.3. Modify the individual Ii with polynomial mutation.
2.4. Modify the individual Ii+1 with polynomial mutation.
2.5. Add individuals Ii and Ii+1 to Qt.

Output: Population Qt

Fig. 2. Variation of real-coded individuals

3 Multiobjective Optimization with DE

DE [1] is a simple evolutionary algorithm that encodes solutions as vectors and
uses operations such as vector addition, scalar multiplication and exchange of
components (crossover) to construct new solutions from the existing ones. When
a new solution, also called candidate, is constructed, it is compared to its parent.
If the candidate is better than its parent, it replaces the parent in the population.
Otherwise, the candidate is discarded. As a steady-state algorithm, DE implicitly
incorporates elitism, i.e. no solution can be deleted from the population unless
a better solution is found. While being a very successful optimization method,
DE’s greatest limitation originates in its encoding. As no vector representation of
solution exists for combinatorial problems, DE can only be applied in numerical
optimization.

3.1 Related Work

DE has been adapted to solve MOPs in several ways. In the early approaches
(PDE [6] and GDE [7]), only the concept of Pareto dominance was used to
compare the individuals. The candidate replaced its parent only if it (weakly)
dominated it. Otherwise, it was discarded. This is a rather strict demand, es-
pecially when the number of objectives is high. Many subsequent approaches
(PDEA [8], MODE [9], NSDE [10], GDE2 [11], DEMO [12], GDE3 [13] and
NSDE-DCS [14]) used nondominated sorting and/or the crowding distance met-
ric to calculate the fitness of individuals. Only recently, new algorithms that do
not follow the environmental selection of NSGA-II were proposed (ε-MyDE [15]
and DEMORS [16]). To our best knowledge, no algorithms that combine DE
with the environmental selection of SPEA2 or IBEA have been presented so far.

3.2 DEMONS-II, DEMOSP2 and DEMOIB

The idea presented here is to use DE for exploring the decision space and en-
vironmental selection from either NSGA-II, SPEA2 or IBEA to select the best
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individuals for the next population. This idea is implemented in the algorithm
called DEMO (Differential Evolution for Multiobjective Optimization)2.

The outline of DEMO is presented in Figs. 3 and 4. In the main loop, the
candidate replaces the parent if it dominates it. If the parent dominates the
candidate, the candidate is discarded. Otherwise (when the candidate and parent
are nondominated with regard to each other), the candidate is added to the
population. This step is repeated until popSize number of candidates are created.
After that, we get a population of size between popSize and 2 × popSize . If the
population has enlarged, it is truncated to popSize using environmental selection.

Differential Evolution for Multiobjective Optimization
1. Evaluate the initial population P of random individuals.
2. While stopping criterion not met, do:

2.1. For each individual Pi (i = 1, . . . , popSize) from P repeat:
(a) Create candidate C from parent Pi (see Fig. 4).
(b) Calculate the objectives of the candidate.
(c) If the candidate dominates the parent, the candidate replaces the parent.

If the parent dominates the candidate, the candidate is discarded.
Otherwise, the candidate is added in the population.

2.2. If the population has more than popSize individuals, apply environmental
selection to get the best popSize individuals.

2.3. Randomly enumerate the individuals in P .
3. Return nondominated individuals from P .

Fig. 3. Outline of DEMO

Candidate creation
Input: Parent Pi

1. Randomly select three individuals Pi1 , Pi2 , Pi3 from P , where
i, i1, i2 and i3 are pairwise different.

2. Calculate candidate C as C = Pi1 + F (Pi2 − Pi3), where F
is a scaling factor.

3. Modify the candidate with binary crossover with the parent Pi.
4. Repair the candidate if it falls out of bounds of the decision space.
Output: Candidate C

Fig. 4. Candidate creation using scheme DE/rand/1/bin

Note that the newly created candidates that enter the population (either by
replacement or by addition) instantly take part in the creation of subsequent can-
didates. This helps achieving fast convergence to the Pareto optimal front. More-
over, it resembles very closely the steady-state mechanism of DE. This is why we
prefer the described approach to a somewhat more straightforward way to use DE

2 DEMO is a generalization of the DEMO/parent variant presented in [12], which used
the DE/rand/1/bin scheme [2] and environmental selection from NSGA-II.
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in the basic GA, which consists of replacing the variation phase (see Fig. 2) with
candidate creation (as in Fig. 4) for each individual from the mating pool.

In candidate creation, the use of vector addition can result in candidates that
fall out of bounds of the decision space. In such cases, many repair methods are
possible. We address this problem by replacing the candidate value violating the
boundary constraints with the closest boundary value. In this way, the candidate
becomes feasible with as few alterations to it as possible and there is no need
for making a new candidate. It is important to note, however, that this repair
method may yield more boundary individuals and is biased for problems where
the Pareto optimal set lies on one of the bounds of the decision space.

DEMO, as described in Fig. 3, can incorporate arbitrary environmental se-
lection. In the remainder of the paper we will use DEMONS-II, DEMOSP2 and
DEMOIB to denote the variants of DEMO that use environmental selection from
NSGA-II, SPEA2 and IBEA, respectively.

4 Experimental Setup

To compare the presented algorithms, extensive experiments on 16 test problems
were performed. The focus of the experiments was on comparing DEMONS-II to
NSGA-II, DEMOSP2 to SPEA2, and DEMOIB to IBEA, and not on compar-
ing algorithms with different environmental selection among themselves. Such a
comparison can be found, for example, in [5].

4.1 Test Problems

Two test problem suits were used in the experiments. The first consists of the
first seven DTLZ test problems from [17] and the second of the nine WFG test
problems presented in [18]. Both suits comprise difficult problems that present
many challenges for multiobjective optimizers, such as the existence of many
local Pareto optimal fronts, uneven distribution of points on the Pareto optimal
front, nonseparable variables etc.

Let n and m denote the dimensionality of the decision space and variable
space, respectively. Each of the 16 problems was used three times – each time
with a different number of objectives (m = 2, 3 and 4). The other parameters
were set as follows:

– The parameters of DTLZ problems were set as recommended in [17], i.e.
n = m + k − 1, where k = 5 for DTLZ1, k = 10 for problems DTLZ2 to
DTLZ6 and k = 20 for DTLZ7.

– Parameters of the WFG test suite are: the number of position related param-
eters k, number of distance related parameters l and number of objectives m.
The number of decision variables is calculated as n = k + l. Because of some
additional requirements (l must be an even number for WFG2 and WFG3,
and k must be divisible by m − 1), we used the following setting: k = 6 and
l = 4 (consecutively n = 10), which satisfies all the requirements for m = 2,
3 and 4.

All test problems suppose minimization of all objectives.
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4.2 Parameters of the Algorithms

The experiments with NSGA-II, SPEA2 and IBEA were performed using the
PISA environment [19]. The parameter settings for the basic GA, used by all
three algorithms, are the same as the ones used in the comparison between
NSGA-II and SPEA2 on the DTLZ1 problem in [17]:

– population size = 100,
– number of generations = 300,
– tournament size = 2,
– size of the mating pool = 100,
– individual crossover probability = 1,
– variable probability for SBX crossover = 1,
– distribution index for crossover ηc = 15,
– variable uniform crossover probability = 0.5,
– individual mutation probability = 1,
– variable polynomial mutation probability = 1/n,
– distribution index for mutation ηm = 20.

The parameters of all three variants of DEMO were set as in [12] (except for
the number of generations, which equals the number of generations used by the
basic GA):

– population size = 100,
– number of generations = 300,
– DE selection scheme = DE/rand/1/bin,
– scaling factor F = 0.5,
– probability used in binary crossover = 0.3.

DEMOIB and IBEA used additional parameters: indicator = IHD
3, scaling factor

κ = 0.05 and reference point for the hypervolume calculation ρ = (2, . . . , 2) ∈
IRm. Each algorithm was run on each problem 30 times.

4.3 Performance Assessment

The performance assessment was carried out using PISA and the guidelines
from [20] and [21]. Consider for example the comparison between DEMONS-II

and NSGA-II on one problem. Firstly, the bounds of approximation sets of both
algorithms were calculated so that the approximation sets could be normalized
to the interval [1, 2]. After that, a dominance rank was calculated for each of
the 60 approximation sets by simply counting the number of approximation sets
that are better than the observed one. The Mann-Whitney rank sum test was
used to discover if there are significant differences between the dominance ranks
of the two algorithms.
3 The same set of experiments was performed also with the Iε+ indicator. Be-

cause of space limitations, we report only the results obtained using IHD as they
are less favorable for DEMOIB. The interested reader can access all results from
http://dis.ijs.si/tea/EMO2007/demo.htm .

http://dis.ijs.si/tea/EMO2007/demo.htm
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Additional assessment was carried out using unary quality indicators. From
the approximation sets of both algorithms, the set containing only nondominated
solutions was computed and used as the reference set for the unary indicators
I1
ε+ and I1

R2. Other parameters of the I1
R2 indicator were: ρ = 0.01, (0.9, . . . , 0.9)

and (2.1, . . . , 2.1) ∈ IRm served as the ideal and Nadir points, and 501, 496 and
455 uniformly spread parameter vectors were used for the problems with two,
three and four objectives, respectively. The hypervolume indicator IH used the
point (2.1, . . . , 2.1) ∈ IRm as the reference point. All three indicators were cal-
culated for each approximation set of both algorithms. The significance of these
outcomes was tested independently with the Fisher’s independent permutation
test. Because we used dominance ranking and three indicators on the same data,
the significance level α for all significance tests was reduced from 0.05 to 0.0125
using the Bonferroni correction.

The same procedure was repeated in comparing DEMOSP2 to SPEA2 and
DEMOIB to IBEA. The outcomes of these comparisons are presented in the
next section.

5 Results and Discussion

Looking at the outcomes of dominance ranking (Tables 1, 3 and 5) we can observe
that on many problems, approximation sets of DEMO achieve significantly better
domination ranks than the approximation sets of the basic GA. Only rarely (see
Subsection 5.3), the basic GA outperforms DEMO. On the majority of problems,
however, there are no significant differences between the two algorithms with
regard to dominance ranking.

As expected, when dominance ranking shows a significant difference between
two algorithms, so do the three applied indicators (an exception is again ex-
plained in Subsection 5.3). On the majority of problems, DEMO achieves sig-
nificantly better results with regard to the chosen indicator (see Tables 2, 4 and
6). Note that on a few problems (see for example DTLZ5 for m = 4 in Table 2),
DEMO is significantly better than the basic GA with regard to one indicator
(I1

r2) and significantly worse with regard to another indicator (IH). This sug-
gests that the outcomes of DEMO and the basic GA are incomparable on such
problems.

Besides these results, we also investigated the plots of approximation sets (for
m = 2 and 3) and plots of attainment surfaces (for m = 2) [22] to gain further
insight into the comparison between DEMO and the basic GA. Despite statistical
tests show that there is almost always a significant difference in indicator values
of the two algorithms, in general no noticeable distinction was visible between
the approximation sets (and attainment surfaces) of DEMO and the basic GA on
problems DTLZ2, DTLZ4, DTLZ5, DTLZ7, WFG3, WFG4, WFG5, WFG8 and
WFG9. On problems DTLZ1, DTLZ3 and DTLZ6, where it is very difficult to
converge to the Pareto optimal front, and on the non-separable WFG6 problem,
DEMO generally attained the Pareto optimal front more efficiently than the
basic GA. On problems DTLZ3, WFG1, WFG2 and WFG7, DEMO achieved
better spread of solutions along the Pareto optimal front than the basic GA.



264 T. Tušar and B. Filipič

Table 1. Outcomes of the Mann-Whitney rank sum test (α = 0.0125) on dominance
ranking for DEMONS-II and NSGA-II. The ‘� p-value’ (‘� p-value’) denotes the prob-
lems, on which DEMONS-II is significantly better (worse) than NSGA-II, while ‘-’ in-
dicates there are no significant differences between the two algorithms.

m = 2 m = 3 m = 4
DTLZ1 - � 3.9×10−13 � 7.9×10−15

DTLZ2 - - -
DTLZ3 � 2.0×10−11 � 3.9×10−13 � 3.5×10−12

DTLZ4 � 0.0052 - -
DTLZ5 - - -
DTLZ6 � 4.1×10−14 � 7.9×10−15 � 3.9×10−13

DTLZ7 - - � 1.5×10−4

WFG1 - � 1.6×10−7 -
WFG2 - - -
WFG3 - - -
WFG4 - - -
WFG5 - - -
WFG6 � 1.5×10−4 - -
WFG7 - - -
WFG8 - - -
WFG9 - - -

Table 2. Outcomes of the Fisher-independent test (α = 0.0125) on indicator values for
DEMONS-II and NSGA-II. A ‘�’ (‘�’) under the indicator I means that DEMONS-II

is significantly better (worse) than NSGA-II regarding indicator I , while ‘-’ indicates
there are no significant differences between the two algorithms regarding indicator I

m = 2 m = 3 m = 4
I1

ε+ IH I1
R2 I1

ε+ IH I1
R2 I1

ε+ IH I1
R2

DTLZ1 � � � � � � � � �
DTLZ2 � � � � � � � � �
DTLZ3 � � � � � � � � �
DTLZ4 � � � � � � � � �
DTLZ5 � � � � � � - � �
DTLZ6 � � � � � � � � �
DTLZ7 � � � � � � � � �
WFG1 � � � � � � � � �
WFG2 � � � � � � � � �
WFG3 - � � � � � - � �
WFG4 - � - - � � � � �
WFG5 � - � - - - - - �
WFG6 � � � � � � - � �
WFG7 � � � � � � - � -
WFG8 � - � - - - - - �
WFG9 - � - - � � - - -
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Table 3. Outcomes of the Mann-Whitney rank sum test (α = 0.0125) on dominance
ranking for DEMOSP2 and SPEA2. The ‘� p-value’ (‘� p-value’) denotes the problems,
on which DEMOSP2 is significantly better (worse) than SPEA2, while ‘-’ indicates there
are no significant differences between the two algorithms.

m = 2 m = 3 m = 4
DTLZ1 - � 9.7×10−13 � 3.2×10−13

DTLZ2 - - -
DTLZ3 � 2.2×10−11 � 2.0×10−14 � 3.2×10−13

DTLZ4 - - -
DTLZ5 - - -
DTLZ6 � 2.0×10−14 � 7.9×10−15 � 1.7×10−12

DTLZ7 - - -
WFG1 - � 2.7×10−9 -
WFG2 - - -
WFG3 - - -
WFG4 - - -
WFG5 - - -
WFG6 � 2.6×10−6 - -
WFG7 - - -
WFG8 - - -
WFG9 - - -

Table 4. Outcomes of the Fisher-independent test (α = 0.0125) on indicator values
for DEMOSP2 and SPEA2. A ‘�’ (‘�’) under the indicator I means that DEMOSP2 is
significantly better (worse) than SPEA2 regarding indicator I , while ‘-’ indicates there
are no significant differences between the two algorithms regarding indicator I .

m = 2 m = 3 m = 4
I1

ε+ IH I1
R2 I1

ε+ IH I1
R2 I1

ε+ IH I1
R2

DTLZ1 � � � � � � � � �
DTLZ2 � � � � � � � � �
DTLZ3 � � � � � � � � �
DTLZ4 � � � � � � � � �
DTLZ5 � � � � � � � - �
DTLZ6 � � � � � � � � �
DTLZ7 � � � � � � � � �
WFG1 � � � � - - � � �
WFG2 � � � � � � � � �
WFG3 � � � - - - � - -
WFG4 - � - - � � - � �
WFG5 � � � � � � � � �
WFG6 � � � � � � - � �
WFG7 � � � � � � � � �
WFG8 � - � � � � - � �
WFG9 - - - � � � - � �
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Table 5. Outcomes of the Mann-Whitney rank sum test (α = 0.0125) on dominance
ranking for DEMOIB and IBEA. The ‘� p-value’ (‘� p-value’) denotes the problems,
on which DEMOIB is significantly better (worse) than IBEA, while ‘-’ indicates there
are no significant differences between the two algorithms.

m = 2 m = 3 m = 4

DTLZ1 - - -
DTLZ2 - - -
DTLZ3 - � 3.0×10−12 � 9.7×10−12

DTLZ4 � 0.0013 � 0.0104 -
DTLZ5 - - -
DTLZ6 � 1.2×10−13 � 2.4×10−11 -
DTLZ7 � 0.0023 � 1.3×10−7 � 1.8×10−7

WFG1 - � 0.0058 -
WFG2 - - -
WFG3 - - -
WFG4 - - -
WFG5 - - -
WFG6 � 6.1×10−6 - -
WFG7 - - -
WFG8 - - -
WFG9 - - -

Table 6. Outcomes of the Fisher-independent test (α = 0.0125) on indicator values
for DEMOIB and IBEA. A ‘�’ (‘�’) under the indicator I means that DEMOIB is
significantly better (worse) than IBEA regarding indicator I , while ‘-’ indicates there
are no significant differences between the two algorithms regarding indicator I .

m = 2 m = 3 m = 4
I1

ε+ IH I1
R2 I1

ε+ IH I1
R2 I1

ε+ IH I1
R2

DTLZ1 � � � � � � � � -
DTLZ2 - - � - � � - - �
DTLZ3 - � � � � � � � �
DTLZ4 � � � � � � � � �
DTLZ5 - - � � � � � � �
DTLZ6 � � � � � � � � �
DTLZ7 � � � � � � � � -
WFG1 � � � � � � � � �
WFG2 � � � � � � - � �
WFG3 - � � - � � � � �
WFG4 - � � - � � - � �
WFG5 � � � - - � - � �
WFG6 � � � � � � � � �
WFG7 � � � - � � - � �
WFG8 - - - - - � - - �
WFG9 � � - - � � - - �
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In the following subsections, we review the performance of DEMO and basic
GA on selected problems in more detail.

5.1 DEMONS-II vs. NSGA-II

The comparison between DEMO and the basic GA is very favorable to DEMO,
when nondominated sorting is used for environmental selection. Let us explore
in more detail the outcomes of both algorithms on the DTLZ6 problem. The
difficulty of this problem reflects in poor convergence of certain algorithms to the
Pareto optimal front. Figure 5 shows that DEMONS-II reaches the Pareto optimal
front for m = 2 and m = 3, while NSGA-II does not. The most probable cause
for such behavior is the repair method used by DEMO, since in this problem,
the Pareto optimal set lies at the bounds of the decision space and boundary
points are likely to be found after applying DEMO’s repair method.
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Fig. 5. Plots of normalized attainment surfaces and approximation sets of DEMONS-II

and NSGA-II on the DTLZ6 problem: (a) the best, worst and 50%-attainment surfaces
for each algorithm on the problem with two objectives; (b) 30 approximation sets for
each algorithm on the problem with three objectives

It is interesting to note, however, that on the only other problem (DTLZ7),
where the Pareto optimal set lies on the bounds of the decision space, no big dif-
ferences between approximation sets could be noticed. This is probably because
on this problem, none of the algorithms has difficulties in reaching the Pareto
optimal front.

5.2 DEMOSP2 vs. SPEA2

Using the strength Pareto approach for environmental selection yields very sim-
ilar results in the comparison between DEMO and the basic GA as the use of
nondominated sorting. The findings from the previous subsection (on problems
DTLZ6 and DTLZ7) hold also for DEMOSP2 and SPEA2. Similarly, some of
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 1

 1.2

 1.4

 1.6

 1.8

 2

 1  1.2  1.4  1.6  1.8  2

WFG1

SPEA2
DEMO SP2

 1
 1.2

 1.4
 1.6

 1.8
 2  1  1.2  1.4  1.6  1.8  2

 1
 1.2
 1.4
 1.6
 1.8

 2

WFG1

SPEA2
DEMO SP2

(a) (b)

Fig. 6. Plots of normalized attainment surfaces and approximation sets of DEMOSP2

and SPEA2 on the WFG1 problem: (a) the best, worst and 50%-attainment surfaces
for each algorithm on the problem with two objectives; (b) 30 approximation sets for
each algorithm on the problem with three objectives

the characteristics of the comparison between DEMOSP2 and SPEA2 on the
WFG1 problem, which will be discussed shortly, are true also when comparing
DEMONS-II and NSGA-II.

Consider now the WFG1 problem for m = 2. From the plot of attainment
surfaces (see Fig. 6) we can see that DEMOSP2 reaches a wider portion of the
Pareto optimal front than SPEA2, while having comparable convergence prop-
erties in the best and average case (50%-attainment surface) and a little worse
in the worst case. When this problem is tackled in three objectives, DEMOSP2

loses some of its convergence power while keeping the good coverage. SPEA2, on
the other hand, still covers only a small part of the whole front, while achieving
much better convergence than DEMOSP2. Although this is not visible from the
plots, we wish to point out that neither of the algorithms reached the Pareto
optimal front for this problem.

There is an additional interesting aspect of the results on this problem, which
is related to the performance assessment using dominance ranking and quality
indicators. Note that Tables 3 and 4 show that DEMOSP2 is significantly better
than SPEA2 with regard to dominance ranking, and significantly worse than
SPEA2 with regard to the I1

ε+ indicator. This happens because the approxi-
mation sets of DEMOSP2 are never dominated, while the approximation sets of
SPEA2 sometimes dominate each other. As a result, dominance ranking prefers
DEMOSP2 to SPEA2 although approximation sets of SPEA2 are closer to the
Pareto optimal front than approximation sets of DEMOSP2.

5.3 DEMOIB vs. IBEA

From Tables 5 and 6 it is obvious that using indicator based environmental
selection brought DEMO less improvement over the basic GA than using the
other two approaches. For the first time, DEMO was outperformed with regard



Differential Evolution Versus GAs in Multiobjective Optimization 269

 1

 1.2

 1.4

 1.6

 1.8

 2

 1  1.2  1.4  1.6  1.8  2

DTLZ3

IBEA
DEMO IB

 1
 1.2

 1.4
 1.6

 1.8
 2

 1  1.2  1.4  1.6  1.8  2

 1
 1.2
 1.4
 1.6
 1.8

 2

DTLZ3

IBEA
DEMO IB

(a) (b)

Fig. 7. Plots of normalized approximation sets of DEMOIB and IBEA on the DTLZ3
problem: (a) 30 approximation sets for each algorithm on the problem with two ob-
jectives; (b) 30 approximation sets for each algorithm on the problem with three
objectives

to dominance ranking. The DTLZ7 problem with 2m−1 disconnected Pareto
optimal regions proved to be very hard for DEMOIB. While the convergence
to the Pareto optimal front was not difficult, maintaining diverse solutions was
hard for DEMOIB. Out of 30 runs for each objective space dimensionality, DEMO
converged to a single point 29 times for m = 2, 26 times for m = 3 and 25 times
for m = 4. Note, however, that in combination with all other approaches to
environmental selection (including using I1

ε+ instead of IHD in indicator based
selection), DEMO could always maintain diverse solutions.

Let us analyze in more detail also the DTLZ3 problem, where the main
difficulty rises from its 310 − 1 local Pareto optimal fronts. As shown in the
plots in Fig. 7, IBEA has more difficulties in reaching the Pareto optimal front
than DEMOIB. In the case of two objectives, DEMOIB performs worse than
IBEA in the worst case while achieving a much better spread in the best case.
On the three-objective problem, DEMOIB achieves good results in all 30 runs,
while IBEA still gets stuck in local optima and has a poor spread of
solutions.

6 Conclusion

This paper compared the well-known multiobjective evolutionary algorithms
NSGA-II, SPEA2 and IBEA to their DE-based variants DEMONS-II, DEMOSP2

and DEMOIB on 16 state-of-the-art benchmark problems (each with 2, 3 and
4 objectives). The results have shown that on 20% of the problems, DEMO
achieved significantly better dominance ranks than the basic GA, while signifi-
cantly worse dominance ranks were obtained on only 3% of the problems. Fur-
thermore, DEMO outperformed the basic GA with regard to the used quality
indicator on the majority (almost 83%) of the problems.
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On the basis of these results we conclude that DE explores the decision space
more efficiently than GAs also when multiple objectives need to be optimized.
It is important to note, however, that DE and, consequently, DEMO are limited
to vector representation of solutions and can therefore only be used in numerical
optimization.
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Abstract. This paper presents the Efficient Multi-Objective Particle
Swarm Optimizer (EMOPSO), which is an improved version of a multi-
objective evolutionary algorithm (MOEA) previously proposed by the
authors. Throughout the paper, we provide several details of the de-
sign process that led us to EMOPSO. The main issues discussed are:
the mechanism to maintain a set of well-distributed nondominated so-
lutions, the turbulence operator that avoids premature convergence, the
constraint-handling scheme, and the study of parameters that led us to
propose a self-adaptation mechanism. The final algorithm is able to pro-
duce reasonably good approximations of the Pareto front of problems
with up to 30 decision variables, while performing only 2,000 fitness
function evaluations. As far as we know, this is the lowest number of
evaluations reported so far for any multi-objective particle swarm opti-
mizer. Our results are compared with respect to the NSGA-II in 12 test
functions taken from the specialized literature.

1 Introduction

Particle swarm optimization (PSO) has been found to be a very effective engine
for multi-objective optimization, and several multi-objective particle swarm op-
timizers (MOPSOs) have been proposed in the last few years [1]. Nevertheless,
very few researchers have studied the basic mechanisms of a MOPSO, aiming to
design a more efficient search engine, which achieves competitive performance at
a low number of objective function evaluations (see for example [2,3]). This pa-
per reports a detailed study of a MOPSO previously proposed by the authors in
[4]. Such study led us to propose new mechanisms that produced a new MOPSO
that only performs 2,000 fitness function evaluations, while solving test problems
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of up to 30 decision variables. To the best of the authors’ knowledge, this is the
lowest number of fitness function evaluations ever reported for any MOPSO in
the specialized literature. Our results are compared with respect to the NSGA-II
[5], which is a multi-objective evolutionary algorithm (MOEA) representative of
the state-of-the-art in the area.

2 Towards an Efficient MOPSO

In [4], we proposed the use of clustering techniques to improve the performance
of a MOPSO. In order to improve the performance of our original algorithm, we
performed several modifications to it. As a first step, we incorporated a mecha-
nism to distribute the nondominated solutions obtained by the algorithm. Next,
we used a turbulence operator, in order to avoid premature convergence. After
that, and in order to maximize the subswarms performance, we performed an ex-
periment to fix the number of subswarms to be adopted.Then, we incorporated
a mechanism to handle constraints. Finally, we performed an empirical study
of the influence of the C1, C2 and W parameters, and we proposed a simple
methodology to self-adapt these parameters. Each of these componentes will be
briefly described in the following subsections.

2.1 Handling Well-Distributed Solutions

The MOPSO proposed in [4] does not impose a bound on the total number of
nondominated solutions that it can store. This makes it difficult for the decision
maker to choose one of them and also complicates the definition of a baseline
to perform fair comparisons with respect to other MOEAs. Researchers have
proposed several mechanisms to reduce the nondominated solutions generated
by a MOEA (most of them applicable to external archives): clusters [6], adaptive
grids [7], crowding [5] and relaxed forms of Pareto dominance [8]. In our case,
we implemented two mechanisms: (1) an adaptive grid and (2) a relaxed form
of Pareto dominance (ε-dominance). These two mechanisms are described next:

– Adaptive Grid: Proposed by Knowles & Corne [7], the adaptive grid is
really a space formed by hypercubes. Such hypercubes have as many compo-
nents as objective functions has the problem to be solved. Each hypercube
can be interpreted as a geographical region that contains an n number of
individuals. The adaptive grid allows us to store nondominated solutions and
to redistribute them when its maximum capacity is reached.

– ε-dominance: This is a relaxed form of dominance proposed by Laumanns
et al. [8]. The so-called ε-Pareto set is an archiving strategy that maintains
a subset of generated solutions. It guarantees convergence and diversity ac-
cording to well-defined criteria, namely the value of the ε parameter, which
defines the resolution of the grid to be adopted for the secondary population.
The general idea of this mechanism is to divide objective function space into
boxes of size ε. Each box can be interpreted as a geographical region that
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contains a single solution. The approach accepts a new solution into the ε-
Pareto set if 1) it is the only solution in the box which it belongs to, 2) it
dominates other(s) solution(s) or 3) it competes against other nondominated
solution inside the box, but it is closer to the origin vertex of the box. This al-
gorithm is very attractive both from a theoretical and from a practical point
of view. However, in order to achieve the best performance, it is necessary to
provide the size of the box (the ε parameter) which is problem-dependent,
and it’s normally not known before executing a MOEA.

Additionally, we also propose a mechanism to distribute nondominated solu-
tions, which is called Hyper-plane distribution. The core idea of this proposal
is to perform a good distribution of the hyper-plane space defined by the minima
(assuming minimization) from the objectives, and use such distribution to select
a representative subset from the whole set of nondominated solutions. The algo-
rithm works as follows: First, it requires as input, a set of nondominated solutions
and the quantity n of desirable final solutions. Then, the algorithm selects those
solutions which have the minima value on each objective. A hyperplane among
all minima solutions is thus computed. Next, the algorithm divides such space
into n− 1 regions. Therefore, on the vertex of each region, a perpendicular line to
the hyper-plane is computed. Finally, the algorithm only accepts those solutions
which are closest to each line. This algorithm has a complexity O(N2), because
each individual is compared against everybody else with respect to distance.

In Figure 1, we can see an example that aims to clarify the algorithm’s de-
scription. In this example, two objective functions are used. Five nondominated

Fig. 1. Graphical representation of the hyper-plane distribution
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solutions need to be selected. So, the hyper-plane (a line in this case) formed by
the minima of objective 1 and objective 2 is divided into 4 line segments. Then,
each vertex is projected towards the Pareto front. Finally, the solutions closest
to those projected points are selected.

A First Comparative Study. The three approaches previously described
to select the best distributed nondominated individuals were implemented and
called at each generation. Therefore, on each generation we will have the set of
nondominated solutions with a bounded and well-distributed subset. The three
algorithms were requested to select 50 nondominated solutions each. The scheme
based on the ε-Pareto set needs an extra parameter (ε). This parameter was com-
puted in each test function as follows: the algorithm was executed using a total
number of iterations of 200. Then, the ε values were manually fine-tuned to find
an average of 40 nondominated solutions in each of the 30 executions. Since the
aim of this experiment was to observe if there was an approach which performed
best, we adopted the Inverted Generational Distance (IGD) metric [9], as a way
to estimate how far is the true Pareto front from the solutions obtained. This
measure is defined as:

GD =

√∑n
i=1 d2

i

n
(1)

where n is the number of nondominated vectors found by the algorithm being
analyzed and di is the Euclidean distance (measured in objective space) between
each of these and the nearest member of the true Pareto front. It should be clear
that a value of GD = 0 indicates that all the elements generated are in the true
Pareto front of the problem. Therefore, any other value will indicate how “far”
we are from the global Pareto front of our problem. This metric, also, penalizes
when the solutions obtained do not cover completely the true Pareto front.

For this first study, we adopted 8 test functions taken from the specialized
literature: ZDT1, ZDT2, ZDT3, ZDT4, ZDT6 proposed by Zitzler et al. in
[10], Kursawe’s problem proposed in [11], and Deb and Deb2, proposed in
[12]. In Table 1, we can see that the adaptive grid was the worst choice, and that
the Hyper-plane Distribution outperformed the ε-Dominance approach mainly
because of its property of selecting a fixed number of solutions (while we can only
estimate the total number of solutions when using ε-dominance). Therefore, we
will use the Hyper-plane distribution in our MOPSO. Table 2 shows the average
of nondominated solutions found in the last generation by each approach. We can
see in this table, that ε-dominance was the algorithm that had more problems
to reach the target (40 nondominated solutions).

2.2 Avoiding Premature Convergence

Frans van den Bergh [13] discovered a potentially dangerous property in PSO: if
the position of the particles coincides with gbest, then it will move away from the
gbest if the inertia or the current velocity is non-zero. This may lead to premature
convergence (i.e. all the particles will converge to the gbest particle, which is
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Table 1. Comparison of results of three approaches to maintain a good distribution
of nondominated solutions (adaptive grid, ε-dominance and hyper-plane distribution)
with respect to the Inverted Generational Distance metric

Approach
Function Adaptive-Grid ε-Dominance Hyper-plane Distribution
ZDT1 0.002855236 0.00149249 0.002029507
ZDT2 0.031790172 0.033058091 0.023006512
ZDT3 0.007237485 0.005816599 0.005786199
ZDT4 2.763645000 2.903810666 2.715304000
ZDT6 0.000224374 0.000186435 0.000197410
Kursawe 0.009648260 0.008716252 0.007975956
Deb 0.001454523 0.001606147 0.000475256
Deb2 0.00942435 0.009346694 0.009427080

Table 2. Comparison of the number of reported solutions at the end of the executions
by each of the three approaches

Approach
Function Adaptive-Grid ε-Dominance Hyper-plane Distribution
ZDT1 39 37 40
ZDT2 24 19 27
ZDT3 38 29 37
ZDT4 2 2 2
ZDT6 40 42 39
Kursawe 40 33 39
Deb 40 36 40
Deb2 39 34 37

usually a local minimum). To determine how often this behavior occurred in
our algorithm, we counted how many times a particle’s position was the same
than the gbest position in all the executions for all the test functions adopted.
In Table 3, we can see the results of this experiment. Frans van den Bergh
proposed a new parameter to address this issue, but his proposal is hard to
adopt in a multiobjective approach based on Pareto ranking, since we would
have to deal with several “best” solutions. Therefore, in [14], we proposed the
use of a turbulence operator. This turbulence operator consists of an alteration
to the flight velocity of a particle.1 This modification is performed in all the
dimensions (i.e., in all the decision variables), such that the particle can move to
a completely isolated region. The turbulence operator acts based on a probability
factor that considers the current generation and the total number of iterations to
be performed. The idea is to have a much higher probability to perturb the flight
of the particles at the beginning of the search, and decrease it as we progress in
the search. The turbulence can be seen as a mutation operator and it is based
on the following expression:

1 This mechanism is inspired on the one proposed in [15].
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temp = current generation/total generations (2)
probturbulence = temp1.7 − 2.0 × temp + 1.0 (3)

where temp is used as a temporary variable, current generation is the current
generation number, total generations is the total number of generations and
probturbulence refers to the probability of affecting the flight of a particle using
the turbulence operator. The values used for this expression were empirically
derived after a set of experiments. The details of the experiments that led us to
this setup may be found in [2].

2.3 Maximizing the Spread

The appropriate selection of leaders is essential for the good performance of
a MOPSO. If the particle chooses an inappropriate leader (i.e., a leader who
is too far away in the search space) then most of the flight will be fruitless
because the particle will not be visiting promissory regions of the search space.
In [4], we proposed to use not one but several swarms to avoid this type of
problem (in order to make a difference between the use of the word swarm
from traditional PSO’s approaches, and the use of several swarms, from our
approach, we introduce the word subswarm, which means a set of particles that
has its own PSO’s behavior. The subswarms share information among them
by interchanging their leaders with certain probability). However, we did not
provide any statistical analysis related to the number of subswarms needed.
Thus, we proceeded to perform such an analysis. Table 4 summarizes the results
obtained, showing the mean of 30 independently executions of the algorithm
using 2,000 fitness function evaluations. Each execution was tuned to perform
2, 000 fitness function evaluations. We found that by using 8 subswarms, the
algorithm exhibited its best performance in 5 out of 8 test functions. We think,
that the use of this value can be beneficial most of the time. Therefore, we
adopted it as the default value for the number of subswarms. It is important to
note that this experiment was performed using 40 particles, which means that
each subswarm will have 5 particles. Because of the results, we suggest to use 8
subswarms as a fixed parameter in our algorithm.

Table 3. Statistical results obtained from the counting of the cases in which the particle
was equal to its gbest

Statistics Particle = GBest
Mean 104.81192
Best 2
Worst 729
St.dev. 110.59983
Median 74
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Table 4. Results of the impact of the number of clusters on each test function, with
respect to Inverted Generational Distance metric

Subswarms (clusters)
Function 1 2 4 8 20
ZDT1 0.004820567 0.005645242 0.004388993 0.002853130 0.003191553
ZDT2 0.034759800 0.013606517 0.017762557 0.012582413 0.013187440
ZDT3 0.016337620 0.017927403 0.017630486 0.008787392 0.011176582
ZDT4 4.536191000 3.445736000 3.27696600 3.7399510000 3.762421666
ZDT6 0.003337423 0.000509384 0.000472352 0.000334933 0.000431701
Kursawe 0.069521400 0.04149130 0.043504603 0.0498330600 0.042813556
Deb 0.034178800 0.009745156 0.007927125 0.007114026 0.008663098
Deb2 0.009801385 0.009445994 0.00889158 0.008950303 0.009510023

2.4 A Constraint-Handling Mechanism

Since the approach proposed in [4] does not use any special mechanism to deal
with constrained search spaces, we incorporated the mechanism proposed in [14].
This approach does not require any user-defined parameters and it performs less
objective function evaluations than any of the other approaches with respect to
which it was compared, while obtaining similar results (see [14] for further details).

2.5 Analyzing the Impact of the PSO’s Parameters

The PSO algorithm has three parameters that play a key role in the algorithm’s
behavior:

1. W: velocity inertia
2. C1: cognitive component
3. C2: social component

The fact that a MOEA converges to a set of solutions rather than to a single
value, makes it difficult to perform an statistical analysis such as the analysis of
variance, which can determine how sensitive is an algorithm to its parameters.
Nevertheless, we performed a very thorough analysis of parameters (similar to
an analysis of variance), with the aim of finding the best possible parameter con-
figuration for our approach (considering the set of test functions adopted). It is
worth indicating that the parameters settings that have been previously proposed
(see for example [16]) for the original (unconstrained single-objective) PSO, do
not provide a good performance in the context of multiobjective optimization
and therefore the motivation to perform the thorough analysis reported in [2].
In order to analyze the impact of the parameters on our proposed approach,
we considered several configurations, and performed an exhaustive analysis. The
configurations adopted are:

W = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
C1 = {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0}
C2 = {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0}

(4)
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For all our experiments, we adopted 40 particles. However, we analyzed three
different performance scenarios:
1. Experiment 1: Use of a randomly generated initial population and a low

number of fitness function evaluations (we used Gmax = 25, which gives us
a total of 1000 fitness function evaluations).

2. Experiment 2: Use of a good approximation of the Pareto front in the
initial population. In all the experiments performed in this case, the same
approximation was fed to the algorithm in its initial generation. In this case,
we only performed 600 fitness function evaluation (Gmax = 15), since we
were interested in analyzing the capability (or possible difficulties) of our
algorithm to reach the true Pareto front of a problem once a good (and
sufficiently close) approximation had been produced.

3. Experiment 3: Use of a large number of fitness function evaluations
(Gmax = 250, which gives a total of 10, 000 fitness function evaluations)
in order to assess the performance of our approach in the long term.

We adopted eleven test functions for Experiment 1 and Experiment 2. Due
to the high CPU time required by each run, we only adopted six test functions
for Experiment 3. Since we needed to assess performance in each case, we chose
the inverted generational distance metric, since it can measure both closeness to
the true Pareto front and spread of solutions. An obvious problem with so many
experiments was how to present the results in a compact form. For that sake, we
adopted a set of squares (called “mosaics”), such that each of them has a gray
scale that corresponds to the mean value of the inverted generational distance
over 30 independent runs, produced from one combination of {W,C1,C2} (all
the possible combinations were adopted, considering the sets of possible values
previously defined for these three parameters). The mean results were normalized
between zero and 255 (where zero is the best possible value and 255 is the worst).
The results of each of the three above experiments are briefly discussed next, but
the mosaics themselves could not be included due to space restrictions; however,
they can be found in [2].

Conclusions from the Second Series of Experiments. After combining
the results from the three experiments, we concluded the following:

– The best range for C1 and C2 is from 1.2 to 2.0. From within this range, we
can say that C1=C2=1.4 provides the best overall performance.

– The best values for W are those less or equal to 0.5.
– Note, however, that the above values do not produce the best possible perfor-

mance in all cases (as expected, because of the No Free Lunch Theorem [17]).
This is precisely what motivated us to propose a mechanism to self-adapt the
parameters of our approach so that it automatically adjusts the parameters
according to the characteristics of the search space being explored.

2.6 Self-adaptive Mechanism

The results obtained from the experiments reported in the previous subsec-
tion led us to propose a self-adaptive mechanism which is described in this
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First Generation Second Generation

Third Generation

A) B)

C)

Value: 0.0 Value: 0.5

Value: 1.0

Prob: 1/3 Prob: 1/3

Prob: 1/3
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1.2/3.6

Prob:

1.4/3.6
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1.2/3.8
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1.5/3.8
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Value: 1.0

Value: 0.0 Value: 0.5

Value: 0.0

Value: 1.0

Prob: 1.1/3.8

Value: 0.5

Fig. 2. Roulette wheel selection example at the a) first, b) second and c) third
generation

subsection. We proposed the use of a traditional proportional selection mech-
anism to select the most appropriate combination of parameters values to be
adopted. We adopted roulette-wheel selection for that sake [18]. Rather than
computing fitness for each combination of values, we count the number of non-
dominated solutions generated by each combination of values. Let’s assume that
the parameter W can take 3 possible values: 0, 0.5, 1.0. So, at the beginning of
the search, each value has a 33% probability of occurring (see Figure 2 (a)). At
generation zero, each possible value has a “fitness” of one. Now, let’s assume that
after one generation, W = 0 generates 2 new nondominated solution, W = 0.5
generate 4 new nondominated solution and W = 1 did not contribute with any
new nondominated solution. Thus, we reward the “fitness” of W=0.5 by in-
creasing its value in 0.4 (we increase fitness in 0.1 for each new nondominated
solution produced). So, W = 0.5 now has a fitness of 1.4. Analogously, W = 0
has a fitness of 1.2 and W = 1 remains with a fitness of 1.0. The new share in
the roulette wheel for each value is shown in Figure 2 (b). Since the total fitness
is now 3.6 (1.4+1.2+1.0), the share of each value is: W = 0.5 (1.4/3.6), W = 0
(1.2/3.6) and W = 1 (1.0/3.6). After generation two, W = 0.5 generated one
new nondominated solution, the same happened with W = 1.0 and W = 0 did
not produce any new nondominated solutions. So, W = 0.5 now has a fitness of
1.5, W = 1.0 has a fitness of 1.1 and W = 0 remains with a fitness of 1.2. Thus,
the total fitness is now 3.8, and we have the following: W = 0.5 has a share of
1.5/3.8, W = 1 has a share of 1.1/3.8 and W = 0 has a share of 1.2/3.8 (see
Figure 2 (c)).
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To validate our proposal, we compare it against two other parameter selection
mechanisms: a) deterministic selection and b) random selection.

Deterministic selection : C1, C2 and W are deterministically set to 1.4, 1.4
and 0.2, respectively (these values are the center of the region which per-
formed best from the experiments reported in the previous subsection).

Random selection : C1, C2 and W pick their values randomly from an interval
from 1.2 to 2 for C1 and C2 and from the range from 0.0 to 0.4 for W (this
is the range of values which performed best in the experiments reported in
the previous subsection).

The detailed results from this experiment can be seen in [2]. Although the
results of this study seem inconclusive, we argue that the use of a self-adaptive
mechanism for adjusting the parameters gives a better performance in a wider
range of functions, and avoids that the user has to setup the parameters of the
algorithm by hand. In this experiment, most of the time, the approach which
performed best for 25 generations, was also the best performer when adopting 50
and 250 generations. So, we argue, that the proposal to self-adapt the parameters
improved the overall performance of the algorithm. After introducing this last
component (i.e., the self-adaptive mechanism), the final version of our proposed
algorithm, which we call Efficient Multi-Objective Particle Swarm Optimizer
(EMOPSO) is shown in flowchart 3. This approach does not require any manual
fine-tuning of its PSO parameters.

3 Test Problems

Deb et al. [19] proposed a set of constrained multiobjective problems in which
the difficulty can be controlled by varying a set of parameters. In this study, we
use g(x) = 1 + x1 for the test problems CTP1 to CTP7, a1 = 0.858, b1 = 0.541,
a2 = 0.728, and b2 = 0.295 for CTP1 and the parameters shown in Table 5 for
CTP2 to CTP7.

Table 5. Parameters chosen for CTP2 to CTP7

Problem θ a b c d e constraints boundaries

CTP2 −0.2π 0.2 10.0 1.0 6.0 1.0 2 0 ≤ x1, x2 ≤ 1
CTP3 −0.2π 0.1 10.0 1.0 0.5 1.0 1 0 ≤ x1, x2 ≤ 1
CTP4 −0.2π 0.75 10.0 1.0 0.5 1.0 1 0 ≤ x1, x2 ≤ 1
CTP5 −0.2π 0.1 10.0 2.0 0.5 1.0 1 0 ≤ x1, x2 ≤ 1
CTP6 −0.1π 40.0 0.5 1.0 2.0 -2.0 1 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 10
CTP7 −0.05π 40.0 0.5 1.0 2.0 -2.0 1 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 10

4 Comparison of Results

In order to allow a quantitative assessment of results, we adopted the fol-
lowing performance measures: Inverted Generational Distance [9], Two Set
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Fig. 3. Flowchart of the proposed algorithm

Coverage [10] and the Spread metric [20]. We compare results with respect to
the NSGA-II using 12 standard test functions: 7 from the Constrained Test
Problems (CTP1 to CTP7) proposed by Deb et al. [19], which were previously
discussed; and 5 from the ZDTs test problems proposed by Zitzler et al. in
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Table 6. Comparison of results between our approach (EMOPSO) and the NSGA-II

IGD Set Coverage Spread
Function EMOPSO NSGA-II EMOPSO NSGA-II EMOPSO NSGA-II

Mean σ Mean σ Mean σ Mean σ Mean σ Mean σ

CTP1 0.0004 0.0001 0.0013 0.0014 0.0868 0.0393 0.2133 0.0657 0.1957 0.0104 0.2859 0.0386
CTP2 0.0014 0.0003 0.0094 0.0056 0.3208 0.0698 0.3266 0.0811 0.3932 0.0682 0.4210 0.0320
CTP3 0.0084 0.0016 0.0100 0.0035 0.5275 0.1788 0.6242 0.1223 0.5959 0.1253 0.6191 0.080
CTP4 0.0327 0.0163 0.0417 0.0121 0.1465 0.2039 0.7294 0.1814 0.7585 0.2583 0.9909 0.1401
CTP5 0.0060 0.0012 0.0102 0.0064 0.3933 0.1404 0.4808 0.1135 0.5126 0.1054 0.4925 0.0770
CTP6 0.002 0.0006 0.0096 0.0108 0.1113 0.0643 0.2041 0.0612 0.8679 0.0575 0.3067 0.0707
CTP7 0.0002 0.0006 0.0017 0.0027 0.0042 0.0132 0.0741 0.0480 0.7112 0.1874 0.9998 0.0633
ZDT1 0.0022 0.0001 0.0740 0.0177 0 0 1 0 0.0870 0.0164 0.5627 0.0756
ZDT2 0.0007 0.0003 0.1938 0.0632 0 0 1 0 0.0755 0.0980 0.7585 0.0757
ZDT3 0.0020 0.0005 0.061 0.011 0 0 1 0 0.5011 0.0290 0.7033 0.0609
ZDT4 8.1128 5.1184 5.5563 1.8295 0.0531 0.2018 0.4438 0.3703 0.9978 0.0081 0.9856 0.0128
ZDT6 0.0980 0.1191 0.6098 0.1447 0 0 1 0 0.4380 0.2798 0.8799 0.0775

[10]. The detailed description of these 12 test functions was omitted due to
space restrictions. The CTPs problems all have 2 decision variables each, and
the ZDTs functions are unconstrained and have between 10 (ZDT4 and ZDT6)
and 30 (ZDT1, ZDT2 and ZDT3) decision variables. ZDT5 is not included in
our study because it is a binary function, and we only adopted test functions
in which the decision variables are real numbers. In the following examples,
the NSGA-II was run using a population size of 40, a crossover rate of 0.9,
tournament selection, a mutation rate of 1/N , where N = number of variables
(real numbers representation was adopted), a distribution index of 15 for SBX,
and a distribution index of 20 for its parameter-based mutation operator. Our
EMOPSO used 40 particles and a total of 8 swarms. The total number of fit-
ness function evaluations was set to 2, 000 for the two algorithms compared (50
generations).

Table 6 shows that the results obtained by our EMOPSO were superior to those
generated by the NSGA-II. Our EMOPSO outperformed the NSGA-II in all the
test problems with respect to the set coverage metric, and in all but one (ZDT4)
with respect to the inverted generational distance metric. Regarding spread, our
approach outperformed the NSGA-II in most problems (except for CTP5, CTP6
and ZDT4). Obviously, if allowed to perform a higher number of fitness function
evaluations, the NSGA-II would be able to converge to the true Pareto front of
most of these test functions, but our main purpose was to show that our EMOPSO
is a viable choice when dealing with objective functions whose computational cost
is very high (e.g., in aerospace engineering). Due to space restrictions, the Pareto
fronts obtained in each case are not included in the paper.

5 Conclusions and Future Work

Our main conclusions are the following:

– We found that the use of subswarms promotes local search as an emergent
behavior in our EMOPSO. Consequently, the performance of our approach
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was improved by the use of subswarms, particularly in the presence of dis-
connected Pareto fronts.

– We have proposed a mechanism called “hyper-plane distribution”, to dis-
tribute nondominated solutions.

– The use of a perturbation mechanism in our multiobjective particle swarm
optimizer was found to be critical to control its high selection pressure, as
to avoid premature convergence.

– In general, we found that it is quite difficult to find fixed values for the three
most significant parameters of our approach (W, C1 and C2). It is worth
indicating that the comprehensive study of parameters that we performed
is, as far as we know, the first of its type (in the context of multiobjective
particle swarm optimization). Based on the results of this study, we designed
a self-adaptive mechanism for these parameters, and we found this to be a
good alternative to facilitate the use of our approach.

Some possible paths to extend this work are the following:

– Experiment with other PSO’s models and with different interconnection
topologies.

– Study alternative methods for the survivor selection mechanism.
– Study alternative (perhaps more elaborate) constraint-handling mechanisms.
– Study alternative mechanisms to accelerate convergence while keeping the

same quality of results achieved by our EMOPSO.
– Study alternative mechanisms to distribute nondominated solutions.
– To assess the performance of our EMOPSO in a real-world problem in which

the cost of evaluating the objective functions is very high (computationally
speaking).
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Abstract. To find solutions as close to the Pareto front as possible, and to make
them as diverse as possible in the obtained non-dominated front is a challeng-
ing task for any multiobjective optimization algorithm.ε-dominance is a concept
which can make genetic algorithm obtain a good distribution of Pareto-optimal
solutions and has low computational time complexity,and the orthogonal design
method can generate an initial population of points that are scattered uniformly
over the feasible solution space.In this paper, combining ε-dominance and orthog-
onal design method, we propose a novel Differential Evolution (DE) algorithm
for multiobjective optimization .Experiments on a number of two- and three-
objective test problems of diverse complexities show that our approach is able
to obtain a good distribution with a small computational time in all cases. Com-
pared with several other state-of-the-art evolutionary algorithms, it achieves not
only comparable results in terms of convergence and diversity metrics, but also a
considerable reduction of the computational effort.

1 Introduction

Evolutionary Algorithms (EAs) (including genetic algorithms, evolution strategies, evo-
lutionary programming, and genetic programming) are heuristics that have been suc-
cessfully applied in a wide set of areas. In real-world optimization applications, it is
often hard to formulate the optimization goal as a scalar function. Typically, there are
several criteria or objectives, and not unusually, these objectives stay in conflict with
each other. Simply combining the different associated objective functions in a linear
way is usually unsatisfactory. Instead, one is interested in a so-called Pareto optimal
set of solutions, i.e., any solution that cannot be improved with respect to one objec-
tive without worsening the situation with respect to the other objectives. Consequently,
there are two goals in multiobjective optimization: (i) to find solutions as close to the
Pareto front as possible, and (ii) to find solutions as diverse as possible in the obtained
non-dominated front. Satisfying the two goals is a challenging task for any multiobjec-
tive optimization algorithm. Special strategies are therefore needed to deal with such
multiobjective optimization problems. Since EAs work on populations of candidate so-
lutions, they represent a promising basic framework for multiobjective optimization.

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 286–301, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In the last few years, many variants and extensions of classical EAs have been devel-
oped for Multiobjective Optimization Problems (MOPs). Such as Nondominated Sort-
ing GA (NSGA-II) [1], Strength Pareto EA (SPEA2) [2], Vector Evaluated GA (VEGA)
[3], Hajela and Lins GA (HLGA) [4], Pareto-based Ranking Procedure(FFGA) [5],
Niched Pareto GA (NPGA) [6], Pareto Archived Evolution Strategy (PAES) [7], and so
on. Among these, the NSGA-II by Deb et al. [1] and SPEA2 by Zitzler et al. [2] are the
most popular approaches.

Differential evolution (DE) [8] is a novel evolutionary algorithm for faster optimiza-
tion, which mutation operator is based on the distribution of solutions in the population.
And DE has won the third place at the first International Contest on Evolutionary Com-
putation on a real-valued function test-suite. Unlike Genetic Algorithm (GA) that uses
binary coding to represent problem parameters, DE is a simple yet powerful population
based, direct search algorithm with the generation-and-test feature for globally optimiz-
ing functions using real valued parameters. Among the DE’s advantages are its simple
structure, ease of use, speed and robustness. Price & Storn [8] gave the working prin-
ciple of DE with single strategy. Later on, they suggested ten different strategies of
DE [9]. It has been successfully used in solving single-objective optimization problems
[10]. Hence, several researchers have tried to extend it to handle MOPs. Such as Pareto
DE (PDE) [11,12], Pareto DE Approach (PDEA) [13], Multiobjective DE (MODE)
[14], and DE for Multiobjective Optimization (DEMO) [15].

Combing orthogonal array (OA) and factor analysis (such as the statistical optimal
method),Orthogonal design method [16] is developed to sample a small and represen-
tative set for all possible combinations to obtain good combinations. Recently, some
researchers applied the orthogonal design method incorporated with EAs to solve op-
timization problems. Leung and Wang [17] incorporated orthogonal design in genetic
algorithm for numerical optimization problems and found such method was more ro-
bust and statistically sound than the classical GAs. OMOEA [18] and OMOEA-II [19]
presented by Sangyou Zeng et al. adopted the orthogonal design method to solve the
MOPs. Numerical results demonstrated the efficiency of the two tools.

ε-MOEA [20] is a steady-state Multiobjective EA (MOEA) based on the ε-dominance
concept introduced in [21]. Also, it incorporated efficient parent and archive update
strategies to obtain a good distribution of Pareto-optimal solutions within less compu-
tational time. The ε-dominance does not allow two solutions with a difference εi in the
i-th objective to be nondominated to each other, thereby allowing a good diversity to be
maintained in the population. Besides, the method is quite pragmatic, because it allows
the user to choose a suitable εi depending on the desired resolution in the i-th objective
[20].

Inspired by the ideas from OGA/Q [17] and ε-MOEA [20], in this paper, we pro-
pose an extension of DE algorithm based on the ε-dominance concept and orthogonal
design method. Our proposed DE algorithm is named ε-ODEMO. Our algorithm has
three novelties. Firstly, the proposed approach adopts orthogonal design method with
quantization technique to generate an initial population of points. And then, it uses
the DE/rand/1/exp strategy to produce new candidate solutions. Thirdly, ε-dominance
concept and efficient parent and archive update strategies introduced in [20] are used to
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update the archive and population. To evaluate the efficiency of the proposed ε-ODEMO,
we test it on a number of two- and three-objective problems.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the
background of ε-MOEA. In Section 3, we describe the function optimization problems
in conventional DE. A detailed description of the proposed ε-ODEMO algorithm is pro-
vided in Section 4. In Section 5, we test our algorithm through a number of two- and
three-objective problems. This is followed by results and discussions of the optimiza-
tion experiments for ε-ODEMO in Section 6. The last section, Section 7, is devoted to
conclusions and future studies.

2 Background of ε-MOEA

ε-MOEA [20] is a new approach for MOPs, which is a steady-state MOEA based on
the ε-dominance concept [21]. In ε-MOEA, the search space is divided into a number of
grids (or hyper-boxes) and diversity is maintained by ensuring that a grid or hyper-box
can be occupied by only one solution. There are two co-evolving populations: (i) an EA
population P (t) and (ii) an archive population E(t) (where t is the iteration counter).
The archive population stores the nondominated solutions and is updated iteratively
with the ε-dominance concept. And the EA population is updated iteratively with the
usual domination. ε-MOEA is described as follows:

Algorithm 1. ε-MOEA algorithm
Generate an initial population P (0) uniform randomly
Create the archive E(0) with the ε-nondominated solutions of P (0)
while the halting criterion is not satisfied do

Choose one solution each from P (t) and E(t) for mating
Use crossover and mutation to produce λ offspring solutions
Compare each of these offspring solutions with the archive and the EA population to update
them respectively

end while

As mentioned above, The archive population is updated by the offspring solutions
iteratively with the ε-dominance concept. In ε-MOEA, every solution in the archive is
assigned an identification array (B) which can be calculated by:

Bj(f ) =
{⌊

(fj − fmin
j )/εj

⌋
, for minimizingfj⌈

(fj − fmin
j )/εj

⌉
, for maxmizingfj

(1)

where fmin
j is the minimum possible value of the j-th objective (if the decision-makers

don’t know the minimum possible value exactly, use fmin
j = 0) and εj is the allowable

tolerance in the j-th objective beyond which two values are significant to the user. This
εj value is similar to the ε used in the ε-dominance definition [21]. The identification
arrays make the whole search space into grids having εj size in the j-th objective [20].
The ε-domination is used first when the archive is updated with the offspring solutions.
More details about the ε-MOEA can be found in [20].
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3 Function Optimization by Conventional DE

A general MOP includes a set of n parameters (decision variables), a set of k objective
functions, and a set of m constraints. Objective functions and constraints are functions
of the decision variables. The optimization goal is to

minimize : y = f(x) = (f1(x), f2(x), · · · , fk(x))
subject to : e(x) = (e1(x), e2(x), · · · , em(x)) ≥ 0

where : x = (x1, x2, · · · , xn) ∈ X (2)

y = (y1, y2, · · · , yk) ∈ Y

and x is the decision vector, y is the objective vector, X denotes as the decision space,
and Y represents the objective space. Generally, for each variable xi it satisfies a con-
strained boundary

li ≤ xi ≤ ui, i = 1, 2, · · · , n (3)

The constraints e(x) ≥ 0 determine the set of feasible solutions.
The algorithm of DE with the DE/rand/1/exp strategy [8] is as follows:

1. Generate the initial population with NP individuals, and set current iteration k = 1.
Each individual is taken as a real valued vector Xi, ∀i ∈ {1, 2, · · · , NP}, where
Xis are objective variables.

2. Evaluate the fitness score for each individual Xi, ∀i ∈ {1, 2, · · · , NP}, of the
population based on the objective function, f(Xi).

3. Stop if the halting criterion such as k = MAX GEN is satisfied; otherwise, continue.
4. For each individual i, ∀i ∈ {1, 2, · · · , NP}, select r1, r2, r3 uniform randomly

from O ∈ {1, 2, · · · , NP} with r1 �= r2 �= r3 �= i.
5. Generate the offspring using DE crossover-mutation operator as following:

Mutation:
X ′i = Xr1 + F × (Xr2 − Xr3) (4)

where F > 0 is a scaling factor, and xr1 is known as the base vector. The trial point
Yi is found from its parents Xi and X ′i using the following crossover rule:
Crossover:

Y j
i =

{
X ′ji if Rj ≤ CR or j = t

Xj
i if Rj > CR and j �= t

(5)

where t is a randomly chosen integer in the set Q ∈ {1, 2, · · · , n}; the superscript
j represents the j-th component of corresponding vectors; Rj ∈ (0, 1), drawn uni-
formly for each j. And CR > 0 is the user defined probability of the crossover
operator.

6. Select each trial vector Yi for the k+1 iteration using the acceptance criterion:replace
Xi ∈ S with Yi if f(Yi) ≺ f(Xi), otherwise retain Xi. Set k = k + 1 and go to
Step 3.

4 Our Approach: ε-ODEMO

Here, we propose an extension DE algorithm called ε-ODEMO for MOPs.
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4.1 Orthogonal Initial Population

Before solving an optimization problem, we usually have no information about the
location of the global minimum. It is desirable that an algorithm starts to explore those
points that are scattered evenly in the feasible solution space. In our presented manner,
the algorithm can evenly scan the feasible solution space once to locate good points for
further exploration in subsequent iterations. As the algorithm iterates and improves the
population of points, some points may move closer to the global minimum.We apply
the quantization technique and the orthogonal design to generate this initial population.

4.1.1 Design of the Orthogonal Array
Although the proposed algorithm may require different orthogonal arrays (OAs) for
different optimization problems. We will only need a special class of OAs. To design an
OA, in this research, we use LR(QC) to denote the OA with different level Q, where Q
is odd and use R = QJ to indicate the number of the rows of OA, where J is a positive
integer fulfilling

C =
QJ − 1

Q − 1
(6)

C denotes the number of the columns in the above equation. The orthogonal array
needs to find a proper J to satisfy

minimize : R = QJ

subject to : C ≥ n (7)

where n is the number of the variables. In this study, we adopt the algorithm described
in [17] to construct an orthogonal array. In particular, we use L(R, C) to indicate the
orthogonal array; and a(i, j) to denote the level of the jth factor in the ith combination
in L(R, C). If C > n, we delete the last C − n columns to get an OA with n factors.

4.1.2 Quantization
For one decision variable with the boundary [l, u], we quantize the domain into Q levels
α1, α2, · · · , αQ, where the design parameter Q is odd and αi is given by

αi =

⎧⎨
⎩

l i = 1
l + (i − 1)( u−l

Q−1 ) 2 ≤ i ≤ Q − 1
u Q

(8)

In other words, the domain [l, u] is quantized Q − 1 fractions, and any two successive
levels are same as each other.

4.1.3 Generation of Initial Population
After constructing a proper OA and quantizing the domain of each decision variable,
we can generate the initial population which can scatter uniformly over the feasible so-
lution space. The algorithm for generating the initial population is omitted here, please
refer [17] for details. Regularly, the number of the rows of the OA is larger than the
population size NP , so we first create the archive with ε-nondominated solutions, And
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then we generate the initial EA population from the archive and the orthogonal solu-
tions. If ar size > NP , we select NP solutions from the archive randomly; or all of
the ar size solutions in the archive are inserted the EA population, and the remainder
NP − ar size solutions are selected from the orthogonal solutions randomly.

4.2 Producing New Solutions with DE/rand/1/exp Strategy

In this study, we use DE/rand/1/exp strategy described in Section 3 to produce the off-
spring solutions. Firstly, when the size of the archive ar size ≥ 5, we select the mating
parents from the archive to generate new solutions, which are used to update the archive
with ε-domination and EA population with usual domination respectively. Secondly, we
get the mating parents from the EA population to generate new solutions and update the
archive and EA population.

4.3 Procedure of ε-ODEMO

The procedure of ε-ODEMO is similar to the ε-MOEA with the exception that in ε-
ODEMO we generate the initial population with orthogonal design method and use
DE/rand/1/exp to produce new solutions. The algorithm is followed by

Algorithm 2. The procedure of the proposed ε-ODEMO
Generate a proper OA and generate the orthogonal solutions OS
Create the archive E(0) with the ε-nondominated solutions of OS
Create the orthogonal initial population P (0) from E(0) and OS
while The maximum number of the fitness function evaluations (NFE) does not reach do

if ar size ≥ 5 then
for i = 1 to ar size do

Produce the new solution with DE/rand/1/exp with archive members
Update the archive using ε-dominance concept
Update the EA population with usual domination

end for
end if
for i = 1 to NP do

Produce the new solution with DE/rand/1/exp with EA population members
Update the archive using ε-dominance concept
Update the EA population with usual domination

end for
end while

5 Simulation Results

In order to test the performance of ε-ODEMO a number of two- and three-objective
problems were used, where two-objective test problems (ZDT1, ZDT2, ZDT3, ZDT4
and ZDT6) are introduced in [22], and also have been used in [1,13,14,15,18]. And
three-objective test problems (DTLZ1 and DTLZ6) are introduced in [23]. The brief in-
formation of the test problems is described in Table 1, where k is the number of the ob-
jective functions and n is the dimension of the decision vector. We also test these prob-
lems with three other approaches: (i) ε-DEMO, which is similar to ε-ODEMO except
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Table 1. Brief information of the test problems in this study

Problem k n Property
ZDT1 2 30 high dimensionality, convex Pareto front
ZDT2 2 30 high dimensionality, non-convex Pareto front
ZDT3 2 30 high dimensionality, discontinuous Pareto front
ZDT4 2 10 many (219) local Pareto fronts
ZDT6 2 10 low density of solutions near Pareto front

DTLZ1 3 7 many (115 − 1) local Pareto fronts, linear hyper-plane Pareto front
DTLZ6 3 22 high dimensionality, 219 disconnected Pareto-optimal regions

using random initial population, (ii) ε-MOEA proposed in [20], and (iii) ε-OMOEA,
which uses orthogonal initial population mentioned above instead of the random initial
population in ε-MOEA.

5.1 Performance Measures

There are three metrics used in this study. The smaller the value of these metrics, the
better the performance of the algorithm.

• Convergence metric γ [1]: It measures the distance between the obtained nondom-
inated front Q and the set P ∗. of Pareto-optimal solutions.

• Diversity metric Δ [1]: It measures the extent of spread achieved among the non-
dominated solutions.

• Generational distance GD [15]: It is similar to the convergence metric. It mea-
sures the distance between the obtained nondominated front Q and the set P ∗. of
Pareto-optimal solutions.

For all the three metrics, we need to know the true Pareto front for a problem. Since
we are dealing with artificial test problems, the true Pareto front is not difficult to be
obtained. In our experiments we use uniformly spaced Pareto-optimal solutions as the
approximation of the true Pareto front (For ZDT test problems, they were made avail-
able online at http://www.scis.ecu.edu.au/research/wfg/datafiles.html. And for DTLZ
test problems, they were made available online at http://www.lania.mx/˜ccoello/EMOO/
testfuncs/.).

5.2 Experimental Setup

For all experiments, we used the following parameters:

• Population size: NP = 100;
• Number of fitness function evaluations: NFE = 20,000, which is less than the com-

pared approaches (NSGA-II, SPEA, PAES, PDEA, MODE, and DEMO/parent),
where the NFE of them is 25,000;

• Probability of crossover: CR = 0.5;
• Scaling factor: F = 0.5;
• Positive integer in orthogonal design: J = 2;
• Number of the quantization levels: if n > 29, Q = 29; else Q = 21;
• The ε values for different problems are described in Table 2 in order to get roughly

100 solutions in the archive after 20,000 fitness function evaluations.
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Table 2. The ε values for different test problems

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DTLZ1 DTLZ6
ε [0.0075,0.0075] [0.0075,0.0075] [0.0025,0.0035] [0.0075,0.0075] [0.0075,0.0075] [0.02,0.02,0.05] [0.05,0.05,0.05]

5.3 Experimental Results

The performance of the four methods are compared on all the test problems over ten in-
dependent trials each respectively. The average execution time (in seconds) in each run
using a PC with an Intel Celeron IV 2.53 GHz processor and 512MB memory running
Microsoft Windows XP operating system is shown in the column labeled Time(s).

5.3.1 Two-Objective Test Problems
Tables 3 and Table 4 present the mean and variance of the values of the convergence and
diversity metric, averaged on ten runs. Results of other algorithms are taken from the
literature (see [1] for the results and parameter settings of both versions of NSGA-II,
SPEA and PAES, [13] for PDEA, [14] for MODE, and [15] for DEMO/parent). Al-
though in [15] they proposed three variants of DE algorithm for MOPs, DEMO/parent
obtained almost the same performance compared with the other two variants. So we
only select the results of DEMO/parent to compare with our approaches.

We also present the additional comparison of generational distance results in Tables
5 for PDEA [14] and DEMO/parent [15]. Once more, we present the mean and variance
of the values of generational distance, averaged over 30 runs.

Fig. 1 shows the nondominated fronts obtained by a single run of ε-ODEMO. Table
6 summarizes the values of the convergence and diversity metrics for the nondominated
fronts from Fig. 1.

5.3.2 Three-Objective Test Problems
With respect to three-objective problems DTLZ1 and DTLZ2, we only make compar-
isons on ε-ODEMO, ε-DEMO, ε-OMOEA, ε-MOEA. Table 7 shows the convergence
metric values of the four approaches, averaged on 10 runs.

Fig. 2 and Fig. 3 shows the nondominated fronts obtained by a single run of ε-
ODEMO and ε-OMOEA. Table 8 summarizes the values of the convergence metric
for the nondominated fronts from Fig. 2 and Fig. 3.

6 Results Analysis

6.1 Two-Objective Test Problems

For the five two-objective problems, [15] obtained superior results on these problems
and gave a good discussion of the comparison between DEMO with NSGA-II, SPEA,
PAES, PDEA and MODE. Hence, here we only discuss the comparison between our
approaches and DEMO. From Table 3 - 6 and Fig. 1, we can see that

– ε-ODEMO and ε-OMOEA can get very good results on all of the five test prob-
lems in both goals of multiobjective optimization (convergence to the true Pareto
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Fig. 1. Non-dominated solutions of the final archive obtained by ε-ODEMO on five ZDT test
problems (see Table 6 for more details on these fronts). Where POF means Pareto-optimal front.
The presented fronts are the outcome of a single run of ε-ODEMO.

front and uniform spread of solutions along the front). However, the performance
of ε-DEMO and ε-MOEA are not good. This indicates that the orthogonal initial
population can evenly scan the feasible solution space once to locate good points
for further exploration in subsequent iterations.

– For ZDT1, ZDT2 and ZDT3, they have high-dimensionality, but many MOEAs
have achieved very good results on these problems in both goals of multiobjective
optimization. The results for ZDT1, ZDT2 and ZDT3 shown in Table 3 demon-
strate that ε-ODEMO and ε-OMOEA can obtain better convergence metrics than
DEMO/parent. But the diversity metrics for ZDT1 and ZDT3 are slightly worse
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than DEMO due to the absence of extreme solutions in the Pareto-optimal front
(POF). Since the ε-dominance concept is used in ε-ODEMO and ε-OMOEA, the
extreme solutions usually get dominated by solutions within ε and which are better
in other objectives [20]. ε-OMOEA outperforms ε-ODEMO on ZDT1 and ZDT2.
But ε-ODEMO gets better results on ZDT3.

– ZDT4 has 219 local Pareto fronts, which is difficult for many optimizers. Our pro-
posed ε-ODEMO can find the true POF in all of the ten runs and get better re-
sults than DEMO/parent. Another three approaches (ε-OMOEA, ε-MOEA and ε-
DEMO) are trapped into a local Pareto front sometimes.

– For the results from ZDT6 in Table 4, ε-ODEMO, ε-OMOEA and DEMO/parent
obtain similar results on convergence metric. However, ε-ODEMO and ε-OMOEA
get better results of diversity metric than DEMO/parent. But ε-DEMO and ε-MOEA
get worse results in both goals of multiobjective optimization.

– With respect to the generational distance metric, Table 5 shows that among PDEA,
DEMO/parent and ε-ODEMO, ε-ODEMO can find the best results on all of the test
problems.

– From Fig. 1, we can see that all of the solutions obtained by ε-ODEMO are scattered
on the true POF on all of five test problems.

– Regarding computational cost, we don’t run NSGA-II, SPEA, PAES, PDEA, MODE
and DEMO in my PC, but from the analysis in [20], all of them are more time
consuming than the approaches only used the ε-dominance concept. Although ε-
DEMO requires the least computational time on all of five test problems, it obtains
worse results on the convergence and diversity results. However, ε-ODEMO can
get very good results on all of five test problems in both goals of multiobjective
optimization with less time.

6.2 Three-Objective Test Problems

With respect to three-objective problems DTLZ1 and DTLZ2, we summarize the results
in Table 7. And the nondominated fronts obtained by a single run of ε-ODEMO and ε-
OMOEA are illustrated in Fig. 2 and Fig. 3. The results show that

– ε-OMOEA obtains the best results of convergence metric on two test problems,
followed by ε-ODEMO. ε-DEMO and ε-MOEA find worse results, especially for
DLTZ1.

– On DLTZ1, ε-OMOEA can get a better result than ε-ODEMO with more computa-
tional time. They can all find the true POF. But ε-DEMO and ε-MOEA find many
local Pareto solutions in the final archive (ar size � 100), hence, they get the
worst results of convergence.

– With respect to DTLZ6, there is an interesting result from Table 8 and Fig. 3 that al-
though ε-OMOEA finds a better result of convergence than ε-ODEMO, ε-OMOEA
can obtain only one Pareto-optimal region, however, ε-ODEMO can find the true
POF in all disconnected Pareto-optimal front regions. Therefore, ε-ODEMO was
able to get a better distribution of the Pareto solutions than ε-OMOEA.
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Table 3. Statistics of the average results on test problems ZDT1, ZDT2, ZDT3 and ZDT4 over 30
independent runs. The results obtained by the proposed ε-ODEMO are shown in boldface. NA =
Not Available.

Algorithm
ZDT1

Convergence γ Diversity Δ Time (s)
NSGA-II (real-code) [1] 0.033482±0.004750 0.390307±0.001876 NA

NSGA-II (binary-code) [1] 0.000894±0.000000 0.463292±0.041622 NA
SPEA [1] 0.001799±0.000001 0.784525±0.004440 NA
PAES [1] 0.082085±0.008679 1.229794±0.004839 NA

PDEA [13] NA 0.298567±0.000742 NA
MODE [14] 0.005800±0.000000 NA NA

DEMO/parent [15] 0.001083±0.000113 0.325237±0.030249 NA
ε-ODEMO 0.000761±0.000058 0.360154±0.011059 2.553
ε-DEMO 0.040202±0.018254 0.387340±0.040272 0.925

ε-OMOEA 0.000721±0.000023 0.358369±0.012453 6.201
ε-MOEA 0.020125±0.012800 0.364210±0.020230 6.188

Algorithm
ZDT2

Convergence γ Diversity Δ Time (s)
NSGA-II (real-code) [1] 0.072391±0.031689 0.430776±0.004721 NA

NSGA-II (binary-code) [1] 0.000824±0.000000 0.435112±0.024607 NA
SPEA [1] 0.001339±0.000000 0.755148±0.004521 NA
PAES [1] 0.126276±0.036877 1.165942±0.007682 NA

PDEA [13] NA 0.317958±0.001389 NA
MODE [14] 0.005500±0.000000 NA NA

DEMO/parent [15] 0.000755±0.000045 0.329151±0.032408 NA
ε-ODEMO 0.000764±0.000035 0.276872±0.007013 2.502
ε-DEMO 0.190147±0.081243 0.615820±0.051986 0.621

ε-OMOEA 0.000760±0.000015 0.283013±0.045573 6.567
ε-MOEA 0.034273±0.020354 0.402345±0.077234 6.342

Algorithm
ZDT3

Convergence γ Diversity Δ Time (s)
NSGA-II (real-code) [1] 0.114500±0.007940 0.738540±0.019706 NA

NSGA-II (binary-code) [1] 0.043411±0.000042 0.575606±0.005078 NA
SPEA [1] 0.047517±0.000047 0.672938±0.003587 NA
PAES [1] 0.023872±0.000010 0.789920±0.001653 NA

PDEA [13] NA 0.623812±0.000225 NA
MODE [14] 0.021560±0.000000 NA NA

DEMO/parent [15] 0.001178±0.000059 0.309436±0.018603 NA
ε-ODEMO 0.000915±0.000050 0.534329±0.018301 2.453
ε-DEMO 0.008754±0.003127 0.632701±0.025327 0.924

ε-OMOEA 0.006453±0.007956 0.687538±0.032879 6.583
ε-MOEA 0.005689±0.003357 0.673541±0.012586 6.037



A Novel DE Algorithm Based on ε-Domination and Orthogonal Design Method 297

Table 3. (continued)

Algorithm
ZDT4

Convergence γ Diversity Δ Time (s)
NSGA-II (real-code) [1] 0.513053±0.118460 0.702612±0.064648 NA

NSGA-II (binary-code) [1] 3.227636±7.307630 0.479475±0.009841 NA
SPEA [1] 7.340299±6.572516 0.798463±0.014616 NA
PAES [1] 0.854816±0.527238 0.870458±0.101399 NA

PDEA [13] NA 0.840852±0.035741 NA
MODE [14] 0.638950±0.500200 NA NA

DEMO/parent [15] 0.001037±0.000134 0.359905±0.037672 NA
ε-ODEMO 0.000712±0.000056 0.354847±0.003956 2.325
ε-DEMO 0.856829±0.702439 0.679368±0.120357 0.903

ε-OMOEA 0.010389±0.009354 0.180321±0.531570 6.237
ε-MOEA 8.137894±5.27689 0.927910±0.025221 5.832

Table 4. Statistics of the results on test problem ZDT6 over 30 independent runs. The results
obtained by the proposed ε-ODEMO are shown in boldface. NA = Not Available.

Algorithm
ZDT6

Convergence γ Diversity Δ Time (s)
NSGA-II (real-code) [1] 0.296564±0.013135 0.668025±0.009923 NA

NSGA-II (binary-code) [1] 7.806798±0.001667 0.644477±0.035042 NA
SPEA [1] 0.221138±0.000449 0.849389±0.002713 NA
PAES [1] 0.085469±0.006664 1.153052±0.003916 NA

PDEA [13] NA 0.473074±0.021721 NA
MODE [14] 0.026230±0.000861 NA NA

DEMO/parent [15] 0.000629±0.000044 0.442308±0.039255 NA
ε-ODEMO 0.000581±0.000030 0.204142±0.005012 1.559
ε-DEMO 0.875253±0.0573254 1.530470±0.046340 0.387

ε-OMOEA 0.000618±0.000102 0.180214±0.000864 6.189
ε-MOEA 0.675321±0.537001 0.795721±0.068538 6.057

Table 5. Generational distance achieved by PDEA, DEMO and ε-ODEMO on the test problems
ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6. The results obtained by the proposed ε-ODEMO are
shown in boldface.

Algorithm
Generational distance

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
PDEA [13] 0.00062±0.00000 0.00065±0.00000 0.00056±0.00000 0.61826±0.82688 0.02389±0.00329

DEMO/parent [15] 0.00023±0.00005 0.00009±0.00001 0.00016±0.00001 0.00020±0.00005 0.00007±0.00001
ε-ODEMO 0.00010±0.00001 0.00009±0.00000 0.00013±0.00001 0.00009±0.00001 0.00007±0.00000



298 Z. Cai, W. Gong, and Y. Huang

Table 6. Metric values for the nondominated fronts shown in Fig. 1 by ε-ODEMO

Problem Convergence γ Diversity Δ

ZDT1 0.000799 0.372004
ZDT2 0.000753 0.268825
ZDT3 0.000974 0.383188
ZDT4 0.000750 0.353701
ZDT6 0.000613 0.193624

Table 7. Statistics of the results on test problems DTLZ1 and DTLZ6 over 30 independent runs.
The results obtained by the proposed ε-ODEMO are shown in boldface.

Algorithm
DTLZ1 DTLZ6

Convergence γ Time(s) Convergence γ Time(s)
ε-ODEMO 0.004389±0.000204 1.872 0.020387±0.000789 3.427
ε-DEMO 1.732468±0.182287 17.320 0.039879±0.025680 1.199

ε-OMOEA 0.003790±0.000158 6.251 0.013768±0.002786 7.350
ε-MOEA 7.789134±1.867357 67.035 0.063201±0.031879 6.044

Table 8. Convergence metric values for the nondominated fronts shown in Fig. 2 and Fig. 3

Algorithm DTLZ1 DTLZ6
ε-ODEMO 0.004370 0.020155
ε-OMOEA 0.003997 0.013433

From the comparison above, we can conclude that our proposed approach, ε-ODEMO,
produced competitive results based on quality with respect to many other techniques
representative of the state-of-the-art in multiobjective optimization. ε-ODEMO can deal
with two- and three-objective problems of diverse complexities; problems with low
(ZDT4, ZDT6 and DTLZ1) and high (ZDT1, ZDT2, ZDT3 and DTLZ6) dimensional-
ity, with different types of Pareto fronts (convex, non-convex, discontinuous, thin den-
sity and non-uniform spread) and with many local Pareto fronts (ZDT4 and DTLZ1).
Furthermore, the approach is very fast in terms of the computational time on each of
the test problems.

7 Conclusion

In this paper, we proposed a novel DE algorithm based on ε-dominance concept and
orthogonal design method for MOPs. ε-ODEMO implies the orthogonal design method
with quantization technique to generate the initial population of points that are scattered
uniformly over the feasible solution space, so that the algorithm can evenly scan the
feasible solution space once to locate good points for further exploration in subsequent
iterations. And it uses DE/rand/1/exp strategy to produce offspring solutions. Mean-
while, in order to find good distribution Pareto solutions with less computational time,
ε-dominance concept and efficient parent and archive update strategies are adopted to
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Fig. 2. Non-dominated solutions of the final archive obtained by ε-ODEMO and ε-OMOEA on
DTLZ1 (see Table 8 for more details on these fronts). The presented fronts are the outcome of a
single run.
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Fig. 3. Non-dominated solutions of the final archive obtained by ε-ODEMO and ε-OMOEA on
DTLZ6 (see Table 8 for more details on these fronts). The presented fronts are the outcome of a
single run.

update the archive and population. We tested our proposed ε-ODEMO on a number of
two and three objective problems. From the analysis of the results we can conclude that
ε-ODEMO can obtain a good distribution Pareto solutions on all of the test problems.
Moreover, it requires small computational time. Although ε-OMOEA got slightly bet-
ter results on some test problems (ZDT1, ZDT2, ZDT6 and DTLZ1) than ε-ODEMO,
it needed more computational time and it obtained worse results on ZDT3, ZDT4 and
DTLZ6. Hence, we recommend our proposed ε-ODEMO be used in future experimenta-
tion. Our future work consists on using the proposed ε-ODEMO to solve the constrained
MOPs and dynamic MOPs.

Acknowledgments

The authors would like to thank the anonymous reviewers for their constructive advice
and Kanpur Genetic Algorithms Laboratory (KanGAL) for making the source code
of ε-MOEA available online at http://www.iitk.ac.in/kangal/codes.shtml. This work is



300 Z. Cai, W. Gong, and Y. Huang

supported by the Humanities Base Project of Hubei Province of China(Grant No. 2004
B0011) and the Natural Science Foundation of Hubei Province of China(Grant No.
2003ABA043).

References

1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGACII. IEEE Transactions on Evolutionary Computation 6 (2002) 182 - 197

2. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary
algorithm. Technical Report 103, Computer Engineering and Networks Laboratory, (2001)

3. Schaffer, J. D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms.
Ph. D. thesis, Vanderbilt University. Unpublished. (1984)

4. Hajela, P. and Lin, C. Y.: Genetic search strategies in multicriterion optimal design. Structural
Optimization 4 (1992) 99 - 107

5. Fonseca, C. M. and Fleming, P. J.: Genetic algorithms for multiobjective optimization: For-
mulation, discussion and generalization. In S. Forrest (Ed.), Proceedings of the Fifth Inter-
national Conference on Genetic Algorithms, (1993) 416 - 423

6. Horn, J. and Nafpliotis,N.: Multiobjective optimization using the niched pareto genetic algo-
rithm. IlliGAL Report 93005, Illinois Genetic Algorithms Laboratory, University of Illinois,
Urbana, Champaign. (1993)

7. Knowles,J.D., Corne, D.W.: Approximating the Nondominated Front Using the Pareto
Archived Evolution Strategy. Evolutionary Computation 8(2) (2000) 149 - 172

8. Storn, R. and Price, K.: Differential evolution–A simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization. 11 (1997) 341 - 359

9. Storn, R. and Price, K.: Home Page of Differential Evolution. Available online at
http://www.ICSI.Berkeley.edu/˜storn/code.html. (2003)

10. Lampinen, J.: A bibliography of differential evolution algorithm. Available online at
http://www2.lut.fi/˜jlampine/debiblio.htm

11. Abbass, H.A., Sarker, R., Newton, C.: PDE: A pareto-frontier differential evolution approach
for multi-objective optimization problems. In: Proceedings of the Congress on Evolutionary
Computation 2001 (CEC2001). Volume 2, Piscataway, New Jersey, IEEE Service Center
(2001) 971 - 978

12. Abbass, H.A.: The self-adaptive pareto differential evolution algorithm. In: Congress on Evo-
lutionary Computation (CEC2002). Volume 1, Piscataway, New Jersey, IEEE Service Center
(2002) 831 - 836

13. Madavan, N.K.: Multiobjective optimization using a pareto differential evolution approach.
In: Congress on Evolutionary Computation (CEC2002). Volume 2, Piscataway, New Jersey,
IEEE Service Center (2002) 1145 - 1150

14. Xue, F., Sanderson, A.C., Graves, R.J.: Pareto-based multi-objective differential evolution.
Proceedings of the 2003 Congress on Evolutionary Computation (CEC2003). Volume 2,
Canberra, Australia, IEEE Press (2003) 862 - 869
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Abstract. Molecular system possesses two main characteristics that seem to be 
applicable for the contrary goals of proximity and diversity in multiobjective 
optimization, namely the converging pressure in potential fields as dictated by 
the Maxwell-Boltzmann distribution and the inherent drift to a homogenous and 
uniform equilibrium with maximum entropy, even without any prior knowledge 
on the geometry and state of the enclosure. Inspired by this association, this 
paper explores the notion of exploiting molecular motion to solve 
multiobjective problems. By adapting the algorithmic structure of molecular 
dynamics, which essentially represents a technique for the computer simulation 
of molecular motion, a molecular system that is relevant for multiobjective 
optimization is proposed, known as molecular dynamics optimizer (MDO). The 
performance of MDO was subsequently compared with other conventional 
multiobjective optimizers, specifically EA and PSO, and the experimental 
results demonstrated that MDO is indeed a viable and practical approach for 
multiobjective optimization. 

Keywords: Multiobjective optimization, molecular dynamics. 

1   Introduction 

The development of computational techniques for multiobjective optimization (MOO) 
has significantly grown in the last few years due to their success in satisfying the 
optimization goals of attaining near-optimal, diverse and uniformly distributed 
solution sets for various multiobjective problems (MOP). The basic requirement for 
multiobjective optimizers is to balance between the proximity and diversity goals of 
MOO, providing sufficient convergence pressure without compromising diversity. 
Hence, regardless of the configurations of the initial solution, the ultimate solutions 
generated by the multiobjective optimizer should ideally be well distributed within the 
optimal region for the MOP. 

Many of these optimizers were actually inspired from nature, for instance 
evolutionary algorithm (EA) from evolutionary biology, ant colony optimization 
(ACO) from the behavior of real ant colony and particle swarm optimization (PSO) 
from the swarm behavior of birds. Actually, one could find a resemblance between 
the evolving solutions generated by evolutionary optimizers and the dynamics of ideal 
gas molecules in an enclosure. In the presence of unequal potential fields, there will 
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be a higher probability for molecules to reside in the lower potential regions. 
Furthermore, these molecules will always tend to a homogenous and uniform 
equilibrium with maximum entropy [1], even without any prior knowledge on the 
geometry and state of the enclosure. The convergence and diversity nature of 
molecular motions appears to be inherently well suited for MOO. Thus, it might be 
possible to develop a multiobjective optimizer based on this natural phenomenon. 

Actually, the notion of exploiting the dynamics of molecules for MOO is not new. 
Kita et al [2] and Cui et al [3] formulated strategies based on the thermodynamic 
notion of energy and entropy that will prevent premature convergence by maintaining 
an appropriate level of diversity. Similarly, Sobieski et al. [4] designed variation 
operators that project solutions based on a bell-curve distribution. This idea was 
realized in [5], where an expansion operator designed based on the thermodynamic 
behavior of ideal gas expanding in an enclosure was used to complement the 
crossover and mutation operation. Of more recent issue, a selection strategy and 
stopping conditions were designed by using the natural principles of a dynamical 
system approaching its equilibrium state [6]. Closely related to molecular motion is a 
well established theoretical framework, statistical mechanics, which studies the 
overall behavior of many molecules in terms of their actual motion and interactions. 
While statistical mechanics cannot chart out the life history of one molecule in a 
system, it is able to describe the macro behavior of the molecular system as a whole. 
Because MOO usually involve manipulating populations of solutions, the value of 
this framework is obvious. In fact, statistical mechanics had been used on several 
occasions to analyze the dynamics of EA [7]. 

Nevertheless, analytical solutions in statistical mechanics are restricted only for 
simple and ideal cases. For intractable systems, molecular simulation is used instead 
for more accurate results and has played an important role as a bridge connecting 
models to theory. Molecular simulation is a general term for the use of computer 
models to describe physical systems at a molecular level of detail, particularly the 
individual position and orientation of every molecule and from that, both 
thermodynamic and kinetic properties of the system could be derived. Molecular 
simulation is commonly done by employing either Monte Carlo or molecular 
dynamics [8], with the latter being the research subject in this paper. Molecular 
dynamics numerically solves Newton's equations of motion on molecular system and 
update their state properties correspondingly.  

Since molecular dynamics is essentially a computer simulation of molecular 
motion and considering the inherent diverse behavior of molecular system and their 
converging drift pressure in the presence of unequal potential fields, molecular 
dynamics appears to be a possible computational platform to apply molecular motion 
for MOO purposes. As such, this idea will be explored in this paper. By adapting the 
algorithmic structure of molecular dynamics, a molecular system that is relevant for 
multiobjective optimization is proposed, known as molecular dynamics optimizer 
(MDO). It should be highlighted that this paper aims to show that the basic principles 
derived from the dynamics of molecules can be applied for MOO purposes, instead of 
modeling exactly any real-life molecular phenomenon. Thus, the model proposed will 
be as generic as possible and the proof of principle study will focus mainly on the 
investigation of its feasibility and characteristics.  
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The remainder of this paper is organized as such. First, a formal introduction of 
molecular dynamics will be given, which will be followed by a discussion on how it 
can be relevant to MOO. The algorithmic framework of MDO and its implementation 
issues will then be highlighted in the next section. Subsequently, the results of the 
experimental study will be presented to show the viability of applying molecular 
dynamics for MOO purposes before the conclusions are drawn in section 4. 

2   The Etiology of Molecular Dynamics Optimizer  

This section presents the conceptual development of MDO, which is crucial for a 
better understanding of its algorithmic structure in the next section. First, a brief 
introduction to molecular dynamics will be given, followed by a discussion on how it 
could be relevant to the proximity and diversity goals in MOO.  

2.1   Molecular Dynamics  

Molecular dynamics refers to a computer simulation technique where the time 
evolution of a set of interacting molecules is simulated by integrating their equations 
of motion. For that purpose, it specifies a collection of N molecules, ( )1, , Nm mΦ = …  

of equal mass, M in a simulation cell and their locations are represented by a position 
vector, x . The trajectory of the various molecules follows the law of classical 
mechanics, most notably Newton’s second law of motion: 

f mx=  (1) 

where f  denotes the net force acting on each molecule due to the interactions with 

other molecules and 
2

2

d x
x

dt
=  is its corresponding acceleration. The equations of 

motion are used to calculate step by step the next sequence of coordinates. In more 
pictorial terms, the various molecules will “fly” around in the confined enclosure, 
bump into each other and alter their course of motion accordingly, in a way very 
similar to how molecules in the real world behave.  

f U
x

∂= −
∂

 
(2) 

1 2 3( ) ( , ) ( , , )i i j i j k
i i j i i j i k j i

U u m u m m u m m m
> > > >

= + + +∑ ∑∑ ∑∑ ∑ …  (3) 

The overall moment of the molecules is governed by the potential function, U and 

the formal relationship between f and U is given in (2). The calculation of f  and U 

is non-trivial as U can be split into 1-body, 2-body, 3-body… terms as spelt out in (3). 
The first term denotes the effect of externally applied potential fields and the other 
terms represent the interaction between the molecules. Among them, 2u represents the 
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potential between pairs of molecules, while u3, u4… is the potential between triplets, 
quadruplets… respectively.  

To put everything into context, a general algorithm for molecular dynamics is 
shown in fig. 1. It begins with the creation of an initial configuration. Subsequently, if 
the time has not reached its maximum limit, the configuration of the systems will be 
updated by solving the equation of motions. Of course, a substantial degree of 
implementation complexity has been concealed for brevity. For example, there are 
many possible methods for solving the equation of motions, like the Gear predictor-
corrector or Verlet algorithms. Interested readers are referred to [8], [9] for more 
details.  

    Create an Initial Configuration  
    Loop 
      Calculate Potential Forces  
      Solve the Equation of Motions   
      Update Molecular Trajectory   
    End loop  

Fig. 1. General outline of a molecular dynamics algorithm 

2.2   Applying Molecular Dynamics for Multi Objective Optimization  

The work in this paper is motivated by how the contrary goals of proximity and 
diversity in multiobjective optimization can be met by the converging drift pressure of 
molecular systems in potential fields and their inherent drift to a homogenous and 
uniform equilibrium with maximum entropy. For the former, it is actually governed 
by the Maxwell-Boltzmann distribution. To illustrate this clearer, let’s consider an 
assembly of N molecules in an isolated system of volume V. Their energy is limited at 
certain discrete values and summing their energy will yield the total energy of the 
system, E. The state or condition of each molecule at any time is specified by its 
position x  and momentum p  at that instant. Without any loss in generality, a six-

dimensional space denoted as phase-space is defined, and a six variables coordinates 
system represents the state of one molecule at any given time, where the first three 
variables represent the spatial coordinates, x  and the subsequent three being the 
momentum, p . 

The N molecules will be distributed almost continuously throughout the phase 
space, and at equilibrium, the number of molecule in a volume element 
dΩ , 1 2 3 1 2 3d dx dx dx dp dp dpΩ =  of the phase space, at time t is given by (4),  

En N Ae dβρ −= Ω∫  (4) 

In fact, n depends on the energy of the system. For brevity, the derivation has been 
left out. Interested readers are referred to standard statistical mechanics textbooks for 
details.  

Considering a more complicated situation where they may be some potential 
energy present, let’s suppose that the phase space consists of two regions of equal 
volume, R1 and R2, where the former has zero potential and the latter has a constant 
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potential energy, 0oV > . The number of molecule in region R1 and R2 is given in (5) 

and (6) respectively, where kE  refers to the kinetic energy of the molecules.  

1
kEn N Ae dβρ −= Ω∫  (5) 

( )
2

k oE Vn N Ae dβρ − += Ω∫  (6) 

Since oV is a constant and R1 and R2 has the same volume, the ratio of 2 1n n can be 

easily evaluated in (7). This ratio is just the Boltzmann constant with the energy 
difference oV  appearing in the exponent.  

2

1

oVn
e

n
β−=  

(7) 

The direct implication is that when the system is in dynamic equilibrium, there will 
be a higher proportion of molecules residing in the lower potential region of the field 
with the ratio being related to the difference in energy level. Hence, if the optimal 
region in the search space of a MOP could be associated with low potential region in 
the molecular simulation cell, most molecules should converge to the optimum. Fig. 2 
suggests how this could be done.  
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Fig. 2. (a) Search space and (b) objective space of a 5-molecules system  

Fig. 2a shows five solutions situated in the search space of a hypothetical MOP. 
Fig. 2b shows their positions in the objective space after they have been evaluated. 
Obviously, they have different degree of optimality, depending on their proximity to 
the Pareto optimal front. Clearly, molecules m1 and m2 are the most optimal solutions 
while m4 and m5 are the least optimal.  

Ideally, molecules should be accelerated towards the lower potential region 
delineated by the gray region. However in practice, the complete potential landscape 
can never be charted. Thus, what can be done instead is to accelerate each molecule 
towards those that dominate it and away from those that it dominates. Figure 2a 
illustrates this for the simple example considered where m3 is accelerated towards 
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molecules m1 and m2 and away from m4 and m5. Thus, the resultant force vector for 
m3 points towards the optimal region. As governed by (7), this simple system will 
tend to dynamic equilibrium with a higher proportion of the molecules settling in the 
region of optimality, hence satisfying the proximity goals of MOO. 

As for diversity, it can be achieved by introducing intermolecular potential into the 
MDO, since they are responsible for the uniform distribution of molecules in actual 
molecular systems. To illustrate, let’s consider the Lennard-Jones potential, which is 
the most widely used pair-wise potential for molecular dynamics due to its realistic 
description for the intermolecular interaction and computational simplicity. Its 

formulation is given in (8), where ijx  is the inter-molecular separation, ε  is the 

depth of the potential well at the minimum in 2 ( , )i ju m m  and σ  is the collision 

diameter, which is the separation of the molecules at 2 ( , ) 0i ju m m = . 

12 6

2 ( , ) 4i j

ij ij

u m m
x x

σ σε
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟= −
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (8) 
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Fig. 3. Lennard-Jones potential  

The graphical plot of the Lennard-Jones potential and the two distinct forces that 
constituted it are illustrated in fig 3. The positive potential is of repulsive nature and 
the other is of attractive nature. The former prevents the molecules from congregating 
to a single point, while the latter maintains their cohesion. Both of these forces vary 
inversely with the distance between the molecules. Also, the repulsive potential has a 
higher value initially as compared to the attractive potential but it converges to zero 
faster. As a result, molecular interaction is strongly repulsive in close proximity, 
becomes mildly attractive at intermediate range and vanishes at long distance. The 
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effect is that molecules in the system will be uniformly spaced from each other at a 
distance roughly equivalent to the collision diameter,σ . Hence extending this 
concept to MOO, the molecules in the optimal region will be spaced evenly for a 
well-defined Pareto front. 

3   Molecular Dynamics Optimizer 

Having discussed the affinity between molecular dynamics and MOO, the 
development and implementation of MDO is straightforward. The main aspects of 
molecular motion taken into account to develop the algorithm are the converging drift 
pressure in the presence of unequal potential fields and the inherent diverse behavior 
of molecular system.  

    Generate an Initial Configuration Randomly 
    Loop t = 1 … T 
      Evaluate each Molecule’s Optimality Level  
      Determine the Potential  
       Calculate the Potential Field 
       Calculate the Intermolecular Potential  
      Solve the Equation of Motions 
      Update Molecular Trajectory  
       Account for Boundary Constraints  
    End loop  

Fig. 4. Pseudo code of MDO 

Fig. 4 describes the pseudo code of MDO and the algorithmic details are briefly 
described as follows:  

1. Generate: The population initialization process create a molecular system 

( )1, , Nm mΦ = …  consisting of N modules at t = 0. A random position vector 

( )1, , lx x x= …  and velocity vector ( )1, , lv v v= …  will be assigned to each of 

them. The coordinates of each molecule represents a solution of the MOP, ( )F x  

at hand and its values will be confined within the dimension of the simulation 
cell, corresponding to the search space of ( )F x .  

2. Evaluate: All the molecules are evaluated based on ( )F x . From their objective 

vectors, their optimality levels are determined, which will affect the type of 
potential forces acting on it. 

3. Determine: The potential of each molecules are determined via the potential 
function outlined in (3). The two main potentials considered will be potential 
field and the intermolecular potential which respectively relates to the 
convergence and divergence property of molecular motions that are essential for 
MOO purposes. 
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4. Solve: With the potential determined, the resultant force acting on each molecules 
can be computed. Subsequently, by solving the equations of motion, the position 
and velocity of every molecule at the next time step can be calculated.  

5. Update: The velocity and position of the molecules are updated based on the 
values attained earlier. Here, the boundary constraints are checked to ensure that 
each molecule is still confined within the simulation cell. 

After these steps, the termination criterion will be checked and if it is not met, the 
whole algorithm will repeat again. In this paper, the termination criterion is a 
predefined maximum number of time steps, T.  

3.1   Implementation of MDO  

With the generic algorithmic framework of MDO in place and the discussion of the 
various implementation issues, we are in a better position to evaluate the capability of 
MDO to satisfy the goals of proximity and diversity in MOO. For this purpose, a 
simple instance of MDO will be implemented and the algorithm details are described 
as follows.  

Since the equilibrium behavior of the system is independent on the initial 
conditions, all reasonable initial configurations are, in principle, acceptable. The 
coordinates for each molecule are assigned values that are drawn from a uniform 
distribution which ranges within the limits of the search space. Likewise, their 
velocity is determined in similar fashion. 

The concept of optimality level in MDO is analogous to fitness level in the context 
of evolutionary optimizers and the optimality difference between molecules is used to 
determine the nature of their intermolecular potential. Since the solutions of MOP are 
all partially ordered, using the technique of Pareto ranking or aggregation function 
can generate a total ordering within the solutions, and hence determining their 
optimality level. However, since we are only concerned with the optimality 
difference, this implementation will simply use Pareto dominance to compare 
solutions in pairs and determine the nature of their intermolecular potential. 

The potential function outlined in (3) is too complex even for the actual molecular 
simulation of realistic systems. A simpler alternative will be to ignore higher order 
interactions and just focus on the two-body interaction or pair-wise potential which 
contributes bulk of the system energy. Also, there are many types of intermolecular 
potential function used in molecular simulation. Beside the Lennard Jones potential 
mentioned earlier, there is also the Weeks-Chandler-Anderson potential [8], [9], a 
truncated version of the Lennard Jones potential so as to keep computation at a 
reasonable level, and the Barker-Fisher-Watts potential [8], [9], where the repulsion 
between molecules have an exponential dependence on distance. While implementing 
those potential functions might be a more direct approach, this will only introduce 
additional parameters and complexity to the model, which this implementation tries to 
avoid.  

Hence, linear potential functions will be considered instead and to simplify the 
model complexity further, the force acting on each molecule due to the intermolecular 
potential is derived directly. Each molecule will be compared to each and every other 
molecule. Based on their difference in optimality level, different type of force will be 
assigned to each molecular pairing. Altogether, there are three cases.  
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1. If im  is compared to a superior molecule, jm , im  will experience a attractive 

force given by (10) that will accelerate it towards jm . This force varies directly 

with the difference in ranking and inversely with the intermolecular separation. 
The attractive potential force constant, Ca vary its influence on the dynamics of 
the molecules. A random number was considered to introduce stochasticity into 
this model. 

( ) ( )max

max

ˆ() j
iji a max ij ij

r r
f C rand x x xr

−
= ⋅ ⋅ ⋅ − ⋅  (9) 

2. Conversely, if im  is compared to a inferior molecule, a repulsive force will be 

experienced by im  to accelerate itself from jm , given by (11). This formulation 

is similar to (10), except for the negative sign which reflects the different nature. 
The repulsive potential force constant, Cr has similar function as Ca . 

( ) ( )max

max

ˆ() j
iji r max ij ij

r r
f C rand x x xr

−
= ⋅ − ⋅ ⋅ − ⋅  (10) 

3. In the event where both molecules are of the same optimality, which implies that 
the intermolecular forces should be applied to improve their diversity. To 
minimize the model complexity, a simplistic linear force that varies inversely 
with the intermolecular separation will be considered instead of the Lennard-
Jones potential. The force experienced by im  is given in (12) is given as below, 

which is actually a simplified version of the Lennard-Jones potential. The 
constant 0R  is analogous to the depth of the potential well in (8). It allows 

adjustment of the difference in magnitude between this short ranged force and the 
long-ranged forces in (10)-(11) respectively. Apart from that, its sign will 
determine the nature of the force i.e. attractive or repulsive. xniche is the radius 
within which this force will act. It is similar to σ  in (8) which define the 
intermolecular separation where no force is experienced. 

( )0

0 if 
   ˆ() if 

ij niche

ij
niche ij ij ij niche

x x
f

R rand x x x x x

≥⎧⎪= ⎨ ⋅ ⋅ − ⋅ <⎪⎩
 (11) 

The resultant force acting on im  will be given by  

N

i ij
j

f f=∑  (12) 

After the force for each molecule has been determined, the velocity and position of 
the molecules can be updated. They are related to the previously calculated force 
vector as shown,  

, , 1 ,i t i t i tv I v f−= ⋅ +  (13) 
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, , 1 ,i t i t i tx x v−= +  (14) 

where I is the inertia constant. I will determine the responsiveness of the system to 
new changes and is also being widely adopted in PSO also [11].  

If the updated position of the molecules is outside the boundary of the search 
space, the corresponding value will be simply truncated to the boundary value 
accordingly. Although this method is biased towards the boundary and rather 
unrealistic, it is simple in implementation and adequate for this preliminary 
application of MDO for MOO. Furthermore, the optimal region of the problems 
considered in the experimental study later is far away from the boundary. Hence, this 
type of strategy will not be biased towards MDO in any means. The more common 
technique used in actual molecular simulation is the periodic boundary conditions [9]. 

The time counter will then be incremented by one and if the maximum time had 
not been reached, the algorithm will re-evaluate the solutions and repeat itself again.  

3.2   Comparison of MDO with Conventional Evolutionary Optimizers  

MDO represents a computational implementation of molecular system, simulating the 
dynamics of molecules trapped in a fixed enclosure with uneven potential field. The 
molecules will fly around the simulation cell, which represents the search space of the 
investigated MOP. Each molecule will be attracted by those that Pareto-dominate it 
and repelled from those they Pareto-dominate. Regardless of the initial 
configurations, the ensemble of molecules will settle into dynamic equilibrium, where 
a larger proportion of molecules having a higher degree of optimality. The 
intermolecular forces help to space the molecules evenly within the optimal region.  

Noticeably, MDO and PSO have some similarities, where both used the concept of 
flying molecules (particles in the case for PSO) within a search space. However, their 
difference is that the particles’ trajectories in PSO are updated based on principles of 
social psychology, emulating the socio-cognitive behavior of human and animals, 
whereas in MDO, the overall movement of the molecules is governed by the potential 
function dictating intermolecular interaction in nature. MDO performs its search 
through the molecular interaction and dynamics, balancing the exploration of the 
search space with the exploitation of the best solutions. 

Furthermore, it should be mentioned that no form of archiving is being considered 
in MDO, unlike for conventional multiobjective optimizers, where archiving is 
deemed necessary to maintain a stable population in the vicinity of the optimal region, 
as there is a non-zero probability that the optimum solutions will be dropped from the 
evolving population during the selection process. The convergence witnessed in 
simulation studies is actually due to the algorithmic trick of keeping a record of 
Pareto optimal solutions throughout the evolutionary progress [12]. The importance of 
archiving for evolutionary optimizers, specifically EA and PSO, in MOO will be 
explored further during the experimental study. Of course, there is no doubt that 
including archiving will most probably improve the algorithmic performance of 
MDO. But considering the main objective of the paper, which is to explore the 
possibility of exploiting molecular dynamics for MOO, the model developed should 
be kept as generic as possible without any additional features. Furthermore, the 
implementation of archiving will garner issues like the level of elitism, where 
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solutions from the solutions are thrown back into the evolving population, and the 
type of solutions to be archived or eliminated. 

Lastly, due to the complexity of the model that the conventional evolutionary 
optimizers are emulating, it is difficult to establish a complete theoretical framework 
that could explain their behavior and characteristics. Therefore, current theoretical 
works are mostly based on simplified versions of the original model instead. As such, 
evolutionary optimizers are often regarded as a black box; where its capability is well 
understood but the underlying dynamics still remain a mystery. As a result, design of 
evolutionary optimizers for practical MOO purposes is normally based on intuition 
and guesswork. While theoretical works in molecular motions are restricted also to 
simpler systems, they are more developed and comprehensive as compared to those of 
the evolutionary optimizers, which provide another motivating factor to apply 
molecular motion for MOO purposes. Furthermore, the convergence properties of 
molecular motion are actually being proven in one of the related theoretical works.  

4   Experimental Study  

MDO is implemented in this section to investigate whether it can satisfy the goals of 
proximity and diversity in MOO. Since a mathematical analysis of the model had not 
been established, which could guide the parameter setting in various scenarios, 
parameters for MDO will be arbitrarily chosen. Its performance will be compared 
against other evolutionary optimizers so as to quantify the significance of the 
experimental results. But before the experimental studies, a formal introduction to the 
metrics used to quantify the algorithmic performance of MDO will be presented. 

4.1   Performance Metrics  

As mentioned earlier, there are several goals in MO optimization [13], [14] including 
proximity and diversity where the former describes the accuracy of the solution set 
and the latter measures how well the solution set is defined. In this paper, the 
generational distance, GD, metric is used to measure proximity. It quantifies how 
“close” the set of PFknown is from PFtrue [15]. A low GD signifies that PFknown is very 
close to the PFtrue. 

The measure of diversity depends on factors such as spread and spacing of the 
solution set. The former can be measured by the maximum spread, MS, metric [14], 
which indicates how well the PFtrue is covered by PFknown through the hyper-boxes 
formed by the extreme function values observed in both fronts. The greater the value 
of MS is, the more the area of PFtrue is covered by PFknown. The spacing metric, S, is 
used to measure how “evenly” solutions in PFknown are distributed [15]. A low value 
of S indicates that the members in PFknown are evenly distributed. 

Collectively, these three metrics assess how well the optimization goals are 
achieved by MDO. Apart from these metrics, a simple metric that measures the 
number of non-dominated solutions found, N, is included in the analysis also. In 
general, a higher N corresponds to a better defined PFknown, providing the decision-
maker more choices and thus increases the likelihood of a better final decision.  
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4.2   Experimental Results  

It should be highlighted that the objective in this paper is not to develop a full fledged 
algorithm that is on-par with state-of-the-art multiobjective optimizers in real life 
MOPs, rather it aims to explore the concept of applying molecular dynamics for the 
purpose of MOO. Hence, baseline version of EA and PSO was adopted instead. Also, 
the benchmark problem used is a simple MOP that could highlight the relevant 
characteristics under investigation, and its formulation is given in (15). Typical 
benchmark problem like the Zitzler series [14] will be reserved for future studies.  

( )
( ) ( ) ( )

2 2
1 1 2 1 2

2 2

2 1 2 1 2

1 2

min   ,

min   , 5 5

5 , 10

f x x x x

f x x x x

x x

= +

= − + −
− ≤ ≤

 (15) 

A generic Pareto-based EA was considered and its parameter configurations are 
listed in table 1. The selection criterion is based on Pareto ranking and in the event of 
a tie, the niche count will be employed. The mechanism of niche sharing is used in the 
tournament selection, as well as diversity maintenance in the archive. Two version of 
EA was considered where one adopted elitism, and one without. For the former, 
elitism was implemented by selecting individuals to the mating pool through a binary 
tournament selection of the combined archive and evolving population. As for the 
latter, no archive was implemented. As such, there is a non-zero probability that the 
good solutions will be eliminated from the evolving population. 

Table 1.  Parameter Settings for EA  

Chromosome Binary coding , 30 bits per decision variables 
Population Population size of 100. Archive size of 100 
Selection Binary Tournament Selection 
Crossover Probability 0.8 
Mutation Probability 1 / Chromosome_length  
Ranking scheme Pareto ranking 
Diversity Operator Niche count with radius 0.01 in the normalized objective space 
Generation 100  

Table 2.  Parameter Settings for PSO  

Population Population size of 100. Archive size of 100 
Selection Binary Tournament Selection 
Inertia weight  0.4 
Social learning factor 1.0 
Cognitive learning factor 1.0 
Ranking scheme Pareto ranking 
Diversity Operator Niche count with radius 0.01 in the normalized objective space 
Generation 100  
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As for PSO, a baseline version which adopt similar selection scheme and diversity 
operator was used. Similarly, two version of PSO was considered where one adopted 
elitism, and one without. The global best will be randomly chosen from the archive 
and from the evolving population (for the former version) or just from the evolving 
population for the latter. The personal best for each particle is updated whenever its 
pervious location is Pareto-dominated by its current location. If they are of the same 
level of optimality, the personal best will be randomly chosen between them.  

The parameters settings for MDO were arbitrarily chosen and are summarized 
below in table 3. The different algorithms and their corresponding index and notation 
are shown in Table 4. 

Table 3.  Parameter Settings for MDO 

Number of molecules, N 100 
Total Time, T 100 
Strength of attractive potential field, Ca 1 
Strength of repulsive potential field , Cr 1 
Strength of intermolecular potential, R0 100 
Inertia constant, I 0.9 
Niche radius, xniche 0.02 

Table 4.  Notations for the various algorithms  

Index  Algorithm  Notation  
1 EA without elitism EA-I 
2 EA with elitism EA-II 
3 PSO without elitism PSO-I 
4 PSO with PSO-II 
5 Molecular Dynamics Optimizer MDO 

 
30 independent simulation runs were performed altogether. Fig. 5 illustrates the 

experimental results for the different algorithms when applied to BINH. Despite their 
differences in GD, statistical tests revealed that these differences are not statistically 
significant except for the few cases where EA-I failed to converge to PFtrue. This is 
expected due to the simplicity of the problem. As for MS, MDO is able to sustain a 
wide spread of solution even without any form of archive. In contrast, PSO-I just 
managed to attain a single point on the PFtrue, while EA attained a better spread only 
after elitism was employed in EA-II. After archive was implemented, higher value of 
N was obtained as in the case for EA. Though PSO-I attained high values for N on 
average, all the solutions attained are very near as reflected by the low MS. 

The PFknown of the various algorithms from a randomly chosen experimental run 
are shown in fig. 6. These plots correspond to the box plots, where PFknown attained by 
PSO-I indeed comprised of only one single point. Generally, the implementation of 
elitism improves the performance of EA and PSO with PSO-II having the 
performance amongst the various test algorithms. Nevertheless, even without any 
form of archiving or elitism, the performance of MDO is on par with PSO-II and was 
able to attain a wider spread among the solutions. 
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Fig. 5. Performance metrics of (a) GD, (b) MS, (c) S and (d) N when applied to BINH  
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Fig. 6. PFknown attained by the different algorithms 

The experimental results conformed to the theoretical hypothesis that conventional 
evolutionary optimizer required the incorporation of archive before reasonable 
performance in MOO could be derived. This is in stark contrast to MDO where, the 
inherent convergence property of MDO allows the solution to converge to PFtrue even 
without elitism. Also, the diversity nature of the intermolecular potential allows the 
solutions to be evenly spread along PFtrue. 

Nevertheless, this simple experimental study is insufficient, if the performance of 
MDO is to be properly evaluated and compared with conventional optimizers of 
modern day standards. A comprehensive proper evaluation study against existing 
evolutionary optimizers is currently in progress and the results will be reported in due 
course. But, the positive performance of MDO does suggest that molecular dynamics 
is indeed a viable tool for multiobjective optimization. 

5   Conclusion  

In this paper, a multiobjective optimizer based on the simulation of molecular motion 
has been presented. This algorithmic framework draws inspiration from the flow of 
molecules to lower potential region in the presence of uneven potential fields and its 
inherent drift to a homogenous and uniform equilibrium, which make it suitable for 
the contrary goals of proximity and diversity in MOO. A simple instance of MDO 
was implemented and the experimental results demonstrated the viability and 
practicality of the approach.  

Nevertheless, there is still plenty avenues in which future research can proceed, 
most notably is to consider a fully-operational version of MDO, which is on par with 
state-of-the-art multiobjective optimizers in real life problems. As the implementation 
considered in the experimental study is actually a very simplified form of the 
molecular dynamics algorithm, ongoing work includes the implementation of a more 
realistic version that considers the existing techniques discussed earlier and 
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conducting a comprehensive performance analysis based on statistical tests and a 
proper suite of benchmark problem and real life problems.  
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Abstract. One of main issues in multi-objective optimization is to sup-
port for choosing a final solution from Pareto frontier which is the set
of solution to problem. For generating a part of Pareto optimal solu-
tion closest to an aspiration level of decision maker, not the whole set
of Pareto optimal solutions, we propose a method which is composed of
two steps; i) approximate the form of each objective function by using
support vector regression on the basis of some sample data, and ii) gen-
erate Pareto frontier to the approximated objective functions based on
given the aspiration level. In addition, we suggest to select additional
data for approximating sequentially the forms of objective functions by
relearning step by step. Finally, the effectiveness of the proposed method
will be shown through some numerical examples.

1 Introduction

Many decision making problems are formulated as multi-objective optimization
problem so as to satisfy the diverse demands of decision maker. Usually, there
does not necessarily exist an optimal solution which minimizes all objective func-
tions simultaneously, because of the trade-off among the objective functions. And
then, Pareto optimal solution is introduced, and the set of them in the objec-
tive function space is called Pareto frontier. Generally, there exist a number
of Pareto optimal solutions, which are considered as the candidates of a final
decision making solution. Therefore, it is one of main issues in multi-objective
optimization how to obtain Pareto optimal solutions, and how to choose one
solution from many Pareto optimal solutions. To the end, the aspiration level
methods have been developed. These methods search a decision making solution
by processing the following two stages repeatedly: 1) solving auxiliary optimiza-
tion problem to obtain the closest Pareto optimal solution to a given aspiration
level of decision maker, and 2) revising her/his aspiration level by making the
trade-off analysis. For the cases with many objective functions, it is difficult to
visualize Pareto frontier, and also to depict the trade-off among many objec-
tive functions. In this case, the conventional interactive optimization methods

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 317–329, 2007.
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are useful, although these approaches give one Pareto optimal solution with a
single-optimization run. On the other hand, it may be the best way to depict
Pareto frontier in the cases with two or three objective functions, since visualizing
Pareto frontier helps to grasp trade-off among the objective functions. For that
purpose, genetic algorithm (GA) has been applied for solving a multi-objective
optimization problem, and multi-objective GA (MOGA) has been shown to be
effective for generating Pareto optimal solutions. However, MOGA has some
problems as follows; i) it is difficult to treat many objective functions, ii) so
many function evaluations are needed in generating the whole Pareto frontier.
In particularly, the number of function evaluations is very important when ap-
plying MOGA as well as conventional multi-objective optimization methods to
the real problems such engineering design problem which have black-box objec-
tive functions whose forms are not explicitly known in terms of design variables.
Under this circumstance, the value associated with each design variable is given
by sampled real/computational experiments such as structural analysis, fluid-
mechanical analysis, thermodynamic analysis, and so on. These analyses take
long execution time and high cost. Therefore, it is essential to reduce the num-
ber of function evaluations as few as possible which is needed in finding an
optimal solution.

In multi-objective optimization considering the number of function evalua-
tions, it would rather be practicable to generate a necessary part, not the whole
of Pareto frontier. In this research, we propose a new method which is composed
of two stages; i) the first stage is to approximate the form of each objective
function by using support vector regression on the basis of some sample data,
ii) in the second stage using MOGA, we generate Pareto frontier to the approx-
imated objective functions based on a given aspiration level of decision maker.
Furthermore, we discuss the way how to select additional data for revising the
forms of objective functions by relearning step by step. Finally, we illustrate the
effectiveness of proposed method through a numerical example.

2 Support Vector Regression

In this section, to begin with, we introduce support vector regression (SVR),
which is a kind of Support vector machine (SVM) for function approximation.

SVM has been recognized as a powerful machine learning technique. SVM was
originally developed for pattern classification and later extended to regression,
[2], [3], [10], [12]. Therefore, we review briefly SVM for classification.

Let F be a space of conditional attributes. For binary classification problems,
the value of +1 or −1 is assigned to each pattern xi ∈ F according to its class A
or B. The aim of machine learning is to predict which class newly observed pat-
terns belong to on the basis of the given training data set (xi, yi) (i = 1, . . . , �),
where yi = +1 or −1. This is performed by finding a discriminant function h(x)
such that h(x) � 0 for x ∈ A and h(x) < 0 for x ∈ B. Linear discriminant
functions, in particular, can be expressed by a linear form



Sequential Approximation Method in Multi-objective Optimization 319

h(x) = wT x + b

with the property

wT x + b � 0 for x ∈ A
wT x + b < 0 for x ∈ B

In cases where training data set F is not linearly separable, we map the
original data set F to a feature space Z by some nonlinear map φ. Increasing the
dimension of the feature space, it is expected that the mapped data set becomes
linearly separable. We try to find linear classifiers with maximal margin in the
feature space.

Letting zi = φ(xi), the separating hyperplane with maximal margin can be
given by solving the following problem with the normalization wT z + b = ±1 at
points with the minimum distance:

minimize
w,b

1
2
||w||22 (hard-SVC)P

subject to yi

(
wT zi + b

)
� 1, i = 1, . . . , �.

Using the kernel function K(x, x′) = φ(x)T φ(x′), the dual problem for (hard-
SVC)P can be obtained as follows:

maximize
αi

�∑
i=1

αi − 1
2

�∑
i,j=1

αiαjyiyjK(xi, xj) (hard-SVC)D

subject to
�∑

i=1

αiyi = 0,

αi � 0, i = 1, . . . , �.

Although several kinds of kernel functions have been suggested, typical kernel
functions are Gaussian kernel function and p−order polynomial kernel function,
and so on [10]:

K(x, x′) = exp
(

−‖x − x′‖2
2

2σ2

)
,

K(x, x′) = (〈x · x′〉 + 1)p

In our simulation of this paper, we use Gaussian kernel.
The above hard-SVM is the most basic model, and various SVMs have been

suggested. (See the references [2,3,9] about the details.)

Later, SVM has been extended to regression by introducing the ε−insensitive
loss function by Vapnik [12]:

Lε(z, y, h) = |y − h(z)|ε = max(0, |y − h(z)| − ε).
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For a given insensitivity parameter ε,

minimize
w,b,ξi,ξ́i

1
2
‖w‖2

2 + C
(1

�

�∑
i=1

(ξi + ξ́i)
)

(soft−SVR)

subject to
(
wT zi + b

)
− yi � ε + ξi, i = 1, . . . , �,

yi −
(
wT zi + b

)
� ε + ξ́i, i = 1, . . . , �,

ε, ξi, ξ́i � 0,

where C is the trade-off parameter between the norm of w and ξi (ξ́i). In order
to decide an insensitivity parameter ε automatically, ν−SVR was proposed by
Schölkopf and Smola [9].

minimize
w,b,ε,ξi,ξ́i

1
2
‖w‖2

2 + C
(
νε +

1
�

�∑
i=1

(ξi + ξ́i)
)

(ν−SVR)

subject to
(
wT zi + b

)
− yi � ε + ξi, i = 1, . . . , �,

yi −
(
wT zi + b

)
� ε + ξ́i, i = 1, . . . , �,

ε, ξi, ξ́i � 0,

where C and ν are trade-off parameters between the norm of w and ε and ξi (ξ́i).
Using multi-objective programming and goal programming techniques [6],

[15], the authors have developed several varieties of SVM and extended the
family of SVM for classification to regression [7] including the primal problem

minimize
w,b,ε,ξ,ξ́

1
2
‖w‖2

2 + νε + μ(ξ + ξ́) (μ − ν−SVR)

subject to
(
wT zi + b

)
− yi � ε + ξ, i = 1, . . . , �,

yi −
(
wT zi + b

)
� ε + ξ́, i = 1, . . . , �,

ε, ξ, ξ́ � 0,

where ν and μ are the trade-off parameters between the norm of w and ε and
ξ (ξ́).

Here, we show the effectiveness of μ − ν−SVR comparing the performance
through the following simple problem:

y = (x2 − 1)(x2 − 9), −3 � x � 3.

The parameters in each SVR are given by

i) soft−SVR : C = 100, ε = 0.1
ii) ν−SVR : C = 100, ν = 0.5
iii) μ − ν−SVR : μ = 50, ν = 50

and the training data is 30 points randomly with noise.
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Fig. 1. Comparison of Several SVR

As shown in Fig. 1, it can be observed that μ − ν−SVR provides the least
number of support vectors while keeping a reasonable error rate, compared with
soft−SVR and ν−SVR, that is, μ − ν−SVR is promising for sparse approxi-
mation. One of the most prominent features in μ − ν−SVR is that it provides
relatively less support vectors, which means the computation is less expensive.
The fact that μ − ν−SVR yields good function approximation with reasonable
accuracy and with less support vectors, is important in practice in engineering
design. For some kinds of engineering design problems, approximation functions
should be realized on the basis of as few data points as possible. Such practical
engineering design problems are considering as the application, and therefore,
we adopt μ−ν−SVR as a useful tool of function approximation in this research.

3 Multi-objective Optimization

Next, we explain the concept of solution in multi-objective optimization. Con-
sider a multi-objective optimization problem with m-objective functions and
n-dimensional decision variable as follows:
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minimize
x

f(x) = (f1(x), f2(x), . . . , fm(x))T (MP)

subject to x ∈ X = { x ∈ R
n | gj(x) � 0, j = 1, . . . , l } ,

where X is the set of all feasible solution set in design variable space.
The objective function space is partially ordered, thus for convenience, we

use the following notations for two vectors y1 (= (y1
1 , . . . , y

1
m)T ) and y2 (=

(y2
1 , . . . , y

2
m)T ) in R

m.

y1 > y2 ⇐⇒ y1
i > y2

i , i = 1, . . . , m,

y1 � y2 ⇐⇒ y1
i � y2

i , i = 1, . . . , m,

y1 ≥ y2 ⇐⇒ y1
i � y2

i , i = 1, . . . , m but y1 	= y2.

Generally, unlike traditional optimization problem with a single objective
function, there seldom exists an optimal solution that minimizes all objective
functions fi(x), i = 1, . . . , m, simultaneously in the problem (MP). Using on
the above partial order relation, hence Pareto optimal solution is defined as
follows [8]:

Definition 1 (Pareto optimal solution). A point x̂ ∈ X is said to be Pareto
optimal solution if there exists no x ∈ X such that

f (x) ≤ f(x̂).

Also, Pareto optimal solution x̂ ∈ X in the objective space is called as Pareto
optimal value, and the set of them is Pareto frontier. (See Fig. 2.)

Usually, Pareto optimal solutions are considered as the candidates of a final so-
lution to the problem (MP). Therefore, main issues in multi-objective optimiza-
tion are how to obtain Pareto optimal solutions and how to choose one solution
from the set of Pareto optimal solutions. To the end, many interactive optimiza-
tion methods , for example, aspiration level approach [8] have been developed.
In the aspiration level approach, for a given aspiration level f :=

(
f1, . . . , fm

)
,

f1

f 2

f (X)

x̂

Pareto frontier

f (x)

f ( )

Fig. 2. Pareto frontier
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Fig. 3. Aspiration level method

we consider the following problem with the augmented Tchebyshev scalarization
function:

minimize
x,δ

δ + λ

m∑
i=1

ωi

(
fi(x) − f i

)
(AP)

subject to ωi

(
fi(x) − f i

)
� δ, i = 1, . . . , m,

x ∈ X,

where ωi =
1

f i − f∗i
, i = 1, . . . , m, f∗ := (f∗1 , . . . , f∗m) is an ideal point, and

λ (= 10−7) is sufficiently small number.
By solving the problem (AP), as shown in Fig. 3, we can obtain the closest

Pareto optimal value fp where is an intercept of Pareto frontier and the line
passing the aspiration level point f and the ideal point f∗.

4 Generation of Pareto Frontier by the Proposed Method

As was mentioned in Section 1, GA has been applied for solving a multi-objective
optimization problem. Especially, GA can generate a set of Pareto optimal solu-
tions, since GA is a kind of multi-point searching methods. As a results, GA has
been proved to be a very effective method in multi-objective optimization, and
several multi-objective GA (MOGA) have been researched [1], [4]. Main efforts in
MOGA are made for the diversity and the accuracy of solutions. Consequently,
when applying MOGA to actual problems, so many function evaluations (= the
number of population × generation) are needed. However, in the problems such
as engineering design problems, because the value of objective function cannot
be obtained so easily, it is very important to reduce the number of function
evaluations as few as possible in finding an explicit/implicit optimal solution to
the problem. In order to reduce the number of function evaluations, we have
proposed several algorithms, [13], [14]. Especially, the paper [14] suggested the
method combining MOGA and the aspiration level approach to choose one so-
lution from the set of Pareto optimal solutions.
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In this research, we suggest a hybrid algorithm that SVR approximates the
objective functions and MOGA searches Pareto optimal solutions to the approx-
imate objective functions. We summarize the proposed method as follows:

Step 1. (Real Calculation)
Calculate actually the values of objective functions f(x1), f(x2), . . . , f (x�)
for sampled data x1, . . . , x�.

Step 2. (Approximation)
Approximate each objective function f̂1(x), . . . , f̂m(x) by the learning of
μ − ν−SVR on the basis of real sample data set {(xi, f (xi)) , i = 1, . . . , �}.

Step 3. (Finding of Solution Closest to Aspiration Level
and Generation of Pareto Frontier)
Find the closest Pareto optimal solution to the given aspiration level by min-
imizing the problem (AP), which is solved by genetic algorithm. In parallel,
generate the whole set of Pareto optimal solutions by using MOGA.

Step 4. (Choice of Additional Data)
Choose the additional �0−data for relearning. Go to Step 1. (Set � ← �+ �0.)
Here, we choose the additional data by the method as described in the below.

Stage 1. First, add the closest Pareto optimal solution to the given
aspiration level which was found in Step 3. This is for well ap-
proximating the neighborhood of Pareto optimal solution to the
aspiration level) (← local information)

Stage 2. Evaluate the ranks R(x1), R(x2), . . . , R(x�) for sampled
data x1, x2, . . . , x� by the ranking method [5]: if an individual
xi is dominated by another n−individuals, then the rank of xi

is given by R(xi) = n + 1.
Stage 3. Approximate a ranking function R̂(xi) on the basis of

data set {(xi, R(xi)) , i = 1, . . . , �} by μ − ν−SVR.

Stage 4. Calculate the values of ranking function for the whole
Pareto optimal solutions obtained in Step 3.

Stage 5. Among them, add the points with high value of ranking
function. This is to grasp the configuration of Pareto frontier.
(← global information)

5 Numerical Examples

For illustrating the proposed method, we show the results of a simple example
with one design variable and two objective functions. Fig. 4 (a) and Fig. 5 (a)
shows the approximated objective functions on the basis of some real sample
data. Fig. 4 (b) and Fig. 5 (b) shows the population generated at the final
generation. Finally, Fig. 4 (c) and Fig. 5 (c) represents Pareto optimal values
accumulated in the whole generations.
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Fig. 4. # sample data = 3 points Fig. 5. # sample data = 13 points
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Next, we consider the following problem:

minimize f1(x) = x1 + x2 (Ex-1)

f2(x) = 20 cos(15x1) + (x1 − 4)4 + 100 sin(x1x2)
subject to 0 � x1, x2 � 3.

The true function of each objective function f1 and f2 in the problem (Ex-1)
are shown in Fig. 6.
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Fig. 6. The True contours to the problem (Ex-1)

In our simulation, the ideal point and the aspiration level is given by(
f∗1 , f∗2

)
= (0, − 120),(

f1, f2
)

= (3, 200),

and the closest Pareto optimal solution to the above condition is as follows:

exact optimal solution
(
x̂1, x̂2

)
= (1.413, 0)

exact optimal value
(
f̂1, f̂2

)
= (1.413, 30.742)

Starting with initial data 10 points randomly, we obtained the following ap-
proximate solution by proposed method:

approximate solution
(
x1, x2

)
= (1.405, 0)

approximate value
(
f1, f2

)
= (1.405, 29.853)

and also, we show the results in Fig. 8 – Fig. 11. As can be seen from Fig. 6
(b) of the true function, using just 40 sample points, the proposed method can
generate the approximate solution with almost same exact one, although it may
be so difficult to approximate the second objective function f2.

Additionally, the proposed method provides many Pareto optimal solutions
on the neighborhood of the exact solution as well as a rough configuration of
Pareto frontier as shown in Fig. 7.
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6 Concluding Remarks

The most prominent feature in the proposed method is that it provides local and
global information of Pareto frontier. Combining the aspiration level method
and MOGA, it is possible to find the most interesting part for the decision
maker as well as to grasp the configuration of Pareto frontier. Furthermore,
employing the approximation for objective functions, it is expected to reduce
the number of function evaluations up to less than 1/100 to 1/5 of using only
MOGA. Usually, we do not know when to stop the computation in advance, and
the computation is terminated relatively early by the limitation of time and cost
in practical problem. In practical engineering design problems, it is desirable that
the number of function evaluations is less than 1000 (100 if possible). Therefore,
we can conclude that the proposed method is capable of wide application.
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Abstract. The design of a Hybrid Electric Vehicle (HEV) system is
an energy management strategy problem between two sources of power.
Traditionally, the drive train has been designed first, and then a driv-
ing strategy chosen and sometimes optimised. This paper considers the
simultaneous optimisation of both drive train and driving strategy vari-
ables of the HEV system through use of a multi-objective evolutionary
optimiser. The drive train is well understood. However, the optimal driv-
ing strategy to determine efficient and opportune use of each prime mover
is subject to the driving cycle (the type of dynamic environment, e.g. ur-
ban, highway), and has been shown to depend on the correct selection
of the drive train parameters (gear ratios) as well as driving strategy
heuristic parameters. In this paper, it is proposed that the overall op-
timal design problem has to consider multiple objectives, such as fuel
consumption, reduction in electrical energy stored, and the ‘driveability’
of the vehicle. Numerical results shows improvement when considering
multiple objectives and simultaneous optimisation of both drive train
and driving strategy.

1 Introduction

A current environmental issue is the reduction of the total energy consumption of
a passenger car. Despite their higher manufacturing cost, HEVs have been shown
to be an effective way to substantially reduce fuel consumption [1]. Combining
an electric motor and internal combustion engine to propel a vehicle results in an
energy management problem. The fundamental issue of seeking for an effective
and optimal strategy to split the power between thermal and electrical paths is
addressed in this paper.

Guzzella and Sciarretta [2] have classified the optimisation of a HEV system
in three layers, as follows: 1) Structural optimisation, where the objective is to
find the best possible structure (arrangement of power train and prime movers);
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2) Parametric optimisation, where the objective is to find the best possible pa-
rameters for a fixed power train structure; and 3) Control system optimisation,
where the objective is to find the best possible supervisory control algorithm
and best parameters thereof. Guzzella and Sciarretta identify that these stages
are not independent. However, due to the limitations of conventional optimisa-
tion techniques (nonlinear programming, dynamic programming) they have yet
to be considered simultaneously. In this paper, the parametric optimisation, via
an Evolutionary Algorithm (EA), for a fixed power train structure and for a
supervisory control algorithm is simultaneously considered.

This problem could be seen as an optimisation problem in Dynamic Environ-
ments (DEs). Using Branke’s criteria [3], it clearly has the characteristics of a
DE: the change in optimum value (optimal distribution of the power between the
thermal and electrical paths depends on time and energy usage of the vehicle),
frequency of the change and severity of the change depend on the driving cycle.
There is some degree of predictability of change: there are three main types of
driving cycle. In the United States, the Urban Dynamometer Driving Schedule
(UDDS – also known as the US federal test procedure, FTP-72) represents a city
driving cycle. The federal highway driving cycle (FUDS) represents extra-urban
and high speed driving, and in Europe the urban motor vehicle expert group
(MVEG-95) represents a combined cycle. These driving cycles are standard pro-
files of speed and serve as test cycles for performance comparison among different
vehicles on the same basis.

It has been discussed in [3] that the solution of an optimisation problem in
a DE, solved via an EA, doesn’t need to cope with the dynamics (the optimum
doesn’t change over time) if a controller strategy is involved, and then the prob-
lem becomes static for the optimiser. Thus, the success of the design relies on the
effective selection and parameter optimisation of the driving strategy. Guzzella
and Sciarretta [2] have classified the driving controller strategies as follows: 1)
Heuristic control strategies where rules are set up to meet torque demand and
vehicle speed [4,5,6]; 2) Optimal control strategies where minimisation of the fuel
energy use over the entire cycle is sought subject to a constraint over the final
state of charge (SOC) of the battery. This strategy needs detailed knowledge of
the future driving condition, so its use is impractical. However, it serves as a
basis of comparison for evaluating the quality of other control strategies [7,8,9];
and 3) Suboptimal control strategies or real-time control strategies consider that
some a priori knowledge of future driving conditions is available during the ac-
tual operation and that the self-sustainability of the electrical path has to be
guaranteed. The idea then is to perform online optimisation to find the opti-
mal distribution of power. This strategy assumes that some instantaneous state
variables are available to evaluate a cost function, which is in terms of the fuel
consumption and the SOC variation [9,10].

In Sect. 2, the HEV model used for the optimal transmission design and
optimal tuning of the driving control strategy is described. This is a sketched
outline of the model used, and the interested reader is referred to [6].
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In Sect. 3, a multi-objective Genetic Algorithm (MOGA) to automate the pro-
cess of finding the optimal parameters for the transmission design is introduced.
In this case we use the MOGA proposed in [11,12] to carry out the optimisation.
This model was used to evaluate the variation of vehicle performance with vari-
ous parameters of the transmission. Results from a multi-objective optimisation
of fuel consumption and electrical energy use as well as cycle adherence factor
are presented.

Although recent optimisation techniques applied to the energy management
problem for HEVs have shown promising results, these techniques haven’t been
able to include the optimisation of discrete motor-engine options. In Sect. 4, the
overall design optimisation is considered, it includes: HEV transmission design,
tuning of the driving control strategy parameters (heuristic control strategy)
and twenty combinations of motor-engine (four different engines and five motors
were available) as decision variables.

2 The Model of the Hybrid Vehicle

A HEV model from [6] is used in this study. In [6], a framework for designing a
flexible transmission and the complete power train configuration was developed.
No optimisation technique is applied. However, the results show an improve-
ment over the original conventional vehicle. The design methodology is based on
heuristic selection (engineering assumptions) using intensive evaluations of the
most representative design variables. It also was found that the control strategy
is intimately bound to the transmission design and the driving cycle.

2.1 Vehicle Dynamics

Ignoring energy dissipated in the power train and used to accelerate the compo-
nents inside the vehicle, the elementary equation that describes the longitudinal
dynamics of a road vehicle takes the following form:

mv
d
dt

v(t) = Ft(t) − 1
2
ρav(t)2CDAf︸ ︷︷ ︸
air resistance

− mvgCrr︸ ︷︷ ︸
rolling resistance

(1)

The required tractive force Ft is composed of a sum of resistive and accel-
eration requirements. CD(= 0.29) is the coefficient of aerodynamic drag, and
Af (= 3.2m2) the effective frontal area of the vehicle. No gradients were used
in the simulations for this paper. In this analysis, the coefficient of rolling resis-
tance, Crr, is assumed a constant, valued 0.013, and the vehicle mass mv for all
simulations was 2800kg.

Using the quasistatic paradigm, velocity and acceleration are defined at each
time interval. In this way the demanded power is also defined via Pt(t) =
Ft(t)v(t). Torques and angular velocities are then defined at the exit of the
transmission via the wheel size.
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In this study, the simulations are performed using the backward-forward mod-
eling approach used in [4,7]. Given the torque and speed required at the wheels,
and going ‘backwards’ (in the thermal path and in the electric path) component
by component this calculation is carried through the drive train, until the fuel use
or electrical energy use that would be necessary to meet the trace is computed.
The weakness of using only the backward-facing approach is the assumption
that the vehicle is able to meet the trace at all times, making it inappropriate
for calculating best-effort performance. Since in this optimisation many contrast-
ing designs are considered, some of which may not be capable of matching the
trace, the forward calculation must also be carried out. This consists of applying
limits to torque, speed and power in the transmission and prime mover calcula-
tions, and then following the causality path back to the wheels where the true
acceleration is calculated.

In Sect. 3, an objective is proposed that measures the difference between
demanded and actual velocity. This is introduced to the optimisation to address
the problem of designs which do not meet the desired trace. Rather than impose
a hard constraint this objective will encourage the algorithm to find solutions
which are both efficient, and are able to produce torque and power in a variety of
situations when needed. In order to introduce the vehicle model to the optimiser,
some minor changes to the model in [6] were necessary.

2.2 Hybrid Power Train and Driving Control Strategy

The architecture of the parallel hybrid power train is sketched in Fig. 1a. This
architecture allows effective flexibility in operation of the vehicle from an inter-
nal combustion engine (ICE) only mode, through a parallel hybrid configuration,
to a purely electric motor (EM) powered vehicle. This flexibility is due to the
implementation of a planetary gear set (PGS) in the transmission, which pro-
vides two mechanical degrees of freedom. In Fig. 1b, the continuously variable
transmission (CVT) regulates the speed of the ICE, and the torque of EM is
added to that of the ICE to impel the vehicle in critical conditions. In hybrid
parallel mode, the ICE is connected directly to the sun gear of a PGS as well as
to the ring of PGS through the CVT and a simple gear train (ST). Finally, the
torque at the wheels is transmitted through the final drive (FD) gear box, and
by the conservation of power we have that: Ptotal(t) = PEM (t) + PICE(t).

In Fig. 1b, the geometric variables of the transmission are the fixed gear ratio
of the PGS grs, the simple gear train gc, and the range limits on the CVT gcvt.
The final drive ratio is not used as a variable, and takes a value of gfd = 3.523
throughout. The degree of hybridisation (DH) in a standard driving cycle is
given by DH(t) = PEM (t)/(PEM (t) + PICE(t)), and is determined (in this case
indirectly) by the driving control strategy. The value DH(t)=1 therefore means
that all power needed at the wheels is provided by the electrical path or that
all negative power available at the wheels from regenerative braking is driven
entirely to the electrical path. When DH(t)=0, it means that all the power
needed at the wheels is provided by the fuel path.
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Fig. 1. a) Schematic of the HEV power flows, bold lines: mechanical link, solid lines:
electrical link, dashed line: fuel link; b) Schematic of torque flux in the transmission

Driving Control Strategy. The strategy used here is that suggested in [6]
and is a heuristic strategy with the following attributes:

– The ICE remains turned off below a minimum connection speed vcutoffICE .
Below this speed the EM provides all of the motive power.

– Once vcutoffICE is reached the ICE then attempts to supply all power needed
to drive the vehicle, within some limits defined by the engine’s efficiency map.
Figure 2 shows the control of the operating point for the ICE. When running,
the ICE is ideally kept on the optimal line (dashed) and between the curves
of maximum (bold-dotted) and minimum (bold-dashdot) nominal constant
power. The ICE may leave the optimal line if forced to do so by limits on
the CVT. However, operation outside the region between the power lines is
allowed for battery charging only. The curves of maximum and minimum
nominal power are calculated automatically for each engine by finding the
intersection of the optimal line (dotted) with the point where efficiency falls
to 94% of best, marked “∗”.

– Any additional power needed to be supplied/drained is produced/absorbed
by the EM by applying a suitable voltage across its windings.

– The state of discharge of the battery is monitored, and falling below a de-
termined lower limit of charge, batlo, will cause different behaviour from the
ICE. At this stage the ICE will run at maximum nominal power until the
battery reaches a suitable charge, bathi, regardless of the power demand from
the driving cycle. (The exception is if the vehicle stops, since the ICE cannot
then continue to operate.) If the battery level reaches a lower critical limit of
50%, the ICE is allowed to operate up to maximum rated power to recover
battery charge.
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– On deceleration, the EM recovers as much energy as possible (within torque
limits) as a generator. Any additional deceleration is provided by friction
(dissipative) braking.

215

21
5

23
5

235

235

235

25
0

250

250

250

250

300
300

300

350 350

350

400 400

400

450 450

450

0

500

Angular Velocity (rad/s)

T
or

qu
e 

(N
m

)
Example Consumption Map

203

100 150 200 250 300 350 400 450

40

60

80

100

120

140

160

180

Fuel Consumption (g/kWh)
Optimal Operating Line
Nominal Maximum Power
Nominal Minimum Power

Fig. 2. Selection of the engine operating point in the ICE

3 Multi-objective Optimisation of the Parallel Hybrid
Power Train

By considering how the design of transmission parameters (gc, grs and gcvt)
affect the performance of the vehicle over a pre-defined driving cycle, useful
information is obtained about choosing these parameter values.

Three objectives are introduced for simultaneous minimisation: to consider
the total energy use from each path, and the adherence of the vehicle to the cho-
sen cycle. Other research studies on multi-objective optimisation of HEV fuel
economy have considered reduction of CO and NOx emissions as another ob-
jective [13,14]. However, as discussed in [7], novel control systems and catalytic
converter technology have reduced pollutant emissions in diesel and gasoline
engines to almost negligible levels. Therefore, pollutant emissions are not con-
sidered in this study. The multi-objective problem MOHEV-I solved is:

minimise

⎧⎨
⎩

O1(gc, grs, gcvtoffset
)

O2(gc, grs, gcvtoffset
)

O3(gc, grs, gcvtoffset
)

(2)

Objective 1 is simply the total ICE fuel consumption fc over the driving cycle.
This is interpolated from a consumption map at each time step (see Fig. 2) so that:

O1 =
1
ρf

t=tfinal∑
t=0

fcinst(T (t), ω(t))
dinst(t)

(3)
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Fig. 3. Battery charge diagram

where dinst(t) is the distance traveled in each time step and ρf the fuel density.
Objective 2 is the overall reduction in electrical energy stored in the battery

over the complete cycle. Thus:

O2 = Eeref
− Ee(tfinal) (4)

Here it is important to note that the vehicle model is that of a charge sustaining
vehicle. Whilst in the long term this means battery energy is maintained, over
the time scale of the UDDS cycle (1369 s) it is a variable outcome. Different
vehicle designs with varying final battery energy levels cannot be fairly compared
without introducing it as an objective. Whilst in [2] an ‘equivalence factor’ is
introduced for the combination of O1 and O2, here the two energy sources are
kept separate to provide more information and retain the true complexity of the
problem. Figure 3 clarifies this calculation. Eeref

is the initial energy state of the
battery and is constant in each simulation. EeA , EeB and EeC represent example
designs. Here example A would have a larger O2 than B and C.

As mentioned, with some designs the trace cannot be met when the accelera-
tion of the trace exceeds the capabilities of the power train. Therefore, objective
3 is effectively a measure of how well the vehicle will respond to acceleration
demand in different situations. The adherence to the cycle is calculated as:

O3 =
t=tfinal∑

t=0

|vcycle(t) − vactual(t)|
tfinal

(5)

What this allows us to effectively present is a trade-off study between vehicle
efficiency and vehicle ‘driveability’. This brings more information than simply
defining hard constraints, such as the time taken for a best effort 0-60 km/hr
acceleration or similar [13,14].

In order to investigate the effects of different motors and engines in the para-
metric optimisation of gear ratios, a second multi-objective problem with an
additional variable, MotEng, was considered. MotEng is the selection number
for the combination of prime movers to be used in the vehicle. In [13], a ‘scale
factor’ took a similar role. However, the resulting engines are not off-the-shelf
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Table 1. MOHEV-I: decision variables for the model (left) and the input parameters
for the optimiser (right)

Variable Allowed Range

grs 2.0–4.0
gc 0.5–1.0
gcvtoffset (0.6649–3.611) ± 0.9

Parameter Value

Individuals per generation 50
Maximum number of generations 50
Precision 32bits/variable
Selective pressure 2
Probability of mutation ≈ 0.0073
Crossover rate 0.7

designs, and are unrealistic. In [14], independent optimisations with different
manufactured motors and engines were considered, but the different combina-
tions were not allowed to compete in a single optimisation.

Here four different engines and five motors were available from ADVISOR
[4]. The aim is to identify the global optimum, not just for a specific engine or
motor. The motors are: MCI 95, PRIUS 43, INSIGHT, MCI 102, FC C167; and
engines are: PM 49, PM 58, PRIUS JPN, AC 59. The multi-objective problem
MOHEV-II solved is:

minimise

⎧⎨
⎩

O1(gc, grs, gcvtoffset
, MotEng)

O2(gc, grs, gcvtoffset
, MotEng)

O3(gc, grs, gcvtoffset
, MotEng)

(6)

The objective functions are evaluated over a full quasistatic simulation of op-
eration using the UDDS driving cycle, using a resolution step size of 0.2 s. The
computational system was a 9 node, Pentium 4 2.8GHz Linux cluster, and a
complete 50 generation optimisation took around 10 hours.

The simple heuristic driving strategy described in Sect. 2 determines when
each prime mover operates and the flow of power and torque in the drive train.
In this case, values selected in [6] are used for the control strategy parameters:
vcutoffICE = 6.0m/s, batlo = 60%, bathi = 80%.

Table 1 lists the input variables for the model that were used and the ranges
allowed. These are chosen to correspond to the model [6] and enable considerable
change in the geometry of the transmission path. The ranges chosen are those
suggested by Osornio’s PhD thesis and reflect realistic scales for manufacture.
Note that the CVT will change its ratio as part of the control strategy as the
driving cycle progresses. Thus, it is only in fact the range limits which may be
set at design time. Here we use a variable gcvtoffset

which offsets the range used
in [6] (0.6649–3.611) by up to 0.9, allowing a thorough search of suitable values.
Obviously the simulation did not allow negative values of the ratio to occur. For
this first optimisation, the prime movers used were the FC CI67, a 67 kW diesel
engine, and the PM 58, a 58kW electric motor. In Table 1 the settings used for
the MOGA are also detailed.
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Fig. 4. MOHEV-I: 2D projection of the objective space

3.1 Optimisation Results: Drive Train

The objective and decision spaces of the final generation for the problem are
shown in Figs. 4 and 5. The Pareto-front in Fig. 4 is marked with “•”, and a
line shows the attainment surface. The datum based on evaluation of the model
using data from [6] is also shown, marked with a “�”.

In this case it seems that the range of variation has not been sufficient to
produce any individuals unable to cope with the cycle. Whilst some random
errors produce a very small difference between demanded and actual velocities
at every time step, they affect every design in the same way, and cause O3 to be
constant across the solutions. It is non-competitive in this case. Hence only the
useful O1 vs O2 trade-off is shown here.

Whilst not immediately apparent at this magnification level, the algorithm
has been able to find some solutions which marginally dominate the datum. It
is clear though that the main effect of the evolution is a widening of the Pareto-
front, giving a decision-maker a larger range of suitable solutions. In fact the
solution picked manually by Osornio is close to Pareto-optimal given the ranges
allowed here for the chosen variables.

Figure 5 shows the design variables plotted in three dimensions. Again, the
•’s are the variables which generate solutions found to be Pareto-optimal in 3D
objective space. These nondominated solutions appear to lie in three clusters,
one around gc = 0.5, another at gc = 1.0 and a smaller one around the datum
point. The suggestion is that without using the extremes of the variable range,
only a small region around the datum point generates competitive solutions. A
physical explanation is suggested by analysing the link between objective and
decision spaces. The cluster around gc = 0.5 is found to correspond to solutions
lying at both extremes of the Pareto-front. This may be because such a low
value of gc causes the CVT range to be more limiting on the engine operating
point, and produce more extreme behaviour from the electric motor. The points



Multi-objective Optimisation of a Hybrid Electric Vehicle 339

0.5

0.6

0.7

0.8

0.9

1

2

2.5

3

3.5

4

−0.5

0

0.5

g
c

50 gen, 50 individuals

g
rs

g cv
t of

fs
et

Fig. 5. MOHEV-I: 3D visualisation of the decision space

which lie around gc = 0.7 to 0.9 cluster near to the datum in objective space,
presenting very similar solutions.

Figure 6 shows the full 3D objective space for the MOHEV-II optimisa-
tion. In this case there has been more evolutionary progress with a widen-
ing of the Pareto-front reflecting the wider range of model inputs available. A
trade-off has also begun to appear in O1 vs O3. This reflects vehicles which
may save fuel but are less able to respond to power demands. It is impor-
tant to note though that the improvement over the datum design is still very
limited.

