

Lecture Notes in Computer Science 4393
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Wolfgang Thomas Pascal Weil (Eds.)

STACS 2007

24th Annual Symposium
on Theoretical Aspects of Computer Science
Aachen, Germany, February 22-24, 2007
Proceedings

13

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Volume Editors

Wolfgang Thomas
RWTH Aachen
Lehrstuhl Informatik 7
52056 Aachen, Germany
E-mail: thomas@informatik.rwth-aachen.de

Pascal Weil
Laboratoire Bordelais de Recherche en Informatique
Université de Bordeaux
33405 Talence Cedex, France
E-mail: pascal.weil@labri.fr

Library of Congress Control Number: 2007920489

CR Subject Classification (1998): F, E.1, I.3.5, G.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-70917-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-70917-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12020942 06/3142 5 4 3 2 1 0

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Preface

The Symposium on Theoretical Aspects of Computer Science (STACS) is al-
ternately held in France and in Germany. The conference of February 22-24,
2007, held at Aachen was the 24th in this series. Previous meetings took place in
Paris (1984), Saarbrücken (1985), Orsay (1986), Passau (1987), Bordeaux (1988),
Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), Würzburg
(1993), Caen (1994), München (1995), Grenoble (1996), Lübeck (1997), Paris
(1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003),
Montpellier (2004), Stuttgart (2005), and Marseille (2006).

The interest in STACS has been increasing continuously in recent years. The
STACS 2007 call for papers led to approximately 400 submissions from all over
the world. We had a two-day physical meeting for the Program Committee at
Aachen in November 2006 where all members of the committee were present.
We would like to thank the Program Committee and all external referees for the
valuable work they put into the reviewing process. Each submission was assigned
to at least three Program Committee members, hence each member was in charge
of about 70 papers. Only 56 papers (i.e., less than 15 % of the submissions) could
be accepted, as we wanted to keep the conference in its standard format with
only two parallel sessions.

We would like to thank the three invited speakers, S. Abiteboul, M.Y. Vardi
and D. Wagner, for their contributions to the proceedings.

STACS 2007 received funds from Deutsche Forschungsgemeinschaft (DFG),
Gesellschaft für Informatik (GI), and RWTH Aachen University; we thank them
for their support.

Special thanks are due to A. Voronkov for his EasyChair software (www.
easychair.org) and for his support in running it, as well as to A. Carayol for his
intensive work in preparing the camera-ready copy of this proceedings volume.

December 2006 Wolfgang Thomas
Pascal Weil

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Organization

STACS 2007 was organized by the Chair of Computer Science 7 (Logic and
Theory of Discrete Systems) of RWTH Aachen University under the auspices of
the Special Interest Groups for Theoretical Computer Science of the Gesellschaft
für Informatik (GI).

Program Committee

Eugene Asarin (Université Paris 7)
Cristina Bazgan (Université Paris Dauphine)
Marie-Pierre Béal (Université de Marne-la-Vallée)
Gerth Brodal (Aarhus Universitet)
Henning Fernau (Universität Tübingen)
Rudolf Fleischer (Fudan University, Shanghai)
Ricard Gavaldà (Universitat Politècnica de Catalunya)
Joachim Giesen (Max-Planck-Institut für Informatik, Saarbrücken)
Edith Hemaspaandra (Rochester Institute of Technology)
Martin Hofmann (Universität München)
Sophie Laplante (Université Paris 11)
Rajeev Raman (University of Leicester)
R. Ramanujam (Institute of Mathematical Sciences, Chennai)
Christian Scheideler (Technische Universität München)
Anand Srivastav (Universität Kiel)
Wolfgang Thomas (RWTH, Aachen), Co-chair
Pascal Weil (Université Bordeaux 1), Co-chair

Organizing Committee

Erich Grädel
Christof Löding
Peter Rossmanith
Wolfgang Thomas (Chair)
Berthold Vöcking

Referees

Scott Aaronson
Slim Abdennadher
Parosh Abdulla
Andreas Abel

Luca Aceto
Jiri Adámek
Ben Adida
Bharat Adsul

Pavan Aduri
Klaus Aehlig
Hassene Aissi
Deepak Ajwani

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VIII Organization

Ali Akhavi
Julien Allali
Eric Allender
Jan Altenbernd
Ernst Althaus
Carme Àlvarez
Roberto Amadio
Klaus Ambos-Spies
Christoph Ambühl
Ola Angelsmark
Marcella Anselmo
Pavlos Antoniou
Luis Antunes
V. Arvind
Albert Atserias
Yossi Azar
Christine Bachoc
Maria-Florina Balcan
Andreas Baltz
Evripidis Bampis
Nikhil Bansal
Jeremy Barbay
David A. Barrington
Rana Barua
A. Baskar
Frédérique Bassino
Surender Baswana
Michael Bauland
Paul Beame
Danièle Beauquier
Veronica Becher
Nicolas Bedon
Rene Beier
Pascal Berthomé
Valérie Berthé
Dietmar Berwanger
Ivona Bezakova
Nicole Bidoit
Francine Blanchet-Sadri
Andreas Blass
Guillaume Blin
Johannes Blömer
Henrik Blunck
Luc Boasson
Hans L. Bodlaender

Prosenjit Bose
Ahmed Bouajjani
Felix Brandt
Franck van Breugel
Véronique Bruyère
Francois Bry
Anne Brüggemann-Klein
Kevin Buchin
Harry Buhrman
Costas Busch
Thierry Cachat
Lúıs Caires
Arnaud Carayol
Arturo Carpi
Olivier Carton
John Case
Jorge Castro
Didier Caucal
Frédéric Cazals
Julien Cervelle
Kevin Chang
Krishnendu Chatterjee
Arkadev Chattopadhyay
Kaustuv Chaudhuri
Frédéric Chazal
Otfried Cheong
Andrea Clementi
Thomas Colcombet
Richard Cole
Hubert Comon-Lundh
Matthew Cook
Colin Cooper
Graham Cormode
José Correa
Bruno Courcelle
Maxime Crochemore
Victor Dalmau
Peter Damaschke
Carsten Damm
Samir Datta
Anuj Dawar
Wolfgang Degen
Charles Delorme
Marc Demange
Frank Drewes

Gérard Duchamp
Philippe Duchon
Vida Dujmović
Arnaud Durand
Jérôme Durand-Lose
Christoph Dürr
Cynthia Dwork
John Eblen
Michael Eckert
Thomas Eiter
Leah Epstein
Thomas Erlebach
Zoltán Ésik
Juan Luis Esteban
Rolf Fagerberg
Piotr Faliszewski
Lene Favrholdt
Uriel Feige
Michael Fellows
Jĭŕı Fiala
Marcelo Fiore
Francesca Fiorenzi
Felix Fischer
Stephan Flake
Jörg Flum
Fedor Fomin
Lance Fortnow
Jean-Claude Fournier
Pierre Fraigniaud
John Franco
Gudmund S. Frandsen
Tom Friedetzky
Matteo Frigo
Stanley P. Y. Fung
Stefan Funke
Kim Gabarró
Anna Gal
Bernd Gärtner
Sumit Ganguly
Raúl Garćıa-Patrón
Gemma C. Garriga
William Gasarch
Leszek Gasieniec
Joachim von zur Gathen
Cyril Gavoille

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Organization IX

Markus Geyer
Dora Giammarresi
Jürgen Giesl
Robert Gilman
Michael Gnewuch
Mordecai Golin
Carla P. Gomes
Martin C. Golumbic
Teofilo Gonzalez
Rajeev Goré
Daniel Gottesman
Laurent Gourvès
Sathish Govindarajan
Maria Gradinariu
Serge Grigorieff
Dmitry Grigoriev
Martin Grohe
Roberto Grossi
Hermann Gruber
Jakob Grue Simonsen
Peter Grünwald
Erich Grädel
Allan G. Jørgensen
Joachim Gudmundsson
Irène Guessarian
Stefan Gulan
Jiong Guo
Michel Habib
Torben Hagerup
Vesa Halava
Magnús Halldórsson
Sariel Har-Peled
Tero Harju
Paul Harrenstein
Edmund Harriss
Aram Harrow
Refael Hassin
Peter Hauck
Mathias Hauptmann
Herman Haverkort
Nils Hebbinghaus
Pavol Hell
Sébastien Hémon
Danny Hermelin
Ulrich Hertrampf

John Hitchcock
Florent Hivert
Petr Hlinĕný
Michael Hoffmann
Markus Holzer
Christopher Homan
Hendrik Jan Hoogeboom
Peter Høyer
Juraj Hromkovic̆
Falk Hüffner
Mathilde Hurand
Thore Husfeldt
David Ilcinkas
Costas Iliopoulos
Neil Immerman
Nicole Immorlica
Robert Irving
Kazuo Iwama
Riko Jacob
Robert Jaeschke
Klaus Jansen
Inuka Jayasekara
Emmanuel Jeandel
Mark Jerrum
Jan Johannsen
Vincent Jost
Ari Juels
Valentine Kabanets
Yuri Kalnishkan
Haim Kaplan
Marc Kaplan
Christos Kapoutsis
Juhani Karhumäki
Jarkko Kari
Wong Karianto
Marek Karpinski
Irit Katriel
Jonathan Katz
Michael Kaufmann
Dimitris Kavvadias
Julia Kempe
Iordanis Kerenidis
Delia Kesner
Daniel Keysers
Daniel Kirsten

Hartmut Klauck
Lasse Kliemann
Ton Kloks
Alexander Knapp
Christian Knauer
Timo Koetzing
Pascal Koiran
Arist Kojevnikov
Guy Kortsarz
Sven Kosub
Yiannis Koutis
Dan Král
Andreas Krebs
Martin Kreuzer
Danny Krizanc
Oliver Kullmann
Amit Kumar
K. Narayan Kumar
Clemens Kupke
Petr Kůrka
Piyush Kurur
Martin Kutrib
Ralf Küsters
Ugo dal Lago
Yassine Lakhnech
Gadi Landau
Martin Lange
Mike Langston
Lawrence L. Larmore
Benoit Larose
Sören Laue
Emmanuelle Lebhar
James R. Lee
Troy Lee
Hans Leiß
Hao Li
Yuri Lifshits
René Lindloh
Kamal Lodaya
Christof Löding
Markus Lohrey
Satya Lokam
Sylvain Lombardy
Maŕıa López-Valdés
Antoni Lozano

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

X Organization

Hsueh-I Lu
Joan Lucas
Gábor Lugosi
Ulrike von Luxburg
Alejandro Maass
P. Madhusudan
Frédéric Magniez
Meena Mahajan
Ali Ridha Mahjoub
J.A. Makowsky
Elitza Maneva
Sabrina Mantaci
Giovanni Manzini
Maurice Margenstern
Stuart Margolis
Conrado Mart́ınez
Jĭŕı Matous̆ek
E. Mayordomo Cámara
Catherine McCartin
Pierre McKenzie
Klaus Meer
Mark Mercer
Carlo Mereghetti
Wolfgang Merkle
Filippo Mignosi
Peter Bro Miltersen
Dieter Mitsche
Michael Mitzenmacher
Samuel E. Moelius III
Daniel Mölle
Manal Mohamed
Jérôme Monnot
Fabien de Montgolfier
Christopher Moore
G. Moreno Soćıas
Philippe Moser
Marcin Mucha
Markus Müller-Olm
Madhavan Mukund
Jochen Mundinger
Anca Muscholl
Veli Mäkinen
Norbert Müller
Stefan Näher
Assaf Naor

Rouven Naujoks
Gonzalo Navarro
Ashwin Nayak
Ralph Neininger
Jean Néraud
Uwe Nestmann
François Nicolas
Rolf Niedermeier
Jesper Buus Nielsen
Johan Nilsson
Noam Nisan
Nicolas Nisse
Damian Niwinski
Ilia Nouretdinov
Johannes Nowak
Elzbieta Nowicka
Yahav Nussbaum
Mitsunori Ogihara
Hans Jürgen Ohlbach
Martin Olsen
Ralf Osbild
Friedrich Otto
Joel Ouaknine
Sang-il Oum
Eric Pacuit
Paritosh K. Pandya
Rafael Pass
Dirk Pattinson
Christophe Paul
Gheorghe Pãun
Christian N. S. Pedersen
Andrzej Pelc
David Peleg
Paolo Penna
Giuseppe Persiano
Jean-Éric Pin
Nadia Pisanti
Greg Plaxton
Bruno Poizat
Sanjiva Prasad
Roberto De Prisco
Andrzej Proskurowski
Bartosz Przydatek
Evangelia Pyrga
Xavier Pérez

Yuri Rabinovich
J. Radhakrishnan
Tomasz Radzik
Stanislaw Radziszowski
Mathieu Raffinot
Daniel Raible
Jean-Francois Raskin
Dror Rawitz
Ran Raz
Alexander Razborov
Andreas Razen
Jan Reimann
Klaus Reinhardt
Steffen Reith
Antonio Restivo
Eric Rivals
Mike Robson
Martin Rötteler
Dana Ron
Michel de Rougemont
Frances A. Rosamond
Adi Rosén
Dominique Rossin
Günter Rote
Jörg Rothe
Salvador Roura
Bimal Roy
Paul Ruet
Irena Rusu
Mugizi R. Rwebangira
Ashish Sabharwal
Michael Sagraloff
Jacques Sakarovitch
Kai T. Salomaa
Peter Sanders
Volkmar Sauerland
Dietmar Saupe
Saket Saurabh
Francesco Scarcello
Nicolas Schabanel
Marcus Schaefer
Sebastian Schaffert
Christian Schaffner
Dominik Scheder
Ingo Schiermeyer

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Organization XI

Stefan Schimanski
Ilka Schnoor
Ulrich Schöpp
Eva Schuberth
Jennifer Seberry
Detlef Seese
Helmut Seidl
Pranab Sen
Olivier Serre
Hadas Shachnai
Qiaosheng Shi
David B. Shmoys
Amin Shokrollahi
R. K. Shyamasundar
Sunil Simon
G. Sivakumar
S. Sivaramakrishnan
Robert Špalek
Bettina Speckmann
Joel Spencer
Jerry Spinrad
Jiri Srba
Aravind Srinivasan
Ludwig Staiger
Ian Stark
Elias C. Stavropoulos
Daniel Stefankovic
Ulrike Stege
Angelika Steger
Jochen J. Steil
Frank Stephan
Howard Straubing
Volker Strumpen

Aaron Stump
C. R. Subramanian
Karol Suchan
Jan Šupol
S. P. Suresh
Maxim Sviridenko
Tibor Szabó
Stefan Szeider
Géraud Sénizergues
Christino Tamon
Till Tantau
Véronique Terrier
Pascal Tesson
Guillaume Theyssier
Thomas Thierauf
Mikkel Thorup
Sophie Tison
Arnaud Tisseran
Ioan Todinca
Jacobo Torán
Patrick Traxler
Denis Trystram
Christian Urban
Mario Valencia-Pabon
Leslie Valiant
Gabriel Valiente
Kasturi Varadarajan
Vinodchandran Variyam
Yde Venema
V. Venkateswaran
Juan Vera
Éric Colin de Verdière
Nikolai Vereshchagin

Elias Vicari
Adrien Vieilleribière
Tiziano Villa
Berthold Vöcking
Roland Vollmar
Heribert Vollmer
Tjark Vredeveld
Imrich Vrťo
Uli Wagner
Charles Wallace
Guilin Wang
Rolf Wanka
John Watrous
Ingmar Weber
Sebastian Wernicke
Sören Werth
Matthias Westermann
Thomas Wilke
Andreas Winter
Ronald de Wolf
Prudence Wong
Thomas Worsch
Qin Xin
Boting Yang
Neal Young
Sheng Yu
Bruno Zanuttini
Marcin Zawada
Qing Zhang
Wies�law Zielonka
Michal Ziv
Philipp Zumstein

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents

Invited Talks

A Calculus and Algebra for Distributed Data Management 1
Serge Abiteboul

The Büchi Complementation Saga . 12
Moshe Y. Vardi

Speed-Up Techniques for Shortest-Path Computations 23
Dorothea Wagner and Thomas Willhalm

Session 1A

Compact Forbidden-Set Routing . 37
Bruno Courcelle and Andrew Twigg

A New Bound for Pure Greedy Hot Potato Routing 49
Manfred Kunde

Wavelength Management in WDM Rings to Maximize the Number
of Connections . 61

Ioannis Caragiannis

Session 1B

A First Investigation of Sturmian Trees . 73
Jean Berstel, Luc Boasson, Olivier Carton, and Isabelle Fagnot

On the Size of the Universal Automaton of a Regular Language 85
Sylvain Lombardy

Correlations of Partial Words . 97
Francine Blanchet-Sadri, Joshua D. Gafni, and Kevin H. Wilson

Session 2A

Testing Convexity Properties of Tree Colorings . 109
Eldar Fischer and Orly Yahalom

Why Almost All k-Colorable Graphs Are Easy . 121
Amin Coja-Oghlan, Michael Krivelevich, and Dan Vilenchik

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

XIV Table of Contents

Session 2B

On Defining Integers in the Counting Hierarchy and Proving Arithmetic
Circuit Lower Bounds . 133

Peter Bürgisser

A New Rank Technique for Formula Size Lower Bounds 145
Troy Lee

Session 3A

Hard Metrics from Cayley Graphs of Abelian Groups 157
Ilan Newman and Yuri Rabinovich

Broadcasting vs. Mixing and Information Dissemination on Cayley
Graphs . 163

Robert Elsässer and Thomas Sauerwald

Light Orthogonal Networks with Constant Geometric Dilation 175
Adrian Dumitrescu and Csaba D. Tóth

Session 3B

Admissibility in Infinite Games . 188
Dietmar Berwanger

Pure Stationary Optimal Strategies in Markov Decision Processes 200
Hugo Gimbert

Symmetries and the Complexity of Pure Nash Equilibrium 212
Felix Brandt, Felix Fischer, and Markus Holzer

Session 4A

Computing Representations of Matroids of Bounded Branch-Width 224
Daniel Král’

Characterizing Minimal Interval Completions . 236
Pinar Heggernes, Karol Suchan, Ioan Todinca, and Yngve Villanger

Session 4B

The Complexity of Unions of Disjoint Sets . 248
Christian Glaßer, Alan L. Selman, Stephen Travers, and
Klaus W. Wagner

Kolmogorov-Loveland Stochasticity and Kolmogorov Complexity 260
Laurent Bienvenu

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents XV

Session 5A

Bounded-Hop Energy-Efficient Broadcast in Low-Dimensional Metrics
Via Coresets . 272

Stefan Funke and Sören Laue

On the Complexity of Affine Image Matching . 284
Christian Hundt and Maciej Lískiewicz

Session 5B

On Fixed Point Equations over Commutative Semirings 296
Javier Esparza, Stefan Kiefer, and Michael Luttenberger

An Exponential Lower Bound for Prefix Gröbner Bases in Free Monoid
Rings . 308

Andrea Sattler-Klein

Session 6A

A Cubic Kernel for Feedback Vertex Set . 320
Hans L. Bodlaender

The Union of Minimal Hitting Sets: Parameterized Combinatorial
Bounds and Counting . 332

Peter Damaschke

An Optimal, Edges-Only Fully Dynamic Algorithm for
Distance-Hereditary Graphs . 344

Marc Tedder and Derek Corneil

Session 6B

A Search Algorithm for the Maximal Attractor of a Cellular
Automaton . 356

Enrico Formenti and Petr K̊urka

Universal Tilings . 367
Grégory Lafitte and Michael Weiss

On the Complexity of Unary Tiling-Recognizable Picture Languages 381
Alberto Bertoni, Massimiliano Goldwurm, and Violetta Lonati

Session 7A

A Characterization of Strong Learnability in the Statistical Query
Model . 393

Hans Ulrich Simon

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

XVI Table of Contents

On the Consistency of Discrete Bayesian Learning . 405
Jan Poland

Session 7B

VPSPACE and a Transfer Theorem over the Reals 417
Pascal Koiran and Sylvain Perifel

On Symmetric Signatures in Holographic Algorithms 429
Jin-Yi Cai and Pinyan Lu

Session 8A

Randomly Rounding Rationals with Cardinality Constraints and
Derandomizations . 441

Benjamin Doerr

Cheating to Get Better Roommates in a Random Stable Matching 453
Chien-Chung Huang

A Deterministic Algorithm for Summarizing Asynchronous Streams
over a Sliding Window . 465

Costas Busch and Srikanta Tirthapura

Session 8B

Arithmetizing Classes Around NC1 and L . 477
Nutan Limaye, Meena Mahajan, and B.V. Raghavendra Rao

The Polynomially Bounded Perfect Matching Problem Is in NC2 489
Manindra Agrawal, Thanh Minh Hoang, and Thomas Thierauf

Languages with Bounded Multiparty Communication Complexity 500
Arkadev Chattopadhyay, Andreas Krebs, Michal Koucký,
Mario Szegedy, Pascal Tesson, and Denis Thérien

Session 9A

New Approximation Algorithms for Minimum Cycle Bases of Graphs . . . 512
Telikepalli Kavitha, Kurt Mehlhorn, and Dimitrios Michail

On Completing Latin Squares . 524
Iman Hajirasouliha, Hossein Jowhari, Ravi Kumar, and
Ravi Sundaram

Small Space Representations for Metric Min-Sum k-Clustering and
Their Applications . 536

Artur Czumaj and Christian Sohler

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents XVII

Session 9B

An Optimal Tableau-Based Decision Algorithm for Propositional
Neighborhood Logic . 549

Davide Bresolin, Angelo Montanari, and Pietro Sala

Bounded-Variable Fragments of Hybrid Logics . 561
Thomas Schwentick and Volker Weber

Rank-1 Modal Logics Are Coalgebraic . 573
Lutz Schröder and Dirk Pattinson

Session 10A

An Efficient Quantum Algorithm for the Hidden Subgroup Problem in
Extraspecial Groups . 586

Gábor Ivanyos, Luc Sanselme, and Miklos Santha

Weak Fourier-Schur Sampling, the Hidden Subgroup Problem, and
the Quantum Collision Problem . 598

Andrew M. Childs, Aram W. Harrow, and Pawe�l Wocjan

Quantum Network Coding . 610
Masahito Hayashi, Kazuo Iwama, Harumichi Nishimura,
Rudy Raymond, and Shigeru Yamashita

Session 10B

Reachability in Unions of Commutative Rewriting Systems Is
Decidable . 622

Miko�laj Bojańczyk and Piotr Hoffman

Associative-Commutative Deducibility Constraints 634
Sergiu Bursuc, Hubert Comon-Lundh, and Stéphanie Delaune

On the Automatic Analysis of Recursive Security Protocols with
XOR . 646

Ralf Küsters and Tomasz Truderung

Session 11A

Improved Online Algorithms for the Sorting Buffer Problem 658
Iftah Gamzu and Danny Segev

Cost Sharing Methods for Makespan and Completion Time
Scheduling . 670

Janina Brenner and Guido Schäfer

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

XVIII Table of Contents

Session 11B

Planar Graphs: Logical Complexity and Parallel Isomorphism Tests 682
Oleg Verbitsky

Enumerating All Solutions for Constraint Satisfaction Problems 694
Henning Schnoor and Ilka Schnoor

Author Index . 707

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Calculus and Algebra
for Distributed Data Management�

Serge Abiteboul

INRIA-Futurs, Orsay & Univ. Paris 11
firstname.lastname@inria.fr

Abstract. The sharing of content by communities of users (e.g., scien-
tists) in a P2P context remains cumbersome. We argue that main reasons
for this is the lack of calculus and algebra for distributed data manage-
ment. We present the ActiveXML language that extends the XML lan-
guage with features to handle distribution. More precisely, ActiveXML
documents are XML documents with a special syntax for specifying the
embedding of Web service calls, e.g. XML queries such as XQueries. We
also present ActiveXML algebra that extends ActiveXML notably with
explicit control of data exchanges. ActiveXML algebra allows describing
query plans, and exchanging them between peers.

1 Introduction

The field of distributed data management [17] has centered for many years
around the relational model. More recently, the Web has made the world wide
and intranet publication of data much simpler, by relying on HTML, Web
browsers, plain-text search engines and query forms. The situation has also dra-
matically improved with the introduction of XML [22] and Web services [25].
Together, these two standards provide an infrastructure for distributed comput-
ing at large, independent of any platform, system or programming language, i.e.,
the appropriate framework for distributed management of information. However,
the sharing of content by communities of users (e.g., scientists) in a P2P context
remains cumbersome. We argue that main reasons for this is the lack of calculus
and algebra for distributed data management and propose such languages based
on Web standards, namely XML and Web services.

In [8], we propose the data ring that can be seen as a network analogue of
a database or a content warehouse. The vision is to build a P2P middleware
system that can be used by a community of non-experts, such as scientists, to
build content sharing communities in a declarative fashion. Essentially, a peer
joins a data ring by specifying which data (or services in general) are to be
shared, without having to specify a schema for the data, load it in a store,
create any indices on it, or specify anything complex regarding its distribution.
The data ring enables users to perform declarative queries over the aggregated
� This work has been partially supported by the ANR Project WebContent and the

EC project Edos [13] on the development and distribution of open source software.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 1–11, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2 S. Abiteboul

data, and becomes responsible for reorganizing the physical storage of data and
for controlling its distribution. Thus a primary focus of the data ring is simplicity
of use. To achieve these goals, we identified a number of challenges:

Self-administration. Since the users of the data ring are non-expert, the de-
ployment of the ring and its administration should be almost effort-less. This
means that a number of tasks such as the selection of access structures (in-
dices) or the gathering of the statistics to be used by optimizers have to be
fully automatic.

File management. Since a large part of the data is going to reside in file sys-
tems, we need very efficient processing and optimization of queries over files,
including for instance the automatic selection of specific access structures
over file collections.

Query language. To facilitate the exploitation of the ring by non-experts, the
interfaces have to be mostly graphical and require the minimum expertise.
They therefore must be based on declarative languages (calculus) in the style
of relational calculus, rather than on languages such as Java or Ajax that
require programming skills.

Query optimization. Query optimization has, by nature, to be distributed
and peers should be able to exchange query plans. This motivates adopt-
ing an algebra for describing distributed query plans interleaving query op-
timization, query evaluation, and possibly, error recovery and transaction
processing.

We present ActiveXML, a declarative framework that harnesses XML and
Web services for the integration and management of distributed data. An Ac-
tiveXML document is an XML document where some of the data is given ex-
plicitly, while other portions are given only intensionally by means of embedded
calls to Web services, typically XML queries. By calling the services, one can
obtain up-to-date information. In particular, ActiveXML provides control over
the activation of service calls both from the client side (pull) or from the server
side (push).

It should be noted that the idea of mixing data and code is not new, e.g.,
stored procedures in relational systems [19], method calls in object-oriented data-
bases [10], and queries in scripting languages such as PHP. The novelty is that
since both XML and Web services are standards, ActiveXML documents can be
universally understood, and therefore can be universally exchanged.

We also present the ActiveXML algebra that extends ActiveXML in two main
directions: (i) with generic services that can be supported by several peers (e.g.,
query services), (ii) with explicit control of the evaluation of ActiveXML docu-
ments (eval operator) and of data exchange (send and receive operators). The
algebra can be used to describe query (evaluation) plans. Using rewrite rules,
query plans may be optimized in a standard way. More fundamentally, the query
plans are distributed and can be exchanged between peers. Thus the tasks of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Calculus and Algebra for Distributed Data Management 3

query evaluation and optimization can be distributed among the peers of the
network.

The ActiveXML project has been going on for several years. A system is now
available as open source [9]. In [16], a technique to decide whether or not calls
should be activated based on typing is introduced. The general problem has
deep connections with tree automata [12] and alternating automata, i.e., au-
tomata alternating between universal and existential states [18]. Optimization
issues in the context of ActiveXML are presented in [2]. In [5], a framework for
managing distribution and replication in the context of ActiveXML is consid-
ered. Foundations of ActiveXML are studied in [3]. A preliminary version of the
algebra appeared in [7].

We conclude this introduction by a brief discussion of XML and Web services.

<directory>
<movies>

<director>Hitchcock</director>
<sc service="movies@allocine.com" >Hitchcock</sc>
<movie> <title>Vertigo</title>
<actor>J. Stewart</actor> <actor>K. Novak</actor>
<reviews> <sc service="reviews@cine.com" >Vertigo</sc></reviews>

</movie>
<movie> <title>Psycho</title>
<actor>N. Bates</actor>
<reviews> <sc service="reviews@cine.com" >Psycho</sc></reviews>

</movie>
</movies>

</directory>

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

movie

actor
reviews

"K. Novak"

"Vertigo"

title

"Vertigo"

actor

"J. Stewart"

directory

movies

Hitchcock

director

movies@allocine.com

Hitchcock

actor reviews

"Psycho"

movie

"Psycho"

"N. Bates"

title

reviews@cine.comreviews@cine.com

Fig. 1. An ActiveXML document and its tree representation

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

4 S. Abiteboul

XML and Web services. XML is a semistructured data exchange format [4]
promoted by the Word-Wide-Web Consortium and widely adopted by industry.
An XML document can be viewed as a labeled, unranked, ordered tree, as seen
in the example1 of Figure 1 (ignoring the grey area for now). Unlike HTML,
XML does not provide any information about the document presentation. This
is typically provided externally using a CSS or XSL style-sheet. XML documents
may be typed, e.g., using XML Schema [23], and may be queried using query
languages such as XPath or XQuery [24]. Web services consist of an array of
emerging standards. For instance, to find a desired service, one can query a
UDDI [21] directory. To understand how to interact with the service, one relies
on WSDL [26], something like Corba’s IDL. One can then access the service using
SOAP [20], an XML-based lightweight protocol for the exchange of information.

The article is organized as follows. The calculus is discussed in Section 2 and
the algebra in Section 3. The last section is a conclusion.

2 A Stream Calculus: ActiveXML

In this section, we briefly describe ActiveXML. Details may be found from [9] as
well as papers on ActiveXML and the open-source code of an ActiveXML peer.

The success of the relational model essentially comes from the combination of
a declarative language (relational calculus), an equivalent relational algebra, and
optimization techniques based on rewrite rules. There have been a number of
extensions such as object databases, but the classical pattern (calculus, algebra,
rewrite rules) proved its robustness. It should also be adopted in the data ring
context. However, the situation is essentially different (distributed vs. central-
ized, semi-structured vs. very structured) so requires a complete overhauling of
the languages. We present a calculus for distributed semi-structured data in this
section and an algebra in Section 3. In both cases, we insist on the features that
we believe are fundamental for such languages.

We believe that to support effectively the loose integration paradigm of data,
one essential aspect is the seamless transition between explicit and intentional
data. One should not have to distinguish between extensional data (e.g., XML or
HTML pages) and intensional data (e.g., access to a relational database provided
by a Web service). As an example, consider the query “give me the name and
phone number of the CEO of the Gismo company”. Answering this query may
require first finding the name of that CEO in an XML collection of company
synopses, finding the service that exports the phone book of Gismo Inc, and
finally calling this service with the name of this CEO. The query can be answered
only (a) because we have a logical description of the resources, and (b) because
based on that, we have derived a distributed query plan.

ActiveXML was designed to capture such issues. An ActiveXML document
is an XML document where certain elements denote embedded calls to Web

1 We will see in the next section that this XML document is also an ActiveXML
document.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Calculus and Algebra for Distributed Data Management 5

services. For instance, the company synopsis may contain the CEO phone num-
ber as a Web service call. The service calls embedded in the document provide
intensional data in the sense of deductive databases [6]. Now suppose that the
phone number of the CEO changes, then the second time we call the service, the
result changes. So, the home page of the company that includes this service call
changes. Thus the embedding of service calls is also capturing active data in the
sense of active databases [11].

Note that the use of intensional information is quite standard on the Web,
e.g. in PHP-mySQL. It is also common in databases, see object or deductive
databases. The main novelty is that the intensional data is provided by a Web
service. Thus the corresponding service calls may be activated by any peer and
do not have to be evaluated prior to sending the document.

In what sense can this be viewed as a calculus for distributed semi-structured
data? First, we rely on some calculus for local semi-structured data. From a
practical viewpoint, we can use the standard declarative language, XQuery. But
one could use any calculus over XML as well. ActiveXML provides the support
for handling distribution. The interaction with local queries is achieved by us-
ing query services. In some sense, the resulting language may be viewed as a
deductive database language such as datalog [6] with XQuery playing the role
of the single datalog rule and with ActiveXML acting as the “glue” between the
rules, i.e., as the datalog program. Negation may be handled in any standard
way [6]. Clearly, distribution introduces new issues with respect to evaluation
and optimization, notably the detection of termination [1].

Henceforth, we assume that every peer exports its resources in the form of
ActiveXML documents or Web services. The logical layer thus consists of a set
of ActiveXML documents and services and their owning peers. The external
layer will be dealing with the semantics (e.g., ontologies), but this aspect will
be ignored here. A computation will consist in local processing and exchanging
such documents.

ActiveXML is an XML dialect, as illustrated by the document in Figure 1.
(Note that the syntax is simplified in the example for purposes of presentation.)
The sc elements are used to denote embedded service calls. Here, reviews are
obtained from cine.com, and information about more Hitchcock movies may be
obtained from allocine.com. The data obtained by a call to a Web service may
be viewed as intensional, as it is not originally present. It may also be viewed as
dynamic, since the same service call possibly returns different data when called
at different times. When a service call is activated, the data returned is inserted
in the document that contains the call. Therefore, documents evolve in time as
a consequence of call activations. Of particular importance is thus the decision
to activate a particular service call.

Two aspects are essential to the framework and motivate basing it on XML
streams (as in ActiveXML) and not simply on XML documents:

Push vs. Pull. In pull mode, a query-service is called to obtain information.
But we are often interested on the Web in query subscription. The result of
a subscription is typically a stream of answers, e.g., notifications of certain

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

6 S. Abiteboul

events of interest. A company synopsis may include such a service to, for
instance, obtain the news of the company. Such a subscription feature is
also essential for supporting a number of functionalities ranging from P2P
monitoring, to synchronization and reconciliation of replicas, or gathering
statistics.

Recursion. The embedded service calls may be seen as views in the spirit
of those found at the core of deductive databases. In classical deductive
databases, recursion comes from data relationships and recursive queries
such as ancestor. In our setting, recursion kicks in similarly and also from
the XPATH // primitive. But more fundamentally, recursion comes from the
graph nature of the Web: site1 calls site2 that calls site3 that calls site1, etc.
Indeed, the use of recursive query processing techniques in P2P contexts has
been recently highlighted in several works in topics as different as message
rooting on the Web [15] and error diagnosis in telecom networks [1]. Now,
recursive query processing clearly requires the use of streams.

The basis of a theory proposed in [3,1] makes two fundamental simplifying
assumptions:

set-oriented. The ordering in XML is a real cause of difficulty. We assume that
the documents are labeled, unranked, unordered trees.

Query-services. If the services are black boxes, there is little reasoning one can
do about particular computations. We assume that the queries are defined
logically (e.g., by conjunctions of tree pattern queries over the documents.)

Since documents contain intensional data (views), this result in a setting quite
close to deductive databases. In [3], positive results are exhibited for limited
query languages. They are obtained by combining techniques from deductive
databases (such as Query-sub-Query) and from tree automata.

3 A Stream Algebra

Besides the logical level, our thesis is that a language in the style of ActiveXML
should also serve as the basis for the physical model. In particular, the use
of streams is unavoidable: see trivially, how answers are returned by Google
or try to send 100K in a standard Web service without obtaining a timeout.
As shown in a recent work [7], distributed query evaluation and optimization
can be naturally captured using ActiveXML algebraic expressions, based on the
exchange of distributed query execution plans. The expressions include standard
algebraic XML operations and send/receive operators, all over XML streams.
Note that these may be seen as particular workflow descriptions, very particular
ones of a strong database flavor. Thus, we propose that the physical model be
based on a the ActiveXML algebra [7].

The algebraic evaluation of queries is performed by collaborating query pro-
cessors installed on different peers exchanging ActiveXML data in a streaming

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Calculus and Algebra for Distributed Data Management 7

manner. Query optimization is performed also in a distributed manner by alge-
braic query rewriting. Standard distributed query optimization techniques can
all be described using the proposed framework and simple rewrite rules in the
language.

The ActiveXML algebra is an extension of the ActiveXML language with two
main features: (i) generic data and services and (ii) a more explicit control of
execution (e.g., eval) and distribution (send/receive). Generic data and services
are data and services available on several sites, an essential feature to capture
replication and the fact that a query service may be evaluated by any peer with
query processing facilities (see [5]). We also provide the capability to explicitly
control the shipping of data and queries, an essential feature to specify the
delegation of computations (see [1]).

Fig. 2. A graphical representation of ActiveXML data

An example will best illustrate this principle. Consider the data described in
Figure 2. We use here a visual representation of ActiveXML documents. Peer p1
and p2 have their own collections of music with metadata described in relations
r1, r2, respectively. Peer p1 knows about s(ingers) and t(itles), whereas p2 knows
about s(ingers) and a(lbum) t(itles). Peer p1 also knows that p2 has some music;
p2 knows that p3 (not shown here) has some; p3 knows p4, etc. The metadata of
p3, p4, p5 are organized as that of p1. The actual texts underneath the tags s, t, at
are not shown. Now suppose that p1 wants to get the titles of songs by Carla
Bruni. Figure 3 shows three different query plans. Each box describes some peer
computation. Query Plan (a) is the one that would result from an evaluation

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

8 S. Abiteboul

Fig. 3. Three equivalent distributed query plans

Fig. 4. An algebraic rewriting

of the query without optimization, i.e., from applying the pure semantics of
ActiveXML. Query plan (b) results from pushing selections, while Query plan
(c) is obtained by also optimizing data transfers (cutting some middle persons
in data transmissions). One (particularly interesting) rewrite rule is illustrated
in Figure 4. Consider only the shaded nodes. To perform the evaluation, an
external service call is replaced by a receive node and remotely a computation
is activated. It is requested that its result be sent to the location of the receive
node. The communication is asynchronous.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Calculus and Algebra for Distributed Data Management 9

We can make the following observations:

1. Peers 1 and 2 can already be producing answers, while Peer 3 is still op-
timizing the request it receives, while Peer 5 is still not even aware of the
query. This is illustrating the need for streaming, Peer 2 can send answers
to Peer 1 before obtaining the entire data she has to transmit.

2. Each peer separately receives a request and is fully in charge of evaluating it.
(Some optimization guidelines may be provided as well.) For instance Peer
2 receives a query where she cannot really contribute and may decide to cut
herself out of it to ask Peer 3 to evaluate its part and send the result directly
to Peer 1.

3. We assumed so far that the peer cooperate to evaluate a query. Think now
that the goal is to support a subscription. Then the same plans apply. Sup-
pose a new song of Carla Bruni is entered in Site 3. Then it is sent to Site 1
(with Query Plan (c)), then produced as a new answer unless this title has
already been produced.

In all cases, a query (subscription) for the songs of Carla Bruni (at the logical
layer) is translated to a distributed plan (at the physical layer). Observe that
the physical plan is essentially a workflow of Web services (i.e., an ActiveXML
document), where the services encapsulate the different plan operators and the
respective locations encode the distribution of computation and the flow of data.
The main idea therefore is that the complete plan itself (or a portion of it),
along with its current state of execution, can be described as an ActiveXML
document, which in turn can be exchanged between peers in order to support
query optimization and error recovery in a distributed fashion.

Fig. 5. Functional architecture

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

10 S. Abiteboul

Another important element in the Figure 3 is the distinction between local
query evaluation (inside each box) that is the responsibility of a local system, per-
haps a relational system, and global query evaluation. The functional architec-
ture of a peer query processor is shown in Figure 5. See the various components
and in particular the local query optimizer and the local component performing
global query optimization that collaborates with other peers to perform global
query optimization. Essentially, this separation leads to physical plans that com-
bine local query processing with distributed evaluation. Clearly, a collaboration
between the two systems (local and global) is preferable but is unlikely to be
widespread in the near future. This implies that we will have to view the local
query optimizers as boxes with possibly different querying capabilities, in the
same vein as mediation systems [14].

4 Conclusion

It is not necessary to insist on the importance of distributed data management.
Recent years have seen the arrival of a number of software tools that participate
in such activity: structured p2p network such as Chord or Pastry, XML repos-
itories such as Xyleme or DBMonet, file sharing systems such as BitTorrent or
Kazaa, distributed storage systems such as OceanStore or Google File System.
content delivery network such as Coral or Akamai, multicast systems such as
Bullet or Avalanche, Pub/Sub system such as Scribe or Hyper, application plat-
form suites as proposed by Sun or Oracle for integrating software components,
data integration as provided in warehouse or mediator systems.

A formal foundation for distributed data management is still to come. The
purpose of the present paper was not to advertise particular languages that close
the issue, but rather to encourage researchers to work in this area. ActiveXML
and ActiveXML algebra were used to illustrate aspects that, we believe, a cal-
culus and an algebra for such a context should stress.

Acknowledgments. The material presented in this paper comes from joint works
with a number of colleagues from the projects that have been mentioned and
most notably, Omar Benjelloun and Tova Milo for ActiveXML, Ioana Manolescu
for ActiveXML Algebra, and Alkis Polyzotis for the Data Ring.

References

1. S. Abiteboul, Z. Abrams, S. Haar, and T. Milo. Diagnosis of asynchronous discrete
event systems - Datalog to the rescue! In ACM PODS, 2005.

2. S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu, T. Milo, N. Preda, Lazy
Query Evaluation for Active XML, In Proc. of ACM SIGMOD 2004.

3. S. Abiteboul, O. Benjelloun, T. Milo, Positive Active XML, In Proc. of ACM
PODS, 2004.

4. S. Abiteboul, P. Buneman, D. Suciu, Data on the Web, Morgan Kaufmann, 2000.
5. S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, T. Milo, Active XML Docu-

ments with Distribution and Replication, In Proc. of ACM SIGMOD, 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Calculus and Algebra for Distributed Data Management 11

6. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
Reading-Massachusetts, 1995.

7. Abiteboul, S., I. Manolescu, E. Taropa. A framework for distributed XML data
management. In Proc. EDBT. 2006.

8. Serge Abiteboul, Neoklis Polyzotis, The Data Ring: Community Content Sharing
In Proceedings of CIDR, 2007.

9. The ActiveXML project, INRIA, http://activexml.net.
10. The Object Database Standard: ODMG-93, editor R. G. G. Cattell, Morgan Kauf-

mann, San Mateo, California, 1994.
11. Sharma Chakravarthy, Jennifer Widom: Foreword: Special Issue on Active

Database Systems. J. Intell. Inf. Syst. 7(2): 109-110. 1996.
12. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, M.

Tommasi, Tata, Tree Automata Techniques and Applications, www.grappa.univ-
lille3.fr/tata/

13. The Edos Project, http://www.edos-project.org/
14. Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang. Optimiz-

ing Queries Across Diverse Data Sources. In vldb97, pages 276–285, San Francisco,
CA, USA, 1997. Morgan Kaufmann Publishers Inc.

15. M. Harren, J. Hellerstein, R. Huebsch, B. Thau Loo, S. Shenker, and I. Stoica.
Complex queries in dht-based peer-to-peer networks. In Peer-to-Peer Systems Int.
Workshop, 2002.

16. T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, F. Dang Ngoc, Exchanging In-
tensional XML Data, In Proc. of ACM SIGMOD, 2003.

17. M.T. Ozsu, P. Valduriez, Principles of Distributed Database Systems, Prentice-
Hall, 1999.

18. A. Muscholl, T. Schwentick, L. Segoufin, Active Context-Free Games, Symposium
on Theoretical Aspects of Computer Science, 2004.

19. J.D. Ullman, Principles of Database and Knowledge Base Systems, Volume I, II,
Computer Science Press, 1988.

20. The SOAP Specification, version 1.2, http://www.w3.org/TR/soap12/
21. Universal Description, Discovery and Integration of Web Services (UDDI),

http://www.uddi.org/
22. The Extensible Markup Language (XML), http://www.w3.org/XML/
23. XML Typing Language (XML Schema), http://www.w3.org/XML/Schema
24. An XML Query Language, http://www.w3.org/TR/xquery/
25. The W3C Web Services Activity, http://www.w3.org/2002/ws/
26. The Web Services Description Language (WSDL), http://www.w3.org/TR/wsdl/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Büchi Complementation Saga

Moshe Y. Vardi�

Rice University, Department of Computer Science, Rice University, Houston,
TX 77251-1892, U.S.A.
vardi@cs.rice.edu

http://www.cs.rice.edu/∼vardi

Abstract. The complementation problem for nondeterministic word au-
tomata has numerous applications in formal verification. In particular,
the language-containment problem, to which many verification problems
are reduced, involves complementation. For automata on finite words,
which correspond to safety properties, complementation involves deter-
minization. The 2n blow-up that is caused by the subset construction is
justified by a tight lower bound. For Büchi automata on infinite words,
which are required for the modeling of liveness properties, optimal com-
plementation constructions are quite complicated, as the subset construc-
tion is not sufficient. We review here progress on this problem, which
dates back to its introduction in Büchi’s seminal 1962 paper.

1 Introduction

The complementation problem for nondeterministic word automata has numer-
ous applications in formal verification. In order to check that the language of
an automaton A1 is contained in the language of a second automaton A2, one
checks that the intersection of A1 with an automaton that complements A2 is
empty. Many problems in verification and design are reduced to language con-
tainment. In model checking, the automaton A1 corresponds to the system, and
the automaton A2 corresponds to the property we wish to verify [21,37]. While
it is easy to complement properties given in terms of formulas in temporal logic,
complementation of properties given in terms of automata is not simple. Indeed,
a word w is rejected by a nondeterministic automaton A if all runs of A on w re-
jects the word. Thus, the complementary automaton has to consider all possible
runs, and complementation has the flavor of determinization.

For automata on finite words, determinization, and hence also complemen-
tation, is done via the subset construction [28]. Accordingly, if we start with a
nondeterministic automaton with n states, the complementary automaton may
have 2n states. The exponential blow-up that is caused by the subset construc-
tion is justified by a tight lower bound: it is proved in [31] that for every n > 1,
there exists a language Ln that is recognized by a nondeterministic automaton
� Supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, and

ANI-0216467, by BSF grant 9800096, and by a grant from the Intel Corporation.
This paper is based on joint work with Orna Kupferman.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 12–22, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Büchi Complementation Saga 13

with n states, yet a nondeterministic automaton for the complement of Ln has
at least 2n states (see also [2]).

For Büchi automata on infinite words, which are required for the modeling
of liveness properties, optimal complementation constructions are quite compli-
cated, as the subset construction is not sufficient (but see erroneous claim in
[25]). Due to the lack of a simple complementation construction, the user is typ-
ically required to specify the property by a deterministic Büchi automaton [21]
(it is easy to complement a deterministic Büchi automaton), or to supply the au-
tomaton for the negation of the property [14]. Similarly, specification formalisms
like ETL [38], which have automata within the logic, involve complementation
of automata, and the difficulty of complementing Büchi automata is an obstacle
to practical use [1]. In fact, even when the properties are specified in LTL, com-
plementation is useful: the translators from LTL into automata have reached a
remarkable level of sophistication (c.f., [5,33,10,11]). Even though complementa-
tion of the automata is not explicitly required, the translations are so involved
that it is useful to checks their correctness, which involves complementation1.
Complementation is interesting in practice also because it enables refinement
and optimization techniques that are based on language containment rather
than simulation [21]2. Thus, an effective algorithm for the complementation of
Büchi automata would be of significant practical value.

Efforts to develop complementation constructions for nondeterministic Büchi
automata started early in the 60s, motivated by decision problems of second-
order logics. Büchi introduced these automata in 1962 and described a comple-
mentation construction that involved a Ramsey-based combinatorial argument
and a doubly-exponential blow-up in the state space [3]. Thus, complementing an
automaton with n states resulted in an automaton with 22O(n)

states. In [32], an
improved implementation of Büchi’s construction is described, with only 2O(n2)

states (see also [27]). Finally, in [29], Safra described a determinization construc-
tion, which also enables an O(nO(n)) complementation construction, matching
a lower bound of n! described by Michel [23] (cf. [22]). Thus, from a theoretical
point of view, some considered the problem solved since 1988, since we seem to
have matching asymptotic upper and lower bounds.

Nevertheless, a careful analysis of the exact blow-up in Safra’s and Michel’s
bounds reveals an exponential gap in the constants hiding in the O() notations:
while the upper bound on the number of states in the complementary automaton
constructed by Safra is n2n, Michel’s lower bound involves only an n! blow up,
which is roughly (n/e)n. This is in contrast with the case of automata on finite
words, where, as mentioned above, the upper and lower bounds coincide. In the
rest of this paper we describe more recent efforts to narrow this gap.

1 For an LTL formula ψ, one typically checks that both the intersection of Aψ with
A¬ψ and the intersection of their complementary automata are empty.

2 Since complementation of Büchi automata is complicated, current research is focused
on ways in which fair simulation can approximate language containment [13], and
ways in which the complementation construction can be circumvented by manually
bridging the gap between fair simulation and language containment [15].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

14 M.Y. Vardi

2 Background

Given an alphabet Σ, an infinite word over Σ is an infinite sequence w = σ0 ·σ1 ·
σ2 · · · of letters in Σ. An automaton on infinite words is A = 〈Σ, Q, Qin, ρ, α〉,
where Σ is the input alphabet, Q is a finite set of states, ρ : Q × Σ → 2Q is
a transition function, Qin ⊆ Q is a set of initial states, and α is an acceptance
condition (a condition that defines a subset of Qω). Intuitively, ρ(q, σ) is the set
of states that A can move into when it is in state q and it reads the letter σ.
Since the transition function of A may specify many possible transitions for each
state and letter, A is not deterministic.

A run of A on w is a function r : IN → Q where r(0) ∈ Qin (i.e., the run starts
in an initial state) and for every l ≥ 0, we have r(l + 1) ∈ ρ(r(l), σl) (i.e., the
run obeys the transition function). In automata over finite words, acceptance is
defined according to the last state visited by the run. When the words are infinite,
there is no such thing as a “last state”, and acceptance is defined according to
the set Inf (r) of states that r visits infinitely often, i.e., Inf (r) = {q ∈ Q :
for i.m. l ∈ IN, we have r(l) = q}. As Q is finite, it is guaranteed that Inf (r) �= ∅.
The way we refer to Inf (r) depends on the acceptance condition of A. In Büchi
automata, α ⊆ Q, and r is accepting iff Inf (r) ∩ α �= ∅. Dually, in co-Büchi
automata, α ⊆ Q, and r is accepting iff Inf (r) ∩ α = ∅.

Since A is not deterministic, it may have many runs on w. There are two,
dual, ways in which we can refer to the many runs. When A is an existential
automaton (or simply a nondeterministic automaton, as we shall call it in the
sequel), it accepts an input word w iff there exists an accepting run of A on w.
When A is a universal automaton, it accepts an input word w iff all the runs
of A on w are accepting. The language of A, denoted L(A) consists of all words
accepted by A.

We use three-letter acronyms to describe types of automata. The first letter
describes the transition structure and is one of “N” (nondeterministic), and “U”
(universal). The second letter describes the acceptance condition; in this paper
we only consider “B” (Büchi) and “C” (co-Büchi). The third letter describes the
objects on which the automata run; in this paper we are only concerned with “W”
(infinite words). Thus, for example, NBW designates a nondeterministic Büchi
word automaton and UCW designates a universal co-Büchi word automaton.

A lower bound for complementing NBW was established by Michel [23] (cf.
[22]). Consider the alphabet Σn = {1, . . . , n}. Let w = a0, a1, . . . be a word over
Σn. An infinite path in w is a an infinite subsequence ai0 , ai0+1, ai1 , ai1+1, . . .
such aij+1 = aij+1 for j ≥ 0; that is, an infinite path in w is an infinite subword
of matching pairs of leters. Let Ln be the language of infinite words over Σn

with infinite paths.

Theorem 1. [23]

– Ln can be defined using an n-state NBW.
– Σω

n − Ln cannot be defined using an NBW with fewer than n! states.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Büchi Complementation Saga 15

3 Complementation Via Ranks

In [18]3, the following approach for NBW complementation is described: in or-
der to complement an NBW, first dualize the transition function and the accep-
tance condition, and then translate the resulting UCW automaton back to an
NBW. By [26], the dual automaton accepts the complementary language, and
so does the nondeterministic automaton we end up with. Thus, rather than de-
terminization, complementation is based on a translation of universal automata
to nondeterministic ones, which turns out to be simpler. (See also [35].)

Consider a UCW A = 〈Σ, Q, Qin, δ, α〉. The runs of A on a word w = σ0 ·σ1 · · ·
can be arranged in an infinite dag (directed acyclic graph) Gw = 〈V, E〉, where

– V ⊆ Q × IN is such that 〈q, l〉 ∈ V iff some run of A on w has r(l) = q. For
example, the first level of Gw contains the nodes Qin × {0}.

– E ⊆
⋃

l≥0(Q×{l})×(Q×{l+1}) is such that E(〈q, l〉, 〈q′, l+1〉) iff 〈q, l〉 ∈ V
and q′ ∈ δ(q, σl).

Thus, Gw embodies exactly all the runs of A on w. We call Gw the run dag of
A on w, and we say that Gw is accepting if all its paths satisfy the acceptance
condition α. Note that A accepts w iff Gw is accepting. We say that a node
〈q′, l′〉 is a successor of a node 〈q, l〉 iff E(〈q, l〉, 〈q′, l′〉). We say that 〈q′, l′〉
is reachable from 〈q, l〉 iff there exists a sequence 〈q0, l0〉, 〈q1, l1〉, 〈q2, l2〉, . . . of
successive nodes such that 〈q, l〉 = 〈q0, l0〉, and there exists i ≥ 0 such that
〈q′, l′〉 = 〈qi, li〉. For a set S ⊆ Q, we say that a node 〈q, l〉 of Gw is an S-node if
q ∈ S.

A short detour is now required. A fair transition system M = (W, W0, R, F)
consists of a state set W (not necessarily finite), an initial state set W0 ⊆ W , a
transition relation R ⊆ W 2, and a fair state set F ⊆ W . An infinite trace of M
is an infinite state sequence w0, w1, . . . such that w0 ∈ W0 and (wi, wi+1) ∈ R
for all i ≥ 0. This trace is fair if wi ∈ F for infinitely many i’s. We say that M
fairly terminates if it has no fair infinite trace. Fair termination is a fundamental
property of transition systems, as verification of linear temporal properties for
transition systems can be reduced to fair-termination checking [36].

Emerson and Clarke characterized fair termination in terms of a nested fix-
point computation [6]. Let X, Y ⊆ W . Define until(X, Y) as the set of states in
X that can properly reach Y while staying in X . That is, until(X, Y) consists
of states x such that there is a sequence x0, . . . , xk, k > 0, where xk ∈ Y and
xi ∈ X for 0 ≤ i < k. Clearly, until(X, Y) can be defined in terms of a least fix-
point. Consider now the following greatest fixpoint “algorithm”, which we refer
to by EC:

Q ← W
while change do

Q ← Q ∩ until(Q, Q ∩ F)
endwhile
return (W0 ∩ Q = ∅)

3 Preliminary version appeared in [17].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

16 M.Y. Vardi

Emerson and Clarke showed that EC returns true precisely when M fairly
terminates. The intuition is that we can safely delete states that cannot be on
a fair infinite trace because they cannot properly reach F even once. Note that
the inner fixpoint, required to compute until(Q, Q ∩ F always converges in ω
stages, since it concerns only finite traces, while the outer fixpoint may require
transfinite stages to converge, when W is infinite. For finite transition systems,
EC is a real algorithm for fair-termination detection [7], which is used widely in
symbolic model checking [4].

A run dag can be viewed as a fair transition system. Consider a UCW A =
〈Σ, Q, Qin, δ, α〉, with a run dag Gw = 〈V, E〉. The corresponding fair transition
system is Mw = (V, Qin × {0}, E, α × IN). Clearly, Gw is accepting iff Mw fairly
terminates. EC can therefore be applied to Mw. Using this characterization of
acceptance, we can assign ranks to the nodes of V , as follows: a node is assigned
rank i if it is deleted at the i-th iteration of the loop in EC. Since all nodes of Gw

are reachable from Qin ×{0}, all nodes will be assigned a rank if Gw is accepting.
Intuitively, ranks measure the “progress” made by a node towards acceptance
[16]. We can view these ranks as evidence that Gw is accepting. As we noted,
however, transfinite ranks are required in general, while we desire finite ranks
for the complementation construction.

To that end we refer to a heuristic improvement of EC, developed in [8], and
referred to by OWCTY. Let X ⊆ W be a set of states in a transition system
M = (W, W0, R, F). By next(X) we refer to states who has successors in X ,
that is, all states x ∈ W such that there is a state y ∈ W where (x, y) ∈ R and
y ∈ X . OWCTY is obtained from EC by adding an inner loop4:

Q ← W
while change do

while change do
Q ← Q ∩ next(Q)

endwhile
Q ← Q ∩ until(Q, Q ∩ F)

endwhile
return (W0 ∩ Q = ∅)

Note that the additional inner loop deletes states that have no successor. Such
states surely cannot lie on a fair infinite trace, which ensure that OWCTY is
a correct characterization of fair termination. Surprisingly, while EC requires,
in general, transfinitely many stages to converge, it is shown in [18] that when
OWCTY is applied to fair transition systems of the form Mw for a UCW A with
n states, the external loop always converges in at most n iterations. The crucial
fact here is that each level of Gw has at most n nodes. This enables us to assign
finite ranks to the nodes of Gw as follows (we count iterations from 0):

– Assign a node v rank 2i if it is deleted in the i-th iteration by the statement
Q ← Q ∩ next(Q).

4 The additional loop here precedes the inner statement of EC, while in [8] it succeeds
it. This is not an essential change.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Büchi Complementation Saga 17

– Assign a node v rank 2i+ if it is deleted in the i-th iteration by the statement
Q ← Q ∩ until(Q, Q ∩ F).

It is shown in [12,18] that precisely the ranks 0, . . . , 2n − 2 are needed (see also
[16]).

We can now characterize accepting run dags in terms of ranks. Consider an
n-state UCW A = 〈Σ, Q, Qin, δ, α〉, with a run dag Gw = 〈V, E〉. A C-ranking
for Gw is a mapping f : V → {0, . . . , 2n − 2} such that

1. For all nodes 〈q, l〉 ∈ V , if f(〈q, l〉) is odd, then q �∈ α.
2. For all edges 〈〈q, l〉, 〈q′, l + 1〉〉 ∈ E, we have f(〈q′, l + 1〉) ≤ f(〈q, l〉).

Thus, a C-ranking associates with each node in Gw a rank so that the ranks
along paths do not increase, and α-nodes get only even ranks. We say that a
node 〈q, l〉 is an odd node if f(〈q, l〉) is odd. Note that each path in Gw eventually
gets trapped in some rank. We say that the C-ranking f is an odd C-ranking if
all the paths of Gw eventually get trapped in odd ranks. Formally, f is odd iff
for all paths 〈q0, 0〉, 〈q1, 1〉, 〈q2, 2〉, . . . in Gw , there is l ≥ 0 such that f(〈ql, l〉) is
odd, and for all l′ ≥ l, we have f(〈ql′ , l

′〉) = f(〈ql, l〉). Note that, equivalently, f
is odd if every path of Gw has infinitely many odd nodes.

Lemma 1. [18] The following are equivalent.

1. All paths of Gw have only finitely many α-nodes.
2. There is an odd C-ranking for Gw.

The fact that the nodes of a run dag can be assigned finite ranks means that we
can characterize acceptance using a variation of the subset construction, where
each element of the subset also carries a rank. It is easy to check that the two
conditions of C-ranking hold, since these involve only local conditions. Here is a
first attempt to construct an NBW A′ that is equivalent to the UCW A. When
A′ reads a word w, it guesses a C-ranking for the run dag Gw of A on w. At
a given point of a run of A′, it keeps in its memory a whole level of Gw and a
guess for the ranks of the nodes at this level.

Before we define A′, we need some notation. A level ranking for A is a function
g : Q → {0, . . . , 2n− 2}, such that if g(q) is odd, then q �∈ α. Let R be the set of
all level rankings. For a subset S of Q and a letter σ, let δ(S, σ) =

⋃
s∈S δ(s, σ).

Note that if level l in Gw, for l ≥ 0, contains the states in S, and the (l + 1)-th
letter in w is σ, then level l + 1 of Gw contains the states in δ(S, σ). For two
level rankings g and g′ in R, a set S ⊆ Q, and a letter σ, we say that g′ covers
〈g, S, σ〉 if for all q ∈ S and q′ ∈ δ(q, σ), we have g′(q′) ≤ g(q). Thus, if the nodes
of level l contain exactly all the states in S, g describes the ranks of these nodes,
and the (l + 1)-th letter in w is σ, then g′ is a possible level ranking for level
l + 1. Finally, for g ∈ R, let odd(g) = {q : g(q) is odd}. Thus, a state of Q is in
odd(g) if has an odd rank.

We can now try to define A′ as follows. For the state set we take Q′ =
2S × R and Q′

in = Qin × R. Thus, a state of A′ is simply a ranked subset of
Q. Now we can define the transition function by δ′(〈S, g〉, σ) = {〈δ(S, σ), g′〉 :

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

18 M.Y. Vardi

g′ covers 〈g, S, σ〉}. This definition guarantees that A′ is guessing a C-ranking
of a run dag Gw. Unfortunately, this is not sufficient. To ensure that Gw is
accepting we need to find an odd C-ranking. It is not clear how A′ can check for
oddness, which seems to be a global condition. To overcome this difficulty we
use a technique due to [24], which uses a second subset construction to ensure
that no path of Gw get stuck in an odd rank.

Let A′ = 〈Σ, Q′, Q′
in, δ′, α′〉, where

– Q′ = 2Q × 2Q × R, where a state 〈S, O, g〉 ∈ Q′ indicates that the current
level of the run dag contains the states in S, the set O ⊆ S contains states
along paths that have not visited an odd node since the last time O has been
empty, and g is the guessed level ranking for the current level.

– Q′
in = {Qin} × {∅} × R.

– δ′ is defined, for all 〈S, O, g〉 ∈ Q′ and σ ∈ Σ, as follows.
• If O �= ∅, then

δ′(〈S, O, g〉, σ) = {〈δ(S, σ), δ(O, σ) \ odd(g′), g′〉 : g′ covers 〈g, S, σ〉}.

• If O = ∅, then

δ′(〈S, O, g〉, σ) = {〈δ(S, σ), δ(S, σ) \ odd(g′), g′〉 : g′ covers 〈g, S, σ〉}.

– α′ = 2Q × {∅} × R.

An easy analysis show that A′ has at most (6n)n) states. This should be con-
trasted with the bound of n2n that results from determinization [29].

Theorem 2. [18] Let A be a UCW with n states. Then A′ has at most (6n)n

states and L(A′) = L(A).

A report on an implementation of this construction, which includes also many
optimizations, can be found in [12].

4 Tight Rankings

While the upper bound bound of (6n)n described above is exponentially better
than the bound of n2n obtained via determinization, is is still exponentially far
from the lower bound of n!. Recent results have improved both the upper and
lower bounds.

For the upper bound, it was shown in [9] that the rank-based construction
can be tightened. Consider a UCW A and a word w ∈ Σω accepted by A. For
the run dag Gw of A on w, let max rank(Gw) be the maximal rank that a node
in Gw gets. For a rank j ∈ {0, . . . , 2n − 2}, let [j]odd be all odd ranks less than
or equal to j.

Lemma 2. [9] There is a limit level l ≥ 0 such that for each level l′ > l, and for
all ranks j ∈ [max rank(Gw)]odd , there is a node 〈q, l′〉 such that rank(q, l′) = j.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Büchi Complementation Saga 19

Recall that a level ranking for A is a function g : Q → {0, . . . , 2n−2}, such that
if g(q) is odd, then q �∈ α. Let max odd(g) be the maximal odd number in the
range of g.

Definition 1. We say that a level ranking g is tight if

1. the maximal rank in the range of g is odd, and
2. for all j ∈ [max odd(g)]odd , there is a state q ∈ Q with g(q) = j.

Lemma 3. [9] There is a level l ≥ 0 such that for each level l′ > l, the level
ranking that corresponds to l′ is tight.

It follows that we can improve the earlier complementation construction and
restrict the set R of possible level rankings to the set of tight level rankings.
Since, however, the tightness of the level ranking is guaranteed only beyond the
limit level l of Gw , we also need to guess this level, and proceed with the usual
subset construction until we reach it. Formally, we suggest the following modified
construction.

Let A = 〈Σ, Q, Qin, δ, α〉 be a UCW, and let Rtight be the set of tight level
rankings for A. Let A′ = 〈Σ, Q′, Q′

in, δ′, α′〉, where

– Q′ = 2Q ∪(2Q ×2Q ×Rtight), where a state S ∈ Q′ indicates that the current
level of the run dag contains the states in S, and a state 〈S, O, g〉 ∈ Q′ is
similar to the states in the earlier construction; in particular, O ⊆ S.

– Q′
in = {Qin}. Thus, the run starts in a “subset mode”, corresponding to a

guess that the limit level has not been reached yet.
– For all states in Q′ of the form S ∈ 2Q and σ ∈ Σ, we have that

δ′(S, σ) = {δ(S, σ)} ∪ {〈δ(S, σ), ∅, g〉 : and g ∈ Rtight}.

Thus, at each point in the subset mode, A′ may guess that the current level is
the limit level, and move to a “subset+ranks” mode, where it proceeds as the
NBW constructed earlier. Thus, for states of the form 〈S, O, g〉, the transition
function is as described earlier, except that level rankings are restricted to tight
ones.

Theorem 3. [9] Let A be a UCW. Then L(A′) = L(A).

It remains to analyze carefully the complexity of this construction. Let tight(n)
be the number of tight level rankings for automata with n states. Is is easy to
see that A′ needs at most 3n · tight(n) states. A careful analysis, based on an
asymptotic approximation of Stirling Numbers of The Second Kind [34], yields
that tight(n) is bounded by (0.76n)n. We also have a factor of 3n that results
from the two subset constructions; recall that a state has the form 〈S, O, g〉, in
which S and O are subsets of the state space of the original automaton, with
O ⊆ S, and g is a tight level ranking. This analysis ignores possible relations
between the pair 〈S, O〉 and the tight level ranking g associated with it.

Consider a state 〈S, O, g〉 of the NBW A′ constructed. Since we are interested
only in the ranks of states in S, we can assume without loss of generality that

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

20 M.Y. Vardi

g assigns the rank 0 to all states not in S. In addition, as O maintains the set
of states that have not been visited an odd vertex, g maps all the states in O to
an even rank. A careful combinatorial analysis now yields the following.

Theorem 4. [9] Let A be a UCW with n states. Then there is an NBW A′ with
at most (0.97n)n states such that L(A) = L(A′).

In particular, the upper bound is lower than nn, which would have been a “clean”
bound. Recent progress has also been made on the lower-bound front. It is shown
in [39] that the complementary automaton needs to maintain all tight level
rankings, resulting in a lower bound of (0.76n)n, which is exponentially stronger
than the previous bound of n! ≈ (n/e)n. An exponential bound remains between
the upper bound of (0.97n)n and the lower bound of (0.76n)n). Closing this gap
is a tantalizing open question.

5 Concluding Remarks

Our focus in this paper was on the theoretical aspect of Büchi complementation.
It is important to note that this is also an important practical problem. No
verification tool so far supports the unrestricted use of Büchi automata as a
specification formalism, due to the perceived difficulty of complementation. In
spite of some recent progress in implementing Büchi complementation [12], more
work needs to be done to make this practically viable.

It should also be noted that complementation is important for automata on
infinite words with stronger acceptance conditions, such as generalized Büchi
automata [20] and Streett automata [19]. In particular, Streett automata express
strong fairness in a natural way. A Streett acceptance condition consists of a
set of pairs (L, R) of sets of states. The requirement is that if a run visits L
infinitely often, it also visits R infinitely often. The best known upper bound
for complementing a Streett automaton with n states and k pairs is (kn)O(kn)

[16,19,30]. The only known lower bound is of (kn)O(n) [39].

References

1. R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver,
S. Mador-Haim, E. Singerman, A. Tiemeyer, M.Y. Vardi, and Y. Zbar. The For-
Spec temporal logic: A new temporal property-specification logic. In Proc. 8th
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems, volume 2280 of Lecture Notes in Computer Science, pages 296–211,
Grenoble, France, April 2002. Springer-Verlag.

2. J.C. Birget. Partial orders on words, minimal elements of regular languages, and
state complexity. Theoretical Computer Science, 119:267–291, 1993.

3. J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc.
International Congress on Logic, Method, and Philosophy of Science. 1960, pages
1–12, Stanford, 1962. Stanford University Press.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Büchi Complementation Saga 21

4. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, June 1992.

5. N. Daniele, F. Guinchiglia, and M.Y. Vardi. Improved automata generation for
linear temporal logic. In Computer Aided Verification, Proc. 11th International
Conference, volume 1633 of Lecture Notes in Computer Science, pages 249–260.
Springer-Verlag, 1999.

6. E.A. Emerson and E.M. Clarke. Characterizing correctness properties of parallel
programs using fixpoints. In Proc. 7th InternationalColloq. on Automata, Lan-
guages and Programming, pages 169–181, 1980.

7. E.A. Emerson and C.-L. Lei. Temporal model checking under generalized fairness
constraints. In Proc. 18th Hawaii International Conference on System Sciences,
North Holywood, 1985. Western Periodicals Company.

8. K. Fisler, R. Fraer, G. Kamhi, M.Y. Vardi, and Z. Yang. Is there a best symbolic
cycle-detection algorithm? In 7th International Conference on Tools and algorithms
for the construction and analysis of systems, number 2031 in Lecture Notes in
Computer Science, pages 420–434. Springer-Verlag, 2001.

9. E. Friedgut, O. Kupferman, and M.Y. Vardi. Büchi complementation made tighter.
Int’l J. of Foundations of Computer Science, 17(4):851–867, 2006.

10. P. Gastin and D. Oddoux. Fast LTL to büchi automata translation. In Computer
Aided Verification, Proc. 13th International Conference, volume 2102 of Lecture
Notes in Computer Science, pages 53–65. Springer-Verlag, 2001.

11. S. Gurumurthy, R. Bloem, and F. Somenzi. Fair simulation minimization. In
Computer Aided Verification, Proc. 14th International Conference, volume 2404 of
Lecture Notes in Computer Science, pages 610–623. Springer-Verlag, 2002.

12. S. Gurumurthy, O. Kupferman, F. Somenzi, and M.Y. Vardi. On complementing
nondeterministic Büchi automata. In 12th Advanced Research Working Conference
on Correct Hardware Design and Verification Methods, volume 2860 of Lecture
Notes in Computer Science, pages 96–110. Springer-Verlag, 2003.

13. T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. Information
and Computation, 173(1):64–81, 2002.

14. G.J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering,
23(5):279–295, May 1997. Special issue on Formal Methods in Software Practice.

15. Y. Kesten, N. Piterman, and A. Pnueli. Bridging the gap between fair simulation
and trace containment. In Computer Aided Verification, Proc. 15th International
Conference, volume 2725 of Lecture Notes in Computer Science, pages 381–393.
Springer-Verlag, 2003.

16. N. Klarlund. Progress measures for complementation of ω-automata with applica-
tions to temporal logic. In Proc. 32nd IEEE Symp. on Foundations of Computer
Science, pages 358–367, San Juan, October 1991.

17. O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak.
In Proc. 5th Israeli Symp. on Theory of Computing and Systems, pages 147–158.
IEEE Computer Society Press, 1997.

18. O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak.
ACM Trans. on Computational Logic, 2(2):408–429, July 2001.

19. O. Kupferman and M.Y. Vardi. Complementation constructions for nondetermin-
istic automata on infinite words. In Proc. 11th International Conf. on Tools and
Algorithms for The Construction and Analysis of Systems, volume 3440 of Lecture
Notes in Computer Science, pages 206–221. Springer-Verlag, 2005.

20. O. Kupferman and M.Y. Vardi. From complementation to certification. Theoretical
Computer Science, 305:591–606, 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

22 M.Y. Vardi

21. R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton
Univ. Press, 1994.

22. C. Löding. Optimal bounds for the transformation of omega-automata. In Proc.
19th Conference on the Foundations of Software Technology and Theoretical Com-
puter Science, volume 1738 of Lecture Notes in Computer Science, pages 97–109,
December 1999.

23. M. Michel. Complementation is more difficult with automata on infinite words.
CNET, Paris, 1988.

24. S. Miyano and T. Hayashi. Alternating finite automata on ω-words. Theoretical
Computer Science, 32:321–330, 1984.

25. D.E. Muller. Infinite sequences and finite machines. In Proc. 4th IEEE Symp. on
Switching Circuit Theory and Logical design, pages 3–16, 1963.

26. D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54:267–276, 1987.

27. J.P. Pécuchet. On the complementation of büchi automata. Theor. Comput. Sci.,
47(3):95–98, 1986.

28. M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM
Journal of Research and Development, 3:115–125, 1959.

29. S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symp. on Foun-
dations of Computer Science, pages 319–327, White Plains, October 1988.

30. S. Safra. Exponential determinization for ω-automata with strong-fairness accep-
tance condition. In Proc. 24th ACM Symp. on Theory of Computing, Victoria,
May 1992.

31. W. Sakoda and M. Sipser. Non-determinism and the size of two-way automata. In
Proc. 10th ACM Symp. on Theory of Computing, pages 275–286, 1978.

32. A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Büchi
automata with applications to temporal logic. Theoretical Computer Science,
49:217–237, 1987.

33. F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In
Computer Aided Verification, Proc. 12th International Conference, volume 1855 of
Lecture Notes in Computer Science, pages 248–263. Springer-Verlag, 2000.

34. N.M. Temme. Asimptotic estimates of Stirling numbers. Stud. Appl. Math., 89:233–
243, 1993.

35. W. Thomas. Complementation of Büchi automata revised. In J. Karhumäki, H. A.
Maurer, G. Paun, and G. Rozenberg, editors, Jewels are Forever, pages 109–120.
Springer, 1999.

36. M.Y. Vardi. Verification of concurrent programs - the automata-theoretic frame-
work. Annals of Pure and Applied Logic, 51:79–98, 1991.

37. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115(1):1–37, November 1994.

38. P. Wolper. Temporal logic can be more expressive. Information and Control,
56(1–2):72–99, 1983.

39. Q. Yan. Lower bounds for complementation of ω-automata via the full automata
technique. In Proc. 33rd Intl. Colloq. on Automata, Languages and Pr ogram-
ming, volume 4052 of Lecture Notes in Computer Science, pages 589–600. Springer-
Verlag, 2006.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Speed-Up Techniques for Shortest-Path
Computations�

Dorothea Wagner and Thomas Willhalm

Universität Karlsruhe (TH)
Fakultät für Informatik

Institut für Theoretische Informatik
D-76128 Karlsruhe

{wagner,willhalm}@ira.uka.de
http://i11www.informatik.uni-karlsruhe.de/

Abstract. During the last years, several speed-up techniques for Dijk-

stra’s algorithm have been published that maintain the correctness
of the algorithm but reduce its running time for typical instances. They
are usually based on a preprocessing that annotates the graph with ad-
ditional information which can be used to prune or guide the search.
Timetable information in public transport is a traditional application do-
main for such techniques. In this paper, we provide a condensed overview
of new developments and extensions of classic results. Furthermore, we
discuss how combinations of speed-up techniques can be realized to take
advantage from different strategies.

1 Introduction

Computing shortest paths is a base operation for many problems in traffic appli-
cations. The most prominent are certainly route planning systems for cars, bikes
and hikers, or timetable information systems for scheduled vehicles like trains
and busses. If such a system is realized as a central server, it has to answer a
huge number of customer queries asking for their best itineraries. Users of such
a system continuously enter their requests for finding their “best” connections.
Furthermore, similar queries appear as sub-problems in line planning, timetable
generation, tour planning, logistics, and traffic simulations.

The algorithmic core problem that underlies the above scenario is a special
case of the single-source shortest-path problem on a given directed graph with
non-negative edge lengths. While this is obvious for route planning in street
networks, different models and approaches have been presented to solve timetable
information by finding shortest paths in an appropriately defined graph. The
typical problem to be solved in timetable information is “given a departure and
an arrival station as well as a departure time, which is the connection that arrives
as early as possible at the arrival station?”. There are two main approaches for

� Partially supported by the Future and Emerging Technologies Unit of EC (IST
priority 6th FP) under contract no. FP6-021235-2 (project ARRIVAL).

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 23–36, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

24 D. Wagner and T. Willhalm

modeling timetable information as shortest path problem, the time-expanded
and the time-dependent approach. For an overview of models and algorithms for
optimally solving timetable information we refer to [28].

In any case the particular graphs considered are huge, especially if the model
used for timetable information expands time by modelling each event by a single
vertex in the graph. Moreover, the number of queries to be processed within
very short time is huge as well. This motivates the use of speed-up techniques
for shortest-path computations. The main focus is to reduce the response time for
on-line queries. In this sense, a speed-up technique is considered as a technique
to reduce the search space of Dijkstra’s algorithm e.g. by using precomputed
information or inherent information contained in the data. Actually, often the
underlying data contain geographic information, that is a layout of the graph is
provided. Furthermore, in many applications the graph can be assumed to be
static, which allows a preprocessing. Due to the size of the graphs considered
in route planning or timetable information and the fact that those graphs are
typically sparse, preprocessing space requirements are only acceptable to be
linear in the number of nodes.

In this paper, we provide a systematic classification of common speed-up
techniques and combinations of those. Our main intention is to give a concise
overview of the current state of research. We restrict our attention to speed-up
techniques where the correctness of the algorithms is guaranteed, i.e., that prov-
ably return a shortest path. However, most of them are heuristic with respect to
the running time. More precisely, in the worst case, the algorithm with speed-up
technique can be slower than the algorithm without speed-up technique. But ex-
perimental studies showed–sometimes impressive–improvements concerning the
search front and consequently the running time. For most of these techniques,
experimental results for different real-world graphs as well as generated graphs
have been reported. However, as the effectiveness of certain speed-up techniques
strongly depends on the graph data considered, we do not give a comparison of
the speed-ups obtained. But we want to refer to the 9th DIMACS Implementa-
tion Challenge - Shortest Paths where also experiments on common data sets
were presented [7].

In the next section, we will provide some formal definitions and a description
of Dijkstra’s algorithm. Section 3 presents a classification of speed-up tech-
niques for Dijkstra’s algorithm and discusses how they can be combined.

2 Preliminaries

2.1 Definitions

A (directed) graph G is a pair (V, E), where V is a finite set of nodes and E is a set
of edges, where an edge is an ordered pair (u, v) of nodes u, v ∈ V . Throughout
this paper, the number of nodes |V | is denoted by n and the number of edges |E|
is denoted by m. For a node u ∈ V , the number of outgoing edges |{(u, v) ∈ E}|
is called the degree of the node. A path in G is a sequence of nodes (u1, . . . , uk)
such that (ui, ui+1) ∈ E for all 1 ≤ i < k. A path with u1 = uk is called a cycle.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Speed-Up Techniques for Shortest-Path Computations 25

1 for all nodes u ∈ V set dist(u) := ∞
2 initialize priority queue Q with source s and set dist(s) := 0
3 while priority queue Q is not empty
4 get node u with smallest tentative distance dist(u) in Q
5 for all neighbor nodes v of u
7 set new-dist := dist(u) + w(u, v)
8 if new-dist < dist(v)
9 if dist(v) = ∞

10 insert neighbor node v in Q with priority new-dist
11 else
12 set priority of neighbor node v in Q to new-dist
13 set dist(v) := new-dist

Algorithm 1. Dijkstra’s algorithm

Given edge weights l : E → R (“lengths”), the length of a path P = (u1, . . . , uk)
is the sum of the lengths of its edges l(P) :=

∑
1≤i<k l(ui, ui+1). For two nodes

s, t ∈ V , a shortest s-t path is a path of minimal length with u1 = s and uk = t.
The (graph-theoretic) distance d(s, t) of s and t is the length of a shortest s-t
path. A layout of a graph G = (V, E) is a function L : V → R

2 that assigns each
node a position in R

2 . The Euclidean distance between two nodes u, v ∈ V is
then denoted by ‖L(u) − L(v)‖. A graph (without multiple edges) can have up
to O(n2) edges. We call a graph sparse, if m = O(n). In the following we assume
that the graphs we are dealing with are large and one can only afford a memory
consumption linear in the size of the graph. In particular, for large sparse graphs
O(n2) space is not affordable.

2.2 Shortest Path Problem

Let G = (V, E) be a directed graph whose edges are weighted by a function
l : E → R. The (single-source single-target) shortest-path problem consists in
finding shortest s-t path from a given source s ∈ V to a given target t ∈ V .
Note that the problem is only well defined for all pairs, if G does not contain
negative cycles (cycles with negative length). In the presence of negative weights
but not negative cycles, it is possible, using Johnson’s algorithm [19], to convert
in O(nm + n2 log n) time the original edge weights l : E → R to non-negative
edge weights l′ : E → R

+
0 that result in the same shortest paths. Hence, we can

safely assume in the rest of this paper that edge weights are non-negative. We
also assume throughout the paper that for all pairs (s, t) ∈ V × V , the shortest
path from s to t is unique. (This can be achieved by adding a small fraction to
the edge weights, if necessary.)

The classical algorithm for computing shortest paths in a directed graph with
non-negative edge weights is that of Dijkstra [6], independently discovered by
Dantzig [2] (Algorithm 1). The algorithm maintains, for each node v ∈ V , a
label dist(v) with the current tentative distance. The algorithm uses a priority
queue Q containing the nodes that build the current search horizon around s.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

26 D. Wagner and T. Willhalm

Nodes are either unvisited (i.e. dist(u) = ∞), in the priority queue, or finished
(already removed from the priority queue). It is easy to verify that nodes are
never reinserted in the priority queue if the extracted node u in line 4 is the node
with the smallest tentative distance in the priority queue and all edge weights
are non-negative. Thus, the labels are updated while the algorithm visits the
nodes of the graph with non-decreasing distance from the source s.

In order to compute a shortest path tree, one has to remember that u is
the predecessor of v if a shorter path to v has been found (i.e. between line 8
and 9). Dijkstra’s algorithm computes the shortest paths to all nodes in
the Graph. If only one shortest path is needed to a target node t ∈ V , the
algorithm can stop if the target t is removed from the priority queue in line 4. If
Dijkstra’s algorithm is executed more than once, the initialization of dist
in line 1 for each run can be omitted by introducing a global integer variable
time and replacing the test dist(v) = ∞ by a comparison of the time with a
time stamp for every node. See e.g., [33] for a detailed description.

The asymptotic time complexity of Dijkstra’s algorithm depends on the
choice of the priority queue. For general graphs, Fibonacci heaps [8] still provide
the best theoretical worst-case time of O(m+n log n). For sparse graphs, binary
heaps result in the same asymptotic time complexity. Even more, binary heaps
are (1) easier to implement and (2) perform better for many instances in practice
[25]. For special cases of edge weights, better algorithms are known. If edge
weight are integral and bounded by a small constant, Dial’s implementation [5]
with an array of lists (“buckets”) provides a priority queue where all operations
take constant time. An extension with average linear complexity for uniformly
distributed edge weights is presented in [9,26]. One might argue however, that
the better a speed-up techniques works, the smaller the search front is, and the
less important the priority queue is.

3 Speed-Up Techniques

In this section, we present speed-up techniques for Dijkstra’s algorithm, i.e.
modifications of the algorithm or graph that do not change the worst-case be-
havior but usually reduce considerably the number of visited nodes in practice.
We shortly describe two classical speed-up techniques, bidirectional search and
goal-directed search. Moreover, we give a classification of more recently presented
techniques.

3.1 Bidirectional Search

Bidirectional search simultaneously performs two searches: a “normal”, or for-
ward, variant of the algorithm, starting at the source node, and a so-called
reverse, or backward, variant of Dijkstra’s algorithm, starting at the desti-
nation node. With the reverse variant, the algorithm is applied to the reverse
graph, i.e., a graph with the same node set V as that of the original graph, and
the reverse edge set E = {(u, v) | (v, u) ∈ E}.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Speed-Up Techniques for Shortest-Path Computations 27

Let df (u) be the distance labels of the forward search and db(u) the labels
of the backward search, respectively. The algorithm can be terminated when
one node has been designated to be permanent by both the forward and the
backward algorithm. Then, the shortest path is determined by the node u with
minimum value df (u) + db(u) and it can be composed of the shortest path from
the start node s to u, (found by the forward search), and the shortest path from
u to the destination t (found by the reverse search). Note that the node u itself
is not necessarily marked as permanent by both searches.

One degree of freedom in bidirectional search is the choice whether a forward
or backward step is executed. Common strategies are to choose the direction
with the smaller priority queue, to select the direction with the smaller minimal
distance in the priority queue, or simply alternate the directions. For a theoretical
discussion of bidirectional search, see [24].

3.2 Goal-Directed Search or A∗

This technique, originating from AI [15], modifies the priority of active nodes
to change the order in which the nodes are processed. More precisely, a goal-
directed search adds to the priority dist(u) a potential pt : V → R

+
0 (often

called heuristic) depending on the target t of the search. The modified priority
of a node v ∈ V is therefore dist(v) + pt(v). With a suited potential, the search
can be pushed towards the target thereby reducing the running time while the
algorithm still returns a shortest path. Intuitively speaking, one can compare a
path in traffic network with a walk in a landscape. If you add a potential, the
affected region is raised. If the added potential is small next to the target, you
create a valley around the target. As walking downhill is easier than uphill, you
are likely to hit the target sooner than without the potential added.

We will now use an alternative formulation of goal-directed search to discuss
its correctness. Equivalently to modifying the priority, one can change the edge
lengths such that the search is driven towards the target t. In this case, the
weight of an edge (u, v) ∈ E is replaced by l′(u, v) := l(u, v)− pt(u)+ pt(v). The
length of a s-v path P = (s = v1, v2, . . . , vk+1 = v) is then

l′(P) =
k∑

i=1

l′(vi, vi+1) =
k∑

i=1

l(vi, vi+1) − pt(vi) + pt(vi+1)

= −pt(s) + pt(v) +
k∑

i=1

l(vi, vi+1)

= −pt(s) + pt(v) + l(P).

In particular, the length of an s-t path with modified edge lengths is the same
up to the constant −pt(s) + pt(t). Therefore, a path from s to t is a shortest s-t
path according to l′, if and only if it is a shortest s-t path according to l.

If all modified edge lengths l′(u, v) are non-negative, we can apply Dijkstra’s

algorithmto the graph with modified edge lengths l′ and get a shortest s-t path
according to l. This leads to the following definition:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

28 D. Wagner and T. Willhalm

Definition 1. Given a weighted graph G = (V, E), l : V → R
+
0 , a potential

p : V → R is called feasible, if l(u, v) − p(u) + p(v) ≥ 0 for all edges e ∈ E.

Usually, potentials are used that estimate the distance to the target. In fact,
it can be shown that a feasible potential p is a lower bound of the distance to
the target t if p(t) ≤ 0. Note that every feasible potential p can be transposed
into an equivalent potential p′(v) = p(v) − p(t) which is a lower bound of the
distance to the target. We can therefore assume without loss of generality that
the potential is indeed a lower bound. The tighter the bound is, the more the
search is attracted to the target. In particular, a goal-directed search visits only
nodes on the shortest path, if the potential is the distance to the target.

In an actual implementation of goal-directed search, you will most probably
use the first formulation, namely to modify the priority with which nodes are
inserted in the priority queue. This has the advantage that p is called (at most)
once per edge instead of two calls. Furthermore, the distance labels of the nodes
are unmodified. This improves the numerical stability and simplifies the handling
of the labels (in particular in combinations with other speed-up techniques).

We will now present three scenarios and how to obtain feasible potentials in
these cases:

Euclidean Distances. Assume a layout L : V → R
2 of the graph is available

where the length of an edge is somehow correlated with the Euclidean distance
of its end nodes. Then a feasible potential for a node v can be obtained using
the Euclidean distance (the “flight distance”) ‖L(v) − L(t)‖ to the target t.

In case the edge lengths are in fact the Euclidean distances, the Euclidean
distance ‖L(v)−L(t)‖ itself is already a feasible potential, due to the triangular
inequality. Using this potential, an edge that points directly towards the desti-
nation has a modified edge length of zero, while the modified length of an edge
that points in the opposite direction is twice the distance. A theoretical analysis
for various random graphs can be found in [35].

If the edge lengths are not the Euclidean distances of the end nodes, a feasible
potential can be defined as follows: let vmax denote the maximum “edge-speed”
‖L(u) − L(v)‖/l(u, v), over all edges (u, v) ∈ E. The potential of a node u can
now be defined as p(u) = ‖L(u), L(t)‖/vmax. The maximum velocity can be
computed in a preprocessing step by a linear scan over all edges. Numerical
problems can be reduced if the maximum velocity is multiplied by 1 + ε for a
small ε > 0. [37] presents how graph-drawing algorithms help in the case where
a layout of the graph is not given beforehand.

This approach can be extended in a straight forward manner to other metric
spaces than (R2, ‖·‖). In particular, it is possible to use more than two dimen-
sions or other metrics like the Manhattan metric. Finally, the expensive square
root function to compute the Euclidean distance can be replaced by an approx-
imation.

Landmarks. With preprocessing, it is possible to gather information about the
graph that can be used to obtain improved lower bounds. In [10], a small fixed-
sized subset L ⊂ V of “landmarks” is chosen. Then, for all nodes v ∈ V , the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Speed-Up Techniques for Shortest-Path Computations 29

distance d(v, l) to all nodes l ∈ L is precomputed and stored. These distances
can be used to determine a feasible potential. For each landmark l ∈ L, we
define the potential p

(l)
t (v) := d(v, l) − d(t, l). Due to the triangle inequality

d(v, l) ≤ d(v, t) + d(t, v), the potential p
(l)
t is feasible and indeed a lower bound

for the distance to t. The potential is then defined as the maximum over all
potentials: pt(v) := max{p

(l)
t (v); l ∈ L}. It is easy to show that the maximum of

feasible potentials is again a feasible potential.
For landmarks that are situated next to or “behind” the target t, the lower

bound p
(l)
t (u) should be fairly tight, as shortest paths to t and l most probably

share a common sub-path. Landmarks in other regions of the graph however, may
attract the search to themselves. This insight justifies to consider, in a specific
search from s to t, only those landmarks with the highest potential p

(l)
t (u). The

restriction of the landmarks in use has the advantage that the calculation of the
potential is faster while its quality is improved.

An interesting observation is that using k landmarks is in fact very similar to
using the maximum norm in a k-dimensional space. Each landmark corresponds
to one dimension and, for a node, the distance to a landmark is the coordinate in
the corresponding dimension. Such high-dimensional drawings have been used in
[14], where they are projected to 2D using principal component analysis (PCA).
This graph-drawing techniques has also been successfully used in [37] for goal-
directed search and other geometric speed-up techniques.

Distances from Graph Condensation. For restricted shortest-path problems, per-
forming a single run of an unrestricted Dijkstra’s algorithm is a relatively
cheap operation. Examples are travel planning systems for scheduled vehicles
like busses or trains. The complexity of the problem is much higher if you take
connections, vehicle types, transfer times, or traffic days into account. It is there-
fore feasible to perform a shortest-path computation to find tighter lower bounds
[29]. More precisely, you run Dijkstra’s algorithm on a condensed graph: The
nodes of this graph are the stations (or stops) and an edge between two stations
exists iff there is a non-stop connection. The edges are weighted by the minimal
travel time. The distances of all v to the target t can be obtained by a single
run of Dijkstra’s algorithm from the target t with reversed edges. These
distances provide a feasible potential for the time-expanded graph, since the dis-
tances are a feasible potential in the condensed graph and an edge between two
stations in the time-expanded graph is at least as long as the corresponding edge
in the condensed graph.

3.3 Hierarchical Methods

This speed-up technique requires a preprocessing step at which the input graph
G = (V, E) is enriched with additional edges representing shortest paths between
certain nodes. The additional edges can be seen as “bridges” or “short-cuts” for
Dijkstra’s algorithm. These additional edges thereby realize new levels that
step-by-step coarsen the graph. To find a shortest path between two nodes s

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

30 D. Wagner and T. Willhalm

and t using a hierarchy, it suffices for Dijkstra’s algorithm to consider a
relatively small subgraph of the “hierarchical graph”. The hierarchical structure
entails that a shortest path from s to t can be represented by a certain set of
upward and of downward edges and a set of level edges passing at a maximal
level that has to be taken into account. Mainly two methods have been developed
to create such a hierarchy, the multi-level approach [33,34,18,4] and highway
hierarchies [31,32]. These hierarchical methods are already close to the idea of
using precomputed shortest paths tables for a small number of very frequently
used “transit nodes”. Recently, this idea has been explored for the computation
of shortest paths in road networks with respect to travel time [1].

Multi-Level Approach. The decomposition of the graph can be realized using
separators Si ⊂ V for each level, called selected nodes at level i: S0 := V ⊇
S1 ⊇ . . . ⊇ Sl. These node sets can be determined on diverse criteria. In a
simple, but practical implementation, they consist of the desired numbers of
nodes with highest degree in the graph. However, with domain-specific knowl-
edge about the central nodes in the graph, better separators can be found. Alter-
natively, the planar separator theorem or betweenness centrality can be used to
find small separators [18]. There are three different types of edges being added
to the graph: upward edges, going from a node that is not selected at one level
to a node selected at that level, downward edges, going from selected to non-
selected nodes, and level edges, passing between selected nodes at one level. The
weight of such an edge is assigned the length of a shortest path between the
end-nodes.

In [4] a further enhancement of the multi-level approach is presented, which
uses a precomputed auxiliary graph with additional information. Instead of a
single multi-level graph, a large number of small partial graphs is precomputed,
which are optimized individually. This approach results in even smaller query
times than achieved by the original multi-level approach. On the other hand,
however, a comparably heavy preprocessing is required.

Highway Hierarchies. A different approach presented by [31,32] is also based
on the idea that only a “highway network” needs to be searched outside a the
neighborhood of the source and the target node. Shortest path trees are used to
determine a hierarchy. This has the advantage that no additional information
like a separator is needed. Moreover, the use of highway hierarchies requires a
less extensive preprocessing. The construction relies on a slight modification of
Dijkstra’s algorithm that ensures that a sub-path ui, . . . , uj of a shortest
path u1, . . . , ui, . . . , uj , . . . , uk is always returned as the shortest path from ui to
uj. These shortest paths are called canonical. Consider the sub-graph of G that
consists of all edges in canonical shortest paths. The next level of the hierarchy is
then induced by all nodes with degree at least two (i.e. the 2-core of the union of
canonical shortest paths). Finally, nodes of degree 2 are then iteratively replaced
by edges for a further contraction of the new level of the hierarchy.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Speed-Up Techniques for Shortest-Path Computations 31

3.4 Node and Edge Labels

Approaches based on node or edge labels use precomputed information as an
indicator if a node or an edge has to be considered during an execution of
Dijkstra’s algorithm for a certain target node t.

Reach-Based Routing. Reach-based routing prunes the search space based on
a centrality measure called “reach” [13]. Intuitively, a node in the graph is im-
portant for shortest paths, if it is situated in the middle of long shortest paths.
Nodes that are only at the beginning or the end of long shortest paths are less
central. This leads to the following formal definition:

Definition 2 (Reach). Given a weighted graph G = (V, E), l : E → R
+
0 and

a shortest s-t path P , the reach on the path P of a node v ∈ P is defined as
r(v, P) := min{l(Psv), l(Pvt)} where Psv and Pvt denote the sub-paths of P from
s to v and from v to t, respectively. The reach r(v) of v ∈ V is defined as the
maximum reach for all shortest s-t paths in G containing v.

In a search for a shortest s-t path Pst, a node v ∈ V can be ignored, if (1) the
distance l(Psv) from s to v is larger than the reach of v and (2) the distance
l(Pvt) from v to t is larger than the reach of v. While performing Dijkstra’s

algorithm, the first condition is easy to check, since l(Psv) is already known.
The second condition is fulfilled if the reach is smaller than a lower bound of
the distance from v to t. (Suited lower bounds for the distance of a node to
the target are already described for goal-directed search in Sect. 3.2.) Lines 7-13
of Algorithm 1 are therefore not performed if conditions (1) and (2) are surely
fulfilled.

To compute the reach for all nodes, we perform a single-source all-target
shortest-path computation for every node. With a modified depth first search
on the shortest-path trees, it is easy to compute the reach of all nodes using
the following insight: For two shortest paths Psx and Psy with a common node
v ∈ Psx and v ∈ Psy, we have

max{r(v, Psx), r(v, Psy)} = min{l(Psv), max{l(Pvx), l(Pvy)}}.

The preprocessing for sparse graphs needs therefore O(n2 log n) time and O(n)
space. In case such a heavy preprocessing is not acceptable, [13] also describes
how to compute upper bounds for the reach. As mentioned in [11], the reach
criterion can be extended to edges, which even improves its effectiveness but
also increases the preprocessing time.

Edge Labels. This approach attaches a label to each edge that represents all
nodes to which a shortest path starts with this particular edge [22,23,27,33,36,38].
More precisely, we first determine, for each edge (u, v) ∈ E, the set S(u, v) of all
nodes t ∈ V to which a shortest u-t path starts with the edge (u, v). The shortest
path queries are then answered by Dijkstra’s algorithm restricted to those
edges (u, v) for which the target node is in S(u, v). Similar to a traffic sign, the
edge label shows the algorithm if the target node might be in the target region

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

32 D. Wagner and T. Willhalm

of the edge. It is easy to verify that such a pruned shortest-path computation
returns a shortest path: If (u, v) is part of a shortest s-t path, then its sub-path
from u to t is also a shortest path. Therefore, t must be in S(u, v), because all
nodes to which a shortest path starts with (u, v) are located in S(u, v). The
restriction of the graph can be realized on-line during the shortest-path com-
putation by excluding those edges whose edge label does not contain the target
node (line 5 of algorithm 1).

Geometric Containers. As storing all sets S(u, v) would need O(n2) space, one
can use a superset of S(u, v) that can be represented with constant size. Using
constant-sized edge labels, the size of the preprocessed data is linear in the size of
the graph. Given a layout L : V → R

2 of the graph, an efficient and easy object
type for an edge label associated to (u, v) is an enclosing geometric object of
{L(t) | t ∈ S(u, v)}. Actually, the bounding box, i.e. the smallest rectangle parallel
to the axes that contains {L(t) | t ∈ S(u, v)} turns out to be very effective as
geometric container [38]. The bounding boxes can be computed beforehand by
running a single-source all-target shortest-path computation for every node. The
preprocessing for sparse graphs needs therefore O(n2 log n) time and O(n) space.

Arc Flags. If you drop the condition that the edge labels must have constant
size, you can get much better however. An approach that performs very well
in practice [22,23,27], is to partition the node set in p regions with a function
r : V −→ {1, . . . , p}. Then an arc flag, i.e. a p-bit-vector where each bit represents
one region is used as edge label. For an edge e, a region is marked in the p-
bit-vector of e if it contains a node v with v ∈ S(e).) Then the overall space
requirement for the preprocessed data is Θ(p · m). But an advantage of bit-
vectors as edge labels is the insight that the preprocessing does not need to
compute all -pairs shortest paths. Every shortest path from any node s outside
a region R to a node inside a region R has to enter the region R at some point.
As s is not a member of region R, there exists an edge e = (u, v) such that
r(u)
= r(v). It is therefore sufficient, if the preprocessing algorithm regards only
the shortest paths to nodes v that are on the boundary of a region. These paths
can be determined efficiently by a backward search starting at the boundary
nodes. Usually, the number of boundary nodes is by orders of magnitude smaller
than n. A crucial point for this type of edge labels is an appropriate partitioning
of the node set. Using a layout of the graph, e.g. a grid, quad-trees or kd-trees
can be used. In a general setup, a separator according to [21] is the best choice
we are aware of [27].

