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Abstract. Wang tiles are unit size squares with colored edges. To know
if a given finite set of Wang tiles can tile the plane while respecting
colors on edges is undecidable. Berger’s proof of this result shows the
equivalence between tilings and Turing machines and thus tilings can
be seen as a computing model. We thus have tilings that are Turing-
universal, but there lacks a proper notion of universality for tilings. In
this paper, we introduce natural notions of universality and completeness
for tilings. We construct some universal tilings and try to make a first
hierarchy of tile sets with a universality criteria.

1 Introduction

Tilings were first introduced by Wang [Wan61]. A tile is a unit size square with
colored edges. Two tiles can be assembled if their common edge has the same
color. A finite set of tiles is called a tile set. To tile consists of assembling tiles
from a tile set on the grid Z

2.
Wang was the first to conjecture that if a tile set tiles the plane, then it

tiles it in a periodic way. Another famous problem is to know whether a tile set
tiles the entire plane or not. It is called the domino problem. Berger proved the
undecidability of the domino problem by constructing an aperiodic set of tiles,
i.e., a tile set that can generate only non-periodic tilings [Ber66]. Simplified
proofs can be found in [Rob71] and later [AD96]. As a corollary, Berger’s result
shows that Wang’s conjecture is false. The main argument of this proof was to
simulate the behaviour of a given Turing machine with a tile set, in the sense that
the Turing machine M stops on an instance ω if and only if the tile set τ〈M,ω〉
does not tile the plane. Hanf and later Myers [Mye74, Han74] have strengthened
this and constructed a tile set that has only non-recursive tilings.

From this, we have that there exists tile sets that can generate only non-
periodic tilings of the plane, and others, that can generate only non-recursive
tilings of the plane. But in all those cases, Durand [Dur99] proved that if a tile
set tiles the plane, then it can tile the plane in a quasiperiodic way, i.e., a tiling
where each pattern appears regularly along the tiling.
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The core main result from Berger’s theorem is that tilings are Turing equiva-
lent and so, there is a notion of computability for tilings. The tilings’ computabil-
ity can be studied from different points of view. One of them is universality. A
universal Turing machine is a machine that can simulate all other Turing ma-
chines.We have to move away from Turing universality and see more specifically
how can universality be defined for tilings. Asking the question of universality for
tilings is equivalent to asking the question of how a tiling computes because we
expect from a universal tiling to be able to give back the process of computation
of each tiling. So, how can a tiling simulate another tiling?

In order to answer our question, we introduce different notions to tackle the
search for natural universality. The main thing about tilings’ computability con-
sists in the way the tiles are assembled to tile the plane. So, we can see a given
tiling T from different scales. The lowest scale is the tiling. By partitioning a
given tiling into rectangles of same size, we obtain another tiling, where the tiles
are the rectangular patterns. It is the tiling T seen from a higher scale. By this
principle, we define strong reductions and weak reductions. By those reductions,
we reach our goal : we have a notion of simulation.

We are now able to define universality and completeness for tilings. Since we
have two kinds of reductions (weak and strong) and that a tiling can be universal
for all the tilings (dense), or just for one tiling for each tile set (sparse), then we
have four kinds of universality.

The main goal of this paper is to show the existence or the non-existence of
the different universality notions. We will construct a complete tile set, i.e., a
tile set such that for each tiling P , our complete tile set can generate a tiling Q
with P � Q. We prove that a tile set is complete if and only if it generates a
universal weak tiling.

The main result is to construct a strong universal tiling that can simulate, for
each tile set τ , a countable infinity of tilings from τ . That is the strongest result
we can obtain, because having a strongly dense universal tiling, i.e., a tiling that
simulates all tilings, is impossible, because there is a countable set of reductions
but an uncountable set of tilings. Those results yield a classification on tile sets
that is actually a hierarchy.