4 Multi-objective Optimisation of the Drive Train and
Driving Control Strategy

4.1 The Introduction of Control Strategy Variables

This section presents the simultaneous optimisation of drive train and driving
control strategy. As mentioned in the introduction and discussed in [2], this opti-
misation hasn’t previously been considered due to the limitations of traditional
optimisation techniques. Although optimisation via metaheuristic techniques,
such as MOGA, has allowed the incorporation of complex objectives and pa-
rameters into the HEV optimisation problem [13,14], to the best of the authors’
knowledge this is the first time that simultaneous optimisation of drive train
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Fig. 6. MOHEV-II: multi-objective representation of the feasible objective space. O1

is the fuel consumed; O2 the reduction in battery energy; O3 is a factor of the total
difference between demanded and actual velocity traces.

and driving control strategy has been considered. The multi-objective problem
MOHEV-III solved is:

minimise

⎧⎨
⎩

O1(gc, grs, gcvtoffset
, vcutoffICE , bathi, batlo, MotEng)

O2(gc, grs, gcvtoffset
, vcutoffICE , bathi, batlo, MotEng)

O3(gc, grs, gcvtoffset
, vcutoffICE , bathi, batlo, MotEng)

(7)

Notice that the optimisation is over the transmission parameters, driving
strategy parameters and the selection of motor-engine pairs. Table 2 lists the
range of input variables now used. The variables bathi, batlo and vcutoffICE are
described in Sect. 2.2.

4.2 Optimisation Results: Drive Train and Driving Strategy

Figure 7 shows the 3D objective space for the problem, and includes projections
of each objective pair. Plotted points are all those visited by the algorithm
throughout the 50 generation run.

Note in the ‘top view’ the linear nature of the Pareto-optimal set. The sug-
gestion here is that a point has been reached where the total actual energy used
for the cycle is close to constant across all solutions (the line may be defined by
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Fig. 7. MOHEV-III: multi-objective representation of the feasible objective space. O1

is the fuel consumed; O2 the reduction in battery energy; O3 is a factor of the total
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Table 2. MOHEV-III: input variables for the model (left) and the optimiser (right)

Variable Allowed Range

Transmission

grs 2.0–4.0

gc 0.5–1.0

gcvtoffset
(0.6649–3.611) ± 0.9

ICE/EM selection no. 0–19

Control Strategy

vcutoffICE
5.0–10.0 m/s

batlo 50%–70%

bathi 70%–100%

Parameter Value

Individuals per generation 50

Maximum number of generations 50

Precision 32bits/variable

Selective pressure 2

Probability of mutation ≈ 0.0031

Crossover rate 0.7

Ee = Econst − kEf ). These solutions are then a true trade-off with each being
equally favoured by the first two objectives.

In the ‘left’ and ‘right’ views it is clear that the algorithm has been successful
in finding points which significantly dominate the datum, for only two objectives
in each case. In this case O3 and O1 compete, but O3 and O2 are still not in
competition. A possible reason for this is that reducing fuel consumption will
tend to reduce the overall power capability of the vehicle, whilst a lower rate
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of battery usage is possible simply by using more fuel and cycle adherence will
then not suffer.

The result of a multi-objective optimisation is a Pareto front – a set of compet-
ing solutions. However, a real-life design problem will ultimately require a single
solution. In order to analyze solutions along the Pareto front, three solutions are
chosen using a parallel coordinates visualisation. In Fig. 8 each line joining the
three objectives represents a solution. The x-axis represents the objectives and the
y-axis shows normalised performance in the interval [0, 1]. Crossing lines represent
conflicting objectives, with less competitive tradeoffs having more parallel lines.
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Fig. 9. Analysis of the best engine/motor combinations identified by the algorithm
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In Fig. 8, solution A has the lowest fuel consumption, the biggest reduction
in stored electrical energy, and it doesn’t adhere to the cycle. Solution B is the
opposite, having the worst fuel consumption, but the best reduction in electri-
cal energy, while adhering to the cycle completely. A good compromise will be
solution C. Here a design is found which has sufficient power and torque to fol-
low all parts of the trace, and is able to outperform the datum (D) in both of
the energy path objectives. The corresponding decision variable and objective
values are given in Table 3.

Figure 9 gives an idea of the spread of results in the 2D objective space with
respect to the engine-motor-pairs. The data are selected from different genera-
tions of the algorithm, and clearly show some pairs (e.g. � - MCI 102/PM 49)
which did not survive to form part of the final Pareto-front.

In Fig. 10 a comparison of the attainment surfaces for each of the optimisations
is overlayed. It is clear that the introduction of the simultaneous optimisation
has brought about a tangible broadening and improvement of the Pareto-surface
from a decision-maker’s viewpoint.

Table 3. Decision variable and objective values for selected designs
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5 Conclusions

This paper has shown that the optimisation of HEV drive train and driving con-
trol strategy is not independent. A comparison of three different multi-objective
optimisations has demonstrated that simultaneous optimisation leads to a wider
exploration of solutions and/or a more diversified and optimal Pareto front. Al-
though it was found that D, the datum design, is close to the Pareto-front,
significant engineering experience in HEV systems and a cumbersome design
procedure was needed to find it. The introduction of multi-objective optimisa-
tion means the trade-offs can be investigated in a single run, giving the design
engineer an immediate choice from among the family of Pareto-optimal solutions.

Future work should include consideration of other combinations of motor-
engine, since in this case the exploration of motor-engines other than diesel
engines was limited. There is also a need for more research into how MOEAs
handle dynamic environments, in this case driving cycles. This will facilitate the
exploration of alternative driving control strategies.
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máxima eficiencia. PhD thesis, Faculty of Engineering, Universidad Nacional Au-
tonoma de Mexico (2006)

7. Guzzella, L., Onder, C.: Past, present and future of automotive control. In: Control
of Uncertain Systems: Modeling, Approximation and Design, LNCIS 329 (2006)
163–182

8. Uthaichana, K., Bengea, S., DeCarlo, R.: Suboptimal supervisory level power flow
control of a hybrid electric vehicle. In: Proceedings of the IFAC World Congress
on Automatic Control, Prague, Czech Republic (2005)

9. Koot, M., Kessels, J.T.B.A., de Jager, B., Heemels, W.P.M.H., van den Bosch,
P.P.J., Steinbuch, M.: Energy management strategies for vehicular electric power
systems. IEEE Transactions on Vehicular Technology 54(3) (2005) 771–782

10. Sciarretta, A., Back, M., Guzzella, L.: Optimal control of parallel hybrid electric
vehicles. IEEE Transactions on Control Systems Technology 12(3) (2004) 352–363

11. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimisation:
Formulation, discussion and generalization. In: Proceedings of the Fifth Interna-
tional Conference on Genetic Algorithms, San Mateo, USA (1993) 416–423



Multi-objective Optimisation of a Hybrid Electric Vehicle 345

12. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint
handling with evolutionary algorithms I: A unified formulation. IEEE Transactions
on Systems, Man and Cybernetics Part A: Systems and Humans 28(1) (1998)26–37

13. Hu, X., Wang, Z., Liao, L.: Multi-objective optimization of HEV fuel economy
and emissions using evolutionary computation. In: Proceedings of the Society of
Automotive Engineering World Congress, Electronics Simulation and Optimization
(SP-1856), Detroit, USA (2004)

14. Molyneaux, A., Leyland, G., Favrat, D.: Multi-objective optimisation of vehicle
drivetrains. In: Proceedings of the 3rd Swiss Transport Research Conference, As-
cona, Switzerland (2003)



S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 346–360, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Multiobjective Evolutionary Neural Networks for Time 
Series Forecasting  

Swee Chiang Chiam1, Kay Chen Tan, and Abdullah Al Mamun 

 
1 Department of Electrical and Computer Engineering  

National University of Singapore 
4 Engineering Drive 3 

Singapore 117576 
g0500055@nus.edu.sg 

Abstract. This paper will investigate the application of multiobjective evolu-
tionary neural networks in time series forecasting. The proposed algorithmic 
model considers training and validation accuracy as the objectives to be 
optimized simultaneously, so as to balance the accuracy and generalization of 
the evolved neural networks. To improve the overall generalization ability for 
the set of solutions attained by the multiobjective evolutionary optimizer, a 
simple algorithm to filter possible outliers, which tend to deteriorate the overall 
performance, is proposed also. Performance comparison with other existing 
evolutionary neural networks in several time series problems demonstrates the 
practicality and viability of the proposed time series forecasting model. 

Keywords: Time Series Forecasting, Multiobjective Evolutionary Neural 
Network. 

1   Introduction 

Time series forecasting (TSF), the forecast of a chronologically ordered variable, is an 
important tool in the modeling of complex systems, where the primary aim is to 
predict the system’s behavior without the need to understand its underlying 
mechanism. The importance of TSF has motivated development in the field of 
operational research, statistics and computer science for more advanced 
methodologies and techniques to handle more realistic time series with nonlinear and 
noisy components.  

Neural networks (NN), connectionist models that mimic the central nervous 
systems, are excellent candidates for TSF due to their capabilities like nonlinear 
generalization, input-output mapping and noise tolerance. There is currently a wide 
variety of NN available of different architecture, learning paradigm and etc [1], and 
studies have shown that NN generally perform better than classical econometric 
models in TSF. Nevertheless, despite the differences in approach between NN and 
econometric models i.e. nonlinear generalization versus explicit regression modeling, 
the ultimate objective in TSF remains in getting the most accurate forecast of the time 
series i.e. minimizing the error between the forecasted and actual values [2]. 
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Designing NN of suitable architecture and connection weights for a given time 
series is itself a difficult combinatorial optimization problem. This has thus motivated 
the incorporation of evolutionary optimizers due to their efficacy in dealing with large 
and complex search spaces. However, the usual approach of evolving NN via training 
data often results in the over-fitting phenomena, where there is over concentration on 
the peculiarities of the training set at the expense of losing the regularities needed for 
good generalization [3]. Consequently, this has inspired the application of 
evolutionary multiobjective optimization that can simultaneously balance the 
accuracy and generalization of the evolved NN. The optimization of NN via 
multiobjective evolutionary optimizers is also known as multiobjective evolutionary 
neural network (MOENN). Specifically, accuracy and generalization refer to the 
algorithmic performance of the NN with respect to the training and test data 
respectively.  

As such, this paper investigates the application of MOENN in TSF. While there 
had been several related works, a more direct approach to balance accuracy and 
generalization is adopted here, by considering the training and validation accuracy as 
the objective functions. For this purpose, a TSF model comprising of multiobjective 
evolutionary algorithm hybridized with particle swarm optimization (PSO) and 
backpropagation (BP) is proposed. The remainder of the paper is organized as such. 
Preliminary concepts of TSF and MOENN will be introduced over the next two 
sections. Following that, experiments to examine the validity of the proposed 
multiobjective approach will be conducted, before the TSF model is formally 
presented. Lastly, the performance of the proposed model will be evaluated and 
compared with other existing algorithms.  

2   Time Series Forecasting  

Time series is a sequence of observation values of a physical or financial variable 
ordered at equally spaced time intervals, tΔ  and is represented as a set of discrete 
values

1 2 3 4, , , ,....x x x x etc . Basically, a TSF model assumes that past patterns will 

occur in the future and thus, predictions can be done by identifying and generalizing 
patterns among the past data. As such, the usual training methodology is to split the 
given time series into two parts, namely the training data, where the learning is 
performed and the test set, where the performance of the resulting TSF model is 
measured. The underlying principle is that the TSF model will attune to the training 
data via the training algorithm and its performance on the test data will approximate 
its actual performance in real life implementation. The performance in the two 
separate data is known as training and test accuracy respectively. 

Due to the impossibility of deriving a perfect model, there will always be some 
deviation between the actual and forecasted values and this error, te  is defined as 

such,  

ˆt t te x x= −  (1) 

where ˆtx  is the forecasted value for time, t. 
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There are many error measures available to quantify the time series prediction 
performance [4], but the more commonly adopted forecasting accuracy measure are 
namely the Sum Squared Error (SSE) and the Root Mean Squared Error (RMSE) 
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where L represents the number of forecasts. 
Theoretically, time series consists of four main (or a combination) characteristics, 

namely stationarity, linearity, trend and seasonality. Traditional TSF methodologies will 
differentiate and segregate these various components and identify the extent in which 
they are present in the given time series. Subsequently, after extracting these partial 
data, regression model like autoregressive moving average (ARMA), autoregressive 
integrated moving average (ARIMA) will be applied to obtain the TSF model. 
However, real-life time series are corrupted by noise interference that results in 
statistical fluctuations around the original values. Although exponential smoothing (ES), 
a conventional yet popular regression model, has been quite successful for such cases, 
its capability is only restricted to seasonal time series [5]. In lieu of these limitations, 
MOENN represents a promising alternative for TSF, as its generalization ability need 
not take into account the different form of nonlinearity present in the time series. 

3   Multiobjective Evolutionary Neural Networks  

NN refers to interconnected groups of artificial neurons that use a mathematical 
model for information processing based on a connectionist approach to computation. 
Practically, NN are non-linear data modeling tools, capable of finding complex 
relationships between inputs and outputs and/or patterns within data. Amongst the 
different NN available [1], the most common model and training methodology is the 
feedforward NN and the backpropagation (BP) training algorithm. Fig. 1 illustrates a 
feedforward NN with 1 hidden layer. There are a total of n0 inputs, n1 hidden nodes 
and 1 output layer. This is also referred to as an n0-n1-1 feedforward NN and it will 
be used as the basic NN architecture in this paper. 

The fundamental design issue in NN is to determine the appropriate architecture and 
weights for the given time series. In the absence of proper guidelines and framework, 
the architecture is often constructed through the process of trial and error or via some 
heuristics [6], [7]. However, the former is time consuming and tedious while the latter 
fail when the problem specifications changes. As for the training of weights, 
conventional methodologies like BP are inherently gradient-based approach, which are 
generally susceptible to local optimum, especially in noisy, multimodal and large 
environment. Miller et al. [8] highlighted that evolutionary optimizers will perform 
better in such landscape, as they are less prone to be trapped in local optima due to their 
non-dependence on gradient information. This has thus motivated the development of 
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evolutionary NN, the optimization of NN via evolutionary optimizers. For brevity, the 
interested reader is referred to [9] for a detailed discussions on this topic. 
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Fig. 1. Feed forward NN 

Conventional evolutionary NN model adopted a single objective approach, where 
the optimization of NN is solely based on training accuracy. Unfortunately, this 
approach is prone to overfitting, where the evolved NN failed to perform equally well 
in the test data. As such, multiobjective approaches, which consider additional 
objectives to control the extent of generalization, have been proposed, so as to balance 
the accuracy and generalization of the NN evolved. The various approaches can be 
broadly categorized into three different types: 

I. Tradeoff between more than one type of error measures 
II. Tradeoff between network complexity and error measure  

III. Tradeoff between network diversity and error measure 

Table 1 provides some examples of the different approaches. 

Table 1. Different objective functions and their classification 

Type Objective Functions 
I Average Euclidean Error and Maximum Euclidean Error [2] 
I Root Mean Squared Error, Correlation Coefficient, Maximum Absolute 

Percentage Error and Mean Absolute Percentage Error [10] 
I Error for Training Data with and without noise [11] 
I Error between two subsets of Training Data [11] 
II Training Error and Number of Hidden Units [12], [13] 
II Mean Squared Error and Norm of Weight Vector [ 14] 
II Error rate and Number of Features [15] 
II Mean Squared Error and Weight Decay [16] 
III Mean Squared Error and Correlation Penalty Function [17] 

Even though the various approaches are inherently different, their underlying 
motivation is to avoid overfitting in MOENN and maintain a certain degree of 
generalization. For instance, type I makes use of additional error measures that can 
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quantify the extent of generalization for NN. Likewise, based on the observation that 
the architecture complexity of a NN is related to its generalization ability [12], where 
specifically, more complex NN are more prone to over fitting, type II maintains 
generalization by minimizing the complexity of the evolved NN. Lastly, unlike in 
single objective optimization, MOENN will obtain a set of solutions at the end of the 
algorithmic run. For better algorithmic performance, it is important to preserve the 
diversity in the ensemble of NN [18].  

The fact that MOENN will obtain a set of solutions naturally led to the question of 
which NN should be selected eventually for the forecasting of the time series. Current 
approach simply considers the simple average of all their forecasted values or selects 
the NN with the best training accuracy. Instead of directly examining the selection 
issue, this paper will investigate how the filtering of outliers can improve the overall 
algorithmic performance of MOENN. 

Recent studies advocated the use of validation data in the optimization of 
MOENN. Basically, the training data will be further subdivided into two separate set, 
namely the training set, which is used in the actual training, and the validation set, 
which serves as a pseudo test set to evaluate the quality of NN during training [19]. 
Such an evaluation is also termed as cross validation and is frequently used in single 
objective approaches to avoid the over-fitting phenomenon. Due to the fact that only a 
minority of the Pareto optimal solutions with respect to the training set is Pareto 
optimal with respect to the test data [2], the use of the validation data has been used 
instead to select the relevant NN from the eventual pool of solutions [15] or as an 
archiving criteria [2], [20]. However, in the literature reviewed, none has attempted to 
consider training and validation accuracy simultaneously as the objective functions 
for MOENN, which seems to a more direct approach to balance accuracy and 
generalization for the evolved NN. 

4   Preliminary Investigation 

The feasibility of using training and validation accuracy as objective functions in 
MOENN will be examined in this section. The time series considered in this 
experiment is the SUNSPOT data, which consists of the annual Wolf's sunspot 
numbers collected from 1700 until 1989 [21]. The 1st 260 data will be used as training 
data. A training ratio of 90% was used so as to synchronize with [22], [23], as their 
result will be used subsequently in the comparative study. The training data is further 
divided into a training set, consisting of the 1st 208 (80%) data and the remaining will 
be the validation set.  

For this purpose, a simple evolutionary NN (SENN) is considered. The architecture 
used is a feed forward NN with 1 hidden layer as shown earlier in Fig. 1. The number 
of inputs (n0) and hidden units (n1) are limited to 20 and 10 respectively. Binary 
representation is adopted to specify the connections within this architecture, where an 
n0× n1 and n1 binary matrix, C is used to describe the first layer and second layer 
respectively. Cij = 1 indicates a connection between node i and j while Cij = 0 
represents no connection. This coding scheme is suitable for precise and local fine-
tuning search of a compact NN architecture, as a single connection can be added or 
removed from the NN easily. Also, the inputs to the NN will be evolved and adapted 
as well. This, hence, avoids the problem of choosing the appropriate size and type of 
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sliding window, which is itself a fundamental design issue in TSF. Essentially, a 
larger sliding window will increase the system complexity and affect the learning 
capabilities of the model, while a smaller window may lead to insufficient 
information for the TSF model [22]. The binary representation will be evolved using 
uniform crossover and bit-wise mutation. As for the weights of the NN, they are 
represented by real number matrixes, with values of range [-1, 1]. The weight 
matrixes will be evolved solely by Gaussian mutation.  

To investigate the effects of adopting training and validation accuracy as the 
objective functions, three single objective approaches are considered. Their description 
and notation are summarized in table 2. SENN_TRAIN and SENN_VALID will 
minimize the training and validation accuracy respectively, while the SENN_SUM will 
minimize their sum. Lastly, SENN_MULTI represents the multiobjective approach of 
considering training and validation accuracy simultaneously.  

Table 2. Different objective functions for SENN and their notation 

Objective function Notation 
Training Accuracy SENN_TRAIN 

Validation Accuracy SENN_VALID 
Sum of Training and Validation Accuracy SENN_SUM 

Tradeoff between Training and Validation Accuracy SENN_MULTI 

Table 3. Algorithmic configuration for SENN 

Selection Binary Tournament Selection 
Crossover Uniform Crossover with Probability 0.9 
Mutation Bitwise Mutation with Probability 1/ n0× n1 

Gaussian Mutation of Mean 0 & Standard Deviation 0.1 
Population 100 

The evolutionary platform adopted is a generic elitist Pareto-based evolutionary 
algorithm. This algorithm maintains a fixed-size population for evolution and an 
archive to store the non-dominated solutions discovered during the evolution. Elitism 
is implemented by selecting individuals to a mating pool through a binary tournament 
selection of the combined archive and evolving population. For the single objective 
approaches, the selection criterion is very straightforward, as there is only one 
objective function. However, for SENN_MULTI, it will be based on Pareto 
dominance with respect to the training and validation accuracy. In the event of a tie, 
the niche count will be employed. The mechanism of niche sharing is used in the 
tournament selection as well as diversity maintenance in the archive. The algorithmic 
settings for SENN are summarized in Table 3. 

For all the algorithms, their accuracy are measured by RMSE (3) based on the 
different data. Fig. 2 shows the various RMSE trace for the different algorithms in a 
single run. For the single objective approaches, if the RMSE is used as the objective 
function, its corresponding trace will decrease monotonically. Unfortunately, this 
does not necessarily correspond to a decrease in other RMSE values, in particularly 
 the RMSE for the test data. In fact, improvements often occurred at the  expense  of 
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Fig. 2. RMSE trace for (a) SENN_TRAIN (b) SENN_VALID, (c) SENN_SUM and (d) 
SENN_MULTI 

other RMSE. For instance in Fig. 2(a), there is a sudden dip in training RMSE at the 
late generations around 1000, which coincides with a corresponding increase in test 
RMSE, signifying the overfitting phenomena. Conversely when the multiobjective 
approach is adopted, optimizing the training and validation accuracy simultaneously 
results in a progressive decrease in all RMSE during the evolutionary progress. 

Due to the stochastic nature of evolutionary optimization, performance comparison 
should be based on multiple experimental runs. As such, 20 runs were conducted and 
the average result is summarized in Table 4. Contrary to the single objective 
approaches, SENN_MULTI will obtain multiple solutions instead of one. Hence, 
simple averaging is performed and the RMSE reported is the average of all the 
solutions in the archive. The lowest value attained for each RMSE is bold. 

Similar to the observations earlier, the RMSE value will be the lowest if it is used 
as the objective function. However, this does not necessarily mean that higher test 
accuracy could be obtained. The lowest test RMSE is attained by SENN_MULTI, 
where the training and validation accuracy is balanced throughout the evolutionary 
progress. However, the difference is not at all significant. This observation is not 
surprising, as the mean result is based on the simple averaging of all the solutions 
found in the archive. Very often, the solution set will contain outliers that will 
significantly deteriorate the average test accuracy. 
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Table 4.  RMSE attained by the various algorithms 

 Training RMSE Validation RMSE Sum RMSE Test RMSE 
SENN_TRAIN 20.50 22.72 21.09 26.96 
SENN_VALID 28.93 16.71 26.83 37.33 
SENN_SUM 20.60 20.98 20.77 26.93 

SENN_MULTI 21.00 16.97 20.29 26.33 

To investigate this further, Fig. 3 depicts a Pareto front obtained by SENN_MULTI 
in one of the experimental run. The Pareto front clearly illustrates the trade off between 
training and validation accuracy. Furthermore, each solution is labeled with its 
corresponding test RMSE and the NN with the best test accuracy is highlighted. Clearly, 
the best NN is situated at the region where training and validation accuracy are 
balanced. Also, the outliers are observed to have lower test accuracy and their inclusion 
will generally deteriorate the average algorithmic performance. 
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Fig. 3. Pareto front obtained by SENN_MULTI 

However, identification of the outliers is not as straightforward as choosing the 
solutions at the extreme ends of the Pareto front found. Fig. 4 illustrates two other 
Pareto fronts obtained by SENN_MULTI. In Fig. 4(a), even though filtering of 
outliers will eliminate solutions with low test accuracy, it will eliminate better 
solutions as well. As for Fig. 4(b), the best solution is the outlier itself. Ultimately, the 
position of the outliers will depend on the location of the evolved Pareto front on the 
optimal Pareto front. Unfortunately, this information is unattainable in real world 
optimization, as the optimal Pareto front is never known. Furthermore, the 
identification of the outliers should be conducted without any prior knowledge on the 
test accuracy of any of the NN found. 

Nevertheless, it might be interesting to analyze the distribution of better solution in 
the objective space of training and validation RMSE. Fig. 5(a) plots all the points 
found by SENN_MULTI during the 20 runs, while Fig. 5(b) and Fig. 5(c) highlights 
the solutions of test RMSE lesser then 26.3 and 22 respectively. From the plots, the 
better solutions seem to be clustered in a particular region of the Pareto front where 
the training and validation RMSE are approximately equal.  
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(a) Dense Pareto front (b) Sparse Pareto front 

Fig. 4. Other instances of Pareto front obtained by SENN_MULTI 
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Fig. 5. Objective space with (a) all solutions, (b) solutions with test RMSE of less than 26.3 
highlighted and (c) solutions with test RMSE of less than 22 highlighted 
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Fig. 6. Effects of Maximum limit on (a) average test RMSE and (b) proportion of solutions left  

Based on this observation, a simple rule to filter the outliers is proposed. Basically, 
a value which corresponds to the maximum limit allowable for both training and 
validation RMSE will be defined and solutions that fail to meet this simple criterion 
will be removed. The effects of varying this limit value on the resultant average test 
RMSE and the proportion of solution are illustrated in Fig. 6. A smaller limit value 
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will correspond to a tighter criterion, which will result in a larger proportion of 
solutions being filtered. Consequently, the average test RMSE attained will be 
smaller. This seems to be a viable approach for the filtering of outliers, where the 
limit value could be defined such that a certain proportion of the solutions are 
removed. This will naturally lead to an improvement in the average test accuracy via 
simple averaging of the remaining solutions. From the gradient variation in Fig. 6(a), 
the average test RMSE is more sensitive to changes in the limits values for smaller 
limit values. It might be instructive to investigate whether this simple filtering rule 
can be generalized to other time series.  

5   Algorithm Description  

Results from the preliminary investigation suggest that the multiobjective approach of 
training and validation accuracy is indeed viable. For further validation purposes, a 
MOENN model for TSF is proposed and its performance will be evaluated with other 
existing TSF model on several benchmark time series in the next section. The general 
algorithmic flow for the proposed MOEN is illustrated in Fig. 7. 

Architecture OptimisationWeights Optimisation

Initial Population

Crossover

Mutation

Parent Selection

Fitness Evaluation

PSO for global
search

Back Propagation
for local search

Archive Update

 

Fig. 7. Algorithmic flow of MOENN 

The algorithm will independently optimize the architecture and the connection 
weight and their representation is identical to SENN described earlier. Also, the 
architecture will be optimized in similar fashion as SENN. The main difference is that 
the various weights will be optimized by a hybrid PSO-BP training approach instead. 
PSO can handle global search better in a vast, complex, multimodal and non-
differentiable surface and search for the globally optimal solution, while BP can 
exploit local gradient information and find a local optimum in the vicinity of the 
initial solution. Ideally, the synergy of these two search operators will result in a more 
effective and efficient search of optimal solutions.  

As illustrated in Fig. 7, the algorithm will begin with the random initialization of a 
population of individuals of specified architecture. For each individual, a sub-
population of connection weights will be generated at random and optimized by the 
hybrid PSO-BP operator. The best weight vector for each individual in terms of 
training accuracy will continue with the evolutionary progress. Subsequently, these 
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individuals will be assessed based on validation accuracy and the solutions of superior 
Pareto optimality in terms of training and validation accuracy will be stored in the 
archive. From the combined pool of archive and evolving population, parent solutions 
will be selected to breed new offspring of different architecture via the variation 
operation. The weights of these newly created offspring will then be optimized by the 
hybrid PSO-BP operator. The algorithm will repeat until the stopping criterion is met.  

6   Experimental Results 

The performance of the proposed MOENN model will be compared with ENN [22] 
and the Meta-GA [23], as they had been applied to different types of time series in a 
comprehensive study on the application of evolutionary NN on TSF [22], [23]. 
Furthermore, the study also reports the performance of other TSF models, like 
ARIMA and ES. This is contrary to most MOENN related works, which focus mainly 
on classification problems. The algorithmic parameter configuration for MOENN is 
illustrated in Table 5. It should be highlighted that the total number of function 
evaluation for MOENN is only 4 million, as compared to 50 million for ENN and 
Meta-GA, so as to reflect the efficacy and efficiency of the proposed MOENN.  

Table 5. Algorithmic configuration for MOENN 

Terminal Generation 100 
Selection Binary tournament selection 

Population Size 10 
Archive Size 10 

Max Hidden Nodes 4 

General 

Max Input Nodes 13 
Crossover Uniform crossover with probability 0.9 Architecture Optimization 
Mutation Bitwise mutation with probability 1/ n0× n1 

Learning Epoch  10 Weight Optimization  
(BP) Learning Rate 0.5 

Population size  20 
Learning Time  20 

Inertia  0.7 
Individual weights 1.49 

Weight Optimization  
(PSO) 

Sociality weight 1.49 

MOENN is applied to the SUNSPOT and MAXTEMP time series, where the latter 
is a meteorological time series of the monthly maximum temperature (in Celsius 
degrees) measured in Melbourne, Australia, from January 1971 to December 1990 
[24]. Similar training to test ratio was adopted to ensure a fair comparison [22], [23].  

Figure 11 shows the deviation between the predicted and actual time series attained 
by MOENN in a randomly chosen run for both the time series. The forecasted time 
series are similar to the actual time series, except for the discrepancies occurring at 
the peak values. 
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Fig. 8. Predicted time series for (a) MAXTEMP and (b) SUNSPOT 

The average test RSME obtained by the various algorithms are summarized in 
table 6. ES [22] obtained the lowest RMSE for MAXTEMP. This is not surprising, as 
ES was developed specifically for this particular type of time series, i.e. seasonal. 
Apart from ES, MOENN obtained a lower RMSE as compared to the rest of the 
algorithms at a lower computational cost. Of course, a statistical test like ANOVA 
will be essential to test the significance of the mean differences. This unfortunately 
could not be performed here, as the authors only revealed the mean RMSE in their 
comparative studies. 

Table 6.  Average test RMSE for the various algortihms 

Mean RMSE Algorithm description 
MAXTEMP  SUNSPOT 

ES [22] 0.72 28.4 
ARIMA [22], [23] 1.07 21.4 

ENN [22] 0.93 17.4 
Meta-GA [23] 0.87 17.6 

MOENN 0.82 18.56 

For the SUNSPOT time series, MOENN has a higher average test RMSE as 
compared to ENN and Meta-GA. However, observing the evolutionary trace of the 
test RMSE in Fig. 8, the value is actually still decreasing. The exact statistical 
information is shown in table 7. Clearly, as the generation increases, the mean will 
decrease as well. This is accompanied by a decrease in the standard deviation also, 
reflecting convergence behavior. At generation 250, MOENN is comparable to the 
two other evolutionary based methods, despite having 5 times lesser function 
evaluations. Lastly, the improvement of test RMSE from 26.33 for SENN_MULTI 
to 18.56 for MOENN demonstrated the efficacy of the hybrid PSO-BP operator for 
weight optimization. 
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Fig. 9. Closer examination of the mean RMSE for the SUNSPOT series 

Table 7. Statistics of RMSE attained by MOENN at different generations 

Generations 50 100 150 200 250 
Mean 18.56 18.23 18.19 18.15 17.90 
Minimum 16.80 17.18 16.62 16.88 16.46 
Maximum 20.07 19.65 20.18 20.38 19.04 
Standard Deviation 0.82 0.70 0.87 0.75 0.62 

Improving algorithmic performance via higher computational cost is impractical at 
times. Alternatively, the algorithmic performance could be improved by the removal of 
outliers as discussed earlier in the preliminary investigations. Fig. 10 plots all the solutions 
found from the experimental runs for MOENN and highlights those having test accuracy 
below the mean value of 18.56. Again, similar observations can be made where better 
solutions are situated in the region where validation and training accuracy are equal.  
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Fig. 10.  Objective space with solutions with test RMSE of less than 25 highlighted 

Again, the filtering rule is applied to the experimental results for SUNSPOT. In 
Fig. 11, if the limit value is set to 17.1, which will filter away 50% of the solutions, 
this will correspond to a test RMSE of 17.19, lower then the value obtained by 
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increasing computational time. Of course, the average test RMSE can be further 
decreased by using a smaller limit, but the robustness of the solution will be affected.  
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Fig. 11.  Effects of Maximum limit on (a) average test RMSE and (b) proportion of solutions 
left  

7   Conclusion  

The preliminary investigation has demonstrated the viability of using a multiobjective 
approach comprising of training and validation accuracy to balance the accuracy and 
generalization of the evolved NN. Also, a simple algorithm to filter possible outliers 
from the Pareto optimal solutions found is proposed. Using a MOENN model 
hybridized with PSO and BP, this approach is compared with other existing TSF 
techniques and its performance is comparable, if not better than the other existing 
evolutionary NN models. 

However, there are still plenty of avenues for future work. One important area is to 
investigate further the feasibility of the rule that filter potential outliers, as this simple 
technique can enhance algorithmic performance significantly, without incurring any 
additional computational burden. Also, MOENN has a lot of parameters due to the 
incorporation of several different operators. Parameter sensitivity analysis should be 
conducted to examine the robustness of MOENN with respect to its parameters. 
Alternatively, adaptation techniques could be considered to lessen the burden of 
parameter tuning for MOENN. Lastly, a more comprehensive test on a wider range of 
TSF problems is needed to further affirm the practicality of the proposed TSF model.  
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Abstract. Understanding the results of a multi objective optimization process 
can be hard. Various visualization methods have been proposed previously, but 
the only consistently popular one is the 2D or 3D objective scatterplot, which 
cannot be extended to handle more than 3 objectives. Additionally, the 
visualization of high dimensional parameter spaces has traditionally been 
neglected. We propose a new method, based on heatmaps, for the simultaneous 
visualization of objective and parameter spaces. We demonstrate its application 
on a simple 3D test function and also apply heatmaps to the analysis of real-
world optimization problems. Finally we use the technique to compare the 
performance of two different multi-objective algorithms. 

Keywords: Visualization; Multi-objective optimization; Multi-objective 
algorithms; Evolutionary algorithms; Real-world applications. 

1   Introduction 

Visualization of the optimal solutions plays a very important role in multi-objective 
optimization (MO). In MO with conflicting objectives there is no single optimum, and 
search methods return a set of solutions from which one must be selected.  In order to 
select the solution, a decision maker usually needs to visualize the discovered 
solutions in the objective space. This can be done using scatterplots of the objective 
space if there are only 2 or 3 objectives. 

Visualization is also used to show the quality of the solutions. A good set of 
optimal solutions should contain well-distributed converged solutions along the 
Pareto front. Almost every new algorithm in MO is tested on several 2- and 3-
objective problems, and beside numerical measurements, the obtained solutions are 
illustrated in objective space plots. This illustration is very valuable for many 
applications in science and industry as domain experts get information about the 
whole set of optimal solutions. Also, understanding the algorithm behavior is easier 
with this view. 
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Visualizing the objective space directly is possible for 2 and 3 objective spaces 
whereas for higher number of objectives, the solutions are only be evaluated by 
metrics.  Metrics and numerical measures hide too much information and only 
consider the objective space. On the other hand, in almost all of the proposed methods 
and applications in MO, there is a high (>3) number of parameters which are not 
being visualized. However, showing the parameter values and visualizing them has a 
great impact on the decision making process. 

Here, we investigate several visualization methods in order to visualize parameters 
and objective values of a set of optimal solutions. We note previous application of 
objective plots, Self Organizing Maps (SOM) [2], and Distance and Distribution 
Charts[1]. 

We also introduce a new application of pre-existing visualization methods to  
population based algorithms:  Heatmap visualization, which has previously been used 
mainly for the visualization of biological data. Heatmaps typically make full use of 
color, but this isn’t available in this printed paper. A pre-print with full color figures is 
available as a technical report[16]. 

When evaluating visualization methods, it is wise to consider what features of the 
system we may wish to reveal. The possibilities for population based MOEAs 
include: the diversity and convergence of the solutions in both objective and 
parameter space; the relationship between parameter and objective values; A 
comparison between different runs or algorithms; Identification of clusters of 
solutions in either the parameter or objective spaces; Dynamically illustrating the 
progress of an algorithm towards its optimization goals.  

This introductory section gives some background on Multi-objective Optimization 
and previous visualization methods which have been applied to it. 

To familiarize the reader with our methods, we make use of a 3-objective test 
problem defined in Section 2. We then apply heatmaps to this problem in sections 3. 
Sections 4 applies heatmaps on a real world application in mineralogy. A second 
application in hydrological modeling shows the use of our methods for the 
comparison of the behavior of algorithms (Section 5). 

1.1   Multi-objective Optimization Problems (MOPs) 

A Multi-objective Optimization Problem (MOP) contains several objective functions, 
which are to be optimized at the same time: 

  

minimize 
 

f (
 

x ) = ( f1(
 

x ), , fm (
 

x ))

subject to   
 

e (
 

x ) < 0
 

x ∈ S

 

involving m ≥ 2 (normally conflicting) objective functions f i : ℜn → ℜm that we 

want to minimize simultaneously. The parameters  
 

x = (x1, , xn ) belong to the 

feasible region S. The feasible region is formed by constraint functions  
 

e (
 

x ) . We call 
the image of the feasible region feasible objective region. Its elements are called 
objective vectors and they consist of objective values. 
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Many MOP have conflicting objectives, i.e. it is not possible to find a single 
solution that would be optimal for all the objectives simultaneously. In this case, we 
aim to find some optimal solutions where none of their objective values can be 
improved without deterioration of at least one of the other objective values.  

These solutions are called Pareto-optimal solutions. A solution  
 

x 1 is called 
Pareto-optimal, if there is no other solution that dominates1 it. The Pareto-optimal set 
in the objective space is called Pareto-optimal front. The Pareto-rank of a solution is 
a count of the number of  other solutions which dominate it.  

We note that  many of the visualizations presented below can be applied either to a 
complete solution set, or to a subset of solutions selected using Pareto-rank. 

1.2   Visualization of MOPs 

Objective space plots: The most commonly used visualization of the obtained 
solutions is to plot the objective values in the objective space plots. Figure 1 shows an 
example of the solutions of a 2-objective problem. The dotted line and small circles 
show the Pareto-front and the obtained solutions respectively. A good algorithm must 
obtain solutions with both good diversity and good convergence. 

 

Fig. 1. An example of a 2-objective plot 

This method is very useful, but cannot deal with more than 3 objectives. For a large 
set of optimal solutions, these plots are not accurate enough and numerical measures 
are required. 
 
Distance and distribution (DD) charts:  Ang et al. [1] propose two separate charts 
which plot a set of non-dominated solutions using their distance to an approximate 
Pareto front and the distance between each other. This method requires the 
approximate Pareto front to be found, which is not always straightforward or even 
possible. These plots are based solely on the objective values and parameters values 
are not considered. 
                                                           
1 A parameter  

 
x 1 is said to dominate  

 
x 2  if  

 
x 1 is not worse than  

 
x 2  in all objectives and it is 

strictly better in at least one objective. Among a set of solutions, the non-dominated set of 
solutions contains those solutions that are not dominated by any member of the set. 
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Fig. 2. Distance and Distribution Charts for solution sets generated by two algorithms  

Self-Organizing Map (SOM) method: Obayashi and Sasaki [2] use 
SOM to reduce the dimensionality of parameters and objectives for visualization. 
SOM is an unsupervised neural network method which generates a mapping of 
thehigh dimension data into cells in fewer, usually 2, dimensions.  This has been used 
to visualize a set of relatively large set of non-dominated solutions. Figure 3 shows an 
example. To facilitate the analysis of SOM and the data, similar cells on the map are 
clustered into groups. In this approach, the parameter space itself is not visualized, but 
information about parameters is provided by examples of designs overlaid at 
appropriate points on the 2D map. 

 

Fig. 3. Self Organizing Map for aircraft part designs evolved using multiple objectives 

2   An Example Multi-objective Optimization Problem 

In order to introduce the visualization techniques, they are tested on a 3-objective 
version of the test function known as DTLZ2, the m objective sphere problem. This 
function is defined in table 1. [3]. In order to observe the quality of solutions, we 
produce solutions with different diversity and convergence using a multi-objective 
optimization method from [4].  
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We produce multiple solution sets, known as good, bad-conv, bad-div-1 to bad-
div-5. bad-conv refers to a set of solutions with bad convergence and bad-div-1 to 
bad-div-5 refer to sets with bad diversity and spread of solutions along the Pareto 
front. Figure 4 Shows the objective plot of the results of DTLZ2, in 3 dimensions. 

We have chosen this 3-objective function to allow us to illustrate the other 
visualization methods using consistent data, before applying the techniques to 
examples of real optimization problems. 

Table 1. Test functions 

Test  function constraints 
DLTZ2 
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Fig. 4. Results of the DLTZ2 test  problem with different diversities. Crosses indicatesolutions 
from the good solution set while circles are solutions from the six “bad” sets. 
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3   Heatmaps 

Heatmap visualization is a technique which is most often applied to data gathered 
from microarrays. Microarray analysis [5] is a biological technique used to 
investigate the activation levels of large numbers of genes within cell samples. A 
typical dataset in this application consists of  perhaps a dozen samples and 
hundreds if not thousands of genes.  However, there is nothing intrinsically 
biological about heatmaps, and the technique can be applied to other data with a 
few modifications.  

The results of a MOEA are a population of solutions, with each solution 
consisting of values for a set of parameters and an associated scores on multiple 
objectives. In computing terms this is a two-dimensional array, the dimensions 
being solution ID and parameter/objective. In the heatmap in figure 6 each row is a 
solution and each column is a parameter or objective.  The color/shade of the cells 
represents the value of a parameter or objective for a particular solution. In figure 6 
columns show parameters in numerical order, followed by objectives also in 
numerical order. The solutions have been ordered by using a hierarchical clustering 
method which keeps solutions with similar objective values together. The 
computational complexity of calculating a heatmap depends on the clustering 
method, this is typically O(Nr2+Nc2) with Nc and Nr being the number of rows and 
columns respectively. 

One immediately noticeable feature is the high information density possible with 
heatmaps. Unlike most other visual representations, all the information from the 
original data is presented, the only loss being due to the limited number of  
shades/colors differentiable by the human eye.  When taken to its extreme, a 
heatmap using 1 pixel per cell could represent nearly 2 million values 
simultaneously on a screen with a resolution of 1600x1200, though the limitations 
on a viewer’s ability to perceive and successfully interpret such large heatmaps are 
untested. 

Figures 6a and 6b presents our exemplar solution sets in heatmap form. There are 
three “types” of column clearly visible in the plots. The parameters p1 and p2, which 
typically take on a wide range of values and correlate closely with the objectives; the 
remaining parameters p3..p10, which generally tend to middling values; and the three 
objectives which tend to lower values but can also be seen to conflict i.e. we do not 
get low values for all three objectives.  

We now discuss each of the plots in turn, indicating the features of interest.  In the 
good solution set plot (Figure 6a) we note that the objective values tend to be low, but 
that they conflict. In the cases where two of the objectives are particularly low, the 
remaining one takes a higher value. A correlation between the first two parameters 
and the objectives can also be observed.  The values for p3..p10 are generally 
middling and quite similar, as we’d expect from examining the equations defining the 
objectives, which indicate the optimum value of  p3..p10 is always 0.5, independent 
of other parameters. 
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“Good” Solution Set 

 

 
        Key 

 

 

 
 
 
Highest 
Values 
 
 
 
 
 
Middle 
Values 
 
 
 
 
 
 
 
Lowest 
Values 
 

Fig. 5a. Heatmap of Good Solution Set. The 1st ten columns are parameter values, the final 
three are objective values. Data is normalized in such a way that shades are comparable with 
Fig 5b. 

Comparing Figure 5a to Figure 5b, the bad convergence solution set shows much 
less consistency in p3..p10,  than the good set. However, it is interesting to note that 
the correlation between p1,p2 and the objectives is visible, indicating that the 
optimization process has begun to work on those parameters. As we’d expect in a 
badly converged solution set, there are some quite high values for the objectives, 
particularly in cases where the other objectives are low. 

Bad Div 1 solutions can be seen to optimize two objectives at once, but  the third 
objective always takes a high value.  In comparison with the good set, there are 
more extreme values for p1 and p2, and p3..p10 show less convergence. 

The bad div 2 and bad div 3 heatmaps shows the only one of the objectives is 
optimized at a time. Where one objective has low values, the other two have high 
values.  This behavior can also be seen in the 3d scatterplot in Figure 4 

The bias towards o1 and o3 can be see for Bad Div 4. Another interesting feature 
is that the values of p4..p8 have a high variance in solutions where p2 is very high 
(bottom of diagram). In these case, o2 also takes  on a high value.  

In bad div 5 we observe mainly middling values with little diversity for both 
parameters and objectives. Again, this can be seen to tally with Figure 4. 
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Bad-Conv Solution Set 

 

Bad Div-1 

 
Bad Div-2 

 

Bad Div-3 

 
Bad Div-4 

 

Bad Div-5 

 

Fig. 5b. Heatmaps of “bad” solution sets. The key can be seen in Figure 5a 
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Fig. 6. Heatmap of “good” solution set. Trees indicating variable and solution clustering 
canbeseen at the top and left of the diagram respectively. The key shown indicates the shades 
associated with values in the cells. In order to make full use of the shade information the data 
has been normalized across the good set. Shades cannot therefore be compared directly with 
those in Figure 5a and 5b. 
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The correlation between p1 and o3 and that between p2 and o2 is made plainer 
when they are placed side by side as in figure 6. The disadvantage of re-ordering 
like this is that the labels at the bottom of the diagram need to be consulted in order 
to determine which parameter or objective is represented by a particular column. 

5   Multi-component Chemical Systems in Mineralogy 

The proposed visualization methods have been applied to the results of a real-world 
optimization problem in quantifying the thermodynamic parameters of a multi-
component silicate melt system. This problem has been solved by a Bi-level 
optimization method in [6]. 

Here we visualize the last set of obtained non-dominated solutions and show the 13 
parameters of the upper-level. In this problem the objectives are: 

1) Minimize the difference between the free energy of solid and liquid. 
2) Minimize the difference between obtained temperature at which solid and liquid 

can coexist and the absolute temperature T recorded in the experiments. 

Figure 7 and 8 show the plain-heatmaps-by-objective of two sets of solutions (set1 
and set2) from different runs and Figure 9 illustrates the objective space plot. From 
Figure 9, we conclude that both of these sets have relatively close objective values.  

In the following, we analyze the heatmap plots. In these plots, parameters 1, 3, 9 
and 2, 4, 10 refer to enthalpy and entropy of the components where parameters 5 to 8 
indicate the uncertainty in measuring the free energy of solid in the experiments. The 
other parameters are related to the coefficients in the thermodynamic model. 

 

Fig. 7. Volcano Model. Solution Set 1. See Fig. 5a for key 
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Fig. 8. Volcano model. Solution Set 2. See Fig. 5a for key 

Fig. 9. Objective space plot for both sets of volcano model solutions 
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Figure 8 shows the heatmap of set2 and indicates if we select a certain constant 
value for uncertainties, almost all of the solutions on the front have the same enthalpy 
and entropy values. This can be observed by comparing the rows for the extreme 
solutions 12 and 6. This indicates that that the solutions, despite having good 
objective values, are located in a local optimum, where the uncertainty parameters are 
all equal and constant. 

But for lower values of uncertainties like shown in Figure 7 (heatmap of set1), 
there is a distinct difference between the parameters of the extreme solutions on the 
front (solutions 3 and 5). This is valuable knowledge if we want to select a solution 
from the middle of  the front, we have to select the parameters in the middle of their 
ranges (solution 8). 

This analysis indicates, although the objective values of the two sets are very close 
to each other, parameters are located in different areas of the search space. This is 
very important for designing a proper thermodynamic model for mineralogists and for 
selecting an appropriate solution from the non-dominated set. 

6   Application in Multi-objective Calibration of Hydrologic Models 

The conversion of rain and snow to runoff has long been studied by engineers to 
design hydraulic systems and by scientist to develop an understanding of the process 
involved [7]. Most of the practical rainfall-runoff models contains some parameters 
that do not have any explicit physical interpretation and are set using an objective 
optimization problem. Although most of the previous attempts concentrated around 
single objective formulation of calibration [9], recent practical experiences suggest 
that a single objective functions are often inadequate to properly measure all of the 
characteristics of the observed data [10].  We are also aware that the behavior of the 
system being modeled has a number of different modes[11,12], depending on the 
recent history of precipitation. We would like to determine parameters which model 
the system well over all modes. By measuring model accuracy separately during these 
different modes, the calibration problem is converted to a multi-objective 
optimization problem. The result of this optimization problem will be a set of pareto 
parametric values, in which there is no solution better than the other in regarding to 
all performance across all modes. 

In this study, a 5-parameter conceptual model was applied for modeling the 
rainfall-runoff process in Leaf River Basin, USA. 11 years of daily data (1948-1958) 
was used for multi-objective calibration of the model. Four objective functions are 
used, measuring the Root Mean Squared Error (RMSE) of model predictions Driven 
High (FDH), Driven Low (FDL), Non-driven Quick (FNQ), and Non-driven Slow 
(FNS) flows. 

Two algorithms, NSGA-II [14] and Multi-Objective Shuffled Complex Evolution 
Metropolis algorithm (MOSCEM) [13], with 20000 function evaluations were applied 
for calibration of the model. In order to compare the results of these two algorithms, 
the heatmap visualization technique was applied. Figure 10 shows the heatmaps of 
archives related to MOSCEM and NSGA-II. As in previous examples, the objective 
function values are used to cluster the solutions. The first five columns from left are 
represent parametric values and the next four are represent objective functions. 
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Comparing the number of solutions in the archives (941 solutions for NSGA-II and 
88 for MOSCEM), initially it was supposed that NSGA-II would have a finer texture. 
However as it appears, the textures of both heatmaps are almost the same, showing 
that NSGA-II converged to limited number of distinct solutions for each model 
parameter. Additionally, we note that the two algorithms have converged to different 
regions of the parameter space. For the first parameter, MOSCEM generally 
converges to  values which are smaller and more diverse than NSGA-II. For 
parameter 2 MOSCEM has again used a wider parametric region than NSGA-II. For 
parameter 3 on the other hand, NSGA-II has found some low values unused by 
MOSCEM, though MOSCEM covers other values which NSGA-II did not find. For 
parameter 4, it is quite obvious that NSGA-II converges almost completely to two 
extreme values, whereas MOSCEM produces a broad spectrum of results. For 
parameter 5, the differences are not so great, but NSGA-II has located some higher 
values. Looking to the columns related to objective functions, they reveal that for the 
first objective function both algorithms can find many good results, but NSGA-II 
allowed some bad results which trade off against objective 4. For second objective 
function, convergence is similar, however NSGA-II is again more tolerant of bad 
results. For third objective function the results of both algorithms are very similar. For 
the final objective function, it is quite obvious that NSGA-II can produce much better 
results than MOSCEM. However, the best results that NSGA-II could find for 
objective 4 are some of the worst for the other objectives. Looking at the four 
objectives together it is clear that the calibration process of the applied hydrologic 
model is inherently a multi-objective task, and that the applied model can not 
represent the whole hydrologic behavior of the catchment with a single parametric set 
or even a parametric region. 

(a) MOSCEM (b) NSGA-II  

Fig. 10. The heatmaps of solution archives for hydrological model parameterization 
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7   Conclusion and Future Work 

The heatmap is a novel and interesting visualization method which can provide 
detailed insight into the multiple solutions generated by population based multi 
objective algorithms. The high information density of heatmaps allows whole 
populations of solutions to be visualized. One application for heatmaps is to gain 
greater insight into the behavior of particular MO algorithms, and to compare the 
performance of algorithms. This is of particular interest to the MO algorithm 
community. Another is the exploratory analysis of the parameter space and its 
relationship to the objective space. Domain experts and those applying MO 
algorithms to real-world problems will find this aspect particularly useful.  

Future work includes: the developments of  color-scales and grayscales appropriate 
for colorblind users and grayscale printing; Ordering rows consistently between 
datasets to ease comparison; experimentation to understand the relationship between 
heatmaps representations and Pareto ranking; and development of an easy to use 
toolkit for MO researchers. 

References 

1. Kiam Heong Ang, Gregory Chong and Yun Li. Visualization Technique for Analyzing 
Non-Dominated Set Comparison, in Lipo Wang, Kay Chen Tan, Takeshi Furuhashi, Jong-
Hwan Kim and Xin Yao (editors), Proceedings of the 4th Asia-Pacific Conference on 
Simulated Evolution and Learning (SEAL'02), pp. 36--40, Vol. 1, Nanyang Technical 
University, Orchid Country Club, Singapore, November 2002. 

2. Shigeru Obayashi and Daisuke Sasaki, Visualization and Data Mining of Pareto Solutions 
Using Self-Organizing Map, Second International Conference on Evolutionary Multi-
Criterion Optimization (EMO 2003), Faro, Portugal, LNCS 2632, Springer-Verlag Berlin 
Heidelberg 2003, pp. 796-809, April 2003. 

3. K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-objective optimization 
test problems,” in Proc. Congr. Evol. Comput., D. B. Fogel, M. A. El-Sharkawi, X. Yao, 
G. Greenwood, H. Iba, P. Marrow, and M. Shackleton, Eds., May 2002, vol. 1, pp. 
825–830 

4. S. Mostaghim and J. Teich., Strategies for finding good local guides in multi-objective 
particle swarm optimization. In IEEE Swarm Intelligence Symposium, pages 26–33, 
Indianapolis, USA, 2003. 

5. The Chipping Forecast II, Nature Genetics Special Issue, December 2002, Volume 32, 
No 4s 

6. Halter, W.; Mostaghim, S., "Bilevel Optimization of Multi-Component Chemical Systems 
Using Particle Swarm Optimization," Evolutionary Computation, 2006. CEC 2006. IEEE 
Congress on , vol., no.pp. 1240- 1247, 16-21 July 2006 

7. O’ Loughlin, G., Huber, W., Chocat, B., “Rainfall-runoff process and modeling”, Journal 
of Hydraulic Research, VOL. 34, NO. 6, pp. 733-751, 1996. 

8. Furundzic, D.,: “Application example of neural networks for time series analysis: rainfall-
runoff modeling”, Signal Processing, VOL. 64, pp. 383-396, 1998. 

9. Gan, T., Y., Biftu, G., F., “Automatic calibration of conceptual rainfall-runoff models: 
optimization algorithms, catchment conditions, and model structure”, Water resources 
research, VOL. 32, NO. 12, pp. 3513-3524, 1993. 



 Heatmap Visualization of Population Based Multi Objective Algorithms 375 

10. Vrugt, J. A., Gupta H. V., Bouten, W., and Sorooshian, S., “A shuffled complex evolution 
metropolis algorithm for optimization and uncertainty assessment of hydrologic model 
parameters”, Water Resources Research, VOL. 39 (8), 2003. 

11. Boyle, D. P., Gupta, H. V., and Sorooshian S., “Toward improved calibration of 
hydrological models: Combination the strengths of manual and automatic methods, Water 
Resources Research, VOL. 36(12), 3663-3674, 2000. 

12. Wagener, T., Wheater, H. S., “On the evaluation of conceptual rainfall-runoff models 
using multiple-objectives and dynamic identifiability analysis”, In Littlewood, I. (ed.), 
Continuous river flow simulation: methods, applications and uncertainty, British 
Hydrological Society, Occasional paper, No. 13, Wallingford, UK, pp.45-51, 2002. 

13. Vrugt, J. A., Gupta H. V., Bastidas, L. A., Bouten, W., and Sorooshian, S., “Effective and 
efficient algorithm for multi-objective optimization of hydrologic models”, Water 
Resources Research, VOL. 39 (8), 2003. 

14. Deb, K., Pratap, A., Agrawal, S. and Meyarivan, T. (2000). A fast and elitist multiobjective 
genetic algorithm: NSGA-II. Technical Report No. 2000001. Kanpur: Indian Institute of 
Technology Kanpur, India. http://citeseer.ist.psu.edu/article/deb00fast.html 

15. Pryke A., Mostaghim S., Nazemi A. (2006),"Heatmap Visualization of Population Based 
Multi Objective Algorithms", Technical Report Number CSR-06-14, University of 
Birmingham, School of Computer Science, ftp://ftp.cs.bham.ac.uk/pub/tech-
reports/2006/CSR-06-14.pdf 



Multiplex PCR Assay Design by Hybrid

Multiobjective Evolutionary Algorithm

In-Hee Lee, Soo-Yong Shin, and Byoung-Tak Zhang

Biointelligence Laboratory
School of Computer Science and Engineering

Seoul National University, Seoul 151-742, Korea
{ihlee,syshin,btzhang}@bi.snu.ac.kr

Abstract. Multiplex Polymerase Chain Reaction (PCR) assay is to am-
plify multiple target DNAs simultaneously using different primer pairs
for each target DNA. Recently, it is widely used for various biology appli-
cations such as genotyping. For sucessful experiments, both the primer
pairs for each target DNA and grouping of targets to be actually ampli-
fied in one tube should be optimized. This involves multiple conflicting
objectives such as minimizing the interaction of primers in a group and
minimizing the number of groups required for the assay. Therefore, a mul-
tiobjective evolutionary approach may be an appropriate approach. In
this paper, a hybrid multiobjective evolutionary algorithm which com-
bines ε-multiobjective evolutionary algorithm with local search is pro-
posed for multiplex PCR assay design. The proposed approach was com-
pared with another multiobjective method, called MuPlex, and showed
comparative performance by covering all of the given target sequences.

1 Introduction

The Polymerase Chain Reaction (PCR) is a very powerful biological technique
which is widely used to amplify DNA and plays a key role in biotechnology and
biology research. In standard protocol, PCR can amplify only one target DNA
at a time (Fig. 1(a)). But the biological or clinical assay usually involves multiple
target DNAs, it is much more desirable to amplify these DNAs simultaneously.
The multiplex PCR is an extension of PCR in which multiple target DNAs are
amplified at the same time (Fig. 1(b)). It has a wide variety of applications
in biology and is recently spotlighted as a core tool for high throughput single
nucleotide polymorphism (SNP) genotyping [1,2,3].

For successful experimental results, a careful design of multiplex PCR assay
is important. A multiplex PCR assay design is a complex problem composed
of two optimization processes: optimizing primers for each target while mini-
mizing the number of partition. First, the primers for each target DNA should
be optimized so that the interactions between primers and non-target DNAs are
minimized. Since the multiple targets are amplified in one tube at the same time,
it is important that the primers for one target do not interact another targets
or primers. If such an unwanted interaction happens, some of the target DNAs

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 376–385, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Standard PCR

Multiplex PCR

Target A
Primer(A)

Target A

Target B

Primer(A)

Primer(A)

Primer(A)
Primer(B)

Primer(B)

(a)

(b)
Amplified Target A

Amplified Target A Amplified Target B

Fig. 1. (a) The concept of standard polymerase chain reaction (PCR). The region
between primers in A (the dashed box) is amplified by PCR. (b) The concept of mul-
tiplex PCR. Multiple targets A and B are amplified simultaneously by primers A and
B, respectively, in one experiment.

might not be amplified. Last, the grouping of target DNAs which will be ampli-
fied together should be decided. It would be ideal when all of the target DNAs
can be amplified together. Unfortunately, it is very likely that the primers for
some targets can not be chosen to prevent unwanted interactions. In such cases,
the targets should be put to different groups for separate multiplex PCR runs.
However, the number of such separate groups should be minimized.

There have been many studies to tackle this problem [4,5,6,7,8,9,10,11,12] .
Most of these works assumed only one group and the targets that do not fit
to be amplified together were discarded [5,6,7,8,11,12]. In [4,9,10], on the other
hand, the partitioning of targets into multiple groups was handled. First, a set of
primer candidates for each target is selected according to predefined conditions.
Then, the targets are partitioned into appropriate groups in deterministic way
while selecting optimal primers from the candidate sets. From the methodological
point of view, most of the previous researches used a deterministic search and
only a few evolutionary approaches are published [7,8,11].

Rachlin et al. formulated the design of multiplex PCR assay as finding cliques in
graph to optimize both objectives [13]. According to their formulation, the nodes
in graph G represent the target DNAs and edges connect two targets(nodes) which
can be put into the same group. Each node has multiple states (candidate primers)
and the state of two nodes determines whether they can be connected or not. They
empirically showed that there is a tradeoff relationship between the specificity of
each primer pair to their target and the overall degree of multiplexing. Moreover,
it is well known that finding a clique in a given graph is a hard computational
problem [14]. Considering these properties of multiplex PCR assay design, a mul-
tiobjective evolutionary approach with local search is suggested here.

The suggested multiobjective evolutionary algorithm is based on ε-MOEA
which was originally suggested in [15]. The algorithm is modified to perform
local search after the generation of every new offspring and a genotypical niching
is adopted to keep the population diversity.
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The rest of the paper is organized as follows. Section 2 describes the multi-
plex PCR assay design and the strategy taken here in more detail. The hybrid
multiobjective evolutionary algorithm used in multiplex PCR assay design is ex-
plained in Section 3. The experimental results are shown and compared to other
methods in Section 4 and the conclusions are drawn in Section 5.

2 Multiplex PCR Assay Design

As already mentioned in Section 1, two problems should be solved for a successful
multiplex PCR assay. One is to select primers for each target. Those primers
must have uniform experimental conditions and minimize the interaction with
other targets and primers. The other is to divide the set of targets into multiple
subsets. For example, some target DNAs share similar subsequences. In that case,
it is very likely that one target’s primer can interact with other target and vice
versa. Therefore, these targets should be separated into different subsets. But the
number of different subsets needs to be minimized to simplify the experimental
process. However, we can not put all compatible targets together because there
is a limitation on the number of targets that can be amplified in one tube for
technical reasons. Hence we should minimize the number of different subsets
while keeping the maximum size of each subset.

The primers having uniform experimental conditions can be chosen indepen-
dently for each target. But the minimization of the interaction between other
targets and primers depends on the partitioning of targets. The partitioning of
targets is also dependent on the selection of primers. Therefore, the selection of
primer candidates can be separated from the optimization process. From now
on, we assume that a set of primer candidates for each target is given a priori
and concentrate on primer assignment on each target from the candidates and
partition of targets.

In [13], it is more formally described using the concept of multi-node graph. In
a multi-node graph, each node has its own set of states it can take. In multiplex
PCR context, a node corresponds to a target and a node’s state means the
primers for the target. If a node u is in state i, the i-th primer candidate is
assigned for target u. Each edge in the graph is associated with variable weight
depending on the states on the two nodes it connects (see Fig. 2). We denote the
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Fig. 2. An example of multi-node graph (left). After changing the state of node C, the
weights on edges connected to C are changed as the second graph (right).
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weight values for edge between nodes u and v by the matrix Wuv. For multiplex
PCR assay design, the weight matrix denotes the compatibility between two
targets, which means whether the targets can be put together in one tube. The
elements of Wuv[i][j] represents how compatible the targets u and v are when
they are in states i and j respectively. For the two targets to be compatible,
they should satisfy two conditions: minimizing the undesirable hybridization
and the sequence similarity among targets and their primers. Minimizing the
undesirable hybridization alone is not enough because similar sequences can
also reduce the hybridization chance. For example, the sequences ‘AAAA’ and
‘CCCC’ do not hybridize each other, but ‘AAAA’ and ‘AAAA’ do not, either.
Hence, we decompose the compatibility between targets (Wuv) by two values:
H-measure (Huv) and Similarity (Suv) defined in [16]. Huv is a matrix whose
element Huv[i][j] denotes how much undesirable hybridization can occur among
targets u and v and their primers i and j. Similarly, Suv is a matrix whose
element Suv[i][j] denotes how similar the targets u and v and their primers i
and j are.

Given a set of n targets T and the set of primer candidates Ci for each target
i, a multi-node graph G and its associated matrices H and S can be constructed.
Then, formally, the multiplex PCR assay design is to find,

1. The partition S1, . . . , SM such that
⋃

Si = T and Si ∩ Sj = ∅ for each i, j
and

2. The state assignment A for each node in G from C1 × C2 × · · · × Cn,

while satisfying the following:

1. Minimize
∑

i

∑
u,v∈Si

Huv[A(u)][A(v)] and
2. Minimize

∑
i

∑
u,v∈Si

Suv[A(u)][A(v)] and
3. Minimize the number of partitions M ,

where A(u) denotes the state of node u under assignment A.
According to the above definition, two different variable spaces should be

searched: state assignment and partition. We explored both space by combining
a multiobjective evolutionary algorithm and local search. Here, the main evolu-
tionary algorithm searches the space of the state assignment. During local search,
the space of partition is explored. Detailed description of the evolutionary search
procedure will be given in the next section.

Our approach to multiplex PCR assay design is summarized in Fig. 3. First,
candidate primers are generated by Primer3 [17]. We used an external program
at this step from two reasons: one is that the candidate primers can be selected
independently from the main evolutionary optimization and the other is that
there exist many open softwares for primer selection since it is a fundamental tool
in biology. Among various open softwares, we chose the most popular program,
Primer3. Next, the partition of targets and primer assignment for each target
are optimized by hybrid multiobjective evolutionary algorithm. At the end, a
variety of multiplex PCR assays will be presented to user.
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Candidate Primers by Primer3

Hybrid Evolutionary Search

Targets, Constraints

Multi-node Graph

Set of Multiplex PCR Assay

Fig. 3. The flow chart for Multiplex PCR assay design

3 Hybrid Multiobjective Evolutionary Algorithm for
Multiplex PCR Assay Design

3.1 The Preprocessing

The first step is to select primer candidates for each target which having similar
chemical properties. We used Primer3 program to choose candidate primers [17].
Considering the size of the search space and running time, five candidate primers
are selected for each target. And for each pair of target u and v, the elements of
Huv[i][j] and Suv[i][j] are calculated using the H-measure and Similarity function
described in [16].

3.2 The Hybrid Multiobjective Evolutionary Algorithm

Our next step is the evolutionary search for optimal partition of groups and
primer assignments. We used a variation of ε-MOEA [15] combined with local
search.

Each individual is a concatenation of partition part and state assignment
part. The state assignment is a vector from C1 ×C2 ×· · ·×Cn which determines
the configuration of multi-node graph. The i-th value denotes which primer
candidate from Ci is assigned for target i. The partition part means the set of
cliques from the multi-node graph configured by the state assignment part. It is
a vector from [1, . . . , M ]n where i-th value determines which partition the node
i belongs to.

For each generation of ε-MOEA,

1. One parent P1 is chosen at random from the archive and the other parent
P2 is chosen from the population by tournament selection.

2. Generate two offsprings O1 and O2 from P1 and P2 by genetic operators.
The uniform crossover and 1-bit mutation operators are used here.

3. Apply the local search to O1 and O2 for a predefined number of times, L.
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(a) O′1 and O′2 is produced through local search operators. One of the two
local search operators which will be explained in Section 3.2 is applied
in random.

(b) Replace O1 with O′1 if O′1 dominates O1. If O1 and O′1 non-dominates
each other, O′1 replaces O1 with probability of 0.5. Otherwise, O′1 is
discarded.

(c) Similar procedure with O2 and O′2.
4. Update the archive.

(a) The offspring is accepted to the archive if it is in the same front as the
archive members or it dominates one or more of them. The dominated
archive members are removed.

(b) If the archive reaches its maximum size, the nearest archive member in
objective space is replaced.

5. Update the population.
(a) If the offspring dominates one of the population, the dominated member

is replaced with the offspring.
(b) If the offspring and the population do not dominate each other, the

nearest population member in variable space is replaced with probability
of 0.5.

6. Repeat to Step 1 until the termination condition is satisfied.

In original ε-MOEA, Step 4 followed after Step 2 and there was no restriction
on maximum size of the archive. Theoretically, the number of archive members
that ε-dominate the population is not infinite [15]. However, the size of the
archive often grows very large. So we put a limit on the maximum size of the
archive.

Another difference between the suggested approach and the original ε-MOEA
is the niching method. In original ε-MOEA, there was no explicit niching method
for the archive except the ε-domination concept and the new offsprings replaced
random individual from the population. However, the ε-domination concept is
not enough to keep the size of the archive in reasonable size and the random
replacement in the population can lead to the quick loss of genetic diversity.
As can be seen from Step 4 and 5, we tried to handle the problem by using
different distance measures. In archive, the distance in objective space is used
to provide diverse solutions. In contrast, the distance in variable space is used
in population update. This is to keep the genetic diversity of population and to
prevent premature convergence.

3.3 Local Search

When generating new offsprings in Step 2 of the main loop, the crossover and
mutation operator targets the entire chromosome. Both the state assignment
vector and the partition vector are treated as one string of size 2n and undergo
uniform crossover or 1-bit mutation.

On the other hand, the local search operator targets the partition vector only.
Since every candidate primers generated by Primer3 guarantee minimum level
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(a)
1 | 0 | 1 | 1 | 0 | 2 | 2 1 | 0 | 1 | 1 | 0 | 2 | 2 1 | 0 | 1 | 0 | 0 | 2 | 2

(b)

Fig. 4. The two local search operators. (a) The swapping operator exchanges two
targets between two different partitions. (b) The migration operator moves one target
from a partition to another.

of quality, the change of primers assigned to a target does not result in drastic
change in objective values. Hence, we concentrate on finding optimal partition
during local search. As can be seen in Fig. 4, two local search operators are
adopted. One is the swapping operator that exchanges two targets from two
different partitions. The other is the migration operator which moves one target
from a partition to another.

Local search proceeds in Lamarckian way. At each cycle of local search, the in-
dividual produced by local search which dominates the previous replaces the orig-
inal individual. If the individuals before and after the local search non-dominates
each other, one is chosen at random.

4 Experimental Results

We tested our approach on 52 target sequences from Arabidopsis multigene
family and compared the result with an open program for multiplex PCR assay
design, MuPlex [10]. Among the MULTIPCR [4], MultiPLX [9] and MuPlex [10]
that can handle multiple partition, MuPlex was chosen because MULTIPCR was
not open to public and MultiPLX could not find any acceptable result for the
given problem.

MuPlex uses an agent-based multi-objective optimization. The agents encap-
sulating specific algorithm either create new solutions from scratch, improve or
modify existing solutions, or remove unpromising solutions from further con-
sideration [10]. By the interactions between agents, MuPlex implements similar
approach as evolutionary algorithm. The solutions in MuPlex are evaluated in
similar terms as our approach.

We set the size of population and archive as 100 and 200, respectively. The
maximum generation was set to 100,000 and local search was performed 100
times for each offspring. The probability for crossover and mutation was 0.9 and
0.01, respectively. The maximum number of partition and maximum size of a
partition is set to 10. These experimental parameters were chosen empirically.

The results are evaluated from three perspectives. One is the sum of total
cross-hybridization within a partition. This is to estimate total experimental
errors. The DNA-DNA hybridization simulator NACST/Sim is used to calculate
this value [16]. It checks all possibilities of cross-hybridization between two given
sequences. Others are the number of groups and the average number of targets
per group. These are to estimate the efficiency of multiplex PCR assay.
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Table 1. The comparison of designed Multiplex PCR Assay. Solution 1, Solution 2 and
Solution 3 are generated by the hybrid multiobjective evolutionary algorithm suggested
in this paper. The solution named MuPlex is generated using MuPlex program.

MuPlex Solution 1 Solution 2 Solution 3

The total cross-hybridization 13719 10915 13269 10683

The number of groups 5 9 8 10

The average number of targets 9.4 5.7 6.5 5.2

Table 2. The design examples from MuPlex and the proposed approach. The Solution
2 from Table 1 is shown here. The columns group ID and group size denote each
partition of target DNAs and the number of targets in each partition, respectively.
# of cross-hyb. value means the total undesirable hybridization value calculated by
NACST/Sim.

MuPlex Hybrid ε-MOEA

Group ID Group Size # of cross-hyb. Group ID Group Size # of cross-hyb.

1 10 4926 1 6 1746
2 10 2397 2 7 1385
3 10 2789 3 6 1655
4 10 2032 4 6 2295
5 7 1575 5 6 1234

6 7 1493
7 6 1912
8 8 1549

Total 47 13719 Total 52 13269

The best run of our algorithm output only three solutions in the final archive.
These solutions are compared with the only solution from MuPlex in Table 1.
From the three solutions produced by our approach, the tradeoff between primer
optimization and partition efficiency is clear. As the number of group increases,
the average number of targets in each group decreases. And if the number of
targets in a group is small, there is little chance to the cross-hybridization. In
that sense, all of the four solutions in Table 1 form a tradeoff front.

The design examples from MuPlex and the proposed approach are compared
in detail in Table 2. The columns group ID and group size denote each parti-
tion of target DNAs and the number of targets in each partition, respectively.
NACST/Sim value means the total undesirable hybridization value calculated
by NACST/Sim. In MuPlex, some target can be discarded if it is hard to find
a partition for that target. Therefore, as can be seen in Table 2, only 47 of 52
targets were partitioned. In contrast, every target belongs to a partition in our
approach. But this is dependent on the purpose of the user. In some case as high
throughput screening, users need a design which is efficient but do not cover
every target. But in cases of clinical assay, the coverage becomes critical. Also,
the constraint of perfect coverage upon the proposed approach can be relaxed.
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5 Conclusions

The problem of multiplex PCR assay design is addressed and formulated as
a multiobjective optimization problem. A hybrid multiobjective evolutionary
search is applied to the problem and compared with other similar program. The
suggested approach combines a variant of existing algorithm and two simple
local search operators and shows a reasonable performance. This is a preliminary
result and further work is required.
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Abstract. This paper presents ParadisEO-MOEO, a white-box object-
oriented generic framework dedicated to the flexible design of evolu-
tionary multi-objective algorithms. This paradigm-free software embeds
some features and techniques for Pareto-based resolution and aims to
provide a set of classes allowing to ease and speed up the development
of computationally efficient programs. It is based on a clear concep-
tual distinction between the solution methods and the multi-objective
problems they are intended to solve. This separation confers a maxi-
mum design and code reuse. ParadisEO-MOEO provides a broad range
of archive-related features (such as elitism or performance metrics) and
the most common Pareto-based fitness assignment strategies (MOGA,
NSGA, SPEA, IBEA and more). Furthermore, parallel and distributed
models as well as hybridization mechanisms can be applied to an al-
gorithm designed within ParadisEO-MOEO using the whole version of
ParadisEO. In addition, GUIMOO, a platform-independant free soft-
ware dedicated to results analysis for multi-objective problems, is briefly
introduced.

Keywords: object-oriented frameworks, design and code reuse, multi-
objective optimization, evolutionary algorithms.

1 Introduction

Nowadays, the usefulness of Multi-Objective Optimization (MOO) is globally es-
tablished in the whole operational research community. Furthermore, evolution-
ary algorithms (EAs) are commonly used to solve multi-criterion problems since
they naturally found a well-diversified set of good-quality solutions. EAs [12] are
stochastic optimization processes based on an iterative improvement of a popu-
lation of solutions (called individuals). As discussed later in the paper, several
frameworks such as MOEA [20], MOMHLib++, Open BEAGLE [9], PISA [2],
TEA [7] (to quote only them) already attempt to simplify and accelerate the
development process of evolutionary MOO applications. We here propose a new
library, called ParadisEO-MOEO (MOEO for short), that aims to produce effi-
cient programs while having a minimal programming effort and a maximum code
reuse. MOEO (Multi-Objective Evolving Objects) is an extension of the Evolv-
ing Objects framework [15]. It includes a broad range of reusable features and

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 386–400, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



ParadisEO-MOEO: A Framework for EMO 387

techniques related to Pareto-based MOO such as performance metrics, elitism,
fitness sharing and the most common Pareto-based fitness assignment schemes:
MOGA, NSGA, NSGA-II, SPEA, SPEA2, IBEA, . . . The fine-grained compo-
nents of MOEO confer a high genericity, flexibility, adaptability and extensibility.
Thus, a genuine conceptual effort has been done in order to allow the user to
write only the minimum problem-specific code and to incrementally adapt an
algorithm rather than entirely re-implementing it. Moreover, MOEO is itself ex-
tented to compose the full ParadisEO framework which is devoted to hybridiza-
tion and parallel/distributed computing. Besides, MOEO has already been used
to solve various academic problems likewise real-world applications.

The remainder of the paper is organized as follows. Section 2 gives the nec-
essary background about MOO. Sections 3 and 4 describe the aims, the imple-
mentation and the provided features of the MOEO framework. In section 5, we
present ParadisEO as well as the most common parallel/distributed models and
hybridization mechanisms for multi-objective problems. In section 6, we survey
some existing MOEO-designed applications and we introduce a Graphical User
Interface for Multi-Objective Optimization (GUIMOO). Finally, the last section
concludes the paper and highlights several perspectives about this work.

2 Multi-objective Optimization

Widely investigated since the end of the 1980’s, multi-objective optimization
concerns many areas of the industry (telecommunication, transport, aeronautics,
etc). In this section, we briefly present some required notions about Pareto-
based multi-objective optimization such as the formulation of a multi-objective
optimization problem (MOOP) and some concepts relating to Pareto optimality
(the reader is referred to [4,5] for more details).

Multi-objective optimization problem. A MOOP is defined by a decision space D,
an objective space Z, and n ≥ 2 objective functions f1, f2, . . . , fn. Each objective
function can be either minimized or maximized. A solution x = (x1, x2, . . . , xk)
is represented by a vector of k decision variables. To each solution x ∈ D is
assigned exactly one objective vector z ∈ Z on the basis of a vector function
F : X → Z with z = F (x) = (f1(x), f2(x), . . . , fn(x)).

Pareto optimality. A multi-objective algorithm aims to approximate the set of
Pareto optimal solutions according to F . A solution xa ∈ D is Pareto optimal if
there exists no solution xb ∈ D that dominates xa. For a minimization problem,
the Pareto dominance relation is defined as follows:

Definition 1. A solution xa ∈ D dominates a solution xb ∈ D if and only if
∀i ∈ [1..n], fi(xa) ≤ fi(xb) and ∃i ∈ [1..n] such as fi(xa) < fi(xb).

The overall goal is then to find a well-converged and well-diversified set of Pareto
optimal solutions.

These basic notions already emphasize the most important points to consider
for the design of a library devoted to evolutionary multi-objective optimization.
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3 ParadisEO-MOEO Motivations

The ‘EO’ part of MOEO stands for Evolving Objects. EO is a C++ LGPL open-
source object-oriented framework for evolutionary computation1 that has been
developed through an European joint work [15]. This library aims to provide
a set of evolving objects dedicated to the flexible design of EAs. Furthermore,
EO integrates many services including visualization facilities, on-line definition
of parameters, application checkpointing, etc. MOEO is an extended version of
the EO framework that includes some features related to Pareto-based multi-
objective optimization. In this section, we present the goals of MOEO and we
review some existing multi-objective optimization frameworks.

3.1 Goals

A framework is usually intended to be generic and could then be useful only
if some important criteria are satisfied. Thence, the main goals of the MOEO
framework are:

– Services. The framework must cover a wide range of features relating to
Pareto-based multi-objective optimization.

– Design and generic components. MOEO must provide a whole architecture
design of the solution method. This objective requires a clear and maximal
conceptual distinction between the method and the problem representations.
Therefore, the designer might only write the minimal problem-specific code,
and the development process should be done in an incremental way.

– Maximum code reuse. The framework must allow the programmer to rewrite
as little code as possible. Everthing that is already coded might be reusable.
Then, it must be a commonplace to extend a problem from the mono-
objective (and the EO framework) to the multi-objective case (and the
MOEO framework), and from the classical to the parallel or the hybridiz-
ing case (and the whole version of the paradisEO framework, see section 5)
without re-implementing the whole algorithm. For instance, it should not be
necessary to re-code variation operators or solutions initialization.

– Extensibility, flexibility and adaptability. Some new features must easily be
added or modified without implicating other components. Furthermore, ex-
isting components must be adaptable, as, in practice, existing problems
evolve and new ones arise. Thence, MOEO must be a white-box framework
(and not a black-box one); users must have access to source-code and must
use inheritance or specialization to derive new components from base or
abstract classes.

3.2 Existing Multi-objective Optimization Frameworks

Many frameworks dedicated to combinatorial optimization have been proposed.
However, very few reached the whole goals stated above. A non-exhaustive com-
parative study between some existing multi-objective optimization frameworks
1 EO is available at http://eodev.sourceforge.net

http://eodev.sourceforge.net
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is given in table 1. These frameworks are distinguished according to the following
criteria: the available metaheuristic(s), the framework type (black-box or white-
box), the licence (open-source or not), the available metrics, the availability of
hybridization and parallel features and the programming language.

Table 1. Existing frameworks for multi-objective optimization (hybrid. stands for hy-
bridization features, // for parallel features, lang. for programming language, ref. for
reference, EA for Evolutionary Algorithm, LS for Local Search, SA for Simulated An-
nealing, TS for Tabu Search, ACO for Ant Colony Optimization and PSO for Particle
Swarm Optimization).

name available black open metrics hybrid. // lang. ref.
metaheuristic(s) box source

MOEA EA X X / - - - X Matlab [20]
for Matlab

MOMHLib++ EA, LS, SA - X R, coverage,
Ow, Os, Oc

X - C++ -

Open EA - X - - - C++ [9]
BEAGLE

PISA EA X X Iε, Iε+, R2,
R3, S

- - - [2]

TEA EA - X - - X C++ [7]

ParadisEO-MOEO EA - X Iε+, IHD, X X C++ -
(+ LS, SA, TS) entropy,

contribution

As we can see, the whole presented frameworks are open-source (only MOEA,
although open-source, is based on Matlab which is not). Moreover, a large part
of these frameworks are white-box frameworks, that is to say that the source-
code can easily be extended or adapted in order to offer the most possible flex-
ibility. Even so, only a thin part includes all the major metaheuristics and some
metrics for performance evaluation or comparison. Also, parallel models and hy-
bridization mechanisms are both provided at once only within ParadisEO-MOEO.
Furthermore, ParadisEO is portable on distributed-memory machines and shared-
memory multi-processors, it offers a high flexibility and, to our knowledge, is the
only one that is portable on grid computing.

4 ParadisEO-MOEO Implementation and Deployment

Using EO and MOEO, it is possible to build a complete multi-objective evolu-
tionary computation application. Two major contributions of the MOEO frame-
work refer to i) archive-related features and ii) multi-objective fitness assignment
techniques. On each level of its architecture, a set of classes, devoted to the first
or the second point, is provided. First, the general implementation of a multi-
objective EA is shown in order to see how simple is to code a whole algorithm
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and to add or to change features. The implementation is conceptually divided
into components so that different operators can be experimented without en-
gendering significative modifications. A wide range of components are already
provided, but new ones can easily be developed by the user with minimum code
writing as MOEO is a white-box framework that tends to be flexible.

4.1 A General Eolutionary Algorithm Implementation

Here is a general implementation of a multi-objective EA:

unsigned N; /* population size */
eoPop<EOT> population; /* population initialization */
moeoeoArchive<EOT> archive; /* archive declaration */
eoEvalFunc<EOT> eval; /* raw fitnesses evaluation */
eoInit<EOT> init; /* solutions initialization */
eoTransform<EOT> transform; /* variation operators */
eoContinue<EOT> stop; /* stopping criteria */
eoCheckPoint<EOT> checkpoint; /* application checkpointing */
eoPerf2Worth<EOT,double> p2w; /* multi-objective ranking */
eoSelectOne<EOT> selectOne; /* selector (built using p2w) */
/* N-element selector */
eoSelect<EOT> select = eoSelectNumber<EOT>(selectOne, N);
eoReplacement<EOT> replace; /* replacement */
/* algorithm definition */
eoEasyEA<EOT> algo(stop, eval, select, transform, replace);
algo(population); /* run the algorithm */

All evolution-related objects are templatized2 regarding to the type of individ-
uals (EOT). And, the eoEasyEA class is used to define the algorithm.

4.2 Archive-Related Features

An essential point of Pareto-based optimization is the concept of archive. An
archive is a secondary population that stores non-dominated solutions. Its main
goal is to prevent that these solutions are not lost during the (stochastic) opti-
mization process. As a consequence, it must be updated at each generation with
newly found non-dominated individuals:

moeoArchiveUpdater<EOT> updater (archive, pop);
checkpoint.add (updater);

Moreover, it is possible to save the fitnesses of the archive’s members at each gen-
eration into a file fileName in order to study the evolution of the non-dominated
set:

moeoArchiveFitnessSavingUpdater<EOT> fitness (archive, fileName);
checkpoint.add (fitness);

2 A template is a generic description of a class or a function created as an instance of
the template at compile time.
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Performance metrics. Commonly, analyzing Pareto set approximations is done
using performance metrics. The entropy [1] and the contribution [16] are both
already provided within MOEO, but other ones can easily be implemented and
a few will be soon. For instance, it is possible to save the progression of the
entropy measured on the archive at every generation into a file fileName:

moeoEntropyMetric<EOT> entropy;
moeoBinaryMetricSavingUpdater<EOT>

metricUpdater (entropy, archive, fileName);
checkpoint.add (metricUpdater);

Elitist selection. Another major use of an archive is elitism [4,5]. It consists in
choosing individuals in the external population as well as in the current EA
population during the selection phase of the algorithm, so that non-dominated
solutions also contribute to the definition of variation operators.

eoSelectOne<EOT> popSelectOne;
eoSelectOne<EOT> archSelectOne;
selectOne = moeoSelectOneFromPopAndArch<EOT>

(popSelectOne, archSelectOne, archive, ratio);

At last, MOEO aims to constantly evolve and then, if need be, to provide further
archive-related features in order to reflect the advances of the literature.

4.3 Implemented Multi-objective Fitness Assignment Strategies

In EO/MOEO, the fitness of a solution is represented by a vector of real num-
bers for which must be specified, for each criterion, if it is to be minimized or
maximized. For multi-objective problems, fitness functions must convert raw fit-
nesses into fitness for selection. Various Pareto-based fitness assignment schemes
are already implemented in EO and MOEO (see fig. 1), but this list is not ex-
haustive as the framework perpetually evolves and provides all that is necessary
to easily implement new ones without a significant development effort.

MOGA NSGA NSGA−II SPEA SPEA2 IBEA

EO

MOEO

Fig. 1. Pareto-based multi-objective fitness assignment strategies proposed in EO and
MOEO: MOGA, NSGA, NSGA-II, SPEA, SPEA2, IBEA, . . .
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Pareto-based fitness assignment was first proposed by Goldberg [10] to solve
the problems of Schaffer’s approach [17]. He suggested to use the Pareto domi-
nance relation for ranking and selection. We here present all the fitness assign-
ment strategies provided within MOEO as well as the code that is necessary to
add or to modify in order to use them.

Pareto ranking (MOGA). In [8], Fonseca and Fleming proposed a variation of
Goldberg’s fitness assignment where a solution’s rank corresponds to the number
of solutions in the current population by which it is dominated (see fig. 2). Then,
non-dominated individuals are all assigned the same rank, while dominated ones
are penalized according to the population density in the corresponding region
of the trade-off surface. The algorithm proceeds, first, by sorting the population
according to the ranks previously determined. Then, fitness is assigned to solu-
tions by interpolating from the best to the worst individuals in the population.
Finally, fitnesses are averaged between solutions with the same rank.

eoDominanceMap<EOT> dominanceMap;
p2w = new eoParetoRanking<EOT> (dominanceMap);

Pareto sharing. As Goldberg and Deb noticed in [11], a fitness assignment like
the previous one tends to produce premature convergence, what does not guaran-
tee a uniformly sampled final Pareto approximation set. To avoid that, Fonseca
and Fleming [8] modified the strategy above by implementing fitness sharing in
the objective space to distribute the population over the Pareto-optimal region.

double nicheSize;
p2w = new moeoParetoSharing<EOT> (nicheSize);

NSGA. Srinivas and Deb [18] introduced another variation of Goldberg’s fitness
assigment in a similar way than [8], but based on Goldberg’s version of Pareto-
ranking. This algorithm, called Non-dominated Sorting Genetic Alorithm, clas-
sifies the solutions into several classes (or fronts). A solution that belongs to
a class does not dominate another one from the same class. Then, individuals
from the first front all belong to the best non-dominated set of the population;
individuals from the second front all belong to the second best non-dominated
set; and so on (see fig. 3). Logically, the best fitness value is assigned to solutions
of the first class, because they are closest to the true Pareto-optimal front of the
problem. This tends to search for solutions located in non-dominated regions.
Additionally, a fitness sharing procedure helps to distribute the population over
these regions.

double nicheSize;
p2w = new eoNDSorting_I<EOT> (nicheSize);

NSGA-II. In [6], Deb et al. introduced a modified version of NSGA. This new
algorithm, called NSGA-II, is computationnaly more efficient, uses elitism, and
keeps diversity without specifying any parameters by using a crowded tourna-
ment selection operator.
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p2w = new eoNDSorting_II<EOT> ();

SPEA. Zitzler and Thiele [23] proposed an elitist algorithm called the Strength
Pareto Evolutionary Algorithm. It maintains an external population (an archive)
that stores a fixed number of non-dominated solutions found during the opti-
mization process. For each member of the archive, a strength value, proportional
to the number of solutions this member dominates, is computed. Then, the fit-
ness of a solution is obtained according to the strength values of the archive’s
individuals that dominate it (see fig. 4). Moreover, a clustering method is used
to keep diversity.

unsigned archiveSize;
select = moeoSPSelect_I<EOT> (N, archiveSize);

SPEA2. An improved version of SPEA, namely SPEA2, has been introduced
by Zitzler et al. [22]. The three main differences of SPEA2 in comparison to its
predecessor are that it incorporates: (i) a fine-grained fitness assignment strategy
that takes into account the number of individuals that a solution dominates and
is dominated by; (ii) a density estimation technique that leads the search process
more precisely; (iii) an enhanced archive truncation method that ensures the
preservation of boundary solutions.

unsigned archiveSize;
select = moeoSPSelect_II<EOT> (N, archiveSize);

IBEA. Introduced by Zitzler and Künzli [21], the Indicator-Based Evolutionary
Algorithm (IBEA) has the characteristic to compute fitness values by comparing
individuals on the basis of an arbitrary binary quality indicator I (also called
binary performance metric). Thereby, no particular diversification mechanisms,
such as fitness sharing, is necessary. The indicator, determined according to the
decision maker preferences, denotes the overall goal of the optimization process.
Thus, the fitness of a solution measures its usefulness according to the optimiza-
tion goal. In MOEO, two binary quality indicators are proposed: the additive
ε-indicator [24] and the IHD-indicator [24] that is based on the hypervolume
concept [23] (see fig. 5). However, everything is implemented to easily develop
other indicators to be used with IBEA (see [24] for an overview about quality
indicators).

moeoSolutionVsSolutionBM<EOT> I;
double kappa; /* scaling factor */
p2w = new moeoIBSorting<EOT> (I, kappa);

New fitness assignment strategies. MOEO aims to be extensible, flexible and
easily adaptable. All its components are generic in order to provide a modular
architecture design that allows the user to quickly and conveniently develop a
new fitness assignment scheme with a minimum code writing. The aim is to
follow the new strategies coming from the litterature and, if need be, to provide
any additional components required for their implementation.
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5 Parallelism and Hybridization Design for
Multi-objective Problems Using the ParadisEO
Framework

In practice, multi-objective optimization problems are varied, they perpetually
evolve (with regards to the needs, the constraints, the objectives, etc), they
handle a high number of decision variables and they have to deal with instances
of increasing size. Despite that, the overall goal is still to find near Pareto-optimal
solutions in a tractable time. Then, classical approaches are not sufficient, and
hybridization features as well as large scale parallelism must be considered to
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tackle this kind of problem. As shown in figure 6, in addition to parallel and
distributed environments, the ParadisEO framework embeds a broad range of
features, including evolutionary algorithms (as it is based on the EO framework),
various local searches (as it is based on the MO framework) and multi-objective
mechanisms (as it is based on the MOEO framework). Furthermore, its generic
aspect allows to easily add some of its features to a MOEO-designed problem.

MO MOEO MPI

EO

ParadisEO

PThreads Globus

Fig. 6. ParadisEO architecture: Evolving Objects (EO) for the design of population-
based metaheuristics, Moving Objects (MO) for the design of solution-based metaheuris-
tics and their hybridization with EAs, Multi-Objective EO (MOEO) for multi-objective
optimization, and ParadisEO for parallel and distributed models. These models are
portable on many execution platforms thanks to the MPI, PThreads and Globus
standard libraries.

5.1 Parallel Distributed Evolutionary Algorithms

Basically, three major parallel models can be distinguished [3]: the coopera-
tive island model, the parallel population evaluation model, and the distributed
single-solution evaluation model. These models are all illustrated in figure 7.

The cooperative island model. A number of EAs are simultaneously deployed to
cooperate with the aim of improving the solutions’s robustness. Each of them
performs a search on a sub-population. Then, exchanges of genetic materials
are performed in an asynchronous way to diversify the search into the target
sub-populations. This allows to delay the global convergence, especially when
the EAs are heterogeneous with respect to the variation operators. Individuals
migrations are conducted by various parameters and are performed in a regular
or irregular way.

The parallel population evaluation model. The evaluation step of an EA is gen-
erally the most time-consuming. Therefore, in order to speed up the search,
this centralized parallel model distributes the evaluation of the evolving popula-
tion. As they require a global management of the population, the selection, the
transformation and the replacement operations are applied by a master process.
At each generation, it distributes the set of newly generated solutions between
different workers that evaluate and return back these solutions as well as their
fitness values. A particularly efficient execution is often obtained when the ratio
between communication and computation is high.
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Fig. 7. Three major parallel models for multi-objective EAs

The distributed single-solution evaluation model. The fitness of each solution
is evaluated in a parallel centralized way. Such a model is especially interest-
ing when the evaluation of a solution can be itself parallelized as it requires,
for instance, an access to large databases distributed among various processing
nodes.

Those three parallel and distributed models are all provided within Par-
adisEO [3]. They are implemented using MPI, PThreads and Globus standard
libraries, and are thus portable on different execution platforms such as parallel
computing, cluster computing, internet computing and grid computing. More-
over, their deployement is transparent as the user does not need to manage the
communications and threads-based concurrency.

5.2 Hybridization

Hybridization have acquired a considerable interest in the field of optimization
these last years [19]. A wide variety of hybrid approaches exists in the literature.
And, for many academic and real-world applications, best found solutions are
obtained by hybrid algorithms. In the multi-objective context, EAs are generally
hybridized with local search methods in order to apply the local search algorithm
on a selected individual, or to find non-dominated solutions in the neighborhood
of an interesting region of the objective space. In [19], two levels (low and high)
and two modes (relay and cooperative) of hybridization are distinguished.

The low-level hybrid algorithms address the functional composition of a single
optimization method. A given function of a metaheuristic is replaced by another
metaheuristic. For high-level hybridization, the different metaheuristics are self-
contained. There is no direct relationship between the internal workings of a
metaheuristic. Besides, for relay hybridization, a set of metaheuristics is applied
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the one after another in a pipeline way, each one using the output of the previous
one as its input. Contrarily, cooperative hybridization represents a teamwork
optimization model in which parallel cooperating agents perform a search in a
solution space and exchange solutions with the others.

The ParadisEO framework provides all these most common hybridization
mechanisms [3] that can thus directly be applied to a MOEO-designed appli-
cation in a fast and simple way. They can naturally be exploited to make coop-
erating metaheuristics belonging either to the same or to different families.

6 Applications

ParadisEO and MOEO have been applied to many areas where multi-objective
optimization is required. Before presenting three examples of applications drawn
from varied fields that have been implemented within MOEO, we will introduce
some prerequisites concerning performance evaluation and results analysis.

6.1 Preliminaries: GUIMOO

In multi-objective optimization, a fundamental part is the performance compar-
ison of various algorithms. Therefore, the question arises on the way of evaluat-
ing the quality of Pareto set approximations. To achieve that, let us introduce
GUIMOO3 (a Graphical User Interface for Multi-Objective Optimization). This
platform-independant free software is dedicated to the analysis of results for
multi-objective optimization and is able to handle different input and output
formats. Its main features are:

– The on-line and off-line visualization (in 2 or 3 dimensions) of Pareto set
approximations. A Pareto set approximation can be characterized by its
(dis)continuity, (dis)convexity, multi-modality, . . . Such an information can
be useful to help an expert to build more efficient metaheuristics.

– A number of metrics for quantitative and qualitative performance evaluation
or comparison [24] (contribution, entropy, generational distance, spacing,
coverage of two sets, coverage difference, S-metric, D-metric and R-metrics).

Furthermore, GUIMOO aims to be generic. Its architecture allows to easily cus-
tomize it in order to provide more functionalities to tackle specific applications
(telecom, genomics, engineering design, etc).

6.2 Examples

MOEO has been experimented on different academic and industrial problems. In
this section, we present three applications that show the wide range of potential
of this framework as it has been applied to scheduling problems, continuous
optimization and data-mining applications.
3 GUIMOO is available at http://guimoo.gforge.inria.fr

http://guimoo.gforge.inria.fr
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A bi-objective flow-shop scheduling problem. The flow-shop is one of the most
widely investigated scheduling problem of the literature. But, the majority of
studies considers it on a single-criterion form. However, other objectives than
minimizing the makespan can be taken into account, like, e.g., minimizing the
total tardiness.

Electromagnetic properties of conducting polymer composites in the microwave
band. Due to the proliferation of electromagnetic interferences, designing pro-
tecting material for high frequencies equipments has become an important prob-
lem. In [14], a new multi-objective model is proposed to design the different
layers of a conducting polymer. To solve this model, a multi-objective continuous
genetic algorithm is used. This algorithm offers several solutions with different
physical properties and different costs.

Knowledge discovery in biological data from microarray experiments. The prob-
lem of analyzing microarray data is actually a major issue in genomics. Often
used techniques are clustering and classification. In [13], the authors propose
to analyze those data through association rules. The problem is modeled as a
multi-objective rule mining problem and a genetic algorithm is used to explore
the large search space associated. Thence, MOGA permitted to present previ-
ously undiscovered knowledge.

7 Conclusion and Perspectives

In this paper, we introduced ParadisEO-MOEO, a framework dedicated to the
reusable design of evolutionary multi-objective optimization applications4. It
provides the most common Pareto-based multi-objective fitness assignment she-
mes (MOGA, NSGA, NSGA-II, SPEA, SPEA2, IBEA, . . . ) as well as fitness
sharing and a wide range of archive-related features such as non-dominated so-
lutions storage, elitism and performance metrics computation. Moreover, the
whole version of ParadisEO, a complete framework for the design of paral-
lel/distributed and hybrid metaheuristics, and GUIMOO, a software for the
analysis and the comparison of Pareto set approximations, have both been pre-
sented. These frameworks have all been applied to many type of applications,
from academic to real-world problems.

ParadisEO-MOEO is an open-source white-box object-oriented framework
that aims to simplify and speed up the incremental implementation of a whole
efficient multi-objective optimization program. In order to confer a maximum
design and code reuse, it is based on a clear conceptual distinction between the
metaheuristics and the problem representations. This separation is expressed at
the implementation level, and the hierarchical classes that are provided allow
the designer to extend the framework by inheritance or specialization. Further-
more, the fine-grained components of ParadisEO-MOEO confer a high flexibil-
ity compared to other frameworks. Modifying existing components or adding
4 ParadisEO-MOEO is available at http://paradiseo.gforge.inria.fr

http://paradiseo.gforge.inria.fr
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new ones can easily be done without impacting the whole application. Besides,
ParadisEO-MOEO is a part of the ParadisEO framework that covers the most
common parallel/distributed models and hybridization mechanisms. The user
can thus directly include some ParadisEO features into an application designed
using ParadisEO-MOEO in a fast and simple way.

In the future, ParadisEO-MOEO needs to constantly evolve in order to reflect
the advances of the literature. New Pareto-based fitness assignment strategies as
well as new performance metrics for Pareto set approximations should also be
proposed before long. Moreover, a major extension of ParadisEO-MOEO would
be to allow the design of exact methods as well as their hybridization with al-
ready provided metaheuristics. Besides, it would be interesting to introduce new
specific concepts emerging from multi-criterion optimization such as the consid-
eration of uncertainty through stochastic or fuzzy multi-objective problems.
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Abstract. The inadequacy of classical methods to handle resource al-
location problems (RAPs) draw the attention of evolutionary algorithms
(EAs) to these problems. The potentialities of EAs are exploited in the
present work for handling two such RAPs of quite different natures,
namely (1) university class timetabling problem and (2) land-use man-
agement problem. In many cases, these problems are over-simplified by
ignoring many important aspects, such as different types of constraints
and multiple objective functions. In the present work, two EA-based
multi-objective optimizers are developed for handling these two prob-
lems by considering various aspects that are common to most of their
variants. Finally, the similarities between the problems, and also between
their solution techniques, are analyzed through the application of the de-
veloped optimizers on two real problems.

1 Introduction

A resource allocation problem (RAP) involves the allotment of limited amount
of resources to certain number of competitive events for achieving the most ef-
fective allotment of resources. It is a combinatorial optimization problem, and
encountered in a variety of areas in operations research and management science,
such as load distribution, production planning, computer scheduling, portfolio
selection, apportionment, and so on. An RAP usually contains huge number of
integer variables and constraints, a discrete search space, and multiple objec-
tives, which make classical methods, such as linear and integer programming
approaches, inadequate to handle RAPs. These inadequacy of classical meth-
ods draw the attention of non-classical techniques towards RAPs, among which
evolutionary algorithms (EAs) are the widely preferred non-classical techniques.
The potentialities of EAs are exploited in the present work for handling two
such RAPs of quite different natures, namely (1) university class timetabling
problem and (2) land-use management problem. The class timetabling prob-
lem involves the scheduling of classes1, students, teachers and rooms at a fixed
number of time-slots. Traditionally, the problem is solved manually by trial and
hit method, where a valid solution is not guaranteed. Even if a valid solution
1 A class is a meeting of a group of students and a teacher in a room for a lecture.
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is found, it is likely to miss far better solutions. These uncertainties motivate
for the scientific study of the problem, and to develop an automated solution
technique for it. Despite multiple criteria to be met simultaneously, the problem
is generally tackled as a single-objective optimization problem. Moreover, most
of the earlier works are concentrated on school timetabling, and only a few on
university class timetabling. On the other hand, in many cases, the problem is
over-simplified by skipping many complex class-structures, such as multi-slot,
split, combined and group classes. Land-use management is another scheduling
problem, where different competitive land uses, such as agriculture, forest or in-
dustries, are to be allocated to different units of a landscape to meet the desired
objectives of land managers [29]. The problem has emerged today as a problem
of great concern. Due to increasing human activities on land to meet various
demands, land and its resources have been under tremendous pressure, which
are causing significant transformations of land for a variety of land uses. Most
of the land use changes occur without any logical planning to their long-term
environmental impacts. Global warming, soil degradation, deforestation, loss of
biodiversity, are all consequences of mismanagement of land and its resources.
Thus, various land-use management practices are to be understood for develop-
ing an integrated land-use policy framework for improving soil quality, ensuing
biomass production and food security, maintaining environmental stability, and
extending socio-economic benefits [14]. These incommensurable objectives can
be achieved only through optimization tools. Owing to the difficulty of deploying
field experiments for direct assessment, it is important to enhance the knowl-
edge by developing mechanistic models through extensive study. However, the
problem is very new to the computational community, and only a little work has
been done so far in this area. NSGA-II-UCTO and NSGA-II-LUM [8,9], two ver-
sions of EA-based multi-objective optimizer NSGA-II [11], are developed in the
present work for optimizing university class timetabling problem and land-use
management problem, respectively. NSGA-II-UCTO is applied for scheduling
the classes of Indian Institute of Technology Kanpur, where much better solu-
tions are obtained than a manually prepared solution which is in use. On the
other hand, NSGA-II-LUM is applied to a Mediterranean landscape from South-
ern Portugal. However, due to non-availability of any existing solution for this
landscape, the performance of NSGA-II-LUM could not be compared.

2 Related Works

The class timetabling problem drew the attention of the researchers starting
with the study of Gotlieb [15], who formulated the problem by considering that
each lecture contained one group of students, one teacher, and any number of
time-slots which could be chosen freely. Since then the problem is being studied
using different methods under different conditions. Initially it was mostly applied
to schools. Since the problem in schools is relatively simple because of their sim-
ple class structures, classical methods, such as linear or integer programming
approaches [19,30], could be used easily. However, the gradual consideration of
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different cases of universities, which contain different types of complex classes, is
increasing the complexity of the problem. As a result, classical methods become
inadequate to handle the problem, particularly the huge number of integer vari-
ables, a discrete search space, and multiple objective functions, involved with
it. These inadequacy of classical methods draw the attention of non-classical
techniques to this problem. Worth mentioning non-classical techniques, that are
being used to the problem, are genetic algorithms (GAs) [1,5], neural network
[22], and tabu search algorithm [6]. However, compared to other non-classical
methods, the widely used are the GAs/EAs. This might be due to the reason
that once the objectives and constraints are defined, EAs appear to offer good
solutions by evolving without a problem solving strategy [2]. A few worth men-
tioning EAs, used to solve this problem, are found in [1,4,8]. In case of land-use
management problem, Bhadwal and Singh [3] made a comparative estimate of
land-use and carbon sequestration potential under land-use and relative biomass
changes. Other works on the carbon sequestration potential can be found in
[17,21]. Liu and Bliss [20] simulated the influences of rainfall-induced soil ero-
sion and deposition on carbon dynamics in soil profiles. Due to the same reasons
as in the case of class timetabling problem, classical methods are not fully ca-
pable to handle this problem also. Hence, non-classical techniques, particularly
GAs/EAs, are motivated to handle the problem [13]. Matthews et al. [23,24]
explored the potential of applying GAs to spatially integrated land-use manage-
ment problem. A bi-objective GA is developed in one work [25] to define the
trade-off structure of the objective functions. Stewart et al. [29] used another bi-
objective GA to a spatially integrated problem. Seixas et al. [27] also proposed
a bi-objective EA to study future land-use configuration.

3 Class Timetabling and Land-Use Management
Problems as Multi-objective Optimization Problems

In the present work, both the class timetabling and land-use management prob-
lems are modelled as multi-objective optimization problems, subject to a number
of constraints which are common to most of their variants.

3.1 Objective Functions in University Class Timetabling Problem

The class timetabling problem involves several criteria that must be satisfied
simultaneously, such as compliance with regulations, proper utilization of re-
sources, and satisfaction of people’s preferences [28], which are generally known
as soft constraints. Many researchers transform all such constraints into a sin-
gle one by using a pre-defined weightage to each constraint, and then treat it
as the only objective function of the problem [1,4,26]. However, this approach
is likely to miss good solutions as the weightages of different constraints are
usually not known beforehand. Hence, the problem essentially becomes a multi-
objective optimization problem, where each constraint can be treated as an ob-
jective function with an automatically adjusted weightage. However, though the



404 D. Datta, K. Deb, and C.M. Fonseca

imposition of excess objectives would produce a greater preferred timetable, but
it will increase the computational complexity of a problem. Hence, the number
of objectives should be as less as possible. Only the following two conflicting
objectives are considered in the present work:

1. Minimize the average number of weekly free time-slots between two classes
of a student (f1), and

2. Maximize the weekly average span of time-slots of classes of a teacher (f2).

The objective function f1 implies a compact timetable, whereas f2 conflicts with
it, and seeks a well-spread timetable.

3.2 Objective Functions in Land-Use Management Problem

In this case also, the problem was handled earlier as a single-objective optimiza-
tion problem with the only aim of either increasing the productivity or fulfilling
the immediate need. This has caused a numerous damage to the environment in
long term, such as global warming, soil degradation, loss of biodiversity, and so
on. Hence, to safeguard the environment from destroying further, it has become
urgent need to address different issues, such as improving soil quality, ensuing
biomass production and food security, maintaining environmental stability, and
extending socio-economic benefits [14]. These different issues often conflict with
each other, and require the problem to be treated as a multi-objective optimiza-
tion problem. Realizing the urgent needs of the current society, the following
three objective functions are considered in the present work:

1. Maximize net present economic return (f1),
2. Maximize net amount of carbon sequestration (f2), and
3. Minimize net amount of soil erosion (f3).

The objective functions f2 and f3 are burning issues to today’s researchers as
the remedies to global warming and soil degradation.

3.3 Constraints in University Class Timetabling Problem

The number and type of constraints in this problem vary from university to
university. The following six types of constraints, which are known as hard con-
straints and must be satisfied by a solution, are considered in the present work.

1. A student should have only one class at a time.
2. A teacher should have only one class at a time.
3. A room should be booked only for one class at a time (a set of combined

classes2 may be treated as a single class).
4. A course3 should have only one class on a day.
5. A class should be scheduled only in a specific room, if required, otherwise in

any room which has sufficient sitting capacity for the students of the class.
6. A class should be scheduled only at a specific time-slot, if required.
2 Six different types of classes, namely single-slot, multi-slot, split, combined, open

and group classes, are considered in the present work [8].
3 A course is a subject to be studied, e.g. Theory of Optimization, or Fluid Mechanics.
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3.4 Constraints in Land-Use Management Problem

Constraints in this problem arise from various factors. For instance, the produc-
tivity of a land-use depends on spatial and temporal conditions of a landscape,
availability of water, its influence on runoff, and so on [16]. Landscape ecol-
ogy and biodiversity are also major issues to be taken into account during any
management planning [13]. Based on such requirements, the constraints in this
problem can be classified as below [27]:

– Physical constraints on geomorphological structure:
1. A unit should be assigned a land-use, only if the soil in it is permitted

to hold that land-use,
2. The slope of a unit should be within the permitted range of slope for the

land-use applied in that unit,
3. The aridity index of a unit should be within the permitted range of

aridity index for the land-use applied in that unit, and
4. Topographic soil wetness index (TSWI) of a unit should be within the

permitted range of TSWI for the land-use applied in that unit.

– Ecological constraints on spatial coherence:
1. Area in a patch4 of a land-use should be within the permitted range of

area in a patch for that land-use, and
2. Total area under a land-use in a landscape should be within the permit-

ted range of total area for that land-use.

4 NSGA-II-UCTO and NSGA-II-LUM

Two chromosome representations and a number of EA operators (crossover and
mutation operators) are proposed in the present work for class timetabling and
land-use management problems [8,9]. Few guidance are also proposed to speed up
EA search by satisfying some constraints. Then those are incorporated in NSGA-
II [11], an EA-based multi-objective optimizer, and named them as NSGA-II-
UCTO (NSGA-II as university class timetable optimizer) and NSGA-II-LUM
(NSGA-II in land-use management). The proposed chromosome representations,
EA operators and guidance, along with the salient features of NSGA-II-UCTO
and NSGA-II-LUM, are stated briefly in the following subsections.

4.1 Chromosome Representations

The chromosome representation, proposed in the present work for handling class
timetabling problem, is a two-dimensional matrix. Each column of the matrix
represents a time-slot, and a row represents a room, i.e. a chromosome is a vector
of time-slots (genes), and a time-slot is a vector of rooms. Hence, as shown in
Fig. 1, the value of each cell of the matrix represents the class scheduled in the
corresponding room and time-slot. In this representation, it is not required to
4 A patch in a landscape is a set of contiguous units under the same land-use.
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go through the entire chromosome to check if, at any particular time, more than
one class were scheduled in a room, or to a teacher or student. The column
of the matrix, representing that time-slot, is sufficient for checking any such
possibility. Moreover, complex classes, such as multi-slot, split, combined and
group classes, can also be easily scheduled and checked. For example, Fig. 1
shows the scheduling of 2-slot class C35 in room R3 at time-slots T2 and T3, and
combine classes C17 and C36 in room Rr at time-slot T3. On the other hand, the

R/T T1 T2 T3 .. Tj .. Tt

R1 C20 C11 C39 ... C05 ... C16

R2 C33 C21 C15 ... C40 ... C12

R3 C01 C35 ... C07 ... C08

.. ... ... ... ... ... ... C27

Rk C13 C02 C14 ... C22 ... C38

.. ... ... ... ... ... ... C18

Rr C06 C04
C17

... C28 ... C31
C36

Fig. 1. Representation of class timetable
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Fig. 2. Representation of a landscape

chromosome representation, proposed here for land-use management problem, is
a two-dimensional grid of genes. In this representation, the position of each gene
represents a unit of a landscape, and its value determines the land-use for that
unit. In addition to the two-dimensional grid, a third dimension is also used in
this representation to represent the dynamics of a landscape over a planning
horizon, i.e. a chromosome is a two-dimensional grid of genes, where each gene
is again a vector of years of the planning horizon. This representation is shown
diagrammatically in Fig. 2, where the position of a gene in ij-plane represents a
unit and its value gives the land-use for that unit, and the t-th axis represents
the years of the planning horizon.

4.2 Crossover Operators

Unlike traditional crossover operators, where few random genes are exchanged
between two parent solutions to generate two offspring, a special crossover op-
erator (XVRA) is developed in the present work for university class timetabling
problem. On the other hand, a problem independent crossover operator (XTD)
is adopted from [7] for land-use management problem.

– Crossover for Valid Resource Allocation (XVRA): In XVRA, devel-
oped for class timetabling problem, a random feasible portion of an offspring
is first generated by two parent solutions. For instance, in generating the first
offspring, some genes are randomly selected from two parents, and the infor-
mation in them are transferred to the corresponding genes of the offspring.
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However, for maintaining the feasibility of the offspring, only those informa-
tion from the second parent should be transferred for which no constraint
is violated. Finally, the remaining portion of the offspring is completed by
a heuristic approach (HA) (addressed in Sect. 4.4). The HA is used for gen-
erating only feasible offspring. Similarly, the second offspring is generated
from the second parent, assisted by the first parent and the HA.

– Two-Dimensional Crossover (XTD): XTD is originally developed by
Datta and Deb [7] for topology optimization of structures. It is a prob-
lem independent operator, and based just on two-dimensional structure of
a problem. The working procedure of XTD is also very simple. A chromo-
some is first divided into four blocks by a randomly selected pair of row and
column, and then a random block is exchanged with a similar one from an-
other chromosome. In land-use management problem, it works in exchanging
one or more patches/parts of patches. However, XTD can not preserve the
feasibility of solutions of this problem.

4.3 Mutation Operators

Like XVRA, a special mutation operator (MRRA) is developed in the present
work for class timetabling problem. Similarly, two spacial mutation operators
(MBC and MSIS) are developed here for land-use management problem. MRRA
and MBC generate offspring in the respective problems, and MSIS steers infea-
sible offspring of land-use management problem towards feasible region.

– Mutation for Reshuffling Resource Allocation (MRRA): In MRRA,
allotment of resources to events are reshuffled. In case of class timetabling
problem, it swaps classes at two slots. Two random time-slots are first taken,
and then the classes in each room at those time-slots are swapped, provided
no constraint is violated. If any multi-slot class appears in any room, the
range of the time-slots are expanded accordingly. Similarly, the number of
rooms to be handled at a time is expanded if any group class appears in any
room. If the classes of any room cannot be swapped due to the violation of
any constraint, an attempt may be made for that room by taking another
pair of random time-slots.

– Mutation on Boundary Cells (MBC): The main function of an opti-
mizer, in land-use management problem, is to alter the size of a patch of a
land-use to meet the objectives of a problem. When the size of a patch is
reduced, the size(s) of one or more of its adjacent patches is(are) increased.
The size of a patch can be reduced by replacing the land uses of its boundary
cells with those of its adjacent cells. MBC is developed by exploiting this
problem information. All the boundary cells of a solution are first sorted
out. Then a boundary cell is chosen randomly with some probability, and
its land-use is replaced as above, provided the new land-use is applicable in
that boundary cell.

– Mutation for Steering Infeasible Solution (MSIS): MSIS is developed
here for steering infeasible solutions towards feasible region. It is not explic-
itly a repairing mechanism, but mutation is performed only in those patches
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which violate minimum patch-size constraints. If the area of the patch, in
which a chosen boundary cell belongs, is less than its minimum requirement,
the adjacent cells of the boundary cell, having different land uses than in the
patch, are merged in the patch, provided the new cells satisfy the physical
constraints for the land-use of the patch.

4.4 Guidance to Speed Up the Search for Optimum Solutions

In general, EAs are capable enough to handle infeasible solutions. However,
sometimes they suffer from huge computational time, or may even fail, in han-
dling infeasible solutions of many complex problems [8]. Though MSIS is devel-
oped to take care of infeasible solutions in land-use management problem, its
progress is very slow. Hence, to speed up EA search, one heuristic approach for
generating feasible solutions in class timetabling problem, and two other guid-
ance for generating near feasible solutions in land-use management problem are
proposed here.

1. Heuristic Approach (HA) for University Class Timetabling Prob-
lem: It is observed in [8] that, in order to get a feasible solution, random
scheduling of classes may not work. Rather classes should be scheduled in
some order, based on the complexities of classes. Hence, a sequential Heuris-
tic Approach (HA) is developed here, where classes are first sorted in descend-
ing order of their complexities, and then rooms and time-slots are assigned
to them. The detail of the approach is as below:
(a) All classes are first sorted in the following order:

i. Ascending order of number of specific time-slots. If not mentioned,
this number for a class is the number of total available time-slots.

ii. If numbers of specific time-slots are equal, descending order of num-
ber of time-slots per class.

iii. If numbers of specific time-slots as well as numbers of time-slots/class
are equal, ascending order of number of specific rooms. If not men-
tioned, this number for a class is the number of total available rooms.

iv. If numbers of specific time-slots, numbers of time-slots/class as well
as numbers of specific rooms are equal, preference to group/split
classes (group classes are not supposed to be split).

(b) Once the sorting of classes is over, they are taken in order to assign
rooms and time-slots to them, respecting hard constraints. Since sitting
capacity of a room also plays an important role in this problem, a class
may be first scheduled in a random room, and then an exhaustive search
may be performed among the remaining rooms for finding a suitable
smaller one. This will avoid the possibility of occupation of an over-size
room by a smaller class, which can be used for a bigger class.

2. Guidance-1 for Land-Use Management Problem: During initializa-
tion, an attempt may be made for satisfying, if possible, the patch-size con-
straints by scheduling a land-use in sufficient number of contiguous units.
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3. Guidance-2 for Land-Use Management Problem: During optimization
process, a patch, having less area than the specified one, may be deleted. This
can be made by merging the cells of the patch in its adjacent patches, where
the physical constraints for the merging cells are satisfied.

4.5 Salient Features of NSGA-II-UCTO and NSGA-II-LUM

1. One of the chromosome representations of Sect. 4.1 (as applicable to NSGA-
II-UCTO/NSGA-II-LUM) is used to form an EA population of N solutions.

2. The HA or Guidance-1 (as applicable to NSGA-II-UCTO/NSGA-II-LUM),
addressed in Sect. 4.4, is used to initialize the solutions of the population.

3. Crowded tournament selection operator is used to form a mating pool of N
solutions. It is done by randomly selecting two solutions from the popula-
tion, and sending a copy of the best one to the mating pool. The process is
continued until the mating pool is filled up with N solutions. The mating
pool is later used by EA operators for generating offspring [11].

4. XVRA/XTD (as applicable to NSGA-II-UCTO/NSGA-II-LUM), addressed
in Sect. 4.2, is used for generating a new population of N offspring.

5. MRRA/MBC (as applicable to NSGA-II-UCTO/NSGA-II-LUM), addressed
in Sect. 4.3, is used for mutating the offspring of the new population.

6. MSIS, addressed in Sect. 4.3, is used in NSGA-II-LUM for steering an infea-
sible offspring, if any, towards the feasible region.

7. Next, the Guidance-2, addressed in Sect. 4.4, is used in NSGA-II-LUM for
satisfying patch-size constraints, as much as possible.

8. Both the populations, obtained so far, are combined to form a combined
population of 2N solutions.

9. Based on ranks and crowding distances [11], the best N solutions from the
combined population are picked up to form a single population.

10. Steps (3)-(9) are repeated for required number of generations.
11. Results of the final population are accepted as the optimum results.

To enhance the probabilities of true convergence of NSGA-II-LUM, a local search
strategy [12] is also proposed to use to the final Pareto front of NSGA-II-LUM.
The search is applied to each boundary unit of a solution, and the land-use in
it is replaced by the one in one of its adjacent units. However, the change is
accepted only if some improvement is found in the solution.

5 Two Case Studies (IITK2 and LBAP)

Two real problems are considered in the present work, one is the class timetabling
problem of Indian Institute of Technology Kanpur (IIT-Kanpur) and the other
is the land-use management for a Mediterranean landscape, located in Baixo
Alentejo, Southern Portugal. The class timetable of IIT-Kanpur is composed of
two phases. The first phase contains the common compulsory classes of its all
under-graduate programmes (B.Tech and integrated M.Sc), and the timetable
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of this phase is prepared by a central team. Then the available time-slots and
rooms are allotted to individual departments to prepare the second phase of the
timetable, where departments schedule their all compulsory and open classes.
The scheduling of even-semester classes is considered in the present work, and
it is named here as IITK2 in short (detail of IITK2 is available in [10]). In ad-
dition to the classes of the first phase, slots for departmental compulsory and
open classes of B.Tech programme of one department are also included in IITK2.
This inclusion is only for illustrative purpose to show that both the phases of
a timetable can be scheduled by a single team only. Class-structures of IITK2
are very complex, which include different types of classes, such as single-slot,
multi-slot, split, and group classes. Laboratory classes are spanned over 3 con-
secutive time-slots, and many of them are split up to 5 parts. Most of the tutorial
classes are grouped, and few groups contain up to 20 classes. Total number of
only common compulsory classes is 242, where there are 11 simple single-slot, 12
three-slot split, and 219 single-slot group classes. These classes, spanning over
266 time-slots, are to be taught to around 2000 students by 103 teachers, and
to be scheduled in 40 rooms (including laboratories) in 5 days/week, where each
day has 8 time-slots. The objective functions and constraints in the problem
are the same with those of Sect. 3.1 and 3.3, respectively. Hence, as per the
formulation in [8], the total number of constraints, involved only with common
compulsory classes, is (S+M+R)TD+CD+3E=47071, where S, M, R, T, D,
C and E represent, respectively, the total numbers of students, teachers, rooms,
time-slots/day, days/week, courses, and classes. The land-use management prob-
lem of the landscape of Baixo Alentejo is named here as LBAP in short. The
latitude and longitude at the centroid of the landscape are 3800′50.3′′N and
7051′56.94′′W, respectively. According to the available data of LBAP (detail of
LBAP is available in [9,27]), the landscape is divided into 100×100 units, each
unit of which is subject to a number of physical constraints as mentioned in
Sect. 3.4. Five different land uses, namely annual agriculture, permanent agricul-
ture, mixed agriculture, forest, and shrubs, are allowed in the landscape, which
are subject to two ecological constraints as mentioned in Sect. 3.4. Hence, as per
the formulation in [9], there are total 100×100= 10000 physical constraints, and
2(

∑5
e=1 Ne+5) ecological constraints, where Ne is the number of patches under

land-use e. The number of ecological constraints is not fixed, but varies with the
number of patches under a land-use in a particular instance.

5.1 NSGA-II-UCTO to IITK2

It is shown elsewhere [8] that, even if NSGA-II-UCTO is able to handle in-
feasible solutions, its progress is very slow. Hence, no attempt is made here
to test whether NSGA-II-UCTO can be applied with less guidance by allow-
ing constraint violation. Instead of that, it is applied directly maintaining the
feasibility of solutions. Presently IITK2 is solved manually with the only aim
of producing a feasible timetable. Applying NSGA-II-UCTO, not only feasible,
but much better solutions than a manually prepared one could be obtained. A
comparison plot of the results for common compulsory classes of IITK2 is shown
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Fig. 3. Manual and different simulated solutions of IITK2

in Fig. 3(a). Points A and B represent, respectively, single-objective optimiza-
tion of f1 and f2 under crossover probability (pc)= 0.90 and evolving mutation
probability (pm). Curve D is the Pareto front of multi-objective optimization
under pc = 0.90 and evolving pm, while curve E is that under evolving pm only
(no crossover). Point C is the manually prepared result which is in use. It is
observed that the solutions, obtained from both the single-objective and multi-
objective optimization, are better than a manually prepared solution. In case
of multi-objective optimization, Pareto fronts of which are shown separately in
Fig. 3(b), variation in f2 is very small. This might be due to the fact that most
of the classes of IITK2 are grouped, for which it is very tough to shift classes
to different slots. IITK2 is tested separately with combined XVRA and MRRA,
and MRRA alone. Plots of one run with combined XVRA and MRRA are shown
in Fig. 4. It is observed in Fig. 4(b) that on an average of 5minutes 35 seconds per
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Fig. 4. Multi-objective solutions of IITK2 (pc = 0.90 and pm = 0.01)

generation is required by XVRA. Total execution time of 465 hours 14minutes
39 seconds, in Linux environment in a Pentium IV machine with 1.0GB RAM
and 2.933GHz processor, is required for 5000 generations. When solved IITK2
using MRRA alone, total execution time for 5000 generations comes down to
11 hours 31minutes 42 seconds only. However, both visual observation and sta-
tistical comparison test [18], conducted on a number of runs, show that the over-
all performance of NSGA-II-UCTO is better with combined XVRA and MRRA
than with MRRA alone. Compared Pareto fronts of both the cases for three
different runs are shown in Fig. 5. While studying different cases of IITK2, it
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is also noticed that NSGA-II-UCTO has the tendency for scheduling particular
classes in particular slots in different solutions. The percentage of classes in the
same slots increases with the increasing complexities of classes.

5.2 NSGA-II-LUM to LBAP

LBAP is considered under XTD, MBC, MSIS, and the two guidance of Sect. 4.4.
EA parameters, pc and pm, are chosen as 0.9 and 0.05, respectively. Then NSGA-
II-LUM is executed for 5000 generations, with 50 solutions in its population,
which take 82 hours 3minutes 52 seconds. Local search strategy takes another
56minutes 59 seconds for 50 solutions of the final Pareto front of NSGA-II-LUM.
It is observed in Fig. 6(a) that significant improvements in both values and spread
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Fig. 6. Solution of LBAP under pc =0.90 and pm =0.010

of the Pareto front are obtained from the local search. Fig. 6(b) shows that most
of the computational time is required by MBC, which takes around 59 seconds
per generation. While studying the distribution of land uses in different solutions
of LBAP (two solutions are shown in Fig. 7), it is observed that NSGA-II-LUM
has the tendency for allocating particular land uses in particular locations of the
landscape. Permanent agriculture is always allocated over the entire landscape,
except the South-West corner where shrubs are allocated. Annual agriculture is
also mostly preferred in the South-West corner. However, there is no preference
of specific locations for mixed agriculture and forest, and these are allocated over
the entire landscape.
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(a) f1=84495, f2=6698,
f3=511877, Aa=17.58,
Ap=29.32, Am=13.73,
Af=29.33, As=10.04
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Fig. 7. Distribution of land uses in LBAP

6 Similarity Among RAPs

During the above study on class timetabling and land-use management problems,
a number of similarities between the problems, and also between their solution
techniques, are encountered, which are summarized below:

– Similarities between the problems:
1. Both are highly constrained, and spatial and temporal-based multi-

objective combinatorial optimization problems.
2. In class timetabling problem, each event (class) is required to be sched-

uled exactly once, while an event (land-use) in land-use management
problem may be scheduled multiple times within a certain range. These
requirements slightly differ the problems from one another.

– Similarities between their solution techniques:
1. Classical methods are not fully capable to handle the problems, and

hence, non-classical techniques are motivated for these problems.
2. Both NSGA-II-UCTO and NSGA-II-LUM need some guidance to speed

up the search for optimum solutions, or even for feasible solutions.
3. Individual problem information can be exploited for designing similar

chromosome representations and EA operators for both the problems.

7 Conclusions

It is learnt that classical methods, such as linear and integer programming ap-
proaches, are not fully capable to handle resource allocation problems (RAPs),
particularly the huge number of integer variables and constraints, a discrete
search space, and multiple objectives, involved with an RAP. Hence, non-classical
heuristic techniques, such as evolutionary algorithms (EAs), are motivated for
these problems. In the present study, the potentialities of multi-objective EAs are
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exploited for handling two such RAPs, namely (1) university class timetabling
problem and (2) land-use management problem. During the study, it is observed
that similar chromosome representations and EA operators, based on individual
problem information, can be used in both the problems. Future reseach may
attempt to design more general representations and operators, by reducing their
dependency on individual problem information. Such operators would possibly
reduce the huge computational time as involved with the present operators. The
EAs, developed in the present study, are either to be fed by feasible/near feasible
solutions or to be provided some run-time guidance to speed up the EA search.
An attempt may also be made to increase their flexibility in handling infeasible
solutions. On the other hand, the present study is based on NSGA-II only. Other
evolutionary multi-objective optimizers (EMOs) may be attempted to compare
the performance of different EMOs on RAPs.
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Abstract. Multi-Objective Evolutionary Algorithms (MOEA) have
been succesfully applied to solve control problems. However, many im-
provements are still to be accomplished. In this paper a new approach
is proposed: the Multi-Objective Pole Placement with Evolutionary Al-
gorithms (MOPPEA). The design method is based upon using complex-
valued chromosomes that contain information about closed-loop poles,
which are then placed through an output feedback controller. Specific
cross-over and mutation operators were implemented in simple but effi-
cient ways. The performance is tested on a mixed multi-objective H2/H∞
control problem.

Keywords: Multi-objective control; Pole placement; Evolutionary
Algorithms.

1 Introduction

Most control design problems can be solved using numerical optimization. Thus,
Multi-Objective Evolutionary Algorithms (MOEA) have been successfully ap-
plied for this purpose, provided the problem is non-convex in the optimization
parameters and cannot be efficiently solved by conventional local optimization
algorithms [1]. To illustrate this point, let’s review five previous related publica-
tions. Note that an excellent survey can be found in [2].

In 1995, Fonseca and Fleming [3] developed an approach to multiple objective
and constraint handling with genetic algorithms, with application to control
system design. A Multiple Objective Genetic Algorithm (MOGA) was proposed,
which is still frequently used in many applications.

In 1995, Whidborne et al [4] compared the performance of three search me-
thods. Two were based on hill-climbing techniques: Nelder-Mead Dynamic Min-
Max (NMDM) and Moving Boundaries Process (MBP). The third was precisely
MOGA. The three were found to be useful for interactive multi-objective con-
troller design. Besides, the author introduced MODCONS: a MATLAB toolbox
for Multi-Objective Design of Control Systems.

In 2000, Herreros [5] proposed an algorithm for Multi-objective Robust Con-
trol Design (MRCD). It was tested against a Linear Matrix Inequalities (LMI)
approach for mixed multi-objective H2/H∞ control problems. An adaptive
search space was proposed, motivated by two reasons: the selection of the initial

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 417–427, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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population and the delimitation of the search space. In fact, these are still open
problems in the field.

In 2005, Liu and Ishihara [6] discussed the use of multi-objective genetic
algorithms and the method of inequalities. The performance of the proposed
design method was tested on a special set of benchmark control problems.

In 2006, Molina-Cristobal et al [7] compared MOGA against a LMI approach
to find the trade-off of a multi-objective H2/H∞ control problem. The author
asserted that MOGA could find an improved Pareto-optimal front compared to
the LMI approach.

Despite all this important work, many improvements remain still to be accom-
plished. This includes elements like parameters tuning, space search adaptation,
performance assessment and controller coding. Particularly, regarding the lat-
ter, a new approach for solving the design problem is proposed in this work:
the Multi-Objective Pole Placement with Evolutionary Algorithms (MOPPEA)
technique.

The main idea is using complex-valued chromosomes, containing informa-
tion about closed-loop poles. This representation allows poles be placed through
a classical observer-based feedback controller, based on the information con-
tained within each chromosome. Note that, unlike this representation, usually
controllers are coded in terms of real parameters [8]. Specific cross-over and
mutation operators were implemented in simple but efficient ways.

The exposition is organized as follows. In section 2, we formulate the con-
troller design problem. The proposed solution method is described in section 3.
In section 4, it is applied to solve a mixed H2/H∞ control problem. Finally,
conclusions are drawn in section 5.

2 Problem Formulation

2.1 Preliminaries

Let Lp×m
2 be the set of p × m matrix functions f : R+

0 → Rp×m such that:

+∞∫
0

trace[fT (t)f(t)]dt < ∞ (1)

Let R(s)p×m be the set of p × m rational complex matrix functions G :
C

+ → Cp×m such that:

Gij(s) =
bnusnu + bnu−1s

nu−1 + .. + b1s + b0

snd + and−1snu−1 + .. + a1s + a0
i = 1, 2, ..., p j = 1, 2, ..., m

(2)
and nd ≥ nu, ∀Gij(s) ; ak, bh ∈ R, k = 1, 2, ..., nd and h = 1, 2, ..., nu.
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2.2 Control Topology

We focus on the problem of designing a linear controller Kc ∈ R(s)nu×ny for
the continuous-time model shown in figure 1. Matrices A ∈ Rn×n, B ∈ Rn×nu

and C ∈ Rny×n denote the given plant state matrices.

Fig. 1. Continuous-time closed-loop design model

As usual, w ∈ Lnw×1
2 denote the exogenous input, z1 ∈ L

nz1×1
2 and z2 ∈

L
nz2×1
2 represent the outputs to be regulated, while u ∈ Lnu×1

2 and y ∈ L
ny×1
2

represent the control input and the measured output respectively. It is assumed
that G(s) = C(sI − A)−1B is strictly proper, stabilizable from u and detectable
from y. The open-loop state-space equations are:

⎧⎨
⎩

ẋ = Ax + Iw + Bu
z1 = y = Cx
z2 = Ax

(3)

The state-space equations of the controller are:
{

ẋc = Acxc − Ly
u = Kxc

(4)

with K ∈ Rnu×n, L ∈ Rn×ny and

Kc(s) = −K(sI − Ac)−1L (5)

Let

T1(Kc) = Tz1w(Kc) (6)
T2(Kc) = Tz2w(Kc) (7)

be the closed-loop transfer function from w to z1 and z2 respectively.
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2.3 The Control Problem

The mixed H2/H∞ Objective Control Problem (MOCP) can now be stated as:

min
Kc∈Kn⊂R(s)nu×ny

(
‖T1(Kc)‖2
‖T2(Kc)‖∞

)
(8)

where Kn ⊂ R(s)nu×ny is the set of all stabilizing controllers of degree n. Note
that in this problem the term ”min” means finding a solution which give the
values of the objective functions acceptable to the designer [9]. Note also that
control law specifications (i.e. controller structure) are not considered in this
formulation.

3 MOPPEA: A Linear Controller Design Method

A flowchart of the proposed design method is shown in figure 2.

Fig. 2. MOPPEA flowchart
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3.1 The Pole Placement Method

An output feedback controller can be designed by combining a full information
controller (i.e. a controller which has immediate access to the information about
all states) with a state observer (a subsystem which attempts to reconstruct
the current states using the information about past measurements and control
inputs). The resulting output feedback sub-system is called ”observer-based con-
troller” and has the following state-equations:{ ·

x̂= (A + BK + LC) x̂ − Ly
u = Kx̂

(9)

where x̂ is the estimated state. Thus, in our framework the system closed-loop
state equations, using the estimation error ê = x − x̂ as state variable are:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
ẋ
·
ê

)
=

(
A + BK −BK
0 A + LC

) (
x
ê

)
+

(
I
I

)
w

z1 = y =
(
C 0

)(
x
ê

)

z2 =
(
A 0

) (
x
ê

)
(10)

Let pk ∈ Cnk and pl ∈ Cnl be the eigenvalues of A + BK and A + LC
respectively. To assure closed-loop system stability, the gain matrix K and L
must be calculated in such way that pk and pl belong to C− (open left-half
complex plan). Several algorithms to compute K and L from pk, pl, B and C
have been proposed [10]. In this work, the MATLAB place function has been
used.

3.2 Problem Reformulation

The key concept of the proposed design method is using an evolutionary process
in order to evolve pk and pl, moving across C− in order to find the best feasible
closed-loop poles locations. Thus, the MOCP problem (see equation 8) can be
stated again as:

min
pk,pl∈C−

(
‖T1(pk, pl)‖2
‖T2(pk, pl)‖∞

)
(11)

Note that, in this case, the stability restriction Kc ∈ Kn has disappeared.
This is the main advantage of the proposed method when compared to previous
works (see [5] and [7]).

3.3 Representation of Individuals

Different representations have been proposed for controllers (see [5], [7] and [8]).
In this work, chromosomes are complex-valued vectors containing the concatena-
tion of pk and pl (see figure 3). A recursive algorithm has been implemented for
randomly generating the initial population (see appendix A). Parameters supr
and supi determine the size of the initial search space.
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Fig. 3. Chromosome structure

3.4 Variation Operators

Two cross-over operators were implemented. The first (see figure 4) performs
a ”block” exchange between pk and pl, belonging to different individuals. The
second (see figure 5) performs an uniform random cross-over [11].

Fig. 4. First cross-over operator

Moreover, two mutation operators were implemented. The first (see figure 6)
works like cross-over operator #1, but this time between pk and pl belonging
to the same individual. The second (see figure 7) slightly moves the poles in
random directions.

3.5 Multi-Objective Genetic Algorithm (MOGA)

MOGA has been widely applied to solve a number of practical applications [3].
This algorithm assigns the smallest rank value for all non-dominated individuals.
The dominated ones are ranked according to the number of individuals that
dominated them. The fitness value of each individual is computed by implemen-
ting a mapping inversely related to its rank. This fitness will be degraded based
upon a sharing function, according to the distribution density in the feature
space. The parameter α regulates the shape of the sharing function.
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Fig. 5. Second cross-over operator

Fig. 6. First mutation operator

Fig. 7. Second mutation operator
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The sharing distance σshare determines the extent of the sharing region for each
individual. In this work (two objectives case), the following equation was used:

σshare =
d

2 × N
(12)

where d is the diameter of the trade-off curve (estimated from previous works
[5] and [7]) and N is the population size.

A simple mating restriction mechanism was also implemented: only pairs of
individuals that lie within a distance of σmate were allowed for mating [1].

Parents and survivor selection were implemented using the ”Stochastic Uni-
versal Sampling” (SUS) algorithm, based on shared fitness values.

4 Design Example: A Mixed H2/H∞ Control Problem

The proposed design method was applied to solve the mixed H2/H∞ control
problem (see equation 11) with the following state matrices:

(
A B
C D

)
=

⎛
⎜⎜⎝

−21 −120 −100
1 0 0
0 1 0

1
0
0

0 0 150 0

⎞
⎟⎟⎠ (13)

The same problem, with the same state matrices, was tackled in [5] and [7].

Table 1. MOPPEA parameters

Initial Population Randomly generated

Representation Complex vectors

supr 10

supi 10

Cross-Over Recombination Cross-over operators 1 and 2

Cross-Over Rate 0.8

Prob. Cross-Over Op. 1 0.3

Prob. Cross-Over Op. 2 0.7

Mutation Operator Mutation operators 1 and 2

Mutation Rate 0.1

Prob. Mut. Op. 1 0.1

Prob. Mut. Op. 2 0.9

Population Size 100

σshare 2.7733

α 2

σmate 100

Stop Condition 100 generations

Population Size 100

Offspring Size 100

Parents Selection SUS (s = 2)

Survivor Selection SUS (s = 2)
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Fig. 8. Evolution of a typical attainment surface after 25, 50 and 100 generations

4.1 Experimental Results

All algorithms were coded in MATLAB, taking advantage of its control toolbox.
Table 1 shows the parameters used during tests. Figure 8 shows the evolution of a
typical attainment surface after 25, 50 and 100 generations. An attainment surface
is the family of tightest goal vectors known to be attainable during the optimiza-
tion process. Note that these results are comparable to those presented in [7].

5 Conclusions and Future Work

The proposed approach was able to find attainment surfaces as good as previous
works. Its main advantage is that the stability restriction disappears from the
optimization problem. However, the controller order is high and its structure
cannot be optimized.

The goal of this paper was just to show experimentally that the proposed
method is efficient enough. The focus was not really put on improving the op-
timization tool. Moreover, no other performance measure has been tested: it
is well-known that assessing the performance of a multi-objective optimization
algorithm is also a multi-objective problem [12].

Despite the simplicity of the proposed method, problems have been reported
when using the pole placement technique. In high-order systems, certain pole
locations result in very large gains [13]. This fact suggests caution during the
optimization evolutionary process: a penalty mechanism can be used in order to
avoid such locations.
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Finally, it is clear that more tests are needed. The authors are currently
developing a MATLAB toolbox, which allows using ”state-of-the art” MOEA,
in order to solve more complex control problems.
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Appendix A. A MATLAB Recursive Function for
Randomly Generating the Initial Population

function [ pol,nr,ni ] = genpol( n, supr, supi )
%supr and supi are the limits of the complex region
if n == 1,

pol = -supr*[rand]; nr = 1; ni = 0;
return

end
if n == 2,

if rand <= 0.5,
pol = -supr*[rand;rand];
nr = 2;ni = 0;

else
im = 2*rand-1;re = -rand;
pol = [complex(supr*re,supi*im);complex(supr*re,-supi*im)];
nr = 0;ni = 1; end

return
end
if n >= 3,
est = rand;

if est <= 0.5,
polaux = -supr*[rand;rand];
nr = 2;
ni = 0;

else
im = 2*rand-1;
re = -rand;

polaux = [complex(supr*re,supi*im);complex(supr*re,-supi*im)];
nr = 0;
ni = 1;

end
[polaux1,nraux,niaux] = genpol(n-2,supr,supi);
if est <= 0.5,

pol = [ polaux ; polaux1];
else

pol = [ polaux1 ; polaux];
end

nr = nr + nraux;
ni = ni + niaux;
return
end
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Abstract. The phylogeny reconstruction problem consists of determin-
ing the most accurate tree that represents evolutionary relationships
among species. Different criteria have been employed to evaluate pos-
sible solutions in order to guide a search algorithm towards the best
tree. However, these criteria may lead to distinct phylogenies, which are
often conflicting among them. In this context, a multi-objective approach
can be useful since it could produce a spectrum of equally optimal trees
(Pareto front) according to all criteria. We propose a multi-objective evo-
lutionary algorithm, named PhyloMOEA, which employs the maximum
parsimony and likelihood criteria to evaluate solutions. PhyloMOEA was
tested using four datasets of nucleotide sequences. This algorithm found,
for all datasets, a Pareto front representing a trade-off between the crite-
ria. Moreover, SH-test showed that most of solutions have scores similar
to those obtained by phylogenetic programs using one criterion.

Keywords: Phylogenetic Inference, Multi-Objective Optimization, Ge-
netic Algorithms.

1 Introduction

In a recent paper, Handl et al [1] discussed applications of multi-objective opti-
mization in several bioinformatics and computational biology problems. Phylo-
genetic inference, which searches for the best explanation for evolutionary events
from input data, is one of the central problems in this area. It is often modeled
as a single objective optimization problem using one criterion for evaluating
possible solutions. Moreover, several researches [2,3,4] have shown that the em-
ployment of different reconstruction methods can lead to unequal trees for the
same input data. Thus, a multi-objective approach, which can search for phylo-
genies using more than one criterion, can be a relevant contribution since it can
produce solutions which are consistent with all employed criteria.

Rokas et al [5] pointed out that there are several sources of incongruence in
phylogenetic analysis: optimality criterion employed, data used and evolution-
ary assumptions about data. Moreover, Poladian and Jermiin [6] suggested that
multi-objective optimization can be applied to phylogenetic inference from sev-
eral conflicting input data. The authors showed that this approach can reveal
sources of such conflicts and provide useful information for a robust inference.
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We propose a multi-objective approach for phylogenetic inference using max-
imum parsimony [7] and likelihood [8] criteria. The algorithm developed to solve
such problem, named PhyloMOEA, is a multi-objective evolutionary algorithm
based on NSGA-II model proposed by Deb et al [9]. The output of PhyloMOEA
is a solution set representing a trade-off between the criteria considered.

This paper is organized as follows. Section 2 provides relevant background
information about phylogenetic inference. Section 3 presents the main concepts
of Genetic Algorithms and their application to phylogeny. Section 4 discusses
multi-objective optimization problems and shows how Genetic Algorithms can
contribute to solve this kind of problems. Section 5 presents the PhyloMOEA
algorithm. Section 6 describes the experiments involving four nucleotide datasets
and discusses the main results. Finally, Section 7 presents conclusions and pro-
poses future works.

2 Phylogenetic Inference Problem

Phylogenetic analysis investigates evolutionary relationships among species. Se-
quence data from actual species (nucleotide or aminoacid sequences) are fre-
quently employed for this purpose, although other types of data can be used [10].
Evolutionary relationships can be illustrated as a leaf-labelled tree, named phy-
logenetic tree. In such tree, external nodes refer to actual species in data, in-
ternal nodes refer to hypothetical ancestors and branches represent relations
among species. Since sequence data used in phylogenetic analysis are obtained
from contemporary species, a phylogenetic tree is a hypothesis (of many possible
trees) about the evolutionary events in the history of species.

A phylogenetic tree can be rooted or unrooted. In a rooted tree, there is a
special node named root that defines the direction of the evolution, allowing the
determination of ancestral relationships among nodes. An unrooted tree shows
only the relative positions of nodes without an evolutionary direction. Addi-
tionally, tree branches may have an associated length showing genetic distances
between connected nodes. Figures 1 and 2 show a rooted and unrooted tree,
respectively.

The main goal of the phylogenetic inference is the determination of a tree
that best explains the evolutionary events of species under analysis. Swofford et
al [11] classified phylogenetic inference methods into two categories: algorithmic
and optimality criterion methods. The former follows a sequence of well-defined
steps to generate a tree. Clustering methods, like Neighboor Joining [12] are in
this category. These algorithms go directly to the final answer without examining
manyS alternatives in the search space, quickly producing a phylogenetic tree.
Optimally criterion methods include two components: an optimality criterion
and a search mechanism. The optimality criterion defines an objective function
that scores every possible solution. Using this criterion, the search mechanism
should determine the best scored solution in the search space. However, find-
ing the optimal solution requires exhaustive or exact strategies, which are only
applicable to small datasets. Since the tree search space increases exponentially
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with the number of species from data, only heuristic search is feasible for moder-
ate and large datasets. Examples of optimality criterion methods are maximun
parsimony [7], maximun likelihood [8] and least squares [13]. The following sec-
tions present a brief review of maximun parsimony and maximun likelihood since
they are employed in PhyloMOEA.

2.1 Maximum Parsimony

The parsimony principle states that the simplest hypothesis which explains an
observed phenomenon must always be preferred. In phylogenetic inference, par-
simony methods search for a tree that minimizes the number of character state
changes in its topology [10]. Such tree is named maximum parsimony tree, which
refers to the simplest hypothesis.

Let D be a dataset containing n species. Each species has N sites, where dij

is the character state of species i at site j. Given a tree T with a node set V (T )
and a branch set E(T ), the parsimony score of T is defined as:

PS(T ) =
N∑

j=1

psj , (1)

where psj, defined by counting character changes along branches in T , is the
parsimony score for site j, which can be formulated as:

psj(T ) =
∑

(v,u)∈E(T )

C(vj , uj) , (2)

where vj and uj are the character states of nodes v and u at site j for each branch
(u, v) in T , C is the cost matrix such that C(vj , uj) is the cost of changing from
vj to uj . The leaves of T are labelled by character states of species from D, i.e.
a leaf representing k − th species has character state dkj for position j.
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The problem of finding the most parsimonious tree can be divided into two
sub-problems:

– Small parsimony problem, which determines the character states of internal
nodes minimizing PS for a given tree T ;

– Large parsimony problem, which finds the most parsimonious tree from the
tree search space.

The small parsimony problem can be easily solved using the Sankoff algo-
rithm [14] for any cost matrix C. When C satisfies C(x, y) = 1 if x �= y and
C(x, y) = 0, the Fitch algorithm [7] can be employed. The large parsimony
problem was proved to be NP-hard [10].

2.2 Maximum Likelihood

Likelihood is a widely-used statistical measurement that indicates the condi-
tional probability of data given a hypothesis [10]. The likelihood of a phylogenetic
tree, denoted by L = P (D|T ), is the conditional probability of the sequence data
D given a tree T and stochastic evolution model. Two assumptions are necessary
to compute likelihoods:

1. Evolution at different sites is independent;
2. Evolution from different tree lineages is independent, i.e. each subtree evolves

separately.

Let Di be the sequence data set D at site i. L is calculated from the product
of partial likelihoods from all sites:

L =
N∏
i

Li , (3)

where Li = P (Di/T ) is the likelihood at site i. An efficient method to calculate L
was proposed by Felsenstein [8] using a dynamic programming approach, where
L is obtained by traversing from leaves to root. Usually, it is necessary to work
with logarithmic values of L, then Equation 3 results in:

ln L =
n∑

i=1

Li . (4)

In order to maximize L, it is necessary to optimize the branch lengths of T
and the parameters of the employed evolutionary model. This can be achieved
using classical optimization methods [10].

Several heuristic techniques were proposed to find the best parsimony tree or
the best likelihood tree [15,16,17]. One of such approaches is Genetic Algorithms
(GAs), which are important for the purposes of this paper. Next section presents
a review of GAs and their application to phylogenetic inference.
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3 Genetic Algorithms in Phylogenetic Inference

Genetic Algorithms are search and machine learning techniques inspired by nat-
ural selection principles. They have been applied to a wide range of problems
of science and engineering [18]. A GA uses a set of individuals, named popula-
tion, which respresent feasible solutions for a given optimization problem. Each
individual has an associated fitness value, which is based on the problem objec-
tive function. GAs search for an optimal or near-optimal solution in the fitness
landscape. Individuals use an internal encoding that must be able to store all
relevant problem variables and codify all feasible solutions.

First, a GA creates a initial population and calculates the fitness of its individ-
uals. Then, a new population is generated using three genetic operators: selec-
tion, crossover and mutation [19]. The selection operator uses individuals’fitness
to choose candidates to generate the next population. Features of the selected
solutions are combined by the crossover operator and new offspring solutions are
generated. Then, small modifications are performed by the mutation operator
at a very low rate. While crossover is useful to explore the search space, muta-
tion allows scaping from local optima. The average fitness of the new population
is expected to be better than average fitness of the previous population. This
process is repeated until a stop criterion has been reached. The solutions found
by the GA are in the final population.

Several papers have described the application of GAs to the phylogeny prob-
lem focused on one criterion. In general, they use maximun likelihood [20,21,22],
parsimony [23] or distance-based [24] criterion. Experimental results have shown
that GAs have better performance and accuracy when compared to heuris-
tics implemented in widely-used phylogenetic software like PHYLIP [25] and
PAUP* [26]. Moreover, GAs can also work with several criteria in order to solve
multi-objective optimization problems (MOOP). The following section briefly
describes MOOPs and the application of GA to these problems.

4 Multi-objective Optimization

A MOOP deals with two or more objective functions that must be simultane-
ously optimized. In this problem, the Pareto dominance concept is commonly
used to compare two solutions. A solution x dominates a solution y if x is
not worse than y in all objectives and if it is better for at least one. Solving
an MOOP implies calculating the Pareto optimal set whose elements, named
Pareto optimal solutions, represent a trade-off among objective functions. These
solutions are not dominated by any other in the search space. The curve formed
by plotting these solutions in the objective function space is named Pareto front.
If there is no additional information regarding the relevance of the objectives, all
Pareto optimal solutions have the same importance. Deb [18] pointed out two
fundamental goals in MOOP:

1. To find a set of solutions as close as possible to the Pareto optimal front;
2. To find a set of solutions as diverse as possible.
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Several classical optimization techniques have been proposed to deal with
MOOPs [18]. However, these methods have limitations. A possible approach is
the conversion of an MOOP into a single optimization problem by a weighted
sum of objectives. This strategy only finds a single point in the Pareto front
for each weight combination. Thus, several runs using different weight values are
required to obtain a reasonable number of Pareto optimal solutions. Nevertheless,
this method does not guarantee solution diversity in the frontier. Other methods
need a priori knowledge of the problem, as for example, target values; which are
not always available.