3.5 Combining Speed-Up Techniques

It has been shown in various publications [3,11,12,16,17,30,31,32,33,37] that the
full power of speed-up techniques is unleashed, if various speed-up techniques are
combined. In [16,17] combinations of bidirectional search, goal-directed search,
multi-level approach and geometric container are examined. For an experimental
evaluation we refer to these papers. In this section, we concentrate on cases,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Speed-Up Techniques for Shortest-Path Computations 33

where an effective combination of two speed-up techniques is not obvious. The
extension to a combination of three or four techniques is straight forward, once
the problem of combining two of them is solved. However, not every combination
is useful, as the search space may not be decreased (much) by adding a third or
fourth speed-up techniques.

Bidirectional Search and Goal-Directed Search. Combining goal-directed and
bidirectional search is not as obvious as it may seem at first glance. [30] provides
a counter-example to show that simple application of a goal-directed search
forward and a “source-directed” search backward yields a wrong termination
condition. However, the alternative condition proposed there has been shown
in [20] to be quite inefficient, as the search in each direction almost reaches
the source of the other direction. An alternative is to use the same potential
in both directions. With a potential from Sect. 3.2, you already get a speed-up
(compared to using either goal-directed or bidirectional search). But one can do
better using a combination of potentials: if ps(v) is a feasible potential for the
backward search, then ps(t)− ps(v) is a feasible potential for the forward search
(although not necessarily a good one). In order to balance the forward and the
backward search, the average 1

2 (pt(v)+ps(t)−ps(v)) is a good compromise [10].

Bidirectional Search and Hierarchical Methods. Basically, bidirectional search
can be applied to the subgraph defined by the multi-level approach. In an ac-
tual implementation, that subgraph is computed on-the-fly during Dijkstra’s

algorithm: for each node considered, the set of necessary outgoing edges is
determined. If a bidirectional search is applied to the multi-level subgraph, a
symmetric, backward version of the subgraph computation has to be imple-
mented: for each node considered in the backward search, the incoming edges
that are part of the subgraph have to be determined. See [16,17] for an experi-
mental evaluation. Actually, [31,32] takes this combination even further in that
it fully integrates the two approaches. The conditions for the pruning of the
search space are interweaved with the fact that the search is performed in two
directions at the same time.

Bidirectional Search and Reach-Based Routing. The reach criterion l(Psv) ≤
r(v) ∨ l(Pvt) ≤ r(v) can be used directly in the backward direction of the bidi-
rectional search, too. In the backward search, l(Pvt) is already known whereas
we have to use a lower bound instead of l(Psv) to replace the first condition
l(Psv) ≤ r(v). However, even without using a geometric lower bound but only
the known distances for pruning, [11] reports good results.

Bidirectional Search and Edge Labels. In order to take advantage of edge labels
in both directions of a bidirectional search, a second set of edge labels is needed.
For each edge e ∈ E, we compute the set S(e) and the set Srev(e) of those nodes
from which a shortest path ending with e exists. Then we store for each edge
e ∈ E appropriate edge labels for S(e) and Srev(e). The forward search checks
whether the target is contained S(e), the backward search, whether the source
is in Srev(e). See [16,17].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

34 D. Wagner and T. Willhalm

Goal-Directed Search and Highway Hierarchies. Already the original highway
algorithm [31,32] accomplishes a bidirectional search. In [3] the highway hier-
archies are further enhanced with goal-directed capabilities using potentials for
forward and backward search based on landmarks. Unfortunately, the highway
algorithm cannot abort the search as soon as an s-t path is found. However,
another aspect of goal-directed search can be exploited, the pruning. As soon as
an s-t path is found it yields an upper bound for the length of the shortest s-t
path. Comparing upper and lower bound can then be used to prune the search.
Altogether, the combination of highway hierarchies and landmarks brings less
improvement than one might hope. On the other hand, using stopping the search
as soon as an s-t path is found at the cost of losing correctness of the result (the
s-t path found is not always the shortest s-t path) leads to an impressive speed-
up. Moreover, almost all paths found are also shortest and, in the rare other
cases the approximation error is extremely small.

Goal-Directed Search and Reach-Based Routing. Goal-directed search can also be
applied to the subgraph that is defined by the reach criterion. However, some care
is needed if the subgraph is determined on-line (which is the common way to im-
plement it) with the restriction by the reach. In particular, one should choose an
implementation of goal-directed search that doesn’t change the distance labels of
the nodes, as they are used to check the reach criterion. A detailed analysis of this
combination can be found in [11]. Finally, in [12] the study of reach-based routing
in combination with goal-directed search based on landmarks is continued.

4 Conclusion

We have summarized various techniques to speed-up Dijkstra’s algorithm.
All of them guarantee to return a shortest path but run considerably faster. After
all, the “best” choice of a speed-up technique heavily depends on the availability
of a layout, the size of the main memory, the amount of preprocessing time you
are willing to spend, and last but not least on the graph data considered.

References

1. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In Transit to Constant
Shortest-Path Queries in Road Networks. In Proc. Algorithm Engineering and
Experiments (ALENEX’07), SIAM (2007) to appear.

2. Dantzig, G.: On the shortest route through a network. Mgnt. Sci. 6 (1960) 187–190
3. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway Hierarchies Star. 9th

DIMACS Implementation Challenge - Shortest Paths.
http://www.dis.uniroma1.it/˜challenge9/papers.shtml

4. Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-Performance
Multi-Level Graphs. 9th DIMACS Implementation Challenge - Shortest Paths.
http://www.dis.uniroma1.it/˜challenge9/papers.shtml

5. Dial, R.: Algorithm 360: Shortest path forest with topological ordering. Commu-
nications of ACM 12 (1969) 632–633

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Speed-Up Techniques for Shortest-Path Computations 35

6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1 (1959) 269–271

7. 9th DIMACS Implementation Challenge - Shortest Paths.
http://www.dis.uniroma1.it/˜challenge9/papers.shtml

8. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM (JACM) 34 (1987) 596–615

9. Goldberg, A.V.: Shortest path algorithms: Engineering aspects. In Eades, P.,
Takaoka, T., eds.: Proc. International Symposium on Algorithms and Computation
(ISAAC 2001). Volume 2223 of LNCS., Springer (2001) 502–513

10. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A∗ search meets
graph theory. In: Proc. 16th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA ’05), 156–165

11. Goldberg, A.V., Kaplan, H., Werneck, R.: Reach for A∗: Efficient point-to-point
shortest path algorithms. In Raman, R., Stallmann, M., eds.: Proc. Algorithm
Engineering and Experiments (ALENEX’06), SIAM (2006) 129–143

12. Goldberg, A.V., Kaplan, H., Werneck, R.: Better Landmarks within Reach. In 9th
DIMACS Implementation Challenge - Shortest Paths.
http://www.dis.uniroma1.it/˜challenge9/papers.shtml

13. Gutman, R.: Reach-based routing: A new approach to shortest path algortihms
optimized for road networks. In Arge, L., Italiano, G.F., Sedgewick, R., eds.: Proc.
Algorithm Engineering and Experiments (ALENEX’04), SIAM (2004) 100–111

14. Harel, D., Koren, Y.: A fast multi-scale method for drawing large graphs. Journal
of graph algorithms and applications 6 (2002) 179–202

15. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE transactions on systems science and cybernetics
4 (1968) 100–107

16. Holzer, M., Schulz, F., Willhalm, T.: Combining speed-up techniques for shortest-
path computations. In Ribeiro, C.C., Martins, S.L., eds.: Experimental and Ef-
ficient Algorithms: Third International Workshop, (WEA 2004). Volume 3059 of
LNCS., Springer (2004) 269–284

17. Holzer, M., Schulz, F., Wagner, D., Willhalm, T.: Combining speed-up techniques
for shortest-path computations. ACM Journal of Experimental Algorithmics (JEA)
10, (2005-2006) Article No. 2.05

18. Holzer, M., Schulz, F., Wagner, D.: Engineering multi-level overlay graphs for
shortest-path queries. In Raman, R., Stallmann, M., eds.: Proc. Algorithm Engi-
neering and Experiments (ALENEX’06), SIAM (2006) 156–170

19. Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. Journal
of the ACM (JACM) 24 (1977) 1–13

20. Kaindl, H., Kainz, G.: Bidirectional heuristic search reconsidered. Journal of
Artificial Intelligence Research 7 (1997) 283–317

21. Karypis, G.: METIS: Family of multilevel partitioning algorithms.
http://www-users.cs.umn.edu/˜karypis/metis/ (1995)

22. Köhler, E., Möhring, R.H., Schilling, H.: Acceleration of shortest path computa-
tion. In Nikoletseas, S.E., ed.: Experimental and Efficient Algorithms: 4th Inter-
national Workshop, WEA 2005. Volume 3503 of LNCS., Springer (2005) 126–138

23. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in
static networks with geographical background. In Raubal, M., Sliwinski, A., Kuhn,
W., eds.: Geoinformation und Mobilität - von der Forschung zur praktischen An-
wendung. Volume 22 of IfGI prints., Institut für Geoinformatik, Münster (2004)
219–230

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

36 D. Wagner and T. Willhalm

24. Luby, M., Ragde, P.: A bidirectional shortest-path algorithm with good average-
case behavior. Algorithmica 4 (1989) 551–567

25. Mehlhorn, K., Näher, S.: LEDA, A platform for Combinatorial and Geometric
Computing. Cambridge University Press (1999)

26. Meyer, U.: Average-case complexity of single-source shortest-paths algorithms:
lower and upper bounds. Journal of Algorithms 48 (2003) 91–134

27. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning
graph to speed up dijkstra’s algorithm. In Nikoletseas, S.E., ed.: Experimental
and Efficient Algorithms: 4th International Workshop, WEA 2005. Volume 3503
of LNCS., Springer (2005) 189–202; Journal version to appear in ACM Journal on
Experimental Algorithmics (JEA), 12 (2006).

28. Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable informa-
tion: Models and algorithms. In: Geraets, F., Kroon, L., Schöbel, A., Wagner, D.,
Zaroliagis, C.: Algorithmic Methods for Railway Optimization, LNCS, to appear.

29. Müller-Hannemann, M., Weihe, K.: Pareto shortest paths is often feasible in prac-
tice. In Brodal, G., Frigioni, D., Marchetti-Spaccamela, A., eds.: Proc. 5th Work-
shop on Algorithm Engineering (WAE’01). Volume 2141 of LNCS., Springer (2001)
185–197

30. Pohl, I.: Bi-directional and heuristic search in path problems. Technical Report
104, Stanford Linear Accelerator Center, Stanford, California (1969)

31. Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries.
In Brodal, G.S., Leonardi, S., eds.: Proc. Algorithms ESA 2005: 13th Annual Eu-
ropean Symposium. Volume 3669 of LNCS., Springer (2005) 568–579

32. Sanders, P., Schultes, D.: Engineering Highway hierarchies. In Assar, Y., Erlebach,
T., eds.: Proc. Algorithms ESA 2006: 14th Annual European Symposium. Volume
4168 of LNCS., Springer (2006)

33. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: An empirical case
study from public railroad transport. ACM Journal of Experimental Algorithmics
(JEA) 5, (2000) Article No. 12.

34. Schulz, F., Wagner, D., Zaroliagis, C.: Using Multi-Level Graphs for Timetable
Information. In: Mount, D. M., Stein, C. eds.: Proc. 4th Workshop Algorithm
Engineering and Experiments (ALENEX’02). Volume 2409 of LNCS., Springer
(2002) 43–59

35. Sedgewick, R., Vitter, J.S.: Shortest paths in Euclidean space. Algorithmica 1
(1986) 31–48

36. Wagner, D., Willhalm, T.: Geometric Speed-Up Techniques for Finding Shortest
Paths in Large Sparse Graphs. In Di Battista, G., Zwick, U., eds.: Proc. Algorithms
ESA 2003: 11th Annual European Symposium on Algorithms. Volume 2832 of
LNCS., Springer (2003), 776–787

37. Wagner, D., Willhalm, T.: Drawing graphs to speed up shortest-path computations.
In: Joint Proc. 7th Workshop Algorithm Engineering and Experiments (ALENEX
2005) and 2nd Workshop Analytic Algorithmics and Combinatorics (ANALCO
2005) 15–22

38. Wagner, D., Willhalm, T., Zaroliagis, C.: Geometric shortest path containers. ACM
Journal on Experimental Algorithmics (JEA) 10, (2005-2006) Article No. 1.03

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Compact Forbidden-Set Routing

Bruno Courcelle and Andrew Twigg

1 LaBRI, Bordeaux 1 University and CNRS
courcell@labri.fr

2 Computer Laboratory, Cambridge University
andrew.twigg@cl.cam.ac.uk

Abstract. We study labelling schemes for X-constrained path prob-
lems. Given a graph (V, E) and X ⊆ V , a path is X-constrained if all
intermediate vertices avoid X. We study the problem of assigning la-
bels J(x) to vertices so that given {J(x) : x ∈ X} for any X ⊆ V , we
can route on the shortest X-constrained path between x, y ∈ X. This
problem is motivated by Internet routing, where the presence of routing
policies means that shortest-path routing is not appropriate. For graphs
of tree width k, we give a routing scheme using routing tables of size
O(k2 log2 n). We introduce m-clique width, generalizing clique width, to
show that graphs of m-clique width k also have a routing scheme using
size O(k2 log2 n) tables.

Keywords: Algorithms, labelling schemes, compact routing.

1 Introduction

Given a graph G = (V, E) where each vertex u ∈ V has a set S(u) ⊆ V , a
compact forbidden-set routing scheme is a compact routing scheme where all
routes from u are (approximately) shortest paths in the (possibly disconnected)
graph G \ S(u). The problem is motivated by Internet routing, where nodes
(routers) can independently set routing policies that assign costs to paths, thus
making the shortest path not necessarily the most desirable. Shortest-path rout-
ing is well-understood, for example Thorup and Zwick [1] have given a compact
routing scheme using Õ(

√
n) size tables, which is almost optimal for stretch-3

paths. On the other hand, very little is known about the complexity of forbidden-
set routing. The only known algorithms for policy routing (such as BGP) use
Bellman-Ford iteration to construct so-called stable routing trees – for each des-
tination, a tree is rooted at that destination and packets are forwarded along it.
Varadhan et al.[2] showed that the policies may conflict, forcing the algorithm to
not converge. For general policies, Griffin et al.[3] showed that deciding if it will
converge is NP-complete, and Feigenbaum and Karger et al.[4] showed that NP-
completeness still holds for forbidden-set policies. This motivates the problem of
designing efficient routing schemes that do not suffer from non-convergence, for
simple classes of policy such as forbidden-set.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 37–48, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

38 B. Courcelle and A. Twigg

2 Preliminaries

Let G = (V, E) be an undirected graph and X ⊆ V a set of vertices (the
extension to directed graphs is straightforward), and F be a set of edges. An
(X, F)-constrained path is a path in G that does not use the edges of F and
with no intermediate vertex in X (or simply X-constrained if F is empty). We
denote by G[Z] the subgraph of G induced by a set of vertices Z. We denote by
G+[Z] the graph consisting of G[Z] and weighted edges where an edge between
x and y has weight d iff d is the length of a shortest path in G between x and y
of length at least 2 with no intermediate vertex in Z. Between two vertices, one
may have one edge without value and another one with value at least 2.

If we know the graph G+[Z], if X ⊆ Z and every edge of F has its two ends
in Z, we can get the length of a shortest (X, F)-constrained path in G between
any x, y ∈ Z. The graph G+[Z] captures the separator structure of G since there
is no edge between x, y in G+[X ∪ {x, y}] iff X is a separator of x, y in G, thus
the problem can be seen as constructing a distributed encoding of the separators
of a graph. In all cases we say that we consider a constrained path problem.

Our objective is to label each vertex x of G by a label J(x), as short as possible,
in such a way that G+[Z] can be constructed from {J(x) : x ∈ Z}. If we can
determine the lengths of shortest (X, F)-constrained paths from {J(x) : x ∈ Z},
where X ⊆ Z and every edge of F has its two ends in Z, then we call J(x) an
(X, F)-constrained distance labelling.

The graph problem ‘is there an X-constrained path from x to y?’ is monadic
second-order definable, so the result of Courcelle and Vanicat [5] implies that
graphs of bounded clique width have a labelling with labels of O(log n) bits.
However, the constant factor is a tower of exponentials in cwd(G) and is imprac-
tical.

Our main result is a labelling scheme with labels of size O(k2 log2(n)) where k
is a bound on the m-clique width (mcwd) of the graph, a generalization of clique
width that we will introduce. Since graphs with tree width (twd) k have mcwd
at most k + 3, and graphs with clique width (cwd) k have mcwd at most k, the
results follow for the case of tree width and clique width. Table 1 in [6] shows
that the networks of some important major internet providers are of small tree
width, between 10 and 20 and hence our constraint of dealing with graphs of
small tree width or clique width is somehow realistic.

The labeling works as follows: given vertices between which we want to de-
termine shortest paths and a set Z ⊆ V , we construct from {J(x) : x ∈ Z} the
weighted graph G+[Z]. Then we can answer queries about 4-tuples (x, y, X, F)
such that X ∪ {x, y} ⊆ Z and every edge of F has its two ends in Z by using
only G+[Z] : in particular the length of a shortest (X, F)-constrained path. The
idea is not to repeat for each query the construction of G+[Y] for some set Y .

Our notation follows Courcelle and Vanicat [5]. For a finite set C of constants,
a finite set F of binary function symbols, we let T (F, C) be the set of finite well-
formed terms over these two sets (terms will be discussed as labelled trees). The
size |t| of a term t is the number of occurrences of symbols from C ∪ F . Its
height ht(t) is 1 for a constant and 1 + max{ht(t1), ht(t2)} for t = f(t1, t2).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Compact Forbidden-Set Routing 39

Let a be a real number. A term t is said to be a-balanced if ht(t) ≤ a log |t|
(all logarithms are to base 2). Let t in T (Fk, Ck) and G = val(t), the graph
obtained by evaluating t. For a node u in t, val(t/u) is the subgraph represented
by evaluating the subterm rooted at u.

3 The Case of Tree Width

Before presenting our main result on m-clique width graphs, we describe a la-
belling scheme for graphs of tree width k. A graph having tree width k can be
expressed as the nondisjoint union of graphs of size k + 1, arranged as nodes
in a tree such that the set of tree nodes containing some graph vertex forms a
connected subtree of the tree (often called a tree decomposition). We shall work
with a different, algebraic representation of graphs.

3.1 Balanced Tree Width Expressions

Every graph of tree width k can be represented by an algebraic expression (term).
A j-source graph is a graph with at most j distinguished vertices called sources,
each tagged with a unique label from {1, . . . , j}. Courcelle [7][8] shows that a
graph has tree width k iff it is isomorphic to val(t) for some term t whose leaves
are (k + 1)-source graphs and where every non-leaf node is labelled with one of
the following operations, as illustrated in Figure 1.

– Parallel composition: The (k + 1)-source graph (G // H) is obtained from
the disjoint union of (k + 1)-source graphs G and H where sources having
the same label are fused together into a single vertex.

– Erasure: For a ∈ {1, . . . , k + 1}, the unary operation fga(G) erases the label
a and the corresponding source in G is no longer a source vertex.

As in Courcelle and Vanicat[5], we combine a parallel composition and a
sequence of erasure operations to obtain a single binary operation, e.g. // fga,b

.
The term tree can be constructed given a tree decomposition of the graph –
Corollary 2.1.1 of Courcelle [7] shows that given a tree decomposition of width k
of a graph, it is possible to construct in linear time a term tree using at most k+1
source labels. The nodes of the term tree are the bags of the tree decomposition;
hence the height and degree are unchanged.

The following result of Bodlaender shows how to obtain a balanced tree width
expression with a small increase in tree width.

Lemma 1 (Bodlaender [9]). Given a tree decomposition of width k and a
graph G with n vertices, one can compute a binary tree decomposition of G of
height at most 2 log5/4(2n) and width at most 3k + 2 in time O(n).

3.2 Compact Forbidden-Set Routing for Small Tree Width

Assume we have an a-balanced term tree t for some constant a with val(t) = G,
assume wlog assume that all sources are eventually erased in t. The vertices of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

40 B. Courcelle and A. Twigg

2

2

1

1

2

1

1

2

1

=

// =

fg2

Parallel composition:

Erasure:

Fig. 1. The parallel composition and erasure operations for constructing graphs of tree
width k

G are then in bijection with the erasure operations, so we shall use the same
identifier u to refer to both a vertex in G and its unique corresponding erasure
operation in t. We now describe a labelling J(u) to compute the length of shortest
X-constrained paths.

For a set Y ⊆ {1, . . . , k + 1} of source labels and a (k + 1)-source graph G,
we denote by G \Y the induced subgraph of G obtained by removing the source
vertices of G whose label is in Y . Every node u in t has a state Q(u) associated
with it, which for now assume to be the collection of graphs {val(t/u) \ Y : Y ⊆
{1, . . . , k + 1}}. As in Courcelle and Vanicat[5], the label J(u) stores a string
describing the access path from the root to the node in t representing u (rather
than a leaf of t), and the state for every node adjacent to its access path (we
assume that every vertex u is adjacent to its own access path). In addition, the
label contains the source label of the node u in val(t/u). If u has the source label
su then the string is of the form

J(u) = (su, f1, i1, Q(s3−i1(u1)), . . . fh, ih, Q(s3−ih
(uh))

where h is the height of t, f1 . . . fh are the operations on the path, i1 . . . ih ∈ {1, 2}
indicate whether to take the left or right branch and s1(u) (respectively s2(u))
denote the left (respectively right) child of u in t. The states

Q(s3−i1(u1))Q(s3−i1 (u2)) . . . Q(s3−i1(uh))

are the states of nodes adjacent to the access path for u. Since each set of at
most O(k) erasure operations can be identified with O(k) bits and the term
tree has height O(log n), the access path can be described using O(k log n) bits
(excluding the space to store the states).

We now describe how to use the labelling to find the length of the shortest
X-constrained path between u, v. Assume that u, v �∈ X . For a vertex x ∈ G,
we let Path(x) be the path from the corresponding vertex x of t to the root.
For a node u of t, let X(u) be the subset of X whose corresponding erasure

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Compact Forbidden-Set Routing 41

Construct-Source-Distance-Graph(G)
Input: a j-source graph G
Output: the source distance graph H on j vertices

1 Set w(u, v) = w(v, u) = 1 if {u, v} ∈ E(G)
and ∞ otherwise

2 while (G contains a non-source node)
3 do Let u be any non-source node in G
4 for each pair of neighbours x, y of u
5 do w(x, y) = w(y, x)

= min{w(x, u) + w(u, y), w(x, y)}
6 Remove u from G
7 Set w(v, u) = w(u, v) = ∞ for all v
8 return H = G

s2

s1 s3

s4

s2
4

11

4

2

s1 s3

s4

Fig. 2. Constructing source distance graphs by contracting paths of non-source nodes

operations are all ancestors of u in t (i.e. the subset of X represented by sources
in val(t/u)).

We construct the graph Rep(t)[X] by adding the subgraphs val(t/w)\X(w) for
each node w ∈ t adjacent to an access path Path(x) for x ∈ X∪{u, v} (the states
on the access path will be reconstructed from these adjacent states). To each
vertex y ∈ Rep(t)[X], associate two pieces of information: a unique identifier I(y)
for the corresponding erasure node in t and the source label sy of y in val(t/y).
Then add edges of length zero corresponding to parallel compositions between
nodes x, y ∈ Rep(t)[X] where I(x) = I(y) and sx = sy. The length of the
shortest X-constrained path between u, v in G equals the length of the shortest
path in Rep(t)[X] between two vertices x, y where x is a source corresponding
to node u in G and y is a source corresponding to v in G.

Now we consider how to efficiently represent the state Q(u). At first it might
seem that one needs to store all 2O(k) graphs, one for every set of deleted sources.
From val(t/u) we construct a compressed graph H called the source distance
graph with the property that for any set Y of sources and sources x, y, the
distance between x, y in val(t/u) \ Y equals their distance in H \ Y . The graph
is constructed by contracting paths of non-source vertices in val(t/u), as in
Figure 2. Since the edge weights in the source distance graph are in the range
[1, n], it can be represented using O(k2 log n) bits. This gives labels J(x) of size
O(k2 log2 n) bits.

The correctness of the labelling scheme relies on the fact that the connectivity
of sources in G // H is completely determined by their connectivity in G and H :
sources u, v are connected in G // H iff there is a source labelled r in both G, H
and paths u − r in G and r − v in H . For routing, we can augment the labelling
to compute the next hop on the shortest X-constrained path by associating with
each edge (x, y) in the source distance graph Q(u) the next hop (possibly a non-
source vertex) on the shortest non-source path represented by the contracted
edges from x to y. We can then use this information to construct a compact

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

42 B. Courcelle and A. Twigg

routing scheme that routes on shortest X-constrained paths with routing tables
of size asymptotically equal to the X-constrained distance labels.

Theorem 1. Graphs of tree width k have X-constrained distance labels of size
O(k2 log2 n) bits, where n is the number of vertices.

4 The Case of m-Clique Width

We now extend the results of the previous section to clique width graphs. Note
that the concept of tree width (twd) is weaker than clique width (cwd) : any
graph with tree width k has clique width at most 3.2k−1 [10] but cliques have
cwd 2 and unbounded twd. We begin by introducing some tools: balanced terms,
the new notion of m-clique width and the main construction. Due to space
restrictions, we outline our results and defer some details to a full version.

4.1 Balanced m-Clique Width Expressions

Let L be a finite set of vertex labels. A multilabelled graph is a triple G =
(VG, EG, δG) consisting of a graph (VG, EG) and a mapping δG associating with
each x in VG the set of its labels, a subset of L. A vertex may have zero, one or
several labels.

The following constants will be used: for A ⊆ L we let A be a constant
denoting the graph G with a single vertex u and δG(u) = A. We write A(u) if
we need to specify the vertex u. The following binary operations will be used:
for R ⊆ L × L, relabellings g, h : L −→ P(L) (P(L) is the powerset of L) and
for multilabelled graphs G and H we define K = G ⊗R,g,h H iff G and H are
disjoint (otherwise we replace H by a disjoint copy) where

VK = VG ∪ VH

EK = EG ∪ EH ∪ {{v, w} : v ∈ VG, w ∈ VH , R ∩ (δG(v) × δH(w)) �= ∅}
δK(x) = (g ◦ δG)(x) = {a : a ∈ g(b), b ∈ δG(x)} if x ∈ VG

δK(x) = (h ◦ δH)(x) if x ∈ VH

As in the operations by Wanke [11] we add edges between two disjoint graphs,
that are the 2 arguments of (many) binary operations. This is a difference with
clique width [12] using a single binary operation.

Notation and definitions. We let FL be the set of all binary operations ⊗R,g,h

and CL be the set of constants {A : A ⊆ L}. Every term t in T (FL, CL) denotes
a multilabelled graph val(t) with labels in L, and every multilabelled graph G is
the value of such a term for large enough L. We let mcwd(G) be the minimum
cardinality of such a set L and call this number the m-clique width of G. We
now compare mcwd with cwd and twd [5,12].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Compact Forbidden-Set Routing 43

Proposition 1. For every unlabelled undirected graph G,

mcwd(G) ≤ twd(G) + 3
mcwd(G) ≤ cwd(G) ≤ 2mcwd(G)+1 − 1

It follows that the same sets of graphs have bounded clique width and bounded
m-clique width. Our motivation for introducing m-clique width is that we can
prove the following result:

Proposition 2. There exists a constant a such that, every graph of m-clique
width k is the value an a-balanced term in T (FL, CL) for some set L of cardinality
at most 2k.

The proof is deferred to the full version. The above result is very useful since no
such result is known for obtaining balanced clique width expressions.

4.2 Adjacency Labelling for m-Clique Width Graphs

For a vertex x ∈ G, let Path(x) be the path (um = x, um−1, ..., u0) from the
corresponding node x of t to the root (=u0). For a term t, let m = ht(t) be
its height. We now describe how to construct an adjacency labelling I(x). Let
I(x) = (Lm, em−1, Dm−1, Lm−1, em−2, Dm−2, ..., e0, D0, L0) where Lm = A if
A ∈ C[k] is the constant at leaf x in t; Li is the set of labels of the vertex x
in the graph val(t/ui) for i = 0, ..., m. For i = 0, ..., m − 1, we define ei = 1 if
ui+1 is the left son of ui and Di is the set of labels {j′} such that (j, j′) ∈ R for
some j in Li+1 where ⊗R,g,h occurs at node ui. Similarly, ei = 2 if ui+1 is the
right son of ui and Di is the set of labels {j′} such that (j′, j) ∈ R for some j
in Li+1 where ⊗R,g,h occurs at node ui. Each label I(x) has size O(km) and is
computable from t in time O(k2ht(t)), hence at most O(nk2ht(t)) to compute
the entire labelling.

Fact 2. From the sequences I(x) and I(y) for two distinct vertices x and y, one
can determine whether they are linked in G by an edge.

Proof. From the integers em−1, ..., e0, e
′
m′−1, ..., e

′
0 in the sequences

I(x) = (Lm, em−1, Dm−1, Lm−1, em−2, Dm−2, ..., e0, D0, L0)
I(y) = (L′

m′ , e′m′−1, D
′
m′−1, L

′
m′−1, ..., e

′
0, D

′
0, L

′
0)

one can determine the position i in Path(x) and Path(y) of the least common
ancestor ui of x and y. Wlog we assume x below (or equal to) the left son of
ui. Then x and y are adjacent in G iff Di ∩ L′

i+1 �= ∅. This is equivalent to
D′

i ∩ Li+1 �= ∅. Since the computations of Fact 2 take time O(ht(t)) for each
pair x, y, we have the following.

Fact 3. From {I(x) : x ∈ X} for a set X ⊆ V , one can determine G[X] in time
O(|X |2ht(t)) (k is fixed).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

44 B. Courcelle and A. Twigg

We have thus an implicit representation in the sense of Kannan et al.[13] for
graphs of mcwd at most k, using labels of size O(k log n). �

4.3 Enriching the Adjacency Labelling

We now show how to enrich I(x) to achieve the following.

Proposition 3. Fix k. For t in T (Fk, Ck) with G(V, E) = val(t) one can build
a labelling J such that from {J(x) : x ∈ X} for any X ⊆ V , one can determine
G+[X] in polynomial time in |X | and ht(t).

We shall now show how to do this with labels of size O(k2 log2(n)) where k is
the m-clique width of G. The basic idea is as follows. From {I(x) : x ∈ X} for
any X ⊆ V , one can reconstruct G[X]. For G+[X] we need paths going out of
X , or at least their lengths. If u is a node of a path Path(x) for some x in X ,
and w is a son of u not on any path Path(y) for y in X , then we compute the
lengths of at most k2 shortest paths running through the subgraph of G induced
on the leaves of t below w, and we insert this matrix of integers at the position
corresponding to u in the label J(x).

We shall work with a graph representation of terms in T (Fk, Ck). With a term
t in T (Fk, Ck), we associate a graph Rep(t) having directed and undirected
edges. The vertices of Rep(t) are the leaves of t and the pairs (u, i) for u a node
of t and i ∈ [k] that labels some vertex x in val(t/u). The undirected edges are
(u1, i) − (u2, j) whenever u1, u2 are respectively the left and right sons of some
u labelled by ⊗R,g,h and (i, j) ∈ R. The directed edges are of 3 types :

1. u −→ (u, i) for u a leaf labelled by A and i ∈ A.
2. (u1, i) −→ (u, j) whenever u1 is the left son of u, u is labelled by ⊗R,g,h

and j ∈ g(i).
3. (u2, i) −→ (u, j) whenever u2 is the left son of u, u is labelled by ⊗R,g,h

and j ∈ h(i).

As an example, the left half of Figure 3 shows a term t (thick edges) and the
graph Rep(t) (fine edges). We use −→∗ to denote a directed path; ←−∗ denotes
the reversal of a directed path.

Fact 4. For a vertex u of G below or equal to a node w of t, u has label i in
val(t/w) iff u −→∗ (w, i) in Rep(t).

Fact 5. For distinct vertices u, v of G : u − v in G iff we have a mixed (di-
rected/undirected) path u −→∗ (w, i) − (w′, j) ←−∗ v in Rep(t) for some
w, w′, i, j.

We call such a path an elementary path of Rep(t). A walk is a path where
vertices may be visited several times. A good walk in Rep(t) is a walk that is a
concatenation of elementary paths. Its length is the number of undirected edges
it contains (the number of elementary paths).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Compact Forbidden-Set Routing 45

Fig. 3. A term t and the graph Rep(t), and the graph Rep(t)[{x, y}] with some valued
edges from Rep(t)+[X]

Fact 6. There is a walk x − z1 − ... − zp − y in G iff there is in Rep(t) a good
walk

W = x −→∗ − ←−∗ z1 −→∗ − ←−∗ ... −→∗ − ←−∗ zp −→∗ − ←−∗ y

For a nonleaf vertex u, a u-walk in Rep(t) is a walk that is formed of consecutive
steps of a good walk W and is of the form

(u, i) ←−∗ z −→∗ − −→∗ · · · −→∗ (u, j)

where all vertices except the end vertices (u, i), (u, j) are of the forms u, or w or
(w, l) for w strictly below u in t. Its length is defined as the number of undirected
edges.

We let Min(u, i, j) be the smallest length of a u-walk from (u, i) to (u, j), or
∞ if no such u-walk exists. Clearly Min(u, i, i) = 0 ((u, i) is a vertex of Rep(t),
so Fact 4 applies). We let MIN(u) be the S × S matrix of all such integers
Min(u, i, j), where S is the set of labels p such that (u, p) is a vertex of Rep(t).
It can be stored in space O(k2 log n) since n bounds the lengths of shortest
u-walks in Rep(t).

Fact 7. If in a good walk we replace a u-walk from (u, i) to (u, j) by another
one also from (u, i) to (u, j) we still have a good walk.

We are now ready to define J(x) for x a vertex of G. We recall that Path(x) is
the path (um = x, um−1, ..., u0) in t from a leaf x to the root u0, and

I(x) = (Lm, em−1, Dm−1, Lm−1, em−2, Dm−2, ..., e0, D0, L0).

We let then

J(x)=(Lm, em−1, Dm−1, Lm−1, Mm−1, fm−1, em−2, Dm−2, ..., e0, D0, L0, M0, f0)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

46 B. Courcelle and A. Twigg

where fi is the binary function symbol (some ⊗R,g,h) occurring at node ui,
Mi = MIN(RightSon(ui)) if ei = 1 and Mi = MIN(LeftSon(ui)) if ei = 2 for
each i = 0, ..., m − 1.

Fact 8. J(x) has size O(k2ht(t) log(n)).

Proof (Proof of Proposition 3). From the set {J(x) : x ∈ X}, one can construct
the graph G[X] by Fact 3. We let Rep(t)[X] be the subgraph of Rep(t) induced
by its vertices that are either elements of X (hence leaves of t), or of the form
(w, i) if w is a son of a node u on a path Path(x) for some x in X .

Because a sequence J(x) contains the function symbols fi and the index sets
S of the matrices Mi, we can determine from it the edges of Rep(t), not only
between vertices of the form (u, i) for nodes u in Path(x) but also between these
vertices and those of the form (w, i) for w that are sons of such nodes u but are
not necessarily in Path(x).

It remains to determine the lengths of shortest good walks in Rep(t) in order
to get the valued edges of G+[X]. We let Rep(t)+[X] be the graph Rep(t)[X]
augmented with the following integer valued undirected edges: (u, i) − (u, j)
valued by Min(u, i, j) whenever this integer (possibly 0) is not ∞.

Example: For the term t in the left half of Figure 3 and X = {x, y}, the right
half of the Figure shows the graph Rep(t)[X] augmented with two valued edges
(u, i) − (u, j) for 2 of the 3 nodes u which are not on the paths Path(x) and
Path(y) but are sons of nodes on these paths. These 3 nodes yield 5 vertices in
the graph Rep(t)[X]. Each of these vertices has a loop with value 0 (these loops
are not shown). We show the two non-loop edges labelled by 0 and 1.

The shortest good walks in Rep(t) that define the valued edges of G+[X]
are concatenations of edges of Rep(t)[X] (which we have from the J(x)’s) and
w-walks of minimal lengths for nodes w that are not on the paths Path(x) but
are sons of nodes on these paths. We need not actually know these w-walks
exactly; we only need the minimal length of one of each type. This information
is available from the matrices MIN(w) which we have in the J(x)’s. We can
thus build the valued graph Rep(t)+[X], and the desired values are lengths of
shortest paths in the graph Rep(t)+[X] under the alternating edge constraints
in Fact 5.

This proves Proposition 3. �

Combining Propositions 2 and 3 gives the following.

Theorem 9. For a graph G of m-clique width at most k on n vertices, one can
assign to vertices labels J(x) of size O(k2 log2 n) such that from {J(x) : x ∈ X}
for any set X ⊆ V , one can determine the graph G+[X] in time O(|X |3 log n).
The graph G must be given along with an mcwd expression of width at most k.

The problem of determining for a given graph its m-clique width and the corre-
sponding expression is likely to be NP-hard because the corresponding one for
clique width is NP-complete [14]. A cubic algorithm that constructs non-optimal
clique width expressions given by Oum [15] may be used.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Compact Forbidden-Set Routing 47

4.4 Compact Forbidden-Set Routing for Small mcwd

We now describe how to use the labelling J to build a compact routing scheme.
Recall that the construction of J is based on matrices that give for each node u
of a term t the length of a shortest u-walk in Rep(t) from (u, i) to (u, j). Storing
the sequence of vertices of the corresponding path in G uses space at most space
n log n instead of log n for each entry (assuming there are n vertices numbered
from 1 to n, so that a path of length p uses space p logn). The corresponding
labelling J ′(x) uses for each x space O(k2n log2 n).

We assume that X ∪ {x, y} ⊆ Z and every edge of F has its two endpoints
in Z. For a compact routing scheme, it suffices to be able to construct the path
in a distributed manner, by finding the next hop at each node. Here is such a
construction, that for such a set Z ⊆ V gives the length of a shortest (X, F)-
constrained path from x to y together with z, the first one not in Z on the
considered shortest path. For this, we need only store, in addition to the length
of a shortest u-walk in Rep(t) from (u, i) to (u, j) (in the matrix MIN(u)) its
first and last vertices. This uses space 3 logn instead of log n for each entry. The
corresponding labelling J ′′(x) uses for each x space O(k2 log2 n). This gives the
following compact forbidden-set routing scheme.

Theorem 10. Let each node have a forbidden set of size at most r. Then graphs
of m-clique width at most k have a compact forbidden-set routing scheme using
routing tables of size O(rk2 log2 n) bits and packet headers of size O(rk2log2n)
bits.

Proof. Given an mcwd decomposition of G = (V, E) of width at most k and a
set S(u) ⊆ V stored at each node u with |S(u)| ≤ r, the routing table at u is the
label J ′′ as above. To send a packet from u to v on an S(u)-constrained path, u
writes into the packet header the label J ′′(v) for the destination and the labels
{J ′′(x) : x ∈ S(u)}. Then u forwards the packet to a neighbour w that minimizes
the minimizes the distance from w to v, obtained as described above. Since the
distances computed are exact distances, the packet always progresses towards
the destination and will never loop. Note that if the paths are only approximately
shortest, there may be loops – in this case, w adds its label J ′′(w) to the packet
header, setting S′(u) = S(u)∪{w} and we ask for the shortest S′(u)-constrained
path from w to v. The price we pay here is that the packet headers grow with
the length of the path.

In this case however, we may need to compute graphs G+[Z] for larger and
larger sets Z. �

5 Open Problems

A major problem is to get good bounds on planar graphs. Using the O(
√

n) re-
cursive separator structure gives Õ(n) bits per label, but we believe it is possible
to do much better. We would also like to solve other constrained path problems
using G+[X], using the separator structure that we encode.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

48 B. Courcelle and A. Twigg

References

1. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA ’01: Proceedings of
the thirteenth annual ACM symposium on Parallel algorithms and architectures,
New York, NY, USA, ACM Press (2001) 1–10

2. Varadhan, K., Govindan, R., Estrin, D.: Persistent route oscillations in inter-
domain routing. Technical report, USC/ISI (1996)

3. Griffin, T.G., Shepherd, F.B., Wilfong, G.: The stable paths problem and interdo-
main routing. IEEE/ACM Trans. Netw. 10 (2002) 232–243

4. Feigenbaum, J., Karger, D., Mirrokni, V., Sami, R.: Subjective-cost policy routing.
In: Lecture Notes in Computer Science. Volume 3828. (2005) 174–183

5. Courcelle, B., Vanicat, R.: Query efficient implementation of graphs of bounded
clique-width. Discrete Applied Mathematics 131 (2003) 129–150

6. Gupta, A., Kumar, A., Thorup, M.: Tree based mpls routing. In: SPAA ’03:
Proceedings of the fifteenth annual ACM symposium on Parallel algorithms and
architectures, New York, NY, USA, ACM Press (2003) 193–199

7. Courcelle, B. In: Graph decompositions. (2006) Chapter of a book in preparation.
Available at www.labri.fr/perso/courcell/Textes/ChapitreDecArbos.pdf.

8. Arnborg, S., Courcelle, B., Proskurowski, A., Seese, D.: An algebraic theory of
graph reduction. J. ACM 40 (1993) 1134–1164

9. Bodlaender, H.L.: NC-algorithms for graphs with small treewidth. In: Proc.
14th Workshop Graph-Theoretic Concepts in Computer Science WG’88, Springer-
Verlag, Lecture Notes in Computer Science 344 (1989) 1–10

10. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth.
SIAM J. Comput. 34 (2005) 825–847

11. Wanke, E.: k-nlc graphs and polynomial algorithms. Discrete Applied Mathematics
54 (1994) 251–266

12. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Appl. Math. 101 (2000) 77–114

13. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J.
Discret. Math. 5 (1992) 596–603

14. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width minimiza-
tion is np-hard. In: STOC 2006: Proceedings of the thirty-eighth annual ACM
symposium on Theory of computing, New York, NY, USA, ACM Press (2006)

15. il Oum, S.: Approximating rank-width and clique-width quickly. In Kratsch, D.,
ed.: WG. Volume 3787 of Lecture Notes in Computer Science., Springer (2005)
49–58

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

www.labri.fr/perso/courcell/Textes/ChapitreDecArbos.pdf

A New Bound for Pure Greedy Hot Potato
Routing

Manfred Kunde

Technical University of Ilmenau, Institute for Theoretical Computer Science
kunde@tu-ilmenau.de

Abstract. We present a new bound for pure greedy hot potato routing
on n×n mesh-connected arrays and n×n tori. For permutation problems
the bound is O(n

√
n log n) steps which improves the for a long time

known bound of O(n2). For the more general link-limited k-destination
routing problem the bound is O(n

√
kn log n). The bound also holds for

restricted pure greedy hot potato routing on n×n meshes with diagonals.
The bound could be derived by a new technique where packets may have
several identities.

1 Introduction

The problem of packet routing is basic in parallel and distributed computing. In
this paper we study problems where each processor may be source of as many
packets as it has links to direct neighbors and each processor is destination of at
most k packets, k ≥ 1. We call this type of problems link-limited k-destination
routing. As a special case we get the well-known permutation routing where each
node is source of at most one packet and destination of at most one packet.

A well-known routing strategy has become popular under the name hot potato
routing where each processor does not store incoming packets besides they are
destined for this processor [Bar64]. After arriving in a processor, due to a routing
decision, the packets are sent immediately to neighboring processors (see Fig. 1).
Hot potato routing algorithms have been observed to work well in practise and
have been used in parallel machines such as the HEP multiprocessor [Smi81],
the Connection machine [Hil85], and the Caltech Mosaic C [Sei92].

Several hot potato routing algorithms have been designed for mesh-connected
arrays or meshes. In an n × n mesh (torus) each node is given as a pair (r, c),
1 ≤ r, c ≤ n. A processor (r, c) lies in row r and in column c and has four
direct neighbors in the interior of a mesh and on the border two or three direct
neighbors. In a torus all the nodes are interior ones. On the 2-dimensional n × n
torus Feige and Raghavan [FR92] gave an algorithm that solves any random
destination problem in 2n + o(n) steps with high probability and presented a
further algorithm that routes any permutation problem in 9n steps. Newman
and Schuster [NS95] gave a deterministic algorithm based on sorting that solves
permutation routing on an n×n mesh in 7n+o(n) steps. Kaufmann et al. [KLS]
gave an improvement of this result to 3.5n+o(n) steps. Kaklamanis et al. [KKR]

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 49–60, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

50 M. Kunde

in time interval (t−1 , t)
routing decision

time t − 1 time t

B

A

D

D

CC

A

B

Fig. 1. Hot Potato Routing at step t

presented an algorithm that routes most of the permutations in 2n+ o(n) steps.
All these algorithms are pretty fast in theory. However, the control structures of
these algorithms are too complicated and they are not used in practice, because
they are not simple enough like the greedy algorithms. Borodin et al. [BRS97]
gave a more practical and simple hot potato algorithm which runs an arbitrary
permutation problem in O(n3/2) steps in the worst-case. This algorithm routes
each of the packets within the rows until a packet may enter its destination
column. In this sense the algorithm is strictly dimension oriented. However, this
algorithm is not greedy.

A hot potato routing algorithm is greedy [Bar64, BES95] if each node forwards
each packet closer to its destination whenever this is possible, i.e. whenever the
desired links are not already given to other packets. A packet that does not
advance toward its destination is said to be deflected. The algorithm is called pure
greedy if packets can be deflected only if their desired links are given to advancing
packets. Greedy algorithms are attractive because they are quite simple and they
are used and work quite well in practise. Only a little is known on upper bounds.
Busch et al. [BHW00] presented a special algorithm that uses randomization
to adjust packet priorities. It solves permutation problems in O(n log n) steps
with high probability. In another paper the same authors [BHW00] studied the
problem of many-to-one batch routing where each of the n2 nodes is the source
of at most one packet and a node may be the destination for many packets. Their
algorithm needs O(LB log3 n) steps with high probability where LB ∈ Ω(n) is a
lower bound basing on the maximum path length and the maximum congestion
of a given problem instance.

In general the so far best upper worst-case bound for greedy hot potato routing
algorithms is O(n2) [BRS97, BHS98] and is known for more than a decade. The
bound is far away from all experimental results. Indeed, there seems to be a huge
gap between theoretical analysis and real behaviour. The situation is described
by Ben-Dor et al. [BHS94] as follows: ‘Although fairly simple greedy hot-potato
algorithms perform very well in practice, they resist formal analysis attacks.’
Ten years before Borodin and Hopcroft [BH85] already expressed themselves in
a similiar way: ‘Although experimentally the algorithm appears promising we
have not been able to formally analyze its behaviour.’

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A New Bound for Pure Greedy Hot Potato Routing 51

In this paper we present for permutation problems a new upper bound of
O(n3/2 log n) for quite natural pure greedy hot potato algorithms. The bound is
derived by the help of a new proof technique which assigns different identities
to each packet and analyzes the interactions between these identities. Moreover,
for the more general link-limited k-destination routing problem we can give a
bound of O(n

√
kn log n) steps for n×n meshes and tori. At the end of this paper

it is shown that this bound is also valid for pure restricted greedy hot potato
algorithms on meshes and tori with diagonals.

2 The Problem and Notations

For technical reasons we will concentrate in this section on 1−1 routing problems
on n×n meshes. That means, each processor is source of at most one packet and
each node is destination of at most one packet. Each row (column) of processors
is then destination of at most n packets. The direct neighbors of a processor
(r, c), 1 ≤ r, c ≤ n, have coordinates (i, j) with |r − i| + |c − j| = 1 and are
each directly connected to node (r, c) with an incoming and an outgoing link.
So, besides the border processors each node has four direct neighbors.

In time interval (0, 1), in the first step, each processor sends its own packet
to a neighboring processor such that the distance to the packet’s destination is
shortened. From that on the following happens: in time interval (t − 1, t), t ≥
2, in step t, each processor inspects the at most 4 packets on the incoming
links, makes a routing decision, and sends the packets on the outgoing links to
directly neighboring processors (see Fig. 1). Packets which have reached their
destinations are stored in the storage of the corresponding node and are no longer
living in the system.

In the following we give the general scheme for the priorities of packets just
for the moment when packets meet each other in a processor (see Fig. 1). For
this purpose we classify packets with respect to their movements and directions
they want to move. The wanted directions are those which shorten the distance
to the corresponding destinations.

Forward packets (type (f)) are those which have moved towards their desti-
nation in the beginning of this step, backward packets (type (b)) are those which
were deflected (that is they have moved away from their destination.) In a greedy
algorithm all forward packets want to remain forward, that is they want further
to shorten their distance to their target processor. All backward packets want
to become forward packets.

A packet that is already either in its destination row or destination column is
called restricted (type (r)). It is also called restricted if it is allowed to enter either
its destination row or destination column. Restricted packets are not allowed to
leave their destination row (or destination column), i.e. they remain restricted
until they reach their target. Note that by this rule the algorithm is still greedy.

Packets which are not restricted are called normal (type (n)). Note that nor-
mal packets have two directions free to reduce the distance to their targets.

Restricted packets have priority over normal packets, and forward packets
have higher priority against backward packets.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

52 M. Kunde

D

C

B

A
f

f

b

b

B desired forward directions
of packet B

C
b

A

B

D

b

f

f

Fig. 2. Conflicts in the normal case

Since normal packets have two forward directions the worst scenario occurs
when four normal packets have the same two forward directions. This can only
happen when two backward packets meet two forward packets. In this case the
two forward packets are preferred and travel towards their destinations while the
backward packets are deflected and remain backward (see Fig. 2). Note that at
latest in a corner processor a backward packet changes to a forward one. That
means after at most 2n − 2 steps a backward packet becomes a forward one.

From two restricted packets in a row (resp. column) which meet in a processor
and want to travel along the same link one is a forward packet and the other
a backward packet. The forward packet is prefered and reaches its destination
within at most n−1 steps. The restricted backward packet will become a forward
packet latest after n−1 steps in a border processor. All in all a restricted packet
reaches its target after at most 2n − 2 steps.

So clearly, normal packets want to become restricted and this can only happen
when they arrive at a processor in their destination row or column. We only
discuss the case for the column, the row case is analogous. If there is at most
one restricted packet in that processor the packet can enter the column and is
restricted from now on. However, in the case of two restricted packets the packet
is deflected (as shown in Fig. 4 where packet C wants to enter column k). The
former forward packet becomes a backward one. We say that the packet has
suffered a basic conflict, since from this moment on the packet may be deflected
several times until it becomes a forward packet again. In the case where one
restricted packet meets two packets which want to enter the column, one of
them enters and becomes restricted while the other one suffers a basic conflict
and is deflected. In the following we handle this case as if two restricted packets
have hindered a packet to enter the column.

In this sense normally two restricted packets at the same processor can gen-
erate basic conflicts for at most two other normal packets. A special case for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A New Bound for Pure Greedy Hot Potato Routing 53

D from class i (resp. n + j)
suffers a

A becomes
restricted

A

i,j

C

B

A
f

f

b

b

D

(r)

C

f

b

B

D = P

f

f

foreign basic conflict

Fig. 3. Foreign basic conflicts

a basic conflict occurs when a restricted backward packet turns at the border
and one or two packets from a border row try to enter the column. In this case
each of them suffers a basic conflict generated by only one restricted packet. The
situation is similiar to that when two packets from a border row want to enter
the column: one becomes restricted and the other one suffers a basic conflict and
is deflected.

Normally basic conflicts occur between packets which belong to the same
destination column (or row). In the following rows and columns are also denoted
as classes. Each packet belongs to its destination row and to its destination
column. So each packet is member of 2 classes. To a deflected packet and a basic
conflict belong a pair of restricted packets of the corresponding destination class
(either a column or a row) or one restricted packet in the borderline case.

There is another type of basic conflict (see Fig. 3). When a packet A becomes
restricted for a destination row (column) and two forward packets (B and D) not
belonging to that row want to go in the same direction as packet A. When they
have the same second free direction then only one (say B) can get that link and
the other (D) is deflected. We then say that D suffers a foreign basic conflict. D
is a witness for a packet of a foreign class, namely A, that becomes restricted.
A is in a class which is different (foreign) from the classes of packet D. And we
can say that the foreign packet A is responsible for this basic conflict. A is never
again responsible for any conflict of this type.

By a basic conflict a packet turns from forward to backward. Note that after
at most 2n − 2 steps a backward packet becomes forward again. Within at most
2n − 2 further steps a forward packet may either reach its target or becomes
restricted or can become a backward packet only by a basic conflict. We will
look at phases of 6n steps which consists of a conflict phase of the first 4n
steps and a leaving phase of the last 2n steps. Note that all restricted packets of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

54 M. Kunde

with respect to row class h
and a primary exchange conflict

C cannot become restricted

(or column class k)
with respect to class i = n + k

A

C = Ph,k

B

(r)

D

(r)

in row j

column k

C suffers primary self conflicta

two leaving (restricted)
packets A and B
block column k

Fig. 4. Primary self conflicts and classes

the conflict phase will reach their targets latest in the leaving phase. A packet
which survives a conflict phase of 4n steps is called a surviving packet and suffers
at least one basic conflict. The first basic conflict of a surviving packet in the
conflict part of a phase is called a primary conflict. (A surviving packet may
leave the system in the next 2n steps, but this will play no role in the following
analysis.) Packets which are restricted at the beginnig of the conflict phase or
become restricted during the conflict phase are called leaving packets since they
will have left the system latest during the leaving phase of 2n steps. Let phase
t consists of steps 6nt, 6nt + 1, ..., 6nt + 4n, ..., 6n(t + 1) − 1.

Let a packet with destination (i, j) be denoted by Pi,j . Then Pi,j is member of
row class i and column class j. In this sense packets have a kind of two identities
which play a role in primary conflicts. In the following we will number the classes
all together from 1 to 2n, row class i becomes class i and column class j becomes
class n + j.

Let ni(t) denote the number of packets in class i, 1 ≤ i ≤ 2n, at the beginning
of phase t, t ≥ 0. So ni(0) is the number of packets in class i in the beginning at
time 0. Let li(t) denote the number of packets in class i, 1 ≤ i ≤ 2n, which are
already or become leaving packets during the conflict phase of phase t. Then

ni(t + 1) ≤ ni(t) − li(t) (1)

for all i and t. Note that each of the ni(t)− li(t) surviving packets suffers exactly
one primary conflict.

A packet Pi,j may have its primary conflict with either restricted packets of
class i or of class n + j or with a packet which becomes restricted in a foreign
class. If packet Pi,j suffers a primary conflict with restricted packets from its
own class i (class n + j) then this conflict is called a primary self conflict with
respect to class i (class n + j). The same conflict is called a primary exchange
conflict with respect to the (orthogonal) class n + j (class i). So self conflicts of
a row are exchange conflicts for different columns, and self conflicts of a column

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A New Bound for Pure Greedy Hot Potato Routing 55

are exchange conflicts for different rows (see Fig. 4). So each conflict of this type
is regarded (and later counted) twice depending on the chosen identity of the
corresponding packet Pi,j .

Let for phase t and class i ei(t) denote the number of surviving packets of class
i that suffer a primary self conflict with restricted packets from class i and let
wi(t) be the number of surviving packets of class i that suffer primary exchange
conflicts with restricted packets from their own class �= i. And let fi(t) be the
number of surviving packets of class i that suffer a foreign primary conflict. Then
ni(t) − li(t) = ei(t) + wi(t) + fi(t) , 1 ≤ i ≤ 2n, or

ni(t) = ei(t) + wi(t) + fi(t) + li(t) , 1 ≤ i ≤ 2n . (2)

Here each packet and its primary conflict is counted twice. Since each primary
self conflict is also a primary exchange conflict and vice versa we get

2n∑

i=1

ei(t) =
2n∑

i=1

wi(t) . (3)

Let N(t) =
∑2n

i=1 ni(t) the (doubly counted) number of still existing packets at
the beginning of phase t, and L(t) =

∑2n
i=1 li(t) the (doubly counted) number of

all leaving packets. Let F (t) =
∑2n

i=1 fi(t) be the (doubly counted) number of
all foreign primary conflicts in phase t. As already said each packet that suffers
a foreign primary conflict meets one leaving packet of a foreign class which is
responsible for this conflict. Hence F (t) ≤ L(t). Note that again all conflicts and
all packets are doubly counted which is due to membership of a packet in two
classes. Then

N(t) =
2n∑

i=1

ni(t) =
2n∑

i=1

ei(t) +
2n∑

i=1

wi(t) +
2n∑

i=1

fi(t) +
2n∑

i=1

li(t)

= 2
2n∑

i=1

ei(t) + F (t) + L(t) ≤ 2
2n∑

i=1

ei(t) + 2L(t) . (4)

The number of self conflicts of class i is bounded by the number of pairs of
leaving packets, each pair may be responsible for up to two primary conflicts.
Note that two restricted packets can meet in a class at most once. So the number
of packets suffering a self conflict from these pairs is at most 2(li(t)−1)li(t)/2 =
li(t)2 − li(t). At the boundary each turning restricted packet may also cause two
self conflicts. Therefore the number of self conflicts is bounded by

ei(t) ≤ li(t)2 + li(t) . (5)

3 The New Bound

Let for phase t αi(t) = li(t)/ni(t)1/2 , i.e. li(t) = αi(t)ni(t)1/2 and 0 ≤ αi(t) ≤
ni(t)1/2. If the factor αi(t) is large then many packets of class i will leave the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

56 M. Kunde

system and we will classify such a situation as good. In the following lemma the
influence of these factors on the the number of still existing packets is given.

Lemma 1. ni(t + 1)1/2 ≤ ni(0)1/2 − (1/2)
∑t

j=0 αi(j) , t ≥ 0 .

Proof. By inequality (1) and the defintion of αi(t) we get

ni(t + 1) ≤ ni(t) − li(t) = ni(t) − αi(t)ni(t)1/2 ≤ ni(t) − αi(t)ni(t)1/2 + αi(t)2/4

= (ni(t)1/2 − αi(t)/2)2 and therefore

ni(t + 1)1/2 ≤ ni(t)1/2 − αi(t)/2 ≤ ni(t − 1)1/2 − αi(t − 1)/2 − αi(t)/2

≤ ni(0)1/2 − (1/2)
t∑

j=0

αi(j) .

��
Let c > 0 be a constant. A phase t is c-good for a class i if and only if αi(t) ≥ c.
In a certain sense in a c-good phase enough packets are leaving that class. If
phase t is not c-good, then we say it is c-bad for class i.

Lemma 2. Each class i has at most gi ≤ (2/c)ni(0)1/2 c-good phases.

Proof. From the last lemma we know that

(1/2)
t∑

j=0

αi(j) ≤ ni(0)1/2 − ni(t + 1)1/2 ≤ ni(0)1/2 .

Let g = gi and t1, . . . , tg be all c-good phases for class i until phase t. That
means, αi(tk) ≥ c for all k, 1 ≤ k ≤ g. Hence

(1/2)cg ≤ (1/2)
g∑

k=1

αi(tk) ≤ (1/2)
t∑

j=0

αi(j) ≤ ni(0)1/2 .

��
If for all classes all the phases are c-good then this lemma says that there are in
total at most O(

√
n) phases and the routing is done in at most O(

√
nn) steps.

However, there might be also a lot of c-bad phases for the different classes. In
the following let c be a constant with c < 1/2 and let d = 2c2 < 1/2.

Lemma 3. In a c-bad phase t for class i we have ei(t) < 2c2ni(t) = dni(t) .

Proof. If phase t is c-bad for class i we have αi(t) < c. Therefore

li(t)2 + li(t) < c2ni(t) + cni(t)1/2 .

For ni(t)1/2 ≤ 1/c we get li(t) < cni(t)1/2 ≤ 1, i.e. li(t) = 0. In this case primary
self conflicts do not occur. Therefore we may assume that ni(t)1/2 > 1/c or
cni(t)1/2 > 1, from which we immediately get cni(t)1/2 < c2ni(t). We already
know by inequality (5) that ei(t) ≤ li(t)2 + li(t). Therefore

ei(t) < c2ni(t) + cni(t)1/2 ≤ 2c2ni(t) .

��

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A New Bound for Pure Greedy Hot Potato Routing 57

In the following we show that the number of packets which have not reached
their destinations is halved within at most O(n

√
n) steps. Let x be the last

phase with N(x) > (1/2)N(0), i.e. N(x + 1) ≤ (1/2)N(0).

Lemma 4. Let g = max gi be the maximum number of c-good phases for all
classes. Then

x ∈ O(g) .

Proof. If x ≤ 2g we are done, so let x > 2g. Let Gi = {t|0 ≤ t ≤ x, αi(t) ≥ c} be
the set of c-good phases for class i among the first x+ 1 phases and Bi = {t|0 ≤
t ≤ x, αi(t) ≤ c} be the set of c-bad phases for class i. Then |Gi| + |Bi| = x + 1
and |Gi| = gi ≤ g. Then by the help of inequality (4)

x∑

t=0

N(t) =
2n∑

i=1

x∑

t=0

ni(t) ≤ 2
2n∑

i=1

x∑

t=0

ei(t) + 2
x∑

t=0

L(t)

≤ 2
2n∑

i=1

(
∑

t∈Gi

ei(t) +
∑

t∈Bi

ei(t)) + 2(N(0) − N(x + 1)) .

Note that for a c-good phase t for class i we trivially have ei(t) ≤ ni(t) and
for a c-bad phase t by Lemma 3 we get ei(t) < dni(t). Then for each class i

∑

t∈Gi

ei(t) +
∑

t∈Bi

ei(t) ≤
g−1∑

t=0

ni(t) +
x∑

t=g

dni(t) .

This follows from ni(t + 1) ≤ ni(t) and d < 1/2 and by rearranging. Hence

2n∑

i=1

x∑

t=0

ni(t) =
x∑

t=0

N(t) ≤ 2
2n∑

i=1

(
g−1∑

t=0

ni(t) +
x∑

t=g

dni(t)) + 2N(0)

and therefore

x∑

t=g

2n∑

i=1

ni(t) ≤
g−1∑

t=0

2n∑

i=1

ni(t) + 2
x∑

t=g

2n∑

i=1

dni(t) + 2N(0) or

x∑

t=g

(1 − 2d)N(t) ≤
g−1∑

t=0

N(t) + 2N(0) ≤ (g + 2)N(0)

Since N(t) > N(0)/2 for all t ≤ x we get

(x − g)(1 − 2d)N(0)/2 ≤ (x − g + 1)(1 − 2d)N(0)/2 ≤ (g + 2)N(0)

und therefore
x ≤ (g(3 − 2d) + 4)/(1 − 2d) ∈ O(g) .

��

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

58 M. Kunde

By Lemma 4 the number of good phases is bounded by O(
√

n). I. e. the number
of surviving packets is halved within at most O(

√
n) phases. Since each phase

consists of O(n) steps we obtain the following theorem:

Theorem 1. For permutation routing on an n × n grid the pure greedy hot
potato routing algorithm needs at most O(n

√
n log n) steps.

4 Extensions

Note that the above bound is also valid for n × n tori. In this case the duration
of the phases can be halved because normal backward packets become forward
ones after at most n steps and restricted backward packets turn into forward
packets after at most n/2 steps. Furthermore, the bound also holds for 4 − 4
routing problems on tori where in the beginning each processor contains at most
4 packets and is target of at most 4 packets. Note that in this case the maximal
number of c-good phases is bounded by (2/c)

√
4n, which follows from Lemma

2 and ni(0) ≤ 4n. For meshes without wrap-around connections the problem
has to be altered slightly. The number of packets in the beginning is limited by
the number of direct neighbors and processors at the border have less than four
direct neighbors. So let us view link-limited k-destination routing problems, as
described in the introduction, where each node may be source of as many packets
as it has links to direct neighbors and each processor is destination of at most
k packets, k ≥ 1. For such a problem a class (a row or a column) has at most
kn members. In this case we get, again by Lemma 2, that the number of c-good
phases is limited by (2/c)

√
kn which is in O(

√
n) provided k is a constant.

Theorem 2. For link-limited k-destination routing problems, k ≥ 1, the pure
greedy hot potato routing algorithm needs at most O(n

√
kn log n) steps on n × n

meshes and tori.

In the case of grids with diagonals in a greedy algorithm the packets would prefer
to travel along the diagonal connections because this would shorten the distances
to their targets mostly. If we agree that the hot potato algorithm is still pure
greedy when each packet must try to get closer to its destination whenever this
is possible then the concept of restricted packets must be changed. Consider the
situation where two packets have arrived their destination column and want to
enter their column in the same direction. In the case of grids without diagonals
both packets become restricted, one becomes a forward packet while the other
one becomes backward. In the case of diagonals the second packet may choose
a free diagonal connection to get closer to its target. (See Fig. 5.) The status of
being restricted with respect to its destination column or row or with respect to
one of its destination diagonals is of some value for a packet because a restricted
packet will reach its target within at most 2n steps. Let us call a hot potato
algorithm pure restricted greedy when all packets that are already restricted
remain restricted for their chosen either row, column or diagonal, even when
it is backward. Also, if a packet has the chance to become restricted then it

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A New Bound for Pure Greedy Hot Potato Routing 59

A B

A
(r)

B
(r)

f

b

C

C

A B

A
(r)

B
ff

both packets restricted,
packet B not greedy−like

both packets greedy−like,
but packet B not restricted

Fig. 5. Diagonals: restricted vs. greedy-like

must enter its destination row, column or diagonal, even in the case it becomes
backward. For this kind of algorithms we get the following result.

Theorem 3. For link-limited k-destination routing problems, k ≥ 1, the pure
restricted greedy hot potato routing algorithm needs at most O(n

√
kn log n) steps

on n × n meshes and tori with diagonals.

In the case of grids with diagonals a packet belongs to four classes: to its desti-
nation row, to its destination column, and to its two destination diagonals. I.e.
each packet has four identities. Since there are in total 4n − 2 diagonals, 2n − 1
for each slope, we have now classes with different numbers of processors. All in
all we have now 6n − 2 classes. As before let ni(t) denote the number of packets
in class i in the beginning of phase t and let N(t) =

∑6n−2
i=1 ni(t). (In N(t) each

packet is counted four times.) Then we have ni(0) ≤ kn. Note that now each
self conflict of a packet in a class i is an exchange conflict for 3 other classes �= i
to which the packet also belongs. Therefore 3

∑6n−2
i=1 ei(t) =

∑6n−2
i=1 wi(t). Then

N(t) =
6n−2∑

i=1

ni(t) =
6n−2∑

i=1

ei(t) +
6n−2∑

i=1

wi(t) +
6n−2∑

i=1

fi(t) +
6n−2∑

i=1

li(t)

= 4
6n−2∑

i=1

ei(t) + F (t) + L(t) ≤ 4
6n−2∑

i=1

ei(t) + 2L(t) .

The rest of the argumentation is then analogous to the case of grids without
diagonals.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

60 M. Kunde

References

[Bar64] Baran, P. (1964) On distributed communication networks. IEEE Trans.
Commun. Syst., 12, 1–9.

[BES95] Ben-Aroya, I., Eilam, T. and Schuster, A. (1995) Greedy hot-potato routing
on the two-dimensional mesh. Distrib. Comput., 9, 3–19.

[BH85] Borodin, A. and Hopcroft, J. E. (1985) Routing, merging, and sorting on
parallel models of computation. J. Comput. Syst. Sci., 30, 130–145.

[BHS94] Ben-Dor, A., Halevi, S. and Schuster, A. (1994) Potential function analysis
of greedy hot-potato routing. In Symposium on Principles of Distributed
Computing (PODC ’94), pp. 225–234, New York, USA, ACM Press.

[BHS98] Ben-Dor, A., Halevi, S. and Schuster, A. (1998) Potential function analysis
of greedy hot-potato routing. Theory Comput. Syst., 31, 41–61.

[BHW00] Busch, C., Herlihy, M. and Wattenhofer, R. (2000) Randomized greedy
hot-potato routing. In Proc. 11th Ann. ACM-SIAM Symposium on Discrete
Algorithms (SODA’2000), San Francisco, CA, pp. 458–466. ACM/SIAM.

[BHW00] Busch, C., Herlihy, M. and Wattenhofer, R. (2000) Hard-potato routing. In
Proc. 32nd Ann. ACM Symp. on the Theory of Computing (STOC’2000),
Portland, OR, pp. 278–285. ACM.

[BRS97] Borodin, A., Rabani, Y. and Schieber, B. (1997) Deterministic many-to-
many hot potato routing. IEEE Trans. Parallel Distrib. Syst., 8, 587–596.

[FR92] Feige, U. and Raghavan, P. (1992) Exact analysis of hot-potato routing.
In Proc. 33rd Ann. Symp. Foundations of Computer Science (FOCS’92),
Pittsburgh, PA, pp. 553–562. IEEE Computer Society Press.

[Hil85] Hillis, W. D. (1985) The Connection Machine. MIT Press, Cambridge, MA.
[KKR] Kaklamanis, C., Krizanc, D., and Rao, S. (1993) Hot-potato routing on

processor arrays. Proc. 5th Annual ACM Symp. on Parallel Algorithms and
Architectures (SPAA’93), pp. 273–282.

[KLS] Kaufmann, M., Lauer, H. and Schröder, H. (1994) Fast deterministic hot-
potato routing on meshes. Proc. 5th International Symp. on Algorithms
and Computation (ISAAC), LNCS 834, pp. 333–541.

[NS95] Newman, I. and Schuster, A. (1995) Hot-potato algorithms for permutation
routing. IEEE Trans. Parallel Distrib. Syst., 6, 1168–1176.

[Sei92] Seitz, C. L. (1992) Mosaic C: an experimental, fine-grain multicomputer. In
Proc. Int. Conf. Celebrating the 25th Anniversary of INRIA, Paris, France,
December. LNCS 653, pp. 69–85. Springer, New York.

[Smi81] Smith, B. J. (1981) Architecture and applications of the HEP multiproces-
sor computer. Soc. Photocopti. Instrum. Eng., 298, 241–248.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Wavelength Management in WDM Rings
to Maximize the Number of Connections�

Ioannis Caragiannis

Research Academic Computer Technology Institute &
Department of Computer Engineering and Informatics

University of Patras, 26500 Rio, Greece

Abstract. We study computationally hard combinatorial problems aris-
ing from the important engineering question of how to maximize the
number of connections that can be simultaneously served in a WDM
optical network. In such networks, WDM technology can satisfy a set of
connections by computing a route and assigning a wavelength to each
connection so that no two connections routed through the same fiber are
assigned the same wavelength. Each fiber supports a limited number of w
wavelengths and in order to fully exploit the parallelism provided by the
technology, one should select a set connections of maximum cardinality
which can be satisfied using the available wavelengths. This is known as
the maximum routing and path coloring problem (maxRPC).

Our main contribution is a general analysis method for a class of it-
erative algorithms for a more general coloring problem. A lower bound
on the benefit of such an algorithm in terms of the optimal benefit and
the number of available wavelengths is given by a benefit-revealing lin-
ear program. We apply this method to maxRPC in both undirected and
bidirected rings to obtain bounds on the approximability of several algo-
rithms. Our results also apply to the problem maxPC where paths instead
of connections are given as part of the input. We also study the profit
version of maxPC in rings where each path has a profit and the objective
is to satisfy a set of paths of maximum total profit.

1 Introduction

Combinatorial problems arising from high speed communication networks uti-
lizing the Wavelength Division Multiplexing (WDM) technology have received
significant attention since the mid 90’s. Such networks connect nodes through op-
tical fibers. Each fiber can simultaneously carry different data streams provided
that each stream is carried on a different wavelength. In order to fully exploit
the capabilities of these networks, the same wavelength has to be used along a
path so that all necessary processing is performed on the optical domain and
slow opto-electronic conversions are avoided [20]. Given connection requests (i.e.,
transmitter-receiver pairs), the WDM technology establishes communication by

� This work was partially supported by the European Union under IST FET Integrated
Project 015964 AEOLUS.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 61–72, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

62 I. Caragiannis

finding a path from each transmitter to the corresponding receiver and assign-
ing a wavelength to each path so that paths crossing the same fiber are using
different wavelengths. The number of available wavelengths (i.e., the available
optical bandwidth) is limited, so they have to be used efficiently.

The underlying WDM network can be modeled as an undirected graph assum-
ing that each fiber can handle transmissions in both directions. WDM networks
can also be modeled by bidirected graphs (i.e., directed graphs which contain a
directed link (u, v) if and only if it contains (v, u)). Here, we assume that each
fiber is dedicated to transmitting in one direction.

We use the term connection to denote a pair of a transmitter and a receiver
that wish to communicate. Given a set of connections, a routing is a set of paths
connecting each transmitter to the corresponding receiver. The load of a set of
paths is the maximum number of paths crossing any link of the network. The
load of a set of paths gives a lower bound on the number of wavelengths that are
necessary to satisfy them. Combinatorial problems of interest are those which
aim either to minimize the number of wavelengths (intuitively, we may think of
the wavelengths as colors) for a set of connections or to maximize the number
of connections that can be satisfied (also called benefit) given a limitation w on
the number of available wavelengths. Formally, we define the following problems
that abstract the most interesting engineering questions in WDM networks.

Routing and path coloring (RPC). Given a set of connections R on a network,
find a routing P of R and a coloring of P with the minimum number of colors.
When paths instead of connections are given on input, we have the path coloring
(PC) problem.

Maximum routing and path coloring (maxRPC). Given a positive integer w and
a set of connections R on a network, find a subset of R of maximum cardinality
which has a routing that can be colored with at most w colors. When paths
instead of connections are given on input, we have the maximum path coloring
(maxPC) problem.

For general networks, the above problems have been proved to be hard to
approximate. In particular, problems PC and maxPC are in general equivalent
to minimum graph coloring and maximum independent set, two problems which
are very unlikely to have efficient approximation algorithms. Although these re-
sults are disappointing from the practical point of view, the topologies deployed
by the telecommunication industry are much simpler; trees, rings, and mesh-
like planar networks are the most popular ones. In such networks, much better
approximations are feasible. For example, in trees where unique paths corre-
spond to connections, the above problems have algorithms which approximate
the optimal solution within a constant factor (e.g., see [2,6,7,8]).

In this paper we focus on ring networks. Problem PC in rings is also known
as circular arc coloring and has received significant attention in the literature
(e.g., [3,10,13,14,22,23]). It has been proved to be NP-hard in [10]. The best
general approximation algorithm has approximation ratio 3/2 [13] while better
approximation algorithms exist in the case where the load of the set of paths is
polylogarithmic on the ring size [14,15] or/and the minimum number of paths

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Wavelength Management in WDM Rings 63

required to cover the whole ring is not very small [3,23]. Observe that the ring
is the simplest topology where routing decisions can be part of the problems.
Problem RPC is also known to be NP-hard [7]. The best known approximation
algorithm has approximation ratio slightly smaller than 2 [5], while an algorithm
with approximation ratio approaching 3

2 + 1
2e ≈ 1.68394 when the optimal num-

ber of colors is substantially large compared to the size of the ring has been
presented in [15].

For general values of w, problems maxPC and maxRPC are NP-hard; their
NP-hardness follow by the NP-hardness of problems PC and RPC, respectively.
When w = 1, maxRPC is actually the problem of computing a maximum num-
ber of connections that can be routed through link-disjoint paths. Awerbuch
et al. [1] (see also [24]) show that algorithms that iteratively call link-disjoint
paths algorithms to compute solutions to maxRPC with arbitrary w have slightly
worse approximation ratio than the ratio of the algorithm that is used to com-
pute link-disjoint paths. In undirected and bidirected rings, link-disjoint paths of
maximum size can be computed in polynomial-time yielding iterative algorithms
with approximation ratio e

e−1 ≈ 1.58198 [24] (see also the discussion in [18]).
The best known approximation algorithms for maxRPC (and maxPC) in undi-
rected rings has approximation ratio 3/2 [17,18] while an 11/7-approximation
algorithm for maxRPC in bidirected rings is presented in [18]. Interesting variants
of the maxRPC and maxPC problems are their profit versions where connections
(or paths) are associated with non-negative profits and the objective is to color
with at most w colors a set of connections (or paths) with the maximum total
profit. A simple iterative algorithm has approximation ratio 1.58198 in this case
(the proof follows by extending the analysis of [1,24]). Li et al. [16] present a
2-approximation algorithm for a related problem which also has arbitrary load
constraints on the links of the ring.

The aim of this paper is to improve the known approximability bounds for
maxRPC and maxPC in rings. Before presenting our results, we give a brief
overview of the ideas in [17,18]. The algorithm of [18] for the undirected case of
maxRPC (similar ideas are used in [17] for maxPC) actually applies two different
algorithms on the input instance and outputs the best among the two solutions.
The first algorithm colors some of the connections on input with at most w colors
by using the same color in at most two connections. This is done by a maximum
matching computation on the graph which represents the compatibility of pairs
of connections. Of course, this may lead to inefficient solutions if w is very small
compared to the size of the optimal solution. In order to handle this case, another
simple maxRPC algorithm is used whose performance increases as w decreases.
This algorithm simply ignores one link of the ring and routes all connections so
that no path uses this link. In this way an instance of maxPC on a chain network
is obtained. maxPC in chains can be solved optimally in polynomial time by an
algorithm of Carlisle and Lloyd [4]. By simple arguments, this second algorithm
will color at most w connections less than those colored in an optimal solution
of the original maxRPC instance. The same idea can be used in bidirected rings
to color at most 2w connections less than those colored in an optimal solution.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

64 I. Caragiannis

In our algorithms, we also use this last algorithm to handle instances in which
the optimal solution is much larger than w. We will refer to this algorithm as
algorithm CL. In order to handle the most difficult case of large w, we will
exploit iterative algorithms. Their main advantage compared to the maximum
matching algorithm of [18] is that they can color more than two connections
with the same color if this is feasible. We consider not only the basic iterative
algorithm that iteratively computes link-disjoint paths but also more involved
algorithms. We show that even the basic iterative algorithm combined with al-
gorithm CL has approximation ratio 18/13 ≈ 1.38462 and 60/41 ≈ 1.46341 in
undirected and bidirected rings, respectively, significantly improving the e

e−1
bound of [1,24] and the ratios of the algorithms in [17,18]. More involved itera-
tive algorithms that use local search algorithms for computing set packings are
proved to achieve approximation ratios 4/3 and 719/509 + ε ≈ 1.41257, respec-
tively. We also study the profit version of maxPC and we present an algorithm
based on linear programming and randomized rounding [19] with approximation
ratio 1 + 4

3e ≈ 1.49015, improving on the 1.58198 bound obtained by a simple
iterative algorithm. Again, we use as a subroutine an algorithm of Carlisle and
Lloyd [4] for solving the profit variant of maxPC in chains.

For the analysis of the algorithms for the non-profit version of the problems,
we develop a new technique which is quite general and could be applied to
many other contexts where we are given a set of elements together with subsets
of elements that can be assigned the same color and the objective is to color
the maximum number of elements using no more than w colors. In particular,
we present the benefit-revealing LP lemma which provides lower bounds on the
performance of iterative algorithms for such problems in terms of the size of the
optimal solution, w, and the objective value of a linear program. This technique
is motivated by studies of greedy-like algorithms for facility location problems
[12] but, in contrast to [12], benefit-revealing LPs do not directly yield any bound
on the approximation factor; this requires some additional case analysis.

The rest of the paper is structured as follows. In Section 2 we present the
maxColoring problem which generalizes problems maxRPC and maxPC, define a
class of iterative maxColoring algorithms, and present the benefit-revealing LP
lemma for analyzing their performance. In Section 3, we present our maxRPC
algorithms. The profit version of maxPC is studied in Section 4. Due to lack of
space, most of the proofs have been omitted from this extended abstract.

2 Iterative Algorithms for the maxColoring Problem

The problems maxRPC and maxPC can be thought of as special cases of the
maxColoring problem defined as follows. We are given an integer w, a set V and
a set S of subsets of V called compatible sets (S is closed under subsets). The
objective is to compute a subset of w disjoint sets of S whose union contains
a maximum number of elements of V . In other words, we are seeking for an
assignment of colors to as many elements of V as possible so that at most w
different colors are used and, for each color, the set of elements colored with

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Wavelength Management in WDM Rings 65

this color is a compatible set. The compatible sets can be given either explicitly
or implicitly. For example, for w = 1 and by defining the compatible sets to
be the independent sets of a graph, the problem is identical to the maximum
independent set problem. In maxRPC instances, the compatible sets are all those
sets of connections which have a routing so that the corresponding paths do not
share the same fiber (i.e., sets of link-disjoint paths).

The maxColoring problem is strongly related to the problem of computing a
compatible set of maximum size. A simple iterative algorithm repeatedly (i.e., w
times) includes a compatible set of maximum size that does not contain elements
that are contained in compatible sets selected before. Awerbuch et al. [1] (see
also [24]) have shown that, using an algorithm that computes a compatible set
of size at most ρ times smaller than the size of the maximum compatible set, the
corresponding iterative algorithm has approximation ratio at most 1

1−exp(−1/ρ) .
Even in the case where a compatible set of maximum size can be computed
in polynomial time (this is trivial if all compatible sets are given explicitly),
the approximation ratio of the iterative algorithm is e

e−1 ≈ 1.58198. In gen-
eral, this bound is best possible. A maxColoring algorithm with strictly better
approximation ratio could be executed repeatedly to approximate minimum set
cover within a factor of α ln n for some constant α < 1, contradicting a famous
inapproximability result due to Feige [9].

In this paper, we are interested in solutions of instances of the maxColoring
problem when a compatible set of maximum size can be computed in polyno-
mial time. We study the class of iterative maxColoring algorithms which try to
accommodate elements of V by computing as many as possible disjoint compati-
ble sets of the maximum size. This involves solving instances of the k-set packing
problem. An instance of k-set packing consists of a set of elements V , a set S of
subsets of V each containing exactly k elements, and the objective is to compute
a maximum number of disjoint elements of S. A solution to this problem is called
a k-set packing. A k-set packing is called maximal if it cannot be augmented by
including another set of S without loosing feasibility. An iterative maxColoring
algorithm works as follows:

Input: An integer w, a set V and a set of compatible sets S ⊆ 2V .
Output: At most w disjoint sets T1, T2, ..., of S.

1. Set F := V , T := S, i := 1 and denote by k the size of the largest compatible
set in T .

2. While i ≤ w or F �= ∅ do:
(a) Compute a maximal k-set packing Π among the sets of T of cardinality

k.
(b) If Π �= ∅ then

i. Denote by I0, I1, ..., It−1 the compatible sets in Π and set F ′ :=
∪min{w−i,t−1}

j=0 Ij .
ii. For j := 0, ..., min{w − i, t − 1}, set Ti+j := Ij .
iii. Set F := F \ F ′, T := T \ ∪S∈T :F ′∩S �=∅S and i := i + t.

(c) Set k := k − 1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

66 I. Caragiannis

The algorithm that iteratively computes a compatible set of maximum size
(henceforth called the basic iterative algorithm) can be thought of as an algorithm
belonging to the above class of algorithms. In step 2a, it computes a maximal k-
set packing by iteratively computing compatible sets of size k and removing from
F the elements in the compatible sets computed. Since including a compatible
set of size k may force at most k compatible sets of an optimal k-set packing
to be excluded from the solution, this algorithm has approximation ratio k for
solving the k-set packing problem. Using different methods for computing k-set
packings, we obtain different algorithms. When the maximum compatible set
has constant size κ, computing a maximal k-set packing can be done using a
local search algorithm. Consider the set S of all compatible sets of V of size
κ. A local search algorithm uses a constant parameter p (informally, this is an
upper bound on the number of local improvements performed at each step) and,
starting with an empty packing Π , repeatedly updates Π by replacing any set
of s < p sets of Π with s + 1 sets so that feasibility is maintained and until no
replacement is possible. This algorithm is analyzed in [11].

Theorem 1 (Hurkens and Schrijver [11]). The local search algorithm that
computes k-set packings by performing at most p local improvements at each step
has approximation ratio at most k(k−1)r−k

2(k−1)r−k if p = 2r−1 and k(k−1)r−2
2(k−1)r−2 if p = 2r.

The next lemma relates the approximation ratio of iterative algorithms with the
approximation ratio of the k-set packing algorithms used in step 2a.

Lemma 1 (Benefit-revealing LP). Let Alg be an iterative maxColoring algo-
rithm that uses ρk-approximation algorithms for computing maximal k-set pack-
ings in step 2a. Consider the execution of Alg on a maxColoring instance (V, S, w)
and let OPT ⊆ V be an optimal solution for this instance. If Alg terminates by
including elements of compatible sets of size k = t, then, for any λ > t, its benefit
is at least

(

1 − t

λ + 1

)

|OPT | +
(

t − λ +
λt

λ + 1
+ Z∗

λ,t

)

w

where Z∗
λ,t is the maximum objective value of the following linear program

maximize
(

1 − t

λ + 1

) λ−1∑

i=t+1

(λ − i)γi +
λ∑

i=t+1

δi +
λ∑

i=t+1

βi

subject to:
(

1 − t

λ + 1

) j−1∑

i=t+1

γi + δj ≤ 1 − t

j
, j = t + 2, ..., λ

(

1 − t

λ + 1

) λ−1∑

i=t+1

γi + δλ + βλ ≤ 1 − t

λ + 1
(

1 − t

λ + 1

)

γj + δj+1 − δj − βj ≥ 0, j = t + 1, ..., λ − 1

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Wavelength Management in WDM Rings 67

j

ρj

(

1 − t

λ + 1

) j−1∑

i=t+1

γi +
j

ρj
δj + βj ≤ j − t

ρj
, j = t + 1, ..., λ

γj ≥ 0, j = t + 1, ..., λ − 1
δj, βj ≥ 0, j = t + 1, ..., λ

Lemma 1 can be extremely helpful for the analysis of the performance of iterative
algorithms on instances of maxColoring where a maximum compatible set can be
computed in polynomial time and, additionally, the ratio |OPT |/w is upper-
bounded by a (small) constant. For these instances, the e

e−1 bound for the basic
iterative algorithm following by the analysis in [1,24] can be improved. The new
proofs are not particularly complicated and they require solving a few simple
linear programs.

3 Applications to maxRPC

In the case of maxRPC, the ratio of the size of the optimal solution over the
number of available wavelengths is not bounded in general. Hopefully, very sim-
ple algorithms are efficient when this ratio is large while iterative algorithms are
proved to be efficient for small values of this ratio through the benefit-revealing
LP analysis. So, all the maxRPC algorithms we describe in the section have the
same structure. They execute algorithm CL and an iterative algorithm on the
input instance and output the best among the two solutions.

We denote by CL-I the algorithm obtained by combining algorithm CL with the
basic iterative algorithm that iteratively computes compatible sets of connections
on undirected rings. The approximation ratio of algorithm CL-I is stated in the
next theorem.

Theorem 2. Algorithm CL-I has approximation ratio at most 18/13 for maxRPC
in undirected rings.

Note that this is already an improvement to the 3/2-approximation algorithm
of [18]. Next we further improve the bound of Theorem 2 by using another
simple iterative algorithm. For k ≥ 4, algorithm I&3LS computes maximal k-
set packings in the naive way (i.e., by mimicking the basic iterative algorithm).
Maximum 2-set packings among compatible sets of 2 connections are computed
using maximum matching computation while a 2-approximation algorithm is
used to compute maximal 3-set packings among compatible sets of connections
of size 3 (i.e., a local search algorithm performing 2 local improvements at each
step). Algorithm CL-I&3LS simply calls both algorithms CL and I&3LS on the
input instance and outputs the best among the two solutions.

Theorem 3. Algorithm CL-I&3LS has approximation ratio at most 4/3 for
maxRPC in undirected rings.

Proof. Consider the application of algorithm CL-I&3LS on an instance of problem
maxRPC consisting of a set of connections on an undirected ring supporting w

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

68 I. Caragiannis

wavelengths. Denote by OPT an optimal solution. If w ≤ |OPT |/4, algorithm
CL computes a solution of size at least 3

4 |OPT |. We will also show that when
w ≥ |OPT |/4, algorithm I&3LS computes a solution of size at least 3

4 |OPT |.
We may assume that algorithm I&3LS has used all the w wavelengths when

it terminates (if this is not the case, then algorithm I&3LS has optimal benefit).
We distinguish between three cases depending whether the last wavelength is
assigned to compatible sets of connections of size at least 3, 2, or 1. If all wave-
lengths are assigned to connections in compatible sets of size at least 3, then the
benefit of algorithm I&3LS is at least 3w ≥ 3

4 |OPT |.
For λ = 3 and t = 2, the benefit-revealing LP is simply to maximize δ3 + β3

subject to 3
2δ3 +β3 ≤ 1

2 with δ3, β3 ≥ 0. This is trivially maximized to 1/2 which
yields that the benefit of algorithm I&3LS when it terminates by assigning the
last wavelength to a compatible set of 2 connections is at least 1

2 |OPT | + w ≥
3
4 |OPT |.

For λ = 3 and t = 1, the benefit-revealing LP is

maximize
3
4
γ2 + δ2 + δ3 + β2 + β3

subject to
3
4
γ2 + δ3 − δ2 − β2 ≥ 0

3
4
γ2 + δ3 + β3 ≤ 3

4
3
4
γ2 + δ3 ≤ 2

3

δ2 + β2 ≤ 1
2

9
8
γ2 +

3
2
δ3 + β3 ≤ 1

γ2, δ2, δ3, β2, β3 ≥ 0

which is maximized to 5/4 for γ2 = 2/3, δ2 = δ3 = 0, β2 = 1/2, and β3 = 1/4.
Hence, we obtain that the benefit of algorithm I&3LS when it terminates by
assigning the last wavelength to a single connection is at least 3

4 |OPT |. 	

Next we present algorithms that improve the 11/7 approximation bound of [18]
in bidirected rings. We denote by bCL-I the algorithm obtained by combining
algorithm CL with the basic iterative algorithm that iteratively computes com-
patible sets of connections on bidirected rings. Its approximation ratio is stated
in the next theorem.

Theorem 4. Algorithm bCL-I has approximation ratio at most 60/41 for
maxRPC in bidirected rings.

We can exploit local search algorithms for computing set packings among com-
patible sets of connections. Algorithm I&7LS uses the naive iterative algorithm
to compute k-set packings for k ≥ 8, while it uses the k/2+ε-approximation local
search algorithms to compute k-set packings for k ∈ {4, 5, 6, 7}. Optimal 3-set

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Wavelength Management in WDM Rings 69

packings among compatible sets of connections of size 3 in bidirected rings are
easy to compute using a maximum matching computation while 2-set packing
is trivial since any set of 2 connections in a bidirected ring is a compatible set.
Algorithm bCL-I&7LS simply calls both algorithms CL and I&7LS on the input
instance and again outputs the best among the two solutions.

Theorem 5. Algorithm bCL-I&7LS has approximation ratio at most 719/509+ε
for maxRPC in bidirected rings.

Note that we have made no particular attempt to design k-set packing algorithms
among compatible sets of connections in rings with better approximation guaran-
tees than those of the general set packing algorithms analyzed in [11]. Although,
in general, improving the bounds in [11] is a long-standing open problem this
may be easier by exploiting the particular structure of the ring. An algorithm
for 4-set packing among compatible sets of 4 connections with approximation
ratio strictly smaller than 2 would immediately yield an iterative algorithm with
approximation ratio strictly better than 4/3 for maxRPC in undirected rings.
Similar improvements could be possible in bidirected rings as well.

4 Approximating the Profit Version of maxPC

By adapting the algorithms presented in Section 3 to work with paths instead
of connections, we can obtain the same approximation bounds with those in
Theorems 2 and 3 for the maxPC problem as well. Both results improve the
3/2-approximation algorithm of [17].

In the following we consider the profit version of the maxPC where together
with each path we are given a non-negative profit and the objective is to select a
w-colorable set of paths (or, equivalently, w disjoint compatible sets of paths) of
maximum total profit. Again, we use two algorithms and pick the best solution.
The first algorithm essentially mimics an algorithm of Carlisle and Lloyd [4]
for the profit version of maxPC in chains applied to the paths not traversing a
particular link e0 of the ring. The second algorithm solves a linear programming
relaxation of the problem maxPC and obtains a feasible integral solution by
applying randomized rounding.

Given a set of paths P on a ring, denote by I the set of all compatible sets
of paths in P . The problem can be expressed as the following integer linear
program.

maximize
∑

p∈P

cp

∑

I∈I:p∈I

yI

subject to
∑

I∈I:p∈I

yI ≤ 1, ∀p ∈ P

∑

I∈I
yI ≤ w

yI ∈ {0, 1}, ∀I ∈ I

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

70 I. Caragiannis

Although the above ILP has an exponential number of variables, we can
solve its linear programming relaxation (obtained by relaxing the integrality con-
strained to 0 ≤ yI ≤ 1) by transforming it to a multicommodity flow problem.
Denote by P0 the subset of P containing the paths traversing link e0. Consider
the following network N = (V (N), E(N)) having two special nodes s and t, two
nodes sp and tp for each path p ∈ P0 and one node vp for each path p ∈ P \ P0.
The nodes s and t have capacity w while all other nodes in V (N) have unit
capacity. For each pair of compatible paths p, q such that p ∈ P0 and q ∈ P \P0,
E(N) contains the directed edges (sp, vq) and (vq , tp). For any two compatible
paths p, q ∈ P \ P0 such that path p is met prior to q when we walk clockwise
on the ring starting from edge e0, E(N) contains the directed edge (vp, vq). For
any path p ∈ P \ P0, E(N) contains the two directed edges (s, vp) and (vp, t). A
directed path from s to t in N corresponds to a compatible set of paths in P \P0,
while a directed path from node sp to node tp corresponds to a compatible set
of paths containing the path p ∈ P0. Denote by U0 (resp. V0) the set of nodes s
(resp. t) and sp (resp. tp) for each p ∈ P0.

Now, the maxPC problem with profits is equivalent to computing flows for
each commodity (the flow for commodity corresponding to a node u ∈ U0 has to
be carried to the corresponding node in V0) such that the capacity constraints
are not violated (i.e., the flow entering/leaving any node in V (N) \ {s, t} is at
most 1 and the flow entering node t or leaving node s is at most w), the total
flow of all commodities is at most w, and the quantity

∑
p∈P cp

∑
u∈U0

f
(u)
vp is

maximized. By f
(u)
vp we denote the flow for commodity corresponding to node

u ∈ U0 that is carried by the node vp. In order to compute the values of the
fractional variables in the solution of the LP relaxation, it suffices to decompose
the flow of each commodity into flow paths and to set yI equal to the flow carried
by the flow path corresponding to compatible set I. The variables of compatible
sets that correspond to flow paths carrying no flow are implicitly set to zero.

Denote by y∗ the optimal solution to the LP relaxation of ILP. By ignoring the
paths in P0, we get an instance of the multicommodity flow problem with just one
commodity. It can be easily seen that the constraint matrix of the corresponding
LP is totally unimodular and, since the capacities are integral, this LP has an
integral optimal extreme solution that can be computed in polynomial time [21].
In this way we obtain an integral feasible solution ȳ for ILP which implicitly
assigns zeros to all compatible sets that contain a path in P0. Since this solution
is optimal on the input instance consisting of the paths in P \P0, we obtain that
the cost of ȳ is

∑

p∈P\P0

cp

∑

I∈I:p∈I

ȳI ≥
∑

p∈P\P0

cp

∑

I∈I:p∈I

y∗
I =

∑

p∈P

cp

∑

I∈I:p∈I

y∗
I −

∑

p∈P0

cp

∑

I∈I:p∈I

y∗
I

In the following, we show how to obtain a good feasible solution for ILP
by applying randomized rounding to its linear programming relaxation. The
randomized rounding procedure works as follows. First, introduce dummy paths
with zero profit that contain only e0 into each compatible set I that does not
contain any path in P0 and whose variable has non-zero value in the fractional

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Wavelength Management in WDM Rings 71

solution. Order the compatible sets I ∈ I whose fractional variable y∗
I is non-zero

such that the compatible sets containing the same path of P0 are consecutive.
Let I1, I2, ..., Im be such an ordering. Let W =

⌈∑
I∈I y∗

I

⌉
. Clearly, W ≤ w. Pick

W independent random variables X1, X2, ..., XW in range (0, 1]. Define

J =

⎧
⎨

⎩
Ij(t) :

j(t)−1∑

i=1

y∗
Ii

− t < Xt ≤
j(t)∑

i=1

y∗
Ii

− t, for t = 1, ..., W

⎫
⎬

⎭

So far, we have selected one compatible set for each of the w available colors.
Since some of the paths may be contained in more than one compatible sets of
J , we apply the following procedure to guarantee that each path is contained in
at most one compatible set. Consider each path that is contained in more than
one compatible set of J . Remove path p from all such compatible sets of J but
one. Denote by J ′ the set of compatible sets obtained by the compatible sets of
J in this way. Set ŷI = 1 for each I ∈ J ′ and ŷI = 0 for each I ∈ I\J ′.

Lemma 2. The solution ŷ obtained by applying the randomized rounding pro-
cedure on the optimal fractional solution y∗ has expected cost

E

⎛

⎝
∑

p∈P

cp

∑

I∈I:p∈I

ŷI

⎞

⎠ ≥
(

1 − 1
e

) ∑

p∈P

cp

∑

I∈I:p∈I

y∗
I +

(
1
e

− 1
4

) ∑

p∈P0

cp

∑

I∈I:p∈I

y∗
I

Hence, we obtain that by selecting the best among the two solutions ȳ and ŷ,
we obtain a solution with expected total profit at least 3e

3e+4 times the optimal
profit. For any ε > 0, we may repeat the method above O(log n

ε) times in order
to obtain a solution with profit at least 3e

3e+4+3eε times the optimal profit, with
probability at least 1 − 1/n. The proof follows by a simple application of the
Markov inequality. We obtain the following theorem.

Theorem 6. For any ε > 0, the algorithm described computes a
(
1 + 4

3e + ε
)
-

approximate solution for the profit version of maxPC in rings in time polynomial
on the input size and 1/ε.

References

1. B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, and A. Rosen. Online competitive
algorithms for call admission in optical networks. Algorithmica, 31(1), pp. 29-43,
2001.

2. I. Caragiannis, A. Ferreira, C. Kaklamanis, S. Perennes, and H. Rivano. Fractional
path coloring with applications to WDM networks. In Proceedings of the 29th In-
ternational Colloquium on Automata, Languages, and Programming (ICALP ’01),
LNCS 2076, Springer, pp. 732-743, 2001.

3. I. Caragiannis and C. Kaklamanis. Approximate path coloring with applications
to wavelength routing in WDM optical networks. In Proceedings of the 21st Sym-
posium on Theoretical Aspects of Computer Science (STACS ’04), LNCS 2996,
Springer, pp. 258-269, 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

72 I. Caragiannis

4. M.C. Carlisle and E.L. Lloyd. On the k-coloring of intervals. Discrete Applied
Mathematics, 59, pp. 225-235, 1995.

5. C. T. Cheng. Improved approximation algorithms for the demand routing and slot-
ting problem with unit demands on rings. SIAM Journal on Discrete Mathematics,
17(3), pp. 384-402, 2004.

6. T. Erlebach and K. Jansen. The maximum edge-disjoint paths problem in bidi-
rected trees. SIAM Journal on Discrete Mathematics, 14(3), pp. 326-366, 2001.