In the first part, we introduce the different notions used along the paper
(pattern sets, reductions, completeness, universalities) and prove some obvious
results from those definitions. The second part concentrates on completeness,
by relating it to universality, and by constructing our first complete tile set.
The last part explains universality, by constructing weak and strong universal
tilings, and by giving some results following from those. Lastly we construct a
non-periodic tile set that generates a universal tiling and propose a classification
of the different universality and completeness notions seen along the paper.

2 Notions of Tilings’ Universality and Completeness

First, we give the definitions of the basic notions of tilings. A tile is an oriented
unit size square with colored edges from C, where C is a finite set of colors. A
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tile set is a finite set of tiles. To tile consists of placing the tiles of a given tile
set on the grid Z

2 such that two adjacent tiles share the same color on their
common edge. Since a tile set can be described with a finite set of integers, then
we can enumerate the tile sets, and τi will designate the ith tile set.

Let τ be a tile set. A tiling P generated by τ is called a τ -tiling. It is associated
to a tiling function fP where fP (x, y) gives the tile at position (x, y) in P . In this
paper, when we will say: ”Let P be a tiling”, we mean that there exists a tile
set τ such that P is a τ -tiling of the plane. The set of all tilings is T. A pattern
m is a finite tiling. If it is generated by τ , we call it a τ -pattern. A pattern m is
associated to a tiling partial function fm, defined on a finite subset of N

2 such
that fm(x, y) gives the tile at the position (x, y) in m. A finite set of rectangular
τ -patterns is a τ -pattern set. We explain how to tile the plane with a pattern
set.

Definition 1. A pattern set M of {a×b} τ-patterns tiles the plane if there exists
0 ≤ c < a, 0 ≤ d < b and a function fPM : { c + k1a | k1 ∈ Z } × { d + k2b | k2 ∈
Z } −→ M such that the function f τ

PM
: Z

2 −→ τ defined by: f τ
PM

(c+k1a+x, d+
k2b+ y) = f(fPM

(c+k1a,d+k2b))(x, y) for all 0 ≤ x < a and 0 ≤ y < b, is a τ-tiling
function of the plane. Here, f(fPM

(c+k1a,d+k2b)) is the tiling partial function of
the pattern fPM (c + k1a, d + k2b). With the same notation as above, we define
the function sPM : Z

2 → M by sPM (k1, k2) = fPM (c + k1a, d + k2b).

This definition explains in a formal way what we expect intuitively. To tile the
plane with a pattern set consists in putting the patterns side by side in a subgrid
of Z

2 in such a way that color matching is respected. By analogy with tilings,
we say that PM is a M -tiling and it is associated to the pattern tiling function
fPM .

The second function in the definition, sPM , is another way to define PM : if
sPM (x, y) gives the pattern mi, then sPM (x+1, y) gives the pattern that touches
mi on its east side in PM . The same is true for the south, north and west side
of a pattern in PM .

Easy5

Q.P.

Fig. 1. An Easy5-tiling P and a pattern tiling Q extracted from it

In the previous definition, we used a tiling function f τ
PM

. It can be associated to
a τ -tiling P because f τ

PM
is defined from Z

2 to τ and respects the color matching.
So, we have a strong connection between P and PM because both of them give
rise to the same geometric tiling Q (by geometric tiling, we mean the grid Z

2

filled with the appropriate tiles). That is one of the main notions of this paper.
A given tiling can be seen from different heights. Here, P is the smallest height,
the unit size level. PM is a higher level, the {a × b} level. Obviously, a tiling of
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the plane can be seen with an infinity of different scales. From this infinity of
different ways to see a tiling, we expect to obtain a notion of universality for
tilings.

More formally, let M be a τ -pattern set, Q be a M -tiling and P be a τ -
tiling. We say that Q is extracted1 from P if f τ

Q = fP (figure 1). P describes the
geometric tiling with unit size squares while Q describes it with {a×b}-patterns.