On the other hand, evolutionary algorithms for multi-objective optimiza-
tion (MOEA) have been successfully applied to both theoretical and practical
MOOPs [18]. In general, MOEAs are capable of finding a distributed Pareto
optimal set in a single run.

The folowing sections describe PhyloMOEA, the proposed MOEA to solve
the phylogenetic inference problem using maximum parsimony and likelihood
criteria.

5 A Multi-objective Approach to Phylogenetic Inference

One difficulty in the phylogenetic problem is the occurrence of conflicting al-
ternative solutions. There are various researches in the literature that compare
several aspects of main reconstruction methods and their variants [2, 27, 3, 4].
These analyses have shown that reconstruction methods often lead to different
topologies for the same input data. It occurs if the method’s requirements are
violated or if there is a bias in the experiment.

This paper formulates the phylogenetic inference problem as an MOOP with
two optimality criteria: maximum parsimony and likelihood. In order to solve
such problem, we have propose an MOEA algorithm named PhyloMOEA, which
is based on the NSGA-II [9] algorithm. The main goal of PhyloMOEA is the
determination of a set of non-dominated solutions (trees), which represents a
trade-off between parsimony and likelihood scores. The following subsections
describe the proposed algorithm in more details.

5.1 Internal Encoding

There are several possible data structures that can be used to represent a phy-
logenetic tree, although phylogenetic programs commonly employ graph data
structures [10]. PhyloMOEA employs graph structures provided by the Graph
Template Library (GTL) [28] to represent unrooted trees. GTL allows for an
easy implemention of genetic operators and facilitates the storage of additional
information, like branch lengths.

5.2 Initial Solutions

PhyloMOEA uses two populations as NSGA-II: one to retain non-dominated so-
lutions and the other to store new solutions generated by genetic operators [9].
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These populations are, respectively, denoted by Pi and Qi, where i refers to
generation i. In the first generation, initial solutions are created for P1. Then,
solutions in Q1 are obtained by applying selection, crossover and mutation op-
erators to P1.

PhyloMOEA can generate initial random trees in P1; however, these trees are
often far from maximum parsimony and likelihood trees. In order to overcome
this drawback, additional trees, provided by maximum likelihood, parsimony or
bootstrap analysis, can be included in the initial population. This strategy is
often used in GA-based phylogenetic programs [20, 21].

5.3 Fitness Evaluation

PhyloMOEA evaluates trees in Pi and Qi using the parsimony and likelihood
criteria. The parsimony and likelihood scores are calculated using Fitch [7] and
Felsenstein [8] algorithms, respectively. The fitness of a tree requires two values:
a rank and a crowding distance [18].

The rank is calculated using a non-dominated sorting algorithm [18] applied
to both populations for all generations. This algorithm divides R = Pi ∪ Qi into
several frontiers, denoted by F1, F2, . . . , Fj. The first frontier (F1) is formed
by non-dominated solutions from R. Thus, the second frontier F2 is by non-
dominated solutions from R − F1. This process is repeated to R − F1 − F2,
and so on, until R is empty. The rank value of an individual is the index of the
frontier it belongs to.

The crowding distance of a solution reflects the density of solutions around its
neighborhood. This value is calculated from a perimeter defined by the nearest
neighbors in each objective and used to maintain the population diversity.

PhyloMOEA uses a tournament selection which picks two individuals at ran-
dom and choose the best one, which has the lowest rank. If both solutions have
the same rank, the solution with the longest crowding distance is preferred.

5.4 Crossover Operator

The crossover operator implemented in PhyloMOEA is the same of [22]. It com-
bines a subtree from two parent trees and creates two new offspring trees. Given
trees T1 and T2, this operator performs the following steps:

1. Prune a subtree s from T1;
2. Remove all leaves in s from T2;
3. Offspring T ′1 results from regrafting s in T2.

Similarly, a second offspring T ′2 is created. The operator prunes a subtree from
T2 and regrafts it in T1. Figure 3 illustrates this operator.

5.5 Mutation Operator

There are three well-known topological modifications used in phylogenetic infer-
ence [11]: Nearest Neighboor Interchange (NNI), Sub-tree Pruning and Regraft-
ing (SPR) and Tree Bisection and Reconnection (TBR). NNI was employed in
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PhyloMOEA, since it performs minimal tree modifications. This operator carries
out the following steps:

1. Choose an interior branch whose connected nodes i, j define two pairs of
neighbors: w, x adjacent to i (w, x �= j) and y, z adjacent to j (y, z �= i).

2. Execute a swap of nodes between each pair of neighboors.

Figure 4 illustrates the NNI operator. The mutation operator also modifies
branch lengths in order to improve the tree likelihood value. A branch length is
multiplied by a factor obtained from a gamma distribution [22]. In each mutation,
some branch lengths chosen at random are modified.
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Fig. 4. Example of NNI mutation operator
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Algorithm:PhyloMOEA

begin
Create an initial population P1 containing N solutions1

Perform non-dominated Sorting in R = P12

Calculate crowding distance values of P13

Apply selection, crossover and mutation operators in P1 and generate a new4

population Q1

foreach generation t = 2, . . . , n do
Perform non-dominated sorting in R = Pt ∪ Qt5

Calculate crowding distance values of R6

Calculate Pareto frontiers F1, F2, . . . Fj from R7

Store the N best solutions from Fk in Pt+1,|Fk| ≤ N, k = 1 . . . l8

Create a new population Qt+1 by applying selection, crossover and9

mutation operators in Pt+1

end
Perform branch length optimization of solutions in Pn.10

end

Fig. 5. PhyloMOEA algorithm

After a PhyloMOEA execution, branch lengths of trees in the final population
are optimized using a non-decreasing Newton-Raphson method described by
Yang [29]. Figure 5 shows the PhyloMOEA algorithm.

6 Experiments

PhyloMOEA was tested using four nucleotide data sets. The rbcL 55 dataset
has sequences of the rbcL chloroplast gene from 55 species of green plants (1314
sites) [22]. The mtDNA 186 dataset contains 186 human mitochondrial DNA
sequences (16608 sites) taken from The Human Mitochondrial Genome Data-
base (mtDB) [30]. The RDPII 218 dataset comprises 218 prokaryotic RNA
sequences (4182 sites) taken from the Ribosomal Database Project II [31]. Fi-
nally, the ZILLA 500 dataset includes 500 rbcL sequences (1428 sites) from
plant plastids [16].

Maximum parsimony and likelihood analyses were performed in each dataset
using programs NONA [15] and RAxML-V [17], respectively. These programs
include sophisticated heuristics that produces satisfactory results quickly. Table 1
shows the parsimony and likelihood results obtained from these programs.

Trees in the initial population were generated from bootstrap data applied
to each dataset. The boostrap analysis was performed by PHYML [16], which
employs the BIONJ algorithm [32] to infer trees. The parsimony and likelihood
scores of these trees approximate the scores shown in Table 1. However, for
RDPII 218 and ZILLA 500 datasets, bootstrap tree scores are not close enough
to the scores obtained by NONA and RAxML-V. Consequently, it slows the
PhyloMOEA’s convergence. In order to overcome this drawback, solutions from
Table 1 are included in the initial population.
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Table 1. Parsimony and Likelihood results found by NONA and RAxML-V

Solution NONA RAxML-V
Parsimony Likelihood Parsimony Likelihood

rbcL 55 4874 -24627.8480 4894 -24583.3313

mtDNA 186 2438 -41049.7677 2450 -40894.5497

RDPII 218 41534 -170831.1213 42631 -156595.8725

ZILLA 500 16219 -87361.4841 16276 -86993.8264

Table 2 shows the parameters of PhyloMOEA used for the experiments. It can
be noted that ZILLA 500 dataset requires the largest number of generations
and population size. Furthermore, HKY85 [33] nucleotide model was employed
in likelihood calculations since it is often used in the literature [16, 21, 22, 17].

Table 2. Parameters used by PhyloMOEA in the experiments

Parameter Value

Generations 500 (rbcL 55, mtDNA 186, RDPII 218), 2000 (ZILLA 500)
Population size 50 (rbcL 55, mtDNA 186, RDPII 218), 100 (ZILLA 500)
Crossover rate 0.8
Mutation rate 0.05
Mutation operator NNI
Evolution model HKY85

At the end of a PhyloMOEA execution, duplicate trees are removed from the
final population. Finally, the Pareto optimal solutions are calculated, although
this may eliminate adequate topologies from the perspective of parsimony crite-
rion. If two solutions have an equal parsimony score, only the solution with the
best likelihood remains in the Pareto-set. Thus, all non-duplicated topologies,
named Final Solutions, are maintained.

Table 3 presents a summary of the experiment results. The second and third
columns indicate the number of trees found by PhyloMOEA in the Pareto optimal
and Final Solutions, respectively. The parsimony and likelihood scores for the best
trees found, which represent extreme points in the Pareto front, are also shown. It
can be noted that there are 5 Pareto optimal solutions for rbcL 55 dataset. This re-
duced number of solutions is due to the proximity of the extreme points. Moreover,

Table 3. Parsimony and Likelihood scores of the extreme points found by PhyloMOEA

Pareto Final Best Parsimony Tree Scores Best Likelihood Tree Scores
Dataset Trees Trees Parsimony Likelihood Parsimony Likelihood

rbcL 55 5 46 4874 -24626.4337 4884 -24583.3297

mtDNA 186 12 44 2438 -41004.3018 2450 -40894.3433

218 RDPII 21 82 41534 -158724.2803 42631 -156595.8224

500 ZILLA 16 107 16219 -87275.2812 16276 -86993.8250
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parsimony scores are integer values restricting the number of possible solutions in
a small interval. For the other datasets, intervals are greater and, consequently, the
number of Pareto optimal trees increases. However, for all datasets, PhyloMOEA
found a relatively large number of Final Solutions. On the other hand, Table 3
also shows improvements in likelihood scores for the best found parsimony tree
when compared with values from Table 1. Nevertheless, likelihood scores for the
best likelihood trees shown in Table 1 are only slightly improved.

Figures 6, 7, 8 and 9 show the Pareto fronts for rbcL 55, mtDNA 186,
RDPII 218 and ZILLA 500 respectively. Due parsimony scores are integer
values, the resulting Pareto Front is a discontinuous set of points connected
by lines. These figures also show Final Solutions near to Pareto front. For
RDPII 218 and ZILLA 500 datasets, there is larger number of Final Solu-
tions displayed since there is a large interval between extreme points, mainly for
the RDPII 218 dataset.

Pareto optimal and Final Solutions were evaluated using Shimodaira-Hasega-
wa test (SH test) [34]. For each tree, SH test calculates a P−value, which indi-
cates if a tree is significantly worse than the best tree according to a criterion.
When a tree has a P−value lower than a given bound (usually 0.05), it can
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Table 4. Summary of SH-test results for Pareto Solutions

SH-Test Parsimony SH-Test Likelihood
Dataset Trees P ≥ 0.05 P < 0.05 P ≥ 0.05 P < 0.05

rbcL 55 5 5 0 5 0

mtDNA 186 12 10 2 9 3

RDPII 218 21 4 17 6 15

ZILLA 500 16 12 4 9 7

Table 5. Summary of SH-test results for Final Solutions

SH-Test Parsimony SH-Test Likelihood
Dataset Trees P ≥ 0.05 P < 0.05 P ≥ 0.05 P < 0.05

rbcL 55 46 15 31 13 33

mtDNA 186 44 36 8 19 25

RDPII 218 82 14 68 10 72

ZILLA 500 107 29 78 21 86

be rejected. For the experiments, SH-tests for parsimony and likelihood criteria
were performed using programs PHYLIP [25] and PAML [35], respectively.

Tables 4 and 5 show the results of SH-test applied to Pareto optimal and
Final solutions, respectively. The second column indicates the number of trees
tested and the others show the number of non-rejected (P ≥ 0.05) and re-
jected trees (P < 0.05), according to parsimony and likelihood criteria. It can
be seen from Table 4 that none of the optimal solutions were rejected for rbcL 55,
while 2 Pareto optimal solutions were rejected for mtDNA 186 dataset. In both
datasets, the extreme points are close, thus, intermediate solutions cannot be re-
jected. On the other hand, the extreme points in RDPII 218 and ZILLA 500
are distant from each other, therefore several intermediate solutions are rejected.

Table 5 shows that most of the Final Solutions were rejected in SH-test for
both criteria, meaning that the scores of these solutions are far from the extreme
point scores. The only exception is mtDNA 186 dataset, where 8 out of 44 and 25
out of 44 trees are rejected for the parsimony and likelihood criteria, respectively.
Consequently, there are more solutions whose scores are in the neighborhood of
the maximum parsimony score.

We pointed out that SH-test must be applied for one criterion separately,
even though, our results provide an insight of the score distribution of the
Pareto optimal trees. Moreover, SH-test shows that some of the Pareto optimal
solutions are not significantly worse than the best found trees obtained from
a separate analysis. However, SH-test is not useful to describe the nature of
Pareto-front since it tends to eliminate intermediate solutions when Pareto front
extreme points are distant from each other. Thus, SH-test was not use for this
pourposes.
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7 Conclusions and Future Works

In this paper, we proposed a multi-objective evolutionary algorithm to solve
the phylogenetic inference problem using both parsimony and likelihood criteria.
This proposal was motivated by the literature in the area [2,27,3,4], which points
out that several phylogenetic inference methods leads to different solutions. This
fact was verified for all datasets analysed in the experiments.

The proposed algorithm, named PhyloMOEA, was designed on the basis of the
NSGA-II model. The crossover and mutation take into account heuristics specif-
ically designed for phylogetic inference (Section 5). In the experiments, Phylo-
MOEA was able to find a set of trees that represents a trade-off between the
parsimony and likelihood criteria. The Pareto-front obtained is formed by discon-
tinuos points along the maximum parsimony and maximum likelihood scores ob-
tained. Several trees found by PhyloMOEA were not rejected in SH-test applied,
which indicates alternative solutions for both criteria have been found.

Despite the relevant results found by PhyloMOEA, there are some aspects that
should be addressed in order to improve the algorithm and corresponding results:

– PhyloMOEA requires several hours to find acceptable Pareto-solutions if ini-
tial trees are poorly estimated. Performance can be improved using advanced
genetic operators that take into account local search strategies [16, 17];

– Likelihood calculations performed by PhyloMOEA do not consider the rate
heterogeneity among sites. In real datasets, sites frequently evolve at different
rates. Thus, if the rate heterogeneity is considered, the accuracy of likelihood
analysis is often improved [36].

– This research has not investigated metrics for convergence and diversity of
the obtained Pareto front. Measurements for convergence are difficult to ob-
tain since the Pareto front is unknown in this case. However, several diversity
metrics found in the literature [18] can be employed.

In summary, preliminary results have shown that PhyloMOEA can make rele-
vant contributions to phylogenetic inference. Moreover, there are several aspects
that can be investigated to improve the current approach.
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Abstract. A perturbation method is proposed to detect convergence
of the Pareto front for multi-objective algorithms and to investigate its
effect on the rate of convergence of the optimization. Conventionally,
evolutionary algorithms are allowed to run for a fixed number of trial so-
lutions which can result in a premature convergence or in an unnecessary
number of calls to a computationally intensive real world problem. Com-
bination of evolutionary multi-objective algorithms with perturbation
method will improve the rate of convergence of the optimization. This is
a very important characteristic in reducing number of generations and
therefore reducing the computational time which is important in real
world problems where cost and time constraint prohibit repeated runs of
the algorithm and the simulation. The performance of the method will
be examined by its application to two water distribution networks from
literature. The results will be compared with previously published results
from literature and those generated by evolutionary multi-objective al-
gorithm. It will be shown that the method is able to find the Pareto
optimal front with less computational effort.

Keywords: Multiple objective, Pareto front, convergence, water distri-
bution.

1 Introduction

Water Distribution network design involves conflicting objectives that each needs
to be optimized. Optimal performance according to one objective often implies
low performance in one or more of the other objectives. Evolutionary algo-
rithms (EAs) have demonstrated unique ways of handling multi-objective op-
timization problems. Farmani et al. [1] investigated the application of different
evolutionary multi-objective optimization methods in the search for the non-
dominated (Pareto) set of solutions to the water distribution network problem.
Two non-elitist methods, Multi-Objective Genetic Algorithms (MOGA) [2] and
Niched Pareto Genetic Algorithms (NPGAs) [3] and three elitist methods, Non-
Dominated Sorting Genetic Algorithm (NSGAII) [4], Pareto-Archived Evolution
Strategy (PAES) [5] and Strength Pareto Evolutionary Algorithm (SPEA2) [6]
were investigated through application to two test cases for the comparative study.
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SPEA2 performed better than the other methods. NSGAII method performed
slightly worse than SPEA2 but outperformed other three methods. In this work
the NSGAII constrained optimization method will be considered as an evolu-
tionary multi-objective optimization technique for the developed hybrid method.
Farmani et al. [1] also showed that although most of the methods have managed
to converge to the region of optimal solution but Pareto front was sub optimal.
Evolutionary algorithms have good initial convergence characteristics, but slow
down considerably once the region of the optimal solution has been identified.
Combining local search with evolutionary algorithm, hybrid methods, have been
very successful in the context of single objective optimization [7]. Talbi et al. [8]
proposed a hybrid two-phase approach for multicriteria optimization problems
as follows: run an MOEA for a fixed number of generations; then for each Pareto
optimal solution, compute the neighborhood and store any non-dominated so-
lutions found; update the list of Pareto front solutions and again recompute
all the neighborhoods; iterate the procedure until no improvement occurs. Goel
and Deb [4] presented two local search strategies to enhance the probability of
NSGAII’s true convergence. In the first method, the posteriori approach, the
obtained non-dominated solutions of a multi-objective evolutionary algorithm
run were modified using a local search method (The local search strategy was
suggested from each obtained solution of NSGAII to find a better solution. A
weighted objective function was used to convert multiple objectives into a single
objective for local search). In the second method, the online approach, a local
search method was applied to each solution obtained by genetic operation in a
MOEA run. Goel and Deb [4] concluded that the posteriori approach is better
than the online approach, the main reason being that in the online approach
more emphasis is allocated to the local search method.

To achieve optimal non-dominated front in less computational time, the pos-
teriori approach was applied to two benchmark water systems. Two issues might
be raised by doing so, first the order of variables might affect the final result
and secondly the weighted method might result in solutions that are dominated
by original Pareto front and also it might cluster solutions, which is contrary
to second goal of multi-objective optimization (diversity among the solutions).
Preliminary research, by Farmani et al. [9], into effect of order of variables in
local search method made it clear that final solution is not effected considerably
by the order of design variables. The main reason for this is that the local search
is done on individuals on Pareto front at final generation of NSGAII, and usu-
ally there are only few small changes possible. However, study into the choice
of weighting method for decision making in accepting or rejecting of changes by
local search showed that solutions are usually clustered in a small region and
sometimes they are dominated by the original Pareto set.

In this paper, perturbation of variables of the individuals on the Pareto front
is presented to assess the sensitivity of the solutions. The perturbation method
is implemented in two ways, random and deterministic, and judgement on ef-
ficiency of newly generated solution is done based on Pareto non-domination
rather than weighting method. Two different runs are carried out. The first run



On Convergence of Multi-objective Pareto Front: Perturbation Method 445

involves online implementation of the perturbation method, where perturbation
is applied for each solution at each generation on Pareto front and in the second
run perturbation is only applied to solutions on the Pareto front at the final
generation. The performance of the perturbation method in detecting conver-
gence of the Pareto front is illustrated by applying the method at different stages
of the run until application of the perturbation method does not result in any
further improvement in the Pareto front. The evolutionary algorithm will then
be allowed to run further to demonstrate the lack of improvement in the Pareto
front.

In what follows, description of the algorithm is presented and the efficiency
of the method is illustrated by application to two benchmark water systems.
The results are compared to those of Goel and Deb [4] to show the effect of
random and deterministic perturbation and also Pareto non-domination over
weight non-domination. Also a comparison is made to demonstrate the effect on
the computational time.

2 Perturbation Method

In this study, the efficiency of NSGAII was improved by developing a hybrid op-
timization method which is based on perturbation of individuals on the Pareto
front. Ultimately, this results in better or global Pareto set and reduces the
computational time which is important in real world problems where cost and
time constraint prohibit repeated runs of the algorithm and hydraulic evalua-
tion. Perturbation of individuals on the Pareto front is done based on random
or a deterministic method. In the random method design variables are chosen
randomly for perturbation and the number of perturbations is equal to the to-
tal design variables for each solution. The deterministic approach is applied in
two ways; in the first approach all the design variables are subject to pertur-
bation (order-based perturbation) while in the second approach perturbation is
implemented on certain design variables that are identified (based on knowledge
related to the problem) to have direct effect on improving the objective function
values (knowledge-based perturbation).

The knowledge-based perturbation involves introduction of a set of rules gen-
erated based on characteristics of each system and the nature of design con-
straints. In this method, first a non-dominated solution is chosen for possible
perturbation and then the pipe or node that has the maximum infeasibility
(violating the minimum or maximum velocity constraint in the pipe or the min-
imum individual surplus head constraint in the node) is identified. Depending
on the nature of the violation, the design variable related to the identified node
or pipe is perturbed to reduce or eliminate the level of infeasibility. The order-
based perturbation algorithm involves implementation of the following proce-
dure: first a search direction is determined by taking a small step in the positive
direction (i.e., decision variable value will be increased to the next high value)
or if required, in the negative direction; if the objective function value is im-
proved (the generated solution dominate the existing solution), further steps are
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implemented in the same direction until no improvement in the optimal objective
values are achieved.

The sensitivity analysis of Pareto front for water distribution is investigated
here through the analysis of the expansion of the New York water supply system
(Fig. 1) and the new water distribution trunk network in Hanoi (Fig. 2).

Fig. 1. Existing New York City Water Supply Tunnels

3 Test Cases

3.1 New York Tunnels (NYT) Problem

The New York pipe network has been studied using evolutionary techniques by a
large number of researchers in the past ([10]; [11]; [12]; [13]; [14]; [9]). The objective
of the NYT problem was to determine the most economically effective design for
addition to the existing system of tunnels that constituted the primary water dis-
tribution system of the city of New York. Because of age and increased demands,
the existing gravity flow tunnels were found to be inadequate to meet the pressure
requirements (at nodes 16,17,18,19 and 20) for the projected consumption level
[11]. The construction of additional gravity flow tunnels parallel to the existing
was considered. The node and link data are from Murphy et al. [10].

Tunnel (pipe) diameters are considered as design variables. There are 15 avail-
able discrete diameters [36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180,
192, 204 inches] and one extra possible decision which is the ’do nothing’ op-
tion. All twenty one existing tunnels are considered for duplication. Supplying
demand at an adequate pressure to consumers is the main constraint (system
performance indicator) in the design of water distribution systems. The perfor-
mance of each candidate design solution is evaluated through simulation of the
network flows. EPANET2 computer program [15] is the network solver used in
this work.
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Fig. 2. The Hanoi Network

The cost function is non-linear, C = 1.1D1.24
ij Lij , in which cost C is in dollars,

diameter Dij is in inches, and length Lij is in feet. The optimization problem
was set based on capital expenditure as an objective function and the minimum
pressure as constraints.

3.2 The Hanoi Network

The configuration of the water distribution trunk network in Hanoi, Vietnam,
is shown in figure 2. This pipe network has 32 nodes and 34 pipes, organized
in 3 loops. No pumping facilities are considered since only a single fixed head
source at elevation of 100 m is available. The minimum head requirement at all
nodes is fixed at 30 m. The set of commercially available diameters (in inches)
is [12, 16, 20, 24, 30, 40]. The node data and link data are from Fujiwara and
Khang [16]. The cost function is non-linear, C = 1.1D1.5

ij Lij , in which cost C is
in dollars, diameter Dij is in inches, and length Lij is in meters.

4 Solutions and Analysis

The performance of the NSGAII has been investigated here for the solution of
New York Tunnel and Hanoi optimization problems. In the optimization prob-
lems, the pay-off is investigated between the total cost and the maximum head
deficiency.

Different runs were carried out for each network; in the first run the trade
off between the capital cost and the maximum head deficiency was analyzed
using NSGAII, and in the second run the analysis was based on pay off curves
generated by the perturbation method or the posteriori method. In order to
determine the pay off characteristic between the capital cost and the head defi-
ciency all the methods were run with a population of 200 sample solutions, and
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were allowed to run for (1000, 100, 50) generations for NYT network and (1000,
500, 100) generations for Hanoi network. Early results showed that out of the
three perturbation methods (random, order-based and knowledge-based), the
random perturbation method had the worst efficiency. In this method, target-
ing the right design variables sometimes resulted in a large number of function
evaluations for small improvements. Therefore, only deterministic methods were
used in perturbation of solutions on the Pareto fronts.

4.1 Performance in Finding Pareto Front

Figure 3 illustrates the Pareto front characteristic between the capital cost and
the maximum head deficiency for the NYT network obtained through appli-
cation of standard NSGAII run for 1000 generations and the Pareto set after
perturbation and posteriori methods for Pareto set of 100 generations. It can
be seen from the figure that the solutions generated by the perturbation and
posteriori methods for 100 generations are in a close match to those obtained
by NSGAII run for 1000 generations. The above results are presented to illus-
trate the performance of the algorithms over the whole range of both objectives.
However, in practice, only those solutions which are marginally infeasible would
be of interest. Figure 4 shows the result for the New York Tunnels network for
an individual head deficit in the range of 0-20 m, showing the trade-off between
capital cost and head deficiency in the region of practical design interest.

Figure 5 illustrates the same plot for Hanoi water system for 1000 generations
of NSGAII and Pareto sets obtained using the perturbation and posteriori meth-
ods. The efficiency of the algorithm is apparent from the number of solutions
obtained along the pay-off curve. Figure 6 shows the results for the Hanoi net-
work for an individual head deficit in the range of 0-18 m, showing the trade-off
between capital cost and head deficiency in the region of practical design inter-
est. This figure illustrates one of the main drawbacks of the posteriori method,
some individuals in the Pareto set generated by the posteriori method have been
dominated by the main pay off curve. Therefore, using the weighting method in
judgement on acceptance or rejection of the newly generated individual in the
Pareto front might not always result in a non-dominated set.

4.2 Comparison of Results

Figures 7 and 8 illustrate the Pareto front for New York Tunnel problem gen-
erated from 1000, 100 and 50 generations by NSGAII and those by the per-
turbation method and the posteriori method respectively. Detailed inspection
of Pareto front generated by different algorithms shows that perturbation of
the Pareto front of 100 generations resulted in a pay off curve that dominates
the Pareto front generated by NSGAII after 1000 generations. This is a very
important characteristic in reducing the number of generations and therefore re-
ducing the computational time which is important in real world problems where
cost and time constraints prohibit repeated runs of the algorithm and hydraulic
evaluation. The number of hydraulic evaluations in the knowledge based and
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Fig. 3. Cost vs. Deficiency pay-off for NSGAII, Posteriori method and Perturbation
method (New York Tunnel)
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method (New York Tunnel)

order based perturbation are 830 and 1760 respectively that is 4 and 8 times the
number of hydraulic evaluations in one generation of NSGAII. This leads to a
reduction of about 90 percent in the number of evaluations.

Figures 9 and 10 illustrate the Pareto front for Hanoi generated from 1000,
500 and 100 generations by NSGAII and those by the perturbation and poste-
riori methods respectively. Due to complexity of the problem as shown in figure
9 the pay off curve resulted from 100 generations is far from the one generated
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by 1000 generations, and the perturbation and the posteriori methods did not
manage to close the gap, however the perturbation method still performed bet-
ter than the posteriori method. Perturbation of the individuals on the pay off
curve generated by 500 generations resulted in a Pareto front that often domi-
nates the one generated by 1000 generations except in a small part of the curve.
Improvements of the Pareto front generated by 1000 generations after imple-
mentation of perturbation method indicate that the set was not the optimal set
and further runs would be required to find a near optimal Pareto front. This is
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another important characteristic of the method in identifying the termination
criteria for evolutionary algorithms. No improvement due to the perturbation
method in pay off curve means that individuals are not sensitive to changes in
variable values. In another word, they have reached their limit in the feasible
region. Figure 10 illustrates the poor performance of the posteriori method in
the region of practical design interest. This figure illustrates another drawback of
the posteriori method that there are only few individuals in Pareto set generated
by the posteriori method that clustered in a very small part of the search space.
The perturbation method consistently generated solutions that either dominate
individuals on the main pay off curve or overlap them.
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Fig. 9. Cost vs. Deficiency pay-off for Perturbation method (Hanoi Network)

5.5 6 6.5 7

x 10
6

0

2

4

6

8

10

12

14

16

18

Capital Cost ($)

M
ax

im
um

 H
ea

d 
D

ef
ic

ie
nc

y 
(m

)

Pareto set (NSGAII, 1000 generation)
Set after Posteriori method (1000 generation)
Pareto set (500 generation)
Set after Posteriori method (500 generation)
Pareto set (100 generation)
Set after Posteriori method (100 generation)

Fig. 10. Cost vs. Deficiency pay-off for Posteriori method (Hanoi Network)

Figure 11 shows a comparison of the non-dominated fronts obtained by the
three algorithms for Hanoi network in three ways, using graphics, using a cov-
erage metric (Ic) and using an epsilon metric (Ieps). Quantitative comparison
of the performance of the different evolutionary multi-objective algorithms is an
important issue. Zitzler et al. [17] proposed the binary ε−indicator (Iε), which
gives a factor by which an approximation set is worse than another with respect
to all objectives. Iε can be calculated as:

Iε(A, B) = max
z2∈B

min
z1∈A

max
1≤i≤n

z1
i

z2
i

(1)
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where A and B are two approximation sets; z1 and z2 are objective vectors; and
n is the number of objectives.

Zitzler and Thiele [18] suggested the coverage indicator Ic, which gives the
fraction of solutions in one set that are weakly dominated by at least one solution
in another set. Ic can be calculated as:

Ic(A, B) =

∣∣{z2 ∈ B ; ∃z1 ∈ A : z1 ≤ z2
}∣∣

|B| (2)

They considered the relationships “strictly dominates, �; “dominates, >;
“better, �; “weakly dominates, ≥; and “incomparable, ‖ on objective vectors
and approximation sets. The summary of equivalence of these dominance rela-
tionships in approximation sets is given in Table 1.

Table 1. Dominance relationships and their definition in approximation sets

Relation Approximation set
A � B every z2 ∈ B is strictly dominated by at least one z1 ∈ A
A > B every z2 ∈ B is dominated by at least one z1 ∈ A
A � B every z2 ∈ B is weakly dominated by at least one z1 ∈ A and A �= B
A ≥ B every z2 ∈ B is weakly dominated by at least one z1 ∈ A
A ‖ B neither A weakly dominates B nor B weakly dominates A

Binary indicators can be interpreted as different dominance relationships ac-
cording to their values. Table 2 gives a summary of these interpretations by
Zitzler et al. [17] for Iε and Ic.

Table 2. Overview of binary indicators and dominance relationships

Binary compatible and complete with respect to relation
indicator � > � ≥ = ‖

Iε Iε(A, B) < 1 Iε(A, B) ≤ 1 Iε(A, B) ≤ 1 Iε(A, B) = 1 Iε(A, B) > 1
Iε(B, A) > 1 Iε(B, A) = 1 Iε(B, A) > 1

Ic Ic(A, B) = 1 Ic(A, B) = 1 Ic(A, B) = 1 Ic(A, B) = 1 0 < Ic(A, B) < 1
Ic(B, A) = 0 Ic(B, A) < 1 Ic(B, A) = 1 0 < Ic(B, A) < 1

The binary coverage indicator values were evaluated for different combina-
tions of the NSGAII, posteriori and perturbation algorithms for the Hanoi wa-
ter distribution network for the Pareto front generated from 100, 500 and 1000
generations. Most of the values for different combinations were greater than zero
and less than one. According to table 2 this can be interpreted as “incompara-
ble, ‖” relationship. However, the coverage indicator values for the combination
of the perturbation method with the other two methods were higher than other
combinations and usually equal to 1.0. This means the Pareto front generated by
the perturbation method has better coverage of the Pareto fronts generated by
the other methods. The posteriori method has the lowest value of the coverage
indicator therefore has the worst coverage of the other Pareto fronts.
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Fig. 11. Cost vs. Deficiency pay-off for NSGAII, Posteriori method and Perturbation
method (Hanoi Network)

The binary ε-indicator was also evaluated for different combinations of the
NSGAII, posteriori and perturbation algorithms for the Hanoi water distribu-
tion network. All the values for different combinations from 100 generations were
greater than one, except for four combinations. According to table 2 this can be
interpreted as “incomparable, ‖” relationship. Iε(perturbation, NSGAII) was
equal to 1.0 for one of the combinations for the Hanoi network and Iε(NSGAII,
perturbation) for that combination was equal to 1.03. According to table 2
(Iε(perturbation, NSGAII) � 1 and Iε(NSGAII, perturbation) > 1) indicat-
ing that the perturbation performed better “�” than NSGAII. It can be con-
cluded that, based on the binary ε values for combinations of the perturbation
and NSGAII and posteriori methods for the Pareto fronts generated by 500 and
1000 generations, the perturbation performed better than NSGAII and posteri-
ori methods. It also can be concluded that, NSGAII performed better than the
posteriori method. This also confirms the conclusions drawn from the graphical
presentation.

5 Conclusion

A perturbation method was introduced that is a combination of multi-objective
evolutionary algorithms (NSGAII) and local search methods to speed up the
convergence rate of the algorithm in finding optimal Pareto set. The perturba-
tion method was implemented in three different ways, random, order-based and
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knowledge-based deterministic, and judgment on efficiency of the newly gen-
erated solutions was made based on Pareto non-domination. The method was
applied to two benchmark water distribution networks (New York Tunnel and
Hanoi water distribution system). The results were compared to those obtained
by posteriori method of Goel and Deb [4] to show the effect of random and deter-
ministic hybrid methods and also Pareto non-domination over weighting method.
Also a comparison was made to demonstrate the effect on computational time.

The search results indicate that combination of the NSGAII approach with
local search has the potential to find Pareto optimal solutions. Preliminary re-
search into effect of order of variables in local search method indicated that the
final solution is not affected a lot by order of design variables. The main reason
for this is that the local search is done on individuals on Pareto front at final gen-
eration of NSGAII, and usually there are only few small changes possible. Out
of three methods used for perturbation of individuals on the Pareto front, the
random method performed the worst, in terms of the number of function eval-
uations and in finding better Pareto front. The knowledge-based perturbation
method outperformed the order-based method by having slightly lower num-
ber of function evaluations. However, it is expected that the knowledge-based
method would perform much better in problems with larger number of design
variables by targeting the most effective design variables and therefore, reducing
the number of function evaluations. Perturbation of pay off curve resulted in a
Pareto front that not only dominates the original pay off curve but also domi-
nates the one generated by 10 times and twice the number of the generations for
the original pay off curve (for New York Tunnel and Hanoi network respectfully).
This is a very important characteristic in reducing the number of generations
and therefore reducing the computational time which is important in real world
problems where cost and time constraint prohibit repeated runs of the algorithm
and hydraulic evaluation. It can be concluded that the hybrid NSGAII multi-
objective evolutionary algorithm shows potential for the optimization of water
systems.
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Abstract. The importance of multi-objective optimization is globably
established nowadays. Furthermore, a great part of real-world problems
are subject to uncertainties due to, e.g., noisy or approximated fitness
function(s), varying parameters or dynamic environments. Moreover,
although evolutionary algorithms are commonly used to solve multi-
objective problems on the one hand and to solve stochastic problems on
the other hand, very few approaches combine simultaneously these two
aspects. Thus, flow-shop scheduling problems are generally studied in a
single-objective deterministic way whereas they are, by nature, multi-
objective and are subjected to a wide range of uncertainties. However,
these two features have never been investigated at the same time.

In this paper, we present and adopt a proactive stochastic approach
where processing times are represented by random variables. Then, we
propose several multi-objective methods that are able to handle any type
of probability distribution. Finally, we experiment these methods on a
stochastic bi-objective flow-shop problem.

Keywords: multi-objective combinatorial optimization, stochasticity,
evolutionnary algorithms, flow-shop, stochastic processing times.

1 Introduction

A large part of concrete optimization problems are subject to uncertainties that
have to be taken into account. Therefore, many works relate to optimization
in stochastic environments (see [10] for an overview), but very few deal with
the multi-objective case where Pareto dominance is used to compare solutions.
Thus, Hughes [8] and Teich [18] independently suggested to extend the concept
of Pareto dominance in a stochastic way by replacing the rank of a solution by its
probability of being dominated; but both studies make an assumption on prob-
ability distributions. In [1], another ranking method, based on an average value
per objective and on the variance of a set of evaluations, is presented. Likewise,
Deb and Gupta [5] proposed to apply standard deterministic multi-objective
optimizers using an average value, determined over a sample of objective vec-
tors, for each dimension of the objective space. Finally, Basseur and Zitzler [2]
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recently extended the concept of multi-objective optimization using quality indi-
cators [21] to take stochasticity into account. However, even if existing methods
are generally adaptable to the combinatorial case, most of them were only tested
on continuous mathematical test functions. Thence, it is not obvious that the
performances of these algorithms are similar for combinatorial and continuous
problems. Furthermore, a large part of these algorithms exploits problem knowl-
edge that may not be available in real-world applications.

The deterministic indicator-based approach [21] consists in assigning each
Pareto set approximation a real value reflecting its quality, using a function I [20].
The goal is then to identify a Pareto set approximation that optimizes I. As a
result, I induces a total order into the set of aproximation sets in the objective
space, and gives rise to a total order into the corresponding objective vectors. The
interest of this perception is that no additional diversity preservation mechanisms
are required, the concept of Pareto dominance not being directly used for fitness
assignment. To extend this approach to the stochastic case, we must consider
that every solution can be associated to an arbitrary probability distribution
over the objective space.

In this paper, we propose various models to represent stochasticity for a bi-
objective flow-shop scheduling problem. Then, we introduce different ways to
handle uncertainty, insisting on the various technical aspects. And, we apply the
resulting methods to the concrete case of a flow-shop scheduling problem with
stochastic processing times, that have, to our knowledge, never been investigated
in a multi-objective form. Each approach has advantages and drawbacks and is
adapted from indicator-based optimization.

The paper is organized as follows. In section 2, we formulate a bi-objective
flow-shop scheduling problem with stochastic processing times (SFSP). In sec-
tion 3, we present three different approaches dedicated to stochastic multi-
objective optimization and apply them on a SFSP. Section 4 presents experimen-
tal results. And finally, the last section draws conclusion and suggests further
topics in this research area.

2 A Bi-objective Flow-Shop Scheduling Problem with
Stochastic Processing Times

The flow-shop is one of the numerous scheduling problems. It has been widely
studied in the literature (see, for example, [6] for a survey). However, the majority
of works dedicated to this problem considers it on a deterministic single-criterion
form and mainly aims at minimizing the makespan, which is the completion
time of the last job. Following the formulation of the deterministic model of a
bi-objective flow-shop scheduling problem, this section presents various sources
of uncertainty that have to be taken into account and introduces different prob-
ability distributions to model stochastic processing times. Note that, although
this part focuses on the flow-shop, it can easily be generalizable to other types
of problem.
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2.1 Deterministic Model

Solving the flow-shop problem consists in scheduling N jobs J1, J2, . . . , JN on
M machines M1, M2, . . . , MM . Machines are critical resources, i.e. two jobs can-
not be assigned to one machine simultaneously. A job Ji is composed of M con-
secutive tasks ti1, ti2, . . . , tiM , where tij is the jth task of the job Ji, requiring the
machine Mj . A processing time pij is associated to each task tij and a job Ji must
be achieved before its due date di. For the permutation flow-shop, the operating
sequences of the jobs are identical and unidirectional on every machines.

In this study, we focus on minimizing both the makespan (Cmax) and the total
tardiness (T ), which are two of the most studied objectives of the literature . For
each task tij to be scheduled at the time sij , we can compute the two considered
objectives as follows:

Cmax = max
i∈[1..N ]

[siM + piM ] . (1)

T =
N∑

i=1

max(0, siM + piM − di) . (2)

In the Graham et al. notation [7], this problem is noted F/permu, dj/(Cmax, T ).
Besides, the interested reader is referred to [14,16] for a review on multi-objective
scheduling.

2.2 Sources of Uncertainty

In real-world scheduling situations, uncertainty can occur from many sources
such as release or due date variations, machine breakdowns, unexpected arrival
or cancellation of orders, variable processing times, ... According to the literature,
in the particular case of our permutation flow-shop scheduling problem, the
uncertainty mainly stem from due dates and processing times.

Firstly, in the deterministic model, the due date of a job Ji is given by a fixed
number di. However, it looks difficult to determine it without ambiguity. So, it
seems more natural to determine it using an interval [d1

i , d
2
i ] during which the

human satisfaction for the completion of the job Ji decreases between d1
i and d2

i .
Moreover, a due date di may change dynamically since a less important job today
may be of high importance tomorrow, and vice versa. Secondly, a processing time
may vary from an execution to another and some unexpected events may occur
during the process. So, the processing time pij of a task tij rarely corresponds to
a constant value. To conclude, it is obvious that no parameter can be regarded
as an exact and precise data and that non-classical approaches are required
to solve concrete scheduling problems. Thus, we decide to adopt a proactive
stochastic approach where processing time values are regarded as uncertain and
are represented by random variables.

2.3 Stochastic Models

Widely studied in its single-criterion form, the stochastic flow-shop scheduling
problem has, to our knowledge, never been investigated in a multi-objective
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way. Furthermore, as soon as historic data about processing times are available,
it seems quite easy to determine which probability distribution is associated to
those parameters. Following an analysis, we propose four different general distri-
butions a processing time may follow. Of course, a rigorous statistical analysis,
based on real data, is imperative to determine the concrete and exact distribution
associated to a certain processing time pij of a real-world problem.

Uniform distribution. A processing time pij can uniformly be included between
two values a and b. Then, pij follows a uniform distribution over the interval [a, b]
and its probability density function is:

f(x) =
{ 1

b−a if x ∈ [a, b]
0 otherwise

. (3)

This kind of distribution is used to provide a simplified model of real industrial
cases. For example, it has already been used by Kouvelis et al. [12].

Exponential distribution. A processing time pij may follow an exponential dis-
tribution E(λ, a). Thus, its probability density function is:

f(x) =
{

λ e−λ(x−a) if x ≥ a
0 otherwise

. (4)

Exponential distributions are commonly used to model random events that may
occur with uncertainty. This is typically the case when a machine is subject to
unpredictable breakdowns. For example, processing times have been modeled by
an exponential distribution in [3,13].

Normal distribution. A processing time pij may follow a normal distribution
N (μ, σ) where μ stands for the mean and σ stands for the standard deviation,
in which case its probability density function is:

f(x) =
1

σ
√

2π
exp

(
− 1

2

(x − μ

σ

)2)
. (5)

This kind of distribution is especially usual when human factors are observed. A
process may also depend on unknown or uncontrollable factors and some param-
eters can be described in a vague or ambiguous way by the analyst. Therefore,
processing times vary according to a normal distribution.

Log-normal distribution. A random variable X follows a log-normal distribution
with parameters μ and σ if log X follows a normal distribution N (μ, σ). Its
probability density function is then:

f(x) =

{
1

σ
√

2π
1
x exp(− 1

2 ( log x−μ
σ )2) if x > 0

0 otherwise
. (6)

The log-normal distribution is often used to model the influence of uncontrolled
environmental variables. In our case, a processing time pij following a log-normal
distribution takes into account simultaneously the whole observed uncertainties.
For example, this modeling has already been used in [4].
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3 Indicator-Based Evolutionary Methods

This section contains a brief presentation of the indicator-based approach intro-
duced in [21] (the interested reader will refer to this article for more details).
Then, we present its extension to the stochastic case and propose three multi-
objective methods that result from this extension.

3.1 Indicator-Based Multi-objective Optimization

Let us consider a generic multi-objective optimization problem defined by a de-
cision space X , an objective space Z, and n objective functions f1, f2, . . . , fn.
Without loss of generality, we here assume that Z ⊆ IRn and that all n objec-
tive functions are to be minimized. In the deterministic case, to each solution
x ∈ X is assigned exactly one objective vector z ∈ Z on the basis of a vector
function F : X → Z with z = F (x) = f1(x), f2(x), . . . , fn(x). The mapping F
defines the ‘true’ evaluation of a solution x ∈ X , and the goal of a deterministic
multi-objective algorithm is to approximate the set of Pareto optimal solutions
according to F 1. However, generating the entire set of Pareto optimal solutions
is usually infeasible, due to, e.g., the complexity of the underlying problem or
the large number of optima. Therefore, in many applications, the overall goal is
to identify a good approximation of the Pareto optimal set. The entirety of all
Pareto set approximations is represented by Ω.

Different interpretations of what a good Pareto set approximation is are possi-
ble, and the definition of approximation quality strongly depends on the decision
maker preferences and the optimization scenario. As proposed in [21], we here
assume that the optimization goal is given in terms of a binary quality indica-
tor I : Ω × Ω → IR. Then, I(A, B) quantifies the difference in quality between
two sets A and B ∈ Ω, according to the decision maker preferences. So, if R
denotes the set of Pareto optimal solutions, the overall optimization goal can be
formulated as argminA∈Ω I(F (A), F (R)) . Binary quality indicators represent a
natural extension of the Pareto dominance relation and can thus directly be used
for fitness assignment. Therefore, the fitness of a solution x contained in a set of
solutions can be determined using the indicator values obtained by x compared
to the whole set. It measures the usefulness of x according to the optimization
goal.

3.2 Handling Stochasticity

In the stochastic case, the objective values are different each time a solution is
evaluated. So, the vector function F does not represent a deterministic mapping
from X to Z, because an infinite set of different objective vectors is now assigned
to a solution x ∈ X . Note that we consider that the ‘true’ objective vector of a
solution is absolutely unknown before the end of the optimization process.

1 A solution x1 ∈ X is Pareto optimal if and only if there exists no x2 ∈ X such that
(i) F (x2) is component-wise smaller than or equal to F (x1) and (ii) F (x2) �= F (x1).
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3.3 Proposed Methods

To tackle the optimization of stochastic multi-objective problems, we here pro-
pose three different adaptations inspired by a multi-objective evolutionary al-
gorithm designed for deterministic problems and recently introduced by Zitzler
and Künzli [21], namely IBEA (Indicator-Based Evolutionary Algorithm). For
each algorithm, we will use the additive ε-indicator [20,21] as the binary perfor-
mance measure needed in the selection process of IBEA. This indicator seems
to be efficient [21] and obtained significantly better results on our problem in its
deterministic form than the IHD-indicator (that is based on the hypervolume
concept introduced in [19]). The additive ε-indicator (Iε+) gives the minimum
ε-value by which B can be moved in the objective space such that A is at least
as good as B. For a minimization problem, it is defined as follows [20,21]:

Iε+(A, B) = inf
ε∈IR

{∀x2 ∈ B, ∃x1 ∈ A : fi(x1) − ε ≤ fi(x2), i ∈ {1, ..., n}} . (7)

Single evaluation-based estimate. The first method, IBEA1, consists in preserv-
ing the approach used in the deterministic case. A solution is evaluated only once
and its fitness is estimated using this single evaluation (see fig. 1). Actually, most
of the methods proceed like that since they are based on constant parameters
and do not take uncertainties into account. The advantage of this method is its
low computation cost, but the estimation error may be large since the evaluation
used is not necessarily representative of the potential evaluation space.

x1

f2

f1

x2 Potential
evaluation

space

evaluation
One

evaluation
True

solution
Feasible

Decision space Objective space

Fig. 1. IBEA1: a single evaluation is used to approximate the fitness of a solution

Average estimate. The second method, called IBEAavg, follows the idea com-
monly used in the single-criterion form and suggested in several multi-objective
studies (such as, e.g., [1,5]). It consists in doing several evaluations of the same
solution, and then in calculating the average value of these evaluations on each
objective function. Next, the deterministic approach is applied using those aver-
age values (see fig. 2). This method also has the advantage of having a low com-
putation cost if the evaluation of a solution is not too expensive (what is the case
for our problem). However, losses of information may occur during the average
estimate, like, e.g., the potential evaluations distribution in the research space.
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One
evaluation

Average
evaluation

Fig. 2. IBEAavg: the average evaluation values are used to approximate the fitness of
a solution

Probabilistic estimate. The last method consists in estimating the fitness of a
solution in a probabilistic way. Here, contrary to some other approaches [10], we
do not assume that there is a ‘true’ objective vector per solution which is blurred
by noise, but we consider that a probability distribution is associated to each
solution on the objective space (see fig. 3). In order to allow the comparison of
potential values of solutions, this extension of IBEA, called IBEAstoch, consists
in modifying the performance assessment procedure as proposed by Basseur and
Zitzler in [2].
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space
evaluation
Potential

evaluation
True

Objective space
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Decision space

Fig. 3. IBEAstoch: the fitness of a solution is estimated in a probabilistic way, a quality
indicator being associated to each evaluation

A random variable F(x) is associated to each solution x ∈ X by the range of
which is its corresponding potential evaluation space. The underlying probabil-
ity distribution is usually unknown and may differ for other solutions. Thus, in
practice, for a binary quality indicator I, the fitness of a solution x is computed
using an estimation of expected I-values on a finite set of evaluations. Hence, for
a population P = {x1, x2, . . . , xm} and a finite set of evaluation S(x), the fitness
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of an individual x is defined as the estimated loss of quality if x is removed from
the population, i.e.:

Fitness(x) = Ê(I(F(P \ {x}), F(P ))
= Ê(I(F(P \ {x}), F({x}))
= 1
|S(x)|

∑
z∈S(x) Ê(I(F(P \ {x}, {z}))) .

(8)

To compute the estimated expected Iε+-value between a multiset A ∈ Ω and a
reference objective vector z�, we consider all pairs (xj , zk) where xj ∈ A and
zk ∈ S(xj) and sort them in the increasing order according to the indicator values
Iε+({zk}, {z�}). Suppose the resulting order is (xj1 , zk1), (xj2 , zk2), . . . , (xjl

, zkl
),

the estimated expected Iε+-value is then:

Ê(Iε+(F(A), {z∗})) = Iε+({zk1}, {z∗}) × P̂ (F({xj1}) = {zk1}) +
Iε+({zk2}, {z∗})×

P̂ (F({xj2}) = {zk2}) | F({xj1}) 
= {zk1)}) +
. . .
Iε+({zkl

}, {z∗})×
P̂ (F({xjl

}) = {zkl
} | ∀1≤i<lF({xji}) 
= {zki}) .

(9)
The running time complexity of an estimated expected Iε+-value computation
is of order O(n(Ns)2 log(Ns)), where N stands for the population size, n for the
number of objectives and s for the number of evaluations per solution. Neverthe-
less, note that all l sums do not necessarily need to be computed and, thereby,
the real computation time can be reduced.

3.4 Implementation

To implement our algorithms, we use the EO framework [11] linked to its ex-
tension dedicated to multi-objective optimization ParadisEO-MOEO2. First, it
was necessary to extend this framework by defining the pareto fitness notion for
stochastic problems. Then, we implemented those methods in the same way as
existing deterministic methods. All these new concepts are now available within
the ParadisEO-MOEO framework.

The three approaches differ the one from the others by the way their fitness
function is defined. The common points of the different algorithms are:

– Initialization: randomly generated individuals.
– Selection: deterministic tournament between two randomly chosen individ-

uals.
– Crossover : two-point crossover [9].
– Mutation: shift mutation [9].
– Replacement : elitist.

2 ParadisEO-MOEO is available at http://paradiseo.gforge.inria.fr.

http://paradiseo.gforge.inria.fr
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4 Simulation Results

4.1 Benchmarks

To test our algorihms, we propose differents benchmark suites3 built from Tail-
lard’s instances [17]. These instances contain processing times for problems whose
size varies from 20 to 500 jobs and from 5 to 20 machines.

Deterministic bi-objective benchmarks. First, we need to extend the Taillard’s
instances for the bi-objective deterministic case by adding a due date for every
job. These dates were fixed using a random value chosen between p × M and
p × (N + M − 1), where N stands for the number of jobs, M for the number of
machines and p for the mean of previously generated processing times. Thus, a
due date di lies between the average completion date of the first scheduled job
and the average completion date of the last scheduled job. Moreover, in addition
to Taillard’s instances, we propose some instances with intermediate sizes. Each
benchmark’s name is composed on the same way: the first number represents
the number of jobs to schedule, the second one the number of machines and the
last one the index of the instance among the instances of same size.

Stochastic bi-objective benchmarks. To generate stochasticity on a deterministic
instance, the four probability distributions a processing time may follow can be
applied over initial data using a configuration file. We choose to allow to con-
figure this uncertainty over the machines only, by specifying, for each machine,
a probability distribution and its parameters or some proportions depending on
its central tendency. Thus, as in real-world problems, each time stochasticity is
generated on an initial deterministic instance using the same configuration file,
processing times contained in the obtained stochastic instance will be different.

4.2 Optimization Runs

For the optimization runs, we generate stochasticity over the processing times of
some deterministic benchmarks. Thus, for a given instance, we carry out 10 dif-
ferent evaluations into which processing times follow a uniform, an exponential,
a normal, a log-normal or various distributions in the following way:

– uniform distribution: pij ∼ U(a = 0.85 × pij , b = 1.15 × pij);
– normal distribution: pij ∼ N (μ = pij , σ = 0.15 × pij);
– exponential distribution: pij ∼ E(a = pij , λ = 1

0.15×pij
);

– log-normal distribution: pij ∼ log-N (μ = log pij , σ = 0.15 × log pij);
– various distributions: the distribution of the processing times differs on every

machine.

The population size is set to 50. For each kind of distribution, we perform 10
runs per instance and per algorithm using 10 evaluations per solution (except

3 All benchmarks are available at http://www.lifl.fr/∼liefooga/benchmarks/.

http://www.lifl.fr/~liefooga/benchmarks/
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for IBEA1 where only the first evaluation is used). The different methods are
tested using the same initial populations and the same number of generations.
The crossover and mutation probabilities are set to 0.05 and 1.00 respectively.
The scaling factor K, required in IBEA1 [21], is set to 0.05.

4.3 Performance Assessment

To our knowledge, no protocol fully adapted to evaluate the effectiveness of
multi-objective optimization methods for stochastic problems exists by now.
Consequently, we choose to revalue each final set of solutions on the reference
benchmark (the one from which stochasticity was generated) and to regard this
evaluation as the ‘true’ evaluation. Then, we only keep the non-dominated solu-
tions (according to this ‘true’ evaluation) obtained by each algorithm. Therefore,
we are able to apply traditional metrics, used in the deterministic case, to assess
the quality of the obtained Pareto set approximations.

Here, we use two measures to compare the obtained Pareto fronts: the contri-
bution metric [15] and the S metric [19]. The contribution metric evaluates the
proportions of Pareto optimal solutions given by each front, whereas the S met-
ric measures the size of the objective space dominated by a non-dominated set.
For the contribution metric, the performance comparison is carried out using
a reference set R determined by merging all the solutions found during the
whole optimization runs of every algorithm into a single set and keeping only
the non-dominated solutions. For the S metric, the required reference point Z is
composed of the worst objective values observed on the whole optimization runs
for the benchmark under consideration, multiplied by 1.1.

4.4 Computational Results and Discussion

To significantly compare all the algorithms, we choose to perform a Wilcoxon
rank test for every instances and every kind of probability distribution. On each
of the following results tables, the ‘T’ columns give the result of the test for a
p-value lower than 5%, i.e.:

– according to the metric under consideration, the results of the algorithm
located at the specific row are significantly better than those of the algorithm
located at the specific column (+);

– according to the metric under consideration, the results of the algorithm
located at the specific row are significantly worse than those of the algorithm
located at the specific column (−);

– according to the metric under consideration, there is no significant difference
between the results of the two algorithms (≡).

Results for uniformly, exponentially, normally, log-normally and variously dis-
tributed processing times are respectively given in tables 1, 2, 3, 4 and 5.

In a general way, according to the performance metrics used, IBEAavg globally
outperforms IBEA1 and IBEAstoch for all probability distributions (except for
the first benchmark whose processing times are log-normally distributed, where
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IBEA1 performs significantly better according to the S metric, see table 4). How-
ever, as IBEAavg uses average values, we could have expected such results for
probability distributions whose central tendency is the mean (i.e. uniform and
normal distributions), but these results are more surprising for the other distri-
butions. For uniformly and normally distributed processing times, IBEA1 is sig-
nificantlymore efficient than IBEAstoch according to the S metric (see tables 1 and
3). But, according to the contribution metric, there is no significant difference be-
tween these two algorithms (except for the uniform distribution where IBEAstoch

performs significantly better on the last benchmark, see table 1). For the expo-
nential distribution, there is globally no significant difference between IBEA1 and
IBEAstoch (see table 2). Even so, according to the contribution metric, IBEAstoch

is more effective on the last benchmark. And, according to the S metric, IBEA1
is more effective on the second one. Finally, according to the contribution metric,
for log-normally and variously distributed processing times, there is no significant
difference between all the algorithms. On the contrary, according to the S metric,
IBEAstoch generally outperforms IBEA1 for the log-normal distribution (except
for the first benchmark) whereas it outperforms IBEA1 only on the last bench-
mark for variously distributed processing times (see tables 4 and 5).

Table 1. Comparison of the quality assessment values obtained by IBEA1, IBEAavg

and IBEAstoch for uniformly distributed processing times using the Wilcoxon rank
test

contribution metric S metric

IBEA1 IBEAavg IBEA1 IBEAavg

p-value T p-value T p-value T p-value T

20 5 01 IBEAavg > 5 % ≡ 0.002 +
IBEAstoch > 5 % ≡ 0.009 − 0.002 − 0.001 −

20 5 02 IBEAavg 0.013 + 0.002 +
IBEAstoch > 5 % ≡ 0.006 − 0.005 − 0.001 −

20 10 01 IBEAavg 0.002 + 0.001 +
IBEAstoch 0.005 + 0.002 − 0.001 − 0.001 −

Table 2. Comparison of the quality assessment values obtained by IBEA1, IBEAavg

and IBEAstoch for exponentially distributed processing times using the Wilcoxon rank
test

contribution metric S metric

IBEA1 IBEAavg IBEA1 IBEAavg

p-value T p-value T p-value T p-value T

20 5 01 IBEAavg > 5 % ≡ 0.001 +
IBEAstoch > 5 % ≡ > 5 % ≡ > 5 % ≡ 0.033 −

20 5 02 IBEAavg > 5 % ≡ > 5 % ≡
IBEAstoch > 5 % ≡ > 5 % ≡ 0.002 − 0.001 −

20 10 01 IBEAavg 0.045 + 0.001 +
IBEAstoch 0.036 + > 5 % ≡ > 5 % ≡ 0.005 −
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Table 3. Comparison of the quality assessment values obtained by IBEA1, IBEAavg

and IBEAstoch for normally distributed processing times using the Wilcoxon rank test

contribution metric S metric

IBEA1 IBEAavg IBEA1 IBEAavg

p-value T p-value T p-value T p-value T

20 5 01 IBEAavg > 5 % ≡ 0.002 +
IBEAstoch > 5 % ≡ > 5 % ≡ 0.021 − 0.001 −

20 5 02 IBEAavg > 5 % ≡ 0.001 +
IBEAstoch > 5 % ≡ > 5 % ≡ 0.002 − 0.001 −

20 10 01 IBEAavg 0.004 + 0.002 +
IBEAstoch > 5 % ≡ 0.004 + 0.001 − 0.001 −

Table 4. Comparison of the quality assessment values obtained by IBEA1, IBEAavg

and IBEAstoch for log-normally distributed processing times using the Wilcoxon rank
test

contribution metric S metric

IBEA1 IBEAavg IBEA1 IBEAavg

p-value T p-value T p-value T p-value T

20 5 01 IBEAavg > 5 % ≡ 0.032 −
IBEAstoch > 5 % ≡ > 5 % ≡ 0.001 − 0.001 −

20 5 02 IBEAavg > 5 % ≡ 0.001 +
IBEAstoch > 5 % ≡ > 5 % ≡ 0.001 + 0.001 −

20 10 01 IBEAavg > 5 % ≡ 0.001 +
IBEAstoch > 5 % ≡ > 5 % ≡ 0.001 + 0.020 −

Table 5. Comparison of the quality assessment values obtained by IBEA1, IBEAavg

and IBEAstoch for variously distributed processing times using the Wilcoxon rank test

contribution metric S metric

IBEA1 IBEAavg IBEA1 IBEAavg

p-value T p-value T p-value T p-value T

20 5 01 IBEAavg > 5 % ≡ 0.001 +
IBEAstoch > 5 % ≡ > 5 % ≡ 0.019 − 0.001 −

20 5 02 IBEAavg > 5 % ≡ 0.014 +
IBEAstoch > 5 % ≡ > 5 % ≡ > 5 % ≡ 0.010 −

20 10 01 IBEAavg > 5 % ≡ 0.001 +
IBEAstoch > 5 % ≡ > 5 % ≡ 0.003 + > 5 % ≡

The poor overall effectiveness of IBEAstoch can be partly explained by a low
diversity among the Pareto set approximation obtained during the evaluation
on the reference benchmark. Then, using an indicator that would increase the
diversity in the decision space could give better results. Besides, the whole of
the experimental results can be discussed as the evaluation protocol is not fully
adapted to stochastic multi-objective problems.
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5 Conclusion and Perspectives

In this paper, we investigated a bi-objective flow-shop scheduling problem with
stochastic processing times as well as general combinatorial optimization algo-
rithms applied to its resolution. First, we saw that, in real-world situations,
none of the parameters related to this kind of problem is deprived of uncer-
tainty. Thus, non-deterministic models are required to take this uncertainty into
account. To this end, a proactive approach, where processing times are rep-
resented by random variables, have been taken and several general stochastic
models have been proposed. Next, we introduced three different indicator-based
methods for stochastic multi-objective problems that are able to handle any type
of uncertainty. The first method, called IBEA1, consists in preserving the deter-
ministic approach by computing the fitness of a solution on a single evaluation.
The second method, namely IBEAavg , is based on average objective values. At
last, the IBEAstoch method consists in estimating the quality of a solution in a
probabilistic way. The latter, already investigated in [2] on continuous problems,
has never been applied neither to the combinatorial case nor to the stochastic
models proposed here. All these algorithms and the fitness concept for multi-
objective stochastic problems are now available within the ParadisEO-MOEO
framework; new methods can thus easily be implemented in order to compare
their effectiveness with those presented in this paper. To test these algorithms
on our stochastic flow-shop problem, we initially had to build benchmark suites,
first for the deterministic bi-objective case, then for the stochastic case. Accord-
ing to the experimental protocol we formulated, we concluded that IBEAavg

was overall more efficient than IBEA1 and IBEAstoch. Even so, from a purely
theoretical point of view, IBEAstoch seems to be more representative of the
quality associated to a solution than the two other methods. In spite of that,
the results it obtained are a little disappointing in comparison with the contin-
uous case [2]; even if, in that last case, its effectiveness is especially significant
for more than two objectives. This can be explained by the fact that the final
solutions found by this algorithm are relatively close the ones from the others in
the decision space, which generally implies, for our problem, that they are also
close in the objective space. As a result, this method cannot contest the others
in term of diversity. However, all these results should be moderated. No exper-
imental protocol fully adapted to the combinatorial optimization of stochastic
multi-objective problems exists up to now. The one we proposed, although sim-
ple and fast, is not really natural and is imperfectly adapted to this kind of
problem. Moreover, considering the evaluation on the deterministic benchmark
as the ‘true’ evaluation advantages a lot IBEAavg , especially for probability
distributions whose central tendency is the mean.

Different perspectives emerge from this work. First of all, other sources of
uncertainty that processing times could be taken into account for the flow-shop
problem. Furthermore, a reactive approach could be linked to our proactive
approach in order to largely improve the effectiveness of all the algorithms. Ad-
ditionally, as all the results obtained during our experiments reveal a weakness of
convergence, hybridizing our evolutionary algorithms with local searches could
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be beneficial, especially to accelerate the exploration near potentially interesting
solutions. Moreover, even if most of quality indicators to be used with IBEA take
diversity into account, they only deal with diversity on the objective space, and
not on the decision space. Then, to fill the low-level of diversity of IBEAstoch, it
could be interesting to create an indicator that would allow the decision maker
to obtain diversified solutions in the decision space and that would not be com-
pletely focused on the Pareto dominance relation. Also, perhaps IBEAstoch is
simply to fine-grained compared to IBEAavg , and so presents a landscape with
a complex structure whereas IBEAavg provides a reasonable guidance and uses
stochasticity to pass over such a structure. Studying the lanscape more precisely
could then be helpful. Besides, the population size as well as the number of evalu-
ations per solution are two parameters that influence a lot the effectiveness of all
the algorithms. Studying more finely the way of determining them and analyzing
how to make them evolve in a more efficient way during the optimization process
could be profitable. Lastly, working out an experimental protocol adapted to the
combinatorial optimization of stochastic multi-objective problems proves to be
essential to evaluate the results in a more rigorous way. As well, this study could
be extended in order to consider problems with more than two ojectives.
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Abstract. This paper presents the corrective process control system for 
achieving a target quality level in glass melting processes. Since automated data 
collection devices would monitor and log process attributes that are assumed to 
correlate to a quality level in the glass melting process, appropriate process 
control logics utilizing the collected data are definitely needed. In this paper, an 
evolutionary algorithm based search logic is newly proposed. The objective of 
the proposed logic is to find the best process condition composed of the process 
attributes which can generate the target quality level. The proposed logic tries to 
find the best process condition that needs to satisfy the following two criteria: 
1) a process condition should require minimal changes from the current setting 
of the process attributes; and 2) a process condition can generate the exact or 
closest value against the target quality level. A case study and a developed 
process control system are presented. 

Keywords: Evolutionary algorithm, corrective process control, glass melting 
process. 

1   Introduction 

One of the major activities for improving quality in manufacturing processes is to 
control the processes correctly. The product defects typically come from even small 
changes during manufacturing processes that cause big vibrations in the product that 
in turn result in out of the acceptable limits. This paper is concerned with finding the 
desirable process conditions that result in achieving a target quality in glass melting 
processes. Glass melting processes are composed of three parts: a furnace, a refinery, 
and a forehearth as shown in Fig. 1. Raw materials such as mostly sand and many 
kinds of chemicals are melted into glass at high temperature in the furnace. The 
refinery makes the temperature of the molten glass uniform at every spot. Then the 
temperature of the melted glass is adjusted to a suitable temperature through the 
forehearth for the glass forming process to follow. Due to flow dynamics, the flow of 
melted glass is not uniform, especially at the bottom of the furnace. As a matter of 
fact, each spot of the melted glass has a different temperature profile. In addition to 
temperature, other attributes also affect the thermal characteristics of melted glass. 
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Raw material composition, thermal conductivity, viscosity, fuel/air feed rate, glass 
color, and the amount of the glass in a furnace are some of the process attributes. 
Because there are so many – either known or unknown – attributes and the process is 
so dynamic, it is very difficult to control the behavior of molten glass. 

 

Fig. 1. Glass melting process  

In real glass melting processes, there exists the automated data collection devices 
to monitor and log the process attributes on the assumption that they might be related 
to the quality level of the process. 

In this paper, we propose the corrective process control system for achieving a 
target quality level in glass melting processes. The proposed corrective process 
control system has the evolutionary algorithm based search logic (EASL) as a main 
engine in order to utilize the past data collected from the automated data collection 
device. The main objective of the EASL is to find the best process condition 
composed of the process attributes which can generate the target quality level. The 
proposed EASL tries to find the best process condition that needs to satisfy the 
following two criteria: 1) a process condition should require minimal changes from 
the current setting of the process attributes; and 2) a process condition can generate 
the exact or closest value against the target quality level. 

This paper is organized as follows. Section 2 describes data collection procedure, 
and in Section 3, the EASL is explained in detail. Section 4 presents the 
implementation of the proposed corrective process control system with a real glass 
melting process case. Finally, conclusions and future research directions are discussed 
in Section 5. 

2   Data Collection 

In glass melting processes, one of the most difficult jobs is to control the process 
attributes. The automated data collection devices constantly monitor operating 
parameters (i.e., process attributes) and the quality level throughout the individual 
facilities. When the quality level becomes out of tolerance, these systems will either 
respond with an alarm to notify the operation personnel that an unexpected quality 
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level has been found, or some are designed to automatically correct the situation by 
modifying the process attributes properly. 

The collected data on the process attributes and the quality level are stored in data 
warehouse. As mentioned in the previous section, various factors including 
temperature and fuel/air feed rate are regarded as the process attributes, while the 
number of blisters per a fixed size of molten glass can show the quality level of the 
current glass melting process. 

The basic difference between data warehouse and traditional database comes from 
whether the time index is attached to each of the collected records. In data warehouse, 
every record has its own time index for showing when it is reported from the process. 

The following Fig. 2 illustrates the example of data warehouse of the glass melting 
process.  

 

Fig. 2. Data warehouse of the glass melting process  

How frequent each record is collected from the process depends on the pre-
determined policy of the company. In our real world case, the record containing the 
status of the process attributes and the target quality is automatically saved every 20 
minutes. 

Using the collected data in data warehouse, the EASL of the corrective process 
control system can be performed. In the following section, the corrective process 
control system is presented focusing on the EASL. 

3   Corrective Process Control System 

For the corrective process control, many theoretical and application research works 
are found in diagnostic knowledge representation, diagnostics reasoning, expert 
systems, neural networks, etc [1]-[4]. Also, although case-based reasoning can be 
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another alternative to find the causes of the defects and furthermore determine the 
good process conditions [5], little is known in the application of manufacturing 
processes. 

In general, how to set each of the process attributes could be directly related to the 
process quality level. Suppose that we want to achieve any target quality level that is 
represented as the average number of blisters for final glass products in glass melting 
process. Then the control problem is how to set the process attributes appropriately 
for achieving that quality level. 

As stated in Section 1, we propose the EASL for the corrective process control in 
the glass melting process. Before proceeding to the details of the proposed EASL, a 
basic pick-up logic (BPL) for the corrective process control is presented. This basic 
pick-up logic can give us a basic view of the corrective process control. 

The following table 1 shows the properties of both the BPL and the EASL. 

Table 1. The properties of two corrective process control logics  

 BPL EASL 
Logic Type Pick-up from the past records 

stored in the data warehouse 
Search from both the past 
records and the randomly 
generated records 

Computational Time Very short Relatively long 
Expected Performance Not good Relatively good 

The BPL can be running for a stable process where relationship between the process 
attributes and the process quality level seems certain and fixed. Under this stable 
process environment, one of the past records in data warehouse can be chosen for the 
corrective process control. However, most processes are not repeatable and just 
picking-up the past record cannot be a proper way to achieve the target quality level.   

To figure out the problem of the BPL, the EASL is proposed. The search engine is 
designed to increase the possibility of finding a better process condition composed of 
the process attributes which can lead us to achieve the target quality level. While the 
BPL only searches for the past records, the EASL can explore more various process 
conditions by considering both the past records and the randomly generated records 
together. The details of both the BPL and the EASL will be investigated in the 
following sub sections. 

3.1   Basic Pick-Up Logic (BPL) 

The assumption for using this logic is that the target process is very stable and 
repeatable enough. In other words, in this environment, if the operator modifies the 
values of the process attributes according to one of the past records, the quality level 
of the process should be close to that of the chosen past record.  

The proposed basic pick-up logic has three subsequent steps as follows: 
 
Step (1) Set the target quality level of the process, q (e.g., set the allowable 
average number of blisters in the glass melting process). 
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Step (2) From the data warehouse, find a set of past records generating the target 
quality level. 
Step (3) Pick-up the most desirable record which requires the minimal changes or 
set-up from the current setting of the process attributes using the following 
equation. 
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where e  is the minimal difference between the current process condition and 

the past process conditions; 0
iX  is the current value of the process attribute i; 

j
iX  is the value of the process attribute i of the past record j; I is the set of 

all the process attributes; iw  is the relative weight of the process attribute i; 
and J is the set including all the past records which can generate the target 
quality level, q. 

 
The following Fig. 3 briefly shows how the proposed BPL works. 

 

Fig. 3. Example of the BPL 

In Step 1, the decision-maker or the operator set the target quality of the process to 
15 (i.e. the average number of blisters) since the current average number of blisters is 
18. In the following Step 2, two different past records are chosen from the data 
warehouse. Using Equation (1), one out of the two past records is chosen for the 
current process control in Step 3. 
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3.2   Evolutionary Algorithm Based Search Logic (EASL) 

Unless the target process is stable and repeatable, we cannot simply pick up the 
desirable record from the data warehouse for setting the current process attributes to 
achieve the target quality level. Also, sometimes we cannot find any past records 
generating the target quality level from the data warehouse. 

Unlike the BPL, the proposed EASL can explore various process conditions 
composed of the process attributes by considering both the past records and the 
randomly generated records together. This means the EASL attempts to increase the 
possibility of finding a better solution (i.e., the process condition composed of the 
process attributes which can generate the exact or closest value against the target 
quality level).  

One of the representative evolutionary algorithms is a genetic algorithm (GA). The 
GA is a search and optimization algorithm based on the principles of natural evolution 
[6]. Due to its ease of applicability, numerous applications of the GA are found in the 
area of business, scientific, and engineering optimization problems. Especially for 
process control problems, we can find researches in various application areas such as 
general plant controlling [7], control of a phosphate processing plant [8], control 
optimization of chemical engineering process [9], and control of a fibre-yarn 
production process [10]. However, all these GA schemes are case specific so that 
unfortunately they cannot fit to our glass melting process at all without considerable 
modifications. In addition, to the best of our knowledge, the GA based process control 
issues in our particular industry, glass melting process, have not been found at all. 

The basic procedure of the proposed EASL is as follows. 
 
(Step 1) Set the target quality level of the process, q (e.g., set the allowable 
average number of blisters in the glass melting process). 
(Step 2) Build a linear causal model using regression method and past data on the 
process conditions of glass melting process. To simplify the model which 
represents a causal relationship between process conditions and the target quality 
level, a linear causal model is adopted here. But, it can be replaced with various 
models for representing a more complex relationship later.  
(Step 3) Using the EA based on the modified GA, search the best process 
condition that can satisfy the following two criteria: 1) the process condition 
should require minimal changes from the current attribute status; and 2) the process 
condition could generate the exact or closest value against the target quality level.  
 

Step (1) of the EASL:  
This step is the same as that of the BPL. 

Step (2) of the EASL: 
In Step 2, the linear causal model is created by a linear regression, and it is used for 

a basic structure for the EASL. 
The proposed linear causal model is as follows: 
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where )( ty : the estimated quality value at time t 

      )( ii ltx − : the value of the process attribute ix  at time ilt −  

      il : the lag time between the estimated y and the process attribute ix  

      )( te : the error term at time t 
 

In the above model, lag time, l, is defined as the time difference between process 
quality and process attributes at specified observation time. This means that the values 
of the process attributes observed at time t account for the qualities measured at time 
t+l. To find an accurate lag time is very difficult, especially in dynamic business 
processes or continuous-flow-type manufacturing environments, because it requires 
the comprehensive tracking of the process attributes and also the lag time itself has 
somewhat probabilistic nature. For simplicity, in model (2) we assume that there 
exists only a single lag between y and ix . In other words, no multiple lags are 
distributed over time. Even though it is reported that polynomial distributed lags have 
been utilized in measuring the lag effect of advertising at retail sales [11], we do not 
consider the cumulative effects of process attributes at process quality level over time. 
In this paper, we propose a simple method to determine lag times in glass melting 
process, which adopts a graphical trend analysis [12]. 

In order to identify relationship between two different variables (i.e., the process 
quality and the process attribute), we analyze the trend of two variables 
simultaneously. Our trend analysis is to measure the similarity of trend between a 
quality level and a process attribute under a specified lag time l. The similarity, lS , is 
computed as follows: 

TddS
T

t
ltll ∑

=

−=
1

 (3) 

where ltttl yxd +−=  

     ( ) Tyxd
T

t
lttl ∑

=
+−=

1

 

     tx : the observed value of a process attribute at time t 

     lty + : the observed value of a quality level at time t+l        

lS  is interpreted as an average deviation of differences between a quality level and 

a process attribute. When lS  approaches zero, x and y have exactly the same trend 

with a lag time l. Then by plotting lS  along l, we can estimate how the similarity 

changes according to lag time. If the lS  graph has a convex shape, we might 

conclude that the lag time at the minimal point should be selected because it gives 
higher similarity than any other lag time. Here, the convex graph means that the x and y 

behave proportionally in the same direction and have very similar trend. If the lS  graph 

has a concave shape, we might select the lag time at the maximal point with the same 
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reason as in the convex case. In this case, the x and y behave in the opposite direction 
and have reverse trends. What if the graph has no particular shape or multiple convex 
or concave shapes? Then we can think that the process attribute is not directly related 
to the quality level and instead it is affected by other process attributes. This means 
that it is not possible to determine the lag time for this process attribute. This method 
seems to be somewhat intuitive but very simple and efficient. From the extensive 
experiments, Jeong et al. [12] reported that this graphical trend analysis is useful for 
determining lag time in continuous manufacturing environments although they just 
adopted this approach for building a forecasting system. The lag times need to be 
updated regularly or every time the process environment changes. 

 
Step (3) of the EASL 

In Step 3, once we prepared the linear causal model using regression, the best 
process condition composed of the process attributes should be searched using the 
EASL. 

First, we can make an initial set of alternative process conditions (i.e., population) 
composed of U process conditions (i.e., chromosomes). In other words, the size of 
population is U, and it should be an even number in this research. Any process 
condition )( ux  is composed of n process attributes )( uxi , i=1,…,n. Fig. 4 shows 

how the initial population of the EASL is created. 

 

Fig. 4. Population creation in the EASL 

As shown in Fig. 4, the half of the initial population is composed of the past 
records drawn from the data warehouse, and the other half of the initial population is 
composed of the randomly generated records in order for the EASL to search more 
various process conditions. To randomly generate the records, we use the minimum 

and maximum values (i.e., )( uxMIN
i  and )( uxMAX

i ) of the process attribute i which 
can be found from the data warehouse. Also, the searching range can be extended by 
multiplying the minimum and maximum values by 0.9 or 1.1, an adjustable extension 
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rate. Once the searching range is fixed, each value of the process attributes )( uxi  

can be randomly chosen from the range. 
Next, the fitness function of the EASL is needed for evaluating each of the process 

conditions in the population. Selection using the fitness function is very important to 
develop and maintain better solutions in the population. At each iteration (i.e., 
generation) of the EASL, we have to select chromosomes that survive in a way that 
achieves the objectives for the concerned problem. Our suggested fitness function is 
given as follows: 

( ) )(
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where 0
ix : the current process condition (value) of process attribute i 

      tq : target quality 

      )(uxy : the estimated quality level using the process condition )(ux  

  it can be obtained by inserting )(ux  into Equation (2) 

      βα , : weight factors 
 
The above fitness function is composed of two terms. The first term is used to 

choose the best process conditions with the minimal changes or set up from the 
current process condition, and the second one is used to choose the best process 
condition with the minimum gap between the calculated quality level of causal linear 
model and target quality level. 

Using above fitness function, the following minimum generation gap selection 
(MGG) method [13] is adopted in our EASL.  

 
(Step A) Randomly select two different mates from the old population with equal 
probability. 
(Step B) Apply evolutionary operations such as crossover and mutation to the two 
mates, which results in two new chromosomes. 
(Step C) Put the two mates and two newborn children together and select the better 
two with different f values (fitness function value) if possible. 
(Step D) Two newly selected chromosomes replace the two mates, which enter the 
next generation. 
(Step E) Repeat steps A-D until next population is fully built. 
 
One of the strengths of the MGG selection method is that it tries to preserve the 

good parents in the next generation while other selection methods construct a set of 
candidates consisting of only child chromosomes so that even parents with good f 
value cannot enter the next generation. 

Finally, we need to define the evolutionary operations of the EASL which diversify 
the solution alternatives. In this paper, crossover and mutation are applied on 
individual chromosomes in the population. Crossover is used to avoid destroying 
parent’s characteristics and helps a child chromosome inherit a good sequence from 
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the two parents. While there are so many crossover techniques in various fields, the 
two-point crossover techniques were introduced in our GA because of generality and 
the ease of adaptability. Also mutation makes the solution space be searched in 
various directions using random insertion or swapping techniques. In this research, if 
any process attribute is chosen for mutation, we insert the minimum or maximum 
value of the chosen process attribute into the chromosome. Both the minimum and 
maximum values of the process attributes can be found from the data warehouse as 
shown in Fig. 4. 

Crossover occurs on the two randomly selected chromosomes with probability cP , 

and mutation occurs on each of the two mates with probability mP , which is 
artificially adjustable. 

Fig. 5 represents the overall procedure of the EASL. In Figure 5, the number of 
generations is set to 50. 

 

Fig. 5. Overall procedure of the proposed EASL 

4   Implementation and Case Study 

4.1   System Implementation 

The proposed corrective process control system for glass melting process was 
implemented on a PC Pentium IV-M 2.20 GHz platform using Delphi and C++ 
Language. Table 2 shows all the functions included in the system. 

The lag time determination function is to generate the proper set of lag time 
between all the process attributes and the quality level by means of the graphical trend 
analysis. After finding the desirable process condition by the BPL or the EASL, we 
can report final results via table and graph. In a report table, for a user-friendly view, 
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the founded process conditions can be sorted by either the degree of je  in the BPL or 

the degree of fitness function f in the EASL. 

Table 2. The functions of the developed system 

Main Function Sub Function 
Process quality or attributes input/delete/change 

Data validation and filtering 

Lag time determination 

Data query/view 

Data Management 

File save/retrieve 

Regression Analysis 
BPL 

EASL 
Control Logic 

Results save/query 

Report Control results/ Process information 

The sample screens for the input and output of the proposed system are shown in 
Fig. 6. 

 

Fig. 6. The sample screen shots for the input and output of the system 

4.2   Case Study 

This case study was based on a research project conducted at a real glass panels 
manufacturing company. We gathered and used a set of real process data and quality 
(i.e., the average number of blisters) data that were collected every 20 minutes for 
about 135 days in a glass manufacturing line where the glass panels for CRT TV are 
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manufactured. The total number of records is 9793, and there exist 125 process 
attributes and 1 quality measure. As for the EASL, since the population size is set to 
100 in this case study, 50 past records generating the exact or closest target quality 
level are chosen first, and 50 randomly generated records are additionally generated 
for the initial population. 

Using the pre-experiments, we have fixed the following experimental setup: 
population size = 100; crossover rate = 0.9; mutation rate = 0.19; number of 
generations (i.e., stopping criterion of the EASL) = 100; and weight factors of the 
fitness function 50., =βα , respectively. 

 

Fig. 7. The BPL results for the given target quality level 13.19 

Fig. 7 shows the BPL results for the target quality 13.19. As shown in Fig. 7, there 
are nine different past records (i.e., process conditions) that result in the same quality 
level 13.19, and the fifth record from starting time is chosen to be the most desirable 
process condition with minimal difference value ( 5e ). 

Table 3.  The EASL results for four different target quality levels 

Experiment 
No. 

Target Quality 
Level 

Estimated Quality Level 
from the EASL 

Computational Time 

1 7.92 8.14 28.43 
2 18.42 18.02 28.94 
3 19.02 19.98 28.09 
4 9.65 9.23 29.63 

The four different experimental results of the EASL are summarized in Table 3. 
Table 3 contains the computational time, the target quality level, and the final 
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estimated quality level after the 100 generation running of the EASL. As shown in 
Table 3, it just takes under 30 seconds for 100 generations to search the best process 
condition. 

5   Conclusions 

In this paper we proposed a corrective process control system for the glass melting 
process, which is based on two different logics to find the best process condition for 
achieving the given target quality. For a stable process where the same quality is 
almost guaranteed if we insert the same setting of the process attributes to the process, 
we can use the BPL that picks up a desirable process condition from the past records 
stored in the data warehouse. However, most of the glass melting processes have 
uncertainty and do not guarantee the same quality even if the same setting of the 
process attributes is given to the process. Thus, the EASL based on a linear causal 
model and the EA is newly developed. 

For the validation of the proposed system, we used the 135 days real data from the 
real glass melting process that is characterized by 125 process attributes. We found 
the best process condition using our BPL and EASL. Also, we asked for the group of 
process analyst, who are currently working on that process, to review those results 
and they were satisfied enough to use the proposed solutions. 

Finally, several open problems for future research still ahead are as follows: 
 

- How to find the best process condition for achieving the target quality in a new 
process line without any past data. 

- How to apply the uncertainty of the flow dynamics of the melted glass into the 
current proposed system in order to increase the accuracy of the corrective process 
control. 

- How to determine the exact lag time if the multiple lags between the multiple 
process attributes and the quality level, and how to determine the cumulative 
effects of the process attributes over time. 

- To find the algorithm characteristics by applying the proposed algorithm to several 
different situations (it may require further case studies). 
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Abstract. This paper presents a multicriterion algorithm for dealing
with joint facility location and network design problems, formulated as
bi-objective problems. The algorithm is composed of two modules: a mul-
tiobjective quasi-Newton algorithm, that is used to find the location of
the facilities; and a multiobjective genetic algorithm, which is responsi-
ble for finding the efficient topologies. These modules are executed in an
iterative way, to make the estimation of whole Pareto set possible. The
algorithm has been applied to the expansion of a real energy distribu-
tion system. The minimization of financial cost and the maximization of
reliability have been considered as the design objectives in this case.

1 Introduction

The problem of combined facility location and network topology design consti-
tutes a difficult task that arises in several contexts, frequently when the facility
is the source of a good that must be distributed via some network. Reference [1]
discusses in detail this general class of optimization problems, which involves the
simultaneous choice of continuous and discrete variables. This problem becomes
even harder in the context of multi-objective formulations, since its intrinsic com-
putational burden will affect the generation of a large number of solutions that
are contained in the efficient solution set (the Pareto-set solutions). It should be
noted that, very often, the real-world problems can be suitably cast in terms of
a bi-objective formulation, for instance with the system cost competing with the
system reliability, or the service quality. Up to the authors’ knowledge, this prob-
lem has not been addressed in true multiobjective fashion in the literature, yet.

This paper discusses the structure of such an optimization problem, in the
setting of nonlinear multiobjective optimization. For brief reference, the Mul-
tiobjective Joint Facility Location and Network Design problem is referred to
here as the MJFLND problem. An algorithm is proposed here which combines

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 486–500, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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a line search routine for the facility location sub-problem with a genetic algo-
rithm (GA) for the network design sub-problem. Both routines are adapted to
generate Pareto-set solutions in their own variables. A heuristic iterative proce-
dure performs the switching between these routines, so that the Pareto-optimal
solutions may be approached considering all variables. A convergence criterion
based on the stabilization of the various Pareto-set “islands” that characterize
this problem is proposed.

The proposed approach is discussed here through the analysis of a case study
which is taken from a real joint electric distribution network design and one sub-
station (SS) location problem. Two objectives have been considered: the system
reliability and the sum of installation and operation financial costs. The multi-
objective genetic algorithm employed here has been adapted from that presented
in [2], in which several specific genetic operators are proposed for network de-
sign problems. The approach of combining a genetic algorithm with a line search
optimization routine for the joint problem of substation location and network
design has been used in [3], in an easier mono-objective setting. Here the problem
is extended to a multiobjective setting.

The paper is structured as follows. The problem structure and the conceptual
algorithm are discussed in sections 2 and 3. The statement of the real problem
and the algorithm proposed to solve it are presented in sections 4 and 5. Finally,
the numerical results gained for the real case are discussed, and some concluding
remarks are drawn.

2 The Structure of Pareto-Sets in MJFLND

2.1 Multiobjective Optimization

Conventional mono-objective optimization is stated as the problem of finding
the point, in a space of optimization variables, in which a certain function (the
objective function) reaches its minimum (or maximum) value. The multiobjective
optimization problem, instead of looking for a single point, searches for a set of
points, the Pareto-optimal set, which is the set of optimal solutions of a problem
with more than one objective functions [4]. The Pareto-optimal set, X ∗, is defined
as follows.

Consider the minimization of a vector function f(·) : F �→ R
m (the vector of

m objective functions of the problem) in which the set F represents the problem
feasible set. In general, there may not be a single point x ∈ F in which f(·)
reaches the minimum value for all its components. Then:

X ∗ = {x∗ ∈ F | � ∃ z ∈ F such that
f(z) ≤ f(x∗) and f(z) �= f(x∗)} (1)

in which the relational operators ≤ and �= are defined for vectors u, v ∈ R
m, as:

u ≤ v ⇔ ui ≤ vi ∀ i = 1, . . . , m
u �= v ⇔ ui �= vi for some i = 1, . . . , m

(2)
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The points x ∈ F that do not belong to the set X ∗ are said to be dominated,
since there are some other points, z ∈ F , such that f(z) ≤ f(x) and f(z) �= f(x),
which means that f(z) is better than f(x) in at least one coordinate, without
being worse in any other coordinate. In this case, z dominates x. The solutions
x∗ that belong to the set X ∗ are called the efficient solutions, since they are not
dominated by any other point. The space of objective function vectors is also
defined, being denoted by Y, and the Pareto-front in this space is denoted by
Y∗. Multiobjective optimization looks for the efficient solution set (both X ∗ and
Y∗) of a vector optimization problem.

2.2 MJFLND Problem

The MJFLND problem can be stated, in a general context, as follows:

N ∗ = arg minN

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1
f2
...

fm

subject to: N ∈ FN

where:
N ∗ is the set of non-dominated solutions (networks);

fi is the i − th objective function;

FN is the feasible set of solutions.

It is important to note that each one of possible solutions N is composed of two
sets of variables: the facility position (which is a set of continuous variables) and
the network topology (which is discrete). Therefore, the multiobjective MJFLND
can be decomposed into two sub-problems:

– Finding the set of non-dominated topologies (discrete problem);
– Finding the set of non-dominated facility positions for each topology (con-

tinuous problem).

However, these problems cannot be treated separately since they are strongly
coupled: changes in position of the nodes usually imply in changes of the topol-
ogy, and vice-versa.

On the other hand, the difference in the nature of the sub-problems justifies
the use of different optimization methods to solve them. A short description of
the methods employed and the coupling strategy used is given in the following
paragraphs.

The Discrete Variable Sub-problem: In the space of objectives, the Pareto-
front Y∗ of a problem with discrete variables consists of a set of isolated points.
Figure 1(a) illustrates the Pareto-front for a discrete-variable multiobjective
problem with two objective functions. The solutions I to IV compose the Pareto
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set for this example. One can note that all the other solutions are dominated by
at least one of the efficient solutions.

The algorithm for dealing with the discrete-variable optimization sub-problem
is chosen to be a genetic algorithm.

f1

f2

I

II

III

IV

(a) Discrete problem

f1

f2
h1

h2

Y

Y∗

(b) Continuous problem

Fig. 1. Example of Pareto-fronts

The Continuous Variable Sub-problem: Continuous variable multiobjec-
tive optimization problems often lead to Pareto-fronts Y∗ that are continuous
or, at least, piecewise continuous (but not necessarily connected) in the space
of objectives. An instance of such a continuous set, for two objective functions,
can be seen in figure 1(b).

Deterministic algorithms for nonlinear optimization, such as BFGS (Broyden-
Fletcher-Goldfarb-Shanno) or the Ellipsoid Algorithm [5] can be employed, in
the case of multiobjective optimization with continuous variables, after a scalar-
ization procedure [4,6]. A very intuitive scalarization technique is Pλ, which uses
weighted sums of the objectives. This procedure searches for each point in the
Pareto-set through the variation of the weighting vector λ. It should be noted
that the algorithm must be executed at least N times for mapping N Pareto-
optimal solutions1. The Pλ problem formulation is shown in (3).

x = arg minx

m∑
i=1

λifi(x)

subject to:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ Fx

λi ≥ 0
m∑

i=1

λi = 1

(3)

A favorable property of the Pλ scalarization is that it does not affect the nature
of the problem. However, this kind of approach is not suitable for achieving the
1 The algorithm must be executed at least N times because different λ vectors can

lead to the same solution.
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whole Pareto-set in some problems, since it can map only the solutions which
belong to the boundary of the convex hull of the efficient solution set (Figure
1(b))2. Therefore, using Pλ, the whole Pareto-set can be achieved only in convex
problems.

The whole Pareto-set can be mapped in non-convex problems using an en-
hanced scalarization method, such as the ε-constrained approach [4] (denoted by
Pε). In Pε, one of the problem objectives is considered as the objective function
of the scalar problem, and the other objectives are treated as constraints. The
solutions of Pareto-set are achieved through variations in the constraint thresh-
olds (εi). The mathematical formulation of this scalarization technique is shown
in (4).

x = arg minx fi(x)

subject to:
{

x ∈ Fx

fj(x) ≤ εj , j = 1, . . . , m (j �= i)
(4)

One limitation of the Pε approach is that this technique changes the structure
of problem, adding new constraints to it. It can make the problem considerably
harder, mainly when the functions are non-linear.

A viable way of mapping the whole Pareto-set in non-convex problems, with a
reasonable computational cost, is the association of Pλ with the Pε. First, Pλ is
employed to map an initial estimate of Pareto-set. In a second step, this estimate
is analyzed: if it contains significant non-contiguous parts, then, Pε is used in
order to fill those “holes”, to find the Pareto solutions that are not reachable via
the Pλ procedure. This approach is employed here, with the BFGS algorithm
being used as the optimization machinery.

2.3 Expected Characteristics of a MJFLND Pareto-Front

Considering the characteristics of the continuous and discrete multiobjective
problems mentioned previously, the structure of Pareto-front Y∗ of a MJFLND
problem is likely to be composed of a set of disjoint continuous sets in the space of
objectives. The “discrete part” of the problem gives rise to isolated solution sub-
sets, while the continuous part of problem leads to continuous surfaces associated
with the isolated solutions. Figure 2 shows an example of what the Pareto-front
may look like for a two objective MJFLND problem.

Each continuous part of the Pareto-front is generated with a specific net-
work topology (discrete variables) and with the facility position (continuous
variables) being continuously varied. Note that the displacement of the facility
in a specific topology eventually creates solutions which are not efficient, being
dominated by other solutions associated with other topologies. In this case, the
Pareto-front “jumps” to the continuous surface associated with another topol-
ogy. This phenomenon can be seen in Figure 2, at the points where the topologies
change.

2 The parts that do not have a supporting hyperplane, and therefore they do not lie
in the boundary of the efficient set convex hull.
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f1

f2

topology A

topology B

topology C

topology D

topology E

Fig. 2. Example of a Pareto-front for a two objective MJFLND problem

3 Conceptual Algorithm for Finding Pareto-Sets in
MJFLND

The algorithm for finding Pareto-sets in MJFLND must execute the following
steps:

1. Choose an initial position for the facility; set the counter i ← 1.
2. Find a discrete Pareto-set of the efficient topologies, keeping the current

position of facility fixed. This results in the set of topologies Ti, with the
j-th topology in the set denoted by Ti(j).

3. For each such efficient topology in Ti find local sets of efficient positions for
the facility (with each topology being kept fixed), with the k-th point of the
j-th local set denoted by Li(j, k). Consider that the points in such local sets
are ordered in objective f1, such that Li(j, 1) is associated to the smallest
value of f1 among the points in this set, and Li(j, αj) is associated to the
greatest value of f1 in this set.

4. Considering the extreme points of each such local set, Li(j, 1) and Li(j, αj),
perform a local search of efficient topologies around such points, keeping
each facility location fixed.

5. Perform a dominance analysis considering the Pareto achieved up to the
moment and the new solutions, to update the current Pareto-set;

6. If the Pareto-set has not changed after steps 4 and 5, then stop the algorithm.
Else, make i ← i + 1, define the new set of topologies as Ti and return to
step 3.

Step 2 estimates an initial approximation of the Pareto-set, composed of dis-
joint points. This is the only point in which a global search is executed in the
algorithm3. The other searches for enhanced topologies are executed with local
algorithms, that are computationally cheaper.

3 The global algorithm has a higher computational cost, since its search space is greater
than the search space of a local algorithm.
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Step 3 is responsible for finding the continuous parts of the Pareto-front for
each topology.

In step 4, only the extreme points for each topology are analyzed. Figure
3(a) illustrates this process for a two objective example. This is an acceptable
approximation, since those are the solutions with greater chance of finding new
topologies for their positions. When a new topology is found, it can dominate
some solutions of other topologies, changing the extreme points of both. This is
illustrated in Figure 3(b).

If the extreme points4 of a certain topology do not change in two consecu-
tive iterations, this topology is considered stabilized (local stabilization). This
topology is not analyzed in the next iterations, unless it becomes affected by the
dominance analysis, due to changes that occur in other nearby topologies. The
convergence criterion is reached when all topologies have stabilized.

topology 1

topology 2

f1

f2

I

II

III

IV

(a) In this example, only the points I
and II are analyzed for topology 1, and
the points III and IV are analyzed for
topology 2.

non dominated

dominated

f1

f2

topology 1

new topology

I

II

III

IV

V

V I

a
b

c
d

(b) Suppose that the local algorithm has
found the topology III from the topol-
ogy II , then the facility positions V to
V I have been found for topology III .
These solutions dominate the solutions
a, b, c, d, and II . In this new situation,
the extreme points of topology 1 are I
and IV and the extreme points of topol-
ogy 2 are V and V I .

Fig. 3. Solutions analyzed by the algorithm

One should note that this algorithm can be applied to any type of MJFLND
problem, provided that the corresponding specific genetic algorithm suitable to
the specific problem is available. The generalization for the case of any number
of objectives can be performed too, with few adaptations.

4 The objective f1 is used as reference to find these extreme points.
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In the next sections, the application of this algorithm is illustrated on a prac-
tical problem: the expansion of an 8-node distribution network with the location
of a new generation facility.

4 Problem Description

The conceptual algorithm which has been been proposed for a general context,
can be particularized for dealing with the expansion of power distribution sys-
tems. The two sub-problems of the MJFLND can be easily identified in this
case:

- Find the optimal substation (SS) position (facility location);
- Find the optimal power distribution network layout (topology design).

This sort of expansion is very common in places which have been growing
both in economic activity and population. The existing facilities become unable
to supply the new load levels, and new feeder facilities and more robust cables
to supply the demand are required. A real case is used here to illustrate the
proposed approach [3]. This real case has arisen within Electric Energy Utility
of Minas Gerais (CEMIG), in the interior part of Brazil. A detailed description
of this case is given in [3]

4.1 Problem Statement

In the optimization approach proposed here, four aspects have been considered
as desirable in an optimal distribution system:

- Minimization of energy losses;
- Minimization of investment in new facilities and distribution lines;
- Minimization of the average number of faults;
- Minimization of average interruption time in faults.

It can be seen, from references [7,2,3], that those desirable aspects are related
to two “quality indices” of the distribution systems: cost and reliability. From the
same references, it can also be seen that those aspects can be aggregated in two
objective functions. Equation (5) represents the cost of the network, including
the installation (fixed costs) and the maintenance and loss costs (variable costs).
Equation (6) represents the cost of system failures (which is accepted as a good
index for measuring the reliability of the system).

fc(tpl, SSc) =
∑

(i,j)εSF C

∑
aεSPB

{(
FC(i,j)

)
a

+
(
MC(i,j)

)
a

+
(
LC(i,j)

)
a

}
(5)

fr(tpl, SSc) =
∑

(i,j)εSF C

∑
aεSP B

{
CFF ·

(
FF(i,j)

)
a

+ CFH ·
(
FD(i,j)

)
a

}
(6)
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in which:
tpl is the topology;

SSc are the SS coordinates;

SF C is the set of feasible connections;

SPB is the set of possible branch types;(
FC(i,j)

)
a

= l(i,j) · instcsta is the fix cost of connection (i, j);(
MC(i,j)

)
a

= l(i,j) · mnntcsta is the maintenance cost of connection (i, j);(
LC(i,j)

)
a

= 8760 · lf · entax · PL(i,j) is the loss cost of connection (i, j);

l(i,j) is the length of a branch from i to j (km);

instcsta is the installation cost of a branch of type a (R$/km);

mnntcsta is the maintenance cost of a branch of type a (R$/km/year);

lf is the loss factor;

entax is the energy tax (R$/kW · hour);

PL(i,j) are the power losses in the line (i, j) (kW );

CF F is the energy cost per fault;(
FF(i,j)

)
a

= l(i,j) · λa is the fail frequency;

CF H is the energy cost per hour of fault;(
FD(i,j)

)
a

= ra · P(i,j) is the fail duration;

λa is the failure rate of a branch of type a (faults/km).

ra is the average duration of fault of a branch of type a (h);

P(i,j) is the active power in the line (i, j) (kW );

(R$ is the Brazilian currency unit).

Besides, some constraints must be considered:

g1: xMIN ≤ xSS ≤ xMAX ;
g2: yMIN ≤ ySS ≤ yMAX ;
g3: (x, y) ∈ {xiIMP , yiIMP };
g4: (x, y) ∈ R;
g5: Pl ≤ PMXl;
g6: 0.92 ≤ Vnd ≤ 1.08;
g7: Connectivity and radiality (tree structure) of the network;
g8: Quality and reliability indexes.

in which:
xMIN and xMAX are the minimal and maximal admissible values for x coordinates;

yMIN and yMAX are the minimal and maximal admissible values for y coordinates;

(xSS, ySS) is the SS coordinate;

{xiIMP , yiIMP } is the set of impossible connection (geographical accidents);

Pl is the active power in the line;

PMXl is the maximal admissible power in the line;

Vnd is the voltage in load busses;

nB is the number of branches;

nN is the number of nodes.

A brief historical review of the use of multiobjective approaches in the design
of power distribution systems is presented next.
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4.2 Multiobjective Design of Power Distribution Systems

The usual approaches employed in the design of distributions networks just con-
sider the cost minimization as a relevant objective, ignoring the reliability of
the system [8,9,10]. Some recent studies have considered the reliability as a rel-
evant aspect to be optimized in distribution systems [11,12]. However, in those
approaches the cost and reliability functions have been reduced to a single cost
index using a weighted sum of objectives. This objective aggregation is not the
most adequate for this kind of problem since, as discussed in section 2.1, it can-
not find the whole Pareto set in non-convex problems. Up to now, references [7]
and [2] seem to be the only ones that seek the Pareto-optimal solutions using a
true multiobjective environment for dealing with the problem.

The approach presented in this paper is a true multiobjective one, includ-
ing the multiobjective location of new feeder nodes, which extends the other
approaches found in the literature.

Here, as it can be seen from reference [2], a small set of initially inactive
branches can be placed with the active network. These inactive branches define
alternative paths that are to be used when a failure breaks down an active
branch. This can avoid, at least partially, the energy supply interruption that
would occur in such cases. These “extra” connections are called reserve branches.

5 The Multiobjective GA-BFGS Algorithm for Power
Distribution Systems

The algorithm employed here is a multiobjective extension of the GA-BFGS
algorithm proposed in reference [3]. The algorithm is composed of four modules:

– Mono-objective GA-BFGS algorithm;
– Global NSGA-II;
– Multiobjective Quasi-Newton BFGS algorithm;
– Local NSGA-II.

Each one of these modules is briefly described in the next section. They are
executed jointly, following the flowchart shown in Figure 4. The main character-
istics of the conceptual algorithm (section 3) such as convergence analysis, local
and global stabilizations, points that must be analyzed, etc, are valid for this
specific case.

5.1 Modules Description

GA-BFGS: The GA-BFGS algorithm proposed in reference [3] has been em-
ployed here to find an initial position for the SS. It is composed of a Quasi-
Newton BFGS algorithm and a Genetic Algorithm. Jointly, the GA-BFGS
can find the optimal topology and the best SS position, but only considering
the minimization of costs as a relevant aspect.
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GA-BFGS

NSGA-PS (Global)

for each
topology

BFGS MOBJ

NSGA-PS (Local)

topology
stabilized?

population
stabilized?

counter = 1

counter = counter + 1

Show results

No

Yes

No

Yes

Fig. 4. Multiobjective GA-BFGS algorithm

NSGA-PS: The NSGA-II [13] algorithm has been employed here to find an
initial sampling of the Pareto-set and uses problem-specific operators, such
those presented in reference [2]: such a combination is called here the NSGA-
PS algorithm. The NSGA-PS algorithm appears in two versions:

a Global algorithm: in this version the NSGA-PS searches for the Pareto-
set of topologies over the whole search space. Consequently, it requires
a larger population and a greater number of generations.

b Local algorithm: in this version the NSGA-PS searches for efficient topolo-
gies near a considered topology. The initial population is obtained through
perturbations in the analyzed topology. Since the crossover operators have
strong heritability and the mutation operators have high locality, it is rea-
sonable to accept that this algorithm performs a local search around the
current topology. The size of population and the number of generations
are reduced in this version of algorithm.

Multiobjective BFGS: A Quasi-Newton BFGS algorithm [5] has been em-
ployed here to solve the SS location sub-problem. The constraints g1 and
g2 are handled directly by the algorithm which considers the minimum and
maximum coordinates as the outer limits of the golden section procedure [5].
The geographical constraints (g3) are handled by a penalty method. Since
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the deterministic algorithms cannot deal directly with multiobjective prob-
lems, the additional strategy presented in section 2.1 has been used here to
map the continuous parts of the Pareto-set. The technique used to assign λ
in order to sample the Pareto-set is described following.

λ Assignment. The use of uniformly spaced λ’s can lead to Pareto-set samples
which are not representative. The samples may present high density of solutions in
some small parts and the absence of solutions in other significant parts of that set.

To avoid this sort of trouble, a more efficient way to define the set of λ’s is
proposed here. The following steps composed the proposed strategy:

1. Set λ(1) = 0, λ(2) = 1 and i = 1;
2. Solve the SS location sub-problem for λ(1) and λ(2) respectively;
3. While i ≤ the number of desired points,

(a) Calculate the distance, in the solution space, between each mapped so-

lution and the next one: d(i) = norm

([
fr(i)
fc(i)

]
−

[
fr(i + 1)
fc(i + 1)

])
;

(b) Find the solution with the biggest distance: i∗ = arg maxi d(i);
(c) The λ in next run (λn) will be the arithmetic mean of the λ’s of solutions

with the biggest distance: λn =
λ(i∗) + λ(i∗ + 1)

2
;

(d) Update the λ list:

⎧⎨
⎩

λ′(j) = λ(j) ∀ j < i
λ′(j) = λn ∀ j = i
λ′(j) = λ(j − 1) ∀ j > i

(e) Make λ = λ′, i = i + 1 and go to step 3;

Figures 5(a) and 5(b) show the resulting Pareto-fronts associated with the
uniform λ assignment and the proposed λ-assignment procedure, respectively.
Both experiments have been performed for SS positions, obtained for a randomly
generated topology, with 50 multiobjective BFGS runs. It’s noticeable that the
Pareto-front achieved with the proposed λ-assignment is more representative
than the one achieved with the uniform λ set.

6 Numerical Results

As it has been mentioned in section 4, the proposed algorithm has been used to
optimize a real system in the interior Brazil. A five years time horizon has been
considered and the maximum number of reserve branches has been limited to
five. Four types of cables can be used in the design: two uncovered cables and
two covered cables (the covered cables are more reliable). The table 1 shows the
cable specifications.

Figure 6(a) shows the Pareto-front which has been obtained in a sample run of
the proposed algorithm. This run took approximately 36 hours on a Athlon XP
1700+ with 512MB of RAM using Matlab 75 and has produced 4,145 solutions,
corresponding to 57 different topologies. Figure 6(c) shows the minimum cost

5 Matlab is a trademark of MathWorks.
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Fig. 5. Differences between λ assignment techniques (sample run)

Table 1. Conductor specifications

C1 C2 C3 C4 C5 C6 C7 C8
1 208 0.7394 0.2682 35000.00 975.00 0.20000 0.33
2 415 0.2469 0.2417 50000.00 975.00 0.20000 0.33
3 180 0.8220 0.3037 65000.00 100.00 0.00625 0.01
4 380 0.2646 0.2567 80000.00 100.00 0.00625 0.01

in which:
C1 - Conductor index;
C2 - Nominal current (A);
C3 - Resistance (Ω);
C4 - Reactance (Ω);
C5 - Installation cost (R$/km);
C6 - Maintenance cost (R$/km/year);
C7 - Fail rate (faults/year);
C8 - Average duration of fault (hours).

solution (which is the same achieved in [3] for the mono-objective statement of
this problem).

It can be seen that some parts of the Pareto-set are almost continuous, as
is the case of region a (Figure 6(b) shows a zoom of this region). This region
shows various Pareto-optimal SS positions which have been obtained by the
Multiobjective BFGS algorithm for the minimal cost topology.

However, this “continuous part” does not occur for some topologies, as is
the case of region b. This is expected in some cases, since, for some specific
topologies, the network costs and the fault costs are strictly dependent on cable
length. Therefore, in these cases both functions would have the same optimal
coordinate, resulting in a single non-dominated point. In other topologies, the
losses can have a relevant effect in the network cost, shifting the SS from the
“minimal cable length” position and resulting in a multi-point Pareto-set.

It is important to note that small changes in the network (which usually imply
in a small increment in network financial cost) can result in great improvements
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Fig. 6. Two solutions of Pareto-set

in the system reliability. For example, the solution II (Figure 6(d)) has a financial
cost just 0.1% greater than the minimal cost solution (solution I). On the other
hand, its fault cost is 50% lower than the fault cost of solution I.

7 Conclusions

This paper has presented a multicriterion optimization algorithm for dealing
with the multiobjective joint facility location and network design problems. The
algorithm is composed of a multiobjective BFGS algorithm and a multiobjective
GA, which are responsible for the facility location and topology design, respec-
tively. An iterative structure have been proposed to make the full estimation of
the Pareto-front possible.

This algorithm has been applied to the expansion of a power distribution
system, considering the minimization of financial costs and the minimization
of fault costs as the relevant aspects. The algorithm has produced a diverse
set of non-dominated solutions for the problem, which involved optimizing the
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topology of the network and the new facility position. The results obtained show
that great improvements in the reliability are possible at the expense of small
increases in financial cost.
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Abstract. In this paper we present three path relinking approaches for
solving a bi-objective permutation flowshop problem. The path relinking
phase is initialized by optimizing the two objectives using Ant Colony
System. The initiating and guiding solutions of path relinking are ran-
domly selected and some of the solutions along the path are intensified
using local search. The three approaches differ in their strategy of defin-
ing the heuristic bounds for the local search, i.e., each approach allows its
solutions to undergo local search under different conditions. These con-
ditions are based on local nadir points. Several test instances are used to
investigate the performances of the different approaches. Computational
results show that the decision which allows solutions to undergo local
search has an influence in the performance of path relinking. We also
demonstrate that path relinking generates competitive results compared
to the best known solutions of the test instances.

1 Introduction

Multiobjective optimization (MO) is a field that has been extensively applied
to various disciplines. It has many applications in the areas of science and en-
gineering, medicine, finance, operations research and many others. This is one
reason why, over the last decades, many researchers have devoted their resources
to developing and improving the theories and methodologies of MO.

MO involves solving problems having more than one objective. For exam-
ple, in the permutation flowshop scheduling problem, where n jobs have to be
sequentially processed on m machines, possible objectives are (i) to minimize
makespan and (ii) to minimize total tardiness. Given the release date ri of job
i, due date di, and processing time pij on machine j, makespan is defined as

f1 = max
i

{Ci,m} and total tardiness f2 =
n∑
i

max(Ci,m − di, 0) where Ci,m is

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 501–515, 2007.
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the completion time of job i at the last machine m. In this paper, we try to
find job sequences such that the above objectives are accomplished. We call this
problem as bi-objective permutation flowshop scheduling problem (BPFSP).

In general, there is no single solution that simultaneously accomplishes the
objectives of a bi-objective optimization problem. Hence, the Pareto optimal
solutions or sometimes called the set of efficient solutions are considered. We say
that a solution x is an efficient solution if there exists no other feasible solution
y such that fk(y) ≤ fk(x), for k = 1, 2 and fk(y) < fk(x) for some k. Otherwise,
we say that x is dominated by y and we denote this by y ≺ x.

BPFSP is an NP-hard problem since makespan minimization has been proven
NP-hard for more than two machines [1]. Furthermore, the minimization of total
tardiness for one machine has been proven NP-hard as well [2]. Therefore, the
use of metaheuristics is appropriate.

Path relinking is a population-based heuristic first developed as an intensifi-
cation strategy for elite solutions obtained by tabu search or scatter search [3].
A path relinking operation starts by selecting an initiating solution IA and a
guiding solution IB from a set G of initial solutions. It then generates a path
P : IA − I1 − I2 − . . . − IB through a given neighborhood space NPR where
the distance d(Ii, IB) between Ii and IB is decreasing monotonically in i, i.e.,
d(Ii, IB) < d(Ij , IB) ∀i > j. In most cases, there exists a huge number of paths
P to be evaluated. Hence, a path selection mechanism is used to choose the
preferred path. An intensification phase or local search may be used to improve
the quality of the solutions along the path. Finally, PR requires a strategy for
updating the set G where the next IA and IB will be selected from.

In general, PR is composed of the following:

∗ Initial population G
∗ Neighborhood structure NPR

∗ Distance measure d
∗ Selection criteria for initiating and guiding solutions
∗ Path selection criteria
∗ Local search for the solutions generated
∗ Update strategy for set G

In this study, we solve the BPFSP using a PR approach. Our PR uses the ant
colony system (ACS) to generate the starting solutions. We will also investigate
how the different strategies for computing the heuristic bounds for local search
affect the performance of PR. We consider three definitions for our heuristic
bounds i.e., for deciding whether local search is applied or not. The three heuris-
tic bounds are defined by local nadir points. A local nadir point corresponds to
the worst objectives of two given efficient solutions. Finally we will also demon-
strate that our PR approach is competitive with respect to the other existing
metaheuristics for BPFSP.

This paper is organized as follows. Section 2 describes the implementation of
path relinking in BPFSP. Section 3 presents the numerical results of the study
and Sect. 4 provides a short conclusion of the study.
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2 Path Relinking for BPFSP

Our path relinking approach follows the two basic steps given by Algorithm 1. In
the following sections, we describe the details how we implemented these basic
steps.

Algorithm 1. Basic algorithmic framework of PR

STEP 1: Create initial solutions for the path relinking /*Algorithm 2*/
STEP 2: While (condition is satisfied) do /*iteration loop*/

Path relinking with local search /*Algorithms 3 & 4*/

2.1 Initial Solutions for the Path Relinking

Being a population-based heuristic, the starting solutions of PR is important
when solving a biobjective optimization problem. It was demonstrated in [4,5,6]
that spending time in creating a good initial population improves the conver-
gence in optimization. This concept was applied in the PR approach developed
in [7,8], where the starting solutions of PR were obtained from the efficient
solutions generated by genetic algorithm.

In this study, we also use a set of good starting solutions for our PR. Our
strategy for creating the initial solutions is a two-step process. The first step is
to generate two pools of solutions where one pool contains solutions that are good
with respect to makespan and the other contains solutions that are good with
respect to total tardiness. These pools are generated by using a straightforward
implementation of the ant colony system (ACS) [9].

As one of the ant colony optimization (ACO) algorithms, ACS is a constructive
metaheuristic that selects the next unscheduled job to be appended in the partial
schedule based on the cost of adding the job (heuristic information) and the
desirability of the job (pheromone). Unlike the other ACO algorithms, ACS uses
a transition rule that balances exploration and exploitation of solutions.

We run the ACS twice where the first run minimizes the makespan and the
second run minimizes the total tardiness (see Fig. 1). We consider only the ten
best solutions of every run as components of the pools.

The second step is to apply a local search (LS) to all the solutions in the pools.
The move of the local search is based on random insertion, i.e., it randomly
selects a job and inserts it in another position. If the solution created after the
move is not dominated by the set L of all nondominated solutions found by this
local search, this solution becomes the incumbent solution. The process of move
is repeated until a maximum number (M) of iterations has been reached.

The set L updates the external set G which contains all efficient solutions
found so far. The solutions in L that are not dominated by the solutions in G
are stored in G and the solutions in G that are dominated by L are removed.
Algorithm 2 provides the pseudocode for this method.
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Fig. 1. Initial solutions for PR

Algorithm 2. Create starting solutions of PR

Starting solutions G /*generated by ant colony system*/
Forall zi ∈ G

Pareto set L ← zi

While (condition is satisfied) /*local search loop*/
y ← Move (zi)
If y /∈ L and y is not dominated by L then
Set L = nondominated solutions of (L ∪ {y}) and zi = y

Update G by L

2.2 Path Relinking

Algorithm 3. Path relinking

STEP 1: Select initiating and guiding solutions
STEP 2: Apply path relinking operator
STEP 3: Apply local search /*Algorithm 4*/

Selection Criteria. The path relinking is applied on set G - the initiating
solution x and guiding solution y are randomly selected from the set G. These
solutions may only be selected once in Algorithm 3, i.e. if solution x is selected as
initiating/guiding solution in the current iteration, it will not be selected again
as initiating/guiding solution in the current iteration.

Neigborhood and Distance Measure. The insertion operator serves as the
neighborhood structure of PR and the Hamming distance (HD) is used to guide
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the construction of the paths that connect solution x to solution y. Hence the
distance between solution x and solution y is the number of positions in which
the two solutions have different assigned jobs.

Path Selection Criteria. There are several possible paths that connect one
solution to another. Instead of exploring all these paths, only the paths that
generate solutions which are nondominated by the entire neighborhood are ex-
ploited. However, there are still plenty of these paths (see Fig. 2). Thus a random
aggregation of the objectives is applied to select a single path. This technique
was also implemented in [8]. However, in that study the solutions along the path
are guided by the concept of greatest common substring (GCS) and not by HD.
The metric HD is slightly favored over GCS in [10].

Fig. 2. The initiating solution (♦) is linked to the guiding solution (�) through the
path traversed by solutions in solid circles. Each of the solution in the path is selected
from among the other efficient solutions (dotted circles) via the random aggregation of
the objectives. Note that the solutions along the path have decreasing values of HD.

Update Strategy. Each iteration of PR is completed when no pair of initiating
and guiding solutions is possible. The set G is then updated by the set containing
all nondominated solutions generated in the iteration. The next set of pairs of
initiating and guiding solutions is then realized on this set. In [8], the set G is
constantly updated, i.e., a new Pareto set is computed after the linking of two
solutions.

2.3 Local Search Within PR

We apply local search on some of the solutions along the path. We propose three
strategies for defining the heuristic bounds for the local search. The first strategy
is to apply the local search if solution z is not dominated by set G. This solution
lies in Region A of Fig. 3(a). The second strategy is to apply the local search if
solution z lies in the Region B (see Fig. 3(b)) which is the area not dominated
by some local nadir points. In this study, we assume the number of local nadir
points to be four. In the last strategy, we apply the local search if the solutions
lie in Region C which is the area not dominated by three local nadir points
described in Fig. 4. This strategy is designed to be biased towards the extreme
points. It is worth mentioning that the last two criteria cover an area that is
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dominated by G. At this point, it is important to note that in the succeeding
discussions, the different approaches may sometime be referred to the kind of
region they use, i.e., the term “Region A” may refer to the region or the PR
that uses Region A.

Fig. 3. (a) Region A is the area not dominated by G. (b) Region B is the area not
dominated by the local nadir points. The local nadir points are defined by the extreme
points and three other points that are evenly distributed in the Pareto front of G.

Fig. 4. Region C is the area not dominated by three local nadir points

The local search applied inside the path relinking is illustrated in Algorithm
3. This local search also uses insertion as neighborhood structure. Starting from
the selected solution z, the whole neighborhood N of z is explored. All neigh-
bor solutions are compared and the dominated ones are removed. Each of the
remaining efficient solution will undergo the same process as z, i.e., its entire
neighborhood is searched and all the dominated solutions are removed. We re-
peat the entire process of searching the whole neighborhood and removing the
dominated solutions until all solutions in the neighborhood are dominated. In
this study, the neighborhood N is also defined by the insertion operator.
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Algorithm 4. Local search within PR

Pareto set S ← z
While S is non-empty

Pareto set C = ∅
Forall z ∈ S do

Pareto set L ← z
Forall w ∈ N (z) do

If w /∈ L and w is not dominated by L then
Set L = nondominated solutions of (L ∪ {w}) and
Set C = nondominated solutions of (C ∪ {w})

S = C
Update Pareto set P by C

Return P

3 Numerical Results

The proposed algorithms are tested using nine instances with 20, 50, and 100
jobs having 5, 10, and 20 machines. These instances are taken from some Taillard
benchmarks [11] extended into bi-objective case in [12]. We performed all our
methods on a personal computer with 3.2 Ghz processor; the algorithms were
coded in C++ and compiled using GCC 4.1.0 compiler.

3.1 Evaluation Metrics

The use of unary quality indicators has become one of the standard approaches
in assessing the performance of different algorithms for bi-objective problems. It
complements the traditional approach of using graphical visualization which may
provide information on how the algorithm works [13]. This study considered three
unary quantitative measures namely, the hypervolume indicator, unary epsilon
indicator, and R3 indicator.

Hypervolume Indicator IH . This indicator measures the hypervolume of
the objective space that is weakly dominated by an approximation set [14]. This
is calculated using a boundary point that is dominated by all approximation
sets. It has a desirable property that whenever an approximation set A is better
than approximation set B, then the hypervolume of A is greater than B.

Unary Epsilon Indicator Iε. The indicator Iε(A, X) gives the minimum
factor ε such that if every point in reference set X is multiplied by ε, then
the resulting approximation set is weakly dominated by A. For minimization
problem, this indicator is formally defined by:

Iε(A) = Iε(A, X) = inf
ε∈R

{
∀z2 ∈ X∃z1 ∈ A : z1 �ε z2} (1)
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where the ε-dominance relation is defined as z1 �ε z2 ⇔ ∀i ∈ 1, 2, . . . , n : z1
i ≤

ε · z2
i . Note that a small ε value is preferable.

R3 Indicator IR3. The IR3 indicator used in this study is one of R indicators
proposed in [15]. Given a set of weight vectors Λ, this indicator is defined as:

IR3(A) = IR3(A, X) =
∑

λ∈Λ [u∗(λ, X) − u∗(λ, A)] /u∗(λ, A)
|Λ| (2)

where u∗ is the maximum value attained by a utility function uλ with weight λ.
In this study, the utility function is given by:

uλ(z) = −

⎛
⎝ max

j∈1..n
λj |z∗j − zj | + ρ ·

∑
j∈1..n

|z∗j − zj |

⎞
⎠ (3)

where z∗ is the ideal point and ρ is a sufficiently small positive real number. The
values of IR3 range from -1 to 1 where values close to -1 are superior.

3.2 Analysis

Ten runs with different random seeds were performed for each of the three PR
algorithms and each test instance. The PR algorithms use the same computa-
tional time when applied to the same test instance. The computational time
ranges from 32 to 36000 seconds. For Region C, the value of R is assumed to
be 10. The value of M in the local search ranges from 1200 to 50000. Before
applying the different unary indicators, all approximation sets are normalized
between 1 and 2. The boundary point used in the hypervolume indicator is (2.1,
2.1), and the ρ and |Λ| in IR3 are 0.01 and 500 respectively [13]. The point z∗

is (1,1) and the reference set for each test instance consists of the points that
are not dominated by any of the approximation sets generated by all algorithms
under consideration.

Population Plots. Figure 5(a) plots the Pareto approximation sets generated
by the 10 runs of the three PR approaches for the T 50 20 01 test instance
and Fig. 5(b) graphs their 50% approximation sets1. The k% approximation set
contains all the goals that have been attained independently in k% of the runs
[13]. Based on these figures, one may say that Region B and Region C outperform
Region A for equal computation times. This may be due to the fact that there
are very few solutions that fall in Region A, i.e., local search is seldom applied.
Table 1 provides the average number of path relinking iterations for all test
instances. Note that Region A has high average values, suggesting that local
search is rarely used. On the other hand, the average values for Region B and
Region C are close to each other.

1 These sets are computed using the tool in PISA described in [13].
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Fig. 5. (a) Population plots of the ten runs and (b) 50% attainment surface generated
by three approaches of path relinking for the T 50 20 01

Table 1. Average number of PR iterations

Test instance Region A Region B Region C

T 20 5 01 12100.7 1506.6 1499.0
T 20 5 02 11280.2 475.7 475.1
T 20 10 01 1935.6 11.2 9.4
T 20 10 02 4159.3 50.5 34.7
T 20 20 01 2561.8 12.0 8.2
T 50 5 01 10935.8 11.2 9.4
T 50 10 01 24245.0 41.0 31.3
T 50 20 01 19140.1 11.0 8.9
T 100 5 01 1102.2 1.3 1.3

Unary Quality Indicators. Figure 6 provides the boxplots of the different
unary quality indicators for all test instances. From these figures, the following
can be observed: First, the observation that Region B and Region C outperform
Region A in T 50 20 01 is confirmed by the unary indicators. The median of
unary indicators of the former algorithms are better than the median of the
latter algorithm. This finding is also valid to all other instances. This suggests
that accepting more solutions to undergo local search in PR is important. This
can be achieved by defining a suitable acceptance region like Region B or C.

Second, in test instances T 20 5 01 and T 100 5 01, the performances of Re-
gion B and C are almost the same. This may be explained by the fact that we
allow them to have a single nadir point to define their region if the set |G| does
not have enough solutions. For the two instances, the resulting approximation
sets do not exceed 12.

Third, Region C performed best with respect to all unary quality indicators
in T 20 5 02, T 20 20 01 and T 50 5 01 while Region B has a slight advantage
over Region C in T 20 10 01, T 50 10 01 and T 50 20 01. This last observation
suggests that there is no solid evidence that defining our region of interest using



510 J.M. Pasia et al.

Fig. 6. Boxplots of the different unary indicators for all test instances
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Fig. 6. (continued)

three nadir points that are biased towards the extreme solutions is advantageous
than defining the regions by simply using four nadir points.

To determine the effectiveness of path relinking as an approach in solving the
BPFSP, we compare Region B and Region C to the best known solutions of each
of the test instances. These solutions are derived from [8,16] and we refer to them
as the benchmarks. These algorithms are based on adaptive genetic/memetic
algorithm and hybrid of adaptive genetic algorithm and path relinking. The
comparison is done by comparing the unary quality indicators of the benchmarks
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Table 2. Unary quality indicators of path relinking and benchmarks

T 20 5 01 Region B Region C

k% Hypervolume Unary Epsilon R3 Hypervolume Unary Epsilon R3

10 1.0763 1.0000 0.0000 1.0763 1.0000 0.0000
50 1.0744 1.0127 0.0006 1.0744 1.0127 0.0006
100 1.0623 1.0265 0.0040 1.0623 1.0265 0.0040

Benchmark 1.0763 1.0000 0.0000

T 20 5 02 Region B Region C

k% Hypervolume Unary Epsilon R3 Hypervolume Unary Epsilon R3

10 0.8967 1.0000 0.0000 0.8967 1.0000 0.0000
50 0.8967 1.0000 0.0000 0.8967 1.0000 0.0000
100 0.3653 1.6667 0.2263 0.3653 1.6667 0.2263

Benchmark 0.8967 1.0000 0.0000

T 20 10 01 Region B Region C

k% Hypervolume Unary Epsilon R3 Hypervolume Unary Epsilon R3

10 0.9296 1.0000 0.0000 0.9296 1.0000 0.0000
50 0.9284 1.0120 0.0001 0.9284 1.0120 0.0001
100 0.9255 1.0216 0.0005 0.9264 1.0216 0.0003

Benchmark 0.9296 1.0000 0.0000

T 20 10 02 Region B Region C

k% Hypervolume Unary Epsilon R3 Hypervolume Unary Epsilon R3

10 0.9806 1.0074 0.0000 0.9806 1.0074 0.0000
50 0.9805 1.0074 0.0000 0.9805 1.0074 0.0000
100 0.9373 1.0956 0.0071 0.9395 1.0956 0.0063

Benchmark 0.9814 1.0000 0.0000

T 20 20 01 Region B Region C

k% Hypervolume Unary Epsilon R3 Hypervolume Unary Epsilon R3

10 0.9452 1.0000 0.0000 0.9452 1.0000 0.0000
50 0.9442 1.0067 0.0000 0.9449 1.0047 0.0000
100 0.9394 1.0233 0.0003 0.9442 1.0067 0.0000

Benchmark 0.9452 1.0000 0.0000

T 50 5 01 Region B Region C

k% Hypervolume Unary Epsilon R3 Hypervolume Unary Epsilon R3

10 1.1085 1.0000 0.0000 1.1085 1.0000 0.0000
50 1.0968 1.0217 0.0019 1.1080 1.0059 0.0002
100 1.0953 1.0272 0.0022 1.0937 1.0217 0.0029

Benchmark 1.1085 1.0000 0.0000

T 50 10 01 Region B Region C

k% Hypervolume Unary Epsilon R3 Hypervolume Unary Epsilon R3

10 1.1273 1.0207 0.0006 1.1282 1.0173 0.0004
50 1.1164 1.0217 0.0030 1.1186 1.0251 0.0029
100 1.1058 1.0348 0.0052 1.0895 1.0348 0.0077

Benchmark 1.1290 1.0087 0.0002
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Table 2. (continued)

T 50 20 01 Region B Region C

k% Hypervolume Unary Epsilon R3 Hypervolume Unary Epsilon R3

10 1.1214 1.0203 0.0010 1.1195 1.0177 0.0012
50 1.1080 1.0292 0.0049 1.1015 1.0343 0.0043
100 1.0757 1.0460 0.0097 1.0569 1.0640 0.0121

Benchmark 1.1120 1.0160 0.0005

T 100 5 01 Region B Region C

k% Hypervolume Unary Epsilon R3 Hypervolume Unary Epsilon R3

10 0.7556 1.0003 0.0000 0.7508 1.0133 0.0012
50 0.6924 1.0694 0.0151 0.6924 1.0694 0.0151
100 0.6596 1.1111 0.0213 0.6596 1.1111 0.0213

Benchmark 0.6600 1.1111 0.0213

to the unary quality indicators of the 10%-, 50%-, and 100%-approximation
sets. Note that the 10%-approximation set of the PR algorithm corresponds to
the nondominated solutions found in any of the 10 runs. This is also how the
benchmarks were derived. Table 2 summarizes these results . From these tables,
we can say that Region B and Region C are good alternatives for solving the
BPFSP.

The 10%-approximation sets of the two approaches of PR, Region B and
Region C, have the same quality indicator values as the benchmarks in 5 of 9
test instances. The benchmarks performed better than Region B with respect
to all quality indicators in only one instance (T 50 10 01) and two instances
(T 50 10 01 and T 50 20 01) against Region C. However, since unary epsilon
and R3 indicators of the benchmarks in T 50 10 01 and T 50 20 01 are not
equal to 1 and 0 respectively, one may deduce that the path relinking approaches
have found new efficient solutions. Finally, the two approaches of path relinking
are better than the benchmark for T 100 5 01 with respect to all three quality
indicators. In fact, even the 100%-approximation sets of the two approaches are
almost as good as the benchmark.

4 Conclusion

In this study, we proposed a path relinking approach to solve a biobjective
flowshop scheduling problem. Our PR approach uses two pools of good starting
solutions. One pool contains some best solutions for one objective and the other
pool contains some best solutions for the other objective. The solutions in the
pools are obtained by applying ACS.

In our PR approach, we allowed some solutions generated by PR to undergo lo-
cal search. The decision whether a solution will undergo local search is governed
by some heuristic bounds. In this study, we also examined three strategies in



514 J.M. Pasia et al.

defining these bounds. These strategies are based on local nadir points. The idea
is to allow the solutions to undergo local search if they are not dominated by
these points.

Computational results showed that the different heuristic bounds performed
differently. Heuristic bounds that allow more solutions to undergo local search
have higher chances of attaining better efficient frontiers. We have also demon-
strated that for all the test instances, our PR approach was able to reproduce
almost all of the best nondominated solutions known so far. In addition, the
methods have also generated new efficient solutions for some of the test in-
stances.
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Abstract. Multi-objective metaheuristics have previously been applied
to partial classification, where the objective is to produce simple, easy
to understand rules that describe subsets of a class of interest. While
this provides a useful aid in descriptive data mining, it is difficult to see
how the rules produced can be combined usefully to make a predictive
classifier. This paper describes how, by using a more complex represen-
tation of the rules, it is possible to produce effective classifiers for two
class problems. Furthermore, through the use of multi-objective genetic
programming, the user can be provided with a selection of classifiers
providing different trade-offs between the misclassification costs and the
overall model complexity.

1 Introduction

Earlier work by the authors [1,2,3,4] described the application of multi-objective
metaheuristics to the problem of partial classification [5]. This problem is the
search for simple rules, that represent ‘strong’ or ‘interesting’ descriptions of a
specified class, or subsets of the specified class, even when that class has few
representative cases in the data. These rules are of the form

– if age ≥ 28 and firstDegree = mathematics and attendance ≥ 90% then
result = distinction

where the antecedent is a conjunction of simple attribute tests and the conse-
quent, describing the class of interest, is the same for all rules generated.

Such simple rules may have high confidence, in that the rule produces few false
positives. They may have high coverage, in that they describe a high proportion
of the class of interest. Multi-objective metaheuristics can be used to produce
different trade-offs between confidence and coverage. However, this simple rule
representation is insufficiently descriptive to produce an individual rule with
both high confidence and coverage.

In other work, Ghosh and Nath [6] used a multi-objective genetic algorithm
for association rule mining, optimizing the accuracy, comprehensibility and in-
terestingness of the rules produced. Association rules are similar to that shown
above, but with tests usually limited to equalities and with an unconstrained
consequent that may be any conjunction of such tests.

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 516–530, 2007.
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Both partial classification and association rule mining fall primarily into the
category of descriptive data mining. A natural question is, can this work with
simple descriptive rules be extended or modified to create understandable and
highly predictive models that can classify previously unseen records? There are
two approaches to take to this task: select a subset of the simple rules created
to act as a classifier or increase the expressiveness of the rule representation.

Ishibuchi et al. [7,8] take the first of these approaches. In their work, a multi-
objective algorithm is used to select a small subset of association rules produced
by another algorithm, minimizing rule set complexity and error rate. However,
this approach has a number of disadvantages:

– A good rule set may contain individuals that are far from the Pareto-front,
according to the objectives of rule confidence and support [8]. Hence a very
large set of simple rules must be created. For example, from a small training
set of 342 records, 17070 classification rules were extracted, from which the
multi-objective metaheuristic selected no more than 25 [8].

– Ideally, a record should assigned to a class if any of the rules in the rule set
make this prediction. Then each rule provides a useful description of a subset
of the data. However, in practice rules may make conflicting predictions. To
handle conflicts, Ishibuchi et al. essentially create a decision list rather than
a simple rule set [9], with rules lower on the list being used only when none
of the higher rules apply. Converting such a list to a simple rule set reveals
added complexity hidden in the decision list representation.

– A set of rules may not be the simplest way in which to represent a model of
the data. This is illustrated by the example given in section 2.

In this paper we take the alternative approach of using a more expressive
rule representation, specifically by using expression trees. While there is much
literature on the use of genetic programming to optimize trees for the purposes
of classification, this mostly concentrates on the optimization of decision trees,
e.g. [10,11,12,13]. In particular, Mugambi and Hunter [14] apply multi-objective
genetic programming to decision tree induction, optimizing both tree accuracy
and tree simplicity. However, decision trees are different to the expression trees
developed in this paper, with internal nodes that define partitions of the data and
leaf nodes that indicate class membership. While rules may easily be extracted
from such decision trees, we concentrate in this paper on the direct production
and optimization of rules.

The work of Setzkorn and Paton [15,16] is perhaps more relevant to this paper,
applying multi-objective genetic programming directly to fuzzy rule induction.
However, internal nodes are restricted to two fuzzy forms of the boolean ‘and’
operation and the algorithm optimizes sets of these rules.

Section 2 provides details of the expression tree representation used. This
representation is manipulated by a multi-objective metaheuristic to produce
models with different trade-offs between model complexity and model accuracy
(section 3). Section 4 describes the experiments performed and presents the re-
sults of using this approach. Finally, section 5 presents some conclusions and
section 6 describes areas of further research.
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2 Rule Representation and Manipulation

2.1 Attribute Tests

The algorithm described in this paper manipulates rules of the form

antecedent → consequent ,

where both antecedent and consequent are constructed from attribute tests.
Three different types of attribute test (AT) are used:

Value: e.g. colour = red,
Inequality: e.g. colour �= green,
Binary partition: e.g. age ≥ 42 or height ≤ 156.

Value and inequality tests are used exclusively on categorical fields, while binary
partition tests can only be used with a numeric field. A more detailed description
of ATs and some alternative AT types may be found in previous work [4].

2.2 Attribute Test Representation

Values occurring in each field are stored in reference arrays. The index values,
rather than the values from the database, are used in the representation of the
ATs as shown in figure 1. Each AT type is represented and mutated as follows:

Value/Inequality: Represented by the categorical field number and the cate-
gory index. A mutation changes the category index to random value.

Binary partition: Represented by the numeric field number, the index of
the bound value and a flag indicating the type of bound. A mutation changes
the index of the bound by up to 20% of the number of values that occur in the
database, while ensuring that the AT does not become trivial or impossible
to satisfy. The type of the bound is not changed.

The algorithm manipulates rule antecedents constructed from combinations
of different ATs. The consequent is fixed, representing the class of interest. Any
unseen record that matches the rule antecedent is predicted to belong to the
class of interest. However, in contrast to previous work, any record that does
not match the rule antecedent is predicted to belong to some other class.

Categorical fields
0: Sex
1: State
2: Education
3: Hair colour

Categories
0: School
1: Degree
2: Masters
3: Doctorate

2 1 Education = Degree

Numeric fields
0: Age
1: Children
2: Height (cm)
3: Weight

Values
0: 150
1: 152
2: 155
3: 156
4: 157
5: 159
6: 160

Height ≥ 156cm2 3 ≥

Fig. 1. Representation of a categorical value AT and a binary partition AT
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Age ≥ 28 Attendance ≥ 90%

Degree = Maths Degree = Physics

Job = Engineer

Hobby = Chess

OR

AND

AND

OR

OR

Fig. 2. A binary boolean expression tree

2.3 Rule Trees

ATs are combined in expression trees that represent the rule antecedent, as
shown in figure 2. Leaf nodes contain ATs, while internal nodes contain a boolean
operator. These operators have been restricted to be either ‘or’ or ‘and’ in the
experiments reported here, though it is easy to include additional boolean opera-
tors if desired. Notice that the tree contains only 6 ATs, one per leaf node, rather
than the 12 required to represent this antecedent as a set of simple rules. In order
to simplify the genetic operators used, binary trees are used. This increases the
number of internal nodes, but leaves the number of leaf nodes unaltered. Note
that such trees may easily be converted into rule sets if this is how the client
wishes to view the models produced.

2.4 Genetic Operators

Initialization: The population is initialized with randomly generated balanced
trees of depth two, where the root node is considered to be at depth zero.

Mutation: During mutation, there is a 50% probability that a random AT is
mutated, a 25% probability that an AT and its parent node is removed and a
25% probability that a random AT with a new internal node is added.

Crossover: Subtree crossover [17] proceeds by selecting a node at random in
each tree and swapping the subtrees headed by these nodes. As is commonplace
in genetic programming, a choice between crossover and mutation is made when
creating new solutions, rather than both being applied probabilistically.

2.5 Bloat and Rule Simplification

It is well established that solutions generated during genetic programming tend
to suffer from bloat, i.e. they grow excessively, often without any great improve-
ments in fitness [17,18]. Such solutions usually contain redundant sections, re-
ferred to as introns. It has been suggested that the occurrence of such introns
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Age ≥ 28

Age ≥ 27Weight ≥ 55 Age ≤ 16 Sex = Male

OR

AND

ANDAND

Age ≥ 28

AND

FalseTrue

False Weight ≥ 55 

Simplify

Fig. 3. Simplifying the right hand subtree by assuming a value of ‘true’ for the left
hand subtree

should not be hindered [19], as they protect solutions from the more destructive
effects of crossover. However, bloat leads to an increase in evaluation times and
may also interfere with finding better solutions, since time is spent manipulat-
ing the introns rather than useful code[20]. Langdon and Poli [18] suggest that
“since no clear benefits offset these detrimental effects, practical solutions to the
code bloat phenomenon are necessary to make GP and related search techniques
feasible for real-world applications”.

In this paper, bloat is counteracted in three ways. Firstly, although the sim-
plicity of a rule is already considered as an objective of the problem, counter-
acting bloat provides an additional reason for using this objective. Using rule
simplicity in this way has been found to be effective in reducing code bloat in
the literature [20]. Secondly, rule simplification is performed, removing redun-
dant sections from rules. Finally, since these measures alone are insufficient to
eliminate bloat, a simple limit on rule size is imposed. If, after simplification, a
rule exceeds this AT limit, ATs and their parent nodes are removed until the
constraint is satisfied. In this paper, this limit has been set to 20 ATs, in order
to demonstrate the effect of rule size on misclassification costs. In practice, this
limit is likely to be set to a smaller value, since 20 AT rules are too large for
easy human comprehension and smaller rules can be evaluated more quickly.

Figure 3 illustrates the rule simplification performed. Here, the right hand sub-
tree need only be evaluated if the left hand subtree evaluates to ‘true’. Therefore,
assuming that the left hand subtree is ‘true’, we determine which nodes in the
right hand subtree must be ‘false’ or must be ‘true’, simplifying as shown. Sim-
ilarly, if the root node of a tree contains the boolean operation ‘or’, the right
hand subtree need only be evaluated if the left evaluates to false. Note that such
simplifications can still be made if the left hand subtree has more than one node.
All simplifications of this form are made at every internal node in the rule tree.

Note that this does not ensure that the rule is as simple as possible. For ex-
ample, we do not currently use the distributivity law to simplify rules. Similarly,
given three colours, red, green and blue, the rule antecedent colour �= red and
colour �= blue could be simplified to colour = green.
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3 Rule Evaluation

If the understandability of the rule is not a concern, then the overall aim is to
produce a rule that, when applied to previously unseen data, minimizes the ex-
pected costs of misclassification. In practice, we minimize total misclassification
costs on the training data and rule complexity.

There are two reasons for minimizing rule complexity:

– The more complex a rule is permitted to be, the more likely it is that overfit-
ting [9] will occur, making accuracy on training data an unreliable measure
of accuracy on unseen data.

– Simple rules are easier to understand. If part of the aim of classification
is the extraction of knowledge, for example when attempting to discover
patterns in scientific data, it has been argued [21] that the classifier must
be comprehensible to a human expert. Also, a client is more likely to use a
classifier if he understands it.

3.1 Misclassification Costs

Rule antecedents generated by our algorithm describe the class of interest, with
any record not matching the antecedent assumed to be not in the class. A ‘false
positive’ occurs when the rule predicts that a record belongs to the class of
interest when it does not, and a ‘false negative’ occurs when the rule predicts
that a records does not belong to the class of interest when it does.

Using equal false positive and false negative costs results in the minimization
of the simple error rate. This commonly used measure of performance is not
always appropriate, for example when a false positive results in additional labour
while a false negative results in injury or death. Also, if the class of interest is
small, minimizing the simple error rate may merely result in the rule that predicts
that all records are not in the class. If the class is truly of special interest, the
false negative cost must be increased to discover of patterns of interest.

In the experiments reported, we have also used the balanced error rate:

BER =
1
2

(
No. of false positives

Total number of positives
+

No. of false negatives
Total number of negatives

)

Other experiments were performed with a false positive cost of 1 and a false
negative cost of 10.

3.2 Measuring Rule Complexity

In most of our experiments, the complexity of a rule is given by the number of
ATs in the rule tree. This simplifies the comparison of results obtained with dif-
ferent parameter settings and ensures that the complement of the rule, describing
records that do not belong to the selected class, has the same complexity. (Note
that the same could not be said if the categorical inequality AT type was not
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Age ≤ 27

AND

Colour = Orange

Colour = Red

Colour = Yellow

OR

OR

OR

Sex = Male

Age ≤ 27

AND

Weight ≥ 55

Colour = Red

Height = Tall

AND

OR

OR

Sex = Male

Fig. 4. Rules of the same size need not be equally understandable to the human reader

used.) While counting the ATs has the advantage of simplicity, it may not ac-
curately portray the ease with which a rule can be understood. In figure 4 the
first tree is easier to comprehend than the second, due to the repeated use of the
both the same operator and the same attribute in the right hand subtree.

In practice, rule complexity also depends upon the client and upon his or her
preferences regarding rule presentation. For example, the client may prefer to
see the second rule in figure 4 presented as the following rule set.

– if age ≤ 27 and sex = male then...
– if age ≤ 27 and colour = red and weight ≥ 55 then...
– if age ≤ 27 and colour = red and height = tall then...

In this case, the rule complexity may be given as eight ATs rather than the five
in the original rule tree. Fortunately, the algorithm used can easily be adapted
to use this and other measures of rule complexity and an example is given at
the end of section 4.

4 Experimentation and Results

4.1 Data

Rules were extracted from five datasets from the UCI machine learning repos-
itory [22]: the Adult, Forest Cover Type, Contraception, Breast Cancer (Wis-
consin) and the Pima Indians Diabetes datasets. Any records containing missing
data were removed prior to applying the algorithm. Table 1 describes the datasets
in more detail.

The Adult dataset and on 10,000 records selected at random from the Cover
Type dataset were used to tune algorithm parameters (section 4.2), before run-
ning the algorithm on all five of the datasets.

4.2 Algorithm and Parameter Tuning

The multi-objective metaheuristic selected for the optimization of rule trees was
NSGA II [23,24], using an external store to hold the best solutions found. This
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Table 1. Datasets used and classes of interest

Fields: Class of Class
Name Records Numeric Categorical Classes Interest Prevalence

Adult 45222 6 8 2 Salary > $50,000 24.8%
Cover type 581012 10 2 7 Spruce-fir 36.5%
Contraception 1473 5 4 3 No contraceptive use 42.7%
Breast cancer 683 10 0 2 Malignant 35.0%
Pima Indians 532 7 0 2 Test positive 33.3%
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Fig. 5. Comparison of different crossover rates and population sizes for the Adult and
Cover Type datasets, using equal false positive and false negative costs

algorithm has been shown to be an effective multi-objective optimizer, both in
general and when optimizing rules [1,2,3,4]. Parameter tuning was performed
on the Adult dataset and on 10,000 records selected at random from the Cover
Type dataset, minimizing the simple error rate and the number of ATs.

The number of different parameters and potential variations of the algorithm
made the cost of exhaustive experimentation with parameter settings prohibitive.
Instead, effort was focused on finding the best values for crossover rate and
population size only. Experiments were performed with six population sizes, 10,
20, 50, 100, 200 and 500, and six crossover rates, 0%, 20%, 40%, 60%, 80% and
100%. Each experiment consisted of 30 runs of the algorithm, with 200,000 rule
evaluations per run. Results were compared by summing the error rates of the
best rule at each level of rule complexity, up to 20 ATs. This is equivalent to
comparing on the dominated area in the objective space [25]. Mean results are
shown in figure 5. Results with a population size of 500 or a crossover rate of
100% are omitted since these were considerably worse than the results displayed.
Similar graphs were obtained when minimizing the balanced error rate and when
the false negative cost was increased to ten times the false positive cost. In each
case, best performance was obtained using a crossover rate of 20% or 40% and a
population size of 100 for the Adult dataset and 50 for the Cover Type dataset.
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Fig. 6. Comparison of performance at different crossover rates, using a population of
100 rules, the adult dataset and simple error rate. Results are scaled with respect to
the performance at 0% crossover, 100% mutation.

Figure 6 shows how performance varies with the crossover rate, at different
levels of rule complexity. While a certain amount of crossover is required to
produce good results, too much crossover (and hence too little mutation) results
in degraded performance for large rules. There are two possible reasons for this:

– Crossover applied to large rules results in major, disruptive changes when
subtle modifications may be more appropriate. Adapting the crossover op-
erator to be biased towards smaller changes is a matter for further research.

– A loss of diversity in the population, early in the search process, requires the
use of mutation to reintroduce useful ATs and subtrees. This would explain
the very poor performance obtained when using crossover only.

4.3 Training, Validation, Selection and Testing

Evaluating the performance of a new classification algorithm often consists of
two stages:

Training: The classifier is first trained using a set of training data to create a
model to be used for prediction.

Testing: The overall aim is to achieve high performance on unseen data, which
is not necessarily implied by high performance on the training data. There-
fore a set of test data is used to evaluate the model.

Suppose our algorithm is applied to data provided by a hypothetical client.
First the algorithm produces a range of rules from the training data with differing
trade-offs between misclassification cost and rule complexity. In order to give the
client some idea as to how well the rules produced generalize, the rules are re-
evaluated on new validation data. At this point, the client selects a rule. To
compare with other algorithms that produce just one model, we assume that
the client selects the rule with minimum misclassification costs on the validation
data, though in practice the client may elect to choose a simpler rule. To ensure
a fair comparison, this rule must be re-evaluated again on further test data.



Rule Induction for Classification 525

Table 2. Misclassification costs on test data and run times

Select best Select 5AT
Dataset Cost Mean StdDev ATs Mean StdDev Time (s)

Adult
Simple 14.42% 0.10% 19.6 15.64% 0.12% 1032
Balanced 17.82% 0.14% 18.0 19.42% 0.07% 957
1-10 12.45% 0.13% 15.8 12.90% 0% 898

Cover type
Simple 21.00% 0.19% 19.5 23.35% 0.08% 8217
Balanced 21.71% 0.31% 19.5 23.57% 0.16% 9168
1-10 10.58% 0.17% 19.2 11.20% 0.09% 7988

Contraceptive
Simple 29.45% 3.48% 8.8 29.46% 3.53% 55
Balanced 31.97% 3.78% 7.9 32.22% 4.18% 55

Breast cancer
Simple 4.14% 2.25% 4.2 4.10% 2.28% 37
Balanced 4.97% 2.53% 4.8 5.09% 2.61% 30

Pima Indians
Simple 24.38% 4.47% 4.9 24.48% 4.65% 47
Balanced 26.35% 6.25% 8.0 26.84% 6.33% 41

Both the Adult dataset and the Cover Type dataset were partitioned once
only, since the Adult dataset is already split into training and test data (30162
and 15060 records) and the size of the Cover Type dataset limits the amount
of experimentation that can be performed. The Adult training set provided was
split again at random, with approximately 80% forming the new training set
and 20% providing a validation set. The Cover Type data was split 50–25–25
at random, with 50% forming the training set. Each experiment consisted of 30
runs of the algorithm, using a crossover rate of 30% and a population size of 100
for the Adult dataset and 50 for the Cover Type data.

The smaller datasets were split into ten approximately equal parts to be used
as the test sets. For each test set, the remaining 90% of the records were split
at random into two roughly equal parts to be used as training and validation
sets for two experiments, resulting in 20 experiments for each dataset. This use
of ten fold cross validation allows for fair comparison with both the results of
Ishibuchi et al. [7,8] and with the results of 33 classifiers provided by Lim et al.
[26]. The algorithm was run 30 times for each experiment, resulting in 600 runs.
The parameter settings found to perform well for the Adult data (a crossover
rate of 30% and a population of 100) were used in these experiments.