7. T. Erlebach and K. Jansen. The complexity of path coloring and call scheduling.
Theoretical Computer Science, 255(1-2), pp. 33-50, 2001.

8. T. Erlebach, K. Jansen, C. Kaklamanis, M. Mihail, and P. Persiano. Optimal wave-
length routing on directed fiber trees. Theoretical Computer Science, 221(1-2), pp.
119-137, 1999.

9. U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM,
45(4), pp. 634-652, 1998.

10. M.R. Garey, D.S. Johnson, G.L. Miller, and C.H. Papadimitriou. The complexity
of coloring circular arcs and chords. SIAM Journal on Alg. Disc. Math., 1(2), pp.
216-227, 1980.

11. C. A. J. Hurkens and A. Schrijver. On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. SIAM Journal on Discrete Mathematics, 2(1), pp. 68-72, 1989.

12. K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani. Greedy facility
location algorithms analyzed using dual fitting with factor-revealing LP. Journal
of the ACM, 50(6), pp. 795-824, 2003.

13. I. Karapetian. On coloring of arc graphs. Dokladi of the Academy of Sciences of
the Armenian SSR, 70(5), pp. 306-311, 1980. (in Russian)

14. V. Kumar. An approximation algorithm for circular arc coloring. Algorithmica,
30(3), pp. 406-417, 2001.

15. V. Kumar. Approximating circular arc colouring and bandwidth allocation in all–
optical ring networks. In Proceedings of the 1st International Workshop on Ap-
proximation Algorithms for Combinatorial Optimization Problems (APPROX ’98),
LNCS 1444, Springer, pp. 147–158, 1998.

16. J. Li, K. Li, L. Wang, and H. Zhao. Maximizing profits of routing in WDM net-
works. Journal of Combinatorial Optimization, 10, pp. 99-111, 2005.

17. C. Nomikos, A. Pagourtzis, S. Zachos. Satisfying a maximum number of pre-routed
requests in all-optical rings. Computer Networks, 42, pp. 55-63, 2003.

18. C. Nomikos, A. Pagourtzis, S. Zachos. Minimizing request blocking in all-optical
rings. In Proceedings of the 22nd Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM ’03), 2003.

19. P. Raghavan and C.D. Thompson. Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica, 7, pp. 365–374, 1987.

20. R. Ramaswami and K. Sivarajan. Optical networks: A practical perspective. Mor-
gan Kauffman Publishers, 1998.

21. A. Schrijver. Theory of Linear and Integer Programming. Wiley and Sons, 1998.
22. A. Tucker. Coloring a family of circular arcs. SIAM Journal of Applied Mathemat-

ics, 29(3), pp. 493–502, 1975.
23. M. Valencia-Pabon. Revisiting Tucker’s algorithm to color circular arc graphs.

SIAM Journal on Computing, 32(4), pp. 1067-1072, 2003.
24. P.J. Wan and L. Liu. Maximal throughput in wavelength-routed optical networks.

DIMACS Series in Discrete Mathematics and Theoretical Computer Science, AMS,
46, pp. 15-26, 1998.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A First Investigation of Sturmian Trees

Jean Berstel1, Luc Boasson2, Olivier Carton2, and Isabelle Fagnot1

1 Institut Gaspard-Monge (IGM), Université de Marne-la-Vallée and CNRS,
Marne-la-Vallée

2 Laboratoire d’informatique algorithmique: fondements et applications (LIAFA),
Université Denis-Diderot (Paris VII) and CNRS, Paris

Abstract. We consider Sturmian trees as a natural generalization of
Sturmian words. A Sturmian tree is a tree having n+1 distinct subtrees of
height n for each n. As for the case of words, Sturmian trees are irrational
trees of minimal complexity. We give various examples of Sturmian trees,
and we characterize one family of Sturmian trees by means of a structural
property of their automata.

1 Introduction

Sturmian words have been extensively studied for many years (see e.g. [4,5] for
recent surveys). We propose here an extension to trees.

A Sturmian tree is a complete labeled binary tree having exactly n+1 distinct
subtrees of height n for each n. Thus Sturmian trees are defined by extending
to trees one of the numerous equivalent definitions of Sturmian words. Sturmian
trees share the same property of minimal complexity than Sturmian words: in-
deed, if a tree has at most n distinct subtrees of height n for some n, then the
tree is rational, i.e. it has only finitely many distinct infinite subtrees.

This paper presents many examples and some results on Sturmian trees. The
simplest method to construct a Sturmian tree is to choose a Sturmian word and
to repeat it on all branches of the tree. We call this a uniform tree, see Fig. 1.
However, many other categories of Sturmian trees exist.

Contrary to the case of Sturmian words, and similarly to the case of epis-
turmian words, there seems not to exist equivalent definitions for the family of
Sturmian trees. This is due to the fact that, in our case, each node in a tree has
two children, which provides more degrees of freedom. In particular, only one of
the children of a node needs to be the root of a Sturmian tree to make the whole
tree Sturmian.

Each tree labeled with two symbols can be described by the set of words label-
ing paths from the root to nodes sharing a distinguished symbol. The (infinite)
minimal automaton of the language has quite interesting properties when the
tree is Sturmian. The most useful is that the Moore equivalence algorithm pro-
duces just one additional equivalence class at each step. We call these automata
slow.

We have observed that two parameters make sense in studying Sturmian trees:
the degree of a Sturmian tree is the number of disjoint infinite paths composed of

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 73–84, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

74 J. Berstel et al.

Fig. 1. The top of a uniform tree for the word abaaba · · · . Node label a is represented
by •, and label b is represented by ◦. This tree will be seen to have infinite degree and
rank 0.

nodes which are all roots of Sturmian trees. The rank of a tree is the number of
distinct rational subtrees it contains. Both parameters may be finite or infinite.

The main result of this paper is that the class of Sturmian trees of degree one
and with finite rank can be described by infinite automata of a rather special
form. The automata are obtained by repeating infinitely many often a distin-
guished path in some finite slow automaton, and intertwining consecutive copies
of this path by letters taken from some Sturmian infinite word. Another property
is that a Sturmian tree with finite degree at least 2 always has infinite rank.

The class of Sturmian trees seems to be quite rich. We found several rather
different techniques to construct Sturmian trees. To the best of our knowledge,
there is only one paper on Sturmian trees prior to the present one, by Carpi, De
Luca and Varricchio [1].

2 Sturmian Trees

We are interested in complete labeled infinite binary trees, and we consider finite
trees insofar as they appear inside infinite trees.

In the sequel, D denotes the alphabet {0, 1}. A tree domain is a prefix-closed
subsetP of D∗. Any element of a tree domain is called a node. LetA be an alphabet.
A tree over A is a map t from a tree domain P into A. The domain of the tree t
is denoted dom(t). For each node w of t, the letter t(w) is called the label of the
node w. A complete tree is a tree whose domain is D∗. The empty tree is the tree
whose domain is the empty set. A (finite or infinite) branch of a tree t is a (finite
or infinite) word x over D such that each prefix of x is a node of t.

Example 1. (Dyck tree) Let A be the alphabet {a, b}. Let L be the set of Dyck
words over D = {0, 1}, that is the set of words generated by the context-free
grammar with productions S → 0S1S + ε. The Dyck tree is the complete tree
defined by

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A First Investigation of Sturmian Trees 75

•

◦◦

◦◦•◦

◦◦◦◦◦◦◦◦

◦◦◦◦◦◦◦◦◦◦•◦•◦◦◦

t[0, 3]

t[010, 2]

Fig. 2. The top of the Dyck tree of Example 1 and two of its factors, of height 3 and
2, respectively. Again, a is represented by • and b by ◦.

t(w) =

{
a if w ∈ L,

b otherwise.
(1)

The top of this tree is depicted in Fig. 2. The first four words ε, 01, 0101 and
0011 of L correspond to the four occurrences of the letter a as label on the top
of the tree.

More generally, the characteristic tree of any language L over D is defined to
be the tree t given by (1). Conversely, for any tree t over some alphabet A, and
for any letter a in A, there is a language L = t−1(a) of words labeled with the
letter a. The language L = t−1(a) is called the a-language of t. In the sequel,
we usually deal with the two-letter alphabet A = {a, b}, and we fix the letter a.
We then say the language of t instead of the a-language.

We shall see that the a-languages of a tree t are regular if and only if the tree
t is rational. For any word w and any language L, the expression w−1L denotes
the set w−1L = {x | wx ∈ L}. Let t be a tree over A and w be a word over D. We
denote by t[w] the tree with domain w−1 dom(t) defined by t[w](u) = t(wu) for
each u in w−1 dom(t). The tree t[w] is sometimes written as w−1t, for instance
in [1]. If w is not a node of t, the tree t[w] is empty. A tree of the form t[w] is
the suffix of t rooted at w. Suffixes are also called quotients or subtrees in the
literature.

Let t be a tree over A and let w be a word over D. For a positive integer h,
we denote by D<h the set (ε + D)h−1 of words over D of length at most h − 1.
We set D<0 = ∅.

Let h be a nonnegative integer. The truncation of a tree t at height h is the
restriction of t to the domain D<h. Any tree obtained by truncation is called
a prefix of t. A factor of t is a prefix of a suffix of t. More precisely, for any
word w and any nonnegative integer h, we denote by t[w, h] the factor of height
h rooted at w, that is the tree of domain w−1 dom(t) ∩ D<h and defined by
t[w, h](u) = t(wu). A factor of height 0 is always the empty tree. A factor t[w, 1]
of height 1 can be identified with the letter t(w) of A that labels its root. A
prefix is a tree of the form t[ε, h].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

76 J. Berstel et al.

Factors of height h are sometimes considered to have height h − 1 in the
literature (e.g. [1]). In this paper, the height of a finite tree is the number of
nodes along a maximal branch and not the number of steps in-between. Our
convention will be justified by Proposition 1 which extends a similar result for
words in similar terms.

A tree is rational if it has finitely many distinct suffixes. Recall (see e.g. [2])
that a tree over an alphabet A is rational if and only if t−1(a) = {w ∈ D∗ |
t(w) = a} is a regular subset of D∗ for each letter a of A. For instance the Dyck
tree t of Example 1 is not rational since t−1(a) is the Dyck language which is
not regular [6]. The following proposition gives a characterization of complete
rational trees using factors. It extends to trees the characterization of ultimately
periodic words by means of their subword complexity [3]. This statement appears
in [1].

Proposition 1. A complete tree t is rational if and only there is an integer h
such that t has at most h distinct factors of height h.

A complete tree is Sturmian if for any integer h, it has h + 1 factors of height h.
Since the factors of height 1 are the letters t(w) a Sturmian tree is defined over
a two letter alphabet. In what follows, we always assume that this alphabet is
{a, b}.

We will prove later that the Dyck tree given in Example 1 is indeed Sturmian.
We start with some simpler examples of Sturmian trees.

In the first of these examples, the same infinite word is repeated along each
branch of the tree.

Example 2. (Uniform trees) Let x = x0x1x2 · · · be an infinite word over an
alphabet A, where x0, x1, x2, . . . are letters. The uniform tree of x is the complete
tree t defined by t(w) = x|w|. This means of course that all nodes of the same
level n in the tree are labeled with the same symbol xn. If x is a Sturmian word,
then its uniform tree t is a Sturmian tree. Figure 1 shows the top of the uniform
tree of the Fibonacci word x = abaaba · · · .

Example 3. (Left branch tree) Let x = x0x1x2 · · · be an infinite word over A,
where x0, x1, x2, . . . are letters. We define a complete tree t by t(w) = x|w|0 .
(Recall that |w|d is the number of occurrences of d in w.)

The label of each node w is the letter xn of x, where n is the number of
symbols 0 occurring on the path from the root to w. The label of the root node
is x0. If the label of w is xn, the labels of w0 and w1 are respectively xn+1

and xn.
In particular, the letters of the word x label the nodes of the leftmost branch

of the tree, and all nodes on a rightmost branch share the same label. Figure 3
shows the top of the left branch tree of the Fibonacci word x = abaaba · · · .

We write x[n, h] for the factor xnxn+1 · · · xn+h−1 of the word x. In
Example 2, two factors t[w, h] and t[w′, h] of height h are equal if and only
if x[|w|, h] = x[|w′|, h]. In Example 3, t[w, h] and t[w′, h] are equal if and only if

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A First Investigation of Sturmian Trees 77

Fig. 3. The top of a left branch tree for the word abaaba · · ·

x[|w|0, h] = x[|w′|0, h]. It follows that in these examples, the tree t is Sturmian
if and only if the word x is Sturmian.

Example 4. (Indicator tree) Let x be an infinite word over D. The indicator tree
of x is the complete tree t defined by

t(w) =

{
a if w is a prefix of x,
b otherwise.

In other terms, there is exactly one infinite path in t with all its nodes labeled
by the letter a. The letters of this path are the letters of the word x. Equiva-
lently, the indicator tree of the infinite word x is the characteristic tree of the
language composed of its (finite) prefixes. Figure 4 shows the indicator tree of
the Fibonacci word. It can be easily proved that x is a Sturmian word if and
only if its indicator tree t is a Sturmian tree.

The following example is a variation on Example 4. For a finite word w and an
infinite word x, we denote by d(w, x) the integer |w| − |u| where u is the longest
common prefix of w and x.

Example 5. (Band indicator tree) Let x be an infinite word over D and let k be
a non-negative integer. The band indicator tree of width k is the complete tree t
defined by

t(w) =

{
a if d(w, x) ≤ k,
b otherwise.

Again, x is a Sturmian word if and only if t is a Sturmian tree. The band indicator
tree of width 0 is the indicator tree defined in Example 4, since d(w, x) ≤ 0 if
and only if w is a prefix of x.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

78 J. Berstel et al.

Fig. 4. The top of the indicator tree for the Fibonacci word 01001010 · · · . The only
nodes labeled a are on the Fibonacci path.

∞

0 1 2 3 4 5 6 · · ·

0, 1

0

1 0

1 0

1

0

1 0

1 0

1 0

1

Fig. 5. Automaton accepting the prefixes of 01001010 · · · . All states excepted ∞ are
final.

3 Rank and Degree

Recall that a branch of a tree is a (finite or infinite) word x over D such that
each prefix of x is a node of the tree.

A node w of a tree t is called rational if the suffix t[w] is a rational tree. It is
called irrational otherwise. The rank of a tree t is the number of distinct rational
suffixes of t. This number is either a nonnegative integer or infinite.

If w is an irrational node, then its prefixes also are irrational. Furthermore,
at least one of the two words w0 and w1 also is irrational. The set of irrational
nodes of a tree is a tree domain in which any finite branch is the prefix of an
infinite branch.

The degree of a tree t is the number of infinite branches composed of irrational
nodes. This number is either a nonnegative integer or infinite.

As a first example, consider the Dyck tree defined in Example 1. It has rank 1
and has infinite degree. A node w of this tree is rational if it is not a prefix

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A First Investigation of Sturmian Trees 79

of some Dyck word. The set of rational nodes is thus the set L1D∗ where L is
the set of Dyck words. On the contrary, each branch in 00∗10ω only contains
irrational nodes. The degree of the Dyck tree is thus infinite.

Next, let t be the indicator tree of a Sturmian word x, as defined in Example 4.
A node w of t is irrational if and only if it is a prefix of x. Thus, the word x
itself is the only infinite branch composed of irrational nodes, and therefore the
degree of this tree is 1. All rational subtrees are the same, so this tree has rank 1.

These examples show that there are Sturmian trees of degree 1 or of infinite
degree. It turns out that there exist also Sturmian trees of finite degree greater
than 1. In the final section, we construct a Sturmian tree of degree 2 but this
construction is rather involved.

Here is a table summarizing the relations between degree and rank for Stur-
mian trees. A tree with rank 0 always has infinite degree since there is no rational
node.

rank
degree finite infinite

1 characterized in Theorem 1 Example 8
Indicator tree (rank 1)
Band width tree (rank d + 1)

≥ 2, finite empty by Proposition 4 example not given here
infinite Uniform tree (rank 0) example not given here

Left branch tree (rank 0)
Dyck tree (rank 1)

The main result of the paper is the characterization of Sturmian trees of
degree 1 and with finite rank by a structural property of the minimal automaton
of its language.

4 Slow Automata

Let t be a complete tree over {a, b}. The language of t is the set t−1(a). We
study properties of trees by considering automata recognizing their language. In
particular, minimization of automata will play a central role.

We recall elementary properties of automata, just observing that they hold
also when the set of states is infinite. We only use deterministic and complete
automata. An automaton A over a finite alphabet D is composed of a state
set Q, a set F ⊆ Q of final states, and of a next-state function Q × D → Q that
maps (q, d) to a state denoted by q · d. Given a distinguished state i, a word w
over D is accepted by the automaton if the state i ·w is final. When we emphasize
the existence of state i, we call it the initial state as usual.

An automaton B is a subautomaton of an automaton A if its set of states is
a subset of the set of states of A which is closed under the next-state function
of A.

Example 6. (Dyck automaton) The following automaton accepts the Dyck lan-
guage. The set of states is Q = N ∪ {∞}. The initial and unique final state is 0.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

80 J. Berstel et al.

The next state function is given by n ·0 = n+1 for n ≥ 0, n ·1 = n−1 for n ≥ 1,
0 · 1 = ∞ and ∞ · 0 = ∞ · 1 = ∞. This automaton is depicted in Fig. 6. We call
it the Dyck automaton. The singleton {∞} is the unique proper subautomaton
of the Dyck automaton.

∞ 0 1 2 3 . . .0, 1
1

0

1

0

1

0

1

0

1

Fig. 6. Automaton of the Dyck language. State 0 is both the initial and the unique
final state.

Given an arbitrary automaton A, we define inductively a sequence (∼h)h≥1 of
equivalence relations on Q as follows.

q ∼1 q′ ⇐⇒ (q ∈ F ⇐⇒ q′ ∈ F)
q ∼h+1 q′ ⇐⇒ (q ∼h q′ and ∀d ∈ D q · d ∼h q′ · d)

These are well-known in the case of finite automata, and many properties ex-
tend to general automata. We call ∼h the Moore equivalence of order h. The
index of ∼h is the number of equivalence classes of ∼h. The Moore minimization
algorithm consists in computing inductively the Moore equivalences.

The equivalence ∼h+1 is a refinement of the equivalence ∼h. Thus the index
of ∼h+1 is at least the index of ∼h. An automaton is called slow if it is minimal
and if the index of ∼h is at most h+1 for all h ≥ 1. If ∼h and ∼h+1 are different,
that there is one class c of ∼h which gives raise to two classes in ∼h+1. We say
that ∼h+1 splits class c, or that class c is split by ∼h+1.

It is sometimes useful to distinguish, in a minimal automaton, two kinds of
states. A state p is rational if it generates a finite subautomaton. States which
are not rational are called irrational. In the minimal automaton associated to
the language of a tree, a state is rational if and only if it corresponds to the root
of a rational tree.

The following proposition shows that the classes of ∼h are in a one to one
correspondence with the factors of t of height h.

Proposition 2. Let t be a complete tree over {a, b} and let A be an automaton
over D accepting the language of t, with initial state i. For any words w, w′ ∈ D∗

and any positive integer h, one has

i · w ∼h i · w′ ⇐⇒ t[w, h] = t[w′, h] .

Corollary 1. Let t be a complete tree over {a, b} and let A be an automaton
over D accepting the language of t. The tree t is Sturmian iff the minimal au-
tomaton of its language is infinite and slow.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A First Investigation of Sturmian Trees 81

5 Trees with Finite Rank

5.1 A Tree of Degree One

In this section, we give an example of a family of Sturmian trees with finite
rank and of degree 1 by describing the family of automata accepting their lan-
guages. These (infinite) automata are based on a finite slow automaton. In this
automaton, a path is distinguished (called a lazy path). The infinite automaton
is obtained by repeating the lazy path and intertwining the copies with symbols
taken from an infinite Sturmian word.

In the next section, we show that any Sturmian tree of degree 1 and with
finite rank can be obtained in this way.

0 1 2 3 4 5 6 7 8 · · ·

p

r

s
0 0 0 x0 0 0 0 x1 0

1 1 1 1 1 1 1

x̄0 x̄1

0 1

0

1

0, 1

Fig. 7. A slow automaton Â for the Fibonacci word x0x1 · · · = 01001010 · · · . The final
states are p, r, 0, 2, 4, · · · .

Let A = (Q, {i}, F) be a finite deterministic automaton over the alphabet D
with N states. We assume that A has the two following properties. First, A is
slow. Recall that by definition, this means that the automaton is minimal and
that the Moore minimization algorithm splits just one equivalence class into two
new classes at each step.

Next, we suppose that there is a lazy path in A. This is a path

π : q0
a0−→ q1

a1−→ q2 · · · qh−1
ah−1−−−→ qh

of length h, where q0 and qh are the two states which are separated in the last
step in the Moore algorithm together with the condition that

qh−1 · āh−1 = q0 or qh

where ā = 1 − a for a ∈ D. If N ≥ 2, the first of these conditions means that
q0 ∼N−2 qh and q0 �∼N−1 qh. As a consequence, the second property means that
qh−1 · āh−1 cannot be separated from qh−1 · ah−1 before the very last step of the
Moore algorithm.

Example 7. The automaton Â given in Fig. 7 has a subautomaton A composed
of the states {p, s, r}. This subautomaton is slow: the first partition is into {p, r}
and {s}, and the second partition is equality. The finite subautomaton A in
Fig. 7 admits for example the lazy path π : p 0−→ s 0−→ p 0−→ s 1−→ r, and indeed
s 0−→ p. Here h = 4.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

82 J. Berstel et al.

Given the finite slow automaton A, the lazy path π and an infinite word
x = x0x1x2 · · · over D, we now define an infinite minimal automaton Â which
accepts the set of nodes labeled a of a tree t. We will show that if x is a Sturmian
word, then t is a Sturmian tree of degree 1. This automaton is the extension of
A by π and x, and is denoted by Â = A(π, x).

The set of states of Â is Q∪N. For convenience, we use a mapping q : N → Q
defined by q(n) = qn mod h for any n ∈ N. Here and below q0, . . . , qh are the
states of the lazy path of A and a0, . . . , ah−1 are the letters labeling the path.
The initial state of Â is 0 and its set of final states is F ∪q−1(F). The next-state
function of A is extended to Â by setting, for n ∈ N,

(α) if n �≡ h − 1 mod h, then

n · an mod h = n + 1, n · ān mod h = q(n) · ān mod h

(β) if n = ih + h − 1 for some i ≥ 0, then

n · xi = n + 1, n · x̄i = q0

The infinite path through the integer states of the automaton Â is composed
of an infinite sequence of copies of the lazy path of A. For each state q(n) inside
each of the copies of the lazy path, the next-state for the “other” letter, that is
the letter ān mod h, maps q(n) back into A. Two consecutive copies of the lazy
path, say the ith and i + 1th, are linked together by the letter xi of the infinite
word x driving the automaton (see Fig. 7).

Proposition 3. Let Â = A(π, x) be the extension of the finite slow automaton
A by a lazy path π and an infinite word x. If the word x is Sturmian, then Â
defines a tree t which is Sturmian, of degree 1, and having finite rank.

The tree defined by this automaton has degree 1 since the only irrational states
are the integer states n and they all lie on a single branch. Its rank is the number
of states of A. We claim that this tree is also Sturmian.

5.2 Characterization

In this section, we give a characterization of Sturmian trees of degree 1 which
have finite rank by describing the family of automata accepting their languages.
These (infinite) automata are extensions of a finite automaton by a lazy path
and a Sturmian word.

Theorem 1. Let t be a Sturmian tree of degree one having finite rank, and let Â
be the minimal automaton of the language of t. Then Â is the extension of a slow
finite automaton A by a lazy path π and a Sturmian word x, i.e. Â = A(π, x).

Given a tree t and some Moore equivalence ∼h on its minimal automaton, it
is convenient to call an equivalence class of ∼h an irrational class if it is en-
tirely composed of irrational states. It is a rational class otherwise. A rational

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A First Investigation of Sturmian Trees 83

Q ∪ N

p, r, 0, 2, 4

r

r

r

r

r

p, 0, 2, 4

p, 0, 2, 4

p, 0, 4, 8

p, 0, 4, 8

p 0, 4, 8

2, 6, 10

2, 6, 10

2, 6, 10

s, 1, 3, 5

s, 1, 3, 5

s, 1, 5, 9

s, 1, 5, 9

s

s

1, 5, 9

1, 5, 9

3, 7, 11

3, 7, 11

3, 7, 11

3, 7, 11

Fig. 8. The tree showing the evolution of the Moore equivalence relations on the au-
tomaton given in Fig. 7. Each level describes a partition. Each level has one class
splitting into two classes at the next level.

class contains at least one rational state, and may contain even infinitely many
irrational states.

Up to now, all our examples of Sturmian trees are of finite rank. It can be
observed that for all of them the degree is either 1 or infinite. This is unavoidable.

Proposition 4. The degree of a Sturmian tree with finite rank is either one or
infinite.

6 A Tree with Infinite Rank

There exist Sturmian trees with infinite rank. The following example gives a
Sturmian tree with infinite rank and of degree 1.

Example 8. We define a tree by giving a (minimal) automaton accepting its
language. The set of states of the automaton is Q = {n ∈ N | n ≥ 3} × {0, 1}.
The set of final states is the set {(n, b) ∈ Q | n ≡ 0 mod 2}. The set E of
transitions is defined as follows. Let n = 2km where m ≥ 1 and m �≡ 0 mod 2.
The integer 2k is then the greatest power of 2 which divides n.

(n, b) · 0 =

{
(2k−1 + 1, 0) if m = 1 and b = 0
(n + 1, b) otherwise

(n, b) · 1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3, 0) if k = 0
(4, 0) if k = 1
(4, 0) if k = 2, m = 1 and b = 0
(2k−2 + 1, 0) if k > 2, m = 1 and b = 0
(2k−1 + 1, 0) otherwise

In Fig. 9, we give a picture of this automaton; states of the form (n, 0) are
drawn as circles n and states of the form (n, 1) as squares n .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

84 J. Berstel et al.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 · · ·

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 · · ·0 0

0

0

0 0 0

0

0 0 0 0 0 0 0

0

0 0 0 0 0 0 0

1

1

1

1

1

1

1

0

Fig. 9. Final states are dark. Observe the fractal-like structure, with a doubling of the
size of each block.

7 Concluding Remarks

In this paper, we have introduced the notion of Sturmian trees. We have consid-
ered two parameters, the degree and the rank, and we have described Sturmian
trees of finite rank and finite degree.

We have given several examples of Sturmian trees of finite rank and infinite
degree. All these are in some sense easy. There exist more involved examples
of trees in this family. Such examples may be constructed using more than one
Sturmian word.

In this short note, we have presented only one Sturmian tree of infinite rank
which is of degree one. Using some kind of fractal structure, we are able to build
Sturmian trees of infinite rank and of degree two or more. Similarly, we know
some Sturmian trees for which both degree and rank are infinite. None of these
examples is given here due to the lack of space. They will be presented in a
forthcoming full version.

References

1. A. Carpi, A. de Luca, and S. Varricchio. Special factors and uniqueness conditions
in rational trees. Theory of Computing Systems, 34:375–395, 2001.

2. B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer Sci-
ence, 25:95–165, 1983.

3. E. M. Coven and G. A. Hedlund. Sequences with minimal block growth. Mathe-
matical Systems Theory, 7:138–153, 1973.

4. M. Lothaire. Algebraic Combinatorics on Words, volume 90 of Encyclopedia of
Mathematics. Cambridge University Press, 2002.

5. N. Pytheas-Fogg. Substitutions in Dynamics, Arithmetics and Combinatorics, vol-
ume 1794 of Lecture Notes in Mathematics. Springer-Verlag, 2002. Edited by V.
Berthé, S. Ferenczi, C. Maudit and A. Siegel.

6. J. Sakarovitch. Élements de théorie des automates. Vuibert, 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Size of the Universal Automaton of a
Regular Language

Sylvain Lombardy

Université de Marne-la-Valle,
Institut Gaspard-Monge, UMR CNRS 8049,

77454 Marne-la-Valle Cedex 2
lombardy@univ-mlv.fr

Abstract. The universal automaton of a regular language is the max-
imal NFA without merging states that recognizes this language. This
automaton is directly inspired by the factor matrix defined by Conway
thirty years ago. We prove in this paper that a tight bound on its size with
respect to the size of the smallest equivalent NFA is given by Dedekind’s
numbers. At the end of the paper, we deal with the unary case. Chrobak
has proved that the size of the minimal deterministic automaton with
respect to the smallest NFA is tightly bounded by the Landau’s func-
tion; we show that the size of the universal automaton is in this case an
exponential of the Landau’s function.

Keywords: Regular languages, Universal Automaton, NFA Minimiza-
tion.

1 Introduction

The computation of a minimal deterministic automaton (DFA) which recognizes
a language given by any DFA is a well known procedure with small complexity
(O(n log n) from [6]). For non deterministic automata (NFA) the problem is
much harder (PSPACE complete from [8]). Several techniques have recently be
developped to reduce the size of NFAs by merging states without changing the
recognized language (cf. [7,2]).

In a recent paper, Câmpeanu, Sântean and Yu [1] state that for every regular
language, every equivalent automaton larger than a constant depending on the
language contains some states that can be merged without changing the accepted
language. They give a huge bound for this constant, depending on the size of the
minimal DFA. Grunsky, Kurganskyy and Potapov [5] have given a tight bound
with respect to the size of the minimal DFA.

As this question is related to the NFA minimization, it is interesting to obtain
a tight bound with respect to the minimal NFA.

We recall in Section 3 that the universal automaton of a language is the largest
automaton that recognizes this language in which no states can be merged (cf.
[11, Prop. 3]). In Section 4, we prove that the size of the universal automaton
of a language recognized by a NFA with n states is bounded by D(n), which is

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 85–96, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

86 S. Lombardy

the n-th number of Dedekind, i.e. the number of antichains in the power set of
a set with n elements. We show that this bound is tight. In Section 5, we show
a family (Zn) of n states NFA that yield universal automata with D(n) states,
which implies that the bound is tight.

In Section 6, we address the one-letter case. The determinization of a one-
letter NFA with n states can give a minimal DFA with G(n) states [3], where
G(n) is the Landau’s function, that is the maximal least common multiple of
integers with sum n. We prove that the bound 2G(n) on the size of the universal
automaton with respect to the size of the smallest NFA is tight in the one-letter
case.

2 Notations

We denote by A∗ the free monoid generated by a set A. Elements of A∗ are words,
the identity of this monoid is the empty word 1A∗ . If X and Y are subsets of
A∗, we define the product of X and Y by X.Y = {u.v | u ∈ X, v ∈ Y }.

If X is a set, we denote P(X) the power set of X .

Definition 1. We denote an automaton by a 5-tuple <Q, A, E, I, T >, where Q
is a finite set of states, A is a finite set of letters, E, the set of transitions, is
a subset of Q × A × Q, and I (resp. T), the set of initial states (resp. terminal
states), is a subset of Q.

Definition 2. Let A = <Q, A, E, I, T > be an automaton. Let p be a state of A
and a a letter. The set of successors (resp. predecessors) of p by a is p �

A
a =

{q ∈ Q | (p, a, q) ∈ E} (resp. a �
A

p = {q ∈ Q | (q, a, p) ∈ E}), denoted p�a (resp.

a � p) if there is no ambiguity. These notions are extended to subsets of states
and words; for every letter a, and every word w,

X � a =
⋃

p∈X

p � a, a � X =
⋃

p∈X

a � p,

X � 1A∗ =X, 1A∗ � X =X, (1)

X � aw =(X � a) � w, aw � X =a � (w � X).

Obviously, q is in p � w if and only if p is in w � q.

Definition 3. An automaton is deterministic if it has only one initial state
and, for every letter, every state has at most one successor; an automaton is
co-deterministic if it has only one final state and, for every letter, every state
has at most one predecessor. An automaton is complete if, for every letter, every
state has at least one successor.

Definition 4. Let A = <Q, A, E, I, T > be an automaton and p a state of A. The
past of p in A, Past(p) (or PastA(p)), and the future of p in A, Fut(p) (or
FutA(p)), are defined as follows:

Past(p) = {u | p ∈ I � u}, Fut(p) = {v | p � v ∩ T �= ∅}. (2)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Size of the Universal Automaton of a Regular Language 87

Remark 1. Let u and v be two words. The word u.v is accepted by an automaton
if and only if there exists a state p such that u is in Past(p) and v is in Fut(p).

Remark 2. If A is a deterministic automaton, and if p and q are two different
states of A, then Past(p)∩Past(q) = ∅. In other words, if A is deterministic and
complete, every word u of A belongs to the past of one and only one state.

Definition 5. Let A = <Q, A, E, I, T > be an automaton. The determinized au-
tomaton of A is the automaton D = <R, A, F, {I}, U>, where R = {I � w | w ∈
A∗}, F = {(X, a, X �

A
a) | X ∈ R, a ∈ A} and U = {X ∈ R | X ∩ T �= ∅}.

The co-determinized automaton of A is the automaton C = <S, A, G, J, {T }>,
where S = {w � T | w ∈ A∗}, F = {(a �

A
X, a, X) | X ∈ S, a ∈ A} and

J = {X ∈ S | X ∩ I �= ∅}.

Definition 6. Let A = <Q, A, E, I, T > and B = <R, A, F, J, U> be two automata.
A mapping μ from Q into R is a morphism of automata if and only if:

μ(I) ⊆ J, μ(T) ⊆ U, and μ(E) = {(μ(p), a, μ(q)) | (p, a, q) ∈ E} ⊆ F. (3)

Proposition 1. Let μ be a morphism from an automaton A into an automa-
ton B. Then, for every state p of A,

PastA(p) ⊆ PastB(μ(p)), FutA(p) ⊆ FutB(μ(p)). (4)

3 Universal Automaton

The universal automaton of a language has been defined by Conway [4] as a
“factor matrix”. A complete study of properties of this automaton can be found
in [12]. We recall here its definition and some basic properties.

Definition 7. Let L be a language of A∗. The set F(L) of factorizations of L
in A∗ is the set of a maximal pairs1 of languages (X, Y) such that X.Y is a
subset of L.

The universal automaton of L is UL = <F(L), A, E, I, T >, with

I = {(X, Y) ∈ F(L) | 1A∗ ∈ X}, T = {(X, Y) ∈ F(L) | X ⊆ L},

E = {((X, Y), a, (X ′, Y ′)) ∈F(L) × a × F(L) | X.a ⊆ X ′}.
(5)

Remark 3. Due to the maximality of factorizations, the following equivalences
hold for every factorization (X, Y) of L:

1A∗ ∈ X ⇐⇒ Y ⊆ L, X ⊆ L ⇐⇒1A∗ ∈ Y,

∀(X ′, Y ′) ∈ F(L), X.a ⊆ X ′ ⇐⇒ a.Y ′ ⊆ Y ⇐⇒ X.a.Y ′ ⊆ L
(6)

Remark 4. This automaton is not necessarily trim. It may have a non accessible
state (∅, A∗) and a non co-accessible state (A∗, ∅) if these pairs are factorizations.

1 A pair (X, Y) of languages si larger or equal to a pair (X ′, Y ′) iff X ′ is a subset of
X and Y ′ is a subset of Y .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

88 S. Lombardy

Proposition 2. The universal automaton of a regular language is a finite au-
tomaton.

Factorizations of a rational language are recognized by the syntactic monoid of
this language. Thus there is a finite number of factorizations. Besides, we shall
give a construction of this automaton that induces the finiteness.

Proposition 3. Let (X, Y) be a state of the universal automaton UL. Then

Past(X, Y) = X and Fut(X, Y) = Y. (7)

Corollary 1. The universal automaton of a rational language L recognizes L.

In this paper, we are particulary interested in the following property.

Proposition 4. Let L be a rational language, and A be an automaton that
recognizes L. Then there exists a morphism from A into the universal automaton
of L.

We explicitly define a mapping μ from states of A into F(L): μ(p) = (Xp, Yp),
with

Xp = {u ∈ A∗ | u.FutA(p) ⊆ L}, Yp = {v ∈ A∗ | Xp.v ⊆ L}. (8)

Notice that other mappings may be defined.

Definition 8. An automaton A that recognizes a language L has some merging
states if there exists a non injective morphism from A onto an automaton B that
recognizes L.

Remark 5. It is quite obvious that the automaton obtained by merging states
with a morphism is equivalent to the automaton obtained by linking these states
with ε-transitions. Our definition of merging states is therefore equivalent to
Definition 2 in [1].

Proposition 5. The universal automaton of a language L is the largest au-
tomaton that recognizes L with no merging states.

The maximality of factorizations prevents from merging states of the universal
automaton without changing the language. Conversely, there does not exist any
larger automaton with no merging states that recognizes L, thanks to Proposi-
tion 4.

4 Maximal Size of the Universal Automaton

In order to compute an upper bound on the size of the universal automaton of a
language L with respect to the number of states of a NFA that recognizes L, we
give a construction of the universal automaton from an NFA. This construction
is actually the same as the one which had been given in [10].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Size of the Universal Automaton of a Regular Language 89

Definition 9. Let Q be a set and R be a subset of P(Q). The intersection
closure I of R is the smallest subset of P(Q) such that :
i) Q is in I and R is a subset of I, ii) if X and Y are in I, so is X ∩ Y .

Proposition 6. Let D = <Q, A, E, {i}, T > be a deterministic automaton that
recognizes a language L. Let C = <R, A, F, J, {T }> be the co-determinized automa-
ton of D. The set of states R of C is a subset of P(Q). Let I be the intersection
closure of R. There is a one-to-one mapping:

ϕ : I −→F(L)

S �−→(XS , YS) =
(⋃

p∈S

PastD(p),
⋂

p∈S

FutD(p)
)
. (9)

Proof. It is easy to prove by induction on the length of words that:

PastC(P) =
⋃

p∈P

PastD(p), FutC(P) =
⋂

p∈P

FutD(p). (10)

a) XS .YS ⊆ L. For every u in XS , p = i �
D

u is in S. For every v in YS , v is in

FutD(p). Hence, u.v is in L.
b) (XS , YS) is a factorization. We show now that (XS , YS) is maximal.

Let u be a word which is not in XS and such that u.YS is included in L. Let
p0 = i �

D
u. The state p0 is not in S, otherwise u would be in XS. As S is the

intersection of some states of C, there exists a state P de C such that S ⊆ P and
p0 is not in P . Thus u is not in PastC(P). Let v be in FutC(P); v is also in YS .
The word u.v is not in L, thus u.YS �⊆ L. Contradiction.

Let v be a word which is not in YS and such that XS .v is included in L. There
exists a state p in S such that v is not in FutD(p). Let u be in PastD(p). u is in
XS et u.v is not in L; therefore, XS .v is not included in L. Contradiction.

c) The mapping ϕ is surjective.
Let (X, Y) be a factorization of L. Let H = Y �

C
T and let S =

⋂
P∈H P : S is

an element of I. For every v in Y , S is a subset of P = v � T , thus v is in YS .
For every u in X , as u.Y is included in L, u belongs to the past of every P in
H . Thus, there is a state p in S such that u is in PastD(p); hence u is in XS .
We get X ⊆ XS and Y ⊆ YS , and, by maximality of (X, Y), these inclusions are
equalities.

d) The mapping ϕ is injective.
Let S and S′ be two different elements of I. We can assume that S contains

a state p which is not in S′. Let u be in PastD(p). The word u is in XS , but not
in XS′ . Hence ϕ(S) is different from ϕ(S′). �

This proposition shows that the size of the universal automaton with respect to
the size of the minimal automaton of the language is at most 2n. This bound
is tight and an example of a language that illustrates this can be found in [5],
or in Section 6 for unary languages. From Equations (7) and (9), if the empty
set is an element of I, the corresponding state in the universal automaton is not

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

90 S. Lombardy

accessible. Hence the trim universal automaton contains at most 2n − 1 states.
This gives a tight bound on the size of the maximal NFA without merging state
with respect to the size of the minimal DFA. This result has previously be proved
by Grunsky, Kurganskyy and Potapov [5].

Proposition 7 (Folklore). Let A be an NFA with k states. Let D be the de-
terminized automaton of A, with n states. Then n � 2k (including a non co-
accessible state if the bound is reached).

This proposition combined with Proposition 6 gives a straighforward upper
bound for the size of the universal automaton with respect to any NFA that
recognizes the language: 22n−1. This bound is not tight; we give now a better
one.

Definition 10. Let X be an ordered set. An upset V of X is an upperly closed
subset of X:

∀x ∈ V , ∀y ∈ X, x � y =⇒ y ∈ V . (11)

Notice that an upset may be empty and may also be equal to X itself. If Q is a
set, P(Q) or every subset of P(Q) is naturally ordered by inclusion.

Proposition 8. Let A = <Q, A, E, I, T > be an NFA. Let D = <R, A, F, {I}, U>
be the determinized automaton of A. Let C = <S, A, G, K, {U}> be the co-deter-
minized automaton of D. Every element of S is an upset of R.

Proof. Let X and Y be two states of D such that X ⊆ Y . It holds FutD(X) =⋃
p∈X FutA(p) ⊆

⋃
p∈Y FutA(p) = FutD(Y). Let P be a state of C which contains

X . For every v in FutC(P), P = v �
D

U . As X is in P , v is in FutD(X), thus in

FutD(Y). Hence, Y is in P . �

From Proposition 6 and Proposition 8, we obtain the following result.

Proposition 9. Let A = <Q, A, E, I, T > be an NFA that recognizes a language L.
The universal automaton of L has at most D(card(Q)) states, where D(n) it the
n-th Dedekind number.

Proof. Let n = card(Q). D(n) is equal to the number of upsets of P(Q). If R
is a subset of P(Q), the number of its upsets is not larger than the number of
upsets of P(Q).

The intersection of two upsets is an upset. As, by Proposition 8, S is a set
of upsets, the set I in Proposition 6, which is its intersection closure, is a set of
upsets too. As I is in bijection with the set of states of the universal automaton,
the number of states of the universal automaton of L has at most D(n) states.

�
Remark 6. There is no closed form expression for D(n), and its exact value is
only known for n smaller than 9 (cf. [13]). However, Korshunov [9] has given an
approximate expression of D(n). For instance, if n is even,

D(n) ∼ 2(n
n/2) exp

((
n

n/2 − 1

)

(2−n/2 + n22−n−5 − n2−n−4)
)

.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Size of the Universal Automaton of a Regular Language 91

1

2520

0.2

151050

0.8

0.6

0.4

0

Fig. 1. The graph of
log2 D(n)

2n

Figure 1 is a visual comparison between D(n) and the double exponential func-
tion n �→ 22n

.

Proposition 10. Let A = <Q, A, E, I, T > be an NFA that recognizes a lan-
guage L. The number of states of the trim universal automaton of L is bounded
by D(card(Q)) − 2.

Proof. Actually, if a state corresponds to the empty upset, it has an empty past
and it is therefore not accessible. Likewise, if a state corresponds to the upset
{∅}, it has an empty future and it is therefore not co-accessible. �

Example 1. We give here an example for the construction of the universal au-
tomaton. Let Z2 be the automaton of Figure 2 a). Let D2 be the determinized
automaton of Z2, drawn on Figure 2 b). Each of its states is a subset of the
set of states of Z2. We denote this set by a words whose letters are the element
of the state: the word 01 stands for the set {0, 1}. The states of the universal
automaton (Figure 2 c)) are upsets of the power set of states of Z2. The non
accessible part of the universal automaton is drawn in gray. The automaton Z2

is an example of the worst case in the construction of the universal automaton.
Actually, D(2) = 6.

Likewise, D(3) = 20 and we give a three-state automaton which recognizes a
language whose universal automaton has twenty states: the automaton Z3 shown
on Figure 3 a).

We denote an upset by the set of its minimal elements. For instance 0, 12
means {{0}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}. More, as the number of transitions of
the universal automaton is to high to allow to draw them all, a more compact
description is drawn on Figure 3 c). Dotted arrows are epsilon transitions (which,
strictly speaking, do not belong to the universal automaton); the transitions of
the universal automaton are obtained as follows: there is a transition (p, a, q) in
the universal automaton if and only if, on the figure, there are two states p′ and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

92 S. Lombardy

a)

0 1

b
a

a

b)

01 1 0 ∅

a

b

b
a

a

b

a, b

c)

0, 1, 01 1, 01 0, 01

a b a, b

b
a

a

b

d)

0, 01 1, 01

01

0, 1, 01∅, 0, 1, 01

a

b

a

a a, b

a, b
a

a

a

a, ba, b

a, b

a, b

a, b

a, b

a, b

a, b

a, b

a, b

a, b

a, b

Fig. 2. The construction of the universal automaton from Z2

q′ such that there is a path of dotted arrows from p to p′ and from q′ to q and
a transition labeled by a from p′ to q′.

In the following section, we generalize this example to show that, for every n,
there exists a n-state NFA that recognizes a language whose universal automaton
has D(n) states.

5 A Family of NFAs with Large Universal Automata

In this part, n is a positive integer and Zn = <Q, A, E, I, T > is the automaton
defined by:

Q = Z/nZ; A ={a, b}; I = T = Q;
E = {(p, a, p + 1) | p ∈Q} ∪ {(p, b, p) | p ∈ Q�{0}}.

(12)

In the sequel, if X is a subset of Q, i.e. a subset of Z/nZ, for every integer k,
we denote X + k = {x + k | x ∈ X}.

Lemma 1. Let n be a positive integer. The determinized automaton of Zn is
Dn = <P(Q), A, F, {Q}, P(Q)�{∅}>, with:

F = {(X, a, X + 1), (X, b, X�{0}) | X ⊆ Q}. (13)

Proof. As every state of A is initial, the initial state of D is Q. As every state
of A is terminal, every state of D different from ∅ is terminal.

If X is a subset of Q, X �
A

a =
⋃

p∈X p �
A

a =
⋃

p∈X p + 1 = X + 1; likewise,

X �
A

b =
⋃

p∈X,p�=0 p = X�{0}. This gives the set of transitions F of D.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Size of the Universal Automaton of a Regular Language 93

a)

0

1

2

b

b

a

a

a

b)

012

12

02 01

0

2 1

∅

a

bb

a

a

a

b b

a

a

a

b

b

ba, b

c)

0, 1 1, 2

0, 2

0

1 2

01

1202

0, 12

1, 02 2, 01

01, 02, 12

012

02, 12

01, 02

01, 12

0, 1, 2

∅

a

a

a

a

a

a

a

a

a

a

b

a

a

a

a

aa

b

b b

b

a

a

a, b

a, b

Fig. 3. The construction of the universal automaton from Z3

We show that every element of P(Q) is an accessible state by induction on
the number of elements. The set Q itself is the initial state of D. Let assume
that X is an accessible state. Let x be an element of X , we show that X�{x}
is accessible. Actually, X � an−xbax = (X − x) � bax = ((X − x)�{0}) � ax =

((X −x)�{0})+x = X�{x}. Therefore, every element of P(Q) is accessible. �

For every subset X of Q, we denote X = {Y | Y ⊆ X}, and (X)c = P(Q)�X ;
we can notice that (X)c is an upset of P(Q).

Lemma 2. Let n be a positive integer. The co-determinized automaton of Dn

is Cn = <S, A, G, K, V >, with:

S = {(X)c | X ∈ P(Q)}; K =S�{∅}; V = {(∅)c}
G = {(X)c

, a, (Y)c | (X, a, Y) ∈ F}∪{
(
X ∪ {0}

)c
, b, (X)c | X ⊆ Q}.

(14)

Proof. As any state X of Dn different from ∅ is final, the state t = (∅)c is the
final state of Dn. First, we show by induction on the word w that any state

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

94 S. Lombardy

P = w � t is in S. This is obviously true if w is the empty word: P = t. If

P = (X)c is in S, so its predecessors are:

a �
C

(X)c = {a �
D

Y | Y �⊆ X} = {Y | Y �⊆ a �
D

X} =
(

a �
D

X

)c

= (X − 1)c ; (15)

b �
C

(X)c ={b �
D

Y | Y �⊆ X} = {Y | Y �⊆ X, 0 �∈ Y } ∪ {Y ∪ {0} | Y �⊆ X, 0 �∈ Y }

={Y | Y �⊆ X ∪ {0}, 0 �∈ Y } ∪ {Y ′ | Y ′ �⊆ X ∪ {0}, 0 ∈ Y ′}

={Y | Y �⊆ X ∪ {0}} =
(
X ∪ {0}

)c

.

(16)

We show that every element P = (X)c of S is co-accessible from t.If X = ∅, then

P = t. If P = (X)c is co-accessible, for any x in Q, P ′ =
(
X ∪ {x}

)c

is too:

an−xbax�
C
P = an−xb�

C
(X − x)c = an−x�

C

(
(X − x) ∪ {0}

)c

=
(
X ∪ {x}

)c

. (17)

Therefore the set of states of Cn is exactly S.
The initial set of Cn is K = S�{∅}. �

Lemma 3. Let Q be a finite set. The intersection closure of {(X)c | X ∈ P(Q)}
is exactly the set of upsets of P(Q).

Proof. Let U be an upset of P(Q). For every Y in U , for every X not in U ,
Y �⊆ X . Hence, Y is in (X)c and U is a subset of (X)c. Thus, as X is not in
(X)c, it comes U =

⋂
X �∈U (X)c. �

Therefore, for every integer n, the universal automaton of the language recog-
nized by Zn has exactly D(n) states, and its trim part D(n) − 2 states. This,
with Proposition 9, implies the following theorem.

Theorem 1. Let A = <Q, A, E, I, T > be an NFA that recognizes a language L.
Let D(n) be the n-th Dedekind number. The following tight bounds hold.

i) The universal automaton of L has at most D(card(Q)) states.
ii) The trim universal automaton of L has at most D(card(Q)) − 2 states.

6 Unary Alphabets

We have seen that the composition of two algorithms (determinization and con-
struction of the universal automaton) that may produce an exponential output
yields an automaton with a number of states which is never a double exponential.

In the case of one-letter alphabet, the determinization algorithm has been
shown not to be exponential. Actually, if A is a one-letter NFA with n states,
the determinized automaton of A (and the minimal automaton of the accepted
language) has at most G(n) states (it cf. [3], where G(n) is the Landau function

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Size of the Universal Automaton of a Regular Language 95

a)

0

1

2

3

a a

aa

b)

0

1

2

3

a a

aa

01

12

23

03

a a

aa

012

123

023

013

a a

aa

02 1302 13
a

a

a

0123

a

Fig. 4. The automaton Y4 and its universal automaton

of n, that is the maximal least common multiple of a set of integers with sum
equal to n. We show that in this case, the universal automaton may have 2G(n)

states.
There exist an integer r and r numbers k1, .., kr such that k1 + .. + kr = n

and lcm(k1, k2, ..., kr) = G(n). Let Q be the disjoint union of (Qi = Z/kiZ)i∈[1;r]

and let Yn = <Q, {a}, E, I, T > be the automaton defined by:

I = {0 ∈ Qi | i ∈ [1; r]}, T = Q�I, E = {(p, a, p + 1) | ∃i, p ∈ Qi}. (18)

Lemma 4. The determinized automaton of Yn is isomorphic to the automaton
Dn = <R, {a}, F, J, U>, with R = Z/G(n)Z, J = {0}, U = R�J and F =
{(p, a, p + 1) | p ∈ R}.

The states of the co-determinized automaton of Dn are all the subset of R with
card(R) − 1 elements. The intersection closure of this set of states is equal to
P(R). Hence, the universal automaton of the language recognized by Yn has
2G(n) states and the trim universal automaton has 2G(n) − 2 states.

Remark 7. Starting from a one-letter DFA with n states (n > 1), it is not
possible to obtain a trim universal automaton with 2n − 1 states. The state
corresponding to the empty set in the construction of Proposition 6 cannot be
accessible. If the full set corresponds to a co-accessible state, it means that
every state of the DFA is final, thus every word is accepted and the universal
automaton has one state, or, if the DFA is not complete, the language is a finite

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

96 S. Lombardy

prefix language and the universal automaton has n states. Therefore, the trim
universal automaton has at most 2n − 2 states.

Example 2. Let Y4 be the automaton of Figure 4 a). It is equal to D4. The
universal automaton, drawn on Figure 4 b), has 24 = 16 states, including a non
accessible state and a non co-accessible state.

Acknowledgement. I am grateful to Jacques Sakarovitch who introduced me
the universal automaton a few years ago and who is always ready for any scientific
discussion.

References

1. Câmpeanu, C., Sântean, N., and Yu, S. Mergible states in large nfa. Theoret.
Comput. Sci. 330, 1 (2005), 23–34.

2. Champarnaud, J.-M., and Coulon, F. NFA reduction algorithms by means of
regular inequalities. Theoret. Comput. Sci. 327, 3 (2004), 241–253.

3. Chrobak, M. Finite automata and unary languages. Theoret. Comput. Sci. 47,
2 (1986), 149–158. Errata in Theoret. Comput. Sci. 302 (2003) 497–498.

4. Conway, J. H. Regular algebra and finite machines. Mathematics series. Chap-
mann and Hall, London, 1971.

5. Grunsky, I., Kurganskyy, O., and Potapov, I. On a maximal nfa without
mergible states. In CSR (2006), D. Grigoriev, J. Harrison, and E. A. Hirsch, Eds.,
vol. 3967, Springer, pp. 202–210.

6. Hopcroft, J. E. An n log n algorithm for minimizing states in a finite automa-
ton. In Theory of machines and computations (Proc. Internat. Sympos., Technion,
Haifa, 1971). Academic Press, New York, 1971, pp. 189–196.

7. Ilie, L., and Yu, S. Reducing NFAs by invariant equivalences. Theoret. Comput.
Sci. 306, 1-3 (2003), 373–390.

8. Jiang, T., and Ravikumar, B. Minimal NFA problems are hard. SIAM J.
Comput. 22, 6 (1993), 1117–1141.

9. Korshunov, A. D. The number of monotone Boolean functions. Problemy Kiber-
net., 38 (1981), 5–108, 272.

10. Lombardy, S. On the construction of reversible automata for reversible languages.
In ICALP 2002 (2002), P. Widmayer, F. Triguero Ruiz, R. Morales Bueno, M. Hen-
nessy, S. Eidenbenz, and R. Conejo, Eds., vol. 2380 of Lect. Notes Comp. Sci.,
Springer, pp. 170–182.

11. Lombardy, S., and Sakarovitch, J. Star height of reversible languages and
universal automata. In LATIN 2002 (2002), S. Rajsbaum, Ed., vol. 2286 of Lect.
Notes Comp. Sci., Springer, pp. 76–90.

12. Sakarovitch, J. Éléments de théorie des automates. Les classiques de
l’informatique. Vuibert, Paris, 2003. English translation to appear, Cambridge
University Press.

13. Wiedemann, D. A computation of the eighth Dedekind number. Order 8, 1 (1991),
5–6.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Correlations of Partial Words�

Francine Blanchet-Sadri1, Joshua D. Gafni2, and Kevin H. Wilson3

1 Department of Computer Science, University of North Carolina,
P.O. Box 26170, Greensboro, NC 27402–6170, USA

blanchet@uncg.edu
2 Department of Mathematics, University of Pennsylvania,

Philadelphia, PA 19104–6395, USA
jgafni@sas.upenn.edu

3 Department of Mathematics, University of Michigan,
Ann Arbor, MI 48109–1043, USA

khwilson@umich.edu

Abstract. Partial words are strings over a finite alphabet that may con-
tain a number of “do not know” symbols. In this paper, we introduce the
notions of binary and ternary correlations, which are binary and ternary
vectors indicating the periods and weak periods of partial words. Ex-
tending a result of Guibas and Odlyzko, we characterize precisely which
of these vectors represent the (weak) period sets of partial words and
prove that all valid correlations may be taken over the binary alpha-
bet. We show that the sets of all such vectors of a given length form
distributive lattices under inclusion. We also show that there is a well
defined minimal set of generators for any binary correlation of length
n and demonstrate that these generating sets are the primitive subsets
of {1, 2, ..., n − 1}. Finally, we investigate the number of correlations of
length n.

1 Introduction

Words, sequences or strings of symbols from a finite alphabet, arise naturally in
several areas of mathematical sciences. Notions and techniques related to peri-
odic structures in words find applications in virtually every area of theoretical
and applied computer science, notably in text processing, data compression, cod-
ing, computational biology, string searching and pattern matching algorithms.
Repeated patterns and related phenomena in words have played over the years a
central role in the development of combinatorics on words, and have been highly
valuable tools for the design and analysis of algorithms.

The first significant results on periodicity are the theorem of Fine and Wilf [9]
and the critical factorization theorem [7]. These two fundamental results refer
� This material is based upon work supported by the National Science Foundation

under Grant No. DMS–0452020. A World Wide Web server interface has been es-
tablished at www.uncg.edu/mat/research/correlations for automated use of the
program. We thank the referees of a preliminary version of this paper for their very
valuable comments and suggestions.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 97–108, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

98 F. Blanchet-Sadri, J.D. Gafni, and K.H. Wilson

to two kinds of phenomena concerning periodicity: The theorem of Fine and
Wilf considers the simultaneous occurrence of different periods in one string,
whereas the critical factorization theorem relates local and global periodicity
of strings. Starting from these basic classical results, the study of periodicity
has grown along both directions. Reference [15] contains a systematic and self-
contained exposition of this theory, including more recent significant results such
as an unexpected theorem of Guibas and Odlyzko which gives the structure of
the set of periods of a string [10].

In many practical applications, such as DNA sequence analysis, repetitions
admit a certain variation between copies of the repeated pattern because of
errors due to mutation, experiments, etc. Approximate repeated patterns, or
repetitions where errors are allowed, are playing a central role in different vari-
ants of string searching and pattern matching problems. Partial words, or strings
that may have a number of “do not know” symbols (also called “holes”), have
acquired great importance in this context [11,12,13,14,17]. Another application
area of current interest for the study of partial words is data communication
where some information may be missing, lost, or unknown. In their seminal and
fundamental work [1], Berstel and Boasson introduced this notion of partial word
and proved a theorem analogous to the periodicity theorem of Fine and Wilf for
the one-hole case. After them, Blanchet-Sadri and Hegstrom extended this re-
sult to partial words with two and three holes [5], and finally Blanchet-Sadri
extended it to arbitrary partial words [2]. Blanchet-Sadri and co-authors have
developed this line of research of periodicity on partial words and obtained the
first algorithms in the context of partial words. In particular, they extended the
critical factorization theorem to partial words with an arbitrary number of holes
[4,6] and Guibas and Odlyzko’s theorem to partial words with one hole [3].

In [10], Guibas and Odlyzko consider the period sets of strings of length n
over a finite alphabet, and specific representations of them, (auto)correlations,
which are binary vectors of length n indicating the periods. Among the possible
2n bit vectors, only a small subset are valid correlations. There, they provide
characterizations of correlations, asymptotic bounds on their number, and a
recurrence for the population size of a correlation, that is, the number of strings
sharing a given correlation. In [16], Rivals and Rahmann show that there is
redundancy in period sets and introduce the notion of an irreducible period set.
They prove that Γn, the set of all correlations of length n, is a lattice under
set inclusion and does not satisfy the Jordan-Dedekind condition. They propose
the first efficient enumeration algorithm for Γn and improve upon the previously
known asymptotic lower bounds on the cardinality of Γn. Finally, they provide
a new recurrence to compute the number of strings sharing a given period set,
and exhibit an algorithm to sample uniformly period sets through irreducible
period sets.

In the case of partial words, there are two notions of periodicity: one is that of
period, the other is that of weak period. In this paper, we study the combinatorics
of possible sets of periods and weak periods of partial words in a similar way
as it was done for the structure of all global periods of words. In Section 3,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Correlations of Partial Words 99

we introduce the notions of binary and ternary correlations, which are binary
and ternary vectors indicating the periods and weak periods of partial words.
Extending the result of Guibas and Odlyzko, we characterize precisely which of
these vectors represent the (weak) period sets of partial words and prove that all
valid correlations may be taken over the binary alphabet. In Section 4, we show
that the sets of all such vectors of a given length form distributive lattices under
inclusion extending results of Rivals and Rahmann. We also show that there is a
well defined minimal set of generators for any binary correlation of length n and
demonstrate in Section 5 that these generating sets are the primitive subsets of
{1, 2, ..., n − 1}. Finally, we investigate the number of correlations of length n.

2 Definitions, Notations, and Preliminary Results

Traditionally, a (full) word u is defined as a function u : {0, 1, . . . , n−1} → A for
some n ≥ 0 and some nonempty, finite set A, called the alphabet. The length n is
denoted |u| and sometimes the word is written explicitly as u = u(0)u(1) · · ·u(n−
1). When n = 0 we say the word is empty and denote it by ε. We denote the set
of all words of length n over the alphabet A by An and the set of all words over
A by A∗.

A partial word is defined similarly except u is a partial function. We define
D(u) to be the domain of u, i.e., the set of i ∈ {0, 1, . . . , n − 1} such that
u(i) is defined. Moreover, we define the companion of u to be the full word
u� : {0, 1, . . . , n−1} → A∪{�} defined by u�(i) = u(i) if i ∈ D(u) and u�(i) = �
otherwise. Finally we define H(u) = {0, 1, . . . , n−1}\D(u) to be the set of holes
of u. Throughout this paper u and u� will be used interchangeably. For example,
u = abb�bb�a is a partial word where D(u) = {0, 1, 2, 4, 5, 7} and H(u) = {3, 6}.
We say that An

� is the set of partial words of length n over the alphabet A and
that A∗� is the set of all partial words (including ε) over the alphabet A.

Partial words allow for two weakenings of equality which we call containment
and compatibility. We say that the partial word u is contained in the partial word
v (denoted u ⊂ v) provided that |u| = |v|, D(u) ⊆ D(v) and for all i ∈ D(u) we
have that u(i) = v(i). As a weaker notion, we say that the partial words u and v
are compatible (denoted u ↑ v) provided that there exists another partial word w
such that u ⊂ w and v ⊂ w. An equivalent formulation of compatibility is that
|u| = |v| and for all i ∈ D(u) ∩ D(v) we have that u(i) = v(i). As an example,
u = abb�bb�a and v = �bbab�ba are compatible with w = abbabbba. For a partial
word u, we denote by C(u) the set of all partial words compatible with u. More
specifically, C(u) = {v | u ↑ v}.

We say that a partial word u is (strongly) p-periodic provided that u(i) = u(j)
for all i, j ∈ D(u) with i ≡ j mod p. Moreover, we say that all partial words have
period 0. We denote the set of all periods of u which are less than |u| by P(u).
Similarly we say that a partial word u is weakly p-periodic provided that whenever
0 ≤ i < n−p and i, i+p ∈ D(u) we have u(i) = u(i+p). We call the set of weak
periods of u which are less than |u| by P ′(u). It is obvious that P(u) ⊆ P ′(u) and
in the case of full words, P(u) = P ′(u) since D(u) = {0, 1, . . . , |u|−1}. In general

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

100 F. Blanchet-Sadri, J.D. Gafni, and K.H. Wilson

this equality does not hold. As an example, consider the partial word ab�bbb�bbbb,
which is weakly 2-periodic but not 2-periodic. When q ∈ P ′(u) \ P(u) we say
that u has a strictly weak period of q. Note that if for some n we have that
u, v ∈ An

� and u ⊂ v, then P(v) ⊆ P(u) and P ′(v) ⊆ P ′(u).
We will say that the greatest lower bound of a pair of partial words u and

v of length n is the partial word u ∧ v with D(u ∧ v) = {0 ≤ i < n | i ∈
D(u) ∩ D(v) and u(i) = v(i)} and (u ∧ v)(i) = u(i) = v(i) for all i ∈ D(u ∧ v).
Consider for example the partial words u = abbbbb�a and v = �bbab�ba where
u ∧ v = �bb�b��a. Note that u ∧ v is constructed so that (u ∧ v) ⊂ u and
(u ∧ v) ⊂ v. Moreover, it is easily seen that u ∧ v is maximal in the sense that
for all partial words w which satisfy w ⊂ u and w ⊂ v we have that w ⊂ (u ∧ v).
One property we notice immediately about the greatest lower bound is that if
u, v ∈ An

� , then P(u) ∪ P(v) ⊆ P(u ∧ v) and P ′(u) ∪ P ′(v) ⊆ P ′(u ∧ v).
For any 0 ≤ p < |u| and 0 ≤ i < p, define ui,p = u(i)u(i + p)u(i + 2p) · · · ,

the ith p-word of u. Clearly, p ∈ P(u) if and only if ui,p is 1-periodic for all
0 ≤ i < p. Similarly, p ∈ P ′(u) if and only if ui,p is weakly 1-periodic for all
0 ≤ i < p.

3 Characterizations of Correlations

The major result of [10] was a complete characterization of the possible sets
of periods for full words of arbitrary length. Guibas and Odlyzko stated their
results not in terms of sets of periods but in terms of bit vectors which they called
correlations. For a (full) word u, let v be the bit vector of length |u| for which
vi = 1 whenever i ∈ P(u) and vi = 0 otherwise. We call v the correlation of u.
For example, the word abbababbab has periods 5 and 8 and thus has correlation
1000010010. This representation gave them a useful method of representing sets
of periods in concise ways and allowed them to prove the main result of their
paper. We now recall their theorem, for which we will need a definition.

Definition 1. A bit vector v of length n is said to satisfy the

– Forward propagation rule provided that for all 0 ≤ p < q < n such that
vp = vq = 1 we have that vp+i(q−p) = 1 for all integers i satisfying 2 ≤ i <
(n − p)/(q − p),

– Backward propagation rule provided that for any nonnegative integers p and
q less than n such that 0 ≤ p < q < 2p and vp = vq = 1 and v2p−q = 0 we
have that vp−i(q−p) = 0 for all i = 2, . . . , min{p/(q − p), (n − p)/(q − p)}.

Theorem 1. Guibas and Odlyzko [10] For correlation v of length n the fol-
lowing are equivalent:

1. There exists a word over the binary alphabet with correlation v.
2. There exists a word over some alphabet with correlation v.
3. The correlation v satisfies the forward and backward propagation rules.

Corollary 1. For any alphabet A and any word u ∈ A∗, there exists a word
v ∈ {a, b}∗ such that P(v) = P(u).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Correlations of Partial Words 101

In this section, we follow the example of Guibas and Odlyzko and completely
characterize the possible sets of periods and weak periods of partial words. To do
so we first extend their definition of a “correlation” to incorporate the difference
between strictly weak periods and strong periods, a difference which does not
occur in the case of full words.

Definition 2. Let P and Q be sets. We say that the pair (P, Q) is a ternary
correlation of length n provided that there exists a partial word u ∈ An� such
that P = P(u) and Q = P ′(u) \ P(u). Such a pair we will denote by P/Q. For
a given ternary correlation P/Q of length n, we define its correlation vector v
to be the ternary vector for which vi = 1 whenever i ∈ P , vi = 2 whenever
i ∈ Q, and vi = 0 otherwise. We will say that P(v) = {0 ≤ i < n | vi = 1} and
P ′(v) = {0 ≤ i < n | vi > 0}. When Q = ∅, we will call the correlation P/Q a
binary correlation.

We begin the process of characterizing the correlations of partial words by record-
ing two facts. (1) The first formalizes a relatively obvious property of the periods
of full words: For all integers p ≥ 0 define 〈p〉n to be the set of nonnegative in-
tegers less than n which are multiples of p. Then for all u ∈ An,

P(u) =
⋃

p∈P

〈p〉n

for some P ⊆ {0, 1, 2, . . . , n − 1}. (2) The second characterizes the relationship
between partial words and the words which are compatible with them: If u is a
partial word over an alphabet A, then

P(u) =
⋃

w∈C(u)∩A∗

P(w)

For example, consider the partial word u = abca�cabca over the alphabet A =
{a, b, c}. Then P(u) = {3, 6, 9, 10} = P(w1) ∪ P(w2) ∪ P(w3) where w1 =
abcaacabca, w2 = abcabcabca and w3 = abcaccabca are the words w satisfying
w ∈ C(u) ∩ A∗.

We are now ready to state the first part of our characterization theorem. This
part of the theorem completely characterizes the set of binary correlations of all
partial words. In the sequel, we only use the subscript n in 〈p〉n when its value
is not clear from context.

Theorem 2. For any finite collection u1, u2, . . . , uk of full words of length n
over an alphabet A, there exists a partial word w of length n over the alphabet
{a, b} with P(w) = P ′(w) = P(u1) ∪ P(u2) ∪ · · · ∪ P(uk).

Proof. (Sketch) The case k = 1 follows from Corollary 1. Moreover, since ε is
the only word of length 0, the case n = 0 forces k = 1 and so we assume that
k > 1 and n > 0. Then from (1) we have that

k⋃

j=1

P(uj) =
⋃

p∈P

〈p〉

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

102 F. Blanchet-Sadri, J.D. Gafni, and K.H. Wilson

for some P ⊆ {0, 1, . . . , n − 1}. Thus for all 1 ≤ j ≤ k, we assume that P(uj) =
〈pj〉 for some 0 ≤ pj < n.

With these assumptions, we move on to the case when k = 2. For notational
clarity we set u = u1, v = u2, P(u) = 〈p〉, and P(v) = 〈q〉 for some 0 ≤ p < q <
n. Define

ωp =

⎧
⎪⎨

⎪⎩

abn−1 if p = 0
(abp−1)kabr−1 if p > 0 and r > 0
(abp−1)k otherwise

where n = kp + r with 0 ≤ r < p. Similarly define ωq. Obviously P(ωp) = 〈p〉
and P(ωq) = 〈q〉. We claim that P(ωp ∧ ωq) = P(ωp) ∪ P(ωq).

Moreover, we see that ωp ∧ ωq has no strictly weak periods. Assume the con-
trary and let ξ ∈ P ′(ωp ∧ωq)\P(ωp∧ωq). Then there exist i, j ∈ D(ωp ∧ωq) such
that i ≡ j mod ξ and (ωp ∧ωq)(i) = a and (ωp ∧ωq)(j) = b, and for all 0 ≤ k < n
such that k ≡ i mod ξ and k is strictly between i and j we have k ∈ H(ωp ∧ωq).
Let k be such that |i − k| is minimized (that is, if i < j then k is minimal and
if i > j then k is maximal). This minimal distance is obviously ξ. Then p and q
divide i and at least one of them divides k. But we see that only one of p and q
divides k, for if both did then (ωp ∧ ωq)(k) = a �= �. Without loss of generality
let p|k. But as p|i and p|k, we have p||i − k| = ξ. Then since ωp is p-periodic,
we have that ωp(l) = ωp(i) = a for all l ≡ i mod p. But j ≡ i mod ξ and p|ξ, so
j ≡ i mod p. Therefore, ωp(j) = a and thus (ωp ∧ ωq)(j) �= b, a contradiction.
Now let k > 2 and let {p1, . . . , pk} ⊆ {0, 1, . . . , n − 1} be the periods such that
P(uj) = 〈pj〉. We claim that P(ωp1 ∧· · · ∧ωpk

) = P(ωp1)∪· · · ∪P(ωpk
) and that

ωp1 ∧ · · · ∧ ωpk
has no strictly weak periods. ��

Theorem 2 tells us that every union of possible correlations of full words over
any alphabet is the correlation of a binary partial word. But (2) tells us that
the period set of every partial word over any alphabet (including the binary
alphabet) is the union of the period sets of all full words compatible with it.
Thus, we have a bijection between these sets which we record as the following
corollary.

Corollary 2. The set of valid binary correlations P/∅ of length n over the
binary alphabet is precisely the set of unions of valid correlations of full words
of length n over all nonempty alphabets.

In light of (2), the following corollary is essentially a rephrasing of the previous
corollary. But as a concept, this corollary is important enough to deserve special
attention.

Corollary 3. The set of valid binary correlations P/∅ over an alphabet A with
|A| ≥ 2 is the set of valid binary correlations over the binary alphabet. Phrased
differently, if u is a partial word over an alphabet A, then there exists a binary
partial word v such that P(v) = P(u).

Theorem 2 and Corollaries 2 and 3 give us three equivalent characterizations
of valid binary correlations of partial words over an arbitrary alphabet. They

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Correlations of Partial Words 103

do not mention at all, though, the effect of strictly weak periods. The following
theorem shows that the characterization is actually rather elegant.

Theorem 3. A ternary correlation P/Q of length n is valid if and only if

1. P is the nonempty union of sets of the form 〈p〉n,
2. For each q ∈ Q, there exists an integer 2 ≤ m < n

q such that mq /∈ P ∪ Q.

Proof. (Sketch) First, if Q = ∅ then we are in the case of Corollaries 2 and
3. Thus we consider only the case when Q �= ∅. We begin by taking a triple
(P, Q, n) satisfying the above conditions along with the assumption that n is at
least 3 since the cases of zero-letter, one-letter, and two-letter partial words are
trivial by simple enumeration considering all possible renamings of letters. So
we may now define

ψQ =
∧

q∈Q ψq ωP =
∧

p∈P ωp

where ψq = abq−1�bn−q−1 with 1 ≤ q < n, a, b ∈ A are distinct letters, and ωp

is as in the proof of Theorem 2. Notice that 0 /∈ Q since 0 ∈ P and then 0m ∈ P
for all integers m. Thus, ψQ is well-defined. Then we claim that u = ωP ∧ ψQ is
a partial word with correlation P/Q.

We claim that P = P(u) and since P ∪ Q ⊆ P ′(u) it suffices to show that
if q ∈ P ′(u) \ P(u) then q ∈ Q. Since q ∈ P ′(u) \ P(u) we have that some ui,q

contains both a and b. But the only possible location of a is 0, so we may write
this as u(0) = a, u(qj) = �, and u(qk) = b for some k ≥ 2 and 0 < j < k. But
notice then that u does not have period q so q /∈ P . Thus, since u(q) = �, we
have that q ∈ Q and have thus completed this direction of the theorem. Now
consider the other direction, i.e., if we are given a partial word u with correlation
P/Q, then P/Q satisfies our conditions. By Theorem 2 we have that the first
condition must be met and we claim that the second condition must be met
as well. ��
In analogy to Corollary 3, we record the following fact.

Corollary 4. The set of valid ternary correlations P/Q over an alphabet A
with |A| ≥ 2 is the same as the set of valid ternary correlations over the binary
alphabet. Phrased differently, if u is a partial word over an alphabet A, then there
exists a binary partial word v with P(v) = P(u) and P ′(v) = P ′(u).

We end this section with some consequences of Theorem 3. Having completely
characterized the sets of binary and ternary correlations of partial words and
having shown that all valid binary and ternary correlations may be taken as
over the binary alphabet, we give these sets names. In the sequel we shall let Δn

be the set of all valid binary correlations of partial words of length n and Δ′
n

the set of valid ternary correlations of length n.
As a first consequence of Theorem 3 we notice that for a given ternary corre-

lation v ∈ Δ′
n, we have that vi �= 2 for all i >

⌊
n−1

2

⌋
. Another consequence of

Theorem 3 is that for all v ∈ Δn we have that

P(v) =
⋃

p∈P

〈p〉n

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

104 F. Blanchet-Sadri, J.D. Gafni, and K.H. Wilson

for some P ⊆ {0, 1, . . . , n − 1}, and we say that P generates the correlation
v. One such P is P(v). But in general there are strictly smaller P which have
this property. For example, if v = 1001001101 then P(v) = {0, 3, 6, 7, 9}. While
P = P(v) will generate this set, we see that P = {0, 3, 6, 7}, {3, 6, 7}, {0, 3, 7},
or {3, 7} (among others) will as well. On the other hand, we see that there is a
well defined minimal set of generators. That is, for every v ∈ Δn there is a set
R(v) such that for any set P which generates v we have that R(v) ⊆ P . Namely,
this is the set of nonzero p ∈ P(v) such that for all q ∈ P(v) with p �= q we have
that q � |p. For if there is q distinct from p such that q|p then we have that all
multiples of p are also multiples of q, i.e., 〈p〉 ⊆ 〈q〉. Moreover, we see since there
are no divisors of the elements of R(v) in P(v) that the only p ∈ P(v) which can
generate r ∈ R(v) is r itself. Thus we have achieved minimality.

We will call R(v) the irreducible period set of v. For partial words of length n,
we define Φn to be the set of all irreducible period sets. Moreover, we see that
there is an obvious bijective correspondence between Φn and Δn given by the
function R : Δn → Φn in one direction and its inverse E : Φn → Δn defined as

E(P) =
⋃

p∈P

〈p〉n

4 Structural Properties of Δn, Δ′
n and Φn

In [16] Rivals and Rahmann defined the set of all valid correlations of full words of
length n as Γn. They then defined a notion of irreducible period set based on for-
wardpropagation. Specifically, they noticed that (like partialwords), some periods
are implied by other periods because of the forward propagation rule. An example
is that if a twelve-letter word has periods 7 and 9 then it must also have period 11
since 11 = 7+2(9−7).They then gave for any v ∈ Γn, conditions for a period set to
be an irreducible period set associated with v and showed that this minimal set of
periods exists and is unique. In the above example, {0, 7, 9, 11} would correspond
to {0, 7, 9}. The set of these irreducible period sets they called Λn.

Our notion of irreducible periods and Rivals and Rahmann’s differ in a funda-
mental way. Specifically, their definition relied on forward propagation. This rule
does not hold in the case of partial words. For example, the proof of Theorem 3
tells us that abbbbbb�b�bb has periods 7 and 9 but does not have period 11. Thus,
{7, 9, 11} is irreducible in the sense of partial words, but not in the sense of full
words.

The idea of reduction is still present though. And in [16] Rivals and Rahmann
went on to show several structural properties of Γn and Λn. Specifically, they
showed that Γn is a lattice under inclusion which does not satisfy the Jordan-
Dedekind condition, a criterion which stipulates that all maximal chains between
two elements of a poset are of equal length. Violating this condition implies that
Γn is neither distributive, modular, nor a matroid. They also showed that while
Λn is not a lattice that it does satisfy the Jordan-Dedekind condition as a poset.

Because of the analogies between Γn and Δn and Δ′
n as well as the analogies

between Λn and Φn, we now investigate the structural properties of Δn, Δ′
n

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Correlations of Partial Words 105

and Φn. In order to highlight the differences between the cases of full words
and partial words, the structure of this section closely follows the structure of
the analogous section of [16]. In particular we show that both Δn and Δ′

n are
distributive lattices under inclusion (suitably defined in the case of Δ′

n). On the
other hand, we show that Φn is not a lattice but does satisfy the Jordan-Dedekind
condition.

First, we blur the lines between the correlation vector v ∈ Δn and the associ-
ated set of periods P(v). Specifically, we say that for any u, v ∈ Δn we have that
u ⊆ v if and only if P(u) ⊆ P(v) and p ∈ u if and only if p ∈ P(u). Moreover,
we define u ∩ v and u ∪ v to be the unique vectors with P(u ∩ v) = P(u) ∩ P(v)
and P(u ∪ v) = P(u) ∪ P(v). It is easy to see that if u, v ∈ Δn then u ∩ v ∈ Δn

and u ∪ v ∈ Δn. Moreover, the pair (Δn, ⊆) is a poset with a null element and a
universal element. Namely the null element is 10n−1 and the universal element is
1n. One of the theorems of [16] is that the set of correlations of full words form
a lattice that does not satisfy the Jordan-Dedekind condition. Thus it is neither
distributive nor modular. But since the meet and the join of binary correlations
are the set intersection and set union of the correlations, we have the following
theorem.

Theorem 4. The poset (Δn, ⊆) is a distributive lattice and thus satisfies the
Jordan-Dedekind condition.

Second, we expand our considerations to Δ′
n, the set of ternary correlations of

partial words of length n, and show that Δ′
n is a lattice again with respect to

inclusion, which we define suitably. Consider ternary correlations u, v ∈ Δ′
n.

We define the intersection of u and v as the ternary vector u ∩ v such that
P(u ∩ v) = P(u) ∩ P(v) and P ′(u ∩ v) = P ′(u) ∩ P ′(v). Equivalently we might
say that (u ∩ v)i = 0 if either ui = 0 or vi = 0, 1 if ui = vi = 1, and 2 otherwise.
Note that Δ′

n is closed under intersection.
We may define the union in the analogous way, specifically, for u, v ∈ Δ′

n we
say that P(u∪v) = P(u)∪P(v) and that P ′(u∪v) = P ′(u)∪P ′(v). Equivalently,
u∪v is the ternary vector satisfying (u∪v)i = 0 if ui = vi = 0, 1 if either ui = 1
or vi = 1, and 2 otherwise. Unlike unions of binary correlations, the union of two
ternary correlations is not necessarily again a ternary correlation. For example,
consider the correlations u = 102000101 and v = 100010001. The union of these
two correlations is u ∪ v = 102010101, which violates the second condition of
Theorem 3. Specifically, there is no q ≥ 2 such that (u ∪ v)2q = 0. Finally, for
u, v ∈ Δ′

n we say that u ⊆ v provided that P(u) ⊆ P(v) and P ′(u) ⊆ P ′(v).
Equivalently we may say that u ⊆ v provided that whenever ui > 0 we have
that ui ≥ vi > 0. Or more explicitly, u ⊆ v provided that whenever ui = 1 that
vi = 1 and whenever ui = 2 that vi = 1 or vi = 2. Under these definitions, the
pair (Δ′

n, ⊆) is a poset with null element 10n−1 and universal element 1n.

Theorem 5. The poset (Δ′
n, ⊆) is a lattice.

Proof. (Sketch) First, Δ′
n is closed under intersection. Second, the pair (Δ′

n, ⊆)
is a poset. Now, we do not have the union of the two correlations to explicitly

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

106 F. Blanchet-Sadri, J.D. Gafni, and K.H. Wilson

define the join. One method of proving that the join exists is to notice that the
join of u, v ∈ Δ′

n is the intersection of all elements of Δ′
n which contain u and

v. This intersection is guaranteed to be nonempty since Δ′
n contains a universal

element. On the other hand, we can modify the union slightly such that we obtain
the join constructively. Consider the example above in which u = 102000101 and
v = 100010001 and u ∪ v = 102010101. If we simply change (u∪ v)2 from 2 to 1,
then we will have created a valid ternary correlation. Calling this vector u ∨ v
we see that u ⊆ u ∨ v and that v ⊆ u ∨ v. Thus, we generalize this operator by
defining u ∨ v to be the unique correlation satisfying P ′(u ∨ v) = P ′(u) ∪ P ′(v)
and P(u∨ v) = P(u)∪P(v)∪B(u∪ v) where B(u∪ v) is the set of all 0 ≤ q < n
such that (u∪v)q = 2 and there exists no k ≥ 2 such that (u∪v)kq = 0. That is,
B(u∪v) is the set of positions in u∪v which do not satisfy the second condition
of Theorem 3.

We claim that u ∨ v is the unique join of u and v (and thus justify our use
of the traditional notation ∨ for our binary operation). Notice first that since
P(u ∪ v) = P(u) ∪ P(v) and P ′(u ∪ v) = P ′(u) ∪ P ′(v) that u ∪ v ⊆ u ∨ v.
Thus we have that u ⊆ u ∪ v ⊆ u ∨ v and that v ⊆ u ∪ v ⊆ u ∨ v. We also see
that u ∨ v ∈ Δ′

n. This follows from the fact that if p ∈ P(u ∨ v) then either
p ∈ P(u) ∪ P(v) or for all k ≥ 1 we have that kp ∈ P ′(u) ∪ P ′(v). In the first
case, we then have that 〈p〉 ⊆ P(u) ∪ P(v) ⊆ P(u ∨ v). In the second case, we
see that all multiples of p are in P ′(u) ∪ P ′(v). Therefore, by the definition of
u ∨ v and the fact that the multiples of all multiples of p are again multiples of
p, we must have that 〈p〉 ⊆ P(u ∨ v). Thus, using the ∨ operator instead of the
∪ operator resolves all conflicts with Theorem 3 and so u ∨ v ∈ Δ′

n. From here
it suffices to show that it is minimal. ��

Strangely, even though the join operation of Δ′
n is more complicated than the

join operation of Δn, we still have that Δ′
n is distributive and thus satisfies the

Jordan-Dedekind condition. This is stated in the following theorem.

Theorem 6. The lattice (Δ′
n, ⊆) is distributive and thus satisfies the Jordan-

Dedekind condition.

So unlike the lattice of correlations of full words which does not even satisfy the
Jordan-Dedekind condition, the lattices of both binary and ternary correlations
of partial words are distributive.

Finally we turn our attention to Φn = R(Δn), the set of irreducible period
sets of length n. For n ≥ 3, we see immediately that the poset (Φn, ⊆) is not
a join-semilattice since the sets {1} and {2} will never have a join since {1} is
always maximal. On the other hand, we have that (Φn, ⊆) is a meet-semilattice
as it contains a null element ∅. The meet of two elements of Φn is simply their
set theoretic intersection.

Proposition 1. Φn satisfies the Jordan-Dedekind condition.

Notice that while there is a natural bijection between the lattice Δn and the
meet-semilattice Φn given above by the maps R and E, we see immediately that

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Correlations of Partial Words 107

these maps are not morphisms. For example, consider the period sets {0, 1, 2, 3, 4}
and {0, 2, 4}. Then we see that {0, 1, 2, 3, 4} ∩ {0, 2, 4} = {0, 2, 4} for which
the corresponding irreducible period set is {2}. But R({0, 1, 2, 3, 4}) = {1} and
R({0, 2, 4}) = {2}, a pair of irreducible period sets whose intersection is ∅ �= {2}.

5 Counting Correlations

In this section we look at the number of correlations of partial words of a given
length. In the case of binary correlations, we give bounds and link the problem
to one in number theory, and in the case of ternary correlations we give an exact
count.

A primitive set of integers is a subset S ⊆ N = {1, 2, . . .} such that for any
two distinct elements s, s′ ∈ S we have that neither s divides s′ nor s′ divides s.
We denote by Pn the set of finite primitive sets of integers at most n. As Φn and
Pn−1 coincide, we have the relation ‖Δn‖ = ‖Φn‖ = ‖Pn−1‖. So if we can count
the number of finite primitive sets of integers less than n then we can count
the number of binary correlations of partial words of length n. We present some
results on approximating this number.

Theorem 7. Erdös [8] Let S be a finite primitive set of size k with elements
less than n. Then k ≤

⌊
n
2

⌋
. Moreover, this bound is sharp.

This bound tells us that the number of primitive sets of integers with elements
less than n is at most the number of subsets of {1, 2, . . . , n − 1} of size at most⌊

n
2

⌋
. Moreover, the sharpness of the bound gives us that ‖Φn‖ ≥ 2�n/2	. Thus

we have that
ln 2
2

≤ ln ‖Φn‖
n

≤ ln 2

In [10], Guibas and Odlyzko showed that as n → ∞

1
2 ln 2

+ o(1) ≤ ln ‖Γn‖
(ln n)2

≤ 1
2 ln(3/2)

+ o(1)

and in [16] Rivals and Rahmann improved the lower bound to

ln ‖Γn‖
(ln n)2

≥ 1
2 ln 2

(

1 − ln ln n

ln n

)2

+
0.4139
ln n

− 1.47123 ln ln n

(ln n)2
+ O

(
1

(ln n)2

)

where Γn is the set of all valid correlations of full words. Thus the bounds we
give, which show explicitly that ln ‖Δn‖ = Θ(n), demonstrate that the number
of valid binary correlations of partial words is much greater than the number of
valid correlations of full words.

We now show that the set of ternary correlations is actually much more
tractible to count than the set of binary correlations. We first note two in-
teresting consequences of Theorem 3: (1) Let u be a partial word of length n
and let p ∈ P ′(u). Then p ∈ P(u) if and only if kp ∈ P ′(u) for all 0 ≤ k < n/p.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

108 F. Blanchet-Sadri, J.D. Gafni, and K.H. Wilson

That is, a weak period is a strong period if and only if all of its multiples are
also weak periods. (2) If S ⊆ {1, 2, . . . , n − 1}, then there is a unique ternary
correlation v ∈ Δ′

n such that P ′(v) = S ∪ {0}. We note that (2) agrees with the
definition of the join forced upon us in Section 4. Considering all periods as weak
periods and then determining which ones are actually strong periods is how we
defined that operation. We note that (2) tells us as well that the cardinality of
the set of ternary correlations is the same as the cardinality of the power set of
{1, 2, . . . , n − 1}. And thus the equality ‖Δ′

n‖ = 2n−1 holds.

References

1. Berstel, J., Boasson, L.: Partial Words and a Theorem of Fine and Wilf. Theoret.
Comput. Sci. 218 (1999) 135–141

2. Blanchet-Sadri, F.: Periodicity on Partial Words. Comput. Math. Appl. 47 (2004)
71–82

3. Blanchet-Sadri, F., Chriscoe, Ajay: Local Periods and Binary Partial Words: An
Algorithm. Theoret. Comput. Sci. 314 (2004) 189–216 www.uncg.edu/mat/AlgBin

4. Blanchet-Sadri, F., Duncan, S.: Partial Words and the Critical Factorization The-
orem. J. Combin. Theory Ser. A 109 (2005) 221–245 www.uncg.edu/mat/cft

5. Blanchet-Sadri, F., Hegstrom, Robert A.: Partial Words and a Theorem of Fine
and Wilf Revisited. Theoret. Comput. Sci. 270 (2002) 401–419

6. Blanchet-Sadri, F., Wetzler, N.D.: Partial Words and the Critical Factorization
Theorem Revisited. www.uncg.edu/mat/research/cft2

7. Césari, Y., Vincent, M.: Une Caractérisation des Mots Périodiques. C.R. Acad.
Sci. Paris 268 (1978) 1175–1177

8. Erdös, P.: Note on Sequences of Integers No One of Which is Divisible by Another.
J. London Math. Soc. 10 (1935) 126–128

9. Fine, N.J., Wilf, H.S.: Uniqueness Theorems for Periodic Functions. Proc. Amer.
Math. Soc. 16 (1965) 109–114

10. Guibas, L.J., Odlyzko, A.M.: Periods in Strings. J. Combin. Theory Ser. A 30
(1981) 19–42

11. Kolpakov, R., Kucherov, G.: Finding Approximate Repetitions Under Hamming
Distance. Lecture Notes in Comput. Sci. Vol. 2161. Springer-Verlag, Berlin (2001)
170–181

12. Kolpakov, R., Kucherov, G.: Finding Approximate Repetitions Under Hamming
Distance. Theoret. Comput. Sci. 33 (2003) 135–156

13. Landau, G., Schmidt, J.: An Algorithm for Approximate Tandem Repeats. Lecture
Notes in Comput. Sci. Vol. 684. Springer-Verlag, Berlin (1993) 120–133

14. Landau, G.M., Schmidt, J.P., Sokol, D.: An Algorithm for Approximate Tandem
Repeats. J. Comput. Biology 8 (2001) 1–18

15. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,
Cambridge (2002)

16. Rivals, E., Rahmann, S.: Combinatorics of Periods in Strings. J. Combin. Theory
Ser. A 104 (2003) 95–113

17. Schmidt, J.P.: All Highest Scoring Paths in Weighted Grid Graphs and Their
Application to Finding All Approximate Repeats in Strings. SIAM J. Comput.
27 (1998) 972–992

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Testing Convexity Properties of Tree Colorings

Eldar Fischer� and Orly Yahalom

Computer Science Department, Technion - IIT, Haifa 32000, Israel
{eldar, oyahalom}@cs.technion.ac.il

Abstract. A coloring of a graph is convex if it induces a partition of the
vertices into connected subgraphs. Besides being an interesting property
from a theoretical point of view, tests for convexity have applications in
various areas involving large graphs. Our results concern the important
subcase of testing for convexity in trees. This problem is linked, among
other possible applications, with the study of phylogenetic trees, which
are central in genetic research, and are used in linguistics and other areas.
We give a 1-sided, non-adaptive, distribution-free ε-test for the convexity
of tree colorings. The query complexity of our test is O

(
k
ε

)
, where k is the

number of colors, and the additional computational complexity is O(n).
On the other hand, we prove a lower bound of Ω(

√
k/ε) on the query

complexity of tests for convexity in the standard model, which applies
even for (unweighted) paths. We also consider whether the dependency
on k can be reduced in some cases, and provide an alternative testing al-
gorithm for the case of paths. Then we investigate a variant of convexity,
namely quasi-convexity, in which all but one of the colors are required
to induce connected components. For this problem we provide a 1-sided,
non-adaptive ε-test with query complexity O

(
k
ε2

)
and time complexity

O(n). For both our convexity and quasi-convexity tests, we show that,
assuming that a query takes constant time, the time complexity can be
reduced to a constant independent of n if we allow a preprocessing stage
of time O(n). Finally, we show how to test for a variation of convexity
and quasi-convexity where the maximum number of connectivity classes
of each color is allowed to be a constant value other than 1.

1 Introduction

Property testing deals with the following relaxation of decision problems: Given a
fixed property P and an input f , one wants to decide whether f has the property
or is ‘far’ from having the property. Formally, two input functions f : D → F
and f ′ : D → F are said to be ε-close to each other if they differ in no more
than ε|D| places (D is assumed to be finite). f is called ε-close to satisfying a
property P (or simply ε-close to P) if there exists an input f ′ that is ε-close to f
and satisfies P . If f is not ε-close to P then we say that f is ε-far from satisfying
P (or ε-far from P).

� Research supported in part by David and Miriam Mondry research fund and by an
Israel Science Foundation grant number 55/03.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 109–120, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

110 E. Fischer and O. Yahalom

Property testing normally deals with functions with large domains and/or
costly retrieval procedures. We assume here that the number of queries of the
function values is the most limited resource, rather than the computation time
(but we also address the computation time).

A property P is said to be (ε, q)-testable if there exists a (randomized) algo-
rithm that, for every input function f : D → F , queries the values of f on at
most q points of D, and with probability no smaller than 2

3 distinguishes be-
tween the case where f has the property P and the case where f is ε-far from
having the property P . If a property P is (ε, q)-testable with q = q(ε) (i.e. q is a
function of ε only, and is independent of n) then we say that P is ε-testable. If
P is ε-testable for every fixed ε > 0 then we say that P is testable. We refer to
the number of queries required by a given test as its query complexity.

Furthermore, a test is called 1-sided if an input which has the property is
accepted with probability 1. Otherwise, it is called 2-sided. A test is said to be
adaptive if some of the choices of the locations for which the input is queried
may depend on the values (answers) of previous queries. Otherwise, if only the
final decision to accept or reject depends on the query values, then the test is
called non-adaptive.

The general notion of property testing was first formulated by Rubinfeld and
Sudan [14], who were motivated mainly by its connection to the study of program
checking. The study of this notion for combinatorial objects, and mainly for
labelled graphs, was introduced by Goldreich, Goldwasser and Ron [3]. Property
testing has since become quite an active research area, see e.g. the surveys [13]
and [2].

1.1 Convex Colorings

Given a graph G = (V, E) and a vertex coloring c : V → {1, . . . , k} of G, define
Vi as the set of vertices v in V such that c(v) = i. We say that c is a convex
coloring of G if all the Vi’s are connected sets (i.e., induce connected subgraphs).

Determining whether a graph coloring is convex is easy to solve in linear time
with standard graph search techniques. However, when working with large data
sets, a test which reads only a small part of the input would be desired, also at the
cost of having some error probability and giving only an approximate answer.
A possible application for testing convexity is considering the Internet graph,
where the language in which a web page is written is regarded as its “color”. We
then may wish to determine whether the pages written in each language form a
connected subgraph.

In this paper we consider testing for convexity as defined above, and several
variants of this problem, on trees. A central motivation for this subcase is the
study of phylogenetic (evolutionary) trees, which originated in genetics [11,15],
but appears also in other areas, such as historical linguistics (see [12]). Whether
our subjects of interest are biologic species, languages, or other objects, a phy-
logenetic tree specifies presumed hereditary relationships, representing different

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Testing Convexity Properties of Tree Colorings 111

features with different colors. A convex coloring is a positive indication for the
reliability of a phylogenetic tree, as it shows a reasonable evolutionary behavior.

Moran and Snir [9] studied recoloring problems, where the input is a colored
tree and one has to find a close convex coloring of the tree. They gave several
positive and negative results on exact and approximate algorithms. Our paper
is the first, to the best of our knowledge, which approaches the property testing
aspect of this topic.

Our input is always a fixed and known tree T = (V, E). We test colorings c
of T , where each query is a vertex v ∈ V and the answer is its color c(v). Note
that the problems we deal with cannot be solved using connectivity testers such
as those of Goldreich and Ron [4], as instead of looking at the structure of the
graph we consider the values of the coloring function, while the graph structure
is assumed to be known in advance and unchangeable.

1.2 Variants of Convexity

We provide tests for several variants of the convexity property defined above,
the first of which is quasi-convexity. A coloring c : V → {0, . . . , k} is called
quasi-convex if the color components Vi are connected for colors i ≥ 1, while V0

is not necessarily connected. This property arises in various cases in which we
are interested only in the connectivity of some of the color classes (and all the
others may be considered as colored with 0). For example, regarding connectivity
of Internet pages written in the same languages, we may not care about the
connectivity of pages written in an unclear or esoteric language (e.g. Klingon).

In addition, we consider convexity and quasi-convexity properties where we
relax our requirement of having at most one color component from every color.
A coloring c : V → {1, . . . , k} is called �-convex if the total number of color
components that it induces is at most �. Similarly, a coloring c : V → {0, . . . , k}
is called �-quasi-convex if it induces at most � color components for all colors
i > 0. Similarly we discuss list convexity (and list quasi-convexity) where we have
lists of upper bounds on the numbers of connected components of every color
(or some of the colors).

1.3 Weighted and Distribution-Free Property Testing

Some distance functions, including the Hamming distance, have generalized
weighted versions. For example, the cost of modifying the color of a vertex,
which is constant under the Hamming distance, may be a function of the spe-
cific vertex. Such distance functions are discussed in [9] for convex colorings of
phylogenetic trees. There, a high cost assigned to a vertex may imply a hypoth-
esized high reliability of the color attributed to that vertex. Thus, if a “heavy”
vertex must be recolored in order to acquire a convex coloring, then the presumed
phylogenetic tree is more likely to be false. In other contexts, the cost function
may represent the importance of certain vertices or the cost of modifying them.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

112 E. Fischer and O. Yahalom

A strict model for testing over the vertex-weighted distance is to consider
a cost function which is unknown. This model, known as the distribution-free
model, was introduced in [3] in the context of learning theory, and developed for
property testing by Halevy and Kushilevitz [5,6]. A distribution-free test may
attain a sample of the points of the domain of the input according to a fixed yet
unknown distribution function (where each value obtained this way counts as a
query). The cost of modifying a point in the input is equal to the probability of
that point according to this distribution. Thus, the distance between two inputs
is equal to the probability of obtaining a point on which they differ. Halevy and
Kushilevitz provided efficient distribution-free tests for testing polynomiality and
monotonicity of functions [5] and connectivity of graphs [6].

1.4 Our Results

We show that convexity of tree colorings is testable, providing a 1-sided, non-
adaptive, distribution-free ε-test for every ε > 0. The query complexity of our test
is O(k/ε), where k is the number of colors, and the additional time complexity
is O(n). We further provide an alternative 1-sided, non-adaptive test for the
standard (not weighted) model where the tree is a path, with query complexity
O(

√
k/ε3) and additional time complexity Õ(

√
k/ε3). On the negative side, we

prove a lower bound of Ω(
√

k/
√

ε) on the query complexity of testing convexity
of paths in the standard model.

For quasi-convexity of trees, we discuss the weighted, but not distribution-
free case. For every ε > 0, we provide a 1-sided, non-adaptive ε-test with query
complexity O(k/ε2), and additional time complexity O(n).

In all the above algorithms, we show that the time complexity can be reduced
to be polynomial in the query complexity (assuming that a query takes constant
time) by allowing a preprocessing stage of time O(n).