From the above notions, we are able to define intuitively what we mean by
tilings’ reductions. From a given tiling P , we can extract an infinity of pattern
tilings. Let P ′ be one of them. By definition, there exists a pattern set M such
that P ′ is a M -tiling. M is a finite set of {a×b} patterns. We can associate to M
a tile set τ with a function R : M → τ such that two patterns m1 and m2 match
if and only if the tiles R(m1) and R(m2) match in the same way. It can be easily
shown that any pattern set can be associated to a tile set with this property.
With R we can build a τ -tiling Q defined by: fQ(x, y) = R ◦ sP ′(x, y). Since P ′

is extracted from P , and since Q works as P ′ works, so Q can be thought to
be ”easier” than P . That is our idea of reduction, and now we define it more
formally:

Definition 2. Let P be a τ-tiling and Q be a τ ′-tiling.
Q reduces strongly to P , denoted by Q � P if there exists a set of τ-patterns

M , a M -tiling P ′ extracted from P and a function R : M −→ τ ′ such that
∀ (x, y) ∈ Z

2, R ◦ sP ′(x, y) = fQ(x, y). R is called the reduction core function
and its size is the size of the patterns of M , i.e., size(R)∈ N

2.
Q reduces weakly to P ,denoted by Q � P , if there exists a set of τi-patterns

M , a M -tiling P ′ extracted from P and a function R : M −→ τ ′ such that
for any {p × q}-pattern m of Q there exists a, b ∈ Z

2 such that m(x, y) =
R ◦ sP ′(a + x, b + y) for all 0 ≤ x < p, 0 ≤ y < q.

When we want to specify R we denote the reduction by �R or �R.

As we have seen above, if Q � P then we can extract from P a pattern tiling
P ′ that simulates Q in the sense that the patterns of P ′ represent the tiles of
Q. We will say that Q is the tiling associated to the pattern tiling P ′ or that P ′

simulates Q. The important thing is that different patterns of P ′ can represent
the same tile of Q. But the converse is impossible by definition (a pattern of P ′

cannot represent different tiles of Q). Concerning the weak reduction, if Q � P
then we can extract from P a pattern tiling P ′ such that all patterns of Q are
simulated somewhere in P ′.

We can extend naturally our strong reduction definition to patterns. Let A be
a τ -pattern and B be a τ ′-pattern. We say that A � B if we can extract from B
a M -tiling B′ that simulates A, where M is a set of τ ′-patterns. For patterns,

1 We note that in most papers on tilings the word extract is already used in the
following sense: if a tile set can tile square patterns of ever-increasing sizes, then it
can tile the plane; one can extract from this set of patterns a tiling of the plane. In
this paper, extract will, most of the time, refer to the pattern tiling taken from a
given tiling. It is specified when we use extract to mean “extraction of a tiling from
a set of patterns of ever-increasing sizes”.
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the weak reduction is equivalent to the strong reduction since weak reduction is
locally equivalent to strong reduction.

Those reductions have the following property:

Lemma 1. � and � are preorders on T, where T is the set of all possible tilings.

We do not have an order on T, because the antisymmetric property is not re-
spected: we can find two tilings P and Q such that P � Q and Q � P but
P �≡ Q (By P �≡ Q we mean that P and Q are not the representation of the
same tiling up to a color permutation, or, in an equivalent way, that there is no
trivial reduction of size (1, 1) between P and Q).

With the definition of reduction, we can now define the notions of complete-
ness and universality.

Definition 3. Let A be a set of tilings. A tile set τ is A-complete if for any
tiling P ∈ A, there exists a τ-tiling Q such that P � Q. If A = T then τ is called
complete.

This completeness notion is natural in the sense that it corresponds to what one
would expect: any tiling can be reduced to some instance tiling of our complete
tile set in such a way that to answer any question about our tiling it suffices to
study the instance tiling of our complete tile set.

We expect from a universal tiling to have in its construction much of the
information of all the other tilings. For tilings, we have different ways to define
the information contained in a given tiling and can distinguish mainly two kinds
of information for a tiling. The first, and the most natural, is the tiling itself
(how it is built). The second consists in studying the different patterns that
appear in the tiling. Those two ways to consider a tiling’s information give rise
to two ways to consider universality. Does a tiling contain enough information to
explain the behaviour of all other tilings (we call it strong dense universality), or
only the behaviour of a tiling for each tile set (strong sparse universality)? Does
a tiling contain enough information to simulate all the patterns of any tiling
(weak dense universality) or only the patterns of a tiling for each tile set (weak
dense universality)?