4.4 Results

Table 2 shows the mean quality and size of the rule selected by the client if
he selects the best rule according to error rate on the validation data, breaking
ties on the training error rate. Mean error rates for the best 5 AT rule and the
approximate run time for one run on a 2GHz processor are also given.

The results obtained when the client chooses not to sacrifice rule accuracy can
be roughly compared with those provided in the UCI machine learning reposi-
tory [22] for the Adult dataset and those provided by Lim et al. [26] for the Breast
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Cancer and Pima Indians datasets. In the first case, the UCI repository provides
results for 16 algorithms, with error rates of between 14.05% and 21.42% and
our algorithm ranks 3rd out of 17 algorithms. The 33 algorithms evaluated by
Lim et al. have error rates varying between 2.78% and 8.48% for the Breast
cancer dataset and between 22.1% and 31.0% for the Pima Indians dataset. Our
algorithm ranks 17th and 22nd out of 34 algorithms respectively.

The trade-off between misclassification costs, on both the training and vali-
dation data, and rule simplicity for the Adult dataset is shown in figure 7. Here,
the error bars give the standard deviation at each level of rule complexity.
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Fig. 7. Rule quality for the adult dataset. Misclassification costs are given by the simple
error rate, the balanced error rate and by setting the false negative cost to be ten times
the false positive cost respectively.

Typical 5 AT rules, with associated confusion matrices, are shown in figures
8 to 10. The first rule is fairly accurate when predicting that a record belongs
to the class of interest, but it identifies little more than half of this class, since
more emphasis is placed on accuracy on the larger set of uninteresting records.
Subsequent rules have increases in the number of false positives and decreases
in the number of false negatives, as would be expected. The rules become less
restrictive as illustrated by the greater use of the boolean ‘or’ operation in figure
10, describing more of the class of interest but with decreased confidence.

Figure 11 shows the results obtained when optimizing the simple error rate
for the Breast cancer and Pima Indians diabetes datasets, allowing comparison
with the results obtained by Ishibuchi et al. [7,8]. The results obtained by the
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Fig. 8. A typical five AT rule antecedent, predicting a high salary, produced when
minimizing the simple error rate, with its confusion matrix on test data
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Fig. 9. A five AT rule antecedent produced when minimizing the balanced error rate,
with its confusion matrix on test data

two approaches on the Breast cancer data are broadly similar. Results for the
Pima Indians diabetes datasets are similar in testing — once ten or more rules
are permitted in the rule set, Ishibuchi et al. achieve error rates of approximately
24.8% — but on the training data Ishibuchi et al. only reach an error rate of
approximately 16% even when 20 rules of up to 3 tests each are permitted. Note
that both approaches result in rules that generalize poorly, as indicated by the
large disparity between training and testing error rates, though even the best
classifier evaluated by Lim et al. [26] has an error rate of 22.1% on test data.
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Fig. 10. A five AT rule antecedent produced when the cost of a false negative is ten
times that for a false positive
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Fig. 11. Error rates for the Breast cancer and Pima Indians datasets

Finally, the algorithm was modified to suit a user with a preference for viewing
rule sets, by changing the rule complexity objective to the number of ATs after
conversion to such a rule set. Applying this modified algorithm to the Adult
dataset and selecting an 8 AT rule set produced the following rules, with an
error rate of 15.01% in training and 15.19% in testing:

– If cap. gain ≥ 5178 then salary ≥ $50,000
– If cap. loss ≥ 2392 then salary ≥ $50,000
– If mar. status = civilian spouse and cap. loss ≥ 1762 and cap.

loss ≤ 1980 then salary ≥ $50,000
– If mar. status = civilian spouse and edu. years ≥ 13 and hours

per week ≥ 31 then salary ≥ $50,000
– Otherwise salary < $50,000

5 Conclusions

The results presented illustrate that the approach can produce reasonable results
on two class problems, though there is room for improvement. However, the
algorithm provides additional benefits. The most obvious is that the client can be
provided with a range of models with different trade-offs between rule complexity
and misclassification costs. This allows the client to select a rule that is accurate
enough while also being comprehensible.

The overall approach is also flexible. Rules may be presented to the client in
a number of ways and the measure of rule complexity can easily be adapted to
match the method of rule presentation and the client’s concept of rule compre-
hensibility. Different measures of misclassification cost can easily be used. There
is no restriction on the data types of the fields of the dataset and no need to
discretize numeric fields as required by other algorithms.

While the efficiency of the algorithm could be improved, the approach appears
to be able to handle larger datasets than that of Ishibuchi et al. While no timings
are given that would allow an effective comparison, Ishibuchi et al. report that
their approach has a large computational load [7] and the largest dataset to which
their code has been applied — the Pima Indians diabetes data — contains only
768 records. This is understandable, as even when applied to small datasets,
17070 simple rules are generated from which the genetic algorithm must select
a set. Many of these simple rules are unlikely to be useful in a full classifier.
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6 Further Research

Three or more classes: While the algorithm has been shown to be effective
for two class problems an obvious improvement would be to extend the
approach to handle three or more classes.

Three objectives: In practice, the client may only be able to approximate the
costs of false negatives and false positives. In this case, the problem may be
modeled as having three objectives to be minimized: the rule complexity, the
number of false positives and the number of false negatives.

Diversity management: Preliminary investigations revealed a major loss of
diversity in the population of rules early in the search process, even when no
simplification routines were applied. If techniques can be found that provide
better management of population diversity, the algorithm may be able to
produce better results in a fraction of the time.

Efficiency improvements: There is scope for a number of efficiency improve-
ments. For example, early in the search it makes little sense to evaluate the
rules on the entire dataset, when evaluation on just a sample will provide
enough information to guide the search at this stage.

Rule types: Other AT types (see previous work [2,4]) and operators may be
used to further enhance the expressiveness of the rules produced.
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Abstract. In this paper, the design of systems using mechanical or elec-
trical energy-transformation devices is treated as a knapsack problem.
Due to the well-known NP-hard complexity of the knapsack problem,
a combination of integer linear programming and evolutionary multi-
criteria optimization is presented to solve this real problem with promis-
ing experimental results.

1 Introduction

Many real-world problems involve the simultaneous optimization of multiple
objectives. These objectives often conflict, that is, an optimal performance in
one objective implies a low performance in some of the remaining objectives.
Therefore, a compromise solution must therefore be reached.

Several mathematical programming methods have been developed to deal
with multi-objective problems through different approaches [1]. From a math-
ematical point of view, a multi-objective problem is solved by finding a set of
non-dominated solutions. For large and complex problems, however, there are
practical difficulties involved in using mathematical programming methods to
obtain this set of Pareto-optimal solutions. In recent years, techniques based
on meta-heuristics have been proposed to increase efficiency when solving real
multi-objective problems [2,3].

Evolutionary computational approaches are used successfully to solve hard
problems. Inspired in natural evolution, evolutionary approaches are considered
powerful stochastic search methods [4]. Evolutionary strategies evolve a popu-
lation of potential solutions in a single run by means of chromosomal encoding
representation of solutions and crossing, mutation and selection operators. Ap-
proaches of this type are therefore of interest in attemps to solve multi-objective
problems. For an extended review [5,6,7,8,9].

The knapsack problem is a well-known NP-hard combinatorial optimization
problem [10] that can be formulated as follows: given a number of item types
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with corresponding unit profit pi and unit weights wi, and a knapsack with fixed
capacity c, determine the number of xi of each item type that maximizes profit
without exceeding the capacity limit. Mathematically:

max
∑

i

pixi

subject to
wixi ≤ c

xi ≥ 0

Due to its application to many real problems, several meta-heuristic methods
are proposed to solve combinatorial problems [4,11,12]. Evolutionary techniques
are also applied to multi-objective knapsack problems [13,14].

In this paper, a combination of integer programming and multi-objective op-
timization is presented to handle a complex real problem in the energy sector.
The real problem is related to the design of systems using mechanical or elec-
trical devices. More specifically, the number and type of electrical or mechanical
devices required to make up the system must be determined.

Due to the complexity of the real problem, the proposed methodology is based
on the divide and conquer philosophy. In this way, integer linear programming and
evolutionary multi-criteria optimization are combined to solve the real problem.

The paper is organized as follows. The stochastic knapsack real problem and
its mathematical formulation is described in Section 2. Section 3 presents the
proposed methodology to solve the problem. Section 4 analyses the experimental
results. Finally, a brief set of conclusions and suggestions for future work are
presented in Section 5.

2 Problem Statement and Mathematical Modelling

2.1 Problem Statement

This work addresses the design of mechanical or electrical equipment to achieve
a given target. In this case, the target is related to a transformation process.
The system or equipment receives an input and delivers an output. The design
task is to determine the number and type of electrical and/or mechanical devices
required to build the system. There are different types of devices performing the
same task. Each device has a set work capacity, efficiency curve, and cost. The
capacity is the highest input the device is able to handle. The efficiency curve
describes the output-to-input ratio. Each configuration of the system (i.e. a set
of devices) is therefore assessed by its total cost and total efficiency.

The transformation process is performed through time. In this problem, it is
assumed that the total input I is a random quantity whose probability distribu-
tion is known or can be estimated.
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Specifically, in order to state the problem, there are K different types of de-
vices, D1, D2, . . . , DK . The type Di is characterized by the following parameters:

– Capacity: Li is defined as the minimum partial input required to start up
the device Di. Ui is defined as the maximum partial input for device Di,
that is, Di transforms a partial input Ii ranging from Li to Ui.

– Efficiency function Efi(partial input): a function relating the partial input
I to device Di to its output O = Efi(I).

– Cost Ci: the cost of integrating a unit of type Di into the system.

Therefore, the problem is to fix the number n1, . . . , nk of devices of types
D1, . . . , Dk, respectively, that provide the system with maximum efficiency at
the minimum cost. Maximum efficiency and minimum cost turn the real problem
into a multi-objective problem. The total cost TC of a system is obtained as:

TC =
K∑

i=1

Cini.

Due to the random nature of the input, efficiency is not easy to set. Given
a configuration of the system, for each quantity of input I a different level of
efficiency is reached. Then, efficiency could be set in terms of several statistical
measures. Expected efficiency is the objective function considered in this study.
Therefore, efficiency is calculated as follows:

Ef(system) =

∑P
j=1 Ef(system, total inputj)freq(total inputj)∑P

j=1 total inputjfreq(total inputj)
(1)

where Ef(system, total inputj) denotes system efficiency (output) when input is
fixed to total inputj, freq(total inputj) denotes frequency of input total inputj,
and Ef(system) denotes expected efficiency of the system. This formulation is
presented for a discrete distribution of input. When a continuous distribution of
input is considered, then, an analogous formulation can be proposed, in which
the sums of the previous expression have to be replaced by integrals and the
frequency by a density function.

The calculation of Ef(system, total inputj) is not trivial. It is required to
determine how the total inputj is divided among the devices in the system– see
Figure 1 –. Furthermore, the assignment must be done in an optimal way.

2.2 Modelling Using Stochastic Multi-objective Nonlinear Integer
Programming

The proposed real problem can be mathematically represented in several ways.
It can be formulated as a stochastic nonlinear multi-objective integer program,
in which case the following notation is used:
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Fig. 1. Equipment consisting of 4 devices: D1, D2, D3 and D4. I = I1 + I2 + I3 + I4.
0 = 01 + 02 + 03 + 04.

– Indices:
• k, k = 1, . . . , r, is related to devices.
• j, j = 1, . . . , P , is related to system random input with frequency

freq(total inputj).
– Decision variables:

• partial inputkj represents the partial input of device Dk when the sys-
tem receives total inputj.

• wkj and zk are binary variables defined as:

wkj =
{

1 if partial inputkj > 0
0 if partial inputkj = 0 zk =

{
1 if

∑
j wkj > 0

0 if
∑

j wkj = 0

Note that wkj equals 1 if and only if device Dk is used when input equals
total inputj. Then, zk equals 1 if and only if device Dk is used for at
least one total inputj.

– Parameters:
• total inputj denotes the system random input, j = 1, . . . , P .
• Uk is the maximum partial input of device Dk, and Lk is the minimum

partial input required for the start-up of Dk, k = 1, . . . , r.
• Efk(device input) is the efficiency curve for device Dk, that is, the out-

put of device Dk when the input is device input, k = 1, . . . , r. Usually,
it is a nonlinear function of the device input.

• freq(total inputj) is the frequency of the system random input when it
takes the value total inputj, j = 1, . . . , P .

• ck denotes the cost of including device Dk in the system, k = 1, . . . , r.

Once all the required parameters and decision variables are defined, the multi-
objective nonlinear integer programming can be formulated as in Figure 2.

Constraints. The sets of constraints 2 and 3 verify that partial inputkj equals
zero or a value between Lk and Uk. Constraints 4 ensure that the amount of
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min

r∑
k=1

ckzk

max
P∑

j=1

freq(total inputj)
r∑

k=1

Efk(partial inputkj)

subject to

partial inputkj ≥ Lkwkj (2)

partial inputkj ≤ Ukwkj (3)
r∑

k=1

partial inputkj ≤ total inputj (4)

wkj ≤ zk (5)

partial inputkj ≥ 0

wkj , zk binary variables

∀k = 1, . . . , r; j = 1, . . . , P

Fig. 2. Mathematical formulation of the multi-objective nonlinear integer programming

input through all devices, D1, . . . , Dr is no higher than the total system input.
Finally, constaints 5 check the relation between variables wkj and zk. Note that
the number ni of devices Di is fixed by: ni =

∑
k of type Di

zk.

Knapsack problem. The mathematical problem presented in this paper can be
considered as a generalization of the knapsack problem. Observe that if Lk = Uk,
the attained constraints are the classical capacity constraints of the knapsack
problem. The general situation where Lk < Uk is considered, thus, a knapsack
problem where weights wi are unknown is reached. Moreover, the weights turn
into the decision variables of the problem.

Because of the maximization objective, the multi-objective model becomes
a stochastic optimization problem. In this real problem scenario, expected effi-
ciency is used as the efficiency measure, assuming that total input is a discrete
random variable with P different values. The nonlinearity is also due to the
maximization objective, because the efficiency functions of devices are usually
considered to be non linear functions. To sum up, the presented real problem is
a knapsack multi-objective stochastic nonlinear problem.

Implementation is complicated due to the size of the multi-objective nonlinear
problem, which involves rP continuous variables, r(P + 1) binary variables and
P (3r+1) constraints. Then, the implementation of the nonlinear multi-objective
problem has thousands of continuous variables, thousands of binary variables and
thousands of constraints.
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min
r

k=1

ckzk

max
P

j=1

freq(total inputj)
r

k=1

(y1kjλ1kj + y2kjλ2kj + y3kjλ3kj + y4kjλ4kj)

subject to

partial inputkj ≥ Lkwkj

partial inputkj ≤ Ukwkj

r

k=1

partial inputkj ≤ total inputj

wkj ≤ zk

partial inputkj = x1kjλ1kj +x2kjλ2kj + x3kjλ3kj + x4kjλ4kj (6)

λ1kj ≤ bin1kj

λ2kj ≤ bin1kj + bin2kj

λ3kj ≤ bin2kj + bin3kj

λ4kj ≤ bin3kj

λ1kj + λ2kj + λ3kj + λ4kj − wwkj = 0

bin1kj + bin2kj + bin3kj − wwkj = 0

partial inputkj ≥ 0

wkj , wwkj , bin1kj , bin2kj , bin3kj binary variables

∀k = 1, . . . , r; j = 1, . . . , P

Fig. 3. Mathematical formulation of the multi-objective linear integer programming

2.3 Modelling Using Stochastic Multi-objective Linear Integer
Programming

In order to avoid the difficulties caused by the size of the nonlinear problem,
a linear piecewise approach is used to analyze the efficiency curve of each de-
vice. Figure 3 represents the stochastic linear approach. Parameters (x1k, y1k),
(x2k, y2k), (x3k, y3k), and (x4k, y4k) are points defining three linear piecewise
segments of the efficiency curve for device Dk, and λik, binik, wwk are decision
variables introduced for modelling purposes.

The linear approach increases the number of continuous and binary variables
and, thus, the number of constraints. For example, replacing a nonlinear effi-
ciency function with a three linear piecewise function multiplies the number of
continuous variables by 4. Then, 2r(P + 2) binary variables and 6rP new con-
straints have to be added. Therefore, a multi-objective linear integer problem
with tens of thousands of constraints, tens of thousands of continuous variables
and tens of thousands of binary variables has to be carried out. Note that the
integer linear model of Figure 3 can be simplified by introducing the equality
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constraints 6 in suitable places. This simplified model is used to determine the
model dimension.

Nevertheless, the size of the problem is still too large to find the exact solution.
This means that exact methods are not applicable. Hence, in order to attain good
solutions with a feasible computational cost, heuristic algorithms are considered.

2.4 Modelling Using Linear Programming and Evolutionary
Computation

Due to all the difficulties described in the previous sections, an iterative two-stage
method is proposed. In stage A, the expected efficiency of a given configuration
for the system is evaluated. Stage B evolves a population of configurations ac-
cording to two objective functions.

Stage A resolves a set of P integer linear programming models of smaller size
than discussed above. Stage B develops a multi-criteria evolutionary algorithm
with Pareto elitist selection to approach the cost-efficient Pareto optimal surface
for devices.

3 Hybrid Algorithm Based on Integer Linear
Programming and Multi-objective Evolutionary
Computation

The proposed hybrid algorithm to solve the real problem presented above is
described in depth.

3.1 Stage A: Efficiency Evaluation. An Integer Linear Programming
Approach

Let N = (n1, . . . , nk) be a feasible system configuration where ni is the number
of devices of type i and s =

∑
i ni. For each system configuration, the expected

efficiency function is evaluated by equation 1. It requires resolution of P integer
linear problems, with several values of total inputj, j = 1, . . . , P . Figure 4 shows
the mathematical formulation of these problems.

The P linear problems have fewer variables and constraints than formulated in
the previous section. Specifically, each problem requires 4s continuous variables,
5s binary variables, and 8s + 1 constraints. Furthermore, to solve the P linear
problems, a unique configuration of the system is considered, thus, s � r.

3.2 Stage B. Population Evolution. A Multi-criteria Evolutionary
Algorithm

A multi-criteria evolutionary Pareto elitist algorithm is proposed to attain a good
approximation to the cost-effiency Pareto optimal surface of the real problem.
Figure 5 shows the main steps in the proposed method.
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max Ef(system, total inputj) =
∑

device k

(y1kλ1k + y2kλ2k + y3kλ3k + y4kλ4k)

subject to

partial inputk = x1kλ1k + x2kλ2k + x3kλ3k + x4kλ4k

λ1k ≤ bin1k

λ2k ≤ bin1k + bin2k

λ3k ≤ bin2k + bin3k

λ4k ≤ bin3k

λ1k + λ2k + λ3k + λ4k − wwk = 0

bin1k + bin2k + bin3k − wwk = 0

partial inputk ≥ Lkwk

partial inputk ≤ Ukwk∑
device k

partial inputk ≤ total inputj

wk, wwk, binik binary variables

λik, partial inputk ≥ 0

∀k = 1, . . . , s; i = 1, . . . , 4

Fig. 4. Formulation of integer linear problems to measure expected efficiency

Step 1: Generate an initial population pop0.
Create an empty archive archive0.
Set t = 0.

Step 2: Evaluate individuals of popt (cost and expected efficiency):
resolve P integer linear programming problems for each individual.

Step 3. Copy all non-dominated solutions in popt + archivet to archivet+1.
Step 4. If stopping criterion is met: plot nondominated solutions in archivet+1.
Step 5. Select μ individuals from archivet+1.
Step 6. Generate λ individuals from μ selected individuals.

popt+1 = {λoffspring}.
t = t + 1.
Go to Step 2.

Fig. 5. Main steps of the proposed multi-criteria evolutionary algorithm

Now, each step is explained more in detail.

Step 1: Generation of the initial population. In order to generate the initial
population, k different devices are considered. A solution or system configuration
is represented by N = (n1, . . . , nk), where ni is the number of devices Di. It is
assumed that cost(Di) ≤ cost(Di+1) and Ui ≤ Ui+1.
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First, the following configurations are evaluated:

N∗1 = (n∗1, 0, . . . , 0)
N∗2 = (0, n∗2, . . . , 0)
. . .

N∗i = (0, . . . , n∗i , . . . , 0)
. . .

N∗k = (0, 0, . . . , n∗k)

where ni is fixed as the integer part of total input
Ui

and total input =
maxj{total inputj}. Note that N∗1 , . . . , N∗k are extreme points of a simplex. This
simplex approaches the feasible set of configurations for the multi-objective prob-
lem. Through the search process, the proposed method can find solutions that,
while not contained in the simplex, are not far from the frontier.

Any system solution or configuration is a linear combination of the initial
solutions, such that: N∗ =

∑k
i=1 piN

∗
i , with

∑k
i=1 pi ≈ 1, where pi represents

the percentage input assigned to device type i. By setting
∑k

i=1 pi = 1 the
simplex is exactly reached. Therefore, by allowing

∑k
i=1 pi ≈ 1, the simplex

neighbourhood is visited.
The initial population, pop0, contains the k vertices of the simplex and a set of

solutions attained as a linear combination of pairs of these vertices. In order to
achieve diversification, vertex N∗i is combined with vertex N∗i+l, where l depends
on the total number m of required pairs in the following way:

m = (k − l) + (k − l − 1) + . . . + 1 =
k−l∑
n=1

, then, m =
k − l + 1

2
(k − l).

From this equation, l ≈= (2k+1)−√8m+1
2 , thus, l can be considered the round off

of this expression.
For every pair of selected solutions, N∗r and N∗s , a new solution is generated

as the convex combination. Then, the new solution is: N∗t = pN∗r + (1 − p)N∗s ,
p ∈ (0, 1). In this way, for every pair, h new solutions are generated by selecting
p = 1

h+1 , 2
h+1 , . . . , h

h+1 . Finally, the number of solutions in the initial population
pop0 is k + hm.

Step 2: Evaluation of generated configurations. The configuration cost is directly
evaluated depending on the cost of each selected device. The expected efficiency
measure requires the evaluation of equation 1. This implies carrying out of stage
A, that is, the resolution of P integer programming problems –see Figure 4.

Step 3: The evolutionary strategy and the Pareto elitist selection approach. The
Pareto elitist selection approach chooses nondominated solutions from popt and
archivet, and adds them to archivek+1. The archive is used to store the current
approximation to Pareto optimal surface. It must be remarked that the number
of individuals in the archive changes over time.
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for (p = 1; p = μ; p + +)
for (m = 1; m = β; m + +)

1. with prob mut1 do ni = ni − 1 ∀i ∈ CD
S = {i ∈ CD|ni value has been decreased}

2. quantity decreased =
∑

i∈S Ui

3. if (quantity decreased == 0) repeat 1 and 2
otherwise A = {j|j ∈ NCD + CD − S}

4. while (quantity decreased > 0) do

∀j ∈ A, prob selectj =
LjUj∑

i∈A LiUi

with prob selectj , select s ∈ A
if quantity decreased ≥ Us

ns = ns + 1
quantity decreased = quantity decreased − Us

otherwise with probability quantity decreased
Us

ns = ns + 1
quantity decreased = 0

return offspring

Fig. 6. Pseudo-code of the proposed mutation method

Step 4: Stopping condition. Several stopping criteria can be applied. It is usual
to implement a given number of generations and stagnation of the estimated
Pareto surface are implemented.

Step 5: Selection method. In order to evolve the current population, μ individuals
are selected from the non-dominated configurations stored in archivet+1. A cluster
method is carried out to preserve diversity in the selection. If card(archivek+1)<μ
then all non-dominated solutions are selected.

Step 6: Generation of next population. Each selected solution is a parent of β
new individuals. Then, λ = μβoffspring.

Let (n1, . . . , nk) be a selected parent to create β offspring. The parent com-
ponents are classified into two sets, depending on the value of ni, i = 1, . . . , k:

CD = {component i|ni > 0}

NCD = {component i|ni = 0}.

The evolution process is a mutation operator that creates new individuals.
First, a subset of device types is selected with a mutation probability. This subset
of device types decreases its number in the new solution. Then, the required
decrease in input is evaluated. Finally, this input is randomly reassigned to
other types of devices, which increase in number in the new configuration. The
pseudo-code of this mutation operator is given in Figure 6.
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Table 1. Frequencies of the synthetic experimental framework

input 20 40 60 80 100

frequency 0.30 0.25 0.20 0.15 0.10

Table 2. Characteristics of synthetic devices

device D1 D2 D3 D4 D5 D6 D7 D8

Uk 50 35 20 15 10 5 2 1

Lk 10 7 4 3 2 1 0.4 0.2

unitary cost 15 14 10 9 7 4 1.8 1

4 Industrial Application

4.1 Origin of the Problem

As stated ealier, the problem presented herein is a real world situation. It is part
of a broader study of a company in the energy sector that needed an analysis of
the feasibility and dimension of an energy-storage and transformation system.

Due to the strict confidentiality clause required by the company, neither de-
tails of the workings of the energy system nor the characteristics and specifica-
tions of the devices can be revealed. Each device performs an energy transfor-
mation task, in such a way that the input of one type of energy produces the
output of another type of energy that is esier to store. The transformation pro-
cess is not completely efficient, that is, output is lower that input. The relation
between these two values is given by an efficiency function, usually, a nonlinear
function and of a typical shape is shown in Figure 7. This efficiency function
gives non-linearity to the initial optimization problem.

The randomness of the input is one of the most significant characteristics of
the real problem. Obviously, when the energy input comes from nature, i.e, sun,
wind, tide, earth’s heat, etc, it is impossible to avoid this random behaviour.
Although their stochastic behaviour can be analyzed, these natural resources
can not be controlled.

In order to select the best configuration of the system, two criteria are imposed
by the company: system global efficiency, and, the cost of creating and running
the system.

4.2 Experimental Framework of the Multi-criteria Problem

In order to illustrate the performance of the proposed method, a synthetic prob-
lem statement is developed. This synthetic experimental framework uses invented
values but has a similar structure to the real problem.

Table 1 shows the energy input frequencies considered, which ranges from 20
to 100. There are 8 energy-transforming devices with the characteristics shown
in Table 2.
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Fig. 7. Real and modelled efficiency curves for the D1 synthetic device

For simplicity, the same shaped efficiency function is assumed for all the de-
vices (it is in factthe one that occurs the real problem). The efficiency curve is
calculated by:

output=Ef(input)=
2

1 + 31−input/U
5510−5

(
−input + 50

input2

U
− 25

input3

U2

)

where U is the maximum input per device, that is, its total capacity Uk. Figure 7
shows the real efficiency curve for D1. Figure 7 also shows the modelled three
linear piecewise function curve, where it must be noted that the loss on the
loss-of-efficiency function is barely perceptible.

Therefore, in order to attain maximum expected efficiency and minimum cost
it is necessary to determine how many devices of each type should be installed.

4.3 Experimental Results

The main objective of the multi-criteria optimization is to find a set of solutions
that provide appreciable efficiency at a reasonable cost. The main drawback of
using this kind of models to solve integer problems is the high computational
time required. The decision maker agrees to design a method to provide solutions
in less than 12 hours. This time constraint guides the parametrization of the
evolutionary strategy proposed. More specifically, initial population size is fixed
at m = 25, mutation probability to prob mut1 = 0.2, μ = 5 parents, and β = 25
offspring.

Then, once these parameters are fixed, the number of evaluated solution in
the evolutionary search is around 500. This implies solving around 500 integer
linear problems, for which the LINDO API 4.1 is used. In order to control the
computational time, the resolution time for each integer linear problem is fixed
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Fig. 8. Histogram of number of populations reached in 20 runs

at 90 seconds. It must be remarked that only in a very few cases this time
limit was reached (when considering the size of problems found in practice),
and, furthermore, the study of these cases showed that solutions provided in 90
seconds were not far from the optimal ones.

This parametrization is used in an attempt to satisfy standard solution quality
measures, such as proximity, diversity, and pertinence. In such a way that:

– proximity: the estimated Pareto frontier is close to the real one
– diversity: a good distribution of solutions in both objectives (efficiency and

cost)
– pertinence: the solution set should contain configurations in the area of in-

terest of the decision maker

Since the solution set presented to the decision maker covers a wide range of
values for both objectives, the grid method used to obtain the initial population,
and the cluster method used to evolve the Pareto frontier assure diversity and
pertinence.

In order to check the performance of the proposed method, 20 independent
runs of the multi-objective evolutionary method are carried out with the de-
scribed synthetic devices. For these runs, the stagnation of the Pareto frontier
is fixed as the stopping criterion. As a result, 8.65± 3.73 (mean ± st. deviation)
populations are required to stagnate the Pareto frontier after 327.62±63.49 sec-
onds. Figure 8 shows the histogram of the number of population reached when
the evolutionary algorithm stops.

The results of these 20 independent runs provide us with 20 independent
Pareto frontiers. Therefore, a disimilarity measure between two Pareto frontiers,
Fr and Fs, is defined as:

dif(Fr, Fs) =
� solutions in Fr and not in Fs + � solutions in Fs and not in Fr

� solutions in Fr + � solutions in Fs

This measure varies between 0 and 1 –the closer to 0, the more similar. The
election of this disimilarity measure is based on the fact that not all the Pareto
frontiers have the same number of solutions.
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(a) 5 populations (b) 10 populations (c) 15 populations

Fig. 9. Spread of Pareto frontier depending on number of population

As a result, 190 disimilarity values are attained where the Pareto frontiers differ
at 0.45±0.16 (mean ± st. deviation). This implies that, by mean, around the 50%
of solutions in one Pareto frontier appears in another independent Pareto frontier.

In order to study the spread of the Pareto frontier, 3 indepent runs of the
multi-objective evolutionary algorithm is carried out. Now, the stopping criterion
is the number of evolved populations. Figure 9 is a graphic representation of the
estimated Pareto frontier for these 3 independent runs. The initial and final
Pareto frontier are depicted when the algorithm stops evaluating 5, 10 and 15
populations. It can be shown how the Pareto frontier spreads with the number
of populations.

It can be observed in Figure 9 that the proposed algorithm evolves the efficient
Pareto frontier, including better solutions at each step.

5 Conclusions and Future Work

In this paper, a combination of integer linear programming and evolutionary
multi-criteria optimization is proposed to solve a stochastic knapsack problem.
The presented methodology has proven to be useful for identifying a set of good
feasible configurations. When the decision maker validates the results his intu-
ition about the structure of the system composition is confirmed. Another useful
feature of the proposed methodology is that it can usually be implemented in
real applications for operational management purposes.

In this work, a new type of stochastic knapsack problem is illustrated by means
of an energy transformation process (because of its origins). Nevertheless, similar
problems can also be found in other areas.

The design of the algorithm provides a satisfactory answer to a practical
problem, while its practical implementation using a restricted parametrization
meets key constraints, such as computational time. More research should be done
to assess the relationship between the set of parameters and the estimated Pareto
frontier, when a wider range of knapsack problems of this type is considered.

A detailed and extensive comparison of the proposed multi-objective evolu-
tionary method with classical first-order evolutionary algorithms (such as genetic
algorithms or estimation of distributions algorithms) should be done to check its
viability and reliability.
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Abstract. Genetic algorithms are one of the state-of-the-art metaheuristic 
techniques for optimal design of capital-intensive infrastructural water 
networks. They are capable of finding near optimal cost solutions to these 
problems given certain cost and hydraulic parameters. Recently, multi-objective 
genetic algorithms have become prevalent due to the conflicting nature of these 
hydraulic and cost objectives. The Pareto-front of solutions obtained enables 
water engineers to have more flexibility by providing a set of design 
alternatives. However, multi-objective genetic algorithms tend to require a large 
number of objective function evaluations to achieve an acceptable Pareto-front. 
This paper describes a novel hybrid cellular automaton and genetic algorithm 
approach, called CAMOGA for multi-objective design of urban water networks. 
The method is applied to four large real-world networks. The results show that 
CAMOGA can outperform the standard multi-objective genetic algorithm in 
terms of optimization efficiency and quality of the obtained Pareto fronts. 

Keywords: Multi-Objective Optimization, Pipe Networks, Cellular Automata, 
Genetic Algorithms. 

1   Introduction 

The optimal design of urban water networks, both water distribution and sewer 
networks, is of central importance to water industries due to the vast capital 
investments associated with these underground assets. The problem is normally 
interpreted as a pipe-sizing problem. A large variety of optimization techniques have 
been developed for this NP-hard task, including linear and dynamic programming, 
and recently meta-heuristic algorithms, such as genetic algorithms (GAs), simulated 
annealing and tabu search. 

Amongst these meta-heuristic algorithms, genetic algorithms are the most 
prevailing algorithm explored [1], [2], [3], [4] tracing back to the mid-nineties. More 
recently, inline with advances in optimization techniques and also due to the multi-
criterion nature of the problem, research in this area has moved from searching for a 
single “optimal” solution to using multi-objective techniques [5], [6], [7] for more 
alternatives. Throughout the optimization, a GA is combined with a hydraulic 
simulator, which evaluates hydraulic performance of each solution attained at every 
generation of the GA. Although having given promising results, this approach can be 



 Hybridizing Cellular Automata Principles and NSGAII 547 

time-consuming, especially when designing large networks. One reason is that the 
hydraulic simulation time is often significantly increased for large networks. 
Furthermore, as a drawback common to all genetic algorithms, GAs require a large 
number of objective function evaluations to attain sound solutions, which increases 
with the complexity of the problem. Since water networks typically have a large 
number of pipes, the prohibitively high computation cost has become the bottleneck 
in optimal design practices. 

Some attempts have recently been made to overcome this difficulty by accelerating 
the optimization by way of employing a quicker hydraulic simulator or applying a 
more efficient optimizer [5], [8], [9], [10]. In Jourdan’s work [5], a hybrid 
optimization method is developed, which integrates machine learning to boost the 
convergence of a multi-objective genetic algorithm by intermittently intensifying the 
search on promising areas of the search space. The approach eventually achieves a 
speed up of the optimization process ranging from 20% to 36%. Keedwell and Khu 
[10] and Guo et al. [9] developed an efficient cellular automata (CA) based optimizer 
for designing, respectively, water distribution networks and sewer networks. These 
approaches can obtain good solutions in a very small number of function evaluations, 
typically one hundred or less. However as CA are primarily driven by the principle of 
localism, the cellular automata based approaches cannot guarantee to find global 
optimal Pareto-fronts. 

In this paper, as an extension to our previous work, the authors describe a hybrid 
optimization method for multi-objective design of urban water networks, called 
CAMOGA which combines the CA based approaches and a multi-objective GA, 
specifically a constrained non-dominated sorting genetic algorithm (NSGAII) [11], 
[12]. The rationale behind this is to exploit the strengths of both approaches, namely 
the efficiency through localism in the CA and the ability to search for a global 
optimum from the GA. Two stages can be identified during the optimization. In the 
first stage, the CA based approach is applied to efficiently obtain a set of preliminary 
solutions, which are then used as high-quality seeds for the NSGAII implemented in 
the second stage. In this way, it is expected that a large amount of the initial 
computation cost incurred at the early stage of GA execution can be saved, and the 
optimization progress towards global optima can still be assured. 

The remainder of the paper is organized as follows. In Section 2, a brief 
introduction to water network optimization is given. In Section 3, Cellular Automata 
and CA based optimization methods are described; then the methodology of 
CAMOGA is explained in detail; In Section 5, case studies are carried out on four 
real-world problems (two sewer networks and two water distribution networks), and 
the optimization results are compared with those of NSGAII. A general conclusion is 
drawn at the end. 

2   Multi-objective Water Systems Design 

2.1   Water Systems Design 

Water systems design has primarily focused on finding a cost-effective solution which 
minimizes the system cost whilst achieving the requisite system serviceability, such 
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as, sufficient water pressure for high rise buildings and fire fighting in a water 
distribution system or no flooding under a certain return period storm in a drainage 
system. The pipe layout, the node connectivity, and the serviceability of the network 
system are typically assumed to be known. Therefore the problem is simply 
interpreted as a pipe-sizing problem, namely the decision variables are the diameters 
of pipes within the network.  

2.2   Multi-objective Optimization  

As is commonly done, we consider two optimization objectives: the cost and the 
hydraulic performance of the network, which uses the total head deficit in distribution 
systems and the total flood volume in sewer systems as a performance indicator. The 
network cost is calculated based on the cost per unit length associated with the 
diameter and the length of the pipe.  

Since both head deficits in distribution systems and flooding in sewer systems are 
not generally desirable, a specific value is introduced as a constraint on the hydraulic 
objective of the Pareto-front. No constraint is applied to the cost objective. 
Constrained dominance [11] is used to determine the dominance of one solution over 
another during the optimization. 

Finally, the problem is generally expressed by the following formulas: 
T

Sx
xCxHxF ))(),(()(min =

∈
 . (1) 
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Where )(xF  is the objective vector consisting of two objective functions: hydraulic 

performance )(xH  and network cost )(xC . S denotes the feasible set constrained by 

equality and inequality constraints and explicit variable bounds. 
There are a large variety of available MOGA algorithms. However, no firm evidence 

shows that one algorithm can generally outperform the others [13]. As one of the state-
of-the-art MOGA algorithms applied for engineering problems, NSGA-II is chosen as 
the multi-objective genetic algorithm to use in this study. The main advantages of using 
NSGA-II over other MOGAs are: 1) a strong elitist approach leads to fast convergence; 
2) a crowded comparison operator is used to keep diversity and a uniformly spread 
Pareto-optimal front; 3) an efficient ranking scheme reduces the overall complexity of 
the algorithm 4) It can easily handle optimization constraints. 

3   Cellular Automata Based Optimization 

In the last two decades, a heuristic kind of algorithm, called cellular automata (CA) 
has attracted much attention and has been widely applied to problems in almost all 
research fields. 

3.1   Cellular Automata 

The concept of CA was first conceived by von Neumann in the late 1940s [14], [15]. 
A cellular automaton is a spatially and temporally discrete dynamic system, which 
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consists of a regular lattice of cells. Each cell can have cell states with a finite number 
of possible values. The states of all cells are updated synchronously at every modeling 
step according to a set of predefined transition rules. For each cell, the updating only 
involves the previous state of the cell and of its surrounding neighbors, which are 
selected according to a neighborhood scheme. The literature suggests that the 
transition rules and the neighborhood scheme are critical to the performance of a CA 
model [14], especially the transition rules, a slight alteration in which may result in 
significantly different behaviors. These two elements are usually problem specific. 

CA have historically mostly been utilized as a simulation environment for spatially 
distributed problems. Recently, the use of CA has been extended to optimization. 
Although research on CA based optimization is still at its early stage, a number of 
successful applications have been proposed, such as: for estimating shortest path [16] 
or trip distribution problems [17], for structural design [18], for computer networks 
[19], for water distribution system design [10] and for sewer system design [9].  

3.2   Cellular Automata Based Water Network Design 

In a recent publication [8], [10], a cellular automaton inspired approach (Cellular 
Automaton for Network Design Algorithm, or CANDA) was developed for the design 
of water distribution systems. Similarly, we also proposed a CA based approach 
called CASiNO (Cellular Automata for Sewers in Network Optimization) for the 
design of sewer systems. For both CANDA and CASiNO, the mechanism was 
developed on the basis of the definition of cellular automata and hydraulic theory. 
Therefore they have many features in common but also with some exceptions mainly 
due to the inherent differences between the two types of systems: (1) distribution 
systems only deliver pressured flows, and sewer systems mainly deliver gravity flows 
varying from free-surface to pressured flows; (2) Distribution networks can have loop 
network connections, but sewer networks can only have a dendritic structure. In 
general, the mechanism of the CA based approaches for water network optimization is 
introduced below: 

a. Lattice Structure: Each node (network junction) is regarded as one cell, the basic 
unit of a cellular automaton. The spatial structure of the lattice fully follows the layout 
of the water network. Because of variable lengths of pipes, instead of having a regular 
lattice structure as in traditional CA, an irregular two-dimension cellular automata 
network is constructed. 
b. Cell states: Considering the optimization objectives, two variables are set to 
represent the states of each cell. One is the diameter of the pipe, which reflects the 
cost information associated with each cell. The other reflects the hydraulic situation at 
the node, which is pressure head at the node for water distribution systems or flooding 
volume at the node for sewer systems. 
c. Neighborhood scheme: Subject to network layout and hydraulic processes, there is 
little scope for adopting alternative neighborhood schemes. Hence it involves only the 
direct surrounding cells. 
d. Transition rules: As a critical factor for the quality of CA modeling, the transition 
rules are defined in a heuristic way which reflects the decisions a water expert might 
make based on his experience, knowledge and intuition when facing similar hydraulic 
situations in reality. In line with the optimization objectives, the underling principle of 
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designing those rules is to reduce pipe diameters, namely reduce the network cost, but 
not violate the constraints on hydraulic performance. 
e. Termination criteria: Two criteria are set for terminating the optimization 
execution: (a) a predefined maximum number of evolving steps of the Cellular 
Automata model is reached; (b) a homogeneous or periodic behavior is detected. 
Periodic repetition will start when the solution at the current step is identical to the 
solution at any previous step. 

Despite some exceptions to the definition of a standard cellular automaton, both 
CANDA and CASiNO preserve all key characteristics of CA: simplicity, 
homogeneity, parallelism, localism and discreteness both in temporal and in spatial 
terms. 

Unlike traditional optimization algorithms driven by global performance, the CA 
based approaches do not have an objective function to direct the optimization. 
Therefore they are not run with any concept of domination, trade-off or even 
objective function values. Experts’ knowledge and judgments have been pre-
embedded into the transition rules to direct the optimization towards design 
objectives, and these rules is executed at a local level, which evolve the cellular 
automata in a deterministic and self-reproducing pattern. It is this fact which makes it 
so distinct from the standard optimization approach.  

Primarily benefiting from the features of homogeneity and parallelism, these 
approaches are proved to be efficient in the optimization of water networks. During 
the optimization, the heuristic transition rules are homogeneously applied to all cells. 
At each evolving step, all actions to update the diameters of cells are executed in 
parallel. It is parallelism that also enables the computation cost of the optimization 
not necessarily to increase with increasing network size. Normally, the CA based 
approach can attain good solutions requiring only a small number of system 
evaluations, typically less than 100 evaluations. Furthermore, CANDA and CASiNO 
are computationally economic in their execution because their transition rules are all 
designed into a simple “if-then” rule format and no complicated manipulation is 
associated with the calculations. However, driven by localism, the CA based 
approaches make every update decision based on an exploration limited within the 
scope of the corresponding local neighborhood and consequently cannot guarantee the 
solutions to be global optima. This issue is shown to be the major weakness of the CA 
based approaches for optimization problems.  

4   Methodology 

4.1   Principles 

As discussed in the previous sections, in the optimization of water networks, a GA or 
a CA based approach each has its own notable advantage but also its own weakness. 
GAs are directed and sophisticated in finding global optimal solutions, but may entail 
an unaffordably high computation cost. In contrast, the CA based approach exhibits 
remarkable optimization efficiency, but inevitably lacks the ability to target the global 
optima. 
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Some recent research [20], [21] revealed that seeding GAs with good initial 
estimates may generate good or even better solutions with faster convergence. 
However, any algorithm used in the seeding process must be computationally 
efficient enough not to incur more network simulations than the genetic algorithm 
itself, or the computational benefits of seeding will be nullified. In light of these 
findings, Keedwell and Khu [8], [22] described a successful attempt to seed a GA by 
using CANDA for water distribution network design problems. As an extension to 
this work, the hybrid approach is here applied to all urban water systems including 
sewer networks. The approach combines the best features of CA and GA in a multi-
objective optimization, hence the name CAMOGA.CA and GA are executed in two 
consecutive stages during the optimization. The basic CA approach is applied in the 
first stage to obtain a set of preliminary solutions, which are utilized to seed NSGAII 
in the second stage. In this way, the CA based approach greatly reduces the high 
computation cost which is required for NSGAII to reach a similar optimization level 
for preliminary solutions, and the following GA execution ensures that global-optimal 
solutions are eventually achieved. 

4.2   Execution Process 

In the section thus far, general issues relating to optimal design practice have been 
discussed. The major steps to execute CAMOGA are listed below, and a flowchart of 
the modeling procedures is illustrated in Fig. 1. 

Stage I: 
1. Set up the hydraulic simulation model and initialize the system with a given 

pipe-sizing scenario. A sensible initial scenario is one with minimum pipe diameters 
for all pipes, as the optimization starting from this scenario can construct a curve 
analogous to the Pareto front. Theoretically any initial scenario can be used. 

2. Simulate the hydraulic model and evaluate the hydraulic performance and 
capital cost of the system. 

3. Check Termination Criteria 1 to decide whether or not to stop the current run of 
the CA based optimization starting from a certain initial condition. If neither of the 
criteria is satisfied, the execution goes to Step 4, otherwise Step 5. 

4. Implement CANDA/CASiNO to modify the design variables (pipe diameters). 
Steps 2-4 are repeated until any of Termination Criteria 1 has been satisfied. 

5. Record the current solution along with any performance criteria, such as cost 
and hydraulic performance. 

6. Check Termination Criteria 2 to ensure that each pre-defined initial scenario has 
been employed in an execution of the CA based approach. This is considered as a 
trigger to switch the optimization from Stage I to Stage II. Otherwise Steps 1-5 are 
repeated.  

7. Create a set of preliminary solutions by selecting non-dominated solutions from 
all recorded solutions. 

Although the process of the CA based optimization is deterministic, it is not 
possible to predict in advance the number of solutions yielded as it progresses from 
the initial scenario to meet any of Termination Criteria 1. This is due to the fact that 
unpredictable and very complex behaviours can be generated by Cellular Automata. 



552 Y. Guo et al. 

Apply CA based 
Approach

Termination
Criteria 1
Achieved?

System Performance 
Evaluation

Update Pipe 
Sizes

Optimization Results

No

Yes

Initialize Network 
Pipe Size Scenarios

Record Solutions

Termination
Criteria 2
Achieved?

Find Non-dominated 
Solutions

Create Initial 
Population

Evaluate Individuls

Generate Mating Pool
Crossover & Mutation

Rank individuals & 
Form New Generation

Termination
Criteria 3

Achieved?

Rpt.

Rpt.

Rpt.

Stage I Stage II

Yes

No

 

Fig. 1. Execution flow chart of CAMOGA 

Stage II: 
The preliminary solutions yielded at Stage I are used to seed the initial population 

of NSGA-II in the second stage. Since only non-dominated solutions are passed from 
Stage I to Stage II, the number of preliminary solutions is normally smaller than the 
population size of the GA. The rest of the initial population are therefore random 
solutions as is normal for a GA. It is in this way that CAMOGA use the same number 
of network simulations for an optimization as that of the standard NSGA-II. In Stage 
II, the NSGA-II is executed until Termination Criteria 3 (the required number of 
generations) is reached. 

5   Experiments 

5.1   Networks 

To illustrate the use of the proposed approach in practice, it is here applied to four 
large and real world water networks, including two sewer networks and two water  
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Table 1. Features of the water networks  

Network Pipe No. Diameter No. Network Type 
Problem 

Complexity 
Case I 112 12 Sewer 12112 
Case II 265 10 Sewer 10265 
Case III 632 20 Water distribution 20632 
Case IV 1277 20 Water distribution 201277 

 

 
 

(a) Sewer Network (Case II) (b) Water Distribution Network (Case IV) 

Fig. 2. Layout of the designed network 

distribution networks. Detailed information about these designed networks is given in 
Table 1; and the outlines of two sample networks are illustrated in Fig. 2. 

The task for the optimal design is to discover an optimal trade-off surface between 
cost and constrained hydraulic performance, such as limited head deficit in water 
distribution network or limited flooding in sewer networks. In order to have an 
impartial and valid comparison between the hybrid approach and the traditional 
NSGAII, experiments are implemented in exactly the same fashion for all networks, 
and as follows:  

a. The GA random seed is set to be one of 5 alternatives.  
b. Both the traditional NSGAII and CAMOGA use exactly the same parameter 
configurations (see Table 2), such as, population size, crossover rate and mutation 
probability, which are determined via a small number of trial and error pre-
experiments.  
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Table 2. Parameter configurations for the NSGAII 

Network 
Population 

size 
Generation 

number 
Crossover rate Mutation rate 

Case I 150 800 0.90 0.02 
Case II 150 1000 0.90 0.02 
Case III 100 1000 0.90 0.90 
Case IV 100 1000 0.90 0.90 

c. The same constraint values on the hydraulic objective of the design problem are 
applied. The impact of these constraint values on the optimization performance is 
outside the scope of this study and hence has not been investigated here. 
d. Both approaches are run for a same given number of generations. 

Since a significantly increased simulation time is required for the big networks in 
Case III and IV, a relatively smaller number of function evaluations were 
implemented considering the size of the problems. 

In Case III and IV, the mutation rate for the GA is high in comparison with others 
due to the integer representation used. Variables represented in the more traditional 
binary form are mutated by the crossover operator which can cut the binary string at 
any point, thereby creating two new decoded variables. This is not possible with the 
integer representation, and therefore this is addressed by using a high mutation rate. 

5.2   Performance Evaluation Measures 

Zitzler, et al. [23] indicated that the quality of multi-objective optimization is 
substantially complex because the optimization goal itself consists of multiple 
objectives: (a) a minimized distance of the resulting non-dominated set to the Pareto-
optimal front (b) a good distribution of solutions on the non-dominated front (c) a 
wide extent of values covered by the non-dominated solutions for each objective. 
Therefore it is conceptually difficult to compare the optimality of the results of 
different methods. As a visual inspection remains most effective and straightforward, 
a graphical comparison by plotting the final results of both algorithms is firstly made 
to have a qualitative assessment. Following recent recommendations in the literature, 
the S-Metric developed by Zitzler and Thiele [24] is employed as a numerical 
performance indicator. This measurement calculates the size of dominated area in the 
objective space and in general, combines all three criteria (distance, distribution and 
extent) into one [23]. The S-Metric requires that a point “W” be defined in objective 
space which represents the maximum values for each objective. This may not be 
possible for some optimizations, but for water network optimizations, we define the 
point W on the cost scale to be where all pipes in the network have maximum 
diameter and on the hydraulic scale where the hydraulic constraint applies. The S-
Metric then computes the union of the rectangles formed between points on the 
Pareto-curve and the point W. When normalized to the maximum objective values, 
the S-Metric figure will be in the range 0.0-1.0 where 1.0 is essentially a theoretical 
rather than practical maximum. This gives a very good objective measure of the 
optimality of the current solution across the entire optimization, not merely at the end. 
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5.3   Results and Discussions 

During the experiments, each algorithm was run separately with 5 different random 
seeds for each network. Fig. 3 shows the development trace of the S-Metric values for 
each of the optimization methods. The numerical comparisons between the S-Metric 
values achieved by CAMOGA and NSGAII are presented in Table 3.  

As can be seen in Table 3 and Fig. 3, in general, more optimal results can be 
obtained by CAMOGA after the same number of model evaluations. For Case I, the 
smaller sewer network, the superiority of CAMOGA over the standard NSGAII seems 
marginal. A similar situation is also experienced for the smaller water distribution 
network of Case III, in which on an average basis, the two approaches give the same 
performance. This phenomenon may imply that with the relatively small nature of the 
constrained problem, CAMOGA and NSGAII converge to the global optima over the 
given number of model evaluations. However, in all situations, during the optimization 
up to a considerable number of network simulations, the benefits of using the hybrid 
approach can be clearly seen. For designing larger networks, NSGAII requires a 
greater computational effort, probably a significantly larger number of generations 
with a larger population size, in order to equal the optimality obtained by the CA based 
approach in Stage I, and to eventually reach global optimal solutions. However, 
CAMOGA removes onerous computations required at the early stage by NSGAII, and 
can fully focus on polishing the high quality preliminary solutions. For this reason, the 
optimization can be more efficient in converging to the global optima. This fact also 
implies that the CAMOGA methodology actually suits large network problems more 
than comparatively small ones. 

The results show that through a very small number of network simulations, the CA 
based approach offers a set of solutions with a high level of S-Metrics to seed the 
following NSGA execution, which is presented in Table 4. For all cases, the CA 
based approach provides more than 92% of the best performance found using less 
than 0.1% of the computation cost. This point is most significant for Case I, the 
smallest network in this study. Its preliminary solutions obtained at Stage I, are only 
0.55% worse than the solutions on the final Pareto Front, which is probably the 
available headroom for the improvement at Stage II. It is also noticed that the increase 
in complexity of the problems has not adversely influenced the run of the CA based 
approaches, as they discovered preliminary solutions within a similar level of required 
computations for all cases. However, the increase in problem complexity does  
 

Table 3. Comparisons of the performance between CAMOGA and NSGAII 

Network 
Network 

Simulations 

NSGAII Average 
Normalized S-

Metrics 

CAMOGA Average 
Normalized S-

Metrics 
Case I 120000 0.908 0.911 
Case II 150000 0.917 0.946 
Case III 100000 0.913 0.913 
Case IV 100000 0.886 0.896 
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Fig. 3. S-Metric Comparisons of CAMOGA and NSGA-II over 5 Random Seeds 
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Table 4. Average achievements of the CA based approach at Stage I of CAMOGA 

Network Normalized S-Metrics Network Evaluation Number 

Case I 0.906 39 

Case II 0.875 77 

Case III 0.850 36 

Case IV 0.844 64 

amplify the diversity of the S-Metric tracks of different CAMOGA runs, which can be 
clearly observed from Fig. 3. This is due to a combined effect of the smaller set of 
preliminary solutions with relatively worse quality, larger headroom available for 
performance improvement when designing large networks, and the random nature of 
the evolutionary algorithm. 

Multi-objective optimization allows an unprecedented view of the potential cost-
benefit trade-offs, and hence offers more freedom to water network designers to have 
a tailored solution. It also provides the unambiguous evidence that a small shift in the 
defined hydraulic performance may gain large savings in terms of cost. 

Based on the fact that CAMOGA can give an enhanced performance on the water 
network design problem with no extra computational cost, it will be applicable to 
networks of high complexity similar to those found in industry. The approach can 
conceivably tackle difficult multi-objective real world applications within a realistic 
timeframe, a possibility that is not available with current multi-objective GAs and 
other formal optimization techniques. This is almost certainly the most attractive 
aspect of the proposed approach. 

6   Conclusions 

In this paper, we show that, as an extension to the work previously performed, the CA 
based optimization approach can be used to seed a modern multi-objective algorithm 
(NSGA-II) and achieve large-scale computational savings for a given level of 
performance, or higher quality results for a given computational time. 

The approach is clearly proved to be promising for designing large networks as it 
can obtain reliable results with affordable computation. Its advantage in optimization 
efficiency and quality over the traditional GA approach seems to increase with the 
problem size which fits well the actual needs of water industries to design very large 
scale water networks. 
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Abstract. We introduce an important general Multiobjective Evolu-
tionary Algorithm (MOEA) application – assessment of mechanistic sim-
ulation models in biology. These models are often developed to investi-
gate the processes underlying biological phenomena. The proposed model
structure must be assessed to reveal if it adequately describes the phe-
nomenon. Objective functions are defined to measure how well the simu-
lations reproduce specific phenomenon features. They may be continuous
or binary-valued, e.g. constraints, depending on the quality and quantity
of phenomenon data. Assessment requires estimating and exploring the
model’s Pareto frontier. To illustrate the problem, we assess a model of
shoot growth in pine trees using an elitist MOEA based on Nondomi-
nated Sorting in Genetic Algorithms. The algorithm uses the partition
induced on the parameter space by the binary-valued objectives. Re-
peating the assessment with tighter constraints revealed model structure
improvements required for a more accurate simulation of the biological
phenomenon.

Keywords: Multiobjective optimization, Pareto frontier, binary discrep-
ancy measures, process model, mechanistic model, model assessment,
structural inference, elitism.

1 Introduction

Simulation models are often used to investigate the processes or mechanisms
underlying biological or ecological phenomena. For example, the competition
process among tree crowns in a dense forest stand was explored by building a
spatially-explicit model of crown growth based on simple rules of resource acqui-
sition and utilization at the foliage and branch level [1]. Developing such models
involves a considerable degree of uncertainty in the selection of both the model’s
components and their representation detail. Merely fitting the model to data
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does not guarantee that the proposed model structure adequately describes the
phenomenon [2,3]. Rather, the model must be assessed to reveal which aspects
of the phenomenon it can produce and which it cannot [2].

Model assessment involves solving a multiobjective optimization problem
(MOOP). The model developers select the phenomenon features that the model
must reproduce to be considered an adequate system description, then they
define an objective function for each feature [2,4]. For example, the crown com-
petition model was assessed for its ability to simultaneously reproduce specific
features of tree crown shape and stand level growth rates. The Pareto frontier
is then estimated to reveal the model performance tradeoffs among objectives.

This problem can differ from the usual engineering design MOOP in many
ways:

– The decision maker is the model developer and the goal is to reveal the inad-
equacies in the proposed model structure’s reproduction of selected features.

– Conceptually, the model is a black-box transforming a parameterization
(possible solution) X to a point in the objective space. Model complexity
prevents expressing the objective functions directly in terms of X . Rather,
the objective functions are expressed in terms of features of the model pre-
dictions, M(X). Evaluating a solution X requires running the simulation
model, which may be quite computationally intensive.

– Depending on the quality and quantity of data available regarding the phe-
nomenon, an objective function may be a continuous measure of discrepancy
between a feature of the model predictions and a target value or simply a
binary-valued function evaluating whether the predicted feature falls within
an acceptable range [2]. An assessment of a model of stem cell development
in cats used six continuous objective functions [5] while the crown compe-
tition model was assessed with respect to ten binary objectives due to data
limitations [2]. Depending on the objectives, the assessment might be viewed
as either a MOOP or a constraint-satisfaction problem (CSP) [6]. However,
since the objectives can only be directly expressed in terms of M(X) rather
than X , standard CSP methods [6] are inapplicable. We use constraint in
the remainder to refer to our nonstandard setting more properly defined as
a binary-valued objective function.

– Even if continuous objective functions are used, the model developer will
likely summarize the final Pareto frontier by defining an acceptable threshold
value for each objective, thus partitioning the Pareto optimal set into sections
of the parameter space producing identical constraint satisfaction [2,5].

– The existence of model deficiencies is revealed by (i) constraints that are
never satisfied (features not adequately reproducible by the model) or (ii)
combinations of constraints that can never be simultaneously satisfied. Max-
imizing the number of satisfied constraints does not reveal the information
required for model assessment.

– Computational demands generally limit model assessments to 4 - 15 objec-
tives and models for which 100,000 complete simulations can be conducted
on the order of days to weeks [2,4,5,7].
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The models of interest generally are dynamic nonlinear multivariate functions
of varying complexity. While the crown competition model used simple equations
to predict resource acquisition and branch growth at the foliage unit level (cube
10 cm on a side) at each time step, the resulting stand dynamics were a complex
synthesis of the spatially and temporally varying conditions [1,2].

Following a heuristic detailed in [2], deficiency sources are located through
detailed investigation of how model performance varies across the Pareto opti-
mal set. For example, the assessment of the canopy competition model revealed
(i) a set of solutions that satisfied all constraints except two that focused on the
growth rate of dominant trees in the stand, and (ii) six other sets of solutions
that satisfied one or the other of the growth rate constraints along with differ-
ing subsets of the other constraints. The model simulations revealed that the
growth rate constraints were only satisfied due to a mathematical artifact in the
objective function formulation - the simulations did not reproduce the intended
feature [2]. Rather, the simulations revealed an unnatural clustering of growth
rates due to the model assumption that certain foliage characteristics varied at
the scale of the tree rather than that of the foliage unit [2]. Revising the model
to eliminate this structural deficiency greatly improved its ability to reproduce
the phenomenon (see [2] for further details).

Model assessment’s focus on tradeoffs and unachieved objectives make mul-
tiobjective Evolutionary Algorithms (MOEAs) the most promising approach to
these MOOPs. Motivated by the success of MOEAs in engineering and other
fields [8,9,10,11,12,13,14], one was developed in 1997 for the assessment of ecolog-
ical models [2] based on the NSGA algorithm [11]. Recognizing the importance of
elitism for maintaining fit parameterizations across generations [15,16,17,18,19],
which we believe increases with increasing numbers of objectives, the original
algorithm was recently revised to include elitism [7].

We illustrate the model assessment process and its features using a model
of hourly increments of extension of the leading shoot of a conifer tree [4]. All
objectives in this application are binary valued, e.g., constraints, so we introduce
an elitist algorithm based on the partition the constraints induce over the pa-
rameter space [7]. Fairly wide initial threshold values for the objectives returned
a Pareto frontier with one set of solutions satisfying all objectives (constraints).
The assessment was repeated with smaller thresholds until the Pareto frontier
no longer consisted of a single group, ultimately revealing a hysteresis effect in
the phenomena that the proposed model structure could not reproduce [4].

1.1 The Pareto Frontier in Model Assessment

Model assessment is built around investigating the Pareto frontier of the multi-
objective minimization problem defined by the trio [2]:

M( ) the simulation model, producing multivariate output,

X ⊆ R
m the parameter space, and

F() = (F1(M()), the vector objective function, R
m → R

n, measuring n
. . . , Fn(M())) ∈ R

n distinct features of model performance.
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Each model parameterization X is a potential solution of the simultaneous min-
imization problem defined by F( ). The technical task is to reveal if any pa-
rameterization can simultaneously minimize every component of F( ); generally
none can. In such a case, model assessment investigates the model predictions
from the solutions in the Pareto optimal set for insight into the sources of the
proposed model structure’s deficiencies [2].

Definition 1. parameterization X dominates X ′ (X � X ′ or X ′ ≺ X) ⇐⇒

∀i, 1 ≤ i ≤ n, Fi(M(X)) ≤ Fi(M(X ′)) and
∃i, 1 ≤ i ≤ n, such that Fi(M(X)) < Fi(M(X ′)).

X is non-dominant to X ′ (X ‖ X ′) ⇐⇒

∃i, j, i = j such that Fi(M(X))<Fi(M(X ′)) and Fj(M(X ′)) < Fj(M(X)).

The Pareto optimal set, PF(X) ⊆ X, is the set of all non-dominated solutions
with respect to the vector of objective functions F, i.e. the set of solutions which
are mutually non-dominated and are not dominated by any other X in the search
range. The Pareto frontier, FF, is the associated set of their objective vectors,

FF(X) = { (F1(M(X)), . . . , Fn(M(X))) | X ∈ PF(X) } ∈ R
n.

1.2 Model Assessment Objective Functions

The objective functions may be continuous measures of discrepancy between a
model prediction and a target value. Often a lack of quantitative data on the
phenomena limits the discrepancy measure to a simple binary function [20,2] -
does the prediction fall within an acceptable range of values? E.g., the objective
becomes a constraint. We will use the term constraint below, but in the context
of model assessment we view this as simply one end of the spectrum of objective
function definitions, a spectrum driven by data availability and the nature of the
feature and model, e.g., deterministic or stochastic. Fuzzy objective functions
would be possible. In general, a model assessment could use both continuous
objectives and constraints, but for now we assume all objectives have similar
quality - all are continuous or all are constraints. We are specifically interested
in MOEA algorithms that can handle either type of objective function.

When the objective functions are all constraints, the objective vector pro-
duced by a given model parameterization is termed an assessment vector [2]. In
this case the Pareto optimal set is partitioned into Pareto groups, sets of pa-
rameterizations that generate the same assessment vector in the Pareto frontier.
Consider assessing six model parameterizations with respect to four constraints,
F = (F1, F2, F3, F4), producing the results in Table 1. Model predictions us-
ing parameterization X1 satisfy all objectives except F4, i.e. the predictions
fall within the target ranges for (F1, F2, F3). Those from X2 fail to satisfy
F3 and F4 so X1 � X2; similarly X1 � X4. For these six parameterizations,
PF(X) = {X1, X3, X5, X6} and consists of three Pareto groups, {X1}, {X3},
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Table 1. Assessment vectors for six different model parameterizations, where perfor-
mance was assessed with regard to the four binary valued objectives: F1, . . . , F4. The
values are discrepancy measures or distances, so an objective with value 0 was satisfied.

Criteria
F1(M(X)) F2(M(X)) F3(M(X)) F4(M(X))

P
a
ra

m
et

er
iz

a
ti
o
n
s

X1 0 0 0 1

X2 0 0 1 1

X3 1 1 0 0

X4 1 1 0 1

X5 0 1 1 0

X6 0 1 1 0

and {X5, X6}. It can be represented in terms of these groups: PF(X) = GF =
{ {X1}, {X3}, {X5, X6} }. Likewise, the Pareto frontier FF can be represented
in terms of its unique assessment vectors as FF = AF = { (0, 0, 0, 1), (1, 1, 0, 0),
(0, 1, 1, 0) }.

Selection and elitism components of MOEAs can be defined either directly in
terms of the parameterizations or in terms of the Pareto groups. Operating on
the groups allows for random subsampling of parameterizations associated with
each group, reducing the storage and computing costs associated with elites.

If the parameterizations in Table 1 were the full parameter space, from AF =
{ (0, 0, 0, 1), (1, 1, 0, 0), (0, 1, 1, 0) } we’d conclude that the model structure M was
deficient as it could not simultaneously satisfy all four objectives. The model
assessment, following the process in [2], would explore the simulations of the
parameterizations in PF(X) for insight into (i) the details of how M(X1) failed
to satisfy criterion F4 - overestimate? underestimate? etc.; (ii) the details of
how M(X3), M(X5), and M(X6) satisfied F4 but never F2, etc.. The process
eventually leads to insight into the why underlying the deficiency, i.e., its source
[2].

We introduce the general optimization problem arising in model assessment,
introduce an MOEA developed for this problem, and use the MOEA to assess a
process model of shoot extension in conifer trees. A more detailed presentation
of the full assessment process is given in [2,4].

2 MOEA Algorithm for Model Assessment

General model assessment software, called Pareto Evolve [21] (http://faculty.
washington.edu/edford/software.html), was developed in 1997 based on
a modification of the Non-Dominated Sorting Genetic Algorithm [11] (www.
iitk.ac.in/kangal/deb.shtml). At each of up to gmax generations, the

http://faculty.washington.edu/edford/software.html
http://faculty.washington.edu/edford/software.html
file:www.iitk.ac.in/kangal/deb.shtml
file:www.iitk.ac.in/kangal/deb.shtml
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non-dominated rank of each of N individuals (real-valued parameterizations)
was calculated with respect to the vector of objective functions F. An indi-
vidual’s chromosome representation was a vector of double precision variables,
each with a constrained feasible space (Figure 2b). Each individual’s fitness
was initially assigned based on their non-dominated rank then modified by
their niche count in the objective space. Rank 1 individuals were assigned ini-
tial fitness of 100; rank i+1 individuals were assigned initial fitness of w ×
min{fitness of rank i individuals}, where w was a user defined value in (0, 1]
[21]. The fitness values were used in roulette selection to select with replace-
ment N parents from the current population [22]. Multi-point crossover [23]
and non-uniform mutation [24] genetic operators were used to stochastically
generate N offspring. The probability of a parent being assigned the crossover
operator linearly decreased from 0.67 to 0.0 as g → gmax; Prob(mutation) =
1 − Prob(crossover). The process repeated while g ≤ gmax and none of the pop-
ulation members simultaneously satisfied all of the criteria.

An archive was maintained of all non-dominated individuals and their as-
sessment vectors discovered during the search. Specifically, at generation g the
archive contained the Pareto optimal set of all previous generations’ Pareto op-
timal sets, as well as its corresponding Pareto frontier:

ArchivePg = PF

(
g⋃

k=0

PF(Popk)

)
, (1)

ArchiveFg = FF

(
ArchivePg

)
, (2)

where Popk denotes the search population at generation k.

2.1 Elitism

The original algorithm was revised to allow elites to participate in breeding
(Figure 1). Rather than select parents from the archive, a secondary population
of elites was created from which parents could be selected. The use of binary
valued objectives allowed elites to be selected from the current generation’s non-
dominated individuals using a two-stage process: Pareto groups in the current
generation’s Pareto optimal set were selected following the rules below, then a
subsample of individuals were randomly selected from each of these elite Pareto
groups. The two-stage rules for elite selection maintained diversity at the Pareto
group level, controlled growth of the total number of elites, and limited the
variation among Pareto groups in terms of the number of individuals representing
each group. An individual remained in the elite population until dominated by
a new elite.

A Pareto group was selected as an elite if it satisfied one of the following
conditions (phrased in terms of binary valued objectives or constraints):

1. Its assessment vector satisfied the most constraints of any Pareto group in
PF(Popg).
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Randomly generate Pop0 from feasible space
g := 0
repeat

Popg = {P1, P2, . . .} := pareto ranking(Popg)
for all i do

fitness assignment(Pi)
end for
Eg := select elites(P1)
Pg := select parents(Eg)
if |Pg | < p then

Pg := Pg ∪ select parents(Popg)
end if
Popg+1 := breed(Pg)
g := g + 1

until all criteria are achieved or g = gmax

Fig. 1. Pseudo-code for elitist Pareto Evolve. Pi is the set of individuals with non-
dominated rank i, and Eg and Pg are the elite and parent pools at generation g,
respectively.

2. It dominated at least one individual in PF(Popg−1).
3. Its assessment vector satisfied a constraint unsatisfied by any other Pareto

group in the current elite population.

Rather than limit the size of the elite population, the maximum number of
individuals selected from each elite Pareto group was limited. If a Pareto group
selected as an elite had fewer than l = N/10 individuals then they all became
elites; otherwise, l individuals were randomly selected as elites.

At each generation, a total of N parents were selected from the elite popu-
lation, Eg, and the current search population, Popg. Let ν = |Eg|, the num-
ber of elites at generation g. A random draw of h ∼ binomial (ν, prob =
0.5 × N/ max(ν, N)) determined the number of parents randomly selected from
the elites; if h ≥ N , h was set at N . All elites were equally likely to be selected
as parents. Note that this selected parents from elites without replacement. If
h < N , then N − h parents were selected from Popg using roulette selection as
a function of their fitness, calculated as in the original algorithm.

Parents selected from Popg were assigned genetic operators as in the original
algorithm. Parents selected from Eg were all assigned crossover; the companion
parent did not have to be an elite. This provided a more efficient exploration
of the frontier when using constraints as the nonuniform mutation operator of
the original algorithm, in the later generations, tended to produce offspring with
assessment vectors identical to those of their elite parents [7].

3 Assessing a Model of Shoot Growth

The elitist algorithm was used to estimate the Pareto frontier of a model of shoot
growth in pine trees.
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3.1 Ecological Phenomenon and Observations

The growing tip of a conifer branch extends and contracts from hour to hour as
influenced both by current and recent environmental conditions, such as temper-
ature and solar radiation. However, the relationship between growth and these
environmental conditions is not fully known. Extension and contraction of a
Sitka spruce (Picea sitchensis) shoot were automatically measured every hour
using an electro-mechanical sensor (Figure 3) [25]. A model (below) was pro-
posed for the functional dependence of the observed expansion and contraction
on solar radiation, temperature, and transpiration calculated using the Penman-
Monteith equation [26]. We summarize the assessment of how well the model
reproduced the phenomenon’s features over six days [4].

3.2 Process Model

An earlier investigation of daily measurements, rather than hourly, identified a
time series model using both daily temperature, at one and two day lags, and
daily solar radiation, at two and three day lags, as regressors [27]. The hourly
observations revealed a more detailed pattern of extension, particularly contrac-
tion of the shoot during daylight hours on sunny days followed by expansion at
night (Figure 3). This raised important questions on whether contraction was
more rapid than re-expansion [4]. To investigate these questions the daily effects
model was revised to an hourly scale and expanded to include a component for
contraction and expansion based on development and release of a water deficit
[28,29]. Letting St denote the shoot growth at time t (other terms are defined in
Table 2), the initial model was:

St = x1 ·
(

24∑
k=1

Tt−k

) /
24 − x2 ·

(
48∑

k=25

Tt−k

) /
24

+ x3 ·
48∑

k=25

Rt−k + x4 ·
72∑

k=49

Rt−k

−

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x5 · ΔtD ·
24∑

k=1

S∗k (∗)

x7 · ΔtD ·
24∑

k=1

S∗k (∗∗)

with
ΔtD ≡ Dt − Dt−1 = Wt − Ut = Wt − x6 · Dt−1.

The first and second unknown coefficients, x1, x2, control the influence on hourly
extension of the average temperatures for the 24 hour periods starting 24 and 48
hours prior, respectively. The third and fourth coefficients control the influence
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Table 2. Variables in the conifer shoot growth model

t hour(s) from start of simulation

St hourly simulated growth rate (mm/hour) at time t (S∗
t′ is rate at time t′ on

previous day)

Tt temperature (oC) at time t;

Rt hourly solar radiation (MJ/m2/hour) at time t;

Dt hourly water deficit (mm/hour) at time t,

Wt hourly water transpiration (mm/hour) at time t;

Ut hourly water uptake (mm/hour) from the soil at time t;

of the total solar radiation for the 24 hour periods starting 48 and 72 hours prior,
respectively. Details are in Ford et al. [27].

The term marked (*) describes the change in contraction or expansion due to
change in plant water status. Estimated hourly transpiration, Wt, accumulates
a water deficit Dt. The water deficit decreases, in turn, by uptake of water from
the tree bole and soil at a rate of x6 ·Dt−1. The change in deficit is then applied
to the estimated amount of soft tissue available for contraction on the expanding
shoot, represented by the sum of growth over the previous 24 hours. The initial
model assumed the same effect of changing plant water status on expansion
and contraction, x5, regardless of whether water deficit was increasing (plant
tending toward contraction) or decreasing (plant tending toward expansion) [7].
The assessment, summarized below, revealed a need for hysteresis. The model
was revised to let the rates vary: term (*) was used with decreasing deficit, term
(**) was used with increasing deficit.

3.3 Assessment Objective Functions

Standard methods of calibrating and assessing time series models focus strictly
on univariate summaries of overall fit. Process models, though, should be able to
simultaneously simulate different features of the series, thus the need for an as-
sessment using multiple objectives. The goal is to develop a model of contraction
and expansion that adequately explains the data [30].

The initial model (without the (**) term) was assessed for how well it re-
produced the observed mean shoot extension for four periods each day: early
morning (hours 2 – 6), late morning (8 – 12), afternoon (12 – 16), and late
evening (20 – 24). These represent, respectively, the pre-dawn expansion pe-
riod when water deficit is lowest; the late morning period of maximum con-
traction; the afternoon when recovery from contraction starts; and late evening
when maximum expansion occurs (Figure 3). Comparisons were quantified as
|Predicted mean growth−Observed mean growth| during each four hour period,



Using MOEAs to Assess Biological Simulation Models 569

thus assessing both timing and magnitude. The objective functions were binary-
valued. The same threshold value was used for each objective as there was no
basis for treating the periods differently; in general this is not required.

The model was assessed separately for the days 179–181 and 182–184 as the
latter period exhibited lower minima and greater amplitude of variation. There
was an increase in soil moisture tension and a decrease in fine root length over
this period [31], suggesting additional processes may have come into play. The
water deficit equilibrated during day 178, so those observations were not used in
the assessment.

The assessment process employed here differed somewhat from the more gen-
eral process laid out in [2] since the objectives were conceptually and quan-
titatively similarly, allowing use of a common threshold value. A large initial
threshold value was chosen so that the Pareto frontier would contain a single
Pareto group satisfying all the objectives: 1.5 mmh−1. The assessment was re-
peated with smaller threshold values, each time resulting in an approximate
Pareto frontier using the new threshold, until the Pareto frontier no longer con-
tained a single group satisfying all the objectives. That boundary was located
by reducing thresholds by 0.1 mmh−1. The whole process was repeated for days
182–184.

Each search used a population size of 100 and maximum generation number
of 1000. The maximum generation number was deemed sufficient for convergence
based on experiments using the initial model and the original non-elitist algo-
rithm [7]. The search terminated early if all twelve objectives were achieved by a
single Pareto optimal solution. Five realizations of each search were conducted.
The threshold value was defined to be unachievable when none of the realizations
discovered a single Pareto optimal solution satisfying all objectives.

4 Results

4.1 Model Assessment for Days 179–181

The smallest threshold value at which all objectives were satisfied was 0.41
mmh−1 (Figure 2a). With a value of 0.40 mmh−1, each realization of the Pareto
frontier contained five or six groups; four were common to every realizations in
terms of their assessment vectors, the others differed only slightly across real-
izations. The four common groups each failed to satisfy only a single objective:
one overestimated pre-midnight expansion on day 180, the period with the rel-
atively extreme hourly growth rate (Figure 3), the others underestimated early
a.m. expansion on 181, underestimated late a.m. contraction on 181, or underes-
timated early p.m. expansion on 181. That is, the model either failed to predict
the extreme expansion late in day 180 but adequately predicted everything else,
or it adequately predicted the extreme expansion on 180 at the cost of failing
to predict observed growth in one of the three subsequent time periods [4]. All
realizations had one or two other groups that adequately predicted the extreme
expansion period by failing to predict growth in an immediately prior period on
day 180: overestimating late a.m. contraction and/or early p.m. expansion.
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Fig. 2. (a) Parallel plot of the initial model’s 12-dimensional Pareto frontier for days
179–181 (dashed curves) and 182–184 (solid curves) using the smallest threshold values
(dashed vertical lines) at which all objectives were satisfied: [−0.41, 0.41] for 178–181
(second vertical lines from each side), [−0.81, 0.81] for 182–184 (outermost vertical
lines). The center vertical marks zero, perfect prediction. For each period, the indepen-
dent search realizations discovered approximately identical Pareto frontiers (curves of
same line style). (b) Parallel plot of the relative parameter values of the initial model’s
Pareto optimal set for days 179–181 (dashed) and 182–184 (solid). For each period, the
five independent searches discovered approximately identical associated Pareto optimal
sets (curves of each line style). Parameters x1 through x4 control the overall trend in
growth while x5 and x6 influence the diurnal cycles of expansion and contraction. All
parameter ranges have a minimum of 0; maximum feasible value for parameters x1

through x6 were, respectively, 0.4, 0.1, 0.1, 0.1, 1, and 1.

4.2 Model Assessment for Days 182–184

The smallest threshold value at which all objectives were satisfied was 0.81
mmh−1, almost twice the value required for days 179–181. With a value of
0.80 mmh−1, each realization of the Pareto frontier contained five or six groups;
three were common to every realization in terms of their assessment vectors,
the others were approximately identical across realizations. Every realization
revealed one group that only failed to satisfy one objective: it underestimated
the late morning contraction on day 183, the period with the most extreme
hourly contraction (Figure 3). The other groups all adequately predicted this
period of extreme contraction but at the cost of adequately predicting any
early morning expansions and most of the afternoon or late evening expan-
sions.

All realizations also had one or two groups that underestimated the afternoon
and/or overestimated evening expansion rate on the last day, which was less rapid
than on previous days (Figure 3). Further investigation suggested a change in
the eco-physiological processes began at this point in the study [4].
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4.3 Model Revision

The parameter values associated with approximate Pareto frontiers were con-
sistent across the five realizations within each period but differed between the
periods, mainly in x4 and x6 (Figure 2b). Differences in parameters x1, . . . , x4
cause change in the overall trend of growth but do not contribute directly to the
diurnal cycles of contraction and expansion. Thus the differences of parameter
values of x6 (water uptake per unit deficit) between periods demonstrated how
the process differences between the periods were accommodated by the model
fitting rather than the model structure. Detailed investigations of each period’s
approximate Pareto frontier when using thresholds that were too small revealed
that the inability to adequately predict extreme expansion or contraction rates
without causing poor prediction of the preceding or following objectives was
due to (i) a need for different growth rates depending on whether water deficit
was increasing or decreasing, (ii) a need to change the period of calculation for
“recent growth available for contraction” (ΣS∗k) from the previous day to the
period 23 h of previous day to 6h on day of interest, and (iii) a need to smooth
the rate of water uptake over three hours [4]. The inability to capture the pre-
midnight expansion on day 184 led to further investigation of the longer data
series, which revealed a change in extension pattern from that point onward;
further assessments did not use this last objective [4].

The model was revised to address each of the identified needs and the as-
sessment process repeated using eleven objectives. For days 179–181 the revised
model produced a Pareto frontier with a single group satisfying all objectives
using threshold values as low as 0.40 mmh−1. For days 182–184 a single group
was found using threshold values as lows as 0.42 mmh−1. The revised model
reproduces the observed process better than the original model, especially for
the contraction periods of the last three days (Figure 3). However, it does not do
as well on the contraction period of day 181, suggesting existence of further defi-
ciencies (see Komuro et al. [4] for further revision). The threshold values suggest
the revised model structure accommodated both periods equally well, though
this may be due to either the revision or the removal of the last objective.

5 Discussion

Model assessment is an essential phase in the development of any mechanistic
simulation model [2,30]. The key task of assessment, estimating the Pareto fron-
tier defined by the proposed model structure and the selected objective functions,
is technically challenging but eminently well suited to the flexibility of MOEA
methods. This has been demonstrated by successful application of the algorithm
presented here, and its precursor, in assessing a variety of models [2,4,5].

Model assessment, in general, is not identical to constraint satisfaction. While
the example here was presented in terms of constraint satisfaction, a model as-
sessment can use continuous objective functions rather than binary-valued ones.
This simply requires sufficient phenomenon observations to justify defining a
specific target value for each feature / objective. For example, the shoot growth
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Fig. 3. Examples of simulated results using the original (dashed curve) and revised
(solid curve) models with the assessment vector achieving all the twelve criteria. The
bar graph shows the measured growth.

model assessment could have estimated the smallest threshold allowing complete
constraint satisfaction by defining each objective as a continuous measure of dis-
crepancy from the observed target value, running a single optimization search to
produce the Pareto frontier, then a posteriori determining the smallest threshold
supporting complete satisfaction; see Reynolds and Golinelli [5] for an example.
In most assessments the objectives measure conceptually distinct features that
are incommensurable, disallowing the approach employed here.

The example illustrated how improvements from model assessment stem from
investigating the objectives, or combinations of objectives, that the model does
a poor job achieving. Simply maximizing the number of constraints satisfied, or
otherwise aggregating the MOOP to a univariate problem, eliminates the exact
information model assessment requires.

The elitism mechanism presented here requires further investigation. Defin-
ing elites in terms of Pareto groups rather than individual parameterizations,
with individuals randomly selected from each elite group, makes it easier to
maintain diversity of representation of the current generation’s Pareto optimal
set among the next generation’s breeding population and reduces some of the
memory burden of a growing elite population. The effectiveness of the different
rules must be investigated, as well as its performance when continuous objec-
tive functions are used. This would likely greatly increase the number of Pareto
groups, greatly reduce their cardinalities, and likely reduce the effectiveness of
the elitism component as currently defined.

We hope this example serves to interest the MOEA community into this very
interesting, and quite general, problem in scientific inference.

Acknowledgments. This work was supported in part by a grant from the
U.S. National Science Foundation DBI-0129042 and in part by the United States



Using MOEAs to Assess Biological Simulation Models 573

Environmental Protection Agency through agreement GR82517301-0 to the Uni-
versity of Washington.

References

1. Sorrensen-Cothern, K.A., Ford, E.D., Sprugel, D.: A process based model of com-
petition for light incorporating plasticity through modular foliage and crown de-
velopment. Ecological Monographs 63 (1993) 277–304

2. Reynolds, J.H., Ford, E.D.: Multi-criteria assessment of ecological process models.
Ecology 80(2) (1999) 538–553

3. Wood, S.N., Thomas, M.B.: Super-sensitivity to structure in biological models.
Proceedings of the Royal Society of London B 266 (1999) 565–570

4. Komuro, R., Ford, E.D., Reynolds, J.H.: The use of multi-criteria assessment in
developing a process model. Ecological Modelling 197(3-4) (2006) 320–330

5. Reynolds, J.H., Golinelli, D.: Multi-criteria inference for process models: structural
and parametric inference for a stochastic model of feline hematopoeisis. In: 2004
JSM Proceedings, American Statistical Association (2004) 2978–2986

6. Miguel, I., Shen, Q.: Hard, flexible and dynamic constraint satisfaction. The
Knowledge Engineering Review 14(3) (1999) 199–220

7. Komuro, R.: Multi-Objective Evolutionary Algorithms for Ecological Process Mod-
els. PhD thesis, University of Washington, Seattle, Washington (2005)

8. Kursawe, F.: A variant of evolution strategies for vector optimization. In Schwefel,
H.P., Männer, R., eds.: Parallel Problem Solving from Nature, Springer-Verlag,
Berlin, Germany (1991) 193–197

9. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization. In Forrest, S., ed.: Proceedings of the
Fifth International Conference on Genetic Algorithms, Morgan Kaufmann Pub-
lishers Inc., San Mateo, California (1993) 416–423

10. Horn, J., Nafpliotis, N.: Multiobjective optimization using the niched Pareto ge-
netic algorithm. IlliGAL Report 93005, Illinois Genetic Algorithm Laboratory
(IlliGAL), University of Illinois at Urbana-Champaign, Urbana, Illinois (1993)

11. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in
genetic algorithms. Evolutionary Computation 2(3) (1994) 221–248

12. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case
study and the strength Pareto approach. IEEE Transactions on Evolutionary
Computation 3(4) (1999) 257–271

13. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John
Wiley & Sons, Inc., New York, New York (2001)

14. Coello, C.A.C.: Guest editorial: Special issue on evolutionary multiobjective opti-
mization. IEEE Transactions on Evolutionary Computation 7(2) (2003) 97–99

15. Parks, G.T., Miller, I.: Selective breeding in a multiobjective genetic algorithm.
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Abstract. Considering evolutionary multiobjective algorithms for improving 
single objective optimization problems is focused in this work on introducing 
the concept of helper objectives in a computational mechanics problem: the 
constrained mass minimization in real discrete frame bar structures optimum 
design. The number of different cross-section types of the structure is proposed 
as a helper objective. It provides a discrete functional landscape where the non-
dominated frontier is constituted of a low number of discrete isolated points. 
Therefore, the population diversity treatment becomes a key point in the 
multiobjective approach performance. Two different-sized test cases, four 
mutation rates and two codifications (binary and gray) are considered in the 
performance analysis of four algorithms: single-objective elitist evolutionary 
algorithm, NSGAII, SPEA2 and DENSEA. Results show how an appropriate 
multiobjective approach that makes use of the proposed helper objective 
outperforms the single objective optimization in terms of average final solutions 
and enhanced robustness related to mutation rate variations. 

Keywords: Helper objectives, Multiobjectivization, Structural optimization, 
Evolutionary multiobjective optimization, population diversity. 

1   Introduction 

The recently developed evolutionary multiobjective algorithms [7][10] have shown a 
capacity to solve optimization problems in countless fields in science and 
engineering, and frequently without any increase in cost compared to single objective 
optimization [9]. Moreover, new possibilities recently opened up by evolutionary 
multiobjective optimization tools have been proposed to improve the search in single 
objective problems [26][33]. They include concepts such as ‘multiobjectivization’ or 
‘helper objectives’. 

In Knowles et al. [32], two ways are proposed to diminish the number of local 
optima in a search (multiobjectivization): 1) By adding new objectives which allow 
the problem to be solved as a multiobjective one; 2) By decomposing the problem 
into simpler sub-problems, whose solutions are optimizing objectives in the 
multiobjective problem, with the purpose of increasing the number of paths to the 
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global optimum, which are not opened in the single-criteria optimization. Therefore, 
the non-dominated solutions are coincident with the optima of the original problem. 
Two examples are solved in the referenced article: the hierarchical-if-and-only-if-
function and the travelling salesman problem. They are solved using the first and 
second aforementioned strategies, respectively, showing improvements with respect 
to the single objective strategy.  

In Abbass and Deb [1], the introduction of a new criterion helping the population 
diversity is proposed. The following additional criteria are suggested and analyzed: 
maximization of the objective function inverse, the maximization or minimization of 
a random value assigned to each individual in its creation and the maximization of the 
age of the chromosome. With no mutation, the multiobjective approach maintains 
better the genetic diversity and surpasses the single criteria results. Also, in E. de Jong 
et al. [31] and in S. Bleuer et al. [4], an additional criterion is added to genetic 
programming optimization for increasing the population diversity, in order to solve 
simultaneously the minimization of the tree size and the resolution of the n-parity 
problem. Other authors have also focused on using diversity-based new objectives in 
the context of dynamic environments [5][6]. 

In M. Jensen [29][30], it is emphasized how the inclusion of new additional 
objectives or criteria called ‘helper objectives’ and the solving of the problem as a 
multiobjective one can lead to the decrease or even the disappearance of certain 
difficulties inherent to the single objective optimization, such as: 1º) avoidance of 
local minima; 2º) maintenance of diversity at suitable levels; 3º) identification of good 
building blocks. Jensen applies this new concept to the job shop scheduling problem, 
where minimizations of individual jobs are generated dynamically with the algorithm 
evolution, as helper objectives. Using this strategy, the obtained solution is improved 
in a set of 18 test cases compared with the single criteria optimization.  

This new perspective that evolutionary multiobjective optimization algorithms can 
provide is applied to different types of problems, such as mathematical and classical 
test functions, combinatorial problems (job shop, travelling salesman) or 
computational biology and bioinformatics [27]. Developed helper objectives are 
focused on the diversity item, as well as specific ad-hoc objectives, inherent to each 
particular problem.  

In this work, we introduce the application of the ‘helper objectives’ concept to a 
real design optimization problem belonging to the field of computational mechanics. 
A new type of helper objective is proposed with advantages for the problem 
resolution, concretely applied to the bar frame optimum design problem of 
constrained mass minimization. The single criteria optimization is compared with 
three multiobjective evolutionary algorithms in two different-sized well referenced 
test cases, considering four different mutation rates and two distinct chromosome 
codifications.  

The organization of this paper is as follows: First, the frame structural optimum 
design problem is described. Section 3 explains the new proposal of helper objectives. 
Section 4 sets out the evolutionary multiobjective algorithms considered in the 
analysis. Following this, both test cases are shown in section 5, continuing with the 
results and discussion in section 6. Finally, the paper ends with the conclusions 
section. 
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2   Frame Structural Optimum Design 

The optimization of bar structures has been performed using evolutionary algorithms 
since the origins of their application to optimum engineering design [15]. The use of 
real cross section types as variables was introduced in [37], and one of the pioneering 
works of frame bar structures is explained in [24]. 

The handled frame structural design problem has one single objective: the 
minimization of the constrained mass. It is considered in order to minimize the raw 
material cost of the final structural design. The constraints take into account those 
conditions that allow the designed frame to carry out its task without collapsing or 
deforming excessively. They are as follows, taking into account the Spanish design 
code recommendations: 

a) Stresses of the bars: where the limit stress depends on the frame material and the 
comparing stress takes into account the axial and shearing stresses by means of the 
shear effort, and also the bending effort (a common value for steel is of 260 MPa), for 
each bar: 

0lim ≤− σσ co  (1) 

b) Compressive slenderness limit: where the λlim value is 200 (in order to include 
the buckling effect, the evaluation of the β factor is based on Julian and Lawrence 
criteria). For each bar:  

0lim ≤− λλ  (2) 

c) Displacements of joints (in each of the three possible degrees of freedom) or 
middle points of bars. In the test cases, the maximum vertical displacement of each 
beam is limited (in the multiobjective test case the maximum vertical displacement of 
the beams is L / 500):  

0lim ≤− uuco  (3) 

 The objective function is the constrained mass. It is shown in equation 4:  
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where: 
Ai = bar i cross-section area; ρi = bar i density; li = length of bar i; k = constant that 

regulates the equivalence between mass and constraints; violj = for each of the 
violated constraints (stress, displacement or slenderness), is the quotient between the 
value that violates the constraint limit (violated constraint value) and its reference 
limit. The constraints reference limits are chosen according to the Spanish design 
codes. So, constraints if violated are integrated into the mass of the whole structure as 
a penalty depending on the amount of the violation (for each constraint violation the 
total mass is incremented):  
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LimitConstraint

ValueConstraintViolated
viol j =  (5) 

Handling with frames implies that many bar geometric magnitudes have to be 
considered: area, the modulus of section and the relation of beam height are required 
to evaluate the normal stresses; web area is required to evaluate shearing stresses; 
moment of inertia is required to evaluate the medium span displacement; the radius of 
gyration is required to consider the buckling effect. Real design is performed using 
real cross-section types -developing a discrete optimization problem with direct real 
application-, whose magnitudes are stored in a vector associated to each cross-section 
type, constituting a database. Therefore, the codification of each solution implies for 
each bar a discrete value that is assigned to the cross-section type order in the 
database. It contains the corresponding geometric magnitudes of the cross-section 
needed to perform the structural calculation, implying the resolution of a finite 
element modelling -with Hermite approximation functions-, and its associated linear 
equation system.  

3   Helper Objective: A New Proposal 

The evolutionary multiobjective optimization of bar structures was first handled in 
[25]. Other related pioneering works in this field are [12][14][38]. Nevertheless, the 
focus was mainly centered on the simultaneous minimization of constrained mass and 
the displacement in certain points of the structure as objectives. 

The purpose of this work is the presentation and analysis of a new type of ‘helper 
objective’ and its application in the field of computational mechanics optimum 
design, concretely, in the single-criteria constrained mass minimization problem of 
real cross-section type frame bar structures design. Helper objectives should 
accomplish the requirement of being in conflict with the principal objective; 
otherwise, the performed search would be equivalent to a single criteria optimization. 
The proposed helper objective should act by increasing the population diversity and 
guaranteeing the inclusion of the single criteria optimum in the Pareto frontier. With 
this in mind, we propose as helper objective the number of different Cross-Section 
Types (CST) of the bar structure. With this objective, each structure is classified in 
terms of the quantity of different CST included in it. It could also be considered as a 
measure of the contained structural diversity in terms of the considered cross-section 
type database. Therefore, the minimum number of CST (absence of diversity in the 
variable space) is one, and the maximum number of CST is the minimum value 
between the structural bars number and the database item number. Although here the 
problem belongs to the field of computational mechanics, the suggested helper 
objective is also valid for other kinds of optimization problems where the variables 
are coded through a sorted database whose items selection defines the chromosome 
individual.  

The multiobjective problem of simultaneous minimization of constrained mass 
and the number of different CST is in itself of interest. It was solved using a weighted 
approach in [13] and has been successfully solved recently using evolutionary 
multiobjective algorithms, e.g. in [17]. This second objective poses a condition of 
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constructive order with special relevancy in structures with a high number of bars 
[25]. It helps towards a better quality control during the execution of the building site 
and is a factor that has also been recently related to the life cost cycle optimization of 
steel structures [34]. 

What we introduce in this work is the comparison of the results of single criteria 
optimization of constrained mass versus the multiobjective problem considering the 
different number of CST as helper objective. Since our aim is the minimization of 
constrained mass, in this case will it be advantageous to use the multiobjective 
approach instead? Both objectives accomplish the requirement to be in conflict 
together: as the global optimum (minimum constrained mass structure) has a concrete 
number of different CST, a decrease in this value is due to an increase in the structural 
mass. Moreover, it is also guaranteed that the single-criteria global optimum is 
included in the Pareto frontier. The fact that additional solutions are maintained in the 
population during the multiobjective algorithm evolution provides richer population 
diversity than the single criteria approach. Further analysis of the proposed 
multiobjective approach effects follows in the next sections.  

4   Evolutionary Multiobjective Algorithms 

Three different evolutionary multiobjective algorithms are included in the analysis. 
The first two are among the most efficient algorithms used in many fields of sciences 
and engineering optimum design problems: SPEA2 [41] and NSGAII [11]. They 
belong to the called ‘second generation’ [8] of evolutionary multiobjective 
algorithms, and excel due to their characteristics of elitist algorithms, governed by the 
Pareto non-dominance criterion, and with operators that homogeneously distribute the 
solutions along the non-dominated surface or front. 

The multiobjective approach handled in this work has been previously solved using 
evolutionary algorithms. The associated functional space is discrete with a low 
number of points which are determined by the number of different CST, and therefore 
the importance of an adequate diversity is enhanced. So, the inclusion of duplicate 
elimination has been shown to be a key factor in the multiobjective algorithm 
performance, as can be seen for example in [17][18][22][23]. It seems to be necessary 
to emphasize the creation and maintenance of population diversity to avoid the scarce 
number of non-dominated solution saturating the population, obstructing and 
lengthening the evolution and leading to a premature convergence. This duplicate 
deletion operator has also been applied to other kinds of problems and has been seen 
to have certain advantages. The following examples in particular are noteworthy: the 
SEAMO algorithm [35][39] –which includes duplicate elimination-, applied to the 
multiobjective knapsack problem; the MNK-landscape problem in [2], using duplicate 
elimination in the NSGAII; the knapsack problem in [36], where the overlapped 
solutions are deleted; and also the Combative Accretion Model suggested in [3], 
which includes the duplicate elimination operator and was compared with NSGAII in 
a set of multiobjective test functions with promising results.  

There are problems (such as the multiobjective approach we are dealing with here), 
where the number of Pareto optimum solutions is smaller than the population size. 
This kind of problem usually has one or more discrete fitness functions with reduced 
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values, limiting the capacity to cover the functional space homogeneously by the 
solutions. A discrete space with a limited and low number of solutions has influence 
not only on the final non-dominated front obtained, but also during the whole 
algorithm progress. In this case, the performance of the operators that distribute 
solutions along the front (crowding distance, clustering, etc.) is drastically reduced, 
because an accumulation of solutions in these discrete points happens without 
discrimination possibility. So, in the multiobjective structural problem dealt with here, 
the second objective function, the number of cross-section types, is a discrete one, 
having as limits 1 and the minimum value between the number of bars of the truss and 
the number of different cross-section types considered in the reference database.  

With the above in mind, the DENSEA Algorithm (Duplicate Elimination Non-
dominated Sorting Evolutionary Algorithm) was presented and applied successfully to 
bar frame optimum design in [16] and to bar truss optimum design in [19]. It is the 
third evolutionary multiobjective algorithm considered in the analysis of helper 
objective performance. DENSEA emphasizes the creation and maintenance of 
population diversity and is conceived as an improvement medium for the previously 
explained difficulties of having a non-dominated solution reduced set in functional 
space with respect to the population size. DENSEA is based on the non-domination 
sorting criterion selection and has incorporated some elitism, but it is characterized by 
offering population diversity maintenance based on various characteristics: 1) 
Deletion of duplicate solutions; 2) Replacement of these duplicate solutions; 3) 
Replacement selection of population of next generation. After the initial population 
creation, individuals’ fitnesses are evaluated. The obtained population is ordered by 
the non-domination criterion, with the distribution operator along the front (secondary 
criterion when solutions belong to the same front) explained later. After this sorting, 
each individual has a linear selection probability by Roulette Wheel Selection, which 
determines the individuals that are selected for crossover and mutation. These 
constitute the offspring population. This population is also ordered by the non-
domination criterion after evaluation. DENSEA has specifically a deletion operator 
for duplicate solutions: the algorithm deletes the accumulated duplicate solutions due 
to the reduced non-dominated solutions quantity in the functional space. The 
replacement of each deleted solution is performed by inserting the individual that has 
the same ordering in the second half of the population until the completion of 50% of 
the population size (N/2). In that way, the inclusion of diverse solutions replacing 
duplicates is fostered, helping to maintain the population diversity. This filtering 
process is implemented both in the parent and offspring population. Merging both 
filtered populations (each of size N/2) generates the parent population of the next 
generation, size N. So, the individuals belonging to the parent population of the next 
generation are selected by using an elitism that also guarantees the renovation of 50% 
of the individuals each generation, promoting population diversity and without losing 
genetic information of the best solutions (because the non-dominated solutions 
number is small due to the problem characteristics). The operator that distributes the 
solutions, after the non-dominated ordering calculation, along the non-dominated 
surface has been implemented with consideration for the specific characteristics of the 
problem handled and with a search for simplicity. However, any other second 
generation evolutionary multiobjective algorithms scheme could have been adopted. 
Considering the discrete property of the helper objective (number of different  
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cross-section types), the considered operator acts as follows: A crowding distance is 
calculated taking into account only the distances of the discrete fitness function, 
simplifying its calculation and computational cost (it only requires the subtraction of 
natural numbers). This operator is based on the discrete nature of the functional 
search space, and considers as crowding distance among solutions the difference of 
the previous and next values of the fitness function number of different cross section 
types of each individual. 

The results and their analysis, having taken into account the three previously 
mentioned evolutionary multiobjective algorithms (NSGAII, SPEA2 and DENSEA), 
are shown in section 6. 

5   Test Cases 

Two different sized frame bar structures are considered as test cases. The smaller one 
is a four bar sized frame which is called test case X. The second one is a fifty-five 
sized frame named test case Y. In both cases, the buckling effect and the own 
gravitational load of the structure bars have been considered. They are based on a 
reference problem in [28], where a continuous optimization without buckling effect is 
handled. The density and elasticity modulus are the typical values of steel: 7850 
kg/m3 and 2.1.105 MPa, respectively. 

Test Case X is graphically represented in figure 1. The spot lengths are in meters, 
and there is a maximum displacement constraint in the second bar middle point, of 
length/300. All the bars belong to the IPE cross-section type series (consecutively 
from IPE-80 to IPE-500), with admissible stresses of 240 MPa. 

 

Fig. 1. Frame Test Case X 

Test case Y is represented in figure 2. The figure includes the numbering of the 
bars and the precise loads in Tons. In addition, in every beam there is a uniform load 
of 39945 N/m. The lengths of the beams are 5.6 m and the heights of the columns are 
2.80 m. The columns belong to the HEB cross-section type series (consecutively from 
HEB-100 to HEB-450), and the beams belong to the IPE cross-section type series 
(consecutively from IPE-80 to IPE-500); with admissible stresses of 200 MPa and 
220 MPa, respectively. The maximum vertical displacement in the middle point of 
each beam is established at l/300 = 1.86.10-2 m.  
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Fig. 2. Frame Test Case Y 

The optimal reported solutions of each test case can be consulted in the following 
references: [16][23] for test case X and [16][21] for test case Y. In particular, the 
number of solutions that the Pareto frontiers could integrate in our test cases is 
between 1 and 4 (number of bars of the structure) in the first test case X and between 
1 and 32 (number of different cross-section types included in the reference database) 
in the second test case Y. Their Pareto frontiers comprise 4 and 8 isolated single 
points, respectively. The corresponding values of the global optimum of the minimum 
constrained mass designs are 3324.3 kg for test case X (number of different CST 
equal to 4) and 10128.6 kg for test case Y (number of different CST equal to 8). Both 
are the minimum reference values to be considered in the average results reported in 
the next section. 

6   Results and Discussion 

Due to the stochastic nature of evolutionary algorithms, a set of thirty independent 
runs has been performed to compare four different algorithms: NSGAII, SPEA2, 
DENSEA and the single-objective approach. The single objective evolutionary 
algorithm is an elitist approach, where the best two individuals are mandatorily 
maintained and whose selection is an order-based approach with roulette wheel 
assignation of probabilities. 

In every case, a population size of 50 individuals and uniform crossover with 1.0 
crossover rate are fixed. Four different mutation rates have been analyzed in every 
test case: 0.8%, 1.5%, 3% and 6% for test case X; 0.4%, 0.8%, 1.5% and 3% for test 
case Y. Both have been selected in relation to the chromosome length of each 
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structure and following previous results [20]. Two different codifications have also 
been analyzed, both based on 0s and 1s due to the discrete nature of the problem 
variables: 1) the standard binary code and 2) the standard binary reflected gray code 
as described in [40]. The gray codification has shown better behaviour in previous 
works, both in the single-criteria [23] and multiobjective approaches [21].  

The main purpose of the analysis is the comparison of algorithm performances, and 
especially between the single and multiobjective (that includes the proposed helper 
objective: number of different CST) approaches, focusing on the minimization of the 
constrained structural mass; therefore, results are presented in terms of constrained 
mass in kg.  

The average results over 30 runs are presented graphically in figures 3 to 6. The 
number of fitness function evaluations is represented along the x-axis, and along the 
y-axis the averaged constrained mass during the whole convergence of the algorithm. 
Algorithms Single approach, NSGAII, SPEA2 and DENSEA are represented in the 
upper left, upper right, lower left and lower right parts of each figure, respectively. 
Each part contains the evolution of the four mutation rates with, from lower to higher 
in each test case, the continuous line (lower), circle, lined asterisk and square (higher). 
The numerical averaged values at the stop criterion (2.104 and 2.105 fitness function 
evaluations for test case X and Y, respectively) are shown in tables 1 (case X) and 2 
(case Y), where the best constrained mass value among algorithms corresponding to 
each codification and mutation rate is bold typed.  

The importance of an adequate diversity treatment is more noticeable in the first 
test case X, where both the Pareto frontier and the search space (associated with the 
chromosome length) are of smaller size than in test case Y. Therefore, we can observe 
how, in figures 3 and 4 and in table 1, DENSEA achieves remarkable results versus 
the other algorithms, with certain difficulties being seen in the other multiobjective 
approaches.  However, since the search space and Pareto frontier are bigger in test 
case Y, the diversity treatment is not so critical, and the three multiobjective 
approaches show a more homogeneous behaviour, clearly differentiated from the 
single objective approach.  

Analyzing the numerical results of tables 1 and 2, DENSEA is the best 
multiobjective approach in all the cases in X and in 5 of 8 in Y, being second in 
another 2. It is also the best overall approach in all the cases in X and in 3 of 8 in Y, 
being second in another 4. The multiobjective approach is always better than the 
single-objective approach in test case X, where the single objective algorithm is the 
worst in 7 of 8 cases. The multiobjective approach is better than the single-objective 
in test case Y in 6 of 8 cases, where the single objective algorithm is the worst in 
those 6 cases.   

The best averaged values are obtained in both test cases by the combined use of 
gray coding and DENSEA: In test case X, the achieved value equals the global 
optimum reported in section 5 (3324.3 kg) and is obtained in the four tested mutation 
rates. In test case Y, the achieved value is obtained with a mutation rate of 0.8% 
(10214 kg.), which is 0.8% higher than the global optimum value. 
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Fig. 3. Case X, Binary Coding. Single objective (upper left), NSGAII (upper right), SPEA2 
(lower left) and DENSEA (lower right). 

 

Fig. 4. Test Case X, Gray Coding. Single-objective (upper left), NSGAII (upper right), SPEA2 
(lower left) and DENSEA (lower right). 
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Fig. 5. Test Case Y, Binary Coding. Single-objective (upper left), NSGAII (upper right), 
SPEA2 (lower left) and DENSEA (lower right). 

  

  

Fig. 6. Test Case Y, Gray Coding. Single-objective (upper left), NSGAII (upper right), SPEA2 
(upper left) and DENSEA (upper right). 
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Another observed advantage the helper objective provides is the increased 
robustness versus mutation rate variations in comparison with the single objective 
approach. Although the single objective evolutionary algorithm could lead to good 
average values (e.g., in the binary codification of test case Y it obtains the best value: 
11036), it shows a very sensitive behaviour to the mutation rate. It can be inferred 
from the figures and also from the values of tables 1 and 2, but table 3 shows it 
directly: the quotient between maximum and minimum average values of each case 
minus one -in percentages-. In all cases, the single objective approach has the worst 
results with a significant difference. So, the robustness to different mutation rates is 
much better when the helper objective is used than when it is not. This behaviour 
should be subjected to further analysis. 

Table 1. Test Case X average mass (kg.) results over 30 runs after 2.104 evaluations. In 
brackets, when applicable: number of required fitness function evaluations to reach the global 
optimum value. 

Test Case X Binary Coding Gray Coding 
Population 

Size: 50 
0.8% 1.5% 3% 6% 0.8% 1.5% 3% 6% 

SingleObjective 3357.0 3352.9 3336.2 3325.0 3346.6 3338.7 3330.0 3328.0 
NSGAII 3342.4 3345.6 3333.7 3330.4 3341.2 3326.9 3328.4 3324.3 

(19000) 
SPEA2 3344.8 3348.7 3331.5 3332.5 3335.5 3331.4 3329.8 3327.6 

DENSEA 3325.9 3324.3
(11250)

3324.9 3324.3
(2800) 

3324.3 
(7150) 

3324.3
(3850) 

3324.3 
(3300) 

3324.3 
(3550) 

Table 2. Test Case Y average mass (kg.) results over 30 runs after 2.105 evaluations 

Test Case Y Binary Coding Gray Coding 
Population 

Size: 50 
0.4% 0.8% 1.5% 3% 0.4% 0.8% 1.5% 3% 

SingleObjective 11036 11659 12303 13833 10233 10333 11113 13037 
NSGAII 11623 11340 11245 11944 10314 10297 10308 10465 
SPEA2 11556 11240 11266 12054 10327 10316 10361 10497 

DENSEA 11476 11126 11255 11992 10242 10214 10242 10560 

Table 3. Variation (in %) of maximum-minimum final average mass (kg.) values depending on 
mutation rate 

 Test Case X Test Case Y 
 Binary Gray Binary Gray 

Single Objective  0.96 0.56  25.3 27.4 
NSGAII  0.46 0.51  6.2 1.6 
SPEA2  0.51 0.23  7.2 1.7 

DENSEA 0.05  0  7.8 3.4 

The Gray codification also clearly outperforms the standard binary. Only in one 
case out of 64 is the behaviour of the binary codification algorithm better (the single-
objective algorithm with mutation rate 6% in test case X). In test case Y, a more 
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complex problem due to its greater search space, the advantage of its use is increased, 
with the mass averages differences between both codifications evident. 

7   Conclusions 

Focusing on the helper objective concept, a new type of helper objective has been 
introduced in this work applied to a computational mechanics field problem: the 
number of cross-section types of the bar structure.  

The effect of this multiobjective approach has been analyzed in the structural 
constrained mass optimum design problem, comparing a single objective optimization 
and three multiobjective algorithms: NSGAII, SPEA2 and DENSEA in two test cases. 
The simultaneous combination of a suitable evolutionary multiobjective algorithm 
(considering an appropriate population diversity treatment) and the helper objective as 
second fitness function has shown advantages in the resolution of the problem: the 
best overall average results are achieved using this multiobjective approach which 
also provides a more robust behaviour compared to the mutation rate variation. 
Therefore, this article describes another application where evolutionary multiobjective 
algorithms can be seen as a tool that helps to improve single objective optimization. 

This kind of helper objective (number of different cross-section types of the 
structure) could also be generalized to other kinds of problems where the 
chromosome variables are composed of a set of database orderings, whose members 
contain the information required to compute the fitness function (number of different 
items of the database contained in the candidate chromosome or solution). An 
analysis of its performance in other fields could provide more light about the practical 
use and generalization of this multiobjective approach.  
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Abstract. This work deals with the design of new shielding materials for
the protection of electrical devices. Since there are many different require-
ments for modern materials, we have chosen a multi-objective approach
to this problem. As material under consideration we chose conducting
polymer composites due to their excellent electromagnetic properties in
the microwave band and their high potential for the optimization pro-
cess. In this paper, we start this process with the formulation of a novel
model, deal further with the approximation of these solution sets, and
finally consider the decision support related to this problem.

1 Introduction

Electromagnetic interferences have become an important problem due to the
proliferation of commercial, military, and scientific electrical devices and equip-
ments in high frequencies. Electronic devices must be shielded to be protected
against the incoming and potentially disturbing radiation.

Conducting polymer composites (CPCs) like Polyaniline Polyurethane
(PAni/PU) are very promising for applications in electromagnetic interference
shielding ([9]). These materials are e.g. characterized by relatively high conduc-
tivities and permittivities. Since these properties can easily be tuned via chemical
processes in the making of these composites, CPCs are well-suited for the de-
manding optimization in this field. Further, these materials are lighter, more
flexible and offer better environmental stability compared to the classical shield-
ing materials subjected to corrosion which make them an interesting potential
alternative.

In this work, we are particularly interested in the design of new high-protecting
and light-weight materials which are realisable for reasonable prices. In search of
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these materials, we propose in the following a new multi-objective optimization
model, address the numerical treatment of these problems, and present possible
techniques which are designed to support the decision maker (DM) to find the
preferred solution according to the specific problem.

The remainder of this work is organized as follows: in Section 2 we state
the background required for the understanding of the particular design problem
which is proposed in Section 3. Section 4 deals with the approximation of the
Pareto sets of the resulting MOPs, and in Section 5 we show how these sets
can be visualized according to the preference of the DM. Finally we make a
conclusion in Section 6.

2 Background

In this section we briefly summarize the background required for this work: we
introduce the electromagnetic properties which are interesting in our context,
present a theoretical model for these properties which serves as the basis for
further considerations, and finally address the concept of multi-objective opti-
mization.

2.1 Electromagnetic Properties

Since our aim is to design new protecting materials we are particularly interested
in what happens when an electromagnetic wave (EM) arrives at the surface of a
material. In that case, three physical phenomena can occur: absorbtion, reflection
and transmission of the incidental wave (see Figure 1).

Transmission
External
Reflection

Internal
Reflection

Absorption

EM

EM

Fig. 1. The three kinds of physical wave interaction

For our purpose it is sufficient just to consider the reflection and the trans-
mission. In [17] a theoretical model for these two wave interactions was proposed
which will be used in this work and which will be described in the following. For
this, we consider a compound consisting of N layers and assume each layer to be
homogeneous and isotropic. The design parameters of the i-th layer, i = 1, . . . , N ,
are the conductivity σi, the permittivity εi, and the thickness di of the material
of each layer.
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The characteristic matrix Mi ∈ �2×2 of the i-th layer is given by:

Mi =
[

cos(Ai) −jZisin(Ai)
− j

Zi
sin(Ai) cos(Ai)

]
,

where

Ai = ωdi

√
μ0ε0

[
εi − j

σi

ωε0

]
, Zi =

√
μ0

ε0

[
εi − j σi

ωε0

] ,

with ω = 2πf , where f is the frequency of the electromagnetic wave, and j
denotes the imaginary unit. Zi is the impedance of the i-th layer. Due to their
contact to air media, the impedances of the outer layers are set to Z0 = ZN+1 =
377(Ω).

The characteristic matrix of the entire compound is given by the product of
the characteristic matrices for each layer, i.e.

M = M1 · M2 · . . . · MN =
[

M11 M12
M21 M22

]

Now we are in the position to state the coefficients for the reflection R and
the transmission T :

R =
(M11Z0 − M12) − Z0(M22 − M21Z0)
(M11Z0 − M12) + Z0(M22 − M21Z0)

, (1)

and

T =
2[M22(M11Z0 − M12) + M12(M22 − M21Z0)]

(M11Z0 − M12) + Z0(M22 − M21Z0)
. (2)

2.2 Multi-objective Optimization

In a variety of applications in industry and finance a problem arises that several
objective functions have to be optimized concurrently. One important feature of
these problems are that the different objectives typically contradict each other
and therefore certainly not have identical optima. Thus, the question arises how
to approximate one or several particular ’optimal compromises’ (e.g., by inter-
active methods [16]) or how to compute all optimal compromises of this multi-
objective optimization problem (MOP). For this, for instance a huge variety of
evolutionary strategies have been proposed during the last years (see e.g. [5] or
[3] for an overview on existing methods).

Mathematically speaking, an MOP can be stated in its general form as follows:

min
x∈S

{F (x)}, S = {x ∈ �n : h(x) = 0, g(x) ≤ 0},

where F is defined as the vector of the objectives, i.e.

F : �n → �
k, F (x) = (f1(x), . . . fk(x)),
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with f1, . . . , fk : �n → �, h : �n → �m, m ≤ n, and g : �n → �q. A vector
v ∈ �k is said to be dominated by a vector w ∈ �k if wi ≤ vi for all i ∈ {1, . . . , k}
and v �= w (i.e., there exists a j ∈ {1, . . . , k} such that wj < vj). A vektor v
is called nondominated with respect to a set P , if none of the vectors p ∈ P
dominate v.

A point x ∈ S is called optimal or Pareto optimal1, if F (x) is not dominated
by any vector F (y), y ∈ S. The solution set – the so-called Pareto set – consists
typically not of finitely many points as for scalar optimization problems, but
forms a (k − 1)-dimensional object.

3 The Design Problem

In this section we propose a novel multi-objective model for the design of con-
ducting polymer composites for shielding electrical devices. We aim in particular
at high-shielding and light-weight materials since there seems to be a growing
interest in alternatives to classical materials like metals, which are too heavy e.g.
for aeronautic applications.

The electromagnetic shielding of conducting polymer composites and the re-
lated optimization problem have been considered in some works so far (e.g., [17],
[4], [11]). Albeit this is of course the most important feature of this material,
the mono-objective approach reveals some limitations since it does not consider
other physical properties of the compound which are getting more and more
important for commercial products (as weight and cost).

Now we propose the objectives – formulated as minimization problems – which
have to be considered in search for modern conducting polymer composites for
the shielding of electronic devices.

The first objective is the electromagnetic shielding, i.e. the ’classical’ objective,
which can be expressed as follows ([17]):

fs(x) = 20 log(|T |), (3)

where T is the transmission coefficient defined in (2).
Alternatively, it can be desirable to aim in particular for a high reflection coef-
ficient (see (1)), which leads to the objective

fr = −|R|. (4)

Since reflection and transmission of an electromagnetic wave are closely related,
only one of these two objectives – depending on the preference of the DM – is
required for the formulation of the MOP.

Next, we propose to take the mass percentage of a particular material (Polyani-
line) inside the polymer compound in each layer into account since this value is
highly responsible for the (relatively high) cost of these composites. Thus, to be

1 Named after the economist Vilfredo Pareto, 1848–1923.
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efficient and realisable, the materials must have a small mass percentage, which
leads to the following minimization problem (e.g., [9]):

fp = log

(
N∑
i

pi

)
, pi =

(
σi

σ0

) 1
t

+ pc, i = 1, . . . , N, (5)

where σ0 is a reference conductivity, pc the percolation threshold, and t a critical
exponent. pi is the mass percentage of the i-th layer.

Finally, we propose to take the thickness of the compound into account since
this has a direct influence on the weight and the cost of the resulting material.
Thus, the 4th objective reads as follows:

ft =
N∑
i

di (6)

There exist of course other possible goals as well as other models which could
be interesting for particular applications and which cannot be stated all here.
However, the objectives presented above seem to be the most generic ones.

4 Approximation of the Pareto Fronts

In this section we shortly introduce the two methods which were used and
adapted to compute the Pareto fronts of the MOPs which grew out of the design
problem under consideration. Since so far mainly compounds with few layers are
being studied, we are faced with low or moderate dimensional models which do
not represent a challenge to state of the art (EMO) algorithms. Consequently, the
approximation of the solution sets is not the main contribution in this work, but,
however, this is and will be one important task in multi-objective optimization,
and has to be accomplished thoroughly.

In [14] a MOEA is proposed which is designed for the present context. The
genetic algorithm used for the optimization of electromagnetic shielding prop-
erties allows to obtain diversified and pertinent results. For all the steps of the
algorithm, a satisfying diversity of the population was maintained which allowed
to present a large number of different solutions to the DM. In the first step of this
algorithm, the components of each individual belonging to the initial population
are generated at random from subdivided intervals in order to gain homogene-
ity. The selection step combines two populations, the current one and another
one which is stored in a Pareto archive in an elitist manner. In this algorithm,
the crossover and mutation operators which are presented in ([2]) are used as
they have proven their efficiency on continuous optimization problems. Excel-
lent results have been obtained on different benchmarks with genetic algorithm
using these operators their flexible configuration represents a advantage to get
varied components. Furthermore, these operators have not increased the time of
computation. Also, the obtained individuals had diversified components and the
results in the Pareto fronts offered a large palette of solutions to the decision
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Algorithm 1. MOEA for shielding design problems
1: choose initial population P0

2: set A0 := nondominated points of P0 � archive
3: i := 0
4: repeat
5: compute Pi+1 from Pi and Ai by the following steps
6: (a) perform NSGA selection from Pi and Ai as proposed in [20]
7: (b) perform Crossover and Mutation as proposed in [2]
8: (c) perform the generational replacement
9: Ai+1 := nondominated points of Ai ∪ Pi+1.

10: i := i + 1
11: until (stopping criteria fulfilled)

makers. The algorithm has been developed using the platforms EO ([13]) and
its extension ParadisEO ([1]).

In order to compare the results obtained by the method described above, we
have alternatively used and adapted subdivision techniques ([18], [7]) for this
problem. These techniques have been primarily designed for unrestricted MOPs
and work particularly well for moderate dimensions, i.e. when few layers are
considered in the compound.

The algorithms of this type start with a compact subset Q ⊂ D of the domain,
represented by a collection of n-dimensional boxes (where n is the dimension of
D). Each box gets subdivided into smaller sub-boxes and after certain conditions
it is decided if a box is promising – i.e., if it could contain a part of the Pareto
set – or not. The ’unpromising’ boxes are deleted from the collection while the
process – subdivision and selection – is continued successively on the remaining
boxes until the desired granularity of the boxes is reached. In our design problem
the minimal radii of the boxes are given in a natural way by the manufacturing
accuracy of the material (which in turn results in a certain accuracy for the
parameters ε and σ).

The approach is of global nature, i.e. in principle capable of detecting the
entire Pareto set. However, it is restricted to moderate dimensions and not rig-
orous. That is, boxes which are deleted once from the collection but contain a
part of the Pareto set will not be reconsidered in further iteration steps. In [19]
a variant is described which hybridizes with a MOEA to reduce this problem,
which allows to attack higher dimensional and more complicated models, and
which was used to compute the Pareto sets of the present design problems. It is
planned to integrate the MOEA described above into the subdivision techniques
in order to unite the strengths of both algorithms.

Example: A 3-layered Material
As a general test example which will serve for the remainder of this work we have
chosen a 3-layered material which is a compound of Polyaniline Polyurethane
(PAni/PU) and Kapton2 (see Figure 2). We have decided to include Kapton

2 Kapton is a registered trademark of DuPont.
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into the compound since it is a polymer which offers high chemical resistance
and good interaction with the Polyaniline - Polyurethane solution in the chemical
production process ([10]). Using this compound and the model described above
this leads to a design problem with four free parameters (see Table 1). Due to the
low dimensionality of the parameter the corresponding model is easy to handle
with our (and other) algorithms, and we are able to include all four objectives
proposed above into the design problem. Doing so, this leads to the MOP

min
x

Fc : Q ⊂ �4 → �
4, (7)

where Q is the hyper-rectangle which is given by the box constraints shown in
Table 1.

Kapton 

PAni/PU film

PAni/PU film

Interface

d1

d2

d3

Fig. 2. Electron microscope image of the three layered material under consideration

Figure 3 shows two projections of a front as well as a short discussion. We
have chosen f = 50 MHz for the frequency of the incoming wave3. The results
are certainly highly satisfying – from the point of view of the developer of the
optimization algorithm. However, it is ad hoc more than doubtful if and how
this huge amount of data can help the DM to find the ’right’ material according
to the given problem. Therefore, the next section deals with the problem specific
visualization of these solution sets.

Since this multi-objective approach to the shielding problem is novel and since
every application has its special environmental peculiarities, the result of this
optimization can hardly be compared to existing materials documented in liter-
ature (but is a task for future work). However, the results seem to be promising
regarding (a) the large portion of the front where international standards for
the shielding efficiency ([12], [8]) are satisfied, and (b) the significant diversity
with respect to fp and ft, which influence cost and weight of the material. An
example for the latter can be seen in Table 2. A motivation for the choice of
the points – we have chosen xi ∈ Bi, i = 1, 2 – is given in the next section. The
3 Since the frequency of the incidental wave may vary, it is desired in this situation to

have a high shielding efficiency in the entire frequency range between 5.0 · 106 and
1.0 · 1.09 Hz. See discussion below.
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Table 1. Parameters MOP 7. Since the permittivities of the outer layers are fixed and
we consider Kapton as the 2nd layer (see [11] for a motivation of this choice), merely
four free design parameters have to be considered.

No. of layer Material ε σ(S/m) d(μm)

1 PAni/PU 0.0 from 30 to 104 from 0 to 300
2 Kapton 3.1 0 125
3 PAni/PU 0.0 from 30 to 104 from 0 to 300

material related to point x1 reaches the maximal value for the thickness and is
further relatively expensive due to the high mass percentage (p1 = 31.27 %m
and p3 = 31.30 %m for the 1st and 3rd layer respectively) but offers in turn a
shielding efficiency of 61.20 dB. The material which is given by x2 is much thin-
ner and less expensive due to a significant lower mass percentage (p1 = 22.39 %m
and p3 = 2.92 %m). Practically, this indicates that in fact the 3rd layer is not
required in case the function values of x2 have been selected which would lead
to further reduction of the cost due to a simplification of the making process.

Table 2. Two selected solutions of MOP (7) with different properties

Point fs (dB) fr (dB) fp (%m) ft (μm) d1 (μm) σ1 (S/m) d3 (μm) σ3 (S/m)

x1 -61.21 -0.9991 1.80 598.4 298.6 9945.5 299.8 9965.7

x2 -40.86 -0.9909 1.40 127.9 126.5 4587.8 1.3 37.3

5 Selecting the Preferred Material

In this section we present two possible ways to present the Pareto fronts of a
given design problem in a way that allows the DM to obtain a suitable, problem
specific, and maybe subjective overview of the available possibilities, and thus, to
help to find the preferred solution. In the following we report on the applicability
of an existing visualization tool which offers an unbiased overview on the entire
front and propose alternatively a new way of the visualization of 2-dimensional
solution sets which can involve preferences of the DM.

The Pareto Front Viewer
4 is based on the interactive decision maps

technique ([15]) and was particularly developed for the exploration of Pareto
fronts with more than two objectives. In this approach, a non-negative cone is
added to every point of the approximation of the Pareto front. The combination
of these cones approximates the Edgeworth-Pareto Hull (EPH). By displaying
various decision maps – i.e. collections of two-dimensional slices of the EPH –
which are depicted on the value of a third objective, the decision maps help
to understand the influence of this objective. The influence of further objectives

4 For further description and a demo version of the software tool see http://
www.ccas.ru/mmes/mmeda/mcdm.htm.

http://www.ccas.ru/mmes/mmeda/mcdm.htm
http://www.ccas.ru/mmes/mmeda/mcdm.htm
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Fig. 3. Two projections of a Pareto front of MOP (7). In order to obtain this set
we have used the algorithm EA-Subdivision proposed in [19] which has used 724,600
fitness evaluations. Since the objective values are given in short analytical form the
computation took less than one minute on a standard computer. Using the MOEA
described in Section 4 very similar results were obtained.

can be experienced by using sliders, which move the efficiency frontiers described
above according to the values of these objectives. Though 2-dimensional maps
are used for the visualization of the fronts, this approach allows the DM to
handle multiple objective values. See [15] for various applications where up to
nine objectives are involved.

Figure 4 shows a snapshot of a decision map which displays a Pareto front of
MOP (7). The values of fm and fp are plotted in the x-axis and y-axis respec-
tively. The map shows an amount of 15 such efficiency frontiers using different
values of the shielding efficiency. Finally, these maps can be moved according to
the value of the reflection coefficient. Using this tool, a good understanding of
the criterion tradeoff the can be obtained.

One important requirement for a proper visualization of a Pareto front is
certainly to tame the complexity of the huge amount of data, in particular when
more than two objectives are under consideration. For this, the authors of this
work share the opinion that it makes sense for this application – and certainly
for others as well – to introduce an additional, problem specific indicator which
can (hopefully) help the DM to identify parts of the Pareto front which are
potentially promising for the current situation.

Let us consider one example. The multi-objective model presented above fixes
the frequency of the incoming wave. However, since it is desired to have a high
shielding efficiency in an entire frequency range [fmin, fmax], one could e.g. con-
sider a ’shielding indicator’ as follows:

Is(x) :=

fmax∫
fmin

fs(x, f)df, (8)
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Fig. 4. Snapshot of the Pareto Front Viewer which shows a visualization of a
Pareto front which is similar to the one displayed in Figure 3

where x = (ε, σ, d) ∈ �3N and fs(·, ·) denotes the shielding efficiency analogue
to (3). If the value of Is(x) is high, it does obviously not follow that fs(x, f) is
high for all relevant frequencies, but the underlying heuristic is that in this case
the values of fs must be high in at least one sub-region.

Further examples for possible indicators in the current design problem are e.g.
the value of the reflection, the cost or the weight of the material, the robustness
of the material against possible errors in the production process, etc. See Figures
5 and 6 for examples.

For the visualization of the 2-dimensional fronts in combination with a prop-
erty indicator (or without), we propose to use boxes since they bring the required
3D effect to the appearance of the fronts5. Further, they can be used to reduce
the complexity of the data since several ’neighboring’ points are collected in one
box, depending on the location and the size of the boxes which can be both
adjusted according to the problem.

A k-dimensional box B can be represented by a center c ∈ �k and a radius
r ∈ �k:

B = B(c, r) = {x ∈ �k : |xi − ci| ≤ ri ∀i = 1, . . . , k}

In order to obtain a clear view on these new designed fronts it is certainly ad-
vantageous to build a box collection where the interiors of its boxes are mutually
non-intersecting. Algorithm 2 represents one possible way to construct such a
collection B given a set of points P , a domain Q = [a1, b1] × . . . × [ak, bk], and
a number sd of subdivision steps. This algorithm does not treat adequately the
fact that the same boxes may be constructed several times. For this, we refer to
[6], where the same data structure is used for a different purpose.

5 For the visualization we have used Matlab, see http://www.mathworks.com.



600 O. Schütze et al.

Algorithm 2. B := Build BC(P = {p1, . . . , pl}, Q = [a1, b1] × . . . × [ak, bk], sd)
1: B := ∅
2: for all i = 1, . . . , l do
3: y := pi

4: for all j = 1, . . . , k do
5: l := aj

6: r := bj

7: c := (l + r)/2
8: for all s = 1, . . . , sd do
9: if yj ≤ c then

10: r := c
11: c := (l + c)/2
12: else
13: l := c
14: c := (c + r)/2
15: end if
16: cj := c
17: rj := (bj − aj)/2
18: end for
19: end for
20: B := B ∪ B(c, r)
21: end for

Figure 5 shows a box collection where the Pareto front was used which is
displayed in Figure 3. For the shading of the boxes the shielding indicator (8)
was used.

Using this example we want to demonstrate on two (hypothetical) settings how
this visualization form can be of advantage for the DM. First, we assume that
we are aiming at a high-shielding material where the cost is of minor interest
(e.g., in a military application). The image of the Pareto front displays one
connected component which is shaded in white (corresponding to the highest
value of the indicator). Thus, a point in this section can be chosen – maybe in
Box B1 –, or the search can be continued in this region, e.g. in an interactive
manner. Second we assume we want to design a material for a ’standard’ device.
Thus, it is sufficient to fulfil the required norm for the shielding efficiency while
it is desired to minimize cost and weight of the material. Using the shielding
indicator (e.g., by looking at the boxes which correspond to a value of Is(x) ≥
SEnorm(fmax − fmin)) this could lead to the conclusion that points inside B2
have to be examined for possible realization.

The results demonstrate that the two visualization techniques are well-suited
to screen and filter the available possibilities offered by the multi-objective ap-
proach in their own way. Both approaches achieved to reduce the complexity of
the incoming data in the required amount for this particular application, which
motivates that this can also be possible for other design problems.
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Fig. 5. Classification of a Pareto front consisting of 15987 nondominated solutions (see
Figure 3) into 469 different boxes which are grayed into 15 different tones from black
(corresponding to the smallest value of the indicator) to white (highest value)

(a) Indicator ’Shielding’ (b) Indicator ’Robustness’ (c) Indicator ’Reflection’

Fig. 6. Further examples of possible shading of the Pareto front leading to different
results: in (b) the value of ∂SE

∂d1
+ ∂SE

∂d3
is taken as an indicator for the robustness of

the production with respect to a manufacturing error in the thickness of the PAni/PU
compounds, while for (c) the value of the reflection coefficient fr is used

6 Conclusions and Future Work

We have presented a multi-objective approach to the design of conducting
polymer composites for the shielding of modern devices which demand for high-
shielding and light-weight materials for reasonable prices. For this, we have pro-
posed a novel model, have shown the applicability of EMO algorithms (which
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were tuned for this purpose) to these MOPs, and have addressed the related de-
cision support problem. For the latter we have proposed a particular technique
for the problem specific visualization of these 2-dimensional Pareto fronts, which
can certainly be used in other applications.

For future work, there are a lot of interesting topics which can be addressed
to advance the present work. For instance, one can take the uncertainties coming
from the manufacturing process into account. Further, it could make sense to
extend the model by including e.g. the number of layers as well as further prop-
erties of the conducting polymer composites (e.g., the permeability which is of
particular interest for aeronautic applications) as additional design parameter.
This will in turn call for new techniques which can handle the hybrid model
efficiently as well as for more sophisticated decision support.
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Abstract. This paper presents results of extensive computational experiments in 
which evolutionary multiobjective algorithms were used to find Pareto-optimal 
solutions to a complex structural design problem. In particular, Strength-Pareto 
Evolutionary Algorithm 2 (SPEA2) was combined with a mathematical 
programming method to find optimal designs of steel structural systems in tall 
buildings with respect to two objectives (both minimized): the total weight and 
the maximum horizontal displacement of a tall building.  SPEA2 was employed 
to determine Pareto-optimal topologies of structural members (topology 
optimization) whose cross-sections were subsequently optimized by the 
mathematical programming method (sizing optimization).  The paper also 
presents the shape of the Pareto front in this two-dimensional objective space 
and discusses its dependence on the building’s aspect ratio.  The results 
reported provide both qualitative and quantitative knowledge regarding the 
relationship between the two objectives.  They also show the trade-offs 
involved in the process of conceptual and detailed design of complex structural 
systems in tall buildings. 

Keywords: evolutionary multiobjective optimization, structural design, Pareto 
front, tall buildings. 

1   Introduction 

Finding solutions for many structural engineering problems involves multiple and 
often conflicting objectives. Traditionally, however, due to lack of efficient 
multiobjective optimization methods, a single ‘most important’ criterion was selected 
and treated as the objective with respect to which structural designs were optimized.  
The remaining objectives were usually converted into constraints which were 
subsequently used to determine the feasibility of generated structural designs [1].  In 
the vast majority of structural design applications, the total weight of a structural 
system was employed as the objective of choice mainly because it can be regarded as 
a good estimate of structural system’s cost [2].  In several other studies, including 
authors’ previous research [3], multiple design objectives were combined into an 
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aggregate fitness function using a linear combination of weights [4].  This approach, 
however, has its obvious limitations.  They include the necessity of conducting a large 
number of design optimization runs for each combination of weights in order to 
determine the shape of the Pareto front as well as inability to produce proper Pareto 
optimal solutions when the design spaces are non-convex [5].   

Thus, in this paper, we extend the previous aggregate function approach to 
multiobjective optimization of steel structural systems in tall buildings by using a 
‘truly’ multiobjective optimization algorithm, namely the Strength-Pareto 
Evolutionary Algorithm 2 (SPEA2) [6].  In our study SPEA2 was used to optimize 
topologies of steel structures in tall buildings with respect to two objectives (both to 
be minimized): the total weight and the maximum horizontal displacement of a tall 
building.  SPEA2 was integrated with a mathematical programming method which 
was utilized to determine optimal cross-sections of structural members.  Thus, 
multiobjective topology and sizing optimization of steel structural systems in tall 
buildings was achieved. 

A large number of computational structural design experiments was conducted in 
order to determine the shape of the Pareto front in this two-dimensional objective 
space and its dependence on the building’s aspect ratio.  In order to achieve this goal, 
the reported experiments were performed for two classes of steel structural systems in 
tall buildings: one with 30 stories and 5 bays with a relatively small aspect ratio and 
the other with 36 stories and 3 bays with a relatively high aspect ratio.  The qualitative 
and quantitative relationships between the two objectives have been investigated and 
identified for both classes of structural design problems.  Also, as in the authors’ 
previous study [3], the qualitative changes among topologies of structural systems 
located in various regions of Pareto front were analyzed.      

The paper is organized as follows.  First, a brief review of the history of 
evolutionary optimization in structural engineering is presented together with a short 
introduction to the structural design problem investigated in this paper.  Next, the 
problem of topological optimum design of steel structural systems in tall buildings is 
formalized and its representation introduced.  Further, the structure and parameters of 
conducted multiobjective optimization experiments are described and followed by 
discussion of obtained results. Finally, initial conclusions are provided. 

2   Background 

2.1   Evolutionary Computation in Structural Design 

The concept of evolutionary-based optimization in structural design is not new.  It has 
a relatively long history dating back to the 1980s and to the initial applications of 
evolutionary algorithms to sizing and shape optimization of relatively simple 
structural systems (e.g., trusses [7, 8] and frames [9]).  The progress in the fields of 
evolutionary computation and computing resulted in applications of evolutionary 
methods to more complex and computationally intensive structural design problems, 
including the topology optimization of discrete-member trusses [10], topology 
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optimization of truss structures in pylons [11], and topology, shape, and sizing 
optimization of truss structures [12].  Evolutionary-based topological optimum design 
of steel structural systems in tall buildings was initially studied in [13, 14] and later 
extended in [1]. 

Initial applications of evolutionary algorithms in structural design considered only 
a single-objective fitness function (usually the total weight).  Later, however, several 
multiobjective evolutionary design problems were studied.  Early applications of 
multiobjective optimization methods include the conceptual design of airframes [15].  
The weighted min-max algorithm was also used to optimize a 10-bar plane truss [16], 
and to optimize I-beams [17] and truss designs [18].  Multiobjective Genetic 
Algorithm (MOGA) has been used in many engineering design applications including 
gas turbine controller [19] and supersonic wings [20, 21].  A variation of MOGA 
(called MGA) was applied to conceptual design of office buildings [22].  NSGA-II 
has been recently applied to a topological optimum design problem [23].  In this 
approach, both the weight and the maximal displacement of a cantilever plate were 
minimized.  A hybrid approach, NSGA-II and a hill climber, was employed to solve 
several engineering shape optimization problems [24].  Initial exploration of 
multiobjective optimization of steel structural systems in tall buildings using an 
aggregate function approach was reported in [3]. 

A comprehensive survey of evolutionary computation in structural design, 
including a discussion on multiobjective structural optimization methods, can be 
found in [2]. 

2.2   Steel Structural Systems in Tall Buildings 

Topological optimum design of steel structural systems in tall buildings is considered 
amongst the most complex problems in structural engineering.  Its complexity can be 
compared to such complex structural design problems as the design of large span 
bridges or of space structures.  Steel structural systems are designed to provide 
structural support for tall buildings.  They have to satisfy numerous requirements 
regarding the building’s stability, transfer of loads (i.e., gravity, wind and earthquake 
loads), displacements, vibrations, etc.  For this reason, the design of structural systems 
in tall buildings requires the analysis of their behavior under various combinations of 
loading and the determination of an optimal configuration of structural members.  It is 
difficult, complex, and still not fully understood domain of structural engineering, 
particularly as the generation of novel structural concepts is concerned. 

Usually, steel structural systems in tall buildings are designed as a system of 
vertical members called “columns”, horizontal members called “beams”, and various 
diagonal members called “wind bracings”.  Finding optimal configurations of these 
structural members is the subject of the topological optimum design problem (also 
known as a “conceptual design problem”) while finding optimal dimensions of cross-
sections of members for a given topology is the subject of sizing optimization (also 
known as a “detailed design problem”). 
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3   Multiobjective Optimization of Tall Buildings 

3.1   Topological Optimum Design of Steel Structures in Tall Buildings 

The paper investigates multiobjective topological optimum design of steel structural 
systems in tall buildings.  Hence, its goal is to determine optimal topologies (i.e., 
configurations) of structural members (column, beams, and wind bracings) in a steel 
structural system.  The fitness of the produced design topologies (design concepts) is 
determined by two evaluation criteria (the total weight and the maximum horizontal 
displacement of a structural system), which are both minimized. 

In order to determine the total weight of a structural system and its maximum 
horizontal displacement, not only the topology of a given design must be established 
but also the dimensions of structural members’ cross-sections need to be determined.  
Hence, the design optimization process considered in this paper consists of two 
stages.  In the first stage, a multiobjective evolutionary algorithm produces the 
topology of a structural system (a design concept), which is understood here as a 
complete description of a configuration of the following members of a structural 
system: wind bracings, beams, and column supports.  The configurations of individual 
columns are assumed fixed (the locations and types of columns do not change) and 
hence are not evolved.  In the second stage of the design process, sizing optimization 
of all structural members, including wind bracings, beams, and columns, is conducted 
for the topology determined in the first stage.  

The sizing optimization is conducted by SODA.  It is a commercial computer 
program for the analysis of internal forces, dimensioning and numerical optimization 
of steel structural systems.  In the project, a modified SODA program developed by 
the Waterloo Systems in Waterloo, Ontario, Canada, was used.  The optimization 
method used in SODA is described in [25].  In the structural analysis conducted by 
SODA, dead, live, and wind loads as well as their combinations were considered.  
The structural elements were designed using several groups of sections for beams, 
columns, and wind bracings.  In the performed experiments the first order analysis 
was used (P-Delta effects were not considered). 

As stated earlier, the designs were optimized with respect to the total weight of a 
steel structural system and its maximum horizontal displacement.  The former 
provides a good estimate of the cost of a steel structural system while the latter gives 
a good approximation of the structure’s stiffness.  These two objectives are usually 
conflicting as the reduction of the weight of a steel structure may increase its 
maximum horizontal displacement (and thus reduce its stiffness) and vice versa.  The 
goal of the reported design experiments was to both qualitatively and quantitatively 
analyze the trade-offs between the two objectives and in doing so determine, or 
provide a good approximation to, the shape of the Pareto front for this complex 
structural design problem. 

3.2   Representations of Steel Structural Systems in Tall Buildings 

In the design experiments reported in this paper, a simplified two-dimensional model 
of a three-dimensional structural system of a tall building was considered.  The 
representation space for this 2D structural design problem was developed using a 
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direct (1-to-1) mapping between design attributes determining the types of structural 
members and their corresponding symbolic values encoded in the genome. 

Design attributes represented the following types of structural members: bracings, 
beams, and supports. Fig. 1 shows the values of design attributes representing wind 
bracing elements in a steel structural system and their phenotypic and genotypic 
representation.  Each such attribute can have up to seven possible values encoding 
various types of wind bracings: no bracing, diagonal bracing \, diagonal bracing /, K 
bracing, V bracing, simple X bracing, and X bracing.  Each wind bracing attribute 
was encoded in the genome as an integer value from 0 to 6.  

In Fig. 2 values of design attributes describing beams and supports are presented.  
Each design attribute representing a beam in a steel structural system had two possible 
values (binary attributes) encoding two types of beams: a pinned beam or a fixed 
beam.  Similarly, each design attribute representing a support in a steel structural 
system was binary and encoded two types of supports: a pinned support, or a fixed 
support. 

 

Fig. 1. Design attributes representing types of wind bracing members and their phenotypic and 
genotypic representations 

 

Fig. 2. Design attributes representing types of wind bracing members and their phenotypic and 
genotypic representations 
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Thus, the actual design representation manipulated by the multiobjective 
evolutionary algorithm was encoded in the form of a non-homogeneous genome 
composed of integer-valued genes.  In the design experiments reported in this paper, 
fixed-length genomes were used as representations of steel structural systems.  
However, the length of a genome depended on the class of the structural design 
problem.  The genomes were composed of 306 genes for tall buildings with 30 stories 
and 5 bays (Problem I) and of 220 genes for tall buildings with 36 stories and 3 bays 
(Problem II). 

In the process of evaluation of each genome, symbolic attributes encoded in the 
genome were mapped to the corresponding types of structural members.  At this 
point, a complete description of the topology of a steel structural system was 
specified.  This specification, together with applicable loads and load combinations, 
was converted into a SODA input file. SODA was subsequently run to perform the 
second level of design optimization, i.e., sizing optimization, during which optimal 
cross-sections of structural members were determined. The detailed design created in 
this way was regarded feasible when it satisfied the requirements of the relevant steel 
design code (here AISC-LRFD-93). The results produced during the SODA run were 
saved in an output file from which the total weight of the structural system and its 
maximum horizontal displacement were extracted and assigned as genome’s fitness 
values.  

4   Experimental Design 

Extensive computational experiments were designed to answers the following 
research questions: 

1. What is the shape of the Pareto front for the topological optimum design 
problem investigated in this paper? 

2. What are the qualitative and quantitative changes between the Pareto fronts 
when the aspect ratio of the structural system changes? 

3. What are the qualitative and quantitative differences among designs located in 
various regions of the Pareto front? 

In order to answer research question No. 1, SPEA2 algorithm was used to optimize 
steel structural systems in tall buildings with respect to two-objectives: the total 
weight and the maximum horizontal displacement of a structural system.  
Experimental results were subsequently analyzed and non-dominated solutions 
identified.  Also, extensive sensitivity analyses of several key evolutionary 
computation parameters were conducted at this stage (i.e., mutation rate, population 
size, and SPEA2 archive size) to determine the ones that produces the best results, 
i.e., the ones that generated the largest numbers of non-dominated solutions.    The 
termination criterion for evolutionary runs was based on the number of generations.  
It was varied with the population size in order to keep a comparable budget of about 
50,000 fitness evaluations per run.  All evolutionary parameters and their values used 
in the reported experiments are shown in Table 1. 
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Table 1.  Evolutionary computation parameters and their values used in the experiments  

EC Parameter Value 
EA SPEA2 
Population sizes 100, 200, or 500 
SPEA archive sizes 10% of the population size 
Mutation (type, rate) (random reset, 0.05, 0.1, 0.3, or 0.5) 
Crossover (type, rate) (uniform, 0.2) 
Genome length 306 genes for Problem I, and 220 genes for Problem II 
Objectives 1.  The total weight of the structural system 

2. The maximum horizontal displacement of the structural 
system (‘sway’) 

Initialization method Random 
Termination criterion  500 generations (for pop. size 100) 

250 generations (for pop. size 200) 
100 generations (for pop. size 500) 

 
In order to answer research question No. 2, two classes of structural design 

problems were investigated.  The first class of problems (i.e., Problem I) involved 
structural systems with 30 stories and 5 bays.  These tall buildings have a relatively 
low value of the aspect ratio.  The second class of problems (i.e., Problem II) involved 
36 story tall buildings with 3 bays.  For these structures the aspect ratio is much 
higher.  For both classes of problems, the height of each story was equal to 14 ft (4.27 
m) while the bay widths were equal to 20 ft (6.01 m). As discussed in the previous 
section, 7 types of wind bracings (see Fig. 1), 2 types of beams, and 2 types of 
supports were considered (see Fig. 2).  All parameters of the design problems and 
their values are presented in Table 2. 

Table 3 shows the magnitudes of dead, live, and wind loads used in the structural 
analysis conducted by SODA.  Five load combinations were considered, following the 
design specifications for steel, concrete, and composite structures in tall buildings 
provided in [26].   They included the following combinations of loads: 

� Dead + Live 
� 0.75(Dead + Live + Wind) 
� 0.75(Dead + Live – Wind) 
� 0.75(Dead + Wind) 
� 0.75(Dead – Wind) 

Table 2.  Design problem parameters and their values 

Problem Parameter Value 
Number of stories 30 (for Problem I), and 36 (for Problem II) 
Number of bays 5 (for Problem I), and 3 (for Problem II) 
Bay width 20 feet (6.01 m) 
Story height 14 feet (4.27 m) 
Distance between transverse 
systems 

20 feet (6.01 m) 

Types of bracing elements No, Diagonal \, Diagonal /, K, V, Simple X, and X 
Types of beam elements Pinned-Pinned, and Fixed-Fixed 
Types of column elements Fixed-Fixed (only) 
Types of supports Pinned, and Fixed 
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Table 3.  Magnitudes of dead, live, and wind loads  

Load Parameter Value 
Dead load magnitude 50 psf (2.39 kN/m2) 
Live load magnitude:  
   -  building 100 psf (4.78 kN/m2) 
   -  roof 30 psf (1.43 kN/m2) 
Wind load:  
   -  Wind speed 100 mph (160.9 km/h) 
   -  Wind importance factor 1.0 
   -  Wind exposure category C 

 
The negative sign placed in front of the wind loads indicates that the wind forces 

considered in a given load combination act in the opposite direction, i.e. wind 
pressure is replaced by wind suction and vice versa, when compared to the case when 
the plus sign is used. 

Finally, the research questions No. 3 was answered by analyzing the values of both 
objectives for designs located in various parts of the Pareto front.  Qualitative changes 
among Pareto optimal designs located in various parts of the front were inspected 
visually and analyzed statistically.  Basic statistical analysis was conducted to detect 
variation in frequencies of occurrence of specific types of structural members at 
specific locations in the structural system. 

The experimental results are presented in the following section. 

5   Experimental Results 

5.1   Sensitivity Analysis 

The sensitivity analysis was conducted to determine optimal evolutionary 
computation parameters. It revealed that the multiobjective optimization progress 
(measured in terms of the number of non-dominated solutions found) depends mostly 
on values of two parameters: the rate of mutation and the size of the population. Fig. 3 
shows that low mutation rates (i.e., 0.05 and 0.1) produced the largest number of non-
dominated solutions for both problems. The number of all non-dominated solutions 
shown in Fig. 3 includes all non-dominated solutions generated during the entire run 
as opposed to only those solutions contained in the final population or in the archive. 

Similar pattern is presented in Fig. 4.  This time, however, the relationship between 
the number of non-dominated solutions and the size of the population is shown for 
Problem II only.  Fig. 4 clearly shows that the SPEA2 with the population size of 100 
produced the largest number of non-dominated solutions regardless of the mutation 
rate used. Thus, the sensitivity analysis of evolutionary computation parameters 
identified the most crucial ones and their corresponding optimal values.  These values 
(i.e., mutation rate of 0.05 and population size of 100) were subsequently used in 
further computational explorations reported in this paper. 
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Fig. 3. Impact of the mutation rate on the number of non-dominated solutions for both classes 
of structural design problems 
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Fig. 4. Impact of the population size and mutation rate on the number of non-dominated 
solutions 

5.2   Shape of the Pareto Front 

Fig. 5 shows typical results obtained during multiobjective topological optimum 
design experiments for Problem II.  It presents about 50,000 solutions generated by 
SPEA2 with population size equal to 100 and mutation rate equal to 0.05.  The 
solutions form three distinct regions:  
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Fig. 5. Typical results produced during a single run using SPEA2 for Problem II 

• One region located to the right corresponds to small values of the maximum 
horizontal displacements (between 4.3 and 5.3 in) and large values of the 
total weight (between 4,900,000 and 6,700,000 lbs). 

• Two adjacent regions to the left correspond to relatively large values of the 
maximum horizontal displacements (between 19 and 30 in) and small values 
of the total weight (between 370,000 and 620,000 lbs). 

In order to determine the shapes of Pareto fronts for both investigated problems, 
the results of the corresponding computational experiments were analyzed and non-
dominated solutions identified. Fig. 6 shows the approximate Pareto front for Problem 
I formed by its 133 non-dominated solutions.  The leftmost part of the front has been 
additionally magnified in a zoom window to more clearly present its structure.   

The structure of the identified Pareto front is essentially similar to the results 
presented in Fig. 5.  It forms two separate regions which show significant trade-offs 
between the two objectives. A relatively small reduction in the total weight of the 
structural system causes large increase in the value of the maximum horizontal 
displacement and vice versa.  Fig. 6 also provides upper and lower bounds on the 
ranges of variability of the total weight and maximum horizontal displacement for 
Problem I.  They are analyzed in more detail in the next section. 