Finally, we provide (adaptive) 1-sided tests for the relaxed convexity problems
for the weighted, though not distribution-free case. For �-convexity we give a test
with query complexity Õ(�/ε) and time complexity O(�n). For �-quasi-convexity
we provide a test with query complexity Õ(�/ε2) and time complexity O(�n).
Given a list of integers ci, let � denote their sum. Our test for list convexity has
query complexity Õ(�/ε) and computational complexity O(�n). For list quasi-
convexity, � is the sum of ci’s only for the colors for which they are defined. For
that property we give a test with query complexity Õ(�/ε2) and computational
complexity O(�n).

The rest of the paper is organized as follows: Section 2 is dedicated to the basic
convexity problem. In Section 2.1 we give our distribution-free test for trees, with
further implementation details given in Section 2.2. In Section 2.3 we present
our lower bound for testing convexity, and section 2.4 we provide our specific
convexity test for paths. Section 3 is dedicated to testing the quasi-convexity
property. Finally, in Section 4 we consider relaxed convexity properties.

Due to space considerations, some of the proofs are omitted. Throughout the
paper, we make no attempt to optimize the coefficients.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Testing Convexity Properties of Tree Colorings 113

2 Testing Convexity on Trees

2.1 A Distribution-Free Convexity Test for Trees

In this section we assume that μ : V → R is a fixed yet unknown weight function
satisfying μ(v) ≥ 0 for every v ∈ V and

∑
v∈V μ(v) = 1. For convenience, define

μ(U) =
∑

v∈U μ(v) for any U ⊆ V . The distance between two colorings c1 and
c2 of T is defined as μ(Δc1,c2), where Δc1,c2 = {v ∈ V |c1(v) �= c2(v)}.

Vertices u, w, v in T form a forbidden subpath if w is on the (simple) path
between u and v and c(u) = c(v) �= c(w). Clearly, c is a convex coloring of T if
and only if it does not contain any forbidden subpath.

Our test samples vertices according to the distribution function on V de-
fined by μ and then queries their values. We note that the standard model of
distribution-free testing allows queries of determined vertices, but our test will
do better and use only sample vertices. To reject the input, the sample does not
necessarily need to contain a forbidden subpath. Instead, the algorithm uses the
information supplied by the queried vertices, together with the knowledge of the
structure of the tree, to infer the existence of a forbidden subpath. The main
idea behind the algorithm is that if a coloring is ε-far from being convex, then,
with high probability, either a forbidden subpath is sampled or there exists a
vertex that is a “crossroad” of two sampled subpaths with conflicting colors.

Algorithm 1

1. Query
⌈

8k ln 12
ε

⌉
vertices, where each vertex is independently chosen according

to the distribution defined by μ. Let X denote the sample.
2. If X includes a forbidden subpath, reject.
3. Otherwise, if there exists w ∈ V such that any value of c(w) implies a

forbidden subpath, reject. In other words, reject if there exist w ∈ V and
u1, u2, v1, v2 ∈ X such that c(u1) = c(u2) �= c(v1) = c(v2), and w belongs to
both the path between u1 and u2 and the path between v1 and v2.

4. Otherwise, accept.

Theorem 2. For every ε > 0, Algorithm 1 is a 1-sided ε-test for convexity with
query complexity O(k/ε)and time complexity O(n). It can also be implemented
in running time Õ(|X |) = Õ(k/ε) using a preprocessing stage of time O(n).

It is easy to see that the query complexity is as stated. We show how to imple-
ment the computational steps under the time complexity requirements stated in
Section 2.2. Clearly, a convex coloring is always accepted by Algorithm 1, as it
does not contain forbidden subpaths. It remains to show that every k-coloring
which is ε-far from being convex is rejected with probability at least 2

3 .
For neighboring vertices u and v, we denote the connected component of

V \ {u} that contains v by C
(v)
u . Note that C

(v)
u and C

(u)
v form a partition of V .

For any subset U ⊆ V let the i-weight of U be the total weight of all i-vertices
in U , and denote it by μi(U) def= μ(Vi ∩ U). A color i ∈ {1, . . . , k} is called
abundant if μ(Vi) ≥ ε/2k. For an abundant color i, we say that a vertex u ∈ V

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

114 E. Fischer and O. Yahalom

is i-balanced if the set {C
(v)
u |(u, v) ∈ E} may be partitioned into two subsets,

where the i-weight of the union of each subset is at least ε/8k. We say that a
vertex v is heavy if μ(v) ≥ ε/8k. For every abundant color i, let Bi be the union
of i-balanced vertices and heavy i-vertices.

Lemma 3. Bi is a non-empty set for every abundant color i.

Proof. Assume that there exists an abundant color i such that every u ∈ V is
not i-balanced and there are no heavy i-vertices. Note that in this case every
u ∈ V has a neighboring vertex v such that C

(v)
u is of i-weight larger than ε/4k

(as otherwise u is easily seen to be i-balanced). Consider u and v such that C
(v)
u

is of minimum i-weight among those whose i-weight is larger than ε/4k (and
with a minimum number of vertices among the minimal weight C

(v)
u ’s). There

exists a neighbor w of v such that C
(w)
v is of i-weight larger than ε/4k. Due to

the minimality of C
(v)
u , we must have w = u. Thus C

(u)
v is of i-weight larger

than ε/4k, and, since there are no heavy i-vertices, the i-weight of C
(u)
v \ {u} is

at least ε/8k. Therefore, both C
(v)
u and V \{C

(v)
u ∪{u}} have i-weight of at least

ε/8k, and hence u is i-balanced. A contradiction.

Lemma 4. Bi is a connected set for every abundant color i.

Proof. Assume that there exist two vertices u, v ∈ Bi, and let w be on the path
between u and v. Assuming that w is not a heavy i-vertex, we show that w is
i-balanced. If u is a heavy i-vertex, then clearly μi(C

(u)
w) ≥ ε/8k. Otherwise, u

is i-balanced, and thus, V \ {u} may be partitioned into two sets of connected
components, the i-weight of each of which is at least ε/8k. One of these sets does
not contain C

(w)
u . Thus, μi(C

(u)
w) ≥ ε/8k. Similarly, it follows that μi(C

(v)
w) ≥

ε/8k, and hence w is i-balanced.

Proposition 5. For every k-coloring c of T that is ε-far from being convex, there
exist two abundant colors i �= j and a vertex u, such that u ∈ Bi and u ∈ Bj.

Proof. Notice first that there must be at least two abundant colors. Otherwise, as
the total weight of vertices of non-abundant colors is smaller than ε, the convex
coloring that assigns the only abundant color to all of the vertices is ε-close to c.

Suppose that the connected sets Bi are disjoint. We show a convex coloring c′

of T that is ε-close to c, which leads to a contradiction. Define c′ as follows. For
every vertex v and abundant color i, let d(v, Bi) denote the “walking” distance
on T between v and Bi, i.e. the length of the path from v to (the connected) Bi.
Color every vertex v with i such that d(v, Bi) is minimal, choosing the minimal
index i in case of a tie. In particular, we color all the vertices in Bi with i. One
can show that c′ is a convex coloring. We omit the proof in this version.

We now show that c′ is ε-close to c. Consider a vertex w whose color has
been changed from one abundant color i into another (abundant) color j. Surely
w /∈ Bi. Furthermore, either Bj is on the path between Bi and w or w is on the
path between Bi and Bj . Consider the edge (u, v) on the path between Bi and Bj

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Testing Convexity Properties of Tree Colorings 115

where u ∈ Bi and v /∈ Bi. We call (u, v) the ij-bridge. Then w ∈ C
(v)
u . Now, let

i and j be any distinct abundant colors and let (u, v) be the ij-bridge. Suppose
that μi(C

(v)
u) ≥ ε/4k. By the definition of Bi, v is not a heavy i-vertex, and thus

μi(C
(v)
u \{v}) > ε/8k. Since v is not i-balanced, we have μi(C

(u)
v) < ε/8k, but this

is impossible, as u is i-balanced or heavy. We thus conclude that μi(C
(v)
u) < ε/4k

for every ij-bridge (u, v). To complete the proof of the proposition, we show that
the number of ij-bridges in T is at most 2k. The details are omitted here. It
follows that the total weight of recolored vertices among those whose original
color was abundant is less than ε/2. Moreover, the total weight of vertices of
non-abundant colors is smaller than ε/2. Thus, c′ is ε-close to c.

Proof of Theorem 2. We have shown that for every coloring that is ε-far
from being convex, there exist i �= j and a vertex w such that w ∈ Bi ∩ Bj .
Clearly, w must be i-balanced or j-balanced or both. Suppose that w is not
balanced with respect to one of the colors, say i. Then w must be a heavy i-
vertex and j-balanced. In such a case μ(w) ≥ ε/8k and there exist two disjoint
sets W j

1 , W j
2 ⊆ Vj , each of weight at least ε/8k, such that every path between the

vertices v1 ∈ W j
1 and v2 ∈ W j

2 passes through w. Hence, if the sample X contains
w and at least one vertex from each of the sets W j

1 and W j
2 , then Algorithm 1

rejects the input in Step 2. The probability for any of the sets W j
1 and W j

2 or of
w to not intersect the sample set X , is at most (1 − ε/8k)

8k ln 12
ε . By the union

bound, the algorithm will fail with probability at most 3(1 − ε/8k)
8k ln 12

ε < 1/4.
Otherwise, if w is both i-balanced and j-balanced, then there exist four dis-

joint sets W i
1, W

i
2 ⊆ Vi, W j

1 , W j
2 ⊆ Vj , each of weight at least ε/8k, where w

is in every path between vertices u1 ∈ W i
1 and u2 ∈ W i

2 as well as in every
path between vertices v1 ∈ W j

1 and v2 ∈ W j
2 . Algorithm 1 fails if at least one

of the sets W i
1 , W

i
2 , W

j
1 , W j

2 does not intersect the sample X , which occurs with
probability at most 4(1 − ε/8k)8k ln 12/ε < 4 exp(− ln 12) = 1/3.

2.2 Implementation of the Computation Step in Algorithm 1

We now specify a procedure implementing Steps 2 and 3 of Algorithm 1 in
time O(n). Later we explain briefly how the procedure can be completed in time
Õ(|X |) = Õ(k/ε) if we allow a preprocessing stage of time O(n). For i = 1, . . . , k,
let qi be the number of i-vertices in the sample X . Clearly, the qi’s can be
computed in time O(|X |). Next, we arbitrarily select a root r for T and obtain
a topological order of its nodes using Depth First Search from r, which can be
done in time O(n) (see e.g. [8]). We now consider the nodes in reverse topological
order. This can be viewed as “trimming” leaves from the tree one by one.

Procedure 6. For every v in reverse topological order of T , do:

– If v ∈ X then set a(v) = 1; otherwise set a(v) = 0.
– If v ∈ X then set m(v) = c(v); otherwise set m(v) to be null.
– For every child u of v such that m(u) is not null:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

116 E. Fischer and O. Yahalom

1. If m(v) is not null and m(v) �= m(u) then reject the input and terminate.
2. Otherwise, set m(v) = m(u) and a(v) = a(v) + a(u).

– If m(v) is not null and a(v) = qm(v) then set m(v) to be null and a(v) = 0.

If the algorithm did not reject after going over all vertices, then accept.

As for every node v the running time is proportional to the number of its children,
the total running time of Procedure 6 is O(n). To prove its correctness, we show
by induction that for every iteration on a node v, the procedure rejects if and
only if v is a middle vertex of a forbidden subpath in X . Note that Procedure
6 performs significant processing only in nodes which are in X or are Least
Common Ancestors (LCA’s) of two or more members of X . This gives rise to
the possibility of running it over a set that includes X and all of the LCA’s of
vertices in X . It can be shown that there exists such a set of size at most 2|X |.
Moreover, this set can be constructed in time Õ(|X |) after a preprocessing stage
of time O(n), using a constant time oracle that computes the LCA of two nodes
in a tree (see [7], [16]). Running Procedure 6 over this set takes O(|X |) time.

2.3 A Lower Bound for Testing Convexity

Theorem 7. Every (adaptive) ε-test for convexity for every ε < 1/8 must use

more than
√

3 (k−1)
64ε queries in the worst case. This is specifically true for trees

which are (unweighted) paths.

Proof. Our proof is based on Yao’s method [17], see [2] for details. Let T be
a path of length n. We present two distributions of k-colorings of a path T .
DP is a distribution of convex colorings and DN is a distribution of colorings
that are ε-far from being convex. For the proof, it suffices to show that any

deterministic algorithm using q ≤
√

3(k−1)
64ε queries errs with probability larger

than 1
3 when trying to distinguish between DP and DN . Assume that k divides

n. In the definitions below we divide T into k intervals of size n/k, such that
all the vertices in each interval are colored with the same color. Without loss of
generality, we assume that at most one vertex is queried from every interval.

Definition 8. Let DP be the distribution of inputs defined by uniformly choosing
a permutation of all k colors and coloring the intervals accordingly.

Definition 9. Let D̃N be the distribution where the inputs are selected by uni-
formly choosing (1 − 8ε)k colors to appear in one interval and 4εk colors to
appear in two intervals. The placements of the colors are then chosen uniformly.

Definition 10. Let DN be the conditional distribution of D̃N on the event that
the coloring chosen is ε-far from being convex.

The main idea is based on the birthday problem. We show that a test which uses
q queries is unlikely to query the same color more than once, and thus cannot
distinguish between DP and DN . We use the auxiliary distribution D̃N since its
symmetric nature allows us to perform computations easily. The full proof will
appear in a future journal version.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Testing Convexity Properties of Tree Colorings 117

2.4 A Convexity Test for Paths

We present a convexity test for the special case where the tree T is a path, whose
performance is better than that of Algorithm 1 when k is large with respect to
1/ε3. We note that a colored path is essentially a string. The convexity property
on strings is a special case of a regular language, and thus is known to be testable
by Alon et. al [1]. However, the query complexity obtained there for convexity
of a string over k colors would be super-exponential in k. We provide a more
efficient test for this property. In fact, by Theorem 7, our algorithm is optimal
up to a power of 1

ε . Theorem 12 below will be proved in a future journal version.
The main idea of the proof is based on the birthday problem.

Algorithm 11

1. Query q ≥ 256
√

k
ε2 vertices independently, uniformly at random.

2. Query x ≥ 5
ε ln 12 vertices uniformly and independently in every interval

between two consecutive vertices queried in Step 1.
3. Reject if and only if the resulting sample contains a forbidden subpath.

Theorem 12. For every ε > 0, Algorithm 11 is a 1-sided ε-test for convexity
with query complexity O(

√
k/ε3). The additional time complexity is Õ(

√
k/ε3) if

the vertices in the path are sorted, and O(n) otherwise.

3 Quasi-convexity of Trees

We now formalize the notion of quasi-convexity. Let k be the number of colors
whose vertices are required to induce connected components. Without loss of
generality, we refer to all other vertices as having the color 0. Given a tree
T = (V, E) and a coloring c : V → {0, 1, . . . , k}, we define Vi, as before, as the set
of vertices v in V with c(v) = i. If c(v) > 0 we say that v is colored. Otherwise,
we say that v is uncolored. c is said to be quasi-convex if Vi is connected for
i = 1, . . . , k. Alternatively, vertices u, w, v in T form a forbidden subpath if w is
on the (simple) path between u and v, c(u) = c(v) > 0 and c(w) �= c(v). c is
a quasi-convex coloring of T if and only if it contains no forbidden subpaths as
defined above. We assume that μ : V → R is a fixed and known weight function
satisfying μ(v) ≥ 0 for every v ∈ V and

∑
v∈V μ(v) = 1. The distance between

two colorings of T , and the components C
(v)
u , are defined as in Section 2.1.

Algorithm 13

1. Query �48k/ε� vertices, where each vertex is independently chosen according
to the distribution defined by μ. Let X denote the sample.

2. If X includes a forbidden subpath, reject.
3. Otherwise, if there exists w ∈ V such that any value of c(w) implies a

forbidden subpath, reject. In other words, reject if there exist w ∈ V and
u1, u2, v1, v2 ∈ X such that c(u1), c(u2), c(v1), c(v2) > 0 and c(u1) = c(u2) �=
c(v1) = c(v2), where w belongs both to the path between u1 and u2 and to the
path between v1 and v2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

118 E. Fischer and O. Yahalom

4. Otherwise, repeat the following �146/ε� times independently:
– Choose a vertex w ∈ X uniformly at random. If w is colored, do nothing.
– Otherwise, if w is uncolored, define a subtree T i

w for every color i such
that there are i-colored vertices in X, as follows. Let vi be the neighbor of
w that is on a path between w and an i-colored vertex in X (vi is unique,
as X does not contain a forbidden subpath). Now denote T i

w
def= C

(w)
vi

for every such vi. Query log1/(1−ε/8) 8 vertices in each T i
w, where each

vertex is independently chosen according to the distribution defined by μ
conditioned on T i

w.
– Reject if the union of X and the recently queried vertices includes a

forbidden subpath.
5. Otherwise, accept.

Theorem 14. For every ε > 0, Algorithm 13 is a 1-sided ε-test for quasi-
convexity with query complexity O(k/ε2) and time complexity O(n). This can
be implemented in time Õ(k/ε2) with a preprocessing stage of time O(n).

It is easy to see that the query complexity is as stated. The computational steps
are performed very similarly to those of Algorithm 1 (see Section 2.2). Clearly,
a quasi-convex coloring is always accepted by the algorithm. It remains to show
that every k-coloring that is ε-far from being quasi-convex is rejected with prob-
ability at least 2

3 . Note that Steps 1-3, which work similarly to Algorithm 1, may
not suffice for detecting forbidden subpaths with an uncolored middle vertex. To
discover these, we use the test in Step 4, which is in essence similar to the test
for monotonicity on rooted trees presented in [10]. To complete the proof we also
use ideas from the proof of Proposition 5 and other arguments.

4 Relaxed Convexity Properties

Given a tree T = (V, E) and an integer � > 0, we say that a coloring c :
V → {1, . . . , k} is �-convex if it induces at most � color components. A coloring
c : V → {0, . . . , k} of T is called �-quasi-convex if it induces at most � components
of colors i > 0. Given a list c1, . . . , ck, of integers we say that a vertex coloring
of T is convex with respect to the list 〈c1, . . . , ck〉 if it induces at most ci color
components of every color i = 1, . . . , k. If we allow some of the ci’s to be ∞, we
say that the coloring is quasi-convex with respect to the list 〈c1, . . . , ck〉.

We now sketch a test for �-convexity on trees. Later we explain how to trans-
form it into tests for �-quasi-convexity, list convexity and list quasi-convexity.

Theorem 15. There exists a 1-sided test for �-convexity on trees with query
complexity Õ(�/ε) and time complexity O(�n).

Given a tree T and an integer � > 0, our algorithm maintains a set X of queried
vertices and uses it to decompose T into subtrees that we call “interesting trees”.
We build the set X in such a way that the interesting trees intersect each other
only on vertices of X . Each interesting tree has either one or two vertices in X .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Testing Convexity Properties of Tree Colorings 119

Using the values of the vertices of X , we infer a lower bound CC on the number
of color components in T . Our algorithm then tests individual interesting trees
for the possible existence of more color components than implied by their vertices
in X , which we call defining vertices.

Specifically, consider an interesting tree T ′ = (V ′, E′). If T ′ is defined by a
single vertex u ∈ X then we test it for homogeneity. Namely, we query a sample
set of vertices in T ′ and accept if and only if they are all colored with c(u). The
same thing is done if T ′ is defined by two vertices u, v ∈ X and c(u) = c(v). If
T ′ is defined by two vertices u, v ∈ X and c(u) �= c(v), then we want to know
if there is a convex coloring c′ : V ′ → {c(u), c(v)} that is ε-close to c, such that
c′(u) = c(u) and c′(v) = c(v). This is an instance of a variant of the convexity
problem that we call convexity under constraints, in which we have a set of
“constraint vertices”. In this case the color of u and v is known and must not be
changed. We prove that for this problem it is enough to run a test identical to
Algorithm 1 except that the query set is augmented with the constraint vertices.

If the test of an interesting tree T ′ has rejected, it supplies us with witnesses
for additional color components. We thus add them to X , remove T ′ from the set
of interesting trees and replace it with the subtrees of T ′ defined by the newly
found witnesses. We now accordingly increment our lower bound CC on the
color components in T . On the other hand, if the test for T ′ has accepted, then
we just remove T ′ from the set of interesting trees, as it is likely to be close to
not containing additional color components. If at some point we have discovered
more than � color components, then the algorithm rejects the input. Otherwise,
the algorithm terminates and accepts when there are no interesting trees left.

The full proof of Theorem 15 will be given in a future version. In essence, we
show that CC is a tight lower bound for the number of color components in T ,
and that for an ε-far coloring, more than � color components are detected with
high probability. The query and complexity bounds follow from the fact that
CC is incremented whenever a new color component is found.

To test for �-quasi-convexity, we use a test similar to the one described above,
but here we use variants of the quasi-convexity algorithm for the interesting trees.

Theorem 16. There exists a 1-sided test for �-quasi-convexity on trees whose
query complexity is Õ(�/ε2) and whose time complexity is O(�n).

Our tests for list convexity and list quasi-convexity are almost identical to those
for �-convexity and �-quasi-convexity respectively. The main difference is that
instead of the counter CC of the total number of color components discovered
so far, we keep a counter CCi for every color i with ci < ∞.

Theorem 17. Given a list L = 〈l1, . . . , lk〉 of integers, there exists a 1-sided
test for convexity with respect to L for trees, with query complexity Õ(�/ε) and
computational complexity O(�n), where � =

∑
i=1,...,k li.

Theorem 18. Given a list L = 〈l1, . . . , lk〉 where every ci is either an integer
or ∞, there exists a 1-sided test for quasi-convexity with respect to L for trees,
with query complexity Õ(�/ε2) and computational complexity O(�n), where � =∑

1≤i≤k, li<∞ li.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

120 E. Fischer and O. Yahalom

Acknowledgements

We thank Sagi Snir for introducing us to the topic of convex colorings. We also
thank Ronitt Rubinfeld for helpful comments.

References

1. N. Alon, M. Krivelevich, Ilan Newman and M. Szegedy, Regular languages
are testable with a constant number of queries, Siam Journal on Computing
30(6):1842–1862, 2001.

2. E. Fischer, The art of uninformed decisions: A primer to property testing, Bulletin
of the European Association for Theoretical Computer Science, 75:97–126, Section
8, 2001. Also In Current Trends in Theoretical Computer Science: The Challenge
of the New Century, G. Paun, G. Rozenberg and A. Salomaa (editors), World
Scientific Publishing, Vol. I, 229–264, 2004.

3. O. Goldreich, S. Goldwasser and D. Ron, Propery testing and its connection to
learning and approximation, Journal of the ACM, 45(4):653–750, 1998.

4. O. Goldreich and D. Ron, Property testing in bounded degree graphs, Algorithmica,
32, 302–343, 2002.

5. S. Halevy and E. Kushilevitz, Distribution-free property testing, In Proceedings of
the 7th RANDOM and the 6th APPROX: 302–317, 2003.

6. S. Halevy and E. Kushilevitz, Distribution-free connectivity testing, In Proceedings
of the 8th RANDOM and the 7th APPROX: 393–404, 2004.

7. D. Harel and R. E. Tarjan, Fast algorithms for finding nearest common ancestor,
SIAM Journal on Computing, 13(2):338–355, 1984.

8. D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms,
Addison-Wesley, 1968. Second edition, 1973.

9. S. Moran and S. Snir, Convex recolorings of phylogenetic trees: definitions,
hardness results and algorithms, Workshop on Algorithms and Data Structures
(WADS):218–232, 2005. Also Journal of Computer and System Sciences (JCSS),
in press.

10. E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld and A.
Samorodnitsky, Monotonicity testing over general poset domains, Proceedings of
the 34th STOC, pages 474–483, 2002.

11. B.M.E. Moret and T. Warnow, Reconstructing optimal phylogenetic trees: A chal-
lenge in experimental algorithmics, In: Experimental Algorithmics, Lecture Notes
in Computer Science 2547, Springer Verlag, 2002, 163–180.

12. L. Nakhleh, T. Warnow, D. Ringe, and S.N. Evans, A comparison of phylogenetic
reconstruction methods on an IE dataset, Transactions of the Philological Society,
3(2): 171–192, 2005.

13. D. Ron, Property testing (a tutorial), In: Handbook of Randomized Computing (S.
Rajasekaran, P. M. Pardalos, J. H. Reif and J. D. P. Rolim eds), Vol II, 597–649,
Kluwer Press, 2001.

14. R. Rubinfeld and M. Sudan, Robust characterization of polynomials with applica-
tions to program testing, SIAM Journal on Computing, 25(2):252–271, 1996.

15. C. Semple and M. Steel, Phylogenetics, Oxford University Press, 2003.
16. B. Schieber and U. Vishkin, On finding lowest common ancestors: Simplifications

and parallelization, SIAM Journal on Computing, 17:1253–1262, 1988.
17. A. C. Yao, Probabilistic computation, towards a unified measure of complexity, In

Proceedings of the 18th IEEE FOCS: 222–227, 1977.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Why Almost All k-Colorable Graphs Are Easy

Amin Coja-Oghlan1, Michael Krivelevich2, and Dan Vilenchik3

1 Institute for Informatics, Humboldt-University, Berlin, Germany
coja@informatik.hu-berlin.de

2 School Of Mathematical Sciences, Sackler Faculty of Exact Sciences,
Tel-Aviv University, Tel-Aviv, Israel

krivelev@post.tau.ac.il
3 School of Computer Science, Sackler Faculty of Exact Sciences,

Tel-Aviv University, Tel-Aviv, Israel
vilenchi@post.tau.ac.il

Abstract. Coloring a k-colorable graph using k colors (k ≥ 3) is a
notoriously hard problem. Considering average case analysis allows for
better results. In this work we consider the uniform distribution over
k-colorable graphs with n vertices and exactly cn edges, c greater than
some sufficiently large constant. We rigorously show that all proper k-
colorings of most such graphs are clustered in one cluster, and agree on
all but a small, though constant, number of vertices. We also describe a
polynomial time algorithm that finds a proper k-coloring for (1 − o(1))-
fraction of such random k-colorable graphs, thus asserting that most
of them are “easy”. This should be contrasted with the setting of very
sparse random graphs (which are k-colorable whp), where experimental
results show some regime of edge density to be difficult for many coloring
heuristics. One explanation for this phenomena, backed up by partially
non-rigorous analytical tools from statistical physics, is the complicated
clustering of the solution space at that regime, unlike the more “regular”
structure that denser graphs possess. Thus in some sense, our result
rigorously supports this explanation.

1 Introduction

A k-coloring f of a graph G = (V, E) is a mapping from its set of vertices V to
{1, 2, ..., k}. f is a proper coloring of G if for every edge (u, v) ∈ E, f(u) �= f(v).
The minimal k s.t. G admits a proper k-coloring is called the chromatic number,
commonly denoted by χ(G). In this work we think of k > 2 as some fixed integer,
say k = 3 or k = 100.

1.1 Phase Transitions, Clusters, and Graph Coloring Heuristics

The problem of properly k-coloring a k-colorable graph is one of the most fa-
mous NP-hard problems. The plethora of worst-case NP-hardness results for
problems in graph theory motivates the study of heuristics that give “useful” an-
swers for “typical” subset of the problem instances, where “useful” and “typical”

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 121–132, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

122 A. Coja-Oghlan, M. Krivelevich, and D. Vilenchik

are usually not well defined. One way of evaluating and comparing heuristics is
by running them on a collection of input graphs (“benchmarks”), and check-
ing which heuristic usually gives better results. Though empirical results are
sometimes informative, we seek more rigorous measures of evaluating heuristics.
Although satisfactory approximation algorithms are known for several NP-hard
problems, the coloring problem is not amongst them. In fact, Feige and Kilian
[13] prove that no polynomial time algorithm approximates χ(G) within a factor
of n1−ε for all input graphs G on n vertices, unless ZPP=NP.

When very little can be done in the “worst case”, comparing heuristics’ be-
havior on “typical”, or “average”, instances comes to mind. One possibility of
rigourously modeling such “average” instances is to use random models. In the
context of graph coloring, the Gn,p and Gn,m models, pioneered by Erdős and
Rényi, might appear to be the most natural candidates. A random graph G in
Gn,p consists of n vertices, and each of the

(
n
2

)
possible edges is included w.p.

p = p(n) independently of the others. In Gn,m, m = m(n) edges are picked uni-
formly at random. Bollobás [7] and �Luczak [21] calculated the probable value of
χ(Gn,p) to be whp 1 approximately n ln(1 − p)/(2 ln(np)) for p ∈ [C0/n, 0.99].
Thus, the chromatic number of Gn,p is typically rather high (roughly comparable
with the average degree np of the random graph) – higher than k, when thinking
of k as some fixed integer, say k = 3, and allowing the average degree np to be
arbitrarily large.

Remarkable phenomena occurring in the random graph Gn,m are phase tran-
sitions. With respect to the property of being k-colorable, such a phase transi-
tion takes place too. More precisely, there exists a threshold dk = dk(n) such that
graphs with average degree 2m/n > (1+ε)dk do not admit any proper k-coloring
whp, while graphs with a lower average degree 2m/n < (1 − ε)dk will have one
whp [1]. In fact, experimental results show that random graphs with average de-
gree just below the k-colorability threshold (which are thus k-colorable whp) are
“hard” for many coloring heuristics. One possible explanation for this empirical
observation, backed up by partially non-rigorous analytical tools from statistical
physics [22], is the surmise that k-colorable graphs with average degree just be-
low the threshold show a clustering phenomenon of the solution space. That
is, typically random graphs with density close to the threshold dk have an expo-
nential number of clusters of k-colorings. While any two k-colorings in distinct
clusters disagree on at least εn vertices, any two k-colorings within one cluster
coincide on (1 − ε)n vertices. Furthermore, each cluster has a linear number of
“frozen” vertices whose colors coincide in all colorings within that cluster.

Now, the algorithmic difficulty with such a clustered solution space seems
to be that the algorithm does not “steer” into one cluster but tries to find
a “compromise” between the colorings in distinct clusters, which actually is
impossible. By contrast, the recent Survey Propagation algorithm can apparently
cope with the existence of a huge number of clusters [9], though no rigorous
analysis of the algorithm is known.

1 Writing whp (“with high probability”) we mean with probability tending to 1 as n
goes to infinity.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Why Almost All k-Colorable Graphs Are Easy 123

In this work we consider the regime of denser graphs, i.e., the average degree
will be by a constant factor higher than the k-colorability threshold. In this
regime, almost all graphs are not k-colorable, and therefore we shall condition
on the event that the random graph is k-colorable. Thus, we consider the most
natural distribution on k-colorable graphs with given numbers n of vertices and
m of edges, namely, the uniform distribution Guniform

n,m,k . For m/n ≥ C0, C0 a
sufficiently large constant, we are able to rigorously prove that the space of all
legal k-colorings of a typical graph in Guniform

n,m,k has the following structure.

– There is an exponential number of legal k-colorings, which are arranged in
a single cluster.

– We describe a coloring algorithm, and using the same tools that provide the
latter observation, we prove that it k-colors whp Guniform

n,m,k with m ≥ C0n
edges using polynomial time.

Thus, our result shows that when a k-colorable graph has a single cluster of k-
colorings, though its volume might be exponential, then typically, the problem is
easy. This in some sense complements the results in [22] in a rigorous way (where
it is conjectured that when the clustering is complicated, more sophisticated
algorithms are needed). Besides, standard probabilistic calculations show that
when m ≥ Cn log n, C a sufficiently large constant, a random k-colorable graph
will have whp only one proper k-coloring; indeed, it is known that such graphs
are even easier to color than in the case m = O(n), which is the focus of this
paper. A further appealing implication of our result is the fact that almost all
k-colorable graphs, sparse or dense, can be efficiently colored. This extends a
previous result from [24] concerning dense graphs (i.e., m = Θ(n2)).

1.2 Results and Techniques

A subset of vertices U ⊆ V is said to be frozen in G if in every proper k-coloring
of G, all vertices in U receive the same color. A vertex is said to be frozen if
it belongs to a frozen subset of vertices. Here and throughout we consider two
k-colorings to be the same if one is a permutation of the color classes of the
other.

Theorem 1. (clustering phenomena) Let G be random graph from Guniform
n,m,k ,

m ≥ C0(k)n, C0(k) a sufficiently large constant that depends on k. Then whp
G enjoys the following properties:

1. All but e−Θ(m/n)n of the vertices are frozen.
2. The graph induced by the non-frozen vertices decomposes into connected com-

ponents of at most logarithmic size.
3. Letting β(G) be the number of proper k-colorings of G, we have 1

n log β(G) =
e−Θ(m/n).

Theorem 2. (algorithm) There exists a polynomial time algorithm that whp
properly k-colors a random graph from Guniform

n,m,k , m ≥ C1(k)n, C1(k) a sufficiently
large constant that depends on k.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

124 A. Coja-Oghlan, M. Krivelevich, and D. Vilenchik

It is not hard to see that Property 1 in Theorem 1 implies in particular that any
two proper k-colorings of G differ on at most e−Θ(m/n)n vertices.

In Theorem 1, our analysis gives for C0 = Θ(k4), and in Theorem 2, C1 =
Θ(k6), but no serious attempt is made to optimize the power of k.

The Erdős-Rényi graph Gn,m and its well known variant Gn,p are both very
well understood and have received much attention during the past years. How-
ever the distribution Guniform

n,m,k differs from Gn,m significantly, as the event of a
random graph in Gn,m being k colorable, when k is fixed, and 2m/n is some
constant above the k-colorability threshold, is very unlikely. In effect, many
techniques that have become standard in the study of Gn,m just do not carry
over to Guniform

n,m,k – at least not directly. In particular, the contriving event of
being k-colorable causes the edges in Guniform

n,m,k to be dependent. The inherent dif-
ficulty of Guniform

n,m,k has led many researchers to consider the more approachable,
but considerably less natural, planted distribution introduced by Kučera [20]
and denoted throughout by Gplant

n,m,k. In this context we can selectively mention
[4,6,8,11,19]. In the planted distribution, one first fixes some k-coloring, and then
picks uniformly at random m edges that respect this coloring. Due to the “con-
structive” definition of Gplant

n,m,k, the techniques developed in the study of Gn,m can
be applied to Gplant

n,m,k immediately, whence the model is rather well understood [4].
Of course the Gplant

n,m,k model is somewhat artificial and therefore provides a
less natural model of random instances than Guniform

n,m,k . Nevertheless, devising
new ideas for analyzing Guniform

n,m,k , in this paper we show that Guniform
n,m,k and Gplant

n,m,k

actually share many structural graph properties such as the existence of a single
cluster of solutions. As a consequence, we can prove that a certain algorithm,
designed with Gplant

n,m,k in mind, works for Guniform
n,m,k as well. In other words, pre-

senting new methods for analyzing heuristics on random graphs, we can show
that algorithmic techniques invented for the somewhat artificial Gplant

n,m,k model
extend to the canonical Guniform

n,m,k model.
To obtain these results, we use two main techniques. As we mentioned, Gplant

n,m,k

(and the analogous Gplant
n,p,k in which every edge respecting the planted k-coloring is

included with probability p) is already very well understood, and the probability
of some graph properties that we discuss can be easily estimated for Gplant

n,m,k

using standard probabilistic calculations. It then remains to find a reasonable
“exchange rate” between Gplant

n,m,k and Guniform
n,m,k . We use this approach to estimate

the probability of “complicated” graph properties, which hold with extremely
high probability in Gplant

n,m,k. The other method is to directly analyze Guniform
n,p,k ,

crucially overcoming the edge-dependency issues. This method tends to be more
complicated than the first one, and involves intricate counting arguments.

1.3 Related Work

As mentioned above, the k-colorability problem exhibits a sharp threshold phe-
nomenon, in the sense that there exists a function dk(n) s.t. a random graph
from Gn,m is whp k-colorable if 2m/n < (1 − ε)dk(n) and is whp not k-colorable

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Why Almost All k-Colorable Graphs Are Easy 125

if 2m/n > (1 + ε)dk(n) (cf. [1]). For example, it is known that d3(n) ≥ 4.03n [3]
and d3(n) ≤ 5.044n [2]. Therefore, a typical graph in Gn,m with m = cn will not
be k-colorable (when thinking of k as a fixed integer, say k = 3, and allowing
the average degree c to be an arbitrary constant, say c = 100, or even a growing
function of n). Therefore, when considering relatively dense random graphs, one
should take care when defining the underlying distribution, e.g. consider Gplant

n,m,k

or Guniform
n,m,k .

Almost all polynomial-time graph-coloring heuristics suggested so far for find-
ing a proper k-coloring of the input graph (or return a failure), were analyzed
when the input is sampled according to Gplant

n,p,k , or various semi-random vari-
ants thereof (and similarly for other graph problems such as clique, independent
set, and random satisfiability problems). Alon and Kahale [4] suggest a polyno-
mial time algorithm, based on spectral techniques, that whp properly k-colors a
random graph from Gplant

n,p,k , np ≥ C0k
2, C0 a sufficiently large constant. Combin-

ing techniques from [4] and [11], Böttcher [8] suggests an expected polynomial
time algorithm for Gplant

n,p,k based on SDP (semi-definite programming) for the
same p values. Much work was done also on semi-random variants of Gplant

n,p,k , e.g.
[6,11,14,19].

On the other hand, very little work has been done on non-planted k-colorable
graph distributions, such as Guniform

n,m,k . In this context one can mention the work of
Prömel and Steger [23] who analyze Guniform

n,m,k but with a parametrization which
causes Guniform

n,m,k to collapse to Gplant
n,m,k, thus not shedding light on the setting of

interest in this work. Similarly, Dyer and Frieze [12] deal with very dense graphs
(of average degree Ω(n)).

1.4 Paper’s Structure

The rest of the paper is structured as follows. In Section 2 we present the al-
gorithm Color that is used to prove Theorem 2. In Section 3 we discuss some
properties that a typical graph in Guniform

n,m,k possesses. Using these properties we
then prove Theorem 1 in Section 4, and prove that the algorithm Color indeed
meets the requirements of Theorem 2. Due to lack of space, most propositions
are given without a proof, which can be found in complete in the journal version
of this paper.

2 The Coloring Algorithm

In Section 3 we prove that a typical graph in Guniform
n,m,k and in Gplant

n,m,k share many
structural properties such as the existence of a single cluster of solutions. In
effect, it will turn out that coloring heuristics that prove efficient for Gplant

n,m,k (e.g.
[4,11]) are useful in the uniform setting as well. Therefore, our coloring algorithm
builds on ideas from [4] and [11].

When describing the algorithm we have a sparse graph in mind, namely m/n =
c, c a constant satisfying c ≥ C0k

6 (in the denser setting where m/n = ω(1),

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

126 A. Coja-Oghlan, M. Krivelevich, and D. Vilenchik

matters actually get much simpler). For simplicity of exposition (to avoid the
cumbersome floor and ceiling brackets) we assume that k divides n. The algo-
rithm proceeds in several phases. First, using the Semi-Definite Programming
(“SDP”)-based subroutine SDPColor, a k-coloring of the vertices is obtained.
This coloring may not be proper, but whp differs from a proper k-coloring on
the colors of at most, say, n/(200k) vertices. Next, this coloring is refined using
an iterative recoloring procedure, after which the obtained coloring differs on the
colors of at most e−Θ(m/n)n vertices from some proper k-coloring. The next step
is to obtain a partial but correct k-coloring of the graph (correct in the sense
that the coloring can be completed to a proper k-coloring of the entire graph).
This is done using a careful uncoloring procedure, in which the color of “suspi-
cious” vertices is removed. Finally, the graph induced by the uncolored vertices
is sparse enough so that whp the largest connected component in it is of at most
logarithmic size. Therefore, one can simply use exhaustive search, separately in
every connected component, to extract the k-coloring of the remaining vertices.
Steps 2–5 are similar to the work in [4] on Gplant

n,p,k , Step 1 is inspired by [8,11].

Color(G, k):
step 1: first approximation.
1. SDPColor(G, k).
step 2: recoloring procedure.
2. for i = 1 to log n do:

2.a for all v ∈ V simultaneously color v with the least popular
color in NG(v).

step 3: uncoloring procedure.
3. while ∃v ∈ V with <3 neighbors colored in some other color do:

3.a uncolor v.
step 4: Exhaustive Search.
4. let U ⊆ V be the set of uncolored vertices.
5. consider the graph G[U].

5.a if ∃ a connected component of size at least log n - fail.
5.b otherwise, exhaustively color G[U] according to V \ U .

We proceed by discussing the subroutine SDPColor in detail. The procedure is
based on a SDP relaxation of the max k-cut problem (“partition the vertices in
a given graph into k classes so as to maximize the number of edges that join
vertices in different classes”) suggested by Frieze and Jerrum [17]. For a graph
G = (V, E), SDPk(G) is defined as follows (here 〈x, y〉 stands for the scalar
product of two vectors x, y ∈ R

|V |):

SDPk(G)=max
∑

(u,v)∈E

k − 1
k

(1 − 〈xu, xv〉) s.t. ∀ u, v ∈ V, 〈xu, xv〉 ≥ − 1
k − 1

,

where the max is taken over all families (xv)v∈V of unit vectors in R
|V | (the

vector xv corresponds to the vertex v). Since SDPk is a semi-definite program,
its optimal value can be computed up to an arbitrary high precision ε > 0, in
time polynomial in |V |, k, log 1

ε (e.g. using the Ellipsoid algorithm [18]).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Why Almost All k-Colorable Graphs Are Easy 127

To get some intuition for the usefulness of SDPk in the context of the coloring
problem, consider the same objective function as SDPk(G) only restrict the xv’s
to be one of {a1, a2, ..., ak}, where ai is the vector connecting the centroid of a
simplex in R

k−1 to its i‘th vertex (scaled to be of length 1). It is not hard to see
that for i �= j, 〈ai, aj〉 = − 1

k−1 , and that k−1
k (1 − 〈ai, aj〉) is 1 if i �= j and 0

otherwise. Furthermore, if the graph is k-colorable, then SDPk = |E(G)|, and
therefore the assignment of the ai’s must imply the k color classes of some proper
k-coloring (all vertices receiving the same ai are placed in the same color class).

Thus, grouping vertices into color classes according to the distances between
the vectors assigned to them by an optimal solution to SDPk(G), seems like
a good heuristic to get a fair approximation of some proper k-coloring. This is
done by the following procedure.

SDPColor(G, k):
1. solve SDPk(G), and let (xv)v∈V (G) be the optimal solution.
2. for all choices of k distinct vectors x∗

1, x
∗
2, ..., x

∗
k ∈ (xv)v∈V (G) do:

2.a for every i ∈ [1..k] compute Sx∗
i

= {w ∈ V : 〈x∗
i , xw〉 ≥ 0.99}.

2.b if for every i, |Sx∗
i
| ≥ n/k − n/(400k2) then:

2.b.1 for every i, color Sx∗
i
in color i (break ties arbitrarily).

2.b.2 color uncolored vertices in color 1.
2.b.3 return the resulting coloring.

3. return failure

3 Properties of a Random Instance from Guniform
n,m,k

In this section we analyze the structure of a typical graph in Guniform
n,m,k .

3.1 Balancedly k-Colorable Graphs

We say that a graph G is ε-balanced if it admits a proper k-coloring in which
every color class is of size (1±ε)n

k . We say that a graph is balancedly k-colorable
if it is 0-balanced.

In the common definition of Gplant
n,m,k, all color classes of the planted k-coloring

are of the same cardinality, namely n/k. Therefore, all graphs in Gplant
n,m,k have at

least one balanced k-coloring (the planted one). Similarly, for the uniform case:

Proposition 1. Let m ≥ (10k)4, then whp a random graph in Guniform
n,m,k is 0.01-

balanced.

Therefore in order to prove Theorems 1 and 2 , we may just as well confine
our discussion to 0.01-balanced k-colorable graphs. To simplify the presenta-
tion we will analyze the case ε = 0, namely Guniform

n,m,k restricted to balancedly
k-colorable graphs. Nevertheless, the result easily extends to any ε ≤ 0.01 –
details omitted. Somewhat abusing notation, from now on we use Guniform

n,m,k to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

128 A. Coja-Oghlan, M. Krivelevich, and D. Vilenchik

denote Guniform
n,m,k restricted to balancedly k-colorable graphs. Propositions of sim-

ilar flavor to Proposition 1 were proven in similar contexts, e.g. [23], and involve
rather simple counting arguments.

3.2 Setting the Exchange Rate

Let A be some graph property (it would be convenient for the reader to think of
A as a “bad” property). We start by determining the exchange rate for Pr[A]
between the different distributions.

Notation. For a graph property A we use the following notation to denote
the probability of A under the various distributions: Pruniform,m[A] denotes the
probability of property A occurring under Guniform

n,m,k , Prplanted,m[A] for Gplant
n,m,k,

and Prplanted,n,p[A] for Gplant
n,p,k . We shall be mostly interested in the case m =

(
k
2

) (
n
k

)2
p, namely m is the expected number of edges in Gplant

n,p,k . The following
lemma, which is proved using rather standard probabilistic calculations, estab-
lishes the exchange rate for Gplant

n,p,k → Gplant
n,m,k.

Lemma 1. (Gplant
n,p,k → Gplant

n,m,k) Let A be some graph property, then if m =
(
k
2

) (
n
k

)2
p it holds that

Prplanted,m[A] ≤ O(
√

m) · Prplanted,n,p[A]

Next, we establish the exchange rate Gplant
n,m,k → Guniform

n,m,k , which is rather involved
technically and whose proof embeds interesting results of their own – for example,
bounding the expected number of proper k-colorings of a graph in Guniform

n,m,k .

Lemma 2. (Gplant
n,m,k → Guniform

n,m,k) Let A be some graph property, then

Pruniform,m[A] ≤ eke−m/(6nk3)n · Prplanted,m[A]

3.3 Coloring Using SDP

In this section we analyze the behavior of SDPk(G), where G is sampled accord-
ing to Guniform

n,m,k . We start by analyzing SDPk on Gplant
n,p,k , then use the discussion

in Section 3.2 to obtain basically the same behavior for Guniform
n,m,k . The following

lemma appears in [8].

Lemma 3. Let G be a random graph sampled according to Gplant
n,p,k with ϕ its

planted k-coloring, np ≥ C0k
6, C0 a sufficiently large constant. Then with prob-

ability (1− e−n) SDPColor(G,k) obtains a k-coloring which differs from ϕ on the
colors of at most n/(200k) vertices.

Proposition 2. Let G be a random graph in Guniform
n,m,k , m ≥ C0k

6n, C0 a suffi-
ciently large constant. Then whp there exists a proper balanced k-coloring ϕ of
G s.t. SDPColor(G,k) obtains a k-coloring which differs from ϕ on the colors of
at most n/(200k) vertices.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Why Almost All k-Colorable Graphs Are Easy 129

Proof. Let A be “there exists no balanced k-coloring s.t. SDPColor(G,k) obtains
a k-coloring which differs from it on the colors of at most n/(200k) vertices”,
and set m =

(
k
2

) (
n
k

)2
p. Using the “exchange rate” technique:

Pruniform,m[A] ≤
︸︷︷︸

Lemma 2

eke−m/(6nk3)n · Prplanted,m[A] ≤
︸︷︷︸

Lemma 1

√
m · eke−m/(6nk3)n · Prplanted,n,p[A] ≤

︸︷︷︸
Lemma 3

O(
√

m) · eke−m/(6nk3)n · e−n = o(1).

The last inequality is due to m ≥ C0k
6n/2.

3.4 Dense Subgraphs

A random graph in Gplant
n,m,k (also in Gn,m) whp will not contain a small yet unex-

pectedly dense subgraph. This property holds only with probability 1−1/poly(n),
and therefore the “exchange rate” technique, implemented in Section 3.3 for ex-
ample, is of no use in this case. Overcoming the edge-dependency issue, using
an intricate counting argument, we directly analyze Guniform

n,p,k to prove:

Proposition 3. Let G be a random graph in Guniform
n,m,k , m ≥ C0k

2n, C0 a suf-
ficiently large constant. Then whp there exists no subgraph of G containing at
most n/(100k) vertices whose average degree is at least m/(6nk).

3.5 The Core Vertices

We describe a subset of the vertices, referred to as the core vertices, which plays a
crucial role in the analysis of the algorithm and in the understanding of Guniform

n,m,k .
Recall that a set of vertices is said to be frozen in G if in every proper k-coloring
of G, all vertices of that set receive the same color. A vertex v is said to be frozen
if it belongs to a frozen set. The notion of core captures this phenomenon. In
addition, a core typically contains all but a small (though constant) fraction of
the vertices. This implies that a large fraction of the vertices is frozen, a fact
which must leave imprints on the structure of the graph. These imprints allow
efficient heuristics to recover the k-coloring of the core. A second implication of
this, is an upper bound on the number of possible k-colorings, and on the distance
between every such two (namely, a catheterization of the cluster structure of the
solution space).

There are several ways to define a core, we choose a constructive way. H =
H(ϕ, t) is defined using the following iterative procedure. Set H = V , and remove
all vertices v s.t. v has less than (1− 1/200)t neighbors in some color class other
than ϕ(v). Then, iteratively, while there exists a vertex v in H, s.t. v has more
than t/200 neighbors outside H, remove v.

Proposition 4. Let G be a random graph in Guniform
n,m,k , m ≥ C0k

4n, C0 a suffi-
ciently large constant, and set t = (1−1/k)2m/n. Then whp there exists a proper
k-coloring ϕ s.t. H = H(ϕ, t) enjoys the following properties (by V1, V2 . . . Vk we
denote ϕ’s k color classes):

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

130 A. Coja-Oghlan, M. Krivelevich, and D. Vilenchik

1. |H| ≥ (1 − e−m/(20nk3))n.
2. Every v ∈ H ∩ Vi has the property that e(v, H ∩ Vj) ≥ 99t/100 for all j ∈

{1, . . . , k} \ {i}.
3. For all v ∈ H we have e(v, V \ H) ≤ t/200.
4. The graph induced by the vertices of H is uniquely k-colorable.

Observe that t is chosen to be the expected degree of a vertex v ∈ Vi in color
class Vj , j �= i. Properties 2 and 3 follow immediately from the construction of
H. To obtain property 1 we first establish the following fact, which appears in
[8] (with a complete proof).

Lemma 4. Let G be a graph sampled according to Gplant
n,p,k , np ≥ C0k

4n, C0 a suffi-
ciently large constant, and let ϕ be its planted k-coloring. Then Pr[|H(ϕ, np/k)| ≤
(1 − e−np/(40k3))n] ≤ e−e−np/(40k3)n.

Using the “exchange rate” technique we obtain:

Proposition 5. Let G be a random graph in Guniform
n,m,k , m ≥ C0k

4n, C0 a suf-
ficiently large constant, and set t = (1 − 1/k)2m/n. Then whp there exists a
proper k-coloring ϕ of G s.t. |H(ϕ, t)| ≥ (1 − e−m/(20nk3))n.

Lastly, we establish the frozenness property (property 4).

Proposition 6. Let G be a graph for which Proposition 3 holds. Then every
core satisfying Properties 1 and 2 in Proposition 4 is uniquely k-colorable.

The next proposition ties between the core vertices and the approximation ratio
of SDPColor, and is crucial to the analysis of the algorithm. The proposition
follows by noticing that ϕ in Lemmas 3 and 4 is the same – the planted coloring,
and then using the “exchange rate” technique on the combined property.

Proposition 7. Let G be a random graph in Guniform
n,m,k , m ≥ C0k

6n, C0 a suf-
ficiently large constant. Then whp there exists a proper k-coloring ϕ of G s.t.
the coloring returned by SDPColor(G,k) differs from ϕ on the colors of at most
n/(200k) vertices, and there exists a core H = H(ϕ, t) s.t. Proposition 4 holds
for H, where t = (1 − 1/k)2m/n as in Proposition 4.

The next proposition characterizes the structure of the graph induced by the
non-core vertices.

Proposition 8. Let G be a random graph in Guniform
n,m,k , m ≥ C0k

2n, C0 a suffi-
ciently large constant. Let G[V \H] be the graph induced by the non-core vertices.
Then whp the largest connected component in G[V \ H] is of size O(log n).

This fact is proven in [4] for Gplant
n,m,k, however it holds w.p. 1 − 1/poly(n). There-

fore the “exchange rate” technique is of no use. Thus, in the uniform case the
analysis is much more involved due to dependency issues (an intricate counting
argument). Full details are in the journal version.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Why Almost All k-Colorable Graphs Are Easy 131

4 Proofs of Theorems 1 and 2

Theorem 1 is an immediate corollary of Proposition 4, as it implies that all but
e−m/(20nk3)n of the vertices are uniquely colorable, and in particular are frozen.
There are at most ke−m/(20nk3)n = exp{ne−Θ(m/n)} possible ways to set the
colors of the non-frozen vertices. Proposition 8 characterizes the graph induced
by the non-core (which contain the non-frozen) vertices.

To prove Theorem 2, we prove that the algorithm Color meets the requirements
of Theorem 2. In particular, we prove that if G is typical (in the sense that the
properties discussed in Sections 3.3, 3.4, and 3.5 hold for it), then Color k-colors
it properly in polynomial time. Since G is typical whp (the discussion in Section
3), Theorem 2 follows. The proofs of the following propositions can be found
in [4], and are based on the discussion in Section 3 (while a similar discussion
exists in [4] for the planted setting). In the following propositions we assume G
is typical.

Proposition 9. After the recoloring step ends, the core vertices H are colored
according to the proper k-coloring promised in Proposition 7 – let ϕ denote this
coloring.

Proposition 10. Assuming Proposition 9 holds, H survives the uncoloring step,
and every vertex that survives the uncoloring step is colored according to ϕ.

Proposition 11. Assuming Proposition 10 holds, the exhaustive search com-
pletes in polynomial time with a legal k-coloring of the graph.

5 Discussion

In this paper we explore the uniform distribution over k-colorable graphs with
cn edges, c greater than some constant. We obtain a rather comprehensive un-
derstanding of the structure of the space of proper k-colorings of a typical graph
in it, and describe a polynomial time algorithm that properly k-colors most such
graphs.

The techniques of this paper apply to a number of further NP-hard prob-
lems, including random instances of k-SAT. More precisely, we can show that
a uniformly distributed satisfiable k-SAT formula with sufficiently large, yet
constant, clause-variable ratio (above the satisfiability threshold) typically ex-
hibits a single cluster of exponentially many satisfying assignments. Our result
implies that the algorithmic techniques developed for the planted k-SAT dis-
tribution [16,15] extend to the significantly more natural uniform distribution,
thus improving Chen’s [10] exponential time algorithm for the same problem. In
addition, our result answers questions posed in [5]. Full details will appear in a
separate paper.

Acknowledgements. we thank Uriel Feige for many useful discussions. Part of
this work was done while the third author was visiting Humboldt University.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

132 A. Coja-Oghlan, M. Krivelevich, and D. Vilenchik

References

1. D. Achlioptas and E. Friedgut. A sharp threshold for k-colorability. Random
Struct. Algorithms, 14(1):63–70, 1999.

2. D. Achlioptas and M. Molloy. Almost all graphs with 2.522n edges are not 3-
colorable. Elec. Jour. Of Comb., 6(1), R29, 1999.

3. D. Achlioptas and C. Moore. Almost all graphs with average degree 4 are 3-
colorable. In STOC ’02, pages 199–208, 2002.

4. N. Alon and N. Kahale. A spectral technique for coloring random 3-colorable
graphs. SIAM J. on Comput., 26(6):1733–1748, 1997.

5. E. Ben-Sasson, Y. Bilu, and D. Gutfreund. Finding a randomly planted assignment
in a random 3CNF . manuscript, 2002.

6. A. Blum and J. Spencer. Coloring random and semi-random k-colorable graphs.
J. of Algorithms, 19(2):204–234, 1995.

7. B. Bollobás. The chromatic number of random graphs. Combin., 8(1):49–55, 1988.
8. J. Böttcher. Coloring sparse random k-colorable graphs in polynomial expected

time. In Proc. 30th MFCS, pages 156–167, 2005.
9. A. Braunstein, M. Mézard, M. Weigt, and R. Zecchina. Constraint satisfaction by

survey propagation. Computational Complexity and Statistical Physics, 2005.
10. H. Chen. An algorithm for sat above the threshold. In 6th International Conference

on Theory and Applications of Satisfiability Testing, pages 14–24, 2003.
11. A. Coja-Oghlan. Coloring semirandom graphs optimally. In Proc. 31st ICALP,

pages 383–395, 2004.
12. M. E. Dyer and A. M. Frieze. The solution of some random NP-hard problems in

polynomial expected time. J. Algorithms, 10(4):451–489, 1989.
13. U. Feige and J. Kilian. Zero knowledge and the chromatic number. J. Comput.

and Syst. Sci., 57(2):187–199, 1998.
14. U. Feige and J. Kilian. Heuristics for semirandom graph problems. J. Comput.

and Syst. Sci., 63(4):639–671, 2001.
15. U. Feige, E. Mossel, and D. Vilenchik. Complete convergence of message passing

algorithms for some satisfiability problems. In RANDOM, pages 339–350, 2006.
16. A. Flaxman. A spectral technique for random satisfiable 3CNF formulas. In Proc.

14th ACM-SIAM Symp. on Discrete Algorithms, pages 357–363, 2003.
17. A. Frieze and M. Jerrum. Improved approximation algorithms for MAX k-CUT

and MAX BISECTION. Algorithmica, 18(1):67–81, 1997.
18. M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial

optimization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin,
second edition, 1993.

19. M. Krivelevich and D. Vilenchik. Semirandom models as benchmarks for coloring
algorithms. In ANALCO, pages 211–221, 2006.

20. L. Kučera. Expected behavior of graph coloring algorithms. In Proc. Fundamentals
of Computation Theory, volume 56 of Lecture Notes in Comput. Sci., pages 447–
451. Springer, Berlin, 1977.

21. T. �Luczak. The chromatic number of random graphs. Combin., 11(1):45–54, 1991.
22. R. Mulet, A. Pagnani, M. Weigt, and R. Zecchina. Coloring random graphs. Phys.

Rev. Lett., 89(26):268701, 2002.
23. H. Prömel and A. Steger. Random l-colorable graphs. Random Structures and

Algorithms, 6:21–37, 1995.
24. J. S. Turner. Almost all k-colorable graphs are easy to color. J. Algorithms,

9(1):63–82, 1988.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Defining Integers in the Counting Hierarchy
and Proving Arithmetic Circuit Lower Bounds

Peter Bürgisser�

Dept. of Mathematics, University of Paderborn, D-33095 Paderborn, Germany
pbuerg@upb.de

Abstract. Let τ (n) denote the minimum number of arithmetic opera-
tions sufficient to build the integer n from the constant 1. We prove that if
there are arithmetic circuits for computing the permanent of n by n ma-
trices having size polynomial in n, then τ (n!) is polynomially bounded in
log n. Under the same assumption on the permanent, we conclude that
the Pochhammer-Wilkinson polynomials

∏n
k=1(X − k) and the Taylor

approximations
∑n

k=0
1
k!X

k and
∑n

k=1
1
k
Xk of exp and log, respectively,

can be computed by arithmetic circuits of size polynomial in log n (al-
lowing divisions). This connects several so far unrelated conjectures in
algebraic complexity.

1 Introduction

The investigation of the complexity to evaluate polynomials by straight-line pro-
grams (or arithmetic circuits) is a main focus in algebraic complexity theory. Let
the complexity LK(f) of a polynomial f ∈ K[X1, . . . , Xm] over a field K be the
minimum number of arithmetic operations +, −, ∗, / sufficient to compute f from
the variables Xi and constants in K. We call a sequence (fn)n∈N of univariate
polynomials easy to compute if LK(fn) = (log n)O(1), otherwise hard to compute
(usually n stands for the degree of fn). For example, the sequence (G(r)

n)n∈N of
univariate polynomials over K = C

G(r)
n :=

n∑

k=1

krXk

is easy to compute, provided r ∈ N. This is easily seen by computing the deriva-
tives of the well-known formula G

(0)
n = Xn+1−1

X−1 -1 for the geometric series.
In a landmark paper [19], Strassen proved that various sequences (fn) of spe-

cific polynomials like fn =
∑n

k=1 exp(2π
√

−1/2j) or fn =
∑n

k=1 22k

Xk are hard
to compute. Von zur Gathen and Strassen [11] showed that the sequence (G(r)

n)
is hard to compute if r ∈ Q\Z. The complexity status of this sequence for nega-
tive integers r has ever since been an outstanding open problem, cf. Strassen [21,
Problem 9.2]. More details and references on this can be found in [9, Chapter 9].
� Partially supported by DFG grant BU 1371 and Paderborn Institute for Scientific

Computation (PaSCo).

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 133–144, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

134 P. Bürgisser

In 1994 Shub and Smale [17] discovered the following connection between
the complexity of univariate integer polynomials and the PC �= NPC-hypothesis
in the Blum-Shub-Smale model [6] over C. For an integer polynomial f ∈
Z[X1, . . . , Xm], we define the tau-complexity τ(f) as LQ(f), but allow only the
constant 1 and disallow divisions. Clearly, LQ(f) ≤ τ(f). The τ-conjecture claims
the following connection between the number z(f) of distinct integer roots of a
univariate f ∈ Z[X] and the complexity τ(f):

z(f) ≤ (1 + τ(f))c (1)

for some universal constant c > 0 (compare also [21, Problem 9.2]). Shub and
Smale [17] proved that the τ -conjecture implies PC �= NPC. In fact, their proof
shows that in order to draw this conclusion, it suffices to prove that for all
nonzero integers mn, the sequence (mnn!)n∈N of multiples of the factorials is
hard to compute. Hereby we say that a sequence (a(n)) of integers is hard to
compute iff τ(a(n)) is not polynomially bounded in log n.

It is plausible that (n!) is hard to compute, otherwise factoring integers could
be done in (nonuniform) polynomial time, cf. [20] or [5, p.126]. Lipton [14]
strengthened this implication by showing that if factoring integers is “hard on
average” (a common assumption in cryptography), then a somewhat weaker
version of the τ -conjecture follows.

Resolving the τ -conjecture appears under the title “Integer zeros of a poly-
nomial of one variable” as the fourth problem in Smale’s list [18] of the most
important problems for the mathematicians in the 21st century. Our main re-
sult confirms the belief that solving this problem is indeed very hard. In fact we
prove that the truth of τ -conjecture (as well as a hardness proof for the other
problems mentioned before) would imply the truth of another major conjecture
in algebraic complexity.

A quarter of a century ago, Valiant [23,24] proposed an algebraic version of the
P versus NP problem for explaining the hardness of computing the permanent.
He defined the classes VP of polynomially computable and VNP of polynomially
definable families of multivariate polynomials over a fixed field K and proved that
the family (Pern) of permanent polynomials is VNP-complete (if charK �= 2).
Recall that the permanent of the matrix [Xij]1≤i,j≤n is defined as

Pern =
∑

π∈Sn
X1π(1) · · · Xnπ(n),

where the sum is over all permutations π of the symmetric group. Valiant’s com-
pleteness result implies that VP �= VNP iff (Pern) �∈ VP. The latter statement
is equivalent to the the hypothesis that LK(Pern) is not polynomially bounded
in n, which is often called Valiant’s hypothesis over K. (For a detailed account
we refer to [7]).

Our main result stated below refers to a somewhat weaker hypothesis claiming
that τ(Pern) is not polynomially bounded in n (however, cf. Corollary 18).

Theorem 1. Each of the statements listed below implies that the permanent of
n by n matrices cannot be computed by constant-free and division-free arithmetic
circuits of size polynomial in n: that is, τ(Pern) is not polynomially bounded in n.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Defining Integers in the Counting Hierarchy 135

1. The sequence of factorials (n!)n∈N is hard to compute.
2. The τ-conjecture of Shub and Smale [17,4] is true.
3. The sequence of Taylor approximations (

∑n
k=0

1
k!T

k)n∈N of exp is hard to
compute.

4. The sequence (G(r)
n) = (

∑n
k=1 krT k)n∈N for a fixed negative integer r is hard

to compute.

This result gives some explanation why the attempts to prove the τ -conjecture
or the hardness of the above specific sequences of integers or polynomials did
not succeed. Astonishingly, the major open problems mentioned in Chapters 9
and 21 of [9] turn out to be closely related!

This theorem was essentially conjectured by the author in [7, §8.3]. Koiran [13]
proved a weaker version of the statement regarding the factorials and proposed
a couple of questions related to other sequences of integers. Our technique allows
to answer these questions in the affirmative (Corollary 17).

The main new idea for the proof of Theorem 1 is the consideration of the
counting hierarchy CH, which was introduced by Wagner [26]. This is a com-
plexity class lying between PP and PSPACE that bears more or less the same
relationship to #P as the polynomial hierarchy bears to NP. The counting hier-
archy is closely tied to the theory of threshold circuits of bounded depth, cf. [2].

Beame et al. [3] presented parallel NC1-algorithms for iterated multiplication
and division of integers. Reif and Tate [16] observed that these algorithms can
also be implemented by constant depth threshold circuits, placing these problems
in the class TC0. The question of the degree of uniformity required for these
circuits was only recently solved in a satisfactory way by Hesse et al. [12], who
showed that there are Dlogtime-uniform circuits performing these tasks. This
result, scaled up to the counting hierarchy, is crucial for our study of sequences of
integers definable in the counting hierarchy. In fact, for our purpose it is sufficient
to have deterministic polylogarithmic time in the uniformity condition, which
is somewhat easier to obtain. It is remarkable that, even though the statement
of Theorem 1 involves only arithmetic circuits, its proof relies on uniformity
arguments thus requiring the model of Turing machines.

A box at the end of a lemma etc. indicates that the proof had to be omitted
for lack of space. A full version is available as ECCC Report TR06-113.

2 Preliminaries

2.1 The Counting Hierarchy

The (polynomial) counting hierarchy was introduced by Wagner [26] with the
goal of classifying the complexity of certain combinatorial problems where count-
ing is involved. It is best defined by means of a counting operator C· that can
be applied to complexity classes.

We denote by {0, 1}∗ × {0, 1}∗ → {0, 1}∗, (x, y) �→ 〈x, y〉 a pairing function
(e.g., by duplicating each bit of x and y and inserting 01 in between).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

136 P. Bürgisser

Definition 2. Let K be a complexity class. We define C · K to be the set of
all languages A such that there exist a language B ∈ K, a polynomial p, and a
polynomial time computable function f: {0, 1}∗→N such that for all x ∈ {0, 1}∗:

x ∈ L ⇐⇒ |{y ∈ {0, 1}p(|x|) | 〈x, y〉 ∈ B}| > f(x). (2)

Remark 3. The operators ∃· and ∀· can be introduced in similar way by instead
requiring ∃y ∈ {0, 1}p(|x|) 〈x, y〉 ∈ B and ∀y ∈ {0, 1}p(|x|) 〈x, y〉 ∈ B, respectively.
It is clear that K ⊆ ∃ · K ⊆ C · K and K ⊆ ∀ · K ⊆ C · K.

By starting with the class K = P of languages decidable in polynomial time and
iteratively applying the operator C· we obtain the counting hierarchy.

Definition 4. The k-th level CkP of the counting hierarchy is recursively defined
by C0P := P and Ck+1P := C · CkP for k ∈ N. One defines CH as the union of all
classes CkP.

We recall that the classes of the polynomial hierarchy PH are obtained from the
class P by iteratively applying the operators ∃· and ∀·. It follows from Remark 3
that the union PH of these classes is contained in CH. Also it is not hard to see
that CH is contained in the class PSPACE of languages decidable in polynomial
space.

Modifying Definition 2 we define C′ · K of a complexity class K by requiring
the majority condition

x ∈ L ⇐⇒ |{y ∈ {0, 1}p(|x|) | 〈x, y〉 ∈ B}| > 2p(|x|)−1.

instead of (2). It can be shown that this does not change the definition of the
classes of the counting hierarchy CkP, cf. Torán [22]. In particular, we obtain for
k = 1 the definition of the familiar class PP (probabilistic polynomial time).

We recall also that the counting complexity class #P consists of all functions
g : {0, 1}∗ → N for which there exist a language B ∈ P and a polynomial p such
that for all x ∈ {0, 1}∗: g(x) = |{y ∈ {0, 1}p(|x|) | 〈x, y〉 ∈ B}|. Hence functions
in #P can be evaluated in polynomial time by oracle calls to PP.

Lemma 5. The counting hierarchy collapses to P if PP = P. Moreover, PP ⊆
P/poly implies CH ⊆ P/poly. �

2.2 The Constant-Free Valiant Model

An arithmetic circuit over the field Q is an acyclic finite digraph, where all nodes
except the input nodes have fan-in 2 and are labelled by +, −, × or /. The circuit
is called division-free if there are no division nodes. The input nodes are labelled
by variables from {X1, X2, . . .} or by constants in Q. If all constants belong to
{−1, 0, 1}, then the circuit is said to be constant-free. We assume that there is
exactly one output node, so that the circuit computes a rational function in the
obvious way. By the size of a circuit we understand the number of its nodes
different from input nodes.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Defining Integers in the Counting Hierarchy 137

Definition 6. The L-complexity L(f) of a rational polynomial f is defined as
the minimum size of an arithmetic circuit computing f . The τ -complexity τ(f)
of an integer polynomial f is defined as the minimum size of a divison-free and
constant-free arithmetic circuit computing f .

Note that L(f) ≤ τ(f). While L(c) = 0 for any c ∈ Q, it makes sense to consider
the τ -complexity of an integer k. For instance, one can show that log log k ≤
τ(k) ≤ 2 log k for any k ≥ 2, cf. [10].

In order to control the degree and the size of the coefficients of f we are going
to put further restrictions on the circuits. The (complete) formal degree of a node
is inductively defined as follows: input nodes have formal degree 1 (also those
labelled by constants). The formal degree of an addition or subtraction node is
the maximum of the formal degrees of the two incoming nodes, and the formal
degree of a multiplication node is the sum of these formal degrees. The formal
degree of a circuit is defined as the formal degree of its output node.

Valiant’s algebraic model of NP-completeness [23,24] (see also [7]) explains
the hardness of computing the permanent polynomial in terms of an algebraic
completeness result. For our purposes, it will be necessary to work with a varia-
tion of this model. This constant-free model has been systematically studied by
Malod [15]. We briefly present the salient features following Koiran [13].

Definition 7. A sequence (fn) of polynomials belongs to the complexity class
VP0 iff there exists a sequence (Cn) of division-free and constant-free arithmetic
circuits such that Cn computes fn and the size and the formal degree of Cn are
polynomially bounded in n.

Clearly, if (fn) ∈ VP0 then τ(fn) = nO(1) . Moreover, it is easy to see that the
bitsize of the coefficients of fn is polynomially bounded in n. When removing in
the above definition the adjective “constant-free”, the original class VP over the
field Q is obtained [15]. The counterpart to VP0 is the following class.

Definition 8. A sequence (fn(X1, . . . , Xu(n))) of polynomials belongs to the
complexity class VNP0 iff there exists a sequence (gn(X1, . . . , Xv(n))) in VP0

such that

fn(X1, . . . , Xu(n))) =
∑

e∈{0,1}v(n)−u(n)

gn(X1, . . . , Xu(n), e1, . . . , ev(n)−u(n)).

Replacing VP0 by VP in this definition, we get the original class VNP over Q.
Valiant’s algebraic completeness result implies that VP = VNP iff (Pern) ∈ VP.
The latter is equivalent to L(Pern) = nO(1). In the constant-free setting, the
situation seems more complicated. It is not clear that VP0 = VNP0 is equiva-
lent to the hypothesis τ(Pern) = nO(1). Curiously, it is neither clear whether
(Pern) ∈ VP0 and VP0 = VNP0 are equivalent. However, it is known that they
become equivalent when considering arithmetic circuits using the additional con-
stant 1

2 , cf. Koiran [13, Theorem 4.3] and the result below. Indeed, by inspection
of Valiant’s algebraic completeness proof one derives the following.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

138 P. Bürgisser

Theorem 9. If τ(Pern) = nO(1), then for any family (fn) ∈ VNP0 there exists
a polyomially bounded sequence (p(n)) in N such that τ(2p(n)fn) = nO(1). �

Valiant [23] developed a useful criterion for recognizing families in VNP0, see
also [7, Proposition 2.20]. This criterion has been“scaled down” by Koiran [13,
Theorem 6.1] as follows.

Theorem 10. Assume the map a : N × N → N, (n, j) �→ a(n, j) is in the com-
plexity class #P/poly, where n, j are encoded in binary. Let p : N → N be poly-
nomially bounded and satisfying p(n) ≥ n for all n. Consider the polynomial

Fn(X1, . . . , X�(n)) =
p(n)∑

j=0

a(n, j)Xj1
1 · · · Xj�(n)

�(n) ,

where �(n) = 1+�logp(n)� and ji denotes the bit of j of weight 2i−1. Then there
exists a sequence (Gr(X1, . . . , Xr, N1, . . . , Nr, P1, . . . , Pr)) in VNP0 such that

Fn(X1, . . . , X�(n)) = G�(n)(X1, . . . , X�(n), n1, . . . , n�(n), p1, . . . , p�(n)))

for all n, where ni and pi denote the bits of n and p(n) of weight 2i−1.

Lemma 11. τ(Pern) = nO(1) implies that PP ⊆ P/poly. �

3 Integers Definable in the Counting Hierarchy

We consider sequences of integers a(n, k) defined for n, k ∈ N and 0 ≤ k ≤ q(n),
where q is polynomially bounded, such that

∀n > 1 ∀k ≤ q(n) |a(n, k)| ≤ 2nc

(3)

for some constant c. We shall briefly refer to such sequences a = (a(n, k)) as being
of polynomial bitsize. The falling factorials a(n, k) = n(n − 1) · · · (n − k + 1) are
an interesting example to keep in mind; note that a(n, k) ≤ 2n2

.
We shall write |a| := (|a(n, k)|) for the sequence of absolute values of a. We

assign to a sequence a = (a(n, k)) of polynomial bitsize the following languages
with the integers n, k, j represented in binary (using O(log n) bits):

Sgn(a) := {(n, k) | a(n, k) ≥ 0}
Bit(|a|) := {(n, k, j, b) | the j-th bit of |a(n, k)| equals b }.

The integer j can thus be interpreted as an address pointing to bits of a(n, k).
Because of (3), we have j ≤ nc and thus log j = O(log n).

Definition 12. A sequence a of integers of polynomial bitsize is called definable
in the counting hierarchy CH iff Sgn(a) ∈ CH and Bit(|a|) ∈ CH. If both Sgn(a)
and Bit(|a|) lie in CH/poly then we say that a is definable in CH/poly.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Defining Integers in the Counting Hierarchy 139

This definition and all what follows extends to sequences (a(n, k1, . . . , kt)) with
a fixed number t of subordinate indices k1, . . . kt ≤ nO(1) in a straightforward
way. For the sake of simplifying notation we only state our results for the cases
t ∈ {0, 1}.

Our next goal is to find a useful criterion for showing that specific sequences
are definable in CH. Let m mod p ∈ {0, . . . , p − 1} denote the remainder of m
upon division by the prime p. We assign to a = (a(n, k)) and a corresponding
constant c > 0 satisfying (3) the Chinese remainder language

CR(a) := {(n, k, p, j, b) | p prime, p < n2c, j-th bit of a(n, k) mod p equals b }.

Again, the integers n, k, p, j are to be represented in binary with O(log n) bits.
(We suppress the dependence of CR(a) on c to simplify notation.) Note that the
absolute value |a(n, k)| ≤ 2nc

is uniquely determined by the residues a(n, k) mod
p for the primes p < n2c, since the product of these primes is larger than 2nc

(for n > 1).

Theorem 13. Let a be a sequence of integers of polynomial bitsize. Then a is
definable in CH iff Sgn(a) ∈ CH and CR(a) ∈ CH. Moreover, a is definable in
CH/poly iff Sgn(a) ∈ CH/poly and CR(a) ∈ CH/poly.

Proof. We first show that for nonnegative sequences a of polynomial bitsize

a is definable in CH ⇐⇒ CR(a) ∈ CH (4)

and similarly for the nonuniform situation.
By the Chinese Remainder Representation (CRR) of an integer 0 ≤ X ≤ 2n

we understand the sequence of bits indexed (p, j) giving the j-th bit of X mod p,
for each prime p < n2. (The length of this sequence is O(n2).)

It was shown by Hesse et al. [12, Theorem 4.1] that there are Dlogtime-uniform
threshold circuits of polynomial size and depth bounded by a constant D that
on input the Chinese Remainder Representation of 0 ≤ X ≤ 2n compute the
binary representation of X . Let this circuit family be denoted by {Cn}.

Suppose that a is a sequence of nonnegative integers satisfying (3). For d ∈ N

consider the language Ld consisting of the binary encodings of (n, k, F, b), where
F is the name of a gate on level at most d of the threshold circuit Cnc and F
evaluates to b on input the CRR of a(n, k).

Claim. Ld+1 ∈ PPLd for 0 ≤ d < D.

We argue as in [1]. Due to the Dlogtime-uniformity of the circuits we can check
in linear time whether two gates F and G are connected (polynomial time would
be sufficient for our purpose). Let F be a gate at level d+1. On input (n, k, F, b),
we need to determine whether (n, k, G, 1) ∈ Ld for a majority of the gates G
connected to F . This is possible in PPLd , which proves the claim.

We can now show the direction from right to left of (4). Suppose that CR(a)
is contained in the s-th level CsP of the counting hierarchy. This means that
L0 ∈ CsP. Using the claim and the fact that Cs+1P = PPCsP (cf. Torán [22])

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

140 P. Bürgisser

we conclude that Ld ∈ Cs+dP ⊆ Cs+DP. Applying this to the output gates of
Cnc we see that a is definable in CH. Similarly, if CR(a) ∈ CsP/poly we obtain
Ld ∈ Cs+dP/poly.

In order to show the direction from left to right of (4) we argue in the same
way, using the fact that the reverse task of computing the CRR of 0 ≤ X ≤ 2n

from the binary representation of X can be accomplished by Dlogtime-uniform
threshold circuits of polynomial size and constant depth, cf. [12, Lemma 4.1].

For completing the proof it now suffices to prove that

Sgn(a) ∈ CH and CR(a) ∈ CH ⇐⇒ Sgn(a) ∈ CH and CR(|a|) ∈ CH

and similarly for the nonuniform situation. However, this follows from the fact
that −X mod p can be computed from X mod p in AC0, cf. [25]. �
From the above criterion we can derive the following closure properties with
respect to iterated addition, iterated multiplication, and integer division.

Theorem 14. 1. Suppose a = (a(n, k))n∈N,k≤q(n) is definable in CH, where q is
polynomially bounded. Consider

b(n) :=
q(n)∑

k=0

a(n, k), d(n) :=
q(n)∏

k=0

a(n, k).

Then b = (b(n)) and d = (d(n)) are definable in CH. Moreover, if a is definable
in CH/poly, then so are b and d.

2. Suppose (s(n))n∈N and (t(n))n∈N are definable in CH and t(n) > 0 for
all n. Then the sequence of quotients (�s(n)/t(n)�)n∈N is definable in CH. The
analogous assertion holds for CH/poly.

Proof. 1. Iterated addition is the problem to compute the sum of n integers
0 ≤ X1, . . . , Xn ≤ 2n in binary. This problem is well known to be in Dlogtime-
uniform TC0, cf. [25]. By scaling up this result as in the proof of Theorem 13,
we obtain the claim for b in the case where a(n, k) ≥ 0.

For the general case we use that if a and b are two sequences of nonnega-
tive integers definable in CH, then so is a − b, and similarly in the nonuniform
situation. (This follows as in the proof of Theorem 13 by using [12, Lemma 4.3].)

The claim for the iterated multiplication will follow by scaling up the ar-
guments in Hesse at al. [12] to the counting hierarchy. Suppose that a is de-
finable in CH. First note that we can check for given n in CH whether all
a(n, k) are nonzero. We therefore assume w.l.o.g. that a(n, k) �= 0 and write
a(n, k) = (−1)e(n,k)|a(n, k)| with e(n, k) ∈ {0, 1}. By definition, the sequence
(e(n, k)) is definable in CH. We have

d(n) = (−1)s(n)
∏

k

|a(n, k)| where s(n) =
q(n)∑

k=0

e(n, k).

According to the first claim of the theorem, (s(n)) is definable in CH. Hence it
suffices to prove the second claim for a nonnegative sequence a.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Defining Integers in the Counting Hierarchy 141

By Theorem 13 we know CR(a) ∈ CH and it suffices to prove that CR(d) ∈
CH. Suppose d satisfies (3) with the constant c > 0. Let a prime p ≤ n2c be
given. We can find the smallest generator g of the cyclic group F

×
p in PPH by

bisecting according to the following oracle in Σ2 (u < p):

∃ 1 ≤ g < u ∀ 1 ≤ i < p gi �= 1.

Note that gi can be computed by repeated squaring in polynomial time.
Similarly, for a given u ∈ F

×
p , we can compute the discrete logarithm 0 ≤ i < p

defined by u = gi in PNP. For given k ≤ q(n) let α(n, k) denote the discrete
logarithm of a(n, k) mod p. By the previous reasonings we see that (α(n, k)) is
definable in CH. By part one of the theorem we conclude that (δ(n)) defined by
δ(n) =

∑q(n)
k=0 α(n, k) is definable in CH. Hence d(n) mod p = gγ(n) is computable

in CH. Similar arguments apply in the nonuniform case.
2. The claim for integer division follows as before by scaling up the arguments

in Beame et al. [3] and Hesse et al. [12] to the counting hierarchy. �

Corollary 15. The sequence of factorials (n!) and the sequence of falling fac-
torials (n(n − 1) · · · (n − k + 1))k≤n are both definable in CH. Moreover, if
σk(z1, . . . , zn) denotes the k-th elementary symmetric function in the variables
z1, . . . , zn, then the sequence (σk(1, 2, . . . , n))n∈N,k≤n is definable in CH. �

4 Permanent Versus Integers and Univariate Polynomials

Theorem 16. Consider a sequence (a(n))n∈N of integers definable in CH/poly
and sequences

fn =
q(n)∑

k=0

b(n, k)Xk ∈ Z[X], gn =
1

d(n)
fn ∈ Q[X]

of integer and rational polynomials, respectively, such that (b(n, k))n∈N,k≤q(n) and
(d(n))n∈N are definable in CH/poly (in particular, q is polynomially bounded).

If τ(Pern) = nO(1), then the following holds:

1. τ(a(n)) = (log n)O(1).
2. τ(2e(n)fn) = (log n)O(1) for some polynomially bounded sequence (e(n)) in N.
3. L(gn) = (log n)O(1).

Proof. We assume that τ(Pern) = nO(1). By Lemma 11 this yields PP ⊆
P/poly. According to Lemma 5, this implies that CH ⊆ P/poly.

1. Let a(n) =
∑p(n)

j=0 a(n, j)2j be the binary representation of a(n). With-
out loss of generality we may assume that the polynomially bounded function p
satisfies p(n) ≥ n. By assumption, we can decide a(n, j) = b in CH/poly, where

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

142 P. Bürgisser

n, j are given in binary. Because of the assumed collapse of the counting hierarchy
we can decide a(n, j) = b in P/poly. Consider the polynomial

An(Y1, . . . , Y�(n)) =
p(n)∑

j=0

a(n, j)Y j1
1 · · · Y j�(n)

�(n) ,

where �(n) = 1 + �log p(n)� and ji denotes the bit of j of weight 2i−1. Note that

An(220
, 221

, . . . , 22�(n)−1
) = a(n)

By Theorem 10 there is a family (Gr(Y1, . . . , Yr, N1, . . . , Nr, P1, . . . , Pr)) in VNP0

that satisfies for all n

An(Y1, . . . , Y�(n)) = G�(n)(Y1, . . . , Y�(n), n1, . . . , n�(n), p1, . . . , p�(n)),

where ni and pi denote the bits of n and p(n) of weight 2i−1, respectively.
By Theorem 9 there exists a polynomially bounded sequence (s(r)) in N such

that τ(2s(r)Gr) = rO(1). This implies τ(2e(n)G�(n)) = (log n)O(1), where e(n) =
s(�(n)) = (log n)O(1). We conclude from the above that

2e(n)a(n) = 2e(n)G�(n)(220
, 221

, . . . , 22�(n)−1
, n1, . . . , n�(n), p1, . . . , p�(n)),

hence τ(2e(n)a(n)) ≤ τ(2e(n)G�(n))+�(n) ≤ (log n)O(1). Lemma 4.4 in Koiran [13]
implies τ(a(n)) ≤ (2e(n) + 3)τ(2e(n)a(n)). Altogether, τ(a(n)) = (log n)O(1).

2. Let b(n, k) =
∑p(n)

j=0 b(n, k, j)2j be the binary representation of b(n, k). As
before we assume p(n) ≥ n without loss of generality. Consider the polynomial

Bn(Y1, . . . , Y�(n), Z1, . . . , Zλ(n)) =
p(n)∑

j=0

q(n)∑

k=0

b(n, k, j)Y j1
1 · · · Y j�(n)

�(n) Zk1
1 · · ·Zkλ(n)

λ(n) ,

where �(n) = 1 + �log p(n)� , λ(n) = 1 + �log q(n)�, and ji, ki denote the bit of
j, k of weight 2i−1, respectively. Note that

Bn(220
, 221

, . . . , 22�(n)−1
, X20

, X21
, . . . , X22λ(n)−1

) =
q(n)∑

k=0

b(n, k)Xk = fn.

By Theorem 10 there is a family (Gr((X1, . . . , Xr), (N1, . . . , Nr), (P1, . . . , Pr)))
in VNP0 that satisfies for all n

Bn(Y, Z) = G�(n)+λ(n)((Y, Z), (n1, . . . , n�(n)+λ(n)), (p1, . . . , p�(n), q1, . . . , qλ(n))),

where (Y, Z) = (Y1, . . . , Y�(n), Z1, . . . , Zλ(n)) and ni, pi, and qi denote the bits
of n, p(n), and q(n) of weight 2i−1, respectively. By Theorem 9 there exists
a polynomially bounded sequence (s(r)) in N such that τ(2s(r)Gr) = rO(1).
This implies τ(2e(n)G�(n)+λ(n)) = (log n)O(1), where e(n) := s(�(n) + λ(n)) =
(log n)O(1). We conclude from the above that

τ(2e(n)fn) ≤ τ(2e(n)G�(n)+λ(n)) + �(n) + λ(n) ≤ (log n)O(1).

3. We know already that τ(2e(n)fn) = (log n)O(1). By the first assertion, we
have τ(d(n)) = (log n)O(1). Using one division, we get L(gn) = (log n)O(1). �

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Defining Integers in the Counting Hierarchy 143

Proof of Theorem 1. Suppose that τ(Pern) = nO(1). The sequence of
factorials a(n) = n! is definable in CH according to Cor. 15. By Theorem 16(1)
we get τ(n!) = (log n)O(1). Consider the Pochhammer-Wilkinson polynomial

fn =
n∏

k=1

(X − k) =
n∑

k=0

(−1)kσk(1, 2, . . . , n)Xn−k,

which has exactly n integer roots. Cor. 15 implies that its coefficient sequence
is definable in CH. By Theorem 16(2) we have τ(2e(n)fn) = (log n)O(1) for
some (e(n)). The polynomial 2e(n)fn violates the τ -conjecture. Consider now
gn =

∑n
k=0

1
k!T

k = 1
n!

∑n
k=0 n(n − 1) · · · (k + 1) Xk. According to Cor. 15, both

the coefficient sequence and the sequence (n!) of denominators are definable in
CH. Theorem 16(3) implies L(gn) = (log n)O(1). A similar argument works for∑n

k=1 krT k. �
The following application answers some questions posed by Koiran [13]. This
result actually holds for a large class of integer sequences, so the choice of the
sequences below is for illustration and just motivated by Koiran’s question.

Corollary 17. If one of the integer sequences (�2ne�), (�2n
√

2�), and (�(3/2)n�)
is hard to compute, then τ(Pern) is not polynomially bounded in n. �

Based on [8], we can prove a conditional implication refering to the original
Valiant hypothesis (dealing with arithmetic circuits using divisions and arbitrary
complex constants).

Corollary 18. Assuming the generalized Riemann hypothesis, LC(Pern)=nO(1)

implies that LC(gn) = (log n)O(1), where gn is as in Theorem 16. �

Acknowledgements. This work was triggered by discussions with Eric Allen-
der, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. I thank them, as well
as Emmanuel Jeandel and Emanuele Viola, for useful comments.

References

1. E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. Miltersen. On the com-
plexity of numerical analysis. In Proc. 21st Ann. IEEE Conference on Computa-
tional Complexity, pages 331–339, 2006.

2. E. Allender and K.W. Wagner. Counting hierarchies: polynomial time and con-
stant depth circuits. In G. Rozenberg and A. Salomaa, editors, Current trends in
Theoretical Computer Science, pages 469–483. World Scientific, 1993.

3. P.W. Beame, S.A. Cook, and H.J. Hoover. Log depth circuits for division and
related problems. SIAM J. Comput., 15(4):994–1003, 1986.

4. L. Blum, F. Cucker, M. Shub, and S. Smale. Algebraic Settings for the Problem
“P �= NP ?”. In The mathematics of numerical analysis, number 32 in Lectures in
Applied Mathematics, pages 125–144. Amer. Math. Soc., 1996.

5. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation.
Springer, 1998.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

144 P. Bürgisser

6. L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over
the real numbers. Bull. Amer. Math. Soc., 21:1–46, 1989.

7. P. Bürgisser. Completeness and Reduction in Algebraic Complexity Theory, vol-
ume 7 of Algorithms and Computation in Mathematics. Springer Verlag, 2000.

8. P. Bürgisser. Cook’s versus Valiant’s hypothesis. Theoret. Comp. Sci., 235:71–88,
2000.

9. P. Bürgisser, M. Clausen, and M.A. Shokrollahi. Algebraic Complexity Theory,
volume 315 of Grundlehren der mathematischen Wissenschaften. Springer Verlag,
1997.

10. W. de Melo and B. F. Svaiter. The cost of computing integers. Proc. Amer. Math.
Soc., 124(5):1377–1378, 1996.

11. J. von zur Gathen and V. Strassen. Some polynomials that are hard to compute.
Theoret. Comp. Sci., 11:331–336, 1980.

12. W. Hesse, E. Allender, and D.A. Barrrington. Uniform constant-depth threshold
circuits for division and iterated multiplication. J. Comput. System Sci., 65(4):695–
716, 2002. Special issue on complexity, 2001 (Chicago, IL).

13. P. Koiran. Valiant’s model and the cost of computing integers. Comput. Complex-
ity, 13(3-4):131–146, 2004.

14. R.J. Lipton. Straight-line complexity and integer factorization. In Algorithmic
number theory, number 877 in LNCS, pages 71–79. Springer Verlag, 1994.

15. G. Malod. Polynômes et coefficients. Phd thesis, Université Claude Bernard-
Lyon 1, 2003. http://tel.ccsd.cnrs.fr/tel-00087399.

16. J.H. Reif and S.R. Tate. On threshold circuits and polynomial computation. SIAM
J. Comput., 21(5):896–908, 1992.

17. M. Shub and S. Smale. On the intractability of Hilbert’s Nullstellensatz and an
algebraic version of “NP �= P?”. Duke Math. J., 81:47–54, 1995.

18. S. Smale. Mathematical problems for the next century. In Mathematics: frontiers
and perspectives, pages 271–294. Amer. Math. Soc., Providence, RI, 2000.

19. V. Strassen. Polynomials with rational coefficients which are hard to compute.
SIAM J. Comp., 3:128–149, 1974.

20. V. Strassen. Einige Resultate über Berechnungskomplexität. Jahr. Deutsch. Math.
Ver., 78:1–8, 1976.

21. V. Strassen. Algebraic complexity theory. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume A, chapter 11, pages 634–672. Elsevier
Science Publishers B. V., Amsterdam, 1990.

22. J. Torán. Complexity classes defined by counting quantifiers. J. Assoc. Comput.
Mach., 38(3):753–774, 1991.

23. L.G. Valiant. Completeness classes in algebra. In Proc. 11th ACM STOC, pages
249–261, 1979.

24. L.G. Valiant. Reducibility by algebraic projections. In Logic and Algorithmic: an
International Symposium held in honor of Ernst Specker, volume 30, pages 365–
380. Monogr. No. 30 de l’Enseign. Math., 1982.

25. H. Vollmer. Introduction to circuit complexity. Texts in Theoretical Computer
Science. An EATCS Series. Springer-Verlag, Berlin, 1999. A uniform approach.

26. K.W. Wagner. The complexity of combinatorial problems with succinct input
representation. Acta Inform., 23(3):325–356, 1986.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A New Rank Technique for Formula Size Lower
Bounds

Troy Lee�

LRI, Université Paris-Sud
troyjlee@gmail.com

Abstract. We introduce a new technique for proving formula size lower
bounds based on matrix rank. A simple form of this technique gives
bounds at least as large as those given by the method of Khrapchenko,
originally used to prove an n2 lower bound on the parity function. Apply-
ing our method to the parity function, we are able to give an exact expres-
sion for the formula size of parity: if n = 2� + k, where 0 ≤ k < 2�, then
the formula size of parity on n bits is exactly 2�(2� +3k) = n2 +k2� −k2.
Such a bound cannot be proven by any of the lower bound techniques
of Khrapchenko, Nečiporuk, Koutsoupias, or the quantum adversary
method, which are limited by n2.

1 Introduction

One of the most important open problems in complexity theory is to prove
superlinear lower bounds on the circuit size of an explicit Boolean function.
While this seems quite difficult, a modest amount of success has been achieved
in the weaker model of formula size, a formula being a circuit where every gate
has fan-out exactly one. The current best lower bound on the formula size of an
explicit function is n3−o(1) [H̊as98].

Besides proving larger lower bounds, many open questions remain about the
formula size of basic Boolean functions—functions which are both very impor-
tant in practice and are the constant companions of complexity theorists. One of
the most startling such questions is the gap in our knowledge about the formula
size of the majority function: the best lower bound is �n/2�2 while the best upper
bound is O(n4.57) [PPZ92]. Even in the monotone case, where a formula consists
of only AND and OR gates, the best lower bound is �n/2�n [Rad97], while the
best upper bound is O(n5.3) by Valiant’s beautiful construction [Val84].

One obstacle to proving larger formula size lower bounds seems to be what
we call the n2 barrier—most generic lower bound techniques seem to get stuck
around n2. The technique of Nečiporuk [Neč66] is limited to bounds of size
n2/ logn; the methods of Khrapchenko [Khr71], originally used to show a n2

lower bound on the formula size of parity, Koutsoupias [Kou93], and the recent
quantum adversary method [LLS06] all cannot prove lower bounds larger than
� Supported by a Rubicon grant from the Netherlands Organisation for Scientific Re-

search (NWO). Part of this work conducted while at CWI, Amsterdam.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 145–156, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

146 T. Lee

n2; Karchmer, Kushilevitz, and Nisan [KKN95] introduce a promising technique
based on linear programming but at the same stroke show that it cannot prove
lower bounds larger than 4n2.

We introduce a new technique for proving formula size lower bounds based on
matrix rank. Karchmer and Wigderson [KW88] show that formula size can be
phrased as a communication complexity game, specifically as the communication
complexity of a relation. Although matrix rank is one of the best tools available
for proving lower bounds on the communication complexity of functions it has
proved difficult to adapt to the relational case. Razborov [Raz90] uses matrix
rank to show superpolynomial lower bounds on monotone formula size, but also
shows [Raz92] that his method is limited to O(n) bounds for general formulas.

While in its full generality our method seems difficult to apply, we give a
simplified form which always gives bounds at least as large as the method of
Khrapchenko, and even the quantum adversary method, and which can break
the n2 barrier: we apply it to the parity function and give an exact expres-
sion for the formula size of parity. Let ⊕n denote the parity function on n-
bits, and let L(f) denote the the number of leaves in a smallest formula which
computes f .

Theorem 1. If n = 2� + k where 0 ≤ k < 2�, then

L(⊕n) = 2�(2� + 3k) = n2 + k2� − k2.

In Section 3 we present our method and show that it gives bounds at least as large
as those of Khrapchenko. In Section 4 we apply the method to the parity function
to prove Theorem 1. Finally, in Section 5 we look at the relative strength of
different formula size techniques and show that the linear programming method
of Karchmer, Kushilevitz, and Nisan [KKN95] is always at least as large as the
quantum adversary method [LLS06].

2 Preliminaries

We will make use of Jensen’s inequality. We will use the following form:

Lemma 1 (Jensen’s Inequality). Let φ : R → R be a convex function and ai

a set of positive real numbers for i = 1, . . . , n. Then

φ

(∑n
i=1 aixi∑n
i=1 ai

)

≤
∑n

i=1 aiφ(xi)∑n
i=1 ai

.

2.1 Linear Algebra

We will use some basic concepts from linear algebra. For a matrix A, let A∗ be
the transpose conjugate of A, that is A∗[i, j] = A[j, i]. A matrix is Hermitian
if A = A∗. We will use ≤ to refer to entrywise comparision of matrices: that
is A ≤ B if A[i, j] ≤ B[i, j] for all (i, j). The shorthand A ≥ 0 means that all
entries of A are nonnegative. The rank of A, denoted by rk(A), is the number of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A New Rank Technique for Formula Size Lower Bounds 147

linearly independent columns of A. The trace of A, written Tr(A), is the sum of
the diagonal entries of A. For a Hermitian n-by-n matrix A, let λ1(A) ≥ λ2(A) ≥
· · · ≥ λn(A) be the eigenvalues of A. Let σi(A) =

√
λi(A∗A) be the ith singular

value of A.
We will make use of three matrix norms. The Frobenius norm is the �2 norm

of a matrix thought of as a long vector—that is

‖A‖F =
√∑

i,j

A[i, j]2.

Notice also that ‖A‖2
F = Tr(A∗A) =

∑
i σ2

i (A). We will also use the trace
norm, ‖A‖tr =

∑
i σi(A). Finally, the spectral norm ‖A‖ = σ1(A). A very useful

relationship between Frobenius norm, trace norm, and rank is the following:

Lemma 2. Let A be a n-by-m matrix with n ≤ m.
⌈

‖A‖2
tr

‖A‖2
F

⌉

≤ rk(A).

Proof. The rank of A equals the number of nonzero singular values of A. Thus
by the Cauchy–Schwarz inequality,

(
n∑

i=1

σi

)2

≤ rk(A) ·
n∑

i=1

σ2
i .

As rank is an integer, we obtain
⌈

‖A‖2
tr

‖A‖2
F

⌉

≤ rk(A).

A useful tool to lower bound the trace norm is the following:

Lemma 3.

‖A‖tr = max
B

|Tr(A∗B)|
‖B‖ .

For Theorem 1 we in fact need only the following simple bound on the trace
norm: if there are k distinct rows x1, . . . , xk and k distinct columns y1, . . . , yk

such that A[xi, yi] = 1 for all 1 ≤ i ≤ k, then ‖A‖tr ≥ k.

2.2 Formula Size and Communication Complexity

A formula is a binary tree with nodes labeled by AND and OR gates, and leaves
labeled by literals, that is either a variable or its negation. The size of a formula
is its number of leaves. The formula size of a Boolean function f , written L(f),
is the size of a smallest formula which computes f .