With this motivation, we have the following definitions:

Definition 4. Let Pu be a τ-tiling. Pu is:

– strongly dense universal if for any tiling Q, Q � Pu,
– strongly sparse universal if for all τ ′, there exists a τ ′-tiling Q, such that

Q � Pu,
– weakly dense universal if for any tiling Q, Q � Pu,
– weakly sparse universal if for all τ ′, there exists a τ ′-tiling Q, such that

Q � Pu.

We have the following properties:

Lemma 2. 1. Pu strongly (resp. weakly) dense universal ⇒ Pu strongly (resp.
weakly) sparse universal.
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2. Pu strongly dense (resp. sparse) universal ⇒ Pu weakly dense (resp. sparse)
universal.

3. � preserves universalities.
4. � preserves weak universality.

We will show the existence or the non-existence of these universality notions
after the following section.

3 Completeness

The following theorem shows how complete tile sets and universal tilings relate.

Theorem 1. Assuming the existence of at least one complete tile set and one
weakly dense universal tiling, we have:

Let τ be a tile set. τ is complete if and only if there exists a weakly dense
universal τ-tiling.

Proof. [⇒]: Let τ be a complete tile set and Pu be a weakly dense universal tiling.
Since τ is complete, there exists a τ -tiling P such that Pu � P . � preserves weak
universality, therefore P is a weakly universal τ -tiling.

[⇐]: Let Pu be a weakly universal τ -tiling. By definition, for any tiling P there
exists R such that P �R Pu . We consider the set of patterns {Ai}i>0 where Ai

is the {i× i}-pattern of P centered around (0, 0). By definition, there exists a set
of patterns {Bi}i>0 of Pu such that Ai � Bi for all i. We can extract from the
set of patterns {Bi}i>0 of ever-increasing sizes, a τ -tiling P ′ such that P � P ′;
and so, τ is complete.

We now exhibit our first complete tile set. We can easily prove that the tile set
Easy5 (figure 1) is complete. In order to do this, we just have to see that we can
encode any tile set with square Easy5-patterns such that the Easy5-patterns
have a code on their borders that represent the tiles of the tile set. Then, we just
have to assemble the patterns in the same way that the tiles, that they represent,
are assembled in the tiling.

Theorem 2. Easy5 is complete.

We have a stronger result for complete tile sets: if τ is a complete tile set, then
for each tiling P , there exists an uncountable set of τ -tilings to which P reduces.

It would be interesting to find a non-trivial complete tile set, e.g., a complete
tile set that has only non-periodic tilings. We will construct such a tile set in
theorem 6. For now, we construct a more complex complete tile set that we will
use later on.

Since Berger’s proof of the undecidability of the domino problem, it is known
that we can simulate a Turing machine with a tiling. We briefly recall how to do
this.

Some tiles are used to transmit a symbol of the alphabet of the Turing ma-
chine, some are used to show that the state qi will act on the symbol aj at the
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next step and finally, some are used to represent the transitions of the Turing
machine. More details of this construction can be found in [AD96].

We will now build a Turing machine M such that the space×time diagram of
the computation of M(ω) gives a rectangular pattern that simulates a tile from
the tile set τ|ω| (the |ω|th tile set).