Similar results were obtained for Problem II. Fig. 7 shows the structure of the 
Pareto front formed by 160 non-dominated solutions found in the conducted 
experiments.  As before, the front is divided into two separated regions located in the 
opposite corners of the two-dimensional objective spaces.  Again, the zoom window 
was used to magnify the leftmost part of the Pareto front and show more clearly its 
structure. 

The discussion of the similarities and differences between the shapes of Pareto 
fronts for Problems I and II is presented in the following section. 
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Fig. 6. Approximate shape of the Pareto front for Problem I (leftmost part of the front has been 
magnified in the zoom window for greater clarity) 
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Fig. 7. Approximate shape of the Pareto front for Problem II (leftmost part of the front has been 
magnified in the zoom window for greater clarity) 

5.3   Impact of the Aspect Ratio on the Pareto Front 

In Fig. 8, the shapes of obtained Pareto fronts for Problems I and II are compared. 
This illustrates the changes in trade-offs between the two objectives when the aspect 
ratio of the structural system in a tall building is varied. Fig. 8 shows that the aspect   
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Fig. 8. Comparison of the shapes of Pareto fronts for Problems I and II 

ratio has a significant impact on the location of the Pareto front in two-dimensional 
objective spaces.  When the ratio is high (Problem I), the leftmost part of the front 
achieves significantly higher values of maximum horizontal displacements (between 
19 and 29 in) than the values obtained for the low value of the aspect ratio. In the 
latter case, maximum horizontal displacements corresponding to non-dominated 
solutions in the left part of the Pareto front varied between 4 and 7 in. 

One can also observe significant shift to the right of the right part of the Pareto 
front for Problem I, when compared to the corresponding part of the Pareto front for 
Problem II.  In the former case, non-dominated solutions had the total weight between 
7,300,000 and 8,900,000 lbs with the maximum horizontal displacements from 0.6 to 
0.75 in.  In the latter case, the total weight ranged 4,900,000 to 6,700,000 lbs and the 
corresponding displacements varied from 4.4 to 5 in. 

5.4   Optimal Structural Topologies Along the Pareto Front 

Variations in optimal topologies along the Pareto front were analyzed visually and 
statistically. The statistical analysis focused on the leftmost part of the Pareto fronts 
corresponding to structural designs of feasible total weight (acceptable cost from the 
practical point of view).  It was discovered that major differences occur in the 
frequencies of occurrence of K or V and simple X or X bracings.   Fig. 9 shows the 
frequencies (in percent) of occurrence of these four types of wind bracings for two 
designs for each problem (a total of four designs) located in the left part of the Pareto 
front: 

• Top - corresponding to the minimum total weight and maximum horizontal 
displacement 

• Bottom – corresponding to the maximum total weight and minimum 
horizontal displacement (within the leftmost part of the Pareto front)  
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Fig. 9. Frequencies of occurrence of various types of wind bracings along the Pareto front for 
Problems I and II 

Fig. 9 clearly shows that the designs characterized by the minimum total weight 
and relatively large horizontal displacements use mostly K or V bracings instead of 
simple X or X bracings.  The opposite is true for the designs with minimum 
horizontal displacements and relatively large total weights.  As Fig. 9 shows, these 
findings are universal for Problems I and II and hence seem to be independent of the 
aspect ratio of the structural system. 

6   Conclusions 

In this paper, results of extensive multiobjective topological optimum design 
experiments were presented.  SPEA2 algorithm was integrated with a mathematical 
programming method to optimize topologies and cross-sections of structural members 
in steel structures of tall buildings with respect to two objectives (both minimized): 
the total weight and the maximum horizontal displacement of a tall building.  The 
experiments identified the structure of the Pareto front in the two-dimensional 
objective space as well its relationship to the aspect ratio of the tall building.  It was 
further discovered that there are significant differences in the frequencies of 
occurrence between two groups of bracings among non-dominated designs located in 
various parts of the Pareto front. The first group, containing K- and V-type bracings, 
was mostly found in the regions of the front corresponding to low values of the total 
weight and the large values of horizontal displacements. On the other hand, the group, 
containing simple X- or X-type bracings, occurred mostly in the regions with large 
values of total weight and relatively small values of horizontal displacements.   
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Abstract. Robust Design Optimization is the most appropriate approach to face 
problems characterized by uncertainties on operating conditions, which are  
peculiarity of aeronautical research activities. The Robust Design methodology  
illustrated in this paper is based on multi-objective approach. When a Pareto 
approach is used, a Multi Criteria Decision Method is needed for selecting the 
final optimal solution. This method is tested on an aeronautic case: the design 
of a transonic airfoil with uncertainties on free Mach number and angle of at-
tack. The final solution is compared with a well known airfoil: the new design 
performs as the original one , especially concerning lift and drag stability. 

Keywords: Robust Design, uncertainties, Multi-Objective, Multi Criteria  
Decision Making, airfoil. 

1   Introduction 

Multidisciplinary Design Optimization (MDO) is getting more and more important, 
especially in the aerospace community. The AIAA Association (American Institute of 
Aeronautics and Astronautics) has organized several sessions dedicated to the MDO 
(last session, AIAA 2004) and recently the First Session of MDO for specialists 
(AIAA, 2005). Consequently the development of numerical methodologies to solve 
this kind of problems is increasing in importance, in order to help industry during the 
phases of complex design. It seems useful to remark that designs, in particular in 
aeronautic fields, are extremely complex, because of the physic model and the huge 
number of input and output parameters. 

One important aspect in industrial design is the management of uncertainties, to 
find solutions which are not sensitive to stochastic fluctuations of parameters. The 
name of this design model is Robust Design.   

The need of Robust Design method appears in many contests, especially in Multi 
Disciplinary Design. In fact it is possible to find uncertainties in many different cases. 
During the preliminary design process the exact value of some input parameters could 
be unknown or the input parameters could change in the next design phases. Conse-
quently the aim is to look for a solution as less dependent as possible on unknown  
parameters. Other concerns are to find out solutions which are insensitive to the toler-
ance manufacturing parameters, to fluctuations in operative conditions or numerical 
fluctuations in the high fidelity simulation models.  
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The present paper shows a new optimization method that look for solutions which 
are insensitive to fluctuations, any source they are caused by. The method refers to the 
statistical definition of stability and is based on a multi objective approach, in particu-
lar on Game Theory. It is able to find good solutions for stability and performances. 

Finally an important aspect of multi disciplinary optimization is presented: the  
selection of the most interesting design among those obtained by a Multi Objective 
Optimization. It is known that a co-operative Game Theory gives a set of solutions 
(Pareto frontier). In order to choose the final design a Multi Criteria Decision Making 
(MCDM) algorithm has been adopted. 

MCDM is both an approach and a set of techniques, with the goal of providing an 
overall ordering of designs, starting from the most preferred to the least preferred one. 
Obviously no one alternative design will be the best in achieving all objectives; in ad-
dition, some conflict or trade-off is usually evident among the objectives: costs and 
benefits typically conflict. MCDM is a way of looking at (and solving) complex prob-
lems that are characterized by both costs and benefits. In this work we used an out-
ranking method that allows ranking the alternatives from the best to the worst one. 

2   The Idea of Robust Design in Aeronautics 

The study of uncertainties in engineering begins with Taguchi (Taguchi, 1978), who 
codified the methodology for the quality engineering. Taguchi divides the design in 
three different phases: the firsts one, called system design, determinates the most fea-
sible region for the following numerical optimizations, the second phase, called robust 
design, determinates the optimal parameter for maximizing the final quality of con-
sidered system, and in the third final phase, called tolerance design, a parameter tun-
ing is performed to reach the best possible final solution. 

The necessity to study uncertainty is well known in aeronautics; in fact it is possi-
ble to cite the definition of uncertainty given on AIAA Guideline (AIAA, 1998): 

Definition 1.2. Uncertainty: A potential deficiency in any phase or activity of the 
modeling process that is due to lack of knowledge. 
 
Notice that the uncertainty is defined how a lack of knowledge, which obviously leads 
to the need of a different approach for studying the model. 

From a numerical point of view the study of a model affected by uncertainties 
could be defined as: 

 

f : A × B  → ℜ where 
• a∈ A represents the design parameters chosen by the designers 
• b ∈ B represents the input parameters permeated by uncertainties consequently not 

controllable by designers. 
 

In (Trosset, 2005) the common uncertainties (parameter b) for external aerody-
namic are well described, in particular in the case of two dimensional airfoil design: 

1. Uncertainties on geometry parameters due to manufacturing tolerance ε which 
modifies the geometry parameters in a-ε  This situation is deeply explained in 
(Welch, 1989), where an airfoil with minimum drag over geometrical uncertainties 
is designed. 
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2. Uncertainties on operative conditions (design point): usually the fluctuations of 
free stream Mach number [Mmin, Mmax] are considered. For important references 
see (Drela, 1989, Wu Li 2003). 

 

In (Hicks 1977) it is well demonstrated why the study of fluctuations is of primary 
importance in external aeronautics. It is shown how minimizing the drag coefficient 
of an airfoil with fixed operative conditions, in particular the free Mach number, the 
final solution has good performance at the design point but poor off-design character-
istics (Fig. 1); this concept is known as over-optimization. 

 

Fig. 1. Drag profile for stable (Design 2) e not stable (Design 1) solution respect to Mach number 

This behavior becomes more evident for supercritical airfoils where the relation-
ship between drag and free stream velocity is highly nonlinear because of the fluctua-
tions of shock wave position on the airfoil surface. 

Consequently the possibility to determine solutions with good performances over a 
range of operative conditions appears attractive, also to avoid sudden changes in the 
behavior of the system; it is necessary to remember that a stable behavior minimizes 
the operative risk of the system. 

Many numerical methods have been developed to optimize a system under uncer-
tainties, in particular in the case of fluctuations of operative conditions. 

In (Wu Li 2003) a methodology based on multi-point optimization has been pro-
posed, using a sum-weighted formulation; in the examined example, the minimization 
of the drag coefficient of a lift-constrained airfoil is performed with uncertainties on 
cruise Mach number. The proposed formulation is: 

∑
=∈

n

i
iidi

Dd
Mdcw

1
,

),,(min α
α

 (1) 

subjected to 

nicMdc liil ≤≤≥ 1for),,( *α  (2) 

where wi are arbitrary weights, d is a set of geometric design variables that define the 
airfoil, Cd and Cl are the drag and lift coefficient defined as function of  free stream 
Mach number Mi and angle of attack αi which can fluctuate around the design point 
values, and Cl

* is the required lift. The problem of the Eq.1 is that the final result de-
pends on the choice of the weights wi, too arbitrary to define.  
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In (Huyse 2001) a new concept is introduced for the Robust Design and an ap-
proach different from the multi-point optimization is used. The innovative idea is the 
formulation of a risk ρ to minimize: 

∫
∞

∞∞∞=
M d dMMfMdC )(),(min ρ  (3) 

The term f(M∞),which appears in Eq. 3, is the probability density of the cruise 
Mach number. The risk (from Bayesian theory) represents the mean value of drag co-
efficient inside the fluctuations of operative conditions. The author proposes for the 
solution of the integral (Eq. 3) the use of a Taylor series of second order. 

In (Padula 2002), to avoid the arbitrariness of Robust Design formulation presented 
in (Drela 1998) and (Huyse 2001), an interesting methodology is proposed. The Mach 
number in the Eq. 1 is iteratively modified to calculate the integral Eq. 3 using the 
trapezoid rule. 

A new and interesting approach is proposed in (Wu Li 2003) where the authors 
have demonstrated that Robust Design problem has to be solved using a Multi Objec-
tive Optimization Approach. By the definition of stability, the numerical formulation 
of the problem becomes: 

))(),((min 2

(M)D,
dd ccE σ

α
 (4) 

subjected to 

Ω∈= McMMDc ll for)),(,( *α  (5) 

Mean and variance of Cd are defined as follows: 
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where p(M) is the probability density function of Mach Number defined in the inter-
val Mmin<M<Mmax. The solution of the above formulation normally is not easy, for 
these reasons the authors propone a Monte Carlo approach. 

This Robust Design formulation (Eqs. 4-7) gives the possibility to determine two 
directions in the optimization: by the variance of drag coefficient, it is possible to 
minimize the off-design performance degradation (fig.2, design at the bottom); on the 
other hand, by the optimization of drag coefficient mean value, the performances will 
be privileged (fig.2, design at the top). Let us notice that the Robust Design formula-
tion given by Eq.4 is based on a Multi Objective approach, so the final result will be a 
Pareto frontier, i.e. the set of solutions with the best compromise between the objec-
tive functions (fig.2, all the design of the Pareto frontier). The difficulty in this kind of 
approach could be find the number of high fidelity analysis needed to find the Pareto 
frontier; for this reason an alternative methodology is proposed using a descend direc-
tion that could reduce drag simultaneously and proportionally over the given range of 
Mach number.  
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Fig. 2. Pareto Frontier obtained by Robust Design Optimization (Performances vs. Stability 
Degradation) 

2.1   Why We Need a Multi Objective Approach 

In this work a new method for Robust Design optimization is presented. The main 
idea is to use a multi objective approach to reach the best possible compromise be-
tween performance and stability of design. Referring to Fig. 3, the function has an ab-
solute extreme and a relative one respectively corresponding to the coordinates x1 and 
x2; in this case the uncertainties are represented by the tolerance Δ on the input  
parameter x (the same case of manufacturing tolerance). Obviously a standard optimi-
zation, without considering the fluctuations, would find out the point x1 as the best 
solution that is the absolute maxima. But in x1 the objective function has poor stabil-
ity. In the case of Robust Design optimization (considering tolerance Δ) two different 
objectives have to be considered: mean performances and stability of solutions, ac-
cording to the ideas presented in (Wu Li 2003). Considering the mean performance 
inside the tolerance Δ, the best configuration would be represented by the point x1, 
since the mean value of the function is the highest. But for the stability, which corre-
sponds to an evaluation of the variance of function f(x) inside the field Δ (Eq. 7), the 
best configuration is represented by the point x2, because the function is characterized 
by a lower variability inside the tolerance around to the point x2. 

Consequently it is interesting to observe that when Robust Design optimization is 
performed, it is possible that the more stable region doesn’t correspond to the more 
performing one. So to perform an optimization under fluctuations the best way is to 
define two different objectives for every function to optimize: its mean value and its 
variance. In mathematical term it is: 
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Fig. 3. Function with two different extremes: x1 absolute no stable extreme, x2 relative stable 
extreme 

where f is the multi objective (in more general terms) function to be maximized and q 
are the uncertainties parameters, modeled by the probability density function p(q). 

In this way the problem of an optimization under uncertainties becomes a Multi 
Objective Optimization problem where the objectives are the stability and the per-
formance; to solve this problem we need to adopt the Game Theory (see chapter 2), 
which is the best methodology to solve a real multi objective problem without using a 
weighted function as: 

fw wfwf σ21max +=  (9) 

In fact it is tricky to assign a value to weights wi, and this is the reason because it is 
better to refer to Game Theory approach. It is interesting to notice that after the opti-
mization phase, using a Pareto Frontier approach, the designer does not get only one 
solution but a set of solutions (Pareto Frontier) which represents the best possible 
compromise between the objectives. An example of a Pareto Front for a Robust De-
sign Optimization can be observed in Fig. 2; among the Pareto frontier it is possible to 
choose different compromises between performance and stability, with more flexibil-
ity than a standard optimization, where the solution is unique. 

After finding the Pareto Frontier, the next phase it is the choice of the best design; 
the choice could be easy when there are not so many designs in the Pareto Frontier, in 
this case the designer could easily compare the different solutions and chose the best 
for his purpose. In this paper we present, completing our previous works (Pediroda, 
2006), a Multi Criteria Decision Making methodology that helps the designer when 
the Pareto Frontier is complex, caused by many different objective functions or by 
many different designs. In this case, applying the algorithm, it will possible to realize 
an automatic ranking of the solutions, simplifying the choice of the designer. 

It is important to underline that it is possible to face a wide range of problems with 
Robust Design approach (small manufacturing process errors, fluctuations in the op-
erative conditions, unknown input parameters, etc.). The method is also extendible to 
more than one function to optimize, for example it is possible to improve the lift and 
drag of an airfoil with fluctuations in the flight speed, without the need of a weighted 
function to tie the two different performances. 
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3   Game Theory on Robust Design 

Game Strategies, defined mathematically by J.Nash (Nash, 1951), have found their 
first applications in economics, in particular to solve the problems concerning the de-
cisions that have some effects on different and often competitive fields.  

These strategies may however be adopted also in the industrial design, and in par-
ticular they can be combined with evolutionary algorithms, in order to optimize a 
product according several criteria and contrasting objectives.  

We shortly describe the basic formulation of two typologies of Game Strategies 
(co-operative and competitive), and then we will show how it is possible to imple-
ment practically these algorithms to solve multi-objective optimization cases. 

In a problem of minimization of two functions fA(x,y) and fB(x,y), we define the 
variables space (x,y)∈X ∪Y as the set of rational strategies. Thus, we decompose the 
variable space between two “players”, called A and B, that are in charge respectively 
of the variable space X and Y; it follows that each pair (x,y)∈X ∪Y represents a 
combination of the strategies played by the two players. 

The Pareto front may be seen as the result of a co-operative game, in which the two 
players A and B try to minimize both the two functions; in other words, each strategy 
played by the players is evaluated by the fitness of the two functions. 

Not a single solution is found, but instead a set of solutions, which is called Pareto 
front. This set is characterized by the fact that there does not exits a solution such that 
both the two functions have a better fitness of any point of the front. In mathematical 
terms: 

(x*,y*)∈X ∪Y belong   to Pareto front if and only if: 

(x’,y’)∈X×Y  : 
( ) ( )
( ) ( )⎪⎩
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These definitions can of course be generalized in the case of n functions fi. 

4   Exhaustive Example: Multi Objective Robust Design 
Optimization of an AIRFOIL 

Using the Multi Objective Robust Design theory developed, we perform a more real-
istic optimization case consisting in the design of a non-symmetric airfoil based on 
RAE28222 geometry, using as flow solver the Navier-Stokes version of MUFLO and 
AIRFOIL codes (Haase 1983), which uses as turbulence model the Johnson-Coakley 
equations (fig. 4). The upper and lower side of profile are defined by two 10-degree 
Bèzier curves, and the co-ordinates of their control points are the variables of optimi-
zation (fig. 4). In total we have 18 design variables, which represent the position of 
the control points. 

The uncertainties concern Mach number (M=0.73±0.05) and the angle of attack 
(a=2°±0.5°). 
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Fig. 4. Airfoil mesh with MUFLO (a) and airfoil parameterization using Bezier curves (b) 

The optimization goal is to find out an airfoil geometry which yields better results 
respect to performances and stability, taking in account of the two uncertain parame-
ters (angle of attack and free Mach number). From a mathematical point of view the 
optimization problem becomes: 
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(11) 

We set seven constraints to optimization problem: the thickness of profile is fixed 
to be higher than 12% of the chord length, and the new configuration should present 
values better than or equal to the original RAE2822 airfoil corresponding to the mean 
and variance of drag, lift and pitching momentum coefficients. 

We handle the constraints in optimization algorithm by mean penalty function ap-
proach with tolerance fixed to a value of 10 percent of the constrain value (Poloni  
et al., 2000). 

For the objective function calculation needed in Eq. 11, we use an adaptive Monte 
Carlo methodology based on response surfaces (Poloni, 2003); on average for a de-
sign we need 10 high fidelity analyses. 

5   Results 

MOGA (Poloni, 1997) (Multi Objective Genetic Algorithm) has been used to solve 
the Multi Objective Robust Design Optimization of airfoils in transonic field and 
modeFrontier is the software used to implement MOGA. The problem has been set 
using 40 individuals per generation with 16 generations; for reducing the number of 



 Multi Criteria Decision Aiding Techniques 627 

high fidelity analyses and ensure a good approximation of the Pareto Frontier, we im-
plemented in the MOGA elitism and Multi Objective Directional Crossover (Yama-
moto et al., 1995). In Figure 6 the trend of objective functions during the optimization 
process is shown: it is possible to notice that the desirable trends have been reached. 
In particular it is possible to underline that a remarkable improvement has been 
achieved regarding the standard deviation of drag coefficient. In fact, the peculiarity 
to face an optimization of airfoils in transonic field according to the principles of Ro-
bust Design is to be able to look for stable solutions but at the same time with as 
much performances as possible. The RAE2822 was designed to have the highest per-
formances achievable corresponding to the operating condition considered but in this 
case it is evident that it has been possible to find more stable solutions especially con-
cerning the drag coefficient value. The shock waves are presented in transonic field 
and their position change with the operative condition, so this result is directly linked 
to the high variability of shock wave position. 

Having defined 4 objectives, according Pareto theory, the final solution is not 
unique but will be a set of solutions, which are the best compromises between the dif-
ferent objectives (Pareto frontier). Fig. 5 compares the configurations that belong to 
Pareto frontier (mean lift versus mean drag, and variance of lift versus variance of 
drag). It is possible to check that the optimization has been completed with success: in 
fact you can observe the position of the original design (RAE2822) compared with the 
others solutions. We obtain better results for stability and drag performance. But not 
all solutions belonging to the Pareto dominate the RAE design; for the mean lift coef-
ficient it is possible to note that some solutions show a small worsening of the per-
formance; this behavior is related to the tolerance for the constraint penalty function. 

 

Fig. 5.  Pareto Frontier representation in comparison with the original RAE2822 solution 

6   Multi Criteria Decision Making 

As in many other real-world problems, characterized by multiple objectives, attributes 
and different types of measures, which have to be satisfied simultaneously, the deci-
sion maker (DM) needs to articulate his preferences in terms of tradeoffs among  
objectives. Whether a multiple criteria decision problem appears naturally in life, in 



628 M. Ciprian, V. Pediroda, and C. Poloni 

engineering design it has to be necessarily (Sen &Yang, 1998): i.e. only one design 
among all the alternatives could be putted on production. 

Design selection problems are concerned with the evaluation or ranking of a set of 
available candidate designs in terms of multiple attributes and they form one impor-
tant class of engineering decision problems. Due to the complexity and often huge 
amount of data, the analysis of an engineering decision problem usually requires the 
support of a computerized system and this usually requires the mathematical model-
ing of the decision problem (Yang et al. 1996). 

In this work, in order to choose the more appropriate airfoil of Pareto frontier, a 
Multi Attribute Decision Making (MADM) method has been used: CODASID (Yang 
et al. 1996). This algorithm is based on an extended concordance analysis and a modi-
fied discordance analysis using raw data represented by a decision matrix and relative 
weights (with this method the DM may also assign veto threshold values to each at-
tribute: this kind of information has not been used in this work). The new concordance 
and discordance analyses are used to generate three new indices, namely a preference 
concordance index, an evaluation concordance index and a discordance index. These 
three indices provide independent measures for evaluation of each alternative design 
and span a new space for ultimate ranking of alternative designs. A distance measure is 
defined in the new space to capture the similarities between a feasible design and given 
reference designs, which may, for example, be the best/least preferred (or ideal/nadir) 
designs. The basic idea of defining such a distance measure originates from the 
TOPSIS method (Hwang and Yoon 1981). The new distance measure, however, is 
more general and able to take into account a limited compensation. 

In order to elicit and capture the DM’s preferences and to calculate a priority vector, 
the Analytic Hierarchy Process (AHP) coupled with the eigenvector method have been 
employed (Saaty 1980, 2003) on the pairwise comparison matrix shown in Table 1. 
AHP is a widely used multi-criteria decision analysis method; unlike the conventional 
methods AHP uses pairwise comparisons, which allows verbal judgments and should 
enhance the precision of the result. Skipping the whole theory of AHP, it is worth to 
note that the comparison matrix, which is used to quantify how much more important a 
criterion is compared to another one by using a linear scale 1/9, 1/7,…, 1, 2, …, 9, 
should be consistent; A={aij} matrix will have complete consistency, if the following 
conditions are satisfied: 

jinkjiaaaand
a

a ikikij
ji

ij ≠=∀== ;,,1,,
1 …  (12) 

In Table 1. it is possible to observe the relative importance of the different attributes: 
mainly the lift and drag performance are the most important objectives, followed by 
the stability (with a small privilege of the drag stability over the lift stability); the de-
signer after the optimization decided to take into account the moment coefficient too, 
but with a minor relative importance. 

In Table 2. the designer decided that any attribute don’t have a very strong impor-
tance when it is compared to the others; the result is a weight vector that allows the 
algorithm to find the best compromise design from all points of view. 
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Table 1. Pairwise comparison matrix of the objective functions (performances privilege case) 

 Mean 
CL 

Mean 
CD 

σCL σCD σCM 
Mean 
CM 

Mean 
CL 

1      

Mean 
CD 

1 1     

σCL  1/5 1/5 1    
σCD ¼ ¼ ½ 1   
σCM 1/8 1/8 1/8 1/8 1  

Mean 
CM 1/3 1/3 2 2 2 1 

Table 2. Pairwise comparison matrix of the objective functions (compromises privilege case) 

 Mean 
CL 

Mean 
CD 

σCL σCD σCM 
Mean 
CM 

Mean 
CL 

1      

Mean 
CD 

2 1     

σCL  ½ 1/3 1    
σCD     1 1 2 1   
σCM 1/5 1/5 1/5 1/5 1  

Mean 
CM 1/3 1/4 1/2 1/2 2 1 

How it is possible to observe in Fig. 6-7, the application of the different choices in 
the preference tables gives after the MCDM application different designs. The differ-
ent airfoils have different shapes, especially regarding the suction side of the profile, 
where the interactions between geometry and shock waves are bigger. This is an  
 

 

Fig. 6. Performance-Stability comparison inside the Pareto Frontier with the designs choose by 
MCDM 
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interesting consideration, when we remember that the performances stability of the 
airfoil is directly correlated whit the shock waves behavior in transonic case.  

In Tab. 3 the numerical comparison between the original airfoil and the optimized 
(after MCDM choice) is presented. An important improvement is presented especially 
for the drag coefficient: stability (variance) and performance (mean) are both de-
creased. For the lift, the mean value is stable, and a small improvement is reached for 
the stability. 

Regarding the designs chosen after MCDM, the most interesting difference is the 
lift mean value, where the design with performances privilege case gets higher value. 

 

Fig. 7. Geometry profile comparison between the original airfoil (RAE2822) and the two de-
signs choose by MCDM 

Table 3. Performance-Stability comparison between the original airfoil (RAE2822) and designs 
choose by MCDM after Multi Objective Optimization 

 Mean 
CL 

Mean 
CD 

Mean 
CM 

σCL σCD σCM 

RAE2822 0.610 0.0172 -0.0889 0.0546 0.0061 0.0082 
Best Performance 
Design 

0.611 0.0164 -0.0867 0.0544 0.0051 0.0071 

Best Compromise 
Design 

0.606 0.0161 -0.0885 0.0542 0.0046 0.0070 

7   Conclusion 

In this paper a new approach for Robust Design Optimization is presented in order to 
design a transonic airfoil with uncertainties on free Mach number and angle of attack. 
The main idea is to use a multi objective approach to reach the best possible between 
performance and stability of design. When uncertainties are present, a Multi Objective 
methodology is requested, so a Game Theory approach has been used, in particular a 
co-operative Game Theory has been performed, according to Pareto. To optimize a 
MOGA (Multi Objective Genetic Algorithm) has been used and the final set of  
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optimal solutions is the Pareto Frontier. To select the final optimal solution, the de-
signer has used a CODASID algorithm where he decided a pairwise comparison ma-
trix for selecting the weights of MCDM algorithm. The final solution is compared 
with a well known airfoil. The new design performs as the original one respect to 
every objective, especially concerning the lift and drag stability. 
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Abstract. In this paper a procedure for the multi-objective optimiza-
tion of an automotive cooling duct is described. The two objectives con-
sidered are the minimization of the pressure drop between the inlet and
the outlet of the duct and the maximization of the outlet flow velocity.
Since there is no a single optimum to be found, the MOGA-II was used
as multi-objective genetic algorithm. The optimization of the duct was
obtained employing a parametric model, performing flow analysis with
an open source suite and using a multi-objective optimization product.
The distributed optimization search exploited the parallelization capabil-
ities of the MOGA-II algorithm which allowed the evaluation of several
designs configurations by running concurrent threads of the flow analy-
sis solver. The results obtained are very satisfactory, and the procedure
described can be applied to even more complex problems.

1 Problem Description

The present work deals with designing the optimal shape of a duct in order to
minimize the pressure drop between the inlet and the outlet of the duct and
to maximize the outlet flow velocity (see Fig. 1). This process is normally com-
plex, time-consuming and relies heavily on engineering experience. In order to
reduce the product development time and satisfy the growing design require-
ments to stay competitive in the market, designers are giving more and more
importance to the quality of their work complying with the principle of finding
the best solution with the minimum effort. In this context, the designer can take
full advantage of efficient optimization algorithms that allow concurrent designs
evaluation on distributed computational resources.

The duct geometry in this example is located in the underbonnet of a
vehicle, and is responsible for channelling air from the side-grill (see Fig. 2)
towards the transmission for the purpose of cooling. Like most underbonnet
regions in modern vehicles there is a very compact and crowded compartment
with complex paths for air movement. Providing convective cooling with a side-
duct is considered beneficial for the reduction in the transmission surface and oil
temperatures.

The optimization procedure consisted of generating a parametric model of the
duct, performing a Computational Fluid Dynamics (CFD) analysis and using
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Fig. 1. Side grill inlet on a typical production car (Image courtesy of Audi AG)

Fig. 2. Underbonnet components included in the duct optimization model (Image cour-
tesy of Audi AG)

the multi-objective optimization software modeFRONTIER [4] to describe the
optimization process and find the optimal design layout.

Steps to perform the cooling duct optimization can be enumerated as follows:

1. Retrieve data and generate the parametric model
2. Create automatically a polyhedral mesh of the flow domain
3. Setup of CFD analysis running on a multi-CPUs cluster
4. Setup an automatized optimization strategy using modeFRONTIER
5. Perform automatic multi-objective optimization
6. Multi-Criteria Decision Making (MCDM) tool usage
7. Robust Design analysis
8. Final selection of best solution

The first stage in the work was to retrieve all the available data for the full
underbonnet simulation, which also included the baseline duct geometry. The
final geometry is presented in Fig. 2.
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Fig. 3. Example of duct parameters and duct shapes resulting from extreme parameter
combinations

Fig. 4. Example of a polyhedral mesh in the duct geometry

The next step established the parametrization and the range of variation
of the parameters controlling the geometry of the duct model. As a result, a
total of 16 parameters were adopted; Fig. 3 illustrates the admissible variation
of two of these parameters along with two configurations of the duct geometry
for deliberately extreme values.

The cooling duct geometry was then imported into the chosen mesh generator
(STAR–Design). The resulting grids were polyhedral with two wall extrusion
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layers of 0.6mm and 1.1mm respectively. The number of cells in the meshes
totalled approximately 35, 000 and required less than 3 minutes to be generated
in a single Intel Xeon CPU workstation running on Linux. An instance of such
a computational grid is shown in Fig. 4.

2 Summary of Flow Modeling with OpenFOAM

The CFD solver selected for this example was OpenFOAM [5], and open source
CFD suite. Automatic design optimization generally requires many CFD compu-
tations to converge towards the best design; consequently, an open source solu-
tion offers the freedom to exploit a large number of hardware resources without
the cost limitations imposed by commercial licensing.

The polyhedral mesh created in STAR–Design was first imported into Open-
FOAM format using the ccm24Foam conversion tool. A series of input script
files, written in OpenFOAM scripting language, were then employed to:

– set up the CFD problem, i.e.: apply boundary conditions, thermophysical
properties, turbulence models, solver controls, etc.;

– solve the CFD problem to convergence;
– post-process the CFD solutions to extract the values of the flow field variables

corresponding to the objectives functions of the optimization problem. Each
of these actions is automatically handled by modeFRONTIER.

The air flow was computed as an ideal-compressible-subsonic turbulent gas.
The standard high Reynolds κ − ε turbulence model with non-equilibrium wall
function was applied. The y+ values were verified at the walls on the model
for selected geometries. The SIMPLE solution procedure for pressure-velocity
coupling was employed in the calculations with the conjugate gradient linear
solver. Second order differencing schemes were utilized for all the flow
variables.

A mass flow boundary condition was applied at the duct inlet with a value
of 0.506kg/s. The prescribed flow direction was normal to the boundary with
an incoming air temperature of 300K. The turbulence intensity was set to 10%,
while the length scale was set to 0.025m. These conditions were approximated
from aerodynamic simulations and wind-tunnel data for the full vehicle for a
driving speed of 250kph. At the duct outlet, the static pressure was fixed at 0Pa
(relative to the operating pressure of 101, 325Pa). The surfaces representing walls
in the model were all defined to be adiabatic and no-slip stationary boundaries.

An upper limit of 500 iterations was specified in the event that a case would
not converge. Post-processing of the simulation results was also automated so
that modeFRONTIER could run the model analysis and extract/post-process
the necessary information in batch mode. This information included the area
average total pressure difference between the inlet and outlet as well as the area
weighted average velocity on the outlet boundary.
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3 Optimization Phase

The main effort in the optimization phase is dedicated to the work-flow defini-
tion, presented in Fig. 5 for the cooling duct application. The different compo-
nents in the work-flow define each of the stages in the automated optimization
process: the input variables, the objectives, the optimization loop settings, in-
cluding the initial points and the optimization algorithm.

Figure 5 summarizes a complex modeFRONTIER’s work-flow where Catia V5
[2] was used to perform the parametric shape variation running on a local Windows
machine; STAR–Design was run in batch mode on a single CPU remote Linux ma-
chine by using a special purpose DOS remote shell; OpenFOAM was run on a re-
mote 8 CPU Linux cluster. Since the concurrent run of threads of CFD solvers had
to meet the license availability for both CatiaV5 and STAR–Design tools, python
scripts were implemented in modeFRONTIER to perform the license polling as
well as the concurrent execution of the CFD analyses for each design evaluation,
thus maximizing the exploitation of the computational resources. Grid computing
promises to deliver benefits by making use of all the available hardware resources.
Grid technology [11] already showed its value in scientific research. More precisely,
this technology allows reduction of CFD running time, by means of simultaneous
computations on parallel hardware resources. As a result, large numbers of design
configurations are computed in appreciably shorter time if compared with analo-
gous tasks performed in traditional serial architectures.

Finally, given the multi-objective nature of the problem, a distributed and
multi-objective genetic algorithm was selected in modeFRONTIER. Since several
preliminary studies [6] showed no qualitative difference between the MOGA-II
and other state-of-the-art methods in the forefront of multi-objective optimiza-
tion (such as NSGA-II [1]), here we limited the study to MOGA-II. An in-depth
description of MOGA-II is provided in the Sect. 4.
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4 MOGA-II

MOGA-II is an improved version of MOGA (Multi-Objective Genetic Algorithm)
of Poloni [8]. It uses a smart multi-search elitism for robustness and directional
crossover for fast convergence. The efficiency of MOGA-II is controlled by its
operators (classical crossover, directional crossover, mutation and selection) and
by the use of elitism. The internal encoding of MOGA-II is implemented as in
classical genetic algorithms [3]. Each variable is represented as a binary string
where the length of the string depends on the base (the number of allowed values
for the variable). Elitism plays a crucial role in multi-objective optimization
because it helps preserving the individuals that are closest to the Pareto front
and the ones that have the best dispersion.

MOGA-II uses four different operators for reproduction: one point crossover,
directional crossover, mutation and selection. At each step of the reproduction
process, one of the four operators is chosen (with regard to the predefined oper-
ator probabilities) and applied to the current individual. Algorithm 1 shows the
reproduction in pseudo code.

Algorithm 1. Pseudo code of the reproduction used in MOGA-II

1: with (individual Indi ∈ generation G) do
2: choose reproduction operator
3: if (operator is one point crossover) then
4: j ← TournamentSelection, where j �= i
5: NewIndi ← OnePointCrossover(Indi, Indj)
6: else if (operator is directional crossover) then
7: j ← RandomWalk(i)
8: k ← RandomWalk(i), where k �= j �= i
9: NewIndi ← DirectionalCrossover(Indi, Indj , Indk)

10: else if (operator is mutation) then
11: NewIndi ← Mutation(Indi)
12: else if (operator is selection) then
13: NewIndi ← Indi

14: end if
15: end with

One point crossover is the most classical operator for reproduction. Two par-
ents are chosen and some portion of the genetic material (the design variables)
is exchanged between the parent variables vectors (see Fig. 6). The point of the
crossing site is randomly chosen and the binary strings are cut at that point.
The two head pieces are then swapped and rejoined with the two tail pieces.
From the resulting individuals, usually called children, one is randomly selected
to be the new individual. In MOGA-II, one point crossover starts by taking
the current individual Indi as the first parent. The second parent Indj is cho-
sen by means of a multi-objective tournament selection on a randomly selected
population subset: this operator returns the first non-dominated solution in the
subset.
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Fig. 6. One point crossover (left) and directional crossover between individuals Indi,
Indj and Indk (right)
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Fig. 7. Mutation example with DNA string mutation ratio set to 40%

Directional crossover is slightly different and assumes that a direction of im-
provement can be detected comparing the fitness values of two reference in-
dividuals. In [10] a novel operator called evolutionary direction crossover was
introduced and it was shown that even in the case of a complex multi-modal
function this operator outperforms classical crossover. The direction of improve-
ment is evaluated by comparing the fitness of the individual Indi from generation
t with the fitness of its parents belonging to generation t−1. The new individual
is then created by moving in a randomly weighted direction that lies within the
ones individuated by the given individual and his parents (see Fig. 6). A similar
concept can be however applied on the basis of directions not necessarily linked
to the evolution but detected by selecting two other individuals Indj and Indk

in the same generation (like shown in Algorithm 1).
The selection of individuals Indj and Indk can be done using any available

selection schema. In MOGA-II local tournament with random steps in a toroidal
grid is used. First of all, the individual subject to reproduction is chosen as the
starting point. Other individuals met in a random walk of assigned number of
steps from that starting point are then marked as possible candidates for the
first ”parent” Indj . The list of all possible candidates for the second ”parent”
Indk is selected in the same way in a successive (and generally different) random
walk from the same starting point. When the set of candidates is generated, the
candidate with the best fitness is chosen. The number of steps N in the random
walk remains fixed during the entire optimization run and is proportional to the
population size.

Mutation is an operator that ensures diversity from one generation to the
next. Using plain words we can say that mutation guarantees the algorithm
robustness. In MOGA-II it is possible to define the value of the so-called DNA
String Mutation Ratio. This value gives the percentage of the binary string that
is perturbed by the mutation operator.
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4.1 MOGA-II Results

MOGA-II was run with a population of 28 initial designs, evolving for 50 genera-
tions. The initial population was provided by the Sobol [9] method because of its
capability of increasing the convergence of multi-objective genetic algorithms [7].
The following parameter were used: directional cross-over probability 50%, clas-
sical cross-over probability 35%, selection probability 5%, mutation 10%, elitism
and steady evolution. When steady evolution is enabled, MOGA-II uses all the
values as soon as they are available in a first in – first out way guaranteeing
the complete parallelization of the optimization process. The total number of
evaluated designs was 1, 400 over a period of time of 72 hours. Each single com-
plete evaluation took an average of 15 minutes, the process was parallelized on
8 CPUs.

Figure 8 shows the optimization results for the two objectives: total pressure
drop dp and discharge velocity vmag. The chart clearly illustrates that the algo-
rithm generates a well-spread set of non-dominated points. Unfortunately, due
to the complexity of the problem, nothing can guarantee that this represents the
true Pareto front. Anyhow, the robustness demonstrated by MOGA-II on several
numerical tests [6] gives us high hopes that, at least, these points represent a set
of good solutions.
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Fig. 8. Total pressure drop dp versus discharge velocity vmag. The set of non-dominated
designs coming out from MOGA-II optimization.

5 Multi-criteria Decision Making

Since there are more than one conflicting objective to be optimized simultane-
ously, there is no longer a single solution, but rather a whole set of possible
solutions performing differently on the different objectives. Even though sev-
eral solutions may exist only one has to be chosen and ranking between all
the alternatives is a delicate issue. In order to facilitate the choice of a good
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Fig. 9. Ranking of a subset of the best designs produced by the MCDM tool (right)

compromise between objectives from a Pareto front, the Multi-Criteria Decision
Making (MCDM) tool featured in modeFRONTIER was employed.

In the case in study, the most important objective was to reduce the pressure
drop dp while getting the maximum possible values for velocity magnitude vmag
at the outlet. To avoid excessive Mach numbers inside the duct, the acceptable
velocity was set in the range 90 ≤ vmag ≤ 120m/s.

The MCDM tool was then employed in order to impose rational and transitive
(i.e. coherent) relationships in terms of pair-wise comparisons only. Following this
approach, all the designs falling under the range of the acceptable velocities were
considered. The set of non-dominated desings was then scanned by taking into ac-
count the new range imposed on the velocity magnitude. Unfortunately, no non-
dominated solutions were found in the range of [90, 100]m/s. Consequently, for
the latter range of velocity, the best designs in terms of pressure drop were added
to the set of the existing non-dominated points, thus leading to a final set of can-
didate solutions composed of twelve points in total. The two objectives were then
weighed within the MCDM tool, by assigning to both the objectives the same level
of importance in the range of acceptable velocities. As a result, the existing non-
dominated solutions were ranked, as shown in Fig. 9. Finally, the top three designs
were extracted from the output list produced by the MCDM tool.

6 Robustness of Solutions

In order to select the final design, a robust analysis was performed on the first
three candidate solutions achieved with the MCDM tool. All the deterministic
input variables have to be re-defined as normal stochastic distributions with a
specific value of standard deviation. In this way, for each design selected in the
previous step, N = 130 sample designs are created according to a multivariate
normal distribution with mean vector μ = (x1, . . . , x16) corresponding to the
nominal value of each geometrical parameter. All the variables are considered as
independent, hence the covariance matrix is a diagonal matrix and each standard
deviation is equal to the 10% of the nominal value (i.e. σi = 0.1xi).
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Fig. 10. Robustness analysis results: chart of the three different distribution samples
(left) and bubble chart of the standard deviation with respect to the two objectives
(right)

Fig. 11. Velocity magnitude at mid-span: baseline design (left) and optimized design
(right)

Each of the three different distributions was created using Latin Hypercube
Sampling (LHS) that is a particular Monte Carlo: more precisely it is a con-
strained Monte Carlo scheme. The constraint refers to the way each variable is
sampled: the statistical distribution is split into N = 130 equally probable inter-
vals, and then a random value is selected within each interval. In this way the
N points are relatively uniformly distributed over the density function range.

The results from the sensitivity analysis allows the selection of the best robust
design from the set of non-dominated solutions. The final configuration can now
be chosen by considering the lowest standard deviation of the objectives as the
main criterion, in addition to the standard optimization of the design objectives.

Figure 10 shows the response of the three candidate solutions based on the
design objectives. The color of each bubble indicates the standard deviation for
velocity magnitude, while the size of the bubble is proportional to the standard
deviation value for pressure drop. From this, the candidate with the lowest pres-
sure drop can be considered the best compromise in terms of velocity magnitude
and, most importantly, standard deviation of the two objectives. Consequently,
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it can also be considered to be the best robust solution of our multi-objective
optimization problem.

Results for velocity magnitude are compared in Fig. 11 for both the baseline
design and the optimized configuration. Overall, the pressure drop was reduced
from 357 to 330Pa, while the discharge velocity was increased from 39.4 to
107.8m/s.

7 Concluding Remarks

This paper aims to show the benefits of evolutionary multi-objective algorithms
such as MOGA-II applied to design process, by using parametric models and
distributed computational resources for flow analysis. The traditional design
process based on the ”trial-and-error” approach was replaced by an efficient
methodology in order to find out and screen the optimal layout of a cooling duct.
Table 1 summarizes the enhancement obtained from the original design in the
described optimization procedure. The fast and easy integration of OpenFOAM
in modeFRONTIER allowed improvement in the geometry of a cooling duct
located in the underbonnet region of a vehicle. The duct geometry was modified
through 16 parameters to minimize the pressure drop from inlet to outlet and
to maximize the discharge velocity in order to improve the cooling performance
of the vehicles transmission. The open source package OpenFOAM coupled with
the MOGA-II algorithm allowed a concurrent designs evaluation in a very short
time by an effective exploitation of all the computational resources available.

Table 1. Performance improvements

dp vmag

baseline design 357 Pa 39.4 m/s
optimized design 330 Pa 107.8 m/s
total improvement 27 Pa 68.4 m/s
% of improvement 7.56% 173.60%

A further robustness analysis was then performed on the candidate solutions of
the multi-objective problem extracted by using the MCDM decision support tool,
thus finally yielding the best stable design configuration in terms of performance.

References

1. K.Deb, S.Agrawal, A.Pratab, and T. Meyarivan. “A Fast Elitist Non-Dominated
Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II.” Proceed-
ings of the Parallel Problem Solving from Nature VI Conference, Springer. Lecture
Notes in Computer Science No. 1917, Paris, France, pp. 849–858, 2000

2. CATIA V5, See http://www.ibm.com/catia
3. D.E. Goldberg. “Genetic Algorithms in Search, Optimization and Machine Learn-

ing”. Addison–Wesley, Reading Mass, USA, 1989.



644 S. Poles et al.

4. modeFRONTIER version 3 Documentation. See http://www.esteco.com
5. OpenFOAM: The Open Source CFD Toolbox.

See http://www.opencfd.co.uk/openfoam
6. S. Poles, “Bench-marking MOGA-II”. Technical report 2004-001, Esteco, Trieste,

2003.
7. S. Poles, Y.Fu, E.Rigoni “The Effect of Initial Population Sampling on the Conver-

gence of Multi-Objective Genetic Algorithms”. MOPGP June 2006 Loire Valley,
France

8. C. Poloni and V.Pediroda. “GA coupled with computationally expensive simula-
tions: tools to improve efficiency”. In Genetic Algorithms and Evolution Strategies
in Engineering and Computer Science, pages 267–288, John Wiley and Sons, Eng-
land, 1997.

9. I.M. Sobol “On the Systematic Search in a Hypercube”. SIAM Journal on Nu-
merical Analysis, Vol. 16, No. 5 (Oct., 1979) , pp. 790-793.

10. K.Yamamoto and O. Inoue. “New evolutionary direction operator for genetic
algorithms”. AIAA Journal, volume 33, number 10, pages 1990–1993, 1995.

11. X.Yang and M. Hayes “Application of Grid techniques in the CFD field”. Proceed-
ings of Integrating CFD and Experiments in Aerodynamics, Glasgow, September
2003



Individual Evaluation Scheduling for

Experiment-Based Evolutionary Multi-objective
Optimization

Hirotaka Kaji1 and Hajime Kita2

1 Research and Development Operations, Yamaha Motor Co. Ltd.,
2500 Shingai, Iwata, Shizuoka, Japan

kajih@yamaha-motor.co.jp
2 Academic Center for Computing and Media Studies, Kyoto Univercity,

Yoshida nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
kita@media.kyoto-u.ac.jp

Abstract. Since the pioneer work of Evolution Strategies, experiment-
based optimization is one of the promising applications of evolutionary
computation. Recent progress in automatic control and instrumentation
provides a smart environment called Hardware In the Loop Simulation
(HILS) for such application. However, since optimization through exper-
iment has severe condition of limited evaluation time and fluctuation of
observation, we have to develop methodologies that overcome these prob-
lems. This paper discusses application of Multi-Objective Evolutionary
Algorithms (MOEAs) to experiment-based optimization of control pa-
rameters of dynamical systems. In such applications, we have to apply
various parameter candidates spreading near the Pareto frontier to the
system, and it causes fluctuation of the observed criteria due to the tran-
sient response by parameter switching. For reduction of loss time caused
by such transient response in evaluation of criteria, we propose techniques
called Evaluation Order Scheduling and Evaluation Time Scheduling.
Numerical experiments using a formal test problem and experiment in
a HILS environment for real internal-combustion engines have demon-
strated the effectiveness of the proposed methods.

1 Introduction

In these years, in automotive internal-combustion engines, their evaluation cri-
teria such as environmental emissions (CO, HC, NOx), fuel-consumption and
engine torque, have to be balanced simultaneously at high level. To achieve
such goals, many electronic control devices are mounted to the engines, and lots
of parameters of the Engine Control Units (ECUs) have to be adjusted ade-
quately. So far, this problem is solved by operator’s manual calibration through
experiment. However, to achieve higher engine performance on one hand and
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to enhance productivity of design process on the other, automatic design based
on multi-objective optimization is needed. One candidate is simulation-based
optimization. However, to construct a physical model of an internal-combustion
engine in detail requires a lot of effort, and it is not cost effective.

Since the pioneer work of Evolution Strategies [1,12,14], experiment-based
optimization1 is one of the promising applications of evolutionary computation.
Recent progress in automatic control and instrumentation provides a smart en-
vironment called Hardware In the Loop Simulation (HILS) for such application.
However, since optimization through experiment has to be completed under se-
vere restriction of evaluation time and fluctuation of observation, we have to
develop methodologies that overcome these problems.

In this paper, we discuss an experiment-based Evolutionary Multi-objective
Optimization (EMO) to calibrate control parameters of an automotive internal-
combustion engine using HILS. We have proposed a MOEA for noisy fitness
functions and a crossover operator for periodic functions [8,9] to overcome these
problems. However, because conventional MOEAs have been studied for simu-
lation-based optimization, no MOEAs proposed so far can handle the adverse
effect of the system dynamics appropriately. In this paper, we propose Individual
Evaluation Scheduling (IES) which is composed of Evaluation Order Scheduling
(EOS) and Evaluation Time Scheduling (ETS) for MOEAs to overcome this
problem by reducing loss time for waiting for diminishing of transient response
of engine control caused by parameter switching. The EOS is constructed based
on a local search method for the traveling salesman problem so as to reduce the
total magnitude of change in the parameters among population. Additionally,
the ETS is defined based on the Euclidean distances between individuals so as
to provide adequate estimate of length of loss time to wait.

This paper is organized as follows. In Section 2, our current studies are in-
troduced. In Section 3, to handle the system dynamics appropriately, individual
evaluation scheduling for MOEAs is introduced. The results of a test function
with dynamics and a real engine experiment are shown in Sections 4 and 5 re-
spectively. As a result, it is shown that the proposed method improves search
ability of MOEAs in experiment-based optimization of dynamical systems.

2 Current Studies

2.1 Experiment-Based Optimization Under Hardware in the Loop
Simulation Environment

In recent automotive development, we can use a smart environment called
Hardware In the Loop Simulation (HILS) for the experiment-based optimization,
thanks to the progress of automatic control and instrumentation. The HILS is a
technique for simulating a whole system by synchronizing a simulator with a real
machine to evaluate the performance of a large-scale system accurately in advance.
1 In this paper, the term of “experiment-based optimization” is used in the meaning

of “the system parameters of a real system are optimized directly by optimization
techniques in real time through experiments”.
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Fig. 2. The General optimization procedure using the RSM

Fig. 1 illustrates a engine HILS environment constructed by an engine test bed
and a real internal-combustion engine. The engine test bed consists mainly of an
ultra-low inertia dynamometer and a dynamo controlling computer having I/O
interfaces. The ultra-low inertia dynamometer is connected with the crankshaft
of the engine and the load is controlled in real time. Transmission and vehicle
models are implemented in the computer to evaluate the engine on a condition
almost equal to a real car. Moreover, an exhaust gas analyzer, a fuel flow me-
ter, and a combustion analyzer, etc. are connected to measure the performance of
engine. The ECU for engine control is connected with a calibration PC, and the
control parameters of the ECU can be changed by the PC freely. In addition, the
calibration PC monitors the outputs from the engine test bed, the instruments,
and the ECU. Therefore, the MOEAs implemented in the calibration PC can han-
dle this environment including a real machine in the similar way to a simulation.

In these days, the Response Surface Methodology (RSM) [10], which is a offline
optimization technique using statistical models, is widely used for engine param-
eter calibration [3]. Fig. 2 shows general optimization procedure that uses the
RSM. However, The HILS environment supports the automated measurement
of engine data, but other processes have to be executed manually. Additionally,
the RSM has following problems for the engine development:
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– Whenever the specification of the engine under development is changed, it
is necessary to reconstruct the response surfaces.

– When the engine having complex characteristics is approximated by a straight-
forward function such as second-order polynomial, there is a possibility for the
occurrence large estimation error, and the influence on the calibration can not
be neglected.

– If new control parameter is added, the configuration of response surfaces and
the test plan generated by the Design of Experiment (DoE) [10] should be
reexamined.

In experiment-based EMO, we do not need to build statistical models, and we
are able to use the result directly. Therefore, some processes such as the DoE and
the validation of optimal solution can be omitted, and the automated data mea-
surement using the HILS lightens the burden of parameter adjustment. Since a
certain number of the trial and error by MOEAs can be allowed, the experiment-
based EMO using HILS environment can be a smarter calibration technique.

2.2 Multi-objective Genetic Algorithm for Noisy Fitness Functions

While MOEAs are studied intensively by many researchers (e.g. [2]), most of the
work assume noise free evaluation. However, under the existence of noise, conven-
tional MOEAs do not work satisfactorily. Hence, we have proposed the Memory-
based Fitness Estimation and Distribution-based Selection GA (MFE-DSGA) [8]
as a MOEA for noisy fitness functions considering its application to experiment-
based optimization. The MFE-DSGA introduces three features: (1) a fitness es-
timation method, which is an enhancement of the MFEGA proposed by Sano et
al. [13] for EMO, (2) a selection method that pays attention to distribution of indi-
viduals, and (3) the α-domination strategy proposed by Ikeda et al. [7] for remov-
ing individuals which are misconceived as non-dominated individuals by observa-
tion noises. We applied this method to the optimization of a controller for real
engine in a HILS. Emissions of HC and NOx were optimized as a two-objective
optimization problem.The result of optimization are shown in Fig. 3.

Through the discussion with the experts of engine calibration, it was confirmed
that the result was appropriate as a performance of engine used by this exper-
iment, and the proposed method is useful for parameter calibration of ECUs
because the trade-off is visualized. On the other hand, it was understood that
the experts does not obtain the whole Pareto optimal set such as the EMO,
but the time necessary to find similar knowledge is less than half needed by
the EMO. To put this method into practical use, it is necessary to reduce the
total time for optimization to make it shorter than the operation time by the
experts at least. There are two approaches to shorten the optimization time: one
is removing factors which decrease search accuracy to attain fast convergence,
the other is reducing the number of evaluation of MOEAs. In this paper, the
former approach is examined. we have already proposed a crossover operator
for periodic functions which typically appear to the engine control and which
is introduced in Section 2.3. Moreover, to reduce the influence of dynamics of
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Fig. 3. Ultra-low inertia dynamometer used for the HILS (left) and population distri-
bution on the objective function space in multi-objective optimization of a real engine
(right)

the target system, we newly propose Individual Evaluation Scheduling which is
explained in Section 3. After that, these methods are combined and evaluated
in a real experiment in Section 5.

2.3 Crossover Operator for Periodic Functions

In engineering, a timing optimization for apparatus with cycling mechanism
such as internal-combustion engine can be defined as an optimization problem
of periodic function. For instance, in general four-stroke gasoline engines, the
fuel injectors inject fuel into the cylinders once while the crank shaft makes two
rotations. As a result, the fuel injection timing 0 and 720 degrees BTDC (Before
Top Dead Centre) have same combustion effect, and outputs of engine become
periodic functions for the fuel injection timing. However, naive application of
a real-coded GA to such problem faces difficulties of sampling bias2 [4,5] and
evolutionary stagnation3.

For these problems, we have proposed the UNDX-P (Unimodal Normal Dis-
tribution Crossover for Periodic function) [9] that enhances the UNDX propo-
sed by Ono et al. [11], a crossover operator for real-coded GA. Conceptual dia-
gram of UNDX-P is illustrated in Fig. 4, and the proposed algorithm is as follows:

1. Obtain a point (xp, yp) = (cos θp, sin θp) on a unit circle S1 corresponding
θp a variable of periodic function.

2. The UNDX is adopted for parents converted to points on a unit circle S1 =
{(x, y) ∈ R2|x2 + y2 = 1}, and children (xc, yc) are generated as points on
the two-dimensional space R2

2 Since most crossover operators of real-coded GAs often generate offspring to the
vicinity of the center of the search space, it is difficult to optimize functions whose
optimal solution exists near the boundary.

3 When plural powerful local optimal solutions exist far apart, offspring are generated
in the areas which step over them, and the search stagnates.
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Fig. 4. Concept diagram of UNDX for Periodic function. The UNDX is adopted for
three parents θ1, θ2 and θ3 converted to the points on a unit circle S1 (left). Angular
variables θc of the generated children on the R2 are calculated by Eq. (1) (right).

3. For each of the generated children, angular variable θc is calculated by

θc =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tan−1 yc

xc if xc ≥ ε

sgn(yc) ·
(
π − tan−1

∣∣∣ yc

xc

∣∣∣) if xc ≤ −ε

sgn(yc) · π
2 if |xc| < ε, |yc| ≥ ε

0 if |xc| < ε, |yc| < ε

(1)

where sgn(·) is the signum function, and ε is a sufficiently small positive
number4.

3 Individual Evaluation Scheduling for Dynamical
Systems

Experiment-based optimization has to be carried out under uncertainty such as
system and observation noise within the quite limited evaluation time which is
restricted by operation time and durability of machine. If the target system to
be optimized is a dynamical system, we have to wait until the transient response
caused by switching of system parameters are diminished and optimized, and
reduce its influence on observed performances. Since we have to apply many
parameter candidates distributed widely as population, we have to manage such
problems in evolutionary approach, especially in EMO.

As an example of a dynamical system, a time series of output torque where
control parameters of an engine was switched at constant intervals is shown
in Fig. 5. It is understood that the change of parameters cause the transient
responses. Hence, when the MOEAs are applied for the optimization of system
parameters of dynamical systems, the following dilemmas are caused:

– The performance of an individual should be measured after it settles enough
to evade the influence of the uncertainty caused by dynamics.

4 Generally, Eq. (1) is implemented in programming languages as a function called
atan2(y, x).
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Fig. 5. Transient response of an engine torque

– The measurement time of individual should be shortened as much as pos-
sible since MOEAs require lots of evaluation times under the limited total
evaluation time.

In this paper, we propose a method called Individual Evaluation Scheduling
(IES) to improve performance of experiment-based optimization of system hav-
ing dynamics. It consists of two ideas, i.e., Evaluation Order Scheduling (EOS)
and Evaluation Time Scheduling (ETS). The former one is a technique of decid-
ing evaluation order in the population to improve accuracy of the performance
by reducing the total magnitude of parametric change. The latter one is to adjust
waiting time for transient response.

3.1 Evaluation Order Scheduling

Consider a target to be optimized which is a stable dynamical system:

ẋ = f(x, a), (2)

where x = (x1, x2, . . . , xk) is a state variable vector, and a = (a1, a2, . . . , an) is a
system parameter vector represented by an individual of MOEAs and switched
at prescribed intervals. The transient response according to individual change is
caused by e.g., the shifting of the equilibrium point of Eq. (2). Fig. 6 shows con-
cept diagram of the invalid evaluation time generated by the transient response
due to the switching parameters.

It can be expected that the nearer parameter change makes the smaller equi-
librium point changes excluding nonlinear phenomena such as bifurcation. As
a result, the transient response can be expected to be suppressed, and if the
system settles at its steady state faster, the accuracy of the estimated value
can be improved. Hence, the problem is to find the order of evaluation of the
population that achieves the minimal total magnitude of parametric change. It
can be formulated as a similar problem of Traveling Salesman Problem (TSP).
For a TSP, when a certain circuit shown in Fig. 7 is given, a circuit replaced
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two arbitrary edges is called a 2-opt neighborhood. The local search using 2-opt
neighborhood is known as a simple but effective heuristics of the TSP. Note that
we have to find the shortest path with the starting point determined by the
system parameter used in the current operation. The EOS algorithm based on
the 2-opt method is described as follows:

1. A population whose order is optimized is defined as A0 = {a0, A}, where
A = {a1, a2, . . . , aN} is a population to be evaluated, N is the number
of individuals, and a0 is an individual which was evaluated at last in the
previous generation. Note that the order of a0 is fixed at the first one.

2. A permutation of A is defined as Z = (z1, z2, . . . , zN), and Z is initialized.
3. The path length dtotal is calculated by

dtotal =
N∑

i=1

dzi−1,zi, (3)

where z0 = 0, dzi−1,zi =
√∑n

l=1 wl(a
zi−1
l − azi

l )2, and wl is weight param-
eter. It should be noted that we do not need to obtain a closed path, and
therefore we exclude the length return to a0.

4. The path length of 2-opt neighborhoods of A0 given by Z are examined.
5. If there exists a path in the 2-opt neighborhood whose dtotal is shorter than

that of the current path, it is employed as a new path, and then return to
Step 4. Otherwise, Z is read out as a locally optimum permutation, that is,
the evaluation order of A.

Fig. 8 shows the concept diagram of the EOS. In the EOS, adequate nor-
malization of decision variables should be employed in advance, since we use
distance among parameter sets.
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3.2 Evaluation Time Scheduling

Along with convergence of the population, shift of a equilibrium point of a
dynamical system gradually diminishes. Consequently, the transient response
generated by switching individuals gradually becomes small as well.

Thus, we attempt to change the invalid evaluation time. Assume that the
EOS is adopted for the initial population A(0) and the current population A(t)
as generation t. First, the mean edge length of initial population is calculated as
d̄(0) = dtotal(0)/(|A(0)|−1), where dtotal(0) is the path length of A(0), and |A(0)|
is the size of A(0). The invalid evaluation time of a individual ai is adjusted as
follows:

IETi = IETmax · di−1,i

d̄(0)
, i = 1, 2, . . . , N, (4)

where IETmax is called the maximum invalid evaluation time, and it is a param-
eter to be set in advance.

4 Numerical Experiment

4.1 Experiment Settings and Measures

In this section, the performances of the proposed and conventional methods were
compared through simulation of a dynamical system. Consider the following
system consisting of four independent mass-damper-spring systems that share
common adjustable parameters K1 and K2:

Mẍ1 + Dẋ1 + K1x1 = −Mg (5)
Mẍ2 + Dẋ2 + K2x2 = −Mg (6)

Mẍ3 + Dẋ3 + 2K1x3 = −Mg (7)
Mẍ4 + Dẋ4 + 2K2x4 = −Mg, (8)

where xi is the position of the mass in which freedom length of spring is assumed
to be zero, M is the mass, D is a damping coefficient, and g is the gravity
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Fig. 9. Mass-damper-spring system (left) and its transient response (right)

acceleration, respectively. Consider a problem of putting positions x1, x2, x3, x4
to the desired position xd by adjusting K1, K2. Since the gravity acceleration
g affects vertical direction of each mass, the transient state is caused by the
movement of equilibrium points when K1, K2 are switched. With this system,
fitness functions are defined as:

f1 =
2∑

i=1

(xd − x̂i)2, f2 =
4∑

i=3

(xd − x̂i)2, (9)

where x̂ is the estimated value of the steady state position. The mass-damper-
spring system and the time series of Eq. (5) of which parameter K1 was switched
at random every five seconds are shown in Fig. 9. We can see that the transient
response caused by switching K conform to the example in Fig. 5 very well.

In this system, because the equilibrium points are different between Eqs. (5)(6)
and Eqs. (7)(8) for the same parameter set, there exists trade-off between f1 and
f2. For x̂, we used mean of sampled values taken in one second after the invalid
evaluation time since an individual was switched. The sampling rate was 100ms
on the simulation. As for parameter values, M = 1, D = 1, K1, K2 ∈ [1, 5],
g = 9.81, xd = −3 and w1 = w2 = 1 were used.

In this paper, the NSGA-II proposed by Deb et al. [2] was employed as a
MOEA. Individual was coded as a = (K1, K2). The population size |P | = 50,
and the offspring population size |Q| = 50 were used. The UNDX was used for
crossover. Since the evaluation value includes uncertainty due to dynamic behav-
ior of the system, the population was re-evaluated in this numerical experiment,
i. e., A(t) = P (t) ∪ Q(t) was used as the evaluation population. The search was
ended at the evaluation time of 5000 seconds on the simulation. The true fitness
functions excluding the system dynamics are calculated theoretically as follows:

f true
1 =

2∑
i=1

(
xd − Mg

Ki

)2

, f true
2 =

2∑
i=1

(
xd − Mg

2Ki

)2

. (10)
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In this experiment, 30 trials that used different initial populations were exe-
cuted, and performances of the MOEAs were compared by the mean values of
the trials for the two evaluation measures described below:

Coverage: This measure is proposed by Hiroyasu et al. [6], and it indicates the
ratio of Pareto-front which is covered by the population. The coverage is
defined as

C =
1
m

m∑
i=1

ci

cmax
, (11)

where m is the number of the objective functions, cmax is the number of
small areas where a hyper-plane composed of m − 1 objective functions are
evenly divided, and ci is the number of areas including the true fitness of
individuals projected to the hyper-plane. In our case, m = 2 and cmax = 25
were used.

Mean Absolute Error: This measure indicates the error of the population
for the true Pareto-optimal set. In this case, it is given by K∗ = {K1, K2 ∈
[1.635, 3.27]|K1 = K2}. The mean absolute error is defined as the mean value
of Euclidean distances from each individual to the nearest solution in K∗.

The concepts of the coverage measure and the mean absolute error measure are
illustrated in Fig. 10. We compared the following cases:

Case 1: normal NSGA-II, IETmax = 1 [sec].
Case 2: normal NSGA-II, IETmax = 4 [sec].
Case 3: NSGA-II+EOS, IETmax = 1 [sec].
Case 4: NSGA-II+EOS, IETmax = 4 [sec].
Case 5: NSGA-II+EOS+ETS, IETmax = 4 [sec].
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4.2 Discussion of Results

The results are shown in Fig. 11. The coverage and the mean absolute error
were greatly improved by EOS in the comparison between Case 1 and 3, while
the effect of the improvement was not too large in the comparison between Case
2 and 4. This is because the effect of the EOS became small since the tran-
sient response were settled by the enough invalid evaluation time on Case 2.
Therefore, the EOS which suppresses the uncertainty caused by the system dy-
namics is effective for real environments, in which it is difficult to secure the long
invalid evaluation time.

At the early stage of the search, the coverage of Case 3 was better than Case 4
because the number of generation could be increased in a same optimization time.
However, the coverage of Case 4 overcame the Case 3 at about 2000 seconds and
obtained the best result finally. On the other hand, for the mean absolute error,
the convergence velocity of Case 3 was the fastest.

For the ETS, the coverage of Case 5 improved at the rising velocity compa-
rably to that of Case 3, and the coverage of Case 5 that nearly equals to that of
Case 4 was obtained in the end. Additionally, the mean absolute error of Case 5
was slightly better than that of Case 4 after 3000 seconds. Table 1 indicates the
mean and standard deviation of the coverage and the mean absolute error, and
the case showing the best performance is indicated in the bold-font. In conclu-
sion, it is understood that the Pareto-optimal solutions having the high coverage
and the small mean absolute error were obtained by the EOS and the ETS.

5 Real Engine Experiment

5.1 Experiment Settings

To examine the effectiveness of proposed method, two MOEAs, the normal
NSGA-II and the NSGA-II+IES5 were implemented in the calibration PC re-
spectively, and the PC was connected to the ECU by serial communication.
5 NSGA-II+IES means NSGA-II+EOS+ETS.



Individual Evaluation Scheduling for Experiment-Based EMO 657

0.6 0.65 0.7 0.75 0.8 0.85 0.9
0.7

0.75

0.8

0.85

0.9

0.95

1

Torque [Normalized value]

F
ue

l−
co

ns
um

pt
io

n 
[N

or
m

al
iz

ed
 v

al
ue

] True fitness
Estimated value

0.6 0.65 0.7 0.75 0.8 0.85 0.9
0.7

0.75

0.8

0.85

0.9

0.95

1

Torque [Normalized value]

F
ue

l−
co

ns
um

pt
io

n 
[N

or
m

al
iz

ed
 v

al
ue

] True fitness
Estimated value

Fig. 12. Population distribution in the objective function space (left: NSGA-II, right:
NSGA-II+IES)

Table 1. Performance comparison of the test problem for five cases

Case Coverage Mean Absolute Error

Mean Std. Dev. Mean Std. Dev.

Case 1 0.66133 0.05251 0.04101 0.01050
Case 2 0.81533 0.02763 0.04765 0.00935
Case 3 0.85200 0.04888 0.02740 0.00746
Case 4 0.90667 0.03614 0.04106 0.00818
Case 5 0.88733 0.03503 0.02501 0.00615

Objective functions were to maximize engine torque and to minimize fuel-
consumption. They were measured at a constant engine speed. Decision vari-
ables were fuel-injection timing, ignition timing, target air-fuel ratio6 and valve
control parameter. In general, there is a trade-off between the engine torque and
the fuel-consumption, and this trade-off changes complicatedly by changing the
above-mentioned engine control parameters.

The population size |P | = 30, and the offspring population size |Q| = 30 were
used. Because the fuel-injection timing is a periodic function, the UNDX-P was
adopted as a crossover method. The population P was re-evaluated as we did in
the previous experiment. Search was terminated when the number of evaluations
reached 1530. The optimization sequence is as follows:

1. The calibration PC converts an evaluated individual into control parameters,
and then transmits it to the ECU.

2. The ECU operates the engine for a prescribed period with the received con-
trol parameters. Simultaneously, it transmits the sampled data of the engine
torque and the fuel-consumption to the PC in sampling intervals.

3. The PC calculates the fitness of control parameters using the received data
and executes the NSGA-II(+IES).

6 It is ratio of air and gasoline mass.
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After optimization, the true fitness of the individuals in the final generation were
verified by the measurement for a longer period.

5.2 Discussion of Results

Fig. 12 shows the population distribution of the estimated value and the true
fitness in the objective function space. Each axis is shown in normalized scales.
From this figure, we can see that the Pareto-optimal set shows straight line
shape, and the accuracy of estimated value of the NSGA-II+IES is higher than
that of the normal NSGA-II. We also show the comparison of the Pareto frontier
approximations by true fitness in Fig. 13. This figure indicates that the NSGA-
II+IES found a better convergence of Pareto-optimal set than the normal NSGA-
II, especially in high torque area around 0.8.

Fig. 14 shows the time series of the engine torque. We can see that though the
time series of the normal NSGA-II is largely vibrating, that of the NSGA-II+IES
change more smoothly. These results indicate the EOS can suppress the transient
response and improve the accuracy of the estimated values. Additionally, though
the search accuracy was improved, the search time of the NSGA-II+IES was
shortened about 13% to that of the normal NSGA-II by the ETS in the same
number of evaluation.

Through discussion with experts of engine calibration, we confirmed that the
characteristic of the Pareto-optimal set was appropriate enough as the perfor-
mance of the engine, although the optimization time was not reached somewhat
to the operation time of the experts. Therefore, it can be concluded that the IES
is an effective technique for the experiment-based EMO of real engines.

6 Conclusions

In this paper, we proposed the Individual Evaluation Scheduling for the
experiment-based evolutionary multi-objective optimization. Through numerical
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experiment using a formal test problem and experiment using a HILS environment
for real engines, it was shown that the proposed method improved search accuracy
and search time of MOEAs for dynamical systems simultaneously. Because the
proposed method is independent from specific MOEA, the IES is applicable to
various MOEAs. As future works, we will integrate this method and the MFE-
DSGA, and apply it to emissions optimization of engine control systems.
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Abstract. This paper presents a new approach for vehicle routing prob-
lems (VRPs), which are defined as problems of minimizing the total travel
distance. The proposed approach treats VRPs as multi-objective problems
using the concept of multiobjectivization. The multiobjectivization ap-
proach translates single-objective optimization problems into multi-
objective optimization problems and then applies EMO to the translated
problem. In the proposed approach, a newly defined objective related to
assignment of customers is added, because the assignment has a more im-
portant influence on the search results than routing in VRPs. We investi-
gated the characteristics and effectiveness of the proposed approaches by
comparing the performance on conventional approaches and the proposed
approaches.

Keywords: Vehicle Routing Problems(VRPs), Multiobjectivization.

1 Introduction

Vehicle Routing Problems (VRPs) are well known combinatorial optimization
problems arising in many distribution and transportation systems, such as postal
delivery, school bus routing, newspaper distribution, etc. VRPs have attracted
a great deal of attention in recent years due to their wide applicability and
economic importance.

VRPs can be described as the problem of minimizing the route cost from one
depot to a set of geographically scattered customers (points, cities, stores, etc.).
The routes must be designed in such a way that each customer is visited only
once by exactly one vehicle, all routes start and end at the depot, and the total
demands of any route must not exceed the capacity of the vehicle. In general,
the objective of VRPs is to find the minimum number of routes or the minimum
total travel distance [2]. As VRPs are good for exercising new heuristic search
techniques and have a high degree of complexity, metaheuristics such as Local
Search (LS) [1], Tabu Search (TS) and Genetic Algorithms (GA) [10] have been
proposed over the last number of years [2].

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 660–672, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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On the other hand, there has been a great deal of progress in the study
of evolutionary computation of multi-objective optimization (EMO) over the
last decade [5]. In the field of EMO, there have been a few reports concern-
ing the unique approach of “multiobjectivization” [7]. The multiobjectivization
approach translates single-objective optimization problems into multi-objective
optimization problems and then applies EMO to the translated problem. The
most important feature of multiobjectivization is that it provides more freedom
to explore and to reduce the likelihood of becoming trapped in local optima by
adding additional objectives.

In this paper, we propose a new approach for VRPs, which treats VRPs
as multi-objective problems using the concept of multiobjectivization. There
have been many studies using EMO to optimize multi-objective VRPs [9], with
objectives including the number of routes and total travel distance or number
of routes and duration of routes, etc. In these studies, EMO treats the original
objective of VRPs directly as multi-objective.

On the other hand, our approach deals not only with the original objective of
VRPs but also with newly defined objectives related to assignment of customers.
Generally, VRPs seem to have two different determinations: the assignment of
customers and the order of the route. The assignment of customers is known
to have a stronger influence on the search than the order of the route in many
studies [6]. Therefore, we expect that the proposed approach will get better
solutions in minimization of the total travel distance than the approach using
only the total travel distance as a single objective.

Main concern of this multiobjectivization is whether additional objectives will
work to accelerate the search in the original problem. We investigated the char-
acteristics and effectiveness of the proposed approach by comparing the per-
formance of the conventional approach and multiobjectivization approach. In
numerical experiments, we used Taillard’s test functions as a benchmark prob-
lem. In addition, we used NSGA-II reported by Deb et al. [3] in implementing
our approach. Through numerical examples, we showed that the proposed mul-
tiobjectivization approach can obtain the solution with good quality and little
variation in VRPs.

2 Vehicle Routing Problem

This paper deals with the most elementary version of VRPs, the capacitated
VRPs (CVRPs), which can be described as follows [2]:

• All vehicles start from the depot and visit the assigned customer points, then
return to the depot. Here, a route is formed by the sequence of the depot and
the customer points visited by a vehicle. Therefore the number of vehicles is
same as the number of route. Moreover, each customer is visited only once
by exactly one vehicle.
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• Each customer asks for a weight wi(i = 1, . . . , N)1 of goods and a vehicle
of capacity W is available to deliver the goods. In this paper, we used the
same capacity W for all vehicles.

• A solution of the CVRP is a collection of routes where the total route demand
is at most W .

VRPs have a number of objectives, such as minimization of the total travel
distance, minimization of the number of routes, minimization of the duration of
the routes, etc. In this paper, we used minimization of the total travel distance
(Fsum) as the objective of the VRPs. The formula of the objective is as follows:

minimize Fsum =
M∑

m=1

cm (1)

where M is the total number of routes and cm indicates mth route distance. The
formula for cm is as follows:

cm = cm
0,um

1
+

nm−1∑
i=1

cm
um

i ,um
i+1

+ cm
um

nm
,0 (2)

where cm
i,j indicates the distance from customer i to customer j. um

i represents the
ith customer to be routed in the mth route and “0” is the depot. nm indicates the
total number of customers in the mth route. Here, the total number of customers
is N =

∑M
m=1 nm.

VRPs have a constraint on the vehicle capacity W . In this paper, we used the
same capacity W for all vehicles. The formula of the vehicle capacity W is as
follows:

W ≥ wm =
nm∑
i=1

wum
i

, (m = 1, . . . , M) (3)

where wm indicates the amount of customers’ weight in the mth route and wum
i

represents the weight of the goods for the ith customer to be routed in the mth
route.

As noted above, in VRPs it is necessary to find a set of sequences of cus-
tomers that will minimize the total travel distance. In addition, it is necessary
to determine the following two points:
1) assignment of customers
2) routing (the order of coustomers)

3 The Multiobjectivization of Vehicle Routing Problem

In this paper, we propose a multiobjectivization approach, a newly defined objec-
tive related to assignment of customers is added for explicitly taking into account
of the evaluation of customer assignments. In this section we describe the pur-
pose of multiobjectivization and the evaluation method related to assignment of
customers.
1 N is the number of customers.
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3.1 The Purpose of the Proposed Multiobjectivization Approach

As described above, two types of decision elements should be considered in VRPs.
Among two decisions, the assignment of customers has a stronger influence on
the search than the order of customers, because the order of customers can be
determined under the fixed assignment of customers to the specific vehicle. If the
assignment determination is not appropriate, good solutions cannot be obtained
even if the best order is determined for all routes.

However, there have been no previous reports of VRPs explicitly taking into
account evaluation of customer assignments. As a hierarchical search between the
assignments and order determination, Bent et al. proposed a two-stage hybrid
local search that first minimizes the number of vehicles using SA, and then
minimizes the total travel distance using a large neighbourhood search [1]. In
addition, Nanry et al. reported a hierarchical search using Reactive Tabu Search
(RTS) to the customer assignments and the order determination [8]. However,
these approaches do not evaluate the customer assignments directly, and evaluate
only the original objective of VRPs: the total travel distance and the number of
vehicles.

The proposed approach treats two types of decision elements independently.
But this approach uses the same solution strategy for these decisions, not using
individual solution strategy as a hierarchical search. Treating VRP as multi-
objective problem, we can handle two different decisions concurrently and
independently.

3.2 The Evaluation Method Related to Assignment of Customers

In the proposed approach, we capitalize on the objective functions using “Multi-
objective clustering with automatic determination of the number of clusters
(MOCK) [4]” to evaluate customer assignments.

Clusters and data points in clustering problems can be assumed as routes
and customers in VRPs, respectively. Therefore, the objective functions used by
MOCK can be diverted to evaluation of the customer assignments in VRPs.

MOCK adopts the following two functions, which reflect two fundamentally
different aspects of good clustering solutions.
1) The global concept of the compactness of clusters.
2) The local concept of the connectedness of data points.

The first of these clustering objectives evaluates the overall density of clusters
as the compactness, and the latter evaluates the degree to which neighbouring
data points have been placed in the same cluster as the connectedness.

The overall density of clustering solutions, which reflects the overall intra-
cluster spread of the data, is computed as:

Dev(C) =
∑

Ck∈C

∑
i∈Ck

δ(i, μk) (4)

where C is the set of all clusters, μk is the centroid of cluster Ck and δ(., .)
represents the distance function (Euclidean distance).
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The second objective function, connectivity, evaluates the degree to which
neighbourhood data points have been placed in the same cluster. The second
objective function is presented as the following formula:

Conn(C) =
N∑

i=1

⎛
⎝ L∑

j=1

xi,nni(j)

⎞
⎠ , xi,nni(j) =

⎧⎨
⎩

1
j

if �Ck : i, nni(j) ∈ Ck

0 otherwise,
(5)

where nni(j) is the jth nearest neighbour of datum i, and L is a parameter de-
termining the number of neighbours that contribute to the connectivity measure.
xi,nni(j) represents the penalty value related to whether data i and jth nearest
neighbour of data i are placed in the same cluster or not.

In Eq.(5), if data i and jth nearest neighbour of data i are not placed in the
same cluster , 1

j is added as the penalty value xi,nni(j). Therefore, greater values
of Eq.(5) indicate the tendency of a clustering solution in which neighbouring
data are not placed in the same cluster.

In these different objectives, it is very important that the value of Dev(C)
is decreased with increasing number of clusters, while Conn(C) is increased by
increasing the number of clusters2. Therefore, Dev(C) and Conn(C) are in a
trade-off relationship with the number of clusters.

Here, we examine the effectiveness of multiobjectivization to VRPs in which
one or both of the above-mentioned objectives are added to the original objective.

4 Implementation of GA

In this section, we describe the implementation of GA to multi-objective VRPs
based on multiobjectivization as described above.

4.1 Gene Expression (String Representation)

Various coding methods for VRPs have been proposed. In this numerical exper-
iment, we used all routes directly as the genotype. In other words, the genotype
in this numerical experiment is the same as the phenotype that represents the
order of all routes. Therefore, there is no need for translation between genotype
and phenotype.

4.2 Population Initialization

The average number of customers in one route can be calculated using the vehicle
capacity W and a weight wi(i = 1, . . . , N) for each customer. In this numerical
experiment, the initial population was generated by random sampling that all
routes for each individual must be equal to the average number of customers.
The initialization process starts by inserting customers one by one into an empty
route in random order until the number of customers in the route is equal to the
average number of customers.
2 Because it becomes difficult to place near-neighbour data in the same cluster.
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Fig. 1. The concept figure of PRIC

If an initial solution is not feasible, we used the repair method (stated in
Section 4.6) to make it feasible. Therefore, all solutions of the initial population
are feasible.

4.3 Crossover

As genotype has the same coding as phenotype, general crossover operators
for VRPs, such as PMX, OX and EX, could not be adopted in this numerical
experiment. Therefore, we implemented a new crossover operator, Partial Route
Inheritance Crossover (PRIC), which aims to inherit as much as possible of the
parents’ route information.

In PRIC, the first child inherits half the routes of one parent directly, and
then the remaining customers that are not in one parent are inherited using
the route information of the other parent. The ratio of direct inheritance from
parents to children should have strong effects on the search performance. Here,
we designed the method to copy the half of routes in one parent directly.

Fig. 1 shows the procedure of PRIC, the details of that are described as
follows:
Step 1: Selecting two parents (Parent1 and Parent2) randomly.
Step 2: Copying the half of routes in Parent1 to child.
Step 3: The remaining customers that are not in Parent1 are inherited by the

routes of Parent2. If the number of routes in the child is complete, the
simulation goes to Step 4. If not, the simulation is terminated.

Step 4: Until the number of routes in the child becomes equal to the number of
routes in Parent1, routes copied in Step 3 are integrated using the following
procedure:
Step 4-1: The routes copied in Step 3 are sorted according to increasing

number of customers included.
Step 4-2: Each of the routes according to the sorted order is integrated into

the nearest route. The distance between routes is calculated using Eu-
clidean distance between the centred coordinates of the route (including
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the depot). Therefore, the integration of routes is performed between
the closest routes related to the centred coordinates. In this integration,
customers are added to the bottom of the nearest route.

In Step 4 above, the routes with a small number of customers are integrated
to decrease the total number of routes. Since the remaining customers that are
not selected in Parent1 are picked out from Parent 2 routes, a lot of routes with
small numbers of customers are produced (Step 3 in Fig. 1).

PRIC includes not only the effect of the inheritance of parents’ routes but also
the effects of the integration of routes and the re-shuffling of customers between
routes.

4.4 Mutation

In this paper, we used six kinds of operators as mutation:

1) 2-opt*(asterisk) [2]
2) or-opt [2]
3) Relocate Operator [2]
4) Exchange Operator [2]
5) Integration of different routes into one route
6) Division of a route into two routes

2-opt*(asterisk) swaps sub-routes between different two routes, and or-opt
replaces the sub-route with L customers in a random chosen route. Also, Relocate
Operator simply moves a customer from one route to another and Exchange
Operator swaps two customers in different routes.

We randomly selected one out of the 6 operators as mutation operator at each
generation.

4.5 The Decision of Start and End Point in a Route

In this paper, the start and end customers in a route are decided in the evaluation
phase. As the decision of start and end customers determines where to insert
the depot in the sequence of customers, we used saving method [2] to insert the
depot with the minimum total travel distance. Therefore, the optimal insertion
point of the depot in the sequence of customers can be decided.

4.6 Treatment of a Solution with Constraint Violation

As VRPs have the constraint of the vehicle capacity, we should implement a
repair method as a constraint handling technique. We used the repair method
to divide an infeasible route into two routes. In this technique, a set of customer
sequences satisfying the capacity constraint forms one route, and then the re-
maining customer sequences forms another route. Therefore, all solutions in this
example are feasible.
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Table 1. GA Parameters

population size 200

crossover rate 1.0

mutation rate 1/bit length

number of trials 30

Table 2. Problem Instance

Problem N W w̄ C(w)

tai75c(C = 0) 75 1122 127 0.0
tai75c(C = 0.6) 75 1122 163.2 0.6
tai75c(original) 75 1122 126.9 1.6
tai100d(C = 0) 100 1297 136 0.0

tai100d(C = 0.8) 100 1297 135.7 0.8
tai100d(original) 100 1297 135.7 1.6

5 Numerical Examples

In this study, we investigated the characteristics and effectiveness of the proposed
approach by comparing the performance of both the conventional approaches
and multiobjectivization approaches. To verify the effectiveness of multiobjec-
tivization of VRPs, VRP instances provided by Taillard et al.3 were used. In
implementing our proposed approach, we used NSGA-II proposed by Deb et
al. [3]. Table 1 shows the GA parameters.

5.1 VRPs Instances

We used six types of instances: tai75a, tai100d and newly defined four changing
the variation coefficient (C) of the customer weight wi(i = 1, . . . , N) in tai75a
and tai100d4. The characteristics of the instance are described in Table 2. Table
2 represents the number of customers(N), the vehicle capacity(W ), the average
of the customer weight(w̄), standard deviation(σ(w)) of the customer weight
wi(i = 1, . . . , N), and the variation coefficient (C(w)) of the customer weight.

In Table 2, tai75c(C = 0) and tai75c(C = 0.6) are the problems of chang-
ing the amount of the customer weight wi(i = 1, . . . , N) in tai75c(original) so
that the amounts of the variation coefficient of customer weights are about 0
and 0.6 respectively (the customer location and the vehicle capacity of these in-
stances are the same as original instance). In the same way, tai100d(C = 0) and
tai100d(C = 0.8) are modified so that the amounts of the variation coefficient
of tai100d(original) are about 0 and 0.8 respectively.

The small value of the variation coefficient indicates that customer weights
are homogenized. More homogenized customer weights make it easier to decide
the assignment of customers, because simple heuristic approach, in which neigh-
boring customers merge into the same cluster, can be worked effectively in this
case. In contradiction to this, the higher value of the variation coefficient make
it more difficult to assign customer. In this case, the performance related to as-
signment of customers seems to influence the quality of the obtained solutions
more strongly.

3 These test problems are available at http://neo.lcc.uma.es/radi-aeb/WebVRP/
4 The variation coefficient (C) is the value that standard deviation was divided by the

mean value. C is the index that represents the degree of variation.

http://neo.lcc.uma.es/radi-aeb/WebVRP/
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Table 3. The four type experiments of NSGA-II

method f1 f2 f3

Conventional 1 fEq.1 fEq.1 —

Conventional 2 fEq.1 The number of routes —

Proposed 1 fEq.1 fEq.4 —

Proposed 2 fEq.1 fEq.5 —

Proposed 3 fEq.1 fEq.4 fEq.5

1300

1325

1350

1375

1400

1425

1450

Conventional 1
Proposed 2

Proposed 1 Proposed 3
Conventional 2

1540

1560

1580

1600

1620

1640

1660

1680

1700

Conventional 1
Proposed 2

Proposed 1 Proposed 3
Conventional 2

1300
1325
1350
1375
1400
1425
1450
1475
1500

Conventional 1
Proposed 2

Proposed 1 Proposed 3
Conventional 2

1675

1700

1725

1750

1775

1800

1825

1850

Conventional 1
Proposed 2

Proposed 1 Proposed 3
Conventional 2

1620
1640
1660
1680
1700
1720
1740
1760
1780
1800
1820

Conventional 1
Proposed 2

Proposed 1 Proposed 3
Conventional 2

1620
1640
1660
1680
1700
1720
1740
1760
1780
1800
1820
1840
1860

Conventional 1
Proposed 2

Proposed 1 Proposed 3
Conventional 2

tai75c(C=0) tai75c(C=0.6) tai75c(original)

tai100d(C=0) tai100d(C=0.8) tai100d(original)

Fig. 2. The results of the total travel distance

5.2 Results and Analysis

In this study, we used five types of NSGA-II experiment based on the imple-
mentation of objectives (f1 and f2). Table 3 shows the 5 experiments. In Table
3, the first objective, which is common to all experiments, is the total travel
distance (Eq.(1)).

In this experiment, termination conditions of the instances with 75 customers
(tai75c(C = 0), tai75c(C = 0.6) and tai75c(original)) was 5000 generations, and
those of the instances with 100 customers (tai100d(C = 0), tai100d(C = 0.8)
and tai100d(original)) was set to 7500 generations.

We performed 30 trials and all results are shown as averages of 30 trials.
The results of the 6 instances are shown in Fig. 2. Fig. 2 shows the minimum,
maximum and average values in which the objective value represents the total
travel distance. Also, Fig. 3 shows the standard deviation of the solutions so
as to evaluate the degree of variation of the solutions. In multiobjectivization
approaches, the solution with the minimum total travel distance is treated as
the final best solution in each trial. In concrete terms, the solutions with the
minimum f1 value of each experiment are used as the final results.
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Fig. 3. The standard deviation of the solutions

As shown in Fig. 2, the solutions of multiobjectivization (three proposed ap-
proaches) were better than those of the conventional approaches. Especially, the
difference in quality of the obtained solutions between the conventional and the
proposed approaches increased with larger customer size and variation coefficient
(C) value. From the width between minimum and maximum in Fig. 2 and the
degree of variation in Fig. 3, it was also clear that the proposed approaches can
obtain the solution with good quality and little variation at each trial. These re-
sults confirmed that proposed multiobjectivization approaches are more effective
for VRPs than both the conventional approaches.

The increase in the number of objectives usually degrades the convergence of
solutions to the Pareto front. But the multiobjectivization in this paper doesn’t
show this tendency, since additional objectives don’t yield the trade-off rela-
tionship between original and additional objectives. In this paper, additional
objectives can help to accelerate the search for original objective. The results of
Fig. 2 enhance the legitimacy of this inference.

The transition of the objective values
Here, we describe the transition of the objective values in each approach. The
transitions of the objective values in tai100d(original) are shown in Fig. 4. The
four objective values in Fig. 4 are the total travel distance(Eq.(1)), the number
of routes, compactness (Dev(C)) and connectivity (Conn(C)). As these objective
values of Fig. 4, we used the objective value of the individuals with minimum
value of the total travel distance in the generation5. In these figures, the horizon-
tal axes indicate generation and the vertical axes indicate each objective value

5 Therefore, all objective values except the total travel distance may make a change
for the worse.
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Fig. 4. The transition of the objective values

and the values of generation are described on a log scale (common logarithm).
Also, all results are shown as averages of 30 trials.

From Fig. 4, there seem to be some sort of relationships between each ob-
jective values, because all objective values were decreased by a large generation
number. But the values of compactness and connectivity in three proposed ap-
proaches were increased with more than 200 generations. Therefore the correla-
tions of compactness and connectivity with near the minimum value of the total
travel distance are guessed to be low or slight trade-off relation.

The transitions of the total travel distance had similar tendencies in all ap-
proaches. But the transition of Conventional2 with the total travel distance and
the number of routes as objectives were a more slower slope for less than 150
generations as compared to the other approaches. On the other hand, when con-
sidering the transition of the number of route, Conventional2 got the smaller
value in earlier generations as compared to the other approaches. This was be-
cause Conventional2 explicitly evaluate the number of route.

And in terms of the objective value of compactness and connectivity, three
proposed approaches yield better results. It is interesting that Proposed3 with
both objective functions of MOCK was better than Proposed1 and Proposed2
with one or other of two MOCK functions. Therefore it is apparent from Fig. 4
that Proposed3 is better in terms of assignment of customers than other
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multiobjectivization approaches with one or other of MOCK functions. On the
other hand, the results concerning compactness and connectivity of Conven-
tional2 with the minimization of the number of routes as second objective func-
tion and that of Conventional1 are not so different and worse than that of
Proposed3. Therefore, the minimization of the number of routes doesn’t have
a strong effect on the assignment of customers.

6 Conclusions

In this paper, we proposed a new approach based on multiobjectivization for
vehicle routing problems (VRPs) with a single objective. This approach treats
VRPs as multi-objective problems in which a newly defined objective related
to assignment of customers is added. As the objective related to assignment of
customers, we used two objective functions used by MOCK, i.e., the compact-
ness of clusters and the connectedness of data points. This multiobjectivization
aims to accelerate the search for original objective by adding supplementary
objective. We investigated the effectiveness of the proposed multiobjectiviza-
tion approaches by comparison of its performance with that of the conventional
approaches. Numerical experiments clarified the following points:

1) multiobjectivization approaches can obtain the solution with better quality
and less variation at each trial. Therefore, Also, the experimental results
indicate that multiobjectivization using both additional objectives is more
effective than using either alone.

2) From the results of the transition of the objective values in the course of
the search process, it was confirmed that the multiobjectivization approach
using MOCK functions is very effective for the assignment of customers,
while the minimization of the number of routes have little effect on the
assignment of customers. Also, the three multiobjectivization approach using
both objective functions of MOCK can derive better solutions than other
approaches with only one MOCK function.
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Abstract. Multi-Car Elevator (MCE) that has several elevator cars in a
single shaft attracts attention for improvement of transportation in high-
rise buildings. However, because of lack of experience of such novel sys-
tems, design of controller for MCE is very difficult engineering problem.
One of the promising approaches is application of evolutionary optimiza-
tion to from-scratch optimization of the controller through discrete event
simulation of the MCE system. In the present paper, the authors pro-
pose application of evolutionary multi-objective optimization to design
of traffic-sensitive MCE controller. The controller for MCE is optimized
for different traffic conditions in multi-objective way. By combining the
multi-objective optimization with the exemplar-based policy (EBP) rep-
resentation that has adequate flexibility and generalization ability as a
controller, we can successfully design a controller that performs well both
in the different traffic conditions and works adequately by generalization
in the conditions not used in the optimization process.

1 Introduction

The elevator system is a critical component of high-rise buildings, and its de-
sign and control have been studied for many years. The control of cooperating
elevator cars for efficient service of passengers is known as “the elevator group
control problem”. This problem is recognized as a difficult control task, involving
stochastic, online scheduling with high combinatorial complexity and real-time
response requirements. Since no effective analytical solution has been found to
date, current commercial systems are controlled by using a combination of heuris-
tic and artificial intelligence methods [Kim et al., 1998][Beielstein et al., 2003]
[Zhou et al., 2005].

Recently, with increasing building heights and more complex usage patterns,
multi-car elevators (MCEs) consisting of several cars in a single elevator shaft,
usually driven by linear motors, are receiving increasing interest as
high-performance transportation systems [Kita et al., 2002] [Sudo et al., 2002].
However, the accumulated knowledge for conventional elevators is not readily
applicable to MCEs, which exhibit distinctly different behavior.

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 673–686, 2007.
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The most promising approach for MCE control appears to be simulation-based
optimization, in which the policy of controller is represented by a function model
and the parameters are optimized through a simulation. Sudo et al. have shown
that the approach with genetic algorithms (GAs) is hopeful [Sudo et al., 2002]
[Takahashi et al., 2003]. In those researches, MCE control is performed by as-
signing a hall-call to a certain car, with using the linear-sum weights [αi]. When
a new call occurs, for all available cars, several feature values [wk

i ] expressing the
state of the car k are calculated. Then the car with the minimum linear-weighted
sum

∑
αiw

k
i is assigned.

In [Ikeda et al., 2006], an exemplar-based policy representation (EBP)
[Ikeda, 2005] is employed as a non-linear controller for MCE systems. An advan-
tage of EBP to the controller of linear-sum type is the ability to control flexibly
according to the current situation, and the result of numerical experiments has
shown its superiority in MCE control.

In those simulation-based researches, the policy of control with adjustable
parameters has been evaluated and optimized in a single traffic situation. So,
there is no guarantee that the optimized policy works adequately in the other
situations, such as in the other building or in the other traffic condition which
changes largely depending on such as time-of-day. For practical use, considering
the cost and difficulty of detecting and switching the policy depending on the
situations, it is preferable that one policy works adequately in various situations
as much as possible. In large part of conventional control methods, the current
situation is detected by the set of rules such as fuzzy rules, and the corresponding
control policy tuned separately is performed. Normally the rules are written out
by experts and so very expensive.

In this paper, we employ the multi-objective optimization approach
[Deb et al., 2000] [Obayashi and Sasaki 2004] in order to obtain the traffic-
sensitive controller for MCE. In this approach, the policy with parameters is
evaluated in multiple situations, the objective functions are defined respectively,
and multi-objective optimization method is applied. The advantages of EBP for
this approach are the ability to control flexibly according to the situation and
the ability to generalize it.

This paper is organized as follows. In Section 2, a brief overview of the MCE
system and its controller are shown. In Section 3, the simulation-based policy
optimization of MCE controller, single-objective and multi-objective, are ex-
plained. In Section 4, experiments are done and the result is analyzed, and in
Section 5, the paper is concluded.

2 MCE System and Controllers

2.1 Multi-Car Elevator Systems

The almost same MCE system described in [Takahashi et al., 2003] is considered
in this study. The elements comprising the system are as follows (see Fig. 1).
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Fig. 1. MCE system

Floors. The lowest level of the building is assumed to be the sole point of
entry (and exit) to the building, and thus experiences the highest traffic (10
times higher than other floors in this simulation). The lowest floor is called “the
terminal floor”. The other floors are assumed to be identical in terms of traffic
demand, and are called “general floors”.

Elevator Shafts. Shafts represent the space in which elevator cars (or cages)
move. In the present simulation, the building has 4 shafts.

Elevator Cars. Each elevator shaft is considered to host two cars, which can
only move vertically and cannot pass each other. Furthermore, to avoid collision
and dead lock, cars in a single shaft are not allowed to approach each other
simultaneously. These constraints make efficient control of MCEs difficult to
achieve.

Registration of Destination Floor. It is assumed that the passengers register
their destination floors not in the car but in the hall, and that passengers are
guided to the car serving their need.

Zone Operation. For ease of operation, the floors are divided into upper and
lower zones. The upper car in each shaft serves only the traffic demands whose
origin or destination is in the upper zone. The lower car serves only the lower
zone.

Garage Floor. To allow the upper car to serve the terminal floor, a garage
floor at which the lower car stops is introduced below the terminal floor.

2.2 MCE Controller

In [Sudo et al., 2002], [Takahashi et al., 2003], [Ikeda et al., 2006] and this pa-
per, MCE control is performed by assigning a hall call to a certain car. When a
new call occurs, the call is assigned to a car by the following procedure:
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1. For each shaft, the car that can serve the call is nominated, according to the
definition of the service zone.

2. For all the nominated cars, several feature values expressing the state of the
car are calculated. In this paper, Nfeatures =4 features [wk

1 , wk
2 , wk

3 , w
(k)
4 ] are

utilized where k is the car index. wk
1 is the estimated waiting time of the new

call if assigned, wk
2 is the estimated maximum load of the car if assigned,

and wk
3 is the estimated delay time when the car pass through the call and

the next car serves it. Finally w
(k)
4 is the feature expressing the degree of

current traffic, which is calculated by
∑

k wk
1 and

∑
k wk

2 . The feature w
(k)
4

is common to all the cars. All the features are normalized so that almost all
features are distributed in [0, 1].

3. The preferences of cars are evaluated using the calculated feature values (or
feature vectors), and the most preferable car is assigned to the call.

This decision of the car based on the feature values at the Step 3. in the above
procedure is the central issue of design problem, and we have proposed the
following two methods.

2.3 Linear-Sum Policy Controller

In this controller, given feature vectors are evaluated by a linear-weighted sum
function, that has been used in [Sudo et al., 2002] [Takahashi et al., 2003]. Given
weights αi, the car with the minimum weighted sum k∗ = argmink

∑4
i=1 αiw

k
i

is assigned to the given call. For example, if (α1, α2, α3, α4) = (1, 0, 0, 0), the
policy assigns the earliest car to a call. And if (α1, α2, α3, α4) = (0, 1, 0, 0), the
policy assigns the lightest car.

This approach, referred to as the linear-sum policy (LSP), is very simple and
easy to implement. However, it is unable to make decisions flexibly depending
on the state common to all the cars, such as whether the traffic is light or heavy.
In other words, the weights of each feature value in the LSP approach are fixed,
and do not vary according to the situation.

2.4 Exemplar-Based Policy Controller

In [Ikeda et al., 2006], an exemplar-based policy (EBP) representation was em-
ployed as a non-linear evaluator of candidate feature vectors.

An EBP consists of a set of exemplars, and an exemplar is defined as the pair
of feature vectors (v1

j , v2
j )∈R

Nfeatures × R
Nfeatures , meaning “to assign the call to

the car with the feature vector v1
j is better than to assign it to the car with v2

j ”.
When a set of candidate feature vectors C = {wc}c is given, a tournament is
created, and |C|−1 competitions based on the set of exemplars are conducted,
finally the car corresponding to the winning vector is assigned to a given hall
call. In this procedure, only the set of nearer exemplars to the feature vectors
are referred (For detail, see Appendix A).
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3 Simulation-Based Policy Optimization

It is assumed that the zone boundary is fixed, and that the calculation of feature
vectors is also fixed. Then, optimization of the controller is performed in terms
of the parameters of the policy selecting the most preferable vector from the
candidates. The parameters are optimized through a simulation of the MCE
and a Genetic Algorithm (GA).

3.1 Evaluation Using MCE Simulation

For this simulation, the same simulator used in [Takahashi et al., 2003] is
employed. This simulator is based on the discrete event model called the Ex-
tended State Machine (ESM), which models the system using finite state ma-
chines with timers, among which messages are exchanged for synchronization
[Kita et al., 2002][Mimaki et al., 1999]. In the ESM model, each of the elevator
cars and the corresponding doors is represented by an ESM.

Table 1. Specifications of building and MCE

Item Value

No. of Floors 30
Zone boundary : the lowest floor of the upper zone 16
No. of Elevator Shafts 4

No. of Cars/Shaft 2
Floor Height 4.34 m
dv2/d2t of Car 2.0 m/s3

Max. Car Acceleration 1.1 m/s2

Max. Load (persons/car) 20
Time Needed for

Opening Doors 1.8 s

Closing Doors 2.4 s
Riding/Leaving 1.2 s/person

Passenges to serve (/hour) 750 to 2250
Traffic distribution (Terminal Floor ↔ General

Floor : General Floor ↔ General Floor) (10:1)

For evaluating and selecting in a GA, the fitness of a solution (policy) is
defined by the averaged squared waiting time (ASWT) over the period of sim-
ulation (90 min in this case). To reduce the effect of transient stage of traffic,
simulation result for a certain period (30 min) is excluded from evaluation. The
specifications of the building considered in the simulation are listed in Table 1.
Simulations were performed using a supercomputer Fujitsu HPC2500 of Kyoto
University, using 32 CPUs among 128 CPUs in a node in a master-slave archi-
tecture for parallel computing.
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3.2 Obtaining Traffic Sensitive Controller Through Single and
Multi Objective Optimization

Now, the purpose of optimization is defined as obtaining the control policy of
MCE, which performs adequately in the wide-range conditions, i.e. from the
light traffic (1000 persons/hour) to the heavy traffic (2000 persons/hour).

An important ability expected for the policy representation is the condition-
sensitive control. Unfortunately, it is unable for LSP to make decisions flexibly
depending on the condition, whether the traffic is light or heavy. Another im-
portant ability is the generalization. Strictly, this purpose can be formalized
as the 1001-objective optimization problem, min{ASWT i(x)}1000≤i≤2000, where
ASWT i(x) is the ASWT of the policy x when i passengers occur per hour. How-
ever, evaluations of 1001-objective functions are very expensive and not neces-
sarily required if generalization ability is expected for the policy representation.

For comparison study of combination of the controller representation and the
type of GA, we employ two styles of controllers EBP and LSP, and compared
five types of GAs to optimize their policies.

One GA, we call GA1000, is carried out to attain the policy for light traffic
situation (1000 persons/hour), only the ASWT for the situation (ASWT1000) is
used for selection. In the same way, GA1500 is a GA in which only the ASWT1500
is used for selection, and GA2000 is a GA in which only the ASWT2000 is used.
By applying such single-objective optimization, the optimized policy is expected
to perform well at least in the considered situation.

In GA1000, GA1500 and GA2000, only one fitness function is considered and the
others are ignored. In GAmoop, both of ASWT1000 and ASWT2000 are referred,
and multi-objective optimization method is carried out. Generally, the purpose of
multi-objective optimization is not to attain “the best solution” but to attain the
set of non-dominated (Pareto) solutions. However, if the policy representation
has enough condition-sensitive control ability, the optimized policy will perform
well at both of light and heavy traffics.

In GAcomb, the combined single fitness ASWTcomb = 2 × ASWT1000 +
ASWT2000 is used for selection. GAcomb is the GA to attain one of Pareto solu-
tions using a fixed tradeoff rate. So, this is a single-objective optimization but
two situations are considered as GAmoop.

The characteristics of GAs we employ are summarized in Table 2.

Table 2. Characteristics of five GAs we employ

Name use ASWT1000 use ASWT1500 use ASWT2000 optimization method

GA1000 yes no no single objective

GA1500 no yes no single objective

GA2000 no no yes single objective

GAcomb yes no yes single objective (combined)

GAmoop yes no yes multi objective



Designing Traffic-Sensitive Controllers for Multi-Car Elevators 679

3.3 GA for Single Objective Optimization

The parameters to be optimized for LSP is the set of weights αi ∈ R
Nfeatures ,

and the parameters to be optimized for EBP is the set of exemplars that one
of them is (v1

j , v2
j ) ∈ R

Nfeatures × R
Nfeatures . The common framework of GA

[Ikeda and Kobayashi, 2002] is used for EBP and LSP single optimization as
follows:

1. Parameters such as Npop are fixed (see Table 3). In this research, they were
selected by some exploratory experiments.

2. As the population, Npop solutions are initialized. If LSP, each solution,
Nfeatures weights, αi ∈ R

Nfeatures is randomly generated. If EBP, each solu-
tion Ei, set of Nexemplars exemplars are randomly generated. An exemplar
ei,j ∈ Ei = (v1

i,j , v
2
i,j) is generated such that v1

i,j + v2
i,j ∈ [0, 2]Nfeatures and

v2
i,j −v1

i,j ∈ [−1, 1]Nfeatures .
3. Npop solutions are randomly ordered, s1, s2, ..., sNpop . Then Npop pairs (s1,

s2), (s2, s3), ..., (sNpop , s1) are passed to the following alternation procedure.
(a) Parents (p1, p2) are given.
(b) Children are reproduced by applying the crossover operator Nchildren

times. For LSP, UNDX [Ono 1997] is used as crossover operator of real
value vectors, and mixture of exemplars [Ikeda et al., 2006] is used for
EBP (For detail, see Appendix B).

(c) The evaluation value for each policy of the family (p1 and children) is
calculated by simulation of the MCE. To reduce the random fluctuation
of evaluation values, Nsims simulation runs are performed independently
and the average of the evaluation criterion is used. Such a GA is referred
to as a Nsims-sample GA.

(d) The policy p∗ having the best evaluation value (lowest ASWT1000,
ASWT1500, ASWT2000 or ASWTcomb) in the family is selected, and p1
in the population is replaced by p∗.

4. Step 3. is repeated Ngenerations times, after which the final result, trained MCE
control policy is obtained.

3.4 GA for Multi Objective Optimization

As GAmoop, a common framework of multi-objective optimization is used for
both of EBP and LSP. Considering the noisy fitness evaluation and then uncer-
tainty of ranking, NSGA-II [Deb et al., 2000] with some minor modification is
employed as follows:

1. Parameters are fixed (see Table 3).
2. As the population, Npop solutions are initialized by the same procedure to

Section 3.3.
3. Nchildren solutions are reproduced by applying the crossover operator (used in

Section 3.3). In this step, parents are randomly selected for each
reproduction.
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Table 3. Notation and parameter values used in optimization

Symbol Explanation Value

Npop Number of solutions (policies) in a population 30(single-objective),
60(multi-objective)

Nchildren Number of children produced per reproduction step 6(single-objective),
150(multi-objective)

Nsims Number of simulations for one evaluation 4(EBP), 8(LSP)

Ngenerations Number of generations 80(EBP), 40(LSP)

Nexemplars Number of exemplars in a EBP 900

kNN Localization parameter (the smaller, the localized) 30

Ei The ith EBP, the set of exemplars of the ith policy -

ei,j The jth exemplar of Ei -

4. Npop + Nchildren solutions are evaluated, i.e. ASWT1000 and ASWT2000 are
calculated by Nsims simulation runs each.

5. For each solution, the dominance-rank and the crowding-distance are calcu-
lated. As the crowding-distance, the Euclid distance to the nearest solutions
with even-or-better rank is used.

6. The best Npop solutions are selected to survive. The solution with the lower
rank wins, and the solution with the smaller distance wins if draw in their
ranks. Further, when draw in both ranks and distances, their distances to
the second nearest solutions are compared.

7. Step 3. to Step 6. are repeated Ngenerations times, after which the final result,
trained MCE control policies with varieties are obtained.

Please note, though the different parameters are used, the total evaluation
times are of the same numbers for EBP/LSP and for single-objective/multi-
objective optimization.

4 Experiments

The specifications of the building considered in the experiments are listed in
Table 1, and the parameters used for the GAs are shown in Table 3.

We employed two styles of controllers, EBP and LSP, and five types of GAs,
GA1000, GA1500, GA2000, GAcomb and GAmoop. To assess the performance of the
optimization procedure, five independent GA trials with different random seeds
were conducted for each series.

4.1 Evolution Process

Measured by a single criterion. Figure 2(left) shows the evolution processes
of GA1000, GAcomb and GAmoop for EBP. The average ASWT1000 of a period is
calculated for each trial, and their averages and standard deviations are shown.
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Fig. 2. Evolution process of EBP, ASWT1000(left) and ASWT2000(right)

Figure 2(right) shows the evolution processes of GA2000, GAcomb and GAmoop
for EBP. We can find that the GAs for one criterion, GA1000 and GA2000 are
superior to others in their niches. But the averages of GAcomb and GAmoop were
also soundly decreasing, this means that both ASWT1000 and ASWT2000 were
simultaneously improved.

Fig. 3. Evolution processes of LSP, ASWT1000(left) and ASWT2000(right)

Figure 3 shows the evolution processes of LSP. Like as the case of EBP,
that GA for one criterion, GA1000 and GA2000 are superior to others in their
niches, and their ASWT was decreasing over generations. However, especially
in ASWT1000 (left figure), the averaged performances of policies of GAcomb and
GAmoop were getting worse. This suggests that performance of ASWT1000 was
sacrificed for the improvement of ASWT2000. In other words, both ASWT1000
and ASWT2000 couldn’t be simultaneously improved in LSP framework.

Measured by two criteria. In Figure 4, the sets of solutions in a period
of a trial of GAmoop, LSP and EBP, are plotted. Triangles shows the sets of
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Fig. 4. Performance plot of solutions in a period of GAmoop

performances (x, y) = (ASWT1000, ASWT2000) of EBP, generation 10 and gen-
eration 80. From the figure, both criterions are simultaneously improved. On
the other hand, circles show the set of performances of LSP, generation 10 and
generation 40. The improvement is little, and the slight slide to right(ASWT1000
worse) and down(ASWT2000 better) can be observed.

4.2 Performance Comparison of Policies Obtained

In this section, we focus on the performances of “elite” solutions of the evolved
ones, instead of the averaged performances. About GA1000, GA1500, GA2000 and
GAcomb, all individuals are carefully (30 times for each) re-evaluated per 10
generations. Their temporal elites are re-evaluated (180 times for each) and
finally the elite of the trial is selected. By this selection, totally 40 solutions are
given (LSP/EBP, five trials, four GAs).

About GAmoop, all individuals of the final generations are re-evaluated 30
times, and three elites, the solution with the best ASWT1000, ASWT2000,
ASWTcomb are selected. By this selection, totally 30 solutions are given (LSP/
EBP, five trials, three solutions each) with few duplications.

All elites are again re-evaluated 300 times for the comparison.

Comparison of Four GAs. Figure 5(left) shows the performances
(x, y) = (ASWT1000, ASWT2000) of LSP. Pareto curve is very usual as multi-
objective problems. In more detail, there observed three groups of LSP. One
is such as (α1, α2, α3, α4) = (1, 5, 0, 0), they prefer to assign the lighter car,
and perform well at the heavy traffic (right bottom) . One other is such as
(α1, α2, α3, α4) = (1, 0, 1, 0), they avoid assigning the near-followed car in order
to maintain an adequate distance between cars. The last is such as
(α1, α2, α3, α4) = (1, −1, 0, 0), they prefer to assign the heavier car in order
to bias the loads to keep an adequate distance, and perform well at the light
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Fig. 5. Performance plot of elite solutions, LSP(left) and EBP(right)

traffic (left top). We can conclude that LSP has no condition-sensitive ability,
and there is no versatile policy in LSP.

Figure 5(right) shows the performances (ASWT1000, ASWT2000) of EBP. In
contrast to the case of LSP, the elites of GAcomb and GAmoop are better as GA1000
in ASWT1000 and better as GA2000 in ASWT2000. This fact suggests that such
EBP can automatically detect the current situation (for example from the fourth
feature) and make decision depending on it, by its localizing mechanism. In other
words, EBP has the enough condition-sensitive control ability.

GA1500 works not so bad, but its performance is worse than GAcomb and
GAmoop. This fact suggests that the training in the two conditions helps the
generalization ability of EBP.

Performance in Wide-Range Traffic. To show the generalization ability
of policies, seven delegates are selected from elites, LSP/EBP elites of GA1000,
GA1500 (EBP only), GA2000 and GAmoop. They are re-evaluated in several traffic
situations, from 750 persons/hour to 2250 persons/hour. Their performances of
a traffic are measured by the overrun ratio of ASWT to the best of the seven
delegates in the traffic.

Figure 6(left) shows the performances of LSP. In this case, as the prediction
from Figure 5(left), the elite from GAmoop is not versatile but just intermediate
performance.

Figure 6(right) shows the performances of EBP. The elite from GA1000 works
well at traffic is light, but the performance is increasingly worse when the traffic is
heavier. The elite from GA2000 has the opposite problem. The elite from GA1500
performs not so bad for all conditions, and the elite from GAmoop performs better
than it in almost all conditions.

Through the experiments, the localization ability of EBP for condition-
sensitive control, and the generalization ability for unknown conditions has been
shown. By the multi-objective optimization with ASWT1000 and ASWT2000,
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Fig. 6. Comparison of elites from GA1000, GA1500, GA2000 and GAmoop, LSP(left) and
EBP(right), in wide-range traffics

the EBP is optimized as well as both of GA1000 and GA2000, further, the EBP
performs well also in the conditions that has not been experienced.

5 Conclusion

We presented a multi-objective optimization approach for learning condition-
sensitive policy, and showed its effectiveness on the difficult problem of con-
trolling multi-car elevators. The policy with parameters was evaluated in two
traffic situations, and the objective functions were defined respectively, and a
multi-objective optimization method was applied. We compared conventional
linear-sum policy expression and exemplar-based policy (EBP) expression, and
compared the multi-objective optimization approach and single-objective ap-
proach only for single situation. As the result, it was found that the EBP ob-
tained by the multi-objective optimization worked adequately for wide-range
situations. This fact suggests that EBP has the localization ability for condition-
sensitive control, and the generalization ability for unknown conditions.

For practical use, the policy should be applicable to much wider situations,
such as weekday and holiday, beginning of office hours, lunch hour and clock-out
hours. For this demand, two subjects for future work exist. One is to improve
the localization ability of EBP to detect the situation and the generalization
ability to perform well in intermediate situations which are not tested. Another
is to modify the multi-objective optimization method for such problem that has
many objectives and the evaluation value is noisy.
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A. Selection of the Best Feature Vector

When the feature vectors are given, an EBP selects the best one from them using
exemplars as following procedure [Ikeda et al., 2006] (see Fig. 7).

1. Exemplars E={(v1
j , v2

j )}j are given, where v1
j , v2

j ∈R
Nfeatures .

2. Feature vectors corresponding to possible cars, candidates, C = {wc}c are
given to be evaluated, where wc ∈R

Nfeatures .
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3. An unbiased tournament for C is randomly created (the transitive law may
not necessarily hold in this competition procedure).

4. A pair of competitors wc1 ∈ C and wc2 ∈ C are taken by following the
tournament.

5. For each exemplar (v1
j , v2

j ) ∈ E, the distance to the competitors

distj =|wc1+wc2

2 − v1
j +v2

j

2 | is calculated.
6. Elocal ∈ E, the top kNN exemplars nearest within distj are selected (kNN is

the localization parameter).
7. For each exemplar (v1

j , v2
j )∈Elocal, the direction

−−−−→
v2

j − v1
j and the inner prod-

uct IPj =
−−−−→
v2

j − v1
j · −−−−−−→wc2 − wc1 are calculated. When IPj > 0, the exemplar

suggests that “wc1 is better than wc2”.
8. The number of exemplars in Elocal for which IPj > 0, i.e. | {(v1

j , v2
j ) ∈

Elocal, IPj > 0}| is counted. When the number is larger than |Elocal|/2, wc1

survives the competition (otherwise the opposite judgment is obtained).
9. After |C|−1 competitions have been completed, the winner is selected.

Fig. 7. Selection of the most preferable vector from candidates

B. Crossover Operator for EBP-GA

The crossover operator produces a new set of exemplars using parents. In this
paper, Nfusion =36 exemplars are newly created by a procedure called “fusion”,
and the rest exemplars are copied from parents. The crossover operation is per-
formed as follows.

1. The parents Ep1 and Ep2 are given, and Ec is initialized as an empty set.
2. An exemplar ep1,j ∈Ep1 is selected randomly, and the exemplar ep2,j∗∈Ep2

nearest to ep1,j in Ep2 is selected.
3. The rates 0 < α < 1 and β = 1−α are fixed. For the exemplars ep1,j =

(v1
p1,j , v

2
p1,j) and ep2,j∗ = (v1

p2,j∗, v
2
p2,j∗), an exemplar e = (αv1

p1,j +βv1
p2,j∗,

αv2
p1,j +βv2

p2,j∗) is newly created and added to Ec.
4. Steps 2. and 3., fusion procedure, are repeated Nfusion times.
5. An exemplar e∈Ep1∪Ep2 is selected randomly. If e /∈ Ec, e is added to Ec.
6. Step 5. is repeated until |Ec|=Nexemplars.
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Abstract. The article presents a framework for the resolution of rich
vehicle routing problems which are difficult to address with standard
optimization techniques. We use local search on the basis on variable
neighborhood search for the construction of the solutions, but embed
the techniques in a flexible framework that allows the consideration of
complex side constraints of the problem such as time windows, multiple
depots, heterogeneous fleets, and, in particular, multiple optimization
criteria. In order to identify a compromise alternative that meets the re-
quirements of the decision maker, an interactive procedure is integrated
in the resolution of the problem, allowing the modification of the pref-
erence information articulated by the decision maker. The framework
is implemented in a computer system. Results of test runs on multiple
depot multi-objective vehicle routing problems with time windows are
reported.

Keywords: User-guided search, interactive optimization,
multi-objective optimization, multi depot vehicle routing problem with
time windows, variable neighborhood search.

1 Introduction

The vehicle routing problem (VRP) is one of the classical optimization problems
known from operations research with numerous applications in real world logis-
tics. In brief, a given set of customers has to be served with vehicles from a depot
such that a particular criterion is optimized. The most comprehensive model
therefore consists of a complete graph G = (V, A), where V = {v0, v1, . . . , vn}
denotes a set of vertices and A = {(vi, vj) | vi, vj ∈ V, i �= j} denotes the con-
necting arcs. The depot is represented by v0, and m vehicles are stationed at
this location to service the customers vi, . . . , vn. Each customer vi demands a
nonnegative quantity qi of goods and service results in a nonnegative service
time di. Traveling on a connecting arc (vi, vj) results in a cost cij or travel time
tij . The most basic vehicle routing problem aims to identify a solution that
serves all customers, not exceeding the maximum capacity of the vehicles Qk

and their maximum travel time Tk while minimizing the total distances/costs of
the routes.

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 687–699, 2007.
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Various extensions have been proposed to this general problem type. Most
of them introduce additional constraints to the problem domain such as time
windows, defining for each customer vi an interval [ei, li] of service. While arrival
before ei results in a waiting time, arrival after li is usually considered to be
infeasible [1]. In other approaches, the time windows may be violated, leading
to a tardy service at some customers. Violations of time windows are either
integrated in the overall evaluation of solutions by means of penalty functions [2],
or treated as separate objectives in multi-objective approaches [3].

Some problems introduce multiple depots as opposed to only a single depot
in the classical case. Along with this sometimes comes the additional decision of
open routes, where vehicles do not return to the place they depart from but to
some other depot. Also, different types of vehicles may be considered, leading to
a heterogeneous fleet in terms of the abilities of the vehicles.

Unfortunately, most problems of this domain are NP-hard. As a result, heuris-
tics and more recently metaheuristics have been developed with increasing suc-
cess [4,5,6]. In order to improve known results, more and more refined techniques
have been proposed that are able to solve, or at least approximate very closely,
a large number of established benchmark instances [7]. It has to be mentioned
however, that with the increasing specialization of techniques a decrease in gen-
erality of the resolution approaches follows. As a result, heuristic optimization
frameworks such as HotFrame [8], EasyLocal++ [9] or ParadisEO [10] try to ad-
dress this issue by providing generic libraries for the resolution of optimization
problems.

While the optimality criterion of minimizing the total traveled distances is the
most common, more recent approaches recognize the vehicle routing problem as
a multi-objective optimization problem [11, 3, 12, 13, 14]. Important objectives
besides the minimization of the total traveled distances are in particular the
minimization of the number of vehicles in use, the minimization of the total
tardiness of the orders, and the equal balancing of the routes. Following these
objectives, it is desired to obtain solutions that provide a high quality of delivery
service while minimizing the resulting costs. As many objectives are however of
conflicting nature, not a single solution exists that optimizes all relevant criteria
simultaneously. Instead, the overall problem lies in identifying the set of Pareto-
optimal solutions P and selecting a most-preferred solution x∗ ∈ P . In this
context, three different general strategies of solving multi-objective optimization
problems can be implemented:

1. A priori approaches reduce the multi-objective problem to a single-objective
surrogate problem by formulating and maximizing a utility function. The
advantage of this approach can be seen in its simplicity given the possibility
to specify the precise utility function of the decision maker. The concept
may however not be used if the decision maker is not able to state his/her
preferences in the required way.

2. A posteriori approaches first identify the Pareto set P , and then allow the
decision maker to select a most-preferred solution x∗ ∈ P . The main ad-
vantage of this resolution principle is, that the computation of the optimal
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solutions can be done offline without the immediate participation of the de-
cision maker. A large number of elements of the Pareto set are on the other
hand discarded later during the decision making procedure.

3. Interactive approaches allow the gradual articulation of preferences by the
decision maker and compute a sequence of solutions based on his/her in-
dividual statements. Several advantages result from this concept. First, the
computational effort is smaller in comparison to the identification of the en-
tire Pareto set. Second, the gradual articulation of preferences allows the
decision maker to reflect the chosen settings in the light of the obtained
results and therefore adapt and react to the optimization procedure. A dis-
advantage of interactive multi-objective optimization procedures is however
the need of the presence of a decision maker and the availability of an in-
teractive software to present the results. Also, comparably little time for
computations is allowed as the system should be able to react in (almost)
real-time to inputs of the decision maker.

While it has been stressed already quite early, that combining computer pro-
grams with interactive planning procedures may be a beneficial way of tackling
complex routing problems [15,16,17,18], research in interactively solving multi-
objective metaheuristics is a rather newly emerging field of research [19]. Given
the increasing computing abilities of modern computers however, approaches can
become increasingly interesting as they allow the resolution of complex problems
under the consideration of interactive, individual guidance towards interesting
solutions.

The article is organized as follows. In the following Section 2, a framework for
interactive multi-objective vehicle routing is presented that aims to address two
critical issues:

1. The necessary generality of resolution approaches when trying to solve a
range of problems of different characteristics.

2. The integration of multiple objectives and the consideration of individually
articulated preferences of the decision maker during the resolution procedure
of the problem.

An implementation of the framework for multi-objective vehicle routing prob-
lems is presented in Section 3. The system is used to solve instances of multi-
objective vehicle routing problems. Conclusions are presented in Section 4.

2 A Framework for Interactive Multi-objective Vehicle
Routing

Independent from the precise characteristics of the particular VRP, two types of
decisions have to be made when solving the problem.

1. Assignment of customers to vehicles (clustering).
2. Construction of a route for a given set of customers (sequencing).



690 M.J. Geiger and W. Wenger

It is well-known that both types of decisions influence each other to a consid-
erable extent. While the clustering of customers to vehicles is an important input
for the sequencing, the sequencing itself is of relevance when adding customers
to routes as constraints of maximum distances have to be respected. The two
types of decisions can be made either sequential (cluster first-route second vs.
route first-cluster second) or in parallel.

Therefore, the framework presented here proposes the use of a set of elements
to handle this issue with upmost generality. Figure 1 gives an overview about
the elements used.

marketplace

vehicle agent vehicle agent vehicle agent vehicle agent

ontology

human 

decision 

maker

decider

preferences

GUI

Fig. 1. Illustration of the framework for interactive multi-objective vehicle routing

– The marketplace represents the element where orders are offered for trans-
portation. This elements is particularly necessary to allow an exchange of
information gathered during the execution of the optimization procedure.

– Vehicle agents place bids for orders on the marketplace. These bids take into
consideration the current routes of the vehicles and the potential change
when integrating an additional order. Integrating additional orders into ex-
isting routes leads to an increase in terms of traveled routes and/or time
window violations. This information is reported back to the marketplace.
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– An ontology describes the precise properties of the vehicles such as their
capacity, availability, current location, etc. This easily allows the considera-
tion of different types of vehicles. It also helps to model open routes, where
vehicle do not necessarily return to the depot where they depart from.

– A decider communicates with the human decision maker via a graphical user
interface (GUI) and stores his/her individual preferences. In comparison to
generic graphical user interfaces for multi objective optimization such as
GUIMOO [20] we chose an approach that also visualizes the actual solution
on a map, not only the evaluation of the currently considered solution.

The decider also assigns orders to vehicles, taking into consideration the
bids placed for the specific orders.

A solution is constructed by placing the orders on the marketplace, collecting
bids from the vehicle agents, and assigning orders to vehicles while constantly
updating the bids. Route construction by the vehicle agents is done in parallel
using local search heuristics so that a route can be identified that maximizes
the preferences of the decision maker. Reviewing possible ways of solving the
clustering/sequencing problems, the presented approach follows the concept of
combining both decisions in parallel.

In the proposed framework, the decision maker is allowed to change his/her
preferences during the construction of the solution. If this happens, the de-
cider updates the stored preference information and in consequence, the ve-
hicles resequence their orders such that the updated preference information
is met.

3 Implementation and Experimental Investigation

3.1 Configuration of the System

The framework has been implemented in a computer system. In the experiments
that have been carried out, two objective functions are considered, the total
traveled distances DIST and the total tardiness TARDY caused by vehicles ar-
riving after the upper bound li of the time window. It should be noticed however,
that neither the concept presented in Section 2 nor the actual implementation
are restricted to two objective functions only. A sensible choice however had to
be made in order to investigate the system in a quantitative way in a controllable
experimental setting.

The preferences of the decision maker are represented introducing a weighted
sum of both objective functions. Using the relative importance of the distances
wDIST , the overall utility UTILITY of a particular solution can be computed as
given in Expression (1).

UTILITY = wDIST DIST + (1 − wDIST ) TARDY (1)
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The vehicle agents are able to modify the sequence of their orders using four
different local search neighborhoods.

– Inverting the sequence of the orders between positions p1 and p2, p1 �= p2.
While this may be beneficial with respect to the distances, it may pose a
problem for the time windows as usually orders are served in the sequence
of their time windows.

– Exchanging the positions p1 and p2, p1 �= p2 of two orders.
– Moving an order from position p1 and reinserting it at position p2, p1 < p2

(forward shift).
– Moving an order from position p1 and reinserting it at position p2, p1 > p2

(backward shift).

In each step of the local search procedure, a neighborhood is randomly picked
from the set of neighborhoods and a move is computed and accepted given an
improvement. We select each neighborhood with equal probability of 1

4 .
Bids for orders on the marketplace are generated by the vehicle agents, taking

into consideration all possible insertion points in the current route. The sum of
the weighted increase in distance DIST and tardiness TARDY gives the prize
for the order. This price reflects the individual preferences articulated by the
decision maker using the wDIST parameter which expresses the tradeoff between
distances and time window violations.

The decider assigns orders to vehicles such that the maximum regret when not
assigning the order to a particular vehicle, and therefore having to assign it to
some other vehicle, is minimized. It also analyzes the progress of the improvement
procedures. Given no improvement for a certain number of iterations, the decider
forces the vehicle agents to place back orders on the market such that they may
be reallocated. In the current setting, the vehicle agents are allowed to compute
1000 neighboring solution without any further improvements before they are
contacted by the decider to place back one order on the marketplace. The order
to be placed back is the one of the current route that, when removing it from the
route, leads to the biggest improvement with respect to the overall evaluation of
the route.

3.2 Experiments

The optimization framework has been tested on ten benchmark instances taken
from [21]. The instances range from 48 to 288 customers that have to be served
from 4 to 6 depots, each of which possesses 2 to 7 vehicles vehicles. The precise
description of the instances is given in [21] and therefore not repeated here.
Download of the problem files is e. g. possible from http://neo.lcc.uma.es/
radi-aeb/WebVRP/.

We simulated a decision maker changing the relative importance wDIST dur-
ing the optimization procedure. First, a decision maker starting with a
wDIST = 1 and successively decreasing it to 0, second a decision maker starting
with a wDIST = 0 and increasing it to 1, and third a decision maker starting

http://neo.lcc.uma.es/
radi-aeb/WebVRP/
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with a wDIST = 0.5, increasing it to 1 and decreasing it again to 0. Between
adjusting the values of wDIST in steps of 0.1, enough time for computations
has been given to the system to allow a convergence to (at least) a local op-
timum. The system then has to follow the updated preference information, re-
sequencing and reassigning the customers using the implemented local search
metaheuristics.

The linear, additive model is one of the possibilities to describe a utility func-
tion, established in the literature. It is well-known that not any utility function
follows the described approach, but we nevertheless introduce it as it has sev-
eral advantages, one being the decision makers familiarity with graphical user
interfaces where slider bars are used to modify the weight settings. Given the
interaction of the decision maker with the system by means of a slider bar, it
may equally be possible that the decision maker changes the weight settings
in rather large steps instead of the small linear steps of size 0.1. In this case,
we expect that the experimental setup does not lead to different results. Given
appropriate computer hardware, the system should simply change the solutions
quickly from one solution to another without necessarily showing intermediate
alternatives.

Figure 2 to 6 plot the results obtained during the test runs.
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Fig. 2. Results of the test runs on instance 1a and 2a

It can be seen, that the results are significantly different depending on the
initial chosen value of wDIST . For initial values of wDIST = 0.5, the frame-
work follows more closely the Pareto front compared to other initial parameter
settings.

To illustrate this behavior more closely, we are going to discuss the results
for instance ‘1a’ more closely and verbally. The first decision maker starts with
DIST = 975, TARDY = 6246 and moves to DIST = 1412, TARDY = 0 while
the second starts with DIST = 2953, TARDY = 0 and moves to DIST = 1326,
TARDY = 3654. Clearly, the first strategy outperforms the second. While an
initial value of wDIST = 0 allows the identification of a solution with zero tardi-
ness, it tends to construct routes that, when decreasing the relative importance
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Fig. 3. Results of the test runs on instance 3a and 4a
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Fig. 4. Results of the test runs on instance 5a and 6a
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Fig. 5. Results of the test runs on instance 7a and 8a

of the tardiness, turn out to be hard to adapt. In comparison to the strategy
starting with a wDIST = 1, the clustering of customers turns out the be pro-
hibitive for a later improvement.

When comparing the third strategy of starting with a wDIST = 0.5, it becomes
obvious that this outperforms both other ways of interacting with the system.
Here, the solutions start with DIST = 1245, TARDY = 63, go to DIST = 946,
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Fig. 6. Results of the test runs on instance 9a and 10a
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Fig. 7. Results of the test runs on instance 1a and 2a, compared to discrete jumps
around wDIST = 0.7

TARDY = 4342, and finally to DIST = 1335, TARDY = 0. Apparently,
starting with a compromise solution is beneficial even for both extreme values
of DIST and TARDY .

To further investigate cases where the decision maker changes the weight set-
ting in bigger discrete steps, we simulated a decision maker finally approaching
a weight value of wDIST = 0.7, starting from values around 0.7 with decreas-
ing distance. The precise sequence of weights in the experiment is wDIST =
{0.4, 0.9, 0.6, 0.8, 0.65, 0.75, 0.7}, and the distances to the final, desired weight
setting of the decision maker are −0.3, +0.2, −0.1, +0.1, −0.05, +0.05, 0. The set-
ting of the experiment is based on the assumption that starting from an initial
weight setting, the decision maker approaches the actually desired one by an
alternating process of over- and underestimating the true value of wDIST . The
distances to the desired wDIST decrease in this process as the decision maker
reflects upon the chosen weight combination and the solution presented by the
system.

Figure 7 plots the obtained results for the instances 1a and 2a. We chose to
omit the plots for the other instances as the following interpretation and the
resulting conclusions are identical.
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It can be seen, that the discrete changes of the weight values lead to results
that closely follow the curve obtained for the third decision maker. As sus-
pected above, the results are comparable to the strategy of changing wDIST in
steps of 0.1.

4 Summary and Conclusions

A framework for the interactive resolution of multi-objective vehicle routing
problems has been presented. The concept has been implemented in a computer
system. Results on a benchmark instance have been reported, compared, and
analyzed.

First investigations indicate that the concept may successfully solve vehicle
routing problems under multiple objectives and complex side constraints. In
this context, an interaction with the system is provided by a graphical user in-
terface. The relative importance of the objective functions can be modified by
means of a slider bar, resulting in different solutions which are computed in
real time by the system, therefore providing an immediate feedback to the user.
Figure 8 shows two extreme solutions that have been interactively obtained by
the system.

As a result of the experiments, it becomes clear that for the investigated case,
a compromise value of wDIST = 0.5 should be chosen for the computation of a
first solution before starting an interaction with the system. The so constructed
alternative can be modified towards the minimization of the traveled distances
as well as towards the minimization of the total tardiness.

Besides this theoretically gained insight, the contribution of the framework
can also be seen in describing a general concept for the resolution of complex
vehicle routing problems. As practical problems often vary in terms of their
characteristics, this may turn out to be beneficial when problems with different
side constraints have to be addressed using a single optimization procedure. An
additional use can be found for dynamic vehicle routing problems. The market
mechanism provides a platform for the matching of offers to vehicles without
the immediate need of accepting them, yet still obtaining feasible solutions and
gathering a prize for acceptance of offers which may be reported back to the
customer.

Future developments are manifold. First, other ways of representing prefer-
ences than a weighted sum approach may be beneficial to investigate. While
the comparable easy interaction with the GUI by means of a slider bar enables
the user to directly change the relative importance of the objective functions, it
prohibits the definition of more complex preference information, e. g. involving
aspiration levels.

Second, different and improved ways of implementing the market mechanism
have to be investigated. First results indicate that the quality of the solutions
is biased with respect to the initial setting of the relative importance of the
optimality criteria. It appears as if more complex reallocations of orders between
vehicles are needed to address this issue.
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Fig. 8. Two screenshots of the graphical user interface. On the top, a short solution
with high tardiness, on the bottom, a solution with low tardiness but long traveling
distances.
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19. Phelps, S.P., Köksalan, M.: An interactive evolutionary metaheuristic for multi-
objective combinatorial optimization. Management Science 49 (2003) 1726–1738



On the Interactive Resolution of Multi-objective Vehicle 699

20. Cahon, S., Simarik, T., Vironda, T.: A graphical user interface for multi objective
optimization guimoo http://guimoo.gforge.inria.fr/

21. Cordeau, J.F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle
routing problems with time windows. Journal of the Operational Research Society
(52) (2001) 928–936

22. de Sousa, J.P., ed.: Proceedings of the Metaheuristics International Conference
MIC 2001. In de Sousa, J.P., ed.: Proceedings of the Metaheuristics International
Conference MIC 2001, Porto, Portugal (July 2001)

http://guimoo.gforge.inria.fr/


Radar Waveform Optimisation as a Many-Objective
Application Benchmark

Evan J. Hughes

Department of Aerospace, Power and Sensors,
Cranfield University, Shrivenham, Swindon,

Wiltshire, England. SN6 8LA
e.j.hughes@cranfield.ac.uk

Abstract. This paper introduces a real, unmodified Many-Objective optimisation
problem for use in optimisation algorithm benchmarking. The radar waveform
design problem has 9 objectives and an integer decision space that can be scaled
from 4 to 12 decision variables. Proprietary radar waveform design software has
been encapsulated in a fast and portable form to facilitate research groups in
studying high-order optimisation of real engineering problems.

1 Introduction

Real engineering problems are often characterised by many objectives. Pareto ranking
has been exploited in recent years to develop a large number of excellent multi-objective
optimisation algorithms which can solve bi-objective optimisation problems effectively
and reliably, for example, NSGA-II [2]. However, it is known that Pareto ranking alone
does not scale well to problems with large numbers of objectives (4+ typically cause
problems) [9,5]. Currently, there are few algorithms that are designed specifically to
tackle many-objective problems.

This paper describes a real, unmodified engineering problem and the software is pro-
vided to allow optimisation with many-objectives to be studied, and hopefully efficient
optimisation algorithms developed.

The problem has 9 objectives, and from 4 to 12 integer decision variables, each in the
range [500,1500] inclusive, giving 1001 alleles per decision variable. It is known that
some of the objectives are not totally independent, and it is suspected that the Pareto set
is concave in places, with regions of low density.

The problem is the design of a waveform for a Pulsed Doppler Radar, typical of
many airborne fighter radar systems. The radar system is required to measure both
range and velocity of targets. Unfortunately, with the very long ranges (100 nautical
miles typical) and very high velocities (Mach 5 possible), with a simple waveform it is
only possible to measure either: range unambiguously but ambiguous velocity; velocity
unambiguously but with the range ambiguous; or with both range and velocity ambigu-
ous. For example, if velocity is measured, then target range may only be known modulo
by say 5 kilometres, i.e. a target at 108km would appear at 3km.

To allow full unambiguous measurements, a set of simple waveforms is transmitted,
each subtly different from the last. The results of the multiple waveforms are then com-
bined in order to resolve the ambiguities. The problem is how to choose the set of simple
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waveforms. Previous work in this area has led to the development of an evolutionary
algorithm capable of designing practical waveforms [1].

This radar waveform design problem is interesting in that in a practical radar system,
an entire set of non-dominated solutions would need to be created prior to each mis-
sion. While the radar is active, it will choose a general location on the non-dominated
surface, based on current radar operating conditions, then select a waveform randomly
which is local to this chosen location. The random choice helps prevent 3rd-party in-
terception of the waveform as it is changing constantly, yet the waveform is biased
towards an optimal radar configuration. Thus the radar chooses its operating point on
the non-dominated surface dynamically on-line, from a non-dominated set that is likely
to remain fixed for each mission.

An initial analysis of the properties of the objective surface has been performed
and a demonstration of the typical behaviour of two different optimisation algorithms,
NSGA-II and MSOPS, on the function is presented.

Section 2 details the radar design problem and section 3 describes the format of the
objective function software. Section 4 introduces initial results from analysing the non-
dominated surface and section 5 describes the results of comparing the performance of
two example optimisation algorithms. Finally section 6 concludes.

2 Radar Waveform Design

2.1 Introduction

Radar systems are categorised by the rate at which they transmit pulses of energy toward
the target, called the Pulse Repetition Frequency, or PRF [10]. There are three broad
categories: Low PRF with few pulses (20 typical) and big gaps between them (1 milli-
second typical); High PRF with many pulses (thousands) and short gaps (few micro
seconds); and Medium PRF where there are a moderate number of pulses (64 typical)
and moderate gaps (100 μS typical).

Low PRF radar systems can measure range exactly, but velocity measurements are
ambiguous for any velocities greater than the maximum unambiguous veloctiy Vmu,
given in (1) where Fprf is the pulse repetition frequency in Hertz and λ is the wavelength
of the transmitted pulses.

Vmu =
Fprfλ

2
(1)

The maximum unambiguous range of the radar is given by (2), where c ≈ 3×108ms−1

is the speed of propagation of the pulse.

Rmu =
c

2Fprf
(2)

A typical Low PRF radar may have a PRF of 1kHz, yielding a maximum unambigu-
ous range of Rmu = 150km and a maximum unambiguous velocity of Vmu = 15ms−1,
assuming a 10GHz transmission frequency (λ = c/FTX, therefore λ = 0.03m).
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The main advantage of low-PRF radar is the ability to measure target range directly
using simple pulse delay ranging. However, low-PRF radar suffers from a lack of ve-
locity visibility, since unwanted ground returns and undesired slow moving targets get
folded over and over into the small velocity window. Low-PRF radar is best suited to
operation in the absence of ground clutter returns, for example where a radar is looking
up at high-flying targets, rather than looking down and the radar beam is striking the
ground.

A typical High PRF radar may have a PRF of 100kHz, yielding a maximum un-
ambiguous range of Rmu = 1.5km and a maximum unambiguous velocity of Vmu =
1500ms−1, assuming a 10GHz transmission frequency.

The principle advantage of high-PRF radar, is the ability to detect high closing-rate
targets, in what is essentially a noise-limited environment. However, detection perfor-
mance is poor in tail aspect (low closing-rate) engagements, where targets compete di-
rectly with the velocity spectrum of the sidelobe clutter, where transmissions out of the
side of the antenna beam strike the ground and provide echoes back. Furthermore, the
highly ambiguous range response causes the sidelobe clutter to fold within the ambigu-
ous range interval. Consequently, sidelobe clutter can only be discarded by resolving
in velocity. High PRF radar is very good where small relative velocities are not often
seen, or when exceptionally good antennas are available that have very little spurious
radiation out of the side of the beam.

Medium-PRF radar is a compromise solution designed to overcome some of the
limitations of both low and high-PRF radar. By operating above the low-PRF region,
the ambiguous repetitions of the ground clutter spectrum may be sufficiently separated
without incurring unreasonable range ambiguities. Consequently, the radar is better able
to reject mainbeam clutter when in a look-down scenario through velocity filtering with-
out rejecting too many targets. By operating below the high-PRF region, the radar’s
ability to contend with sidelobe clutter in tail-chase engagements is improved. Targets
may now be extracted from sidelobe clutter using a combination of velocity filtering
and range gating.

For example, the mainbeam clutter may be 20ms−1 wide, so can be ‘notched’ out as
long as Vmu > 20ms−1. However, if targets are folded in to the notched region, they
cannot be detected and the region is said to be blind. When the pulse is transmitted, the
receiver is turned off to protect it and the ranges at multiples of Rmu are now eclipsed
and no targets may be detected here either. A second eclipsing region may also be
applied to help reject the effects of the sidelobe clutter from the ground. The region
will extend from a range that is just shorter than the aircrafts altitude (i.e. the first range
at which an echo from the ground could occur) to often a few kilometres ahead of the
altitude return.

A typical Medium PRF radar may have a PRF of 10kHz, yielding a maximum un-
ambiguous range of Rmu = 15km and a maximum unambiguous velocity of Vmu =
150ms−1, assuming a 10GHz transmission frequency. However, in many applications,
both range and velocity will now be ambiguous.

Medium PRF radars possess excellent clutter rejection characteristics which render
them an attractive proposition for airborne intercept (AI), fire control systems, ground
based air surveillance, weapon locating radar and a variety of other applications.
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2.2 PRF Selection

Each PRF is characterised by regions of blind velocities and ranges associated with the
velocity filtering of mainbeam clutter and time gating of sidelobe clutter and associated
eclipsing losses. These blind zones are depicted in black on a blind zone map, as in
figures 1 & 2.

Fig. 1. Blind zones for a single, clutter limited, medium PRF waveform with PRF 14.9kHz

Multiple bursts of pulses are required in order to perform target detection and to
resolve range and Doppler ambiguities. This is achieved by transmitting burst of pulses
at a number of PRFs within the dwell time on target and sequentially measuring and
comparing the ambiguous information received from every PRF. For example, eight
different PRFs may be used but must all be able to be transmitted sequentially within
the dwell time on the target, with each PRF burst having 64 processed pulses (64-point
Fast Fourier Transform (FFT)) and a short period of time in which to change over PRFs.
In practice, the change-over time is to allow the first pulse to reach, and return, from the
furthest possible target of interest. Thus extra pulses are transmitted in a process termed
Space Charging. For example, if the maximum range was 185km, and Rmu = 15km,
13 extra pulses would be sent giving a total of 77, but only 64 would be processed,
making sure that 64 returns from both the closest and furthest targets were contained
within the processing window.

The positions of blind zones vary with PRF, therefore, by applying suitable PRFs
in a multiple-PRF detection scheme, not only may range and Doppler ambiguities be
resolved, but also the blind zones may be staggered to improve target visibility. Ground
clutter returns received through the antenna sidelobes may be strong enough to over-
whelm weak target signals, consequently blind ranges tend to worsen with increasing
range, as shown in figure 3.
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Fig. 2. Expanded view of Blind zones of Fig. 1
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Fig. 3. Comparison of target return and sidelobe clutter for a single, noise limited, medium PRF
waveform with PRF 14.9kHz

Conventionally, three PRFs are required to be clear in range and Doppler in order to
resolve range and Doppler ambiguities and to declare a target detection.

The number of PRFs within a schedule must be selected carefully; too few and the
ability to overcome range-velocity blind zones will be hindered. With too many PRFs,
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then, depending on the average PRF, there may be insufficient time to transmit the
entire PRF schedule within the dwell time on target. Typically, eight PRFs are employed
spanning about an octave.

If significant harmonic relationships exist between any of the PRFs chosen, then it
may not be possible to resolve all of the ambiguities and the schedule is not decod-
able. In reality, targets have a physical size too and extend outside of individual range
or velocity cells. It is desirable to make sure that a schedule is not only technically
decodable, but also decodable in the presence of range or velocity extended targets. If
the decodability criteria is broken by a large target, then false targets or ghosts will be
observed. Unfortunately there is no means of distinguishing a ghost target from a real
target and so all must be processed as true detections, leading to false alarms.

Because of the relatively wide size of the rejection notches, the possibility remains
for a PRF schedule to be decodable and still have some rejection notch overlap; this
is found to be a particular problem at the first repetitions of the ambiguous velocity
intervals. The consequences of such occurrences are bands of velocities in which the
radar is blind, or nearly blind (three PRFs clear only), at all ranges, thereby allowing
a target to approach at a particular velocity with minimum risk of detection. Nothing
can be done about the rejection notches, centred on zero Hz, which blind the radar to
crossing targets.

After the pulses have been received by the radar, they are decoded using the coin-
cidence algorithm [8]. The coincidence algorithm operates by taking the target returns
and for each range bin, performing an FFT across all pulses in the PRF. Thus a map
of range-velocity is produced. The regions of heavy clutter are then notched out and a
detection algorithm is then used to identify potential targets within this ‘folded’ (am-
biguous) range-velocity map. The process is repeated for each of the PRFs.

The next stage is to decode the targets and resolve the ambiguities. This is per-
formed by taking each range-velocity map and repeating them until the maximum
range-velocity extent of interest has been covered. For a single PRF, this will give many
ranges and velocities at which a target may be present. The process is repeated for all
the PRFs and the results overlaid. If a true target is present, it will appear in the same
position in all PRIs (yet may not be detected, or may have been eclipsed or notched
out). Any region of the range-velocity map that has 3 or more coincident detections is
declared as being a true target. The process works well but issues can arise where very
fast targets have moved between range cells between the first and last PRF being trans-
mitted and do not necessarily align in the coincidence process. The problem is known
as range-walk and is accounted for in the software.

In the radar problem encapsulated for this paper, the length of the transmitted pulse
is directly proportional to the delay before the next pulse. This keeps the duty cycle of
the transmitter constant. The radar is also frequency-hopping in that the transmission
frequency changes for each PRF. The result is that the wavelength will also change and
so the order of transmission for the PRFs is important.

The selection of PRFs in a medium PRF set is therefore based on the following
constraints:

1. A spread of values which enable the resolution of range and velocity ambiguities
to ensure basic decodability,
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2. Removal of totally blind ranges and velocities,
3. The total time required for transmission of the waveform must be within the target

dwell time.

The objectives then become:

1. Maximise the size of the target in range that can be decoded without ghosting,
2. Maximise the size of the target in velocity that can be decoded without ghosting,
3. Maximise the size of the clutter patch in range that can be tolerated before blind

ranges occur,
4. Maximise the size of the clutter patch in velocity that can be tolerated before blind

velocities occur,
5. Minimise the total time required for transmission of the waveform.

Objectives 1 to 4 may be calculated using the process outlined in [7] by calculating
what is the target extent at any range/ velocity that can be tolerated before problems
arise. If any of the objectives are zero or negative, i.e. a negative target size is the
maximum that can be tolerated, then it implies that one of the constraints has been
violated.

0 5 10 15

x 10
4

0

2000

4000

6000

8000

Range − Decodability/Blindness

m

Range Decodability/Blindness Plot, worst=405.00 / 1848.00m

0 500 1000 1500
0

50

100

150

200

Velocity − Decodability/Blindness

m
/s

Velocity Decodability/Blindness Plot, worst=12.89 / 69.30ms−1

 

 
Dec.
Blnd.

Fig. 4. Minimum target sizes for PRI set [50.8 50.0 55.6 64.0 86.2 70.1 67.4 96.8]μs

For the practical radar design in section 2.3, as each range and velocity has an as-
sociated minimum target size as demonstrated in figure 4, the worst case and median
performance are actually of interest. The result is that for objectives 1 to 4, both the
median overall performance and minimum overall performance need to be maximised,
yielding 9 objectives in total. The constraints can be applied easily in objective space
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after the optimisation process. For the PRI set [50.850.055.664.086.270.167.496.8]μs
results shown figure 4, the corresponding objectives are:

1. Median range decodability: 2205.0 metres,
2. Median velocity decodability: 47.9 ms−1,
3. Median range blindness: 5310.0 metres,
4. Median velocity blindness: 135.5ms−1,
5. Minimum range decodability: 405.0 metres,
6. Minimum velocity decodability: 12.9ms−1,
7. Minimum range blindness: 1848.0 metres,
8. Minimum velocity blindness: 69.3ms−1,
9. Dwell time: 44.8ms.