Karchmer and Wigderson [KW88] characterize formula size in terms of a
communication game. Since this characterization, nearly all formula size lower
bounds have been phrased in the language of communication complexity.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

148 T. Lee

Let X, Y, Z be finite sets and R ⊆ X ×Y ×Z a relation. In the communication
problem for R, Alice is given some x ∈ X , Bob some y ∈ Y , and they wish to
output some z ∈ Z such that (x, y, z) ∈ R. A communication protocol is a binary
tree with each internal node v labeled either by a function av : X → {0, 1} if
Alice speaks at this node, or by a function bv : Y → {0, 1} if Bob speaks. Each
leaf is labeled by an element z ∈ Z. We say that a protocol P computes a relation
R if for every (x, y) ∈ X × Y , walking down the tree according to the functions
av, bv leads to a leaf labeled with z such that (x, y, z) ∈ R. We let CP (R) denote
the number of leaves in a smallest protocol which computes R.

For a Boolean function f : {0, 1}n → {0, 1}, let X = f−1(0) and Y = f−1(1).
We associate with f a relation Rf ⊆ X × Y × [n], where Rf = {(x, y, i) : x ∈
X, y ∈ Y, xi = yi}.

Theorem 2 (Karchmer–Wigderson). L(f) = CP (Rf).

An important notion in communication complexity is that of a combinatorial
rectangle. A combinatorial rectangle of X ×Y is a set which can be expressed as
X ′×Y ′ for some X ′ ⊆ X and Y ′ ⊆ Y . A set S ⊆ X ×Y is called monochromatic
for the relation R if there is some z ∈ Z such that (x, y, z) ∈ R for all (x, y) ∈
S. Let CD(R) be the number of rectangles in a smallest partition of X × Y
into combinatorial rectangles monochromatic for R. We will often refer to this
informally as the rectangle bound. A basic fact, which can be found in [KN97], is
that CD(R) ≤ CP (R). The rectangle bound is also somewhat tight—Karchmer,

Kushilevitz, and Nisan [KKN95] show that CP (R) ≤ CD(R)log CD(R).

3 Rank Technique

One of the best techniques for showing lower bounds on the communication
complexity of a function f : X × Y → {0, 1} is matrix rank, originally used by
[MS82]. If Mf is a matrix with rows labeled from X , columns labeled from Y
and where Mf [x, y] = f(x, y), then rk(Mf) lower bounds the number of leaves
in a communication protocol for f .

Let X, Y, Z be finite sets and R ⊆ X ×Y ×Z a relation. In order to apply the
rank bound, we first restrict the relation to a (non-Boolean) function by means
of what we call a selection function. A selection function S : X × Y → Z for the
relation R takes input (x, y) and outputs some z such that (x, y, z) ∈ R. That is,
it simply selects one of the possible valid outputs of the relation on input (x, y).
We let R|S = {(x, y, z) : S(x, y) = z}.

Theorem 3. CP (R) = minS CP (R|S).

Proof. For any selection function S, we have CP (R) ≤ CP (R|S), as a protocol
for R|S is in particular a protocol for R.

To see CP (R) ≥ minS CP (RS), let P be an optimal protocol for R. We define
a selection function based on this protocol, that is, let S(x, y) = z if and only if
(x, y) lead to a leaf labeled z by P . Now the protocol P also solves R|S and the
claim follows.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A New Rank Technique for Formula Size Lower Bounds 149

With the help of selection functions, we can now use rank as in the functional
case.

Theorem 4. Let R ⊆ X × Y × Z be a relation. To a selection function S, we
associate a set of matrices {Sz} over X × Y where Sz[x, y] = 1 if S(x, y) = z
and Sz[x, y] = 0 otherwise. Then

CD(R) ≥ min
S

∑

z∈Z

rk(Sz).

Proof. Let R be an optimal rectangle partition of R satisfying |R| = CD(R). We
let R define a selection function in the natural way, setting S(x, y) = z where z
is the lexicographically least color of the rectangle in R which contains (x, y).

We now show for this particular choice

CD(R) ≥
∑

z∈Z

rk(Sz),

which gives the theorem. Clearly CD(R) is equal to the sum over all z of the
number of rectangles labeled z by the partition R. Thus it suffices to show that
rk(Sz) lower bounds the number of rectangles labeled by z. Consider some z and
say that there are k monochromatic rectangles B1, . . . , Bk labeled z. As each Bi

is a combinatorial rectangle we can write it as Bi = Vi × Wi for Vi ⊆ X and
Wi ⊆ Y . Let vi be the characteristic vector of Vi, that is vi[x] = 1 if x ∈ Vi and
vi[x] = 0 otherwise, and similarly for wi with Wi. Then we can express Sz as
Sz =

∑k
i=1 viw

∗
i and so rk(Sz) ≤ k.

In general, this bound seems quite difficult to apply because of the minimization
over all selection functions. We will now look at a simplified form of this method
where we get around this difficulty by using Lemma 2 to lower bound the rank.

Corollary 1. Let f : {0, 1}n → {0, 1} be a Boolean function, and let X =
f−1(0), Y = f−1(1). Let ci be the number of pairs (x, y) ∈ X × Y which differ
only in position i, and let s1, . . . , sn be n nonnegative integers which sum to
|X ||Y |. Then

CD(Rf) ≥ min
si∑

i si=|X||Y |

∑

i

⌈
c2
i

si

⌉

.

Proof. By Theorem 4 and Lemma 2

CD(Rf) ≥ min
S

∑

i

rk(Si) ≥ min
S

∑

i

⌈
‖Si‖2

tr

‖Si‖2
F

⌉

. (1)

For the ci many (x, y) pairs which differ only in position i, any selection function
S must choose i. As the string y differing from x only in position i is unique, this
means that we can permute the rows and columns of Si to obtain a matrix with
trace at least ci, and so ‖Si‖tr ≥ ci. The Frobenius norm squared of a zero/one
matrix is simply the number of ones, thus ‖Si‖2

F is simply the number of (x, y)
pairs for which the selection function S chooses i. As the selection function is
total,

∑
i ‖Si‖2

F = |X ||Y |. The claim follows.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

150 T. Lee

The simplified version of the rank method given in Corollary 1 is already strong
enough to imply Khrapchenko’s method, which works as follows. Let f be a
Boolean function, and as before let X = f−1(0), Y = f−1(1). Let C be the set
of (x, y) ∈ X × Y which have Hamming distance one. Khrapchenko’s bound is
then |C|2/|X ||Y |.
Theorem 5. The bound given in Corollary 1 is at least as large as that of
Khrapchenko.

Proof. Let ci be the number of (x, y) ∈ X × Y which differ only in position i,
and let {si} be such that

∑
i si = |X ||Y | and which minimize the bound given in

Corollary 1. We now apply Jensen’s inequality, Lemma 1, with φ(x) = 1/x, xi =
si/ci, and ai = ci to obtain

∑

i

c2
i

si
≥ (

∑
i ci)2∑
i si

=
|C|2

|X ||Y | .

4 Application to Parity

In this section, we look at an application of the rank technique to the parity
function. For both the upper and lower bounds, we will use the communication
complexity setting of Karchmer and Wigderson. In this setting, Alice is given
some x with even parity, Bob some y with odd parity, and they wish to find
some i such that xi = yi. We first show the upper bound.

Proposition 1. Let n = 2� + k, where 0 ≤ k < 2�. Then L(⊕n) ≤ 2�(2� + 3k).

Proof. The basic idea is binary search. First imagine that n is a power of two.
Bob begins by saying the parity of the left half of y. Alice then says the parity
of the left half of x. If these parities differ, then they continue playing on the left
half, otherwise they continue playing on the right half. With each round they
halve the size of the playing field, and use two bits of communication. Thus after
log n rounds and 2 logn bits of communication they determine an i on which x
and y differ. This gives a formula of size n2.

When n is not a power of two, then at some point Alice and Bob will not be
able to split the playing field evenly between left and right halves. To govern how
Alice and Bob decompose n, consider a binary tree with the following properties:

– The root is labeled by n.
– The label of a node equals the sum of its sons
– Each leaf is labeled by 1.

Any such tree gives a protocol of the above type in the following way:

– Alice and Bob begin at the root, Alice playing with x and Bob with y. If the
left son of the root is n1, then Alice and Bob exchange the parities of the first
n1 bits of x and y respectively. If these disagree, then they continue playing
with the substrings consisting of the first n1 bits of x and y respectively. If
these agree then they continue playing on the last n − n1 bits of x and y
respectively.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A New Rank Technique for Formula Size Lower Bounds 151

– Say that Alice and Bob have arrived at node v playing with strings x′ and
y′ respectively, and that the left son of v is labeled by n1. Alice and Bob
exchange the parities of the first n1 bits of x′ and y′. If these agree then they
continue playing on the last n − n1 bits of x′ and y′ respectively.

The following claim gives the number of leaves in such a protocol.

Claim. Let T be a binary decomposition of n as above. Then

L(⊕n) ≤
∑

�∈T

2depth(�),

where the sum is taken over the leaves � of T .

Proof. We count the number of transcripts. Consider a path from root to a leaf.
At each step in this path, there are two messages that could lead to taking that
step. Namely, if the step is a left step, then Alice and Bob disagree in parity
at this step and thus the message exchange leading to this is either 01 or 10.
Similarly, if the step is a right step then Alice and Bob agreed in parity at this
step and the messages which could be exchanged are 00 or 11. Thus the total
number of transcripts in the parity protocol from a given tree is

∑
�∈T 2depth(�).

We use this claim to prove Proposition 1. Consider a binary decomposition of n
where the sons of any node labeled by an even number have the same value and
the sons of any node labeled by an odd number differ by one. This decomposition
will have 2k many leaves at depth � + 1 and 2� − k many leaves at depth �. The
claim then gives

L(⊕n) ≤ 2k(2�+1) + (2� − k)2� = 2�(2� + 3k)

Proposition 2. Let n = 2� + k, where 0 ≤ k < 2�. Then L(⊕n) ≥ 2�(2� + 3k).

Proof. Let S be any selection function. For every i, there are 2n−1 entries of
the matrix Si which must be one, namely the entries x, y which differ only
on position i. If S only assigns these entries to have the label i, then Si is a
permutation matrix and so has rank 2n−1. Thus to reduce the rank of Si, the
selection function S must therefore assign more (x, y) pairs to also have the label
i. The catch is that S must do this for all i simultaneously, and we will bound
how well it can do this.

Notice that for parity on n-bits, |X | = |Y | = 2n−1. For every i there are
2n−1 pairs (x, y) which differ only in position i. Thus applying Corollary 1 with
ci = 2n−1 for all i, we obtain

CD(R) ≥ min
si:

∑
i si=22n−2

n∑

i=1

⌈
22n−2

si

⌉

. (2)

Notice that if we were to ignore the ceilings, then we are minimizing over a
convex function φ(x) = 1/x and so Jensen’s inequality gives that the minimum is
obtained when all si are equal. In this case si = 22n−2/n and so

∑
i 22n−2/si = n2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

152 T. Lee

To get bound larger than n2 we need to take the ceiling functions into account.
If n is not a power of two, then 22n−2/n will not be an integer, whereas each si

is an integer—this means that it is no longer possible to have all si values equal
and

∑
i si = 22n−2. It is this imbalance that will lead to a larger lower bound.

We transform Equation (2) in a series of steps. First, notice that

min
si:

∑
i si=22n−2

n∑

i=1

⌈
22n−2

si

⌉

= min
s′

i:
∑

i s′
i≤22n−2

n∑

i=1

⌈
22n−2

s′i

⌉

. (3)

The right hand side is clearly less than the left hand side as the minimization
is taken over a larger set. The left hand side is less than the right hand side
as given a solution {s′i} to the right hand side, we can obtain a solution to the
left hand side which is not larger by setting si = s′i for i = 1, . . . , n − 1, and
sn = 22n−2 −

∑n−1
i=1 s′i ≥ s′n.

Now we observe that there is an optimal solution {si} to Equation (refmin2)
where each 22n−2/si is an integer, and so each si is a power of two. If 22n−2/si

is not an integer, then we can set s′i to the largest power of two less than si and⌈
22n−2/si

⌉
= 22n−2/s′i, and the sum of s′i does not increase.

Thus assume that each si is a power of two, say si = 2ai . We can now rewrite
Equation (3) as

min
ai∑

i 2ai ≤22n−2

∑

i

22n−2−ai

The values {ai} which achieve this minimum will maximize

max
ai∑

i 2ai ≤22n−2

∑

i

ai.

We now show that there is an optimal solution to this maximization problem
where |ai − aj | ≤ 1 for all i, j. If ai − aj > 2 then we can let a′

i = ai − 1 and
a′

j = aj +2, so that a′
i+a′

j > ai+aj and 2a′
j ≤ 2aj +2ai−1 so 2a′

i +2a′
j ≤ 2ai +2aj .

If ai − aj = 2 then by setting a′
i = ai − 1 and a′

j = aj + 1 then we still have
a′

i + a′
j = ai + aj , and have saved on weight, 2a′

i + 2a′
j < 2ai + 2aj .

By performing these transformations, we can turn any solution into one where
|ai − aj | ≤ 1 and whose value is at least as good. Now if we have |ai − aj| ≤ 1
and

∑
i 2ai = 22n−2, it follows that ai = 2n − � − 2 for 2� − k many values of i

and ai = 2n − � − 3 for 2k many values of i. This gives

min
ai

n∑

i=1

22n−2−ai = (2� − k)2� + 2k2�+1

= 2�(2� + 3k).

5 Hierarchy of Techniques

In this section, we present two results clarifying the hierarchy of available tech-
niques for proving lower bounds on formula size. Laplante, Lee, and Szegedy

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A New Rank Technique for Formula Size Lower Bounds 153

[LLS06] show that the quantum adversary method gives bounds at least as large
as the method of Koutsoupias [Kou93] which is in turn at least as large as the
bound of Khrapchenko. Here we show that the linear programming bound of
Karchmer, Kushilevitz, and Nisan [KKN95] and a slight variation of our bound,
as presented in Equation (1), are both always at least as large as the quantum
adversary method.

We first describe the methods in question. Karchmer, Kushilevitz, and Nisan
notice that for a relation R ⊆ X × Y × Z the rectangle bound CD(R) can be
written as an integer program. Indeed, let R be the set of all rectangles which
are monochromatic with respect to the relation R. To represent the relationship
between inputs (x, y) and the rectangles of R we use a |X | · |Y |-by-|R| incidence
matrix A, where for (x, y) ∈ X×Y and S ∈ R we let A[(x, y), S] = 1 if (x, y) ∈ S.
Now a set of rectangles can be described by a |R|-length vector α, with each
entry α[S] ∈ {0, 1}. If α represents a partition, then Aα = 1, and the number
of rectangles in such a partition is simply

∑
S α[S]. Karchmer, Kushilevitz, and

Nisan relax this integer program to a linear program by replacing the condition
α[S] ∈ {0, 1} with 0 ≤ α[S] ≤ 1.

Definition 1 (Linear programming bound [KKN95]). Let f : {0, 1}n →
{0, 1} be a Boolean function, Rf the relation corresponding to f , and α a vector
indexed by rectangles monochromatic with respect to Rf . The linear programming
bound, denoted LP(f), is then

LP(f) = min
α:Aα=1

0≤α[S]≤1

∑

S

α[S].

Ambainis [Amb02, Amb03] developed the quantum adversary method to prove
lower bounds on bounded-error quantum query complexity. Laplante, Lee, and
Szegedy show that the square of the adversary bound is lower bound on formula
size. The adversary bound can be phrased as a maximization problem of the
spectral norm of a matrix associated with f [BSS03].

Definition 2 (Adversary bound). Let f : {0, 1}n → {0, 1} be a Boolean
function, and X = f−1(0) and Y = f−1(1). Let Γ be a |X |-by-|Y | matrix, and
let Γi be the matrix such that Γi[x, y] = Γ [x, y] if xi = yi and Γi[x, y] = 0
otherwise, for 1 ≤ i ≤ n. Then

ADV(f) = max
Γ ≥0
Γ �=0

‖Γ‖
maxi ‖Γi‖

.

First we show that a slightly more sophisticated version of our bound Equa-
tion (1) is always at least as large as the quantum adversary method. A problem
with Equation (1) is that it cannot take advantage of the fact that certain in-
puts to a function might be harder than others. To give a concrete example, the
bound given by Equation (1) on the function f : {0, 1}2n → {0, 1} on 2n bits
which is just the parity of the first n bits is worse than the bound for parity on
n bits. To remedy this, we let u be a unit vector of length |X | and v be a unit

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

154 T. Lee

vector of length |Y | and consider the matrix Si ◦ uv∗ instead of the matrix Si.
As rk(Si ◦uv∗) ≤ rk(Si), we can again apply Theorem 4 and Lemma 2 to obtain

CD(Rf) ≥ min
S

max
u,v

‖u‖=‖v‖=1

∑

i

‖Si ◦ uv∗‖2
tr

‖Si ◦ uv∗‖2
F

. (4)

Theorem 6. The bound given by Equation (4) is at least as large as ADV(f)2.

Proof. Starting from Equation (4) we first apply Jensen’s inequality with φ(x) =
1/x, xi = ‖Si ◦ uv∗‖2

F /‖Si ◦ uv∗‖tr, and ai = ‖Si ◦ uv∗‖tr to obtain:

min
S

max
u,v

‖u‖=‖v‖=1

∑

i

‖Si ◦ uv∗‖2
tr

‖Si ◦ uv∗‖2
F

≥ min
S

max
u,v

‖u‖=‖v‖=1

(
∑

i ‖Si ◦ uv∗‖tr)
2

∑
i ‖Si ◦ uv∗‖2

F

.

As the selection function is total we have
∑

i ‖Si ◦ uv∗‖2
F = ‖uv∗‖2

F = 1.
Now we use Lemma (3) to lower bound ‖Si‖tr. One can think of the weight

matrix Γ in the adversary bound as the matrix from Lemma (3) which witnesses
that the trace norm of the Si’s is large:

min
S

max
u,v

‖u‖=‖v‖=1

(
∑

i

‖Si ◦ uv∗‖tr

)2

≥ min
S

max
Γ ≥0
Γ �=0

max
u,v

‖u‖=‖v‖=1

(
∑

i

|Tr((Γ ◦ Si)vu∗|
‖Γ ◦ Si‖

)2

≥ min
S

max
Γ ≥0
Γ �=0

max
u,v

‖u‖=‖v‖=1

(
∑

i

|Tr((Γ ◦ Si)vu∗|
‖Γi‖

)2

.

This step follows as 0 ≤ Γ ◦ Si ≤ Γi and for matrices A, B if 0 ≤ A ≤ B then
‖A‖ ≤ ‖B‖. We can now continue

min
S

max
Γ ≥0
Γ �=0

max
u,v

‖u‖=‖v‖=1

(
∑

i

|Tr((Γ ◦ Si)vu∗|
‖Γi‖

)2

≥ min
S

max
Γ ≥0
Γ �=0

max
u,v

‖u‖=‖v‖=1

(∑
i Tr((Γ ◦ Si)vu∗)

maxi ‖Γi‖

)2

= max
Γ ≥0
Γ �=0

max
u,v

‖u‖=‖v‖=1

(
Tr(Γvu∗)
maxi ‖Γi‖

)2

= max
Γ ≥0
Γ �=0

(
‖Γ‖

maxi ‖Γi‖

)2

.

Now we show that the bound given by the linear programming method is also
always at least as large as that given by the adversary method.

Theorem 7. LP(f) ≥ ADV2(f).

Proof. Let α be a solution to the linear program associated with f . By definition
we have

∑
S:(x,y)∈S α[S] = 1 for every (x, y). Let u, v be unit vectors such that

|u∗Γv| = ‖Γ‖. We will need some notation to label submatrices of Γ and portions
of u, v. For a combinatorial rectangle S = U ×V , let ΓS [x, y] = A[x, y] if (x, y) ∈ S

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A New Rank Technique for Formula Size Lower Bounds 155

and Γ [x, y] = 0 otherwise. Similarly, let uS [x] = u[x] if x ∈ U and uS[x] = 0
otherwise, and similarly for vS . Now

‖Γ‖ =
∑

x,y

Γ [x, y]u[x]v[y]

=
∑

x,y

∑

S:(x,y)∈S

α[S]Γ [x, y]u[x]v[y]

=
∑

S

α[S]
∑

(x,y)∈S

Γ [x, y]u[x]v[y]

≤
∑

S

α[S]‖ΓS‖‖uS‖‖vS‖

≤
(

∑

S

α[S]‖ΓS‖2

)1/2 (
∑

S

α[S]‖uS‖‖vS‖
)1/2

,

where the first inequality follows from the definition of spectral norm, and the
second uses the Cauchy–Schwarz inequality. Notice that

∑

S

α[S]‖ΓS‖2 =
∑

x,y

α[S]|u[x]|2|v[y]|2 = 1.

Thus
‖Γ‖2 ≤

∑

S

α[S]‖ΓS‖2 ≤ max
S

‖ΓS‖2
∑

S

α[S],

and so
∑

S

α[S] ≥ max
Γ

‖Γ‖2

maxS ‖ΓS‖2
≥ max

Γ

‖Γ‖2

maxi ‖Γi‖2
.

Acknowledgments

I would like to thank Anna Gál for helpful discussions on the topics of this paper,
and the anonymous referees for many beneficial comments.

References

[Amb02] A. Ambainis. Quantum lower bounds by quantum arguments. Journal of
Computer and System Sciences, 64:750–767, 2002.

[Amb03] A. Ambainis. Polynomial degree vs. quantum query complexity. In Proceed-
ings of the 44th IEEE Symposium on Foundations of Computer Science,
pages 230–239. IEEE, 2003.

[BSS03] H. Barnum, M. Saks, and M. Szegedy. Quantum decision trees and semidef-
inite programming. In Proceedings of the 18th IEEE Conference on Com-
putational Complexity, pages 179–193, 2003.

[H̊as98] J. H̊astad. The shrinkage exponent is 2. SIAM Journal on Computing,
27:48–64, 1998.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

156 T. Lee

[Khr71] V.M. Khrapchenko. Complexity of the realization of a linear function in the
case of Π-circuits. Math. Notes Acad. Sciences, 9:21–23, 1971.

[KKN95] M. Karchmer, E. Kushilevitz, and N. Nisan. Fractional covers and commu-
nication complexity. SIAM Journal on Discrete Mathematics, 8(1):76–92,
1995.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge Uni-
versity Press, 1997.

[Kou93] E. Koutsoupias. Improvements on Khrapchenko’s theorem. Theoretical
Computer Science, 116(2):399–403, 1993.

[KW88] M. Karchmer and A. Wigderson. Monotone connectivity circuits require
super-logarithmic depth. In Proceedings of the 20th ACM Symposium on
the Theory of Computing, pages 539–550, 1988.

[LLS06] S. Laplante, T. Lee, and M. Szegedy. The quantum adversary method and
classical formula size lower bounds. Computational Complexity, 15:163–196,
2006.

[MS82] K. Melhorn and E. Schmidt. Las Vegas is better than determinism in VLSI
and distributed computing. In Proceedings of the 14th ACM Symposium on
the Theory of Computing, pages 330–337. ACM, 1982.

[Neč66] E. I. Nečiporuk. A Boolean function. Soviet Mathematics–Doklady, 7:999–
1000, 1966.

[PPZ92] M. Paterson, N. Pippenger, and U. Zwick. Optimal carry save networks. In
Boolean function complexity, pages 174–201. London Mathematical Society
Lecture Note Series 169, Cambridge University Press, 1992.

[Rad97] J. Radhakrishnan. Better lower bounds for monotone threshold formulas.
Journal of Computer and System Sciences, 54(2):221–226, 1997.

[Raz90] A. Razborov. Applications of matrix methods to the theory of lower bounds
in computational complexity. Combinatorica, 10(1):81–93, 1990.

[Raz92] A. Razborov. On submodular complexity measures. In M. Paterson, editor,
Boolean function complexity, volume 169 of London Math. Soc. Lecture Notes
Series, pages 76–83. Cambridge University Press, 1992.

[Val84] L.G. Valiant. Short monotone formulae for the majority function. Journal
of Algorithms, 5:363–366, 1984.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Hard Metrics from Cayley Graphs
of Abelian Groups

Ilan Newman and Yuri Rabinovich�

Computer Science Department, University of Haifa, Haifa 31905, Israel
ilan@cs.haifa.ac.il, yuri@cs.haifa.ac.il

Abstract. Hard metrics are the class of extremal metrics with respect
to embedding into Euclidean Spaces: their distortion is as bad as it pos-
sibly gets, which is Ω(log n). Besides being very interesting objects akin
to expanders and good codes, with rich structure of independent interest,
such metrics are important for obtaining lower bounds in Combinatorial
Optimization, e.g., on the value of MinCut/MaxFlow ratio for multicom-
modity flows.

For more than a decade, a single family of hard metrics was known
(see [10,3]). Recently, a different such family was found (see [8]), causing
a certain excitement among the researchers in the area.

In this paper we present another construction of hard metrics, different
from [10,3], and more general yet clearer and simpler than [8]. Our results
naturally extend to NEG and to �1.

1 Introduction

A famous theorem of Bourgain [4] states that every metric space (X, d) of size
n can be embedded into an Euclidean space with multiplicative distortion at
most dist(d ↪→ �2) = O(log n). We call a metric space hard if dist(d ↪→ �2) =
Ω(log n).

When studying a special class of metric spaces, perhaps the most natural first
question is whether this class contains hard metrics. Many fundamental results in
the modern Theory of Finite Metric Spaces may be viewed as a negative answer
to this question for some special important class of metrics. E.g., Arora et al. [1]
(improving on Chawla et al. [5]) show this for Negative Type metrics, Klein et
al. [9] for planar metrics, and Gupta et al. [6] for doubling metrics. For a long
time (since Linial, London and Rabinovich [10] and Rabani and Aumann [3]),
the only known family of hard metrics was, essentially, the shortest-path metrics
of constant-degree expander graphs. It was even conjectured that in some vague
sense this is always the case. Recently, however, Khot and Naor [8] constructed
a different family of hard metrics by considering certain quotient spaces of Z

n
2

equipped with the Hamming distance.
The starting point of the current research was a plausible conjecture that

a circular metric cannot be hard, where by circular we mean a metric on the
� Supported in part by a grant ISF-247-020-10.5.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 157–162, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

158 I. Newman and Y. Rabinovich

underlying space Zn, such that d(a, b) depends solely on ((a−b) mod n). Rather
surprisingly, the conjecture turns out to be false, and, moreover, it fails not only
for Zn, but for any Abelian group H . More precisely, it is always possible to
choose a set A of generators for H , so that the shortest-path metric of the
corresponding Cayley graph G(H, A) is hard. In the special case of Z

n
2 , good

sets of generators are closely related to error-correcting codes of constant rate
and linear distance.

Our construction is both simple to describe and easy to analyze. It differs from
that of [10,3], as the degree of such Cayley graphs is necessarily non-constant. It
is more general than the construction of [8], since the latter, despite very different
description and analysis, can be shown to produce the same mertic space as does
our construction in the special case of Z

n
2 .

Note: Although in what follows we restrict the discussion to Euclidean Spaces,
the same method shows the hardness of the metrics that we construct also with
respect to much richer spaces of NEG, and consequently �1.

2 General Abelian Groups

Let G be a d-regular connected graph on n vertices, and let μG be its shortest-
path metric. Our first step is to get a general lower bound on distortion of
embedding μG into an Euclidean space. We use a standard (dual) method of
comparing the so-called Poincare forms (see, e.g., [10,11], with further details
therein). Consider the following projective quadratic form:

F (Δ) =

∑
(i,j)∈E(G) Δ2(i, j)

∑
i<j∈V (G) Δ2(i, j)

Then,

F (μG) =
|E|

(
n
2

)
Ave(μ2

G)
,

where Ave(μ2
G) is the average value of μ2

G(i, j) over all pairs of vertices of G. On
the other hand let δ be any Euclidean metric on V (G), i.e., a metric of the form

δ(i, j) = ‖xi − xj‖2 , where {xi}i∈V (G) ⊂ R
m .

By a standard argument (see e.g., [11], Sect. 15.5), the minimum of F (δ) over
all such δ’s is precisely γG/n , where γG is the spectral gap of G, i.e., (d − λG)
where λG is the second largest eigenvalue of the adjacency matrix of G. If the
minimum of F (δ) over all Euclidean metrics is larger than F (μG), we conclude
that the square of distortion of any embedding of μG into an Euclidean space is
at least the ratio between these two values:

Proposition 1.

dist2(μG ↪→ �2) ≥ n − 1
n

· γG

d
· Ave(μ2

G) .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Hard Metrics from Cayley Graphs of Abelian Groups 159

In particular,

Corollary 1. If a graph G has a constant normalized spectral gap γG/d, and
Ave(μ2

G) = Ω(log2 n), then the above method yields an Ω(log n) lower bound on
the distortion of embedding μG into an Euclidean space.

In the following we shall deal solely with vertex-transitive graphs; let us remark
that for such graphs Ave(μ2

G) ≈ Diam(G)2 . Indeed, let r be the smallest radius
such that the corresponding r-ball in μG contains at least n/2 vertices. Clearly,
Ave(μ2

G) ≥ r2/2, while Diam(G) ≤ 2r + 1 . Thus, it suffices to ensure that the
diameter of G is at least Ω(log n).

Turning to Cayley graphs, it is well known that for (some) non-Abelian groups,
there exist Cayley graphs with constantly many generators, and a constant spec-
tral gap (see, e.g., [12], the section on Cayley expander graphs). Since the con-
stant number of generators guarantees that the diameter is Ω(log n), this yields
a graph as required in Corollary 1. (This is precisely the construction used
in [10,3]). For Abelian groups such construction is impossible, since in order
to ensure a constant normalized gap γG/d, the number of generators must be
at least Ω(log n) (see, e.g., [12]). This might seem to be a problem, since, at
least for general groups, that many generators may well cause the diameter
be O(log n/ log log n) = o(log n). For Abelian groups, however, this does not
happen! While the following simple fact is well known (see, e.g., [12], proof of
Prop. 11.5), it has been apparently overlooked in the context of hard metrics.
Let h(p) = −p log2 p − (1 − p) log2(1 − p) be the entropy function.

Proposition 2. Let H be an Abelian group of size n, and let A ⊂ H, A = −A,
be a set of generators of size d = c0 log2 n. Then, for any constant c1 such
that (c0 + c1) · h(c1/(c0 + c1)) < 1, the diameter of the corresponding Cayley
graph G(H, A) is ≥ c1 log2 n for a large enough n.

The proposition follows from the observation that the number of distinct end-
points of paths of of length l in G is at most

(
d+l

l

)
, since due to commutativity

of G it is at most the number of partitions of a set of l (identical) elements to d
(distinct) parts. Therefore, the number of points reachable by a path of length
≤ c1 log2 n is at most

c1 log2 n∑

l=0

(
c0 log2 n + l

l

)

= 2h
(

c1
c0+c1

)
·(c0+c1)·log2 n+o(log n) =

n
(c0+c1)·h

(
c1

c0+c1

)
+o(1)

< n.

Thus, as long as the number of generators is O(log n), our only concern is
getting a constant normalized spectral gap γG/d. This is summed up in the
following theorem.

Theorem 1. Let H be an Abelian group of size n, let A ⊂ H be a symmetric
set of generators of size d = c0 log2 n for a suitable universal constant c0 (a 100
would certainly suffice) and let G(H, A) be the corresponding Cayley graph. If
the normalized spectral gap γG/|A| = Ω(1), then μG is a hard metric.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

160 I. Newman and Y. Rabinovich

It is well known that a random construction achieves this goal (see, e.g., [2], in
particular the section on Abelian groups):

Proposition 3. Let H be a an Abelian group of size n, and let A ⊂ H be a
random symmetric set of generators of size d = c0 log2 n for a suitable universal
constant c0 (a 100 would certainly suffice). Then, the corresponding Cayley graph
G(H, A) is almost surely connected, and has a normalized spectral gap ≥ 0.5.

To prove the proposition, one needs first to realize that the eigenvectors of G
are the characters of H , i.e., functions χ from H to the unit circle in C, such
that χ(a + b) = χ(a) · χ(b). In particular, all such functions with the exception
of the constant one (that corresponds to the eigenvalue d), sum up to 0. From
here it is little more than an application of the Chernoff Bound. For an efficient
deterministic construction of such A’s see [13].

Combining Theorem 1 and Proposition 3, we arrive at the main result of this
section:

Theorem 2. Let G = G(H, A) be a Cayley graph obtained by taking a random
symmetric set of generators A ⊂ H of size d = c0 log2 |H | for a suitable uni-
versal constant c0. Then, the shortest-path metric of G is almost surely a hard
metric.

Remark: It is natural to ask whether the Cayley graph whose shortest-path
metric is hard, may have super-logarithmic degree. The answer is positive, and
in fact for any Abelian H it is possible to get degree O(n1−ε) for any constant ε.
We postpone the detailed discussion of this matter to the journal version of this
paper.

3 When the Group Is Z
n
2

In this case the group is just an n-dimensional vector space over Z2. Any set of
generators (vectors) A is automatically symmetric. Following the requirements of
Corollary 1, we have to ensure three conditions: a constant normalized spectral
gap, conectivity of G(Zn

2 , A), and Ω(n) diameter.
The construction is based on linear good codes. Let C ⊂ Z

m
2 be a linear code

of dimension n, that is, C is generated by a set of n linearly independent m-
dimensional vectors. The distance D(C) of C is the minimum number of 1’s in
any c ∈ C. C is said to be of linear distance if D(C) = Ω(m). In addition, if
m = O(n) the code is said to have a constant rate.

Let M be an n × m matrix whose rows are a basis for C (such an M is called
the generator matrix of C) and let A ⊂ Z

n
2 , |A| = m, be the set of columns M .

It is easy to see that for any such linear code, the graph G(Zn
2 , A) is connected

due to the fact that the rank of M is n.

Proposition 4. Let C be a linear code of linear distance and let M and A be the
corresponding matrix and set of vectors as above. Then normalized spectral gap
γG/n of G(Zn

2 , A) is constant. Conversely, any A with this property is necessarily
the set of columns of a generator matrix of a linear code with linear distance.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Hard Metrics from Cayley Graphs of Abelian Groups 161

The proposition is a folklore (see e.g. [2], proof of Proposition 2). Here is a sketch
of the proof.

Proof. The characters of Z
n
2 , indexed by the group elements, {χu}, u ∈ Z

n
2 , are

of the form
χu(x) = (−1)〈u,x〉 ,

where the inner product (with a slight abuse of notation) is (mod 2). Let A ⊂ Z
n
2 ,

|A| = m, be a set of generators (vectors), and let MA be an n × m matrix over
Z2 whose columns are the vectors of A. For a vector in v ∈ Z

m
2 let w(v) be the

number of 1’s in v. The second largest eigenvalue λG of G(Zn
2 , A) is

λG = max
u�=0

∑

a∈A

(−1)〈u,a〉 = max
u�=0

{
m − 2w(uT MA)

}
.

Let C ⊆ Z
n
2 be a linear code generated by MA, that is, all linear combinations

of rows of MA. Then C = {uT MA}u∈Zn
2

⊂ Z
m
2 and hence λG = m − 2D(C).

Keeping in mind that γG = m − λG we conclude that γG = 2D(C). Therefore,
γG = Ω(m) if and only C is a linear code of linear distace.
�

It remains to ensure that the diameter of G(Zn
2 , A) is Ω(n). By Proposition 2,

this condition will necessarily hold provided m = O(n), that is, if C is of constant
rate. Thus,

Theorem 3. Let C be a linear code of constant rate and linear distance, and
dim(C) = n. Let M be an n × m matrix whose rows form a basis for C, and let
A ⊂ Z

n
2 , be the set of M ’s columns. Then the metric of G(Zn

2 , A) is hard.

Such codes are at the core of the Coding Theory and they have received a consid-
erable attention. Their existence has been established by numerous randomized
and deterministic efficient constructions, with the first explicit construction due
to Justesen [7].

We conclude the paper with a discussion of the construction of hard metrics
due to Khot and Naor [8]. Let C ⊂ Z

m
2 be a linear code of constant rate and

linear distance, of dimension n. Let C⊥ be the dual code, i.e., C⊥ = {u|Mu = 0}
where M is the generator matrix of C. Define an equivalence relation on Z

m
2 by

x ≡ y iff (x − y) ∈ C⊥. Now, let X be a quotient metric space of Zm
2 equipped

with the Hamming metric, with respect to ≡. That is, the distance between two
points a and b in X is the Hamming distance between the two corresponding
cosets A, B ⊂ Z

m
2 . Khot and Naor show that X with the induced metric is hard.

Proposition 5. The above construction is isometric to the construction de-
scribed in Theorem 3.

Proof. Let M be a matrix as in Theorem 3. Then X can be viewed as the image
of Z

m
2 under the linear mapping φ : Z

m
2 → Z

n
2 , φ(x) = Mx. Define the edges of

X as the images of Hamming edges of Z
m
2 under φ. Clearly, the quotient metric

of X is precisely the shortest-path metric of the resulting graph. The images of
the Hamming edges are, however, precisely the column vectors of M , and the
isometry follows.
�

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

162 I. Newman and Y. Rabinovich

Without diminishing the achievement of [8], which in addition to the result
discussed here contains a number of other wonderful results, it appears that our
construction, besides being more general, is simpler both in terms of description
and analysis.

References

1. S.Arora, J.Lee, A.Naor. Euclidean distortion and the sparsest cut. in Proceedings
of the 37th Annual ACM Symposium on Theory of Computing, STOC’05, pp.553–
562, 2005.

2. N. Alon and Y. Roichman. Random Cayley graphs and expanders. Random Struc-
tures Appl., 5:271–284, 1994.

3. Y. Aumann and Y. Rabani. An O(log k) Approximate min-cut max-flow theorem
and approximation algorithm. SIAM Journal on Computing, 27(1):291–301, 1998.

4. Jean Bourgain. On Lipschitz embeddings of finite metric spaces in Hilbert space.
Israel Journal of Mathematics, 52(1-2):46–52, 1985.

5. S.Chawla, A.Gupta, H.Rcke. Embeddings of negative-type metrics and an im-
proved approximation to generalized sparsest cut. in Proceedings of the 16’th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’05., pp. 102-111,
2005.

6. A.Gupta, R.Krauthgamer, J.Lee. Bounded Geometries, Fractals, and Low-
Distortion Embeddings. in Proceedings of the 44th Annual Symposium on Foun-
dations of CS, FOCS’03, pp. 534-543, 2003.

7. J. Justesen, A class of constructive asymptotically good algebraic codes, IEEE
Transactions on Information, 18:652-656, 1972.

8. S.Khot, A.Naor. Nonembeddability theorems via Fourier analysis. in Proceedings
of 46th Annual Symposium of FOCS 2005:101-112, 2005.

9. P.Klein, S.Plotkin, and S.Rao. Excluded minors, network decomposition, and mul-
ticommodity flow. In Proceedings of the 25th Annual ACM Symposium on Theory
of Computing, pages 682–690, 1993.

10. Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and
some of its algorithmic applications. Combinatorica, 15(2):215–245, 1995.

11. J.Matousek. Lectures on Discrete Geometry. Springer, 2002.
12. N.Linial, A.Wigderson Expander Graphs and their Applications. Bulletin of the

American Math. Society, 43(4):439-561, 2006.
13. A.Wigderson, D.Xiao. Derandomizing the AW matrix-valued Chernoff bound using

pessimistic estimators and applications. Electronic Colloquium on Computational
Complexity, Report TR06-105, ISSN 1433-8092, 13th Year, 105th Report.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Broadcasting vs. Mixing and
Information Dissemination on Cayley Graphs�

Robert Elsässer and Thomas Sauerwald

University of Paderborn
Institute for Computer Science

33102 Paderborn, Germany
{elsa,sauerwal}@upb.de

Abstract. One frequently studied problem in the context of information
dissemination in communication networks is the broadcasting problem.
In this paper, we study the following randomized broadcasting protocol:
At some time t an information r is placed at one of the nodes of a graph
G. In the succeeding steps, each informed node chooses one neighbor,
independently and uniformly at random, and informs this neighbor by
sending a copy of r to it.

First, we consider the relationship between randomized broadcasting
and random walks on graphs. In particular, we prove that the runtime
of the algorithm described above is upper bounded by the correspond-
ing mixing time, up to a logarithmic factor. One key ingredient of our
proofs is the analysis of a continuous-type version of the afore mentioned
algorithm, which might be of independent interest. Then, we introduce
a general class of Cayley graphs, including (among others) Star graphs,
Transposition graphs, and Pancake graphs. We show that randomized
broadcasting has optimal runtime on all graphs belonging to this class.
Finally, we develop a new proof technique by combining martingale tail
estimates with combinatorial methods. Using this approach, we show
the optimality of our algorithm on another Cayley graph and obtain
new knowledge about the runtime distribution on several Cayley graphs.

1 Introduction

Models and Motivation: The study of information spreading in large networks
has various fields of application in distributed computing. Consider for example
the maintenance of replicated databases on name servers in a large network [9].
There are updates injected at various nodes, and these updates must be propa-
gated to all the nodes in the network. In each step, a processor and its neighbors
check whether their copies of the database agree, and if not, they perform the nec-
essary updates. In order to be able to let all copies of the database converge to the
same content, efficient broadcasting algorithms have to be developed.
� This work was partially supported by German Science Foundation (DFG) Re-

search Training Group GK-693 of the Paderborn Institute for Scientific Computa-
tion (PaSCo) and by the EU within the 6th Framework Programme under contract
001907 “Dynamically Evolving, Large Scale Information Systems” (DELIS).

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 163–174, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

164 R. Elsässer and T. Sauerwald

There is an enormous amount of experimental and theoretical study of broad-
casting algorithms in various models and on different networks. Several (deter-
ministic and randomized) algorithms have been developed and analyzed. In this
paper we only concentrate on the efficiency of randomized broadcasting and
study the runtime of the push model [9] defined as follows. Place at some time
t an information r on one of the nodes of a graph G = (V, E). Then, in each
succeeding time step, any informed vertex forwards a copy of r to a communi-
cation partner over an incident edge selected independently and uniformly at
random. The advantage of randomized broadcasting is in its inherent robustness
against several kinds of failures and dynamical changes compared to determin-
istic schemes that either need substantially more time [15] or can tolerate only
a relatively small number of faults [19].

In this work we are particulary interested in the runtime of the push algorithm
on Cayley graphs. A Cayley graph is given by a finite group G and a set of
generators S ⊆ G. The vertices are the group elements and there is an edge
from an element a to an element b iff if a = bs in G for a generator s ∈ S.

This group theoretic model is often used for designing, analyzing, and improv-
ing symmetric interconnection networks. In designing interconnection networks,
the objective is to construct large (vertex symmetric) graphs with small degree
and diameter, high connectivity, and simple routing algorithms. Prominent ex-
amples that offer all these properties together are the Hypercube and the Star
graph [1]. Other examples are explicit constructions of so called Ramanujan
graphs, which are also obtained by using this group theoretic model [20].

An advantadge of analyzing Cayley graphs is that properties can be proved
for the class as a whole, instead of proving some property for each network in-
dependently. Moreover, even for specific networks we can often derive properties
algebraically and interpret them graph theoretically.

Related Work: Most papers dealing with randomized broadcasting analyze
the runtime of the push algorithm in different graph classes. Pittel [21] proved
that with a certain probability an information is spread to all nodes by the push
algorithm within log2 N + lnN + O(1) steps in a complete graph KN . Feige
et al.[14] determined asymptotically optimal upper bounds for the runtime of
this algorithm on random graphs, hypercubes and bounded degree graphs. In
[12] we extended the results to Star graphs [2,1], i.e. after O(log N) steps any
information is spread to all of the N nodes with high probability1.

We should also note that several broadcasting models have been analyzed in
some scenarios that allow nodes and/or edges to fail during the algorithm is
executed (e.g. [18]). Most of these papers deal with the worst case asymptotic
behavior of broadcasting algorithms when the failures are governed by an adver-
sary, however, in some papers the random failure scenario is also considered. In
[13] we established a robustness result w.r.t. the push algorithm against random
failures in general graphs.

1 When we write “with high probability” or “w.h.p.” we mean with probability at least
1−1/N . Accordingly, “with constant probability” or “w.c.p.” means with probability
at least 1 − O(1) > 0.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Broadcasting vs. Mixing and Information Dissemination on Cayley Graphs 165

Intuitively, rapid mixing implies fast broadcasting, but there is no (strong)
bound on the runtime of the push algorithm, which uses mixing rates of Markov
chains. In contrast to the push algorithm, mixing has been extensively studied
in the past (e.g. [22,7,10,4]). Thus, one of our goals is to derive efficient bounds
on the runtime of the push algorithm by using mixing rates of Markov chains.

There is also a long history of the analysis of Markov chains on Cayley graphs.
Consider for example the so called card shuffling process. The main question is
how many times must a deck of cards be shuffled until it is close to random.
Using different shuffling rules, the problem reduces to random walks on certain
Cayley graphs. We will give examples for card shuffling procedures in Section 5.

Our Results: The next section contains the basic notations and definitions
needed in our further analysis. In Section 3 we show that the runtime of the
broadcasting algorithm is upper bounded by the mixing time of the correspond-
ing Markov chain, up to a logarithmic factor. Section 4 contains the introduction
of a new class of graphs which contains prominent examples of Cayley graphs. It
is shown that the push algorithm has an optimal runtime on all these graphs. Fi-
nally, in Section 5 we develop a powerful approach which enables us to extend the
optimality results mentioned before. This technique combines Azuma-Hoefding
type bounds with structural analysis of graphs. The last section contains our
conclusions and points to some open problems. Due to space limitations, several
proofs are omitted in this extended abstract.

2 Notation and Definitions

Let G = (V (G), E(G)) denote an unweighted, undirected, simple and connected
graph, where N := |V | denotes the size of the graph. In most cases, we will
consider families of graphs G(n) = (Vn, En), where |Vn| → ∞ for n → ∞. By
diam(G) we denote the diameter of G and N(v) is the neighbourhood of some
vertex v ∈ V (G). For an arbitrary vertex u ∈ V (G), we denote by Nr(u) := {v ∈
V (G) | dist(u, v) ≤ r} the r-neighborhood around u. Furthermore, let δ be the
minimum and Δ be the maximum degree.

Definition 1. For any graph G and any integer m ∈ {1, . . . , �N/2�} define
E(m) = minX⊆V (G),|X|=m |E(X, Xc)|/|X |. Here, E(X, Xc) denotes the set of
edges connecting X and its complement Xc.

As mentioned in the introduction, in this paper we mainly consider the following
randomized broadcasting algorithm (known as the push model [9]): Place at time
t = 0 an information r on one of the nodes of the graph G. In the succeeding time
steps (or rounds) each informed vertex forwards a copy of r to a communication
partner over an incident edge selected independently and uniformly at random.

This algorithm will be shortly abbreviated by RBAd, where d indicates that
the time steps are discrete numbers (In Section 3 and 5 we will introduce some
slightly modified versions of this algorithm). Throughout this paper, we denote
by I(t) the set of informed nodes at time t, and by H(t) the set V \ I(t).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

166 R. Elsässer and T. Sauerwald

Our main objective is to determine how many time steps are required to
inform every node of G. Let RTd(G, p) := min{t ∈ N | Pr [I(t) = V] ≥ p}
denote the runtime of RBAd in G, i.e. the number of time steps needed by
the push algorithm to inform all vertices of G with probability p. Since every
broadcasting algorithm requires max{log2 N, diam(G)} rounds [14], we call RBAd

(asymptotically) optimal on G, if RTd(G, 1 − 1/N) = O(log N + diam(G)).
In the following, we will use basic notation of algebraic graph theory (cf. [5]).

Definition 2. A (directed) Cayley graph G = (G, S) is given by a finite group G
and a generating set S = {s1, . . . , sn}. The set of vertices consists of elements of
G and there is an directed edge from u to v if and only if there exists a generator
si ∈ S such that u = vsi.

If the set of generators is closed under inverses, i.e. S−1 = S (which will be always
the case in this paper), the resulting Cayley graph G = (G, S) can be also viewed
as an undirected graph. In the following, Gn will be always the symmetric group
of n elements, denoted by Sn. For any distinct numbers k1, . . . , ki ∈ [1, n] let
Sn(k1, . . . , ki) := {π(n − i + j) = kj , j ∈ {1, . . . , i} | π ∈ Sn}.

3 Broadcasting vs. Mixing

In this section we are going to show that rapid mixing implies fast broadcasting.
It will be important to consider a slightly different broadcasting algorithm, called
RBAs (s for subtimesteps) which is defined as follows.

In this model, the time axis is T = N + {i/N | i ∈ {0, . . . , N − 1}} At such
a (sub)timestep t ∈ T, one node of V (G) is chosen uniformly at random and
this node, provided that it is already informed, sends the information to some
neighbor, again chosen uniformly at random. This model has the advantage that
the waiting times between the transmission of some informed node are geometri-
cally distributed with mean 1 and thus are oblivious. Denote by RTs(G, 1−1/N)
the runtime of this modified broadcasting algorithm. We say that a node u ∈ V
makes a transmission at time t, if node u is chosen by RBAs at timestep t and
sends the information to some neighbor.

The following theorem shows the equivalence of both introduced variants.

Theorem 1. For any G we have RTs(G, 1 − 1/N) = Θ(RTd(G, 1 − 1/N)).

In order to derive a strong relationship between mixing and broadcasting, we
first define the following Markov chain M on a graph G = (V, E). M has state
space V (G), and its transition matrix is given by P where pii = 1 − α deg(i),
pij = α if {i, j} ∈ E(G) and pij = 0 otherwise. Hereby, we set α = 1/(Δ + 1)
with Δ being the maximum degree in G. (P also corresponds to the diffusion
matrix occurring in load balancing [11].) It is well-known that for our choice of
α, the Markov chain M is ergodic and reversible [11,22]. As usual, for any k ∈ N,
P k denotes the k-step transition matrix.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Broadcasting vs. Mixing and Information Dissemination on Cayley Graphs 167

For two given probability vectors (μi)N
i=1 and (νi)N

i=1 let

‖μ − ν‖ =
1
2

N∑

i=1

|μi − νi| = max
V ′⊆V (G)

|μV ′ − νV ′ |

be the variation distance of these vectors [10]. Furthermore, we denote by

MIXM(G, ε) := min{t ∈ N | ‖P tz − π‖ ≤ ε for any probability vector z},

the mixing time (or mixing rate) of M. Observe that due to the proper choices of
the pii’s, the vector (1/N, . . . , 1/N) is the stationary distribution corresponding
to P . M can be viewed as the Markov chain corresponding to a random walk on
G, in which the transition probabilities are defined according to P .

Now we define the following random process on the graph G. Assume first
that there are N indivisible unit size tokens x1, . . . , xN distributed somehow on
the nodes of the graph. At each time t ∈ {i + k/N | i ∈ N, k ∈ {0, . . . , N − 1}}
we choose one node of the graph, uniformly at random, and one of the tokens on
this node is allowed to perform a transition according to the matrix P . Hereby,
each token of any node has a priority value, and when a node is chosen, then only
the token with highest priority on this node is allowed to perform the transition
described above. At the beginning, the tokens on any node u are assigned priority
values in the range [1, l(0, u)] arbitrarily, where l(0, u) denotes the load (i.e., the
number of tokens) on node u at time 0. When a token xj performs a transition
according to P from some node u to node v, then xj is assigned, after the
transition, the lowest priority among all tokens being on v (please note that v
and u might coincide).

According to the description above, let h(t, xj) denote the host of token xj at
time t. Furthermore, let l(t, u) denote the load of any node u ∈ V at time t.

We are now ready to define another Markov chain M′ based on the random
process described above. M′ has state space S(M′) = {(l(1), . . . , l(N)) | 0 ≤
l(i) ∈ N,

∑N
i=1 l(i) = N}, and transition matrix P ′, where p′i,j = α/N if

there are two states s and s′ such that s = (l(1), . . . , , l(i), . . . , l(j), . . . , l(N)),
s′ = (l(1), . . . , l(i) + 1, . . . , l(j) − 1, . . . , l(N)), where l(j) ≥ 1, and {i, j} ∈ E.
Obviously, the Markov chain M′ simulates the random process described in the
previous paragraphs. Since the transition matrix P ′ is symmetric, the station-
ary distribution equals the uniform distribution. Thus, the expected number of
tokens equals 1 on each node in the stationary state.

Now we use the Markov chains introduced above to show the following.

Theorem 2. For any graph G = (V, E) it holds

RTs
(
G, 1 − 1

N

)
≤ O

(
MIXM

(
G,

1
2N

)
· log N

)
.

Proof. For simplicity, let m := MIXM(G, 1/(2N)). First, we show that if there
are log N ≤ |I(t)| ≤ N/2 informed nodes at timestep t, then there will exist
(1+Ω(1))|I(t)| informed nodes at timestep t+m, w.c.p. In this proof we derive

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

168 R. Elsässer and T. Sauerwald

a relationship between RTs(G, 1 − 1/N) and the Markov chain M′, and show
that by using M′ the information can be spread in time O(m · log N) in G.

Now we consider the Markov chain M. We assume that there are N tokens
distributed according to the stationary distribution of M′ at some time t. Let I
be a fixed, connected set of nodes in G with log N ≤ |I| ≤ N/2. Let A be set of
tokens lying in I at timestep t, i.e., A := {xi | h(t, xi) ∈ I}. Since E [|A|] = |I|,
applying the Chernoff bounds [17], we get Pr [|A| ≥ |I|/2] ≥ 1 − exp(−Ω(|I|)).

We fix some token xi on one of these nodes, and let this token perform a
random walk according to P . Now we know that ‖Pmz − π‖ ≤ 1/(2N) for any
probability vector z.

Let D(i) denote the host of token xi at time t + m for some random instance
I of M. Then, define

B := {xi ∈ A | D(i) ∈ H}, C :=
{

xi ∈ A | |{D(i) = D(j) | j �= i}| ≤ 32
}
,

where H = V \ I. Due to (1) we have Pr [xi ∈ B] ≥ N−|I|
N − 1

2N ≥ 7
16 , whenever

|I| ≤ N/2 and Pr [xi ∈ C] ≤
(

N
32

)
(3
2N)32 ≤ 1

1024 . Again, by the Markov inequal-
ity we obtain that Pr [|B| ≥ 1/4|A|] ≥ 1/4 and Pr [|C| ≥ 31/32|A|] ≥ 31/32.

Now we consider the walks performed by all tokens according to M′, and take
into account the delays induced by other tokens. We assume that at time t these
tokens are distributed according to the stationary state of M′. Let ui,t, . . . , ui,t+m

be the nodes visited by some fixed token xi in steps t, . . . , t + m, respectively,
according to M and instance I. Let f(ui,k) denote the number of time intervals
[j, j +1] in which node ui,k is not chosen by the random process described above
while xi resides on ui,k. Since a node is not chosen in time interval [j, j +1] with
probability (1 − 1/N)N ≈ 1/e, the expected delay of token xi is

E [Δ(i)] ≤
t+m∑

k=t

E [l(ui,k) + f(ui,k)] =
t+m∑

k=t

E
[

e · l(ui,k)
e − 1

]

≤ e(m + 1)
e − 1

,

where l(ui,k) is the load of node ui,k at the time when token xi makes a transition
to node ui,k. Hence, token xi reaches its destination after 32e(m+1)/(e−1)+m
rounds, according to M and instance I, with probability at least 31/32.

Now let D := {xi | Δ(i) ≤ 32e(m + 1)/(e − 1) and xi ∈ A}, i.e., the set of
tokens of A which reach their final destination after at most 32e · (m + 1)/(e −
1) + m steps. Since E [|C|] ≥ |A| · 31/32, the Markov inequality implies that
Pr [|D| ≥ 13/16|A|] ≥ 5/6. Putting all together, we get by the union bound

Pr
[

|A| ≥ 1
2
|I| ∧ |B| ≥ 3

4
|A| ∧ |C| ≥ 31

32
|A| ∧ |D| ≥ 13

16
|A|

]

≥ 1
32

,

provided that N is large enough. Since B, C and D are all subsets of A we have
|B ∩ C| ≥ |A| − |A\B| − |A\C| − |A\D| ≥ |A| − 3

4 |A| − 1
32 |A| − 3

16 |A| = 1
32 |A|.

Hence, at least |A|/32 ·1/32 = |A|/1024 nodes of H will host a token of A within
the time interval [t, t + m + 32e(m + 1)/(e − 1)], with probability 1/32.

Now we consider RTs(G, 1 − 1/N). Since any node in the random process
described by M′ forwards a token (according to P) in some substep iff there

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Broadcasting vs. Mixing and Information Dissemination on Cayley Graphs 169

is a token on this node, RTs is able to spread an information faster than the
tokens, which perform movements according to M′. Hence, |I(t + O(m))| =
(1 + Ω(1))|I(t)|, whenever log N ≤ |I(t)| ≤ N

2 .
Similar techniques imply that |H(t + O(m))| ≤ (1 − Ω(1))|H(t)|, whenever

log N ≤ |H(t)| ≤ N
2 . If |I(t)| ≤ O(log N) or |I(t)| ≥ N − O(log N), then w.c.p.

at least one single node becomes informed in some step t+O(m). Applying now
the Chernoff bounds [6,17], we obtain the theorem. ��

However, for G = KN/2 × C2 we have MIX(G, 1/(2N)) = Ω(N), but RTd(G, 1 −
1/N) = Θ(log N) and thus a similar converse of Theorem 2 does not hold.

4 Broadcasting on Cayley Graphs

In this section we will prove that the RBAd performs optimal on a certain class of
Cayley Graphs which includes the Star Graph, Pancake Graph and Transposition
Graph.

A vertex v ∈ V in a graph G = (V, E) is called α-approximated by the set
I(t), if Nα(v) ∩ I(t) �= ∅. Furthermore, a vertex v ∈ V is called contacted by a
node u ∈ V within some time interval [a, b] (or conversely, u contacts v in time
interval [a, b]) if there is a path (u = u1, u2, . . . , um−1, um = v) in V such that

∃t1 < t2 < · · · < tm−1 ∈ [a, b] ⊆ N : ∀i ∈ [1, m−1] : ui contacts ui+1 in round ti.

Now we are ready to state the following theorem.

Theorem 3. Assume that a family of Cayley graphs Gn = (Sn, Sn) has the
following properties:

1. for any n ∈ N it holds that c1n
c ≤ d(n) ≤ c2n

c, where d(n) denotes the
degree of Gn and c1, c2, c ∈ Θ(1),

2. Sn ⊆ Sn+1 for any n ∈ N,
3. dist(τ, Sn(k)) := min{dist(τ, τ ′) | τ ′ ∈ Sn(k)} ≤ c′ for any τ ∈ Sn, and

k ∈ [1, n], where c′ is a constant,
4. E(m) = Ω(d(n)) for any m = O(nc·c′

).

Then it holds that
RTd(Gn, 1 − 1

N
) ≤ O(log N).

Proof. Since any Cayley graph is vertex-transitive [5], we may assume w.l.o.g. that
the identity id is informed at the beginning. The proof is divided into two parts.
In the first part, we will show that after t = O(log N) steps it holds for any vertex
w ∈ V that Nαn(w) ∩ I(t) �= ∅, w.h.p., where α is a properly chosen constant.
This approximation will consist of β := (1 − α)n disjoint phases P1, . . . , Pβ. To
simplify notation let Sn(i) := Sn(wn−i, . . . , wn). Phase Pi, i ∈ {1, . . . , β}, begins
when a node of Sn(i − 1) becomes informed for the first time, and ends when
the information jumps from the set Sn(i − 1) \ Sn(i) to the set Sn(i). Let Xi

denote the random variable which represents the number of time steps needed by

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

170 R. Elsässer and T. Sauerwald

phase Pi. Now, our goal is to derive an upper bound on Xi for an arbitrary fixed
i ∈ {1, . . . , β}.

First we count the number of steps needed to inform Ω(d(n)c′
) vertices of

Sn(i−1). Since i ≤ (1−α)n, Sn−i ⊂ Sn, and d(n− i) ≥ c1(n− i)c, each node of
Sn(i−1) has Ω(d(n)) neighbors in Sn(i−1). Due to assumption (4), a constant
fraction of these inner edges, incident to nodes of Sn(i−1)∩ I(t), are connected
to nodes of Sn(i − 1)∩H(t). Now, let pv denote the probability that some node
v ∈ Sn(i − 1) ∩ H(t) becomes informed in step t + 1. Since pv = dI(t)(v)/d(n),
where dI(t)(v) denotes the number of neighbors of v in I(t), it holds that

E [|(I(t + 1) \ I(t)) ∩ Sn(i − 1)|] =
∑

v∈Sn(i−1)∩H(t)

dI(t)(v)
d(n)

,

which equals Ω(|I(t) ∩ Sn(i − 1)|). This implies that

|I(t + 1) ∩ Sn(i − 1)| ≥ (1 + ρ)|I(t) ∩ Sn(i − 1)|,

where ρ = Θ(1), w.c.p.
Now we assume that at some proper time t′ it holds that |I(t′)∩Sn(i− 1)| ≥

δd(n)c′
, where δ is a constant. Due to assumption (3), we know that for all

v ∈ Sn(i − 1) the distance to Sn(i) is at most c′.
Let us now consider the propagation of the information in Sn(i − 1) towards

Sn(i). Recall, that from each node v ∈ I(t′) ∩ Sn(i − 1) exists a path to some
node in Sn(i) of length at most c′.

Now define L1 := I(t′) ∩ Sn(i − 1), L2 := {w ∈ Sn(i − 1) | dist(w, Sn(i))) =
c′ − 1}, . . . , Lc′+1 := Sn(i). Assume w.l.o.g. that for each node v ∈ I(t′) ∩
Sn(i − 1) it holds v ∈ L1. Observe that |L2| ≥ |L1|/d(n), and generally |Lj | ≥
max{1, |L1|/(d(n))j−1} for any j. Since any node of Lj has a neighbor in Lj+1,
and a node v of Lj+1 becomes informed in some step t′′ + 1 with probability
dI(t′′)(v)/d(n), it holds that

E [|Lj+1 ∩ I(t′′ + 1)|] =
∑

v∈Lj+1

dI(t′′)(v)
d(n)

≥ |Lj ∩ I(t′′)|
d(n)

which implies |Lj+1 ∩I(t′ +O(1))| ≥ δd(n)c′−j, w.c.p., provided that |Lj ∩I(t′+
O(1))| ≥ δd(n)c′−j+1. Summarizing, the time needed to complete Pi can be
modelled by a sum of O(log d(n)c′

+c′) = O(log d(n)) independent geometrically
distributed random variables with constant mean. Recall, that we have O(n)
phases. Thus, applying the Chernoff-Bound [6,17] we conclude that some fixed
vertex w is αn-approximated within t1 := O(n log d(n)c′

) steps with probability
1 − O(1/N2). Using the Markov inequality we conclude that each vertex of G is
αn-approximated at time t1, w.h.p.

Using the techniques of [14] we obtain

|I(t1)| ≥ n!
d(n)αn+1

≥ n!
n(αn+1)c

≥ nn−2αcn.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Broadcasting vs. Mixing and Information Dissemination on Cayley Graphs 171

Furthermore, to obtain a subset of informed nodes A ⊆ I(t1) which only con-
tains vertices being at distance at least αn from each other we get by the same
arguments that |A| ≥ |I(t1)|/(d(n)αn+1) ≥ nn−4αnc.

Using similar arguments as above, it can be shown that for any pair of vertices
v, w ∈ V and any time t2, there is a vertex w′ ∈ Nαn/2(w) which contacts v
within time interval [t2, t2 + O(n log d(n))], w.h.p.

In order to finish the proof we use similar techniques as in [12] which are
omitted here due to space limitations. ��

It is now not too difficult to see that the class given in the previous theorem
includes the following three well-known representatives of Cayley graphs.

Remark 1. The Star graph, Pancake graph and Transposition graph [2,1] satisfy
the conditions of the Theorem 3.

5 A New Martingale-Based Technique

Definition 3. [2] The Bubble sort graph is defined as B(n) = (Sn, Sn), where
Sn = {(i (i + 1)) | i ∈ {1, . . . , n − 1}}.

Since the diameter of a Bubble sort graph is obviously Ω(n2), Theorem 3 is not
applicable and new techniques have to be developed. First, we briefly summarize
the research history of related random processes on these graphs.

In spite of very refined techniques designed for the analysis of shuffling cards
procedures, the mixing time of the Bubble sort graph has been an open ques-
tion for almost two decades. Finally in 2002, Wilson proved the mixing time
Θ(n3 log n) which is asymptotically tight up to a small constant factor [23].

Additionally, Diaconis and Ram considered the following generalization. First,
fix some parameter p ∈ (0, 1). In each step, choose uniformly at random one pair
of adjacent cards and flip a coin that is heads with probability p. If the coin
comes up heads, then arrange the cards in the correct order. Otherwise, arrange
them in the reverse order.

For 1/2 < p ≤ 1 this shuffling card procedure models a randomized version of
Bubble sort. In particular, the stationary distribution of this Markov chain is no
longer uniform. Rather surprisingly, Benjami et.al. [4] proved very recently that
the mixing time decreases to O(n2) if p �= 1

2 and thereby affirmed a conjecture of
Diaconis and Ram. To follow the notation of Benjami et.al., denote by DA(n, p)
the aforementioned card shuffling procedure. Then their result can be formally
stated as follows. For any p > 1/2 it holds MIXDA(n,p)(e−1) ≤ O(n2). On the
other hand, there is no cutoff [10] known yet. Thus, it is an open question of
what magnitude is MIXDA(n,p)(1 − o(1)). However, by transferring the result of
Benjami et.al. to RBAs and using refined martingale techniques, we will prove a
tight concentration of the distribution of the runtime RTs(G) around its mean.

Since RBAs can simulate DA(n, p) we obtain the following result.

Lemma 1. RBAs informs some fixed node v within O(n2) rounds w.c.p.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

172 R. Elsässer and T. Sauerwald

Our objective is to extend the Lemma above such that all nodes become informed
after O(n2) rounds w.h.p.

To simplify the notation, we will analyze a slightly modified version of RBAs,
denoted by RBAs

′. Here, in each time step t = 1, 2, . . . ∈ N one node is chosen
uniformly at random and sends the information to some randomly chosen neigh-
bor provided that it is already informed. Obviously, this is just a scaling of the
time axis by a factor of N compared to RBAs.

In the following, we fix some node v ∈ V . We make use of the following
doob martingale [3] (sometimes also called exposure martingale). Let Z0 :=
E

[
RTs

′(v)
]
, where RTs

′(v) is the random variable representing the runtime
required to inform v. Furthermore define Zt := E

[
RTs

′(v) | I(0), . . . , I(t)
]

=
E

[
RTs

′(v) | I(t)
]
. Thus, Zt estimates the runtime conditioned on the set of

informed nodes at time step t. Note that Zt is a (random) function depending on
I(t). Moreover, if Zt ≤ t, then v has been informed and the sequence Zt, Zt+1, . . .
becomes stationary. Additionally, for any two subsets A ⊆ B ⊆ V we have

E
[
RTs

′(v) | I(t) = A
]

≥ E
[
RTs

′(v) | I(t) = B
]
, (1)

E
[
RTs

′(v) | I(t − 1) = A
]
+ 1 = E

[
RTs

′(v) | I(t) = A
]
. (2)

Another building block will be the following concentration inequality.

Theorem 4. [8] Let Z0 . . . , Zt be a martingale w.r.t. the sequence I(0), . . . , I(t)
such that for 1 ≤ k ≤ t it holds |Zk−Zk−1| ≤ M, Var [Zk | I(0), . . . , I(k − 1)] ≤
σ2

k. Then for all t ≥ 0 and λ > 0, Pr [|Zt − Z0| ≥ λ] ≤ 2e−λ2/(
∑ t

k=1 σ2
k+Mλ/3).

Let RTs
′(u, v) := min{t ∈ N ∪ {0} | u ∈ I(t)} conditioned on I(0) = {v}. and

β(G) := max(u,v)∈E(G) E
[
RTs

′(u, v)
]
. The following lemma improves the trivial

bound β(G) ≤ Δ(G) · N for several graphs.

Lemma 2. Let G be any d-regular graph. If for any two adjacent nodes u, v ∈ V
there exist Θ(d) node-disjoint paths of length at most 3, then β(G) ≤ O(d2/3N).

Note that the Transposition graph, Bubble sort graph and Hypercube satisfy
the condition of this lemma. The following theorem relates the distribution of
Zk − Zk−1 conditioned on Zk−1 to the combinatorial value β(G).

Theorem 5. For any graph G = (V, E) we have for all k ∈ N\{0}
−β(G) ≤ Zk − Zk−1 ≤ 1 and Var [Zk | I(k − 1)] ≤ β(G).

Proof. Assume that I(k − 1) = I for a fixed I. We consider now two cases. In
case of I(k) = I we get Zk = Zk−1 + 1 by (2). Secondly, if I(k) = I ∪ {v} for
some v ∈ N(u) ∩ Ic, u ∈ I, then

E
[
RTs

′(v) | I(k − 1) = I
] (1)

≤ E
[

min
j∈N∪{0}

{v ∈ I(k − 1 + j)}
∣
∣
∣ I(k − 1) = {u}

]

+ E
[
RTs

′(v) | I(k) = I ∪ {v}
]

(2)
= E

[

min
j∈N∪{0}

{v ∈ I(j)}
∣
∣
∣ I(0) = {u}

]

+ E
[
RTs

′(v) | I(k) = I ∪ {v}
]

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Broadcasting vs. Mixing and Information Dissemination on Cayley Graphs 173

and thus E
[
RTs

′(v) | I(k) = I ∪ {v}
]

− E
[
RTs

′(v) | I(k − 1) = I
]

≥ −β(G).
By the first inequality we know that Zk is a random variable whose values are
all in the interval [Zk−1 −β(G), Zk−1 +1]. Moreover, by the martingale property
we have E [Zk | I(k − 1)] = Zk−1. Thus, by some standard upper bound on the
variance [16] we finally obtain Var [Zk] ≤ | − β(G) · 1| = β(G). ��

Note that in all previous results RTs
′(v) can be replaced by RTs

′(G).

Theorem 6. It holds that RTd(B(n), 1− 1
N) = Θ(n2). Moreover, for any x < 2

we have that Pr [RTs(B(n)) ≤ E [RTs(B(n))] + nx] ≤ O(exp(−n2x−8/3)).

Proof. Fix some arbitrary node w ∈ V (B(n)). Due to Lemma 2 we have that
β(B(n))=O(n2/3N). Consequently by Theorem 5 it holds Var

[
Zi − Zi−1/N

]
=

O(n2/3N) and |Zi − Zi−1/N | = O(n2/3N). Then we apply Theorem 4 with t =
E

[
RTs

′(v)
]
, σ2

i ≤ O(n2/3N), λ := E
[
RTs

′(v)
]

:= γn2N, where γ(n) = O(1) is
some bounded function and obtain

Pr
[
|Z2E[RTs

′(v)] − E
[
RTs

′(v)
]
| ≥ λ

]
≤ 2e−λ2/(

∑ t
k=1 σ2

k+Mλ/3),

Pr [|Z2λ − λ| ≥ λ] ≤ 2e
−γ2N2n4

2Nγn2(n2/3N)+γ·n2N·n2/3·N ,

Pr [Z2λ ≤ 2λ] ≤ O(e
−n12/3

n8/3) ≤ O(e−n4/3
) ≤ 1 − 1

N2
.

Thus after 2λ time steps, each single node of B(n) has received the information
with probability 1 − (1/N)2. Hence by Markovs inequality RTs

′(B(n), 1 − 1
N) =

Θ(Nn2). The second claim is shown similarly. ��

It is worth mentioning that with the same techniques similar, but weaker tail
estimates can be proven for Hypercubes, Star graphs and Pancake graphs.

6 Conclusions

In this paper we developed a new relationship between broadcasting and ran-
dom walks, and proved that randomized broadcasting has optimal runtime on
several classes of Cayley graphs. However, it would be still interesting whether
the additional logarithmic factor in Theorem 2 can be reduced. It is also an open
question on which graphs fast broadcasting implies fast mixing, though this has
to be a more restricted class. Although the techniques introduced in Section 4
seem to be powerful, we could not apply it to all Cayley graphs considered in this
paper. Our hope is that incorporating edge-expansion-based approaches would
extend the applicability of this method.

Acknowledgments

We thank Peter Bürgisser for helpful suggestions concerning Section 5.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

174 R. Elsässer and T. Sauerwald

References

1. S. Akers, D. Harel, and B. Krishnamurthy. The star graph: An attractive alterna-
tive to the n-cube. In Proc. of ICPP’87, pages 393–400, 1987.

2. S. Akers and B. Krishnamurthy. A group-theoretic model for symmetric innter-
connection networks. In Proc. of ICPP’86, pages 555–565, 1986.

3. N. Alon and J. H. Spencer. The Probabilistic Method. Wiley-Interscience Series in
Discrete Mathematics and Optimization, 2000.

4. I. Benjamini, N. Berger, C. Hoffmann, and E. Mossel. Mixing times of the biased
card shuffling and the asymmetric exclusion process. Transactions of the American
Mathematical Society, 357:3013–3029, 2005.

5. N. Biggs. Algebraic Graph Theory. Cambridge University Press, 1993.
6. H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on

the sum of observations. Ann. Math. Stat., 23:493–507, 1952.
7. F. Chung. Spectral Graph Theory, volume 92 of CBMS Regional conference series

in mathematics. American Mathematical Society, 1997.
8. F. Chung and L. Lu. Concentration inequalities and martingale inequalities — a

survey. Internet Mathematics (to appear).
9. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,

D. Swinehart, and D. Terry. Epidemic algorithms for replicated database mainte-
nance. In Proc. of PODC’87, pages 1–12, 1987.

10. P. Diaconis. Group Representations in Probability and Statistics, volume 11. Lec-
ture notes-Monograph Series, 1988.

11. R. Diekmann, A. Frommer, and B. Monien. Efficient schemes for nearest neighbor
load balancing. Parallel Computing, 25(7):789–812, 1999.

12. R. Elsässer and T. Sauerwald. On randomized broadcasting in star graphs. In
Proc. of WG’05, pages 307–318, 2005.

13. R. Elsässer and T. Sauerwald. On the runtime and robustness of randomized
broadcasting. In Proc. of ISAAC’06, pages 349–358, 2006.

14. U. Feige, D. Peleg, P. Raghavan, and E. Upfal. Randomized broadcast in networks.
Random Structures and Algorithm, I(4):447–460, 1990.

15. L. Gasieniec and A. Pelc. Adaptive broadcasting with faulty nodes. Parallel
Computing, 22:903–912, 1996.

16. M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, and B. Reed. Probabilistic Methods
for Algorithmic Discrete Mathematics. Algorithms and Combinatorics, 1991.

17. T. Hagerup and C. Rüb. A guided tour of chernoff bounds. Information Processing
Letters, 36(6):305–308, 1990.

18. J. Hromkovic̆, R. Klasing, A. Pelc, P. Ruzicka, and W. Unger. Dissemination of
Information in Communication Networks. Springer, 2005.

19. F. Leighton, B. Maggs, and R. Sitamaran. On the fault tolerance of some popular
bounded-degree networks. In Proc. of FOCS’92, pages 542–552, 1992.

20. A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

21. B. Pittel. On spreading rumor. SIAM Journal on Applied Mathematics, 47(1):213–
223, 1987.

22. A. Sinclair and M. Jerrum. Approximate counting, uniform generation, and rapidly
mixing markov chains. Inform. and Comput., 82:93–113, 1989.

23. D. Wilson. Mixing times of lozenge tiling and card shuffling markov chains. Annals
of Applied Probability, 14:274–325, 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Light Orthogonal Networks
with Constant Geometric Dilation

Adrian Dumitrescu1,� and Csaba D. Tóth2

1 Department of Computer Science, University of Wisconsin-Milwaukee, USA
ad@cs.uwm.edu

2 Department of Mathematics, MIT, Cambridge, USA
toth@math.mit.edu

Abstract. An orthogonal network for a given set of n points in the
plane is an axis-aligned planar straight line graph that connects all input
points. We show that for any set of n points in the plane, there is an
orthogonal network that (i) is short having a total edge length of O(|T |),
where |T | denotes the length of a minimum Euclidean spanning tree for
the point set; (ii) is small having O(n) vertices and edges; and (iii) has
constant geometric dilation, which means that for any two points u and
v in the network, the shortest path in the network between u and v is
at most constant times longer than the (Euclidean) distance between u
and v.

1 Introduction

A typical problem in the theory of metric embeddings asks for a mapping from
one metric space to another that distorts the distances between point pairs as
little as possible. In this paper, we address the following problem about geometric
dilation: Given a finite set S of points in the plane, find a small plane graph G(S)
containing S so that the distortion between the L2 distance and the Euclidean
shortest path distance between any two points (on edges or at vertices) of G(S)
is bounded by a constant.

A special case of this problem received frantic attention in the late 80s and
early 90s in the context of geometric spanners [5,7,14,16] (see [13] for a survey).
One of the latest results, due to Bose et al. [4], goes as follows: For any set S of n
points in the plane, there is a plane graph H with four properties: (i) the vertex
set of H is S, (ii) H has O(1) maximum degree, (iii) the total length of the edges
of H is O(|TS |), where |TS | is the length of the minimum Euclidean spanning
tree for S, and (iv) for any two vertices u, v ∈ S the (Euclidean) shortest path
along H is at most O(1) times longer than the distance between u and v. The
last property is also referred to as constant vertex-dilation. Note that the graph
H is sparse and the bound O(|TS |) is the best possible, since H has to be con-
nected at least. Intuitively, this graph H corresponds to a road network that has
constant detour (precise definition is below) between any two of n given cities.

� Research supported by NSF CAREER grant CCF-0444188.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 175–187, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

176 A. Dumitrescu and C.D. Tóth

However, there may be pairs of points along the roads (halfway between cities)
with arbitrarily large detour. In the current paper, we further extend the results
in [4] and construct a graph G of constant geometric dilation, that is, constant
detour between any two points of the graph (not just between vertices).

Let us first define the (geometric) dilation formally (see also [10,11]). Let G
be an embedded planar graph whose edges are curves. Let G ⊆ R

2 also denote
the set of points covered by the edges and vertices of the embedded graph G.
The detour between two points u, v ∈ G (on edges or vertices of G) is the ratio
between the length dG(p, q) of a Euclidean shortest path connecting u and v
in G and their Euclidean distance |uv|. The supremum value of detours over all
pairs of points, denoted δ(G), is called the geometric dilation of G:

δ(G) := sup
u,v∈G

dG(u, v)
|uv| .

In contrast, the vertex-dilation is maxu,v∈V (G) dG(p, q)/|pq|, where V (G) is the
vertex set of G. For instance, the dilation of a rectangle of aspect ratio t ≥ 1 is
t + 1, while its vertex-dilation is only t+1√

t2+1
.

For a set S of n points in the plane, we construct an orthogonal network G =
G(S), which is a planar straight line graph with S ⊆ V (G) and with axis-parallel
edges. G(S) has constant geometric dilation and retains all the good properties
listed above for H . We use only O(n) Steiner points, thus |V (G)| = O(n). The
length of our network, that is the total length of the edges of G, is |G| = O(|TS |).

Theorem 1. For every set S of n points in the plane, there is an orthogonal
network G such that (i) its geometric dilation is at most c1; (ii) it has at most
c2n vertices; (iii) its length is at most c3|TS|. Here c1, c2, and c3 are absolute
constants.

These constants are probably too large for designing a real-life orthogonal road
network with small dilation for a given set of sites. Our priority was proving that
such constants exist, rather than optimizing them.

Geometric spanners and vertex-dilation. Planar straight line graphs with
constant vertex-dilation were thoroughly studied in the context of geometric
spanners, motivated by VLSI design problems [13,17]. Chew [6] proved that the
vertex-dilation of the rectilinear Delaunay triangulation of n points in the plane
is at most

√
10; Dobkin et al. [9] gave a constant bound on vertex-dilation of

the Euclidean Delaunay triangulation. Das and Joseph [7] found a large class of
geometric graphs with this property, characterized by a certain diamond property
similar to our concept of lofty PLSGs (see Def. 1). A lot of work has been done on
finding ”good” spanners: sparse and light graphs with constant vertex-dilation.
Quite a few papers [1,3,5,16] present algorithms that compute, for a set S of
n points in the plane, a graph G with vertex set S that has constant vertex-
dilation, O(n) edges, and O(|TS |) length. Das et al. [8] generalized the result to
d-space. Some of these algorithms run in O(n log n) time, some compute graphs
that are planar or have bounded maximal degree. Recently, Bose et al. [4] were

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Light Orthogonal Networks with Constant Geometric Dilation 177

able to combine all these properties. However, none of these papers provide any
upper bound on the resulting geometric dilation. Aronov et al. [2] gave a tight
worst-case bound on the vertex-dilation in terms of the number of edges of the
graph used to connect n points.
Geometric dilation of planar point sets. The problem of embedding a given
planar point set in a network of small geometric dilation, as well as the problem
of computing or estimating the dilation of planar networks has only recently
received attention. First attempts were made in designing efficient algorithms to
compute the dilation of a polygonal curve [12,15]. Ebbers-Baumann et al. [11]
proved that every finite point set can be embedded in a plane graph (with curved
edges) of geometric dilation at most 1.678, and Dumitrescu et al. [10] showed
that some point sets require geometric dilation strictly more than π/2 ≈ 1.5707
(at least (1 + 10−11)π/2, to be precise).

2 Reduction to Axis-Aligned Polygons

Notation on planar straight line graphs and polygons. A planar straight
line graph (Pslg) is a finite graph together with a planar embedding, where the
vertices are distinct points and the edges are straight line segments, any pair
of which being either disjoint or having a common endpoint. The complement
R

2 \ G of a Pslg G may have several components, which are the faces of G.
Since G is finite, exactly one face extends to infinity, while all other faces are
bounded. The portion of G that lies on the boundary of a face f is the Pslg ∂f .
If f is a simply connected region, then the Pslg ∂f is a weakly simple polygon,
for convenience called polygon in this paper. A polygon P and its interior jointly
form the polygonal domain dom(P) ⊂ R

2. A subdivision of a polygon P is a
Pslg G with P ⊂ G ⊂ dom(P).

The length of a Pslg G, denoted |G|, is the total length of the edges of G.
The perimeter of a (weakly simple) polygon P is the length of a shortest closed
path that visits all vertices of P along the boundary. Since this closed path can
traverse some edges twice, the perimeter of P is less than 2|P |.

2.1 Our Algorithm in a Nutshell

We construct an orthogonal network for a given set S of n points in the plane
(Fig. 1(a)). First, we reduce the problem to a polygon subdivision problem.
We construct a constant factor approximation Tn of a minimum axis-aligned
Steiner tree (MAST) of S. Tn retains a key property of a MAST, which we
call loftiness. Intuitively, a Pslg G is lofty if nearby parallel edges do not form
”narrow channels.” Such narrow channels are undesirable because the detour
between closest points on opposite sides of a channel is too large. We enclose Tn

in an appropriate axis-aligned bounding square B, add a segment connecting Tn

and B and thus obtain a lofty weakly simple polygon P (Fig. 1(b)). It suffices
to subdivide P into polygonal faces of constant geometric dilation such that the
total length and the number of vertices increase by at most constant factors.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

178 A. Dumitrescu and C.D. Tóth

(a) (b) (c) (d)

p1

b1

b
2

b
3 b5

b6

b
4

b
7

b8

b
9

b
10

B

Tn

Fig. 1. The three main steps of our algorithm. (a) A point set; (b) a rectilinear Steiner
tree Tn and a bounding square B; (c) a mountain subdivision; and (d) a refined sub-
division into polygons of constant geometric dilation.

We augment P with new edges and vertices in two phases. The first phase
decomposes a lofty axis-aligned polygon into lofty pocketed mountain polygons;
see Def. 3 and Fig. 1(c). The advantage of mountains is that it is easy to ap-
proximate their dilation in terms of the detours of horizontal and vertical point
pairs (see Lemma 2). In the second phase, we greedily decompose each pocketed
mountain polygon into pocketed mountains of constant dilation in a top-down
sweepline algorithm: Whenever the portion of a mountain above the sweepline
has ”critical” vertical or horizontal dilation, we insert new edges that separate
this area and an adjacent buffer zone from the rest of the mountain (Fig. 1(d)).
The buffer zones serve to make sure that the detour is bounded by a constant
for points lying on the newly inserted edges.

2.2 Reduction to Axis-Aligned Subdivisions

Let P be a polygon. The internal dilation of P is δint(P) = sup dG(u, v)/|uv| over
all point pairs u, v ∈ P such that the line segment uv lies in dom(P). To prove a
constant bound on the geometric dilation in Theorem 1 part (i), it will suffice to
bound the internal dilation of all polygonal faces of the final network. For this,
recall a result of Ebbers-Baumann et al. [11] which says that the dilation of a
plane graph G is attained for a pair u, v of visible points (where u, v ∈ G but the
relative interior of the segment uv is disjoint from G). In our final graph G, any
pair of visible points lie on the boundary of a bounded (polygonal) face of G.

Theorem 2. For every set S of n points in the plane, there is an axis-aligned
subdivision G of a bounding square of S such that (i) the internal dilation of
every bounded face of G is at most c1; (ii) G has at most c2n vertices; and (iii)
|G| ≤ c3|TS |.

2.3 Reduction to Lofty Axis-Aligned Polygons

Given a set S of n points in the plane, we first construct a Steiner spanning
tree Tn with S ⊆ V (Tn). Ideally, Tn should be the minimum axis-aligned Steiner

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Light Orthogonal Networks with Constant Geometric Dilation 179

tree (MAST) of S, which has at most 2n − 1 vertices and whose length is at
most

√
2|TS |. Since the MAST problem is NP-complete [7], we construct Tn as

an approximation of a MAST that retains three important properties: it has at
most 2n − 1 vertices,

√
2|TS| length, and is 2-lofty as defined below.

Definition 1. Given an axis-aligned Pslg G and a parameter κ ≥ 1, a κ-
narrow channel is an axis-aligned rectangle r of aspect ratio at least κ such that
(a) the two longer sides of r are contained in two parallel edges of G (but neither
of these sides contains any vertex of G); (b) the interior of r is disjoint from G.
(See Fig. 2(a).)

An axis-aligned Pslg G is κ-lofty, for κ ≥ 1, if it does not admit any κ-
narrow channel.

By definition, if κ1 < κ2, and G is κ1-lofty, then it is also κ2-lofty. Note that a
MAST T is κ-lofty for any κ > 2: If there were a κ-narrow channel r with κ > 2
for an MAST T , then one can construct a shorter axis-aligned Steiner tree by
replacing a portion T along a longer side of r with the two shorter sides of r (see
Fig. 2(a-b)).

It is not difficult to devise a constant-factor approximation to the MAST that
is also 2-lofty. Start with an arbitrary input point p1 ∈ S and let T1 = {p1}
be a singleton graph. For every i = 2, 3, . . . , n, construct an axis-aligned Steiner
tree Ti on i points of S by extending Ti−1. If Ti−1 is available, compute the
minimum L1 distance from Ti−1 to remaining points and connect Ti−1 to a
closest point using at most two axis-parallel edges (forming an L-shape) and at
most one Steiner point (the closest point in Ti−1 or the joint of the L-shape).
By Prim’s result [18], the axis-parallel Steiner tree Tn is not longer than the
minimum rectilinear spanning tree (which has no Steiner points but the edge
length is measured in L1 norm); which in turn is at most

√
2 times longer than

the minimum spanning tree TS .
The above approximation Tn is also 2-lofty: Assume that the two longer sides

of a 2-narrow channel r lie along two parallel edges e1 and e2 of Tn. Refer to
Fig. 2. We may assume that e1 was created prior to e2, and e2 connects q ∈ S to
Ti. Since the aspect ratio of r is 2, the L1 distance between q and e1 is less then
|e2|. So e2 is not part of a shortest axis-parallel path from q to Ti: a contradiction.

(a) (b) (c)

r
r

e1

e2
r

e2

Fig. 2. (a-b) If an axis-aligned Steiner tree T is not 2-lofty, then it is not minimal. (c)
This argument does not work if the two longer sides of r contains some vertices of T .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

180 A. Dumitrescu and C.D. Tóth

Let B′ be the minimum axis-aligned bounding box of S, and let B be a
bounding square of B′ of side length 2|TS| which extends B′ by at least |TS |/2 in
each direction. Let now P = P (B) be the Pslg formed by the union of B, Tn, and
an axis-parallel segment connecting a vertex of Tn on B′ to the closest point in B.
Note that P is also 2-lofty, and we have |P | ≤ (4 ·2+1+

√
2)|TS | = (9+

√
2)|TS |.

(The perimeter of P , however, is at most (9 +
√

2)|TS | + (1 +
√

2)|TS | = (10 +
2
√

2)|TS |.) P has at most 2n − 1 + 4 + 1 = 2n + 4 vertices: Tn has at most
2n − 1 vertices and there are 5 more vertices on the bounding box B. Note that
P has exactly one bounded face which is is simply connected and which lies in
the bounding square B. The following theorem immediately implies Theorem 2.

Theorem 3. Every 2-lofty axis-aligned polygon P with n vertices has an axis-
aligned subdivision G such that (i) the internal dilation of every face of G is at
most c1; (ii) G has at most a2n vertices; and (iii) |G| ≤ a3|P |.

3 Subdividing Axis-Aligned Lofty Polygons

In this section, we prove Theorem 3 and present an algorithm that constructs
an axis-aligned subdivision G for an input 3-lofty axis-aligned polygon P with
n vertices. This algorithm has two phases: First we decompose P into 3-lofty
pocketed mountains in Subsection 3.1. In the second phase, we decompose 3-lofty
pocketed mountains into axis-aligned polygons of bounded internal dilation (in
Subsections 3.2 and 3.3).

In both phases, we add new edges and vertices to P . We charge every new
vertex to old vertices (that is, vertices of P) such that each vertex of P is charged
at most a2 times. Similarly, we charge the length of every new edge to portions
of edges of P of the same length such that each point of G is charged at most
a3 times.

3.1 Subdividing Lofty Polygons into Lofty Pocketed Mountains

We partition a 3-lofty axis-aligned polygon into 3-lofty pocketed mountain poly-
gons defined below. We start with the definition of mountain polygons and attach
pockets to them later.

Definition 2. (see Fig. 4) A vertical mountain (alternatively, histogram) is an
axis-aligned polygon P that has a special horizontal side b (base side) such that
for every point u ∈ P there is a vertical segment uv ⊂ dom(P) that connects
u to a point v ∈ b. Horizontal mountains (with a vertical base) are defined
analogously.

Our algorithm is a modified version of a standard algorithm that subdivides an
axis-aligned polygon P into mountains. For completeness, we first present this
standard algorithm. Its input is P and a base edge b.

Rotate P to make b horizontal. Let M(b) be the boundary polygon of
the set of all points x ∈ R

2 for which ∃y ∈ b such that xy is vertical

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Light Orthogonal Networks with Constant Geometric Dilation 181

and xy ⊂ int(P). Clearly, M(b) is a mountain. If P
= M(b), then P
decomposes into M(b) and other faces, each of which has a unique edge
that is adjacent to M(b) but is not contained in edges of P . Recurse
on each face, except for M(b), independently, setting the base to be the
edge adjacent to M(b). (See Fig. 3.)

(a) (b) (c) (d) (e)

base

base
base

base

base

b
ase

b
ase

Fig. 3. The progress of the standard subdivision algorithm into mountains

Unfortunately this standard subdivision scheme may produce mountains
M(b) that are not 3-lofty. A narrow channel may be located either outside of
dom(M(b)) along a vertical edge of M(b), or in dom(M(b)) between two verti-
cal edges of M(b). To eliminate all narrow channels, we extend the faces of the
graph G to fill adjacent narrow channels. Intuitively, we attach ”pockets” to the
mountains.

Definition 3. (see Fig. 4) A vertical (horizontal) pocketed mountain is a poly-
gon obtained from a vertical (horizontal) mountain M by replacing some seg-
ments s along M by a 3-path ps such that s ∪ ps forms a rectangle rs (a pocket)
lying outside dom(M), where the side of rs orthogonal to s has length at most
|s|/2.

base base

Fig. 4. A mountain polygon (left) and a pocketed mountain polygon (right)

Lemma 1. Every axis-aligned 3-lofty polygon P with n vertices admits an or-
thogonal subdivision G, where: every face of G is a 3-lofty pocketed mountain;
|G| ≤ 3|P |; and G has at most 66n vertices.

Proof. We describe a recursive algorithm, whose input is a polygon P and a
base segment b contained in P , which computes a subdivision of P into 3-lofty

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

182 A. Dumitrescu and C.D. Tóth

pocketed mountains. Initially b is an arbitrary horizontal edge of P . Let M(b)
be the boundary polygon of the set of all points x ∈ R

2 for which ∃y ∈ b such
that xy is vertical and xy ⊂ int(P). See Fig. 5(a-b)). The graph G = P ∪ M(b)
is a subdivision of P , in which M(b) is a face. If P = M(b), then the algorithm
terminates, otherwise it modifies G in several steps to eliminate all κ-narrow
channels, κ ≥ 3. The main tool is the following pocketing subroutine, which
extends a face f of G by attaching to it adjacent narrow channels.

pocketing(G, f) (see Fig. 5). Input: A Pslg G and a face f .
As long as G has a κ-narrow channel not contained in dom(f) with κ ≥ 3
and one of its long sides lying along ∂f , do:
Let r be such a narrow channel with maximal κ. Let r′ be the rectangle
obtained from r by removing two rectangles of aspect ratio 2 along its
top and bottom sides. Delete the long side of r′ that lies along ∂f and
insert the two short sides of r′ into G.

b1
r2

r1

r

M(b) N(b)

(a) (b) (c)

(d) (e) (f)

base b

r′

N(b) N(b)

r′2

r′1

Q(b)

b2
b3

b4

b5

b6

b7
b8

P6 P7

Fig. 5. (a) A polygon P with a (pocketed) base b. (b) The polygon M(b) is adjacent
to a narrow channel r. (c) Subroutine pocketing(G, M(b)) extends M(b) to a poly-
gon N(b). (d) The base of every face in P(b) is the vertical edge adjacent to N(b).
(e) Narrow channels r1 and r2 in dom(N(b)). (f) Subroutines pocketing(G, P6) and
pocketing(G, P7) splits N(b) into several polygons Q(b).

Apply pocketing(G, M(b)) (see Fig. 5(b-c)). Since P is 3-lofty, any narrow
channel of G in the exterior of dom(M(b)) must lie between a vertical edge of
M(b) and a vertical edge of P . Note that the pockets are disjoint. Each step of
the pocketing subroutine adds at most four new vertices (the four corners of r′)
and two new edges (the two horizontal sides of r′). The removal of two small

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Light Orthogonal Networks with Constant Geometric Dilation 183

rectangles from r along its horizontal sides guarantees that the new horizontal
edges do not form 3-narrow channels with any other edge.

Let N(b) denote the face of the resulting subdivision G that contains M(b)
(that is, N(b) contains M(b) and some adjacent pockets). Denote by P(b) the
set of all faces of G except for N(b). In each face P ′ ∈ P(b), choose a base b′,
which is the unique edge adjacent to N(b) but not contained in P (Fig. 5(d)).
Apply subroutine pocketing(G, P ′) for every P ′ ∈ P(b) successively (Fig. 5(e-
f)). This destroys narrow channels lying in dom(N(b)) by attaching pockets to
the base sides of the faces in P(b). It may also split the face N(b) into several
faces: Let Q(b) denote the polygon(s) obtained from N(b) after this procedure.
The graph G is a subdivision of polygon P into faces, where the faces of Q(b)
are pocketed mountains, and every base b′ of other faces P ′ ∈ P(b) may have
pockets attached. Apply this subdivision algorithm recursively with input (P ′, b′)
for every face P ′ ∈ P(b), independently. This completes the description of the
algorithm.

Charging scheme for the length: We charge every edge created by our
algorithm to a portion of the perimeter of P . Recall that each step of the pock-
eting subroutines removes a long side of a rectangle r′ of aspect ratio at least
2 and inserts its two short sides. Clearly, this operation does not increase the
length of the graph. Assume that the edge set of P is E0 = E(P). Let E1 be
the set of new edges constructed when building polygons M(b) for all bases b
in our algorithm. It is enough to charge the total length of edges in E1 to the
perimeter of P . Consider a step where the base b is horizontal, and the mountain
M(b) extends vertically above b. Charge the length of each edge e ∈ E1 ∩ M(b)
to the portion of the perimeter of P that is horizontally visible from e, and has
the same length as e. (Note that the shorter edges of rectangles r′ arising in
pocketing subroutines are never charged.) Every point along the perimeter is
charged at most once. Hence, |G| ≤ |P | + 2|P | = 3|P |.

Charging scheme for vertices: We count the number vertices created dur-
ing the decomposition of polygon P with n vertices. Every edge in E1 is incident
to a reflex vertex of P ; and every reflex vertex v ∈ V (P) is incident to at most
one edge of E1 because if v is incident to a new edge of some mountain M(b),
then v becomes a convex vertex in the recursive steps. Hence, we have |E1| ≤ n.
Each edge of E1 is incident to a vertex of P and a potentially new vertex, so the
construction of polygons M(b) increases the number of vertices by n. Each step of
the pocketing subroutines increases the number of vertices by 4 (the corners of a
rectangle r′). Next, we deduce an upper bound on the number of these steps. First
consider the pockets created in subroutines pocketing(G, M(b)) for all bases b.
Every such pocket lies between an edge of E0 and a parallel edge of E1, and every
pair of parallel edges in E0 × E1 corresponds to at most one pocket. If we draw
a curve in each pocket that connects the two corresponding edges of E0 and E1,
we obtain a planar bipartite graph on vertex set E0 ∪ E1, which has less than
2|E0 ∪E1| edges by Euler’s polyhedron theorem. Since |E0|+ |E1| ≤ n+n = 2n,
the number of pockets is less than 4n. These pockets also split some edges of E1

into several pieces; denote the set of these pieces by E2. Each pocket partitions

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

184 A. Dumitrescu and C.D. Tóth

an edge of E1 into two pieces, so we have |E2| ≤ |E1|+4n ≤ 5n. Now consider the
pockets created in subroutines pocketing(G, P ′) for all P ′ ∈ P(b). Each such
pocket lies between an edge of E2 and a parallel edge of E0 ∪E2. By a similar ar-
gument, the number of these pockets is at most 2(|E0|+ |E2|) ≤ 2(n+5n) = 12n.
The subdivision G of the input polygon P has at most n+n+4(4n+12n) = 66n
vertices. �

3.2 Subdividing Lofty Mountains

In this subsection, we present an algorithm to subdivide a 3-lofty mountain
polygon into polygons of constant internal dilation. We extend this algorithm
in the next subsection to 3-lofty pocketed mountains. The advantage of using
mountains is that one can approximate their internal dilation in terms of special
detours of axis-parallel segments. Consider a mountain M with a horizontal
base side b. For every horizontal segment uv that lies in the polygonal domain
dom(M) and u, v ∈ M , we denote by d∗M (u, v) the length of the (upper) arc
between u and v along the perimeter of M that does not contain the base side.

Lemma 2. The internal dilation of every vertical mountain M is upper bounded
by max(δH(M) + 1, δV (M)), where

– δH(M) = maxuv d∗M (u, v)/|uv| over all horizontal uv, with u, v ∈ M ;
– δV (M) = |M |/(2|λ(M)|), where λ(M) is the shortest vertical segment with

endpoints on ∂M and whose interior lies in int(M).

Proof. Consider two points p, q ∈ M for which the internal dilation of M is
attained. That is, dM (p, q)/|pq| is maximal over all segments pq that lie in the
polygonal domain dom(M) and p, q ∈ M . We distinguish two cases: (1) either p
or q lies in the base side, (2) neither p nor q lies in the base side.