Our Turing machine works with a semi-infinite tape. A typical input is ω = x$n

where x ∈ {0, 1}∗ and n depends on |x|. The length of ω represents the code
of the tile set we are working with, and the first part of ω, x, is the code of a
color of the set of color of τ|ω|. We know that we can encode a tile set, i.e., by
giving it an unique number or code in a same way that we do for Turing machines.
So the first step consists in decoding |ω| to find the different tiles that compose
τ|ω|. Then we check if x is the code of a color of τ|ω|. If yes, we choose in a non-
deterministic way a tile t of τ|ω| such that the color of its south side is x. We can
build our Turing machine such that after m steps of computation, the k next steps
of the computation are used to write the code of the west/east2 color of t (n and
k depending only on |ω|), i.e., in the space×time diagram of the Turing machine,
the first column from time m + 1 to m + k represents the code of the color of
the west side of t. The tiles that are not between the (m+1)th and the (m+ k)th

lines are all the blank tile �. We do the same for the east/west side (depending on
the first choice we made), i.e., in the space×time diagram of the Turing machine,
the last column from time m′ + 1 to m′ + k represents the code of the color of
the east side of t (m′ depending only on |ω|). The p last steps of computation are
used to write the code of the color of the north side of t completed with $’s and
�’s. For later usage, we precise that our Turing machine M does nothing when
the entrance is the empty word. This means that its corresponding space×time
diagram will be a rectangular space filled by blank tiles.

Computation of t, choice of

a tile with south color X
x2

SPACE

TIME

m+1

m+k Write the code of the east/west

side of the chosen tile

m’+1
m’+k

m’+k+p

x1 xs $ $

Write the code of the west/east

side of the chosen tile

Write the code of the north

side of the chosen tile

y2y1 ys $ $

z
z1

k

w
w

1

k

Fig. 2. The space×time diagram of M

The figure 2 represents the space×time diagram of our Turing machine. In
addition, we construct the Turing machine such that for two inputs of size p the
2 Our algorithm chooses in a non-determistic way either the west or the east side. This

non-determinism is essential for east/west matching of two diagrams.
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machine uses exactly s(p) of space and t(p) of time. With this construction, we
are certain that two space×time diagrams have the same size if and only if the
inputs have the same lengths. That guarantees that the simulations of two tiles
from the same tile set give two diagrams of the same size. So, two diagrams will
match on their north/south side if and only if the two tiles that they simulate
match on their north/south side. For the east/west border the match rules are
different. During the computation, we can choose to write first the east color or
the west color. Then, two diagrams will match on their east/west border if and
only if the tiles they represent match on their east/west border, and if during
the computation, the two Turing machines they represent have done different
non-deterministic choices.

The idea is now to associate this Turing machine to its corresponding tiling,
called τu. By construction, τu generates patterns that correspond to the space×
time diagram of the simulation of a tile. We have a tiling that gives {s × t}-
patterns such that two patterns match if and only if they represent two tiles,
from the same tile set, that match. Hence, we can simulate with this tile set any
behaviour of any tile set. Therefore, τu is complete.

4 Universality

We now study the different universality notions defined above. We give some
results about universality before constructing our first universal tiling.

Theorem 3. 1. If Pu � P , where Pu is a strongly universal tiling and P is a
τ-tiling, then there exists a strongly universal τ-tiling.

2. Let Pu be a tiling. If Pu is strongly universal, then Pu is non-recursive.

Proof. 1. If Pu � P , then there exists a reduction R such that for any {n1×n2}-
pattern A of Pu there exists a {m1 × m2}-pattern B of P such that A �R B.
We consider the set of patterns {Ai}i>0 where Ai is the {i × i}-pattern of Pu

centered around (0, 0). So, there exists a set of patterns {Bi}i>0 of Pu such that
Ai � Bi ∀ i. Thus, we can extract from {Bi}i>0 a τ -tiling Q such that Pu �R Q.
Since � preserves universality, then Q is a strongly universal tiling.
2. Let Pu be a strongly sparse universal τ -tiling. We will prove that Pu is non-
recursive. By Hanf and later Myers [Mye74, Han74], we know that there exists
tile sets that produce only non-recursive tilings. Let τ ′ be such a tile set. Suppose
that Pu is recursive, i.e., fPu is recursive. Let Pnr be a non-recursive τ ′-tiling
such that Pnr � Pu. Let {Ri}i≥1 be the family of reduction core functions from
a set of τ -patterns to τ ′. {Ri}i≥1 is enumerable. If fPu is recursive, we can
compose it with the reductions Ri and obtain the recursive tiling functions of
all τ ′-tilings that reduce to Pu. By definition Pnr reduces strongly to Pu, thus
one of those recursive tiling functions defines Pnr. This is a contradiction, hence
Pu is non-recursive.