As objectives 1 to 8 are positive, and objective 9 is less than 50ms, the PRI set shown
will form a viable radar waveform.

2.3 The Radar Model

A radar model based on an airborne fire control type application was derived to trial the
fitness of PRF sets. The model assumes approximately 10GHz operation, 64-point FFT
processing, 10% fixed duty ratio of pulse length to Pulse-Repetition Interval (PRI), lin-
ear FM pulse compression achieving a variable compression ratio with the PRF and that
platform motion compensation is applied (i.e. the location of the ground is shifted in
velocity back to zero, rather than being left at the platforms forward speed). The maxi-
mum target velocity with respect to the ground was taken as 1500 m/s and the maximum
range was taken to be 185 km (100 nmi). These and other operational characteristics
are summarised in Table 1. It is intended that the model should be representative of the
types currently in service or about to enter service.

Table 1. Summary of the radar model’s characteristics

Parameter Value
Carrier frequency 9.97 GHz for PRF1, each following PRF -30MHz
Minimum PRI 50 μs
Maximum PRI 150 μs
Compressed pulsewidth 0.5 μs
Receiver recovery time 1.0 μs
Range resolution 75m
FFT size 64 bins
Duty cycle 10% fixed
Maximum target dwell time 50ms
Maximum target Velocity ±1500ms−1

Maximum detection range 185.2 km (100 nmi)
Number of PRFs/PRIs 4 to 12
Number of PRFs for coincidence 3
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3 Software Structure

The software for the radar design problem is available for download from [3]. As the
exact design analysis algorithms are proprietary, the software source is not provided,
rather a compiled but portable binary file. In the interest of maximising portability be-
tween platform types, and simultaneously protecting the proprietary algorithms, Matlab
P-code format has been used. Matlab P-code is a platform independent pre-parsed bi-
nary format used by the Matlab engine, helping to reduce the options for de-compilation
that ‘C’, Fortran or Java would present.

The function testpris.p takes a 1 × N vector as an input, where N ∈ [4, 12]
is the number of decision variables, and outputs a 1 × 9 vector of metrics. Each of the
decision variables is an integer in the range [500,1500] inclusive and represents the set
of Pulse Repetition Interval values between [50.0μs, 150.0μs] in steps of 0.1μs.

The 9 metrics that are output represent:

1. Median range extent of target before schedule is not decodable (in metres),
2. Median velocity extent of target before schedule is not decodable (in ms−1),
3. Median range extent of target before schedule has blind regions (in metres),
4. Median velocity extent of target before schedule has blind regions (in ms−1),
5. Minimum range extent of target before schedule is not decodable (in metres),
6. Minimum velocity extent of target before schedule is not decodable (in ms−1),
7. Minimum range extent of target before schedule has blind regions (in metres),
8. Minimum velocity extent of target before schedule has blind regions (in ms−1),
9. Time required to transmit total waveform (in milliseconds, to be minimised)

The metrics 1 to 8 are to be maximised, while metric 9 is to be minimised. There are
9 corresponding constraints: the first eight metrics must all be greater than zero, and the
9th metric must be less than 50 ms. In order to simplify the conversion of the objectives
all to minimisation, and to simplify the constraint process, a wrapper function has been
provided objpri.m that will allow a P ×N matrix to be provided, and a P ×9 matrix
is returned with all of the metrics arranged for minimisation, and aligned so that if any
are greater than zero (the maximisation is converted to a minimisation by negating), then
the solution can be considered not feasible as a practical waveform. The function also
allows an entire population (size P in the example above) to be passed as one matrix.

The current version of the MSOPS [4] optimisation algorithm code used to generate
the results found later in this paper is also provided as an example of how the objective
function may be implemented.

The run-time of the objective function is quite short, considering it is an un-modified
engineering application. Under Matlab and on a 1.8GHz Pentium 4 processor, Microsoft
Windows XP, table 2 indicates the observed processing times for 10000 evaluations, and
therefore times for single objective vector calculations.

4 Initial Objective Surface Analysis

The objective surface consists of 9 objectives and from 4 to 12 decision variables. Some
relationships are known to exist between pairs of objectives, and also between the chro-
mosomes and objectives.
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Table 2. Example processing times for objective vector calculation

N Time 10000 eval (sec) Time 1 eval (ms)
4 21.6 2.16ms
8 33.6 3.36ms
12 46.4 4.64ms

The first main relationship is that if the number of decision variables is less than 9,
then the objective region must be a projection of the lower-dimensional decision space
manifold into the 9-objective space: thus not every possible objective vector is defined.
With greater than 9 decision variables, the converse is true and there is likely to exist ex-
tensive many-to-one mappings between decision space and objective space. At present,
it is not clear if one particular choice of decision space dimensionality provides the en-
tire Pareto surface of the problem. It is hypothesised however that this is not the case
and that the full Pareto surface will be comprised of sections where the decision space
dimensionality changes. From a radar design perspective, the number of PRFs used
and therefore the decision space dimensionality are not critical, as long as the sched-
ule is valid and performs well. Short schedules are often attractive as they tend to re-
quire less processing time, although this processing aspect is a design preference rather
than an objective, and is useful for refining the choice of PRF schedule from the full
Pareto set.

The second relationship is that the first 4 objectives are median values, and ob-
jectives 5-to-8 are the minimum values, of the same 4 data sets. Thus objective 1
will always be better than (or equal to) objective 5 etc. Objectives 1 & 3, 5 & 7 are
metrics associated with the performance in range and tend to have a degree of cor-
relation, i.e. they may not conflict strongly. Similarly, Objectives 2 & 4, 6 & 7 are
metrics associated with the performance in velocity and again do not tend to conflict
strongly with each other either, however they do conflict with the objectives associated
with range.

The third relationship is between the decision variables and the dwell time (objec-
tive 9). The objective is calculated from equation 3, where F9(x) is objective 9, x is the
decision vector (which is integers in units of 0.1μs) and �·� is a rounding-up operation.
The first part of the sum accounts for the time to transmit 64 pulses for the FFT. The
second part of the sum calculates how many pulses are required to space-charge to the
maximum range of interest Rmax. The objective has a nearly linear relationship, apart
from the quantised space-charge offset. Interestingly, the order of the decision variables
also has no influence on the objective, implying that it is therefore approximately uni-
modal (i.e. no local optima), but multi-global (i.e. more than one global optima exist).
At first sight, the minimum value appears to occur when all of the decision variables
are at their minimum, i.e. for an 8 PRI system, the minimum total dwell time would be
35.6ms, giving an objective value of -14.4. However, if unambiguous range of the min-
imum possible PRI is not an integer fraction of the maximum range, then the constant
space-charge term may be rounded up. It may therefore be possible that under some
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conditions, the global optima may not quite occur when all the decision variables are at
their minimum values.

F9(x) = 1000
N∑

i=1

(
64

xi

107 +
⌈

2 × 107Rmax

xic

⌉
xi

107

)
− 50 (3)

Similarly a fourth observation can be made that the velocity-related objectives are
dependent on the order of the decision variables (i.e. if the elements of a decision
vector are re-ordered, the objective values may change). This coupling is due to the
frequency-hopping radar design: the target velocity produces a Doppler shift of the car-
rier frequency; the shift amount is dependent on the carrier frequency itself. As the first
PRI described by the first decision variable is transmitted at 9.97GHz, the second at
9.94Ghz etc., the order of the decision variables will change the effective transmission
frequency, and therefore the velocity performance of the waveform. The objectives that
are associated with range however are only very weakly correlated to the decision vari-
able ordering. The modification of the objective value that occurs with a re-order is due
to the effects of target range-walk. Given that a relatively large range resolution of 75
metres is used in this design, in a dwell of 50 milliseconds, a target must be travelling
at 1500ms−1 or faster in order to move range cells during the dwell. The effect is thus
only very small in this example as only targets at the limit of the velocity of interest
will be affected. Objectives 1 & 3 are the most likely to undergo any change as these
are calculated based on the medians. Objectives 5 & 7 are calculated using minimum
and although possible, it is unlikely that any order-dependence will be observed.

The number of decision variables influences both performance, and also ultimately
which constraints are most difficult to satisfy.

5 Algorithm Comparison

An initial examination of the ability of multi-objective optimisers to explore the ob-
jective surface was performed. Two primary optimisers: NSGA-II and MSOPS were
used, along with a 3rd which is a steady-state derivative of the MSOPS algorithm and is
currently under development (unpublished prototype which is run in a ‘Pareto ranking
mode’ to aid confirmation of NSGA-II results). The experiments were to generate non-
dominated surfaces for the application problem using 8 decision variables. Although
NSGA-II is known to be less suitable for many-objective problems when compared to
bi-objective problems, it has been included as a useful reference algorithm.

Each optimiser was run 30 times for 20,000 function evaluations. In each run of each
optimiser, all 20,000 points that were generated were collected and the non-dominated
surface of these points established, rather than relying on the contents of the final pop-
ulation alone e.g. as is common in NSGA-II.

The non-dominated surfaces of the 90 independent experiments were collated into a
single group consisting of 775,140 points. Initially, an attempt was made to create the
composite non-dominated surface to establish the contribution from each algorithm.
However after over 24 hours of processing, the non-dominated set was still incomplete,
but it was clear that all of the runs of all of the algorithms made a significant contribution
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to the surface – in the high dimensionality of the objective space, the proportion of non-
dominated solutions is very large. The group of 775,140 points was used to establish a
lower-bound reference point, and a range for each of the objectives for scaling purposes.

The lower reference used was: [-7035.0 -81.3 -27150.0 -296.9 -2700.0 -22.3 -7660.5
-100.5 -14.4]. The range of each objective was calculated as: [7110.0 84.7 23130.0
249.5 2775.0 27.0 10511.0 100.3 78.0]. Figure 5 shows a plot of 5000 example
non-dominated points, and figure 6 shows the same points, but normalised. It is clear
that the relationship between the objectives is non-trivial.
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Fig. 5. Plot of 5000 non-dominated objective vectors. Objectives are un-normalised.

A 10 million-point random search was performed of the objective function in order
to help establish the relative performance of each of the algorithms. Unfortunately, ev-
ery one of the 90 EA runs entirely outperformed the 10 million-point random search,
preventing useful normalisation by exploiting the cumulative density function of the
aggregated objectives [6].

Figure 7 shows an approximation of the distribution of the median attainment surface
of the 3 algorithms over the 30 runs. Each of the 3 lines of the graph is calculated by:

1. Generate 200 approximately uniformly distributed unit length target vectors over
the entire objective space.

2. For each of the 200 target vectors in turn, calculate the weighted min-max result for
all the points in each of the 30 sets of repeated experiments. The minimum value in
each of the 30 sets is taken, yielding a 30 by 200 matrix for each of the 3 algorithms.

3. The median of each column of this matrix is taken, creating a 200 element vector
for each algorithm tested: the vector is a sampled approximation of the median
attainment surface.

4. Each of the 200 element vectors is sorted to build a cumulative distribution, and
then plotted.
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As a 200 point sample of a 9-dimensional objective space is very sparse, the process
was repeated 10 times, each with a different set of 200 points. The results were used
to create 95% confidence interval bounds and plotted as dotted lines on figure 7, with
the median of the 10 results as the thick-line. It is clear that despite 200 points being a
sparse sample, the results are reassuringly accurate.

The performance of the three algorithms is very similar, with MSOPS leading
slightly everywhere, as anticipated from previous studies [5]. As all 3 algorithms have
produced similar results, despite entirely independent trials and algorithms, it is hy-
pothesised that the obtained non-dominated sets are quite close to the Pareto optimal
solution, but as the difference between MSOPS and NSGA-II shows, the set can only
be considered non-dominated rather than Pareto. Additionally, as this is a 9-objective
problem and NSGA-II has performed reasonably well with 20,000 evaluations, it is
suspected that the overall density over the majority of the Pareto surface is high, al-
lowing the problem to be approximated very well within 20,000 evaluations. However
some of the results from the MSOPS trials suggest that there are regions of low density
(the weighted min-max metric can converge well, however the Vector-Angle Distance
Scaling metric is poor, suggesting a low density of points). Thus it is anticipated that
the objective may be viable for study where only very few function evaluations are
available (typical for on-line optimisation within a radar system).

It has been observed that there are concavities in certain dimensions (e.g. between
objectives 1 & 2), and it may be the edges of the set that are sparse. Early indications
from analysis using MSOPS also suggests that there may be regions of discontinuities
and possibly sections of disconnected objective space.

6 Conclusions

This paper has presented and described a real engineering application of many-objective
optimisation, and also provided access to software that allows the application to be
studied by other researchers in the field.

The objectives can be calculated quickly enough to allow for practical optimisation
algorithm development, and the surface appears complex enough to test the perfor-
mance of visualisation and surface analysis tools.

At times, industrial acceptance of multi and many-objective optimisation algorithms
has been slow. It is hoped that by providing an un-simplified real-world problem to use
as an empirical benchmark, others can be encouraged to do the same for other problems,
allowing more credibility to be attached to optimisation algorithm performance.

I also hope that as researchers in the field develop better algorithms for many-
objective optimisation, the results can be collated and the true Pareto set for this op-
timisation problem approached. This collected set would be made available to extend
the non-dominated data already provided from the production of this paper.
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Abstract. In most real world optimization problems several optimiza-
tion goals have to be considered in parallel. For this reason, there has
been a growing interest in Multi-Objective Optimization (MOO) in the
past years. Several alternative approaches have been proposed to cope
with the occurring problems, e.g. how to compare and rank the different
elements. The available techniques produce very good results, but they
have mainly been studied for problems of “low dimension”, i.e. with less
than 10 optimization objectives.

In this paper we study MOO for high dimensional spaces. We first
review existing techniques and discuss them in our context. The pros
and cons are pointed out. A new relation called ε-Preferred is presented
that extends existing approaches and clearly outperforms these for high
dimensions. Experimental results are presented for a very complex in-
dustrial scheduling problem, i.e. a utilization planning problem for a
hospital. This problem is also well known as nurse rostering, and in our
application has more than 20 optimization targets. It is solved using an
evolutionary approach. The new algorithms based on relation ε-Preferred
do not only yield better results regarding quality, but also enhances the
robustness significantly.

1 Introduction

To solve complex optimization problems today, it is often not sufficient to only
consider a single optimization criteria. In contrast, many real world problems
have several – often contradicting – optimization goals. Thus, in the recent past
several techniques for Multi-Objective Optimization (MOO) have been proposed.

One of the first approaches in this direction was the use of Pareto-optimal
elements. This has been discussed in the context of Evolutionary Algorithms
(EAs) in [1]. The goal is to determine elements from the Pareto set. To guide
this search, there exist several alternative methods (see e.g. [2,3]) where the core
is a relation that allows to compare different elements. E.g. the relation Dominate
proposed in [1] can be applied. These methods are well known and have been
studied intensively. But so far these studies mainly consider problems with a
small number of optimization criteria, e.g. in [2] comparisons for dimensions two
or three are given.

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 715–726, 2007.
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For higher dimensional spaces there only exist a few studies (see e.g. [4,5,6,7]).
As testcases scalable test functions proposed in [4] are considered. For example,
in [3] it is reported that the number of individuals in the Pareto set, i.e. the non-
dominated solutions, increase with the number of optimization objectives. Ex-
periments have shown that for 20 objectives the percentage of solutions that can-
not be distinguished using relation Dominates in random populations is nearly
100%. For this reason, new measures and relations have to be defined that help
to automate and guide the optimization process.

In general for higher dimensions weighted sums or aggregation have been pro-
posed, since they are easy to describe and, on a first sight, scale well. But for
high dimensions these techniques reach their limits, since it is hard (or even
impossible) to determine good weights or the fitness of the optimal solution is
not known in advance, respectively.

In [8,9] an alternative relation calledPreferred (originally introduced asFavour)
has been proposed and applied for five dimensions. Experiments have shown
that Preferred clearly outperformed relation Dominates and an approach based
on weighted sums. But in all cases described above the dimensions considered
are rather small, i.e. less than 10. However, for complex optimization problems,
where especially EAs are frequently used, often a higher number of dimensions
occur. Of course, the standard algorithms can also be applied in the case of higher
dimensions, but it will be shown in this paper by a detailed discussion and also by
experimental studies for an industrial application that other techniques should
be applied.

In this paper we first discuss the existing techniques and point out their main
properties. Then, an experimental study shows the weaknesses of the above
techniques for higher dimensions. For the experiments an industrial applica-
tion where a very complex scheduling problem with many constraints occurs
is considered. I.e. the nurse rostering problem [10], a well-known problem in
mixed integer optimization, where a highly constraint schedule for employees in
a hospital is generated. In this problem, 25 optimization goals are considered
in parallel. As an additional difficulty, there are different types of constraints.
Some can be seen as “hard constraints” that are enforced by state laws, while
others are “soft constraints” that should be fulfilled as good as possible. It is
demonstrated by experiments that for high dimensions the approach using rela-
tion Preferred outperforms traditional methods based on non-dominated sorting
(relation Dominates). But relation Preferred is not robust for high dimensions
and has to be extended accordingly. Therefore, we propose an extension of Pre-
ferred that also takes the relative difference over all dimensions into account. It
considers environments of radius ε, where elements outside this region are “pun-
ished”. The new relation is called ε-Preferred. Experimental results show that
the new approach results in higher quality and, additionally, gives very robust
optimization results.

The paper is structured as follows: In Section 2 previous work is reviewed
and properties of the different relations are discussed. An experimental study
for a complex scheduling problem is presented in Section 3. This study clearly
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shows the weaknesses of the existing techniques. Our new approach including
experimental evaluations is introduced in Section 4. Finally, in Section 5 the
results are summarized and directions for future research are pointed out.

2 Preliminaries

To make the paper self-contained, a brief review of proposed relations for com-
paring MO solutions is given. In the second part the MOO methods used for the
experiments are described.

2.1 Relations

A multi-objective optimization problem is defined as follows: Given a search
space Ω, an evaluation function F : Ω → R

m is defined to calculate the fitness
vector of size m: F (A) : ∀A ∈ Ω. Then the optimization goal is to minimize
(or maximize) the elements of F (A). In the following we assume, without loss
of generality, that F has to be minimized for all objectives. According to [1] it
holds:

Definition 1. Let A, B ∈ Ω. A ≺dominates B :⇔
∃j : Fj(A) < Fj(B) ∧ ∀i 	= j : Fi(A) � Fi(B), 1 � i � m.

Based on this, we can describe a Pareto set (non-dominated set) as χ: ∀p ∈ χ :
�q ∈ χ : q ≺dominates p.

As can be seen from the definition above, if two elements A, B ∈ Ω are
compared with relation Dominates, then A dominates B only if it is less or
equal to B in all objectives and if it is better in at least one objective. Using
relation Dominates, a set of elements can be classified into several levels of
non-dominated solutions. Thus, first the non-dominated set is computed. Then,
disregarding the non-dominated set, the next level of non-dominated elements is
found. This is repeated, until all elements have been considered. The resulting
procedure is called non-dominated sorting [3].

In comparison relation Preferred [8] respects the number of objectives in which
A differs from B:

Definition 2. Let A, B ∈ Ω. A ≺preferred B :⇔
|{i : Fi(A) < Fi(B), 1 � i � m}| > |{j : Fj(B) < Fj(A), 1 � j � m}|.

A is then said to be preferred to B if A is better than B in a larger number of
objectives. The Relation Preferred is not transitive. This means it is possible to
have cycles in the relation graph of the elements of Ω.

Analogously to non-dominated sorting a set of elements, e.g. a population,
can be grouped into several levels by using relation Preferred [8].
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2.2 Methods

For our analysis three different methods are used. Based on relation Dominates
are the methods Dominates [11] and NSGA II [12]. Based on relation Preferred
the proposed strongly-connected components building algorithm Preferred is
used [8].

The method Dominates is a part of the Evolving Object Library [11] used
as backbone for our study. This method counts for each individual the number of
individuals which are dominated. Thus, if the number is zero, then this individual
is in the Pareto-front. The best rating is given to the individuals without any
dominators. Then the elements with one dominator follow and so on. Thus,
in contrast to non-dominated sorting [1], only the first Pareto-front is built and
considered using the method of [11]. Note, that the “distribution” of the elements
in the solution space is not taken into account. By this, it might happen that
all elements from the same region are favoured, while other regions are not
considered.

To avoid this concentration on a small part of the search space, the NSGA II
algorithm has been proposed [12]. The idea of NSGA II is as follows: The in-
dividuals in a population are classified by non-dominated sorting [1]. Then the
algorithm for computing the crowding distance is used to ensure that the Pareto-
front is widely spread. This also helps to preserve a diversity in the set of possible
solutions, e.g. in the population in the case of an EA.

The algorithm Preferred from [8] builds all strongly-connected components
in the relation graph that result from the pairwise comparison of all individuals
of the population. All individuals in the same component get the same fitness
(ranking value). Then all components are hierarchically ordered, followed by an
assignment of ranking values. For more details see [8].

3 Application of Models

While previous methods and algorithms have been successfully applied in many
fields ranging from graph problems to circuit design, all the studies have in com-
mon that MOO problems of low dimension have been considered, i.e. typically
only three or four. The situation changes, if higher dimensions are the main
focus. In this section we first introduce a very complex industrial scheduling
problem, i.e. a utilization planning problem for a hospital. The problem is taken
from a real-world environment of a hospital in Austria. An experimental study
follows, using the techniques introduced in Section 2.2.

3.1 Utilization Planing Problem

The problem of utilization planing, i.e. the nurse rostering problem [10], is very
complex and cannot be described here in all details. We briefly highlight the
main aspects to give an idea of the underlying optimization problem.

The problem is to determine a schedule for the employees at a hospital. In
the experiments schedules for ten persons for a planning period of 30 days have
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Fig. 1. Example nurse rostering schedule

to be computed. The computation of the fitness can be roughly categorized in
three main areas:

1. Rules resulting from ergonomics, e.g. having regular shifts
2. Restrictions by law, e.g. maximal hours of work per day or maximal working

days per month
3. Rules of the nurse station, e.g. sufficient nurses per shift

Some of these constraints are “hard” in the sense that they have to be fulfilled,
while others are “soft”, i.e. they improve the fitness, but a violation does not
invalidate the schedule. Altogether 25 optimization objectives are influencing the
fitness function. Each one might have a different influence, e.g. some are linear
while others are exponential regarding the influence.

Example 1. To give a better understanding of the algorithm a sketch of a sched-
ule is given in Figure 1. Depending on the grade of training the optimization
algorithm assigns exactly one shift to a person per day. In this example all given
shifts are marked with a letter. These letters have the following meaning: Day
shift (D), Night shift (N), Late shift (L), Vacation (V), Free shift (F), Stand-by
shift (S), No shift (-).

For more details see [10].

3.2 Implementation

The core of the optimization is directly based on a schedule similar to Figure 1.
In the optimization algorithm one mutation and two recombination operators are
used. They are applied with a probability of 50% for the mutation operator and
25% for each recombination operator. The mutation operator sets a legal shift
for a randomly chosen person and day. Both recombination operators exchange
a block of shifts, specified by a random choice of employees and days. Since the
focus of this paper is not on the optimization technique, i.e. the EA approach,
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Table 1. Fitness for generation 3000

Algorithm AV GΨ,3000 AV GΨ,3000 in percent σ3000 σ0..3000

Dominates 429805 100% 11% 7%
NSGA II 421840 98% 13% 7%
Preferred 196842 46% 67% 88%

the details are left out. In contrast, it is emphasized that the approach presented
in this paper is applicable for other MOO techniques as well.

As metric to compare the results of the 25 dimensional optimization, a weighted
sum approach, which reduces the fitness vector to one dimension, is used. The
weighted sum metric is in general defined as follows: Ψ : R

m → R with Ψ(A) =∑m
i=1 wi · Fi(A). The justification of the weights results from the experience of

an expert, several months of development in the area of nurse rostering and the
given constraints. Note, that a lot of time and experience was necessary to adapt
these weights.

To measure the influence of random seeds on the results, the random number
generator has been initialized with 10 different values. But they were chosen
as constants in each run. The results presented in Section 3.3 and 4.3 give the
average value AV GΨ for these 10 runs. With the best weighted sum of generation
g for random seed i denoted as Ψi,g, the average value AV GΨ,g : R → R of the
ten runs Ψi,g : 1 � i � 10 is calculated as follows:

AV GΨ,g =
∑10

i=1 Ψi,g

10

Additionally to the average value, the standard deviation σg has been calcu-
lated in percent from AV GΨ,g as follows:

σg =

√√√√ 1
10 − 1

10∑
i=1

(
Ψi,g

AV GΨ,g
− 1)2

3.3 Experimental Evaluation

The experiments are based on the standard setting of the EA as applied in the
industrial setting (see Section 3.2) . No fine-tuning has been done for any of the
algorithms.

The results of all experiments are given for a population size of 10 and a run of
3000 generations. The final average fitness values are shown in Table 1 in column
AV GΨ,3000 for the methods Dominates, NSGA II and Preferred, respectively.
For comparison, in the next column AV GΨ,3000 is given as percentage normal-
ized for Dominates. As can be seen, Dominates and NSGA II perform almost
identical, while Preferred gives a reduction of more than 50%.

The next column gives the standard deviation. Here Dominates and NSGA II
have values from 10-15%, while Preferred has an “unstable” value of over 60%.
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Fig. 2. Fitness for Dominate, NSGA II and Preferred

The result gets even worse if the average value of the standard deviation from
the first to the last generation is considered (see last column). The results of the
complete run are shown in Figure 2.

In summary the experimental study showed:

– The performance of Preferredwas significantly better than that of Dominate
and NSGA II for high dimensional MOO.

– Measuring the standard deviation showed that Preferred is not very robust,
i.e. the algorithms should generate good solutions for each random seed.

3.4 Discussion

In this section the experiments are discussed to explain the observed behavior.
A more detailed analysis of the method Preferred showed the reason for

the behavior: Relation Preferred favours a solution A, if it is better in more
dimensions than a solution B. But a “problem” of relation Preferred is that the
other dimensions, i.e. those where B is better than A, are not considered at all. It
might happen that the negative effect of these dimensions is very strong and, as
a result “jumps” occur in the weighted sum metric. This effect can, for example,
be observed in Figure 2 between generation 450 and 500 or 1600 and 2600.

The main reasons for the weak performance regarding the fitness of rela-
tion Dominates can be explained as follows: Due to the high number of di-
mensions it rarely happens that an element is better in all dimensions. In fact,
in the EA run 93% of the solutions were not comparable to each other us-
ing Dominates. Only solutions which are better or equal in all dimensions were
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distinguishable from other solutions. This also applies to NSGA II and is a reason,
why the relation Dominates based methods Dominates and NSGA II could not
guide to good solutions.

In [3] this problem has been described for up to 20 objectives. There it has
been suggested to use a larger population size or to use modified fitness assigning
techniques. Both approaches will not work in our application. Increasing the
population size means higher run times. Furthermore, this might reduce the
number of non-comparable elements. To modify the fitness assignment might
help to preserve a good Pareto-front, but not to improve the path to an optimum.

So approaches based on Preferred should be used for guiding the search in
high dimensional spaces, because it is possible to compare solutions, which are
not comparable with relation Dominates. Preferred uses the number of better
objectives as a criterion for the comparison. But as a result the technique suffers
from unstable behavior as explained above.

4 Robust MOO

To improve the robustness of the approach based on Preferred, an extension
called ε-Preferred is introduced in the following. Before we give a formal defini-
tion, the main idea is briefly sketched.

4.1 Overall Idea

One principle in multi-objective optimization is to model the criteria of human
decision making. In our application it has been observed that a human plan-
ner rejects solutions, if specific limits of the objectives quality are not satisfied.
Hence, the idea is to define fitness limits for each dimension. The resulting re-
lation is called ε-Preferred, where an ε-value is defined for each optimization
objective. A solution is rejected if it exceeds one or more ε-limits.

For a motivation of our idea look at the following example:

Example 2. Consider solutions A and B and a fitness function F for a mini-
mization problem. Let F (A) = (1, 1, 100) and F (B) = (5, 5, 5). Then relation
Preferred would hold: A ≺preferred B

But, dependent on the application considered, solution A is not a satisfying
solution, because the third component does not fulfill the planners expectations.

To overcome this problem, a maximum environment εi is set for each optimiza-
tion objective 1 � i � m.

As can be seen in Example 2, if we set ε3 = 50, solution A becomes worse
than B, because the third component of solution A does not satisfy the given
quality limits.

4.2 Relation ε-Preferred

In this section an extension of Preferred, denoted as ε-Preferred, is formally
introduced.
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Table 2. Fitness for generation 3000

Algorithm AV GΨ,3000 AV GΨ,3000 in percent σ3000 σ0..3000

Dominates 429805 100% 11% 7%
Preferred 196842 46% 67% 88%
ε-Preferred 116594 27% 10% 6,6%

Definition 3. Let A, B ∈ Ω and εi, 1 � i � m

A ≺ε−exceed B ⇔
|{i : Fi(A) < Fi(B) ∧ |Fi(A) − Fi(B)| > εi}|
> |{j : Fj(A) > Fj(B) ∧ |Fj(A) − Fj(B)| > εj}|.

The relation ε-exceed counts how often a solution exceeds the given limits εi.
Then solution A is better than solution B with respect to the limits εi, if A has
less exceedings than B.

Using ε-exceed the extension ε-Preferred is defined as follows:

Definition 4. Given two solutions A, B ∈ Ω,
A ≺ε−preferred B ⇔ A ≺ε−exceed B ∨ (B ⊀ε−exceed A ∧ A ≺preferred B)

First it is counted how often a solution exceeds the ε-limits and the better
solution is determined. If both solutions are in the given range, Preferred is used
for comparison.

By building the relation graph with the newly proposed relation ε-Preferred, it
is possible to create cycles, as relation Preferred does, too. For this reason we use
the same strongly-connected components building algorithm as suggested in [8].

4.3 Experimental Evaluation

The experimental setting is the same as described in Section 3.3, i.e. we studied
the run for 3000 generations. The underlying EA was identical for all approaches
and only the MOO relation was changed.

In the experiments for all dimensions the parameter ε is set to 10000. This
choice is very conservative and only a weak restriction for the algorithm. But, it
can be avoided that the algorithm explores regions of the search space that are
not of the planners interest.

The same information as above is now given for ε-Preferred in Table 2 and
Figure 3. Since Dominates and NSGA II behave almost the same, only Dominates
is shown in the table. Compared to Preferred, the results are further improved
by over 30% by using relation ε-Preferred. But the even more remarkable obser-
vation is the robustness of the technique. While it is significantly better than
Preferred, it is even better than Dominates. This can be seen very well in
Figure 3, where the fitness over 3000 generations is shown. There are no “jumps”
any more.
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Fig. 3. Fitness comparison for Preferred and ε-Preferred

Table 3. Fitness cut-out of the 18 most important dimensions

Algorithm AV GΨ,3000 AV GΨ,3000 in percent σ3000 σ0..3000

ε-Preferred 45188 100% 16% 11%
ε-Preferred-2500 38998 86% 15% 13%
ε-Preferred-1000 33018 73% 8% 10%

Influence of Epsilon Values. For our experiments above large epsilon values
have been used. Only in cases where a solution was “very bad” in one or more
dimension it was rejected. In this section we briefly discuss the influence of alter-
native choices. The experiments are summarized in Table 3. By this, directions
for future work are pointed out (see also next section).

In a first run, denoted as ε-Preferred-2500, the epsilon values of 18 out of the
25 optimization objectives were reduced from 10000 to 2500. The 18 dimensions
were the ones that the human expert considered “most important”. In a second
run (ε-Preferred-1000) we additionally reduced two out of the 18 dimensions to
the value 1000 to consider those as “very important” criterias. As can be seen
even by these first experiments, the quality could be further improved, while
obtaining the same robustness.

If the value of ε was too low (e.g. close to zero) for one dimension, then each
solution with small deterioration in this direction was immediately rejected with-
out respecting possible improvements in other dimensions. The same problem
occurred in the case of relation Dominates.
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In summary, based on relation ε-Preferred the quality measured by the fitness
value could be significantly improved, while robustness was obtained at the same
time.

5 Conclusions and Future Work

With more complex applications, MOO is becoming a more important topic.
To compare two solutions relations have to be defined. These have mainly been
evaluated on problems of low dimension, i.e. with up to 10 optimization goals.

In this paper a complex industrial scheduling problem has been investigated.
The problem has more than 20 optimization goals with different “levels” of
importance. Previously proposed relations have been evaluated and discussed in
the context of high dimensional MOO. It turned out that the methods either
suffer from low quality or low robustness.

A new relation called ε-Preferred has been suggested and experimentally stud-
ied. It was shown that very high quality results could be obtained, i.e. an im-
provement of more than 30% so far, and in addition the robustness could be
improved.

It is focus of current work to develop automatic techniques for determining the
epsilon values automatically. In this context also the dynamic reduction during
the optimization run will be investigated. First experiments showed that there
is still significant potential for improvement.
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Abstract. Many-objective optimization refers to optimization problems
with a number of objectives considerably larger than two or three. In this
paper, a study on the performance of the Fast Elitist Non-dominated
Sorting Genetic Algorithm (NSGA-II) for handling such many-objective
optimization problems is presented. In its basic form, the algorithm is not
well suited for the handling of a larger number of objectives. The main
reason for this is the decreasing probability of having Pareto-dominated
solutions in the initial external population. To overcome this problem,
substitute distance assignment schemes are proposed that can replace the
crowding distance assignment, which is normally used in NSGA-II. These
distances are based on measurement procedures for the highest degree,
to which a solution is nearly Pareto-dominated by any other solution:
like the number of smaller objectives, the magnitude of all smaller or
larger objectives, or a multi-criterion derived from the former ones. For
a number of many-objective test problems, all proposed substitute dis-
tance assignments resulted into a strongly improved performance of the
NSGA-II.

1 Introduction

Recently, there has been increasing awareness for the specific application of evo-
lutionary multi-objective optimization algorithms to problems with a number of
objectives considerably larger than two or three. Fleming et al. [8] note the com-
mon appearance of such problems in design optimization, and suggested the use
of the term many-objective optimization. Most evolutionary multi-objective op-
timization algorithms (EMOs) show a rather decreasing performance, or rapidly
increasing search effort for an increasing number of objectives. Other problems
with the handling of many objectives are related to the missing means for per-
formance assessment, to difficulties in visualizing results, and to the low number
of existing, well-studied test problems. The DTLZ suite of test problems [6,7] de-
fines most of their problems for an arbitrary number of objectives. Results here
have been reported for up to 8 objectives [10]. The Pareto-Box problem [12] was
also defined for an arbitrary number of objectives, and results were given for up
to 15 objectives.

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 727–741, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The reason for the decreasing algorithm performance is strongly related to the
(often even exponentially) growing problem complexity. This growing complexity
can be measured by several means. One example for this is, if considering a
randomly initialized population, the rapidly decreasing probability of having
a pair of solutions, where one solution Pareto-dominates the other. Within the
unit hypercube, the expectation value for the number of non-dominated solutions
among m randomly selected solutions can be computed by [12]:

em(n) = m −
m∑

k=1

(−1)k+1

kn−1

(
m

k

)
(1)

where m stands for the number of individuals, and n for the number of objectives.
For example, for 15 objectives and 10 individuals, the expectation value for the
number of dominated solutions is already as low as 0.0027.

Among the most successful and most often applied EMOs we find the Fast Eli-
tist Non-dominated Sorting Genetic Algorithm (NSGA-II) [3,5]. But the poor
performance of the NSGA-II algorithm for a large number of objectives has
already been reported as well, see e.g. [10,9]. This can be considered a kind of
misfortune, as otherwise, the NSGA-II is one of the most attractive EMOs today,
due to its simple structure, its availability, the elaborated design of its opera-
tions [1], the existence of experience in practical applications, and its excellent
performance on the majority of test problems.

This paper attempts to overcome this drawback by analyzing the reasons for
NSGA-II’s failure in the many-objective optimization domain, and by providing
corresponding countermeasures. The main approach, as will be more detailed
in section 2, is to replace the crowding distance assignment that is used for
secondary ranking among individuals of the same rank. Four methods will be
considered here, which all suit better to a larger number of objectives. Section
3 will present results for the convergence metric and Pareto front coverage for a
number of many-objective test problems, and section 4 will render conclusions
from these results.

2 Substitute Distance Assignments in NSGA-II

2.1 Structure of NSGA-II Algorithm

The outline of the NSGA-II algorithm can be seen in the following listing. Here,
we are focussing on a multi-objective minimization problems.

NSGA-II:
Rt = Pt ∪ Qt combine parent and children population
F = fast nondominated sort(Rt) F = (F1, F2, · · · )

all non-dominated fronts of Rt

Pt+1 = ∅, i = 1 init next parent population
while |Pt+1| < N do until the parent population is filled
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secondary ranking assignment(Fi) calculate ranking values in Fi

Pt+1 = Pt+1 ∪ Fi, i = i + 1 include i-th non-dominated front in the
end parent population
Sort(Pt+1, ≥n) sort in descending order using ≥n

Pt+1 = Pt+1[0 : N ] choose the first N elements of Pt+1
Qt+1 = make new population(Pt+1) use selection, crossover and mutation
t = t + 1 to create a new population Qt+1

For each generation t, the algorithm maintains an external population of N par-
ent individuals Pt and creates a child population Qt from the parents. Both
populations, fused together, are lexicographically sorted by two different global
ranking measures. The first is the non-dominated sorting, as result of the pro-
cedure fast nondominated sort. For details of its implementation, see [3]. The
main outcome of this procedure is the assignment of a rank to each solution in
the set Rt. Two solutions of the same rank do not dominate each other, but
for each solution of rank r > 1, there exists at least one dominating individual
of lower rank. The rank 1 is assigned to all solutions that are in the Pareto
set. Thus, the rank value implies a total ordering of the set of solutions in the
algorithm for each generation.

To yield a more competitive ordering, NSGA-II also assigns a secondary rank-
ing measure to each solution. So far, only the crowding-distance-assignment
has been considered, as given in the following listing:

CROW-DIST: crowding-distance-assignment(I)
l = |I| number of solutions in I
for each i, set I[i].dist = 0 initialize distance
for each objective m do
I = sort(I, m) sort using each objective value
I[1].dist = I[l].dist = ∞ so that boundary points are always

selected
for i = 2 to (l − 1) do for all other points
I[i].dist = I[i].dist + (I[i + 1].m − I[i − 1].m)

end
end larger dist count better

This distance measure is well suited for a later stage of the algorithms’ appli-
cation, where the population is already close to the true Pareto front of the
problem (hopefully). It forces the solutions to keep distance to their neighboring
solutions in objective space. Using this distance in addition to the ranking, the
comparison of two solutions is based on the ordering relation ≥n:

i ≥n j if (irank < jrank) or ((irank = jrank) and (idist > jdist)) (2)
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2.2 NSGA-II and Many Objectives

In the case of a larger number of objectives, the performance of NSGA-II is
notably dropping, down to a level, where its behavior resembles more or less a
random search [12]. Considering the plot in fig. 1, some insight into this phe-
nomenon can be yielded. For an initial parent population of 100 individuals,
ranks have been computed. The plot shows the average number of rank 1 solu-
tions over 100 such random initializations and with increasing number of objec-
tives for the DTLZ2 and DTLZ6 problems. For more than 2 or 3 objectives, the
amount of rank 1 solutions sharply increases. For the (also known to be more
complex) DTLZ6 problem, the rank 1 rapidly accounts for more than 90 percent
of the population. For the partial ordering used in the NSGA-II, this means that
most of the ranking now is delegated to the secondary ranking assignment, i.e.
the crowding distance comparison. However, measuring crowding in an initial
population is randomized as well, and as a result, the algorithm gets stuck right
from the beginning.
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Fig. 1. Average number of rank 1 individuals in an initial random parent population
of 100 individuals for the DTLZ2 and DTLZ6 problems with 2 to 30 objectives

It seems suitable to consider a different way for secondary ranking assignment
in the first (explorative) generations of the algorithm, in order to avoid the
algorithm getting stuck. This will be discussed in the next subsection.

2.3 Secondary Ranking Assignment by Pareto Dominance Degrees

As it was already pointed out in the introduction, with increasing number of
objectives the appearance of Pareto-dominance among the solutions becomes
more and more unlikely. However, two solutions can be close to the situation
where one solution Pareto-dominates the other. As a basic idea, we are going
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to measure this kind of closeness and use such measurements instead of the
crowding distance for the secondary ranking in the NSGA-II algorithm.

The degree, by which a solution A is nearly-dominated by a solution B, can
be related to more than one criterion. Basically, the following independent cases
can be considered:

– the number of smaller or larger objectives;
– the magnitude of all smaller or larger objectives; or
– a multi-criterion based on the former ones.

In the following, we are going to consider measurements for all these cases. The
measurements take advantage of the fact that in NSGA-II, due to the non-domi-
nated sorting, the secondary ranking is only applied to solution sets I where no
solution Pareto-dominates any other solution of the same set: pareto set(I) = I.

Subvector dominance (SV-DOM): given two solutions A and B, the proce-
dure svd(A, B) directly counts the number of objectives of B that are smaller
than the corresponding objectives in A. For each solution I[i] in a set I of so-
lutions, the largest such value among all other solutions is assigned as distance
value to I[i]. The smaller this value, the smaller is the number of lower objectives
that appear among all other members of the set I. Such a solution is more close
to being not Pareto-dominated by any other solution. For a strongly Pareto-
dominated solution, its distance equals the number of objectives. In [2], such a
measure was used for the so-called efficiency of order k -selection among Pareto
optimal solutions. The pseudo-code for computing SV-DOM is as follows:

SV-DOM: subvector-dominance-assignment(I)
def svd(i, j) comparing solution i with j
cnt = 0 initialize counter
for each objective m do
cnt = cnt + 1 if I[j].m < I[i].m count number of smaller objectives

return cnt
end
for each i = 1, · · · , |I| do for all solutions I[i]
set I[i].dist = 0 initialize distance
for each j �= i do among all other solutions j
v = svd(i, j) find the one with the largest
if I[i].dist < v then I[i].dist = v number of smaller objectives;

end this j gives the distance value for i
end smaller dist count better

-eps-dominance (−ε-DOM): for two solutions A and B of the solution set,
the procedure mepsd(A, B) considers all objectives of B that are larger than
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the corresponding objectives of A (i.e. worse). It computes the smallest value
ε, which, if subtracted from all objectives of B, makes B Pareto-dominating A.
This corresponds to the concept of additive ε-dominance. For each solution I[i] in
a set I of solutions, the smallest such value among all other solutions is assigned
as distance value to I[i]. The larger this distance for a solution, the higher the
“effort” that would be needed to make the other solutions Pareto-dominating the
former. For a Pareto-dominated solution, the distance is 0. The ε-DOM distance
can also be computed as follows:

-eps-DOM: meps-dominance-assignment(I)
def mepsd(i, j) comparing solution i with j
max = 0 initialize maximum variable
for each objective m do
if I[j].m > I[i].m then for all larger objectives
max = max [I[j].m − I[i].m, max] get largest differing objective

end
return max

end
for each i = 1, · · · , |I| do for all solutions I[i]
set I[i].dist = ∞ initialize distance
for each j �= i do among all other solutions j
v = mepsd(i, j) find the one with the smallest
if I[i].dist > v then I[i].dist = v maximal differing larger objective;

end this j gives the distance value for i
end larger dist count better

Fuzzy Pareto dominance (FPD): Given two solutions A and B, this proce-
dure accounts for all objectives of B that are also larger than the corresponding
objectives of A (i.e. worse). Instead of seeking the maximum difference (as we
did for ε-DOM), and thus basing the comparison onto a single objective only, we
are going to fuse all the magnitudes of larger objectives into a single value. The
procedure equals the Fuzzy-Pareto-Dominance relation as presented in [11]. It
uses the notion of bounded division of two reals x and y from [0, 1]:

[
x

y

]
=

{
1, if y ≤ x

x/y, if x < y
(3)

All bounded quotients of corresponding objectives in A and B are multiplied. For
a smaller objective in B, this gives a factor of 1. Thus, if A is Pareto-dominated
by B, the measure becomes 1. For each solution I[i] in a set I of solutions, the
largest product value from all other solutions is assigned as distance value to I[i].
The smaller this value, the lower the degree by which a solution is dominated by
any other solution in I. The pseudo-code for FPD distance measure is as follows:
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FPD: fuzzy-pareto-dominance-assignment(I)
def fpd(i, j) comparing solution i with j
cv = 1 initialize comparison value
for each objective m do
cv = cv · [I[i].m/I[j].m] multiply bounded quotient

end
return cv

end
for each i = 1, · · · , |I| do for all solutions I[i]
set I[i].dist = 0 initialize distance
for each j �= i do among all other solutions j
v = fpd(i, j) find the one with the largest
if I[i].dist < v then I[i].dist = v comparison value to i;

end this j gives the distance value for i
end smaller dist count better

Sub-objective dominance count (SOD-CNT): None of the methods intro-
duced so far regards for all aspects of the ranking relation between two solu-
tions. If the comparison is based on all larger objectives, the information about
smaller objectives is neglected, and vice versa. If the number of larger objectives
is considered, nothing is known about the difference in the magnitudes of these
objectives. Thus, we are also considering a multi-criterion here, and provide a
distance assignment procedure for such a multi-criterion ranking.

Taking any solution A of a (non-dominated) solution set I, we derive a set SA

of all pairs of two single-criterion distance measures to all other solutions B of the
set. In this study, we take the pair M −svd(A, B) (M is the number of objectives)
from SV-DOM distance and mepsd(A, B) from −ε-DOM distance. This set SA

has a Pareto set, which is composed of all solutions that “perform well” against
A. Each solution in I gets the number of occurrences in all the possible Pareto
sets PSOA assigned. The higher this number, the more often the corresponding
solution “performs well” against some other solution in I. In pseudo-code:

SOD-CNT: subobjective-dominance-count-assignment(I)
for each i, set I[i].dist = 0 initialize distance
for each i = 1, · · · , |I| do for all solutions I[i]
Si = {(M − svd(i, j), mepsd(i, j)) | j �= i}

all pairs of subvector dominance
and -eps-dominance distances

POSi = pareto set(Si) get the Pareto set of Si

for each j ∈ PSOi do for each solution j in that Pareto set
I[j].dist = I[j].dist + 1 increment counter of solution j;

end larger dist count better
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For better understanding, we will provide an example for the computation of
SOD-CNT. Consider the four vectors A = (2, 1, 3), B = (1, 2, 4), C = (3, 3, 1)
and D = (1, 4, 1). The values for M −svd(row, column) and meps(row, column)
are given in the following tables:

(2,1,3) (1,2,4) (3,3,1) (1,4,1)
(2,1,3) - 2 2 1
(1,2,4) 1 - 2 2
(3,3,1) 1 1 - 2
(1,4,1) 2 2 2 -

M − svd(row, column)

(2,1,3) (1,2,4) (3,3,1) (1,4,1)
(2,1,3) - 1 2 3
(1,2,4) 1 - 2 2
(3,3,1) 2 3 - 1
(1,4,1) 2 3 2 -

mepsd(row, column)

For example, the entry “2” in the second column of the first row in the left-hand
table indicates that the solution (1, 2, 4) has one smaller objective than (2, 1, 3).
Thus, the entry is 3 − 1 = 2. The corresponding entry in the right-hand table
indicates that at least 1 has to be subtracted from all objectives in (1, 2, 4) to
make it Pareto-dominating (2, 1, 3).
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Fig. 2. Example for the computation of the sub-objective dominance count (SOD-
CNT) secondary ranking measure

Figure 2 shows the following evaluation for each solution. For example, for so-
lution A, we read the three pairs (2, 1) for comparing with B, (2, 2) for comparing
with C, and (1, 3) for comparing with D from the tables above. The Pareto set
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of these three pairs is the set {(2, 1), (1, 3)}, which refers to the solutions B and
D (black circles in the figure). Doing this for all four solutions, A appears three
times in such a Pareto set, B one time, C one time and D two times. This equals
the distance assignment to the four solutions, and gives A to be of higher value
for the secondary ranking, followed by D, and B, C having lowest ranking value.

2.4 Using the Substitute Distance Assignments

In the NSGA-II algorithm, the four proposed distance assignment procedures are
used the same way as the crowding distance, as given by eq. (2). For SV-DOM
and FPD, the “>” has to be replaced by “<”, as for these procedures, smaller
values count better.

3 Results

3.1 Convergence Metric

In this subsection, we present some results that were obtained using the newly
introduced substitute distance assignments. As test problems, DTLZ2, DTLZ3
and DTLZ6 for 2, 8 and 15 objectives have been used. Since these test problems
are well covered in literature, and also for limited space reason, we are not going
to provide details of the definitions of these test problems here. For details,
the reader is kindly referenced to the literature [6,7]. Also, the genuine many-
objective Pareto-Box test problem, as introduced in [12], was studied. Here, to
any point x ∈ [0, 1]M , the M objectives |xi − 0.5| were assigned.

As performance measure, the convergence metric [4] was used. In case of
DTLZ2, DTLZ3 and DTLZ6, this measure simplifies to |I|−1, where I is a solu-
tion (vector of objectives). In case of the Pareto-Box problem, the convergence
metric can be also simply computed by |I|, as the task here is to come close to
the mid-point of the unit hypercube.

The settings for the NSGA-II algorithm were the same as used in [10]: cross-
over probability 0.7, distribution index for SBX 15, mutation probability 1/M ,
and distribution index for polynomial mutation 20. However, due to a better fit
to the many-objective optimization domain, search effort was kept small. In all
cases, a population of 20 individuals was used, and each experiment went over
300 generations. This is equal to the smallest settings that were used in [10].

The results listed in table 1 were achieved by averaging the minimal conver-
gence metric of a population over the 300 generations for 30 runs each. The
reason that no archive was used is as follows: for a larger number of objectives,
any solution tends to be included in the archive, as Pareto dominance is be-
coming more unlikely. Thus, the procedure for reducing archive size equals more
or less the procedure of elitist selection in the population itself, and it is easily
observed that the values of the convergence metric for both sets do not differen-
tiate much. The presented substitute distance assignments could be considered
for adding to an archive in a many-objective optimization problem as well. This
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Table 1. Results of the application of the substitute distance assignments to common
test problems with increasing complexity

Obj. CROW-DIST SV-DOM -ε -DOM FPD SOD-CNT
Convergence Metric for Pareto-Box

2 (3 ± 3) · 10−5 (5 ± 7) · 10−5 (3 ± 4) · 10−5 (7 ± 9) · 10−5 (8 ± 10) · 10−5

8 0.49 ± 0.04 (16 ± 18) · 10−4 0.028 ± 0.006 (6 ± 15) · 10−4 (8 ± 5) · 10−4

15 0.98 ± 0.07 0.02 ± 0.01 0.066 ± 0.008 0.09 ± 0.08 0.005 ± 0.001

Convergence Metric for DTLZ2
2 (9 ± 2) · 10−4 (3 ± 2) · 10−4 (8 ± 2) · 10−4 (5 ± 2) · 10−4 (7 ± 4) · 10−5

8 0.80 ± 0.07 (3 ± 2) · 10−4 0.029 ± 0.007 0.15 ± 0.06 (11 ± 10) · 10−5

15 0.81 ± 0.06 0.002 ± 0.002 0.06 ± 0.01 0.3 ± 0.1 (14 ± 17) · 10−5

Convergence Metric for DTLZ3

2 22 ± 9 20 ± 10 15 ± 9 16 ± 10 16 ± 6

8 890 ± 60 50 ± 20 40 ± 20 230 ± 50 30 ± 10

15 990 ± 80 80 ± 30 60 ± 20 400 ± 100 30 ± 10

Convergence Metric for DTLZ6

2 0.7 ± 0.2 0.7 ± 0.2 0.51 ± 0.06 0.8 ± 0.3 0.6 ± 0.1

8 9.05 ± 0.09 7.4 ± 0.6 6.6 ± 0.9 8.7 ± 0.3 3.8 ± 0.9

15 9.05 ± 0.08 8.1 ± 0.4 8.2 ± 0.5 8.9 ± 0.1 4.8 ± 0.8

is the topic of an on-going study of the authors. The ±-values in table 1 refer to
the corresponding standard deviation from the sample average.

The results clearly demonstrate the better performance of all substitute dis-
tance assignments, even in the case of two objectives. Between the substitutes,
SOD-CNT achieves the best results, and FPD the worst (but generally still better
than CROW-DIST). Table 2 gives a comparison to results from literature. This
shows the modified NSGA-II also to be highly competitive, especially regard-
ing the comparable low effort that was needed to achieve the given convergence
metric values.

3.2 Pareto Front Coverage

Having found substantially better convergence metric values in the former sub-
section, the question about Pareto front coverage has to be considered as well.
However, the quantitative assessment of the coverage is not simple. So far, sev-
eral ad hoc approaches for certain test problems, with a focus on visualization
have been presented (as e.g. in [10]). For doing similarly for many objectives, we
propose a class of test problems that allows for easy visualization and evaluation
of Pareto front coverage, which is referred to as P* problem for indicating the
variable number of points from which the objectives are derived.

Given is a set P of m points Pi in the Euclidian plane (the case of two
dimensional Euclidian space is completely sufficient for the present analysis).
The feature space F equals the Euclidian plane, where the points Pi are located.
The objective space O is an m-dimensional vector space. For a given point x in
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Table 2. Comparison of results with the results reported in [10]. Column 2 also lists
average convergence metric values for 1000 randomly initialized vectors. The entries in
the columns entitled Effort are population size times number of generations that were
used to achieve the reported results.

Obj. Random PESA[10] NSGA-II[10] Effort SOD-CNT Effort

Convergence Metric for DTLZ2
2 0.83 0.00008 0.00180 20 · 300 0.00007 20 · 300

8 0.84 0.00689 2.30766 600 · 600 0.00011 20 · 300

15 0.83 - - - 0.00014 20 · 300

Convergence Metric for DTLZ3

2 1077.7 22.52023 21.32032 20 · 500 16.0 20 · 300

8 1082.2 7.23062 1753.41364 600 · 1000 30.0 20 · 300

15 1079.3 - - - 30.0 20 · 300

Convergence Metric for DTLZ6

2 9.10 0.79397 0.63697 20 · 500 0.6 20 · 300

8 9.08 6.32247 10.27306 600 · 1000 3.8 20 · 300

15 9.08 - - - 4.8 20 · 300

the feature space, its objective vector o(x) is the vector with the components
oi = d(x, Pi) for i = 1 to m, where d(a, b) is the Euclidian distance of two points
a, b ∈ F . Thus, the objectives to minimize are the distances to a given collection
of points, where the distance to any of these point is treated as an independent
objective.

The Pareto set of this problem, i.e. the set of feature vectors giving objective
vectors that are not dominated by any other feasible objective vector (in other
words, are closest to all points Pi), equals the convex closure of the points Pi.
Here, convex closure means the union of the volume enclosed by the convex hull
and the convex hull itself.

To see this, consider the left subfigure of fig. 3. Consider any point X in
the plane that does not belong to the convex closure of the points Pi. As-
sume that the convex hull of the points Pi is being established by the poly-line
A1A2 . . . AnAn+1=1, where each Ai ∈ P . As X is outside the enclosed area,
there must be a connection AiAi+1 such that all points of P are either on the
connecting line, or on the opposite side of the connecting line than X . Dropping
a perpendicular from X to the connecting line, one can see that any point Y
between X and the line is more close to any point on the opposite side of the
connecting line, and more close to any point on the connecting line as well. Thus,
for any point X outside the convex closure there is a point that is more close to
all points of P , and X does not belong to the Pareto set.

To see that none of the points of the convex closure dominates any other,
consider the right subfigure of fig. 3. By connecting any two points U and V
of the convex closure and drawing the perpendiculars to this line trough U and
through V , the convex closure is segmented into three parts. There is at least one
point of the point set A (and thus of P ) located to the l.h.s. of the perpendicular
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Fig. 3. Illustrating the proof that the Pareto set of the P* problem for the points Ai

is the convex closure of these points

through U (indicated by encircled A in the figure), or located on this line, and
there is at least one point of A belonging to the r.h.s. of the perpendicular
through V or on it (indicated by encircled B). Otherwise, the shape would not
be convex. Now, point U is more close to any point of A than V , and point V is
more close to any point of B than U . Neither U nor V can dominate the other.

Having thus a rather simple solution structure in the feature space (not ob-
jective space, which is high-dimensional), the problem is worth a study for a
heuristic algorithm for several reasons:

– the number of objectives can be easily scaled
– by reducing the area enclosed by the convex closure, the effort for random

search (the “Monte-Carlo Barrier”) can be easily increased
– typical performance measures (as average distance to Pareto front, number

of individuals belonging to the Pareto front) can be directly computed
– as the feature space is two-dimensional, the results can be directly visualized;

however, the extension to higher-dimensional spaces is straightforward
– the search space is not bounded
– the problem is a continuous optimization problem
– boundary conditions can be directly included
– crowding in objective space directly corresponds to crowding in feature space
– modeling of algorithm behavior seems feasible
– by using the distance to the center of gravity of the points instead, a com-

parison to the single-objective case becomes possible

We have studied the performance of the modified NSGA-II algorithms on such
a 15-objective P* problem.

Figure 4 gives a result that demonstrates how differently the considered meth-
ods are behaving. Note that this figure shows the Pareto front of the algorithms
and the test problem in feature space, and not in the (15-dimensional) objec-
tive space. The best coverage of the polygon is achieved with the FPD method,
closely followed by −ε-DOM. These are the methods that employed the magni-
tudes of larger objectives of solutions directly. SVD shows a rather small coverage
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Fig. 4. Final populations using the considered secondary ranking methods on a 15-
objective P* problem after 100 generations. Population size is 20.

of the Pareto front, and SOD-CNT, having by far the best convergence metric
values, nearly collapses into a single point. Notable also the distribution of the
“default” crowding distance measure: as the crowding distance, by construction,
keeps extreme individuals in the objective space, it favors individuals that are
near to the corners of the polygon. For the P* test problem, this feature of the
crowding distance is obviously a drawback.

4 Conclusions

We have studied a number of modifications of the NSGA-II algorithm, to make
this algorithm better capable of solving many-objective optimization problems.
The modifications were substitutes for the crowding distance assignment, based
on closeness of solutions to the case that one solution Pareto-dominates the other.
The results and experiences, also taking non-measurable aspects into account,
can be summarized as follows:

SV-DOM. This distance measure is very easy to implement, and needs the
lowest computation time. It showed the second best results for the convergence
metric, but failed in the Pareto front coverage study.

−ε-DOM. This distance measure can also be easily implemented, and needs
a little more computational effort than SV-DOM. Convergence metric perfor-
mance was average among the considered modifications, but is accompanied by
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a good Pareto front coverage. Altogether, this makes this method a good trade-
off among all the studied modifications.

FPD. This method has a rather high computational effort, and it also has some
formal weaknesses regarding issues of division by 0 etc. Among the studied mod-
ifications, the convergence metric performance was worst (however, still better
than the crowding distance), but it demonstrated the best Pareto set coverage
for the P* problem.

SOD-CNT. The convergence metric of this method is excellent. This good
result is weakened by a very poor Pareto front coverage, and also higher compu-
tational effort. Moreover, in contrary to the other methods, the processing time
is not predictable, as the size of the Pareto sets for the single solutions may vary.
During the experiments, we faced an unexpected very long processing time for
larger populations and a small number of objectives. Also, if the non-dominated
sets gets smaller, the differentiation among the individuals by this measure be-
comes low. In a few cases, we could even observe convergence of the algorithm,
despite of the use of a mutation operation. Some issues regarding this approach,
which showed a very good convergence metric, still need further investigation.
To summarize, the results of this study indicate two promising strategies for
the application of NSGA-II to many-objective optimization problems: first is to
replace the crowding distance completely by −ε-dominance distance, second is
to use the sub-objective dominance count distance SOD-CNT for the first gen-
erations of the algorithm, as long as most of the individuals get rank 1 assigned,
and switch to the crowding distance, once the SOD-CNT values tends to be
equalized over the whole population.
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Abstract. Research within the area of Evolutionary Multi-objective
Optimization (EMO) focused on two- and three-dimensional objective
functions, so far. Most algorithms have been developed for and tested
on this limited application area. To broaden the insight in the behav-
ior of EMO algorithms (EMOA) in higher dimensional objective spaces,
a comprehensive benchmarking is presented, featuring several state-of-
the-art EMOA, as well as an aggregative approach and a restart strategy
on established scalable test problems with three to six objectives. It is
demonstrated why the performance of well-established EMOA (NSGA-
II, SPEA2) rapidly degradates with increasing dimension. Newer EMOA
like ε-MOEA, MSOPS, IBEA and SMS-EMOA cope very well with high-
dimensional objective spaces. Their specific advantages and drawbacks
are illustrated, thus giving valuable hints for practitioners which EMOA
to choose depending on the optimization scenario. Additionally, a new
method for the generation of weight vectors usable in aggregation meth-
ods is presented.

1 Introduction

In the field of evolutionary multi-objective optimization, a lot of test problems
and applications with two or three objectives have been studied. Problems with
more than three objectives, which have been termed many-objective problems
by Farina and Amato [1], have been tackled only rarely. Many techniques that
work well for only a few objectives are anticipated to have difficulties in high-
dimensional objective spaces. Thus, many-objective optimization is significantly
more challenging than scenarios usually being analyzed.

Within multi-objective optimization, we consider d-dimensional vectors of ob-
jective values for a problem of d objective functions f = (f1, . . . , fd). Among these
vectors, a partial order holds concerning the considered minimization problems.
For details on often used terms and definitions like Pareto dominance, Pareto set
and front, books on EMOA by Deb [2] or Coello Coello et al. [3] are suggested.

The selection module of an EMO algorithm (EMOA) requires a mapping of
an objective vector to a ranking criterion to establish a complete order among

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 742–756, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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individuals. Popular EMOA usually consist of two selection operators. The pri-
mary selection operator is based on Pareto dominance and favors non-dominated
solutions over dominated ones. The secondary operator is constituted diversity
preserving and rates solutions incomparable concerning the primary operator.

This concept of selection already documents the insight that Pareto domi-
nance may not be sufficient as a sole selection operator, due to the large amount
of possibly incomparable solutions. More precisely, a d-dimensional objective vec-
tor is only comparable with a fraction of 1/2d−1 of an (infinite) objective space
(cf. Farina and Amato [1]). The importance of the secondary selection operator
grows with increasing dimension of the objective space since the incomparability
concerning the Pareto-based operator becomes the typical case.

Few previous studies on many-objective optimization by Purshouse and Flem-
ing [4] and Hughes [5] focus to demonstrate the bad performance of NSGA-II
by Deb et al. [6]. Hughes observed a simple single-objective restart strategy out-
performing NSGA-II on a six-objective function in a two-dimensional decision
space. Upon this, he implied a generalization to all Pareto-based techniques.

In contradiction, the work at hand includes positive results by demonstrat-
ing that some modern EMOA using Pareto-concepts cope very well with high-
dimensional objective spaces. We ascribe the good performance of ε-MOEA,
IBEA, SMS-EMOA, and MSOPS to new concepts of aggregation and indicator
functions and explain how and why these EMOA work successfully. A compre-
hensive benchmark is presented on the established test functions of the DTLZ
function family, which feature a high dimensional decision and a scalable ob-
jective space. Moreover, a slight modification to NSGA-II is suggested, which
causes a better performance. Our motivation is not to modify NSGA-II but to
demonstrate which aspects of classic EMOA are responsible for the problems
within many-objective optimization.

The aggregation method MSOPS by Hughes [5] is studied more detailedly. The
problems using aggregation are described and solution concepts are presented
with a focus on suitable sets of weight vectors.

The considered test functions, performance measures and basic settings of the
EMOA are described in the following section. Section 3 deals with the behavior
of Pareto-based EMOA, Section 4 with aggregation methods, and Section 5 with
methods utilizing indicator functions for selection. In these sections, algorithms
are presented and their performances are described with help of the quality
measures. Section 6 summarizes the findings and gives an outlook on how to
further deepen insight in many-objective optimization.

2 Benchmark Settings

All algorithms, except otherwise mentioned, have been implemented within the
PISA framework1 [7] since an integrative framework simplifies comparisons. The
same variation operators are used with exactly the same parameterization, which
1 PISA - Platform and Programming Language Independent Interface for Search Al-

gorithms, ETH Zürich (www.tik.ee.ethz.ch/pisa/)



744 T. Wagner, N. Beume, and B. Naujoks

is chosen according to the studies of Deb et al. [8]. Simulated binary crossover
(SBX) and polynomial mutation (PM) as described by Deb [2] are applied with
mutation probability pm = 1/n per decision variable and recombination prob-
ability pc = 1 per individual. The distribution indices ηc = 15 and ηm = 20
are used. If not otherwise stated, a (μ + μ) strategy and a binary tournament
for mating selection are applied. A number of 30.000 function evaluations is ac-
complished and the population size μ = 100 is chosen. For each EMOA, besides
SMS-EMOA, on each test function, 20 runs are performed. Due to the exponen-
tial runtime and the small standard deviation in the observed runs, SMS-EMOA
is only repeated 5 times.

2.1 Test Functions

To benchmark the performance of the considered EMOA, the functions DTLZ1
and DTLZ2 of the DTLZ test function family [9] are invoked. These functions
are scalable in the number of objectives and thus allow for a many-objective
study. The decision vector is divided into two subvectors. The first one of length
d − 1 contains the parameters defining the position on the given surface while
the second of length ν specifies the distance to the Pareto front. This results in
dimension d + ν − 1 of the decision space. According to Deb et al. [9], ν = 5 is
used in DTLZ1 and ν = 10 is used in DTLZ2 respectively.

The Pareto front of DTLZ1 is a linear hyperplane. DTLZ2 features a Pareto
front that corresponds to the positive part of the unit hypersphere (|f(x)| = 1).
Here, the interaction between objectives is nonlinear. The domain of all decision
variables is [0, 1]. Due to different scaling constants in the distance function,
the codomain of objective values for DTLZ1 is [0, 1 + 225ν] and [0, 1 + 0.25ν]
for DTLZ2, respectively. The Pareto set of both test functions corresponds to
xd, . . . , xn = 0.5 with arbitrary values for x1, . . . , xd−1.

2.2 Performance Assessment

For performance assessment, S-metric by Zitzler and Thiele [10] and convergence
measure [8] are considered. The S-metric determines the size of the dominated
hypervolume in objective space bounded by a reference point r. In EMO research
it is of outstanding importance due to its theoretical properties. The values
depend on proximity to the Pareto front as well as on distribution of points. The
maximal S-metric value is reached by the Pareto front. The reference points r =
0.7d for DTLZ1 and r = 1.1d for DTLZ2 were used in previous studies [8,11] and
are close to the Pareto front in order to emphasize on the distribution of optimal
solutions. Points that do not dominate the reference point are discarded for
metric calculation. The metric values are normalized by calculating the fraction
of the analytical optimal value. Note that exactly 100% are unreachable with a
finite number of points.

The convergence measure describes the average distance of the approximation
to the Pareto front in objective space. In contrast to the study of Deb et al. [8],
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the euclidean distance to the nearest optimal solution is determined analytically
without using a reference set. This is possible due to the special structure of the
employed Pareto fronts.

3 Pareto-based EMOA

As Pareto-based EMOA, we classify EMOA with selection criteria that are
mainly based on the qualitative information of Pareto-dominance, Pareto-based
ranking, or counting. Thus, NSGA-II, SPEA2, and ε-MOEA are considered here.

NSGA-II. The Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II)
by Deb et al. [6] applies the rank assigned to each solution by non-dominated
sorting as primary selection criterion. Non-dominated individuals are assigned
rank one and the set of individuals with equal rank is called a front. Those indi-
viduals that are non-dominated if the first front was removed are assigned rank
two. The third front is decided within the population discarding the first and the
second front and so on. Individuals with equal ranks are evaluated using a sec-
ondary selection criterion called crowding distance. This subsumes the distances
to the next higher and lower values in each dimension, respectively. Currently,
the NSGA-II is supposed to be the best known and most frequently applied
EMOA. Jensen [12] improves the non-dominated sorting algorithm, determining
the overall runtime of NSGA-II, to run in O(μ logd−1 μ) per generation.

SPEA-2. The Strength Pareto Evolutionary Algorithm (SPEA2) by Zitzler et
al. [13] uses two ranking criteria as well. It is an elitist algorithm with an archive
of constant size, which is chosen to be the population size μ in the experiments
at hand. As primary selection criterion, a strength value that gives the number
of individuals in the population dominated by the current individual is assigned.
Based on these values a raw fitness is computed as the sum of the strength values
of every individual that dominates it. Thus, every non-dominated individual’s
raw fitness equals zero. In a second step, a density estimation is performed based
on the euclidean distances between all individuals. The primary fitness value is
the raw fitness plus the reciprocal of the sum of the distance to the k-nearest
neighbor [14]2. To fill the archive for the next generation, the individuals with
the best fitness are copied. In case of individuals with equal fitness, the distance
to the k-nearest neighbor for increasing k is used as further criterion. Given
d ≥ 3, these methods require a runtime in O(dμ2) per generation [12].

ε-MOEA. Laumanns et al. [15] proposed the ε-MOEA to combine the con-
vergence properties of an elitist MOEA like suggested by Rudolph and Agapie
[16] with the need to preserve a diverse set of solutions. The objective space is
divided into a grid of boxes, whose size can be adjusted by the choice of ε. Dom-
inance is checked according to the boxes where the solutions are positioned. The

2 In PISA k is chosen as 1.



746 T. Wagner, N. Beume, and B. Naujoks

archive E holds one solution for each non-dominated box. If the box of a new
solution dominates other boxes in the archive, the associated archive members
are rejected. In case of two solutions belonging to the same box, Laumanns et
al. decline the new solution except it dominates the old one. Later, Deb et al. [8]
propose to select the solution, which is closer to the best corner of the box. They
also administrate a co-evaluated population P of constant size. If a new solu-
tion is not dominated by any member of the population, it replaces a randomly
chosen member favoring dominated solutions. They also suggest a steady-state
approach, where the offspring is generated by a parent from P and a parent
from E. A binary tournament regarding the dominance relation is performed to
choose the member of P for mating. The parent from E is chosen equiprobable.
Because no further diversity measures are computed, the runtime of a generation
of ε-MOEA is O(d|E|).

3.1 Experimental Results

NSGA-II and SPEA2 rapidly decrease in quality with increasing dimension of
objective space. If more than four objectives are considered, these algorithms
do not converge to the Pareto set as indicated by the high distance values (cf.
Tab. 1). With dimension greater than four, no relative hypervolume is measured
because no point dominating the reference point is achieved (cf. Tab. 2).

Further studies with these algorithms have been performed to exhibit if any
convergence occurs with a higher number of function evaluations. As shown in
Fig. 1, both algorithms increase the distance to the Pareto front in the first
generations because the diversity based selection criteria favor higher distances
between solutions. Special emphasis is given to extremal solutions with values
near zero in one or more objectives. These solutions remain non-dominated and
the distance cannot be decreased thereafter.

Table 1. The convergence measure for the pareto dominance based algorithms

DTLZ1 DTLZ2
obj. algorithm mean std.dev median mean std.dev median

3 ε-MOEA 0.00614 0.00413 0.00484 0.00102 0.00022 0.00105
NSGA-II 0.06333 0.15581 0.01002 0.01049 0.00162 0.01027
SPEA2 0.06783 0.16435 0.00792 0.00801 0.00112 0.00806

4 ε-MOEA 0.15990 0.34073 0.01990 0.00129 0.00024 0.00126
NSGA-II 1.70260 1.95260 0.69515 0.08522 0.02580 0.08060
SPEA2 3.47990 4.78910 1.66910 0.08164 0.01676 0.08901

5 ε-MOEA 0.22348 0.41685 0.01941 0.02681 0.00120 0.02670
NSGA-II 300.416 37.2461 317.506 1.06780 0.14504 1.07770
SPEA2 358.818 25.0853 366.236 1.30970 0.15758 1.27760

6 ε-MOEA 0.97014 1.39920 0.27217 0.00272 0.00067 0.00266
NSGA-II 393.674 17.6076 388.689 2.15610 0.09584 2.16910
SPEA2 482.742 13.6757 479.577 2.32000 0.09617 2.36070
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Table 2. The relative hypervolume for the pareto dominance based algorithms

DTLZ1, r = 0.7d DTLZ2, r = 1.1d

obj. algorithm mean std.dev median mean std.dev median

3 ε-MOEA 0.94560 0.01005 0.94662 0.92858 0.00118 0.92836
NSGA-II 0.94333 0.11423 0.96923 0.86913 0.00803 0.86918
SPEA2 0.98010 0.00152 0.98068 0.90760 0.00350 0.90782

4 ε-MOEA 0.85493 0.18655 0.92697 0.87722 0.00186 0.87766
NSGA-II 0.45730 0.40600 0.46204 0.71644 0.01971 0.71733
SPEA2 0.62316 0.34319 0.72224 0.78461 0.01258 0.78202

5 ε-MOEA 0.82261 0.16668 0.86933 0.83847 0.00308 0.83809
NSGA-II 0 0 0 0.11570 0.06842 0.11734
SPEA2 0 0 0 0.12528 0.06942 0.12864

6 ε-MOEA 0.64563 0.38344 0.81552 0.85332 0.01434 0.85497
NSGA-II 0 0 0 0 0 0
SPEA2 0 0 0 0 0 0
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Fig. 1. Convergence measure during the optimization run performing the median result
on six-objective DTLZ1

To confirm this assumptions and improve NSGA-II, a slight modification of
crowding distance is studied. Originally, an individual without a neighbor re-
garding one dimension of the objective space is assigned an infinite crowding
distance. Instead of that, a value of zero is used, causing that non-dominated
solutions with extremal values are rejected. Although this variant is not able to
converge to the Pareto front, an improvement of the average distance within the
first 100, 000 function evaluations is obvious (Fig. 1). Then, most of the decision
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variables have reached their optimal value. Only one or two of them remain in a
local optimum. This experiment shows that a diversity measure with emphasis
on a spread of the population can misguide the MOEA to deterioration and the
loss of promising non-dominated solutions.

The performance of ε-MOEA highly depends on the choice of ε. We choose
it such that E finally contains about 100 solutions.3 The ε-MOEA is able to
produce optimal solutions within the allowed number of function evaluations
for all considered numbers of objectives. This is shown in the lower left part
of figure 1. The active dominance-preserving function of the archive, combined
with an utopia point distance criterion for non-dominated individuals in the
same hyperbox avoids the effects of deterioration and thus ensures convergence
even for the co-evolving set P. Though, the hypergrid guarantees an uniform
distribution of individuals, the obtained hypervolume values are only for DTLZ2
competitive with the best considered algorithms. This is due to the trend of the
hyperbox method to avoid extremal solutions, as described by Deb et al. [8].

4 Aggregation-Based EMOA

Basic aggregation methods are single-objective optimizers, which multiply the
objective values with weights and accumulate them to a scalar value. The EMOA
considered here, enhance aggregation concepts in order to produce a set of solu-
tions. In contrast to the other EMOA considered, aggregation-based approaches
require the a priori definition of relations between objective functions. This re-
sults in a certain focus during the optimization.

MSOPS. Multiple Single Objective Pareto Sampling (MSOPS) does not feature
Pareto methods, but handles all objectives in parallel. The decision maker has to
choose T vectors of weights for every objective function to enable an aggregation.
Hughes [17] recommends weighted min-max (MSOPS 1) and a combination of
this approach with Vector-Angle-Distance-Scaling (VADS) called dual optimisa-
tion (MSOPS 2). Depending on the aggregation strategy, one receives a set of
T or 2T aggregated scores per solution. The scores are held in a score matrix S,
where each row belongs to a solution and each column represents an aggregated
score. Each column of the matrix S is ranked, giving the best performing pop-
ulation member rank one. The rank values are stored in a matrix R. Each row
of R is sorted ascending, resulting in a lexicographical order of the individuals.
The runtime is in O(μTd) for the computation of the aggregated scores, and in
O(μT log T ) and O(Tμ log μ) respectively to perform the sort. Thus, the runtime
of MSOPS is O(μT (d + log T + log μ) per generation.

Obviously, the choice of weight vectors determines the distribution properties
of MSOPS. Each weight vector w = (w1, . . . , wd) corresponds to a direction,
3 d=3, DTLZ1: ε = (0.03, 0.03, 0.03), DTLZ2: ε = (0.058, 0.058, 0.058).

d=4, DTLZ1: ε = (0.047, 0.047, 0.047, 0.047), DTLZ2: ε=(0.125, 0.125, 0.125, 0.125).
d=5, DTLZ1: ε = (0.057, . . . , 0.057), DTLZ2, ε = (0.18, . . . , 0.18).
d=6, DTLZ1: ε = (0.066, . . . , 0.066), DTLZ2, ε = (0.232, . . . , 0.232).
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given analytically by a target vector starting in the origin. The aim of the aggre-
gation methods is to reach the point on the corresponding direction vector which
is as close as possible to the origin. To this end, weighted min-max focuses on
the distance to the origin, while V ADS favors solutions whose position vector
has a small intersecting angle with the target vector.

In this study, the optimization shall not have a special focus, but an approx-
imation of the whole Pareto front is desired and the weight vectors have to be
chosen appropriately. In Hughes [5] benchmarking ’50 target vectors spread uni-
formly across the search space’ are used. The target vectors t = (t1, . . . , td) are
created by calculating an initial number of steps s = � d

√
T � and constructing

each possible vector containing multiples of 1/s between 0 and 1. Afterward,
these target vectors are normalized and doubles are removed. If the number of
targets is lower as desired, s is incremented and the procedure is repeated. At
the end, a next neighbor technique is used to prune the set of target vectors
to the desired size. Because the PISA implementation of MSOPS uses weight
vectors, a transformation of the target vectors into weights is necessary. The
authors recommend – deviant from Hughes [5] – the following procedure for
transformation, that can also be used to transform a set of utopia or reference
points into weights and avoids numerically unstable calculations in many cases.

From the aggregation methods can be referred that a weight vector for a
specified target fulfills the following d − 1 conditions:

w1 · t1 = w2 · t2, w2 · t2 = w3 · t3, . . . wd−1 · td−1 = wd · · · td

The normalizing condition w1 + . . . + wd = 1 is added in order to obtain a com-
pletely defined system of equations. Thus, the components of the corresponding
weight vector can be computed as follows:

wi =

∏
j �=i tj∑d

k=1
∏

j �=k tj
(i = 1, . . . , d) (1)

To extremal solutions with value 0 in d − 1 objectives, a small ε needs to be
added to allow the above calculation. Hughes [17] generally recommends to use
a number of target vectors that is lower than the population size. Besides, he
states that the number of target vectors has to be increased for more objectives.
To cover both needs, three different sets of target vectors are used. The first
contains 50 vectors, the second 100 vectors, and the third 200 vectors.

RSO. A restart strategy of a conventional single-objective evolutionary opti-
mizer is applied as well and abbreviated RSO (Repeated Single Objective) ac-
cording to Hughes [5]. Here, a single-objective run is performed for each of the
100 weight vectors. Thus, the number of function evaluations has to be divided
among them, resulting in only 300 evaluations per run.

The derandomized mutation operator by Ostermeier et al. [18] is applied in
a (1, 10)-evolution strategy. This operator was a first step towards the popular
Covariance Matrix Adaptation (CMA) operator by Hansen and Ostermeier [19],
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which is known to produce good results within limited function evaluations.
To handle multiple objectives in a single-objective EA, the weighted min-max
approach was chosen like in MSOPS.

4.1 Experimental Results

The methods using aggregation show an obvious convergence in all scenarios
considered because they benefit from the property of the min-max method to
minimize all objectives at once. While MSOPS obtains very promising results,
RSO does not succeed in reaching the Pareto front. This is due to a too small
number of function evaluations per run and the loss of information with every
restart. Confirming the observations of Hughes [5], RSO outperforms NSGA-II
and SPEA2 in case of five and six objectives.

Table 3. The convergence measure for the aggregation algorithms

DTLZ1 DTLZ2
obj. algorithm mean std.dev median mean std.dev median

3 MSOPS 1 50 0.00276 0.00235 0.00185 0.00013 0.00014 9.0·10−5

MSOPS 1 100 0.00278 0.00241 0.00244 0.00015 0.00010 0.00015
MSOPS 1 200 0.00234 0.00156 0.00210 0.00080 0.00020 0.00076
MSOPS 2 50 0.00214 0.00221 0.00161 9.0·10−5 5.9·10−5 8.4·10−5

MSOPS 2 100 0.00222 0.00172 0.00191 0.00037 0.00013 0.00035
MSOPS 2 200 0.00128 0.00074 0.00116 0.00168 0.00034 0.00168
RSO 62.9990 15.2960 59.7140 0.26753 0.04901 0.26776

4 MSOPS 1 50 0.00392 0.00451 0.00269 0.00023 0.00023 0.00012
MSOPS 1 100 0.00292 0.00252 0.00231 0.00024 0.00039 0.00013
MSOPS 1 200 0.00365 0.00319 0.00264 0.00072 0.00028 0.00067
MSOPS 2 50 0.00246 0.00216 0.00182 0.00016 0.00010 0.00012
MSOPS 2 100 0.00849 0.02369 0.00282 0.00074 0.00024 0.00072
MSOPS 2 200 0.00439 0.00378 0.00260 0,00203 0.00047 0.00195
RSO 118.260 33.4420 121.190 0.56473 0.07953 0.57386

5 MSOPS 1 50 0.08016 0.31475 0.00814 0.00059 0.00027 0.00060
MSOPS 1 100 0.05667 0.23459 0.00337 0.00017 0.00023 7.1·10−5

MSOPS 1 200 0.00779 0.00556 0.00651 0.00096 0.00033 0.00092
MSOPS 2 50 0.13676 0.26271 0.01882 0.00113 0.00038 0.00097
MSOPS 2 100 0.03308 0.11179 0.00614 0.00138 0.00065 0.00119
MSOPS 2 200 0.00870 0.01079 0.00535 0,00231 0.00059 0.00233
RSO 111.960 35.1240 112.140 0.73556 0.15491 0.72211

6 MSOPS 1 50 0.02207 0.06509 0.00604 0.00044 0.00030 0.00044
MSOPS 1 100 0.00936 0.01579 0.00406 0.00012 8.7·10−5 9.7·10−5

MSOPS 1 200 0.00734 0.00420 0.00712 0.00048 0.00028 0.00039
MSOPS 2 50 0.27890 0.63926 0.02603 0.00091 0.00058 0.00069
MSOPS 2 100 0.18106 0.32499 0.02496 0.00190 0.00097 0.00180
MSOPS 2 200 0.01344 0.01134 0.01026 0.00118 0.00056 0.00116
RSO 110.910 42.7920 113.600 0.67628 0.13970 0.69903
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Almost all variants of MSOPS attain very low average distances indicating
that only optimal solutions have been found. Only for five or six objectives, vari-
ants using a lower number of target vectors fail to converge to the Pareto front in
some of the runs. In the table, this behavior can be inferred from a high standard
deviation and high differences between the mean and the median value. From
the obtained hypervolume can be concluded that the distribution properties can
be slightly improved by the supporting use of VADS. Hughes assumption that
the number of target vectors should be increased if more objectives are con-
cerned is confirmed. For three objectives, the variants of MSOPS using 50 target
vectors obtain the maximal hypervolume among the aggregation methods. With
increasing objectives, the best values can be obtained with a higher number
of target vectors. In general, the results show that the method used to design
the target vectors is able to generate well distributed Pareto front approxima-
tions. Even for three objectives, NSGA-II and ε-MOEA (DTLZ1), respectively

Table 4. The relative hypervolume of the aggregation algorithms

DTLZ1, r = 0.7d DTLZ2, r = 1.1d

obj. algorithm mean std.dev median mean std.dev median

3 MSOPS 1 50 0.97142 0.00127 0.97184 0.89663 0.00717 0.89817
MSOPS 1 100 0.96484 0.00171 0.96537 0.88344 0.00208 0.88341
MSOPS 1 200 0.96180 0.00955 0.96625 0.88752 0.02681 0.88490
MSOPS 2 50 0.97278 0.00111 0.97317 0.89822 0.00054 0.89799
MSOPS 2 100 0.96719 0.00623 0.96776 0.91774 0.01203 0.92105
MSOPS 2 200 0.95744 0.00965 0.96020 0.91117 0.00775 0.91253
RSO 0 0 0 0.67735 0.03730 0.68188

4 MSOPS 1 50 0.96590 0.00107 0.96623 0.84765 0.01438 0.85238
MSOPS 1 100 0.94724 0.00573 0.94887 0.72575 0.03761 0.73177
MSOPS 1 200 0.94764 0.01187 0.94968 0.81489 0.03289 0.82292
MSOPS 2 50 0.96726 0.00062 0.96730 0.85284 0.00049 0.85273
MSOPS 2 100 0.96908 0.00258 0.96955 0.86206 0.00609 0.86445
MSOPS 2 200 0.95605 0.00561 0.95742 0.85938 0.01289 0.86395
RSO 0 0 0 0.39649 0.02363 0.39435

5 MSOPS 1 50 0.97740 0.00614 0.97956 0.78971 0.05479 0.80668
MSOPS 1 100 0.96312 0.01848 0.97160 0.48432 0.32422 0.72034
MSOPS 1 200 0.97749 0.00584 0.97694 0.82177 0.01404 0.82490
MSOPS 2 50 0.93235 0.16743 0.98387 0.81037 0.00915 0.80863
MSOPS 2 100 0.98743 0.00119 0.98762 0.86497 0.00606 0.86565
MSOPS 2 200 0.97966 0.00296 0.97987 0.84002 0.01467 0.84609
RSO 0 0 0 0.04960 0.03184 0.05873

6 MSOPS 1 50 0.98688 0.00469 0.98770 0.70669 0.18905 0.76654
MSOPS 1 100 0.95343 0.02840 0.96312 0.63285 0.13323 0.68515
MSOPS 1 200 0.99046 0.00169 0.99056 0.81435 0.03071 0.81964
MSOPS 2 50 0.92549 0.18116 0.99355 0.84659 0.00215 0.84627
MSOPS 2 100 0.96533 0.06398 0.98592 0.79881 0.01918 0.79436
MSOPS 2 200 0.99122 0.00160 0.99154 0.81208 0.11049 0.83925
RSO 0 0 0 0.16333 0.03440 0.15121
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NSGA-II and SPEA2 (DTLZ2) can be outperformed regarding the S-metric.
Note that the given method to generate the target vectors only performs well
on continuous Pareto fronts. As observed by Hughes [17], a refinement of the
targets is necessary for more complicated problems.

5 Indicator-Based EMOA

The term indicator-based EA (IBEA) was introduced by Zitzler and Künzli [20]
for EMOA guided by a general preference information. The EMOA’s selection
operator uses a preference function (indicator) as a single-objective substitute
for the d-dimensional objective function. In contrast to the aggregation methods,
this preference information describes a general aim. No specification of weights
or targets is needed. As already stated in Sec. 1, classic EMOA use two ranking
criterions: one regarding the dominance relation and the other for distribution
aspects. Here, a single indicator is used to optimize a desired property of the
approximation set.

IBEA. In Zitzler’s and Künzli’s [20] IBEA framework, binary performance met-
rics that map an ordered pair of individuals to a scalar value are suggested as
indicator functions. Each individual is compared with all others, thus O(μ2)
indicator values must be calculated. A suitable indicator has to be dominance
preserving [20], which sloppily means that the indicator must not evaluate a vec-
tor better than another that dominates it. Two efficiently computable indicators
have been suggested in [20]. The additive ε-indicator subsumes the translations
in each dimension of objective space that are necessary to create a weakly domi-
nated solution. The hypervolume indicator measures the dominated hypervolume
that is only dominated by one vector and not by the other. Both indicators can
be computed in linear time regarding the dimension of the objective space. This
results in a runtime O(μ2d) per generation. For both indicators, negative values
mean that the first individual of the argument pair dominates the other. For each
individual, its indicator values are charged in a sum of an exponential function
to get a fitness value. A positive scaling constant is invoked, which is chosen as
κ = 0.05 as recommended in [20] for the applied adaptive variant of IBEA. For
dominance preserving indicators holds that the fitness value of a vector is worse
than the fitness value of a vector that dominates it.

SMS-EMOA. The S-metric Selection-EMOA (SMS-EMOA) by Emmerich et
al. [21,11] aims at maximizing the S-metric value of the population. This op-
timization aim rewards progression toward the Pareto front as well as a good
distribution of individuals. The maximal S-metric value is reached by the Pareto
front. Thus, optimizing the S-metric value is a very general purpose. Contrary to
most other EMOA, a steady-state selection scheme and an equiprobable mating
selection are applied. SMS-EMOA invokes the non-dominated sorting procedure
as primary selection criterion and the selection occurs among the members of the
worst ranked front. The secondary criterion applied to the last front is the hyper-
volume contribution, which is defined as the exclusively dominated hypervolume
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of an objective vector. The individual with the lowest hypervolume contribution
is discarded. The non-dominated sorting can alternatively be omitted, which
hardly influences the algorithms performance. The runtime of a generation of
SMS-EMOA is O(μd/2+1) as described by Beume and Rudolph [22].

5.1 Experimental Results

As can be inferred from the convergence measure, both IBEA variants reach the
Pareto front of DTLZ2. On DTLZ1, only IBEAε+ converges towards the Pareto
front for all dimensions. IBEAHD reaches a very good distance value on DTLZ1
with three dimensions but fails in case of more objectives. This is due to the
normalization of objective values to [0, 1], tending the hypervolume indicator to
favor extremal solutions, which hinder the progression.

Surprisingly, the IBEAε+ using the additive ε-indicator reaches better
S-metric values than the IBEAHD invoking the hypervolume indicator. The
consideration of translation lengths in the additive ε-indicator causes a good
distribution of solutions. Contrary, the approximation of the hypervolume con-
tribution through the binary hypervolume indicator tends to spiral downward
with increasing dimension of objective space. Both adaptive IBEA fail to produce
a good distribution on DTLZ1, which we ascribe to the high-scaled co-domain
and the resulting difficulties in the scaling of the fitness values.

SMS-EMOA reaches the best S-metric values of all considered algorithms. The
distance values are very good as well and all runs except one reached the Pareto
front. This run on six-objective DTLZ1 stagnated since one decision variable
–which defines the distance– remains static at a non-optimal value due to an
unusual loss of diversity in decision space in the beginning of the optimization
process. Since the selector modules in PISA only decide regarding the objective
values, this effect cannot be blamed to the selection properties of SMS-EMOA.
Figure 2 exemplarily pictures the distribution of an usual six-objective result set

Table 5. The convergence measure of the indicator-based EMOA

DTLZ1 DTLZ2
obj. algorithm mean std.dev. median mean std.dev. median

3 IBEAε+ 0.04399 0.17481 0.00057 0.00015 5.0·10−5 0.00014
IBEAHD 0.00137 0.00337 0.00029 1.3·10−5 5.3·10−6 1.2·10−5

SMS-EMOA 0.00110 0.00148 0.00039 3.4·10−6 1.2·10−6 2.8·10−6

4 IBEAε+ 0.01790 0.02940 0.00096 0.00071 0.00012 0.00069
IBEAHD 76.1230 119.550 0.00136 4.5·10−5 1.3·10−5 4.2·10−5

SMS-EMOA 0.00193 0.00176 0.00100 1.4·10−5 5.0·10−6 1.2·10−5

5 IBEAε+ 0.02056 0.06678 0.00129 0.00115 0.00019 0.00112
IBEAHD 151.310 131.820 215.000 0.00013 0.00014 0.00010
SMS-EMOA 0.00333 0.00215 0.00351 3.7·10−5 9.2·10−6 3.8·10−5

6 IBEAε+ 0.00467 0.00450 0.00256 0.00187 0.00031 0.00184
IBEAHD 82.1580 116.410 0.00182 0.00015 5.6·10−5 0.00014
SMS-EMOA 0.10278 0.22310 0.00444 5.4·10−5 1.1·10−5 5.2·10−5
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Table 6. The relative hypervolume of the indicator-based algorithms

DTLZ1, r = 0.7d DTLZ2, r = 1.1d

obj. algorithm mean std.dev. median mean std.dev median

3 IBEAε+ 0.77693 0.03182 0.78033 0.92991 0.00075 0.93002
IBEAHD 0.73929 0.03144 0.74208 0.92023 0.00071 0.92008
SMS-EMOA 0.98352 0.00071 0.98387 0.93870 6.3·10−5 0.93873

4 IBEAε+ 0.82920 0.02445 0.83425 0.89477 0.00059 0.89484
IBEAHD 0.51417 0.35620 0.70647 0.88633 0.00090 0.88619
SMS-EMOA 0.97612 0.00034 0.97627 0.90370 6.4·10−5 0.90368

5 IBEAε+ 0.87018 0.02777 0.86961 0.88571 0.00097 0.88584
IBEAHD 0.26292 0.33673 0 0.88250 0.00122 0.88259
SMS-EMOA 0.99182 0.00019 0.99182 0.89619 9.5·10−5 0.89624

6 IBEAε+ 0.89146 0.03569 0.90029 0.89283 0.00130 0.89322
IBEAHD 0.40153 0.30853 0.53634 0.88431 0.02231 0.89124
SMS-EMOA 0.96688 0.06741 0.99698 0.90483 0.00014 0.90481

1 2 3 4 5 6

0,0
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0,4

0,6

0,8
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Fig. 2. Results of one run of SMS-EMOA on six-objective DTLZ2. In the parallel plot,
each column corresponds to one objective.

of SMS-EMOA in a parallel plot. Every objective is covered and the structure
of the set is almost symmetric, indicating a uniformly spread distribution of
solutions over the whole Pareto front.

6 Summary and Outlook

The bad performance of early Pareto-based methods like NSGA-II and SPEA2
observed by Hughes [5] and Purshouse and Fleming [4] is confirmed. They show a
rapid degradation with increasing number of objectives. Some additional studies
show that they do not converge to the Pareto front at all and stagnate far away
from it. The performance of ε-MOEA refutes the hypothesis of Hughes that
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a Pareto-based approach cannot succeed on many-objective problem instances.
Instead, favoring extremal solutions has been shown to hinder the progression
in many-objective spaces, which is also obviously for IBEA.

It is shown that more recent EMOA using indicators, which feature more than
just distribution aspects, perform very well in many-objective optimization. Es-
pecially, SMS-EMOA, which optimizes the population’s dominated hypervolume,
outperforms the other algorithms on all considered test functions. Moreover, an
aggregation-based EMOA, namely MSOPS, performs well with respect to con-
vergence aspects. A sophisticated scheme for the generation of weight vectors
is introduced and also produces well distributed solution sets. In comparison to
the simple restart strategy RSO, MSOPS benefits from structural equalities of
good solutions by optimizing all weight vectors in parallel.

Future research will deepen the insights in the behavior of indicator-based al-
gorithms in particular. Theoretical statements are aspired for the convergence of
the MOEA showing promising results in this study. Statistically guided param-
eter studies should be performed to obtain suitable parametrizations for many-
objective problems. Especially, the size of the population and the offspring are
to be studied. Furthermore, relations between the Pareto front and the Pareto
set are studied all together resulting in new optimization techniques. These fea-
ture good convergence and distribution properties in objective space as well as
in decision space.
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Abstract. The scalability of EMO algorithms is an issue of significant
concern for both algorithm developers and users. A key aspect of the is-
sue is scalability to objective space dimension, other things being equal.
Here, we make some observations about the efficiency of search in discrete
spaces as a function of the number of objectives, considering both uncor-
related and correlated objective values. Efficiency is expressed in terms
of a cardinality-based (scaling-independent) performance indicator. Con-
sidering random sampling of the search space, we measure, empirically,
the fraction of the true PF covered after p iterations, as the number of
objectives grows, and for different correlations. A general analytical ex-
pression for the expected performance of random search is derived, and
is shown to agree with the empirical results. We postulate that for even
moderately large numbers of objectives, random search will be competi-
tive with an EMO algorithm and show that this is the case empirically:
on a function where each objective is relatively easy for an EA to opti-
mize (an NK-landscape with K=2), random search compares favourably
to a well-known EMO algorithm when objective space dimension is ten,
for a range of inter-objective correlation values. The analytical methods
presented here may be useful for benchmarking of other EMO algorithms.

Keywords: multiobjective optimization, nondominated sorting, non-
dominated ranking, random search, coverage indicator, inter-objective
correlation, many objectives.

1 Introduction

The past two decades have seen the development of more and more effective and
efficient evolutionary multiobjective optimization (EMO) algorithms [4,6]. These
methods are often run with the goal of approximating the whole Pareto front
and most EMO algorithms are designed to do this on problems of arbitrary
parameter space and objective space dimension. Yet, the scalability of these
methods, in practice, remains an issue of concern for the field.

Empirical testing of EMO algorithms relies on both test functions (see [11] for
a review) and performance assessment methods [10,17,21,24]. Today, some test
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functions are scalable in both parameter and objective dimension [11]; and some
performance indicators are also suitable for many objective problems (notably
those based on counting, i.e. cardinality-based indicators). These advances have
made it possible to compare performance of EMO algorithms when the number of
objectives is scaled up beyond the typical two or three. Thus, recently, researchers
have shown empirically that some EMO algorithms (especially those based on
dominance ranking for selection) perform poorly when the number of objectives
d is greater than three [7,8,12,13,18], some suggesting alternative approaches.

However, it would be useful to know to what extent EMO algorithms are
really performing poorly, relative to some absolute level of performance. In other
words, it would be good to get some idea of the intrinsic difficulty of search as
a function of objective space dimension. More precisely, we would like to know
how particular performance statistics change as a function of objective space
dimension, for a baseline method on a baseline/generic problem.

In this paper, we consider the performance of random search as an informa-
tive baseline, which is in line with a suggestion in [14]. Further, it is possible to
be independent of the specifics of an objective function: if a one-to-one mapping
from parameter to objective space is assumed, and sampling is random, points
can be chosen from the objective space rather than the parameter space, with-
out affecting the outcome, and hence a parameter space is not needed at all.
Thus, discrete data sets consisting of objective vectors only are used, and two
parameters are varied: the objective dimension, and a covariance term which in-
fluences the degree of inter-objective correlation. Since we are considering only
cardinal, scaling-independent performance indicators, our conclusions are also
independent of the data distribution in each objective (Gaussians are used for
convenience). We also develop an analytic equation for predicting the expected
performance of random search, and show that on these data it works.

The rest of the paper is organized as follows. Section 2 sets out some def-
initions and methods used in the remainder of the paper: it recalls the dom-
inance relation; the performance indicator, coverage; ranking methods used in
EMO fitness-assignment; and the data generation method and data sets used
here. Section 3 presents empirical distributions for the number of nondominated
points in our data sets and the distribution of coverage values obtained from
runs of random search. In Section 4, we derive analytical expressions for the ex-
pected coverage indicator value for random sampling and show this agrees with
the empirical results. Section 5 presents a case study where PESA-II is compared
with random search on NK landscapes of varying dimension and inter-objective
correlation. PESA-II compares unfavourably with the analytic performance of
random search for 10 objectives, and this is confirmed empirically. Section 6
discusses the findings and suggests directions for further investigation.

2 Definitions and Methods

The standard definition of Pareto dominance in the objective space is used.
Assuming mininimization, without loss of generality, x dominates y is written
as x ≺ y and has the following meaning:
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x ≺ y ⇐⇒ ∀i ∈ 1..d, xi ≤ yi ∧ ∃j ∈ 1..d, xj < yj , (1)

where x and y are d-dimensional objective vectors.
The Pareto front (PF) of an objective space Y ⊂ R

d is then the set,

{y ∈ Y | ¬∃x ∈ Y, x ≺ y}. (2)

In iterative search, the size of the Pareto front may be an important determining
factor of how successful a given search will be, e.g. if ‘coverage’ (see below) of
this set is the metric of performance. Trivially, an iterative searcher will need at
least p iterations to cover a Pareto front of cardinality p.

2.1 Quality Indicators for Performance Assessment

To assess performance as a function of objective space dimension, we consider
a cardinality-based quality indicator from the literature. This is motivated by
two factors: (i) cardinality-based indicators are scaling independent, whereas
distance based measures usually are not; and (ii) cardinality-based measures are
computationally less expensive to compute than distance based measures in a
high-dimensional space.

Coverage Indicator [23,24]. The coverage C(A, B) is a nonsymmetric in-
dicator assessing the fraction of points (in the objective space) in B that are
‘covered’ by those in A, where ‘covered’ means dominated by or equal to:

C(A, B) =
|{y ∈ B | ∃z ∈ A, z � y}|

|B| . (3)

If B is the true Pareto front, then a coverage of 1.0 indicates perfectly solving
the Pareto optimization problem. In this paper, ‘coverage’ is always meant in
this sense, i.e. of C(A, PF ). Note that coverage is thus a unary indicator [24].
Comparing two sets A and B, if C(A, PF ) > C(B, PF ) then this implies that
B cannot be better than A.1 However, given two sets A and B, where A is better
than B, coverage may not be able to detect this, e.g. if neither set contains any
Pareto front point. Thus, coverage is compatible with �� but not complete with
respect to � [24].

2.2 Ranking

Many EMO algorithms are based on some form of explicit or implicit dominance
ranking over a population or sample set of points. The ranking serves to assign
fitness (or reproductive opportunity) to the solutions and is thought to be one
of the most important factors governing MOEA performance.

Some algorithms, such as PAES [16] and PESA-II [5], are based on a binary
ranking of solutions, i.e., a (truncated) nondominated set of solutions only is

1 A better than B, written A � B, means that every vector in B is covered (or weakly
dominated) by at least one vector in A, and A is not equal to B.
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maintained, whereas dominated solutions are always discarded and play no part
in generating new solutions. Other algorithms use a more fine-grained ranking
of the population, based on dominance. We consider two of the more popular
of these. The first, nondominated sorting was suggested by Goldberg and later
implemented by Srinivas and Deb [20]. In this, the rank of a solution is the
nondominated ‘layer’ in which it lies within the set of points being compared.
The second is nondominated ranking, proposed by Fonseca and Fleming [9], in
which the rank of a point is one plus the number of points dominating it.

2.3 Data Suite

As alluded to above, our data sets consist of distributions of points in objective
space only, rather than a function from a parameter space to an objective space.
Since we are interested only in dominance and scaling-independent indicators
of performance, we do not need to be concerned about the distribution in each
objective, of these points, as this will have no effect. However, what will affect
results, is any correlations between objectives. Thus, for convenience, we choose
to use a multi-variate Gaussian generator, which is able to generate Gaussians
approximating a specified covariance matrix, provided it is positive semi-definite.
For this, we use the ‘R’ statistical software function, ‘mvrnorm()’ and generate
sets of data with the off-diagonal elements of the covariance matrix all set to the
same constant positive value. We generated a suite of data consisting of 10 sets of
1000 points each, for each level of dimension and covariance. We used dimensions
2, 5, 10, 20, and covariances 0, 0.25, 0.5, giving 120 data sets altogether.

3 Empirical Distributions

Figure 1 plots the number of internally nondominated points as a function of
data set size n, objective dimension d, and covariance value used in generation
of the data. These plots are similar to those shown in [22] for lattice data (for
uncorrelated objectives only), and also those in [19].

Analytical expressions for the (expected) number of maximal vectors in a set
of size n and dimension d, where the components of each vector are independent
and continuous, have been given in several works [3,2,1,22]. These show that
the number of vectors is O(lnd−1(n)) for large n and constant d, and the precise
expected value can be computed using recurrence relations, as those given in [22].

From our plots, it seems possible that, for correlated data, the number of
vectors does not follow O(lnd−1(n)), since we were not able to fit such a curve.
However, it could also be that it is possible, but we need to use larger values of
n. This remains an open question.

3.1 Nondominated Ranking Distributions

Figure 2 shows the nondominated sorting and nondominated ranking ranks for the
search space as a whole, for each objective dimension and degree of correlation.
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Fig. 1. Empirical distributions of the number of internally nondominated points in a
sample of s points for 5 and 10 objectives and three correlations arising from the use
of different covariance matrices. For a correlation of 0.0, a curve of O(lnd−1(s)) has
been fitted through the largest five values, using least squares estimation. Specifically
a curve of the form a + b(ln(s + c)d−1) was used; for the 5d curve a = 63.3, b = 0.0479,
c = −226; for the 10d curve a = 133, b = 1.37 · 10−5, c = 164.

As objective dimension increases, nondominated ranking is found to maintain
a better resolution (more differences in rank) for longer, although for large di-
mension and no correlation, almost all vectors become nondominated in samples
of this size. It is notable that for nondominated sorting, the most frequent rank
shifts away from 1, when objective dimension increases, particularly for corre-
lated data. This could lead, in an MOEA based on nondominated sorting, to
over-promotion of the middle ranks if, say, tournament selection is used.

More generally, these plots illustrate that, with more than ten objectives,
the principal basis of selection pressure is lost (whether for simple discarding
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Fig. 2. The effects of dimension and correlation on the distribution of ranks seen under
nondominated sorting (Goldberg) and nondominated ranking (Fonseca and Fleming)
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of dominated points, nondominated sorting or nondominated ranking), because
nearly all points share the same rank. Further, this reiterates that the pursuit
of the whole PF is not appropriate in most high dimensional objective spaces.
However, even if a representation of the PF only, is sought, ranking will cease to
play a helpful role in selection of individuals for d above 20, and perhaps even d
above 10. These empirical results confirm long-known limitations of dominance
ranking in high-dimensional spaces [9].

3.2 Empirical Distributions of Coverage of the PF

Distributions of the coverage indicator for different random search sample sizes
are given in Figure 3, comparing 2d with 20d objective spaces and comparing
covariances of 0.0 and 0.5. Observations about the trends seen in these plots are
made in the figure caption.

4 Analytical Methods and Results

For random search, the expected value of the coverage indicator is related closely
to the probability gpd(k, p, w, n) of picking precisely k distinct winners in a
lottery in which p picks from a hat containing n distinct numbers are made
(with replacement), where w ≤ n of the numbers are ‘winners’.
Notice that:

gpd(0, p, w, n) =
(

n − w

n

)p

(4)

and that:

gpd(k, k, w, n) =
w

n
.
w − 1

n
· · · w − (l − 1)

n
=

w!
nk(w − k)!

(5)

Meanwhile we can also express gpd(k, p, w, n), where p > k, as follows:

gpd(k, p, w, n) =
(n − w) + k

n
.gpd(k, p−1)+

w − (k − 1)
n

.gpd(k−1, p−1). (6)

The two terms represent the two distinct ways that k distinct winners from p
picks can arise in the pth pick; in the first term we have the chance that all
k distinct winners are already present, in which case the pth pick must be a
non-winner or an already-picked winner; in the second term we have the chance
that we have distinct winners so far, and so the next pick must be one of the
as-yet-unpicked winners.

These three expressions for gpd(k, p, w, n) enable us to calculate it for any
valid set of values, using a dynamic programming procedure.

4.1 Analytical Expression for Expected Value of Coverage

To compute an expected value for the coverage indicator, we note that the degree
to which a random sample of p points from n covers the Pareto optima is the
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Fig. 3. Box and whisker plots of coverage indicator values, C(sample,PF), for 10 inde-
pendent runs each of random search for each number of samples, and on ten different
data sets for each combination of dimension and covariance. With high objective space
dimension, the variance in the coverage is low because nearly every point is nondomi-
nated, especially when there is no correlation between objectives. For low dimensions,
random search can do very poorly or very well, yielding a high variance in coverage, since
only a few points dominate all the rest. Inter-objective correlation reduces the number of
nondominated points in the search space, which also leads to a larger variance in cover-
age. As more samples are taken, there is also an increasing variance in coverage because
there is an increasing opportunity for re-sampling the same points. Overall, note that the
median value of coverage in these plots is relatively stable for a given number of samples,
independently of the objective space dimension and correlations.

same as the degree to which that sample covers the search space as a whole. That
is, if a sample covers a proportion q of the search space, it will cover the same
proportion q of the Pareto optima of that search space. Hence, for random search,
the expected value of the coverage indicator will be independent of w. It will
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thus also be independent of the objective space dimension and the correlation
between objectives for random search.

We calculate it by using a three-argument version of gpd, where gpd(k, p, n)
gives the probability of obtaining k distinct points from a random sample with
replacement of size p from a space of size n. The recurrence equations in this
case, are as follows:2

gpd(1, p, n) =
(

1
n

)p−1

(7)

gpd(k, k, n) =
n

n
.
n − 1

n
· · · n − (k − 1)

n
=

n!
nk(n − k)!

(8)

and for k > 1:

gpd(k, p, n) =
k

n
.gpd(k, p − 1, n) +

n − (k − 1)
n

.gpd(k − 1, p − 1, n). (9)

(noting that gpd(k, 0, n) = 0 for any k).
The expected coverage of a sample of size p can then be expressed as follows:

E(C(sample, PF )) =
k=p∑
k=1

gpd(k, p, n).k (10)

For example, we computed the expected coverage after p iterations of random
search, using the above formula, and compared it with the empirical distribution
for 100 trials of random search, for search spaces each of 2d and 20d. The result
is plotted in Figure 4.

5 Case Study Using NK Landscapes

Here, we test the predictions of the above analytical expression for coverage by
applying the techniques to a multiobjective function (i.e. an actual mapping
from a decision space to an objective space). We use, for each objective, the
well known NK landscape [15] and set K = 2, giving a relatively low degree of
ruggedness, making it suitable for an EA search.

We study ten instances (in all) each of size N = 10, giving a search space
of n = 1024. As before, we wish to study the effect of correlations between
objectives. NK landscapes are based upon tables of uniformly random variates
in [0, 1]; to generate a target correlation of c = 0.5 between the first and any
other objective i, we simply copy a fraction c = 0.5 of the values used in the table
for objective 1 (selected at random), to the corresponding entries in the table
for objective i, using randomly drawn variates for the remaining entries. We
2 Note that Equations (8) and (9) are equivalent to (5) and (6), respectively, except

with w = n, but equation (4) is replaced by (7), since the boundary nonzero prob-
ability cases are now those of finding 1 distinct point in p > 1 picks, rather than 0
distinct winners.
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Fig. 5. Predicted expected coverage value for random search, and the mean and stan-
dard error of coverage for random search, for various NK instances with different d
and c values. The curves have been shifted to aid viewing: the mean performance of
random search is approximately the same, independently of dimension and correlation,
as predicted by equation 10.

verified that the Spearman rank correlation between objective 1 and objective i
was approximately c, as a result of this procedure.

Nine of the instances are created by the combinations of objective dimension
d ∈ {2, 5, 10} and correlation c ∈ {0, 0.25, 0.5}. Additionally, there is one instance
of a ten dimensional NK landscape, where the correlation c = −0.8 between the
first and all other objectives; to generate this, a procedure analogous to the one
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for positive correlations was employed, except that values v copied from objective
one, were substituted by 1 − v in the tables for the other objectives.

We compare the performance of random search with that of PESA-II [5],
across the ten instances. PESA-II was used with an internal population size of
2, external population size unlimited (by setting it to 1024), uniform crossover
rate of 0.7, per-bit mutation rate of 0.1, and number of objective space boxes of
102 = 100, 35 = 243 and = 210 = 1024 respectively for the 2, 5, and 10 objective
instances. Twenty independent runs were performed of each algorithm on each
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of the ten instances. The mean and standard error of the coverage are shown in
Figures 5–7.

Figure 5 indicates that the analytical expression for the expected random
search performance, in terms of coverage, predicts the empirical results accu-
rately for a range of NK instances with differing d and c values. Thus, the
analytical expression can be trusted to predict performance of random search,
even on a single problem instance about which nothing is known. Thus, a base-
line performance comparison between an EMO algorithm and random search
is rendered possible without the necessity of actually making numerous runs of
random search.

Figure 6 indicates the mean performance of PESA-II on the three NK prob-
lems with independent objectives (c = 0), and d = 2, 5 and 10. The suitability of
NK landscapes for an EA is shown by the performance of PESA-II on the d = 2
instance, where it performs relatively well, compared to random search. But, ten
objectives is more than sufficient for the performance of PESA-II to deteriorate
to significantly below that of random search.

Figure 7 shows the effect of correlation on the performance of PESA-II for
the four ten-dimensional NK instances. A positive correlation of 0.5 between the
first and each other objective reduces the size of the Pareto front sufficiently for
PESA-II to work slightly more efficiently than random search. For lesser values
of correlation, or negative correlation, PESA-II optimizes less efficiently than
random search.

6 Conclusion

Assessing the scalability of EMO algorithms to objective space dimension re-
mains an issue of concern to the EMO field. To get a proper handle on this, it
is good to have a firm understanding of how this parameter affects the number
of nondominated points, and the effect of this, in turn, on certain performance
indicators. We used random sampling to determine these effects, and we consid-
ered also the influence of inter-objective correlation. The results presented are
orthogonal to the influence of parameter space ‘topology’ and any other (e.g.
algorithmic) influences.

We derived a general analytic equation for computing the expected coverage
of the Pareto front using p iterations of random search. We observe that this
is independent of the relative size of the Pareto front, and hence also of the
objective space dimension and correlations between objectives. Thus, expected
random search performance, in terms of coverage, can be predicted without any
knowledge of a problem instance.3 We confirmed this empirically on Gaussian
distributed data and on instances of a multiobjective NK landscape problem.

A general observation from the study comes from quantifying the performance
of PESA-II, relative to the baseline of random search, on the NK landscapes.
It is apparent that provided the number of target (Pareto optimal) solutions is
3 Given that we assume a one-to-one mapping of parameter to objective space, as

stated earlier.
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less than approximately one quarter of the search space, PESA-II outperforms
random search, in terms of coverage. This suggests that MOEAs can still be
efficient optimizers for problems of 10 objectives and more, provided that not
all of the Pareto front is sought. Thus, our findings reiterate that for many-
objective problems, the use of preference information to limit the number of
target solutions is advisable. However, if preference information is unavailable,
then random search may be a sensible alternative to an evolutionary algorithm.

A number of effects were not investigated. Perhaps the most important one
is degeneracy (i.e. several distinct parameter space points mapping to the same
objective vector). This would change the analytical expression for the perfor-
mance of random search, the effect being greater the more non-uniformly the
degeneracy occurs. In problem instances where non-uniform degeneracy occurs
to any great degree, the methods presented here would not be appropriate. We
have also only considered coverage of the Pareto front, whereas MOEAs are
usually used with the intention of building only a representation of the Pareto
front; this is true, but doesn’t change the fact that assessing performance of an
MOEA with respect to random search, using coverage, does still give an indi-
cation of its relative efficiency, provided the MOEA is not operated in a mode
where it actively discards points, e.g. by archive truncation. Still, the consid-
eration of other performance indicators is of course an important avenue for
future work.
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Abstract. In our recent publication [1], we began with an understanding that
many real-world applications of multi-objective optimization involve a large num-
ber (10 or more) of objectives but then, existing evolutionary multi-objective opti-
mization (EMO) methods have primarily been applied to problems having smaller
number of objectives (5 or less). After highlighting the major impediments in
handling large number of objectives, we proposed a principal component anal-
ysis (PCA) based EMO procedure, for dimensionality reduction, whose efficacy
was demonstrated by solving upto 50-objective optimization problems. Here, we
are addressing the fact that, when the data points live on a non-linear manifold or
that the data structure is non-gaussian, PCA which yields a smaller dimensional
’linear’ subspace may be ineffective in revealing the underlying dimensionality.
To overcome this, we propose two new non-linear dimensionality reduction al-
gorithms for evolutionary multi-objective optimization, namely C-PCA-NSGA-
II and MVU-PCA-NSGA-II. While the former is based on the newly introduced
correntropy PCA [2], the later implements maximum variance unfolding princi-
ple [3,4,5], in a novel way. We also establish the superiority of these new EMO
procedures over the earlier PCA-based procedure, both in terms of accuracy and
computational time, by solving upto 50-objective optimization problems.

1 Introduction

In formulating a multi-objective optimization problem, designers and decision-makers
prefer to put every performance index related to the problem as an objective, rather
than as a constraint, thereby totalling a large number of objectives. However, evolu-
tionary multi-objective optimization (EMO) methods which find a representative set of
solutions in the Pareto-optimal front [6], are, in general, found to be vulnerable to large-
objective optimization problems. In [1], we had illustrated this ’curse of dimensionality’
on the elitist non-dominated sorting GA or NSGA-II [7]. While solving DTLZ2(10),
we had shown that approximately only 4% solutions could come to the Pareto-optimal
front. When large number of objectives exist, the probability of having any two arbitrary

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 772–787, 2007.
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solutions to be non-dominated to each other increases, as there are many objectives in
which a trade-off (one is better in one objective but worse in any other objective) can oc-
cur. While dealing with a finite-sized population-based approach, the proportion of non-
dominated solutions in the population increases. Since EMO algorithms provide more
emphasis to the non-dominated solutions, a large proportion of the old population gets
emphasized, thereby not leaving much room for new solutions to be included in the pop-
ulation. This, in effect, reduces the selection pressure for better solutions in the popula-
tion and results in poor convergence. Over and above this difficulty at algorithmic level,
handling large-objectives is not only computationally expensive, it is also a challenge
for proper decision-making, as visualizing a Pareto-optimal frontier which is more than
three-dimensional, is extremely difficult. Amidst all these, a natural question arises, if
it is even worth applying EMO methods, for large-objective problems. In [1], we had
highlighted that there may exist large-objective problems, which have redundant objec-
tives, that is, although the problem may have, say M objectives but the Pareto-optimal
front involves a much lower-dimensional interaction. There, we addressed solving such
problems by suggesting a principal component analysis (PCA) based NSGA-II proce-
dure which progresses iteratively from within the search space towards Pareto-optimal
region by adaptively finding most anti-correlated lower-dimensional interactions. While
PCA yields a smaller dimensional linear subspace that best represents the full data ac-
cording to a minimum square-error criterion, it may be ineffective in revealing the un-
derlying dimensionality when the data points live on a non-linear manifold (manifolds
are spaces that are locally linear but unlike Euclidean subspaces, they can be globally
non-linear) or that the data structure is nongaussian. The strength of our earlier proposal
of PCA-NSGA-II algorithm emerged from the fact that we could relate most important
directions in the data set (in terms of variance) to the importance of objectives, given
a multi-objective optimization problem. Now if the determination of important direc-
tions in data set is erroneous, the inferences drawn about importance of objectives and
hence the determination of redundant objectives will be meaningless. Hence, it would
be worthwhile to assess situations in which PCA is likely to extract erroneous direc-
tions. Such situations can be best examined under the question: ”Does the data live in a
low-dimensional subspace” or ”Does the data live on a low-dimensional sub manifold”,
which we examine in the following section.

2 Difficulties with PCA

To highlight difficulties with standard PCA, let us begin with a concrete example of
DTLZ5(2,5) [1]. Our earlier proposed PCA-NSGA-II , when tested for this problem,
brought out f3 and f5 as critical objectives and the rest as redundant. Let us investigate
these results in light of two facts. (i) Fact one relates to the property of DTLZ5(2,M)
problems where the Pareto-optimal front corresponds to the last and any one of the
rest, objective. In this context, declaration of f3 and f5 as critical is right. (ii) Fact two
relates to the criteria of judging an objective set as critical. PCA-NSGA-II is expected
to declare those objectives as critical which apart from being in conflict with each other,
also account for variances larger than those declared redundant. From Figure 1, f4 and
f5 can be seen to account for largest variance, amongst the set of five objectives. This



774 D.K. Saxena and K. Deb

      

f_1
f_2

f_3

f_4

f_1,  f_2,  f_3,  f_4

f_5

 1

 0.8

 0.6

 0.4

 0.2

 0
 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

Fig. 1. Relative Variance
measures in DTLZ5(2,5)

f_3,  f_4

f_5

 

f_3

f_4 based on 
 f_3 and f_5

 1.2

 0.8

 0.6

 0.4

 0.2

 0
 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

 1

Fig. 2. Reconstruction of
actually critical objective,
declared redundant

Fig. 3. Submanifold: a problem for stan-
dard PCA (taken from [8])

infact, is generalizable to all DTLZ5(2,M) problems, where objectives with indices M
and (M − 1) will collectively account for largest variance in the data set of all given
objectives. Hence, the last two objectives must come up as the critical objectives, given
any DTLZ5(2,M) problem. This poses a question on declaration of f3 as critical (over
f4) along with f5. As far as this test problem is considered, this still is not an inaccuracy
in result. Figure 2, shows the plot of f4 computed from the variable set obtained from
an NSGA-II run with two objectives declared critical, namely f3 and f5. This plot of
reconstructed f4 can be seen to identically match with that obtained from a separate
NSGA-II run, with objectives f4 and f5, as is shown in Figure 1. Hence, for this prob-
lem, selection of f3 and f5 is at worst a misrepresentation of results and not a case of
inaccuracy, since the variable set achieved with either f3 with f5 or f4 with f5, is the
same. However, what cannot be negated is the fact that PCA could actually not conduct
what it was expected to, in terms of capturing required objectives with larger variances.
Well then, the hint to what went wrong lies in Figure 3. Two very small regions are
marked as ’A’, ’B’ respectively on both - the manifold (on left) and the unfolded repre-
sentation (on right). By euclidean measures, points ’A’ and ’B’ not being amongst the
farthest, will not be found to account for the largest variance, by PCA. However, as is
evident from the right segment of the figure, largest variance lies trapped between ’A’
and ’B’. This highlights the limitation of PCA in general (also discussed in [8]) and
implies the need to distinguish between subspaces and submanifolds. While in the case
of subspaces, PCA would be effective, it is likely to mislead in case when data lives
on a submanifold. Given this problem, the natural strategy could be to embed the data
into a space where the patterns can be discovered as linear relations, which is where our
focus lies in the following sections.

3 Non-linear Dimensionality Reduction

While, we have already seen the application (PCA [1]) of one of the linear dimen-
sionality reduction methods (Independent Component Analysis (ICA), Singular Value
Decomposition (SVD), Factor Analysis, Metric Multidimensional Scaling (MDS) be-
ing others), in the context of large dimensional multi-objective optimization, the need
is to resort to non-linear dimensionality reduction methods. The later can be broadly
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categorized in two groups: those which are based on non-linear mappings and those that
are based on proximity matrices (distance measurements that just give a visualization).
The principal method amongst those that provide a mapping from the high dimensional
space to the embedded space is the kernel PCA. This method provides a non-linear
PCA through the use of kernel functions. However, for many kernel functions, kernel
PCA actually increases the dimension of the data. On the other hand, a method based
on proximity matrices is one where the data is presented to the algorithm in the form
of a similarity matrix or a distance matrix. These methods, prime of which are Isomap
[9], graph Laplacian Eigenmaps [10], locally linear embeddings (LLE) [11] (all these,
also interpreted as instances of kernel PCA in [12]) and maximum variance unfolding,
all fall under the broader class of multidimensional scaling [13], the variations emanat-
ing based on the differences in how the proximity data is computed. We consider and
employ below, one approach from each category (mapping and proximity matrices)
for non-linear dimensionality reduction in context of large dimensional multi-objective
optimization.

4 Methods Based on Non-linear Mappings

4.1 Main Ingredients of Kernel Methods

We now highlight the four key aspects of kernel approach, which are as follows: (i) Data
items are embedded (through non-linear mapping) into a vector space called the feature
space. (ii) Linear relations are sought among the images of the data items in the feature
space. (iii) The algorithms are implemented in such a way that the co-ordinates of the
embedded points are not needed, only their pairwise inner products. (iv) The pairwise
inner products can be computed efficiently directly from the original data items using
a kernel function, which can be defined as a function κ that for all x, z ∈ X satisfies
κ(x, z) = 〈φ(x), φ(z)〉, where φ is a mapping from X to an (inner product) feature
space F (φ : x �−→ φ(x) ∈ F). To help clarify some key concepts, let us consider a two-
dimensional input space X ⊆ �2 together with the feature map φ : x = (x1, x2) �−→
φ(x) = (x2

1, x
2
2,

√
2x1x2) ∈ F = �3. The comparisons of the feature map with the

inner product in the feature space can be evaluated as follows:

〈φ(x), φ(z)〉 = (x1z1 + x2z2)2 = 〈x, z〉2

Hence, the function κ(x, z) = 〈x, z〉2 is a kernel function with F its corresponding
feature space. While, the above is one way of knowing whether a given function is a
kernel or not, another, which is of more practical utility, is by way of what is referred
as Characterization of kernels [14], according to which, a function κ : (X × X) �−→ �,
which is either continuous or has a finite domain, can be decomposed into a feature
map φ in a Hilbert space F applied to both its arguments, followed by evaluation of the
inner product in F if and only if it satisfies positive-semidefinite property. Some widely
used kernel functions are the linear, polynomial and Gaussian kernels, and are given,
respectively by:

κ(x, z) = x · z; (1 + x · z)p; e
−|x−z|2

2σ2 (1)
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With this basic understanding of kernels, let us highlight two key features of kernels
which will be in later sections used, to answer some critical questions, for example, the
justification for the usage of different kernel forms for the same problem or the usage
of the same kernel to different problems. They are: (i) a feature space is not uniquely
determined by the kernel function. It can be seen that the kernel κ(x, z) = 〈x, z〉2also
computes the inner product (hence, defines) corresponding to the four-dimensional fea-
ture map φ : x = (x1, x2) �−→ φ(x) = (x2

1, x
2
2, x1x2, x2x1) ∈ F = �4 (ii) the second

feature relates to defining new kernels, given a set of kernels. The fact that kernel func-
tions satisfy a series of closure properties, open up the possibility of defining kernels by
successive adjustments, either performing successive embeddings or manipulating the
given kernel function [14]. In this case, the embedding corresponding to overall kernel
can be composed through successive embeddings, i.e., φ(x) = ψ1(x)◦ψ2(x)◦. . .◦ψn(x)
where, ψi(x) is an intermediate embedding. We leave this section, reiterating the main
advanage of Kernel-based methods, in that the input data is mapped to a feature space
by a non-linear mapping, where the inner products in the feature space can be computed
directly by a kernel function without knowing the non-linear mapping explicitly.

4.2 From PCA to Kernel-PCA (K-PCA): Difficulties in Generalization

In PCA, given a data set X of size M × N , where M denotes the number of ’mea-
surement types’ (in current context–objectives) and N denotes the number of time
samples (in current context–population members), the correlation matrix R to be eigen-
decomposed and given by 1

N XXT turns to be of dimension M × M . Scholkopf et al.
[15,16] non-linearly mapped the input space (time sample by sample), reformulated
the PCA by using the ’kernel trick’, in that substituting a kernel function for the in-
ner product, to propose a non-linear form of PCA, and referred as Kernel PCA. The
new eigenvalue problem (emerging from diagonalization of covariance matrix in fea-
ture space) shapes up as Kα = (Nλ)α, where (Nλ) denotes the eigenvalue, α–the
eigenvector and K is referred as Kernel Gram Matrix. Composed by Kij = κ(xi, xj),
∀ i, j = 1..N (xi representing columns of X), K turns to be of dimension N × N ,
making it incompatible (since, in context of evolutionary multi-objective optimiza-
tion algorithms, M � N ) with our earlier proposed dimensionality reduction scheme
[1]. Hence employment of kernel PCA procedure would not be possible, given the
current context.

4.3 Correntropy PCA (C-PCA)

The correntropy PCA, introduced in [2], is a non-linear PCA technique based on the
generalized correlation function, referred by its authors as correntropy. Correntropy
function is defined as V(x, y) = E [κ(x, y)] for two random variables x and y. As a
positive-definite kernel function is imposed on the argument inside the expectation, the
correntropy function becomes positive-definite. Given this, by Moore-Aronszajn theo-
rem, there must exist a unique RKHS (Reproducing Kernel Hilbert Space) associated
with correntropy function, say 〈Π(x), Π(y)〉 = V(x, y). This forms the basis of em-
ploying correntropy function for non-linear principal component analysis. Unlike in
kernel PCA which transforms data into a feature space sample by sample, here the data
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is mapped component wise into a feature space (associated with the correntropy func-
tion). Let xj , j = 1, ..., N , xj ∈ �M ,

∑N
j=1 xj = 0, be a set of zero mean vector

observations and Π be a function defined as,

Π : �M �−→ F ; x �−→ [Π(x1), Π(x2), ..., Π(xM )]

where xi denotes the ith component of the original input data sample x. As this non-
linear mapping which transforms data component wise into a high dimensional RKHS,
is associated with the correntropy function, we have

〈Π(xi), Π(xj)〉 = V(xi, xj) = E [κ(xi, xj)] =
1
N

N∑
k=1

κ(xik, xjk)∀i, j = 1..M (2)

The general equation which also accounts for centering of data is as follows:

Vij = E [κ(xi − xj)] − 1
N2

N∑
k=1

N∑
m=1

κ(xik − xjm) (3)

As can be found in [2], the new eigenvalue problem (based on covariance matrix of the
transformed data in feature space) shapes up as Vα = (Mλ)α, where V is the Corren-
tropy matrix, given by Equation 3, and of dimension M ×M . This eigen-decomposition
is not only dimensionally compatible with that in PCA-NSGA-II [1] but would also be
computationally efficient as it promises a non-linear dimensionality reduction, with the
underlying matrix, dimensionally remaining the same, as in the linear PCA case. Hence,
we will employ this approach to refer the resulting algorithm as C-PCA-NSGA-II.

5 Methods Based on Proximity Matrices

It can be realized that the success and efficacy of methods discussed above, would pri-
marily depend on the choice of the kernel, as different kernels may extract or conceal
different types of low-dimensional structures. Hence, given an unknown problem, the
learning system or the feature selection scheme actually would have two tasks to ad-
dress, that of choosing a kernel from a family of kernels (even zeroing upon a family of
kernels would reflect our prior expectation about the functions we may be expected to
learn) and subsequently of selecting features in the feature space of the chosen kernel. It
is now our endeavour to customize the choice of the kernel, specifically for a given prob-
lem at hand and hence infuse credibility to the determined ’underlying submanifold’ in
general or to the set of objectives determined as critical (or otherwise - redundant) for
large-dimensional multi-objective optimization problems in particular. For this, we are
adopting a method based on proximity matrices, namely maximum variance unfolding
with details discussed below.

5.1 Maximum Variance Unfolding: The Concept

Weinberger et al [3,4,5], in their pursuit of unsupervised learning of manifolds, have
proposed a way of learning the kernel matrix, as an instance of semidefinite program-
ming, where the kernel matrix is constructed by maximizing the variance in feature
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space subject to local constraints that preserve the angles and distances between near-
est neighbours. Their proposal of maximum variance unfolding can conceptually be
justified by the observation that any slack in a piece of string serves to decrease the Eu-
clidean distance between its two ends, just as any furling of the flag brings its corners
together. Hence in general, while any ”fold” between two points on a manifold de-
creases the Euclidean distance between the points, they equated the task of ”unfolding”
the manifold (a task due for the implicit mapping in the kernel matrix to be learned)
to maximizing the sum total of the pairwise distance (evident in Figure 4) between the
inputs xi such that the distances and angles between an input point and its neighbours
remains unchanged, giving way to the outputs from the final state of this transformation.
The effect of this transformation can be easily visualized by imagining the beads on a
necklace (coiled up in three dimensions) as inputs. By pulling the necklace taut, the
beads would then be alligned in a line, resulting in a case of non-linear dimensionality
reduction from �3 to �1.

Fig. 4. Maximum Variance Unfolding (taken from [8]) Fig. 5. Preservation of local isometry
(taken from [3] and edited)

5.2 Maximum Variance Unfolding: A Novel Implementation

While the proposed algorithm by Weinberger et al. can be found in [3,4,5], let us high-
light that they treat a time sample (a vector of dimension equal to number of measure-
ment types) as an input. In the context of multi-objective optimization, it implies that
each of the N solutions–a population member with dimension equaling number of ob-
jectives (M ), would be an input. Consequently, the learned matrix would be of size
N × N , leading to dimensional incompatibility (similar to the case of kernel PCA, sec-
tion 4.2) with our earlier proposed scheme of correlating importance of objectives to
directions of large variances (obtained from eigen-decomposition of an appropriate ma-
trix). To beat this curse of dimensional incompatibility, we suggest to treat the vector of
each ’objective function’ (of dimension equaling the number of population members)
as an input. Since, we would still be dealing with vectors, the underlying philosophy
of maximum variance unfolding would still hold. This would allow the ’to be learned’
kernel matrix of dimension M × M and hence, also the application of our earlier pro-
posed PCA based scheme to the ’unfolded’ manifold. With this background we present
the original–maximum variance unfolding algorithm, now dimensionally customized to
the generalization needs of PCA-NSGA-II [1] algorithm. Let us begin with a one-to-one
correspondence relation between the set of inputs: objective functions x1, x2, . . . , xM

and features: φ(x1), φ(x2), . . . , φ(xM ). Then, define an M × M neighborhood matrix
η whose each element ηij ∈ {0, 1} , being one only when xj happens to be amongst



Non-linear Dimensionality Reduction Procedures 779

’k’ nearest neighbour of xi (implications of ’k’ discussed in Section 7.2). Further after
defining the inner-product matrix Kij = 〈φ(xi), φ(xj)〉 and the Gram matrix of the in-
puts Gij = xi · xj , the optimization problem is posed as a semidefinite program (SDP)
as shown below:

Maximize trace(K) = 1
2M

∑
ij(Kii − 2Kij + Kjj) subject to:

(1) Kii − 2Kij + Kjj = Gii − 2Gij + Gjj for all (i,j) with ηij = 1
(2)

∑
ij Kij = 0

(3) K  0
(4)

While, the first constraint ensures that distances between nearby inputs match distances
between nearby outputs, the second is for the centering the objective functions in the
feature space which will ensure a unique solution (up to rotation). The third constraint
ensures positive-semidefiniteness of K, a condition required to interpret the kernel ma-
trix as storing the inner products of vectors in a Hilbert space. Unlike the original
quadratic program, this SDP is convex and can be solved efficiently in polynomial
time through any off-the shelf solvers available in public domain. We have used the
SeDuMi toolbox (Sturm [1999]) in MATLAB, for the same. The R matrix employed in
PCA-NSGA-II is now replaced by K matrix, giving way to what we will be referring as
MVU-PCA-NSGA-II algorithm.

6 Proposal: C-PCA-NSGA-II or MVU-PCA-NSGA-II

6.1 Algorithmic Details

The entire structure of these two algorithms would remain the same as that of our earlier
PCA-NSGA-II [1]. They would differ, just in the matrix with which they begin i.e.,
employment of V for former and K for the later. Furthermore, to make the scheme
more robust, we are incorporating certain changes in the manner we interpret the first
principal component. For the sake of completeness, they are as follows.

(1) Eigenvalue Analysis for Dimensionality Reduction. We compute the eigenvalues
(and corresponding eigenvectors) of the V or K, which are then ranked in the decreas-
ing order of their magnitudes. The first principal component (eigenvector corresponding
to the largest eigenvalue) is designated as ‘PCA1’. The first component of this vector
denotes the contribution of first objective function towards this vector, the second ele-
ment denotes the contribution of the second objective, and so on. For a three-objective
problem, the three contributions could be treated as the direction cosines defining a
directed-ray in the objective space. A positive value denotes an increase in objective
value moving along this principal component (axes) and a negative value denotes a de-
crease. Thus, if we consider the objectives corresponding to the most-positive and most-
negative elements of this vector, they denote the objectives which have the maximum
contribution for an increase or a decrease in the principal component. Thus, by picking
the most-negative and the most-positive elements from a principal component, the two
most conflicting (hence important) objectives along that direction can be identified.
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(2) Effect of Multiple Principal Components. By above argument, each principal
component is analyzed for the two main objectives causing a conflict and the informa-
tion about the overall conflicting objectives is gathered. We suggest a procedure which
starts with analyzing the the first principal component and then proceed to analyze the
second principal component and so on, till all the significant components are consid-
ered. For this purpose, we pre-define a threshold cut (TC) and when the cumulative
contribution of all previously principal components exceeds TC, we do not analyze
any more principal components. Based on our experience with several test problems
we suggest TC equal to 95%. V or K being a positive-definite matrix, usage of ma-
trix VVT instead of V or KKT instead of K, would only square up the eigenvalues
while the eigenvector would remain unaltered. As the variance contribution of a princi-
pal component relates to the ratio of corresponding eigenvalue of the total, now, lesser
number of principal components would have to be considered to meet the predefined
threshold (TC). As, usage of VVT or KKT would logically make the analysis more
compact, it is these which we have employed for the proposed scheme. To make the
dimensionality-reduction procedure effective and applicable to various scenarios, we
suggest the following additional procedure. As the first principal component captures
the significant portion of the total variance in data set, we would want to capture any
signal of a conflicting objective. Hence, for the first principal component, along with
the objective corresponding to the most-positive element, we consider as important,
any/all objectives which correspond to a negative component, howsoever small. If in
some case, all the elements along PCA-1 are positive, we pick up the objectives corre-
sponding to the first two most positive elements. For subsequent principal components,
we first check if the corresponding eigenvalue is greater than 0.1 or not. If not, we only
choose the objective corresponding to the highest absolute element in the eigenvector.
If yes and also if the cumulative contribution of eigenvalues is less than TC, we con-
sider various cases. If all elements of the eigenvector are positive, we only choose the
objective corresponding to the highest element. If all elements of the eigenvector are
negative, we choose all objectives. Otherwise, if the value of the highest positive ele-
ment (p) is less than the absolute value of the most-negative element (n), we consider
two different scenarios. If p ≥ 0.9|n|, we choose two objectives corresponding to p and
n. On the other hand [1], if p < 0.9|n|, we only choose the objective corresponding to
n. Similarly, if p > |n|, then we consider two other scenarios. If p ≥ 0.8|n|, we choose
both objectives corresponding to p and n. On the other hand, if p < 0.8|n|, we only
choose the objective corresponding to p. So what we have now, is a set of critical or
non-redundant objectives, based on the criterion of variance.

(3) Final Reduction Using the Correlation Matrix. Hopefully, the above procedure
identifies most of the redundant objectives dictated by the data set. To consider if more
reduction in the number of objectives is possible, we then return to a reduced correlation
matrix (only columns and rows corresponding to non-redundant objectives) and inves-
tigate if there still exists a set of objectives having identical positive or negative correla-
tion coefficients (with respect to their signs) with other objectives and having a positive
correlation among themselves. This will suggest that any one member from such group
would be enough to establish the conflicting relationships with the remaining objec-
tives. In such a case, we retain the one which was chosen the earliest (corresponding to
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the larger eigenvalue) by the PCA analysis. However, if members of such a group come
from the same PCA, then the one having larger absolute value is retained. Still if there
magnitudes are equal (less likely, though) then the one having more significant contri-
bution (larger absolute value) along next PCA, is picked. Other objectives from the set
are not considered further. It should be mentioned, that once NSGA-II is run for suffi-
ciently large number of generations, the correlation matrix R stabilizes and correlation
patterns turn invariant over number of generations. Hence, in a broad sense, we have
two different criterions of dimensionality reduction embedded in our algorithm. While
the first is based on variance (eigenvalue decomposition and analysis), the second ex-
ploits the situation when two objectives are identically correlated with all the rest (those
belonging to ’the then’ important objective set). It is very important, here, to highlight
the usage of the term correlation matrix R as against correntropy matrix V or K, in
this final reduction stage. While R has embedded in it, the original inter-relationships
among objectives, given an objective set; V or K on the other hand, is representative of
the feature space, where the original relationships between objectives are not retained
(the mapping or unfolding of data, only retains the isometry - locally). Hence, while we
utilize V or K for the first stage of variance based reduction, we resort to the use of R
to exploit the original inter-relationships between objectives.

6.2 Overall C-PCA-NSGA-II or MVU-PCA-NSGA-II Procedure

Step 1: Set an iteration counter t = 0 and initial set of objectives I0 = {1, 2, . . . , M}.
Step 2: Initialize a random population for all objectives in the set It, run an EMO, and

obtain a population Pt.
Step 3: Make the final (that corresponding to Pt) data ’centered’, by deducting objec-

tive wise, the mean.
Step 4: Perform C-PCA-NSGA-II or MVU-PCA-NSGA-II analysis on Pt using It to

choose a reduced set of objectives It+1 using the predefined TC. Substeps include:
1. Computation of the correlation matrix R (as defined in Section 4.2).
2. Selection of a valid kernel and computation of the correntropy matrix V using

Equation 3 or Selection of the free parameter ’k’ and construction of kernel
matrix K by solving SDP, discussed in Section 5.2.

3. Computation of eigenvalues and eigenvectors of V or K and picking non-
redundant objectives using the procedure discussed in Sections 6.1-(1) and (2)

4. Reduce the number of objectives further, if possible, by interpreting R for the
non-redundant objectives found in item 2 above, using the guidelines discussed
in Section 6.1-(3).

Step 5: If It+1 = It, stop and declare the obtained front. Else set t = t + 1 and go to
Step 2.

7 Simulation Results

To test the efficacy of C-PCA-NSGA-II and MVU-PCA-NSGA-II procedures for non-
linear dimensionality reduction in context of MOPs, we chose the DTLZ5(I,M) [1]
problems (minor variants of the well-known DTLZ5 problem [17] having M objectives)
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and DTLZ2 problems [1]. To provide a reasonable computational effort, we have used
a population size and number of generations, respectively as, 200 and 1,000 (for 3-
objective), 400 and 2,000 (for 5-objective) and 800 and 10,000 for rest of the problems.

7.1 C-PCA-NSGA-II

To evaluate the correntropy matrix, we employed polynomial and gaussian kernels with
degree three, two, one and half. We begin by illustrating the simulation results corre-
sponding to polynomial kernel with degree three. In this case, all DTLZ5(2,M) prob-
lems, could be solved accurately, upto 50-objectives (M=50), in just one iteration (as
against multiple iterations when PCA-NSGA-II was employed [1], Table 3 illustrates
this fact for the DTLZ5(2,10)) and that too, in most cases required only the first princi-
pal component (as it was found to account for variance ≥ 95%). The fact that the last
two objectives (as they were theoretically argued for in Section 2) could be extracted
as critical ones in each case, suggests that the earlier problem of misreading important
variance directions, when data lived on submanifold, has been duly rectified. As the
trend of correlation matrix was observed to be identical, for brevity, we have shown
aside, the correlation matrix only for one case of DTLZ5(2,M) and DTLZ2(M), each.
Given the nature of DTLZ5(2,M) problems, the Pareto-optimal front being sought–
corresponding to last two objectives, is identical for all cases. For sample illustration,
Figure 6 and Figure 7 show repectively, the algorithmically obtained and theoreti-
cally constructed Pareto-optimal fronts for DTLZ5(2,10). The next set of experiment

Table 1. DTLZ5(2,3)

Iter. 1: PCA-1 (0.989) f1 f3

Iter. 1: Post Eig. Analysis f1 f3

Iter. 1: Post Corr. Analysis f1 f3

f1 f3

f1 + -
f3 - +

Table 2. DTLZ5(2,10)

Iter. 1: PCA-1 (0.982) f9 f10

Iter. 1: Post Eig. Analysis f9 f10

Iter. 1: Post Corr. Analysis f9 f10

Table 3. DTLZ5(2,10) : using PCA

Iter. 1 (3 Prin. Comp.) f1 f5 f9 f10

Iter. 2 (2 Prin. Comp.) f5 f9 f10

Iter. 3 (1 Prin. Comp.) f9 f10

Iter. 4 (1 Prin. Comp.) f9 f10

Table 4. DTLZ5(2,20)

Iter. 1: PCA-1 (0.952) f19 f20

Iter. 1: Post Eig. Analysis f19 f20

Iter. 1: Post Corr. Analysis f19 f20

Table 5. DTLZ5(2,30)

Iter. 1: PCA-1 (0.967) f29 f30

Iter. 1: Post Eig. Analysis f29 f30

Iter. 1: Post Corr. Analysis f29 f30

Table 6. DTLZ5(2,50)

Iter. 1: PCA-1 (0.941) f49 f50

PCA-2 (0.055) f49

Iter. 1: Post Eig. Analysis f49 f50

Iter. 1: Post Corr. Analysis f49 f50
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Table 7. DTLZ2(3)

Iter. 1: PCA-1 (0.548) f1 f3

PCA-2 (0.445) f2

Iter. 1: Post Eig. Analysis f1 f2 f3

Iter. 1: Post Corr. Analysis f1 f2 f3

f1 f2 f3

f1 + - -
f2 - + -
f3 - - +

Table 8. DTLZ2(5)

Iter. 1: PCA-1 (0.328) f1 f2 f3 f4

PCA-2 (0.287) f2 f4

PCA-3 (0.205) f1

PCA-4 (0.168) f5

Iter. 1: Post Eig. Analysis f1 f2 f3 f4 f5

Iter. 1: Post Corr. Analysis f1 f2 f3 f4 f5

involved polynomial kernels of degree two and one, respectively. Interestingly, not only
were both found to yield accurate results but also in most cases, the objective set ob-
tained as important between two successive iterations (wherever applicable), was found
to match. However, the manner in which these matching objective sets emerged from
different principal components or subsequent consideration of reduced correlation ma-
trix, differed. Table 9 and Table 10 highlight this observation for for first iteration of
DTLZ5(2,10) problem, solved with polynomial kernel with degrees two and one, re-
spectively. At the end of first iteration, both these cases projected f7, f9 and f10 as
important and in the second iteration f9 and f10. The intent here, is to highlight the dif-
ference in the manner in which f7, f9 and f10 were adjudged important at first iteration.
Figure 8 shows that the emdedding required to unfold the data set in DTLZ5(2,30) is
either achieved by polynomial kernel of degree three or equivalently by two successive
embeddings of degree two or one. The first embedding corresponding to degree two and
the second with degree one and vice versa, could also have led to the desired overall
embedding. Experiments were also performed with Gaussian kernels with degree three,
two, one and half, respectively and in each case accurate results were observed, i.e., in
each case of DTLZ5(2,M), last two objectives emerged as critical ones. Also, all ob-
jectives were assessed as critical in case of DTLZ2(3) and DTLZ2(5) problems. What
differed amongst these experiments with different degrees of kernel, were the principal
components which contributed to these objectives as critical, as has been shown above.
Failing cases were observed in polynomial kernel type with degree as half. In this case,
only DTLZ2(3), DTLZ2(5) and DTLZ5(2,3) could be solved successfully. In rest all
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Table 9. Iteration-1 : DTLZ5(2,10) with Poly.
kernel: degree:2

PCA-1 (0.930) f7 f9 f10

PCA-2 (0.031) f9 f10

Post Eig. Analysis f7 f9 f10

Post Corr. Analysis f7 f9 f10

f7 f9 f10

f7 + - -
f9 - + -
f10 - - +

Table 10. Iteration-1 : DTLZ5(2,10) with
Poly.kernel: degree:1

PCA-1 (0.449) f3 · · · f7 f8 f9 f10

PCA-2 (0.336) f9 f10

PCA-3 (0.211) f8

Post Eig. Analysis f3 f7 f8 f9 f10

Post Corr. Analysis f7 f9 f10

cases, it ran into numerical errors. The reason is that while handling centered data, the
dot product of two vectors in consideration may have a value less than one and square
root of a negative number, leads nowhere. Hence as cited in [18], a fractional power
polynomial does not necessarily define a kernel function as it might not even define a
positive-semidefinite Gram matrix.

7.2 MVU-PCA-NSGA-II

The only free parameter involved in the maximum variance unfolding method is ’k’,
which for a particular input point, physically signifies (as evident in Figure 5) the num-
ber of neighbours with whom its distances and included angles have to be retained as
invariant during the ’unfolding’ process. While too high a value of ’k’ would overcon-
strain and hence delay the ’unfolding’ process, too low a value is riskier as it may lead
to distortion of local topology and hence may lead to ’erroneous unfolding’, in that

Table 11. Implication of ’k’ on ’unfolding’

’k’ parameter D.O.F = No. of (unknowns - constraints)
k=M − 1 M(M+1)

2 − M(M−1)
2 − 2 = M − 2

k=k Min≡[ηij = 1 =⇒ ηji �= 1]: M(M+1)
2 − min(

(M

2

)
, Mk) − 2

Table 12. DTLZ5(2,10), ’k’ = 9

Iter. 1: PCA-1 (0.999) f1 f2 f7 f8 f10

Iter. 2: 2 Prin. Comp. f1 f2 f7 f8

Table 13. DTLZ5(2,20), ’k’ = 19

Iter. 1: 13 Prin. Comp. f1 f5 f17

Table 14. DTLZ5(2,30), ’k’ = 29

Iter. 1: 25 Prin. Comp. f6 f7 f18 f24 f27 f29

Table 15. DTLZ5(2,50), ’k’ = 49

Iter. 1: 44 Prin. Comp. f36 f44 f46 f47 f48 f49

in fulfilling the objective of maximizing the sum of all pairwise distances between in-
puts, even the neighbours may be stretched. Hence, proper selection of ’k’ is crucial.
Given an M -objective problem, for which size of ’to be learned’ kernel matrix would
be M × M , while the number of independent (accounting symmetry) unknown matrix
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Table 16. Final Results with ’k’=�
√

M�

Problem ’k’=�
√

M� Number of iterations required Final objective set
DTLZ5(2,5) ’k’=3 one f4 and f5

DTLZ5(2,10) ’k’=4 two f9 and f10

DTLZ5(2,20) ’k’=5 two f19 and f20

DTLZ5(2,30) ’k’=6 two f29 and f30

DTLZ5(2,50) ’k’=8 two f49 and f50

DTLZ2(5) ’k’=3 one f1 to f5

elements will be fixed as M(M+1)
2 , the number of constraints given by Equation 4-1

(those in Equation 4-2, 4-3, together contributing 2 constraints), would vary with ’k’.
Defining, degree of freedom (D.O.F) as number of points in input space (here, objec-
tives) which are free for unfolding (stretching, to enhance the pairwise distances) w.r.t.
their neighbours, we discuss the effect of ’k’ on D.O.F in Table 11. Its noteworthy that
even in the safest case of preservation of isometry, wherein each point is considered
to be a neighbour of all the rest, enough D.O.F is available for attainment of objective
(in Equation 4). We experimented with MVU-PCA-NSGA-II, for varying values of ’k’.
While accurate results (last two objectives for DTLZ5(2,M) upto M = 50 and all objec-
tives for DTLZ2(M) upto M = 5) were obtained for ’k’=M − 1 (case of all neighbours
considered as ’k’-nearest), inaccuracy creeped in the most unconstrained case of ’k’=1
(case of only the first nearest neighbour considered amongst ’k’-nearest). In the later
case, though enough D.O.F was available for attainment of objective, it came at the cost
of distortion of local-isometry, wherein even the actual neighbours get stretched. This
is evident in Tables 12, 13, 14, 15, where one of the last two objectives were found
to be lost in the first iteration itself, defying the property of the problem, leaving no
motivation to continue. While, in literature, for most of the studies ’k’=4 is taken, to
strike an intermediate value which depends on number of input points, we tested for
’k’=�

√
M� and it found accurate results for all test problems, as shown in Table 16. We

hence prescribe ’k’=�
√

M� to be a suitable standard, for problems considered here and
even in general.