If p ∈ b, then q
∈ b and so |pq| is at least as long as λ(M). Since dM (p, q) is
less than |M |/2, we have dM (p, q)/|pq| ≤ δV (M). Assume that p, q
∈ b. Denote

(a)

p

q

(b)

vu

(c)

p

q
p

q

Fig. 6. (a-b) Approximating the internal dilation of a mountain in two cases. (c) For
and x- and y-monotone axis-aligned polygon P , the internal dilation can be arbitrarily
large even though δH(P) and δV (P) are bounded.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Light Orthogonal Networks with Constant Geometric Dilation 185

by |pq|H (resp., |pq|V) the length of the horizontal (resp., vertical) component
of segment pq. Let π(p, q) be the staircase path between p and q whose vertical
segments all lie in M (see Fig. 6). Clearly, we have |π(p, q)| = |pq|H + |pq|V . The
graph distance dM (p, q) is at most the sum of the graph distances of the portions
of π(p, q), and for every portion above a horizontal segment uv, it is dM (u, v) ≤
δH(M)|uv|. Hence, dM (p, q) ≤ δH(M)|pq|H + |pq|V < (δH(M) + 1)|pq|. �

Note that the internal dilation of arbitrary axis-aligned polygons cannot be
bounded in terms of detours of only horizontal and vertical point pairs. Fig. 6(c)
shows that an x- and y-monotone polygon P can have arbitrarily large dilation
even though the ratio dP (u, v)/|uv| is at most 3 for any horizontal or vertical
segment uv.

In the remainder of this subsection, we present and analyze an algorithm for
subdividing 3-lofty mountains into axis-aligned polygons with constant internal
dilation. Our algorithm greedily chooses polygons for which the dilation bound
of Lemma 2 is above a constant threshold. We prove the following.

Lemma 3. Every 3-lofty mountain M with n vertices admits an orthogonal
subdivision G, where: the internal dilation of every face of G is at most 45;
|G| ≤ 2|P |; and G has at most 52n vertices.

Proof. We are given a vertical mountain M that lies above the x-axis, with the
base side b on the x-axis. For every horizontal segment s, we define a padding,
which is a rectangle of aspect ratio 3 whose top longer side is s. Let H denote
the set of maximal horizontal segments uv where u, v ∈ M and uv ⊂ dom(M).
We subdivide M recursively into 3-lofty mountains as follows.

Move a horizontal sweep line � from the top of M down, and scan the
segments of H lying along �. We subdivide M if either of the following
two events occurs.
1. If the padding of the segment uv intersects the base side b, then

insert two vertical edges connecting u and v to the base side, and
apply the pocketing subroutine to the face containing uv.

2. If d∗M (u, v) = 7|uv|, then insert the lower, left, and right edges of
the padding of uv, and apply the pocketing subroutine to the face
containing uv.

Recurse on each face of the resulting subdivision of M that lies in the
closed halfplane below �.

The analysis of our algorithm is available in the full version of this paper. �

3.3 Subdividing Lofty Pocketed Mountains

In Subsection 3.1, we have subdivided a polygon into pocketed mountains, and in
Subsection 3.2 we have subdivided mountains into polygons of constant dilation.
It remains to show how to subdivide a pocketed mountain.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

186 A. Dumitrescu and C.D. Tóth

Lemma 4. Every 3-lofty pocketed mountain P with n vertices admits an or-
thogonal subdivision G, where: the internal dilation of every face of G is at most
75; |G| ≤ 5|P |; and G has at most 102n vertices.

Proof. We are given a pocketed mountain P with n vertices corresponding to a
mountain M and a set of disjoint pockets (see Def. 3). Recall that each pocket
r has a common side s(r) with M , and its sides orthogonal to s(r) have length
at most |s(r)|/2. Note also that M is shorter and has fewer vertices than P .

Subdivide M into polygons of bounded dilation as described in Subsection 3.2,
and let G be the resulting network. Run the pocketing subroutine for the graph
G∪P and each face of G (Subsection 3.1). This may attach all or some portions
of each pocket to faces of G. Consider a maximal portion r′ of a pocket r that
has not been attached to any face of G. If the aspect ratio of r′ is at most 3, then
it is a rectangular face of dilation at most 4. If the aspect ratio of r′ is t ≥ 3,
then G must have at least �t/3� vertices along s(r′). Subdivide r′ by segments
orthogonal to s(r′) into rectangles of aspect ratio at most 3. In this step, the
number of vertices is at most doubled, and the length of G ∪ P increases by at
most a factor of 7

6 . Pocketing can increase the perimeter of a face of G by a
factor of at most 5

3 ; and it can also increase the dilation by at most the same
factor. �

Acknowledgments. We thank Ansgar Grüne and Minghui Jiang for interesting
discussions on the topic. We are also grateful to an anonymous reviewer for
several useful comments and observations.

References

1. I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares, On sparse spanners
of weighted graphs, Discrete Comput. Geom. 9 (1993), 81-100.

2. B. Aronov, M de Berg, O. Cheong, J. Gudmundsson, H. J. Haverkort, and A. Vi-
gneron, Sparse geometric graphs with small dilation, in Proc. 16th ISAAC, vol. 3827
of LNCS, Springer, 2005, pp. 50–59.

3. S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid, Euclidean spanners:
short, thin, and lanky, in Proc. 27th STOC, 1995, ACM Press, pp. 489-498.

4. P. Bose, J. Gudmundsson, and M. Smid, Constructing plane spanners of bounded
degree and low weight, Algorithmica 42 (2005), 249–264.

5. B. Chandra, G. Das, G. Narasimhan, J. Soares, New sparseness results on graph
spanners, Int. J. Comput. Geometry Appl. 5 (1995), 125–144.

6. L. P. Chew, There are planar graphs almost as good as the complete graph, J.
Computer Sys. Sci. 39 (1989), 205-219.

7. G. Das and D. Joseph, Which triangulations approximate the complete graph? in
Optimal Algorithms, vol 401 of LNCS, Springer, 1989, pp. 168–192.

8. G. Das, G. Narasimhan, and J. S. Salowe, A new way to weigh malnourished
Euclidean graphs, in Proc. 6th SODA, ACM Press, 1995, pp. 215–222.

9. D. P. Dobkin, S. J. Friedman, and K. J. Supowit, Delaunay graphs are almost as
good as complete graphs, Discrete Comput. Geom. 5 (1990), 399-407.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Light Orthogonal Networks with Constant Geometric Dilation 187

10. A. Dumitrescu, A. Ebbers-Baumann, A. Grüne, R. Klein, and G. Rote, On the
geometric dilation of closed curves, graphs, and point sets, Comput. Geom. 36
2006, 16–38.

11. A. Ebbers-Baumann, A. Grüne, and R. Klein, On the geometric dilation of finite
point sets, Algorithmica 44 (2006), 137–149.

12. A. Ebbers-Baumann, R. Klein, E. Langetepe, A. Lingas, A fast algorithm for ap-
proximating the detour of a polygonal chain, Comput. Geom. 27 (2004), 123–134.

13. D. Eppstein, Spanning trees and spanners, in Handbook of Computational Geometry
(J. R. Sack and J. Urrutia, eds), North-Holland, Amsterdam, 2000, pp. 425–461.

14. M. Keil and C. A. Gutwin, Classes of graphs which approximate the complete
Euclidean graph, Discrete Comput. Geom. 7 (1992), 13–28.

15. S. Langerman, P. Morin, and M. Soss, Computing the maximum detour and span-
ning ratio of planar chains, trees and cycles, in Proc. 19th STACS, vol. 2285 of
LNCS, Springer, 2002, pp 250–261.

16. C. Levcopoulos and A. Lingas, There are planar graphs almost as good as the
complete graphs and almost as cheap as minimum spanning trees, Algorithmica 8
(1992), 251–256.

17. J. MacGregor Smith & P. Winter, Computing in Euclidean geometry, in Computa-
tional geometry and topological network design, World Scientific, 1992, pp. 287-385.

18. R. C. Prim, Shortest connection networks and some generalizations, Bell System
Technical Journal 36 (1957), 1389–1401.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Admissibility in Infinite Games

Dietmar Berwanger�

RWTH Aachen, Mathematical Foundations of Computer Science
52056 Aachen, Germany

berwanger@cs.rwth-aachen.de

Abstract. We analyse the notion of iterated admissibility, i.e., avoid-
ance of weakly dominated strategies, as a solution concept for extensive
games of infinite horizon. This concept is known to provide a valu-
able criterion for selecting among multiple equilibria and to yield sharp
predictions in finite games. However, generalisations to the infinite are
inherently problematic, due to unbounded dominance chains and the
requirement of transfinite induction.

In a multi-player non-zero-sum setting, we show that for infinite ex-
tensive games of perfect information with only two possible payoffs (win
or lose), the concept of iterated admissibility is sound and robust: all
iteration stages are dominated by admissible strategies, the iteration is
non-stagnating, and, under regular winning conditions, strategies that
survive iterated elimination of dominated strategies form a regular set.

1 Introduction

Games are fundamental for the analysis of interaction between computational
systems [19]. As a particularly effective model, sequential two-player zero-sum
games of infinite duration are paradigmatic for capturing the nonterminating
behaviour of reactive systems in interplay with their environment [22, 11]. For
this class of games, a rich and powerful theory has been developed over the
past fifty years: the semantics of most temporal and fixed-point logics translates
into this framework, and the relevant algorithmic questions can be captured in
terms of alternating ω-automata [20]. More recently, the research on multi-agent
systems and on self-organising computational networks motivated the study of
models with more than two players that are not necessarily in conflict. These
investigations typically focus on the strategic choices of decision-makers rather
than their sequential behaviour.

There are good reasons for investigating sequential games of infinite duration
with more than two players. In supervisory control theory, the components of a
distributed systems can be conceived as distinct players with the same payoff,
rather than a coalition competing against the environment [2, 17]. In the context
of autonomous agents, the framework captures models of infinite horizon. For
the analysis of interaction in large networks, infinite multi-player games provide
a basic model that takes into account the sequential, possibly nonterminating
behaviour of the participating systems.
� This research was supported by the eu rtn ’games’ (www.games.rwth-aachen.de).

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 188–199, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Admissibility in Infinite Games 189

In this paper, we initiate a fundamental study addressing the question of ratio-
nal behaviour in games of infinite duration that involve two or more players and
are not strictly competitive. Concretely, we generalise the classical concept of it-
erated admissibility, that is well established in the theory of finite games [14, 7],
to the framework of n-player non-zero-sum extensive games of perfect informa-
tion over trees of countable depth. This concept is based on the notion of (weak)
dominance. Considering two strategies r, s of a particular player, s dominates
r if, against any choice of strategies of the other players, s performs at least
as well as r, but there are cases in which s performs strictly better than r.
As a basic principle of rationality it is assumed that, when a player takes all
strategies of the other players in consideration, he will avoid playing dominated
strategies. Accordingly, each player eliminates from his set of strategies those
that are dominated. On the other hand, rationality is assumed to be common
knowledge. Therefore each player understands which strategies his opponents
eliminated, possibly discovering that some of his remaining strategies are again
dominated when taking into account only admissible counter-strategies. This
leads to the elimination of further strategies, and so on. For games with finite
strategy spaces, the procedure stabilises after a finite number of stages; the solu-
tion concept postulating that outcomes of a game should involve only strategies
that survive the iterated elimination is called iterated admissibility (a precise
definition follows). Despite its simplicity, the analysis of this procedure required
extensive efforts [9, 16, 1, 18]. An epistemic characterisation, justifying on the
basis of the player’s introspective abilities why outcomes should be iteratively
admissible, was achieved recently [3], after having been open for a long time.

The generalisation of iterated admissibility to infinite strategy spaces is not
obvious. Already at the elementary level, the avoidance of dominated strategies
can lead to empty solutions, because maximally dominating strategies may not
exist. For instance, in a game where two players simultaneously choose a natural
number, with the greater number winning, any strategy choosing x is dominated
by the strategy choosing x + 1. Unbounded dominance chains are problematic
in general: it does not seem reasonable to eliminate a strategy unless some other
strategy that dominates it survives. As a further difficulty, the elimination pro-
cess may need infinitely many iterations to stabilise. In order to mitigate some
of these apparent inconveniences, we will restrict our attention to games with
qualitative payoffs, where a player may either win or lose. This setting covers a
variety of situations significant in computer science.

We show that in the framework of infinite sequential games of perfect infor-
mation with qualitative payoffs, the generalisation of iterated admissibility leads
to a viable solution concept. For extensive games with winning conditions given
by arbitrary sets of infinite paths, we prove that the procedure of simultaneous
elimination of dominated strategies is sound, in the sense that every eliminated
strategy is dominated by some surviving strategy. Further, we point out that
the promoted solution is compatible with the sequential game structure: for any
position reachable with admissible strategies, a strategy is admissible in the sub-
game rooted at that position if, and only if, it is the restriction of an admissible

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

190 D. Berwanger

strategy in the original game. In particular, this means that admissibility does
not feature non-credible threats. Although the iteration may not terminate in
the general case, we still show that the procedure does not stagnate, in the sense
that it generates a definitive solution for a maximal antichain in the game tree
in a bounded number of stages.

Finally, we discuss iterated admissibility as a solution concept for ω-regular
non-zero-sum graph games with n players. These are games played on the tree
unravelling of a finite labelled graph with winning conditions given by ω-regular
languages over the alphabet consisting of these labels. This framework is relevant
for the specification, verification, and synthesis of finite-state controllers. Due
to the non-stagnation property, the iteration on regular graph games always
terminates after a finite number of steps. Strategies can be conceived as labelled
ω-trees of finite branching. We show that, if we set out with ω-tree-regular sets of
strategies, one for each player, the set of undominated strategies for any player is
again regular. As a consequence, it follows that the set of iteratively admissible
strategies in an ω-regular graph game is regular.

The area of infinite sequential games with non-zero-sum conditions or more
than two players is largely unexplored. Related research focusses on Nash equilib-
rium and its refinements [5, 6, 21, 4, 8]. Nash equilibrium is the most prominent
solution concept in the classical theory of non-cooperative games. It postulates
that the collective decision of the players should be self-enforcing, in the sense
that no one gains if he alone deviates. This concept has proved to be highly
effective in explaining the outcome of games involving economic agents. How-
ever, in predicting and prescribing rational behaviour, Nash equilibria suffer
from several shortcomings, some of which aggravate in the context of computa-
tional agents. One fundamental problem concerns games with multiple equilibria,
where the interplay of strategies that are each consistent with some equilibrium
may yield non-equilibrium outcomes (coordination failure). Justifications that
players would coordinate on a particular equilibrium point often resort to evo-
lutionary arguments that do not apply to computational agents [15]. Another
problem is that Nash equilibria disregard the sequential structure of extensive
games (non-credible threats). Besides constituting a solution concept on its own
right, iterated admissibility provides basic criteria to exclude such implausible
Nash equilibria and to mitigate the effect of coordination failures [13, 12].

The paper is organised as follows. In Section 2 we introduce basic notions
and define the solution concept of iterated admissibility. Our principal technical
tool is a value characterisation of admissibility developed in Section 3. Given a
profile of strategy sets, the value for a particular player is a colouring of game
positions that reflects the expectations of the player – to surely win, possibly
win, or surely lose – when the play reaches that position, assuming that all
players use strategies from the given sets. Using this characterisation, we show
in Section 4 that the elimination procedure is sound and, in Section 5, that it
produces a solution for an antichain of subgames whenever it is iterated over
a bounded number of times. Finally, Section 6 is dedicated to ω-regular graph
games. There, we show that iterated admissibility preserves regularity.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Admissibility in Infinite Games 191

2 Basic Notions

We are concerned with games involving n players. We refer to a list of elements
x = (xi)i<n, one for each player, as a profile. For any such profile, we write x−i

to denote the list (xj)j<n,i�=j of elements in x for all players except i. Given an
element xi and a list x−i, we denote by (xi, x−i) the profile (xi)i<n. For clarity,
we will always use superscripts to specify to which player an element belongs. If
not quantified otherwise, we usually refer to player i meaning any player.

Definition 1. A game in strategic form is a structure Γ = ((Si)i<n, (ui)i<n)
consisting of sets Si of strategies, and utility payoff functions ui : ×i<nSi → R,
one for every player i.

When a game is played, each player i chooses a strategy si ∈ Si, thus yielding
a strategy profile s = (si)i<n. The value uj(s) represents the payoff received by
player j in this play. We denote by S the set of all strategy profiles ×i<nSi.

Every player is assumed to act rationally towards maximising his own payoff.
A solution concept associates to any game a nonempty subset of strategy profiles
that are consistent with this assumption. However, the notion of rationality is an
informal one, allowing a variety of interpretations. We investigate a formalisation
based on the notion of (weak) dominance.

Definition 2. Given two strategies si, ri ∈ Si and a set Q−i ⊆ S−i, we say that
si dominates ri on Q−i, if

ui(si, t−i) ≥ ui(ri, t−i) for all t−i ∈ Q−i, and

ui(si, t−i) > ui(ri, t−i) for some t−i ∈ Q−i.

For a set Q ⊆ S, we say that a strategy si ∈ Si is admissible with respect to Q,
if no strategy in Qi dominates si on Q−i.

The idea is to postulate first that it is rational to avoid dominated strategies.
Assuming common knowledge of rationality, all players need to be aware of this,
and iteratively reevaluate their strategy sets. Different non-equivalent proce-
dures have been proposed on the basis of this idea. Following [3], we opt for
simultaneous maximal elimination.

Definition 3. For a game Γ , we define simultaneously for all players i:
- Qi

0 := Si;

- Qi
α+1 := {si ∈ Qi

α : si is admissible w.r.t Qα}, for every ordinal α, and

- Qi
λ :=

⋂
α<λ Qi

α for every limit ordinal λ.
A strategy si ∈ Qi

α is called α-admissible. As the stages are decreasing, the
induction reaches a fixed point (Qi∞)i<n. A strategy si ∈ Qi∞ is called iteratively
admissible.

Observe that, in contrast to most equilibrium concepts, iterative admissibility
yields a rectangular set of strategy profiles, i.e., a Cartesian product of sets.
Accordingly, whether the choice of a particular player is rational in our sense
does not depend on the choices of the other players.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

192 D. Berwanger

Extensive games of infinite horizon. As illustrated in the introduction, there
is no hope that admissibility yields a meaningful solution for arbitrary infinite
games. We will henceforth restrict our attention to a particular class of sequential
games with perfect information.

Definition 4. A game in extensive form is a structure Γ =
(
T , (W i)i<n

)
, where

T is a directed tree over a domain T of elements called positions, equipped with
a partition (T i)i<n of its non-terminal nodes, and each W i is a set of maximal
paths through T , called the winning set of player i.

Game trees may be of arbitrary branching and of depth up to ω. We write �
for the partial order associated to T . When the game is played, the players form
a maximal path through T starting from the root. Whenever a position p is
reached, the player i to whose partition T i it belongs, prolongs the path along
some edge. Thus, plays are identified with maximal paths through T . An initial
play is a prefix of a play. The length of an initial play π = p0, p1, . . . , p� is �.

Definition 5. A strategy for player i is a function s : T i → T that associates
to every position in T i a successor in T .

Again, we denote the set of all strategies for player i by Si. An (initial) play
p0, p1, . . . follows a strategy si ∈ Si, if for every p� ∈ T i, we have p�+1 = s(p�).
A position p ∈ T is avoided by si, if the unique initial play that ends at p does
not follow si, otherwise p is reachable by si. Given a strategy set Qi ⊆ Si, we
write Qi(p) for the subset of strategies in Qi that do not avoid p. For Q ⊆ S, we
define Q(p) as the set of profiles s ∈ Q with si ∈ Qi(p) for all i < n. We say that
p is reachable in Qi or in Q, if Qi(p) or Q(p), respectively, is not empty. Two
strategies ri, si ∈ Si agree up to a position p, if for every p′ � p with p′ ∈ T i,
we have ri(p′) = si(p′); they split at p, if they agree up to p, but not on the
immediate prolongation of the play, i.e., ri(p) �= si(p).

Any strategy profile s = (si)i<n determines a unique play π which follows all
of its components. This play is the outcome of the profile; in the 2-player case
we denote it by s0 ŝ1. A profile is winning for player i if its outcome is in W i.
In terms of utility, we have ui(π) = 1 iff π ∈ W i, otherwise ui(π) = −1.

Given a game Γ and a position p, the subgame Γp is the game obtained by
restricting all components of Γ to the positions comparable to p. We denote the
restriction of a strategy si ∈ Si to this domain by si|p. Given a strategy set
Qi ⊆ Si, we define Qi|p := {si|p : si ∈ Qi(p)}. For a profile Q ⊆ S of strategy
sets, the restriction is defined component-wise Q|p = (Qi|p)i<n.

3 Value Characterisation

The main technical tool for our analysis is a characterisation of admissible strate-
gies in terms of the value that a player can achieve in a given (restriction of the)
strategy space. This characterisation also links rational behaviour in subgames
with the original game. Whenever we refer to games in the sequel, we mean
infinite extensive games.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Admissibility in Infinite Games 193

Definition 6 (Value). Fix a game Γ and a rectangular set Q ⊆ S. The value
of Q for player i is a function χi that maps every position p reachable in Q to
an element of {−1, 0, 1}, as follows:

– χi(p) = 1 (winning), if there exists a strategy si ∈ Qi(p) such that for any
t−i ∈ Q−i(p), the profile (si, t−i) is winning for player i;

– χi(p) = −1 (losing), if every profile in Q(p) is losing for player i;

– χi(p) = 0 (pending), otherwise.

First, we define a criterion that identifies well-formed restrictions of the strategy
space in extensive games, which allows us to conceive a game position as a point
where the player in turn may reassess his plan of action.

Definition 7 (Shifting). Given si, ri ∈ Si and a position p up to which the
two strategies agree, we denote by si[p ← ri] the strategy that agrees with ri on
every position comparable to p, and with si on any other position.

We say that a strategy set Qi allows shifting, if for any si, ri ∈ Qi, and every
position p up to which si and ri agree, we have si[p ← ri] ∈ Qi. A rectangular
set Q ⊆ S of profiles allows shifting if all its components do.

The following lemma states that a strategy s dominates r if, and only if, from
any position at which s and r disagree, either they both win or both lose, or s
strictly improves over r.

Lemma 8. Consider two strategies si, ri ∈ Si and a rectangular set Q ⊆ S that
allows shifting. We denote the values of {si} × Q−i and {ri} × Q−i for player i
by χi

s and χi
r, respectively. Then, si dominates ri on Q−i if, and only if,

(i) for any position p at which ri and si split, we have χi
s(p) ≥ χi

r(p), but at
most one of χi

s(p) and χi
r(p) is 0, and

(ii) there exists a position p up to which si and ri agree, where χi
s(p) > χi

r(p).

Proof. We only show here that the conditions are necessary, restricting to the
case of two players with i = 0 and omitting the superscripts.

First, consider strategies s, r ∈ S0 that violate condition (i), i.e., they split at
some position p where the values are either χs(p) < χr(p) or χs(p) = χr(p) = 0.
In the former case, it follows that there exists a strategy t ∈ Q1 that reaches
p and further yields ŝ t �∈ W 0 whereas r t̂ ∈ W 0. Hence s cannot dominate r
on Q1. In the latter case, since χs(p) < 1, there exists a strategy t ∈ Q1(p)
such that ŝ t �∈ W 0. On the other hand, since χr(p) > −1, there also exists a
strategy t′ ∈ Q1(p) such that r t̂′ ∈ W 0. Let p′ := r(p) be the position chosen
by r, differing from s(p). Since t, t′ agree up to p, and Q1 allows shifting, the
strategy τ := t[p′ ← t′] is also in Q1. But now r τ̂ = r t̂′ ∈ W 0, whereas
ŝ τ = ŝ t �∈ W 0, which shows that s does not dominate r on Q1. Whenever two
strategies s, r satisfy the first condition but not the second one, they shall have
equal, but nonzero values at any splitting position p: either χs(p) = χr(p) = 1,
or χs(p) = χr(p) = −1. It follows that for every t ∈ Q1 we have ŝ t ∈ W 0 if, and
only if, r t̂ ∈ W 0. Hence the strategies s and r are incomparable on Q1. 	

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

194 D. Berwanger

The characterisation of dominance extends to a characterisation of admissible
strategies.

Lemma 9. Let Q ⊆ S be a rectangular set that allows shifting. Then, a strategy
si ∈ Si is admissible with respect to Q if, and only if, the value of {si} × Q−i

for player i attains or exceeds that of Q at every reachable position.

Proof. Again, we argue for the two-player case. Given a strategy s ∈ S0, we
denote the value of {s} × Q1 for player 0 by χs, and the value of Q0 × Q1 by χ.

It is easy to verify that the stated condition is sufficient. To prove that it is
necessary, let us consider a strategy s ∈ Q0 and a position p of minimal depth
where χs(p) < χ(p). (Recall that χs is defined only for positions reachable in
{s} × Q1.) By definition of the value function, there exists a strategy r ∈ Q0(p)
that witnesses the value of Q0 × Q1 at p, having χr(p) = χ(p). In particular,
r agrees with s up to p. Since Q0 allows shifting, it also contains the strategy
σ := s[p ← r]. We claim that σ dominates s on Q1.

First, observe that for all positions p′ incomparable to p, we have χσ(p′) =
χs(p′), whereas, for any p′ comparable to p, we have χσ(p′) = χr(p′). This
already implies that the second condition of Lemma 8 is fulfilled: σ and s agree
on p and χσ(p) = χr(p) > χs(p). The first condition of that lemma refers to the
positions where σ and s split. We distinguish two cases. If χs(p) = 0, there is
only one split between s and σ that occurs immediately at p, where we know that
χσ(p) > χs(p). Otherwise, if χσ(p) = 1, for any future position p′ � p reached
following σ, we have χσ(p′) = 1. Hence, whenever a split between σ and s occurs
at such a position, we have χσ(p′) ≥ χs(p′). Accordingly, the first condition of
Lemma 8 holds as well, allowing us to conclude that σ dominates s over Q1. 	

This characterisation implies that if a rectangular set Q ⊆ S allows shifting, the
set of strategies si ∈ Qi admissible with respect to Q also allows shifting. By
transfinite induction it follows that the value characterisation is valid throughout
all iteration stages of admissibility.

Corollary 10. For every ordinal α, the stage Qα allows shifting.

4 One-Step Soundness

Next, we show that in any nonempty stage there exist admissible strategies and
every eliminated strategy is dominated by one of those.

Theorem 11. For every ri ∈ Qi
α \ Qi

α+1 there exists a strategy si ∈ Qi
α+1 that

dominates ri on Q−i
α .

Proof. In a two-player setting, assume r ∈ Q0
α is a strategy dominated on Q1

α.
We construct an infinite chain s0, s1, · · · ∈ Q0

α, starting with s0 := r, where every
strategy s� is either dominated by its successor s�+1, or equal to it. Intuitively,
s�+1 follows s� for the first � steps and then, if the value at the current position
can be improved, it switches to a strategy that achieves this. In terms of the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Admissibility in Infinite Games 195

characterisation from Lemma 9, we thus ensure that s�+1 attains the optimal
value at any position p of depth at most � that is reachable when the opponent
plays in Q1

α, i.e., χs�+1(p) = χ(p), with our usual notation for the value of
{s�+1} × Q1

α and Q0
α × Q1

α for player 0. Concretely, we set out with s := s�

and look at each position p of depth � reachable in {s�} × Q1
α. In case χs�

(p) <
χ(p), by definition of the value function, there exists a strategy s′ ∈ Q0

α with
χs′(p) = χ(p), and we update s := s[p ← s′]. By performing these shifts wherever
appropriate, we finally obtain a strategy s that yields the optimal value χ(p) at
every position of depth � reachable in {s�} × Q1

α while preserving the – already
optimal – value of {s�}×Q1

α at any shorter play, Since Q0
α allows shifting, s ∈ Q0

α,
and we set s�+1 := s.

Observe that in the above construction every position p at which we shift is
minimal with the property that χ(p) > χs�

(p). By the same argument as in the
proof of necessity in Lemma 9, it follows that s[p ← s′] dominates s on Q1.
Consequently, whenever shifts occurs between s� and s�+1, the strategy s�+1

dominates s� on Q1
α and, by transitivity, it dominates any previous strategy

in the sequence. Also if, after some stage, the sequence stabilises, i.e., s� = sk

for every k > �, then s� is admissible with respect to Q0
α × Q1

α, according to
Lemma 9. For the case in which the sequence does not stabilise, we consider its
point-wise limit, i.e., the function σ assigning to position p of depth � the value
σ(p) := s�+1(p) (which further equals sk(p) for all k > �). Clearly, σ ∈ S0. We
can now verify that σ is admissible with respect to Q0

α × Q1
α, it belongs to Q0

α,
and dominates r on Q1. 	

The above theorem implies that the elimination of dominated strategies will
never evacuate all the strategies from a nonempty admissibility stage.

Corollary 12. For every ordinal α, if Qα �= ∅, then Qα+1 �= ∅.

However, we remark that limit steps of the iteration may yield empty stages.
As an example, consider a three-player game (an ω-centipede) with positions
p0, p1, . . . all belonging to player 0 who can move from each pk either to pk+1 or
into a subgame Δk which stabilises after k stages with player 2 winning, player 1
pending, and player 0 losing. Further, let p0, p1, · · · �∈ W 0 so that the strategy
pk → pk+1 is eliminated in the first stage. Since each stage Q0

n+1 should avoid
the subgames Δ0, . . . Δk, player 0 will eliminate strategies at every finite stage
ending up with Q0

ω = ∅.

5 Progress and Stabilisation

The example at the end of the previous section points out that the elimination
of dominated strategies may require infinitely many iterations. In this section
we provide an argument that mitigates this inconvenience, showing that the
iteration actually never hangs: within a bounded number of stages, it always
generates a definitive solution for some subgame. Towards this, we introduce a
measure telling at which stage a subgame is solved from the viewpoint of player i,
i.e., at which stage the iteration on that subgame closes.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

196 D. Berwanger

Definition 13. Fix a game Γ . For a player i, the closure ordinal cli(p) of a
position p is the smallest ordinal α such that, for every stage β ≥ α, if p is
reachable in Qi

β, then Qi
β|p = Qi

α|p. We write cl(p) for the maximum cli(p) over
all players i < n.

If a position p is reachable in Q∞, then for α = cli(p) we have Qi∞|p = Qi
α|p,

i.e., from p onwards, any strategy that is α-admissible is iteratively admissible.
Conversely, if a position p becomes unreachable at some stage Qα, then cli(p) ≤
α + 1 for all players i. This can be interpreted as follows: when a play reaches
p, it is apparent that the behaviour of some player is not α + 1-admissible.
Consequently the hypothesis of common knowledge of rationality (incorporating
admissibility) must be dropped and the iteration halts.

The notion of a partial solution implicit in the consideration of closures is
intimately related to subgames. When instead of the original game Γ , we refer to
a subgame Γp, we write (Qp)i

α for the corresponding iteration stages and clip(·) for
the closure ordinals. The next lemma states that, for positions p reachable with
admissible strategies, it does not matter whether we first iterate the elimination
procedure on Γ and then restrict to the subgame Γp, or vice versa.

Lemma 14. Let p be a position reachable in a stage Qα. Then, with respect to
the subgame Γp, we have Qi

β|p = (Qp)i
β for every β ≤ α. If further cli(p) ≤ α,

then cli(p) = clip(p).

It follows that at most two iteration stages may pass without discovering a
subgame that closes for at least one player.

Lemma 15. If, for an ordinal α there is no position p with α ≤ cli(p) ≤ α + 1,
for some player i, then Qα+2 = Q∞.

Proof. We only sketch the argument. Notice that, if a subgame Γp does not
close within two successive stages, the value χ of these stages does not change
(if a position is found to be either winning or losing, it closes for the respective
player within one more iteration step). Consequently, all subgames affected by
the elimination of strategies in Qα+1 \Qα+0 are pending in Qα and in Qα+1 and
any eliminated strategy is losing in Qα+1. The strategies s, say of player 0, that
are eliminated here are characterised as follows:

there exists a play p0, p1, · · · �∈ W 0 following s that reaches a position
pk ∈ T 0 with χ0(pk) = 0 such that no p� ∈ T−0 for � > k has a successor
p′ �= p�+1 with χ0(p′) ≥ 0.

If we now consider the next elimination step, it turns out that the above criterion
does not apply to any further strategy, because the triggering conditions depend
only on values that do not change. Therefore, Qα+2 \ Qα+1 = ∅. 	

In the two-player case, whenever a game is closed for one player, it will also
close for the other player within one step. With more players, the delay between
closing stages can be arbitrary long. However, this delay can be bounded at least
for some subgame.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Admissibility in Infinite Games 197

Proposition 16. Let p be a position reachable in a stage Qα with cl(p) ≥ α.
Then, there exists a position p′ reachable from p such that α ≤ cl(p′) ≤ α + n.

Proof. By induction on n. First, apply Lemma 15 to the subgame Γp0 for p0 = p,
to find a reachable position p1 which closes before α + 1, for some player. Now,
fix this player’s strategy set and consider the subgame Γp1 as a game among
n − 1 players to find a position p2 � p1 that closes before α + 2, and so on. 	

Applying Proposition 16 recursively for reachable subgames, we can conclude
that the set of positions closed in any sequence of n iteration steps draws an
antichain in the set of yet unresolved positions (with respect to the partial order
of positions in the game tree).

Corollary 17. Let P (α) := {p ∈ T : cl(p) > α} be the set of positions that
are not yet closed at stage α. Then, for every α, the difference P (α) \ P (α + n)
contains a maximal antichain in P (α).

6 Infinite Games on Finite Graphs

Finally, we discuss iterated admissibility on finite path-forming games with ω-
regular objectives. Generalising the standard definition [10], we specify an n-
player graph game as a finite directed graph G = (V, E, (V i)i<n) with a set of
states V assigned to individual players according to the turn-partition (V i)i<n,
and a set E ∈ V × V of edges. A play is an infinite path formed interactively
on this graph starting from a fixed initial state and successively prolonged along
edges chosen by the player to which the current state belongs. The objective of a
player i is given by an ω-regular set of words Li ∈ V ω specifying the set of plays
where he wins. We do not require the sets Li to form a partition of V ω. This
model can be easily embedded into our extensive game setting by unravelling
a graph G as a game tree T (G) with positions corresponding to finite paths
through G starting from the initial position. We say that a position p ∈ T (G)
copies a state v ∈ G, if p is an image of v ∈ G under unravelling.

Parity games provide a canonical model of ω-regular graph games. An n-
player parity game is represented by a graph over an initial segment V of the
natural numbers, equipped with subsets Ωi ⊆ V , one for each player i, that
specify the winning condition for a play v0, v1, . . . as follows: player i wins the
play, if the least priority appearing infinitely often in the sequence v0, v1, . . .
belongs to Ωi. In the classical framework of two-player zero-sum games, it is
well known that every regular game can be equivalently translated into a parity
game. This remains true in the n-player non-zero sum setting, in the following
sense: for every regular game G = (G, (Li)i<n), we can construct a parity game
Ĝ = (Ĝ, (Ωi)i<n) together with an isomorphism h from T (G) to T (Ĝ) that
naturally extends to strategies such that (s0, . . . , sn−1) ∈ S is winning for a
player i in G if, and only if,

(
h(s0), . . . , h(sn−1)

)
is winning for i in Ĝ; moreover,

h preserves admissibility. Accordingly, the following results for parity games
translate back to regular games.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

198 D. Berwanger

The parity winning condition is prefix-independent: in a parity game G, a
play v0, v1, . . . is winning iff any suffix vk, vk+1, . . . is winning in the game G
starting from vk. Without loss of generality, a subgame Γp in the extensive form
of a parity game can be identified with the game Γ �p over the subtree of T (G)
rooted at p. The value characterisation of admissible strategies then implies that
the iterated elimination of dominated strategies in the extensive form of a parity
game G evolves in the same way on any two subgames rooted at copies of the
same state in G, provided they are simultaneously reachable.

Lemma 18. Consider the extensive-form game obtained by unravelling a parity
game G, and let p, p′ ∈ T (G) be two copies of the same state in G. Then, for
any admissibility stage Qα in which p and p′ are both reachable, we have Qα�p=
Qα�p′ .

In particular, if some position p ∈ T (G) closes with cli(p) = α, then every other
copy p′ � p of the same state also closes with cli(p′) = α. By Proposition 16,
in every sequence of n iterations, at least one position closes. Since the original
parity game has finitely many states, the iteration for admissible strategies on
its extensive form will terminate after finitely many stages.

Proposition 19. The closure ordinal of an n-player parity game with m states
is at most n · m.

Strategies in a parity game can be represented as colourings of the ω-tree ob-
tained by unravelling the finite game graph. The initial set of strategy profiles is
recognisable by an ω-tree automata. Given an automaton that recognises a regu-
lar set Q of strategy profiles we can construct, with some routine, an automaton
that recognises the profiles consisting of strategies admissible with respect to Q.

Proposition 20. In a regular game, let Q ⊆ S be a Cartesian product of ω-tree
regular sets. Then, the set of strategies s ∈ Qi that are admissible with respect
to Q is ω-tree regular.

Accordingly, in any regular game, the stage Qi
α is regular, for any finite α. By

Proposition 19, the iteration of admissible strategies on a regular game over a
finite graph terminates after a bounded number of stages. We can hence conclude
that iteratively admissible strategies on such games can be recognised by finite-
state tree automata.

Theorem 21. For every regular game over a finite graph, the set of iteratively
admissible strategy profiles is ω-tree regular.

References

[1] Krzysztof R. Apt. Order independence and rationalizability. In TARK ’05: Proc.
Theoretical aspects of rationality and knowledge, pages 22–38, 2005.

[2] André Arnold, Aymeric Vincent, and Igor Walukiewicz. Games for synthesis of
controllers with partial observation. Theoretical Comp. Science, 303(1):7–34, 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Admissibility in Infinite Games 199

[3] Adam Brandenburger, Amanda Friedenberg, and H. Jerome Keisler. Admissibility
in games. To appear.

[4] Krishnendu Chatterjee. Two-player nonzero-sum omega-regular games. In CON-
CUR 2005 - Concurrency Theory, volume 3653 of LNCS, pages 413–427. Springer,
2005.

[5] Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdzinski. Games
with secure equilibria. In Proc. LICS 2004, Logic in Computer Science, pages
160–169, 2004.

[6] Krishnendu Chatterjee, Rupak Majumdar, and Marcin Jurdzinski. On Nash equi-
libria in stochastic games. In Proc. Computer Science Logic – CSL 2004, volume
3210 of LNCS, pages 26–40. Springer, 2004.

[7] David Gale. A theory of n-person games with perfect information. Proceedings of
the National Academy of Sciences, 39:495–501, 1953.

[8] Hugo Gimbert. Jeux Positionels. PhD thesis, Université Paris 7, 2006.
[9] Rodney J. Gretlein. Dominance elimination procedures on finite alternative games.

International Journal of Game Theory, 12:107–113, 1983.
[10] Yuri Gurevich and Leo Harrington. Trees, automata and games. In Proc. of the

14th Annual ACM Symposium on Theory of Computing, STOC ’82, pages 60–65.
ACM, 1982.

[11] Thomas A. Henzinger. Games in system design and verification. In Proc. Theo-
retical Aspects of Rationality and Knowledge (TARK-2005), 2005.

[12] John Hillas and Elon Kohlberg. Foundations of strategic equilibrium. In R.J.
Aumann and S. Hart, editors, Handbook of Game Theory with Economic Applica-
tions, volume 3, chapter 42, pages 1597–1663. Elsevier, 2002.

[13] Elon Kohlberg and Jean-Francois Mertens. On the strategic stability of equilibria.
Econometrica, 54(5):1003–1037, September 1986.

[14] Duncan R. Luce and Howard Raiffa. Games and Decisions. Wiley, 1957.
[15] George J. Mailath. Do people play Nash equilibrium? Lessons from evolutionary

game theory. Journal of Economic Literature, 36(3):1347–1374, 1998.
[16] Leslie M. Marx and Jeroen M. Swinkels. Order independence for iterated weak

dominance. Games and Economic Behavior, 31(2):324–329, 2000.
[17] Swarup Mohalik and Igor Walukiewicz. Distributed games. In FSTTCS’03, vol-

ume 2914 of LNCS, pages 338–351, 2003.
[18] Lars Peter Østerdal. Iterated weak dominance and subgame dominance. Journal

of Mathematical Economics, 41:637–645, 2005.
[19] Christos Papadimitriou. Algorithms, games, and the internet. In STOC ’01: Proc.

ACM symposium on Theory of computing, pages 749–753, 2001.
[20] Wolfgang Thomas. Infinite games and verification. In Proc. CAV 2002 – Computer

Aided Verification, volume 2404 of LNCS, pages 58–64. Springer, 2002.
[21] Michael Ummels. Rational behaviour and strategy construction in infinite multi-

player games. Master’s thesis, RWTH Aachen University, 2005.
[22] Igor Walukiewicz. A landscape with games in the background. In Proc. Logic in

Computer Science (LICS 2004), pages 356–366, 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Pure Stationary Optimal Strategies
in Markov Decision Processes

Hugo Gimbert

LIX, Ecole Polytechnique, France�

hugo.gimbert@laposte.net

Abstract. Markov decision processes (MDPs) are controllable discrete
event systems with stochastic transitions. Performances of an MDP are
evaluated by a payoff function. The controller of the MDP seeks to op-
timize those performances, using optimal strategies.

There exists various ways of measuring performances, i.e. various
classes of payoff functions. For example, average performances can be
evaluated by a mean-payoff function, peak performances by a limsup
payoff function, and the parity payoff function can be used to encode
logical specifications.

Surprisingly, all the MDPs equipped with mean, limsup or parity pay-
off functions share a common non-trivial property: they admit pure sta-
tionary optimal strategies.

In this paper, we introduce the class of prefix-independent and sub-
mixing payoff functions, and we prove that any MDP equipped with such
a payoff function admits pure stationary optimal strategies.

This result unifies and simplifies several existing proofs. Moreover, it
is a key tool for generating new examples of MDPs with pure stationary
optimal strategies.

1 Introduction

Controller synthesis. One of the central questions in system theory is the con-
troller synthesis problem : given a controllable system and a logical specification,
is it possible to control the system so that its behaviour meets the specification?

In the most classical framework, the transitions of the system are not stochas-
tic and the specification is given in LTL or CTL*. In that case, the controller
synthesis problem reduces to computing a winning strategy in a parity game on
graphs [Tho95].

There are two natural directions to extend this framework.
First direction consists in considering systems with stochastic transitions

[dA97]. In that case the controller wishes to maximize the probability that the
specification holds. The corresponding problem is the computation of an optimal
strategy in a Markov decision process with parity condition [CY90].
� This research was supported by Instytut Informatyki of Warsaw University and

European Research Training Network: Games and Automata for Synthesis and
Validation.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 200–211, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Pure Stationary Optimal Strategies in MDPs 201

Second direction to extend the classical framework of controller synthesis con-
sists in considering quantitative specifications [dA98, CMH06]. Whereas a logi-
cal specification specifies good and bad behaviours of the system, a quantitative
specification evaluates performances of the system in a more subtle way. These
performances are evaluated by a payoff function, which associates a real value
with each run of the system. Synthesis of a controller which maximizes perfor-
mances of the system corresponds to the computation of an optimal strategy in
a payoff game on graphs.

For example, consider a logical specification that specifies that the system
should not reach an error state. Then using a payoff function, we can refine this
logical specification. For example, we can specify that the number of visits to
the error states is as small as possible, or also that the average time between
two occurrences of the error state is as long as possible. Observe that logical
specifications are a special case of quantitative specifications, where the payoff
function takes only two possible values, 1 or 0, depending whether or not the
behaviour of the system meets the specification.

In the most general case, the transitions of the system are stochastic and
the specification is quantitative. In that case, the controller wishes to maximize
the expected value of the payoff function, and the controller synthesis problem
consists in computing an optimal strategy in a Markov decision process.

Positional payoff functions. Various payoff functions have been introduced
and studied, in the framework of Markov decision processes but also in the
broader framework of two player stochastic games. For example, the discounted
payoff [Sha53, CMH06] and the total payoff [TV87] are used to evaluate short-
term performances. Long-term performances can be computed using the mean-
payoff [Gil57, dA98] or the limsup payoff [MS96] that evaluate respectively av-
erage performances and peak performances. These functions are central tools in
economic modelization. In computer science, the most popular payoff function
is the parity payoff function, which is used to encode logical properties.

Very surprisingly, the discounted, total, mean, limsup and parity payoff func-
tions share a common non-trivial property. Indeed, in any Markov decision pro-
cess equipped with one of those functions there exists optimal strategies of a
very simple kind : they are at the same time pure and stationary. A strategy is
pure when the controller plays in a deterministic way and it is stationary when
choices of the controller depend only on the current state, and not on the full
history of the run. For the sake of concision, pure stationary strategies are called
positional strategies, and we say that a payoff function itself is positional if in
any Markov decision process equipped with this function, there exists an optimal
strategy which is positional.

The existence of positional optimal strategies has algorithmic interest. In fact,
this property is the key for designing several polynomial time algorithms that
compute values and optimal strategies in MDPs [Put94, FV97].

Recently, there has been growing research activity about the existence of
positional optimal strategies in non-stochastic two-player games with infinitely
many states [Grä04, CN06, Kop06] or finitely many states [BSV04, GZ05]. The

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

202 H. Gimbert

framework of this paper is different, since it deals with finite MDPs, i.e. one-
player stochastic games with finitely many states and actions.

Our results. In this paper, we address the problem of finding a common prop-
erty between the classical payoff functions introduced above, which explains why
they are all positional. We give the following partial answer to that question.

First, we introduce the class of submixing payoff functions, and we prove that
a payoff function which is submixing and prefix-independent is also positional
(cf. Theorem 1).

This result partially solves our problem, since the parity, limsup and mean-
payoff functions are prefix-independent and submixing (cf. Proposition 1).

Our result has several interesting consequences. First, it unifies and short-
ens disparate proofs of positionality for the parity [CY90], limsup [MS96] and
mean [Bie87, NS03] payoff function (section 4). Second, it allows us to generate
a bunch of new examples of positional payoff functions (section 5).

Plan. This paper is organized as follows. In section 2, we introduce notions of
controllable Markov chain, payoff function, Markov decision process and opti-
mal strategy. In section 3, we state our main result : prefix-independent and
submixing payoff functions are positional (cf. Theorem 1). In the same section,
we give elements of proof of Theorem 1. In section 4, we show that our main
result unifies various disparate proofs of positionality. In section 5, we present
new examples of positional payoff functions.

2 Markov Decision Processes

Let S be a finite set. The set of finite (resp. infinite) sequences on S is denoted
S∗ (resp. Sω). A probability distribution on S is a function δ : S → R such that
∀s ∈ S, 0 ≤ δ(s) ≤ 1 and

∑
s∈S δ(s) = 1. The set of probability distributions on

S is denoted D(S).

2.1 Controllable Markov Chains and Strategies

Definition 1. A controllable Markov chain A = (S,A, (A(s))s∈S, p) is com-
posed of:

– a finite set of states S and a finite set of actions A,
– for each state s ∈ S, a set A(s) ⊆ A of actions available in s,
– transition probabilities p : S × A → D(S) .

When the current state of the chain is s, then the controller chooses an available
action a ∈ A(s), and the new state is t with probability p(t|s, a).

A triple (s, a, t) ∈ S × A × S such that a ∈ A(s) and p(t|s, a) > 0 is called a
transition.

A history in A is an infinite sequence h = s0a1s1 · · · ∈ S(AS)ω such that for
each n, (sn, an+1, sn+1) is a transition. State s0 is called the source of h. The
set of histories with source s is denoted Pω

A,s . A finite history in A is a finite

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Pure Stationary Optimal Strategies in MDPs 203

sequence h = s0a1 · · ·an−1sn ∈ S(AS)∗ such that for each n, (sn, an+1, sn+1) is
a transition. s0 is the source of h and sn its target. The set of finite histories
(resp. of finite histories with source s) is denoted P∗

A (resp. P∗
A,s).

A strategy in A is a function σ : P∗
A → D(A) such that for any finite history

h ∈ P∗
A with target t ∈ S, the distribution σ(h) puts non-zero probabilities only

on actions that are available in t, i.e. (σ(h)(a) > 0) =⇒ (a ∈ A(t)). The set of
strategies in A is denoted ΣA .

As explained in the introduction of this paper, certain types of strategies are
of particular interest, such as pure and stationary strategies. A strategy is pure
when the controller plays in a determnistic way, i.e. without using any dice, and
it is stationary when the controller plays without using any memory, i.e. his
choices only depend on the current state of the MDP, and not on the entire
history of the play. Formally :

Definition 2. A strategy σ ∈ ΣA is said to be:

• pure if ∀h ∈ P∗
A, (σ(h)(a) > 0) =⇒ (σ(h)(a) = 1) ,

• stationary if ∀h ∈ P∗
A with target t, σ(h) = σ(t) ,

• positional if it is pure and stationary.

Since the definition of a stationary strategy may be confusing, let us remark that
t ∈ S denotes at the same time the target state of the finite history h ∈ P∗

A and
also the finite history t ∈ P∗

A,t of length 1.

2.2 Probability Distribution Induced by a Strategy

Suppose that the controller uses some strategy σ and that transitions between
states occur according to the transition probabilities specified by p(·|·, ·). Then
intuitively the finite history s0a1 · · ·ansn occurs with probability

σ(s0)(a1) · p(s1|s0, a1) · · · σ(s0 · · · sn−1)(an) · p(sn|sn−1, an) .

In fact, it is also possible to measure probabilities of infinite histories. For this
purpose, we equip Pω

A,s with a σ-field and a probability measure. For any finite
history h ∈ P∗

A,s, and action a, we define the sets of infinite plays with prefix h
or ha:

Oh = {s0a1s1 · · · ∈ Pω
A,s | ∃n ∈ N, s0a1 · · · sn = h}

Oha = {s0a1s1 · · · ∈ Pω
A,s | ∃n ∈ N, s0a1 · · · snan+1 = ha} .

Pω
A,s is equipped with the σ-field generated by the collection of sets Oh and

Oha. In the sequel, a measurable set of infinite paths will be called an event.
Moreover, when there is no risk of confusion, the events Oh and Oha will be
denoted simply h and ha.

A theorem of Ionescu Tulcea (cf. [BS78]) implies that there exists a unique
probability measure P

σ
s on Pω

A,s such that for any finite history h ∈ P∗
A,s with

target t, and for every a ∈ A(t),

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

204 H. Gimbert

P
σ
s (ha | h) = σ(h)(a) , (1)

P
σ
s (har | ha) = p(r|t, a) . (2)

We will use the following random variables. For n ∈ N, and t ∈ S,

Sn(s0a1s1 · · ·) = sn the (n + 1)-th state,
An(s0a1s1 · · ·) = an the n-th action,
Hn = S0A1 · · · AnSn the finite history of the first n stages,
Nt = |{n > 0 : Sn = t}| ∈ N ∪ {+∞} the number of visits to state t. (3)

2.3 Payoff Functions

After an infinite history of the controllable Markov chain, the controller gets
some payoff. There are various ways for computing this payoff.

Mean payoff. The mean-payoff function has been introduced by Gilette [Gil57]
and is used to evaluate average performance. Each transition (s, a, t) of the
controllable Markov chain is labeled with a daily payoff r(s, a, t) ∈ R. An his-
tory s0a1s1 · · · gives rise to a sequence r0r1 · · · of daily payoffs, where rn =
r(sn, an+1, sn+1). The controller receives the following payoff:

φmean(r0r1 · · ·) = lim sup
n∈N

1
n + 1

n∑

i=0

ri . (4)

Discounted payoff. The discounted payoff has been introduced by Shapley
[Sha53] and is used to evaluate short-term performance. Each transition (s, a, t)
is labeled not only with a daily payoff r(s, a, t) ∈ R but also with a discount fac-
tor 0 ≤ λ(s, a, t) < 1. The payoff associated with a sequence (r0, λ0)(r1, λ1) · · · ∈
(R × [0, 1[)ω of daily payoffs and discount factors is:

φλ
disc((r0, λ0)(r1, λ1) · · ·) = r0 + λ0r1 + λ0λ1r2 + · · · . (5)

Parity payoff. The parity payoff function is used to encode temporal logic prop-
erties [GTW02]. Each transition (s, a, t) is labeled with some priority c(s, a, t) ∈
{0, . . . , d}. The controller receives payoff 1 if the highest priority seen infinitely
often is odd, and 0 otherwise. For c0c1 · · · ∈ {0, . . . , d}ω,

φpar(c0c1 · · ·) =

{
0 if lim supn cn is even,
1 otherwise.

(6)

General payoffs. In the sequel, we will give other examples of payoff functions.
Observe that in the examples we gave above, the transitions were labeled with
various kinds of data: real numbers for the mean-payoff, couple of real numbers
for the discounted payoff and integers for the parity payoff.

We wish to treat those examples in a unified framework. For this reason, we
consider now that each controllable Markov chain A comes together with a finite
set of colours C and a mapping col : S × A × S → C, which colors transitions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Pure Stationary Optimal Strategies in MDPs 205

In the case of the mean payoff, transitions are coloured with real numbers
hence C ⊆ R, whereas in the case of the discounted payoff colours are couples
C ⊆ R × [0, 1[and for the parity game colours are integers C = {0, . . . , d}.

For an history (resp. a finite history) h = s0a1s1 · · · , the colour of the history
h is the infinite (resp. finite) sequence of colours

col(h) = col(s0, a1, s1) col(s1, a2, s2) · · · .

Definition 3. Let C be a finite set. A payoff function on C is a measurable1

and bounded function φ : Cω → R .

After an history h, the controller receives payoff φ(col(h)) .

2.4 Values and Optimal Strategies in Markov Decision Processes

Definition 4. A Markov decision process is a couple (A, φ), where A is a con-
trollable Markov chain coloured by a set C and φ is a payoff function on C .

Let us fix a Markov decision process M = (A, φ). After history h, the controller
receives payoff φ(col(h)) ∈ R. We extend the definition domain of φ to Pω

A,s :

∀h ∈ Pω
A,s, φ(h) = φ(col(h)) .

The expected value of φ under the probability P
σ
s is called the expected payoff

of the controller and is denoted E
σ
s [φ]. It is well-defined because φ is measurable

and bounded. The value of a state s is the maximal expected payoff that the
controller can get :

val(M)(s) = sup
σ∈ΣA

E
σ
s [φ] .

A strategy σ is said to be optimal in M if for any state s ∈ S,

E
σ
s [φ] = val(M)(s) .

3 Optimal Positional Control

We are interested in those payoff functions that ensure the existence of positional
optimal strategies. It motivates the following definition.

Definition 5. Let C be a finite set of colors and φ a payoff function on Cω.
Then φ is said to be positional if for any controllable Markov chain A coloured
by C, there exists a positional optimal strategy in the MDP (A, φ).

Our main result concerns the class of payoff functions with the following
properties.

1 Relatively to the Borelian σ-field on Cω.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

206 H. Gimbert

Definition 6. Let φ be a payoff function on Cω. We say that φ is prefix-
independent if for any finite word u ∈ C∗ and infinite word v ∈ Cω, φ(uv) =
φ(v). See [Cha06] for interesting results about concurrent stochastic games with
prefix-independent payoff functions. We say that φ is submixing if for any se-
quence of finite non-empty words u0, v0, u1, v1, . . . ∈ C∗,

φ(u0v0u1v1 · · ·) ≤ max { φ(u0u1 · · ·) , φ(v0v1 · · ·) } .

The notion of prefix-independence is classical. The submixing property is close to
the notions of fairly-mixing payoff functions introduced in [GZ04] and of concave
winning conditions introduced in [Kop06]. We are now ready to state our main
result.

Theorem 1. Any prefix-independent and submixing payoff function is positional.

The proof of this theorem is based on the 0-1 law and an induction on the number
of actions. Due to space restrictions, we do not give details here, a full proof can
be found in [Gim].

4 Unification of Classical Results

We now show how Theorem 1 unifies proofs of positionality of the parity [CY90],
the limsup and liminf [MS96] and the mean-payoff [Bie87, NS03] functions.

The parity, mean, limsup and liminf payoff functions are denoted respectively
φpar, φmean, φlsup and φlinf. Both φpar and φmean have already been defined in
subsection 2.3. φlsup and φlinf are defined as follows. Let C ⊆ R be a finite set
of real numbers, and c0c1 · · · ∈ Cω. Then

φlsup(c0c1 · · ·) = lim sup
n

cn

φlinf(c0c1 · · ·) = lim inf
n

cn .

The four payoff functions φpar, φmean, φlsup and φlinf are very different. Indeed,
φlsup measures the peak performances of the system, φlinf the worst perfor-
mances, and φmean the average performances. The function φpar is used to encode
logical specifications, expressed in MSO or LTL for example [GTW02].

Proposition 1. The payoff functions φlsup, φlinf, φpar and φmean are submixing.

Proof. Let C ⊆ R be a finite set of real numbers and u0, v0, u1, v1, . . . ∈ C∗

be a sequence of finite non-empty words on C. Define u = u0u1 · · · ∈ Cω,
v = v0v1 · · · ∈ Cω and w = u0v0u1v1 · · · ∈ Cω. The following elementary fact
immediately implies that φlsup is submixing.

φlsup(w) = max{φlsup(u), φlsup(v)} . (7)

In a similar way, φlinf is submixing since

φlinf(w) = min{φlinf(u), φlinf(v)} . (8)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Pure Stationary Optimal Strategies in MDPs 207

Now suppose that C = {0, . . . , d} is a finite set of integers and consider
function φpar. Remember that φpar(w) equals 1 if φlsup(w) is odd and 0 if φlsup(w)
is even. Then using (7) we get that if φpar(w) has value 1 then it is the case of
either φpar(u) or φpar(v). It proves that φpar is also submixing.

Now let us consider function φmean. A proof that φmean is submixing already
appeared in [GZ04], and we reproduce it here, updating the notations. Again
C ⊆ R is a finite set of real numbers. Let c0, c1, . . . ∈ C be the sequence of
letters of C such that w = (ci)i∈N. Since word w is a shuffle of words u and v,
there exists a partition (I0, I1) of N such that u = (ci)i∈I0 and v = (ci)i∈I1 . For
any n ∈ N, let In

0 = I0 ∩ {0, . . . , n} and In
1 = I1 ∩ {0, . . . , n}. Then for n ∈ N,

1
n + 1

n∑

i=0

ci =
|In

0 |
n + 1

⎛

⎝ 1
|In

0 |
∑

i∈In
0

ci

⎞

⎠ +
|In

1 |
n + 1

⎛

⎝ 1
|In

1 |
∑

i∈In
1

ci

⎞

⎠

≤ max

⎧
⎨

⎩

1
|In

0 |
∑

i∈In
0

ci,
1

|In
1 |

∑

i∈In
1

ci

⎫
⎬

⎭
.

The inequality holds since |In
0 |

n+1 + |In
1 |

n+1 = 1. Taking the superior limit of this
inequality, we obtain φmean(w) ≤ max{φmean(u), φmean(v)}. It proves that φmean

is submixing. �
Since φlsup, φlinf, φpar and φmean are clearly prefix-independent, Proposition 1
and Theorem 1 imply that those four payoff functions are positional. Hence,
we unify and simplify existing proofs of [CY90, MS96] and [Bie87, NS03]. In
particular, we use only elementary tools for proving the positionality of the
mean-payoff function, whereas [Bie87] uses martingale theory and relies on other
papers, and [NS03] uses a reduction to discounted games, as well as analytical
tools.

5 Generating New Examples of Positional Payoff
Functions

We present three different techniques for generating new examples of positional
payoff functions.

5.1 Mixing with the Liminf Payoff

In last section, we saw that peak performances of a system can be evaluated
using the limsup payoff, whereas its worst performances are computed using the
liminf payoff. The compromise payoff function is used when the controller wants
to achieve a trade-off between good peak performances and not too bad worst
performances. Following this idea, we introduced in [GZ04] the following payoff
function. We fix a factor λ ∈ [0, 1], a finite set C ⊆ R and for u ∈ Cω, we define

φλ
comp(u) = λ · φlsup(u) + (1 − λ) · φlinf(u) .

The fact that φλ
comp is submixing is a corollary of the following proposition.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

208 H. Gimbert

Proposition 2. Let C ⊆ R, 0 ≤ λ ≤ 1 and φ be a payoff function on C.
Suppose that φ is prefix-independent and submixing. Then the payoff function

λ · φ + (1 − λ) · φlinf (9)

is also prefix-independent and submixing.

The proof is straightforward, using (8) above. According to Theorem 1 and
Proposition 1, any payoff function defined by equation (9), where φ is either
φmean, φpar or φlsup, is positional. Hence, this technique enable us to generate
new examples of positional payoffs.

5.2 The Approximation Operator

Consider an increasing function f : R → R and a payoff function φ : Cω → R.
Then their composition f ◦ φ is also a payoff function and moreover, if φ is
positional then f ◦ φ also is. Indeed, a strategy optimal for an MDP (A, φ) is
also optimal for the MDP (A, f ◦ φ).

An example is the threshold function f = 1≥0 which associates 0 with strictly
negative real numbers and 1 with positive number. Then f ◦φ indicates whether
the performance evaluated by φ reaches the critical value of 0.

Hence any increasing function f : R → R defines a unary operator on the
family of payoff functions, and this operator stabilizes the family of positional
payoff functions. In fact, it is straightforward to check that it also stabilizes the
sub-family of prefix-independent and submixing payoff functions.

5.3 The Hierarchical Product

Now we define a binary operator between payoff functions, which also stabilizes
the family of prefix-independent and submixing payoff functions. We call this
operator the hierarchical product.

Let φ0, φ1 be two payoff functions on sets of colours C0 and C1 respectively.
We do not require C0 and C1 to be identical nor disjoints.

The hierarchical product φ0 � φ1 of φ0 and φ1 is a payoff function on the set
of colours C0 ∪ C1 and is defined as follows. Let u = c0c1 · · · ∈ (C0 ∪ C1)ω and
u0 and u1 the two projections of u on C0 and C1 respectively. Then

(φ0 � φ1)(u) =

{
φ0(u0) if u0 is infinite,
φ1(u1) otherwise.

This definition makes sense : although each word u0 and u1 can be either finite
or infinite, at least one of them must be infinite.

Let us give examples of use of hierarchical product.
For e ∈ N, let 0e and 1e be the payoff functions defined on the one-letter

alphabet {e} and constant equal to 0 and 1 respectively. Let d be an odd number,
and φpar be the parity payoff function on {0, . . . , d}. Then

φpar = 1d � 0d−1 � · · · � 11 � 00 .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Pure Stationary Optimal Strategies in MDPs 209

Another example of hierarchical product was given in [GZ05, GZ06], where we
defined and establish properties about the priority mean-payoff function. This
payoff function is in fact the hierarchical product of d mean-payoff functions.
Remark that another way of fusionning the parity payoff and the mean-payoff
functions has been presented in [CHJ05], and the resulting payoff function is
not positional. In contrary, it turns out that the priority mean-payoff function
is positional, as a corollary of Theorem 1, and the following proposition, whose
proof is easy.

Proposition 3. Let φ0 and φ1 be two payoff functions. If φ0 and φ1 are prefix-
independent and submixing, then φ0 � φ1 also is.

5.4 Towards a Quantitative Specification Language?

In the previous section, we defined two unary operators and one binary operator
over payoff functions. Moreover, we proved that the class of prefix-independent
and submixing payoff functions is stable under these operators. As a conse-
quence, if we start with the constant, the limsup, the liminf and the mean payoff
functions, and we apply recursively our three operators, we get a huge family
of sub-mixinf and prefix-independent payoff functions. According to Theorem 1,
all those functions are positional.

We hope that this result is a first step towards a rich quantitative specification
language. For example, using the hierarchical product, we can express properties
such as: “Minimize the frequency of visits to error states. In the case where
error states are visited only finitely often, maximize the peak performances.”
The positionality of those payoff functions gives hope that the corresponding
controller synthesis problems are solvable in polynomial time.

6 Conclusion

In that paper, we have introduced the class of prefix-independent and submixing
payoff functions, and we proved that they are positional. Moreover, we have
defined three operators on payoff functions, that can be used to generate new
examples of MDPs with positional optimal strategies.

There are different natural directions to continue this work.
First, most of the results of this paper can be extended to the broader frame-

work of two-player zero-sum stochastic games with full information. This is on-
going work with Wies�law Zielonka, to be published soon.

Second, the results of the last section give rise to natural algorithmic ques-
tions. For MDPs equipped with mean, limsup, liminf, parity or discounted payoff
functions, the existence of optimal positional strategies is the key for designing al-
gorithms that compute values and optimal strategies in polynomial time [FV97].
For examples generated with the mixing operator and the hierarchical product, it
seems that values and optimal strategies are computable in exponential time, but
we do not know the exact complexity. Also it is not clear how to obtain efficient
algorithms when payoff functions are defined using approximation operators.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

210 H. Gimbert

To conclude, let us formulate the following conjecture about positional payoff
functions. “Any payoff function which is positional for the class of non-stochastic
one-player games is positional for the class of Markov decision processes”.

Acknowledgments

I would like to thank Wies�law Zielonka for numerous discussions about payoff
games on MDP’s.

References

[Bie87] K.-J. Bierth. An expected average reward criterion. Stochastic Processes
and Applications, 26:133–140, 1987.

[BS78] D. Bertsekas and S. Shreve. Stochastic Optimal Control: The Discrete-Time
Case. Academic Press, 1978.

[BSV04] H. Björklund, S. Sandberg, and S. Vorobyov. Memoryless determinacy of
parity and mean payoff games: a simple proof, 2004.

[Cha06] K. Chatterjee. Concurrent games with tail objectives. In CSL’06, 2006.
[CHJ05] K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Mean-payoff parity

games. In LICS’05, pages 178–187, 2005.
[CMH06] K. Chatterjee, R. Majumdar, and T. A. Henzinger. Markov decision pro-

cesses with multiple objectives. In STACS’06, pages 325–336, 2006.
[CN06] T. Colcombet and D. Niwinski. On the positional determinacy of edge-

labeled games. Theor. Comput. Sci., 352(1-3):190–196, 2006.
[CY90] C. Courcoubetis and M. Yannakakis. Markov decision processes and regular

events. In ICALP’90, volume 443 of LNCS, pages 336–349. Springer, 1990.
[dA97] L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis,

Stanford University, december 1997.
[dA98] L. de Alfaro. How to specify and verify the long-run average behavior of

probabilistic systems. In LICS, pages 454–465, 1998.
[FV97] J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer,

1997.
[Gil57] D. Gilette. Stochastic games with zero stop probabilities, 1957.
[Gim] H. Gimbert. Pure stationary optimal strategies in Markov deci-

sion processes. http://www.lix.polytechnique.fr/~gimbert/recherche/
mdp gimbert.ps.

[Grä04] E. Grädel. Positional determinacy of infinite games. In Proc. of STACS’04,
volume 2996 of LNCS, pages 4–18, 2004.

[GTW02] E. Grdel, W. Thomas, and T. Wilke. Automata, Logics and Infinite Games,
volume 2500 of LNCS. Springer, 2002.

[GZ04] H. Gimbert and W. Zielonka. When can you play positionally? In Proc. of
MFCS’04, volume 3153 of LNCS, pages 686–697. Springer, 2004.

[GZ05] H. Gimbert and W. Zielonka. Games where you can play optimally without
any memory. In CONCUR 2005, volume 3653 of LNCS, pages 428–442.
Springer, 2005.

[GZ06] H. Gimbert and W. Zielonka. Deterministic priority mean-payoff games as
limits of discounted games. In Proc. of ICALP 06, LNCS. Springer, 2006.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Pure Stationary Optimal Strategies in MDPs 211

[Kop06] E. Kopczyński. Half-positional determinacy of infinite games. In Proc. of
ICALP’06, LNCS. Springer, 2006.

[MS96] A.P. Maitra and W.D. Sudderth. Discrete gambling and stochastic games.
Springer-Verlag, 1996.

[NS03] A. Neyman and S. Sorin. Stochastic games and applications. Kluwer Aca-
demic Publishers, 2003.

[Put94] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., New York, NY, USA, 1994.

[Sha53] L. S. Shapley. Stochastic games. In Proceedings of the National Academy
of Science USA, volume 39, pages 1095–1100, 1953.

[Tho95] W. Thomas. On the synthesis of strategies in infinite games. In Proc. of
STACS’95,LNCS, volume 900, pages 1–13, 1995.

[TV87] F. Thuijsman and O. J. Vrieze. The Bad Match, a total reward stochastic
game, volume 9. 1987.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Symmetries and the Complexity of Pure Nash
Equilibrium�

Extended Abstract

Felix Brandt1, Felix Fischer1, and Markus Holzer2

1 Institut für Informatik, Universität München, 80538 München, Germany
{brandtf,fischerf}@tcs.ifi.lmu.de

2 Institut für Informatik, Technische Universität München, 85748 Garching, Germany
holzer@in.tum.de

Abstract. Strategic games may exhibit symmetries in a variety of ways.
A common aspect, enabling the compact representation of games even
when the number of players is unbounded, is that players cannot (or
need not) distinguish between the other players. We define four classes
of symmetric games by considering two additional properties: identical
payoff functions for all players and the ability to distinguish oneself from
the other players. Based on these varying notions of symmetry, we in-
vestigate the computational complexity of pure Nash equilibria. It turns
out that in all four classes of games Nash equilibria can be computed in
TC0 when only a constant number of actions is available to each player,
a problem that has been shown intractable for other succinct representa-
tions of multi-player games. We further show that identical payoff func-
tions make the difference between TC0-completeness and membership in
AC0, while a growing number of actions renders the equilibrium prob-
lem NP-complete for three of the classes and PLS-complete for the most
restricted class for which the existence of a pure Nash equilibrium is
guaranteed. Finally, our results extend to wider classes of threshold sym-
metric games where players are unable to determine the exact number
of players playing a certain action.

1 Introduction

In recent years, the computational complexity of game-theoretic solution con-
cepts, both in cooperative and non-cooperative game theory, has come under
increasing scrutiny. A major obstacle when considering non-cooperative normal-
form games with an unbounded number of players is the exponential size of the
naive representation of payoffs. More precisely, a general game in normal-form
with n players and k actions per player comprises n · kn numbers. Computa-
tional statements over such large objects are somewhat dubious for two reasons,
cf. [10]. First, the value of efficient, i.e., polynomial-time, algorithms for problems

� This material is based upon work supported by the Deutsche Forschungsgemeinschaft
under grant BR 2312/3-1.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 212–223, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Symmetries and the Complexity of Pure Nash Equilibrium 213

whose input size is already exponential in a natural parameter (the number of
players) is questionable. Secondly, most, if not all, “natural” multi-player games
will hardly be given as multi-dimensional payoff matrices but rather in terms
of some more intuitive (and compact) representation. A natural and straight-
forward way to simplify the representation of multi-player games is to somehow
formalize similarities between players. As a matter of fact, symmetric games
have been studied since the early days of game theory, see, e.g., [14, 4, 8]. The
established definition states that a game is symmetric if the payoff functions of
all players are identical and symmetric in the other players’ actions, i.e., it is
impossible to distinguish between the other players [15, 7]. When explicitly look-
ing at multi-player games, there are other conceivable notions of symmetry. For
instance, dropping the requirement of identical payoff functions yields a more
general class of multi-player games that still admits a compact representation.

In this paper, we define four classes of succinctly representable symmetric
multi-player games and study the computational complexity of finding pure Nash
equilibria in games belonging to these classes. It turns out that in all four classes
equilibria can be found efficiently if only a constant number of actions is available
to each player. Moreover, identical payoff functions for all players further reduce
the computational complexity associated with pure Nash equilibria, an effect
that is nullified as soon as there are two different payoff functions. Anonymity,
i.e., the fact that a player cannot (or does not) distinguish himself from the other
players, does not seem to offer any computational advantage. Finally, computing
equilibria becomes intractable in all four classes of symmetric games when the
number of actions grows linearly in the number of players.

Unlike Nash equilibria in mixed strategies, i.e., probabilistic combinations of
actions, pure Nash equilibria are not guaranteed to exist. They nevertheless form
an interesting subset of equilibria for three reasons. First, requiring randomiza-
tion in order to reach a stable outcome has been criticized on various grounds. In
multi-player games, where action probabilities in equilibrium can be irrational,
randomization is particularly questionable. Secondly, the computation of pure
equilibria, if they exist, may be tractable in cases where that of mixed ones is
not. Finally, pure equilibria as computational objects are usually much smaller
in size than mixed ones.

To date, most research on symmetries in games has concentrated on games
that require identical payoff functions for all players, called strongly symmetric
games in this paper. One of the reasons for this may have been the strong fo-
cus of the early research in non-cooperative game theory on two-player games,
where weak symmetry as defined in this paper does not impose any restric-
tions. An early result by Nash implies the existence of a symmetric equilib-
rium in (again, strongly) symmetric games [8].1 Papadimitriou and Roughgarden
capitalize on this existence result and show that a Nash equilibrium of a
strongly symmetric game with n players and k actions can be computed in P if
k = O(log n/ log log n) [10]. While their related results about the tractability of

1 More precisely, Nash shows that every game has an equilibrium that respects all
symmetries of the game.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

214 F. Brandt, F. Fischer, and M. Holzer

correlated equilibrium do not rely on identical payoff functions and hence apply
to weakly symmetric games as well, this is not the case for their results about
Nash equilibria. The aforementioned existence of symmetric Nash equilibria does
neither extend to pure equilibria, nor does it hold for the classes of weakly sym-
metric and weakly anonymous games. For example, Figure 1 on page 217 shows
a weakly symmetric game without a symmetric equilibrium.

We assume the reader to be familiar with the well-known chain of complexity
classes AC0 ⊂ TC0 ⊆ L ⊆ P ⊆ NP, and the notions of constant-depth and
polynomial-time reducibility, see, e.g., [1, 5, 9]. AC0 is the class of problems
solvable by uniform constant-depth Boolean circuits with unbounded fan-in. TC0

adds so-called threshold gates which output true if and only if the number of
true inputs exceeds a certain threshold. L is the class of problems solvable by
deterministic Turing machines using only logarithmic space. P and NP are the
classes of problems that can be solved in polynomial time by deterministic and
nondeterministic Turing machines, respectively. Furthermore, #P is the class
of counting problems associated with polynomially balanced polynomial-time
decidable relations. The class PLS of polynomial local search problems and an
appropriate notion of reduction [6] will be introduced as needed.

The remainder of this paper is organized as follows: In the following section,
we formally introduce four different notions of symmetry in strategic games
and the solution concept of Nash equilibrium. The main results of this paper,
including efficient algorithms as well as hardness results for all four symmetry
classes, are given in Section 3. In Section 4, we provide additional results for a
more general notion of symmetry. Section 5 concludes the paper and points to
some open problems. The proofs to all theorems will be given in the full version
of this paper.

2 Preliminaries

In this section, we formally define essential game-theoretic concepts, introduce
four notions of symmetry in strategic multi-player games, and state several facts
concerning these notions.

2.1 Strategic Games

An accepted way to model situations of strategic interaction is by means of a
normal-form game, see, e.g., [7].

Definition 1 (normal-form game). A game in normal-form is a tuple Γ =
(N, (Ai)i∈N , (pi)i∈N) where N is a set of players and for each player i ∈ N , Ai

is a nonempty set of actions available to player i, and pi : (�i∈NAi) → R is a
function mapping each action profile, i.e., combination of actions for all players,
to a real-valued payoff for player i.

A combination of actions s ∈ �i∈NAi is also called a profile of pure strategies.
This concept can be generalized to mixed strategy profiles s ∈ S = �i∈NSi,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Symmetries and the Complexity of Pure Nash Equilibrium 215

by letting players randomize over their actions. We have Si denote the set of
probability distributions over player i’s actions, or mixed strategies available to
player i. We further write n = |N | for the number of players in a game, si for
the ith strategy in profile s, and s−i for the vector of all strategies in s but si.

2.2 Symmetries in Multi-player Games

A central aspect of our view on symmetry is the inability to distinguish between
other players. We will therefore mainly talk about games where the set of ac-
tions is the same for all players and write A = A1 = · · · = An and k = |A|,
respectively, to denote this set and its cardinality. In the following definition,
we formally introduce four classes of symmetric games by considering two addi-
tional characteristics: identical payoff functions for all players and the ability to
distinguish oneself from the other players.

Definition 2 (symmetries). Let Γ = (N, (Ai)i∈N , (pi)i∈N) be a normal-form
game, A a set of actions such that Ai = A for all i ∈ N . For any permutation
π : N → N of the set of players, let π′ : AN → AN be the permutation of the set
of action profiles given by π′((a1, . . . , an)) = (aπ(1), . . . , aπ(n)). Γ is called

– weakly symmetric if pi(s) = pi(π′(s)) for all s ∈ AN , i ∈ N and all π with
π(i) = i,

– strongly symmetric if pi(s) = pj(π′(s)) for all s ∈ AN , i, j ∈ N and all π
with π(j) = i,

– weakly anonymous if pi(s) = pi(π′(s)) for all s ∈ AN , i ∈ N , and
– strongly anonymous if pi(s) = pj(π′(s)) for all s ∈ AN , i, j ∈ N .

It is easily verified that the class of strongly anonymous games are strictly con-
tained in the intersection of strongly symmetric and weakly anonymous games,
and that both of these are again strictly contained in the class of weakly sym-
metric games.

In the above definition, π′ is an automorphism on the set of action profiles that
preserves the number of players that play a particular action. Thus, an intuitive
and convenient way to describe a symmetric game is in terms of the equivalence
classes induced by π′, or by the number of players playing the different actions
in each of these classes. We use a notion introduced by Parikh in the context of
context-free languages [11].

Definition 3 (commutative image). Let Γ = (N, (Ai)i∈N , (pi)i∈N) be a
normal-form game, A a set of actions such that Ai = A for all i ∈ N . Then, the
commutative image of an action profile s ∈ AN is defined as #(s) = (#(a, s))a∈A

where #(a, s) = |{ i ∈ N | si = a }|.

That is, #(a, s) denotes the number of players playing action a in action pro-
file s, and #(s) is the vector of these numbers for all the different actions. This
definition naturally extends to action profiles for subsets of the players.

The most basic way to specify a normal-form game is by means of a multi-
dimensional table of payoffs for every single action profile. Certain games are

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

216 F. Brandt, F. Fischer, and M. Holzer

succinctly representable simply because the payoff is the same for action profiles
that are equivalent according to some equivalence relation, and needs only be
specified once. For symmetric games, this equivalence relation is given by the
number of players playing each action. The representation that lists the payoffs
for every equivalence class will henceforth be referred to as the naive representa-
tion of a symmetric game. There are

(
n+k−1

k−1

)
distributions of n players among k

actions. Since these are exactly the equivalence classes of the set of action profiles
for n − 1 players under the commutative image, we have the following.

Fact 1. A weakly symmetric game can be represented using at most n·k·
(

n+k−2
k−1

)

numbers, and is representable using space polynomial in n if and only if k is
bounded by a constant.

On the other hand, the size of the game becomes super-polynomial in n even for
the slightest growth of k. Nevertheless, space polynomial in n may still suffice
to encode certain classes of symmetric games with a larger number of actions,
using some kind of succinct representation.

2.3 Nash Equilibrium

One of the best-known solution concepts for strategic games is Nash equilib-
rium [8]. In a Nash equilibrium, no player is able to increase his payoff by uni-
laterally changing his strategy.

Definition 4 (Nash equilibrium). A strategy profile s ∈ S is called a Nash
equilibrium if for each player i ∈ N and each strategy s′i ∈ Si,

pi(s) ≥ pi((s−i, s
′
i)).

A Nash equilibrium is called pure if it is a pure strategy profile.

For general games, simply checking the equilibrium condition for each action
profile takes time polynomial in the size of their natural representation, i.e., a
table of payoffs for the different action profiles. Using a succinct representation
for games where the size of the natural representation grows exponentially in
the number of players, which is the case for k ≥ 2 already, quickly renders the
problem NP-complete, see, e.g., [3, 13]. On the other hand, the polynomial size
even of the naive representation for symmetric games with a constant number
of actions might suggest that finding pure Nash equilibria is easy by a similar
argument as above. This reasoning is flawed, however, since a single entry in the
payoff table corresponds to an exponential number of action profiles, and it is
very well possible that only a single one of them is a Nash equilibrium while
all others are not. The weakly symmetric game given in Figure 1 illustrates this
fact.

3 Solving Symmetric Games

In this section, we analyze the computational complexity associated with pure
Nash equilibrium in symmetric games with a constant number of actions and a
growing number of actions, respectively.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Symmetries and the Complexity of Pure Nash Equilibrium 217

(0, 1, 1) (0,0,1)

(1,1,1) (0, 0, 0)

(0,1,0) (0, 0, 0)

(0, 1, 0) (1, 0, 1)

Fig. 1. A weakly symmetric game with a unique, non-symmetric Nash equilibrium at
the action profile with payoff (1, 1, 1). Players 1, 2, and 3 choose rows, columns, and
tables, respectively. Outcomes are denoted as a vector of payoffs for the three players.
Action profiles with the same commutative image as the equilibrium are shaded.

3.1 Games with a Constant Number of Actions

As we have noted earlier, the potential hardness of finding pure Nash equilibria
in games with succinct representations stems from the fact that the number of
action profiles that are candidates for being an equilibrium is exponential in the
size of the representation of the game. While weakly symmetric games certainly
satisfy this property, the following theorem states that the problem of deciding
whether such a game possesses a pure Nash equilibrium is nevertheless tractable.
The proof works by looking for a pure Nash equilibrium s with #(s) = x. Fixing
a particular x, we first compute numbers wC of players for which each C ⊆ A
is the set of potential pure best responses in x (i.e., every a ∈ C is a best
response for player i in some strategy profile s with #(s) = x). We then check
whether these numbers are consistent with x. The latter problem can be reduced
to a directed integer flow problem with lower bounds in a network with fixed
structure. Detailed proofs of this and all other theorems will be given in the full
version of this paper.

Theorem 1. Deciding whether a weakly symmetric or weakly anonymous game
with a constant number of actions has a pure Nash equilibrium is TC0-complete
under constant-depth reducibility. Hardness holds even if there is only a constant
number of payoffs and only two different payoff functions.

In contrast to weakly symmetric games, if s is a Nash equilibrium of a strongly
symmetric game, so are all t satisfying #(t) = #(s). This is due to the fact that
the payoff functions of all players, and thus the situation of all players playing
the same action a ∈ A, is identical, as would be the situation of any other player
exchanging actions with someone playing a. We exploit this property to show
that deciding the existence of a Nash equilibrium in strongly symmetric games
with a constant number of actions is strictly easier than for weakly symmetric
or weakly anonymous games.

Theorem 2. The problem of deciding whether a strongly symmetric game with
a constant number of actions has a pure Nash equilibrium is in AC0.

As we have already said, strongly anonymous games always possess a pure Nash
equilibrium, namely an action profile with maximum payoff for every player. We
proceed to show that such an action profile, which has the additional property
of maximizing social welfare, i.e., the sum of payoffs for all players, can be found
in AC0.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

218 F. Brandt, F. Fischer, and M. Holzer

Theorem 3. The problem of finding a social-welfare-maximizing pure Nash
equilibrium of a strongly anonymous game with a constant number of actions
is in AC0.

3.2 Games with a Growing Number of Actions

To prove the theorems we have seen so far we could exploit the fact that for
constant k the naive representation of a symmetric game, i.e., in terms of payoff
tables, is computationally equivalent to any kind of polynomially computable
payoff function because the latter representation can be transformed into the
former by means of a log-space reduction. This is no longer the case for un-
bounded k, because the size of the naive representation grows exponentially
in n. However, a succinct representation of the payoff function, e.g., a Boolean
circuit, might exist for certain classes of games.

We will now show that deciding the existence of a pure Nash equilibrium
in weakly and strongly symmetric and weakly anonymous games becomes NP-
hard if the number of actions grows in n. For strongly anonymous games, which
always have a Nash equilibrium, the associated search problem will be shown to
be PLS-hard. In the following, we will only consider games where (i) the payoff
to all players can be computed in polynomial time and (ii) a single player can
check in polynomial time whether a particular action is a best response to a
given action profile for the other players. Under this assumption, which is quite
reasonable for “natural” games, we will be able to obtain membership in NP
or PLS. All hardness results hold irrespective of this assumption. While there
certainly are meaningful games with an exponential number of players or actions,
the complexity in this case mainly stems from the sheer size of the game rather
than the actual problem of finding a Nash equilibrium.

If the number of actions in a game is large enough, they can in principle be
used to distinguish the players playing them. We will exploit this fact to prove
the following theorem by a reduction from satisfiability of a Boolean circuit to
the problem of deciding the existence of a pure Nash equilibrium in a special
class of games. For a particular circuit C with inputs M = {1, . . . , m}, we define
a game Γ with players N = M and actions A = { a0

i , a
1
i | i ∈ M }. An action

profile s of Γ where #(a0
i , s)+#(a1

i , s) = 1 for all i ∈ M , i.e., one where exactly
one action of each pair a0

i , a1
i is played, directly corresponds to an assignment c

of C, the ith bit ci of this assignment being j ∈ {0, 1} if aj
i is played. We can

thus distinguish between the action profiles of Γ corresponding to a satisfying
assignment of C, those corresponding to a non-satisfying assignment, and those
not corresponding to an assignment at all.

Theorem 4. Deciding whether a weakly anonymous or strongly symmetric
game has a pure Nash equilibrium is NP-complete, even if the number of ac-
tions is linear in the number of players and there is only a constant number of
different payoffs.

By the previous theorem and by the inclusion relationships between the different
classes of symmetric games, we also have the following.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Symmetries and the Complexity of Pure Nash Equilibrium 219

Corollary 1. Deciding whether a weakly symmetric game has a pure Nash equi-
librium is NP-complete, even if the number of actions is linear in the number of
players and there is only a constant number of different payoffs.

The proof of Theorem 4 works by mapping satisfying assignments of a Boolean
circuit to a certain number of pure Nash equilibria of a strategic game. Using
this property, we can show that counting the number of Nash equilibria in the
above classes of games is hard.

Corollary 2. For weakly symmetric, weakly anonymous, and strongly symmet-
ric games, counting the number of pure Nash equilibria is #P-complete, even
if the number of actions is linear in the number of players and there is only a
constant number of different payoffs.

As we have already outlined above, every strongly anonymous game possesses a
pure Nash equilibrium. Other games with this property, and the complexity of
finding an equilibrium in this case, have recently been investigated by Fabrikant
et al. [2]. Theorem 3 states that finding even a social-welfare-maximizing Nash
equilibrium of a strongly anonymous game is very easy as long as the number of
actions is bounded by a constant. If now the number of actions is growing but
polynomial in the size of the input, an assumption we have made throughout the
paper, we can start at an arbitrary action profile and check in polynomial time
whether some player can change his action to increase the (common) payoff. If
this is not the case, we have found an equilibrium. Otherwise, we can repeat the
process for the new profile, resulting in a procedure called best-response dynamics
in game theory. Since the payoff strictly increases in every step, we are guaranteed
to find a Nash equilibrium in polynomial time if the number of different payoffs
is polynomial. Conversely, we will show that, given a strongly anonymous game
with a growing number of actions and an exponential number of different payoffs,
finding a Nash equilibrium is at least as hard as finding a locally optimal solution
to an NP-hard optimization problem. For this, we formally introduce the class of
search problems for which a solution is guaranteed to exist by a local optimality
argument.

Definition 5 (local search, PLS). A local search problem is given by (i) a
set I of instances, (ii) a set F(x) of feasible solutions for each x ∈ I, (iii) an
integer measure μ(S, x) for each S ∈ F(x), and (iv) a set N (S, x) of neighboring
solutions for each S ∈ F(x). A solution is locally optimal if it does not have a
strictly better neighbor, i.e., one with a higher or lower measure depending on
the kind of optimization problem.

A local search problem is in the class PLS of polynomial local search prob-
lems [6] if for every x ∈ I there exist polynomial time algorithms for (i) com-
puting an initial feasible solution in F(x), (ii) computing the measure μ(S, x)
of a solution S ∈ F , and (iii) determining that S is locally optimal or finding a
better solution in N (S, x).

A problem P in PLS is PLS-reducible to another problem Q in PLS if there
exist polynomial time computable functions Φ and Ψ mapping (i) instances x
of P to instances Φ(x) of Q and (ii) solutions S of an instance Φ(x) of Q to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

220 F. Brandt, F. Fischer, and M. Holzer

solutions Ψ(S, x) of the corresponding instance x of P such that locally optimal
solutions are mapped to locally optimal solutions. A PLS reduction from P to Q
is called tight [12] if for any instance x of P there exists a set R ⊆ F(Φ(x))
with the following properties:

1. R contains all local optima of Φ(x).
2. For every p ∈ F(x), a solution q ∈ R satisfying Ψ(q, x) = p can be computed

in polynomial time.
3. Consider q0, q1, . . . , q� ∈ F(Φ(x)) such that q0, q� ∈ R, qi �∈ R for all 0 <

i < �, qi+1 ∈ N (qi, Φ(x)) for all i < �, and μ(qi) > μ(qj) if i > j. Let
p = Ψ(q0, x), p′ = Ψ(q�, x). Then, either p = p′ or p′ ∈ N (p, x).

The proof of the following theorem works along similar lines as that of Theorem 4
to give a reduction from the PLS-complete problem FLIP.

Theorem 5. The problem of finding a pure Nash equilibrium in a strongly
anonymous game is PLS-complete, even if the number of actions is linear in
the number of players.

Implicit in the definition of PLS is a standard algorithm for finding a locally
optimal solution for a given input x ∈ I: start with an arbitrary feasible so-
lution S ∈ F(x) and repeatedly find a strictly better neighbor until a locally
optimal solution T ∈ F(x) has been found. The standard algorithm problem can
be phrased as follows: given x, find the locally optimal solution T output by
the standard algorithm on input x. By the proof of Theorem 5, we can draw
some additional conclusions about the worst-case running time of the standard
algorithm and about the hardness of the standard algorithm problem.

Corollary 3. The standard algorithm for finding Nash equilibria in strongly
anonymous games has an exponential worst-case running time. The standard
algorithm problem is NP-hard.

By a slight modification of the proof of Theorem 5, PLS-completeness, exponen-
tial worst-case running time of the standard algorithm, and NP-hardness of the
standard algorithm problem can also be shown for general, i.e., not necessarily
symmetric, common payoff games with k = 2. This fact nicely illustrates the
influence of symmetry on the hardness of finding (or deciding the existence of)
a Nash equilibrium.

4 Threshold Symmetries

In order to extend the basic concept of symmetry as the indistinguishability of
players, we will now consider games where the players cannot even observe the
exact number of players playing a certain action, but only whether this number
reaches certain thresholds. Let Γ = (N, (Ai)i∈N , (pi)i∈N) be a normal-form game
and A a set of actions such that Ai = A for all i ∈ N . For T ⊆ {1, . . . , n}, let
∼T ⊆ AN × AN be defined as follows: s ∼T t if for all a ∈ A and all x ∈ T ,
#(a, s) < x if and only if #(a, t) < x. The relation ∼T naturally extends to
action profiles for subsets of N . The following is easily verified.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Symmetries and the Complexity of Pure Nash Equilibrium 221

Fact 2. For any T ⊆ {1, . . . , n}, ∼T is an equivalence relation on the set AM

of action profiles for players M ⊆ N .

Based on ∼T , we can give a more general version of Definition 2.

Definition 6 (threshold symmetry). Let Γ = (N, (Ai)i∈N , (pi)i∈N) be a
normal-form game, A a set of actions such that Ai = A for all i ∈ N . Let
T ⊆ {1, . . . , n}. Γ is called

– weakly T -symmetric if pi(s) = pi(t) for all i ∈ N and all s, t ∈ AN with
si = ti and s−i ∼T t−i,

– strongly T -symmetric if pi(s) = pj(t) for all i, j ∈ N and all s, t ∈ AN with
si = tj and s−i ∼T t−j,

– weakly T -anonymous if pi(s) = pi(t) for all i ∈ N and all s, t ∈ AN with
s ∼T t, and

– strongly T -anonymous if pi(s) = pj(t) for all i, j ∈ N and all s, t ∈ AN with
s ∼T t.

For T = {1, . . . , n}, these classes are equivalent to those of Definition 2. More-
over, we obtain Boolean symmetry, where payoffs only depend on the support
of an action profile, i.e., the actions that are played by at least one player, for
T = {1}. In general, we call a game threshold symmetric for one of the above
classes if it is T -symmetric for some T and the corresponding class.

Obviously, the number of payoffs that need to be written down for each player
to specify a general weakly T -symmetric game is exactly the number of equiva-
lence classes of ∼T for action profiles of the other players.

Fact 3. A weakly T -symmetric game can be represented using at most n · k ·
|An−1/ ∼T | numbers, where X/ ∼ denotes the quotient set of set X by equiva-
lence relation ∼. For Boolean weak symmetry, the number of equivalence classes
equals the number of k-bit binary numbers where at least one bit is 1, i.e., 2k −1.
More generally, there cannot be more than (|T | + 1)k equivalence classes if |T |
is bounded by a constant (since for every action, the number of players playing
this action must be between two thresholds), while for T = {n} there are as few
as k + 1. Hence, any T -symmetric game with constant |T | is representable using
space polynomial in n if k = O(log n).

Using a similar construction as in the proof of Theorem 1, the existence of a pure
Nash equilibrium in a threshold symmetric game can be decided in polynomial
time if the number of actions grows at most logarithmically in the number of
players.

Theorem 6. For threshold symmetric games with k = O(log n) and a constant
number of thresholds, deciding the existence of a pure Nash equilibrium is in P.

On the other hand, all the games used in the proofs of Theorems 4 and 5 are
Boolean. Action profiles corresponding to an assignment of a circuit trivially
satisfy the conditions of Definition 6, since each action is played by either zero
or one players. For all other action profiles, the conditions have to be checked
individually. We thus have the following corollary.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

222 F. Brandt, F. Fischer, and M. Holzer

Table 1. Complexity of pure Nash equilibrium in symmetric games

k = O(1) k = O(n)
weakly symmetric TC0-complete

NP-completeweakly anonymous
strongly symmetric in AC0

strongly anonymous PLS-complete

Corollary 4. Deciding the existence of a pure Nash equilibrium is NP-complete
for threshold weakly symmetric, threshold weakly anonymous, and threshold
strongly symmetric games, even if thresholds are Boolean, the number of ac-
tions is linear in the number of players, and there is only a constant number
of different payoffs. For the same classes, counting the number of pure Nash
equilibria is #P-complete.

For threshold strongly anonymous games, finding a pure Nash equilibrium is
PLS-complete, even if thresholds are Boolean and the number of actions is linear
in the number of players.

5 Conclusion and Future Work

In this paper, we have introduced four notions of symmetry in strategic multi-
player games and investigated the computational complexity of finding pure
Nash equilibria. This problem has been shown tractable for games with a con-
stant number of actions, but intractable if the number of actions is linear in the
number of players. It is worth noting that, for games with a constant number
of actions, the Nash equilibrium problem happens to lie in NC1 for all types
of symmetry and is thus open to parallel computation. For games in which the
number of actions grows slowly, e.g., logarithmically, in the number of players,
the complexity remains open. The main results are summarized in Table 1.

In future work, it would further be interesting to investigate the notion of
a player type to obtain efficient algorithms for more general classes of games.
For example, games where indistinguishability holds only for players of the same
type can be obtained by restricting Definition 2 to permutations that map play-
ers from a certain subset to players of the same set. We conjecture that using
the algorithm of Theorem 1, pure Nash equilibria can still be found in polyno-
mial time if the number of player types is constant. A different notion, such that
players of the same type have identical payoff functions, does not seem to pro-
vide additional structure. As we have already shown, only two different payoff
functions suffice to make the Nash equilibrium problem TC0-hard for a constant
number of actions and NP-hard for a growing number of actions. More generally,
one might investigate games where payoffs are invariant under particular sets of
permutations. For example, von Neumann and Morgenstern regard the number
of permutations under which the payoffs of a game are invariant as a measure
for the degree of symmetry [15]. The question is in how far the computational
complexity of solving a game depends on the degree of symmetry.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Symmetries and the Complexity of Pure Nash Equilibrium 223

Acknowledgements. We thank Jan Johannsen for enlightening discussions
on circuit complexity and local search and Rob Powers for introducing the first
author to the ambiguity of symmetry in games. We further thank the anonymous
reviewers for useful comments.

References

1. A. K. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility. SIAM
Journal on Computing, 13(2):423–439, 1984.

2. A. Fabrikant, C. H. Papadimitriou, and K. Talwar. The complexity of pure Nash
equilibria. In Proceedings of the 36th Annual ACM Symposium on the Theory of
Computing (STOC), pages 604–612. ACM Press, 2004.

3. F. Fischer, M. Holzer, and S. Katzenbeisser. The influence of neighbourhood and
choice on the complexity of finding pure Nash equilibria. Information Processing
Letters, 99(6):239–245, 2006.

4. D. Gale, H. W. Kuhn, and A. W. Tucker. On symmetric games. In H. W. Kuhn
and A. W. Tucker, editors, Contributions to the Theory of Games, volume 1, pages
81–87. Princeton University Press, 1950.

5. D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume A, chapter 2, pages 67–161. Elsevier,
1990.

6. D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search?
Journal of Computer and System Sciences, 37:79–100, 1988.

7. R. D. Luce and H. Raiffa. Games and Decisions: Introduction and Critical Survey.
Wiley, 1957.

8. J. F. Nash. Non-cooperative games. Annals of Mathematics, 54(2):286–295, 1951.
9. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

10. C. H. Papadimitriou and T. Roughgarden. Computing equilibria in multi-player
games. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 82–91. SIAM, 2005.

11. R. Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.
12. A. A. Schäffer and M. Yannakakis. Simple local search problems that are hard to

solve. SIAM Journal on Computing, 20(1):56–87, 1991.
13. G. Schoenebeck and S. Vadhan. The computational complexity of Nash equilibria

in concisely represented games. In Proceedings of the 7th ACM Conference on
Electronic Commerce (ACM-EC). ACM Press, 2006.

14. J. von Neumann. Zur Theorie der Gesellschaftspiele. Mathematische Annalen, 100:
295–320, 1928.

15. J. von Neumann and O. Morgenstern. The Theory of Games and Economic Be-
havior. Princeton University Press, 2nd edition, 1947.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Computing Representations of Matroids of
Bounded Branch-Width

Daniel Král’�

Institute for Theoretical Computer Science (ITI),
Faculty of Mathematics and Physics, Charles University,

Malostranské náměst́ı 25,
118 00 Prague, Czech Republic

kral@kam.mff.cuni.cz

Abstract. For every k ≥ 1 and two finite fields F and F
′, we design

a polynomial-time algorithm that given a matroid M of branch-width
at most k represented over F decides whether M is representable over
F

′ and if so, it computes a representation of M over F
′. The algorithm

also counts the number of non-isomorphic representations of M over F
′.

Moreover, it can be modified to list all such non-isomorphic representa-
tions.

1 Introduction

Algorithmic matroid theory has recently attracted a lot of attention of re-
searchers in particular in the area of algorithm for matroids with small width.
Matroids are combinatorial structures that generalize the notions of graphs and
linear independence of vectors. Similarly, as in the case of graphs, some hard
problems (that cannot be solved in polynomial time for general matroids) can
be efficiently solved for (representable) matroids of small width. Though the no-
tion of tree-width generalizes to matroids [15], a more natural width parameter
for matroids is the notion of branch-width. Let us postpone a formal definition
of this width parameter to Section 2 and just mention at this point that the
branch-width of matroids is linearly related with their tree-width, in particular,
the branch-width of a graphic matroid is bounded by twice the tree-width of the
corresponding graph.