The first result we obtain, concerning the different universality notions, is the
non-existence of strongly dense universal tilings. This is due to a countability



Universal Tilings 375

argument. We only have a countable set of possible reductions for a given tiling,
but an uncountable set of tilings.

Theorem 4. Strongly dense universal tilings do not exist.

We now study the weak version of universality for tilings. The idea of the con-
struction is to build our tiling in the same way that we can construct a Turing
machine simulating every step of all the Turing machines by simulating at step
i the first i computing steps of the first i Turing machines. Similarly, we con-
struct a weakly dense universal tiling that enumerates all possible patterns of
all tilings. They are countable so we can simulate all of them in the same tiling.
Thus, we obtain the following result:

Theorem 5. There exists a weakly dense universal tiling.

Of course, weak dense universality implies weak sparse universality.
We still have a last universality notion to study: strong sparse universality,

i.e., a tiling that can simulate at least one tiling for each tile set. We can still
use the Easy5 tile set to show the non-emptiness of this class. In the following
theorem, we propose a non-periodic tile set that will generate a strongly sparse
universal tiling, that is universal in a more ”natural” way than Easy5.

Theorem 6. There exists a non-periodic tile set that generates a strongly sparse
universal tiling.

Proof. The idea is to simulate a Turing machine in an aperiodic tiling. For
this, we use Robinson’s tiling. We give some explanations on how to force the
computation of a Turing Machine in Robinson’s tiling. We again refer the reader
to [Rob71] and [AD96] for a detailed construction.

obstruction color

2.1.

Fig. 3. The hierarchical structure and the obstruction zone in Robinson’s tiling

The main idea is to use the hierarchical pattern construction that is generated
by Robinson’s tiling. It gives rise to 2n − 1 square patterns (figure 3.1). We note
that two squares of sizes 22n − 1 and 22m − 1 cannot intersect if n �= m. The
idea is to compute a given Turing machine in the squares of size 22n − 1.
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In order to do this, the squares of size 22n−1 send an obstruction color outside
their borders. That is an intuitive fact that we can do this with a tiling but it is
a quite technical result to prove. Figure 3.2 shows the hierarchical construction
with the obstruction tiles.

In this figure there appears white spaces, i.e., areas without obstruction color
spaces. Those spaces are called free. Those white spaces are the computation
spaces, where the Turing machine M will be simulated. On each free tile, we
superimpose the tiles representing our Turing machine as we explained in section
3. The tiles that are obstructed in one direction (horizontally or vertically) will
transmit the information of the computation of our Turing machine in the other
direction. By construction, the tiles that are obstructed in both direction have no
information to transmit. Thus, we can impose to the lowest free spaces of a square
to start the simulation of our Turing machine on an empty tape with a given
state. Then, by transmission of the information horizontally and vertically, we
will simulate in each square of size 22n −1, the first steps of our Turing machine.

We now take the Turing machine M described in figure 2. We built it to force
that on any input of length n, if M stops, then it stops using exactly s(n) spaces
and t(n) steps. We modify it to permit that t(n) = k × s(n) = k × n2, ∀n . Since
we work in linear space and time, we can modify M to satisfy those conditions.

We also modify Robinson’s tiling by simulating any tile of Robinson’s tiling
with patterns of size {1 × k}. The k is the same constant that relates the time
function and the space function of M . The tiling that we obtain is Robinson’s
tiling stretched horizontally with a factor k. Thus, in each square of size 22n −1,
we will have the equivalent of a square of size n2 × (k n2) of free tiles.