8 Conclusions

We started by highlighting the limitations of standard PCA and consequently the need
for non-linear dimensionality reduction scheme, in general. We have substantiated the
above arguments by evaluating a five-objective optimization problem in terms of ’what
is’ (accounting for underlying subspaces) and ’what ought to be’ (need to account for
underlying submanifolds). Reiterating the basic issues in the concept and utility of ker-
nel functions in non-linear dimensionality reduction, we have investigated and explained
the non applicability of kernel PCA. The fact that recently published correntropy PCA,
fitted well with our earlier scheme and that it does not suffer like kernel-PCA, from
curse of computational overhead, we have adopted it to propose a non-linear dimen-
sionality reduction scheme for multi-objective optimization problems, to be referred
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as C-PCA-NSGA-II. This however suffered from the difficulty of picking up a suit-
able kernel function for a given problem at hand. To do away with this problem, we
adopted a way to learn the kernel matrix, by way of maximum variance unfolding, to
eventually propose MVU-PCA-NSGA-II. The efficacy of the former has been tested
for varying kernel functions like Gaussian and polynomial, and with varying degrees.
These experiments have shown that such variations did not have a significant effect on
their predictive performance for the problems tested here, as most led to accurate re-
sults (though with varying efficacy). In case of the later, experiments for varying ’k’–
the only free parameter involved therein, have been utilized to suggest its appropriately
safe value. To summarize, this paper has overcome the limitation of our earlier pro-
posed PCA-NSGA-II algorithm under the broader context of non-linear dimensionality
reduction.
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Abstract. With the popularity of efficient multi-objective evolutionary
optimization (EMO) techniques and the need for such problem-solving
activities in practice, EMO methodologies and EMO research and ap-
plication have received a great deal of attention in the recent past. The
first decade of research in EMO area has been spent on developing effi-
cient algorithms for finding a well-converged and well-distributed set of
Pareto-optimal solutions, although EMO researchers were always aware
of the importance of procedures which would help choose one partic-
ular solution from the Pareto-optimal set for implementation. In this
paper, we address this long-standing issue and suggest an interactive
EMO procedure by collating most salient research in EMO and putting
together a step-by-step EMO and decision-making procedure. The idea is
implemented in a GUI-based, user-friendly software which allows a user
to supply the problem mathematically or by using user-defined macros
and enables the user to evaluate solutions directly or by calling an exe-
cutable software, such as popularly-used MATLAB software for a local
search or ANSYS software for finite element analysis, etc. Starting with
standard EMO applications, continuing to finding robust, partial, and
user-defined preferred frontiers through standard MCDM procedures,
the well-coordinated software allows the user to first have an idea of
the complete trade-off frontier, then systematically focus in preferred
regions, and finally choose a single solution for implementation.

1 Introduction

In the past decade of research and application activities of evolutionary multi-
criterion optimization (EMO), major focus has been made in finding a set of
trade-off solutions, representing the entire Pareto-optimal front. Although these
efforts were the first steps in evaluating the potential of EMO methodologies
as a true multi-objective optimizer, it is now time to address an equally im-
portant matter of choosing a single solution from the Pareto-optimal front for
implementation. Such a task should involve a decision-making activity in which
higher-level information must be provided by the decision-maker. It is obvious to
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realize that such a decision-making activity is subjective and must depend on the
problem being solved. Thus, any effort in this direction must be spent on devis-
ing a procedure which will help a decision-maker (DM) to arrive at a solution of
his/her choice, rather than one which will recommend a solution automatically.
The multi-criterion decision-making (MCDM) approaches address a similar issue
and some MCDM ideas can be borrowed to address the decision-making issue in
an EMO study. Besides the higher-level decision-making approaches, there are
some other more direct decisions which most decision-makers may like to follow.
Some such decision-making ideas may include (i) preference of a robust frontier,
instead of a Pareto-optimal frontier, (ii) preference of locally-optimal solutions
obtained from EMO solutions, instead of simply choosing the EMO solutions,
preference of knee solutions and preference of some specific regions detected by
various means, instead of the entire trade-off Pareto-optimal frontier.

In this paper, we give shape to an earlier proposal by the authors [6] in com-
bining EMO procedures with a number of direct (less subjective) decision-making
tools and a number of higher-level (subjective) decision-making tools with a pro-
cedure which can go back and forth between many such tools and an EMO pro-
cedure. The main motivation behind such a repetitive procedure is that often the
choice of a higher-level decision-making tool or fixation of parameter values associ-
ated with such a tool cannot be done a priori. When an idea of the entire trade-off
frontier is obtained, a decision-making tool with all its associated parameters can
be chosen adequately. The decision-making task is subjective to the DM and the
final outcome of such a task will be dependent on the desires of the DM. To make
the task of decision-making easier and possible, we also develop a GUI-based soft-
ware (currently developed for a linux operating system) with visualization tools.
Starting with a set of trade-off solutions, the developed I-MODE software will al-
low a decision-maker to finally choose a single preferred solution by performing
a number of decision-making tasks. Currently, the procedure can be used for any
number of objectives, but the software is restricted to a maximum of three ob-
jectives due to lack of suitable efficient visualization procedures. The working of
the procedure is demonstrated on a welded-beam design problem having two ob-
jectives. The proposed methodology is one of many possible implementations of
hybrid EMO and decision-making tools.

2 Existing Methodologies for Hybrid Multi-objective
Optimization and Decision-Making

There exist different interactive multi-objective optimization methods in the lit-
erature based on the classical optimization methods. Some popular methodolo-
gies, as described in [12] are as follows: Interactive Surrogate Worth Trade-off
(ISWT) method [2], Reference point method [15], NIMBUS approach [12] etc.
Each method is different from each other, but uses a single solution in each it-
eration. A guess solution is usually modified to another solution iteratively and
by gathering some information from a DM. Since a single solution is used in an it-
eration, the DM only can find local information (such as a local trade-off or search
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direction) and cannot make a decision using a more global picture of the true
Pareto-optimal front. However, in the context of an EMO, there do not exist many
interactive studies. Tan and his students developed a GUI-based MOEA toolbox
for multi-objective optimization [14]. The toolbox was designed with some classi-
cal decision-making aides, such as goal and priority settings. But a clear procedure
of arriving at a single preferred solution was not present in the toolbox. Fonseca
and Fleming [11] devised a GUI-based procedure which allowed some target values
to be set for each objective and the trade-off objective information of different solu-
tions found using an EMO procedure was demonstrated. However, the procedure
lacked any quantitative statistical analysis of the solutions and also clearly did
not provide any indication of the location of chosen solutions vis-a-vis the Pareto-
optimal front. Another interactive GUI-based EMO software was Guimoo, devel-
oped by INRIA, but it lacked any decision-making facility.

3 Interactive Multi-objective Optimization and
Decision-Making Using Evolutionary Methods
(I-MODE)

In the proposed interactive EMO procedure, we attempt to put together some
recent salient research results of EMO (described below) along with salient
decision-making principles to constitute, a hybrid interactive multi-criterion
decision-making procedure. The existing EMO procedures used in I-MODE are
as follows:

1. An EMO which is capable of finding the entire or a partial Pareto-optimal
set, as desired [3,1].

2. An EMO which capable of finding a preferred region of interest on the Pareto-
optimal frontier using the reference point approach [10].

3. An EMO which is capable of finding a robust frontier [8], instead of Pareto-
optimal frontier.

4. An EMO with a local search procedure which provides a better convergence
properties [9,5].

5. An EMO which is capable of handling multiple disconnected objective re-
gions and constitute a parallel search.

I-MODE also uses the following single-objective optimization procedures, mostly
for the purpose of verifying the multi-objective trade-off frontier obtained by an
EMO:

1. A procedure for finding individual optimal solution(s) corresponding to each
objective function subject to satisfaction of all supplied constraints [12].

2. The ε-constraint method of finding a single Pareto-optimal solution [12].
3. The multi-objective version of the ε-constraint method in which any num-

ber of original objectives can be kept as objectives and remaining original
objectives can be constrained to some ε values. This procedure is expected
to find a lower-dimensional Pareto-optimal front which would be a subset of
the high-dimensional Pareto-optimal front.
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Finally, for the decision-making purpose, we have borrowed a number of MCDM
methodologies:

1. Tchebycheff methods with different “norms”,
2. Reference point method [15],
3. Utility function method including weighted-sum approach and pseudo-weight

method,
4. Surrogate worth trade-off method [12].

Using above procedures, we have designed an interactive procedure which allow a
systematic procedure of performing any of the above tasks alone, in combination
with each other or in sequence to each other in a manner which provides adequate
flexibility to a decision-maker. We present the procedure in the step-by-step
format. The parameters which are expected to be supplied by the decision-maker
(DM) are mentioned in parenthesis.

Step 1: Obtain an approximate non-dominated front with following options:
1.1 Compute the complete front (DM: no parameter)
1.2 Compute a partial front (DM: limiting trade-off values)
1.3 Compute Pareto-optimal solutions near the reference points only (DM:

reference point and limiting spread parameter)
1.4 Compute the robust Pareto-frontier (DM: robustness parameters)
Outcome: An approximate trade-off frontier

Step 2: Improve the obtained non-dominated front using other optimization
methods:
2.1 Single-objective local searches from selected solutions:

2.1.1 Automated selection: Clustering (DM: number of desired solutions)
2.1.2 User-defined selection: (i) Weighted-sum approach (DM: weight vec-

tors), (ii) Utility function based approach (DM: utility functions),
(iii) Tchebycheff function approach (DM: ideal points and Lp norm),
(iv) Using trade-off information between objectives (DM: Trade-off
values).

2.2 Obtain a better trade-off frontier with specific solutions obtained using
ε-constraint method (DM: ε values)

Outcome: A near-optimal and well-distributed trade-off frontier
Step 3: Verify obtained front with other optimization tasks:

3.1 ε-constraint method (single or multi-objective) (DM: ε-vector)
3.2 Optimization of individual objectives
Outcome: A verified (and confident) trade-off frontier

Step 4: Make decisions and choose regions of interest using one or more of the
following methods:
4.1 Weighted-sum approach (DM: weight vectors)
4.2 Utility function based approach (DM: utility functions)
4.3 Tchebycheff function approach (DM: ideal points and Lp norm)
4.4 Using trade-off information between objectives (DM: Trade-off values)
4.5 Checking robustness of solutions (DM: robustness parameters)
Outcome: One or more regions of interest identified

Step 5: Until satisfied, go to Step 1 and focus further study in the above regions
of interest, else declare the chosen solution(s)
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3.1 Description of the I-MODE Procedure

The main difference between our proposed approach and the existing classical
interactive methods described in [12] is that in our approach, we first attempt to
find and show the DM the extent and shape of the Pareto-optimal front using a
few representative solutions. This procedure, in addition to providing estimated
ideal and nadir points of the problem, will also paint a good picture in the mind
of the DM about the shape of the Pareto-optimal frontier which will help the
DM later to concentrate on a particular region on the front. However, if the DM,
for some reason, is interested in focusing on a particular region on the frontier,
such information regarding his/her preference can be provided.

Thus, in the very first step of the I-MODE, in most situations, the DM applies
an EMO (NSGA-II, an efficient multi-objective optimizer [4], is used here) on the
problem to obtain a non-dominated front (Step 1). The EMO algorithm can start
with two types of initial population. If some problem information is available
then a biased population honoring the problem information can be generated,
otherwise a completely random set of solutions can be chosen. Without any
preference to any particular region on the trade-off frontier, the DM can find a
representative set of solutions on the entire Pareto-optimal frontier. If, however,
the DM is interested in a portion of the entire frontier, a number of options are
available. A useful procedure would be to suggest a surrogate worth trade-off
information (such as a 100% sacrifice in one objective must bring in at least a ζ%
gain in another objective and so on) and find a partial frontier using the guided-
domination based EMO [1]. Another useful way to find a biased set of trade-off
optimal solutions is to use a number of reference points (or aspiration points)
and use I-MODE to find optimal solutions close to these reference points [10].
This way, the DM gets to know Pareto-optimal solutions which are near his/her
chosen reference points and are not on the entire Pareto-optimal frontier. In
practice, solutions are only possible to be implemented with a finite precision. If
this uncertainty in decision variables cause the objective and constraint function
values to change by a large amount, the solution is declared as a non-robust
solution. As another alternative, right in the beginning, the DM can opt for
finding robust solutions which are less sensitive to parameter perturbations using
a robust EMO procedure [8]. To find a robust frontier (which would be, in
general, different from the original Pareto-optimal frontier), the user needs to
define a range of likely perturbation in decision variables or parameters and an
allowable change in functions (called as the robustness parameter) for defining a
robust solution. The DM chooses one of the two robust optimization procedures
described in [8] and can find the corresponding robust frontier.

Once the preliminary front is established through Step 1, the next step is to
improve the obtained frontier by means of other optimization concepts. This step
is necessary simply because evolutionary algorithms do not have a mathematical
convergence proof for any arbitrary problem and certain portion of the frontier
may not converge close to the true optimal frontier. One of the ways to have
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confidence about the optimality of obtained solutions is to try various opti-
mization concepts and check to see if no further improvement on the obtained
solutions are possible by various optimization runs. We attempt to improve the
solutions using a local search procedure. For this task, a few solutions are picked
from the non-dominated set and an individual local search is initiated from each
of these solutions. For each solution, a combined single objective is constructed
by computing a normalized pseudo-weight vector based on the location of the
solution in the Pareto-optimal frontier [3,7]. After several local searches are per-
formed, the new non-dominated frontier is constructed. The solutions chosen for
a local search can be randomly picked from the obtained set in Step 1 or some
preferred solutions picked using some decision-making tools. In some occasions,
there may exist wide gaps in the frontier obtained after the local searches and
new single-objective ε-constraint procedures can be initiated with ε vectors cho-
sen inside such gaps to find a number of representative solutions there. At the end
of Step 2, the DM expects to come up with a well-converged and well-distributed
set of trade-off solutions.

The next step (Step 3) is to verify the obtained frontier by a number of single-
objective optimizations. The extreme solutions of the non-dominated front can
be verified by using a single-objective genetic algorithm on each objective in-
dependently. The intermediate trade-off solutions can be verified by using the
ε-constraint method in which only j (∈ [1, M ]) objectives can be kept as objec-
tives and the remaining (M − j) objectives can be converted into constraints
[2]. If j = 1 is chosen, a single-objective optimization and if j > 1 is chosen,
a multi-objective optimization procedure can be used to find one or more opti-
mal solutions. These solutions should theoretically fall on the trade-off frontier
obtained by I-MODE.

After obtaining the non-dominated frontier in Step 1, improving it through
local searches in Step 2 and verifying the frontier through several other opti-
mizations in Step 3, the DM is confident enough on the near-optimality of the
obtained frontier and is ready to perform some decision-making tasks by getting
an idea of the range of trade-off objective values. In Step 4, the DM can use
a number of decision-making tools to concentrate one or more regions of pref-
erence by analyzing different regions of the trade-off frontier. For this purpose,
pseudo-weight selection, Tchebycheff metric method with different norms, refer-
ence point method, surrogate worth trade-off method, etc. can be used depending
on the appropriateness of the procedure to a particular problem. The DM can
simply decide to choose the robust solutions from the frontier. In the case of a
systematic evaluation of the frontier, multiple regions of interest can be selected
simultaneously for further investigation. A completely new multi-objective opti-
mization run with or without considering all the above-discussed steps (robust
optimization, local searches, decision-making etc.) can be repeated to find more
trade-off solutions in the chosen regions of interest and to help choose one or
more subregions for further investigation. This procedure can be continued till
the DM is satisfied (in Step 5) with a preferred solution.
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1. Application of NSGA−II (Step 1)

ε −constraint method (Step 3)

2. Improve the front (Step 2)

3. Verification using

Multi−objective
optimization

Stop

1. Input Problem Parameters

2. Define objectives and constraints

3. Select advance optimization methods:
Robust Opt., Guided search etc.

Pre−processor

Start

1. Compile the input code

2. Link with precompiled opti.

lib. and create solver executable

Runtime compilation

1. Choose a preferred region (Step 4) 

Using decision making tools:

2. Restrict search in the selected
region and repeat optimization

(Step 5)

DM: Decision making

Fig. 1. Structure of I-MODE software

3.2 I-MODE Software Implementation

Fig. 2. Window for coding objective
functions

Fig. 3. Plot window for two-objective
problem

I-MODE procedure is extensively user-
dependent, where the DM has to inter-
act with the software frequently for an
effective run. To carry out such a rigor-
ous interactive activity, we need a soft-
ware with a powerful GUI, through which
the DM can specify his/her preferences.
At the time of development of the above
features, we kept the GUI simple but effec-
tive for the decision-maker. The whole soft-
ware is developed using C-language on the
Linux platform and GUI is developed using
GTK toolkit. This provides a robust struc-
ture of the code which can handle a large
optimization problem where the memory
requirement may be high. The I-MODE
software has three broad modules, namely
the pre-processor module, the optimization
module, and the decision-making module
(Figure 1).

In the pre-processor module, the DM
specifies the optimization problem by set-
ting the number of objectives, variables,
and constraints. The DM also codes the
objective function in a GUI window (Fig-
ure 2) once for any subsequent operations
or can supply the program through a C-code or can be linked with an exter-
nal evaluation software, such as a finite element software, MATLAB or others.
Different GA parameters are also specified in the preprocessor module. The
next module is the optimization module in which the DM can execute various
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optimization runs (Steps 1, 2 and 3 of the I-MODE procedure). Finally in the
decision-making module, the DM uses different decision-making tasks (Step 4)
to choose preferred solutions or regions. Figure 3 shows the online visualization
window where the DM can observe the real-time animation of the optimiza-
tion run. On this window, several Menu buttons are available, such as Point
Menu, Utility Menu, ε-constraint Menu, Ideal and Nadir point Menu, and
Select region Menu. The DM can choose one or more such menus and proceed
with the software.

4 Case Study: A Welded Beam Design Problem

In this problem, a beam is welded on another beam and carry a certain load.
This design problem with one objective is a particularly well-studied [13] one,
but here we modify the problem to include a second objective:

Minimize f1(x) = 1.10471h2� + 0.04811tb(14.0 + �),
Minimize f2(x) = δ(x) = 2.1952

t3b ,
Subject to g1(x) ≡ 13, 600 − τ(x) ≥ 0, g2(x) ≡ 30, 000 − σ(x) ≥ 0,

g3(x) ≡ b − h ≥ 0, g4(x) ≡ Pc(x) − 6, 000 ≥ 0,
0.125 ≤ h, b ≤ 5.0, 0.1 ≤ �, t ≤ 10.0.

(1)

The first objective is the cost of fabrication and second objective is the end
deflection, both of which are to be minimized. Four non-linear constraints are
related to limitations on normal stress σ(x), shear stress τ(x), buckling load
Pc(x) and a dimensional practicality. There are four design variables: thickness
of the beam b, width of the beam t, length of weld �, and weld thickness h,
each bounded between lower and upper bounds. The non-linear terms for stress
and buckling are given elsewhere [13]. The problem is coded in the pre-processor
phase of I-MODE and following systematic procedure is used to obtain a single
solution from a two-objective consideration.

4.1 Step 1: Find an Approximate Front

First, we find an idea of the Pareto-optimal front using I-MODE. We set follow-
ing parameter values: Population size=100; maximum generation=100; crossover
probability=0.9; mutation probability=0.1; distribution indices for SBX recom-
bination and polynomial mutation are 10 and 20, respectively. Figure 4 shows
the obtained front (solutions marked from A to B) using NSGA-II. To validate
the obtained front, we independently find the estimated ideal point by individ-
ual minimization of each objective and the estimated nadir point by using the
nadir point estimation procedure of I-MODE. Estimated ideal and nadir points
are joined to show the range of obtained trade-off optimal solutions. It is clear
from the figure that the non-dominated points obtained through NSGA-II do not
cover the entire range defined by the nadir and ideal objective vectors. Thus, we
can conclude that the NSGA-II procedure is unable to find the entire optimal
front and we need to improve this frontier.
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4.2 Step 2: Improve the Trade-Off Frontier
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Fig. 6. Updated Pareto-optimal front of
welded beam problem

To obtain a better front, we use the lo-
cal search procedure on the end points.
For this purpose, we use the fmincon
optimization procedure of MATLAB
procedure, which is a classical SQP
method. We link MATLAB with the
I-MODE software through the local
search option: User defined. Figure 5
shows the solutions after the local
searches. The minimum-cost solution
A obtained through NSGA-II gets
largely improved to solution C, but the
minimum-deflection solution B gets im-
proved slightly. The updated ideal and
nadir points are found to be different
from those obtained earlier, due to the difficulty in obtaining the minimum-
cost solution in this problem. Now from these updated results, we observe that
there is a gap between solutions A and C. So we try to find the missing part
of the Pareto-optimal front by using the ε-constraint method by minimizing f1
and constraining f2 to several ε2 values. The obtained solutions are then passed
through a non-domination check with the original NSGA-II solutions and the
front is modified with new solutions. Figure 6 shows the updated front consisting
of previous NSGA-II run and ε-constraint single-objective solutions.

4.3 Step 3: Verify Obtained Front

Since the new ε-constraint optimization runs find solutions which are well-
matched with the NSGA-II frontier, we skip the verification process at this first
iteration of the proposed I-MODE procedure.
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4.4 Step 4: Make Decisions and Choose Regions of Interest

The above steps helped us get an idea of the range of Pareto-optimal solutions.
The next step is to find one or more regions of interest based on a higher-level
consideration. Here, we use two criteria. First we are interested in concentrating
in a region which is robust (less sensitive to the variable perturbation). We have
already seen in subsection 4.2 that minimum-cost region is sensitive to parameter
values and difficult to optimize. To perform the robustness study, we assume that
the beam dimensions t and b are expected to vary with ±2% from their chosen
values and weld dimensions h and l vary with ±4%. These values are kept this
way to take into account the fact that parameters t and b are obtained by a
machining operation and are expected to have a better control on dimensional
tolerance compared to the weld dimensions. We use the robustness of type II [8]
procedure and obtain the robust frontier with robustness parameter η = 0.01,
meaning that a maximum of 1% difference in average perturbation in objective
values from their original values due to uncertainty is allowed. Figure 7 shows the
robust frontier. It is interesting to note that minimum-cost solutions are sensitive.
Since the minimum-cost solution corresponds to minimal use of materials, the
solution tends to make most constraints active. With an expected fluctuation in
design variables, such solutions can easily become infeasible and cannot qualify
to be robust. Thus, the robust consideration as a direct decision-making tool
enables us to keep away from choosing a solution close to the minimum-cost
solution. However, still in this problem we observe a wide variety of solutions
which qualify as robust solutions.

To reduce our focus further, we now use a subjective decision-making proce-
dure of surrogate worth trade-off. Of the robust solutions, we are interested in
solutions for which a 100% sacrifice in the cost value, at-least 150% improvement
in deflection occurs. That is, from a solution if we double the cost value, we are
interested in solutions which reduces the deflection 2.5 times. Simultaneously, we
would also like to ensure that a saving of at-least 25% cost for a 100% sacrifice
in deflection. To find such solutions from the remaining portion of the trade-off
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frontier, we specify the following matrix and obtain a partial frontier by the
I-EMO software (Figure 8):

Tradeoff matrix =
[

1.0 1.5
0.25 1.0

]
(2)

It is interesting to note that only a small portion in the intermediate portion of
the robust frontier becomes the preferred region of solutions corresponding to
above trade-off information.

4.5 Step 5: Termination Criterion

This completes one iteration of the I-EMO procedure. Since we have not con-
verged to a single solution yet, we move to Step 1 for another round of I-EMO
but concentrate only in the trade-off region obtained at the end of Step 4.

4.6 Step 1: Find More Solutions in Preferred Region by NSGA-II

We run NSGA-II with the guided-domination concept and obtained more solu-
tions in the preferred region of interest. Figure 9 shows 100 solutions obtained
with a rerun of guided NSGA-II.

4.7 Step 2: Improve the Front

We ignore this step due to a robustness study planned in subsection 4.9.

4.8 Step 3: Verify Obtained Front

Here, we perform five ε-constraint single-objective minimizations of f2 by con-
straining f1 into different cost values in the current range [8.2, 13.0]. The ob-
tained solutions are shown in Figure 9 with circles, which suggests that the
NSGA-II front and these ε-constraint solutions more or less agree, thereby gain-
ing confidence on the obtained NSGA-II solutions.

We perform another verification process here. Since in the previous iteration
we expected certain trade-off (given in equation 2), we compute the pseudo-
weight vector of five widely-separated solutions (in diamonds). Table 1 shows the
objective function values and weight vectors for these selected points.

Table 1. Pseudo-weight for selected solutions

Cost Max. deflection Pseudo-weight
Solution

f1 f2 w1 w2

A 8.262 0.002153 0.48 0.52
B 9.541 0.001838 0.47 0.53
C 11.087 0.001558 0.45 0.55
D 12.914 0.001321 0.42 0.58

Recall that for an identical pro-
portion of loss in either objective
a more stringent gain in deflec-
tion objective was set by the ma-
trix. From the above table, we
observe that the second objective
is given more importance than
the first objective in the selected
region. These calculations give us
confidence in our approach and we now proceed to make further decisions to
choose a single preferred solution.
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Fig. 10. Robust optimal fronts

4.9 Step 4: Make Decisions and Choose Subregions of Interest

To choose a subregion of interest, we first investigate the robustness of the current
trade-off frontier using two different robustness parameter values of 0.01 and
0.001. Figure 10 shows that with a stricter requirement in fluctuation in function
values due to perturbations in design variables, the robust frontier gets worse.
To investigate how the solutions (design variables) change with a more strict
requirement on objective fluctuations, we plot two design variables (t and b)
versus the cost objective in Figure 11. Other two variables are found to have a
similar ‘almost constant’ behavior as that of t. The robust solutions are different
from the original solutions and it is interesting to note that the variable b of
robust and Pareto-optimal solutions follow a relationship with the cost objective:
the beam thickness variable must be increased linearly with large-cost solutions.
Interestingly, the change in beam thickness does not seem to depend much on
the chosen robustness parameter, but demand a significant change in t. These
informations are interesting and useful and are found as a by-product of I-MODE
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Fig. 11. Variable sensitivity of the welded beam problem
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procedure. Based on these plots, we decide to fix the robustness parameter to
η = 0.01 and proceed with the rest of the study.

To narrow down the preferred region, next we consider a subjective decision-
making tool with reference points. Say, we are interested in solutions towards two
extreme regions of the remaining trade-off front and specify following two reference
(aspiration) points: (8.7, 0.00195)T and (12.0, 0.0014)T . To get a reasonable spread
of solutions, we choose (by trial-and-error here) a spread parameter of ε = 0.001.
Figure 12 shows the final solutions obtained by the reference NSGA-II run on both
reference points simultaneously. Reference points are also shown in the figure.

Table 2. Most preferred solution of
the welded-beam problem with supplied
decision-making aides

Design Variables (in) Objective Values

h l t b Cost Deflection

0.917 1.009 9.856 1.672 12.838 0.00137

Finally, we decide to use another
subjective decision-making tool based
on the utility function approach. We
decide to use the following utility
function: Minimize U(f1, f2) = f1 ×
f2. Since cost and deflection are con-
flicting to each other, a product of
the two objective values in the regions
of our interest may be thought as a
combined utility measure, minimizing
which may result a solution having small values of both objectives. Figure 13
shows the contour plot of the above utility function and reference point based
NSGA-II solutions. The utility function is tangential with the reference NSGA-II
solutions at point A, thereby meaning that the solution A is the most preferred
solution with respect to the chosen utility. The decision variables and objective
function values of this solution are shown in Table 2. It is important to note
here that the above task of finding the best solution based on a utility function
is performed on a chosen range of robust solutions and on solutions exhibiting
certain trade-off information and is not to be confused with finding the best
solution for a fixed utility function on the entire Pareto-optimal solution.
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4.10 Step 5: Select the Most Preferred Solution

Since the outcome is a single solution, we terminate the I-MODE procedure
and declare solution A is the preferred outcome of the complete multi-objective
optimization and decision-making procedure.

Here, we have followed a sequence of steps with some subjective decision-
making tools to come up with a preferred solution, which is robust, near-optimal,
having desired trade-off in objectives, close to preferred aspiration points, and
possessing optimal desired utility. It is obvious that the outcome of the study
would change if any major change in the sequence of operation of steps is
chosen or a different decision-making tool or different parameter values are cho-
sen. There are certainly other procedures possible which will result in a differ-
ent solution. This is the unique feature of multi-objective optimization. But,
what we have demonstrated here is a systematic procedure of using such mixed
optimization-cum-decision-making strategies for arriving at a preferred solution.

5 Conclusions

In this paper, we, have proposed an interactive optimization and decision-making
procedure for solving two and three-objective optimization problems. In order to
arrive at the procedure with a GUI-based software, we have used salient research
results from classical and evolutionary multi-objective optimization literatures in
a synergistic manner. The procedure not only finds near Pareto-optimal fronts
and then helps the DM to choose a particular solution, the procedure provides
options for doing checks and balances at various stages so that the DM is more
confident in arriving at a particular solution. Till now, no such combined (classical
and EMO) software is available for this task. With the ground-breaking research
and application studies using EMO so far, it is now time for researchers to think
and develop such interactive hybrid methodologies which will give multi-objective
optimization studies a real practical flavor which they rightfully deserve.
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Abstract. Most real-world optimization problems involve objectives,
constraints, and parameters which constantly change with time. Treating
such problems as a stationary optimization problem demand the knowl-
edge of the pattern of change a priori and even then the procedure can
be computationally expensive. Although dynamic consideration using
evolutionary algorithms has been made for single-objective optimization
problems, there has been a lukewarm interest in formulating and solving
dynamic multi-objective optimization problems. In this paper, we mod-
ify the commonly-used NSGA-II procedure in tracking a new Pareto-
optimal front, as soon as there is a change in the problem. Introduction
of a few random solutions or a few mutated solutions are investigated in
detail. The approaches are tested and compared on a test problem and
a real-world optimization of a hydro-thermal power scheduling problem.
This systematic study is able to find a minimum frequency of change
allowed in a problem for two dynamic EMO procedures to adequately
track Pareto-optimal frontiers on-line. Based on these results, this paper
also suggests an automatic decision-making procedure for arriving at a
dynamic single optimal solution on-line.

1 Introduction

A dynamic optimization problem involves objective functions, constraint func-
tions and problem parameters which can change with time. Such problems often
arise in real-world problem solving, particularly in optimal control problems or
problems requiring an on-line optimization. There are two computational proce-
dures usually followed. In one approach, optimal control laws or rules are evolved
by solving an off-line optimization problem formed by evaluating a solution on
a number of real scenarios of the dynamic problem [11]. This approach is use-
ful in problems which are computationally too expensive for any optimization
algorithm to be applied on-line. The other approach is a direct optimization pro-
cedure on-line. In such a case, the problem is considered stationary for some time
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period and an optimization algorithm be allowed to find optimal or near-optimal
solution(s) within the time span in which the problem remains stationary. There-
after, a new problem is constructed based on the current problem scenario and a
new optimization is performed for the new time period. Although this procedure
is approximate due to the static consideration of the problem during the time for
optimization, efforts are made to develop efficient optimization algorithms which
can track the optimal solution(s) within a small number of iterations so that the
required time period for fixing the problem is small and the approximation error
is reduced. In this paper, we consider solving dynamic optimization problems
having more than one objective function using the direct on-line optimization
procedure described above.

Although single-objective dynamic optimization has received some attention
in the past [2], the dynamic multi-objective optimization is yet to receive a sig-
nificant attention. When a multi-objective optimization problem changes with
time in stepped manner, the task of an dynamic EMO procedure is to find or
track the Pareto-optimal front as and when there is a change. After the idea
has been put forward earlier [6], there has been a lukewarm interest on this
topic [8,7]. In this paper, we suggest two variations of NSGA-II for tracking
dynamic Pareto-optimal frontiers. The effect of frequency of change in a prob-
lem and the proportion of added random or mutated solutions are parameters
which are systematically studied to evaluate the developed procedures for their
tracking efficiency. The proposed NSGA-II procedures are applied to a complex
hydro-thermal power scheduling problem involving two conflicting objectives.
The change in problem appears due to a change in demand in power with time.
The efficacy of modified NSGA-II procedures is illustrated by finding the small-
est frequency of change which can be allowed before the EMO procedures can
track the optimal front with a significant confidence. Finally, a decision-making
aid is coupled with the dynamic NSGA-II procedures to help identify one so-
lution from the obtained front automatically (on-line). Interesting conclusions
about the particular problem and about dynamic multi-objective optimization
problem, in general, are made from this study.

2 Dynamic Problems as On-Line Optimization Problems

Many search and optimization problems in practice change with time and there-
fore must be treated as an on-line optimization problems. The change in the
problem with time t can be either in its objective functions or in its constraint
functions or in its variable boundaries or in any combination of above. Such an
optimization problem ideally must be solved at every time instant t or when-
ever there is a change in any of the above functions with t. In such optimiza-
tion problems, the time parameter can be mapped with the iteration counter
τ of the optimization algorithm. One difficulty which may arise in solving the
above on-line optimization task is that the underlying optimization algorithm
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may not get too many iterations to find the optimal solutions before there is a
change in the problem. If the change is too frequent, the best hope of an op-
timization task is to track the optimal solutions as closely as possible within
the time span allowed to iterate. However, for steady changes in a problem
(which is usually the case in practice), there lies an interesting trade-off which
we discuss next. Let us assume that the change in the optimization problem
is gradual in t. Let us also assume that each optimization iteration requires
a finite time G to execute and that τT iterations are needed (or allowed) to
track the optimal frontier. Here, we assume that problem does not change (or
assumed to be constant) within a time interval tT , and GτT < tT . Here, initial
GτT time is taken up by the optimization algorithm to track the new trade-off
frontier and to make a decision for implementing a particular solution from the
frontier. Here, we choose α = GτT /tT to be a small value (say 0.25), such
that after the optimal frontier is tracked, (1 − α)tT time is spent on using
the outcome for the time period. Figure 1 illustrates this dynamic procedure.
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f(t) window for
optimization

assumed f(t) for
time period of length t
computed at A

AtT

GτT GτT

tT

0 2tT

T

Time, t

Fig. 1. The on-line optimization procedure
adopted in this study. For simplicity, only one
objective is shown.

Thus, if we allow a large
value of tT (allowing a pro-
portionately large number of
optimization iterations τT ), a
large change in the problem
is expected, but the change
occurs only after a large
number of iterations of the op-
timization algorithm. Thus, de-
spite the large change in the
problem, the optimization al-
gorithm may have enough it-
erations to track the trade-off
optimal solutions. On the other
hand, if we choose a small τT ,
the change in the problem is
frequent (which approximates
the real scenario more closely), but a lesser number of iterations are allowed
to track new optimal solutions for a problem which has also undergone a small
change. Obviously, there lies a lower limit to τT below which, albeit a small
change in the problem, the number of iterations are not enough for an algorithm
to track the new optimal solutions adequately. Such a limiting τT will depend on
the nature of the dynamic problem and the chosen algorithm, but importantly
allows the best scenario (and closest approximation to the original problem)
which an algorithm can achieve. Here, we investigate this aspect in the context
of dynamic multi-objective optimization problem and find such a limiting τT

for two variants of NSGA-II algorithm. The procedure adopted in this study
is generic and can be applied to other dynamic optimization problems as well,
including tT = τT = 1 case.
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3 Proposed Modifications to NSGA-II

We make some changes to the original NSGA-II procedure to handle dynamic
optimization problems. First, we introduce a test to identify whether there is
a change in the problem at every generation. For this purpose, we randomly
pick a few solutions from the parent population (10% population members used
here, but in a deterministic problem one member is enough) and re-evaluate
them. If there is a change in any of the objectives and constraint functions, we
establish that there is a change in the problem. In the event of a change, all
parent solutions are re-evaluated before merging parent and child population
into a bigger pool. This process allows both offspring and parent solutions to be
evaluated using the changed objectives and constraints.

In the first version (DNSGA-II-A) of the proposed dynamic NSGA-II, we in-
troduce new random solutions whenever there is a change in the problem. A ζ%
of the new population is replaced with randomly created solutions. This helps
to introduce new (random) solutions whenever there is a change in the prob-
lem. This method may perform better in problems undergoing a large change
in the objectives and constraints. In the second version (DNSGA-II-B), instead
of introducing random solutions, ζ% of the population is replaced with mu-
tated solutions of existing solutions (chosen randomly), similar in principle to
hypermutation based GAs for single-objective optimization [3]. This way, the
new solutions introduced in the population are related to the existing popula-
tion. This method may work well in problems undergoing a small change in the
problem.

4 Simulation Results on a Test Problem

Farina, Deb and Amato [6] proposed five dynamic test problems. FDA2 is a
Type-II unconstrained problem, in which the Pareto-optimal front changes from
convex to non-convex shapes in the objective space with time and a part of the
decision variables (xIII) also changes with time. Here is a modified version of
FDA2:

Minimize f1(xI) = x1,
Minimize f2(x) = g × h,

where g(xII)=1 +
�

xi∈XII

x2
i , h(xIII , f1, g) = 1 − ( f1

g
)2

�
�H(t)+

�
xi∈XIII

(xi−H(t)/4)2

�
�

,

H(t) = 2 sin(0.5π(t − 1)), t = 2� τ
τT

� τT
τmax−τT

,

xI = x1 ∈ [0, 1], xII ,xII ∈ [−1, 1].
(1)

There are five variables in xII and seven variables in xIII , thereby making a total
of 13 variables. Here we use a maximum generation of τmax = 200. We consider
that the problem remains fixed for τT generations and thereafter the parameter t
changes by an amount 2τT /(τmax−τT ) (thereby making α = 1). Thus, the above
problem simulates the following scenario. The time parameter t changes within
[0, 2], independent to the value of τT . If τT is large, the problem changes less
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frequently but the amount of change is large. Since a large number of iterations
are allowed, an optimization procedure may not have difficulties in tracking
the new optimal front. On the other hand, if τT is small, the problem changes
frequently, but the amount of change is small. It would then be interesting to
find a critical τt below which an algorithm will not perform well due to the
availability of too few generations in tracking the new frontier.

First, we study the effect of frequency of change (τt = 50, 25, 20, 10, and 5)
on problem FDA2. We fix ζ = 0.2. At a particular τt value, the performance will
degrade so much that the optimization procedure will not be able to track the
Pareto-optimal frontier. NSGA-II parameters used in this study are as follows:
Population size is 100, SBX crossover probability is 0.9, polynomial mutation
probability is 1/n (where n is the number of variables), and distribution indices
for crossover and mutation are 10 and 20, respectively. To illustrate the dete-
rioration of fronts for two cases of τT = 20 and 10, we have plotted all 200/20
or 10 and 200/10 or 20 fronts obtained using DNSGA-II-A (shown with circles)
against the true Pareto-optimal fronts (shown in solid lines) in Figures 2 and 3,
respectively. It is somewhat clear from these two figures that the fronts close to
the middle of the time period (when there is a comparatively larger shift in the
front), a change in every 10 generations is not adequate.
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Fig. 2. Obtained fronts against theoret-
ical fronts with τT = 20 in FDA2
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Fig. 3. Obtained fronts against theoret-
ical fronts with τT = 10 in FDA2

To perform this study, we consider the performance index to be the ratio of
hypervolumes of achieved and true trade-off fronts (obtained mathematically)
with respect to fixed reference points. Figure 4 shows the average ratio of hy-
pervolumes of different τT values with time (generation). It is observed that
with a more frequent change in the problem, the performance deteriorates. If a
hypervolume ratio smaller than 94% (say) is considered to be a threshold for
indicating a poor performance, then a change more frequent than τt = 20 is
considered to produce poor performance by the DNSGA-II-A procedure with a
20% change in population by random solutions.
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Fig. 4. DNSGA-II-A results on FDA2
(ζ = 0.2)
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Fig. 5. Effect of varying ζ in DNSGA-II-
A and DNSGA-II-B in FDA2 (τT = 20)

Next, we perform a parametric study of varying ζ on the FDA2 problem with
a variation of the problem after every τT = 20 generations. Figure 5 shows the
variation of the ratio of obtained hypervolume to the exact hypervolume (and
best and worst values through errorbars) with ζ using both DNSGA-II-A and
DNSGA-II-B. The figure shows that with an introduction of more random solu-
tions, the performance of DNSGA-II-A (random solution addition) deteriorates.
With 20 generations to track the new optimal frontier, the task becomes diffi-
cult with the introduction of more random solutions in the existing population.
Next, we study the effect of adding mutated solutions by using DNSGA-II-B
on FDA2. The mutation probability is doubled and the distribution index is
reduced to ηm = 4 to make a significant change in some variables in an existing
solution. Interestingly, Figure 5 shows that the performance deteriorates slightly
with an increase in addition of mutated solutions, but DNSGA-II-B performs
much better than DNSGA-II-A. The addition of a limited proportion of new
mutated or random solutions seems to perform better than not adding any new
solution at all. With DNSGA-II-B procedure, almost any proportion of addition
of mutated solution produce better performance of the algorithm, whereas with
DNSGA-II-A, about 20-40% addition of random solutions is better on multi-
ple runs. With this background, we are now ready to apply dynamic NSGA-II
procedures to hydro-thermal power scheduling problems.

5 A Case Study: Hydro-thermal Power Scheduling

In a hydro-thermal power generation systems, both the hydroelectric and ther-
mal generating units are utilized to meet the total power demand. The optimum
power scheduling problem involves the allocation of power to all concerned units,
so that the total fuel cost of thermal generation and emission properties are
minimized, while satisfying all constraints in the hydraulic and power system
networks [15]. To solve the hydro-thermal scheduling problem, many different
conventional such as Newton’s method [17], Lagrange multiplier method [12],
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dynamic programming [16] and soft computing methodologies such as genetic
algorithms [10], evolutionary programming [13], simulated annealing [14] etc.
have been tried to solve the single-objective optimization problem. The problem
is dynamic due to the changing nature of power demand with time. Thus, ideally
the optimal power scheduling problem is truly a on-line dynamic optimization
problem in which solutions must be found as and when there is a change in the
power demand. In such situations, what can be expected of an optimization algo-
rithm is that it tracks the new optimal solutions as quickly as possible, whenever
there is a change.

To understand the insights about the complexity of the problem, at first, we
formulate and solve the stationary problem using NSGA-II by converting it as
an off-line optimization problem. This also facilitates us to compare NSGA-II
with a simulated annealing based procedure exist in the literature on the same
stationary problem [1]. Gaining the confidence on NSGA-II’s ability to solve the
constrained problem, we then consider a dynamic version of the problem and
solve using the proposed dynamic NSGA-II procedures.

5.1 Optimization Problem Formulation

The original formulation of the problem was given in Basu [1]. The hydro-thermal
power generation system is optimized for a total scheduling period of T . However,
the system is assumed to remain fixed for a period of tT so that there are a total
of M = T/tT changes in the problem during the total scheduling period. In
this off-line optimization problem, we assume that the demand in all M time
intervals are known a priori and an optimization needs to be made to find the
overall schedule before starting the operation. In Section 6, we shall consider the
problem as a dynamic optimization problem.

Let us also assume that the system consists of Nh number of hydroelectric
(Pht) and Ns number of thermal (Pst) generating units sharing the total power
demand, such that x = (Pht, Pst). The bi-objective optimization problem is given
as follows:

Minimize f1(x) =
�M

t=1

�Ns
s=1 tT [as + bsPst + csP

2
st + |ds sin{es(P

min
s − Pst)}|],

Minimize f2(x) =
M�

t=1

Ns�
s=1

tT [αs + βsPst + γsP
2
st + ηs exp(δsPst)],

subject to
�Ns

s=1 Pst +
�Nh

h=1 Pht − PDt − PLt = 0, t = 1, 2 . . . , M,�M
t=1 tT (a0h + a1hPht + a2hP 2

ht) − Wh = 0, h = 1, 2, . . . , Nh,
P min

s ≤ Pst ≤ P max
s , s = 1, 2, . . . , Ns, t = 1, 2, . . . , M,

P min
h ≤ Pht ≤ P max

h , h = 1, 2, . . . , Nh, t = 1, 2, . . . , M.
(2)

The transmission loss PLt term at the t-th interval is given as follows:

PLt =

Nh+Ns�
i=1

Nh+Ns�
j=1

PitBijPjt. (3)

This constraint involves both thermal and hydroelectric power generation units.
Four power demand values of 900, 1,100, 1,000 and 1,300 MW are considered
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for the four time periods, respectively. All parameters mentioned in the above
formulation are presented in the appendix. The water availability constraint
(second set of constraints) requires hydroelectric unit values from different time
intervals and makes a dynamic optimization task difficult. We shall discuss about
this difficulty more in Section 6. In the present context of solving the problem
as an off-line optimization problem, such a dependency is not a matter.

Thus, the bi-objective problem involves (M(Ns + Nh)) variables, two objec-
tives, (M + Nh) quadratic equality constraints and (2M(Ns + Nh)) variable
bounds. The specific stationary case considered here involves only four (M = 4)
changes in demand over T = 48 hours having a time window of statis of tT = 12
hours. The corresponding problem has six (two hydroelectric (Nh = 2) and four
thermal (Ns = 4)) power units. For the above data, the optimization problem
has 24 variables, two objectives, six equality constraints, and 48 variable bounds.

Handling quadratic equality constraints: First, we consider the water avail-
ability constraints. Each equality constraint (for a hydroelectric unit h) can be
used to replace one of the M power generation values (Phμ) by finding the roots
of the quadratic equation and by fixing other Pht as they are in the GA solution:

P 2
hμ +

a1h

a2h
Phμ +

1

tμa2h

�
��−Wh + a0hT +

M�
t=1

m �=μ

tT a1hPht +
M�

t=1
m �=μ

tT a2hP 2
ht

�
�� = 0. (4)

Since a1h

a2h
is always positive, only one root can be positive and we accept this

root as Phμ. To maintain the structure of the solution, we maintain the ratio
of M different Pht values, as they are in a NSGA-II solution. That is, if the
original value of μ-th hydroelectric unit was Phμ̄, other units are replaced as
follows: Pht ← (Phμ/Phμ̄)Pht for t = 1, 2, . . . , M and t �= μ. If the above repair
mechanism for all Nh hydroelectric units is not successful, we declare the GA
solution as infeasible and no further consideration of power balance constraints
nor the computation of objective functions are performed. Recall that NSGA-
II employs a constraint handling which does not require objective values for
infeasible solutions, thereby suiting the above procedure.

We follow a similar procedure as above for handling the power balance con-
straint and repair a particular thermal unit Pψt of four thermal units for each
time slot. The quadratic equation for this variable can be written as follows:

BψψP 2
ψm + (2

n−1�
j=1

BψjPjt − 1)Pψm + (PDt +

n−1�
i=1

n−1�
j=1

PitBijPjt −
n−1�
i=1

BψiPit) = 0, (5)

where n = Nh + Ns. Since the hydroelectric power units (Pht) are available,
the above equation can be solved for Pψt. If this particular value comes within
the variable bounds, then the variable is accepted and we go for next constraint
involving Pst of the next time period. Otherwise, another root-finding equation is
tried for the next thermal unit. If for a time period, none of the Ns thermal units
resulted in a successful replacement, a penalty is computed and the solution is
declared infeasible.
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5.2 Simulation Results on the Stationary Problem

NSGA-II is combined with the above-discussed constraint handling method
for solving the hydro-thermal scheduling problem. Here, we only consider four
changes in the problem in the entire period of 48 hours. Thus, the off-line op-
timization problem has two objectives, 4(2 + 4) or 24 variables, and six con-
straints. NSGA-II parameters used in this study are as follows: Population
size = 240, Number of generations = 2,000, Crossover probability = 0.9, Mu-
tation probability = 0.04, Distribution indices for crossover and mutation =
10 and 20, respectively. To validate the obtained NSGA-II front, we employ a
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Fig. 6. Pareto-optimal front obtained
by NSGA-II, verified by single-objective
methods, and by a previous study
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single-objective GA and solve several ε-constraint problems [9] by fixing f1 value
at different levels. These points are shown in Figure 6 and it is observed that all
these points more or less match with those obtained by NSGA-II. Each objective
is also optimized independently by a GA and two solutions obtained are plotted
in the same figure. One of the extreme points (minimum f1) is dominated by a
NSGA-II solution and the minimum emission solution is matched by a NSGA-II
solution. These multiple optimization procedures give us confidence about the
optimality of the obtained NSGA-II frontier.

Basu [1] used a simulated annealing (SA) procedure to solve the same problem.
That study used a naive penalty function approach in which if any SA solution
if found infeasible, it is simply penalized. For different weight vectors scalarizing
both objectives, the study presented a set of optimized solutions. A comparison
of these results with our NSGA-II approach (in Figure 6) reveals that the front
obtained by NSGA-II dominates that obtained in the previous study. One of
reasons for a better performance of our approach is the use of a better constraint
handling strategy. These results give us confidence in our approach of handling
constraints and using NSGA-II for the bi-objective hydro-thermal power dispatch
problem. Now, we apply the two proposed dynamic NSGA-II methodologies to
the dynamic version of the problem.
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6 Dynamic Hydro-thermal Power Scheduling Problem

The dynamic version of the problem involves more frequent changes in the de-
mand PDt. To make the demand varying in a continuous manner, we make
a piece-wise linear interpolation of power demand values with the following
(t, Pdm) values: (0, 1,300), (12, 900), (24, 1,100), (36, 1,000) and (48, 1,300)
in (Hrs, MW). We keep the overall time window of T = 48 hours, but increase
the frequency of changes (that is, increase M from four to 192, so that the time
window tT for each demand level varies from 12 hours to 48/192 hours or 15
minutes. It will then be an interesting task to find the smallest time window of
statis which a specific multi-objective optimization algorithm can solve success-
fully. We run the dynamic NSGA-II procedures for 960/M (M is the number of
changes in the problem) generations for each change in the problem.

Equation 2 requires hydroelectric power generation units from different time
intervals to be used together to satisfy the equation. In an dynamic optimization
problem, this is a difficulty, as this means that an information about all hydro-
electric units are needed right in the first generation. This constraint equates the
total required water head to be identical to the available value for each hydro-
electric system. In this study, we use a simple principle of allocating an identical
water head Wh/M for each time interval.

6.1 Simulation Results

We apply the two dynamic NSGA-II procedures (DNSGA-II-A and DNSGA-II-
B) discussed above to solve the dynamic optimization problem. The parameters
used are the same as in the off-line optimization case presented before. To com-
pare the dynamic NSGA-II procedures, we first treat each problem as a static
optimization problem and apply the original NSGA-II procedure [4] for a large
number (500) of generations so that no further improvement is likely. We call
these fronts as ideal fronts and compute the hypervolume measure using a refer-
ence point which is the nadir point of the ideal front. Thereafter, we apply each
dynamic NSGA-II and find an optimized non-dominated front. Then for each
front, we compute the hypervolume using the same reference point and then
compute the ratio of this hypervolume value with that of the ideal front. This
way, the maximum value of the ratio of hypervolume for an algorithm is one
and as the ratio becomes smaller than one, the performance of the algorithm
gets poorer. First, we consider the problem in which we consider a change after
every 12 hours (M = 4). Figure 7 shows the four Pareto-optimal fronts obtained
using DNSGA-II-A with 20% addition of random solutions every time there is
a change in the problem. The DNSGA-II-A procedure is able to find a set of
solutions very close to the ideal frontiers in all four time periods. The figure
makes one aspect clear. As the demand is more, the power production demands
larger cost and emission values.

Increasing number of changes in the problem: Figures 8 to 11 show the
hypervolume ratio for different number of changes (τT = 4 to 192) in the problem
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Fig. 9. 1-hourly (M = 48)
change with DNSGA-II-A
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change with DNSGA-II-A

50%ile
90%ile
95%ile
99%ile

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

H
yp

er
vo

lu
m

e 
ra

tio

Proportion of addition

Fig. 11. 15-min.(M = 192)
change with DNSGA-II-A
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change with DNSGA-II-B
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Fig. 13. 15-min. (M = 192)
change with DNSGA-II-B

with different proportion of addition of random solutions, ζ, using DNSGA-II-A.
The figures also mark the 50th, 90th, 95th and 99th percentile of hypervolume
ratio, meaning the cut-off hypervolume ratio which is obtained by the best 50,
90, 95, and 99 percent of M frontiers in a problem with M changes. Figures
reveal that as M increases, the performance of the algorithm gets poorer due
to the fact that a smaller number of generations (960/M) was allowed to meet
the time constraint. If a 90% hypervolume ratio is assumed to be the minimum
required hypervolume ratio for a reasonable performance of an algorithm and
if we consider 95 percentile performance is adequate, the figures show that we
can allow a maximum of 96 changes (with a 30-min. change) in the problem.
For this case, about 20 to 70% random solutions can be added whenever there
is a change in the problem to start the next optimization. Too low addition does
not introduce much diversity to start the new problem and too large addition
of random solutions destroys the population structure which would have helped
for the new problem. The wide range of addition for a successful run suggests
the robustness of the DNSGA-II procedure for this problem. Next, we consider
DNSGA-II-B procedure in which mutated solutions are added instead of random
solutions. Mutations are performed with double the mutation probability and
with a ηm = 2. Figures 12 to 13 show the performance plots for two M values.
Here, the effect is somewhat different. In general, with an increase in addition
of mutated solutions, the performance is better, as mutations perturb existing
solutions locally, thereby helping to introduce adequate diversity needed for the
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next problem. Once again, 96 changes in the problem in 48 hours seem to be the
largest number of changes allowed for the algorithm to perform reasonably well.
However, addition of mutated solutions over ζ = 40% of the population seems
to perform well. Once again, DNSGA-II-B procedure is also found to work well
with a wide variety of ζ values.

7 Decision Making in Dynamic EMO

One of the issues which is not discussed enough in the EMO literature is the
decision-making aspect after a set of trade-off solutions are found. Some studies
in this direction for stationary problems have been just begun [5] and more
such studies are called for. In dynamic multi-objective optimization problem,
there is an additional problem with the decision-making task. A solution is to
be chosen and implemented as quickly as the trade-off frontier is found, and in
most situations before the next change in the problem has taken place. This
definitely calls for an automatic procedure for decision-making with some pre-
specified utility function or some other procedure. In this paper, we choose a
utility measure which is related to the relative importance given to both cost
and emission objectives. First, we consider a case in which equal importance
to both cost and emission are given. As soon as a frontier is found for the
forthcoming time period, we compute the pseudo-weight w1 (for cost objective)
for every solution x using the following term:

w1(x) =
(fmax

1 − f1(x))/(fmax
1 − fmin

1 )

(fmax
1 − f1(x))/(fmax

1 − fmin
1 ) + (fmax

2 − f2(x))/(fmax
2 − fmin

2 )
. (6)

Thereafter, we choose the solution with w1(x) closest to 0.5. A little thought will
reveal that this task is different from performing a weighted-sum approach with
equal weights for each objective. The task here is to choose the middle point in
the trade-off frontier providing a solution equi-distant from individual optimal
solutions (irrespective of whether the frontier is convex or non-convex). Since
the Pareto-optimal frontier is not known a priori, getting the frontier first and
then choosing the desired solution is the only viable approach for achieving the
task.

To demonstrate the utility of this dynamic decision-making procedure, we
consider the hydro-thermal problem with 48 time periods (meaning an hourly
change in the problem). Figure 14 shows the obtained frontiers in solid lines and
the corresponding preferred (operating) solution with a circle. It can be observed
that due to the preferred importance of 50-50% to cost and emission, the solu-
tion comes nearly in the middle of each frontier. To meet the water availability
constraint, the hydroelectric units of Th1 = 219.76 MW and Th2 = 398.11 MW
are computed and kept constant over time. However, four thermal power units
must produce power to meet the remaining demand and these values for all 48
time periods are shown in Figure 15. The changing pattern in overall compu-
tation of thermal power varies similar to that in the remaining demand in power.
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Fig. 15. Variation of thermal power pro-
duction for 50-50% cost-emission case

The figure also shows a slight over-generation of power to meet the loss term
PLt given in equation 3.

Case Cost Emission
50-50% 74239.07 25314.44
100-0% 69354.73 27689.08
0-100% 87196.50 23916.09

Next, we compare the above operating
schedule of power generation with two other
extreme cases: (i) 100-0% importance to cost
and emission and (ii) 0-100% importance to
cost and emission. Figure 16 shows the vari-
ation of cost for all the three cases. First,
the optimal cost values fluctuate the way the power demand varies. Sec-
ond, the case with 100% importance to cost requires minimum cost, but
causes large emission values and the case with 100% importance to emission
causes minimum emission values, but with large costs. A comparison of over-
all cost and emission values for the entire 48-hour operation for these three
cases is summarized in the above inset table which demonstrates this fact.

8 Conclusions
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Fig. 16. Variation of operating cost with
time for M = 48 (1-hourly change)

In this paper, we have suggested and
demonstrated the solution of a dynamic
multi-objective optimization task in a
systematic manner. Although the pro-
cedure can be used on-line, the current
implementation assumes that the prob-
lem remains unchanged for a time pe-
riod (statis) and the optimization algo-
rithm is run for an initial fraction of the
statis and the outcome is used for the
remaining period. To restart the EMO
procedure (NSGA-II has been used here)
for the changed problem, two different
strategies are suggested: Introduction
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of random solutions (DNSGA-II-A) and introduction of mutated solutions
(DNSGA-II-B). The number of added solutions relative to the population size
(ζ) are kept as a parameter for the study. The procedure is tested on a two-
objective test problem and to a hydro-thermal power dispatch problem involving
both hydro-electric and thermal power generation units with coupled and non-
linear equality constraints. The problem is dynamic due to the change of power
demand with time. First, the problem has been solved considering it as an off-line
optimization problem (with known power demand) and a better Pareto-optimal
front than that reported in an earlier study has been found here. Thereafter,
the dynamic problem is solved and the effect of discretization (length of statis)
on the performance of both dynamic NSGA-II procedures has been elaborated.
NSGA-II with addition of random solutions works the best with about 20-70%
addition of new solutions, whereas NSGA-II with addition of mutated solutions
works the best for 40-100% addition of new solutions. For the 48-hour overall
time range of operation, this systematic study has found that allowing at least
an every 30-minute change in the problem is better solved by both proposed
dynamic NSGA-II procedures. We are currently investigating a true on-line op-
timization procedure in which the problem is assumed to remain unchanged only
during one generation of the dynamic NSGA-II procedure. A mixed addition of
random and mutated solutions can also be tried. Nevertheless, this study pro-
poses and demonstrates the working of two viable dynamic EMO procedures
for on-line optimization problems and further studies are imminent to test and
fine-tune the procedures for their practical use.
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A Parameters for Hydro-thermal Problem

The following parameters are taken from a previous study [1].

Hydroelectric system data

Unit a0h a1h a2h Wh P min
h P max

h

1 260 8.5 0.00986 125000 0 250
2 250 9.8 0.01140 286000 0 500

,

Cost related thermal system data

Unit as bs cs ds es P min
s P max

s

3 60.0 1.8 0.0030 140 0.040 20 125
4 100.0 2.1 0.0012 160 0.038 30 175
5 120.0 2.1 0.0010 180 0.037 40 250
6 40.0 1.8 0.0015 200 0.035 50 300

,

Emission related thermal system data

Unit αs βs γs ηs δs

3 50 -0.555 0.0150 0.5773 0.02446
4 60 -1.355 0.0105 0.4968 0.02270
5 45 -0.600 0.0080 0.4860 0.01948
6 30 -0.555 0.0120 0.5035 0.02075

,B =

	






�

49 14 15 15 20 17
14 45 16 20 18 15
15 16 39 10 12 12
15 20 10 40 14 10
20 18 12 14 35 11
17 15 12 10 11 36

�
�

× 10−6.
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Abstract. Evolutionary Multi-objective Optimization (EMO) is ex-
pected to be a powerful optimization framework for real world problems
such as engineering design. Recent progress in automatic control and
instrumentation provides a smart environment called Hardware In the
Loop Simulation (HILS). It is available for our target application, that is,
the experiment-based optimization. However, since Multi-objective Evo-
lutionary Algorithms (MOEAs) require a large number of evaluations,
it is difficult to apply it to real world problems of costly evaluation. To
make experiment-based EMO using the HILS environment feasible, the
most important pre-requisite is to reduce the number of necessary fitness
evaluations. In the experiment-based EMO, the performance analysis of
the evaluation reduction under the uncertainty such as observation noise
is highly important, although the previous works assume noise-free envi-
ronments. In this paper, we propose an evaluation reduction to overcome
the above-mentioned problem by selecting the solution candidates by
means of the estimated fitness before applying them to the real experi-
ment in MOEAs. We call this technique Pre-selection. For the estimation
of fitness, we adopt locally weighted regression. The effectiveness of the
proposed method is examined by numerical experiments.

1 Introduction

In recent automotive engine development, a number of parameters of Engine
Control Units (ECUs) mounted to engines have to be adjusted adequately to
achieve higher engine performance. Because plural criteria such as environmental
emissions (CO, HC, NOx), fuel-consumption and engine torque need to be bal-
anced at higher level, this operation called calibration becomes time-consuming
and complex process year after year.

To attain such demanding goals, automatic design based on multi-objective
optimization is needed as the new methodology that takes the place of conven-
tional operator’s manual calibration. Recent progress in automatic control and
instrumentation provides a smart environment called Hardware In the Loop

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 818–831, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Simulation (HILS) for the calibration of control parameters of engines. The
HILS environment is composed of a real engine and an engine test bed which
can simulate vehicle running conditions using an ultra-low inertia dynamometer
controlled by a computer. Applying Evolutionary Multi-objective Optimization
(EMO) to the HILS environment is a promising field of application.

However, since the evaluation of the real engine experiment is costly, the
requirement for many evaluation Multi-objective Evolutionary Algorithms
(MOEAs) causes a serious problem, that is, tremendous optimization time. Par-
allelization is one of the solutions for real world problems which require enormous
evaluation costs, but the parallelization of the HILS environment is not realistic
choice in view of the installation cost and space. As another approach for the
time consuming problems in the airfoil design using Computational Fluid Dy-
namics (CFD) [12] for instance, evaluation reduction methods for EAs have been
studied actively1. In the past decade, main current of the evaluation reduction is
to use statistical approximation model which is constructed by search histories
of individuals evaluated in the real environment in the past . Generally speak-
ing, because an evaluation cost of the approximation model is smaller enough
than the real environment, it is possible to decrease the total evaluation time
substantially.

To make experiment-based EMO using the HILS environment feasible, re-
duction of fitness evaluation is the most important requirement. However, the
researches of the evaluation reduction method for MOEAs are still few compared
with that for single objective EAs. Additionally, in our target application, that
is, the experiment-based EMO for the real engine, the performance analysis of
the evaluation reduction under uncertainty environments is highly important,
although previous works [6,10,14,15] assume noise-free environment.

In this paper, we discuss a Pre-selection as an evaluation reduction method
for the experiment-based EMO. To apply to the uncertainty environment such
as HILS, we propose a general Pre-selection algorithm which can employ ap-
proximation modeling techniques having a robustness for observation noise. The
algorithm is constructed in the manner that the offspring generated in the area
having sparse distribution of non-dominated individuals in the archived popula-
tion is preferentially selected. This paper is organized as follows. In Section 2, we
introduce Locally Weighted Regression (LWR) [1] as an approximation modeling
technique suitable for noise environment. In Section 3, we propose a general Pre-
selection algorithm which does not depend on features of modeling techniques
for MOEAs. Moreover, we examine effectiveness of the proposed method under
noise-free and observation noise environments through numerical experiments in
Section 4. Section 5 is the conclusion of this paper.

2 Background of Locally Weighted Regression

In conventional evaluation reduction for EAs, many researchers have employed
many kinds of approximation modeling technique for fitness function. For
1 See the detailed survey by Jin et al. [11].
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example, polynomials, artificial neural networks, radial basis functions, and Krig-
ing (DACE) [17] are adopted. Among the previous works, we paid special atten-
tion to the researches by Branke et al. [2,3]. They have proposed a Pre-selection
that used Locally Weighted Regression (LWR) to estimate fitness values of can-
didates as an evaluation reduction for single objective EAs, and have shown its
effectiveness by detailed examinations [2]. They also have demonstrated that the
fitness estimation by the LWR was effective for the problem which has the un-
certainty by observation noise [3]. Therefore, because our goal is to develop the
evaluation reduction for the experiment-based EMO which includes uncertainty
such as observation noise, we employ the LWR as an approximation modeling
technique.

An introduction of the LWR is described below. Consider a set of search his-
tory H = {(h1, f(h1)), (h2, f(h2)), . . . , (hl, f(hl))} which stores information of
the search process of MOEAs, where h = [h1 · · · hn]T is n-dimensional decision
variable vector which was evaluated as an individual in a real environment in
past. f(h) = [f1(h) · · · fm(h)]T is m-dimensional objective value vector, l is
the number of individuals stored in H .

The LWR is a method of constructing approximation model from data set H .
The weighted polynomial regression is applied for a neighborhood of an indi-
vidual (query) which should obtain the estimated value of its fitness vector. In
this paper, second-order model without interaction terms is employed as a local
model. When a neighborhood set Ω of an individual x = [x1 · · · xn]Tis generated
from H by k-Nearest Neighbors (k-NN) method based on the Euclidean distance

dE(h, x) =
√

(h − x)T(h − x), its estimated value f̂(x) =
[
f̂1(x) · · · f̂m(x)

]T

is calculated by the following equations:

f̂i(x) =
[
1 x1 · · · xn x2

1 · · · x2
n

]
bi (1)

bi =
(
XTWX

)−1
XTWyi (2)

X =

⎡
⎢⎣

1 h11 · · · h1n h2
11 · · · h2

1n
...

...
...

...
...

...
...

1 hk1 · · · hkn h2
k1 · · · h2

kn

⎤
⎥⎦ (3)

yi =
[
fi(h1) fi(h2) · · · fi(hk)

]T
, (4)

where hij is jth element of hi which is an individual near to ith from x in
Ω, and W is called weighted matrix which is a diagonal matrix with diagonal
elements

wi =
√

K(dE(hi, x)), i = 1, 2, . . . , k. (5)

K(·) is called weighted function or kernel function and is used to calculate weight
of search histories. In this paper, Gaussian kernel
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K(d) = exp
(

−d2

u

)
(6)

is used, where u is smoothing parameter and is set to be the distance to the kth
nearest search history in this paper.

In MOEAs, we can assume the distribution of the population gradually con-
verges to the Pareto optimal set through the search. Hence, a lot of individuals
near the Pareto optimal set will be preserved in the search history set H . If con-
vergence is taken place, strong correlation between decision variables may appear
when the effective dimension of Pareto optimal set degenerates in the decision
variable space2. Then, multicollinearity should be considered. That is estima-
tion accuracy of regression coefficients vector b deteriorates, because the matrix
(XTWX) becomes singular and calculation of the inverse matrix (XTWX)−1

is unstable numerically.
To avoid the influence of multicollinearity, we employed the ridge regression[8].

Instead of Eq. (2), The ridge regression uses the following equation:

bR
i =

(
XTWX + λI

)−1
XTWyi, (7)

and can avoid that the matrix XTWX to become singular by adding constant
λ to the diagonal elements.

3 Pre-selection for MOEAs

Since EAs are stochastic optimization method, offspring may be generated at a
position far from an area containing the optimal solution. It is undesirable to
evaluate such non-promising offspring on the real environment of costly evalua-
tion. If the offspring can be evaluated by the approximation model of the fitness,
non-promising offspring can be excluded beforehand to make optimization effi-
cient. Such a technique called Pre-selection or Pre-screening winnows promising
offspring based on the estimated fitness value obtained by the approximation
model. The Pre-selection has the feature which does not lose the advantage of
direct search and updates the approximation model every generation.

As a Pre-selection for MOEAs, Emmerich et al. have proposed a method which
used Kriging [17] for fitness estimation [6]. They paid attention to the fact that
the Kriging can predict the mean square error of the estimated fitness value. To
select individuals that have high possibility of improvement, they used values
considering the mean square error for the ranking. However, because the Kriging
makes such approximation model as the one passing all the search histories, it
is not suitable for the experiment-based EMO involving the uncertainty such
as the observation noise. Hence, for employing the LWR mentioned above, we
have to develop more general Pre-selection algorithm which does not depend on
features of modeling techniques.
2 For instance, SCH [5], typical test function, has the Pareto optimal set which is

straight line shape in the n-dimensional space.
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Candidate offspring population

Feasible region
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2f

Pareto front

P
CQ

1f

2f

Fig. 1. Concept diagram of the Pre-selection algorithm for MOEAs. Left figure shows
the set RC = P ∪QC, and right figure depicts crowding distance calculation of candidate
offspring which became non-dominated individuals.

An important point of Pre-selection for MOEAs is how to select the offspring
which should be evaluated in the real environment when lots of promising can-
didate offspring of equal rank exist. Then, instead of the mean square error
prediction of the Kriging, we use a sparsity criterion of each promising candi-
date offspring in the archived population for useful and effective search. The
algorithm is constructed in the manner that the offspring generated in the area
having sparse distribution of non-dominated individuals in the archived popula-
tion is preferentially selected. In this paper, The crowding distance proposed by
Deb et al. [4] is used as a sparsity criterion. Fig. 1 shows the concept chart of
the proposed method. A detailed algorithm will be described later.

In experiment-based optimization, due to observation noise or estimation er-
ror, there is a possibility that non-Pareto optimal individual may survive as a
apparently non-dominated one. Fig. 2 shows a situation in which a weak Pareto
individual is treated as a non-dominated individual. Assume that the estimation
error is caused to the true fitness f(x) of the weak Pareto individual x within
the range shown in gray circle. If observation noise or estimation error make the
value of objective function f1 apparently good, x is treated as the non-dominated
individual and is stored in the archived population as an elite. Additionally, since
large crowding distance is allocated easily for x when a problem has wide weak
Pareto frontier, there will be high probability for selecting such individual.

To solve this problem, we use the α-domination strategy proposed by Ikeda et
al. [9] for the ranking applied to the estimated fitness values. The α-domination
strategy is defined as an expansion of superiority comparing as follows:

Definition 1. (α-domination) Consider a m-objective minimization problem

min
x

(f1(x), . . . , fm(x)) x ∈ X ⊂ Rn.
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Weak Pareto frontier

Pareto frontier

Fig. 2. Concept diagram of the fake non-
dominated individual

1f

2f

α

α

Non-dominated Individual

Dominated Individual

Fig. 3. Concept diagram of the α-domi-
nation strategy

A solution x α-dominates a solution y ∈ X

⇔ ∀ i gi(x, y) ≤ 0 ∧ ∃ i gi(x, y) < 0,

where

gi(x, y) = fi(x) − fi(y) +
n∑

j �=i

αij(fj(x) − fj(y)).

The concept diagram of the α-domination strategy is shown in Fig. 3. When
an objective function fi is compared by the α-domination strategy, another
objective function fj is considered in a ratio of αij . For example, an individual
that need to greatly corrupt fj to improve fi a little is dominated easily. As a
result, fake non-dominated individuals are excluded efficiently.

Based on the aforesaid discussion, we propose a general Pre-selection algo-
rithm which can be combined with any approximation modeling technique for
MOEAs. The prototype algorithm of the proposed method is shown below:

1. All fitness vector f (x) of initial population P (0) are evaluated in a real
environment, and individuals and their fitness are preserved in search history
set H .

2. Candidate offspring population QC is generated from the archived popula-
tion P by applying selection, crossover, and mutation operators.

3. Estimated values f̂(x) of RC = P ∪QC are calculated using the approxima-
tion model constructed by use of H .

4. The ranking of RC is done by using the α-domination strategy [9] based on
f̂(x).

5. A candidate offspring which becomes a non-dominated individual is added
to P , and its crowding distance is calculated. This operation is adopted for
all the non-dominated candidate offspring.
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6. The evaluated offspring population Q is selected from the non-dominated
candidate offspring assigned with good crowding distance.

7. Offspring in Q are evaluated in the real environment, and they are stored
with their fitness vector in search history.

8. R = P ∪ Q are assigned with the rank and the crowding distance based on
f(x) (noise-free environment) or f̂ (x) (noise environment), and return to
2. after applying the generation alternation.

If the number of individuals which was stored in the search history set H is not
enough to construct the approximation model, individuals are evaluated in the
real environment until it reaches a necessary number.

4 Numerical Experiments

4.1 Problems, Parameter Settings and Measures

From the test problem proposed by Deb et al. [4,5], we employ two objective
optimization problems SCH, FON, and ZDT1 and three objective optimization
problem DTLZ2 for numerical experiment.

– SCH (n = 10)

f1(x) =
1
n

n∑
i=1

x2
i

f2(x) =
1
n

n∑
i=1

(x1 − 2)2

xi ∈ [−4, 4], i = 1, 2, . . . , n

– FON (n = 10)

f1(x) = 1 − exp

(
−

n∑
i−1

(
xi − 1√

n

)2
)

f2(x) = 1 − exp

(
−

n∑
i−1

(
xi +

1√
n

)2
)

xi ∈ [−2, 2], i = 1, 2, . . . , n

– ZDT1 (n = 10)

f1(x) = x1

f2(x) = g(x)(1 −
√

f1/g(x))

g(x) = 1 + 9 ·
n∑

i=2

xi

n − 1

xi ∈ [0, 1], i = 1, 2, . . . , n
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– DTLZ2 (n = 10)

f1(x) = (1 + g(x)) cos(x1π/2) cos(x2π/2)
f2(x) = (1 + g(x)) cos(x1π/2) sin(x2π/2)
f3(x) = (1 + g(x)) sin(x1π/2)

g(x) =
n∑

x=3

(xi − 0.5)2

xi ∈ [0, 1], i = 1, 2, . . . , n

In this paper, The NSGA-II [4] is employed as an MOEA. The archived popu-
lation size |P | = 30, the candidate offspring population size |QC| = 100 and eval-
uated offspring population size |Q| = 4 were used for the Pre-selection NSGA-II.
For crossover, the Unimodal Normal Distribution Crossover (UNDX) proposed
by Ono et. al. was used [16]. Since it is known that the UNDX shows good
performance without mutation, we did not use mutation operation. The neigh-
borhood size k of k-NN method for the LWR was 5% of the number of individuals
that stored in the search history set H . However, minimum value is k = 30. The
parameter of α-domination strategy employed α = 0.05, and the ridge parameter
was λ = 0.0001. The normal NSGA-II (|P | = 30, |Q| = 30) was used for com-
parison. In all these experiments, the number of evaluation was 2030 (|Q| = 4)
and 2040 times (|Q| = 30). Because the times of function evaluation is the most
restrictive factor for experiment-based optimization, comparison was carried out
with the same number of function evaluation, although computation time is an-
other candidate condition. Thirty trials with different initial populations were
conducted.

Performances of two methods were compared by the mean values of the trials
for the two evaluation measures described below:

Coverage: This measure is proposed by Hiroyasu et al. [7], and it indicates the
ratio of Pareto frontier which is covered by the population. The coverage is
defined as

C =
1
m

m∑
i=1

ci

cmax
, (8)

where m is the number of the objective functions, cmax is the number of
small areas where a hyper-plane composed of m − 1 objective functions are
evenly divided, and ci is the number of areas including the true fitness of
individuals projected to the hyper-plane. In our case, cmax = 15 (m = 2)
and cmax = 6 (m = 3) were used.

Mean Absolute Error: This measure indicates the error of the population for
the true Pareto optimal set. In this case, it is given by

X∗SCH = {x1, . . . , xn ∈ [0, 2] | x1 = . . . = xn},

X∗FON = {x1, . . . , xn ∈ [−1/
√

n, 1
√

n] | x1 = . . . = xn},

X∗ZDT1 = {x1 ∈ [0, 1], x2 = . . . = xn = 0},

X∗DTLZ2 = {x1, x2 ∈ [0, 1], x3 = . . . = xn = 0.5}.
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Individual

1f

2f

Pareto optimal set

1x

2x

Pareto front

Individual

Fig. 4. Coverage measure (m = 2, left) and mean absolute error measure (right)

The mean absolute error is defined as the mean value of Euclidean distances
from each individual to the nearest solution in X∗.

The concepts of the coverage measure and the mean absolute error measure are
illustrated in Fig. 4.

4.2 Performance Analysis Under Noise-Free Environments

The comparison result of the proposed and conventional method in noise-free
environment is shown in Table 1. The best performance in each problem is
indicated in the bold font. From Table 1, it is understood that the proposed
method outperforms the NSGA-II. As an example, transitions of coverage and
mean absolute error for FON are shown in Fig. 5. It indicates that the pro-
posed method reduces the number of evaluation to about one fifth, because the
proposed method achieved the coverage and mean absolute error that had been
finally obtained by the conventional technique by about 400 evaluation. This
tendency was similar on the other three test problems, too.

Next, the influences of the Pre-selection parameters were examined on the
following condition3:

– Candidate offspring population size |QC| = 30, 100, 300
– Evaluated offspring population size |Q| = 1, 4, 10
– Parameters of the UNDX4

(σξ, ση) = (0.25, 0.175/
√

n), (0.5, 0.35/
√

n), (1.0, 0.7/
√

n)

These parameters were compared with the basic setting of the algorithm |QC| =
100, |Q| = 4, (σξ, ση) = (0.5, 0.35/

√
n). The FON (n = 10) was used as a test

function. Table 2 shows the experiment result. The following is understood from
Table 2.
3 Neither k nor α were analyzed because they are the setting parameters for estimation.
4 σξ = 0.5 and ση = 0.35/

√
n are recommended parameters in [16].
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Table 1. Performance comparison of the NSGA-II with pre-selection and the normal
NSGA-II for four test functions in noise-free environment

Test Functions Method Coverage Mean Absolute Error

Mean Std. Dev. Mean Std. Dev.

SCH Pre-selection 0.981111 0.018944 0.112788 0.018500
NSGA-II 0.914444 0.034667 0.392743 0.0793348

FON Pre-selection 0.988889 0.018222 0.034481 0.005383
NSGA-II 0.965556 0.030929 0.140479 0.023860

ZDT1 Pre-selection 0.983333 0.020991 0.005772 0.004124
NSGA-II 0.420000 0.189696 0.076696 0.022411

DTLZ2 Pre-selection 0.370679 0.052575 0.100439 0.016921
NSGA-II 0.248765 0.043343 0.153413 0.022653
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Fig. 5. Transitions of the coverage and the mean absolute error of FON in the noise-free
environment

– The search performances slightly improved whenever |QC| was increased
from 30 to 300. However, since the difference between the performance of
|QC| = 100 and |QC| = 300 was little, it is not a good approach to simply
increase the size of QC in view of calculation cost.

– The performances of |Q| = 1 and |Q| = 4 were better than |Q| = 10.
This result indicates that the promising offspring were surely added to the
archived population P when the size of evaluated offspring population was
small. However, the number of candidate offspring per evaluated offspring
increases if |Q| is set small. Hence, it should be adjusted according to the
calculation cost of the approximation model.

– For σξ and ση, the recommended values got the best result. When the pa-
rameters are small, that is, the offspring are generated in small region, ex-
trapolation is hardly expected. Therefore, mean absolute error was extremely
deteriorated. On the other hand, when they are generated in large region,
there is only a little difference at the coverage for the recommended values
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Table 2. Performance comparison of design parameters of the pre-selection algorithm
and the UNDX for FON

Parameters Value Coverage Mean Absolute Error

Mean Std. Dev. Mean Std. Dev.

Basic setting – 0.988889 0.018222 0.034481 0.005383

|QC| 30 0.991111 0.014993 0.049873 0.007122
300 0.985556 0.020869 0.032054 0.004573

|Q| 1 1.000000 0.000000 0.025436 0.004441
10 0.986667 0.018775 0.049873 0.007662

(σξ, ση) (0.25, 0.175/
√

n) 0.980000 0.034575 0.121922 0.041719
(1.0, 0.7/

√
n) 0.995556 0.011525 0.060645 0.006968

Table 3. Performance comparison of the NSGA-II with pre-selection and the normal
NSGA-II for four test functions in observation noise environment

Test Functions Method Coverage Mean Absolute Error

Mean Std. Dev. Mean Std. Dev.

SCH Pre-selection 0.534444 0.089906 0.874871 0.127909
PS (λ = 0.01) 0.513333 0.100421 0.920226 0.151003
PS (λ = 0.1) 0.528889 0.134402 0.929779 0.110923
PS (λ = 1) 0.238889 0.164488 0.662967 0.213107
NSGA-II 0.538889 0.125054 1.399185 0.253036

FON Pre-selection 0.586667 0.308947 0.248030 0.070666
PS (λ = 0.01) 0.813333 0.206522 0.233200 0.037559
PS (λ = 0.1) 0.914444 0.037837 0.214436 0.029421
PS (λ = 1) 0.886667 0.088668 0.167076 0.016192
NSGA-II 0.591111 0.175716 0.465918 0.118304

ZDT1 Pre-selection 0.701111 0.150728 0.022994 0.005718
PS (λ = 0.01) 0.854444 0.108095 0.023906 0.006079
PS (λ = 0.1) 0.867778 0.076053 0.024900 0.005042
PS (λ = 1) 0.443333 0.166816 0.027209 0.004265
NSGA-II 0.271111 0.133257 0.164172 0.024604

DTLZ2 Pre-selection 0.370062 0.040286 0.091117 0.010480
PS (λ = 0.01) 0.330556 0.054975 0.109558 0.016236
PS (λ = 0.1) 0.288889 0.040426 0.138259 0.020927
PS (λ = 1) 0.139197 0.047368 0.212676 0.020506
NSGA-II 0.178704 0.054814 0.162716 0.021747

while the mean absolute error is decreased. Thus, if the parameters are too
much, the density of the candidate offspring generated in the vicinity of the
Pareto optimal set becomes small, and convergence of the population slows.
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The difference of each performance excluding small value of the UNDX param-
eters was relatively small for the performance of the normal NSGA-II. Hence,
the proposed method has robustness for the design parameter selection.

4.3 Performance Analysis Under Observation Noise Environments

The performance under the observation noise was examined because it is the
objective of this paper to apply evaluation reduction to experiment-based EMO.
A simple expression of noisy test function is defined as follows:

Fi(x) = fi(x) + δi, δi ∼ N(0, σ2
i ), i = 1, 2, . . . , m (9)

where, N(0, σ2
i ) is the normal distribution random number, and the standard

deviation σi is 10% of the i th range of the Pareto front.
In the LWR, the observation noise can be filtered by appropriately adjusting

parameters such as parameters of weighted function K(·), smoothing parameter
u, ridge parameter λ, and choice of local model structure [1]. In this experiment,
the ridge parameter was employed for filtering the observation noise. The per-
formances of λ = 0.01, 0.1, 1 were examined with the basic setting λ = 0.0001
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Fig. 7. Transitions of the coverage and the mean absolute error of FON in the obser-
vation noise environment

which was used at noise-free environment to avoid the influence of the multi-
collinearity.

Table 3 and Fig. 6 show the results of experiment. From these results, it is
understood that the effect of the ridge parameter adjustment is obvious, but it is
dependent on the test problems. Parameter value λ = 0.01 indicates more stable
performance than the other values. The ridge parameter should be determined
by using the cross validation etc., but its calculation cost can not be neglected.
Thus, an indicator of the selection of a more appropriate ridge parameter is one of
the future tasks. However, while it is derived from small experience, we propose
to use λ = 0.01 or less under the noise environment, and set to small value in
such extent that the inverse matrix calculation does not become unstable under
the noise free environment as primal choice.

Transitions of coverage and mean absolute error of FON are shown in Fig. 7.
Fig. 7 indicates that the performance was improved by adjusting the ridge pa-
rameter. The result in the noise-free environment was improved as well.

From the above-mentioned discussion, it was shown that the proposed method
had the better performance than normal NSGA-II under the observation noise
environment.

5 Conclusion

In this paper, we proposed a Pre-selection algorithm for experiment-based evo-
lutionary multi-objective optimization and examined the performance of pro-
posed method through numerical experiments. As a result, we confirmed that
the Pre-selection was able to reduce the number of evaluations greatly for four
test functions regardless of the presence of the observation noise. Moreover, the
search performance did not change two much when the setting parameters of
Pre-selection and UNDX was changed. These facts indicate that the proposed
method has robustness for the setting parameters.
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As future works, we will examine the performance of our Pre-selection for
more complicated test functions, and apply to the real problems such as the
control parameter calibration of a real engine [13].
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Abstract. Optimization in changing environment is a challenging task, espe-
cially when multiple objectives are to be optimized simultaneously. The basic
idea to address dynamic optimization problems is to utilize history information
to guide future search. In this paper, two strategies for population re-initialization
are introduced when a change in the environment is detected. The first strategy
is to predict the new location of individuals from the location changes that have
occurred in the history. The current population is then partially or completely
replaced by the new individuals generated based on prediction. The second strat-
egy is to perturb the current population with a Gaussian noise whose variance is
estimated according to previous changes. The prediction based population re-
initialization strategies, together with the random re-initialization method, are
then compared on two bi-objective test problems. Conclusions on the different
re-initialization strategies are drawn based on the preliminary empirical results.

1 Introduction

In this paper, we consider the following continuous dynamic multi-objective optimiza-
tion problems (DMOP):

minimize F (x, t) = (f1(x, t), f2(x, t), . . . , fm(x, t))T , (1)

subject to x ∈ X,

where t = 0, 1, 2, · · · represents time, x = (x1, . . . , xn)T ∈ Rn is the decision variable
vector and X ⊂ Rn is the decision space. Rm is the objective space. F : (X, t) → Rm

consists of m real-valued objective functions fi(x, t) (i = 1, 2, . . . , m), each of which
is continuous with respect to x over X . The Pareto front (PF) in the objective space
and the Pareto set (PS) in the decision space change over time. The task of a dynamic
multi-objective optimization algorithm is to trace the movement of the PF and PS with
reasonable computational costs.

Inspired by the success of evolutionary algorithms on dynamic scalar optimization
problems [1,2,3], research work on evolutionary dynamic multi-objective optimization
(EDMO) has very recently been conducted by several researchers. In the following, we
briefly review the current work on EDMO:

i Test Problems: Benchmarks are important for developing and testing algorithms
for solving DMOPs. In [4], Jin and Sendhoff proposed a method for constructing

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 832–846, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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dynamic multi-objective test problems by aggregating different objectives of exist-
ing stationary multi-objective problems and changing the weights dynamically. Test
problems in [5] and [6] are created by adding time-varying terms to the objectives
in stationary MOP test problems.

ii Algorithms: Several attempts for solving DMOPs by evolutionary algorithms have
been reported recently. Stationary multi-objective evolutionary algorithms such as
NSGA-II [7], SPEA2 [8], MSOPS [9] and OMOEA-II [10] have been directly ap-
plied to DMOPs [6,11]. A few evolutionary algorithms for solving dynamic sin-
gle objective optimization problems have also been extended to the case of multi-
objective problems [12]. Several strategies have been proposed by extending sta-
tionary multi-objective evolutionary algorithms for tracking the movement of the
PS [13,14,15] or uncertain objectives [16,17].

iii Performance Indicators: It is hard to measure the performance of algorithms for
DMOPs for the following reasons. Firstly, the measure must be able to evaluate the
quality of approximation of a solution set, which itself is not trivial. Secondly, the
PS is changing over time. It is natural to draw the PF for stationary multi-objective
optimization, but it is no longer practical to plot the changing PFs in dynamic en-
vironment. In [12], two convergence performance measures have been suggested.
In [6], the generational distance with time was plotted to show the convergence.
In addition, a distribution indicator, known as the PL-metric, has also been intro-
duced [6].

Arguably, diversity maintenance is essential in dynamic scalar objective evolution-
ary optimization algorithms. It is, however, interesting to note that in multi-objective
evolutionary algorithms, the diversity of population is inherently maintained due to the
multi-objective nature. Thus, it is probably of greater importance to ensure that the pop-
ulation is able to follow the moving PF more quickly. To this end, a good guess of the
new location of the changed PS is of great interest.

In this paper, we study how to generate an initial population close to a changed PF
when a change is detected in a dynamic environment. Inspired by the prediction strategy
in [14,15], we build prediction models to predict the location of the new PS based on
the information collected from the previous search. Different to the method in [14,15]
where only the new locations of two anchor points and the Closest-To-Ideal point are
predicted, we predict the new locations of a number of Pareto solutions in the decision
space once a change is detected. Individuals in the initial population for the changed
problem are generated around these predicted points. In such a way, the changed PS
and PF can be found more effectively by the algorithm.

Four methods for re-initialization have been studied and compared in this paper.
They are 1) Random re-initialization method in which the initial populations are ran-
domly generated in the search space; 2) Variation method in which the individuals in
the current population are perturbed using a Gaussian noise whose variance is deter-
mined by changes in the history; 3) Prediction method in which the new trial solutions
are generated around predicted locations; and 4) A naive hybrid method, in which half
of population is generated by strategy 2 and half is created by strategy 3.
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The remainder of the paper is organized as follows. In Section 2, the four re-initializa-
tion methods are described in detail. Section 3 presents the two test functions and per-
formance indicators used in this paper. The empirical results are shown in Section 4.
The paper is concluded with Section 5.

2 Re-initialization Strategies for Dynamic Multi-objective
Optimization

2.1 The Algorithm Framework

The main steps of the dynamic multi-objective evolutionary algorithm with predicted
re-initialization (DMEA/PRI) are described as follows.

DMEA/PRI

Step 0. Set generation index τ := 1 and time window t := 1. Initialize population Pτ .
Step 1. If a change is detected,

1.1. Store Pτ in memory: Set Qt = Pτ .
1.2. Re-initialization: generate an initial population Pτ+1 based on information

from Qk, k = t, t − 1, · · · .
1.3 t := t + 1.

Step 2. If no change is detected, create an offspring population and do selection:
2.1. Create an offspring population P from Pτ using an offspring generator for

stationary optimization.
2.2. Select Pτ+1 from P ∪ Pτ .

Step 3. If the stop criterion is met, stop; else set τ := τ + 1 and go to Step 1.

In this paper, we concentrate on population re-initialization when a change in the
environment is detected. Other genetic operators are introduced briefly as follows.

To detect the environment change, a naive strategy is to recalculate the function
values of some individuals at the beginning of each generation. If their objective values
change, environmental change has occurred.

In [18,19,20,21], we have proposed model-based algorithms to tackle stationary
multi-objective optimization problems. By taking into account the regularity property
of MOPs, these methods can approximate the PF efficiently. In this paper, the method
proposed in [20] is used in Step 2.1 of the above framework to generate offspring. The
basic idea is to use the local PCA [22] algorithm to build a (m − 1)-D (where m is
objective number) piecewise continuous manifold in decision space, and then sample
new trial solutions from the model thus built.

A modified selection based on non-dominated sorting of NSGA-II [7], which is
called NDS-Selection [20] is used in Step 2.2.

We assume that inside a time window, there is no change in the environment and
thus the dynamic optimization problem can be considered as a stationary problem.
In the above framework, the algorithm works as an algorithm for solving stationary
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multi-objective optimization without Step 1. Details of Step 1 will be discussed in the
following subsection.

2.2 Prediction-Based Population Re-initialization

Diversity is maintained inherently in multi-objective optimization. Thus, we concen-
trate ourselves on faster convergence to the new PF when a change is detected in the
environment by predicting the new locations of the Pareto optimal solutions using his-
torical information. We assume that the recorded solutions in the previous time windows
when a change is detected, i.e., Qt, · · · , Q1, can provide information for predicting the
new location of the PS PSt+1 at time window t+1. We further assume that the location
of PSt+1 is a function of the locations Qt, · · · , Q1:

Qt+1 = F (Qt, · · · , Q1, t),

where Qt+1 denotes the new location of the PS for time window t + 1.
The problem now becomes how to use the historical information (Qt, · · · , Q1) to

generate new individuals as the initial population for time window t + 1. In practice,
function F (·) is not known and must be estimated using a certain technique. In the
following, we discuss how to generate initial solutions for time window t + 1.

Fig. 1. Illustration of creating an initial population at the beginning of a time window (in decision
space)

Prediction Model. Suppose that xt, xt−1, . . . , x1, xi ∈ Qi, i = t, · · · , 1 are a series
of points in the decision space that describes the movements of the PS, a generic model
to predict the location of the initial individuals for the (t + 1)-th time window can be
formulated as follows:

xt+1 = F (xt, xt−1, · · · , xt−K+1, t), (2)
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where K represents the number of the previous time windows that xt+1 is dependent
on in the prediction model. An example with K = 3 is illustrated in Fig. 1.

Any time series models [23] can be used for modeling F in (2). The major problem
in making a prediction is that it is very difficult to identify the relationship between
the stored solutions in Qt, · · · , Q1 to build a time series. In this paper, we adopted
a heuristic approach to identifying such time series. For a point xt ∈ Qt, its parent
location in the previous time window can be defined as the nearest point in Qt−1, i.e.,

xt−1 = arg min
x∈Qt−1

||x − xt||2.

Once a time series is identified for each individual in the population, any linear or
nonlinear prediction model can be used to predict the location of the individual for the
next time window. In this paper, the following simple linear model is adopted:

xt+1 = F (xt, xt−1) = xt + (xt − xt−1). (3)

Variation with a ”Predicted” Noise. The assumption that the movement of the PS can
be described by a time series might be too strict. To improve the chance of the initial
population to cover the PS in the new time window, a ”predicted” Gaussian noise can
be added to the current population and/or predicted locations. The standard deviation
of the noise is estimated by looking at the changes occurred before:

ε ∼ N(0, δI), (4)

where I is an identity matrix and δ is the standard deviation, which is defined by

δ2 =
1
4n

||xt − xt−1||22,

where n is the number of decision vector. See the example in Fig. 1.

Re-initialization Methods. In the following, we describe the four methods for re-
initializing population that we will empirically study in this paper.

i Random (RND) Method. All new solutions are randomly initialized in the search
space:

xt+1 = rand(xl, xu),

where rand(xl, xu) returns a random vector within the lower boundary xl and upper
boundary xu of the search space.
In this restart method, no historical information is used.

ii Variation (VAR) Method. All new solutions are created by varying the solution in
the last time window with a ”predicted” Gaussian noise:

xt+1 = xt + ε,

where ε is defined in (4).
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In this method, only the information in the last time window is used and no
models are built. We believe the new solutions should be close to the solutions in
the last time window. Hopefully, the new trial solutions can cover the PS of the new
time window.

iii Prediction (PRE) Method. All new solutions are sampled around the predicted
locations:

xt+1 = F (xt, xt−1) + ε,

where F is defined in (3) and ε is defined in (4).
In this method, the last two time windows are used to predict new trial locations.

By considering historical information, we hope the prediction model can capture
the moving trend.

iv Variation and Prediction (V&P) Method. In this strategy, half of initial popula-
tion for the (t + 1)-th time window is sampled around the predicted locations and
half is created by varying the points in the last time window (the current population
when a change is detected). This method can be formulated as:

xt+1 =
{

F (xt, xt−1) + ε, if rand() < 0.5;
xt + ε otherwise.

In the above equation, rand() returns a uniform random number in [0, 1], F is de-
fined in (3) and ε is defined in (4).

By hybridizing VAR method and PRE method, both historical location informa-
tion and prediction models are used in re-initializing population.

3 Experimental Setup

3.1 Benchmark Problems

Two test problems are used in our simulation studies. The first one is the FDA1 [12],
which is defined as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(x, t) = x1

f2(x, t) = 1 −
√

f1/g

g(x, t) = 1 +
n∑

i=2
(xi − G(t))2

G(t) = sin(0.5πt)
x ∈ [0, 1] × [−1, 1]n−1, t = 1

nT
� τ

τT
�

, (5)

where τ is the generation counter, τT is the number of generations in each time window,
and nT controls the distance between two consecutive PSs. In fact, τT and nT represent
the frequency of change and severity of change respectively.

As shown in Fig. 2, the PSs of FDA1 are line segments parallel to coordinates, and
the PFs are convex and remains unchanged. To study the performance of the proposed
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Fig. 2. Illustration of Pareto front and Pareto sets of FDA1 with nT = 10

algorithm on problems with variable linkages, we modify the above FDA1 by using the
method proposed in [24]. The modified test problem, which is named ZJZ, is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x, t) = x1

f2(x, t) = 1 − (f1/g)H(t)

g(x, t) = 1 +
n∑

i=2
(xi + G(t) − x

H(t)
1 )2

H(t) = 1.5 + G(t)
G(t) = sin(0.5πt)
x ∈ [0, 1] × [−1, 2]n−1, t = 1

nT
� τ

τT
�

. (6)

In ZJZ, both the PF and the PS are changing and there are nonlinear linkages between
the decision variables. The PFs and PSs are illustrated in Fig. 3.
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Fig. 3. Illustration of Pareto fronts and Pareto sets of ZJZ with nT = 10

3.2 Performance Indicators

It is not trivial to assess the performance of evolutionary algorithms for solving dy-
namic multi-objective optimization problems. Let M(Pτ ) measure the performance
(the smaller, the better) of population Pτ at generation τ , it is natural to plot perfor-
mance indicator M against time (see for example in Figs. 4 and 5 in Section 4.2). From
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the plot, we can observe the performance at any given time or the trend within a longer
time period. To compare two algorithms, we may need a scalar value to indicate the
quality of an algorithm on a given problem.

Suppose an algorithm is run N times on a given problem, and P i
τ is the population at

generation τ in the i-th run. Inspired by the idea of the offline error metric [1], we use

Ave(M(Pτ )) =
1
N

N∑
i=1

M(P i
τ ),

and

Std(M(Pτ )) =

√√√√ 1
N − 1

N∑
i=1

[M(P i
τ ) − Ave(M(Pτ ))]2

to denote the mean and standard deviation of the performance indicator M at generation
τ .

To assess the performance of an algorithm fairly, we record the following averages
of the means and the deviations over t in our experiments:

Ave(M) =
1
T

T∑
τ=1

Ave(M(Pτ )), (7)

Std(M) =
1
T

T∑
τ=1

Std(M(Pτ )). (8)

In this paper, a distance-based performance indicator D(P ) suggested in [20] and
the hypervolume difference (I−H(P )) proposed in [25] are used,

D(P ) =
1

|P ∗|
∑

x∈P ∗

||x − y(x)||2,

where P is an obtained nondominated set, P ∗ is a reference PF, and y(x) = arg miny∈P

||x − y||2.
I−H(P ) = IH(P ∗) − IH(P ),

where IH(P ) is the hypervolume [26] of set P .
Both D(P ) and I−H(P ) can measure the approximation quality in convergence and

diversity.

4 Experimental Results

4.1 Parameter Settings

In the experiments, 5 randomly selected individuals are re-calculated to detect envi-
ronmental changes at the beginning of each generation. The parameter of model based
offspring generator in Step 2 of DMEA/PRI framework, i.e., the number of cluster in
the local PCA algorithm is set to 5.

The other parameters are as follows: the population size is 100, and the number of
decision variables is 10 for both FDA1 and ZJZ. In all experiments, the algorithm will
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stop after 60 environmental changes have been detected. The severity of change, nT

is set to be 5 and 10. The frequency of change, τT is set to be 5, 10, 15, 20, 30 or 40
generations, thus the time window size will be 500, 1000, 1500, 2000, 3000 and 4000
in terms of fitness evaluations. The results are based on 20 independent runs.
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Fig. 4. The evolution of the average D(Qt) over time among 20 independent runs with 60 time
changes for four re-initialization strategies on FDA1, the left column is with nT = 5 and right
column with nT = 10

4.2 Results and Discussions

The statistical results on FDA1 and ZJZ with D and I−H indicators are shown in Figs. 6
and 7. Due to space limit, only curve of D over time on FDA1 and curve of I−H over
time on ZJZ are drawn in Figs. 4 and 5. The results on both D and I−H are consistent.

We firstly consider the following three factors which influence the performance of
the four re-initialization strategies.
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Fig. 5. The evolution of the average I−
H(Qt) over time among 20 independent runs with 60 time

changes for four re-initialization strategies on ZJZ, the left column is with nT = 5 and right
column with nT = 10

Frequency of change. The parameter τT represents the frequency of change, i.e., the
width of time windows. It is evident that the more evaluations used in each time window,
the better the performance. From Figs. 6 and 7, we can see the performance of four
strategies becomes better as the time window increases. For FDA1 and ZJZ, when τT ≥
1000, the performance of PRE and V&P become very similar. The reason is that the
difference on the initial populations is covered by the long run in the time window.

Severity of change. The parameter nT controls severity of change, i.e., the closeness
between two consecutive PSs. When nT changes from 5 to 10, both the mean and
variance of performance indicators become small in Figs. 6 and 7.

Problem characteristic. FDA1 has linear linkages between decision variables while
ZJZ has nonlinear linkages between decision variables which can be seen from Figs. 2
and 3. From Fig. 6, we can see that PRE strategy works better than the others, it is
because in this case, PRE can successfully predict the future locations. While from
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Fig. 6. The statistical results of Ave(D) ± Std(D) and Ave(I−
H) ± Std(I−

H) from time among
20 independent runs for four re-initialization strategies on FDA1 (To improve the clarity of the
figures, the error bars are shifted a little along the horizontal coordinate)

Fig. 7, the VAR and V&P strategies work better than PRE strategy, the reason might be
that the linear model in PRE strategy fails to capture the trend of moving PS. On the
other hand, FDA1 and ZJZ are problems with cycles, and the results in Figs. 4 and 5
show such cycles.

We further analyze the performance of the four re-initialization strategies.
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Fig. 7. The statistical results of Ave(D) ± Std(D) and Ave(I−
H) ± Std(I−

H) from time among 20
independent runs for four re-initialization strategies on ZJZ (To improve the clarity of the figures,
the error bars are shifted a little along the horizontal coordinate)

RND. RND strategy does not work as well as the other three strategies. Besides, the
results in Figs. 4 and 5 of the RND method are inconsistent with those of the other
strategies. The reason might be as follows. First, the RND method does not consider the
previous results in generating the initial population for the next time window. Second, it
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is easier to tackle a stationary problem whose PS locates at the ’center’ of search space
than a problem whose PS lies near the boundary.

VAR. For ZJZ problem, VAR strategy performs better than others because there are
nonlinear linkages between decision variables, see Figs. 3 and 7. In these cases, it might
be hard to build efficient prediction models which may mislead the search.

PRE. PRE strategy is able to catch the trend and thus predict new trial locations when
there are linear linkages between decision variables and outperforms other strategies,
see Figs. 2 and 6.

V&P V&P hybridizes VAR strategy and PRE strategy. For PDA1 problem, its perfor-
mance is near PRE and for ZJZ problem, its performance is near VAR.

Overall, among the four strategies, the RND method is of no practical interest. The
PRE method and the VAR method show some advantages over the other two strategies,
depending on the characteristics of test problems and the width of the time windows.
The V&P method is more likely to perform better in practice.

5 Conclusions

In this paper, four strategies for re-initializing populations are empirically studied on
two test problems. The experimental results indicate that:

– When a change occurs, strategies which utilize historical information can accelerate
the search process. The method that re-initializes a population purely randomly
does not work.

– The width of the time window has significant influence on the performance. The
wider the time window is, the better the performance. Other characteristics of prob-
lems, such as the distance between the neighboring Pareto sets, will also affect the
results.

– Different strategies should be applied in different situations. In general, a hybrid
method, i.e., the V&P method, might be more recommendable when little informa-
tion about the problems is known.

To verify the proposed algorithms, a test problem, called ZJZ, has also been intro-
duced. The location of both the Pareto front and the Pareto set of ZJZ changes over
time. In addition, there are nonlinear linkages between decision variables. To assess the
performance of the proposed algorithms, a performance indicator is suggested as well
by combining the offline error measure in dynamic single objective optimization and
the performance indicators in multi-objective optimization.

The research on dynamic multi-objective optimization is still in its very infancy and
our work presented in this paper is also rather preliminary. Much work remains to be
done in the future, for example, not only detecting environmental changes but also esti-
mating the severity of changes, analyzing the problem structure of DMOPs, designing
dedicated offspring generators and selection strategies by taking into account the prob-
lem structure, testing the suggested methods on more benchmarks, and comparing them
with other methods.
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Abstract. In this paper, a new type of Multi-Objective Problems (MOPs) is 
introduced and formulated. The new type is an outcome of a motivation to find 
optimal solutions for different MOPs, which are coupled through communal 
components. Therefore, in such cases a multi-Multi-Objective Optimization 
Problem (m-MOOP) has to be considered. The solution to the m-MOOP is 
defined and an approach to search for it by applying an EMO algorithm 
sequentially is presented. This method, although not always resulting in the 
individual MOPs' Pareto fronts, nevertheless gives solutions to the m-MOOP 
problem in hand. Several measures that allow the assessment of the introduced 
approach are offered. To demonstrate the approach and its applicability, 
academic examples as well as a "real-life," engineering example, are given. 

Keywords: Communality, Family of designs, Engineering design. 

1   Introduction 

Sharing components among products is an effective way to cut costs. Expenses are 
decreased through the reduction in components design time as well as through savings 
in manufacturing costs and inventory (see e.g., [1]). Robertson and Ulrich, [2], point 
out that ‘‘By sharing components and production processes among products, 
companies can develop differentiated products efficiently, increase the flexibility and 
responsiveness of their manufacturing processes, and take market share away from 
competitors that develop only one product at a time." An example of the importance 
of sharing is Black & Decker’s universal electric motor. According to Lehnerd [3], in 
the 1970s Black & Decker developed a family of universal motors for their power 
tools in response to a new ‘double insulation’ safety regulation. Prior to that, they 
used different motors in each of their 122 basic tools with hundreds of variations. By 
paying attention to standardization and exploiting platform scaling around the motor 
stack length, material costs dropped from $0.77 to $0.42 per motor while labor costs 
fell from $0.248 to $0.045 per motor, yielding an annual savings of $1.82M per year.  

Most of the attempts to share components between products are associated with the 
design of a product family. A product family is a group of related products that share 
common components and/or subsystems – yet satisfy a variety of market niches  
(e.g., [4]).  
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A design for components' commonality, is not restricted to hardware components 
as done e.g., in [1], but is also associated with software components. According to [5], 
software product families, aim at decreasing the costs and time required to produce a 
customer specific product. Oftentimes, commonality of software components is 
referred to as Component Based Software Development (CBSD). According to [6], 
there are two main benefits specific to CBSD. First, it gives structure to system design 
and system development, thus making system verification and maintenance more 
tractable. Second, it allows reuse of development effort by allowing components to be 
re-used across products and in the longer term by paving the way for a market for 
software components. Studies and approaches for CBSD may be found in many 
citations (e.g. [7],).  

The focus of this paper is on the commonality of hardware components rather than 
on software components. According to [1], two types of component sharing can be 
used when selecting a product platform. The first is component sharing, in which one 
or more components are common to several products. The second is the sharing of 
“scaled” versions of components. Mathematically this can be described as variable 
sharing.  
Successful engineering design of products generally requires the resolution of 

various conflicting design objectives ([8]). In case of contradicting objectives within a 
MOP, there is no universally accepted definition of an 'optimum' as in a single-
objective optimization (see [9]). In such a case, there is no single global solution and 
it is often useful to determine a set of solutions that fits a predetermined definition for 
an optimum and let a Decision Maker (DM) choose between them. The predominant 
concept in defining such a set point is that of Pareto optimality ([10]). By definition, 
Pareto solutions, which belong to the Pareto optimality set, are considered optimal 
because there are no other designs that are superior in all objectives (e.g., [11]). The 
current focus is on different products whose designs require the solution of a MOP for 
each, and share common components.     

The search for optimal solutions for a MOP is commonly termed Multi Objective 
Optimization (MOO). A comprehensive survey and comparison between most multi-
objective optimization techniques and algorithms can be found in [12].  

Searching a multi-objective design space, for optimal solutions, by Evolutionary 
Computation (EC) approaches (such as genetic algorithms) is commonly referred to 
as Evolutionary Multi-objective Optimization, (EMOO/EMO). Multi-Objective 
Evolutionary Algorithm (MOEA) is an EMOO algorithm, which searches for a 
solution in a multi-criteria space using some inspiration from evolutionary theories. 
Most MOEAs use genetic algorithms for the evolutionary search.  

Research on MOEA has grown considerably in the last few years (see: Coello's 
web site http://www.lania.mx/~ccoello/EMOO/EMOObib.html). A number of 
algorithms, such as the Multiple Objective Genetic Algorithm (MOGA) of [13], are 
known to advance the use of EMO to solve MOPs. These algorithms utilize the non-
dominancy notation ([14]), to direct the search towards a Pareto front. They use 
'sharing' to allow the spreading of solutions along the front. According to Coello, 
([15]), the later generation of Pareto-based algorithms, such as NSGA-II, ([16]), 
involves three major elements. The first element concerns the creation of a search 
pressure towards the Pareto set. This is commonly achieved by one of the known 
Pareto-based fitness assignment (dominance-based) techniques. The second element 



 multi-Multi-Objective Optimization Problem and Its Solution by a MOEA 849 

is set to avoid convergence to a single solution, and preserve diversity. The third 
element is elitism, which helps to prevent losing non-dominated solutions, which are 
diversified. Detailed descriptions of multi-objective evolutionary techniques could be 
found in [17]. The approximation and diversity of the numerically obtained set are the 
main issues to be considered with respect to EMOO algorithm performances. 
Laumanns et al, ([18]), discussed the important issue of convergence versus diversity 
of the solutions as attained by an EMOO algorithm, and introduced the epsilon 
measure to improve MOEAs with respect to the above two goals. To analyze and 
compare MOEAs with respect to these goals, performance metrics and measures have 
been also suggested by others (e.g., [19]).  

When considering the solution of MOPs for product families design, it must be 
realized that commonality often causes a penalty with respect to individual product 
performance ([20]). Therefore the design challenge is how to maximize commonality 
and optimize the family products while satisfying individual constraints and 
minimizing performance losses.  Several EMOO approaches have been developed to 
help designers resolve this tradeoff and determine the best design variable settings for 
the product platform and individual products within the corresponding family. The 
approaches to evolve the families are either sequential or simultaneous. In both 
approaches a Pareto front is developed. For example, Rai and Allada, ([21]), 
introduced a sequential approach to tackle the modular product family design 
problem. The first step performs a multi-objective optimization using a multi-agent 
framework to determine the Pareto-design solutions for a given product. The second 
step performs post-optimization analysis to determine the optimal platform level for a 
related set of product families and their variants. This is commonly done by choosing 
solutions from the MOPs' Pareto fronts (e.g., [1]). An example for the second 
approach is a MOEA approach, which has been taken in [22]. In [22], NSGA-II is 
utilized for a one – stage optimization algorithm that search simultaneously for the 
products optimizing the commonality. The objectives of such commonality related 
MOPs are commonly associated with the variation in design variables and a deviation 
function from a given engineering goal (e.g., [22]). In such a case, the representation 
in the objective space is not associated directly with the objectives but rather with the 
utility of the objectives (one axis) and with a measure for commonality (the  
other axis). 

The main difference between the hereby introduced approach and former works 
lies in the consideration of different MOPs, which are coupled by common 
components. Here, the products do not share the same objective space and therefore 
neither utility of objectives nor same objective space setting is applicable. To further 
explain the difference between this paper approach and others, it is noted that the 
same cockpit for different aircrafts is not an example to the current approach. Here a 
search for a robotic arm to move an object from one place to the other, coupled with a 
search for a conveyor to move another object, is an appropriate example. The 
objectives associated with the search for the robotic arm might be the minimization of 
the integral square of the end- effector's error and the minimization of its deflection. 
The search for a conveyor may be associated with the maximization of the object 
transfer speed and the minimization of the overall control force. The coupling 
between the MOPs is dictated by the need to use the same motor for both designs.   
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2   Methodology 

2.1   Problem Definition   

In the classical multi-objective search problem, such as dealt with in [15], the set of 
Pareto optimal solutions is sought from the set of all possible particular solutions. 
Any particular solution is characterized by specific values of the problem decision 
variables representing a point in the problem decision space. The set of Pareto optimal 
solutions is found by comparing the performances of all particular solutions in the 
objective space for non-dominancy. The representation, in the objective space, of the 
set of non-dominated solutions is known as the Pareto front. The classical MOP is 
commonly formalized as follows:  

                         )x(Fmin                                                                    (1)                

                          s. t.      nRSXx ⊆⊆∈  

where x is the vector of decision variables. In general, x might be subjected to 
equality and/or inequality constraints, which commonly include some bounds on the 

decision variables. A solution nRSXx ⊆⊆∈ , which satisfies all the constraints, is 
called a feasible solution. The set X, of all feasible solutions, is called the feasible 
region in the search space S.  The MOP deals with minimizing y=F(x), the vector of 
K objective functions where, 

                 2K)]x(f),....,x(f),x(f[)x(F T
K21 ≥=                            (2)                                     

It can be shown that problems involving maximization, or a mixture of both min 
and max with respect to different objectives, may easily be transformed to the above 
problem. Furthermore, it should be noted that usually, due to contradicting objectives, 
there is no single solution to the above problem. The interest, in the classical MOP, is 
therefore on the trade-offs with respect to the objectives. The well-known concept of 
Pareto dominance supports exploring such trade-offs. The development of an 
optimality-based Pareto front in the objective space is based on a comparison between 
solutions using the idea of vector domination ([14]).  
    The problem of the m-MOOPs is formulized as:  
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The m-MOOPs is a problem, which involves nmop objective spaces and associated 
design spaces. The design spaces possess communality through the communal search 
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space X. The relations between the design spaces and the objective spaces may be 
elucidated by considering a 2-MOOPs problem and by observing figure 1. The figure 
depicts two design spaces (left side of the figure).  One space is constructed out of 
two sub-spaces X and Y1 (designated as XY1). The other design space has also two 
sub-spaces, X and Y2. A solution (e.g., xy1) to a MOP is constructed out of parameters 
values taken from one of the unshared sub-spaces (e.g., y1 from Y1) and from the 
shared sub-space (x from X). Each such solution has its performances in its related 

objective space (e.g., Z1). Each set of objective functions )y,x(F m
m  maps a 

particular solutions xym belonging to the space XYm to an objective space point zm. 
Such a mapping is depicted in figure 1 designated by the arrows. 

 

Fig. 1. Solutions in a bi-design space and corresponding MOPs' objective spaces 

The solution to the m-th MOP belongs to the m-MOOPs optimal set, 
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where ∪
mopmm n,..,1mYyXx m )xy(FZ =∈∧∈∀=  is the combined objective space 

The solution to the m-MOOPs problem, as defend in equations 5, 6, is a set of 
solutions which possess communal components, for which, no change of a communal 
component will result in an improvement of performances in one MOP without loss 
of performances in other MOPs.     

2.2   A Sequential EMO Approach 

It is suggested that in the current study the search for solutions to the m-MOOP will 
be done by a sequential approach. This approach is introduced in the following  
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The sequential approach is designed to solve the MOOPs by a lixographic method. 
In such a case, one of the MOOPs is solved, gaining its front. The optimal set for that 
MOOP contain x*. The search for the set x* is then relaxed and the remaining MOPs 
are optimized using its values as constants. This means that the problem in equation 3 
is decomposed to: 

                             1mif))y(fmin(

1mif))y,x(fmin(

conx*
≠
=

=

                             (7) 

The EMO implementation is associated with solving sequentially nmop MOPs by 
using a MOEA (e.g., NSGA-II) as detailed in the following pseudo algorithm. 
 

Pseudo algorithm for the sequential m-EMO          
a. Choose one of the MOPs and use an EMO to find *

1)y,x(  

b. For mopn,...,2i = use *
1)y,x(x ∈ within an EMO search to find *

i )y,x( for all   1i ≠  

c. For mopn,...,2i = perform non dominancy sorting to *
i )y,x(   

d. If mopi
*

i
*

1 n,...,2y)y,x(x)y,x(x =∉∧∈∃  eliminate this solution in MOP1 

 
To elucidate the sequential approach and its implementation within an m-MOOP refer 
to figure 2a-c. Figure 2a depicts the front of a MOP, out of 2-MOOPs, which is solved 
first (step 'a' above). Each solution performances, is designated with a different 
symbol, emphasizing that each may be associated with different values for the 
communal parameters (the x parameters). Using each of the x values found by the 
solution of the first MOP, may result in a front when the second MOP is solved (step 
'b' above). This means that for each point in the objective space of the first MOP there 
may be a set of solutions' performances in the second objective space. These are 
designated by corresponding symbols in figure 2b. 

  

 
                          (a)                                              (b)                                          (c) 

Fig. 2. Obtaining the m-MOOP front by a sequential approach 

Following the demand for optimality of solutions to all MOPs, the fronts depicted 
in figure 2b are sorted for non-dominancy to result in the front (step 'c' above), which 
is depicted in figure 2c. As a last step (step 'd' above), the solution which is associated 
with the diamond in figure 2a is removed (as it is not associated with optimal 
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solutions in both MOPs). The solution to the m-MOOP is the two fronts, which are 
depicted in both figures 2a and 2c after eliminating the diamond solution in figure 2a.  

While searching for solutions to m-MOOPs sequentially, concern should be given 
to three possible cases. The three cases are explained using figure 3, which is related 
to an m-MOOP with two coupled MOPs. Figure 3a depicts the front of a MOP, MOP1 
which is found first. A gray boundary designates the feasible region for both MOPs.  

 

 

Fig. 3. Front of one MOP and possible m-MOOP fronts in the second MOP 

Using x*found by solving MOP1 for the second MOP, MOP2, may result in 
solutions, fundamentally located at three sub-spaces within the objective space of 
MOP2. These three sub-spaces, depicted in figure 3b, are associated with the three 
cases declared upon. In the first case, the solutions are within the sub-space, which is 
designated by dots. In such a case, no feasible solutions are present for MOP2 and the 
m-MOOP is unsolved. The second case is associated with the sub-space, which is 
designated by short-vertical lines. In this case a back-located front may be found (see 
dashed line in figure 3b). In the last case, the solutions are within the sub-space, 
which is designated by tilted lines in figure 3b. In this case, the Pareto fronts or part of 
the Pareto fronts of all MOPs, are associated with the solution to the m-MOOP. It is 
noted that the second case is associated with a loss of optimality as further discussed 
in section 2. 3.         

2.3   Assessment Measures 

In this section, measures to assess the successes of the algorithm to evolve the 
problem's fronts are presented. These measures allow comparing between different 
initializations of the algorithm. The measures introduced include a Waste of 
Resources Measure (WRM), Loss of Optimality Measure (LOM) and the 
computational time measure. These measures are utilized in section 3, where 
examples are used to demonstrate the use and the applicability of the proposed 
methodology. 
 
Efficient use of computational resources, WRM: As briefly noted in section 2.2, the 
sequential approach may utilize the resources of available individuals inefficiently 
(compare figures 2a and 2b with relation to the diamond solution). This may happen 
wherever the optimal communal variables (x*) do not span the Pareto fronts of all 
MOPs. If this is the case, the sequential algorithm "wastes" some of its resources (of 
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available individuals) to find solutions that are not solutions to the m-MOOPs. This 
waste of resources may be quantified by counting the unshared solutions to obtain 
WRM as follows:  

                              ∑
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pn

1i

*
i

**
i

*
1

*
i xWRM;xx)y,x(x                                   (8) 

Loss of optimality measure, LOM: To assess the success of an algorithm to find a 
solution to the m-MOOPs the proximity indicator, ([19]), is utilized. For each MOP, a 
representing set mOS , m=1,., nmop is found such that it is spread diversely on the 

MOP's Pareto front. It serves as the optimal approximation set. If the set may not be 
found analytically the representing set is a set found by individually running each 

MOP to find *
mOS , m=1,., nmop. The minimal Euclidian distance between the j-th 

evolved solution within the m-th MOP with a representative of a set, mAS , which is 

the front achieved in the last generation (of the m-MOOPs algorithm),  m
ASOS,jD → is 

found. Due to the inherent uncertainty in the preference of objectives within MOPs, 
any solution may be chosen by the designers. Therefore, the worst case should be 
considered for the comparison. Therefore a measure termed Loss of Optimality 
Measure, LOM, is computed: LOM= max(LOMm) where: 

                            mopm

m
OSAS,j

j
m n,....,1m

B

Dmax
LOM ==

→
                                     (9) 

where Bm is the maximal Euclidean distance between solution performances within 
the m-th MOP. This serves as a scaling factor. A lower LOM means less loss of 
optimality and is viewed as an advantage. The LOM is utilized in section 3.  

 
Computational time: The computational complexity that influences the search run-
time, using a traditional EMO, depends primarily on the number of generations, and 
the size of the population (e.g., [20]. In such a traditional case, it is assumed that there 
is no substantial difference in the computational time of the performances from 
individual to individual. In the sequential m-EMO the run-time is influenced by the 
difference in times to solve the computational models of the different MOPs and by 
the order at which the MOPs are solved. To elucidate this declaration, let the time to 
compute the model of MOP1 be 't1' while to compute the model of MOP2 takes 't2' and 
t1 > t2. Further suppose that each MOP is solved with a population of 'p' individuals 
evolved for 'g' generations. If MOP2 is solved first and then the results are utilized to 
evolve MOP1, the computational time T, which is associated with the computations of 
the model, would be )ztt(gpT 21 += . This time is less than if the order is reversed (in 

that case )ztt(gpT 12 += ). This difference is demonstrated in section 3.3.  

3   Test-Cases 

In this section bi-MOOP examples are given to demonstrate the issues that were 
introduced in the methodology (see section 2). Specifically cases 2 and 3 (see section 
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2.2) are demonstrated. Case 1 is not demonstrated as it is a trivial one.  In all of the 
following examples NSGA-II with 20 individuals, 50% cross-over and 5% mutation 
is used over 300 generations for the sequential algorithm. An 8 bit code is used for all 
design parameters. The simulations were done by using MATLABTM.  

3.1   Academic Example – 1 

In the first example the sequential EMO is utilized to solve a bi-MOOP, which is 
associated with the third case (see section 2.2). The MOPs involved are: 

MOP1: min ( 1
2

1
1 f,f ) where,  
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In the above equations x serve as the communal variable representing the 

communal component shared by the two different design problems. 
The sequential approach (see section 2.2) begins by solving MOP1 by using 

NSGA-II. The front of this problem is depicted in figure 4, designated by squares. 

  

 

Fig. 4. The front of MOP1 

The next step within this approach is to use the x* values as constants within the 
second MOP. Each such value is associated with a front within the objective space of 
MOP2, as depicted (for some of the solutions) in figures 5a, 5b. The numbers depicted 
in those figures are the values for x, found by solving the first MOP.  It is noted that 
the results are shown in two different figures for the sake of clarity and to highlight 
the waste of resources (see section 2.3) as clearly depicted in figure 5a. The m-MOOP 
solution is obtained by sorting for non-dominancy the fronts of figures 5a and 5b. The 
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resulting front (of MOP2) is depicted in figure 6a. Also depicted in that figure is 
MOP2 front designated by dots. It is noted that following the sorting, all solutions 
shown if figure 5a are not part of the front and figure 6a shows that the resulting front 
is associated with the communal solutions shown in figure 5b. Figure 6b depicts the 
fronts of the m-MOOP on the same graph showing the communal related solutions 
only. By comparing figures 4 and 6b it may be observed that the m-MOOP front 
associated with MOP1 is just a part of the overall front of MOP2. This means that just 
some of the solutions obtained by the solution of MOP1 may be used as communal 
components when optimality is desired. 

 

 
(a)                                                         (b) 

Fig. 5. Solving MOP2 for each of the solutions found by solving MOP1 

 
(a)                                                             (b) 

Fig. 6. (a) Result of the non dominancy sorting (b) The m-MOOP fronts  

3.2   Academic Example - 2 

This example demonstrates an m-MOOP, which is associated with the second case 
(see section 2.2). The m-MOOP is associated with the following MOPs, with x is the 
communal component.  
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MOP1: min ( 1
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Using the sequential algorithm presented in section 2.2 to solve the m-MOOP, once 
by starting with MOP2 and once starting with MOP1 results in the fronts, which are 
depicted in figures 7a and 7b respectively. In these figures the front, which is found 
first is designated by blank symbols while the second front to be found is designated 
by filled symbols. Also depicted in each figure, is the front of the second MOP, which 
is obtained separately. These are designated by dots. 
  

 
                                  (a)                                                                 (b) 

Fig. 7. (a) Starting with MOP2  (b) Starting with MOP1 

After eliminating non optimal solutions (see sequential m-MOOP procedure), the 
solution to the m-MOOP when starting with MOP2, are the solutions that are 
associated with the encircled performances in figure 7a. In the same manner the 
solution to the m-MOOP when starting with MOP1, are the solutions that are 
associated with the encircled performances in figure 7b.  The values of the measures, 
introduced in section 2.3, for this example are summarized in table 1 (where 't' is used 
to reduce non-important numerical data).  

Table 1. Measures' values  

           Measure 
Start 

WRM   LOM T 

MOP2 18 0.53 1.1t 
MOP1 10 1.95 t 
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Observing the results, it is depicted that if the procedure starts with MOP1 the 
waste of resources is high. In fact 18 solutions out of 19 on the front of MOP1 do not 
have representatives on the front of MOP2. This means that there exists just one 
optimal related communal component. Changing the order at which the MOPs are 
solved results in a better use of the resources (a waste of 10 instead of 18). 
Nonetheless the loss of optimality is much higher. The difference in computational 
time is minor. By analyzing the results it is concluded that the solution to the m-
MOOP by the sequential approach is sensitive to the order at which the MOPs are 
solved. It is further noted that in general the sequential approach might be associated 
with all cases presented in section 2.2. Therefore it is possible that by starting with 
one MOP a solution to the m-MOOP is found (cases 2, 3) but starting from another 
may lead to not finding any solution (case 1). It is hereby noted that if there exists a 
hierarchy of MOPs, that is one MOP which is more important than the others, it 
should be solved first. This is due to the fact that the first solved MOP is not 
associated with a loss of optimality.   

3.3   Real World Example 

This bi-MOPs is associated with the following MOPs. The First MOP is a 
mechatronic example where the structure and the control of a one-arm manipulator are 
to be designed. The arm is considered rigid, is made of aluminum 

(E=70000Mpa, 3m/kg2700=ρ ) and has a 10 by 10 mm cross section. The arm is 

depicted in figure 8a (side view). A load of ML=0.8kg is to be raised in a distance of 
x=1.5m. An arm of length L, and weight m (depends on length) is used for the lifting. 
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                                  (a)                                                                  (b) 

Fig. 8. (a) The manipulator (side view) (b) The truss  

The arm is manipulated by a torque M at its base, determined by a controller. The 

bi-objective problem involves the minimization of: ff,ISEf 1
2

1
1 Δ==  where fΔ , is 

the deflection of the end affecter, ∫ ⋅≡
finalt

0

dterrorISE . The model for the first MOP is 

detailed in [23]. The mechatronic design includes decisions on the length of the arm, 
L, that may change between 1m to 6m (dictated by inventory), as well as on the PID 
controller parameters (see [23] for details). The front for this MOP is depicted in 
figure 9a designated by blank squares. The front includes designs with arm lengths 
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that vary between 1m and 2.2m. The shorter arms are associated with less deflection 
but higher ISE. The higher ISE is a result of the bigger change of angle, which has a 
non-linear expression in the model. Therefore the linear controller is less successful in 
controlling it. The second MOP is associated with a design of a symmetric truss, 
which is loaded with a load W as depicted in figure 8b. The objectives of the second 

MOP are to minimize α+=Δ=α== − 2sin1
AE

WL
2ff,)(cosW5.0Tf 2

2
11

2  , which 

are the tension in a bar and the deflection of the junction. The front for the second 
MOP is depicted in figure 9b designated by blank circles. The longer bars are 
associated with less tension (smaller angle) and with higher deflection. The m-MOOP 
is to optimize the solutions for both MOPs with a demand for commonality, such that, 
the truss bars should be the same part as the manipulator arm. Using the sequential 
approach and starting with MOP2, then with MOP1 results in the fronts, which are 
designated by filled symbols in figures 9a and 9b respectively. The numerical results 
of the measures for both cases are summarized in table 2.  
 

 
                                (a)                                                                   (b) 

Fig. 9. Starting with MOP2 (b) Starting with MOP1 

Table 2. Measures' values  

           Measure 
Start 

WRM   LOM T 

MOP2 16 0.008 52t 
MOP1 15 0.009 t 

 
From the results it is depicted that the loss of optimality is minimal. This is due to 

the fact that the communal components that were found, guarantee optimal 
performances with respect to both the m-MOOP and with respect to each of the the 
MOPs. The waste of resources do exists, nevertheless, some 5 different communal 
solutions are found in each case. A profound difference is depicted in the 
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computational time. It takes an average of 52 times more time to find the fronts of the 
m-MOOP when MOP2 is the first to be solved.                                          

4   Summary Conclusions and Future Work 

In this paper, a new type of MOPs is introduced. This involves the search for optimal 
solutions for different MOPs, which although distinct, possess communal 
components. The solution to the posed m-MOOP problem is also described and the 
design of a search for such a solution by means of a sequential EMO is proposed. The 
result of the proposed search is a set of fronts, which are not necessarily the individual 
MOPs' Pareto fronts, but are the solution to the m-MOOP. Several measures, which 
can be used to assess the performances of the proposed algorithm, are presented. 
These measures can not only serve for comparison between different orders at which 
the sequential approach is implemented, but can also serve as a base for a future 
comparison with other approaches. Academic examples as well as an engineering 
design example have been used to demonstrate the introduced algorithm and its 
applicability to "real-life" problems.  

It has been demonstrated in this paper that the sequential approach is applicable in 
solving the m-MOOP problem. It is appropriate for solving an m-MOOP which 
involves a high preference to one MOP, which should be solved first. Moreover it finds 
communal solutions with no loss of optimality in case 3 related problems. Nonetheless, 
it seems to possess several drawbacks including: a) not all solutions on the front of one 
MOP have optimal corresponding solutions in other MOPs.  This means that there is 
an apparent waste of computational resources. b) The results are dependent on the 
sequential order in which the MOPs are selected and solved. This means that different 
fronts and therefore different solutions will be obtained for different sequential orders. 
c) The overall computation time is highly dependent on the order at which the 
sequential approach is implemented.  d) Loss of optimality can be detected in case-2-
like problems. In such cases, the loss of optimality is dependent on the selection of the 
sequential order and is present in all MOPs, but not in the first one.       

As a future work, the above drawbacks should be resolved mainly by taking a new 
approach, which solves the problem simultaneously. Such a simultaneous algorithm is 
currently under investigation. The so-far obtained results are promising, showing an 
improvement with respect to all of this paper introduced measures.    
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Abstract. The design of quality measures for approximations of the
Pareto-optimal set is of high importance not only for the performance
assessment, but also for the construction of multiobjective optimizers.
Various measures have been proposed in the literature with the intention
to capture different preferences of the decision maker. A quality measure
that possesses a highly desirable feature is the hypervolume measure:
whenever one approximation completely dominates another approxima-
tion, the hypervolume of the former will be greater than the hypervolume
of the latter. Unfortunately, this measure—as any measure inducing a to-
tal order on the search space—is biased, in particular towards convex,
inner portions of the objective space. Thus, an open question in this con-
text is whether it can be modified such that other preferences such as
a bias towards extreme solutions can be obtained. This paper proposes
a methodology for quality measure design based on the hypervolume
measure and demonstrates its usefulness for three types of preferences.

1 Motivation

Using the hypervolume of the dominated portion of the objective space as a
measure for the quality of Pareto set approximations has received more and
more attention in recent years. The reason is that this measure has two important
advantages over other set measures:

1. It is sensitive to any type of improvements, i.e., whenever an approximation
set A dominates another approximation set B, then the measure yields a
strictly better quality value for the former than for the latter set [23].

2. As a result from the first property, the hypervolume measure guarantees that
any approximation set A that achieves the maximally possible quality value
for a particular problem contains all Pareto-optimal objective vectors [5].

So far, this is the only measure known in the literature on evolutionary multi-
criterion optimization that possesses these properties.

The hypervolume measure—or hypervolume indicator [23]—was first proposed
and employed in [21,22] where it was denoted as ‘size of the space covered’; later,
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also other terms such as ‘hyperarea metric’ [14], ‘S-metric’ [18], and ‘Lebesgue
measure’ [11,5] were used. On the one hand, the hypervolume indicator is mean-
while among the most popular measures for the performance assessment of multi-
objective optimizers and in this context it has been subject to several theoretical
investigations [8,5,23,15]. On the other hand, there are some studies that discuss
the usage of this measure for multiobjective search [10,20,4] and in particular
the issue of fast hypervolume calculation has been a focus of research recently
[16,17,6,1].

Despite the aforementioned advantages of the hypervolume indicator, it in-
evitably has its biases. There is some freedom with respect to the choice of
the reference point, but nevertheless it represents only one particular class of
preference information that may not be appropriate in specific situations. This
discussion directly leads to the question of whether it is possible to design quality
measures that (i) share the two above properties of the hypervolume indicator,
while (ii) standing for a different type of preferences of the decision maker. The
fact that besides the hypervolume no other measures with these properties are
known indicates that the formalization of arbitrary preferences in terms of a
quality measure may be difficult. However, not being aware of such measures
does not imply that such indicators do not exist.

This paper presents a first step to tackle this issue: it demonstrates that
novel quality measures with the aforementioned properties can be designed and
proposes a general design methodology on the basis of the hypervolume indicator.
In detail, the key contributions are:

– A generalized definition of the hypervolume indicator using attainment func-
tions [2] that can be used for any type of dominance relation;

– A weighted-integration approach to directly manipulate and control the influ-
ence of certain regions in the objective space for the hypervolume indicator;

– Three new example set measures for biobjective problems that provide the
same sensitivity as the hypervolume indicator, but represent different types
of preference information: (i) the preference of extreme solutions, (ii) the
preference of predefined reference points, and (iii) bias towards one of the
objectives.

The usefulness of the methodology and the three proposed measures is demon-
strated on selected test problems.

2 Mathematical Framework

2.1 Preliminaries

Without loss of generalization, we consider a maximization problem with n ob-
jective functions fi : X → (0, 1)n, 1 ≤ i ≤ n. Requiring the objective values
to lay between 0 and 1 instead of using R

n as objective space simplifies the
following discussions, but does not represent a serious limitation as there exists
a bijective mapping from R into the open interval (0, 1) ⊂ R. The objective
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functions map a solution x ∈ X in the decision space to an objective vector
f(x) = (f1(x), . . . , fn(x)) ∈ (0, 1)n in the objective space Z = (0, 1)n.

In the following, the (weak) Pareto-dominance relation � is used as a prefer-
ence relation on the search space X indicating that a solution x is at least as
good as a solution y (x � y) if and only if ∀1 ≤ i ≤ n : fi(x) ≥ fi(y).1 This
relation can be canonically extended to sets of solutions where a set A ⊆ X
weakly dominates a set B ⊆ X (A � B) iff ∀y ∈ B ∃x ∈ A : x � y [23]. Note
that any other type of dominance relation, e.g., based on arbitrary convex cones
[13], could be used as well, and the considerations in this paper apply to any
dominance relation.

Given the preference relation �, we consider the optimization goal to identify
a set of solutions that approximates the set of Pareto-optimal solutions and
ideally this set is not strictly dominated by any other approximation set. For
reasons of simplicity though, we assume that the outcome of a multiobjective
optimizer is a set of objective vectors, also denoted as approximation set, and
the set of all possible objective vector sets is denoted as Ω := 2Z. Therefore,
we will also use the symbol � for objective vectors and objective vector sets,
although it is originally defined on X . In practice, one always obtains a set of
decision vectors instead of objective vectors, but most often only the objective
vectors are considered to evaluate the quality of a solution set.

Since the generalized weak Pareto dominance relation � defines only a partial
order on Ω, there may be incomparable sets in Ω which may cause difficulties
with respect to search and performance assessment. These difficulties become
more serious as the number of objectives in the problem formulation increases,
see [3] for details. One way to circumvent this problem is to define a total order
on Ω which guarantees that any two objective vector sets are mutually compa-
rable. To this end, quality indicators have been introduced that assign, in the
simplest case, each approximation set a real number, i.e., a (unary) indicator I
is a function I : Ω → R, cf. [23]. One important feature an indicator should have
is Pareto compliance [9], i.e., it must not contradict the order induced by the
Pareto dominance relation. In detail, this means that whenever A � B ∧ B �� A,
then the indicator value of A must not be worse than the indicator value of B. A
stricter version of compliance would be to require that A � B ∧ B �� A implies
that the indicator value of A is strictly better than the indicator value of B (if
better means a higher indicator value):

A � B ∧ B �� A ⇒ I(A) > I(B)

So far, the hypervolume indicator has been the only known indicator with this
property.

1 If x � y, we say x weakly dominates y. Two solutions x and y are called incomparable
if neither weakly dominates the other one. If for two solutions x and y both x � y
and y �� x holds, we say that x is strictly better than y or x strictly dominates y
(x � y). A solution x∗ ∈ X is called Pareto optimal if there is no other x ∈ X that
strictly dominates x∗.
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2.2 The Hypervolume Indicator

The classical definitions of the hypervolume indicator are based on volumes
of polytopes [22] or hypercubes [5] and assume that Pareto dominance is the
underlying preference relation. Here, we give a generalized definition based on
attainment functions that allows to consider arbitrary dominance relations.

The attainment function [2] gives, roughly speaking, for each objective vector
in Z the probability that it is weakly dominated by the outcome of a particular
multiobjective optimizer. As only single sets are considered here, we can take a
slightly simplified definition of the attainment function:

Definition 1 (Attainment function for an objective vector set). Given
a set A ∈ Ω, the attainment function αA : [0, 1]n → {0, 1} for A is defined as

αA(z) :=
{

1 if A � {z}
0 else

for z ∈ Z.

This definition is illustrated for weak Pareto dominance in Fig. 1 and applies to
any type of dominance relation.

The concept of attainment functions can now be used to give a formal defini-
tion of the well known hypervolume indicator. It is simply defined as the volume
of the objective space enclosed by the attainment function and the axes.

Definition 2 (Hypervolume indicator). The hypervolume indicator I∗H with
reference point (0, . . . , 0) can be formulated via the attainment function as

I∗H(A) :=
∫ (1,...,1)

(0,...,0)
αA(z)dz

where A is any objective vector set in Ω.

In the following section, we will give a rough overview about the new concepts
that are introduced in the paper and illustrate how I∗H(A) can be modified
to incorporate preference information without violating compliance to Pareto
dominance.

3 Introductory Example and Outline of the Proposed
Approach

The attainment function, the integration over which gives the hypervolume for
a given set A, is a binary function: all weakly dominated objective vectors are
assigned 1, while the remaining objective vectors are assigned 0. That means all
weakly dominated objective vectors have the same weight and contribute equally
to the overall indicator value.

The main idea behind the approach proposed in this paper is to give differ-
ent weights to different regions in the objective space. This can be achieved by
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Fig. 1. Illustration of the attainment function αA for A = {a1,a2,a3} in the two-
dimensional case

defining a weight distribution over the objective space such that the value that
a particular weakly dominated objective vector contributes to the overall indi-
cator value can be any real value greater than 0—provided the integral over the
resulting function still exists. To this end, we introduce a weight distribution
function w : Z → R

+, and the hypervolume is calculated as the integral over the
product of the weight distribution function and the attainment function:

Iw
H(A) :=

∫ (1,...,1)

(0,...,0)
w(z) · αA(z)dz

As will be shown later, thereby the basic hypervolume indicator can be modified
such that (a) the compliance to Pareto dominance is preserved and (b) preference
information can be flexibly introduced.

To see what the effect of different weight distribution functions is on the
behavior of the corresponding modified hypervolume indicator Iw

H , it is helpful
to consider equi-indicator surfaces. An equi-indicator surface S(I, K) for a given
indicator function I and an indicator value K is defined as the set of points
z ∈ Z that each has an indicator value K, i.e.:

S(I, K) = {z ∈ Z : I({z}) = K}

In other words, the equi-indicator surface represents the indicator field for ap-
proximation sets with a single element.

If we consider a uniform weight distribution function with w(z) = 1 for z ∈ Z,
we obtain the standard hypervolume indicator I∗H . In this case, the equi-indicator
surfaces looks for n = 2 as depicted in Fig. 2a; from the representation of these
curves, one can conclude that the standard hypervolume indicator has convex
equi-indicator surfaces and therefore implicitly introduces a preference towards
solutions close the the diagonal. For instance, consider the point (0.5, 0.5) located
on the diagonal. To obtain the same indicator value for a point not on the
diagonal, the degradation in one objective needs to be compensated by a larger
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(a) The hypervolume indicator
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(b) A biased indicator

Fig. 2. Equi-indicator surfaces for simple indicators in the biobjective case. The ab-
scissa in these two-dimensional examples denotes f1 and the ordinate f2. Figure (a)
shows (a sample of) surfaces for the hypervolume indicator I∗

H (weight distribution
function w((z1, z2)) = 1), Figure (b) illustrates a biased, modified indicator with weight
distribution function w((z1, z2)) = z1. Points on one equipotential curve share the same
indicator value.

improvement in the other objective, e.g., (0.25, 1) instead of (0.25, 0.75) where
degradation and improvement would be both 0.25.

If we now change the weight distribution function to w(z) = z1 with z =
(z1, z2, . . . , zn), then in the biobjective case the equi-indicator surfaces shown in
Fig. 2b are obtained. Obviously, solutions with objective vectors that have large
components in the direction of z1 are preferred.

Another possibility is to impose special emphasis on the border of the ob-
jective space, see Fig. 3a. The objective vectors in the ’center’ of the objective
space have weight 1, while the objective vectors on the axes are assigned a sub-
stantially larger weight.2 The corresponding equi-indicator surfaces are shown in
Fig. 3b. Here, the bias of the original hypervolume indicator for a single solution
towards the diagonal is removed by putting more emphasis on the areas close to
the coordinate axes.

The above two examples illustrate how weight distribution functions on the
objective space can be used to change the bias of the hypervolume indicator.
Based on these informal observations, we will describe the underlying
methodology next.

4 Methodology: The Weighted-Integration Approach

The main concept of the approach proposed in this paper is to extend the basic
hypervolume indicator by a weight distribution function w : [0, 1]n → R

+ which
serves to emphasize certain regions of the objective space:

2 Since the borders have zero width, they will actually not influence the integral;
therefore, dirac-type functions need to be used to make the border weights effective.



868 E. Zitzler, D. Brockhoff, and L. Thiele

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

200

400

600

800

1000

(a) Weight distribution function with
emphasis on the coordinate axes

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) (Sample of the) equi-indicator
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Fig. 3. Weight distribution function (left) and corresponding indicator (right) when
stressing on coordinate axes

Definition 3 (Generalized Hypervolume Indicator). The generalized hy-
pervolume indicator Iw

H with weight distribution function w : [0, 1]n → R
+ is

defined as the weighted integral

Iw
H(A) :=

∫ (1,...,1)

(0,...,0)
w(z) · αA(z)dz

where A is an approximation set in Ω.

If using this indicator as the basis for optimization algorithms or performance
assessment tools, it would be important to know whether it is compliant with
the concept of Pareto-dominance. This property will be shown next.

Theorem 1. Let w be a weight distribution function w : [0, 1]n → R
+ such that

the corresponding generalized hypervolume indicator Iw
H is well-defined for all

A ∈ Ω. Then for any two arbitrary approximation sets A ∈ Ω and B ∈ Ω, it
holds

A � B ∧ B �� A ⇒ Iw
H(A) > Iw

H(B).

Proof. If we have A � B ∧ B �� A, then the following two conditions hold:
∀y ∈ B ∃x ∈ A : x � y and ∃x ∈ A � ∃y ∈ B : y � x. Now we can easily see
that the attainment functions of A and B satisfy (αA(z) = 1) ⇒ (αB(z) = 1)
as A � B. Every point in the objective space that is weakly dominated by some
element in B is also weakly dominated by some element in A. In addition, as
B �� A there are some points in the objective space that are weakly dominated
by points in A but not weakly dominated by points in B. Therefore, there exists
a region R ⊂ Z with (αA(z) = 1) ∧ (αB(z) = 0) for z ∈ R; in particular:

∫ (1,...,1)

(0,...,0)
(αA(z) − αB(z))dz > 0

Using the definition of the generalized hypervolume indicator and noting that
w(z) > 0, we find Iw

H(A) > Iw
H(B). ��
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In order to simplify the definition of weight distribution functions and to avoid
the use of dirac-type functions, we use a slightly different representation of the
generalized hypervolume indicator where line segments can be used to establish
emphasis on zero-width regions such as axes. Every line segment li is specified
by a start point si ∈ Z, an end point ei ∈ Z, and a corresponding weight
distribution function wi : [0, 1] → R

+
0 . Using these notation, we can rewrite the

generalized hypervolume indicator according to Def. 3 as follows

Iw,w1,w2,...,wL

H (A) :=
∫ (1,...,1)

(0,...,0)
w(z) · αA(z) · dz +

∑
i∈{1,2,...,L}

∫ 1

0
wi(z) · αA(si + t · (ei − si)) · dt

Assuming that the weight distribution functions are chosen such that all integrals
are well-defined, it is easy to see that the property proven in Theorem 1 is
preserved.

In the following, we will discuss three examples of useful weight distribution
functions that will also be used for experimental results.

1. The first weight distribution function is the sum of two exponential functions
in direction of the axes:

wext (z) = (e20·z1 + e20·z2)/(2 · e20)

with L = 0. The effect is an indicator with preference of extremal solutions.
Because of the weight distribution function’s steep slope near the two axes,
a Pareto front approximation with solutions crowded near the axes yield a
larger indicator value than a population with solutions in the interior region
of the objective space where the weight distribution function contribute less
to the indicator value.

2. The second weight distribution function focuses on the second objective by
using an exponential function in f2-direction:

wasym (z) = e20·z2/e20

In addition, the following line segment with a constant weight distribution
function on the f1-axis is used:

wasym
1 (z) = 400, s1 = (0, 0), e1 = (1, 0)

where L = 1. This combination results in an indicator preferring solutions
with extreme f2 values and an additional solution near the f1 axis. The
additional line segment along the f1 axis used here instead of an additional
exponential function in f1 direction yields only a single additional solution
lying near the f1 axis instead of many solutions with large f1 value as with
the weight distribution function defined above.
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3. Often, a decision maker has some idea which points in the search space are
the most important ones. With the third weight distribution function, we can
integrate such information into a Pareto-compliant indicator. A point (a, b)
of interest, also called reference point, can be chosen in advance. The weight
distribution function defined below will direct the search of indicator based
algorithms towards this point. Multiple reference points can be considered
simultaneously by adding up the corresponding distinct weight distribution
functions.

The following weight distribution function is based on a ridge-like function
through the reference point (a, b), parallel to the diagonal:

wref (z) =

{
c + (2−((2(x−a))2+(2(y−b))2))

(0.01+(2(x−a)−2(y−b))2) if |z1 − a| < 0.5 ∧ |z2 − b| < 0.5
c else

with L = 0. The constant c should be chosen small in comparison to the
values of the ridge; here, we use c = 10−5.

The computation of the generalized hypervolume indicator is based on the rep-
resentation described above. It first partitions the whole unit hypercube [0, 1]n

into smaller hyperrectangles based on the objective vectors contained in the set
A, and then the weighted volumes of these hyperrectangles are added. To this
end, the above weight distribution functions have been symbolically integrated
using a commercial symbolic mathematics tool.

5 Proof-of-Principle Results

5.1 Simple Indicator-Based Optimization Algorithm

For the experimental validation of the weighted-integration approach, a simple
indicator-based evolutionary algorithm (SIBEA) is considered that uses similar
concepts as proposed in [10,20,4,7]. As the purpose of this section is to show
the influence of preference information which has been incorporated into the
generalized hypervolume indicator and not to compare different optimization al-
gorithms, methods to improve the convergence rate such as fitness-based mating
selection are not taken into account.

SIBEA (Simple Indicator-Based Evolutionary Algorithm)
Input: population size μ; number of generations N ; indicator function I;
Output: approximation of Pareto-optimal set A;
Step 1 (Initialization): Generate an initial set of decision vectors P of size μ; set
the generation counter m := 0.
Step 2 (Environmental Selection): Iterate the following three steps until the size
of the population does no longer exceed μ:

1. Rank the population using Pareto dominance and determine the set of indi-
viduals P ′ ⊆ P with the worst rank.
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2. For each solution x ∈ P ′ determine the loss d(x) w.r.t. the indicator I if it
is removed from P ′, i.e., d(x) := I(P ′) − I(P ′ \ {x}).

3. Remove the solution with the smallest loss d(x) from the population P (ties
are broken randomly).

Step 3 (Termination): If m ≥ N then set A := P and stop; otherwise set
m := m + 1.
Step 4 (Mating): Randomly select elements from P to form a temporary mating
pool Q of size μ. Apply variation operators such as recombination and mutation
to the mating pool Q which yields Q′. Set P := P + Q′ (multi-set union) and
continue with Step 2.

As to the environmental selection step, an issue are dominated individuals
in the population: they never lead to a change in the indicator value which is
entirely determined by the nondominated front of the population. Therefore, the
population is first partitioned into fronts (Step 2.1) using the dominance rank
(number of dominating individuals)3, and only individuals located in the worst
front are investigated for deletion.

Furthermore, we consider two scaling variants to obtain the maximum effect
of the weighted integral: online and offline scaling. In the online variant, the
objective function values are scaled to the interval [0, 1] within each genera-
tion; to guarantee that boundary solutions contribute a non-zero hypervolume
to the overall indicator value, for each axis a line segment with a constant weight
distribution function is added. The offline variant does not scale the objective
function values but the weighting distribution function. In detail, the weighted
integral is only computed over and scaled to the region of the Pareto front, which
needs to be known in advance. Since any approximation set outside this region
would yield an indicator value of zero, the standard hypervolume indicator value,
down-scaled such that is does not interfere with the weighted integral, is added.

5.2 Experiments

We now show how the three weight distribution functions defined above influence
the search process of SIBEA for three biobjective test problems. For each weight
distribution function, we derive two indicators, one for the online scaling method
and one for offline scaling, resulting in six different indicators overall. We name
the corresponding indicators Iext

H , Iasym
H , and Iref

H respectively, and distinguish
between the online and the offline version. The same holds for the usual hypervol-
ume indicator IH , where we also distinguish between the two scaling methods.

The test functions ZDT1, ZDT3, and ZDT6, cf. [19], are optimized by a
SIBEA run with population size 20 for 1000 generations.4 Note, that the ZDT

3 A nondominating sorting could be used as well.
4 The individuals are coded as real vectors with 30 (ZDT1 and ZDT3) and 10 (ZDT6

decision variables, where the SBX-20 operator is used for recombination and a poly-
nomial distribution for mutation. The recombination and mutation probabilities were
set to 1.0, according to [3].
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Fig. 4. Pareto front approximations for the three different indicators based on weight
distribution functions on the function ZDT1. For reference, the generated Pareto front
approximation using the usual hypervolume indicator IH is given in (a). The two scaling
methods are plotted for comparison.

functions are to be minimized. Thus, an internal transformation is performed,
independent whether the online or offline scaling is enabled.

The figures Fig 4, Fig. 5, and Fig. 6 show the computed Pareto front ap-
proximations after 1000 generations for the three ZDT functions and the three
indicators Iext

H , Iasym
H , and Iref

H with both scaling methods. The reference point
for Iref

H is chosen as (0.5, 0.6) for ZDT1 and ZDT6 and as (0.5, 1.2) for ZDT35.
The approximation derived with the established hypervolume indicator IH is
also shown as golden reference.