The results obtained so far suggest that the algorithmic results generalize
from graphs to matroids representable over finite fields but not to matroids that
can be represented only over an infinite field or which are not representable at
all. This is consistent with the structural results on matroids [6, 7, 8, 9, 10] that
also suggest that matroids representable over finite fields are close to graphic
matroids (and thus graphs) but general matroids can be quite different.

In the global perspective, one would like to be able for a matroid (with or with-
out its representation) to decide whether it has bounded branch-width, whether
� Institute for Theoretical Computer Science (ITI) is supported as project 1M0545 by

Czech Ministry of Education.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 224–235, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Computing Representations of Matroids of Bounded Branch-Width 225

it is representable over a particular finite field and to compute one or several of its
(possibly more) representations. In particular, the following problems naturally
arise in this area:

1. Is it possible for k ≥ 1 to decide in polynomial time whether the branch-
width of a given matroid M is bounded by k and, if so, to find a branch-
decomposition of M of small branch-width?

2. Is it possible for a field F and k ≥ 1 to decide in polynomial time whether a
matroid of branch-width at most k is representable over F?

3. What problems (otherwise intractable) are polynomial-time solvable for ma-
troids representable over finite fields that have bounded branch-width?

Another issue is how the matroid M is presented to an algorithm: it can be given
as represented by an oracle, which is simply a function that for a given subset of
elements of M determines whether it is independent, or by a representation over
a field F which can be either finite or infinite (see Section 2 for more details on
matroid representations). The complexity of algorithms for matroids is measured
in terms of the number n of elements of an input matroid.

Let us now survey the status of the problems mentioned in the previous para-
graph. The first problem is solved in a very satisfactory way: Oum and Sey-
mour [16, 17] constructed for fixed k ≥ 1 an O(n4)-algorithm which computes a
branch decomposition of an oracle-given matroid with width at most 3k − 1 or
certifies that the branch-width of the input matroid is greater than k. Moreover,
for fixed k ≥ 1 and a fixed finite field F, it can be tested in polynomial-time
whether the branch-width of a matroid represented over F is at most k [12] and
an optimal branch decomposition can be constructed [18]. Since it is possible to
compute a good branch decomposition (if it exists) of any matroid in polynomial
time, we can always assume that the matroid is presented with its decomposition.

Let us now focus on the status of the second problem. Seymour [22] showed
that there is no sub-exponential algorithm to test whether an oracle-given ma-
troid is binary, i.e., representable over GF(2). His result straightforwardly gen-
eralizes to any finite field and holds even if the input matroid has bounded
branch-width. On the other hand, if the matroid is represented over rationals
Q, it can be tested in polynomial-time whether it is binary [21]. Since it is well-
known that if a matroid is binary, it has a unique representation over GF(2)
and it is easy to find such a representation, we conclude that the answer to the
second question is positive for F = GF(2) even if the branch-width of M is not
restricted. On the other, for every finite field F �= GF(2), GF(3) and every k ≥ 3,
the problem is NP-hard [14] for matroids with branch-width at most k.

A general answer to the third problem for matroids represented over finite
fields was given in [11, 13]: all MSOL-definable1 properties can be tested in
polynomial time for matroids represented over a fixed finite field with bounded
branch-width. These result match analogous results [1, 3, 4, 5] for graphs.

A property that a given matroid is representable over a fixed finite field can
be defined in MSOL. Hence, the answer to the first half of the second ques-
tion is positive if the matroid is given by its representation over a finite field
1 MSOL stands for monadic second-order logic.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

226 D. Král’

(note that the answer is negative if the matroid is given by an oracle or by its
representation over Q as we explained earlier). Another way how to see that a
representatibility over a fixed finite field F can be solved in polynomial time for
matroids represented over another fixed finite field F

′ is to realize that the class
of matroids representable over F is minor-closed and the matroids representable
over F

′ with bounded branch-width are well-quasi-ordered [10]. This yields an
O(n3)-algorithm for testing whether a matroid of bounded branch-width which
is represented over a finite field F

′ can be represented over another finite field
F. Also note that it is still open whether for every finite field F, there exists
a finite set of forbidden minors for F-representatibility (a famous conjecture of
Rota [20] asserts this to be the case) and thus the assertion of having bounded
branch-width is essential.

The aim of this note is to provide a more complete answer for the other half
of the second question in case that the input matroid is represented over a finite
field F. In particular, we show that there is a polynomial-time algorithm that
for fixed finite fields F and F

′ and a fixed integer k ≥ 1 decides whether a given
matroid M represented over F with branch-width at most k can be represented
over F

′ and if so, it finds its representation over F
′. Our algorithm can be modified

to compute the number of non-isomorphic representations of M over F
′ and to

list all such non-isomorphic representations.
The algorithm is divided into two steps—in the first step, we compute certain

auxiliary matrices that fully determine the structure of a given matroid. This is
the only place where a representation of M over F is used. In the second step,
we use the matrices capturing the structure of M to verify the existence and
in the positive case to construct a representation of M over F

′. Our algorithm
similarly as algorithms of [11,12,13] implicitly involves rooted configurations as
introduced in [10], and “structural finiteness” on cuts represented in the branch
decomposition.

2 Definitions

In this section, we formally introduce all the notions used throughout the paper.
We also refer the reader to the monographs [19, 23] for further exposition on
matroids. A matroid M is a pair (X, I) where I ⊆ 2X . The elements of X are
called elements of M and the sets contained in I are called independent sets.
The set I is required to contain the empty set, to be hereditary, i.e., for every
X ′ ∈ I, I must contain all subsets of X ′, and to satisfy the exchange axiom: if
X ′ and X ′′ are two sets of I such that |X ′| < |X ′′|, then there exists x ∈ X ′′

such that X ′ ∪ {x} ∈ I. The rank of a set X ′, denoted by rank X ′, is the size of
the largest independent subset of X ′ (it can be inferred from the exchange axiom
that all inclusion-wise maximal independent subsets of M have the same size).
In the rest, we often understand matroids as sets of elements equipped with a
property of “being independent”. Consistently with this view, |M| denotes the
number of elements of M and rank M denotes the size of the largest independent
set of M.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Computing Representations of Matroids of Bounded Branch-Width 227

Let us now introduce further notation related to matroids. If X ′ is a set
of elements of M, then M \ X ′ is the matroid obtained from M by deleting
the elements of X ′, i.e., the elements of M \ X ′ are those not contained in
X ′ and a subset X ′′ of such elements is independent in the matroid M \ X ′

if and only if X ′′ is independent in M. The matroid M/X ′ which is obtained
by contraction of X ′ is the following matroid: the elements of M/X ′ are those
not contained in X ′ and a subset X ′′ of such elements is independent in M/X ′

if and only if rank X ′ ∪ X ′′ = rank X ′ + rank X ′′. Finally, a loop of M is
an element e of M such that rank {e} = 0 and a bridge is an element such
that rank M \ {e} = rank M − 1. A separation (A, B) is a partition of the
elements of M into two disjoint sets and a separation is called a k-separation if
rank A + rank B = rank M + k (note that in some literature such a separation
is called a (k + 1)-separation).

As mentioned in Introduction, matroids generalize the notion of linear inde-
pendence of vectors. If F is a (finite or infinite) field, a mapping ϕ : M → F

d from
the element set of M to a d-dimensional vector space over F is a representation
of M if a set {e1, . . . , ek} of elements of M is independent in M if and only if
ϕ(e1), . . . , ϕ(ek) are linearly independent vectors in F

d. For a subset X of the
elements of M, ϕ(X) denotes the linear subspace of F

d generated by the images
of the elements of X . In particular, dim ϕ(X) = rank X . Two representations
ϕ1 and ϕ2 of M are isomorphic if there exists an isomorphism ψ of vector spaces
ϕ1(M) and ϕ2(M) such that ψ(ϕ1(e)) is a non-zero multiple of ϕ2(e) for every
element e of M. Next, we introduce additional notation for vector spaces over a
field F. If U1 and U2 are two linear subspaces of a vector space over F, U1 ∩U2 is
the linear space formed by all the vectors lying in both U1 and U2, and U1 ∪ U2

is the linear space formed by all the linear combinations of the vectors of U1 and
U2, i.e., the linear hull of U1 ∪ U2. Formally, v ∈ U1 ∪ U2 if and only if there
exists α1, α2 and v1 ∈ U1 and v2 ∈ U2 such that v = α1v1 + α2v2.

A branch decomposition of a matroid M is a tree with all inner vertices of
degree three and the leaves one-to-one corresponding to the elements of M. Each
edge e of the tree naturally splits the elements of M into two disjoint subsets
Xe

1 and Xe
2 (the elements of each subset correspond to the leaves of the two

subtrees obtained by removing e). The width of the branch decomposition is the
maximum over all e of rank Xe

1 + rank Xe
2 − rank M. If ϕ is a representation

of M over a field F, the width of the branch decomposition is also equal to
the maximum of dim ϕ(Xe

1) ∩ ϕ(Xe
2) taken over all the edges e of the tree. The

branch-width of a matroid M is the smallest width of a branch decomposition
of M.

In our considerations, it turns out to be useful to consider rooted branch
decompositions of M. A rooted branch decomposition of M is obtained from a
branch decomposition of M by subdividing one of the edges of the tree and
introducing a new vertex of degree one adjacent to the obtained vertex of degree
two. We now root the tree at the new vertex of degree one and add a new
element e0 to M. The element e0 is a loop and is associated with the root of the
tree. Throughout the paper, the vertices of the tree forming the rooted branch

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

228 D. Král’

decomposition are referred as nodes, nodes of degree one different from the root
are leaves and those of degree three are inner nodes. Note that each inner node
has two children and a unique parent. Let us remark that adding a loop to M
does not change any properties of M that we are interested in, in particular,
the branch-width of M is preserved as well as its representatibility over any
particular field F.

3 Structural Observations

In this section, we establish some properties of matroids of bounded branch-
width that can be represented over a finite field. We start with a lemma that
has been implicitly used in most of algorithms for matroids of bounded branch-
width, e.g., in those computing the Tutte polynomial. Since the proof of this
lemma is a simple application of basic linear algebra facts, we decided to leave
it to the reader.

Lemma 1. Let (A, B) be a separation of a matroid M and let ϕ : M → F
d,

d = rank M, be a representation of M over a field F. Let further C be the linear
subspace ϕ(A) ∩ ϕ(B). For every subsets A′ ⊆ A and B′ ⊆ B, the following
holds:

rank A′ ∪ B′ = (dim ϕ(A′) − dim ϕ(A′) ∩ C) +
(dim ϕ(B′) − dim ϕ(B′) ∩ C) +
dim (ϕ(A′) ∩ C) ∪ (ϕ(B′) ∩ C) .

If (A, B) is a separation of a matroid M, we say that subsets A1, A2 ⊆ A are
B-indistinguishable if for every B′ ⊆ B,

rank B′ ∪ A1 − rank A1 = rank B′ ∪ A2 − rank A2 .

Note that subsets A1 and A2 are B-indistinguishable if and only if the identity
on the elements of B is an isomorphism between the matroids (M/A1)\ (A\A1)
and (M/A2)\(A\A2). Also note that the relation of being B-indistinguishable is
an equivalence relation and thus we can talk about classes of B-indistinguishable
subsets of A.

If the matroid M has a representation ϕ : M → F
d over a field F, Lemma 1

says that two subsets A1 and A2 are B-indistinguishable if for every subset
B′ ⊆ B,

dim (ϕ(B′) ∩ C) ∪ (ϕ(A1) ∩ C) = dim (ϕ(B′) ∩ C) ∪ (ϕ(A2) ∩ C)

where C = ϕ(A) ∩ ϕ(B). In particular, if ϕ(A1) ∩ C = ϕ(A2) ∩ C, the subsets
A1 and A2 are B-indistinguishable, but the converse need not be true. If |F| is
a finite field and C has dimension k, i.e., (A, B) is a k-separation, there are at
most |F|k2

possible linear subspaces ϕ(Ai) ∩ C and thus the following holds:

Lemma 2. Let (A, B) be a k-separation of a matroid M that is representable
over a finite field F. There are at most |F|k2

B-indistinguishable subsets of A.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Computing Representations of Matroids of Bounded Branch-Width 229

4 Algorithm

In this section, we describe our algorithm for computing representations ma-
troids with bounded branch-width over finite fields. The input of the algorithm
consists of a rooted branch decomposition with width k of a matroid M to-
gether with its representation ϕ : M → F

d, d = rank M, over a finite field F.
We assume throughout this section that M contains no loops except for the one
corresponding to the root of the decomposition. This clearly does not decrease
the generality of our results since the loops are always represented by the zero
vectors.

As the first step, we compute for each inner node u0 of the decomposition
an auxiliary matrix Mu0 that determines the mutual relation between two parts
of the matroid corresponding to the subtrees of the left and right child of u0.
We explain the structure of the matrices Mu0 in more detail in Subsection 4.1
where we also discuss how they are constructed. In Subsection 4.2, we show how
to obtain a representation of M over any finite field F

′ (if it exists) with the
aid of the constructed matrices. Throughout this section, we write Au0 for the
set of the elements of M corresponding to the leaves of the subtree of u0 in the
decomposition and Bu0 for the elements of M not contained in this subtree.

4.1 Computing Auxiliary Matrices

Fix an inner node u0 of the decomposition and let u1 and u2 be its two children.
The rows of the matrix Mu0 correspond to the classes of Bu1-indistinguishable
subsets of Au1 and the columns correspond to the classes of Bu2-indistinguishable
subsets of Au2 . If A′

1 ⊆ Au1 and A′
2 ⊆ Au2 , the entry in the row corresponding

to A′
1 and the column corresponding to A′

2 is labeled with

rank A′
1 + rank A′

2 − rank A′
1 ∪ A′

2 (1)

By the definitions of Bu1-indistinguishability and Bu2 -indistinguishability, the
value of (1) does not depend on the choice of subsets A′

1 and A′
2 in the two

classes. The entry corresponding to A′
1 and A′

2 is further associated with the
row/column of the matrix Mu′ , where u′ is the parent of u, that corresponds to
the class of Bu0-indistinguishable sets that contains A′

1 ∪ A′
2. Note that a single

row/column of Mu′ can be (and usually is) associated with several different
entries of Mu0 .

We now turn our attention to the actual computation of the matrices Mu0 . We
first find for every node u0 the list LA

u0
of all linear subspaces of ϕ(Au0)∩ϕ(Bu0)

that are equal to ϕ(A′)∩ϕ(Bu0) for some A′ ⊆ Au0 . Let us describe this process
in more detail. If u0 is a leaf of the decomposition and the element e associated
with it is a bridge of M, the list LA

u0
consists only of the zero subspace. If e

is not a bridge, then the list LA
u0

consists of the zero subspace and the linear
subspace ϕ({e}). If u0 is an inner node with two children u1 and u2, then the
list LA

u0
is formed by all the linear subspaces equal to U1 ∪ U2 ∩ϕ(Bu0) for some

U1 ∈ LA
u1

and U2 ∈ LA
u2

. Since the lists LA
u0

are formed by linear subspaces of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

230 D. Král’

a k-dimensional linear space over F, |LA
u0

| ≤ |F|k2
. Hence, the sizes of the lists

LA
u0

are bounded by a function of F and k only and we only perform a constant
number of operations with linear subspaces over F for each node u0 (if the field
F and the branch-width k are fixed). Analogously, we can find the lists LB

u0
of

all linear subspaces equal to ϕ(B′) ∩ ϕ(Au0) for some B′ ⊆ Bu0 .
Our next goal is to recognize Bu0 -indistinguishable sets. By the definition of

Bu0 -indistinguishability, if two different subsets A1, A2 ⊆ Au0 correspond to the
same set of LA

u0
, i.e.,

ϕ(A1) ∩ ϕ(Bu0) = ϕ(A2) ∩ ϕ(Bu0) = U ∈ LA
u0

,

then the sets A1 and A2 are Bu0 -indistinguishable. The converse need not be
true. Still, we can now efficiently test whether two sets A1 and A2 are Bu0 -
indistinguishable as follows: let U1 = ϕ(A1) ∩ ϕ(Bu0) ∈ LA

u0
and U2 = ϕ(A2) ∩

ϕ(Bu0) ∈ LA
u0

. The sets A1 and A2 are Bu0 -indistinguishable if and only if

dim U1 ∪ U = dim U2 ∪ U (2)

for every U ∈ LB
u0

. This condition can be efficiently tested since the size of LB
u0

is
bounded by a function of F and k. Hence, we can partition the list LA

u0
into classes

of linear subspaces that correspond to Bu0 -indistinguishable sets. Formally, two
linear subspaces U1 and U2 of LA

u0
are Bu0-equivalent if (2) holds for every

U ∈ LB
u0

. Note that two subsets A1 and A2 of Au0 are Bu0 -indistinguishable if
and only if the linear subspaces ϕ(A1) ∩ ϕ(Bu0) and ϕ(A2) ∩ ϕ(Bu0) are Bu0 -
equivalent. Clearly, partitioning the lists LA

u0
into classes of Bu0 -equivalent linear

subspaces requires only a constant number of operations with linear subspaces
over F at each node of the tree (under the assumption that F and k are fixed).

We are now ready to construct the matrix Mu0 . Let u1 and u2 be the two
children of u0 and u′ the parent of u0. The rows and columns of Mu0 correspond
to the classes of Bu1 -equivalent linear subspaces of LA

u1
and Bu2 -equivalent linear

subspaces of LA
u2

. The entry of Mu0 corresponding to the class containing U1 ∈
LA

u1
and the class containing U2 ∈ LA

u2
, is labelled with dim U1 + dim U2 −

dim U1 ∪ U2 and is associated with the row/column of Mu′ that corresponds to
the class containing the linear subspaces of LA

u0
that are Bu0 -equivalent U1 ∪ U2∩

Bu0 . Clearly, computing each of the matrices Mu0 requires a constant number
of operations with linear subspaces over F at each node of the decomposition.
Hence, we conclude that the entire process described in this subsection requires
time at most O(n4) where n is the number of elements of M if we assume that
we can decide the equality of m-dimensional linear spaces over F and compute
their unions and intersections in time O(m3) (note that the rank of M cannot
exceed n).

4.2 Computing Representations

Throughout this subsection, we assume that the matrices Mu0 as described in
Subsection 4.1 have been constructed. We would like to point out that we do

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Computing Representations of Matroids of Bounded Branch-Width 231

not use the original representation of M over F at all throughout this subsection
and use only the auxiliary matrices to construct a representation of M over a
given finite field F

′.
Let us consider a node u0 of the branch decomposition and let �u0 be the

number of the classes of Bu0 -indistinguishable subsets of Au0 . Note that �u0

is also the number of rows/columns of Mu′ where u′ is the parent of u0 that
correspond to Au0 . Let further ku0 = rank Au0 + rank Bu0 − rank M.

If ϕ is a representation of M \ Bu0 in a vector space over F
′ and U is its

ku0 -dimensional linear subspace, the type of a representation ϕ with respect to
U is an �u0-tuple [L1, . . . , L�u0

] where Li is the set of all linear subspaces of
U equal to ϕ(A′) ∩ U for some A′ ⊆ Au0 contained in the i-th class of Bu0 -
indistinguishable subsets of Au0 , i = 1, . . . , �u0 . The representation ϕ is proper
with respect to U if the sets Li are mutually disjoint and the dimensions of linear
subspaces contained in the same Li are equal. Observe that a restriction of any
representation ϕ of M to Au0 with U = ϕ(Au0) ∩ ϕ(Bu0) is proper with respect
to U .

Finally, let us refine the notion of isomorphic representations. Two represen-
tations ϕ1 and ϕ2 of M \ Bu0 are strongly isomorphic with respect to U if they
have the same type [L1, . . . , L�u0

] and there exists an isomorphism ψ of the lin-
ear spaces ϕ1(Au0) and ϕ2(Au0) such that ψ(ϕ1(e)) is a non-zero multiple of
ϕ2(e) for each element e of Au0 . Note that if ϕ1 and ϕ2 are strongly isomorphic,
then they are also isomorphic representations of M\Bu0, but the converse need
not be true since the strong isomorphism requires that they agree on the linear
subspaces of U corresponding to Bu0-indistinguishable subsets of Au0 .

Let us fix a linear space Uu0 over F
′ of dimension ku0 for each inner node u0.

Our next step is to compute the number of strongly non-isomorphic represen-
tations of M \ B0 with respect to Uu0 for each type [L1, . . . , L�u0

] of a possible
proper representation. The linear subspaces Uu0 are fixed in order to allow us to
be able to define the type of a representation and are not the actual subspaces
ϕ(Au0)∩ϕ(Bu0) in the representation of M that we aim to construct. The num-
bers of representations of M \ Bu0 are computed in the bottom to top fashion
in the branch decomposition as we explain further in more detail.

Handling leaves of the decomposition. We first handle the case that u0 is
a leaf of the branch decomposition. Let e be the element of M corresponding to
u0. If e is a bridge of M, then the empty set and {e} are Bu0 -indistinguishable,
ku0 = 0 and �u0 = 1. Hence, there is a single possible type [L1] of a proper
representation of M\Bu0 in which L1 is the set containing only the zero subspace
of Uu0 and there is a single (up to a strong isomorphism) representation of
M \ Bu0 of this type—any representation of e with a non-zero vector over F

′.
If e is not a bridge of M, then ku0 = 1 and the empty set and {e} are

Bu0 -indistinguishable. Hence, �u0 = 2 and there is again a single possible type
[L1, L2] of a proper representation of M \ Bu0 in which L1 is the set containing
only the zero subspace of Uu0 and L2 the set containing the linear space Uu0 .
Clearly, there is a single (up to a strong isomorphism) representation of M\Bu0

of this type.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

232 D. Král’

Handling inner nodes of the decomposition. Assume now that u0 is an
inner node of the branch decomposition and let u1 and u2 be its two children. We
now have to merge the representations of M \ Bu1 and M \ Bu2 (this is closely
related to rooted configurations as described in [10]). Let U be a superspace
of Uu0 of dimension ku1 + ku2 (note that ku0 ≤ ku1 + ku2 by submodularity
of the rank function). For all possible identifications of Uu1 and Uu2 with ku1 -
dimensional and ku2 -dimensional linear subspaces of U , we proceed as described
in what follows.

We say that two types [L′
1, . . . , L′

�u1
] and [L′′

1 , . . . , L′′
�u2

] are weakly compatible
if for every U ′ ∈ L′

i′ , 1 ≤ i′ ≤ �u1 and U ′′ ∈ L′′
i′′ , 1 ≤ i′′ ≤ �u2 ,

dim U ′ + dim U ′′ − dim U ′ ∪ U ′′

is equal to the entry in the i′-th row and i′′-th column of Mu0 . Finally, let Li

for i = 1, . . . , �u0 be the set of all linear subspaces equal to

U ′ ∪ U ′′ ∩ Uu0 for some U ′ ∈ L′
i′ , 1 ≤ i′ ≤ �u1 and U ′′ ∈ L′′

i′′ , 1 ≤ i′′ ≤ �u2

such that the entry at the the i′-th row and i′′-th column of Mu0 is associated
with the i-th row/column of the matrix of the parent of u0. If all the sets Li,
1 ≤ i ≤ �u0 , are disjoint and the subspaces contained in each Li have the same
dimension, we say that the types [L′

1, . . . , L′
�u1

] and [L′′
1 , . . . , L′′

�u2
] are strongly

compatible.
Observe now that representations of M\Bu1 and M\Bu2 form a representa-

tion of M \ Bu0 if and only if their types are weakly compatible. The condition
of being strongly compatible is then equivalent to having a proper type with
respect to Bu0 . The sum of the products of the numbers of strongly compatible
representations of M \ Bu1 and M \ Bu2 with the same resulting (proper) type
[L1, . . . , Lu0] yields after normalization (we have to divide by the number of iso-
morphic identifications of Uu1 and Uu2 with linear subspaces of U that fix Uu0)
the number of strongly non-isomorphic representations of M\Bu0 with the type
[L1, . . . , Lu0].

Handling the root of the decomposition. It remains to glue our observa-
tions together. Since the root ur of the branch decomposition corresponds to a
loop, Uur is the zero space and there is a single type of representations of M\Bur

associated with ur. This type is [L1] where L1 is a set consisting of the zero sub-
space only. The number of strongly non-isomorphic representations of M \ Bur

of this type is the number of non-isomorphic representations of M. Hence, we
have just presented an algorithm for counting the number of non-isomorphic
representations of M over F

′. Note that the number of mappings from M to an
n-dimensional vector space over F

′, where n is the number of elements of M, is at
most |F ′|n2

and thus all the numbers involved in the computation are O(n2)-bit
numbers. In particular, our algorithm has running time polynomial in n.

If we just want to decide the existence of the representation over F
′, we

can replace the numbers of strongly non-isomorphic representations in our
computation with flags indicating their existence. In this way, we obtain an

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Computing Representations of Matroids of Bounded Branch-Width 233

O(n)-algorithm for computing the existence of a representation of M over F
′

(note that F
′ and the maximal branch-width of M are fixed) from the matrices

Mu0 .
Finally, it is easy to modify the presented algorithm to either output one

possible representation of M over F
′ (keeping the running time polynomial in

n = |M|) or to output all such non-isomorphic representations (in this case,
each representation can be output in time polynomial in |M|, but the running
time of the algorithm need not be polynomial in |M| since the number of such
representations could be exponential in |M|).

4.3 Finale

The results of Subsections 4.1 and 4.2 can be combined to the following:

Theorem 1. For every k ≥ 1 and two finite fields F and F
′, there exists a

polynomial-time algorithm that for a given matroid M of branch-width at most
k that is represented over the field F decides whether M can be represented over
F

′ and if so, it computes one of its representation over F
′. The algorithm also

counts the number of non-isomorphic representations of M over F
′. Moreover, it

can be modified to list all such non-isomorphic representations (in time linearly
dependant on the number of such representations).

Note that we have just presented an algorithm that shows that the problem
of deciding and computing a representation over a finite field F

′ of matroid of
branch-width at most k that is represented over F is fixed parameter tractable
with respect to the parameters k, |F| and |F′|. Let us also remark that our
algorithm can be modified to match the results of Bagan [2], i.e., the algorithm
first utilizes a preprocessing polynomial time and it then outputs each possible
representation of M over F

′ with delay linear in the size of the representation.

5 Concluding Remarks

We would like to address a possibility of extending our algorithm to matroids
that are not represented over a finite field. As discussed in Introduction, it is
NP-hard to decide whether a matroid M represented over Q with branch-width
three can be represented over a finite field F, F �= GF(2), GF(3). A possible
extension would thus be to assume that M is guaranteed to be representable
over F:

Problem 1. For every k ≥ 1 and every finite field F, design a polynomial-time
algorithm that for a matroid M represented over Q of branch-width at most k
that is representable over F finds a representation of M over F.

In Problem 1, one can also consider matroids that are given by an oracle,
however, in this setting, we do not believe that such an algorithm could be
designed.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

234 D. Král’

Let us now have a closer look at Problem 1. The algorithm that we presented
in Section 4 has two separate parts. In the first part, we compute auxiliary
matrices Mu0 and in the second part, we just decide the existence and eventu-
ally compute the representations just using these matrices. Hence, we need the
representation of M over a finite field only in the first part of our algorithm.

In order to compute the auxiliary matrices, we need to be able to recognize for
a k-separation (A, B) of M which subsets A1, A2 ⊆ A are B-indistinguishable.
This test is equivalent to testing whether the matroids (M/A1) \ (A \ A1) and
(M/A2) \ (A \ A2) are isomorphic and the identity on the elements of B is an
isomorphism between them. We ask the reader to verify that the entire algorithm
presented in Subsection 4.1 works even if each class of Bu0-equivalent linear
subspaces is represented by a single subset A′ ⊆ A which is Bu0-indistinguishable
from all subsets of A corresponding to Bu0 -equivalent linear subspaces.

Hence, the algorithm that we designed can be turned into a polynomial-time
algorithm for computing representations of a matroid over a finite field from its
representation over Q if the following algorithm exists:

Problem 2. For every k ≥ 1 and every finite field F, design a polynomial-time
algorithm that decides whether a bijection between the elements of two matroids
M1 and M2 represented over Q, such that the branch-widths of M1 and M2

are at most k and both M1 and M2 are representable over F, is an isomorphism
between M1 and M2.

Note that if we dismiss the assumption that M1 and M2 are representable over
F, the algorithm described in Problem 2 does not exist. If it existed, this would
imply that testing representatibility over a fixed finite field F can be solved in
a polynomial time for matroids of bounded branch-width that are represented
over Q which is an NP-hard problem.

Acknowledgement

The author would like to thank Jǐŕı Fiala for fruitful discussions on algorithmic
matroid theory, in particular on efficient computation of the Tutte polynomial,
at various occasions in the spring of 2002, Ondřej Pangrác for sharing his insights
into matroid theory, and Till Tantau for his computational complexity remarks.
The author also thanks the anonymous referees for their helpful comments that
helped to improve the clarity of presentation of the results in this note.

References

1. S. Arnborg, J. Lagergren, D. Seese: Easy problems for tree decomposable graphs,
J. Algorithms 12 (1991), 308–340.

2. G. Bagan: MSO queries on tree decomposable structures are computable with linear
delay, in: Proc. of CSL 2006, LNCS vol. 4207, Springer, Berlin, 2006, 167–181

3. H. Bodlaender: Dynamic programming algorithms on graphs with bounded tree-
width, in: Proc. of ICALP 1988, LNCS. vol. 317, Springer, Berlin, 1988, 105–119.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Computing Representations of Matroids of Bounded Branch-Width 235

4. B. Courcelle: The monadic second-order logic of graph I. Recognizable sets of finite
graphs, Information and Computation 85 (1990), 12–75.

5. B. Courcelle: The expression of graph properties and graph transformations in
monadic second-order logic, in: G. Rozenberg (ed.), Handbook of graph grammars
and computing by graph transformations, Vol. 1: Foundations, World Scientific,
1997, 313–400.

6. J. Geelen, B. Gerards, G. Whittle: Tangles, tree decomposition and grids in ma-
troids, preprint.

7. J. Geelen, B. Gerards, G. Whittle: On Rota’s Conjecture and excluded minors
containing large projective geometries, J. Combin. Theory Ser. B 96(3) (2006),
405–425.

8. J. Geelen, B. Gerards, G. Whittle: Excluding a planar graph from GF(q)-
representable matroids, manuscript.

9. J. Geelen, B. Gerards, G. Whittle: Inequivalent representations of matroids I: An
overview, in preparation.

10. J. Geelen, B. Gerards, G. Whittle: Branch-width and well-quasi-ordering in ma-
troids and graphs, J. Combin. Theory Ser. B 84 (2002), 270–290.

11. P. Hliněný: On matroid properties definable in the MSO logic, in: Proc. of MFCS
2003, LNCS vol. 2747, Springer, Berlin, 2003, 470–479.

12. P. Hliněný: A parametrized algorithm for matroid branch-width, SIAM J. Com-
puting 35(2) (2005), 259–277.

13. P. Hliněný: Branch-width, parse trees and monadic second-order logic for matroids,
J. Combin. Theory Ser. B 96 (2006), 325–351.

14. P. Hliněný: On matroid representatibility and minor problems, in: Proc. of MFCS
2006, LNCS vol. 4192, Springer, Berlin, 2006, 505–516.

15. P. Hliněný, G. Whittle: Matroid tree-width, to appear in European Journal on
Combinatorics.

16. S. Oum, P. Seymour: Certifying large branch-width, in: Proc. of SODA 2006, SIAM,
2006, 810–813.

17. S. Oum, P. Seymour: Approximating clique-width and branch-width, to appear in
J. Combin. Theory, Ser. B.

18. S. Oum, P. Seymour: Testing branch-width, to appear in J. Combin. Theory, Ser. B.
19. J. G. Oxley: Matroid theory, Oxford University Press, 1992.
20. G.-C. Rota: Combinatorial theory, old and new, Actes du Congrès International

de Mathématiciens, vol. 3, Gauthier-Villars, Paris, 1970, 229–233.
21. P. Seymour: Decomposition of regular matroids, J. Combin. Theory Ser. B 28

(1980), 305–359.
22. P. Seymour: Recognizing graphic matroids, Combinatorica 1 (1981), 75–78.
23. K. Truemper: Matroid decomposition, Academic Press, 1992.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Characterizing Minimal Interval Completions
Towards Better Understanding of Profile and

Pathwidth (Extended Abstract)�

Pinar Heggernes1, Karol Suchan2,3, Ioan Todinca2, and Yngve Villanger1

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
pinar@ii.uib.no, yngvev@ii.uib.no

2 LIFO, Université d’Orleans, PB 6759, F-45067 Orleans Cedex 2, France
todinca@lifo.univ-orleans.fr, suchan@lifo.univ-orleans.fr

3 Faculty of Applied Mathematics, AGH - University of Science and Technology,
Krakow, Poland

Abstract. Minimal interval completions of graphs are central in un-
derstanding two important and widely studied graph parameters: profile
and pathwidth. Such understanding seems necessary to be able to attack
the problem of computing these parameters. An interval completion of
a given graph is an interval supergraph of it on the same vertex set, ob-
tained by adding edges. If no subset of the added edges can be removed
without destroying the interval property, we call it a minimal interval
completion. In this paper, we give the first characterization of minimal
interval completions. We present a polynomial time algorithm, for decid-
ing whether a given interval completion of an arbitrary graph is minimal.
If the interval completion is not minimal the algorithm can be used to
extract a minimal interval completion that is a subgraph of the given
interval completion.

1 Introduction

Interval graphs have a long list of applications in areas like biology, chemistry,
and archeology, and many NP-complete graph problems are solvable in polyno-
mial time on interval graphs [11]. Specifically, the problem of adding edges to a
given input graph to obtain an interval graph, called an interval completion of
the input graph, arises in Physical Mapping of DNA [10], Orthogonal Packing
[6], and Sparse Matrix Computations [9]. For several applications, it is desirable
to embed a given graph into an interval graph by adding as few edges as possible.
Such an embedding is called a minimum interval completion, and the number
of edges it contains is called the profile of the input graph. Another well known
variant is to find an interval completion with the smallest possible maximum
clique, which corresponds to the widely used graph parameter pathwidth. Many
NP-complete graph problems are solvable on graphs whose pathwidth is bounded
by a constant [1], thus it is an important task to compute the pathwidth of an
input graph.
� This work is supported by the Research Council of Norway.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 236–247, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Characterizing Minimal Interval Completions 237

Both profile and pathwidth are well known and well studied graph parameters,
and naturally both are NP-hard to compute [8,12]. There has been extensive
work on computing these parameters for restricted graph classes [5], but our
insight on how to handle arbitrary graphs is limited. One good news is that
for both problems, the solutions can be found within the set of minimal interval
completions. This is our main motivation to study minimal interval completions.

A minimal interval completion of an arbitrary graph can be computed in poly-
nomial time [13], but still the knowledge about minimal interval completions is
limited. Until now it was not known how to decide whether a given interval com-
pletion is minimal. In this paper, we solve exactly this problem. We characterize
minimal interval completions, which enables us to answer whether or not a given
interval completion is minimal, in polynomial time.1

Two other important and widely studied graph parameters are minimum fill
and treewidth, and these are defined analogously to profile and pathwidth, by
simply exchanging interval graphs with chordal graphs. As a comparison, min-
imal chordal completions were studied and a polynomial time algorithm for
computing them was given already in 1976 [18], even before it was proved that
minimum fill is NP-hard to compute [19]. Minimal chordal completions have
several quite different characterizations, and some of these have proved useful
in trying to compute minimum fill and treewidth [4,15], either by approxima-
tion algorithms [16] or by exact (fast) exponential time algorithms [7]. Following
the history of chordal completions, our hope is that understanding and charac-
terizing minimal interval completions will eventually lead to improved exact or
approximation algorithms for computing profile and pathwidth.

In addition to characterizing minimal interval completions, we present the first
polynomial time algorithm for making any given interval completion minimal by
removing edges. Thus another impact of our results is that any output graph
from a heuristic algorithm for computing profile or pathwidth can be enhanced
by using our algorithm, which will produce a minimal interval completion that is
a subgraph of the given initial interval completion. For practical purposes, such
approaches have proved useful in connection with treewidth [2] and minimum
fill [17], and can now be applied to pathwidth and profile by our results. Due to
space limitations all proofs and some lemmas that only have applications in the
proofs are excluded in this version; for a full version, see [14].

2 Definitions and Terminology

We work with simple and undirected graphs G = (V, E), with vertex set V (G) =
V and edge set E(G) = E, and we let n = |V |, m = |E|. For a given vertex
set X ⊂ V , G[X] denotes the subgraph of G induced by the vertices in X . For
simplicity, we will use G−x instead of G[V \{x}], and G−X instead of G[V \X].
Similarly, when we remove a single edge xy or a set of edges D from G, we will
use G − xy and G − D instead of the correct formal notation. A vertex set X is
1 A polynomial time algorithm for computing minimal interval completions does not

necessarily imply that this question can be answered in polynomial time.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

238 P. Heggernes et al.

a clique if G[X] is a complete graph, and a maximal clique if no superset of X
is a clique. The set of all maximal cliques of G is denoted by K(G).

The set of neighbors of a vertex x is denoted by NG(x) = {y | xy ∈ E}, and
the closed neighborhood is NG[x] = NG(x) ∪ {x}. For a vertex set X , similarly,
NG(X) = {y /∈ X | xy ∈ E and x ∈ X} and NG[X] = NG(X) ∪ X . A vertex x
is called simplicial if NG(x) is a clique in G.

Definition 1 ([1]). A path-decomposition of an arbitrary graph G = (V, E)
is a sequence P = (X1, X2, . . . , Xr) of subsets of V , called bags, such that the
following three conditions are satisfied.

1. Each vertex x appears in some bag.
2. For every edge xy ∈ E there is a bag containing both x and y.
3. For every vertex x ∈ V , the bags containing x appear consecutively in P .

Such a path decomposition can be constructed for any graph G, for example
by taking a unique bag containing V (G). The width of a decomposition is the
maximum size of a bag, minus one, and the pathwidth of a graph is the minimum
width over all possible path decomposition.

For interval graphs, special path decompositions exist such that each bag is
a maximal clique, and the largest maximal clique gives the pathwidth. A graph
is an interval graph if intervals can be associated to its vertices such that two
vertices are adjacent if and only if their corresponding intervals overlap. Let us
define more formally the special kind of path decompositions mentioned:

Definition 2. A clique-path of a graph G is a permutation P = (K1, . . . , Kp)
of the maximal cliques of G, such that the maximal cliques containing x appear
consecutively in P , for every vertex x of G.

Theorem 1 ([11]). A graph G is an interval graph if and only if if has a clique-
path.

In a given clique-path P = (K1, . . . , Kp), the maximal cliques K1 and Kp are
called leaf cliques or end cliques. An interval graph has at most n maximal
cliques.

Since the vertices of every maximal clique must appear together in some bag
in every path decomposition, a clique-path is an optimal path decomposition for
an interval graph, with respect to pathwidth. Interval graphs can be recognized,
and their clique-paths can be computed, in linear time [3]. If a clique-path of an
interval graph is given, then its interval representation can be easily obtained
by assigning to each vertex x the interval consisting of the maximal cliques that
contain x.

To any path-decomposition P of G, we can naturally associate an interval
supergraph of G. Let PathFill(G, P) be the graph obtained by adding edges to
G so that each bag of P becomes a clique. It is straight forward to verify that
PathFill(G, P) is an interval supergraph of G for every path-decomposition P .
In addition, we can obtain a clique-path of PathFill(G, P) by simply removing

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Characterizing Minimal Interval Completions 239

bags of P that are not maximal cliques of PathFill(G, P) or that are duplicates
of other bags.

An interval supergraph H = (V, E ∪ F) of a given graph G = (V, E), with
E ∩ F = ∅, is called an interval completion. The set F is called the set of fill
edges of H . If there is no proper subset F ′ ⊂ F such that (V, E ∪ F ′) is an
interval graph, then H is called a minimal interval completion of G. With a
weaker constraint, we say that H is a quasi-minimal interval completion of G
if no single fill edge can be removed from H without destroying interval graph
property. Simple examples exist to show that quasi-minimal interval completions
are not necessarily minimal.

Finally, we would like to mention that clique-paths are useful also in con-
nection with vertex separators. A vertex set S ⊂ V is a separator if G − S is
disconnected. The set of connected components of G−S is denoted by C(G−S).
Given two vertices u and v, S is a u, v-separator if u and v belong to different
connected components of G−S. A u, v-separator S is minimal if no proper sub-
set of S is a u, v-separator. In general, S is a minimal separator of G if there
exist two vertices u and v in G such that S is a minimal u, v-separator. For a
minimal separator S of G and C, a connected component of G − S such that
NG(C) = S, we say that the set B = S ∪ C is a block.

Lemma 1 (see e.g. [11]). Let H be an interval graph and let P = (K1, . . . , Kp)
be any clique path of H. A set of vertices S is a minimal separator of H if and
only if S is the intersection of two maximal cliques of H that are consecutive
in P .

Assume that we are given an interval completion H of an arbitrary graph G.
We want to find out whether H is a minimal interval completion. First we can
start by trying to remove every single fill edge and test, in linear time, whether
the remaining graph is an interval graph. After a number of steps (which is at
most quadratic in the number of edges of H) we reach a quasi-minimal interval
completion. Thus from now on, we assume that we are given a quasi-minimal
interval completion H of G, and we want to decide whether it is minimal. If it is
not minimal, we know that there is one that is minimal which is a strict subgraph
of H , and before we finally find a minimal one, we might explore several strict
interval subgraphs of H that are not minimal.

Let us give different names to these different interval completions of G. Let
H2 be the given quasi-minimal interval completion of G. If it is not minimal, let
H0 be a minimal interval completion of G that is a subgraph of H2. Since we
are only given G and H2, and we do not know H0, we will probably discover
several intermediate graphs H1, where H1 is an interval completion of G that
is a strict subgraph of H2. Hence we have the following relations between these
graphs: E(G) ⊂ E(H0) ⊆ E(H1) ⊂ E(H2). The first subset relation is proper
because we can always check before start whether or not G is already an interval
graph, in linear time. Even though we do not know H0, we know that H2 is a
non-minimal and quasi-minimal interval completion of H0. In the next section,
we give useful properties about two interval graphs that have this relationship.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

240 P. Heggernes et al.

3 Folding Interval Graphs

Let H0 be any interval graph (which is the unknown minimal interval completion
of some given graph G in our case), and let H2 be a non-minimal interval com-
pletion of H0 (we think of it as being the given non-minimal but quasi-minimal
interval completion of G). In this section we give an algorithm that computes
any such completion H2, given H0. Of course, in our problem, we are given H2

and not H0. However, this algorithm provides the necessary understanding that
will enable us to do the opposite operation; namely, computing H0, given G
and H2.

Every permutation Q of the maximal cliques of H0 defines an interval comple-
tion H2 of H0, as described by Algorithm FillFolding in Figure 1. Note that
Q(i) denotes the maximal clique in the ith position of Q.

Definition 3. Let H be any interval graph, let Q be any permutation of the set
of maximal cliques of H. We say that (H, Q) is a folding of H by Q.

Algorithm FillFolding
Input: H0 and Q;
Output: An interval completion H2 of H0;

P2 = Q;
for each vertex x of H0 do

s = min{i | x ∈ Q(i)};
t = max{i | x ∈ Q(i)};
for j = s + 1 to t − 1 do

P2(j) = P2(j) ∪ {x};
end-for
H2 = PathFill(H0, P2);

Fig. 1. The FillFolding algorithm

Lemma 2. Given a folding (H0, Q) of H0, the graph H2 = FillFolding(H0, Q)
is an interval completion of H0.

The graph H2 defined by a folding of H0 is not necessarily a quasi-minimal inter-
val completion of H0. Nevertheless, by showing that any edge of E(H2) \ E(H0)
is contained in at least to maximal cliques of H2, and carefull analysis of the
relation ship between maximal cliques of H0 and H2 the following relationship
between quasi-minimal interval completions and foldings are obtained.

Theorem 2. Let H2 be a quasi-minimal interval completion of an interval graph
H0. Then there exists a folding (H0, Q) of H0 such that H2 = FillFolding(H0, Q).

Given only the arbitrary graph G and a quasi-minimal interval completion H2,
we know by Theorem 2 that H2 is defined by a folding of H0, a minimal interval
completion of G. In general it is difficult to find directly the graph H0. Instead,
we can analyze a sequence of interval completions that are between H0 and
H2, where passing from one step to another needs a folding of a much more
constrained nature than the general one – that we call reduced folding.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Characterizing Minimal Interval Completions 241

Definition 4. Let (H0, Q0) be a folding. A clique K ∈ Q is called a pivot in
(H0, Q0) if there is a clique-path P0 of H0 where both cliques just next to K (one
to the left, the other to the right) in P0 are on the same side of K in Q0.

Definition 5. A folding (H, Q) is said to be reduced if every pivot contains a
simplicial vertex of H.

Theorem 3. Let H2 be a quasi-minimal interval completion of H0 defined by a
folding (H0, Q0). Then there is an interval graph H1 such that H0 ⊆ H1 ⊂ H2,
and H2 = FillFolding(H1, Q1) for some reduced folding (H1, Q1) of H1.

Lemma 3. Let H2 = FillFolding(H1, Q1) for a reduced folding (H1, Q1).
Then every pivot of (H1, Q1) contains a simplicial vertex in H2, thus the pivot
is contained in exactly one maximal clique of H2.

4 Unfolding

Let H2 be a quasi-minimal interval completion with a clique-path P2, obtained
by the Algorithm FillFolding on (H0, Q). For the analysis presented in this
section, we need to fix a clique-path P0 of H0. The reason for this is that with the
general definition of a pivot, a pivot K may have different neighbors in distinct
clique-paths of H0. So it may happen that the neighbors of K in P0 appear at
the same side of K in the permutation Q, whereas the neighbors of K in P ′

0,
another clique-path of H0, appear at different sides of K in Q. For the ease of
argument, from now on we should think of a folding as a triple.

Definition 6. Let H be an interval graph, P be a clique-path of H and Q be a
permutation of its maximal cliques. The triple (H, Q, P) is a folding.

The definition of a pivot becomes more constrained.

Definition 7. Let (H0, Q, P0) be a folding. A clique K ∈ Q is called a pivot in
(H0, Q, P0) if both cliques just next to K in P0 are on the same side of K in Q0.

Definition 8. Let H0 be an interval graph with a clique-path P0. Let (H0, Q, P0)
be a reduced folding. If Q contains just one pivot then it is called a 1-folding. If
Q contains exactly 2 pivots, none of which is at an end of Q, then it is called a
2-folding.

We show in this section that if the quasi-minimal completion H2 of G is not
minimal, there is an interval graph H1 containing G and strictly contained in
H2 such that H2 is obtained by a reduced 1-folding or a reduced 2-folding of H1.
In the next section we give a polynomial algorithm constructing H1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

242 P. Heggernes et al.

�� ���

��
���

��
�

�
�

�

�
�

�

�
�

�

�

�
�

� � � � �� ����

�
�

�
�

�
� �

�

�

K K

K l Kr K l Kr

Fig. 2. Each circle represents a maximal clique in the input interval graph H0, and
each line provides the information that the two maximal cliques are consecutive in the
clique path P0 of H0. The foldings are defined by the order of the maximal cliques
from left to right. Arrows indicate in which direction a sub path is rotated around the
pivot when we open a fold. The upper part demonstrates how to unfold when one of
the extremal maximal cliques is a pivot, like K in this case. The lower part shows how
to unfold when Kr is the rightmost pivot in Q and Kl is the leftmost pivot in Q that
appears after Kr in P0.

Let us sketch the main idea before getting into the technical details. The graph
H2 is equal to FillFolding(H0, Q, P0) for some smaller interval completion H0

of G and some folding of H0. Informally, we will slightly unfold (H0, Q, P0):

Definition 9. A folding (H0, Q
′, P0) is an unfolding of (H0, Q, P0) if the set of

pivots of (H0, Q
′, P0) is strictly contained into the set of pivots of (H0, Q, P0) and,

moreover, the graph FillFolding(HO, Q′) is a (not necessarily strict) subgraph
of FillFolding(H0, Q).

We will construct an unfolding (H0, Q
′, P0), having one or two pivots less than

(H0, Q, P0). Then H2 is obtained by a 1 or 2-folding of H1=FillFolding(H0, Q
′).

Theorem 4. Let H2 be a quasi-minimal, but not minimal interval completion
of an arbitrary graph G. Then there exits a reduced folding (H1, Q1, P1), with
one (1-folding) or two (2-folding) pivots, with E(G) ⊆ E(H1) ⊂ E(H2) and such
that H2 = FillFolding(H1, Q1).

Observation 1. Let (H0, Q0, P0) be a reduced 1-folding and let H2 =
FillFolding(H0, Q0). Then its pivot is a maximal clique in H2. Moreover, there
is a clique path of H2 such that this pivot corresponds to a leaf.

The next results state that, if H2 is a quasi-minimal interval completion of G and
comes from a 1 or 2-folding of some H1, there is an edge uv in E(H2) \ E(H1)
with special properties. In the next section, we shall ensure that the unfolding
algorithm removes this edge.

Theorem 5. Let H1 = (V, E1), H2 = (V, E2) be interval graphs and let (H1, Q,
P1) be a 1 or 2-folding such that H2 = FillFolding(H1, Q). If H2 is a quasi-
minimal but not minimal interval completion of H1, then there is a fill edge uv,
such that one of the pivots K is a u, v-separator in H1. Moreover, in the clique
path P1, the vertices u and v appear on different sides of K.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Characterizing Minimal Interval Completions 243

5 Extracting Minimal Interval Completions: The
Algorithm

Let H2 be a quasi-minimal interval completion of G and let H0 be a minimal
interval completion of G contained in H2. Theorem 2 shows that there exists a
folding (H0, Q0, P0) that defines H2, and by Theorem 4 there exists a reduced
folding (H1, Q1, P1) with one or two pivots that defines H2. By Lemma 3 each
pivot of (H1, Q1, P1) is contained in exactly one maximal clique of H2.

Let us now assume that (H1, Q1, P1) is a folding such that every unfolding
defines a graph with fewer edges than H2. We will focus on finding an unfolding
such that some fill edge uv is removed. The edge uv is chosen such that one of
the pivots of (H1, Q1, P1) is a u, v-separator in H1 (see Theorem 5).

We will consider the cases of 1-folding and 2-folding separately. Let us first
discuss the 1-folding case. Remember from Observation 1 that a maximal clique
K of H2 is a pivot in P1 if (H1, Q1, P1) is an 1-folding defining H2.

Algorithm OneUnfolding
Input: A graph G = (V, E), and an interval completion H2 of G
Output: An interval completion H ′

1 of G such that
E(H ′

1) ⊂ E(H2) if H2 is defined by a 1-folding of some H1

H ′
1 = H2 if no H1 exists.

for each pair (Ω, u) where Ω ∈ K(H2) and u ∈ V \ Ω
Let Cu be connected comp of G[V \ Ω] containing u
H ′

1 = (V, E(H2[NG[Cu]]) ∪ E(H2[V \ Cu]))
if H ′

1 is an interval graph and E(H ′
1) ⊂ E(H2) then

return H ′
1

return H2

Fig. 3. Opening one pivot

Lemma 4. Let G = (V, E) be an arbitrary graph, and let H1 and H2 be two
interval completions of G, such that E(H1) ⊂ E(H2), H2 is a quasi-minimal
interval completion of H1, and (H1, Q1, P1) is a 1-folding that defines H2. Then
H ′

1 = OneUnfolding(G, H2) is an interval completion of G satisfying E(H ′
1) ⊂

E(H2).

The two folding case is more complicated. First we define two vertex sets W l and
W r by using G and H2, and then these two vertex sets are used to obtain the
unfolding of H2. Several intermediate definitions are included in the definition
of W l and W r. Figure 4 tries to give an indication of how these intermediate
definitions relate to each other.

Let H2 = (V, E2) be a quasi-minimal interval completion of a non-interval
graph G = (V, E). Suppose that H2 is not minimal and choose the graph H1 =
(V, E1) such that H2 = FillFolding(H1, Q), where (H1, Q, P1) is a reduced

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

244 P. Heggernes et al.

BlPwllP lll

P rP cl
2Ωl Ωr

W l
sup W l

ini

Kr

K l

P c
1

P r
1

P l
1

�
�

Fig. 4. The figure gives a sketch of how the defined maximal cliques, separators, and
clique paths used to define W l and W r relate to each other. Two clique paths P lll

and P wll, which are not needed for the definition of W l and W r, but provide a more
detailed view of the situation in the figure are present: P wll is the union of blocks of
H2 \ Sl that have a non empty vertex intersection with W l, while P lll is given by the
remaining blocks of P ll.

2-folding and E ⊂ E1 ⊂ E2. Let P2 be the clique path of H2 obtained by the
algorithm FillFolding(H1, P1). We can denote these clique paths as:

P1 = P l − −P l
1 − −Kr − −P c

1 − −K l − −P r
1 − −P r

P2 = P l − −Ωl − −P c
2 − −Ωr − −P r

where K l, Kr are the pivots and Ωr, Ωl are the maximal cliques of H2 containing
them. We have K l ⊆ Ωl, Kr ⊆ Ωr.

Let Sl (Sr) be the separator between P l and Ωl (Ωr and P r) in P2. Notice
that P l, Sl, Sr, P r appear also in P1. Let Bl (Br) be the interval of cliques that
corresponds to the block of H2 − Sl (H2 − Sr) that is contained in P l (P r), the
closest to Ωl (Ωr) in P2. So we have:

P2 = P ll − −Bl − −Ωl − −P c
2 − −Ωr − −Br − −P rr (1)

Notice that Cl = V (Bl) \ Ωl (Cr = V (Br) \ Ωr) is a connected component
of H2 − Ωl (H2 − Ωr). So, given H2, Ωl and Ωr, we can efficiently compute the
candidates for Cl and Cr. From now on we assume that Ωl, Ωr, Cl, Cr, Sl, Sr

are as described above. We want to find an unfolding of H2, an interval graph
H ′

1 = (V, E(H2[NG[W l] ∪ Sl]) ∪ E(H2[NG[W r] ∪ Sr]) ∪ E(H2 − (W l ∪ W r))),
with some well chosen W l, W r.

Let uv be an edge of E(H2) \ E(H1). Like in Theorem 5, u and v are chosen
such that one of the pivots of H1, say Kr, separates u and v in H1 and also in the
clique path P1. Suppose without loss of generality that u is in V (P l−−P l

1)\Kr. In
particular u �∈ Ωr, and let Cu be the connected component of G−Ωr containing
the vertex u. Let Cv be the union of the connected components of G − Ωr that
contain or see the vertex v (we may have v ∈ Ωr, in which case there are several
such components). Then we have:

Claim. Cu is contained in V (P l − −P l
1) \ Kr. Cv is contained in V (P c

1 − −K l −
−P r

1 − −P r). Moreover, u and v do not appear in Kr.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Characterizing Minimal Interval Completions 245

Definition 10.

W l
ini =

⋃
{C | C ∈ C(G − Ωr), C ∩ Bl �= ∅} ∪ Cu

W r
ini =

⋃
{C | C ∈ C(G − Ωl), C ∩ Br �= ∅}

When unfolding, we want the blocks corresponding to components of H2 − Sl

that are in P ll − −Bl to stay blocks in H ′
1 − Sl. Let us investigate the con-

nected components of H2 − Sl. They induce a partition of P ll − −Bl into
blocks of H2 − Sl. Some of these blocks intersect connected components of
G − Ωr that are contained in W l

ini. For example, all connected components
of G − Ωr that intersect Bl are also in W l

ini. But there may be a block Blm

of H2 − Sl containing some components of G − Ωr that are and some that
are not in W l

ini. In this case, Blm is not a block of H ′
1 − Sl, where H ′

1 =
(V, E(H2[NG[W l

ini]]) ∪ E(H2[NG[W r
ini]]) ∪ E(H2[V \ (W l

ini ∪ W r
ini)])). In order

to prevent this, we augment W l
ini with W l

sup, and W l
ini with W l

sup as defined
below:

Definition 11.
W l

sup =
⋃

{C | C ∈ C(G−Ωr), C∩Ωl = ∅, NH2 [C]∩W l
ini �= ∅, NH2 [C]∩(W r

ini ∪Cv) = ∅}

W l = W l
ini ∪ W l

sup (2)

W r
sup =

⋃
{C | C ∈ C(G−Ωl), C∩Ωr = ∅, NH2 [C]∩W r

ini �= ∅, NH2 [C]∩W l = ∅}

W r = W r
ini ∪ W r

sup (3)

We are now able to construct the unfolding.

Definition 12.

H ′
1 = (V, E(H2[NG[W l] ∪ Sl]) ∪ E(H2[NG[W r] ∪ Sr]) ∪ E(H2 − (W l ∪ W r))).

Lemma 5. Let G = (V, E) be an arbitrary graph, and let H1 and H2 be two
interval completions of G, such that E(H1) ⊂ E(H2), H2 is a quasi-minimal
interval completion of H1, and (H1, Q1, P1) is a 2-folding that defines H2. Then
H ′

1 = TwoUnfolding(G, H2) is an interval completion of G satisfying E(H ′
1) ⊂

E(H2).

Lemmas 4 and 5 imply the main result of this paper. Algorithm Extract-
MinimalIntervalCompletion is given in Figure 6.

Theorem 6. There exists a polynomial time algorithm that, given an arbitrary
graph G and an interval completion H2 of G, computes a minimal interval com-
pletion H1 of G, such that E(H1) ⊆ E(H2).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

246 P. Heggernes et al.

Algorithm TwoUnfolding
Input: A graph G = (V, E), and an interval completion H2 of G
Output: An interval completion H ′

1 of G such that
E(H ′

1) ⊂ E(H2) if H2 is defined by a 2-folding of some H1 ⊂ H2

H ′
1 = H2 if no H1 exists.

for each tuple (Ωl, Ωr, Sl, Sr, Cl, Cr, u, v)
Ωl, Ωr are maximal cliques of H2

Sl, Sr are minimal separators of H2, contained in Ωl and resp. Ωr.
Cl (Cr) is a component of H2 − Sl (resp. H2 − Sr)
u, v are vertices, u �∈ Ωr

construct W l using Equation 2
construct W r using Equation 3
H ′

1 = (V, E(H2[NG[W l] ∪ Sl]) ∪ E(H2 − (W l ∪ W r)) ∪ E(H2[NG[W r] ∪ Sr]))
if H ′

1 is an interval graph and E(H ′
1) ⊂ E(H2) then

return H ′
1

return H2

Fig. 5. Opening two pivots

Algorithm ExtractMinimalIntervalCompletion
Input: A graph G = (V, E), and an interval completion H2 of G.
Output: A minimal interval completion H1 of G, with E(H1) ⊆ E(H2).

H1 = H2

H0 = G
while (H0 �= H1)

H0 = H1

for each edge uv in E(H1) \ E(G)
if H1 − uv is an interval graph then

H1 = H1 − uv
H1 = OneUnfolding(G, H1)
H1 = TwoUnfolding(G, H1)

return H1

Fig. 6. Extracting a minimal interval completion

Let us point out that, by using as initial completion the complete graph, the algo-
rithm ExtractingMinimalIntervalCompletion can obtain any of the minimal
interval completions of G.

References

1. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor.
Comput. Sci., 209(1-2):1–45, 1998.

2. H. L. Bodlaender and A. M. C. A. Koster. Safe separators for treewidth. Discrete
Mathematics, 306(3):337–350, 2006.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Characterizing Minimal Interval Completions 247

3. K. Booth and G. Leuker. Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13:335–379,
1976.

4. V. Bouchitté and I. Todinca. Treewidth and minimum fill-in: Grouping the minimal
separators. SIAM J. Comput., 31:212–232, 2001.

5. J. Diaz, J. Petit, and M. Serna. A survey of graph layout problems. ACM Comput.
Surv., 34(3):313–356, 2002.

6. S. P. Fekete and J. Schepers. A combinatorial characterization of higher-dimensional
orthogonal packing. Math. Oper. Res., 29(2):353–368, 2004.

7. F. V. Fomin, D. Kratsch, and I. Todinca. Exact (exponential) algorithms for
treewidth and minimum fill-in. In ICALP, volume 3142 of LNCS, pages 568–580.
Springer, 2004.

8. M. R. Garey and D. S. Johnson. Computer and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

9. A. George and J. W. Liu. Computer Solution of Large Sparse Positive Definite.
Prentice Hall Professional Technical Reference, 1981.

10. P. W. Goldberg, M. C. Golumbic, H. Kaplan, and R. Shamir. Four strikes against
physical mapping of dna. Journal of Computational Biology, 2(1):139–152, 1995.

11. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
San Diego, 1980.

12. J. Gustedt. On the pathwidth of chordal graphs. Discrete Appl. Math., 45(3):
233–248, 1993.

13. P. Heggernes, K. Suchan, I. Todinca, and Y. Villanger. Minimal interval comple-
tions. In ESA, volume 3669 of LNCS, pages 403–414. Springer, 2005.

14. P. Heggernes, K. Suchan, I. Todinca, and Y. Villanger. Characterizing minimal in-
terval completions. Towards better understanding of profile and pathwidth. Tech-
nical Report LIFO Research Report RR 2006-09, LIFO - University of Orleans,
France., 2006.

15. H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized comple-
tion problems on chordal, strongly chordal, and proper interval graphs. SIAM J.
Comput., 28(5):1906–1922, 1999.

16. A. Natanzon, R. Shamir, and R. Sharan. A polynomial approximation algorithm
for the minimum fill-in problem. SIAM J. Comput., 30(4):1067–1079, 2000.

17. B.W. Peyton. Minimal orderings revisited. SIAM J. Matrix Anal. Appl., 23(1):271–
294, 2001.

18. D. Rose, R.E. Tarjan, and G. Lueker. Algorithmic aspects of vertex elimination
on graphs. SIAM J. Comput., 5:146–160, 1976.

19. M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg.
Disc. Meth., 2:77–79, 1981.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Complexity of Unions of Disjoint Sets

Christian Glaßer1, Alan L. Selman2,�,
Stephen Travers1,��, and Klaus W. Wagner1

1 Universität Würzburg, Germany
{glasser,travers,wagner}@informatik.uni-wuerzburg.de

2 University at Buffalo, USA
selman@cse.buffalo.edu

Abstract. This paper is motivated by the open question whether the
union of two disjoint NP-complete sets always is NP-complete. We dis-
cover that such unions retain much of the complexity of their single com-
ponents. More precisely, they are complete with respect to more general
reducibilities.

Moreover, we approach the main question in a more general way: We
analyze the scope of the complexity of unions of m-equivalent disjoint
sets. Under the hypothesis that NE �= coNE, we construct degrees in NP
where our main question has a positive answer, i.e., these degrees are
closed under unions of disjoint sets.

1 Introduction

We report progress on the open question [Sel88] of whether the union of two
disjoint NP-complete sets is NP-complete. Observe that this question has a neg-
ative answer if P � NP = coNP, while it is not clear what to believe in the case
that NP �= coNP.

We prove that the union of two disjoint NP-complete sets belongs to the class
High1, the first level of Schöning’s high hierarchy [Sch83]. Specifically, for every
k ≥ 1, if A ∈ Highk and B ∈ NP such that A ∩ B = ∅, then A ∪ B ∈ Highk. As
a consequence [KS97], if A and B are disjoint NP-complete sets, then A ∪ B is
a strongly-nondeterministic complete set for NP [Lon78].

In order to give further evidence that unions of disjoint NP-complete sets are
not far from being NP-complete, we show that the union of an NP-complete set
with a disjoint set in NP is nonuniformly NP-complete, under the following as-
sumption: There exists a set A ∈ NP such that A is not infinitely-often in coNP.
Non-uniform reductions are of interest in cryptography, where they model an
adversary who is capable of long preprocessing [BV97]. They also have applica-
tions in structural complexity theory. Agrawal [Agr02] and Hitchcock and Pavan

� This work was done while the author was visiting the Department of Computer
Science at the University of Würzburg, Germany. Research supported in part by
NSF grant CCR-0307077 and by the Alexander von Humboldt-Stiftung.

�� Supported by the Konrad-Adenauer-Stiftung.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 248–259, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Complexity of Unions of Disjoint Sets 249

[HP06] investigate non-uniform reductions and show under reasonable hypothe-
ses that every many-one complete set for NP is also hard for length-increasing,
non-uniform reductions.

Then we raise the more general question, given two many-one-equivalent,
disjoint, sets A and B in NP, what can we say about the complexity of the union
A ∪ B. We call a set A m-idempotent if for all sets B and C,

(A ≡p
m B ≡p

m C) ∧ (B ∩ C = ∅) =⇒ A ≡p
m B ∪ C.

The set SAT is m-idempotent if and only if the union of two disjoint NP-complete
sets always is NP-complete. We prove that every p-selective set that is not in
P is m-idempotent. It follows readily that if NE �= coNE, then there exists
A ∈ NP− coNP such that A is m-idempotent, and it follows that the class EXP
contains m-idempotent sets.

Finally, we show that it is possible for the union of two disjoint sets to be
harder than either of its components. We prove that if the polynomial hierarchy
is infinite, then there exist sets A and B in NP(2) such that A ≡p

m B, A≤p
mA∪B,

and A∪B does not m-reduce to A. More precisely, we show this under the weaker
assumption that the Boolean hierarchy over NP does not collapse to the second
level.

To explore this possibility within NP, we show under an hypothesis that asserts
strong immunity conditions that there exist disjoint sets E, F ∈ NP−coNP such
that E ≡p

m F , but E ∪ F �≤p
mE.

Glasser et al. [GPSZ05] recently showed that all NP-complete sets are m-
mitotic. This means that any NP-complete set A can be partitioned into disjoint
NP-complete sets A1, A2. In a sense, the issue we are raising here, given two
m-equivalent disjoint sets B1 and B2, how complex is the union B1 ∪ B2, is to
investigate the converse of that question.

2 Preliminaries

We recall basic notions. Σ denotes a finite alphabet with at least two letters, Σ∗

denotes the set of all words, and |w| denotes the length of a word w. A set A ⊆ Σ∗

is nontrivial if A �= ∅ and A �= Σ∗. A tally set is a subset of 0∗. The language
accepted by a machine M is denoted by L(M). The characteristic function of
a set A is denoted by cA. L denotes the complement of a language L and coC
denotes the class of complements of languages in C. 1NP [GW86] (also called
US [BG82]) is the class of languages L for which there exists a nondeterministic
polynomial-time-bounded machine M such that an input x belongs to L if and
only if M on input x has exactly one accepting path. In contrast, UP is the
class of languages L for which there exists a nondeterministic polynomial-time-
bounded machine M such that L = L(M) and on every input x, the machine
M on input x has at most one accepting path [Val76].

FP denotes the class of functions computable in deterministic polynomial
time. FP/poly is the superclass of FP that consists of all functions f for which
there exists a total function a : 0∗ → Σ∗ such that

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

250 C. Glaßer et al.

– there exists a polynomial p such that for all n, |a(0n)| ≤ p(n), and
– there exists a g ∈ FP such that for all x, f(x) = g(x, a(0|x|)).

The function a is called the advice function.
The symmetric difference of sets A and B is defined as A�B = (A − B) ∪

(B − A). The complex version is defined as C ⊕D = {A�B : A ∈ C, B ∈ D}. For
a class of languages C which is closed under union and intersection, the Boolean
hierarchy over C [WW85] is the family of classes C(k) and coC(k) where k ≥ 1,

C(k) =def

k times
︷ ︸︸ ︷
C ⊕ C ⊕ · · · ⊕ C, and

coC(k) =def

{
L : L ∈ C(k)

}
.

The properties of Boolean hierarchies were studied by Köbler, Schöning, and
Wagner [KSW87] and Cai et al. [CGH+88].

We recall standard polynomial-time reducibilities [LLS75]. A set B many-
one-reduces to a set C (m-reduces for short; in notation B≤p

mC) if there exists
a total, polynomial-time-computable function f such that for all strings x,

x ∈ B ⇔ f(x) ∈ C.

A set B Turing-reduces to a set C (T-reduces for short; in notation B≤p
TC) if

there exists a deterministic polynomial-time-bounded oracle Turing machine M
such that for all strings x,

x ∈ B ⇔ M with C as oracle accepts the input x.

A set B 2-disjunctively truth-table-reduces to a set C (2-dtt-reduces for short; in
notation B≤p

2−dttC) if there exists a total, polynomial-time-computable function
f : Σ∗ → Σ∗ × Σ∗ such that for all strings x,

x ∈ B ⇔ at least one word from the pair f(x) belongs to C.

A set B non-uniformly many-one-reduces to a set C (non-uniformly m-reduces
for short; in notation B≤p/poly

m C) if there exists a total function f ∈ FP/poly
such that for all strings x,

x ∈ B ⇔ f(x) ∈ C.

A set B strongly nondeterministic Turing-reduces to a set C [Lon78] (snT-
reduces for short; in notation B≤p

snTC) if there exists a nondeterministic
polynomial-time-bounded oracle Turing machine M that on each computation
path outputs exactly one symbol from {+, −, ?} such that for all strings x,

x ∈ B ⇒ MC on x produces at least one + and no − and
x /∈ B ⇒ MC on x produces at least one − and no +.

If B≤p
mC and C≤p

mB, then we say that B and C are many-one-equivalent (m-
equivalent for short, in notation B ≡p

m C). Similarly, we define equivalence for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Complexity of Unions of Disjoint Sets 251

other reducibilities. A set B is many-one-hard (m-hard for short) for a complexity
class C if every B ∈ C m-reduces to B. If additionally B ∈ C, then we say that B
is many-one-complete (m-complete for short) for C. Similarly, we define hardness
and completeness for other reducibilities. We use the term C-complete as an
abbreviation for m-complete for C.

Schöning [Sch83] defined a set A ∈ NP to be high for ΣP
k (the k-th level of the

polynomial-time hierarchy) if ΣP
k

A = ΣP
k+1. Highk is the class of languages that

are high for ΣP
k .

Disjoint sets A and B are called p-separable if there exists a set S ∈ P (the
separator) such that A ⊆ S and B ⊆ S. A set B is m-mitotic [AS84] if there
exists an S ∈ P such that B∩S and B∩S are m-equivalent to B. B is p-selective
[Sel79] if there exists a total function f ∈ FP (the selector function) such that
for all x and y, f(x, y) ∈ {x, y} and if either of x and y belongs to B, then
f(x, y) ∈ B.

Definition 1. Let A be a set and C be a complexity class. The reduction closure
and the degree of A (resp., C) are defined as follows.

Rp
m(A) =def {B

∣
∣B≤p

mA},

Rp
m(C) =def

⋃

A∈C
Rp

m(A),

degp
m(A) =def {B

∣
∣A ≡p

m B},

degp
m(C) =def

⋃

A∈C
degp

m(A).

It is easy to see that whenever a class C is closed under ≤p
m, it then follows that

degp
m(C) = Rp

m(C).

Definition 2. Let C and M be complexity classes. We define

C ∨M =def {A ∪ B
∣
∣ A ∈ C, B ∈ M},

C ∨· M =def {A ∪ B
∣
∣ A ∈ C, B ∈ M, A ∩ B = ∅}.

Notice that the disjoint union used here is not the same concept as the marked
union which is sometimes denoted by ∪· . The reason is that the latter leads to
unions of disjoint p-separable sets, which does not have to be the case with ∨· .
For instance, for all sets A, B ∈ 1NP, it holds that A∪· B = 0A ∪ 1B ∈ 1NP,
implying that 1NP is closed under ∪· . Contrary to that, there exists an oracle
relative to which 1NP∨· 1NP �= 1NP [GT06].

3 Unions of Disjoint NP-Complete Sets Are Not Easy

In this section we show that unions of disjoint NP-complete sets cannot be too
easy. More precisely, we prove the following for disjoint NP-complete sets B
and C.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

252 C. Glaßer et al.

1. B∪C is high for NP. Equivalently, B∪C is strongly nondeterministic-Turing-
complete for NP [KS97].

2. Under a reasonable hypothesis, B ∪ C is non-uniformly many-one-complete
for NP.

Our results show that unions of disjoint NP-complete sets remain complete
with respect to more general reducibilities. This is evidence that unions of dis-
joint NP-complete sets retain much of the complexity of their single components.

As a byproduct, we obtain that the levels 1, 2, . . . of the high-hierarchy are
closed under disjoint unions with arbitrary NP-sets. Recently, Hitchcock and
Pavan [HP06] showed that if NP does not have p-measure 0, then the levels 0
and 1 of the high-hierarchy are different.

3.1 Unions of Disjoint Sets from the High-Hierarchy

Lemma 1. Let A, B ∈ NP such that A ∩ B = ∅. Then NPA ⊆ NPA∪B.

Theorem 1. Let k ≥ 1, A ∈ Highk and B ∈ NP such that A ∩ B = ∅. Then
A ∪ B ∈ Highk.

Corollary 1. For all k ≥ 1, Highk is closed under unions of disjoint sets.

Corollary 2. Let A, B ∈ NPC such that A ∩ B = ∅. Then the set A ∪ B is
≤p

snT-complete for NP.

3.2 Uniformly Hard Languages in NP

Downey and Fortnow [DF03] studied languages that are uniformly hard for P.
We here use a similar notion describing uniform-hardness for NP. In Section 3.1
we showed that the union of a disjoint NP-complete set and an arbitrary NP-set
is high for NP. In this section we give further evidence that unions of disjoint
NP-complete are not far from being NP-complete. To do so, we assume that
NP contains uniformly hard languages, i.e., languages that are uniformly not
contained in coNP. Under this hypothesis we show:

– For every NP-complete A and every B ∈ NP that is disjoint from A it holds
that A ∪ B is nonuniformly NP-complete.

Definition 3. Let C and D be complexity classes, and let A and B be subsets
of Σ∗.

1. A
i.o.= B

df⇐⇒ for infinitely many n it holds that A ∩ Σn = B ∩ Σn.
2. A

i.o.∈ C df⇐⇒ there exists C ∈ C such that A
i.o.= C.

3. C
i.o.

⊆ D df⇐⇒ C
i.o.∈ D for all C ∈ C.

The following result assumes the hypothesis that NP
i.o.

⊆/ coNP. This is a believable
assumption that says that (for sufficiently long formulas) not all tautologies of
a given size have short proofs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Complexity of Unions of Disjoint Sets 253

Theorem 2. If NP
i.o.

⊆/ coNP, then for every NP-complete A and every B ∈ NP
that is disjoint to A it holds that A ∪ B is ≤p/poly

m -complete for NP.

4 The Complexity of Disjoint Unions

In this section, we abstract from the main question. We investigate how complex
the union of two disjoint1 equivalent NP sets can be, and we state interesting
upper and lower bounds.

For any set A, we define the set U(A) which is the class of all sets which are
m-equivalent to the union of two disjoint sets from the m-degree of A.

Definition 4. For a set A, we define the class

U(A) =def degp
m

(
{C ∪ D

∣
∣ C ∩ D = ∅ ∧ C ≡p

m D ≡p
m A}

)
.

The next theorem characterizes the scope of U(A). We state a technical lemma
first.

Lemma 2. Let K and M be complexity classes that are closed under ≤p
m. Then

the class K ∨· M is closed under ≤p
m as well.

Theorem 3. For all nonempty sets A, it holds that

degp
m(A) ⊆ U(A) ⊆ Rp

m(A)∨· Rp
m(A).

Let A be a set and B and C be disjoint sets that are m-equivalent to A. In the
next sections we will study the following phenomena:

– For some A, the union B ∪ C is always m-equivalent to A, no matter how B
and C are chosen.

– For some A, the union B ∪ C can be less complex than A.
– For some A, the union B ∪ C can be more complex than A.

4.1 Disjoint Sets Whose Union Is at Most as Hard as the Single
Components

In the following section, we consider m-equivalent, disjoint sets whose union is
at most as complex as the single components. We prove that two extremes can
occur:

– Unions of disjoint, m-equivalent NP sets can be equivalent to their single
components (Theorem 5).

– Unions of disjoint, m-equivalent NP sets can be very easy, e.g. in P (Theo-
rem 8).

1 Note that the main question can easily be solved for non-disjoint unions of NP-
complete sets: 0SAT ∪ 1Σ∗ and 0Σ∗ ∪ 1SAT are NPC sets whose union is in P.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

254 C. Glaßer et al.

Definition 5. We say that a nontrivial set A is m-idempotent if the following
holds for all sets B and C:

(A ≡p
m B ≡p

m C) ∧ (B ∩ C = ∅) =⇒ A ≡p
m B ∪ C.

Observe that a set A is m-idempotent if and only if degp
m(A) = U(A); that

is, the first inclusion in Theorem 3 is an equality. Furthermore, it is clear that
whenever a set A is m-idempotent, the same holds for all sets B ∈ degp

m(A). It
turns out that our main question can be formulated equivalently with the notion
of m-idempotence.

Proposition 1. SAT is m-idempotent if and only if the union of two disjoint
NP-complete sets always is NP-complete.

So it is open whether the sets in the highest degree of NP are m-idempotent. A
more general question is to ask whether there exists a set A ∈ NP such that the
sets in the m-degree of A are m-idempotent. In other words, this is the question
whether there is a set A in NP that has the least possible scope for U(A). Observe
that such a set A must be in NP−P. Otherwise 0Σ∗ ≡p

m (1Σ∗∪{ε}) ≡p
m A, which

would imply that Σ∗ ≡p
m A. This is a contradiction because A is nontrivial.

The next theorem states that the notion of p-selectivity can help us to find
m-idempotent sets. More precisely, p-selectivity implies m-idempotence for any
set outside the class P.

Theorem 4. Let A /∈ P. If A is p-selective, then A is m-idempotent.

The proof of Theorem 4 does also show that every degree having the property
that all pairs of disjoint sets are p-separable is m-idempotent. It turns out that
this holds in particular for degrees of p-selective sets. Moreover, if all pairs of
disjoint sets in NP were p-separable, it would follow that P = UP [GS88] and
that all sets in NP are m-idempotent. We refer to Fortnow and Rogers [FR02]
for an analysis of this hypothesis. The next theorem gives a positive answer to
the more general question whether NP contains m-idempotent sets under the
assumption that NE �= coNE.

Theorem 5. If NE �= coNE, there exists A ∈ NP − coNP such that A is
m-idempotent.

The class EXP contains m-idempotent sets unconditionally:

Theorem 6. There exists an m-idempotent set A ∈ EXP.

We have shown that there are sets in EXP for which the first inclusion in The-
orem 3 is an equality. Under a reasonable assumption, we have shown the same
for NP. We now take a look at the second inclusion. The next proposition states
that for nontrivial sets, at least one of the two inclusions has to be strict.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Complexity of Unions of Disjoint Sets 255

Proposition 2. For any nontrivial set A, it holds that degp
m(A) � Rp

m(A).

We will show that there exists a set A ∈ NP such that

degp
m(A) � U(A) = (Rp

m(A)∨· Rp
m(A)) − {∅}

under the assumption that P �= NP ∩ coNP.
We first prove that a set A cannot be m-idempotent if Rp

m(A) is closed under
boolean operations.

Theorem 7. If A is a nontrivial set and Rp
m(A) is closed under boolean oper-

ations then U(A) = Rp
m(A) − {∅}.

Proof. As Rp
m(A) is closed under boolean operations, it is easy to see that

Rp
m(A) = Rp

m(A)∨· Rp
m(A) = Rp

m(A) ∨ Rp
m(A). Hence it follows from Theo-

rem 3 that we only have to show Rp
m(A) − {∅} ⊆ U(A).

Let E ∈ Rp
m(A)−{∅} and Σ be an alphabet such that A∪E ⊆ Σ∗, let a �∈ Σ

be a new letter, and let Δ =def Σ ∪ {a}. Say E≤p
mA via function h ∈ FP. Since

Rp
m(A) is closed under complementation it follows that A≤p

mA, say via function
h′ ∈ FP, and hence A ≡p

m A. So we can assume that E �= Σ∗, since otherwise
E ∈ U(A) holds trivially because A ∪ A = Σ∗.

Let a0, e0 ∈ Σ∗ such that a0 �∈ A and e0 �∈ E.
We will define sets A0, A1 ⊆ Δ∗ such that

– A0 ∩ A1 = ∅,
– A0 ∪ A1 ≡p

m E,
– A0 ≡p

m A1 ≡p
m A.

Notice that this implies E ∈ U(A).
We define A1 =def aA ∪ E and A0 =def a(Σ∗ − A). Clearly, A0 ∩ A1 = ∅.

Claim 1. A0 ∪ A1 ≡p
m E

Proof of the claim. It holds that A0 ∪ A1 = aΣ∗ ∪ E. Let f1 : Δ∗ → Σ∗ be
defined by

f1(x) =def

{
x, if x ∈ Σ∗

e0, otherwise.

Observe that x ∈ aΣ∗ ∪ E ⇐⇒ f1(X) ∈ E. As f1 clearly is in FP, we have
shown A0 ∪ A1≤p

mE. For the other direction, let f2 : Σ∗ → Δ∗ be defined by
f2(x) = x. Again, it is easy to see that x ∈ E ⇐⇒ f2(x) ∈ aΣ∗ ∪ E and
f2 ∈ FP. This proves the claim.

Claim 2. A0 ≡p
m A1 ≡p

m A

Proof of the claim. We will define functions f3, f4, f5 ∈ FP such that A0≤p
mA1

via f3, A1≤p
mA via f4, and A≤p

mA0 via f5.
Define f3 : Δ∗ → Δ∗ by

f3(x) =def

{
ah′(z), if x = az where z ∈ Σ∗

e0, otherwise.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

256 C. Glaßer et al.

If x ∈ A0, there exists z ∈ Σ∗ − A such that x = az. As h′ reduces A to A,
ah′(z) is in A1. If x �∈ A0, it either is of the form x = az′ where z′ ∈ A or
x ∈ Δ∗ − aΣ∗. In the first case, h′(z′) ∈ Σ∗ − A, so ah′(z) �∈ A1. In the second
case f3(x) = e0 �∈ A1. Obviously, f3 ∈ FP, hence A0≤p

mA1.
We define f4 : Δ∗ → Σ∗ by

f4(x) =def

⎧
⎨

⎩

z, if x = az where z ∈ Σ∗

h(x), if x ∈ Σ∗

a0, otherwise.

If x ∈ A1, either x = az where z ∈ A or x ∈ E. In the first case, f4(x) = z ∈ A.
In the second case, f4(x) = h(x) ∈ A since h reduces E to A. If x �∈ A1, we
distinguish three cases:

1. Assume x ∈ a(Σ∗ −A), i.e. there exists z′ ∈ Σ∗−A such that x = az′. Then
f4(x) = z′ �∈ A.

2. Assume x ∈ Σ∗ − E. Then f4(x) = h(x) �∈ A.
3. Assume x ∈ (Δ∗aΔ∗) − (aΣ∗). Then f4(x) = a0 �∈ A.

Together with f4 ∈ FP, we obtain A1≤p
mA.

Define f5 : Σ∗ → Δ∗ by f5(x) = ah′(x). If x ∈ A then h′(x) ∈ Σ∗ − A
hence f5(x) = ah′(x) ∈ a(Σ∗ − A) ⊆ A0. If x �∈ A then h′(x) ∈ A and hence
f5(x) = ah′(x) ∈ A0. Obviously, f5 ∈ FP. This proves our claim.

As argued above, we have now shown that E ∈ U(A). This proves Rp
m(A) −

{∅} ⊆ U(A). Altogether, we obtain U(A) = Rp
m(A) − {∅}. ��

Corollary 3. Let A be a nontrivial set. If Rp
m(A) is closed under boolean oper-

ations, then A is not m-idempotent.

Consequently, no complete problem for a deterministic Turing-machine time or
space complexity class can be m-idempotent. By Theorem 4, this also implies
that no complete problem for a deterministic Turing-machine time or space
complexity class except P can be p-selective.

The next theorem shows that unions of disjoints sets in NP can be much
easier than the single components. In particular, there exists a degree degp

m(A)
in NP − P such that all intermediate degrees can be reached by unions from
disjoint sets from degp

m(A).

Theorem 8. If P �= NP ∩ coNP, then there exists a set A ∈ (NP ∩ coNP) − P
such that U(A) = Rp

m(A) − {∅} = Rp
m(A)∨· Rp

m(A) − {∅}.

By Proposition 2, the set A in Theorem 8 cannot be m-idempotent. Informally,
the reason is that unions of sets in the degree of A can be too easy to be in the
degree of A. As stated before, the question whether unions of NP-complete sets
can be less than NP-complete is still open.

In the next section, we will show that the opposite can occur also, i.e. unions
of equivalent sets can be harder than the original sets.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Complexity of Unions of Disjoint Sets 257

4.2 Disjoint Sets Whose Union Is Harder Than the Single
Components

Buhrman, Hoene, and Torenvliet [BHT98] showed unconditionally that there
exists an A ∈ EXP−P such that A is not EXP-complete and not m-idempotent.
Recall that due to Corollary 3, no EXP-complete problem can be m-idempotent.

Theorem 9. [BHT98] Let C be m-complete for EXP. Then C can be split into
A and B such that

– A, B ∈ EXP,
– A ≡p

m B,
– A≤p

mA ∪ B = C,
– A∪B does not m-reduce to A, that means A, B are not m-complete for EXP.

Corollary 4. There exists A ∈ EXP such that

degp
m(A) � U(A) ⊆ Rp

m(A)∨· Rp
m(A) = EXP,

hence A is not m-idempotent.

In this case, the union of sets in degp
m(A) can be harder than A. We will identify

degrees in ΘP
2 (more precisely, in the second level of the boolean hierarchy over

NP) for which the same holds. After this, we will construct such sets within the
class NP.

The chromatic number of a graph G (in notation cn(G)) is the smallest number
k such that G is k-colorable.

Definition 6. Let cn(G) be the chromatic number of a graph G, and let k ≥ 1.
Then COLORk =def {(G, a1, . . . , ak)

∣
∣ G is a graph, a1 < · · · < ak and cn(G) ∈

{a1, . . . , ak}}.

It is known that COLORk is ≤p
m-complete for NP(2k) [CGH+88]. Hence

it follows that degp
m(COLOR1) = {A

∣
∣A is m-complete for NP(2)} and that

Rp
m(COLOR1)∨· Rp

m(COLOR1)= NP(2)∨· NP(2).

Theorem 10. There exist NP(2)-complete sets A and B such that

– A≤p
mA ∪ B,

– A ∪ B does not m-reduce to A.

unless the boolean hierarchy over NP collapses to the second level.2

Under the assumption that the boolean hierarchy over NP does not collapse, it
follows that degp

m(COLOR1) � U(COLOR1). Hence, the NP(2)-complete sets
are not m-idempotent. This indicates that the converse of Corollary 3 does
not hold. COLOR1 is an example for which U(COLOR1) lies strictly between
degp

m(COLOR1) and Rp
m(COLOR1)∨· Rp

m(COLOR1) − {∅}.
2 This hypothesis is weaker than demanding that the polynomial hierarchy does not

collapse.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

258 C. Glaßer et al.

Lemma 3. For all sets A, the following are equivalent:

1. U(A) ∩ P �= ∅
2. U(A) ⊇ P − {∅}
3. A ≡p

m A.

Theorem 11. If the boolean hierarchy over NP does not collapse to NP(2), then
it holds that

degp
m(COLOR1) � U(COLOR1) � Rp

m(COLOR1)∨· Rp
m(COLOR1) − {∅}.

We now start our search inside NP. We prove under a stronger assumption
that there exist m-equivalent disjoint sets E and F in NP such that E ∪ F
is harder than E. In other words, we show under this assumption that there
exists E ∈ NP − coNP such that U(E) �⊆ Rp

m(E). We then show that the
existence of such a set E separates 2-dtt-reducibility from m-reducibility within
NP. Consequently, it is not surprising that we need a stronger assumption to
prove our result:

Definition 7. A set L is immune to a complexity class C, or C-immune, if L
is infinite and no infinite subset of L belongs to C. A set L is bi-immune to a
complexity class C, or C-bi-immune, if both L and L are C-immune.

Theorem 12. If NP has NP ∩ coNP-bi-immune sets and NP ∩ coNP has P-bi-
immune sets, then there exist disjoint sets E, F ∈ NP−coNP such that E ≡p

m F ,
but E ∪ F �≤p

mE.

The proof of Theorem 12 does also separate 2-dtt-reducibility from m-reduci-
bility within NP:

Corollary 5. If NP has NP ∩ coNP-bi-immune sets and NP ∩ coNP has P-bi-
immune sets, then there exists A, B ∈ NP−coNP such that such that A≤p

2−dttB,
but A �≤p

mB.

References

[Agr02] M. Agrawal. Pseudo-random generators and structure of complete degrees.
In IEEE Conference on Computational Complexity, pages 139–147, 2002.

[AS84] K. Ambos-Spies. P-mitotic sets. In E. Börger, G. Hasenjäger, and D. Rod-
ing, editors, Logic and Machines, volume 171 of Lecture Notes in Computer
Science, pages 1–23. Springer-Verlag, 1984.

[BG82] A. Blass and Y. Gurevich. On the unique satisfiability problem. Informa-
tion and Control, 82:80–88, 1982.

[BH77] L. Berman and J. Hartmanis. On isomorphism and density of NP and
other complete sets. SIAM Journal on Computing, 6:305–322, 1977.

[BHT98] H. Buhrman, A. Hoene, and L. Torenvliet. Splittings, robustness, and
structure of complete sets. SIAM Journal on Computing, 27:637–653,
1998.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Complexity of Unions of Disjoint Sets 259

[BV97] D. Boneh and R. Venkatesan. Rounding in lattices and its cryptographic
applications. In SODA, pages 675–681, 1997.

[BWSD77] R. V. Book, C. Wrathall, A. L. Selman, and D. P. Dobkin. Inclusion com-
plete tally languages and the hartmanis-berman conjecture. Mathematical
Systems Theory, 11:1–8, 1977.

[CGH+88] J.-Y. Cai, T. Gundermann, J. Hartmanis, L. A. Hemachandra, V. Sewel-
son, K. W. Wagner, and G. Wechsung. The boolean hierarchy I: Structural
properties. SIAM Journal on Computing, 17:1232–1252, 1988.

[DF03] R. G. Downey and L. Fortnow. Uniformly hard languages. Theoretical
Computer Science, 298(2):303–315, 2003.

[FR02] L. Fortnow and J. Rogers. Separability and one-way functions. Computa-
tional Complexity, 11(3-4):137–157, 2002.

[GPSZ05] C. Glaßer, A. Pavan, A. L. Selman, and L. Zhang. Redundancy in complete
sets. In Proceedings 23rd Symposium on Theoretical Aspects of Computer
Science, volume 3884 of Lecture Notes in Computer Science, pages 444–
454. Springer-Verlag, 2006.

[GS88] J. Grollmann and A. L. Selman. Complexity measures for public-key
cryptosystems. SIAM Journal on Computing, 17(2):309–335, 1988.

[GT06] C. Glaßer and S. Travers. Machines that can output empty words. In
Proceedings 31st Symposium on Mathematical Foundations of Computer
Science, volume 4162 of Lecture Notes in Computer Science, pages 436–
446. Springer-Verlag, 2006.

[GW86] T. Gundermann and G. Wechsung. Nondeterministic Turing machines
with modified acceptance. In Proceedings 12th Symposium on Mathemat-
ical Foundations of Computer Science, volume 233 of Lecture Notes in
Computer Science, pages 396–404. Springer-Verlag, 1986.

[HP06] J. Hitchcock and A. Pavan. Comparing reductions to NP-complete sets.
In 33rd International Colloquium on Automata, Languages and Program-
ming, volume 4051 of Lecture Notes in Computer Science, pages 465–476.
Springer-Verlag, 2006.

[KS97] J. Köbler and U. Schöning. High sets for NP. In Advances in Algorithms,
Languages, and Complexity, pages 139–156, 1997.

[KSW87] J. Köbler, U. Schöning, and K. W. Wagner. The difference and the truth-
table hierarchies for NP. RAIRO Inform. Théor., 21:419–435, 1987.

[LLS75] R. E. Ladner, N. A. Lynch, and A. L. Selman. A comparison of polynomial
time reducibilities. Theoretical Computer Science, 1:103–123, 1975.

[Lon78] T. J. Long. On some Polynomial Time Reducibilities. PhD thesis, Purdue
University, Lafayette, Ind., 1978.

[Sch83] U. Schöning. A low and a high hierarchy within NP. Journal of Computer
and System Sciences, 27(1):14–28, 1983.

[Sel79] A. L. Selman. P-selective sets, tally languages, and the behavior of
polynomial-time reducibilities on NP. Mathematical Systems Theory,
13:55–65, 1979.

[Sel88] A. L. Selman. Natural self-reducible sets. SIAM Journal on Computing,
17(5):989–996, 1988.

[Val76] L. G. Valiant. Relative complexity of checking and evaluation. Information
Processing Letters, 5:20–23, 1976.

[WW85] K. W. Wagner and G. Wechsung. On the boolean closure of NP. In
Proceedings International Conference on Fundamentals of Computation
Theory, volume 199 of Lecture Notes in Computer Science, pages 485–
493. Springer-Verlag, 1985.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Kolmogorov-Loveland Stochasticity and
Kolmogorov Complexity

Laurent Bienvenu

Laboratoire d’Informatique Fondamentale
39 rue Joliot-Curie, 13453 Marseille Cedex 13, France

Laurent.Bienvenu@lif.univ-mrs.fr

Abstract. Merkle et al. [11] that all Kolmogorov-Loveland stochastic
infinite binary sequences have constructive Hausdorff dimension 1. In
this paper, we go even further, showing that from an infinite sequence of
dimension less than H(1

2 + δ) (H being the Shannon entropy function)
one can extract by a selection rule a biased subsequence with bias at
least δ. We also prove an analogous result for finite strings.

1 Introduction

In 1919 R. von Mises gave the first definition of algorithmic randomness, which
was inspired by the law of large numbers. According to his definition, an infi-
nite binary sequence α of zeroes and ones is said to be “random” (instead of
“random sequence”, von Mises used the term collective) if it is not biased, i.e.
the frequency of zeroes goes to 1

2 , and if every sequence we can extract from
α by an “admissible” selection rule is not biased. The second condition is im-
portant. Indeed, the infinite sequence 01010101010.... is not biased; however,
and this is why no one would call it “random”, the selection rule consisting in
selecting the bits of even positions will select the subsequence 0000000...., which
this time is biased. R. von Mises never made completely precise what he meant
by admissible selection rule. When computability theory emerged two decades
later, Church proposed a formal definition: he defined an admissible selection
rule to be a (total) computable process which, having read the first n bits of
an infinite binary sequence α, decides if it wants to select the next bit or not,
and then reads it (of course, it is crucial that the decision to select the bit or
not is made before reading the bit). The sequence of selected bits is the selected
subsequence w.r.t. to the selection rule. Later, Kolmogorov and Loveland pro-
posed a more permissive definition of an admissible selection rule: they argued
that in Church’s definition, the bits are read in order, which is too restrictive.
Hence, they defined an admissible selection rule to be a (partial) computable
process which, having read any n bits of an infinite binary sequence α, picks a
bit that has not been read yet, decides whether it should be selected or not, and
then reads it. Nowadays, the sequences α which are collectives w.r.t. to this last
definition are called Kolmogorov-Loveland stochastic (KL-stochastic for short).

It turns out that even with this improvement, KL-stochasticity is too weak a
notion of randomness. A method developed by van Lambalgen [16], which relies

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 260–271, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Kolmogorov-Loveland Stochasticity and Kolmogorov Complexity 261

on randomness w.r.t. non-uniform probability measures, was used by A. Shen [14]
to show that there exists a KL-stochastic sequence all of whose prefixes contain
more zeroes than ones (this event has probability 0 for the uniform measure).
In 1966, P. Martin-Löf introduced a notion of randomness which is now called
Martin-Löf randomness and considered by many as the most satisfactory notion
of algorithmic randomness. Its definition involved effective measure theory, but
after the work of Levin, Chaitin and Schnorr, we know that Martin-Löf ran-
domness can be characterized in terms of Kolmogorov complexity (we assume
that the reader is familiar with this notion; if not, see [8]): an infinite binary
sequence α is Martin-Löf random if K(α0...αn) � n + O(1) (K being the prefix
Kolmogorov complexity).

Now that we have this good notion of randomness, it is worth looking back
at KL-stochasticity in the light of Kolmogorov complexity. For example:

Question 1. Do the initial segments of a KL-stochastic sequence have to be of
high Kolmogorov complexity?

Question 2. Conversely, given a string α with some randomness deficiency (i.e.
in the case where K(α0...αn) � n − f(n) for some unbounded function f), can
we quantify the maximal bias we can get by selecting a subsequence from α?

Concerning Question 1, the following two central theorems give a good picture
of the situation:

Theorem 1 (Muchnik et al. [12]). Let f : N → N be a computable function.
If f(n) = o(n), there exists a KL-stochastic sequence α such that

K(α0...αn) � n − f(n) + O(1)

Theorem 2 (Merkle et al. [11]). Let α be an infinite binary sequence. If

lim inf
n→+∞

K(α0...αn)
n

< 1

then α is not KL-stochastic.

(as we will see later, the quantity lim inf K(α0...αn)
n is called the constructive

Hausdorff dimension of α).
Question 2 has been adressed in the case of finite binary sequences by Asarin [2],

Durand and Vereshchagin in [5], who gave lower and upper bounds for the max-
imal bias one can extract from a sequence with a given randomness deficiency.
However, not much is known in the case of infinite binary sequences. For exam-
ple, Theorem 2 says nothing about the relation between the lim inf term and the
maximal bias one can obtain by selecting a subsequence.

Both papers [11] and [5] use the same main three techniques, which are already
present in [12] (where they were used to prove a weaker version of Theorem 2):

1. Splitting technique. Any sequence (finite or infinite) which has a linear
randomness deficiency can be split into a finite number of subsequences such that

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

262 L. Bienvenu

at least two of the subsequences have a linear randomness deficiency relatively
to the other ones.

2. Competing strategies. Given two finite sequences u and v with known ran-
domness deficiencies (say, respectively K(u) = |u|−d1 and K(v) = |v|−d2), one
can construct (the construction depending only on d1 and d2, not on (u, v)) two
strategies (the concept of strategy is formalized below) S1 and S2 such that: S1

reads v and bets on u, S2 reads u and bets on v, and either S1 multiply its initial
capital by a least 2d1 or S2 multiply its initial capital by at least 2d2. Hence, a
good way to predict the bits of a string w with some random deficiency is to use
the above technique 1 to split w into pieces such that two of them have some
randomness deficiency and apply technique 2.

3. Converting a strategy into a selection rule. If a betting strategy wins on
a sequence (finite or infinite) an amount of money which is expontential in the
number of bets, one can construct from this strategy a selection rule which se-
lects a biased subsequence.

Here we address Question 2 for both the finite and infinite cases. In section
2, we introduce some game-theoretic notions, and in particular the notion of
(selective) betting strategy. We prove a refinement of the conversion of a strategy
into a selection rule (Theorem 6), which will be of crucial use in the sequel.

In section 3, we start with an account of effective Hausdorff dimension. This
is a well-known approach of algorithmic randomness, which was first introduced
by Lutz [7], where he defines constructive Hausdorff dimension. We will also
define Schnorr Hausdorff dimension, which was introduced by Downey et al. [4].
We then present our main result —Theorem 10— which is a quantitative ver-
sion of the above Theorem 2, i.e. it relates explicitly the constructive Hausdorff
dimension of a sequence to the maximal bias one can obtain by selecting a sub-
sequence. More precisely, we provide a lower bound on this maximal bias, which
we will prove to be optimal. We also give an interpretation of this result purely
in terms of effective Hausdorff dimension.