Now, we just have to simulate our Turing machine M in these spaces. We can
force the south-west free tile of any square pattern to be the tile that simulates
M on state q0. We force that the tiles that touch the south border of the square
represent any of the four symbols {0, 1, $, �}. Then, the computation of M on
this input will say if it was a correct input, and will halt in exactly t(n) steps
and s(n) spaces if it was correct. We can force that the computation tiles match
the north board of the square if and only if they are in a final state. Thus, we
fill the free tiles of a square if and only if the input was x$n�m, such that x is
the code of a color of τ|x|+n and the computation uses |x| + n + m spaces and
halts after k × (|x| + n + m) steps to give a simulation of a tile of τ|x|+n.

With this construction, we fill any pattern of a given size with the simulations
of some tiles from the same tile set. To guarantee that this simulation works, we
modify the obstruction color sent by the squares outside their borders. We add
four kinds of obstruction colors: c0, c1, c$ and c�, representing the four symbols
{0, 1, $, �}. For example, the obstruction color c$ will be sent if the first tile
inside the square is a computation tile, and is a tile representing the symbol $.
Thus, all the squares of a given size will represent a tiling P of a certain tile set
because we have guaranteed that the matching rules were respected. Then, P
reduces to our construction.

The last point consists in checking that at least one tiling for each tile set
will reduce to our construction. It is the case because in our construction of M ,
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we guarantee that each number represents a tile set, and thus, for each tile set,
there exists a unique size of rectangular free spaces where the tile set will be
simulated and so, any tile set that tiles the plane has a tiling that reduces to
our construction. We have specified that our Turing machine does nothing when
the entrance is the empty word. Its special space×time diagram corresponds to
the blank tile. Thus, all the free spaces of a given square size will be filled with
blank tiles. It is used when a tile set does not tile the plane to guarantee that
our final universal tiling will tile the plane.

In this theorem, we constructed a tiling P1 that simulates a tiling for each tile
set. For a given tile set τi, we can choose the τi-tiling that we will simulate in
P1. At a certain step of our computation, our tiling P1 will simulate its own
tile set. We can imagine that we will simulate a τi tiling P2 which is a strongly
sparse universal tiling such that P2 simulates for any tile set τi another τi-tiling
than the τi-tiling simulated in P1. Thus, by transitivity, with this construction,
P1 simulates at least 2 tilings for each tile set. At a certain point P2 will also
simulate its own tile set, etc. By iterating this process, we can build a tiling that
simulates for each tile set τ a countable infinity of τ -tilings.

The following theorem gives the conditions needed by a tile set to generate a
universal tiling that simulates a countable infinity of tilings for each tile set.

Theorem 7. Let τ be a tile set. If for any countable set A = {P1, P2, P3, . . . | Pj

is a τj-tiling ∀j } there exists a τ-tiling PA such that Pj � PA for all Pj ∈ A,
then there exists a strongly sparse universal τ-tiling Pu such that for all τj there
exists a countable infinite set Aj = {Pj1 , Pj2Pj3 , . . .} of τj-tilings such that Pjk

�

Pu for all j, k. We say that a tiling has the universal infinity property (UIP) if
it satisfies the conditions of this theorem.

Proof. Let τ be a tile set that satisfies the hypothesis of the theorem. Since τ
is a tile set, there exists i such that τ = τi. We consider the set A1 composed
of P 1

1 , P 1
2 , . . . such that, for all j, P 1

j is a τj-tiling and P 1
i is a τi-tiling that

simulates all tilings of the set A2. By induction, we define An to be composed
of Pn

1 , Pn
2 , . . . such that, for all j, Pn

j is a τj-tiling and Pn
i is a τi-tiling that

simulates all tilings of the set An+1.
If we choose the sets An in such a way that An

⋂
Am = ∅ for all n, m, then

by simulating all tilings of the set A1, Pu will simulate a countable infinity of
tilings for each tile set.

Since in theorem 6 we can choose the tiling that we want to simulate for a
given tile set, Easy5 and the tile set of theorem 6 have the universal infinity
property. We can see that a tile set with UIP has the highest class of universality.
The following theorem shows that this property is equivalent to other notions
mentionned above.