The experiments show two main aspects. Firstly, the behavior of the evolu-
tionary algorithm is similar for all three problems if always the same indicator is
used—independent of the front shape and the scaling method used. With the in-
dicator Iext

H the solutions accumulate near the extremal points. When using the
indicator Iasym

H , mainly the f2 values are minimized. Due to the additional weight
on the line segment, at least one solution with large f1 value is also kept in the
population if Iasym

H is used. With the indicator Iref
H , the population moves towards

5 The reference point is changed for ZDT3 due to the larger Pareto-optimal front of
the ZDT3 problem.
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Fig. 5. Pareto front approximations for the three different indicators and the two scal-
ing methods on the function ZDT3. For reference, the generated Pareto front approx-
imation using the usual hypervolume indicator IH is given in (a). Due to the larger
Pareto-optimal front, the reference point for Iref

H is chosen as (0.5, 1.2).

the predefined reference point (0.5, 0.6), and (0.5, 1.2) respectively. Secondly, the
weighted-integration approach seems to be feasible for designing new Pareto-
compliant indicators according to specific preferences. The simple indicator-based
algorithm was indeed attracted to those regions in the objective space that were
particularly emphasized by means of large weight values.

When comparing the two scaling variants, online and offline, only slight dif-
ferences can be observed with the test cases studied in this paper. Online scaling
has the advantage that the preferences are always adapted according to the cur-
rent shape of the Pareto front approximation. However, thereby the actual global
indicator changes during the run and potentially cycles can occur during the op-
timization process—a phenomenon, cf. [12], that emerges with most algorithms.
Cycling is not necessarily a problem in the biobjective case, but as the number
of objectives increases, it is likely that this behavior causes difficulties. The al-
ternative is offline scaling. Here, the indicator remains fixed and can be used for
comparing the outcomes of different methods. The drawback of this approach is
the requirement that domain knowledge is available: either about the location
of the Pareto front or about regions of interest. This problem holds basically for
all types of indicators.
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Fig. 6. Pareto front approximations for the three different indicators based on weight
distribution functions on the function ZDT6. Plot (a) shows the generated Pareto front
approximation using the usual hypervolume indicator IH for comparison. The reference
point for Iref

H is chosen as (0.5, 0.6).

6 Discussion

This paper has introduced a novel methodology to design Pareto-compliant in-
dicators on the basis of the hypervolume indicator. Different preferences can
be integrated, while an important property of the hypervolume indicator, sen-
sitivity to dominance, is preserved. This is insofar an important result as up to
now the pure hypervolume indicator has been the only one with this property.
The possibility to design dominance-sensitive and Pareto-compliant indicators
that can guide the search towards extreme solutions or reference points offers
therefore more flexibility to tune the search with respect to the decision maker’s
preferences. We have demonstrated how this approach works and can be used
for three example indicators in biobjective scenarios. As expected, the outcomes
reflected the encoded preferences.

The presented methodology offers new ways for multiobjective optimization
and performance assessment. However, this paper is just a first step in this direc-
tion, and the capabilities as well as the limitations of the weighted-integration
approach need to be explored and require more research. In particular, the fol-
lowing considerations may point to interesting future research topics:
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– The presented new indicators are designed for biobjective problems, but
clearly one is interested in general indicators for n objectives; the first two
indicators can be easily extended to higher dimensions, but for the ridge-
based indicators this extension is not straight forward. The definition of
general indicator classes for an arbitrary number of objectives will be one of
the next steps to take.

– The efficient computation of the generalized hypervolume indicator based
on weight distribution functions is especially an issue, if it is hard to obtain
a function for the integral in closed form; here, numerical approximation
might be a solution, although it is unclear how such an approach could work
in practice.

– Whether novel indicators require new algorithms is an open issue; this holds
in particular when other dominance relations based an arbitrary convex cones
are used.
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16. L. While, L. Bradstreet, L. Barone, and P. Hingston. Heuristics for Optimising
the Calculation of Hypervolume for Multi-objective Optimisation Problems. In
IEEE Congress on Evolutionary Computation (CEC’2005), pages 2225–2232, IEEE
Service Center, Edinburgh, Scotland, Sept. 2005. IEEE Press.

17. L. While, P. Hingston, L. Barone, and S. Huband. A Faster Algorithm for Calculat-
ing Hypervolume. IEEE Transactions on Evolutionary Computation, 10(1):29–38,
Feb. 2006.

18. E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods and
Applications. PhD thesis, Swiss Federal Institute of Technology (ETH) Zürich,
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Abstract. Considering external parameters during any evaluation leads
to an optimization problem which has to handle several concurrent multi
objective problems at once. This novel challenge, the Multiple Multi Ob-
jective Problem M-MOP, is defined and analyzed. Guidelines and metrics
for the development of M-MOP optimizers are generated and exemplary
demonstrated at an extended version of Deb’s NSGA-II algorithm. The
relationship to the classical MOPs is highlighted and the usage of perfor-
mance metrics for the M-MOP is discussed. Due to the increased number
of dimensions the M-MOP represents a complex optimization task that
should be settled in the optimization community.

Keywords: Multiple Multi Optimization Problem M-MOP, Perform-
ance Evaluation, Genetic Optimization.

1 Introduction

Since most practical problems are characterized by contradicting targets the
extension to optimize several objectives has got more and more attention. The
purpose of this type of problem, the multi objective problem MOP, is to find the
so called Pareto Set, containing all non-dominated solutions [1].

This paper presents a novel extenion to MOP, the so called multiple multi
objective problem M-MOP. The challenge is to find the optimal solutions for
several similar MOP problems at once. Since all the single problems are itself
MOPs, optimality is still Pareto optimality. The similarity of the problems is,
that they share exactly the same input space, the decision space.

A domain that naturally leads to a M-MOP is any kind of evaluation. A MOP
results from the evaluation of an algorithm by a set of configuration parameters.
Whereas these parameters represent the input (the decision space) the evaluated
performance represents the output (the objective space). Due to the fact that the
final preferences between the several performance metrics are usually not known
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at evaluation time, this results in a classical MOP. According to Coello [2] this
is called ’a posteriori’ preference articulation.

In fact the resulting performance further depends on some external parameters
which are properties of the test site. These properties are further called context.
To enable the user of the evaluation data to adjust the evaluation result to fit
its own application the explicit consideration of this context is required. In cases
where these context parameters can be configured concurrently on the test site
a single evaluation run delivers several results for each of the realized contexts
(see Fig. 1). Consider that a single evaluation run has just a single input vector.
Every relationship between this input and the output of a single context is the
task of a single MOP. In contrary the relation between the single input and the
multiple outputs is the task of a multiple MOP, the M-MOP.

Fig. 1. The incorporation of external parameters (the context) as generator of multiple
multi objective output

A typical example is the evaluation of object detection algorithms in the com-
puter vision domain [3]. Such algorithms search for pre-specified objects in an
image. There exist a lot of different algorithms [4,5,6] and evaluation endeav-
ors [7,8] for this type of algorithms. Obviously their performance depends not
only on the configuration of the algorithms itself, but additionally on the prop-
erties of the images and the objects used in the test databases. These properties
build the context of the evaluation.

For the integration of an object detection algorithm it is important that the
following requirements are specified:

– The performance characteristic that needs to be met. Typical examples for
object detection algorithms are values for success rate, processing time and
spatial accuracy.

– The expected context of the application. For the object detection task typical
examples are the appearance and expected size of the objects to detect,
lighting conditions and image noise.

In the same way as the requirements are specified the evaluation has to represent
its results. Consequently a contex sensitive evaluation is required.

At first glance the context can be integrated as additional input. Due to
the mechanisms of optimization methods bad context conditions will never be
analyzed. Another approach is to simply expand the output by the context
values. This leads to an optimization of the context itself, which is not the
intention of the entire challenge. A third approach is the exhaustive calculation
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of the MOP for every single context separately, which leads to an enormous
computational effort. A detailed description of these dependencies is presented in
Section 2. For that reason it becomes reasonable to efficiently use the concurrency
potential by creating a new problem type, the M-MOP.

To the best knowledge of the authors there is no scientifically work published
dealing with M-MOP. Preliminary results by the authors have been presented
in [9]. The complete approach and demonstration results are given here. Since
this challenge is an extension of the classical MOP all further treatments during
the next sections include the state of the art related to them.

Considering the M-MOP as a new challenge all classical MOP tools and ap-
proaches need to be reconsidered. Especially the optimization techniques for
solving MOP have to be adapted. Section 2 introduces a detailed definition of
the M-MOP problem. Section 3 presents an optimization algorithm by adapting
Deb’s NAGA-II [10]. Further more the performance metrics used to evaluate the
optimization techniques have to be adapted. Section 4 details this phenomena
and presents a newly developed performance metric that takes the specific of
the M-MOP into account. Finally Section 5 summarises the paper and presents
an outlook for further research.

2 Definition of the M-MOP

The mathematical background of the M-MOP is still the same as the background
of a single MOP. The single MOP maps an input vector x of the m dimensional
input (decision space) x ∈ Xm to an output vector f(x) of the n dimensional
output (objective space) f(x) ∈ Fn as can be seen in Figure 2. Using the domi-
nation relation defined in the objective space the Pareto front, the Pareto set and
the Pareto rank of optimal solutions for a single MOP are defined [2] (see Fig. 2).

Fig. 2. The mapping of a classical Multi Objective Problem (MOP) with dominated
solutions, the Pareto front and the Pareto set

In cases where this mapping is further influenced by some external conditions
there are several options to integrate these context parameters c of the context
space c ∈ Co into a classical MOP, which are discussed below (see Fig. 3):
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– Extending the input by the context (see Fig. 3(a)): The resulting mapping
will be f (x, c). A common optimizer for a single MOP tries to find all optimal
solutions, the Pareto set, of the entire decision space. Since the real input
space and the context space are unified, just the optimal solutions over this
unified decision space will be found. Considering a difficult context that
generally degrades the output still provides optimal solutions regarding to
only this context. However these solutions will not appear as output of the
optimizer since other easier contexts would produce better outputs, which
will dominate the solutions of the bad context. For that reason such an
integration of the context is not preferred.

– Extending the output by the context (see Fig. 3(b)): The resulting mapping
will be fc(x) with fc ∈ FCn+o. This approach is mathematically not ap-
propriate, since the context dimensions do not need to have an order. The
different values in the set of a specific context dimension can be distinguished
but they do not need to have an ordering relationship. An example is the
topology of an object, which can be ’convex’, ’concave’ or ’with holes’. Al-
though these properties influence the appearance of the object in an image
and will therefore generate different detection rates there is no inherent or-
der between these instances. As a result if there is no ordering relation, the
dominance relation is not defined and hence no Pareto front and Pareto set
can be calculated. Consequently the entire optimization definition gets lost.

– Treating every context as a single MOP (see Fig. 3(c)): The resulting map-
ping will be ∀c ∈ Co fc(xc). This corresponds to an exhaustive search for all
possible context values. It is obvious that such an approach is not efficient
and therefore not appropriate.

– The M-MOP mapping (see Fig. 3(d)): The characteristic that constitutes the
extension to a M-MOP is that all different MOPs share the same input space,
where the outputs are generated concurrently. Accordingly the suggested
mapping is ∀c ∈ Co fc(x).

Out of this definition some properties and values can be extracted that ex-
plicit deal with M-MOP and support the design of optimization algorithms and
metrics. One of the core property that characerises the M-MOP is the fact of a
shared decision space, respectively the independence of the decision space from
the context (x⊥c). This property should be efficiently used when dealing with
this type of challenge and is therefore essential for the design of M-MOP opti-
mization algorithms.

Another property that follows directly from the definition is that for a sin-
gle input there are multiple outputs, one for every context. After collecting a
set of solutions the Pareto rank for every solution in every context can be cal-
culated. To compress this information to a single value just the best Pareto
rank value (the lowest) is selected and further defined as best Pareto rank bPr =
min{Prc1, P rc2 , ..., P rco}. This value packs the quality of a solution into a single
value. As a result it is of great interest for optimization algorithms, because they
require a metric enabling the comparison of different solutions. Due to the un-
derlying Pareto ranking of a single context a normalization takes place between
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(a) Extending the input by the
context.

(b) Extending the output by
the context.

(c) Treating every context as a
single MOP.

(d) The M-MOP mapping.

Fig. 3. Extending the classical MOP mapping by introducing context. Only the M-MOP
mapping generates optima for all contexts, is mathematically feasible and efficient.

the different contexts. Thus a suppression of bad contexts like in the ’context-
into-input’ mapping version is avoided. Furthermore the minimum operator of
the best Pareto rank guarantees the focussing on optimal solutions.

Using the concept of the best Pareto rank and the according normalization
between different contexts the optimality can be redefined as a solution with
a best Pareto rank of 1. Having optimality defined directly leads to the next
definition, the so called best Pareto Rank set. This is the set of solution out of all
possible solutions with a best Pareto rank of 1. It contains all solutions that are
Pareto optimal in at least one single context and represents therefore the goal
of an optimization of a M-MOP.
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Analysing these concepts the relation between M-MOP as an extension of MOP
gets obvious. The best Pareto rank replaces the usual Pareto rank as relationship
value between different solutions, and the best Pareto rank set replaces the Pareto
set as the collection of optimal solutions. Finally, note the fact that the dominance
relation between solutions is still only defined for one single context.

3 Solving a M-MOP

There is a large set of different approaches for optimizing classical MOPs. An ex-
cellent survey can be found in [2]. By far the most scientific effort is spent on genetic
algorithms for finding the optimal solutions of a MOP. Some of the most promi-
nent algorithms which are reflecting the development during the last two decades
are VEGA [11], MOGA [12], PAES [13], NSGA-II [10] and SPEA2 [14]. The main
contradicting properties these methods have to deal with are the convergence to
the Pareto front and the diversity of the solutions found as well as the efficiency
represented by the processing time or the number of evaluations required.

To express the challenges that need to be considered when designing an opti-
mization method for a M-MOP NSGA-II [10] is used as a base. Its methodology
is exemplarily adapted and extended to handle the M-MOP properties. To enable
a clear separation between the original and the extended versions, it is further
called E-NSGA-II.

The first and probably most important property that needs to be considered
for the design of optimizers for a M-MOP are the multiple instances of the ob-
jective space. There exists one for every context. Although there can be any kind
of averaging technique used to still operate in this space (e.g. mean, standard
deviation, minimum or maximum value, ...), a careful selection of these values
has to be done. Further more, the computational effort increased enormously,
since the calculations have to be done for every context separately. Out of these
insights it is advisable to avoid any operation in the objective space.

In classical MOP optimization methods the objective space is intuitively used
to calculate the density of solutions. Examples are SPEA2 [14] and NSGA-
II [10]. A solution for the M-MOP is to relocate the density calculations from
the objective space to the decision space. The placement of these measures to
either the decision space or the objective space was subject to a long scientific
discussion [1] where the practical implementations nowadays tend to use the
objective space. Consequently such a relocation is conventional.

For the E-NSGA-II this simply results in the relocation of the diversity value
calculation from the objective space to the decision space. Especially in cases
where the decision space consists of discrete dimensions like in the example of the
visual object detection task, this enables an easy normalization of the different
dimensions, by simply counting the number of digits between solutions.

Another effect that needs to be considered is the extension of the Pareto rank
to the best Pareto rank. Especially in NSGA-II the Pareto rank is the main se-
lection criteria. Accordingly the best Pareto rank is used in the E-NSGA-II. A
drawback of the best Pareto rank is its computational effort. The complexity of
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a single Pareto rank calculation is multiplied by the number of contexts. Still the
normalization and optimization character of the best Pareto rank intends its use.

The practical implementation of the E-NSGA-II optimization algorithm for
the visual object detection M-MOP had to deal with some further task specific
challenges. An important property is the enormous evaluation time. Typical
processing times for an object detection algorithm are in the order of seconds.
Since a single evaluation run needs to process several hundreds of images to
achieve statistically plausible evaluation results a single solution evaluation can
take several minutes. According to this fact it is the main goal of the E-NSGA-II
implementation to keep the number of evaluations as low as possible.

Another property of this task is the high number of dimensions combined with
a very low quantification at each of these dimensions:
– The decision space depends on the vision method evaluated. It has 3 to 4

dimensions with a resolution of 3 to 9 values each.
– The objective space consists of 8 dimensions consisting of discrete and con-

tinuous metrics.
– The context space consists of 8 dimensions with a resolution of 3 to 4 values

each.
Especially the low quantification of the decision space and the context space
will be increased in the near future. Nevertheless the resulting Pareto front is
expected to be cliffy.

The last property is more related to the use of the evaluation. Since perfect per-
forming computer vision algorithms for object detection are just available for very
restricted setups1, the final user who selects an object detection algorithm based
on the evaluation cannot expect an optimal performing algorithm. As a result it
is not absolutely necessary to deliver the global optimal algorithm configuration
for the specified context. An algorithm that performs close to the optimum will
be sufficient.

To deal with this difficult task a dynamic population size in relation to the
number of Pareto optimal solutions and the number of overall evaluated indi-
viduals is integrated. Further more the mutation probability is set by an inverse
relation to the number of new generated Pareto optimal solutions. These two
mechanisms enable an reactive behavior of the algorithm behavior to achieve
diversity when necessary.

Generally speaking the optimization of an M-MOP is a parallel problem solv-
ing strategy. Due to the use of the concurrent evaluation of several contexts a
lot of computational effort can be saved. Enabling a measurement of this fact as
well as the general optimization behavior is the content of the following section.

4 Evaluating M-MOP Optimizers

This section presents the development of metrics measuring the performance
of optimization algorithms for M-MOPs. Like for the classical MOP there are
1 Computer vision is successfully deployed in industrial application where environmen-

tal conditions like light, viewing direction or occlusion can be controlled.
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at least three different properties that have to be expressed by performance
metrics [15,16,17]:
– Convergence expresses the displacement between the real Pareto front and

the Pareto front build by the solutions found so far.
– Diversity expresses the distribution of the found solutions over the entire

objective space.
– Efficiency expresses the computational effort required.
The efficiency property is the easiest one to measure. It is usually specified

by the processing time or the number of evaluations required [17]. The same
paper presents a detailed insight in the behavior of a lot of state of the art
performance metrics. Typical examples are the generational distance [18] and
D1R [19] for convergence, the spread [20] and maximum spread [21] measure as
well as the ’diversity’ measure by Deb&Jain [22] for diversity and the hypervol-
ume indicator [23,24] also called S metric and Lebesgue measure as a combined
metric.

Of course most of these metrics are completely defined in the objective space.
As already mentioned in the previous section this contradicts with the guidelines
established for dealing with a M-MOP. However in contrary to the optimization
methods the metrices completely relay on the objective space. A relocation to the
decision space as done for the diversity at the E-NSGA-II development would
lead to a complete modification of the meaning of the metric. Therefore an
relocation approach for the reuse of these metrics for M-MOP is not appropriate.

The only reasonable alternative is to calculate the metrics for every single
objective space and using some averaging technique to conclude to a final value.
As already discussed in the previous section averaging over all contexts has
to be done carefully. For example most of the performance metrics of a single
MOP are itself already the outcome of some averaging. A typical example is the
generational distance [18]. Let Fi and FGT be a set of non-dominated solutions
and the set of all Pareto-optimal solutions. The generational distance is the
average distance from each solution in Fi to its nearest Pareto-optimal solution
FGT . Since in the M-MOP case there exist several Fi and FGT sets the averaging
can be done in two steps. The first one is averaging by the number of solutions in
Fi in every context separately. In the second step the average for all contexts is
calculated from all the single values of step one. Another approach is to calculate
the average from all distances of all solutions in all Fi of every context in one
single step. To keep the meaning of the metric as similar as possible to the
MOP metric the two step approach is preferred. Still keep in mind that some
contexts which for example contain very few Pareto points can influence the
metric enormously. A first attempt to reduce the intensive use of the objective
space is presented in the next subsection.

4.1 Average Pareto Rank Difference

The key idea for this novel performance metric is to avoid some objective spe-
cific normalization by the reuse of the Pareto rank concept. In contrary to the
generational distance or the D1R metrics that utilize the euclidian distance
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between the non-dominated solutions and the real optimal solutions, the dif-
ference in terms of the Pareto rank is used for the new metric.

With Pi as the population under investigation, Fi the non-dominated individ-
uals of Pi related to Pi, the entire set of possible individuals as ’entire ground
truth’ PGT and FGT as the non-dominated individuals of PGT , the Average
Pareto Rank Difference APRD is defined as:

APRD(Fi, P
GT ) =

∑
u∈F GT RD(Fi, u)

card{FGT } (1)

With RD as the ranking difference function:

RD(Fi, u) =

⎧⎨
⎩

maxv∈Fi | u � v PR(v |P GT )
if card{∀v∈Fi |u�v}>0

max{2, maxv∈Fi | cmin∗u � v PR(v |P GT )}
if card{∀v∈Fi |u�v}=0

(2)

cmin = min{∀c ∈ R | card{∀v ∈ Fi | cu � v} > 0} (3)

Where PR(v |PGT ) is the Pareto rank of the solution v in the entire ground
truth population PGT , and card{X} is the number of elements of the set X .

To understand the APRD it is important to differentiate between the follow-
ing two sets (see Fig. 4(a)): the target set (FGT ), as the Pareto set of optimal
solutions over all possible solutions (PGT ), and the status set (Fi), as the Pareto
optimal solutions of the population under investigation (Pi). Obviously all status
points are non-dominated in the set of the population under investigation (Pi)
and have therefore a Pareto rank of 1 regarding the population under investiga-
tion (Pi). The key is, that additionally all status points (Fi) can be attributed
with a Pareto rank according to all possible solutions (PGT ) that can be different
from 1.

The idea of the APRD is to search for Pareto optimal solutions (Fi) in the
population under investigation, that are probably selected instead of the real
optimal solutions (FGT ). As expressed by Equation 2, there are two different
cases: The first and propably usual one is that of a target point that dominates
at least one status point (see Fig. 4(b)). For this case the worst Pareto rank
of all these dominated status points counts for the APRD. In the second case
the target point dominates no status point. To still find a status point that is
probably selected instead, the target point is linear extended in the objective
space, until it dominates a status point (see Fig. 5).

Finally, the average of all Pareto rank values using the number of target points
is calculated. The range of the APRD is ≥ 1. The optimal value is 1. In this
optimal case every target point is found and hence equals the status points,
which accordingly have a Pareto rank of 1 regarding all possible solutions.

While this metric is still defined regarding a MOP the extension to the M-
MOP follows the suggestion given before by averaging over all context specific
APRD values. Consider, that due to the use of the Pareto rank normalization
also sparse occupied objective spaces contribute no big outliers and therefore
cannot distort the final APRD value.
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(a) The potential status points,
that could be selected instead of the
missed target point (maximization
assumed).

(b) The Pareto rank assignment of
the status points related to the
ground truth, and the selected local
worst case of rank 3 (maximization
assumed).

Fig. 4. The selection and ranking for the ’Average Pareto Rank Difference’ APRD
performance metric

Fig. 5. The target point dominates no status solutions. Hence it is linear extended
using a factor cmin to find the next status point (maximization assumed).

Even so the handling of the target solutions that originally do not dominate
status points is done in the objective space. The normalization mechanism used
there is the linear extension of the solution itself.

The consequent search of the APRD for solutions that are selected instead of
the real optimal ones is further motivated by a user point of view. The benefit
of the entire optimization mechanism is to avoid a practically not possible ex-
haustive search for the best solution. Due to the shortcomings associated with
optimization techniques the real optimal solutions cannot be guaranteed. As a
result the main interest of the final user is the loss in performance generated by
the miss of optimal solutions. To enable a single metric to represent this perfor-
mance loss a normalization has to be done. For the APRD the Pareto rank as a
preference free normalization mechanism is used.
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Even though the APRD mainly measures the convergence of a population, the
counting and averaging according to all optimal ground truth solutions provides
some diversity properties. An important assumption for the APRD is that the
decision space is discrete. Together with the related requirement of the Pareto
ranks for all possible solutions this is the main disadvantage of the APRD.

Finally, it has to be stated that the APRD is a conservative metric. For all
available solutions that are dominated by the missed ground truth point the one
with the worst Pareto rank counts. Accordingly the APRD represents a lower
bound for the performance loss. As a result a real selected solutions can perform
better than expressed by the APRD metric.

4.2 Performance of the E-NSGA-II for M-MOP

The evaluation is done using the data provided by two different object detection
algorithms. The first one is based on color histograms, further called GCH [25],
where the second one uses a support vector machine SVM [26] to discriminate
different image patches. The dynamic population size is handled using two re-
lationship parameters. The ’Optimal-Pop-Size-Multiplier’ sets the maximum of
individuals of a population regarding the number of optimal individuals found
so far and is set to 3. The ’Individual-Pop-Size-Multiplier’ sets the maximum of
individuals of a population regarding the number of individuals generated and
is set to 0.8. As long as not explicitely mentioned, the standard values for the
following experiments for the initial population size is 10, for the number of gen-
erations is 25, for the crossover propability is 0.8 and for the starting mutation
rate is 0.12. To explain the dependency to random values all experiments are
repeated 10 times with different seed values.

The first evaluation compares the performance of the E-NSGA-II algorithm
to a purely random search. This is done regarding the number of evaluations,
and the so called success rate. This value measures the rate of Pareto optimal
solutions found. Table 1 points out the gain of using the genetic optimization
algorithm.

Table 1. The mean of the evaluated success rate for the GCH method of the E-NSGA-
II algorithm compared to a random search at different percentages of evaluations done
regarding the number of possible evaluations

number of evaluations E-NSGA-II random

10% 0.366 0.092198
20% 0.713 0.168085
30% 0.954 0.234752
40% 0.993 0.296454

Even though these values are not encouraging. For finding 95% of the real op-
timal solutions of this dataset 30% of all possible solutions have to be evaluated.
However the real benefit of the genetic algorithm is clarified by comparing not the
pure success rate but using the APRD value of Section 4.1. This metric considers
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Table 2. The mean of evaluated ’Average Pareto Rank Difference’ APRD for the
GCH method of the E-NSGA-II algorithm compared to a random search at different
percentages of evaluations done regarding the number of possible evaluations

number of evaluations E-NSGA-II random

10% 2.432 2.73125
20% 1.908 2.58669
30% 1.572 2.27775
40% 1.309 2.1864

that a not found Pareto optimal point can be replaced by a relatively well per-
forming solution. Table 2 presents the results for the E-NSGA-II algorithm and a
random search.

A more detailed analysis for only the E-NSGA-II algorithm is presented in
Table 3. The convergence behavior of especially the worst case (the maximum
value) shows the robustness of the approach. After 10 generations a selection of
at least the third best solution is provided.

Table 3. The evolution of the E-NSGA-II algorithm for the GCH object detector in
terms of the APRD

generations mean value min value max value

5 3.3722 2.30341 4.98024
10 2.40762 1.6826 2.86687
15 2.02137 1.38715 2.74748
20 1.79079 1.31474 2.44171
25 1.75323 1.30659 2.43833

To express the difficulty related to the low quantification of the underlying
computer vision task the same object detection method is evaluated with an
even worse parameter resolution (see Table 4). The mean and best (minimum)
values promise a well performing optimization. Even so the real reason for these
apparently good values is the low resolution of possible solutions. Due to this
fact the maximum number of solutions theoretically dominated is in the order
of 5. This behavior can be extracted by the slow convergence of the worst case
(the maximum value).

Table 4. The evolution of the E-NSGA-II algorithm for the GCH object detector with
reduced decision space resolution in terms of the APRD

generations mean value min value max value

5 2.39391 1.66234 3.59369
10 2.14373 1.495 3.07269
15 1.89555 1.0 3.01923
20 1.41196 1.0 3.00433
25 1.30955 1.0 3.00433
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Table 5. The evolution of the E-NSGA-II algorithm for the SVM object detector with
reduced decision space resolution in terms of the APRD

generations mean value min value max value

5 2.71488 2.29564 3.29721
10 2.06048 1.67064 2.48775
15 1.89104 1.43546 2.22319
20 1.83273 1.34223 2.22319
25 1.76618 1.15343 2.18197

Table 6. A comparison of different mutation rate values for the evolution of the E-
NSGA-II algorithm for the GCH object detector in terms of the mean APRD values

mutation rate
generations 0.10 0.12 0.14

5 3.36471 3.3722 2.86929
10 2.66545 2.40762 2.25021
15 2.0521 2.02137 1.88017
20 1.75965 1.79079 1.73598
25 1.74585 1.75323 1.71969

As already stated previously the main interest of the final user is not finding
the global optimum. They require good solutions but in a fast and especially ro-
bust way. To indicate the reliability of the E-NSGA-II algorithm Table 5 presents
the performance for the second object detection algorithm, the SVM.

Finally, Table 6 presents the dependency of the performance of the E-NSGA-
II algorithm to the mutation rate. For this dataset performing more than 20
generations delivers robustness against minor variations of the mutation rate.

5 Conclusion

This paper contributed a novel challenge for the optimization community, the
multiple multi objective problem M-MOP. It is an extension of the multi ob-
jective optimization (MOP) problem by the fact that the evaluation of a single
solution provides a set of outputs where each output itself consists of multiple
objective values.

As an example from the computer vision domain, the context sensitive eval-
uation and selection of object detection algorithms is used. The concurrent ap-
pearance of different objects with different contextual properties like topology or
reflectance in one single image permit the evaluation of these algorithms using
a single evaluation run. Consequently several evaluation outputs are obtained
concurrently for a single object detection algorithm configuration.

Several straight forward approaches to handle this type of challenge are
presented which turned out to fail either mathematically or at least by their
computational effort. The main idea for the solution is to intensively use the
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concurrency property these problems provide. This leads to guidelines and met-
rics that support the development of optimization algorithms and supports the
handling of the challenge. One of these guidelines is that computation in the
objective space should be avoided. The most important metric defined is the
one of the best Pareto rank. It enables the compression of the performance of a
solution over all contexts to a single value.

A first optimization technique for finding the Pareto optimal solutions of a
M-MOP is presented. It is based on the Deb’s NSGA-II approach for the classical
MOP. The core adaptations done according to the presented proposals are the
use of the best Pareto rank value as the main selection criteria and the relocation
of the diversity measure from the objective space to the decision space.

Further more the properties of the M-MOP are analyzed according to the
use of performance metrics of classical MOPs. Especially the averaging of these
metrics over the different contexts has to be done carefully. A new performance
metric the Average Pareto Rank Difference APRD is introduced which partly
relaxes these problems. Additionally this metric is perfectly dedicated for the
users of optimizers since it represents the loss of performance between using the
optimizer result instead of the theoretical optimum.

A detailed evaluation of the developed E-NSGA-II algorithm is performed.
The results justify the guidelines presented in Section 3 for the development of
optimization algorithms for M-MOP. Finally the motivation of the new devel-
oped Average Pareto Rank Difference APRD performance metric is confirmed.

Whereas this paper defines the M-MOP challenge and presents some first
methods to handle it there is still a lot of space for improvements. First of all
the adaptation of several common MOP optimization algorithms to the task of
a M-MOP needs to be done. On top of that the generation of a completely new
optimization algorithm for M-MOP could provide higher performance.

Another important topic is to experiment with several classical performance
metrics and to evaluate their behavior at the M-MOP. Related is the extension
and creation of test databases of this specific task. Especially the availability
of data from several different domains as well as artificial data is important to
enhance the reliability of evaluation results and to increase the motivation for
this new optimization problem. Finally, a detailed analyse of the diversity of
the best Pareto rank sets could provide fundamental theoretical insight enabling
more advanced distribution techniques.
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Abstract. Recent studies show that evolutionary optimizers are effective tools 
in solving real-world problem with complex and competing specifications. As 
more advanced multiobjective evolutionary optimizers (MOEO) are being 
designed and proposed, the issue of performance assessment has become 
increasingly important. While performance assessment could be done via 
theoretical and empirical approach, the latter is more practical and effective and 
has been adopted as the de facto approach in the evolutionary multiobjective 
optimization community. However, researches pertinent to empirical study have 
focused mainly on its individual components like test metrics and functions, 
there are limited discussions on the overall adequacy of empirical test in 
substantiating their statements made on the performance and behavior of the 
evaluated algorithm. As such, this paper aims to provide a holistic perspective 
towards the empirical investigation of MOEO and present a conceptual 
framework, which researchers could consider in the design and implementation 
of MOEO experimental study. This framework comprises of a structural 
algorithmic development plan and a general theory of adequacy in the context 
of evolutionary multiobjective optimization. 

Keywords: Multiobjective Optimization, Evolutionary Computation, 
Adequacy, Performance assessment. 

1   Introduction 

Many real-world applications involve complex optimization problem with various 
competing specifications and constraints that are often difficult, if not impossible, to be 
solved without the aid of powerful and efficient optimization algorithms. Over the 
years, many multi-objective evolutionary optimizers (MOEO), a class of stochastic 
search technique, have been developed for this purpose, ranging from evolutionary 
algorithm, evolutionary strategy, genetic programming, to newly proposed algorithmic 
models, like ant colony optimization, particle swarm optimization, estimation of 
distribution algorithm and etc. and they have been demonstrated to be very powerful 
and applicable for solving such problems. 
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The algorithmic development of MOEO involves an iterative process of designer 
intuition and validation, where performance assessment is carried out continuously to 
examine and improve algorithmic design. In addition, performance assessment plays a 
crucial role in improving our understanding of MOEO and the interplay between its 
different components. The knowledge gained will greatly aid in the future development 
of better MOEO. Therefore, as more advanced MOEO are being designed and 
proposed, the issue of performance assessment has become increasingly important. 
However, the assessment of MOEO capability is not a trivial task. Due to its stochastic 
nature, the capability of MOEO cannot be precisely determined before its actual 
application. Furthermore, performance assessment is complicated in the context of 
evolutionary multiobjective optimization (EMOO), where the various conflicting goals 
of EMOO have a profound impact on the performance assessment of MOEO. 
Interestingly, Bosman and Thierens [1] noted that state-of-the-art MOEO have similar 
or incomparable performances due to these conflicting optimization goals.  

The most practical and effective means for assessing the performance of MOEO is 
via an empirical study, where the evaluated algorithm will be applied to a set of test 
functions and the evolved solutions will be taken as an indication of the algorithmic 
performance. Although performance assessment can also be done via theoretical study 
[2], this approach often lacks the flexibility and practicality of empirical investigation. 
Furthermore, due to the stochastic nature of MOEO and its complex relationship with 
the optimization problem, it is difficult, if not impossible, to establish any formal 
mathematical treatment of algorithmic performance. Consequently, researchers will 
either get lost in the mire of complexity or resort to substantial simplifications before 
any analysis can be done. Due to the limitations of theoretical studies, performance 
assessment via the empirical approach has been adopted as the de facto approach in 
the EMOO community. 

Research pertinent to empirical study has been focused on the development of test 
functions and performance metrics, resulting in great strides in these areas. Initial 
empirical studies are usually based on simple extension of single objective optimization 
problems, which reveals little or no characteristics of the algorithm under investigation. 
To this end, benchmark test suites have been formalized [3], [4] to challenge the MOEO 
in various aspects of problem difficulty [5]. In order to quantify the evolved tradeoffs, 
different metrics have been proposed over the years to measure the various goals in 
EMOO i.e. proximity, diversity and distribution. The fact that the interpretation of 
experimental results is largely dependent on the accuracy of performance indicators has 
initiated much research in this aspect also [6], [7], [8]. 

Although much work has been done to improve the reliability of empirical studies, 
there are little or no discussions at all on how it should be conducted with adequate 
substantiality on their statements made on the performance and behavior of the 
evaluated algorithm. As such, in contrast to existing works, this paper provides a holistic 
perspective towards the empirical investigation of MOEO and presents a conceptual 
framework for the design and implementation of MOEO empirical study and its 
definition of adequacy in the context of EMOO. For this purpose, the various aspects of 
MOEO empirical study will be considered, which includes the delineation of its 
essential components and the description and discussion of related design and 
implementation issues.  
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2   Algorithm Development of MOEO  

The development process of MOEO comprises of two main stages, namely the 
algorithm formulation and the empirical study, as illustrated in figure 1. Usually, the 
process initiates from the algorithm formulation, where the motivation of his work is 
identified and the MOEO is crafted out accordingly to address the associated problem. 
Subsequently, the MOEO will be validated empirically. Through the empirical study, 
a better understanding of the MOEO will be achieved and ways to further improve the 
MOEO could be identified and implemented. After which, the development cycle will 
be repeated.  

Algorithm Formulation Experimental Design

Empirical Study

- Data Analysis

Experimental Specification

Experimental Execution

 - Implementation
- Data Collection

- Test Algorithms
- Test Metrics
- Test Functions

- Requirement- Criteria

 

Fig. 1. MOEO Development 

The experimental study can further be decomposed into three distinct stages:  

• Experimental Specification: The criteria to evaluate the MOEO will be 
determined, for example, assess its algorithmic capability in the identified 
problem or explore for further improvements. This will dictate the 
requirements for the experimental study.  

• Experimental Design: This stage is concerned with the overall structure of the 
entire empirical study, where appropriate test functions, test metrics and test 
algorithms will be selected based on the experimental requirements.  

• Experimental Execution: The execution of the empirical study is carried in this 
stage. Issues include the fairness of the implementation and the manner in 
which the experimental data should be collected and analyzed, so that the 
algorithmic performance can be properly interpreted.  

The various stages of the empirical study will be described in detail subsequently 
in this section. Algorithm formulation will be briefly discussed also, as it has a direct 
influence on the type of empirical study being conducted. 
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2.1   Algorithm Formulation  

Algorithm development usually begins with algorithm formulation, where the entire 
MOEO is conceptualized and designed based on some underlying motivations to 
resolve certain problems or issues, for instance the improvement of existing MOEO or 
the investigation of unexplored problem domains. In general, these newly developed 
MOEO can be broadly classified according to the level of improvements or the scope 
of the problems explored, as illustrated in table 1. 

Table 1. Classification of newly developed algorithms  

Algorithmic formulation 
Algorithm level Problem level 

- Improvement of existing operators - Similar problem 
- Introduction of new operators - Extended version of problem 
- Completely new algorithm framework - Unexplored domain 

The improvement in the algorithm level can be in the form of operator 
improvement, for instance, replacing the traditional single point crossover operator by 
uniform crossover operator, or the introduction of additional operators to complement 
the existing evolutionary optimization framework. At the extreme case, it can be a 
new algorithmic framework, like PSO and ACO. As for the problem level, the MOEO 
could be designed for similar problems tackled previously by other optimizers, like 
the typical benchmark problems in EMOO. Alternatively, it could refer to extended 
version of problems, like the consideration of more cities and/or constraints in the 
traveling salesman problem. Lastly, the problem has not been solved by any MOEO 
before i.e. a single objective optimization problem being extended into the 
multiobjective domain.  

2.2   Experimental Specification  

The objective of empirical study can range from the validation of one’s design 
intuition, to the understanding of some theory, to the comparison of MOEO 
performances. Before the design and implementation of the empirical study, a set of 
criteria that highlights the extent and depth of the empirical test should be defined, as 
they will dictate the requirements of the empirical study.  

Empirical assessment can be broadly categorized into individual and comparative 
assessment and each category can be further divided into several types, according to 
their level of analysis. Table 2 summarizes the different types of empirical 
assessment, highlighting the different types of criteria and their corresponding 
experimental requirements. 

Individual assessment will solely validate the MOEO formulated, while 
comparative assessment will evaluate its significance with respect to the current state-
of-the-art. Type I assessment is the most preliminary level of study and evaluates the 
capability of the MOEO in satisfying the goals of proximity, diversity and distribution  
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Table 2. Different category of empirical assessment 

Individual Assessment 
Type Criteria Experimental Requirements 

I - Assess algorithmic capability 
- Test algorithm capability to converge  
And maintain diversity 

II 
- Evaluate robustness of algorithmic 
performance 

- Test and analyze effects of parameter  
variation on algorithmic performance 

III - Verify correctness of algorithm  - Characterize population or individual dynamics 
Comparative Assessment 

Type Criteria Experimental Requirements 

I 
- Assess the significance of  
algorithmic capability 

- Compare algorithm capability to converge  
And maintain diversity 

II 
- Evaluate the relative robustness  
of the algorithmic performance 

- Compare effects of parameter  
variation on algorithmic performance 

III - Validate theory - Compare population or individual dynamics 

in EMOO, while Type II assessment is a parameter sensitivity test to analyze its 
various components and their relationship. Lastly, Type III will analyze the dynamics 
of the evolutionary process and unveil insights to the algorithmic behavior and 
characteristics. Naturally, different criteria demands varying experimental 
requirements due to the type of statements that could be made on the algorithmic 
performance and behavior.  

It is recommended that an empirical study should address all these criteria for a 
reasonable degree of comprehensiveness. However, this is not widely witnessed in 
practice, where most studies bypass individual assessment and proceed directly to 
comparative assessment. Furthermore, it is apparent that there is a clear lack of 
studies involving type III assessment, as MOEO is commonly being assessed as a 
black box where only its external behavior is being investigated, without giving any 
hint or analysis on its underlying dynamics and operations.  

2.3   Experimental Design  

The empirical study should account for all the experimental criteria outlined in the 
prior stage. This ensures the adequacy of the empirical observations in substantiating 
any statements made about the algorithmic behavior or performance of the evaluated 
MOEO. The main issues considered in this stage include test functions, test metrics 
and test algorithms.  

1) Test functions: Test functions are used to gauge the effectiveness and efficiency 
of MOEO in dealing with real-world problems. These test functions should be simple 
in implementation to facilitate the extraction of the algorithmic behavior yet, at the 
same time, complex enough to allow conjectures to the real-world. In practice, test 
suites usually comprised of theoretical benchmark problems or simplified model of 
real-world problems. 

Many guidelines for the construction of test functions and test suites have been 
suggested in the literature. In general, the EMOO community has mostly agreed with 
Deb et al. [5] on the type of problem difficulties to be utilized in experimental studies 
and at present, more than 50 multiobjective test functions with different features that 
can pose difficulties in converging to the Pareto front and maintaining a diverse 
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solution set have been applied in the MOEO literature [4]. As these test functions are 
used to emulate real-world optimization problems, related work should report clearly 
on how the selected suite of test functions serve this purpose.  

The choice of test functions ultimately depends on the problem and issues 
considered during the algorithm formulation. However, it is often hard to make a 
selection given the wide array of choices available. One possible approach is to 
consider the MOEO functionalities challenged by the test functions. Basically, the 
different problem features can be classified into two broad categories of primary and 
secondary according to the functionalities challenged:  

• Primary: Bias, Non-convexity, Discontinuities, Deception, Parameter 
interaction, Isolated Optimal, Multi-modality, High-Dimensionality. 

• Secondary: Robustness, Dynamic, Noise, Goal/Preferences, Constraints.  

The latter category provides challenges beyond the difficulties posed by the former 
category to the basic ability of MOEO in discovering a near-optimal and diverse 
Pareto-front. These secondary test functions should be considered only if it is relevant 
to the underlying motivation in the algorithmic formulation. Nevertheless, regardless 
of the secondary MOEO features considered, primary test functions must be included 
to test the basic capability of MOEO. 

2) Test Metrics: Performance metrics or indicators play an important role in 
reflecting the quality of the solution set found. These metrics can be either unary or 
binary. The former reflects a certain quality aspect of the approximated solution set, 
while the latter provides an indication of performance disparity between pairs of 
approximated solution set. Examples of unary metrics include generational distance 
and maximum spread, while binary metrics include coverage and binary hyper-
volume.  

There has been increasing concerns on the accuracy of performance metrics. To 
this end, Knowles and Corne [6] and Zitzler et al. [8] have discussed at length, the 
suitability and limitations of various performance metrics. In particular, Zitzler et al. 
[8] highlighted the limitations of unary indicators due to their non-conformance to the 
dominance criterion and suggested the use of binary measures. Nevertheless, unary 
indicators are still important in providing specific information pertinent to the 
optimization goals of proximity, diversity and distribution.  

Furthermore, it is instructive to consider the characteristics of the different metrics 
and how they complement each other. Basically, the different metrics can be 
classified into  

a) Specific indicators: quantifies the approximate solution set in one aspect of 
EMOO i.e. proximity, diversity and distribution.  

b) General indicator: provide a general indication of solution set quality in the 
various EMOO goals  

c) Pareto indicators: quantifies the solution set based on dominance criterion 

An example to illustrate the need of complementary indicators from the various 
categories is as such: The use of multiple general indicators, like hyper-volume ratio 
and inverse generational distance, should be complemented with Pareto indicators as 
they cannot provide specific information about dominance performance of the 
MOEO.  
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3) Test algorithms: Apart from the selection of test problems and test metrics, it is 
also necessary to have an appropriate set of test algorithms. The purpose of the test 
algorithms is to assess the significance of the evaluated MOEO i.e. whether its 
performance is comparable to other existing algorithms. The type of test algorithm 
can range from classical optimization techniques, stochastic meta-heuristics to related 
MOEO. At the minimal, the selected set of test algorithms should be truly reflective 
of the issues considered and represents the state-of-the-art. For example, common test 
algorithms for evolutionary algorithms for general optimization purposes will include 
NSGAII, SPEA2 and PAES. 

2.4   Experimental Execution  

In this final stage, the empirical study is conducted and the experimental results 
obtained will be analyzed. Practicality and fairness is of significant concern here.  

1) Implementation: Actual realization of the test algorithms, test functions and test 
metrics selected during the experimental design stage involved both hardware and 
software considerations. Practical hardware constraints include processor speed, 
single or distributed processing, memory requirements and etc. Different 
computational platforms have varying memory, system resources allocation system, 
computing time in loading and running program executable. On the other hand, 
examples of relevant software consideration are the operating system and 
programming language used to implement the algorithm.  

One particular issue in this stage is the implementation of test algorithms. This 
depends mainly on their availability for download and the designer’s programming 
skill. While it may be more practical to use the existing codes, it is well-known that 
different implementations, with respect to compiler platform or programming style, 
can have severe impact on algorithmic performance. The other alternative thus is to 
recode the test algorithms and run all of them on a common computational platform, 
but this will be subjected to the programming capability of the designer. Nevertheless, 
implementation details should be comprehensively furnished to facilitate future 
related works. 

2) Data Collection: Appropriate experimental data should be collected during the 
experimentation process to facilitate analysis in the later stage. The type of data 
gathered is largely dependent on the type of analysis warranted. In the most general 
case, the coordinates of the final set of Pareto optimum solutions found in the 
objective and search space will suffice for the plotting of the Pareto front 
approximated and the calculation of performance metrics. It is highly likely that these 
data may require further processing, before they could be interpreted and analyzed. 
Lastly, due to high computational cost, careful considerations must be made to avoid 
repeating the experiments again.  

3) Data Analysis: In this stage, the experimental data obtained earlier will be 
analyzed and evaluated with respect to the algorithmic motivation and the 
experimental specifications.  

For typical EMOO empirical studies, statistical information of the various test 
metrics will be reported, i.e. the mean, median, standard deviation, maximum and 
minimum, to quantify the reliability and validity of the algorithmic performance. 
These statistics can either be summarized in tabular form or displayed graphically via 
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box plots. While the former displays the precise value obtained for the various 
metrics, the use of the latter can highlight the relative differences between test 
algorithms, which are useful in comparative assessment. Nevertheless, a mere 
difference in the average of the metrics cannot be blindly regarded as performance 
difference between the various MOEO. As such, statistical techniques like ANOVA, 
t-test and etc, should be included to quantitate the significance of the differences 
amongst the optimizers.  

Besides the statistical information, the Pareto fronts obtained are usually illustrated 
to reflect clearly the multiobjective nature of the optimization problem under 
investigation. Graphical visualization of the Pareto front allows a quick overview on 
the performance of the MOEO and cross validation between the statistical results 
earlier. Generally, authors will present the Pareto front of a randomly chosen run or 
select the run that could best complement the statistical information displayed earlier.  

3   Ideality of Empirical Assessment 

The ideal empirical study should be able to provide the basis of complete assurance in 
any statements made on the algorithmic performance and behavior. In other words, 
the ideal empirical study should be both reliable and valid. Reliability requires that 
the results from the empirical test should be consistent i.e. if an empirical test has 
proven the superiority of a particular MOEO in a particular set of problems, then that 
MOEO should always perform better on other similar problems under identical 
circumstances. On the other hand, validity requires that the test must always produce 
a meaningful result i.e. if the MOEO is incapable of solving a particular type of 
problem, the empirical test should be capable of revealing this defect and conversely, 
if the MOEO is indeed capable, the test should not show the otherwise. This 
requirement is similar to the completeness of test data in software development [9]. 

This naturally leads to the question of what constitutes a reliable and valid 
empirical test for MOEO. Unfortunately, these theoretically simple concepts are 
practically hard to attain in implementation. This is further complicated by the 
availability of the wide array of choices for test functions, test metrics indicators and 
test algorithms. Naturally, this leads to the question of whether exhaustive testing, 
defined in terms of all possible combinations of assessment tools is another viable 
option. The answer is an emphatic no for two reasons. 

• It is an impractical attempt to achieve a reliable test 
• The validity of the concept of problem difficulty hinges on our perceived 

notion of how a real-world problem behaves. 

The crux of the problem hence lies in the definition of an appropriately sized 
empirical study that is adequate enough to substantiate the statements it made on the 
algorithmic performance and behavior. 

4   Adequacy of Empirical Assessment 

Empirical study forms one of the most integral components in EMOO. Besides 
understanding the algorithmic development of MOEO, it is important to determine 
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whether the empirical study conducted is adequate to derive any conclusive statement 
about its performance. Despite its importance, there is alarmingly little research in 
this area. Due to the lack of proper theoretical foundation, rules of thumb serve as the 
guidelines for researchers in designing their evaluation study. As such, there is a 
pressing need to establish standard guidelines in assessing the adequacy of the 
empirical study.  

The concept of (experimental) adequacy is first coined by Goodenough and 
Gerhart [9] in the field of software engineering in order to formalize a framework for 
software testing. Likewise, this section aims to motivate the use of similar concepts to 
guide our investigation of algorithmic capability and behavior. For this purpose, a set 
of criterion to evaluate the adequacy of an empirical study will be formally defined. 
Also, a general axiomatic theory of adequacy will be developed to make explicit some 
underlying assumptions in general empirical study.  

4.1   Adequacy Criterion  

The adequacy criterion can be regarded as a predicate that defines what must be 
exercised to constitute a comprehensive test i.e. one which is able to substantiate the 
conclusive remark of the corresponding analysis. The adequacy criterion C could be 
formulated as a function that take in the algorithm, A of a multiobjective optimizer 
and its corresponding set of specifications, S and empirical test, T.  

Definition 1. (Adequacy Criterion): The adequacy criterion C is the function:  

: { , }C A S T True False× × →  (1) 

where ( , , )C A S T True=  means that the evaluation test T is adequate for testing 

algorithm A against specification S, otherwise T is inadequate. 

Of course, the adequacy criterion need not necessarily be restricted to a discrete form 
of measurement. It is also possible to fuzzify the above relationship and use real 
numbers to quantify the degree of adequacy. 

Definition 2. (Adequacy Criterion-Fuzzy): The evaluation adequacy criterion C is 
the function: 

: [0,1]C A S T× × →  (2) 

where ( , , )C A S T r=  means that the evaluation test T is adequate to a degree of r for 

testing algorithm A against specification S, otherwise T is inadequate. A larger value 
of r will correspond to a higher degree of the test adequacy.  

Designing a set of adequacy criterion that can meet the dual requirement of reliability 
and flexibility is quite practically infeasible. Hence, instead of seeking such ideal 
criterion, this requirements will be relaxed and inadequacy criterion will be defined 
instead i.e. criteria that define the inadequacy of the evaluation suite. Furthermore, 
since the empirical study can be segregated into the various components discussed 
earlier, the adequacy criterion could consider them individually also. 
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Definition 3. (Inadequacy Criterion): The evaluation adequacy criterions C is the 
function: 

1 2 3 4 5 6: { , }C A S T T T T T T True False× × × × × × × →  (3) 

where 1 2 3 4 5 6( , , , , , , , )C A S T T T T T T False=  if any of the components of the test (Test 

function, T1; Test metrics, T2; Test algorithms, T3; Implementation, T4; Data 
collection, T5;Data Analysis, T6)  is not adequate for testing algorithm A against 
specification S, otherwise T is adequate. 

This definition provides a simple approach to evaluate the adequacy of MOEO 
empirical test in general, where each of the different components of the empirical test 
could be evaluated for their adequacy based on the experimental specifications. If 
each of the components cannot be proven to be inadequate with respect to the 
experimental specification, this will imply that the empirical test is adequate to 
substantiate conclusive statement on the algorithmic performance and behavior of the 
MOEO. A detailed discussion on the adequacy of the different components will be 
provided. 

4.2   Axiomatization of Empirical Analysis Adequacy  

Weyuker [10] proposed several fundamental properties to evaluate the adequacy of 
test data in software engineering. Inspired by this study, a set of axioms to make 
explicit the underlying expectations of any empirical study will be presented in this 
section. These axioms will aid in the designing of empirical study and serve as a 
guideline to determine its adequacy.  

The first and most important property of the adequacy criterion is the existence of 
one. Without this axiom, there will not be any basis for empirical studies, as no matter 
how comprehensive and extensive the studies were, it will still be inadequate to 
derive any conclusion.  

Axiom I (Existence): For every algorithm, A and a set of specification S, there exists 
an adequate empirical test T.  

Of course, the existence of an adequate evaluation does not guarantee its feasibility. A 
possible refinement to this axiom will be to require the existence of a finite empirical 
study for every algorithm and is adequate in all means as well. However, this will 
depend on the experimental specifications, as they could be finite or infinite in nature. 
For example, an all-encompassing MOEO designed to solve all problems in general 
obviously has an infinite specification and the corresponding adequate empirical 
study will be infinite. Conversely, for a MOEO specially designed for the traveling 
salesman problem, a test suite of such problems is more than adequate. As such, if 
one requires a finite evaluation test, it will require that the experimental specifications 
are finite in the first place. Failure to comply with this simple logic will result in an 
inadequate evaluation suite. This relationship can be formalized as such 

Axiom II (Non-exhaustive Existence): There exists A and T such that A is adequately 
tested by T, and T is not exhaustive if and only if the specification S is finite.  



 Adequacy of Empirical Performance Assessment 903 

Essentially, the adequacy criterion should denote a minimum degree of evaluation 
adequacy. Surely, if an existing evaluation is adequate, including more benchmark 
function or measuring the performance with more performance metrics, which is 
redundant also, should not make it inadequate.  

Axiom III (Monotonicity): If T is adequate for A and T ⊆ T’ then T’ is adequate 
 for A. 

Another fundamental property of adequacy criterion is that if nothing has been done, 
the test should not be deemed adequate at all. Even though the algorithm might 
achieve its desired goals, adequacy criterion is ultimately related to the evaluation 
study instead of its actual performance. Otherwise, it might be reasonably argued that 
the empty set is reasonable set for such algorithms.  

Axiom IV (Empty Test): The empty set is not adequate for any algorithms.  

The first four axioms that were introduced are general in nature and viewed the 
algorithm as a whole. However, all MOEO could be decomposed into its different 
operators O1, O2,…ON. For example the canonical genetic algorithm is essentially 
made up of the initial population generator, selection operator, crossover and mutation 
operator and the fitness evaluator. Thus, the next three axioms will decompose the 
algorithm into their various operators and relate them to the adequacy criterion of 
empirical analysis. The following three axioms are based on reasonable intuitive 
grounds and known empirical phenomenon of algorithmic behavior.  

Suppose an improvement to the existing was proposed by modifying the crossover 
and mutation operator and plugging them individually into a baseline genetic 
algorithm yield superior result than conventional operators. This does not mean that 
this is adequate to conclude that they are collectively better, as these two operators 
might be conflicting in nature. Essentially, this is depicted in the following axiom. 

Axiom V (Anti Decomposition): There is an algorithm A with operators O1, O2… 
such that the individual evaluation of O1, O2… is not adequate for the evaluation of A. 

Similarly, in the same scenario, if the operators were evaluated collectively instead, 
superior result obtained is not conclusive of the efficiency of the individual operators, 
as the improvements could be due to only one operator. As such, the following axiom 
is postulated.  

Axiom VI (Anti Generalization): There is an algorithm A with operators O1, O2… 
such that the evaluation of the A is not adequate for the evaluation of O1, O2… 

Lastly, suppose an improvement to the initial population generator was proposed for 
two MOEO, say EA and PSO. Individual evaluation of this operator in EA could not 
be extended to PSO.  

Axiom VII (Anti Extensionality): There is an algorithm A with operators C∈C1… 
and algorithm B with operators D∈D1… where D ∩ C1 ≠ NULL such that the 
individual evaluation of C1 in A is not adequate for the individual evaluation of 
 C1 in B. 

These seven axioms make explicit the underlying assumptions in any general 
empirical assessment of MOEO. While the first four axioms form the basis of 
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empirical study, the remaining three describe the analyzing of algorithm in operator 
levels.  

4.3   Discussion of Adequacy Test Criterion  

The adequacy of an empirical assessment test depends heavily on the type of 
experimental specification and the corresponding experimental requirements. 
Amongst the six components discussed earlier, data analysis is closely related to the 
ultimate conclusion derived from the empirical test, while the rest of the components 
are rather influenced by the type of analysis required. As such, the adequacy test 
criterion for each component will be discussed via a bottom up approach. 

Data Analysis: The experimental analysis should be sufficiently adequate to 
quantify the correctness and viability of the MOEO, test and verify any hypothesis 
and assumption made during the algorithm design and uncover pertinent parameter 
relationship and/or dynamic behavior within the algorithm. Naturally, the analysis 
should be synchronized to the underlying motivation during the algorithm 
formulation. Of course, the depth of the analysis will depend on the level of 
specification desired.  

Individual assessment (type I) mainly assesses the algorithmic capability of a 
particular MOEO. To ensure minimal adequacy, the MOEO should be tested with 
benchmark problem in related domain and the analysis should reflect its capability in 
satisfying the three EMOO goals of proximity, diversity and distribution. Extending 
to type II assessment, the effects of varying the relevant parameters on the algorithmic 
performance of the MOEO will be investigated. For instance, if new operators were 
proposed, the relevant parameters will be those introduced by the additional operators, 
while for a new algorithm, all the significant parameters should be investigated. 
Furthermore, there should be sufficient variation to establish a clear relationship 
between the parameters and the algorithmic performance. For this purpose, it is 
recommended that there should be at least several different configurations for each 
parameter under investigation. As for type III assessment, the type of analysis will 
depend on the nature of the optimizers i.e. its underlying theoretical basis. For 
example, a variation operator was proposed to improve the algorithmic performance 
of MOEO via emphasized exploration and exploitation efforts in the different stages 
of the evolutionary progress [11]. The population dynamics of the MOEO in the 
objective and search space along the evolutionary progress was analyzed to verify the 
theoretical hypothesis. 

As for comparative assessment (type I), the objective is to measure the significance 
of the MOEO with existing ones. Thus, similar analysis in individual assessment 
(type I) will be now applied to several algorithms simultaneously to compare their 
algorithmic capability. Also, statistical tools should be employed to add creditability 
to the analysis. To reflect the relative robustness of the MOEO for type II assessment, 
the parameter variation effects for the various test algorithms should be investigated 
also. The experimental results should show the superiority of the evaluated MOEO 
over the range of parameters investigated or its robustness, which is measured by its 
insensitiveness to the parameter variations. Lastly, type III assessment will justify 
why the evaluated MOEO did perform better/worse in the earlier analysis i.e. provide 
the explanation for the performance difference in type I and II assessment. Sadly, this 
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type of assessment is lacking in modern literature. The conventional approach is a 
black box style of assessment, where only the external behavior is being investigated, 
without giving any hint or analysis for why it is working. Of course, this is mainly 
due to the difficulty involved with this type of analysis. 

Data Collection: The type of experimental data required is highly dependent on the 
analysis. For type I assessment, recording the coordinates of the final evolved 
population in the objective and search space will be sufficient for the calculation of 
performance metrics and the plotting of Pareto fronts. Also, the computational time 
and fitness evaluation could be recorded and used to evaluate the algorithmic 
efficiency. For type II assessment, similar data should be obtained under different 
parameter configurations. To unearth key dynamics of the evaluated MOEO for type 
III assessment, it might be necessary to obtain coordinate traces of the evolving 
population in both objective and search space. Special attention should be taken for 
comparative assessment to ensure that the data are collected in similar manner from 
all the test algorithms i.e. during the same stage of the evolutionary process. 

Implementation: Since implementation merely execute the empirical study crafted 
during the experimental design stage, the issue of adequacy in implementation 
centered on whether the empirical test is being conducted fairly, specifically for 
comparative assessment. As such, steps must be taken to ensure fairness of all 
experiments conducted is not compromised. 

Firstly, all of the algorithms evaluated should be run under identical computational 
platforms, in both hardware and software aspects. This is to ensure fairness in the 
comparison as briefly mentioned earlier. As such, the performances of the coded test 
algorithms should be at least comparable, if not better than reported in the original 
work. This is especially important if computational efficiency is concerned. 

Also, as far as possible, justifications should be made for the algorithmic parameter 
settings such as crossover, mutation rates etc. Furthermore, it should be ensured that 
the same initial population is applied for each test algorithm at every run, since the 
algorithmic performance of MOEO is extremely sensitive to the nature of the 
population. Lastly, the stochastic nature of MOEO demands that multiple runs should 
be conducted, so as to obtain the necessary statistical information about its 
algorithmic performance and behavior.  

Test functions: The test function suite is independent of the type of assessment. 
Rather it depends on the problem scope of the MOEO, whether it is designed for 
general optimization purpose or for specific problems. For the former, it is important 
that the test suite selected should contain all the primary test functions and if 
applicable, secondary test functions should be included to supplement the analysis. 
On the other hand, if the MOEO is designed for specific application in certain nature 
or domain instead, an adequate test suite should include a set of such related 
problems. Nevertheless, the test functions should possess a good balance of features 
that challenge the MOEO in satisfying the optimization goals of convergence, 
diversity and distribution [5]. Furthermore, in light of recent investigations [12], [13], 
test suites should contain problems with high-dimensional objective space or non-
linear and non-separable in nature [14]. 

Test Metrics: The choice of performance metrics is highly dependent on the 
experimental specification. For type I performance assessment, specific indicators to 
measure convergence, diversity and distribution respectively should be considered. 
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Furthermore for comparative assessment, Pareto indicators should be considered to 
assess the dominance relationships between the various test algorithms. Extending to 
type II analysis, which is concerned with parameter sensitivity analysis, similar 
metrics could still be employed to measure changes over the various algorithmic 
configurations. Lastly, the adequacy of performance metrics for type III analysis will 
depend on the nature of the MOEO and the algorithmic motivation. For example, to 
assess the capability of a particular noise-handling feature, the issue of robustness 
should be considered as another performance metrics. In some cases, specific metrics 
should be defined to supplement the existing ones. 

Test algorithms: For individual assessment, there is obviously no need for any test 
algorithms. Nevertheless, it might be insightful to include a baseline algorithm to 
serve as a basis of gauge rather than comparison. For instance, if some evolutionary 
operators are proposed, they will have to be tested under different parameter values 
for type II analysis. In such a case, test algorithm in the form of baseline algorithm 
containing the operators individually and collectively could be included, so that their 
individual and synergetic effects could be adequately assessed.  

The nature of comparative assessment makes test algorithms an essential 
component. These algorithms should be truly reflective of the state-of-the arts and of 
the issues considered. Otherwise, the experimental results that form the basis of 
comparative analysis will not be reliable. Also, the type of algorithms depends largely 
on its algorithmic motivation. If the MOEO represents a novel approach, the test 
algorithms should include a set of baseline algorithms from the field of evolutionary 
computation like evolutionary algorithm, particle swarm optimization, simulated 
annealing and etc. However, if the optimizer is the improved model of an existing 
field, using a set of related MOEO that represents the state of the art in that particular 
field will be necessary. Lastly, if improvements were done in the operator level, it will 
be necessary to apply the proposed operators and conventional operators into state-of-
the-art MOEO to evaluate their performance difference.  

4.4   Summary  

From the above discussion, a systematic procedure to assess the adequacy of an 
empirical study has been formalized. First, it should be ensured that the experimental 
specifications defined are finite to ensure the existence of a finite empirical study 
(Axiom II). Also, Axiom V to VII should not be violated if operator level analysis 
was involved. The empirical study will then be segregated into its various components 
and their adequacy will be individually assessed with respect to the experimental 
specification. Finally, using the definition of inadequacy criterion (3), the overall 
adequacy of the empirical study will be satisfied, if each and every component is not 
deemed inadequate under the experimental specifications as discussed in section 4.3.  

Ultimately, the adequacy of the empirical study is bounded by the experimental 
specifications; this means that the extent of statement that can be made on the 
algorithmic performance and behavior are restricted by the type of experimental 
criteria. For instance, a type I individual assessment can only validate the capability of 
the MOEO in satisfying the various optimization goals. Any statements made on its 
significance and behavior based on this empirical study will be rendered void.  
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5   Conclusion 

This paper addresses the issue of adequacy for the empirical performance assessment 
of MOEO. For this purpose, a set of adequacy criterion is presented, which evaluates 
the general adequacy of an empirical study based on its various components. Details 
of the various components on how they relate to the overall algorithmic development 
process and their adequacy under different experimental specifications are provided. 
Furthermore, a set of axioms that made explicit the underlying assumptions of general 
empirical study was formulated. Future works include considering case studies of 
previous empirical study in related literature and evaluating their adequacy. 
Hopefully, this work can motivate discussion in this area from different perspectives 
to further improve empirical study techniques in general. 
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Abstract. Multiobjective optimisation has traditionally focused on problems 
consisting of 2 or 3 objectives. Real-world problems often require the optimisa-
tion of a larger number of objectives. Research has shown that conclusions 
drawn from experimentations carried out on 2 or 3 objectives cannot be gener-
alized for a higher number of objectives. The curse of dimensionality is a prob-
lem that faces decision makers when confronted with many objectives. Prefer-
ence articulation techniques, and especially progressive preference articulation 
(PPA) techniques are effective methods for supporting the decision maker. In 
this paper, some of the most recent and most established PPA techniques are 
examined, and their utility for tackling many-objective optimisation problems is 
discussed and compared from the viewpoint of the decision maker. 

Keywords: Progressive preference articulation, Multiobjective optimisation. 

1   Introduction 

Real-world problems commonly require the simultaneous consideration of multiple 
performance measures. Solving such problems is therefore concerned with finding an 
ideal solution that satisfies the decision maker’s (DM) preferences and meets the goal 
values for the problem objectives without violating certain constraints. Convention-
ally, evolutionary multiobjective optimisation (EMO) has focused on dealing with 
optimisation problems comprising 2 or 3 objectives, mainly for the convenience of 
graphical demonstration and illustration. Conclusions drawn from such low-
dimensional multiobjective frameworks used to be generalized for the multiobjective 
branch of evolutionary optimisation problems. Recently, research [1, 2] has shown 
that the case of high-dimensional optimisation problems (more than 3 objectives) also 
termed as “Many Objective Optimisation Problems” is a special case of evolutionary 
multiobjective problems that requires further investigation. Indeed a different set of 
difficulties and challenges can be associated the Evolutionary Many-Objective Opti-
misation sub-category, most importantly the unambiguous conflict of solutions con-
vergence and diversity in such scenarios. Convergence and diversity are two of the 
primary requirements of a multiobjective optimiser. Other evolutionary many-
objective optimisation difficulties involve the obvious dimensionality increase of the 
Pareto front, and the difficulty of visualizing such scenarios.  
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Reducing the dimensionality and therefore the complexity of a problem is a 
straightforward way for dealing with the high-dimensional problems. Early ap-
proaches such as the weighted sum or the Tchebyshev method [3] consist of scaling 
techniques to convert multiobjective problems into a single objective counterpart. 
Such approaches presented several shortcomings, mainly the absence of the desired 
parallel search capacity. More recent techniques of dimensionality reduction for deal-
ing with multiobjective optimisation problems consist of techniques to identify objec-
tives redundancy and to eliminate it. Principal Component Analysis [4] ,[1] is an 
example of such a technique. Its aim is to identify redundant objectives whose ab-
sence has no substantial effect on the optimisation process, thereby simplifying the 
complexity of certain high dimensional problems and reducing the hyperspaces of 
solutions. While dimensionality reduction is a remedial measure to tackle multiobjec-
tive optimisation problems, it can only be deployed in reducible scenarios where re-
dundancy or objective relationships such as independence or harmony are existent and 
detectable. 

In scenarios, where insufficient redundancy can be detected in a high-dimensional 
problem, progressive preference articulation (PPA) is a proven useful alternative 
remedial measure. The incorporation of DM preference into evolutionary multiobjec-
tive optimisation algorithms is very useful for guiding the search into pertinent  
regions of interest (ROI), which are relevant to the decision maker. Coello [5] has 
produced a comprehensive survey about handling preferences in EMO. It can also 
provide advantages over the use of pure Pareto-optimality, which is unfettered in its 
search and is liable to produce solutions outside the ROI as well as within it.  Until 
recently, most EMO research has focused on bi-objective problems where the need 
for incorporating the decision maker’s preferences is less apparent. The aim of this 
paper is to encourage and promote the research of incorporating progressive prefer-
ence articulation techniques into evolutionary multiobjective optimisation. In this 
paper, some of the most recent preference articulation techniques are discussed and 
upgraded to their progressive versions for incorporation into evolutionary multiobjec-
tive optimisation processes. Their major strengths and weaknesses for tackling many-
objective optimisation problems are discussed and illustrated on a straightforward bi-
objective scenario for simplicity. The preference articulation techniques investigated 
in this work include Branke’s “Guided Dominance Scheme” [5], Deb’s “Biased 
Crowding Technique”  [6], the manipulation of the ε-dominance concept within the 
framework of Deb’s steady state ε –MOEA [7] and Fonseca and Fleming’s preferabil-
ity operator (FF-PPA) [8], which we believe was the first truly PPA technique for 
EMO.  

In section 2 of this paper, the requirements of a multiobjective optimiser are pre-
sented. In section 3, a brief description of the preference articulation techniques  
inspected in this paper is given. In section 4, the usefulness and practicality of the 
studied progressive preference articulation techniques are visually illustrated on  
simple bi-objective scenarios. (In some cases, we have introduced a progressive capa-
bility into existing preference articulation techniques.) In section 5, the strengths, 
weaknesses, user-friendliness and efficiency of these PPA techniques, in a many ob-
jective optimisation context, are discussed from the viewpoint of the decision maker. 
Lastly, some concluding remarks are presented. 
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2   Requirements of Multiobjective Optimisers 

It is not possible to find a single Utopian solution when tackling a multiobjective 
optimisation problem with many conflicting objectives, instead a set of optimal solu-
tions, also called a Pareto front, is anticipated. The Pareto front is the set of solutions 
whose members cannot be improved further in terms of a certain objective without 
introducing some deterioration in terms of one or more of the other competing objec-
tives. Solving a multiobjective optimisation problem is therefore best approached 
using a population-based technique, such as evolutionary algorithms.  

The set of solutions achieved by an optimiser, also called the approximation set, is 
required to be the closest possible to the true Pareto front. Because of the non-
existence of an ideal single solution, the set of optimized solutions is also required to 
be well spread and covering wide areas of the Pareto front, presenting the decision 
maker with a well distributed set of solutions to choose from, based on certain prefer-
ences such as objective priorities or regions of interest. Furthermore, the approxima-
tion set has to be achieved within an acceptable amount of time. Therefore, conver-
gence, pertinence to the DM (ROI), speed of convergence and diversity are all desired 
and essential requirements of multi-objective optimisers and constitute their assess-
ment basis. In Figure 1 the ideal solution for a multiobjective optimisation problem is 
illustrated for a discontinuous Pareto front. 
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Fig. 1. The Ideal Solution to a Multi-Objective Optimisation Problem 

3   The Investigated Preference Articulation Techniques 

In this section a brief description of some of the most recent preference articulation 
techniques is provided: 

3.1   Guided Dominance for Evolutionary Multi-objective Optimisation 

Branke et al. introduced the guided dominance principle within the context of a novel 
optimiser, termed the Guided Multi-Objective Evolutionary Algorithm (G-MOEA) 
[9]. The principle of guided dominance manifested the DM’s preferences through a 
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modification of the definition of dominance. The user has to determine all maximally 
acceptable tradeoffs between all pairs of objectives.  

To illustrate this concept, consider an optimisation problem consisting of two com-
peting objectives. In order to use the guided dominance scheme, the DM has to decide 
a priori the maximum acceptable amount of degradation in terms of objective 2 which 
can be deemed worthy to be recompensed by a single unit of improvement in terms of 
objective 1, and vice versa. The standard dominance concept, 
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where a solution x is said to dominate another solution y if x is less or equal than y in 
terms of all the objective values, with at least one strict inequality, becomes 
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     (2) 
with an inequality in at least one case. In equation 2, m12 and m21 denote correspond-
ingly the maximum acceptable amount of degradation in terms of objective 1 and 2 
which are compensated by a single unit of improvement in terms of objective 2 and 1 
respectively. 

The guided dominance scheme corresponds to a simple transformation of the ob-
jective space, which makes its incorporation into dominance-based evolutionary algo-
rithms straightforward and practical. Using the guided dominance approach, it will be 
possible to emphasize any part of a convex Pareto front by carefully setting suitable 
trade-off values. 

3.2   Biased Crowding Distance 

The biased crowding distance is one of the state-of-the-art preference articulation 
techniques that allows the user to efficiently focus on certain regions of interest on a 
convex or concave Pareto front. This technique has its roots in the biased fitness shar-
ing approach [10] which was employed in the Non Dominated Sorting Genetic Algo-
rithm (NSGA) [11]. The biased crowding measure is defined for any solution k on 
any particular front all along the optimisation process as follows: 
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where dk is the original crowding measure [12] for the solution k based on its 
neighbouring solutions, and dk’ is the crowding measure of the projected solutions on 
the plane whose direction is specified by the user to express a certain region of inter-
est on the Pareto front. α is the parameter responsible for controlling the bias inten-
sity. 

As a result, solutions located on the region of the front which is tangent to the 
DM’s devised projection plane, which reflects a certain preference of a ROI, will be 
biased and favourite to be maintained because the ratio dk’/ dk will be close to unity, 
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Fig. 2. Biased Crowding Distance (P = Projection Plane, ή = Projection Direction) 
 

and therefore Dk will be approximately the same measure as the original crowding 
value for such solutions. Figure 2 illustrates the concept of the biased crowding dis-
tance for 3 different ROI on a convex front. 

3.3   ε –MOEA: Manipulating the ε-Dominance 

ε-MOEA [13] is one of the state-of-the-art multiobjective evolutionary optimisers. It 
is a steady-state algorithm composed of two populations of solutions, which co-
evolve simultaneously, but independently. The ε-dominance concept illustrated in 
Figure 3 is adopted for archive inclusion. A solution can only be included in the ar-
chive, which eventually should contain a representative bounded set of solutions 
which form the Pareto front, if it is not ε-dominated by any of the other members of 
the archive. ε-MOEA uses a grid-like strategy similar to PAES [14], but more sophis-
ticated, to divide the objective space into hyperboxes and promote solutions diversity 
without setting an upper limit on the archive size prior to the approximation. Instead 
the strategy used in ε-MOEA ensures that the archive will eventually get bounded 
with a well-distributed and limited number of solutions, which represent the Pareto 
front. Despite the sophistication and usefulness of ε-MOEA, the deployed ε-
dominance concept is the reason behind choosing this optimisation technique as a 
preference articulation technique to be investigated along with the other techniques 
used in this work. By setting a vector of progressively articulated ε-values, instead of 
a single fixed value, to form the basis for solutions selection and inclusion in the 
 archive, ε-MOEA is upgraded to a PPA technique which enhances its overall per-
formance, at least from a decision maker’s point of view within a many-objective 
optimisation context. Each single ε value will correspond to the accuracy or tolerance 
in terms of a certain specific dimension or objective. The motivation behind this up-
grade is to investigate and exploit the efficacy of the ε-dominance concept as a PPA 
technique. 
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Fig. 3. ε-Pareto dominance for 2 objectives 

3.4   FF-PPA Technique 

Formulated and implemented in 1998, Fonseca and Fleming’s PPA technique [9] 
remains an important approach to progressive preference articulation. The underlying 
layer of this technique is based on a combination of concepts such as Pareto optimal-
ity, constraint optimisation and satisfaction, the lexicographic method and goal pro-
gramming. The core of this PPA technique is based on the Preferability operator, 
which is a transitive relational operator that incorporates goal and priority information 
about the objectives and which consequently modifies the dominance definition.  

Using FF-PPA, two alternative solutions A and B are first compared in terms of 
their objectives with the highest priority while disregarding the objectives of this 
priority class that meets their goal values. In the case where the objectives, belonging 
to the same priority class, of solutions A and B meet all their goal values or contrarily 
violate some or all of their goal values in an exact similar way, the next priority class 
will be considered. This process continues until reaching the lowest priority class, 
where solutions are compared based on the pure Pareto optimality concept. Through a 
user-friendly interface, the DM can set goal values for the objectives being optimised 
and can change the priorities of the objectives in a progressive fashion at any time 
during the optimisation process; the dominance concept gets updated accordingly. In 
other words, using this technique the DM has full control of the optimisation process 
and can efficiently focus on any region of interest at any time and upon request. Fig-
ure 4 illustrates the user interface of this PPA technique which includes the parallel 
coordinates graph [15], an efficient, FF-PPA independent, visualization technique for 
any problem dimension. Here, each line in the graph connects the performance objec-
tives achieved by an individual member of the population and represents a potential 
solution to the design problem. This is in contrast to the usual Cartesian method of 
representation and has the advantage of being able to handle representations where 
the number of objectives exceeds 3. 
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Fig. 4. The user interface of Fonseca and Fleming’s PPA technique 

In the next section, a graphical demonstration of the above mentioned PPA tech-
niques will be presented illustrating the accuracy, efficiency and usefulness of these 
techniques. 

4   PPA Techniques in Practice 

In this section, the performance of the guided dominance concept, the biased crowd-
ing measure, the use of ε-dominance and FF-PPA technique will be assessed. The 
efficiency and practicality of these techniques will be examined from the decision 
maker’s point of view, assuming that their expertise in evolutionary computation 
might be very limited or nil. The goal is to highlight the utility of these PPA tech-
niques to a DM, mainly in terms of reducing the search space, and focusing on ROI, 
which is a remedial measure for use in high-dimensional problems. Several bi-
objective scenarios, convenient for graphical illustrations, will be deployed to high-
light the strengths and weaknesses of these techniques, and will permit the inference 
of well-based conclusions for the high dimensional cases. Note that except for the ε –
MOEA, NSGA-II was chosen to be the underlying optimiser for hybridizing the bi-
ased crowding technique, the guided dominance and the FF-PPA. 

4.1   Demonstration of ε –Dominance as a PPA Technique in the ε –MOEA 
Context 

In Figure 5 and 6, the convex test function ZDT1 [16], was deployed to investigate 
the utility of manipulating the ε –dominance concept in terms of each dimension sepa-
rately as an attempt to simulate a preference articulation scheme. 
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Fig. 5. ε –MOEA running on ZDT1 with ε1 = ε2 = 0.05 

In Figure 5, ε –MOEA was executed on ZDT1 using the same configuration used 
in [7]. Starting with ε1 = ε2 = 0.05, it was clear that the end results were conforming 
to the desired preference which states no priorities between the 2 objectives.  

 
Fig. 6. ε –MOEA running on ZDT1 with ε1 = 0.05 and ε2 = 0.005 

In Figure 6, the value of ε2 was decreased to 0.005 to denote a preference in terms 
of objective 2 while ε1 retained its previous value. In other words, a solution “x” 
favouring objective 2 will dominate a larger number of solutions favouring objective 
1 and which used to be considered as non-dominated solutions alongside “x” when 
the epsilon values were equal. In Figure 6, and after running the algorithm for a rea-
sonable amount of time, it was visible that the results reflected a minor bias in terms 
of objective 2, but good solutions in terms of objective 1 were still present. In other 
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words, the density of solutions lying on the extreme top part of the true Pareto front -
corresponding to the ranges [0 - 0.2] for obj1 and [0.75 - 1] for obj2 - of the ZDT1 
test function was reduced. On the other hand, the contrary observations can be de-
duced from Figure 7, with ε –MOEA optimising the discontinuous ZDT3 test function 
with the intention of biasing objective 1. 

 

Fig. 7. ε –MOEA running on ZDT3 with ε1 = 0.005 and ε2 = 0.05 

4.2   Demonstration of the Biased Crowding as PPA Technique 

In Figures 8 and 9 correspondingly, a progressive articulation of a ROI was expressed 
for the test functions ZDT1 and ZDT3. This was performed by modifying the direc-
tion of the projection line, which is the basis of the Biased Crowding technique. 
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Fig. 8. NSGA-II/Biased Crowding running on ZDT1 
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Fig. 9. NSGA-II/Biased Crowding running on ZDT2 

For these continuous well-shaped Pareto fronts, the biased crowding seems to per-
form well, although the obtained results may fall a little outside the ROI, as well as 
within it. The alpha parameter in the biased crowding measure is a remedial measure 
to control results accuracy, though setting its value together with the right plane direc-
tion is not a straightforward decision, or attractive to a DM especially as the dimen-
sionality of the problem increases. 

4.3   Demonstration of the Guided Dominance Principle as a PPA Technique 

Figures 10 and 11 illustrate, respectively, the results achieved by G-MOEA for the 
convex and discontinuous test functions ZDT1 and ZDT3 for 2 different consecutive 
preferences (a and b). In Figure 10a, there were no preferences among the 2 objec-
tives, but the ROI was decided vaguely by choosing an equal maximal amount of 
acceptable degradation for the 2 objectives when the other objective improves by a 
single unit. The bounds of the decision maker’s ROI cannot be simply expressed; 
instead there is a need for an intermediate translation of the DM preferences into line 
slopes that delimit the desired ROI.  

In Figure 10b, the amount of degradation in terms of objective 1 that merits a unit 
improvement in terms of objective 2 was increased, therefore favouring objective 2. 
The bias was observed, although it was still not a straightforward method from the 
DM’s point of view to execute a specific detailed optimisation and search scenario. 
The guided-dominance was then seen to be inconsistent in terms of biasing one of the 
2 objectives when applied to ZDT3 (Figure 11). By just switching the preferences, it 
was clear that the results were not balanced, as the results were too numerous and 
varied when objective 1 was the prioritised objective (Figure 11b) as opposed to the 
opposite case of the same continuous scenario (Figure 11a). 

4.4   Demonstration of FF-PPA Technique 

Figures 12 and 13 illustrate an optimisation scenario solving accordingly ZDT3 
and ZDT1. The PPA of the DM was expressed using Fonseca and Fleming’s pref-
erability operator. In Figure 12 (a-b), the 2 objectives had the same priority but 
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Fig. 10. G-MOEA running on ZDT1 
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Fig. 11. G-MOEA running on ZDT3 
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Fig. 12. Fonseca and Fleming’s PPA technique running on ZDT3 
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Fig. 13. Fonseca and Fleming’s PPA technique running on ZDT1 

Different desired goals in order to emphasize the facility of reducing the search space 
andfocusing on regions of interest. The desired goal values for objective 1 and objec-
tive 2 were as follows respectively: Figure 12(a) �(0.5,0.5), Figure 12(b) �(0.9,0.8). 

From Figure 12, it is very obvious that FF-PPA technique is a precise and DM-
oriented facility. The numerical goal value in each dimension is the only information 
required from a DM to reduce the search space and focus on certain parts of a Pareto 
front. The goal values progressively articulated by the DM are input to the optimiser 
to modify the concept of dominance and steer the search and selection process in the 
desired search region. 

5   Discussion and Concluding Remarks 

Progressive preference articulation is a useful approach for reducing high-dimensional 
spaces and tackling evolutionary many-objective optimisation problems. It has bene-
fits when compared with its a priori preference articulation technique counterpart, 
which requires the DM to know his/her preferences in advance, and which makes no 
use of the information that becomes available during the search process. In the previ-
ous section, experiments were carried out using some of the most recent and most 
established PPA techniques. Although the deployed scenarios consisted of 2 dimen-
sional scenarios only, for visualization purposes, the strengths, weaknesses, and there-
fore the efficiency and suitability of these PPA techniques for the many-objective 
optimisation were apparent. The FF-PPA technique clearly still stands as an efficient, 
truly “progressive” articulation technique. It is a user-friendly and direct technique. 
The accuracy and pertinence of the results achieved by the FF-PPA technique are 
realised with modest computational effort, and easily scales to any number of objec-
tives. In evolutionary many-objective optimisation scenarios, supervised by an appli-
cation-expert DM, the FF-PPA technique is a suitable optimisation technique. The 
technique’s traditionally criticised negative influence on the underlying search proc-
ess which can be caused by setting easily achievable, or contrarily very optimistic 
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goal values that can hinder the search, can be controlled and monitored via an auto-
mated DM such as expert systems [17]  which can play the role of a progress sensor 
detecting such optimisation anomalies and modifying the goal values as appropriate 
with or without DM intervention. 

The biased crowding concept is a well-established preference articulation tech-
nique that can be used in a progressive manner to focus on a certain ROI. It is mostly 
useful and practical from the DM’s point of view when used with convex or concave 
optimisation problems with no more than 3 objectives. When dealing with multimo-
dal, ill-behaved or high-dimensional problems, using the biased crowding is not very 
efficient, especially in high-dimensional problems, because it can be very confusing 
for a DM to devise a plane or hyperplane of interest for solutions projection. This 
difficulty can be broadly compared to the difficulty of devising weight values for the 
objectives in a weighted sum approach. Indeed, even in scenarios where a projection 
hyperplane might be suggested, this technique will require a considerable appreciation 
of high dimensional geometry and calculation, which can be very complex to operate 
or automate. Even in the best scenarios, it was actually noted that the resolution of the 
ROI achieved by the biased crowding based PPA technique is not as precisely aligned 
with the DM preferences when compared with the FF-PPA technique, although this 
fuzziness can be suitable for addressing vague user preferences.  

On the other hand, setting epsilon values for each objective and ensuring the facil-
ity of progressively modifying the epsilon values can establish the ε –dominance 
concept within the ε-MOEA as another PPA technique. From the process operator or 
DM’s point of view, it will remain, however, a complicated approach, involving the 
manipulation of ε-values rather than numerical goal values for the objectives. The 
accuracy and pertinence of the results achieved by such a PPA approach can be quite 
imprecise with a fuzzy response to certain preferences. On the other hand, the diver-
sity promotion mechanism employed in ε-MOEA is a state-of-the-art multiobjective 
optimisation technique for limiting archive size and promoting diversity, and is highly 
commendable. Although it seems so far that the use of ε –dominance is better re-
served for defining results precision and the magnitude of computational requirements 
- which can be used to reduce the effect of dominance resistance in high dimensional 
problems- future research into using ε –dominance as a method to articulate prefer-
ences is definitely desired.  

Lastly, despite its simplicity and practicality for certain optimisation problems, the 
use of the guided dominance scheme as a PPA technique suffers from several weak-
nesses. Because the modification of the dominance scheme implicitly assumes linear 
utility functions, it can be quite complicated to handle multimodal and non-convex 
optimisation problems [9], [6]. In addition, when tackling high-dimensional problems 
this technique can be computationally expensive and demanding [6], especially from 
a DM point of view, as the number of required pair-wise tradeoff values for this tech-
nique becomes very high. 

PPA methods are a very important area of application for many-objective optimisa-
tion problems and new approaches are welcomed. Meanwhile, it is planned to per-
form controlled studies of relatively novice DMs solving selected many-objective 
optimisation tasks using the four methods described above. 
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Abstract. Pareto optimization methods are usually expected to find
well-distributed approximations of Pareto fronts with basic geometry,
such as smooth, convex and concave surfaces. In this contribution, test-
problems are proposed for which the Pareto front is the intersection of
a Lamé supersphere with the positive R

n-orthant. Besides scalability
in the number of objectives and decision variables, the proposed test
problems are also scalable in a characteristic we introduce as resolvability
of conflict, which is closely related to convexity/concavity, curvature and
the position of knee-points of the Pareto fronts.

As a very basic bi-objective problem we propose a generalization of
Schaffer’s problem. We derive closed-form expressions for the efficient
sets and the Pareto fronts, which are arcs of Lamé supercircles. Adopting
the bottom-up approach of test problem construction, as used for the
DTLZ test-problem suite, we derive test problems of higher dimension
that result in Pareto fronts of superspherical geometry.

Geometrical properties of these test-problems, such as concavity and
convexity and the position of knee-points are studied. Our focus is on
geometrical properties that are useful for performance assessment, such
as the dominated hypervolume measure of the Pareto fronts. The use
of these test problems is exemplified with a case-study using the SMS-
EMOA, for which we study the distribution of solution points on different
3-D Pareto fronts.

1 Introduction

Next to introducing a manageable mathematical foundation for meta-heuristic
approaches in multiobjective optimization, constructing a repository of scalable
and multimodal test problems is of vital importance [1, 3, 6, 8, 10]. In analyzing
a test problem family with well-defined properties, we make a contribution to
this ongoing effort of the multiobjective optimization community.

One reason for obtaining the complete Pareto front (PF) of a problem instead
of a single non-dominated solution, is that the shape of the PF provides the
decision maker with useful extra information about the nature of the conflict. A
qualitative approach to this problem is to distinguish between concave, convex
and linear (parts of) PFs, as it is well known that on convex PFs it is easier to
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f2y1 − y∗
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f2y1 − y∗
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y2 − y∗
2

Pareto Front (PF)

Fig. 1. Visualization of a measure for conflict resolvability. The left figure displays a
scenario in which a good compromise exists, while in the scenario displayed on the right
hand side they do not exists. The conflict resolvability is computed as the maximum
of y1 − y∗

1 and y2 − y∗
2 at the position which minimizes this value, where y∗

1 and y∗
2 are

the coordinates of the ideal point.

find good compromises than on concave ones, and also the behavior of algorithms
is often different on both types of geometry.

Taking this into account, we aim for test problems that capture all three
types of PFs (concave, convex, and linear). However, the test-case we propose
allows also to scale quantitatively the resolvability of conflict. As a measure of
the resolvability of conflict one may consider:

RoC(PF ) = 1 −
miny∈PF maxi∈{1,...,m} |yi − y∗i |
maxy∈PF maxi∈{1,...,m} |yi − y∗i | (1)

Here, y∗ denotes the ideal solution, m is the number of objective functions, and
PF denotes the PF. Note, that in case of the denominator being zero, we define
RoC(PF ) to be one. Ideally, this value should be close to 1, meaning that all
objectives are complementary.

In Figure 1 two situations are depicted. In the left figure a convex PF for a
problem is depicted, for which good compromise solutions exists. In the right
figure, a concave PF is depicted for which there exists no good compromise. We
construct a highly symmetrical class of functions for which the geometry of the
PF can be varied gradually from convex shapes with high resolvability of con-
flicts, to linear shapes, and concave shapes with low resolvability of conflicts (cf.
figure 1). The problem family we propose is highly symmetrical and only intro-
duces the difficulty of obtaining well-spread solutions on the different shapes of
PFs. We consider these problems as interesting, as they can be used for ana-
lyzing metaheuristics in a controlled way, i. e. by isolating difficulties. However,
we note that the complexity of the test problems can be gradually increased by
adding difficulties in a managed way.

The problems can be considered as generalizations of models with spheri-
cal symmetries, that are frequently used as elementary test problems in single



924 M.T.M. Emmerich and A.H. Deutz

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f2

f1

γ = 0.4
γ = 0.6
γ = 1
γ = 2

0 0.2 0.4 0.6 0.8 1
f1

0
0.2

0.4
0.6

0.8
1

f2

0

0.2

0.4

0.6

0.8

1

f3
γ = 0.4
γ = 0.6
γ = 1
γ = 2

Fig. 2. PFs of different shapes as obtained with the test problem generator. The
parameter γ controls the curvature and also the convexity, linearity and concavity of
the PF. The points exemplify an approximation sets achieved with the SMS-EMOA.

objective optimization. Moreover we provide an analysis of the geometry
of the PFs.

For the 2-D objective space, we generalize Schaffer’s well known test problem
f1(x) = x2, f2(x) = (1 − x)2 to higher dimensional search spaces. The gen-
eralized Schaffer problem [15], which has been used in some applied studies,
reads: f1(x) = 1

nα (
∑n

i=1 x2
i )

α → min and f2(x) = 1
nα (

∑n
i=1(1 − xi)2)α → min

for xi ∈ R+, where i = 1, ..., n. The parameter α ∈ R+ controls the convex-
ity/concavity and the resolvability of the PF, as it will be obtained in our
analysis. For these generalized Schaffer functions explicit descriptions of the
PF (f2 = (1 − fγ

1 )
1
γ , γ = 1

2α ) and efficient set are derived . More impor-
tantly the concavity changes for different choices of γ gradually from concave
(0 < γ < 1), to linear (γ = 1) and convex (1 < γ). An interesting ob-
servation is that the shapes of the different Pareto curves are arcs of Lamé
supercircles.

Adopting the bottom-up-approach of test-problem generation [3], the con-
cept can be generalized to arbitrary numbers of objective functions. Again we
obtain problems with super-spherical geometry of the PF for which the convex-
ity/concavity and resolvability can be controlled by means of a single parameter.
For higher dimensions the geometrical properties of such PFs are not obvious to
see. Thus, we provide a detailed analysis of the geometry, focussing on proper-
ties like convexity/concavity and the size of dominated hypervolume. Based on
the geometrical analysis, we provide explicit formulas for computing standard
performance metrics that measure the quality of finite set approximations to the
PFs, e.g., the average distance to the PF and percentage of dominated hyper-
volume. This will help the practitioner, who wants to assess the performance of
meta-heuristics on these test problems.

The structure of this article is as follows: After the preliminaries (Section 2),
Section 3 focusses on problems with two criteria. We derive an explicit formula
for the PF of the generalized Schaffer problem. In Section 4 we study a general
class of m-dimensional PFs for which the solution of the Schaffer problem is the
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2-dimensional instance. In particular we will focus on the influence of the control
parameter γ on the convexity/concavity of the PF. Adopting the bottom-up
approach of multiobjective test problem construction, we provide in Section 5 a
family of test problems with scalable geometrical properties. Section 6 deals with
performance metrics. Finally, Section 7 illustrates the use of the test problems
by means of a case study. Concluding discussions are in section 8.

2 Mathematical Preliminaries

Next, we are going to outline notions and definitions of Pareto optimality and
non-dominance as they are used throughout this article. The notation is mainly
borrowed from Ehrgott [4].

Definition 1. Given two vectors y ∈ R
m, y′ ∈ R

m we say y dominates y′ (in
symbols: y ≺ y′ , iff ∀i = 1, . . . , m : yi ≤ y′i and ∃i ∈ {1, . . . , m} : yi < y′i.
Moreover, we define y � y′ ⇔ y ≺ y′ ∨ y = y′.

Definition 2. Given a set of points Y, a point y is said to be non-dominated
with respect to Y, iff there does not exist y′ ∈ Y : y′ ≺ y. Moreover, the subset
of non-dominated points y in Y with respect to Y is called the non-dominated
set of Y. Also this set is referred to as the Pareto front (PF) of Y.

In the context of optimization problems fi(x) → min, i = 1, . . . , m, x ∈ X the
concept of dominance is also defined on the search space.

Definition 3. We say x ≺ x′ :⇔ (f1(x), . . . , fm(x)) ≺ (f1(x′), . . . , fm(x′)).
Also, we define x � x′ :⇔ (f1(x), . . . , fm(x)) � (f1(x′), . . . , fm(x′)).

Definition 4. Given a set of points X the non-dominated subset of the set
{y | y1 = f1(x), . . . , ym = fm(x), x ∈ X } is called the Pareto front (PF) with
respect to the optimization problem. Moreover, the inverse image of this set in X
is called the efficient set in X , see[4]. The elements of this set are called efficient
points.

In the sequel R
m
+ denotes the set {(y1, . . . , ym) ∈ R

m | yi � 0, i = 1, . . . , m} and
by 1 we denote (1, . . . , 1) ∈ R

m where m is clear from the context.

3 Efficient Set and Pareto Front for the Generalized
Schaffer Problem

In this section we derive a closed form expression for the solution of the problem

f1(x) =
1

nα
(

n∑
i=1

x2
i )

α → min, f2(x) =
1

nα
(

n∑
i=1

(xi − 1)2)α → min, x ∈ R
n
+ (2)

Moreover, we will show that the efficient set of this problem will be the line
segment Ln:

Ln = {x ∈ R
n|x = λ1, λ ∈ [0, 1]} (3)
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Next, a number of lemmata for α = 1 will be derived that provide building
blocks for proving the interesting result for general α > 0.

Lemma 1. Decision vectors on the line segment λ1, λ ∈ [0, 1] are mutually non
dominated with respect to problem (2) and α = 1.

Proof. For any (λ, λ′) ∈ [0, 1]2 with λ′ > λ: f1(λ1) = nλ2 < n(λ′)2 = f1(λ′1)
and f2(λ1) = n(1 − λ)2 > n(1 − λ′)2 = f2(λ′1) �

Lemma 2. Let x ∈ R
n
+ − Ln. Then λ1 ≺ x for some λ ∈ (0, 1].

Proof. Let x ∈ R
n
+ − Ln. We consider the number λ =

√
1
n

∑n
i=1 x2

i . We first
show that for this λ, λ1 ≺ x. Note that λ > 0 and possibly λ > 1. In case λ ≤ 1
we are done. In case λ > 1 we easily see that 1 ≺ x (since 1 ≺ λ1 ≺ x). So in
both cases the lemma obtains. In the remainder we will show that for the above
chosen λ, λ1 ≺ x holds:

It is clear that f1(λ1) = f1(x) holds, since f1(λ1) = 1
n

∑n
i=1 λ2 = λ2 =

1
n

∑n
i=1 x2

i = f1(x). Moreover, we can show that under the given assumptions
f2(λ1) < f2(x) holds: f2(λ1) < f2(x) ⇔ 1

n

∑n
i=1(1 − λ)2 < 1

n

∑n
i=1(1 − xi)2 ⇔

1−2λ+λ2 < 1−2 1
n

∑n
i=1 xi + 1

n

∑n
i=1 x2

i ⇔ λ2 > 1
n2 (

∑n
i=1 xi)2 ⇔ n

∑n
i=1 x2

i >
(
∑n

i=1 xi)2. The latter inequality holds in general for positive xi, if for some
pair (i, j) ∈ {1, . . . , n}2 the inequality xi �= xj holds. Since for at least one
pair (i, j) ∈ {1, . . . , n}2 the inequality xi �= xj holds, we can show the relevant
inequality as follows. To make the structure of the sum on the right hand side
more visible let us format the expression in a matrix form:

(
n∑

i=1

xi)2 =

x1x1 + · · ·+ x1xj + · · ·+ x1xn+
...

...
xix1 + · · ·+ xixj + · · ·+ xixn+

...
...

xnx1 + · · ·+ x1xj + · · ·+ xnxn

(4)

Now, with xixj + xjxi ≤ x2
i + x2

j and in particular xixj + xjxi < x2
i + x2

j for
those pairs (i, j) ∈ {1, . . . , n}2 with xi �= xj the result can be simply obtained
by overestimating all of the (n − 1)/n expressions xixj + xjxi by x2

i + x2
j for

distinct i and j and then adding the diagonal x2
i which, in summary, results in

an (strict) overestimator n
∑n

i=1 x2
i . In other words we have shown that for the

chosen λ, λ1 ≺ x holds. �

Now, the lemmata can be assembled to prove the following central lemma:

Lemma 3. The efficient set for problem (2) with α = 1 is given by Ln.

Proof. Firstly we will show that Ln is a subset of the efficient set (ES) of problem
(2). Secondly we will show that ES of problem (2) is a subset of Ln. Let x ∈ Ln.
We want to show that x belongs to ES. Suppose the contrary. That is, ∃x′ ∈ R

n
+

such that x′ ≺ x. We distinguish two cases. Case I: x′ ∈ Ln. This leads to a
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contradiction because of Lemma 1. Next consider Case II: x′ ∈ R
n
+ − Ln. This

also leads to a contradiction because of Lemma 2 and Lemma 1.
Secondly we will show that ES is a subset of Ln. Or equivalently: We will show

that the assumption that there exists an x in ES such that x /∈ Ln leads to a con-
tradiction. Assume the existence of such an x. Since x /∈ Ln we know – according
to Lemma 2 that there exists x′ ∈ Ln such that x′ ≺ x. A contradiction. �

Now, by assuming general λ > 0 the proof can be extended to the central theorem
of this section as follows:

Theorem 1. The efficient set for f1(x) = ( 1
n

∑n
i=1 x2

i )
α → min, f2(x) =

( 1
n

∑n
i=1(1 − xi)2)α → min and x ∈ R

n
+ is given as Ln = {λ1|λ ∈ [0, 1]}.

Moreover the PF of this problem is y2 = (1 − y
1/2α
1 )2α, y1 ∈ [0, 1].

Proof. The generalization to α > 0 follows from the fact, that f1 and f2 are
transformed by the same strictly monotonous function y �→ yθ, θ > 0, such
that for any two points x and x′: f1(x) > f1(x′) ⇔ f1(x)θ > f1(x′)θ, f1(x) ≥
f1(x′) ⇔ f1(x)θ ≥ f1(x′)θ and the same for f2. Hence, also the pre-order defined
on the decision space remains equal for the problem with α = 1 and any other
α > 0. The expression for the PF can be derived as follows: Let x denote an
arbitrary vector (λ, . . . , λ) ∈ Ln, λ ∈ [0, 1]. Then f1(x) = (λ2)α and f2(x) =
((1 − λ)2)α. From the first equation we get λ = f

1/2α
1 , which is then to be

substituted in f2, resulting in f2 = (1 − f
1/2α
1 )2α �

For α = 1 an alternative geometric proof of Theorem 1 can be given.
One thing that is apparent is that the parameter α plays an important role for

the shape of the PF. It is easily seen that for α = 0.5 the PF is linear, for α > 0.5
it gets convex and for α < 0.5 it gets concave (see also Theorem 2 and Fig. 2).
Moreover the PF is symmetric w.r.t the main bisector line between the f1 and f2
coordinate axes and takes its extremal values (extremal solutions) in the points
y∗1 = (0, 1)T and y∗2 = (1, 0)T . The Nadir point is yN = (1, 1)T . Note, that for the
more general problem 1/nα(

∑n
i=1 |xi|q)α → min and 1/nα(

∑n
i=1 |1 − xi|q)α →

min similar expressions for the non-dominated front can be found. However, for
0 ≤ q ≤ 1 the efficient set is no longer a line segment. Emmerich [6] derived that
the efficient set for q = 1 is the hypercube of dimension m. The problem was
used in [5]. An open question for future research would be how to extend further
Schaffer’s problem for more than two objective functions, where each objective
function is a distance function to a fixed point in R

n. For linearly independent
points, we conjecture that the convex hull of the points is the efficient set.

A crucial observation is, that the PFs of this class of problems are Lamé su-
percircles [12], i. e. zero sets of |y1|γ + |y2|γ , intersected with R

2
+. The connection

between γ and α is established as γ = 1
2α . These curves have interesting ge-

ometric properties that can be exploited to compute performance metrics (cf.
section 6). A generalization of Lamé curves are the m-dimensional superspheres
discussed in the next section.
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4 N-Dimensional Pareto Fronts with Superspherical
Geometry

In this section we will define and look at superspheres of arbitrary dimension.
More specifically we will consider parts of superspheres which consist of mutually
non-dominated points, of which the solutions of the aforementioned generalized
Schaffer problems are special cases. It is easy to see that they arise as zero sets
of strictly concave or strictly convex functions. Alternatively they can be viewed
as graphs of strictly convex or strictly concave functions. Since the sets we are
considering consist of mutually non dominated points, we can view them as PFs
arising from multiobjective optimization problems.

4.1 Convexity and Concavity of Superspheres

In the sequel we will use notions on concavity and convexity such as convexity
of sets, convexity/concavity of functions, strict convexity/concavity of functions
etcetera without defining them. Instead we refer the reader to the standard
literature (for instance, Convex Analysis by R. Tyrrel Rockafeller [14]).

The following definition introduces the main building blocks of the test prob-
lems we study: postive parts of superspheres and hyperspheres.

Definition 5. Consider the set

{(y1, . . . , ym) ∈ R
m | |y1|γ + · · · + |ym|γ − 1 = 0}, (5)

where γ ∈ R+ is arbitrary and fixed. We will call such zero-sets γ–superspheres
or more precisely the m − 1-dimensional γ–supersphere (notation: Sm−1

γ ). The
supersphere which arises for γ = 2 is usually called the m − 1-dimensional hy-
persphere (notation: Sm−1).

In the sequel we will only consider the ”positive” parts of the γ-superspheres,
i.e., we consider sets of the form:

{(y1, . . . , ym) ∈ R
m
+ | yγ

1 + · · · + yγ
m = 1}, (6)

where γ ∈ R+ is arbitrary but fixed. We denote these ”positive” parts of hyper-
spheres (γ = 2) by Sm−1,+ and those of superspheres by Sm−1,+

γ

Theorem 2 shows that we can view the (positive parts) of the γ-superspheres
as graphs of concave (γ > 1) or convex (0 < γ < 1) functions.

Theorem 2. Let γ ∈ R+ and let Xγ = {(y1, . . . , ym−1) ∈ R
m−1
+ | yγ

1 + · · · +
yγ

m−1 ≤ 1}. For each positive γ, define a function hγ : Xγ −→ R by h(y) =
(1− (yγ

1 + · · ·+yγ
m−1))

1
γ , where y ∈ R

m−1. Then hγ is strictly concave for γ > 1
and strictly convex for 0 < γ < 1. For γ = 1, hγ is convex and concave (but
neither is strict). �
Alternatively, the next Theorem shows that the positive parts of
γ-superspheres can also be viewed as zero-sets of strictly concave or strictly
convex functions – we again omit the proof of this theorem:
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Theorem 3. Let γ ∈ R+ and let fγ : R
m
+ −→ R be the function defined by

fγ(y) := yγ
1 + · · · + yγ

m − 1.

1. for γ > 1, the function fγ is strictly convex and the below set B = {y ∈
R

m
+ | f(y) ≤ 0} is convex and Sm−1,+

γ = {y ∈ R
m
+ | f(y) = 0} is a sub-

set of the boundary of B. (The remaining boundary points lie in the co-
ordinate hyperplanes and the set of these remaining points is described by⋃m

i=1{(y1, . . . , yi−1, 0, yi+1, . . . , ym) ∈ R
m
+ | yγ

1 + · · · + xγ
i−1 + 0 + xγ

i+1 +
· · · yγ

m − 1 ≤ 0}. Or equivalently by
⋃n

i=1 B ∩ {(y1, . . . , ym) ∈ R
m
+ | yi = 0}.)

2. for 0 < γ < 1, the function fγ is strictly concave and the above set A = {y ∈
R

m
+ | f(y) ≥ 0} is convex and Sm−1,+

γ = {y ∈ R
m
+ | f(y) = 0} is a subset of

the boundary of A. (The remaining boundary points of A lie in the coordinate
hyperplanes and the set of these remaining boundary points is described by⋃m

i=1{(y1, . . . , yi−1, 0, yi+1, . . . , ym) ∈ R
m
+ | yγ

1 +· · ·+xγ
i−1+0+xγ

i+1+· · · yγ
m−

1 ≥ 0}. Or equivalently by
⋃m

i=1 A ∩ {(y1, . . . , ym) ∈ R
m
+ | yi = 0}.)

Moreover the part of the boundary which is equal to Sm−1,+
γ in each of the above

cases is equal to the graph of the function hγ defined in Theorem 2. �
For a proof of these theorems the reader is referred to [7].

4.2 Resolvability/Intractability of Conflict Versus γ

Next, we discuss how the measure of resolvability of conflict is related to γ. It
would be desirable for the user, to provide only the desired value for the RoC
and then compute a corresponding value for γ. In order to come up with an
expression for γ, we exploit that the Minkowski distance to the ideal point gets
minimized in points with y1 = · · · = ym. Moreover, we use yγ

1 + . . . yγ
m = 1.

Combining these expressions yields the desired equation:

γ =
log(1/m)

log(1 − RoCm)
(7)

For a visualization and some explicitly computed values, see Figure 3.
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5 Construction of Test Problems

Now we are ready to use the superspheres as PFs of test problems. First we in-
troduce parametrizations for superspheres. After that we can apply the methods
introduced by Deb et al. [3] to generate test problems of which the superspheres
are the PFs. We are afforded scalability in the number of objectives and also
in the number of decision variables and a complete control over the extent of
convexity/concavity and therefore resolvability of conflict.

5.1 Parametrizations of Hyperspheres and Superspheres

Consider the following representation of an m − 1-dimensional γ-super-sphere
(notation: Sm−1

γ ) as a subset of R
m

Sm−1
γ = {(y1, y2, ..., ym) ∈ R

m | |y1|γ + |y2|γ + . . . |ym|γ = 1} (8)

where γ ∈ R+ is fixed. Since super-spheres with γ = 2 – they are usually
called hyperspheres – admit parametrizations, we easily get parametrizations
for any γ-super-sphere. For consider an (m-1)-dimensional hypersphere
Sm−1:

Sm−1 = {(y1, y2, ..., ym) ∈ R
m | y2

1 + y2
2 + . . . y2

m = 1} (9)

Such a hypersphere admits parametrizations (for example:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y1 = cos(θ1)
y2 = sin(θ1) cos(θ2)
y3 = sin(θ1) sin(θ2) cos(θ3)
. . . = . . .

ym−1 = sin(θ1) sin(θ2) . . . sin(θm−2) cos(θm−1)
ym = sin(θ1) sin(θ2) . . . sin(θm−2) sin(θm−1),

(10)

where θ1 . . . θm−1 are in R (or if need be in bounded intervals of R)). For each
parametrization of the hypersphere Sm−1, we obtain a parametrization of an
(m − 1) − γ-super-sphere, for a fixed γ ∈ R+. For let

yi = pi(θ1, . . . , θm−1), (11)

where i = 1, . . . , m be a parametrization of Sm−1, then

yi = ±(pi(θ1, . . . , θm−1))
2
γ , (12)

where i = 1, . . . , m is a parametrization of Sm−1
γ (if we are willing to tread

carefully with raising to the power 2
γ in (12), i.e., first raise to the power 2 and

subsequently to the power 1
γ ).
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5.2 Test Problems

Next we proceed to use parametrizations for the positive part of γ-superspheres in
the construction of test problems. We will single out one family of parametriza-
tions for the γ-superspheres which arise from the parametrization of the hyper-
sphere as in (10). In more detail we define the positive parts of γ-superspheres as
follows. Let γ > 0 be fixed. We let p̃1(θ1, . . . , θm−1) = (cos(θ1))

2
γ ,

p̃i(θ1, . . . , θm−1) = (sin(θ1) · sin(θ2) · . . . · sin(θi−1) · cos(θi))
2
γ . where 1 < i < m,

and finally p̃m(θ1, . . . , θm−1) = (sin(θ1)·sin(θ2)·. . .·sin(θm−1))
2
γ with 0 ≤ θj ≤ Π

2
and j = 1, . . . , m − 1 be a parametrization of Sm−1,+

γ .
Adopting the approach of Deb et al. [3] for spheres and linear surfaces, the

parametrization for the γ-superspheres can be used to construct test problems
as follows. We let

fi(θ, r) = (1 + g(r))p̃i(θ) (13)

for i = 1, . . . , m and where 0 ≤ θj ≤ Π
2 for j = 1, . . . , m − 1 and g : R+ −→ R+

and the test problem consists of the minimization of the fi for i = 1, . . . , m
under the constraints 0 ≤ θj ≤ π

2 , for j = 1, . . . , m − 1.
The variables θi with i = 1, . . . , m − 1 are viewed as meta-variables and

one can, for instance, map the decision variables to θi as follows: θi = π
2 xi for

i = 1, . . . , m − 1 with the restriction 0 ≤ xi ≤ 1. But one can choose other
mappings as well. Also given the function g we can view the body we obtain
as the image of (fi)m

i=1 as a layered ’onion’ where each layer corresponds to a
function value of g. Each of the layers can be described as follows: {(x1, . . . , xm) ∈
R

m
+ | xγ

1 + · · · + xγ
m = (1 + g(r))γ} if we fix r or if we fix a function value g(r).

Also r can be considered as a meta-variable. The PF occurs for the minimum of
the function g.

From the above it is clear that it is straightforward to apply the methods
developed in Deb et al. [3] to the case of superspheres.

5.3 Uni- and Multimodal Test Problems and Their Mirror
Problems

As an unimodal test problem with n ≥ m decision variables we propose the
problem ED1: g(r) = r, r =

√
(x2

m + · · · + x2
n).

For a given γ with convex (concave) PF, we can obtain a problem (we will
term it the mirror problem) with congruent concave (convex) PF by setting:
fi(x) = 1/(g(x) + 1)p̃i(θ1, . . . , θm−1), i = 1, . . . , m For γ = 2 the PF of the
mirror problem is given in Figure 4 (left).

In order to make the problem multimodal, we propose to choose g(r) =
Fnatmin(r), for a function Fnatmin that we define next (cf. Figure 4 (right)):

Fnatmin(r) = b+(r−a)+0.5+0.5 cos(2π(r−a)+π), a ≈ 0.051373, b ≈ 0.0253235
(14)

The function Fnatmin has the ’nice’ property that it takes its minima at the
natural numbers. The optimal function values are the natural numbers. There-
fore, it can be checked which of the local PFs has been reached. The constants
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a and b have been computed numerically by setting the derivative of Fnatmin
to zero and at the same time setting the function Fnatmin to zero and solving
(numerically) for a and b.

The resulting optimization problem, we will name it ED2, is a multimodal
test-problem with equidistant local Pareto-fronts with respect to the radii ||x||γ .
Many-to-one mappings can be introduced by replacing this function by the func-
tion sin2(x/π) in a similar manner as discussed for the Fnatmin function.
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Fig. 4. (l) Convex PF of the mirror problem for γ = 2. (r) The function Fnatmin :
R+ −→ R+ that takes its minima at the natural numbers is depicted.

In conclusion, we note that in the bicriteria case and γ = 2 the new test
problems result in the same PF as Schaffer’s 1D problem [15]. For m > 2 and
γ = 1 and γ = 2 the PFs we propose are equivalent to those of DTLZ prob-
lems [3]. However, we extended this benchmark by introducing scalability w.r.t.
the RoC. Huband et al. [8] compiled a list of recommendations and desirable
features. Regarding this list we note that we focus on the difficulties of scal-
ability in dimensions, number of objective functions, and curvature (e.g. con-
cavity/convexity, RoC). Moreover, we discussed multimodal versions of the test
problems. Many extra difficulties, such as non-separability, plateaus etc., can be
introduced in a managed way by designing adequate functions for g and using
coordinate transformations.

6 Implementation of Performance Metrics

The measure of dominated hypervolume and the average distance of points to
the PF are two measures that are frequently used to measure the quality of a
pareto set approximation [2, 5].

6.1 Dominated Hypervolume of Pareto Fronts

Next, we provide expression for the measure of the dominated hypervolume
[16] for PFs of the problem. Let S(P ) denote the measure of the dominated
hypervolume of a PF P . For different γ and m it suffices to provide formulas for
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a reference point of r = 1 ∈ R
m as it just dominates all points of the PF. Note,

that in case of reference points that are dominated by r the computation of the
remaining part reduces to computing a sum of hyperbox volumes. The Lebesgue
measure of the dominated hypervolume for r = 1 and different γ and m will be
denoted with Sγ,m.

For the objective space with dimension m = 2 (and m = 3) the equations
are obtained as complements of quarters of areas of super-circles (super-spheres)
[12, 11]:

1 − Sγ,2 =
41− 1

γ
√

πΓ (1 + 1
γ )

Γ (1
2 + 1

γ )
/4, 1 − Sγ,3 =

8[Γ (1 + 1/γ)]3

Γ (1 + 3/γ)
/8 (15)

Note, that we considered only the first quadrant and a constant radius of r = 1.
For higher dimension, we know no general formula for the hypervolume. However,
for γ = 2 the volume of the m-dimensional unit hypersphere Sm can be used to
compute the S2,m.

1 − S2,m =
πm/2

Γ (0.5m)
/(2m) (16)

Expressions for integer m allow for a simplified formulas (cf. [13]). Finally, for
the linear case we get the simple expression S1,m = 1−1/m!. Some special cases
are reported in the table below1:

Sγ,m γ = 2 γ = 1 γ = 0.5 γ > 0
m = 2 1 − π/4 1

2 1/6 Sγ,2

m = 3 1 − π
6 1- 1

6 1 − 8/6! Sγ,3

m > 3 πm/2

Γ ( m
2 +1) 1 − 1

m! ? ?

6.2 Distance to the Pareto Front

The average distance of points to the PF is another measure that can be used
to measure the quality of PF approximations. Usually, it is combined with other
measures that take the coverage of the PF into account. This measure also turns
out to be useful as an indicator for local convergence to a local PF, as it may
easily occur for the multimodal test function proposed in Section 5.3.

A straightforward approach to compute the distance of a point to the Pareto-
front that also fits with the detection of local convergence is to compute directly
the supersphere radius rγ of a point with respect to γ, i.e.: d(x) = −1 + rγ(x).
This measure becomes zero, if and only if the point y lies on the PF. Otherwise
it is a value that decreases with the Minkowski distance of that point to the
PF. Moreover, the value can be used to detect the local PF to which a run has
converged.

1 Question marks indicate results unknown to us.
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6.3 A Note on Knee-Points

It has been often stated that, in case of convex parts of the PF it is desirable
to obtain knee-points in Pareto optimization, as they are considered to be good
compromise solutions. In case of our test problems knee-points for convex PFs
are exactly given by (1 − RoCm(γ))1 ∈ R

m. Hence, the distance of a solution to
a knee-point can be easily checked.

7 Case Study

In a case study, illustrating the use of the test problem, we looked at the results
of the SMS-EMOA [5, 9]. This steady state EMO algorithm aims at finding
well-spread solution sets by maximizing their dominated hypervolume. It is an
interesting question how exactly this algorithm distributes points on PFs of
different shape. Test runs for the 2-D case are reported in Figure 2 (left). A
population size of 15 was used and 15000 objective function evaluations. The
generalized Schaffer problem with x ∈ [−2, 2]5 has been solved for different
values of γ (= 1

2α ). The results indicate well-distributed point sets and the
almost all solutions are on the PF. For high RoC the density of points grows
near the knee point, while for the linear case points are distributed uniformly.
This corresponds to the optimal distribution w.r.t. S-metric maximization [7].

In addition we computed PFs for the following 3-D problem: Setting g =
(
∑n

i=m x2
i )

0.5 and

f1 = ((cos(x1))2)
1
γ (1 + g(x)) → min (17)

f2 = ((sin(x1) cos(x2))2)
1
γ (1 + g(x)) → min (18)

f3 = ((sin(x1) sin(x1))2)
1
γ (1 + g(x)) → min (19)

x ∈ [0, π/2]2 × [0, 1]n−2, n = 7 (20)

The population size was changed to 70, while the other settings remained the
same. for different γ are displayed in Figure 5 and, for the convex mirror problem
of γ = 2, in 4 (right). From another viewpoint the same results are shown in
Figure 2 (right). Again, in the linear case points are distributed evenly across
the PF. In case of convex and concave fronts, compromise regions as well as
regions at the boundary are sampled with higher density. The results for γ = 1
and γ = 2 conform to the SMS-EMOA results on the DTLZ test-suite reported
in [9]. A more detailed study of the SMS-EMOA (and similar algorithms) on the
new test problems, though interesting, is beyond the scope of this paper .

8 Conclusions

We proposed and studied test problems with PFs being parts of Lamé super-
spheres, i.e. zero sets of yγ

1 + · · · + yγ
m, for γ ∈ R

+. They can be scaled from
concave problems with low conflict resolvability, to linear problems, and finally
convex problems with high conflict resolvability.
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Fig. 5. Results of the SMS-EMOA for different settings of γ on the 3-D test-problems

As a first class of such functions we introduced generalized versions of Schaf-
fer’s test-problem f1(x) = 1

mα (
∑m

i=1 |xi|q)α → min, f2(x) = 1
mα (

∑m
i=1 |1 −

xi|q)α → min and provided closed form expressions for their efficient set and
PFs, which turned out to be arcs of Lamé supercircles with γ = 1

2α . Then,
adopting the construction methods proposed by Deb et al. [3], we constructed
test problems that result in PFs that are parts of m-dimensional super-spheres.
For all test problems we provided means to compute performance measures,
such as the dominated hypervolume measure, the (average) distance to the PF
and distance of solutions to the knee point. A case study with the SMS-EMOA
illustrated the use of these test problems.

Our primary goal was to introduce and study a set of test problems with basic
geometry, rather than benchmark problems that include all kinds of difficulties
in an intertwined way. This way, properties of the algorithm and its solution sets
can be studied in a isolated manner on well-understood geometries. However,
these elementary problems can be used as building blocks for more complex test
problems in benchmark suites.

In future, it would be interesting to extend the test problems, in order to
capture problems, for which subsets of the objectives lead to highly resolvable
problems and for which other subsets do not. A promising approach is to use
individual γ values for different dimensions, i.e. look at zero sets of the form
yγ1
1 + · · · + yγm

m = 1. However, such families of PFs deserve a thorough study
that would extend the scope of this paper.

Supporting material (C++-implementation of test problems, related technical re-
ports) is provided under www.liacs.nl/∼emmerich/superspheres.html.

www.liacs.nl/~emmerich/superspheres.html
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Abstract. Evolutionary algorithms have become a very popular ap-
proach for multiobjective optimization in many fields of engineering. Due
to the outstanding performance of such techniques, new approaches are
constantly been developed and tested to improve convergence, tackle new
problems, and reduce computational cost. Recently, a new class of algo-
rithms, based on ideas from the immune system, have begun to emerge
as problem solvers in the evolutionary multiobjective optimization field.
Although all these immune algorithms present unique, individual char-
acteristics, there are some trends and common characteristics that, if
explored, can lead to a better understanding of the mechanisms govern-
ing the behavior of these techniques. In this paper we propose a common
framework for the description and analysis of multiobjective immune
algorithms.

1 Introduction

Multiobjective problems arise in many engineering and scientific applications,
where many conflicting goals have to be achieved simultaneously. In this class
of problems, evolutionary algorithms in general have been demonstrated to be
an effective and efficient tool for finding the set of trade-off solutions that char-
acterize the Pareto-optimal set. For a good overview of the current state-of-art
in multiobjective evolutionary techniques, we refer to some of the main books in
the field[21,8,37] and also to the Online EMO Repository [11].

During the last decade [16], a new paradigm based on principles of the im-
mune system has been employed for developing interesting algorithms for both
mono and multiobjective optimization (MOO). Artificial immune systems (AIS)
[20] have found applications in many fields such as pattern recognition, com-
puter defense, optimization, and others. Since then, many multiobjective AIS
algorithms have appeared in a variety of conference proceedings and technical
journals, some of them not specialized in evolutionary computation. The main
objective of this paper is to present a broad overview of the current MO-AIS
techniques available in literature. Performance comparisons, however, are out-
side of the scope of this work, due to space constraints. This paper proposes a

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 937–951, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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common framework for MO-AIS algorithms, presenting a canonical MO-AIS al-
gorithm from which all other MO-AIS algorithms reviewed can be instantiated.
This common framework can simplify the comparative analysis of the algorithms,
as well as the introduction of new characteristics and the study of their effects.
Finally, we discuss the employment of other AIS principles in the improvement of
multiobjective techniques, and present a brief overview of other immunological
principles that could be employed for the development of new algorithms.

2 Multiobjective Optimization and the Immune System

In multiobjective optimization, we consider the following general problem:

X ∗ = argmin f(x)
subject to: x ∈ F ⊆ X (1)

in which x ∈ X represents the optimization variables. The objective functions
are f : X �→ R

m, that is, they map the optimization variables into real values.
The set F represents the feasible set, mathematically defined as:

F = {x ∈ X : g(x) ≤ 0} (2)

where g : X �→ R
p are the constraint functions. If the problem is unconstrained,

F and X are equivalent.
In the multiobjective context, there is not only one solution, but a set of

trade-off or Pareto-optimal solutions defined as:

X ∗ Δ= {x ∈ F :� ∃z ∈ F|f(z) ≤ f(x), f(z) �= f(x)} (3)

Since f(z) and f(x) are vectors in R
m, we need to define the relational oper-

ators ≤ and �=:

f(z) ≤ f(x) ⇔ fi(z) ≤ fi(x), ∀i = 1, . . . , m (4)
f(z) �= f(x) ⇔ ∃i = {1, . . . , m} : fi(z) �= fi(x) (5)

The evolutionary multiobjective techniques are designed to find a set of non-
dominated solutions that best represents the Pareto-optimal set. The search is
performed through the consecutive application of stochastic and heuristic oper-
ators, balancing global and local search capabilities, over a population of candi-
date solutions. For a good overview of evolutionary multiobjective algorithms,
see References [21,8].

Figure 1 shows the outline of a general population-based algorithm. This
algorithm presents the fundamental ingredients for designing an evolutionary
multiobjective technique, with the implementation details of each operator (e.g.,
whether the initialization procedure is random or deterministic, or the way to
implement the Selection) varying from one algorithm to another.
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1. Define the search space X , population size N , objective f(·) and
constraint g(·) functions;

2. A(t = 0) ← Initialize offline population;

3. B(t = 0) =
�
b(1), . . . , b(N)

�
← Initialize online population;

4. While (¬ stop criterion) do:
(a) Evaluate population using f(·) and g(·);
(b) Ψ(t) =

�
ψ(b(1)), . . . , ψ(b(N))

�
← Evaluate scalar quality (B(t));

(c) C(t) ← Selection (A(t),B(t), Ψ(t));
(d) D(t) ← Variation (C(t));
(e) A(t+ 1) ← Update(A(t),B(t));
(f) B(t+ 1) ← D(t);
(g) t ← t+ 1;

Fig. 1. Outline of a population-based algorithm

The offline population, also termed memory or archive population, will store
the “best solutions” achieved by the algorithm, i.e., the representation of the
Pareto-optimal set. The update method for the offline population should con-
sider dominance relations and also a good representation of the Pareto front.
Actually, the adoption of an offline population A(t) in multiobjective evolution-
ary algorithms is nowadays considered as an essential characteristic, being also
used as the dividing line between the first and second generation of evolutionary
multiobjective techniques [10]. Thus, all algorithms that represent the current
state-of-the-art in evolutionary multiobjective optimization employ such explicit
elitism method, see References [12,22,41] amongst others. Another important
characteristic highlighted in Figure 1 is the calculation of a scalar quantity that
measures the quality of the solution in a multiobjective context. Finally, the
selection and variation steps represent the heuristic search of the algorithm,
responsible for generating the next population based on the current online pop-
ulation B(t).

In general, any population-based technique can be adequately represented by
the baseline algorithm above. The fundamental differences in all these algorithms
in literature reside basically in: (i) the scalar quality calculation; (ii) the update
of the offline population and the mechanism for preserving diversity in A(t); (iii)
the selection mechanism; (iv) the variation mechanism, that is, how the next
population is generated based on the current one.

Recently, another class of evolutionary techniques have been developed for
multiobjective optimization: the multiobjective artificial immune systems (MO-
AIS) algorithms, motivated by principles and models of the immunology. These
algorithms demonstrate that AIS can be effectively employed for improving exist-
ing evolutionary techniques or designing new methods under different principles.
The next section gives a broad overview of the multiobjective AIS techniques,
but first, we discuss the analogies between the immune system and the multiob-
jective optimization problem in (1).



940 F. Campelo, F.G. Guimarães, and H. Igarashi

2.1 The Immune System

In a broad sense, the natural immune system (NIS) can be considered as the
sum of the defenses of a given organism against foreign or endogenous threats,
such as microorganisms, toxic substances, cancer cells, etc.. These defenses can
be in the form of mechanical barriers (e.g., skin), biochemical barriers (body
fluids containing destructive enzymes), immune cells (leukocytes) or molecular
responses (interferons and other cytokines). Together, these defense lines are
responsible for most of the body resistance to invasions and malfunctions that
would otherwise weaken, damage or kill it.

The immune system is composed by the innate and the adaptive parts. As the
name suggests, the innate immune system is born together with the organism,
and represents a first-line defense against unknown pathogens. The cells of the
innate immune system (granulocytes and macrophages, two kinds of leukocytes)
are immediately available to defend the body against a large number of antigens,
without requiring previous exposure to them and/or infection-specific adapta-
tion. This part of the system plays an essential role on the early immune response
against a given intruder, since the evolutionary process of the adaptive immune
system has slower dynamics and may take a number of days before starting to
function effectively.

In the adaptive immune system, the most important cells are a class of leuko-
cytes called lymphocytes, which possess the ability to undergo a process of evo-
lutionary adaptation when activated by a strong-binding external antigens or
another lymphocytes ’ paratope [20]. This ability makes the adaptive NIS far
more versatile than the innate immune system.

Each näıve lymphocyte (one that has not been involved in an immune re-
sponse) carries specific receptors on its surface. Since there are millions of lym-
phocytes circulating through the body at any time, we have a large repertoire
of molecular patterns that can be recognized with varying intensities. Once the
lymphocyte binds to an antigen with a binding strength over a certain thresh-
old, it starts proliferating and producing clones that undergo a process called
affinity maturation, which is responsible for small variations in the shape of the
receptors. Eventually, one of these slightly different clones will present a stronger
binding to the antigen, and will start dominating the immune response. So, it
can be said that the lymphocytes of the adaptive immune system undergo a
process in all aspects similar to Darwinian evolution by natural selection, within
a given individual.

This evolutionary process, called Clonal Selection Principle (CSP), is the basis
for most of the multiobjective optimization algorithms based on the immune
approach. Another popular theory amongst algorithm designers is the Idiotypic
Network Theory, sometimes also called Immune Network Theory. This theory
models the dynamic behavior of the immune system as a network of interacting
elements, with the antigens recognizing (and suppressing) not only antigens, but
also other antibodies, in a self-regulatory process. Both the CSP and the immune
network are described in detail elsewhere [20], and will therefore not be discussed
in depth here.
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There are a number of other models and theories that are sometimes used
in the AIS field. A notable example is the MOIA algorithm, explained later in
this paper, which models a large number of biological processes in its iterative
process and coding of the candidate solutions. The discussion of these theories is
also out of the scope of this paper. Comprehensive reviews on immunology can
be found in the main textbooks of this field [1].

2.2 Terminology in AIS Optimization

The antigen recognition by the immune system can be seen as a searching prob-
lem since it needs to find the antibody that best binds to a given antigen. In
this sense, the problem (1) can be seen as the antigen or, in the case of many
objectives and constraints, problem (1) can be seen as a polyvalent antigen.

The candidate solutions in the algorithm are named antibodies. The binding
intensity between one antigen and one antibody is called antigen-antibody affin-
ity. The binding intensity between two antibodies is called antibody-antibody
affinity. Finally, the affinity degree between a given antibody and a polyvalent
antigen is called avidity. In multiobjective optimization, affinity values are rep-
resented by the objective and constraint values. The avidity value is a scalar
value giving the overall binding intensity between the antigen, represented by
problem (1), and the antibody, i.e., the solution x ∈ X . Hence, the avidity value
measures the quality of the solution, and its definition varies among different
algorithms. The antibody-antibody affinity can be associated to the similarity
degree between the solutions. The calculation of this similarity degree depends
of the representation system, for example, either binary or real.

3 Multiobjective AIS Algorithms

3.1 Yoo and Hajela’s Algorithm

The first multiobjective technique that employed AIS ideas was Yoo and Hajela’s
algorithm [39]. They used a genetic algorithm, with normal selection, crossover,
and mutation operators, but employing immune-based ideas for modifying the
fitness values. In their algorithm, the memory population A(t) containing the
nondominated solutions is called antigen population. The online population B(t)
is called antibody population. One antigen is randomly selected from A(t) and
S antibodies are randomly selected from B(t). The affinity (similarity) between
antigen and antibodies is calculated and the one with the highest affinity has
his fitness value increased. This process is repeated a given number of times.
This approach was tested on a number of structural design problems, including
two truss design problems and a I-beam problem. Although Yoo and Hajela’s
algorithm can not be considered a true MO-AIS, it is pioneer in using AIS ideas
in multiobjective optimization.
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3.2 I-PAES

Another hybrid approach, the Immune Pareto Archived Evolution Strategy (I-
PAES) proposed by Cutello et.al. [13] is based on the PAES algorithm [29], with a
local search phase based on the clonal selection principle. The original PAES is a
multiobjective (1+1) local search evolution strategy, that proposes a grid-based
approach for maintaining diversity in the offline population. I-PAES modifies
the variation mechanism in the original PAES(1+1) by using immune inspired
operators, specifically cloning and hypermutation [13]. The authors demonstrate
the application of I-PAES in protein structure prediction problems.

3.3 Luh and Chueh’s MOIA

Luh and Chueh’s multiobjective Immune Algorithm (MOIA) was first proposed
in 2003 [32], and then adapted to deal with constrained multiobjective problems
in 2004 [33]. It is a complex algorithm with a strong biological motivation, based
on the Clonal Selection theory, DNA library building, distinction between heavy
and light protein chains in the antibodies, interleukin interactions, and a num-
ber of other immunological models that fall out of the scope of this paper (see
Reference [6] for further details).

MOIA uses binary representation of the search space, with each variable of
the candidate solutions represented by a heavy chain part (the most significant
bits) and a light chain (less significant bits). This distinction is used at a certain
stage of the algorithm to implement a local search procedure around the most
promising solutions of the population.

After generating a random initial online population, MOIA enters the itera-
tive cycle by evaluating this population over all objectives and constraints, and
using these values to calculate the rank of the antibodies. It must be noted
that in MOIA the constrained problems are transformed in an unconstrained
one by means of a special kind of penalization of the objective functions by the
constraint violations [33]. After calculating the rank of each antibody, the non-
dominated ones are selected for a local search procedure, implemented through
cloning and hypermutation of the light chains in the bitstring. The best solutions
found by this process are copied to both the offline and online populations. The
offline population is then cleaned from dominated or unfeasible solutions, with
a few dominated feasible solutions being stored for insertion in the Germ-line
DNA library in a later step of the algorithm.

After the local search procedure, the avidity value is calculated for all antibod-
ies. In MOIA, the avidity accounts both for the performance of the solutions and
for the similarity between them. The algorithm then assembles the Germ-line
DNA library, by combining a few antibodies expelled from the offline population
(as mentioned above) with ones selected by Tournament from the current popu-
lation. This Germ-line DNA library is then used to generate the next-generation
population, by combining fragments of the donor solutions into new points in
the search space, a procedure similar to the Crossover operator used in genetic
algorithms.
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A last step in this algorithm is to apply a number of diversity generation
operators over the next-generation population, according to user-defined proba-
bilities. These operators [33] are responsible for keeping the exploration feature
of the algorithm, avoiding the premature convergence to a local Pareto Front.
The iterative cycle is repeated until a given number of generations are completed.

MOIA was used to solve some analytical benchmarck problems [32], and the
results obtained were superior to those obtained by SPEA, MOGA, NPGA and
NSGA. Also, the constrained version of MOIA [33] was used in the design of
truss structures.

3.4 MISA

The Multi-objective Immune System Algorithm (MISA) [7,9,14] is an immune
algorithm based on the Clonal Selection Principle with elitism. The algorithm
uses a grid-based random generation of the initial population in the search space,
and presents an interesting selection strategy for choosing the antibodies to be
cloned, based both on dominance and feasibility. Also, the number of clones each
selected antibody receives is regulated by a niching procedure in the objective
space, in order to drive the evolution towards a fair sampling of the Pareto front.

The performance of the MISA is tested on various analytical benchmark prob-
lems [7], and compared to other state-of-the-art multiobjective optimization al-
gorithms [9], where it has shown a competitive performance when compared to
NSGA-2, micro-GA, and PAES.

3.5 MOCSA

The Multi-Objective Clonal Selection Algorithm (MOCSA) [5] combines ideas
from CLONALG [18] and opt-AINet [19] in a MO-AIS algorithm for real-valued
optimization. In MOCSA, the quality values are calculated using nondominated
sorting. The population is sorted based on these values, and the first Nc best
solutions are selected for cloning. MOCSA uses real-coding and Gaussian mu-
tation similarly to opt-AINet. The number of clones in the proliferation phase
depends on the ranking of the individual in the nondominated fronts.

The mutated clones are evaluated and combined with the original ones. They
are sorted again using nondominated sorting and the Nc best solutions are pre-
served. MOCSA also employs a diversity generation mechanism in such a way
that the worst individuals, i.e., those not selected for cloning, are eliminated and
substituted by randomly generated individuals.

MOCSA was used to solve an analytical benchmark problem, as well as the
problem of designing an electrostatic micromotor [5]. The analytical results were
compared to results obtained by MISA, NSGA-2, PAES and micro-GA, with
MOCSA producing competitive results according to two standard metrics (gen-
erational distance and spacing [9]). In 2006, an improved version of the MOCSA
was employed for the solution of a 3-objective design of a superconducting mag-
netic energy storage (SMES) system [26].



944 F. Campelo, F.G. Guimarães, and H. Igarashi

3.6 VAIS

The Vector Artificial Immune System (VAIS) [23,25] is a multiobjective ver-
sion of the opt-AINet algorithm [19]. The immune network theory states that
antibodies can recognize other antibodies and this chain of recognition either
stimulates or suppresses their proliferation. In the original opt-AINet, the mem-
ory population stores the sub-optimal solutions in a single objective optimization
problem. A suppression operator is applied to the memory population in order
to eliminate redundancy.

In VAIS, the author adapts these ideas for developing a multiobjective algo-
rithm whose memory population now stores the nondominated solutions. VAIS
employs real representation of the variables and quality-proportional Gaussian
mutation, as in the opt-AINet. In order to evaluate the quality values, VAIS
utilizes strength values likewise in SPEA2 [41], but without the use of den-
sity values, since the suppression mechanism in the memory population already
deals with dense regions. The suppression mechanism is also modified in VAIS.
It considers similarity in the objective space, not in the parameter space as in
opt-AINet.

VAIS was tested in a number of analytical problems[25], in which VAIS showed
similar or better results when compared to NSGA-2. A modified version of the
VAIS, called VIS, was presented in 2006 [24], along with several examples of
application on analytical constrained and unconstrained benchmark problems.

3.7 IDCMA

The Immune Dominance Clonal Multi-objective Algorithm (IDCMA) [27,34] in-
troduces a new similarity measure between antibodies, based on distances in the
objective space: the immune differential degree. Again, this similarity measure
is used to reduce the size of the offline population in the update step.

The algorithm also presents a different selection mechanism for cloning. In
this mechanism, one antibody is randomly selected from the offline population
in the beginning of each iteration. The quality value of each individual in the
online population is computed based on the antibody-antibody affinity, that is,
similarity in the representation of the solutions. The population is sorted based
on these affinity values, and the first Nc ones are selected for cloning. Finally,
the solutions in the clone population undergo recombination and mutation to
generate the next population.

IDCMA was used to solve a 0/1 Knapsack problem, and the results are com-
pared against those obtained by a number of first-generation algorithms, includ-
ing NSGA, NPGA and VEGA [34]. It was observed that the solutions found
by IDCMA dominated the ones obtained by the other algorithms, and could
therefore be qualified as better ones.

3.8 IFMOA

From the same group that proposed IDCMA, the Immune Forgetting Multi-
objective Optimization Algorithm (IFMOA) [31,40] is also based on the clonal
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selection principle for the variation step. The scalar quality values for the solu-
tions are calculated in the same way as in SPEA2 [41]. The selection for cloning
is deterministic and the same number of clones is used for each solution. The im-
mune forgetting operator, proposed in IFMOA, consists of substituting a given
number of solutions from the online population, randomly selected, by individ-
uals from the offline population, also randomly selected. However, the authors
do not clarify the benefit of this operator to the algorithm.

In order to show the applicability of the IFMOA, a number of compar-
isons against the SPEA2 and MOGA were performed, for diverse analytical
benchmarck problems [31]. It was shown that the Pareto fronts obtained by
IFMOA were significantly better than the ones from the other algorithms. IF-
MOA has been also used for solving problems related to unsupervised feature
selection [40].

3.9 ACSAMO

Another multiobjective algorithm based on the Clonal Selection Principle is
the Adaptive Clonal Selection Algorithm for Multiobjective Optimization (AC-
SAMO) [38], proposed in 2006 by Wang and Mahfouf. ACSAMO generates a
fixed number of clones for all antibodies and presents an quality-proportional
mutation, like in the VAIS. The antibody-antigen affinities are calculated by
using a dynamically adjusted weighted approach, in which an evolutionary pres-
sure in the direction of the “best so far” and “best this generation” solutions
is applied over the online population. At each generation, the two “best” solu-
tions are found according to a random-weight linear aggregation of objectives,
as in (6):

WFi =
m∑

j=1

wjfj (Abi) ;
m∑

j=1

wj = 1 (6)

The “best” solutions are chosen based on the random variation of the weights
wj . The affinity is then calculated as:

afi = dist (Abi, Abc) + dist (Abi, Abg) (7)

where Abc and Abg are the “best so far” and the “best this generation” solutions
according to the aggregation function (6), respectively.

The selection operator for the offline population is based on the Pareto domi-
nance (nondominated solutions are copied to the offline population); if the max-
imum size of the offline population is exceeded, a crowding procedure is used for
eliminating solutions from the most crowded regions of the Pareto front.

ACSAMO was tested on some analytical benchmark problems, in which it
outperformed both SPEA and NSGA-2 [38].

4 A Common Framework for MO-AIS Algorithms

As we can see from the previous section, we have many different ways of imple-
menting a MO-AIS algorithm. Nonetheless, these algorithms share some common
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characteristics. Except from the Yoo and Hajela’s algorithm, all of them employ
the clonal selection principle to a certain extent, including MOIA, that employs
clonal proliferation and mutation as a local search procedure for the offline pop-
ulation. This principle is extensively used for designing AIS-based optimization
algorithms and it forms a fundamental ingredient in defining the variation step,
see Fig. 1, within a MO-AIS technique. In this section, we propose the outline
of a canonical MO-AIS, which is shown in Fig. 2.

1. Define the search space X , population size N , objective f(·) and
constraint g(·) functions;

2. A(t = 0) ← Initialize offline population;

3. B(t = 0) =
�
b(1), . . . , b(N)

�
← Initialize online population;

4. While (¬ stop criterion) do:
(a) Evaluate antibody-antigen affinities using f(·) and g(·);
(b) Ψ(t) =

�
ψ(b(1)), . . . , ψ(b(N))

�
← Evaluate avidity (B(t));

(c) C(t) =
�
c(1), . . . , c(Nc)

�
← Selection for Cloning (A(t),B(t), Ψ(t));

(d) D(t) =
�
d(1), . . . , d(Nc)

�
← Proliferation and Mutation (C(t));

(e) E(t) =
�
e(1), . . . , e(Nd)

�
← Diversification;

(f) A(t+ 1) ← Update(A(t),B(t));
(g) B(t+ 1) ← D(t) ∪ E(t);
(h) t ← t+ 1;

Fig. 2. Outline of the canonical MO-AIS

This canonical algorithm presents the fundamental ingredients for designing
a given MO-AIS. The first important ingredient is the avidity evaluation, i.e.,
the computation of the scalar quality of the individuals. This can be made using
procedures already known for multi-objective evolutionary algorithms and their
variations. AIS introduces the additional possibility of using antibody-antibody
recognition to define quality, as used in the Yoo and Hajela’s algorithm and also
in ACSAMO. With these values, we can proceed to the selection for cloning,
which can be either deterministic or stochastic. In a deterministic selection the
best Nc solutions based on the avidity values are selected. A stochastic selection
can use, for instance, a tournament selection based on antibody-antibody affinity,
where one antibody from the offline population is randomly selected as reference
antibody for the tournament.

Proliferation and hypermutation are important elements in the variation
mechanism of MO-AIS. The affinity-proportional mutation rate (likewise in opt-
AINet) and the affinity-proportional number of clones (likewise in CLONALG)
can be combined together, introducing a very interesting balance between local
and global search in the searching process. This is done in MOCSA, for example.
The number of clones can be also defined based on the idea of generating more
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clones in the best regions, and/or more clones in the less crowded regions of the
Pareto front estimative, as proposed in MISA.

The diversification step is another important element in MO-AIS, and it is
more related to the global search capability of the algorithm. Not all MO-AIS in
literature present such an explicit diversity mechanism. In general, the diversity
generation is performed by the introduction of new random solutions, but other
implementations are also possible. MOIA’s operators for generating the next
population from the DNA germinal library can all be seen as a sophisticated
diversity mechanism.

Therefore, with the adequate adaptations, all algorithms reviewed in the pre-
vious section can be seen as particular instances of this canonical algorithm. In
some of them the steps 4.(b) to 4.(e) are not so evident and easily distinguish-
able. This canonical MO-AIS is useful to identify similarities and differences
among the algorithms and make the comparison easier. By delineating these
basic ingredients, designers can identify these steps in each algorithm and ex-
amine different approaches for implementing the same step in a given MO-AIS
algorithm. Moreover, the canonical MO-AIS makes evident the differences be-
tween AIS-based algorithms and other multi-objective evolutionary algorithms,
mainly in the variation mechanism, by highlighting the specific operators of a
truly MO-AIS technique.

5 Other Immune Principles

From the algorithms reviewed, it is clear that the most common idea used in the
development of MO-AIS algorithms is by far the CSP, with some other principles
(e.g., immune network, interleukin interactions) also being employed. There are,
however, a number of immunological principles that have shown great promise
in other areas of engineering, and could theoretically be used either in the de-
velopment of new tools for multiobjective optimization or in the improvement
of the existing algorithms. In this section we introduce two of such principles,
along with some general ideas on how they could be applied for MOO.

5.1 Negative Selection

In the natural immune system, negative selection (NS) is responsible for the inhi-
bition/death of a given lymphocyte upon being activated. This principle is used
basically to model the elimination of antibodies that react against self-antigens,
which could eventually cause auto-immune diseases. In engineering applications,
NS-based algorithms have been used for intrusions detection [28], anomaly and
fault detection [36,17], among other areas related to pattern recognition. To the
knowledge of the authors, however, there has been no use so far of NS-based
systems for optimization, either mono or multiobjective.

In general, MO-AIS algorithms present a explicit diversity generation mech-
anism at some point of the iterative process, which usually involve the insertion
of newly generated random individuals in the population. While this unsuper-
vised generation of new individuals has, as intended, the potential to explore
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new regions of the search space, it may also generate solutions in regions of the
space that have already been explored in previous iterations of the algorithm.
This potential waste of valuable function evaluations is particularly aggravated
in the later generations of the algorithms, when larger portions of the search
space have been covered.

This kind of problem could in theory be reduced by having a NS routine em-
bedded in the diversity-generation operators: during the optimization process,
the previously explored regions of the search space would be stored as a “self”
set, and new solutions generated by the operator would be created in a way
similar to the one used for creating new detectors in NS-based fault detection
algorithms [17]. With this, the exploration of new regions by the diversity gener-
ation algorithm would be guaranteed, therefore improving the overall algorithm
performace.

5.2 Danger Theory

While mainstream immunology supports a view of the NIS classification abilities
in terms of self-nonself discrimination, there are a number of phenomena that
do not fit in this model. For instance, the fact that the immune system does not
react against the bacterial flora in the gut, but is triggered by chemicals emmited
by stressed self cells indicates that some extra mechanism for the recognition of
potential threats is present. The Danger Theory (DT) [35] proposes an explana-
tion to these behaviors of the NIS, based not on a self-nonself distinction but
instead on a measure of the level of threat represented by a given antigen.

In AIS, a number of aplications of the DT have been proposed [2], including
intrusion detection systems for computers [3] and anomaly detection. A possi-
ble application of this principle in MO-AIS would be to have under-explored
regions of the Pareto front sending “danger” signals to the immune algorithm,
indicating the need of an “immune response” (i.e., a better exploration of the
space) in that direction. Another possibility is the use of DT principles for online
decision-making in multiobjective optimization, with some regions of the Pareto
emmiting “danger” signals in order to guide the evolution towards specific trade-
offs between the various objectives.

6 Discussion

This paper has presented an overview of current MO-AIS in literature and sug-
gested a common framework for MO-AIS algorithms. The CSP is largely em-
ployed in the design of optimization algorithms, especially for defining their
variation mechanism. Nevertheless, other principles and theories from AIS have
been used in the quality assignment of the population, in the promotion of di-
versity in the online population, and in the update of the offline population.
Moreover, some works have employed AIS ideas for improving constraint han-
dling in evolutionary techniques [15,4] for the multiobjective case.

On the other hand, some AIS theories are not well explored in the field of
optimization, such as Negative Selection and Danger Theory. These immune



Overview of Artificial Immune Systems for Multi-objective Optimization 949

models have been employed successfully in other fields of engineering, and an
investigation of their potential as tools for the improvement of MO-AIS may be
an interesting area of research.

From this overview, however, it is apparent that there is probably little need
for more new MO-AIS algorithms, but instead an extensive comparison of the
available methods and the available implementations of the fundamental steps
outlined in Fig.2 should be pursued. The definition of what a MO-AIS algoritmh
is and what it must have to be considered as such can help the design of mean-
ingful comparison experiments. This work tries to fill this gap before proceeding
to the comparison of methods, which is the logical next step on this research.
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15. Cruz-Cortés, N., Trejo-Pérez, D., Coello, C.A.C.: Handling constraints in global
optimization using an artificial immune system. 4th International Conference on
Artificial Immune Systems, Banff, Alberta, Canada, August 14-17, Lecture Notes
in Computer Science 3627 (2005) 234–247

16. Dasgupta, D., Ji, Z., Gonzalez, F.: Artificial immune system (AIS) research in
the last five years. Proceedings of CEC 2003: IEEE Congress on Evolutionary
Computation, 1 (2003) 123–130

17. Dasgupta, D., KrishnaKumar, K., Barry, M.: Negative Selection Algorithm for
Aircraft Fault Detection The 3rd International Conference on Artificial Immune
Systems, Catania, Italy, September 13-16, Lecture Notes in Computer Science 3239
(2004) 1–13

18. de Castro, L.N., von Zuben, F.J.: Learning and optimization using the clonal se-
lection principle. IEEE Transactions on Evolutionary Computation, 6 3 (2002)
239–251.

19. de Castro, L.N., Timmis, J.: An artificial immune network for multimodal function
optimization. Proceedings of CEC 2002: IEEE Congress on Evolutionary Compu-
tation, 1 (2002) 699–674.

20. de Castro, L.N., Timmis, J.: Artificial immune systems: a new computational in-
telligence approach. Springer-Verlag, 2002.

21. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wi-
ley & Sons, Chichester, UK, 2001.

22. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6
2 (2002) 182–197.

23. Freschi, F.: Multi-Objective Artificial Immune System for Optimization in Electri-
cal Engineering, PhD thesis, Department of Electrical Engineering, Politecnico di
Torino, Torino, Italy, (2006)

24. Freschi, F., Repetto, M.: VIS: an artificial immune network for multi-objective
optimization, Engineering Optimization, 38 8 (2006) 975–996.

25. Freschi, F., Repetto, M.: Multiobjective optimization by a modified artificial im-
mune system algorithm. 4th International Conference on Artificial Immune Sys-
tems, Banff, Alberta, Canada, August 14-17, Lecture Notes in Computer Science
3627 (2005) 248–261
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