Theorem 8. The following statements are equivalent:
1. τ has the universal infinity property;
2. τ is complete;
3. τ generates a weakly dense universal tiling.
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Proof. 1 ⇒ 2: Let τ be a tile set with the universal infinity property. Then, for
any subset A = {P1, P2, . . .}, where Pj is a τj-tiling, there exists a τ -tiling P
such that Pi � P for all Pi ∈ A. Thus, for any tiling Q, there exists a τ -tiling P
such that Q � P . So, τ is complete.

1 ⇐ 2: Let τ be a complete tile set and τ ′ a tile set with the universal infinity
property. Since τ is complete, for any τ ′-tiling Pk there exists a τ -tiling Qk such
that Pk � Qk. Since the theorem 6 shows the existence of at least one tile set
with the universal infinity property, then we can reduce all of its tilings to our
complete tile set τ and thus, τ has the universal infinity property.

2 ⇔ 3: By theorem 1.

We have shown that completeness, generating weak dense universality and uni-
versal infinity property are equivalent. In fact, it is the finest universality class
we can get, based on our reduction notion. We call this class [UIP ].

The class [UIP ] is really interesting in the sense that two tile sets τ and τ ′

of [UIP ] have the following property: for any τ -tiling P , there exists an infinity
of τ ′-tilings {Qi}i>0 such that P � Qi. In a certain way, the tile sets of [UIP ]
generate tilings with the same behaviour.

In figure 4, we illustrate the obtained classification of the different universality
and completeness notions seen along the paper.

-Generates a weak dense universal tiling

- Complete               -UIP

Generates a strongly sparse universal tiling
Generates a weakly sparse universal tiling

Other tile sets

Fig. 4. The universality classification for tile sets

To clarify this classification, we aim to show that some non-periodic tile sets
do not belong to [UIP ]. To prove this, we recall the quasiperiodic function
associated to a tiling. For a given tiling P , the quasiperiodic function GP gives
for each n, the smallest m such that any pattern of size n in P appears at least
once in any m×m-square pattern of P . Of course, GP is not a total function for
all P . We can have a tiling Q where a given pattern of size s appears only once
in Q and thus, GQ(s) will not be defined. Nevertheless, Durand [Dur99] showed
that if a tile set tiles the plane, then it can tile it in a quasiperiodic way, i.e.,
the quasiperiodic function associated to this tiling is total.

We have the following results:

Theorem 9. Let P and Q be two tilings of the plane. If there does not exist
c ∈ N such that GQ(cn) > GP (n) ∀ n, then P �� Q.

Proof. Suppose that P � Q with a reduction of size (a, b). That means that any
{c × d}-pattern of P is simulated by a {ca × bd}-pattern of Q. By the theorem’s
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condition, there exists at least one n such that GQ(a × b × n) < GP (n). Thus
there exists a pattern m of P of size n that appears less frequently in P than
any pattern of Q of size a × b × n appears in Q. Hence, no pattern of Q of size
a × b × n can represent the pattern m and thus, P �� Q.

Since [CD04], we know that there exists tile sets that generate only tilings with
a non-recursive quasiperiodic function. Thus, if P is a universal strong tiling,
then GP cannot be recursive. Since Robinson’s tile set gives rise only to tilings
with recursive quasiperiodic functions, Robinson’s tilings are not universal.

5 Concluding Remarks

We have shown that there exists a strongly sparse universal tiling that can
simulate a countable infinity of tilings for each tile set. That is the strongest
universality notion we can get. In fact, having a tile set with this property is
equivalent to completeness and to generating a weakly sparse universal tiling.
But we have also shown that there is no strongly universal tiling that simulates
all tilings, because of an argument of countability.

The constructions were generated by the trivial tile set EASY5. But we also
show that even non-periodic tile sets can generate universality and be complete.
There remains the question: are all non-periodic tile sets, that generate only
tilings with a non-recursive quasiperiodic function, complete?
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