Finally, in section 4, we will prove an analogous result in the framework of
finite binary sequences, answering a question of Durand and Vereshchagin.

Before we move on to our discussion, we present the basic definitions and
notation we will need in the sequel. We denote by 2∗ the set of finite binary
sequences, and by 2ω the set of infinite ones. For every element α = α0α1α2...
of 2ω, and every n, m ∈ N, we denote by α[n,m] the string αnαn+1...αm. For all
u ∈ 2∗, we denote by u2ω the set of infinite sequences of which u is a prefix. We
denote by |u| the length of u.

We denote by �0(α, n) and �1(α, n) respectively the number of 0’s and 1’s
among α0..αn−1. We set

Bias(α) = lim sup
n→+∞

∣
∣
∣
∣
�0(α, n)

n
− 1

2

∣
∣
∣
∣

We denote by H(p) the entropy of the Bernoulli random variable with param-
eter p. Recall that for p ∈ [0, 1], H(p) = −p log p − (1 − p) log(1 − p), and that
x �→ H(1

2 + x) is a decreasing bijection from [0, 1
2] to [0, 1].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Kolmogorov-Loveland Stochasticity and Kolmogorov Complexity 263

If Z is a subset of N, and α, β are two elements of 2ω, we call Z-join of α and
β, and denote by α ⊕Z β, the element of 2ω we get by merging α and β, placing
the bits of β in positions i’s such that i ∈ Z. Formally,

(α ⊕Z β)i =
{

α|Z̄∩{0..i−1}| if i /∈ Z

β|Z∩{0..i−1}| if i ∈ Z

If Z = 2N + 1, we have α ⊕Z β = α0β0α1β1..., and we abbreviate α ⊕Z β by
α ⊕ β.

If a set A ⊆ N is recursively enumerable, we denote by A[τ] the finite set
containing the elements of A that appear during the first τ steps of a fixed
enumeration of A.

2 Selection Rules vs Strategies

2.1 Selection Rules

We formalize the notion of selection rule we discussed above. A selection rule is
a (partial) function σ : 2∗ → N × {selects, scans}.

We run a selection rule σ on a sequence α as follows. Let s0 and h0 be empty
words, and p0 be the empty set. We define sn, hn and pn by induction. Infor-
mally, sn represents the selected bits after n moves, hn represents the history,
i.e. the bits that have been read during the first n moves, and pn the positions
in α of these bits. At n-th move (by convention, there is a 0-th move):

- If σ(hn) = (k, selects) and k /∈ pn, set sn+1 = snαk, hn+1 = hnαk and
pn+1 = pn ∪ {k}.
- If σ(hn) = (k, selects) and k ∈ pn, or σ(hn) = (k, scans), set sn+1 = sn,
hn+1 = hnαk, and pn+1 = pn ∪ {k}.

(if for some n, σ(hn) is not defined, the selection process is immediately stopped).
If infinitely many selections are performed, i.e. if the set {s0, s1, s2, ...} is infinite,
the si’s are prefixes of an infinite sequence β. In this case, we say that β is the
subsequence of α selected by σ, which we write β = σ[α].

We say that α is Kolmogorov-Loveland stochastic if for every β ∈ 2ω that can
be selected from α by a computable selection rule, β satisfies the law of large
numbers (i.e. lim �0(β,n)

n = 1
2).

As we want to quantify the bias one can extract from a sequence by a com-
putable selection rule, we will focus our attention on the quantity:

δsel
max(α) = sup

{
Bias

(
σ[α]

)
: σ computable selection rule

}

Remark 3. We made the choice to define selection rules by partial functions
(and hence, by computable selection rule we mean partial computable selection
rule). It turns out that, by an argument of W. Merkle [10], defining them to be
total functions would not change the notion of KL-stochasticity nor would affect
the quantity δsel

max.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

264 L. Bienvenu

2.2 Strategies

In [12], Muchnik et al., trying to improve on the notion of KL-stochasticity,
suggested to adopt a game-theoretic point of view. We follow their approach.

Let us consider the following game, where Player plays against a sequence
α ∈ 2ω. The goal for Player is to make money while trying to guess the bits of
α. Initially, all the bits are hidden. At each move, Player selects a bit that is not
yet revealed. He can either scan it, or bet on its value some (rational) fraction ρ
of his current capital. If his guess is correct, his stake is doubled (i.e. his capital
is multiplied by (1 + ρ)). If not, his stake is lost (i.e. his capital is multiplied by
(1 − ρ)).

Formally, a selective strategy is a (partial) function S : 2∗ → (N×{scans})∪(
N×{0, 1}× (Q∩ [0, 1])

)
. If the range of S is contained in N×{0, 1}× (Q∩ [0, 1])

(i.e. S never scans), it is said to be a strategy.
We run a (selective) strategy S on a sequence α as follows: let h0 be the empty

word, and p0 the empty set. Set W0 = 1 (initial capital), and N0 = 0 (number
of bets). At n-th move:

- If S(hn) = (k, b, ρ) and k /∈ pn, set hn+1 = hnαk, pn+1 = pn ∪ {k}, Nn+1 =
Nn +1. Also set Wn+1 = (1+ ρ)Wn if αk = b and Wn+1 = (1− ρ)Wn otherwise.
- If S(hn) = (k, b, ρ) and k ∈ pn, or S(hn) = (k, scans), set hn+1 = hnαk,
pn+1 = pn ∪ {k}, Nn+1 = Nn. Also set Wn+1 = Wn.

We denote by Vm Player’s capital after the m-th bet, that is: Vm = Wn with
n = min{i : Ni = m}. We denote by Vm(α, S) Player’s capital after the m-th
bet, when playing against α according to the selective strategy S (note that this
could be undefined). We finally call a triple (k, b, ρ) a bet.

Muchnik et al. defined an infinite sequence α to be unpredictable (we now
say Kolmogorov-Loveland random) if there exists no computable strategy S
such that lim supVn(α, S) = +∞ (here again, by Merkle’s argument, it does
not matter whether we take the strategies to be partial computable or total
computable). While Kolmogorov-Loveland randomness is a priori weaker than
Martin-Löf randomness, the two notions have been shown to be close ([12], [11]),
and their equality remains a fundamental open question. We will not discuss
Kolmogorov-Loveland randomness here, but we will use extensively the notion
of selective strategy.

Remark 4. One may think at first that the notions of selective strategy and
strategy are equivalent, since scanning a bit is the same as betting 0 on it. This
is true if we just want to define Kolmogorov-Loveland randomness (and indeed
Muchnik et al. did not make our distinction between strategy and selective strat-
egy). However, this would not be suitable for our purposes, as we want to distin-
guish the number of bets and the number of moves.

It is a well-known fact that if a sequence α is biased, there exists a computable
strategy S which makes money exponentially when betting on its bits. More
precisely:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Kolmogorov-Loveland Stochasticity and Kolmogorov Complexity 265

Proposition 5. Let α ∈ 2ω, and δ = Bias(α). There exists a strategy S, com-
putable with oracle δ, such that for all t > H(1

2 + δ):

lim sup
n→+∞

Vn(α, S)
2(1−t)n

= +∞

Proof : Without loss of generality, suppose that lim sup �0(α,n)
n = 1

2 +δ. Using the
oracle δ, let us compute a sequence {δn}n∈N of rational numbers, converging to
δ. Let S be the strategy which at the n-th move bets (n, 0, 2δn). We then have,
for all n:

Vn(α, S) =
∏

0�i�n−1
αi=0

(1 + 2δi)
∏

0�i�n−1
αi=1

(1 − 2δi)

Hence,

log Vn(α, S)
n

=
1
n

∑

0�i�n−1
αi=0

log(1 + 2δi) +
1
n

∑

0�i�n−1
αi=1

log(1 − 2δi)

It follows that:

lim sup
n→+∞

log Vn(α, S)
n

=
(

1
2

+ δ

)

log(1+2δ)+
(

1
2

− δ

)

log(1−2δ)=1−H
(1

2
+δ

)
�

Schnorr [13] proved conversely that if there exists a selective strategy S which,
playing against α, makes money exponentially in the number of bets, then there
exists a computable selection rule which selects from α a biased subsequence
(although he did not quite use the same terminology as ours). However, Schnorr
proved this in a purely qualitative way. We strengthen Schnorr’s theorem by
proving the converse of Proposition 5.

Theorem 6. Let α ∈ 2ω. Suppose that there exists a real number s and a selec-
tive strategy S such that lim sup Vn(α,S)

2(1−t)n = +∞ for all t > s. Then, there exists
a selection rule σ, computable with oracle s, such that the bias δ = Bias

(
σ[α]

)

is large enough to satisfy H(1
2 + δ) � s.

The basic idea of the proof is the following: by an argument of Ambos-Spies et
al. [1], the above theorem would be easier to prove if S was only allowed to play
moves of type (k, scans) or (k, 0, q), where q is a fixed constant. Indeed, in this
case, let σ be the computable selection rule which simulates S, scanning a bit if
S scans it, and selecting a bit if S bets on it. We then have for all n:

Vn(α, S) = (1 + q)�0(σ[α],n)(1 − q)�1(σ[α],n)

i.e.
log Vn(α, S)

n
=

�0(σ[α], n)
n

log(1 + q) +
�1(σ[α], n)

n
log(1 − q)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

266 L. Bienvenu

Setting δ = Bias
(
σ[α]

)
, it follows that

lim sup
n→+∞

log Vn(α, S)
n

�
(

1
2

+ δ

)

log(1 + q) +
(

1
2

− δ

)

log(1 − q)

By definition of S:

lim sup
n→+∞

log Vn(α, S)
n

� 1 − s

It follows that

1 − s �
(

1
2

+ δ

)

log(1 + q) +
(

1
2

− δ

)

log(1 − q)

The function x �→
(

1
2 + δ

)
log(1 + x) +

(
1
2 − δ

)
log(1 − x) taking its maximum

for x = 2δ, we then have

1 − s �
(

1
2

+ δ

)

log(1 + 2δ) +
(

1
2

− δ

)

log(1 − 2δ)

i.e.
s � H(

1
2

+ δ)

Of course, our notion of strategy is not restricted as above. However, since the
couples (value,stake) of the bets are contained in the compact set {0, 1} × [0, 1],
we argue by a dichotomy technique that there must be some some condensation
point (b, ρ̄) in the neighbourhood of which bets are often successfull. Applying
the same kind of argument as above with (b, ρ̄) in place of (0, q), we get the
desired result.

3 Effective Hausdorff Dimension and Stochasticity

Let X be a subset of 2ω, and s � 0. X is said to be an s-nullset if there exists a
sequence (Cn)n∈N of subsets of 2∗ such that for all n:

X ⊆
⋃

u∈Cn

u2ω and
∑

u∈Cn

2−s|u| � 2−n (1)

The classical Hausdorff dimension of X is defined by:

dimH(X) = inf{s : X is a s-nullset}

(notice that for all X ⊆ 2ω, we have dimH(X) ∈ [0, 1])
We now make things effective, following Lutz [7] and Downey et al. [4]:

A subset X of 2ω is a constructive s-nullset if there exists a computable sequence
(Cn)n∈N of computably enumerable subsets of 2∗ satisfying (1)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Kolmogorov-Loveland Stochasticity and Kolmogorov Complexity 267

A subset X of 2ω is a Schnorr s-nullset if there exists a computable sequence
(Cn)n∈N of computably enumerable subsets of 2∗ satisfying (1) and such that
the real numbers

∑
u∈Cn

2−s|u| are uniformly computable.

We can now define the constructive Hausdorff dimension dim1(X) and the
Schnorr Hausdorff dimension (also called computable Hausdorff dimension)
dimS(X):

dim1(X) = inf{s : X is a constructive s-nullset}
dimS(X) = inf{s : X is a Schnorr s-nullset}

Remark that by definition, for all X ⊆ 2ω, dimH(X) � dim1(X) � dimS(X).
For a sequence α ∈ 2ω, we abbreviate dim1({α}) by dim1(α) and dimS({α})

by dimS(α). The effective dimension of a singleton is not a trivial notion: al-
though every singleton has classical Hausdorff dimension 0, the effectivity re-
quirement can make a singleton have positive constructive (or Schnorr) dimen-
sion. In particular, Mayordomo proved an elegant characterization of construc-
tive Hausdorff dimension in terms of Kolmogorov complexity (there had been
some earlier results in this direction, see the discussion in [3]):

Theorem 7 (Mayordomo [9]). For all α ∈ 2ω:

dim1(α) = lim inf
n→+∞

K(α[0,n])
n

Hausdorff dimension and its effective versions have a game-theoretic character-
ization. It involves the notion of martingale. A (normed) martingale is a total
function d : 2∗ → [0, +∞) such that d(∅) = 1 (here ∅ is the empty word) and for
all u ∈ 2∗, d(u) = d(u0)+d(u1)

2 .
A martingale is said to be s-successful on a sequence α if

lim sup
n→+∞

d(α[0,n])
2(1−s)n

= +∞

We have the following result, whose first part is due to Lutz [6] and second
part to Downey et al. [4].

Theorem 8. For all X ⊆ 2ω:

dimH(X) = inf{s : ∃d martingale which s-succeeds on every α ∈ X}

dimS(X) = inf{s : ∃d computable martingale which s-succeeds on every α ∈ X}

Constructive dimension can also be characterized by game-theoretic concepts
(see [7]), but we will not need such a characterization.

The first thing one should remark is that a martingale can be interpreted as
the capital of a strategy which bets on every bit (in order). Indeed, if d is a
martingale, define Sd by

Sd(u) =

{
(|u|, 0, d(u0)

d(u) − 1) if d(u0) � d(u1)

(|u|, 1, d(u1)
d(u) − 1) if d(u0) < d(u1)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

268 L. Bienvenu

We then have, for all α ∈ 2ω and all n:

Vn(α, Sd) = d(α[0,n−1])

Obviously, d is computable if and only if Sd is. Hence, given a computable
martingale and a computable selection rule, one can canonically construct a
computable selective strategy corresponding to their composition. This remark,
together with Proposition 5 and Theorem 6, yields a characterization of KL-
stochasticity in terms of Schnorr dimension:

Proposition 9. A sequence α is KL-stochastic iff for every sequence β selected
from α by a computable selection rule, dimS(β) = 1

We now turn our attention to the relation between constructive Hausdorff di-
mension and KL-stochasticity. We shall prove the main theorem of this section:

Theorem 10. For all α ∈ 2ω, H(1
2 + δsel

max(α)) � dim1(α)

The proof follows the three steps we mentioned in the introduction. First, we
use a splitting argument. We prove:

Lemma 11. Let α ∈ 2ω and s be such that dim1(α) � s. There exists a recursive
co-infinite Z ⊆ N such that, writing α = (β ⊕ β′) ⊕Z γ, we have:

dim(γ)
1 (β) � s and dim(γ)

1 (β′) � s

(dim(γ)
1 is the dimension relative to the oracle γ).

Then, using the competing strategies technique, we get:

Lemma 12. Let α, β, γ ∈ 2ω and s such that dim(γ)
1 (α) � s and dim(γ)

1 (β) � s.
There exists a selective strategy S, computable with oracle (s, γ), such that for
all t > s, lim sup Vn(α⊕β,S)

2(1−t)n = +∞.

Lemma 11 and Lemma 12 yield:

Proposition 13. Let α ∈ 2ω and s such that dim1(α) � s. There exists a
selective strategy S, computable with oracle s, such that for all t > s,

lim sup
n→+∞

Vn(α, S)
2(1−t)n

= +∞

Finally, converting the strategy S into a selection rule according to Theorem 6,
the above proposition can be rephrased as follows:

Proposition 14. Let α ∈ 2ω and s such that dim1(α) � s. There exists a
selection rule σ, computable with oracle s, such that, setting δ = Bias

(
σ[α]

)
, we

have H(1
2 + δ) � s.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Kolmogorov-Loveland Stochasticity and Kolmogorov Complexity 269

To get Theorem 10 from Proposition 14, remark that in Proposition 14, if s is
a rational number, σ is computable. Hence, let us take a decreasing sequence
{sm}m of rational numbers converging to s. For all m, by Proposition 14, there
exists a computable strategy σm selecting a subsequence β with bias δm such
that H(1

2 + δm) � sm. Setting δ = supm δm, it follows that H(1
2 + δ) � s, and

hence H(1
2 + δsel

max(α)) � s.
The bound we give for δsel

max(α) in Theorem 10 is optimal. Indeed, let us
generate a sequence α by choosing its bits at random and independently, in such
a way that for all i, the probability of αi to be 1 is 1

2 +δ. Then, with probability 1:

– Every sequence β selected from α by a computable selection rule has bias
exactly δ (see van Lambalgen [16], Shen [14])

– lim
K(α[0,n])

n = H(1
2 + δ) (see Lutz [7])

Hence, for all α satisfying these two conditions, we have δsel
max(α) = δ and

dim1(α) = H(1
2 + δ).

Note that although the bound of Theorem 10 is optimal, there are some cases
where H(1

2 + δsel
max(α)) is much smaller than dim1(α): take a Martin-Löf random

sequence α and consider β = α ⊕Z 0ω with Z = {n2 : n ∈ N}. In this case,
δsel
max(β) = 1

2 (one just needs to select the bits whose position is in Z) which
means H(1

2 + δsel
max(β)) = 0, whereas dim1(β) = 1.

The martingale characterization of Schnorr Hausdorff dimension, together
with Proposition 14, provides the following relation between the two notions
of effective dimension:

Proposition 15. Let α ∈ 2ω. There exists a selection rule σ, computable with
oracle dim1(α), such that dimS

(
σ[α]

)
� dim1(α).

4 Kolmogorov-Loveland Stochasticity for Finite Binary
Sequences

The study of Kolmogorov-Loveland stochasticity for finite sequences was initi-
ated by E. Asarin [2]. The extension of Kolmogorov-Loveland stochasticity to
finite sequences is more quantitative, i.e. contrary to infinite sequences, there is
no clear separation between stochastic and non-stochastic. Rather, for each finte
sequence u of length N , and each selection rule σ, there are three key-parameters:

– the Kolmogorov complexity of σ: K(σ|N)
– the size of the selected subsequence:

∣
∣σ[u]

∣
∣

– the bias of the selected subsequence: Bias
(
σ[u]

)
=

∣
∣
∣
�0(σ[u],N ′)

N ′ − 1
2

∣
∣
∣ (where

N ′ = |σ[u]|)

The smaller the first, and the bigger the two others, the less stochastic u is.
Asarin [2], Durand and Vereshchagin [5] proved respectively an upper bound

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

270 L. Bienvenu

and a lower bound of the bias one can obtain by selecting a subsequence of
a sequence with some randomness deficiency, these bounds depending on the
randomness deficiency, the Kolmogorov complexity of the selection rule and the
size of the selected subsequence. Moreover, these bounds are very general as they
require (almost) no restriction of their three parameters. We instead focus on a
particular case, which we believe is very natural given the above discussion on
infinite sequences: for a finite sequence u with randomness deficiency (1 − s)|u|,
what bias can we obtain if we require the Kolmogorov complexity of the selection
rule to be O(1), and the size of the selected subsequence to be Ω(|u|)? This
question was raised by Durand and Vereshchagin (open question 1 of [5]). The
following two theorems provide an answer to this question and show that in the
case of finite sequences too, the constant δ such that H(1

2 + δ) = s is a threshold
for the extraction of biased subsequences.

Theorem 16. For all s ∈ [0, 1] and all δ such that H(1
2 + δ) > s, there exist

real constants c1, c2 such that for all large enough N and every finite sequence
u of length N satisfying K(u) � sN , there exists a selection rule σ such that

K(σ|N) � c1,
∣
∣σ[u]

∣
∣ � c2N and Bias

(
σ[u]

)
� δ

Theorem 17. There is no tuple (s, δ, c1, c2), with s ∈ [0, 1], H(1
2 + δ) < s

and c1, c2 positive real constants such that for all large enough N and all finite
sequence u of length N satisfying K(u) � sN , there exists a selection rule σ
satisfying:

K(σ|N) � c1,
∣
∣σ[u]

∣
∣ � c2N and Bias

(
σ[u]

)
� δ

Acknowledgements. I would like to thank Bruno Durand, Serge Grigorieff and
Alexander Shen for very helpful comments and discussions. I also thank Alexey
Chernov and three anonymous referees for helping me improve the presentation
of this paper.

References

1. K. Ambos-Spies, E. Mayordomo, Y. Wang, X. Zheng. Resource-bounded dense
genericity, stochasticity, and weak randomness. Proceedings of the Thirteenth Sym-
posium on Theoretical Aspects of Computer Science (STACS’96). Springer-Verlag
Lecture Notes in Computer Science 1046:63-74 (1996).

2. E. Asarin. Some properties of Kolmogorov Δ-random sequences. Theory Probab.
Appl. 32:507-508 (1987).

3. R. Downey, D. Hirschfeldt. Algorithmic Randomness and complexity. Book in
preparation.

4. R. Downey, W. Merkle, J. Reimann. Schnorr dimension. Computability in
Europe, Lecture Notes in Computer Science 3526: 6-105 (2005).

5. B. Durand, N. Vereshchagin. Kolmogorov-Loveland stochasticity for finite
strings. Information Processing Letters. 91(6):263-269 (2004).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Kolmogorov-Loveland Stochasticity and Kolmogorov Complexity 271

6. J. Lutz. Dimension in complexity classes. Proc. 15th Conference on Computa-
tional Complexity, IEEE Computer Society 158-169 (2000).

7. J. Lutz. The dimensions of individual strings and sequences. Information and
Computation, 187(1):49-79 (2003).

8. M. Li, P. Vitanyi. An introduction to Kolmogorov complexity and its applications,
second ed. Graduate Texts in Computer Science, New York (1997).

9. E. Mayordomo. A Kolmogorov complexity characterization of constructive Haus-
dorff dimension. Information Processing Letters 84:1-3 (2002).

10. W. Merkle. The Kolmogorov-Loveland stochastic sequences are not closed under
selecting subsequences. Journal of Symbolic Logic 68: 1362-1376 (2003).

11. W. Merkle, J.S. Miller, A. Nies, J. Reimann, F. Stephan. Kolmogorov-
Loveland Randomness and Stochasticity. Ann. Pure Appl. Logic 138(1-3): 183-210
(2006).

12. An.A. Muchnik, A.L. Semenov, V.A. Uspensky. Mathematical metaphysics of
randomness. Theor. Comput. Sci. 207, 2:263-317 (1998).

13. C.P. Schnorr. Zufälligkeit und Wahrscheinlichkeit. Lecture Notes in Mathematics
218. Springer-Verlag Berlin-Heidelberg-New York (1971).

14. A. Shen. On relations between different algorithmic definitions of randomness.
Soviet Mathematics Doklady 38:316-319 (1989).

15. R. von Mises. Grundlagen der Wahrscheinlichkeitsrechnung. Math. Z. 5:52-99
(1919).

16. M. van Lambalgen. Random sequences. Ph.D. thesis, Univ. of Amsterdam, Am-
sterdam (1987).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bounded-Hop Energy-Efficient Broadcast in
Low-Dimensional Metrics Via Coresets�

Stefan Funke and Sören Laue

Max-Planck-Institut für Informatik,
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

Abstract. We consider the problem of assigning powers to nodes of a
wireless network in the plane such that a message from a source node
s reaches all other nodes within a bounded number k of transmissions
and the total amount of assigned energy is minimized. By showing the
existence of a coreset of size O(

(1
ε

)4k) we are able to (1+ε)-approximate
the bounded-hop broadcast problem in time linear in n which is a drastic
improvement upon the previously best known algorithm.

While actual network deployments often are in a planar setting, the
experienced metric for several reasons is typically not exactly of the
Euclidean type, but in some sense ’close’. Our algorithm (and others) also
work for non-Euclidean metrics provided they exhibit a certain similarity
to the Euclidean metric which is known in the literature as bounded
doubling dimension. We give a novel characterization of such metrics also
pointing out other applications such as space-efficient routing schemes.

1 Introduction

Radio networks connecting a number of stations without additional infrastruc-
ture have recently gained considerable interest. Since the sites often have limited
power supply, the energy consumption of communication is an important opti-
mization criterion.

In the first part of the paper we consider the following problem: Given a set
P of points (stations) in R

2 and a distinguished source point s ∈ P (sender) we
want to assign distances/ranges r : P → R≥0 to the elements in P such that
the resulting communication graph contains a branching rooted at s spanning
all elements in P and with depth at most k (an edge (p, q) is present in the
communication graph iff r(p) ≥ |pq|). Goal is to minimize the total assigned
energy

∑
p∈P r(p)δ, where δ is the distance-power gradient and typically a con-

stant between 2 and 6 (δ = 2 reflects the exact energy requirement for free space
communication, larger values are used as popular heuristic model for absorption
effects). Such a branching corresponds to a broadcast operation from station s
to all other nodes in the network with bounded latency. This is one of the most
basic communication tasks in a wireless radio network.
� This work was supported by the Max Planck Center for Visual Computing and

Communication (MPC-VCC) funded by the German Federal Ministry of Education
and Research (FKZ 01IMC01).

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 272–283, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bounded-Hop Energy-Efficient Broadcast 273

In Section 2 of this paper we construct a (k, ε)-coreset of size O(
(

1
ε

)4k) for
a given instance of a bounded-hop broadcast problem, that is, we identify a
small subset of the original problem instance for which the solution translates
to an almost as good solution of the original problem. Interestingly, the size of
this ’problem sketch’ only depends on k and the desired approximation quality
(1 + ε) but is independent of n. Hence we can approximate the bounded-hop
broadcast problem – even using a brute force algorithm – in time linear in n
and only doubly exponential in k (in contrast to the result in [1] which is triply
exponential in k where it is also an exponent of n).

For analytical purposes it is very convenient to assume that all network nodes
are placed in the Euclidean plane; unfortunately, in real-world wireless network
deployments, especially if not in the open field, the experienced energy require-
ment to transmit does not exactly correspond to some power of the Euclidean
distance between the respective nodes. Buildings, uneven terrain or interference
might affect the transmission characteristics. Nevertheless there is typically still a
strong correlation between geographic distance and required transmission power.
An interesting question is now how to model analytically this correlation. One
possible way is to assume that the required transmission energies are powers of
the distance values in some metric space containing all the network nodes, and
that this metric space has some resemblance to a low-dimensional Euclidean
space. Resemblance to low-dimensional Euclidean spaces can be described by
the so-called doubling dimension [5]. The doubling dimension of a metric space
(X, d) is the least value α such that any ball in the metric with arbitrary radius
R can be covered by at most 2α balls of radius R/2. Note that for any α ∈ N,
the Euclidean space R

α has doubling dimension Θ(α). In Section 3 we consider
the doubling dimension a bit more in-depth and give a novel characterization
of such metrics based on hierarchical fat decompositions (HFDs). We then show
how the algorithm for energy-efficient broadcast presented in Section 2 as well
as other algorithms in the wireless networking context can be adapted to metric
spaces of bounded doubling dimension. Interestingly, metrics of bounded dou-
bling dimension are not a tight characterization of all the metrics that allow for
well-behaved HFDs, that is, there are metrics which are not of bounded dou-
bling dimension, still our and many other algorithms run efficiently. As a side
result we show how such HFDs directly lead to well-separated pair decomposi-
tions of linear-size (such WSPDs were also constructed in a randomized fashion
in [7]). Finally, in Section 4 we examine metrics of bounded doubling dimension
that arise as shortest-path metrics in unweighted graphs (e.g. unit-disk commu-
nication graphs). We show that for such metrics, an HFD can be computed in
near-linear time, and the latter can be instrumented to derive a simple deter-
ministic routing scheme that allows for (1+ε)-stretch using routing tables of size
O((1

ε)O(α) · log2 n) bits using a rather simple construction (compared to [3]).

Related Work
In [1] Ambühl et al. present an exact algorithm for solving the 2-hop broadcast
problem with a running time of O(n7) as well as a polynomial-time approximation

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

274 S. Funke and S. Laue

scheme for a fixed number of hops k and constant ε which has running time O(nμ)
where μ = O((k2/ε)2

k

), that is, their algorithm is triply exponential in the num-
ber of hops (and this dependence shows up in the exponent of n!). Both their algo-
rithms are for the low-dimensional Euclidean case. Metrics of bounded doubling
dimension have been studied for quite some time, amongst others Talwar in [9] pro-
vides algorithms for such metrics that (1 + ε) approximate various optimization
problems like TSP, k-median, and facility location. Furthermore he gives a con-
struction of a well-separatedpair decomposition for unweighted graphs of bounded
doubling dimension α that has size O(sαn logn) (for doubling constant s). Based
on that he provides compact representation schemes like approximate distance
labels, a shortest path oracle, as well as a routing scheme which allows for
(1 + ε)-paths using routing tables of size O((log n

ε)α log2 n). An improved routing
scheme using routing tables of size O((1/ε)O(α) log2 n) bits was presented in [3] by
Chan et al., but the construction is rather involved and based on a derandomiza-
tion of the Lovasz Local Lemma. Har-Peled and Mendel in [7] gave a randomized
construction for a WSPD of linear size which matches the optimal size for the Eu-
clidean case from Callahan and Kosaraju in [2].

2 Bounded-Hop Energy-Efficient Broadcast in R
2

Given a set P of n nodes in the Euclidean plane, a range assignment for P is a
function r : P → R≥0. For a given range assignment r we define its overall power
consumption as νr =

∑
p∈P (r(p))δ . A range assignment r for a set P induces a

directed communication graph Gr = (P, E) such that for each pair (p, q) ∈ P ×P ,
the directed edge (p, q) belongs to E if and only if q is at distance at most r(p)
from p, i.e. |pq| ≤ r(p).

The k-hop broadcast problem is defined as follows. Given a particular source
node s, Gr must contain a directed spanning tree rooted at source s to all other
nodes p ∈ P having depth at most k. W.l.o.g. we assume the largest Euclidean
distance between the source node s and any other node p ∈ P to be equal to 1.
We say a range assignment r is valid if the induced communication graph Gr

contains a directed spanning tree rooted at s with depth at most k; otherwise
we call r invalid.

Definition 1. Let P be a set of n points, s ∈ P a designated source node.
Consider another set S of points (not necessarily a subset of P). If for any valid
range assignment r : P → R≥0 there exist a valid range assignment r′ : S → R≥0

such that νr′ ≤ (1 + ε) · νr and for any valid range assignment r′ : S → R≥0

there exists a valid range assignment r : P → R≥0 such that νr ≤ (1 + ε) · νr′

then S is called (k, ε)-coreset for (P, s).

A (k, ε)-coreset for a problem instance (P, s) can hence be viewed as a problem
sketch of the original problem. If we can show that a coreset of small size exists,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bounded-Hop Energy-Efficient Broadcast 275

solving the bounded-hop broadcast problem on this problem sketch immediately
leads to an (1 + ε)2-solution to the original problem.

This definition of a coreset differs slightly from the definition of a coreset
defined in previous papers. For example, the term coreset has been defined for
k-median [6] or minimum enclosing disk [8]. However, in the case of the bounded-
hop broadcast problem we have to consider two more issues. The first is feasibil-
ity. While any solution to the coreset for the k-median problem is feasible with
respect to the original problem this is not the case for every coreset solution for
the bounded-hop broadcast problem. The second issue is monotonicity. For the
problem of the smallest enclosing disk the optimal solution does not increase if
we remove points from the input. We do not have this property here. An optimal
solution can increase or decrease if we remove points.

Our coreset construction is heavily based on the insight that for any valid
range assignment r there exists an almost equivalent (in terms of total cost)
range assignment r′ where all assigned ranges are either zero or rather ’large’.
We formalize this in the following structure lemma:

Lemma 1 (Structure Lemma). Let r be a valid range assignment for (P, s)
of cost νr. For any 0 < ε < 1 there exists a valid range assignment r′ with either

r′(p) = 0 or r′(p) ≥ (1 − ε)ε2k−2 and total cost νr′ ≤
(
1 + ε

1−ε

)δ

νr.

Proof: Let r be a valid range assignment. Consider a spanning tree rooted at
s of depth at most k contained in the communication graph Gr. We call it the
communication tree.

We will construct a valid range assignment r′ from the given range assignment
r. Initially, we set r′(p) = r(p). After the first phase we will ensure r′(s) ≥
(1 − ε)εk−1 and after the second phase we will ensure r′(p) ≥ (1 − ε)ε2k−2 for
any node p.

The core idea to this construction is that if we have two nodes that are
geometrically close to each other and one has a large power value r(p) assigned
to it and the other a rather small power value, we can safely increase the larger
by a bit, remove the smaller one, and still have a valid power assignment. We
apply this idea once in the opposite direction of the communication paths, i.e.
towards the source node s (first phase) and once along the direction of the
directed communication paths (second phase).

If r(s) ≥ (1 − ε)εk−1 we are done with the first phase. Otherwise, there exists
a directed path of length at least 1 from source node s to some node p having
at most k hops. Let the nodes on this path be labeled p = p0, p1, . . . , pl = s,
l ≤ k as in Figure 1. Note that r(p0) does not contribute to the length of this
path as it is the last node on the directed path. On this path pick the node
with largest index j such that r(pj) ≥ (1 − ε)εj−1. Such a node clearly exists as
∑l

i=1 r(pi) ≥ 1 and
∑l

i=1(1 − ε)εi−1 < 1. Setting r′(s) = r(pj)
(
1 + ε

1−ε

)
and

r′(pi) = 0 for i = j . . . l − 1 as in figure 2 increases the cost νr′ only slightly but
still ensures a valid range assignment because

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

276 S. Funke and S. Laue

pl = s

p1

pj

Fig. 1. Original range as-
signment before the first
phase

s

p1

Fig. 2. Range assignment
after the first phase

1
2

1
4

1
8

1
2l

. . .
...

p

Fig. 3. A metric with un-
bounded doubling dimen-
sion but with bounded
degree HFD

r′(s) = r(pj)
(

1 +
ε

1 − ε

)

≥ r(pj) + εj > r(pj) +
l∑

i=j+1

(1 − ε)εi−1 (1)

> r(pj) +
l∑

i=j+1

r(pi), (2)

i.e. we increased r′(s) such that all nodes that could be reached by nodes
pj , pj+1, . . . , pl−1 can now be reached directly by s.

In the second phase we can use an analogous argument starting from source
node s. We assign each node p in the communication tree a level according to
the number of hops to the source node s, where the source node s has level 0 and
the leaves of the tree have level at most k. We distinguish two cases. In the first
case r′(s) = r(s), i.e. the value of the starting node s has not been increased.
The other case occurs when it has been increased, i.e. r′(s) > r(s).

Let us look at the first case. Consider all maximal paths {tj} in the commu-
nication tree starting from node s where all nodes have r(p) < (1 − ε)εk−1+i if
node p is on level i. We can set r′(s) = r(s)(1+ ε

1−ε) and r′(p) = 0 for all p ∈ ti.
Hence, we again maintain a valid range assignment and the next nodes p along
the paths of the communication tree satisfy r(p) ≥ (1 − ε)εk−1+i if node p is on
level i. Applying the same reasoning iteratively to these nodes we finally have
that for all nodes p either r′(p) = 0 or r′(p) ≥ (1− ε)εk−1+i for a node p on level
i. Note that for nodes p on level k we can set r′(p) = 0. Hence, we have a valid
range assignment r′ with r′(p) ≥ (1 − ε)ε2k−2.

Let us now consider the second case, when r′(s) > r(s), i.e. the value of
s has been increased in the first phase of the construction. Here we increased
r′(s) already in the first phase to at least (1 − ε)εk−2

(
1 + ε

1−ε

)
= εk−2. Hence,

we can continue as in the first case without increasing r′(s) anymore, because
εk−2 >

∑k
i=0(1 − ε)εk−1+i for ε < 1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bounded-Hop Energy-Efficient Broadcast 277

The cost of the valid range assignment r′ satisfies

νr′ =
∑

p∈P

(r′(p))δ ≤
∑

p∈P

(

r(p)
(

1 +
ε

1 − ε

))δ

=
(

1 +
ε

1 − ε

)δ

νr (3)

Using the preceding Lemma it is now easy to come up with a small coreset
by using a grid of width roughly an ε-fraction of the minimum non-zero range
assigned in r′.

Lemma 2. For any k-hop broadcast instance there exists a (k, (δ + 2)ε)-coreset
of size O(

(
1
ε

)4k).

Proof: We will only sketch the main idea here. We place a grid of width Δ =
1√
2
ε · rmin on the plane, where rmin = (1 − ε)ε2k−2. Notice, that the grid has to

cover an area of radius 1 around the source only because the furthest distance
from node s to any other node is 1. Hence its size is O(

(
1
ε

)4k) for small ε. Now
assign each point in P to its closest grid point. Let the coreset S be the set
of grid points that had at least one point from P snapped to it. Applying the

Structure Lemma 1 induces a relative error of
(
1 + ε

1−ε

)δ

. Since the grid induces
an error of (1 + ε) the total relative error is bounded by (1 + (δ + 2)ε).

Unfortunately we are not aware of any efficient algorithm for computing even just
a constant approximation to the bounded-hop broadcast problem. But since we
were able to reduce the problem size to a constant independent of n, we can also
employ a brute-force strategy to compute an optimal solution for the reduced
problem (S, s), which in turn translates to an (1+(δ+2)ε)2-approximate solution
to the original problem since the reduced problem (S, s) is a (k, (δ+2)ε)-coreset.

When looking for a optimal, energy-minimal solution for S, it is obvious that
each node needs to consider only |S| different ranges. Hence, naively there are at
most |S||S| different range assignments to consider at all. We enumerate all these
assignments and for each of them we check whether the induced communication
graph contains a directed spanning tree of depth at most k rooted at the grid
point corresponding to the original root node s, that is whether the respective
range assignment is valid; this can be done in time |S|2. Of all the valid range
assignments we return the one of minimal cost.

Assuming the floor function a (k, (δ + 2)ε)-coreset S for an instance of the k-
hop broadcast problem for a set of n radio nodes in the plane can be constructed
in linear time. Hence we obtain the following corollary:

Corollary 1. A (1+(δ+2)ε)2-approximate solution to the k-hop energy-minimal
broadcast problem on n points in the plane can be computed in time O(n +

|S||S|) = O

(

n +
(

1
ε

)4k(1
ε)4k

)

.

A simple observation allows us to improve the running time slightly. Since even-
tually we are only interested in an approximate solution to the problem, we

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

278 S. Funke and S. Laue

are also happy with only approximating the optimum solution for the coreset S.
Such an approximation for S can be found more efficiently by not considering all
possible at most |S| ranges for each grid point. Instead we consider as admissible
ranges only 0 and rmin · (1+ ε)i for i ≥ 0. That is, the number of different ranges
a node can attain is at most 1+ log1+ε r−1

min ≤ 4k
ε · log 1

ε for ε ≤ 1. This comes at
a cost of a (1 + ε) factor by which each individual assigned range might exceed
the optimum. The running time of the algorithm improves, though, which leads
to our main result in this section:

Corollary 2. A (1+(δ+2)ε)3-approximate solution to the k-hop energy-minimal
broadcast problem on n points in the plane can be computed in time

O
(
n +

(
4k
ε · log 1

ε

)|S|)
= O

(

n +
(

4k
ε

)(1
ε)4k

)

.

A (1 + ψ)-approximate solution can be obtained by choosing ε = θ(ψ/δ).

3 Properties of Low-Dimensional Metrics

As mentioned in the introduction, the theoretical analysis of algorithms typically
requires some simplifying assumptions on the problem setting. In case of wireless
networking, a very common assumption is that all the network nodes are in the
Euclidean plane, distances are the natural Euclidean distances, and the required
transmission energy is some power of the Euclidean distance. This might be true
for network deployments in the open field, but as soon as there are buildings,
uneven terrain or interference, the effective required transmission power might
be far higher. Still, it is true that there is a strong correlation between geo-
graphic/Euclidean distance and required transmission power. So how could we
define the problem using less demanding assumptions but still be able to analyt-
ically prove properties of the algorithms and protocols of interest? One possible
way is to assume that the required transmission energies are powers of distance
values in some metric space on the network nodes, and that this metric space has
some resemblance to a low-dimensional Euclidean space. ”Resemblance to a low-
dimensional Euclidean space” could be equivalent to the existence of a mapping
into low-dimensional Euclidean space which more or less preserves distances (low
distortion embeddings). Another means to capture similarity to low-dimensional
Euclidean spaces is the so-called doubling dimension. The doubling dimension of
a metric space (X, d) is the least value α such that any ball in the metric with
arbitrary radius R can be covered by at most 2α balls of radius R/2. Note that
for any α ∈ N, the Euclidean space R

α has doubling dimension Θ(α). In the fol-
lowing we show that a metric of bounded doubling dimension exhibits not only
this Euclidean-like covering property but also a respective packing property.

3.1 Metrics of Bounded Doubling Dimension

The fact that every ball can be covered by at most a constant number of balls
of half the radius (covering property) induces the fact, that not too many balls

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bounded-Hop Energy-Efficient Broadcast 279

of sufficiently large radius can be placed inside a larger ball (packing property).
The following lemma states this fact precisely. (The same observation was made
in Section 2 of [7] in the context of net-trees but was not explicitly stated in this
general form.)

Lemma 3 (Packing Lemma). Given a metric (X, d) with doubling constant
k, i.e. every ball can be covered by at most k balls of half the radius, then, at
most k pairwise disjoint balls of radius r/2 + ε, for ε > 0 can be placed inside a
ball of radius r.

Proof: Consider a ball B of radius r. Place a set S = {B1, B2, . . . , Bl} of pairwise
disjoint balls each having radius r/2 + ε inside B. Let C = {b1, b2, . . . , bk} be a
set of balls of radius r/2 that cover the ball B. The distance between two centers
of balls from S is at least r + 2ε > r as they are pairwise disjoint. Hence, every
ball bi ∈ C can cover at most one center of a ball Bj ∈ S. Since every ball from
the set S is covered and especially its center, we have |S| ≤ |C| = k.

The same generalizes to arbitrary radii. If a ball B of radius R can be covered by
at most k balls of radius r then there can be at most k pairwise disjoint balls of
radius r + ε for ε > 0 placed inside B. We will make use of this packing property
at various places later.

3.2 Hierarchical Fat Decompositions (HFD)

Given an arbitrary metric (X, d), a decomposition is a partition of X into
clusters {Ci}. A hierarchical decomposition is a sequence of decompositions
Pl, Pl−1, . . . , P0, where each cluster in Pi is the union of clusters from Pi−1,
Pl = X , and P0 = {{x}|x ∈ X}, i.e. Pl is the single cluster containing X and ev-
ery point forms one separate cluster in P0.1 We refer to clusters of Pi as clusters
at level i. A hierarchical decomposition where each cluster of the same level i is
contained in a ball of radius ri, contains a ball of radius α·ri, and ri−1 ≤ β ·ri for
constants α and β < 1 is called a hierarchical fat decomposition (HFD). Thus,
in an HFD clusters are fat and the size of the clusters from different levels form
a geometric sequence. We call a set fat if the ratio between an inscribed ball and
a surrounding ball is bounded by a constant.

We will show how to construct an HFD for an arbitrary metric (X, d). Without
loss of generality we assume minp,q∈Xd(p, q) = 1. We call Φ = maxp,q∈Xd(p, q)
the spread of X . We construct the HFD bottom-up. Let Li be a set of points
which we call landmarks of level i. With each landmark we associate a cluster
Ci(l) ⊆ X .

On the lowest level we have Lo = X and C0(l) = {l}, i.e. each point forms
a separate cluster. Obviously, each cluster is contained in a ball of radius 1 and
contains a ball of radius 1

2 . Starting from the lowest level we construct the next
level recursively as follows. For level i we compute a 4i-independent maximal
set (i.e. a maximal set with respect to insertion with the pairwise distance of
at least 4i) of landmarks Li from the set Li−1 of landmarks from one level
1 This is also known as a laminar set system as used frequently in the literature.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

280 S. Funke and S. Laue

below. Hence, the distance between any two landmarks of level i is at least 4i.
We compute the Voronoi diagram VD of this set Li and call the Voronoi cell
of l V Ci(l). The union of all clusters of landmarks from level i − 1 that fall
in the region V Ci(l) form the new cluster that we associate with landmark l,
i.e. Ci(l) =

⋃
p∈V Ci(l)

Ci−1(p). Obviously, each Voronoi cell contains a ball of
radius 4i/2 and is contained in a ball of radius 4i, since the set of landmarks Li

form a 4i maximal independent set. Hence, each cluster on level i is contained
in a ball of radius

∑i
j=0 4j ≤ 4i+1/3 and each cluster contains a ball of radius

4i/2 −
∑i−1

j=0 4i ≥ 4i/6. Thus, we have constructed an HFD.

3.3 A Characterization of Metrics of Bounded Doubling Dimension

We say an HFD has degree d if the tree induced by the hierarchy has maximal
degree d. The following theorem gives a characterization of metrics with bounded
doubling dimension in terms of such HFDs.

Theorem 1. A metric (X, d) has bounded doubling dimension if and only if all
hierarchical fat decompositions of (X, d) have bounded degree.

Proof: First, suppose metric (X, d) has bounded doubling dimension. Fix an
arbitrary HFD for (X, d) and pick a cluster C. Since C is fat, it is contained in
a ball of radius r1 and it is the union of fat clusters {C1, C2, . . . , Cl}. Each of
them contains a ball of radius r2. The ratio of the two radii r1 and r2 is bounded
by a constant due to the definition of an HFD. Then, by the Packing Lemma 3
cluster C cannot contain more than a constant number of clusters from the level
below. Hence, each HFD has bounded degree.

On the other hand, suppose (X, d) has no bounded degree. Then there exists
a ball B(x, r) = {y|d(x, y) ≤ r} that cannot be covered by a constant number
of balls of half the radius r. We can construct an HFD, which has no bounded
degree as follows. Consider an HFD constructed as in Section 3.2, where the set
of landmarks always contains the point x. Consider the minimal cluster C that
contains ball B(x, r) and consider the set of children clusters {C1, C2, . . . , Cl} of
C that are all contained in a ball of radius r/2. Due to the definition of an HFD
the difference in the levels of these clusters is bounded by a constant. Since,
the number of children clusters is not bounded, the HFD cannot have bounded
degree.

There are metrics however, that admit an HFD with bounded degree but do
not have bounded doubling dimension. The following metric is such an example.
Consider the complete binary tree of depth l and each edge from level i − 1
to level i having weight 1

2i as in Figure 3. Let p be a node which is connected
to all leaves with edge weights 1

2l . The shortest path metric induced by this
graph does not have a bounded doubling dimension but admits an HFD with
bounded degree. We can place 2l disjoint balls of radius 1

2l+1 , each having a leaf
as its center, inside a ball of radius 1

2l with center p. Hence, the metric cannot
have bounded doubling dimension for arbitrary large l (Packing Lemma). On
the other hand, it is easy to see that the metric has an HFD of degree 2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bounded-Hop Energy-Efficient Broadcast 281

An HFD with bounded degree immediately implies a well-separated pair de-
composition (WSPD) of linear size in the number of input points. We just sketch
the main idea here.

The construction follows closely the lines of [2]. If we replace in their con-
struction the fair split tree by our hierarchical fat decomposition, we get the
same bounds, apart from constant factors. All we need to show is that if a
ball B of radius r is intersected by the surrounding balls of a set of clusters
S = {C1, C2, . . . , Cl} with Cj ∩ Cj = ∅ for i 	= j and the parent of each cluster
Ci has a surrounding ball of radius larger than r/c for a constant c, then the set
S can only contain a constant number of clusters. But this is certainly true. The
packing lemma 3 assures that there are just a constant number of clusters whose
surrounding balls intersect a large ball B whose radius is larger by a constant.
And as the HFD has bounded degree, these clusters have constant number of
children clusters S = {C1, C2, . . . , Cl} all together. If we eliminate all clusters
in the HFD that just have one children cluster we get that the number of well-
separated pairs is linear in the number of input points and depends only on the
constant c and the doubling dimension.

3.4 Optimizing Energy-Efficiency in Low-Dimensional Metrics

In the following we will briefly sketch how the algorithm presented in Section
2 can also be applied for metrics of bounded doubling dimension. Furthermore
we show how an old result ([4]) can also be partly adapted from the Euclidean
setting.

Energy-Efficient k-Hop Broadcast. The algorithm presented in Section 2
for broadcasting in the plane can be generalized to metrics with bounded dou-
bling dimension. Obviously, the Structure Lemma 1 still holds since the triangle
inequality holds. Now, instead of placing a planar grid, we construct an HFD for
the nodes as in Section 3.2. The level of the decomposition where each cluster is
contained in a ball of radius r = Δ/2 replaces the grid in the approximation al-
gorithm. As the metric has bounded doubling dimension, the HFD has bounded
degree. Hence, there is just a constant number of clusters in the decomposition
of this level. We can solve this instance in the same way as for the planar case.

Energy-Efficient k-Hop Paths. In [4] the authors considered the problem of
computing an (1 + ε) energy-optimal path between a nodes s and t in a network
in R

2 which uses at most k hops. Again, as in Section 2, the assumption was
that the required energy to transmit a message over Euclidean distance d is dδ,
for δ ≥ 2. Using a rather simple construction where the neighborhood of the
query pair s and t was covered using a constant number of grid cells (depend-
ing only on k, δ, ε) such queries could be answered with a (1 + ε) guarantee in
O(log n) time. Similarly to the bounded-hop broadcast, we can replace this grid
by a respective level in a HFD. For bounded doubling dimension we then know
that there are only a constant number of relevant grid cells and the algorithm
can be implemented as in the Euclidean case. In [4] the construction was further

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

282 S. Funke and S. Laue

refined by using a WSPD to actually precompute a linear number of k-hop paths
which then could be accessed in O(1) time for a query (independent of k, δ, ε).
Generalizing this refinement is the focus of current research.

4 Computing HFDs in Shortest-Path Metrics

In wireless sensor networks, the employed network nodes are typically low-
capability devices with simple computing and networking units. In particular,
most of these devices do not have the ability to adjust the transmission power
but always send within a fixed range. The graph representing the pairs of nodes
that can communicate with each other is then a so-called unit-disk graph (UDG),
where two nodes can exchange messages directly iff they are at distance of most
1. Typically UDGs are considered in the Euclidean setting, but they can be
looked at in any metric space. Due to the fixed transmission power, saving en-
ergy by varying the latter is not possible. Still, indirectly, energy can be saved by
for example better routing schemes which yield shorter (i.e. fewer hops) paths.
In the following we briefly discuss how HFDs can be used to provide such ef-
ficient routing schemes. We first show how in case of unweighted graphs like
UDGs, HFDs can be efficiently computed and then sketch how the structure of
the HFDs can be exploited to allow for routing schemes with near-optimal path
lengths using small routing tables at each node.

4.1 A Near-Linear Time Algorithm

Consider an unweighted graph G = (V, E). All shortest paths define a shortest-
path metric on the set of vertices. If the metric has bounded doubling dimension
we can construct an HFD with bounded degree efficiently by employing the
generic approach described in Section 3.2. At level i we need to construct an 4i-
independent maximal set of nodes Li, the landmarks. This can be done greedily
using a modified breadth-first search algorithm on the original graph G. At the
same time we can compute the corresponding Voronoi diagram. We pick an ar-
bitrary node n1 and add it to the set Li. In a breadth-first search we successively
compute the set of nodes that have distance 1, 2, . . . until we computed the set
of nodes at distance 4i. We mark each visited node as part of the Voronoi cell
of node n1 and store its distance to n1. From the set of nodes at distance 4i we
pick a node n2 and add it to Li. Starting from node n2 we again compute the
set of nodes that have distance 1, 2, . . . to the node n2. Similarly, if a node is
not assigned to a Voronoi cell, we assign it to n2. If it has been assigned already
to some other node but the distance to the other landmark is larger than to the
current node n2, we reassign it to the current node. We do this until no new
landmark can be found and all nodes are assigned to its Voronoi cell.

We might visit a node or an edge several times, but as the metric has bounded
doubling dimension, this happens only a constant number of times. Thus, the
running time is O(m + n) for one level and O((m + n) log n) for the whole
construction of the HFD as there are O(log n) levels.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bounded-Hop Energy-Efficient Broadcast 283

4.2 Hierarchical Routing in Doubling Metrics

The HFD constructed above implicitly induces a hierarchical naming scheme for
all nodes of the network by building IP-type addresses which reflect in which
child cluster of each level a node v is contained (remember that there are always
only a constant number of children of each cluster). For example if v is contained
in the top-most cluster 4, in the 2nd child of that top-most cluster and in the 5th
child of that child, its name would be 4.2.5. Clusters can be named accordingly
and will be prefixes of the node names. We now install routing tables at each node
which allow for almost-shortest path routing in the network: For every cluster C
with diameter D we store at all nodes in the network which have distance at most
O(D/ε) from C a distance value (associated with the respective address of the
cluster and a pointer to the predecessor on the shortest path to the cluster) to
the boundary of C in the node’s routing table. Now, when a message needs to be
routed to a target node t and is currently at node p, p inspects its routing table
and looks for an entry which is a as large as possible prefix of the target address.
p then forwards the message to the adjacent neighbor which is associated with
this routing table entry. A simple calculation shows that this yields paths which
are at most a (1 + ε) factor longer than the optimal shortest path For the size
of the routing table first consider an arbitrary node v and clusters of diameter
at most D. Clearly there are at most O((1/ε)O(α)) many such clusters which
have distance less than O(D/ε) from v and have hence created a routing table
entry at v. Overall there are only log n levels and each routing table entry has
size O(log n) (since the maximum distance is n). Hence the overall size of the
routing table of one node is O((1/ε)O(α) log2 n).

References

1. C. Ambühl, A. E. F. Clementi, M. Di Ianni, N. Lev-Tov, A. Monti, D. Peleg,
G. Rossi, and R. Silvestri. Efficient algorithms for low-energy bounded-hop broad-
cast in ad-hoc wireless networks. In STACS, pages 418–427, 2004.

2. Paul B. Callahan and S. Rao Kosaraju. Algorithms for dynamic closest pair and
n-body potential fields. In SODA, 1995.

3. Hubert T.-H. Chan, Anupam Gupta, Bruce M. Maggs, and Shuheng Zhou. On
hierarchical routing in doubling metrics. In SODA, pages 762–771, 2005.

4. S. Funke, D. Matijevic, and P. Sanders. Approximating energy efficient paths in
wireless multi-hop networks. In ESA, pages 230–241, 2003.

5. A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geometries, fractals, and low-
distortion embeddings. In FOCS, 2003.

6. S. Har-Peled and S. Mazumdar. Coresets for k-means and k-median clustering and
their applications. In STOC, pages 291–300, 2004.

7. S. Har-Peled and M. Mendel. Fast construction of nets in low dimensional metrics,
and their applications. SIAM Journal on Computing, 35(5):1148–1184, 2006.

8. P. Kumar, J. S. B. Mitchell, and E. A. Yildirim. Approximate minimum enclosing
balls in high dimensions using core-sets. J. Exp. Algorithmics, 8, 2003.

9. Kunal Talwar. Bypassing the embedding: algorithms for low dimensional metrics.
In STOC, pages 281–290, 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Complexity of Affine Image Matching�

Christian Hundt and Maciej Lískiewicz��

Institut für Theoretische Informatik, Universität zu Lübeck, Germany
chundt/liskiewi@tcs.uni-luebeck.de

Abstract. The problem of image matching is to find for two given dig-
ital images A and B an admissible transformation that converts image
A as close as possible to B. This problem becomes hard if the space of
admissible transformations is too complex. Consequently, in many real
applications, like the ones allowing nonlinear elastic transformations, the
known algorithms solving the problem either work in exponential worst-
case time or can only guarantee to find a local optimum. Recently Keysers
and Unger have proved that the image matching problem for this class of
transformations is NP-complete, thus giving evidence that the known ex-
ponential time algorithms are justified. On the other hand, allowing only
such transformations as translations, rotations, or scalings the problem
becomes tractable. In this paper we analyse the computational complex-
ity of image matching for a larger space of admissible transformations,
namely for all affine transformations. In signal processing there are no
efficient algorithms known for this class. Similarly, the research in com-
binatorial pattern matching does not cover this set of transformations
neither providing efficient algorithms nor proving intractability of the
problem, although it is a basic one and of high practical importance.
The main result of this paper is that the image matching problem can
be solved in polynomial time even allowing all affine transformations.

1 Introduction

Image matching is a well studied problem in different research areas that arises in
many application fields, for example, computer vision, medical imaging, pattern
recognition, digital watermarking (for an overview we refer to [7,5,17,21]). Given
two digital images A and B and some space F of admissible transformations,
the Image Matching Problem is to find a transformation f ∈ F that changes
A closest to B, i.e., that minimises the distortion between f(A) and B. Thus,
image matching determines how far image B is a distorted copy of image A
according to a specific space of transformations.

We model a digital image A in a standard way as a two dimensional array over
the finite set of integers Σ = {0, 1, . . . , σ} where each item Aij represents a grey
value of the pixel with coordinates (i, j). For simplicity’s sake, assume −N ≤ i, j ≤
N , and let Aij = 0, if either |i| > N or |j| > N . We let N = {−N, . . . , 0, . . . , N}
� Supported by DFG research grant RE 672/5-1.

�� On leave from Instytut Informatyki, Uniwersytet Wroc�lawski, Poland.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 284–295, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Complexity of Affine Image Matching 285

and call N × N the support of the image A. The pixel (i, j) is a unit square in the
real plane�2 with the geometric center point (i, j). Thus the pixels for A cover a
square area of size (2N + 1) × (2N + 1) with the geometric center point (0, 0). A
transformation f of an image A is an arbitrary injective mapping f : �2 → �

2.
Transformations of particular importance from the image matching point of view
fulfill some additional constraints like smoothness and elasticity and specifically
such functions as rotations, scalings, translations, affine and some nonlinear elas-
tic transformations play an important role in this area. Applying a transformation
f to A we get the image f(A), which is a two dimensional array over Σ with in-
dices ranging the same interval as in A. The grey values of the pixels in f(A) are
determined by Nearest Neighbour Interpolation (NNI, for short) in which the grey
value of the pixel (i, j) in f(A) is equal to the value of the pixel (i′, j′) of the image
A such that f−1(i, j) lies in the unit square with the geometric center point (i′, j′)
(for an example see Fig. 1). For two images A and B of the same size the distortion
between A and B is measured by

∑
δ(Aij , Bij) where δ(a, b) is a function charging

mismatches, for example δ(a, b) = |a − b|.

-3 -2 -1 1 2 3-3 -2 -1 1 2 3

1

-3

-2

-1

2

3

-3 -2 -1 1 2 3-3 -2 -1 1 2 3

1

-3

-2

-1

2

3

f

f

f (-1,1)
-1

A: f(A):

Fig. 1. Image A and the transformed image f(A). The grey value of the pixel (−1, 1)
in f(A) is equal to the value of the pixel (−1, 1) of A since in �2 the point (−1, 1) is
the closest one to the point f−1(−1, 1).

The crucial challenge in all image matching applications is that the Image

Matching Problem is hard if the set of admissible transformations F is too
complex. Subsequently, known algorithms for optimal or approximate solutions
to the problem like the one used for nonlinear elastic transformations (see e.g.
[24]) use exponential resources. Recently Keysers and Unger [18] have proved
that the decision problem corresponding to the Image Matching Problem for
this class of transformations is NP-complete, thus giving evidence that the known
exponential time algorithms are justified. On the other hand, allowing only trans-
lations, rotations and scalings the problem becomes tractable [19,11,12,1,2,3].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

286 C. Hundt and M. Lískiewicz

For example, restricting the problem to rotations image matching can be solved
in time O(N3). The main result of this paper is that the Image Matching

Problem can be solved in polynomial time even allowing all invertible affine
transformations. Recall, a transformation f over �2 is affine if f(x) = Ax + t
with A an �2×2-matrix and t an �2-vector.

1.1 Previous Work

In image processing, the classical approach to the Image Matching Problem

for affine transformations is to transform the images A and B into a space where
certain affine distortions correspond to simple translations. The advantage of
that space is the Image Matching Problem becoming easy by exhaustive
search in the set of translations. Take, for example, the polar map p(A) of an
image A. In p(A) the pixel data is simply represented in a different coordinate
system. Thereby the relation between image coordinates (i, j) and polar-map-
coordinates (u, v) is given by i = v cos(u) and j = v sin(u). In the case of polar
maps a rotation of the original image corresponds to a shifting of the related
polar map with respect to coordinate u. Hence, if B is a rotated version of A,
then their polar maps p(A) and p(B) are identical in the sense that they can be
transformed into each other just by shifting. Additionally, the shifting distance
between both maps gives the amount of rotation which would convert A into B.
Hence, for solving the Image Matching Problem only for the set of rotations
it suffices to compute the polar maps of A and B and then determine by brute
force the shifting between both maps.

Another important example is the log-polar-map lp(A) with transformation
i = ev cos(u), j = ev sin(u). In addition to rotation of the original image A,
scaling is associated to translation in the corresponding log-polar-map lp(A).
The major drawback is that the map lp(A) has to be exponentially large to
preserve all image information of A. Thus, log-polar-maps are not an efficient
tool for solving the Image Matching Problem.

The same disadvantages are shared by the log-log-map, which depending on
the application is sometimes chosen instead of the log-polar-map. The log-log-
map corresponds to the transformation i = eu and j = ev such that the image is
represented in a way where aspect ratio is associated to translations. But here
rotation of the original image is not associated to translation anymore.

Combinatorial pattern matching deals with image matching by using differ-
ent means than image processing techniques. In this area discrete methods,
rather than continuous analysis, are used. Restricting the space F of admis-
sible transformations to rotations and scalings, the research in combinatorial
pattern matching has been concentrated mainly on algorithms which for a given
pattern image A and an image B, typically of a greater size, find all exact or close
occurrences of f(A) in B [19,11,12,1,2,3]. This problem is often called rotation
(resp. scaling) invariant template matching in the signal processing literature.
An obvious algorithm works in two phases. First, in the preprocessing step, it
constructs a database D of all possible rotations of A. Then scanning the image
B, for every pattern rotation in D find all its occurrences in B. The worst-case

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Complexity of Affine Image Matching 287

running time of the algorithm is O(|D|N2 log M) where M is the size of A and
N is the size of B. In [1] it was proven that the number of different pattern
rotations is Θ(M3). Thus, the running time is O(N2M3 log M). In a sequence of
papers some improvements of this approach have been presented and currently
the best known achievement due to Amir et al. [2] guarantees time complexity
O(N2M2).

Some combinatorial pattern matching techniques have been used recently in
computational geometry to solve matching problems in a geometric setting (see
e.g. [15,23]). In geometric pattern matching, we are given two point sets A and
B in Euclidian space and some space F of admissible transformations, and the
problem is to find f ∈ F that transforms A closest to B under some distance
measure (see [14] for a survey and [6,22] for some related problems).

Recently, Keysers and Unger [18] have considered the Image Matching

Problem for elastic transformations and proved that for this class of transfor-
mations the problem is NP-complete. Elastic transformations are saddled with
the constraint to preserve the neighbourhood relation of the pixels, hence, if two
pixels are close in the source image, then the corresponding pixels in the trans-
formed image have to be close as well. This is a natural condition which arise in
many practical cases. Keysers and Unger show NP-completeness for the hardest
constraint on elastic distortions where neighbouring pixels of the original image
may not be more then one pixel apart in the transformed image. The Image

Matching Problem becomes tractable without the elasticity constraint but
nothing is known about the middle case where the constraint on the allowed
elastic distortions is not as hard as assumed in [18], e.g., if we charge the dif-
ference of the distance between neighbouring pixels in the original image and
the distance of the corresponding pixels in the transformed image by a smooth
function.

In [20] we analysed various kinds of transformations under which the Image

Matching Problem becomes intractable. However, we restricted the problem
to the field of watermarking. In that setting not only the distortion between im-
ages has to be minimised during the matching process, but also a watermarking
detector response has to be maximised. Development of algorithms which find
matchings according to both criteria is one of the great challenges in the area of
digital watermarking (see e.g. [7]).

1.2 Our Contribution

In this paper we analyse the Image Matching Problem where the set of
admissible transformations is the set of all affine transformations.

The main result of this paper states that the Image Matching Problem can
be solved in polynomial time if restricted to affine transformations. We present
a polynomial time algorithm which on two input images A and B computes an
affine transformation f such that the distortion between the transformed image
f(A) and image B is minimum. Since the polynomial for the time complexity has
a far too high exponent to be practical, this is only the first step in developing
an efficiently working algorithm but still an encouraging result.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

288 C. Hundt and M. Lískiewicz

Afterwards we generalise our result to higher dimensional image matching
and to different methods of interpolations that we use to define the pixel values
of the image f(A) for a given image A and a transformation f . We summarise
the result of this paper in the table below (here, N denotes the size of images):

Complexity
Allowed transformations NN interpolation Linear Interpolation

Scalings N3, e.g. [3] P-time, this paper
Rotations N3, e.g. [12,2] P-time, this paper

Affine transformations P-time, this paper
Elastic (threshold distance function) NP-complete, [18]
Elastic (smooth distance function) open

2 Preliminaries

The image A represents a function over the real plane �2 in a discrete way.
Each element Aij gives the function value for the argument (i, j). Normally
the values for the intermediate arguments are defined by interpolation over A.
Let [·] denote rounding all components of a vector, then we define the Nearest
Neighbour Interpolation (NNI) as I(x) = [x].

Throughout the remainder of this paper let F denote the set of all invertible
affine transformations. Despite the fact that A is transformed according to f ∈
F , the actual definition of f(A) is based on the inverse affine transformation
f−1. In the following we will for short simply use g as the inverse f−1 of affine
transformation f .

We assume that there is a polynomial time computable function δ : Σ × Σ →
�, measuring differences in grey values. Then for images A and B with support
N ×N we measure the distortion Δ(A, B) between A and B as the sum of pixel
differences, i.e.,

Δ(A, B) =
∑

(i,j)∈N 2 δ(Aij , Bij).

We call the following optimisation problem the Image Matching Problem

for affine distortions: For a given reference image A and a distorted image B,
both of the same size (2N + 1) × (2N + 1), find an affine transformation f ∈ F
minimising the distortion Δ(f(A), B).

Notice that the image matching problem considered by Keysers and Unger is
different to our definition in that they regard the set of transformations f on
B making f(B) most similar to A. But this aspect is not important with affine
transformation, since they can be inverted.

Additionally, Keysers and Unger use a distance dd to charge the strength of
distortion introduced by f . In our case, f is an affine transformation, and hence,
these costs are approximately constant and do not have to be considered.

In [20] we also utilise a secondary distance D to additionally maximise the
watermark detector response. But this does not apply to our case either, since
we are not considering watermarking applications only.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Complexity of Affine Image Matching 289

3 Algorithm Development

We will develop a basic polynomial time strategy S for the Image Matching

Problem of affine distorted images. The general idea of the strategy is simple.
As we will show, the number of images f(A) resulting from affine transformations
of the image A is bounded polynomially with respect to the size of A, and the
set of possible outcomes can be enumerated in polynomial time. The strategy S
is as follows:

1. Create the database D for all possible affine transformations of A;
2. Set the error bound D = ∞;
3. For all affine transformations f ′ ∈ D do

(a) Set D′ = Δ(f ′(A), B);
(b) If D′ < D set D = D′ and f = f ′;

4. Return f and exit.

In this section we show why Step 1 can be performed efficiently and that the
loop can be repeated at most a polynomial number of times.

Let us first take a closer look at how the grey values of a distorted image f(A)
are determined by image A, affine transformation f and NNI. In the case of NNI
the grey value at each coordinate in f(A) is either zero or corresponds to the grey
value of one grid coordinate in A. Denote by G the set of inverse transformations
to f ∈ F . Since F coincides with all invertible affine transformations, hence
formally one has G = F . We use, however, the notation G to stress the fact that
we look for an inverse transformation g = f−1 rather than for transformation
f itself. Obviously, G can not be enumerated, though the set {f(A) | f ∈ F}
can be. Thus, our aim is to find a discretisation transferring G into discrete
counterpart, which we will denote by Γ . Speaking formally, let Γ = {γ | γ :
N ×N → N ×N ∪{⊥}}. Then for every g ∈ G the discrete counterpart γg ∈ Γ
is defined as follows:

γg(i, j) =
{

[g(i, j)] if [g(i, j)] ∈ N × N ,
⊥ otherwise.

If g is the inverse of some affine transformation f , then in γg all pixel coordinates
(i, j) ∈ N × N of f(A) are associated to the pixel of A nearest to g(i, j). If such
a pixel does not exist, then γg(i, j) = ⊥. From γg and image A the transformed
image f(A) can be computed easily.

For affine transformations Ax+t over�2, the matrix A = (a1 a2
a3 a4) contains the

four parameters a1, a2, a3, a4 and the vector t =
(

t1
t2

)
two additional parame-

ters t1 and t2. Hence, each affine transformation can be characterised by a vector
(a1, a2, a3, a4, t1, t2) in �6 and each six-dimensional vector (a1, a2, a3, a4, t1, t2)
defines an affine transformation. However, not every vector in �6 describes a
transformation g ∈ G (remember G coincides with all invertible affine transfor-
mations).

Now, for p = (a1, a2, a3, a4, t1, t2) ∈ �6 we define φp(x) = (a1 a2
a3 a4)x +

(
t1
t2

)
to

be the corresponding affine transformation. We transfer the definition of γ over

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

290 C. Hundt and M. Lískiewicz

the space �6 as follows: γp(i, j) = [φp(i, j)] if [φp(i, j)] ∈ N × N , and otherwise
we let γp(i, j) = ⊥. Then we define R to be the equivalence relation on �6:

R = {(p, q) | p, q ∈ �6 and γp = γq}.

The relation R partitions�6 into subsets of points of equal discrete counterparts.
The central concept of the data structure D is a partition of the space �6

according to the equivalence relation R and to find for each equivalence class C
a point p ∈ C such that φp ∈ G, if such a point exists. We will show that every
equivalence class C is a convex polytope (hence, the structure of that partition is
simple) and that there is only a polynomial number of classes to be considered.

3.1 Restricting the Problem to One Dimensions

Let g ∈ G and let (a1, a2, a3, a4, t1, t2) be the corresponding parameter vector
in �6. The discrete counterpart γg can be split into two independent mappings
γ1

g : N × N → N ∪ {⊥} and γ2
g : N × N → N ∪ {⊥}, each mapping one

component of the pixel coordinates of f(A) to the pixels of A. Reversely, the
pair of one-dimensional mappings γ1

g and γ2
g can be combined to γg in the way

that

γg(i, j) =
{

(γ1
g(i, j), γ2

g(i, j)) γ1
g(i, j) �= ⊥ and γ2

g(i, j) �= ⊥,
⊥ otherwise.

Notice that γ1
g depends only on the parameters a1, a2 and t1, while γ2

g depends
solely on a3, a4 and t2. We express this by writing γa1a2t1 and γa3a4t2 instead of
γ1

g and γ2
g . Furthermore the splitting of γg is symmetric in the way that if Γ 1

denotes all mappings γ1
g for the first component and Γ 2 denotes all mappings

γ2
g for the second component, then Γ 1 = Γ 2.
Consequently, the partition of �6 can be described by a partition of �3 which

is defined as follows. We consider the mapping γuvw : N × N → N ∪ {⊥} where
u, v, w correspond to either a1, a2, t1 or a3, a4, t2. From the definition of NNI we
have:

γuvw(i, j) =
{

[ui + vj + w] if [ui + vj + w] ∈ N ,
⊥ otherwise.

Define X = {(p, q) | p, q ∈ �3 and γp = γq}. Note that R and X ×X correspond
to each other in such a way that (p, q) ∈ R iff ((p1, p2, p5), (q1, q2, q5)) ∈ X and
((p3, p4, p6), (q3, q4, q6)) ∈ X .

3.2 The One-Dimensional Problem

A key property of relation X , we use for construction of the database D, is that
the equivalence classes of X are convex cells represented as the intersection of
specific half-spaces in �3. The planes describing the half-spaces are defined as
follows. For all pairs (i, j) ∈ N × N and all integers i′ ∈ [−N − 1, N + 1] let
Hiji′ : ix + jy + z + (0.5 − i′) = 0 be the plane in �3, where x, y, and z are

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Complexity of Affine Image Matching 291

variables. Denote by H the set of all such planes Hiji′ . Any Plane Hiji′ ∈ H
divides �3 into the two subspaces with Hiji′ (u, v, w) < 0 and Hiji′ (u, v, w) ≥ 0.
This corresponds directly to the rounding [ui + vj + w] in γuvw .

Lemma 1. Two points s, s′ ∈ �3 belong to the same equivalence class of X iff
for all (i, j) ∈ N × N and all i′ ∈ [−N − 1, N + 1] s and s′ belong to the same
half-subspace according to the partition of �3 by the plane Hiji′ .

Proof. Let s = (u, v, w) and s′ = (u′, v′, w′) be two parameter vectors from �
3.

By definition s and s′ belong to the same equivalence class of X , if and only if
γuvw equals γu′v′w′ .

=⇒: Let γuvw = γu′v′w′ hold but for a contradiction suppose that there is
(i, j) ∈ N ×N and i′ ∈ [−N − 1, N +1] such that with respect to Hiji′ , s and s′

belong to different half-spaces of �3. Then, without loss of generality, it holds
that ui + vj + w − i′ + 0.5 < 0 and u′i + v′j + w′ − i′ + 0.5 ≥ 0. But this means
that [ui + vj + w] < i′ and [u′i + v′j + w′] ≥ i′, which implies that γuvw and
γu′v′w′ differ at least for the argument (i, j), a contradiction.

⇐=: Let for all (i, j) ∈ N ×N and i′ ∈ [−N −1, N +1] s and s′ belong to the
same half-space of �3 with respect to Hiji′ . Suppose for a contradiction that
γuvw �= γu′v′w′ for (i, j) ∈ N × N . This means that there are numbers i′1, i

′
2 ∈ �

with (1) ui + vj + w < i′1 − 0.5, (2) u′i + v′j + w′ ≥ i′2 − 0.5, and (3) without
loss of generality i′1 ≤ i′2. This implies that ui+ vj +w < i′2 −0.5. Either i′1 or i′2
must be in N since otherwise γuvw(i, j) = γu′v′w′(i, j) = ⊥. Hence, if i′2 ≤ N +1
then s and s′ belong to different subspaces according to plane Hiji′

2
and else s

and s′ are still separated by Hij(N+1), a contradiction. �

Thus, the subspaces of �3 corresponding to equivalence classes of X are convex
cells bounded by planes. In that, the structure of X is not complex. By the
limitations for i, j and i′ the number of planes Hiji′ is (2N + 1)2(2N + 3) which
is in O(N3). Any arrangement of planes from H partitions �3 into at most n

convex cells where n ≤
∑3

k=0

(|H|
k

)
∈ O(|H|3). Since there are O(N3) planes, the

overall number of equivalence classes in X is bounded by O(N9). For detailed
information on plane arrangements we refer the reader to Edelsbrunner [8] and
de Berg et al. [9].

As all points of a cell C correspond to the same discretisation it suffices to
choose just one representative of C for the database D. The next lemma states
that the coordinates for the representatives of each cell can be stored precisely
and efficiently. However we shall omit the proof becasue of space limitations.

Lemma 2. Consider a partition of �3 into convex cells by the planes from H.
Then every cell of the partition contains a representative with coordinates u, v, w
which can be encoded by rational numbers with length O(log N).

3.3 The Polynomial Time Algorithm

The central tool in strategy S is the data structure D. Simply speaking D is
a database that contains all discrete counterparts of affine transformations. We
shall describe an algorithm Init which computes D.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

292 C. Hundt and M. Lískiewicz

As described in Section 3.1 we can describe R by X × X . Therefore we give
an algorithm Init ′ which computes a tree T ′ for the traversal of the equivalence
classes of X . Afterwards we describe how to efficiently compute a tree T from
T ′ for the traversal of the equivalence classes of R.

Consider �3 and its partition into convex cells by the planes from H. For
planes H and H ′ let H ′ ‖ H denote that H ′ is parallel to H , and conversely
let H ′ �‖ H denote that H ′ intersects H . Any plane in H ∈ H divides the
space �3 into two half-spaces H− = {(u, v, w) | H(u, v, w) < 0} and H+ =
{(u, v, w) | H(u, v, w) ≥ 0}. By Lemma 1 each cell corresponding to one equiva-
lence class in X is either completely contained in H− or in H+.

If H ′ ‖ H , then H ′ < H denotes that H ′ is contained in H− and H ′ >
H that H ′ is contained in H+. For each plane H in H let H−

H = {H ′ ∈
H | H ′ �‖ H or (H ′ ‖ H and H ′ < H)} and H+

H = {H ′ ∈ H | H ′ �‖ H or (H ′ ‖
H and H ′ > H)}.

We define the tree T ′ for traversing the cells of�3 by describing the algorithm
Init ′ which constructs T ′. On input N , Init ′ works as follows:

1. Create the plane arrangement H containing the planes Hiji′ for (i, j) ∈
N × N and i′ ∈ [−N − 1, N + 1].

2. Let r be the root of T ′. Initialize a stack and push (H, r).
3. While the stack is not empty do:

(a) Pop the top element (H̃, p) from the stack.
(b) If H̃ = ∅ then the path from r to p in T ′ describes a convex cell C in

�
3. Compute the representative z of C and label p with z.

(c) If H̃ �= ∅ then
i. create two nodes c1 and c2 and let p be their parent node,
ii. choose an arbitrary H ∈ H̃ and compute H̃−

H and H̃+
H ,

iii. push (H̃−
H , c1) and (H̃+

H , c2) on the stack.
4. Return T ′, i.e., the labeled tree rooted at r.

The algorithm Init ′ creates a tree, leaves of which represent the cells corre-
sponding to the equivalence classes of X . Init ′ works in time O(poly(N)). To
see this, notice that creating each node of T ′ takes time polynomial in N . In the
case of interior nodes the most time consuming task is computing the sets H−

and H+. This is in the worst case quadratical according to the number of planes
O(N3). In the case of leaves, vertex coordinates have to be computed, which can
be done in polynomial time.

T ′ is a binary tree and has as many leaves as there are equivalence classes
of X . Subsequently, the number of nodes is limited by O(N9) and hence, Init ′

runs in time polynomial with respect to N .
Remember that X × X gives the partition R of �6. To get T it suffices

to augment every leaf of T ′ by the whole subtree T ′. Any path in T from
r to a leaf l defines two sets of parameters (u, v, w) and (u′, v′, w′). Setting
a1 = u, a2 = v, a3 = u′, a4 = v′, t1 = w and t2 = w′ gives a six-dimensional

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Complexity of Affine Image Matching 293

parameter p = (a1, a2, a3, a4, t1, t2) in �6 representing one equivalence class of
affine transformations.

The database D should be a list containing all possible affine transformations.
Any path in T from root to leaf defines a set of parameters p and by that an affine
transformation φp. To obtain D it suffices to traverse T in depth-first strategy.
For every parameter vector p encountered, determine if φp is invertible. In the
positive case compute the inverse and add it to the list D. If φp is not invertible
there are two cases to be distinguished. In the first case, p represents a class
which contains only φp. Then no transformation has g as inverse with g and φp

having the same discretisation. Thus, p can be discarded. In the second case, p
is the center of a polyhedron in �6 and many other points belong to the same
class. In that case one can easily find another representative q near p for the same
class such that q can be stored efficiently and φq is invertible. The inversion of
φp or φq can be done in polynomial time. Furthermore, the parameters for the
resulting affine transformation can be stored in logarithmic space, too.

By the above results we may assume that there is a polynomial time algorithm
Init calling Init ′ as a subroutine and computing the list D of all possible affine
transformations.

Theorem 1. The Image Matching Problem for affine distorted images and
NNI can be solved in polynomial time.

Proof. By Lemma 1 and Lemma 2 as well as the definition of the Init algo-
rithm for D, the strategy S gives a polynomial time algorithm for the Image

Matching Problem which works in time O(N18). �

4 Generalisations

In the previous section we studied a polynomial time algorithm for the Image

Matching Problem for affine distorted two-dimensional images. We shall now
follow two approaches for the generalisation of that result, namely considering
higher dimensional images and different interpolation methods.

Even for k-dimensional images, the Image Matching Problem for affine
distortion can be solved in polynomial time with respect to the input size. Never-
theless, the growth in complexity of a corresponding algorithm is exponential in
k. We will consider images with support N k, affine transformation f : �k → �

k

with f(x) = Ax + t where A is an invertible �k×k-matrix and t is an �k-vector
and the Nearest Neighbour Interpolation I(x) = [x] in k dimensions.

Theorem 2. For any k ∈ �, the Image Matching Problem for affine dis-
torted k-dimensional images and NNI can be solved in polynomial time.

The proof works like in the two-dimensional case taking into account that the
problem is divided into k one-dimensional subproblems with enhanced parameter
spaces each.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

294 C. Hundt and M. Lískiewicz

Another generalisation is the application of more complex interpolation. So
far we used Nearest Neighbour Interpolation because of its simplicity. In NNI,
the grey value of each pixel in f(A) depends solely on one pixel in A. This made
γg simply a mapping between pixel coordinates. However, if a more complex
interpolation method is applied the pixel values of f(A) may depend on more
than one pixel of A. In general let I : �2 × � × � → [0, 1]. Then for all pixels
(i, j) the interpolated value f(A)ij with image A, affine transformation f and I
is defined as f(A)ij =

⌊∑
(i′,j′)∈N 2 I(f−1(i, j), (i′, j′)) Ai′j′

⌋
.

In this generalised setting the Image Matching Problem can be solved by
the following algorithm. On given images A and B do

1. Compute s, the least common multiple of the number set {0, . . . , σ};
2. Compute As by scaling the image A in each dimension by the factor s,

therewith apply interpolation with I;
3. Perform on As and B the polynomial time algorithm for the Image Match-

ing Problem for NNI, yielding the optimal transformation e(x) = Ax + t;
4. Multiply e with the inverse scaling matrix corresponding to s yielding the

affine transformation f , and return f .

Theorem 3. The above algorithm for the Image Matching Problem for affine
distortions with complex interpolation is correct and works in polynomial time.

Because of space limitations we omit the proof. It is remarkable that the com-
plexity remains in fact polynomial, but grows with σ by an enormously large
factor. Even if σ is just 32, s is greater than 1014. We restricted ourselves to
two-dimensional images. However, the results can be easily carried out to im-
ages of higher dimension.

5 Conclusions and Further Work

In this paper we analysed the computational complexity of image matching
for affine transformations and presented an exhaustive search polynomial time
algorithm finding the optimal matching. We leave as open problem to give a
nontrivial lower bound for the search space. Another interesting open question
is the computational complexity of image matching for some other classes of
admissible transformations like nonlinear elastic transformations with a smooth
distance function.

Acknowledgement

The authors are grateful to Frank Balbach for stimulating discussions and for
his careful reading of an early version of the paper. Also, the authors thank the
anonymous referees for their remarks, which helped the authors in improving
the presentation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Complexity of Affine Image Matching 295

References

1. A. Amir, A. Butman, M. Crochemore, G. Landau, and M. Schaps, Two-dimensional
pattern matching with rotations, Theor. Comput. Sci. 314(1-2), 2004, 173-187.

2. A. Amir, O. Kapah, and D. Tsur, Faster Two dimensional pattern matching with
rotations, in Proc. CPM, LNCS 3109, 2004, 409-419.

3. A. Amir and E. Chencinski, Faster two dimensional scaled matching, in Proc. CPM,
LNCS 4009, 2006, 200-210.

4. R. Baeza-Yates and G. Valiente, An image similarity measure based on graph
matching, in Proc. SPIRE, IEEE CS Press, 2000, 28-38.

5. L.G. Brown, A survey of image registration techniques, ACM Computing Surveys
24(4), 1992, 325-376.

6. K. Claire, Y. Rabani, and A. Sinclair, Low distortion maps between point sets, in
Proc. STOC, 2004, 272-280.

7. I. J. Cox, J.A. Bloom, and M.L. Miller, Digital Watermarking, Principles and
Practice. Morgan Kaufmann, San Francisco, California, 2001.

8. H. Edelsbrunner, Algorithms in Combinatorial Geometry. Springer Verlag, 1987.
9. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational

Geometry, Algorithms and Applications. Springer Verlag, 2000.
10. F. Deguillaume, S.V. Voloshynovskiy, and T. Pun, Method for the estimation and

recovering from general affine transforms in digital watermarking applications, in
Proc. SPIE Vol. 4675, 2002, 313-322.

11. K. Fredriksson and E. Ukkonen, A rotation invariant filter for two-dimensional
string matching, In Proc. CPM, LNCS 1448, 1998, 118-125.

12. K. Fredriksson, G. Navarro, and E. Ukkonen, Optimal exact and fast approximate
two dimensional pattern matching allowing rotations, in Proc. CPM, LNCS 2373,
2002, 235-248.

13. B.K.P. Horn, Robot Vision. MIT Press, Cambridge, Massachusetts, 1989.
14. P. Indyk, Algorithmic aspects of geometric embeddings, in Proc. FOCS, 2001, 10-33.
15. P. Indyk, R. Motwani, and S. Venkatasubramanian, Geometric matching under

noise: Combinatorial bounds and algorithms, in Proc. SODA, 1999, 354-360.
16. J.R. Jensen, Introductory Digital Image Processing, A Remote Sensing Perspective.

Prentice-Hall, Upper Saddle River, New Jersey, 1986.
17. R. Kasturi and R.C. Jain, Computer Vision: Principles. IEEE Computer Society

Press, Los Alamitos, California, 1991.
18. D. Keysers and W. Unger, Elastic image matching is NP-complete, Pattern Recog-

nition Letters 24(1-3), 2003, 445-453.
19. G. M. Landau and U. Vishkin, Pattern matching in a digitized image, Algorithmica,

12(3/4), 1994, 375-408.
20. M. Lískiewicz and U. Wölfel, On the intractability of inverting geometric distortions

in watermarking schemes, in Proc. IH, LNCS 3727, 2005, 176-188.
21. J.B.A. Maintz and M.A. Viergever, A survey of medical image registration, Medical

Image Analysis 2(1), 1998, 1-36.
22. C. Papadimitriou and S. Safra, The complexity of low-distortion embeddings be-

tween point sets, in Proc. SODA, 2005, pp. 112-118.
23. L. Schulman and D. Cardoze, Pattern matching for spatial point sets, in Proc.

FOCS, 1998, 156-165.
24. S. Uchida and H. Sakoe, A monotonic and continuous two-dimensional warping

based on dynamic programming, Pattern Recognition, Vol. 1, 1998, 521-524.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Fixed Point Equations over Commutative
Semirings

Javier Esparza, Stefan Kiefer, and Michael Luttenberger

Universität Stuttgart
Institute for Formal Methods in Computer Science

Stuttgart, Germany
{esparza,kiefersn,luttenml}@informatik.uni-stuttgart.de

Abstract. Fixed point equations x = f(x) over ω-continuous semirings
can be seen as the mathematical foundation of interprocedural program
analysis. The sequence 0, f(0), f2(0), . . . converges to the least fixed point
μf . The convergence can be accelerated if the underlying semiring is com-
mutative. We show that accelerations in the literature, namely Newton’s
method for the arithmetic semiring [4] and an acceleration for commu-
tative Kleene algebras due to Hopkins and Kozen [5], are instances of a
general algorithm for arbitrary commutative ω-continuous semirings. In
a second contribution, we improve the O(3n) bound of [5] and show that
their acceleration reaches μf after n iterations, where n is the number
of equations. Finally, we apply the Hopkins-Kozen acceleration to itself
and study the resulting hierarchy of increasingly fast accelerations.

1 Introduction

Interprocedural program analysis is the art of extracting information about the
executions of a procedural program without executing it, and fixed point equa-
tions over ω-continuous semirings can be seen as its mathematical foundation.
A program can be mapped (in a syntax-driven way) to a system of fixed point
equations over an abstract semiring containing one equation for each program
point. Depending on the information on the program one wants to compute, the
carrier and the abstract semiring operations can be instantiated so that the de-
sired information is the least solution of the system. To illustrate this, consider
a (very abstractly defined) program consisting of one single procedure X . This
procedure can either do an action a and terminate, or do an action b and call
itself twice. Schematically:

X
a−→ ε X

b−→ XX

The abstract equation corresponding to this program is

x = ra + rb · x · x (1)

where + and · are the abstract semiring operations. In order to compute the
language L(X) of terminating executions of the program, we instantiate the

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 296–307, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Fixed Point Equations over Commutative Semirings 297

semiring as follows: The carrier is 2{a,b}∗
(the set of languages over the alphabet

{a, b}), ra = {a}, rb = {b}, + is set union, and · is language concatenation. It is
easy to prove that L(X) is the least solution of (1) under this interpretation. But
we can also be interested in other questions. We may wish to compute the Parikh
image of L(X), i.e., the set of vectors (na, nb) ∈ N

2 such that some terminating
execution of the program does exactly na a’s and nb b’s, respectively. For this,
we take 2N

2
as carrier, ra = {(1, 0)}, rb = {(0, 1)}, define + as set union and

· by X · Y = {(xa + ya, xb + yb) | (xa, xb) ∈ X, (ya, yb) ∈ Y }. We may also be
interested in quantitative questions. For instance, assume that the program X
executes a with probability p and b with probability (1−p). The probability that
X eventually terminates is the least solution of (1) interpreted over R

+ ∪{0, ∞}
with ra = p, rb = (1 − p), and the standard interpretation of + and · (see for
instance [3,4]). If instead of the probability of termination we are interested in
the probability of the most likely execution, we just have to reinterpret + as the
max operator.

The semirings corresponding to all these interpretations share a property
called ω-continuity [7]. This property allows to apply the Kleene fixed point
theorem and to prove that the least solution of a system of equations x = f(x)
is the supremum of the sequence 0, f(0), f2(0), . . ., where 0 is the vector whose
components are all equal to the neutral element of +. If the carrier of the semir-
ing is finite, this yields a procedure to compute the solution. However, if the
carrier is infinite, the procedure rarely terminates, and its convergence can be
very slow. For instance, the approximations to L(X) are all finite sets of words,
while L(X) is infinite. Another example is the probability case with p = 1/2; the
least fixed point (the least solution of x = 1/2x2 +1/2) is 1, but fk(0) ≤ 1− 1

k+1

for every k ≥ 0, which means that the Kleene scheme needs 2i iterations to
approximate the solution within i bits of precision1.

Due to the slow convergence of (fk(0))k≥0, it is natural to look for “accelera-
tions”. Loosely speaking, an acceleration is a procedure of low complexity that
on input f yields a function g having the same least fixed point μf as f , but
such that (gk(0))k≥0 converges faster to μf than (fk(0))k≥0. In [5], Hopkins and
Kozen present a very elegant acceleration—although they do not use this term—
that works for every commutative and idempotent ω-continuous semiring2, i.e.,
for every ω-continuous semiring in which · is commutative and + is idempotent
(this is the case for both the Parikh image and the probability of the most likley
computation). They prove that, remarkably, the acceleration is guaranteed to
terminate. More precisely, they show that the fixed point is always reached after
at most O(3n) iterations, where n is the number of equations.

In this paper we further investigate the Hopkins-Kozen acceleration. In the
first part of the paper we show that, in a certain formal sense, this acceleration
was already discovered by Newton more than 300 years ago. In the arithmetic
semiring, where the carrier is R

+ ∪ {0, ∞} and + and · have their usual mean-

1 This example is adapted from [4].
2 Actually, in [5] the result is proved for commutative Kleene algebras, an algebraic

structure more general than our semirings (cf. Section 4.1).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

298 J. Esparza, S. Kiefer, and M. Luttenberger

ings, one can compute the least solution of x = f(x) as a zero of f(x) − x. Due
to this connection, Newton’s numerical method for approximating the zeros of a
differentiable function (see [8]) can also be seen as an acceleration for the arith-
metic case, which has been been studied by Etessami and Yannakakis [4] in a
different context. Here we show that the Hopkins-Kozen acceleration and New-
ton’s are two particular instances of an acceleration for equations over arbitrary
commutative ω-continuous semirings [7] and, in this sense, “the same thing”.

In a second contribution, we improve the O(3n) bound of [5] and show that
the acceleration is actually much faster: the fixed point is already reached after
n iterations. Finally, in a third contribution we investigate the possibility of
“accelerating the acceleration”. We study a hierarchy {Hi}i≥1 of increasingly
faster accelerations, with H1 as the Hopkins-Kozen acceleration, and show that
k iterations of the i-th acceleration can already be matched by ki iterations of
the basic acceleration.

In Section 2 we introduce commutative ω-continuous semirings following [7].
In Section 3 we introduce the Hopkins-Kozen acceleration and Newton’s method.
In Section 4 we present our generalisation and derive both the Hopkins-Kozen
acceleration and Newton’s method as particular cases. In Section 5 we prove
that the Hopkins-Kozen acceleration terminates after n steps. The hierarchy of
accelerations is studied in Section 6. Missing proofs can be found in a technical
report [2].

2 ω-Continuous Semirings

A semiring is a quintuple 〈A, +, ·, 0, 1〉 s.t.

(i) 〈A, +, 0〉 is a commutative monoid,
(ii) 〈A, ·, 1〉 is a monoid,
(iii) a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c for all a, b, c ∈ A,
(iv) 0 · a = a · 0 for all a ∈ A.

A semiring is

– commutative if a · b = b · a for all a, b ∈ A;
– idempotent if a + a = a for all a ∈ A;
– naturally ordered if the relation ≤ given by a ≤ b ⇔ ∃c ∈ A : a + c = b

is a partial order (this relation is always reflexive and transitive, but not
necessarily antisymmetric);

– complete if it is possible to define “infinite sums” as an extension of finite
sums, that are associative, commutative and distributive with respect to · as
are finite sums. The formal axioms are given in [7]. In complete semirings,
the unary ∗-operator is defined by a∗ =

∑
j≥0 aj . Notice that a∗ = 1 + aa∗;

– ω-continuous if it is naturally ordered, complete, and for all sequences (ai)i∈N

with ai ∈ A

sup

{
n∑

i=0

ai | n ∈ N

}

=
∑

i∈N

ai.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Fixed Point Equations over Commutative Semirings 299

Notation 1. We abbreviate commutative ω-continuous semiring to cc-semiring.

Remark 1. For our proofs the existence and ω-continuity of countable sums is
sufficient. While in the idempotent case there is the term of commutative closed
semirings for such structures (see [6]), it seems that there is no such term in the
non-idempotent case.

Examples of semirings include 〈N ∪ {0, ∞}, +, ·, 0, 1〉, 〈R+ ∪ {0, ∞}, +, ·, 0, 1〉,
〈N ∪ {0, ∞}, min, +, ∞, 0〉 and 〈2Σ∗

, ∪, ·, ∅, ε〉. They are all ω-continuous. The
last two have an idempotent +-operation (min resp. ∪), and all but the last one
are commutative.

2.1 Systems of Power Series

Let A be an ω-continuous semiring and let X = {x1, . . . , xn} be a set of variables.
We write x for the vector (x1, . . . , xn)�. For every i ∈ {1, . . . , n}, let fi(x) be a
(semiring) power series with coefficients in A, i.e., a countable sum of products
of elements of A ∪ X , and let f(x) = (f1(x), . . . , fn(x))�. We call x = f(x) a
system of power series over A. A vector x̄ ∈ An with f(x̄) = x̄ is called a solution
or a fixed point of f .

Given two vectors x̄, ȳ ∈ An, we write x̄ ≤ ȳ if x̄i ≤ ȳi (w.r.t. the natural
order of A) in every component. The least fixed point of f , denoted by μf , is the
fixed point x̄ with x̄ ≤ ȳ for every fixed point ȳ. It exists and can be computed
by the following theorem.

Theorem 1 (Kleene fixed point theorem, cf. [7]). Let x = f(x) be a
system of power series over an ω-continuous semiring. Then μf exists and
μf = supk∈N fk(0).

3 Two Acceleration Schemes

Loosely speaking, an acceleration is a procedure that on input f yields a function
g having the same least fixed point μf as f , but converging “faster” to it, meaning
that fk(0) ≤ gk(0) for every k ≥ 0. In order to exclude trivial accelerations
like g(x) = μf , a formal definition should require the procedure to have low
complexity with respect to some reasonable complexity measure. Since such a
definition would take too much space and would not be relevant for our results,
we only use the term “acceleration” informally.

We describe two accelerations for different classes of cc-semirings. Both of
them are based on the notion of derivatives. Given a polynomial or a power
series f(x), its derivative ∂f

∂xi
with respect to the variable xi is defined as follows,

where a ∈ A and g, gj, h are polynomials or power series (see also [5]):

∂a

∂xi

= 0
∂

∂xi

(g + h) =
∂g

∂xi

+
∂h

∂xi

∂

∂xi

(g · h) =
∂g

∂xi

· h + g ·
∂h

∂xi

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

300 J. Esparza, S. Kiefer, and M. Luttenberger

∂xj

∂xi

=
{

0 if i �= j
1 if i = j

∂

∂xi

∑

j∈N

gj =
∑

j∈N

∂gj

∂xi

The Jacobian of a vector f(x) is then the n×n-matrix f ′(x) given by f ′(x)ij =
∂fi

∂xj
.

3.1 The Hopkins-Kozen Acceleration

In [5] Hopkins and Kozen introduce an acceleration of the Kleene procedure for
idempotent cc-semirings and prove that it reaches the fixed point after finitely
many steps. Given a system of power series x = f(x), the Hopkins-Kozen se-
quence is defined by

κ(0) = f(0) and κ(k+1) = f ′(κ(k))∗ · κ(k).

Theorem 2 (Hopkins and Kozen [5]). Let x = f(x) be a system of power
series over an idempotent cc-semiring. There is a function N : N → N with
N(n) ∈ O(3n) s.t. κ(N(n)) = μf , where n is the number of variables of the
system.

Actually, [5] prove the theorem for commutative Kleene algebras, whose axioms
are weaker than those of idempotent cc-semirings. There is no notion of infinite
sums in the Kleene algebra axioms, especially the Kleene star operator ∗ and its
derivative are defined axiomatically.

Example 1. Let 〈2{a}∗
, +, ·, 0, 1〉 denote the cc-semiring 〈2{a}∗

, ∪, ·, ∅, {ε}〉. For
simplicity, we write ai instead of {ai}. Consider the equation system

x =
(

x1

x2

)

=
(

x2
2 + a
x2

1

)

= f(x) with f ′(x)∗ = (x1x2)∗
(

1 x2

x1 1

)

.

The Hopkins-Kozen acceleration reaches the least fixed point μf after two steps:

κ(0) = (a, 0)�, κ(1) = (a, a2)�, κ(2) = (a3)∗(a, a2)�.

It is easy to check that κ(2) is a fixed point of f . By Theorem 2 we have κ(2) = μf .

3.2 Newton’s Acceleration

Newton’s method for approximating the zeros of a differentiable real function
g(x) is one of the best known methods of numerical analysis. It computes the
sequence

x(0) = s and x(k+1) = x(k) − g′(x(k))−1 · g(x(k)).

starting at the seed s. Under certain conditions on g(x) and on the seed s (typ-
ically the seed must be “close enough” to the solution) the sequence converges
to a solution of the equation g(x) = 0.

In order to approximate a solution of an equation system x = f(x) over the
reals, we can apply Newton’s method to the function g(x) = f(x) − x, which
gives the sequence

x(0) = 0 and x(k+1) = x(k) + (1 − f ′(x(k)))−1(f(x(k)) − x(k)).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Fixed Point Equations over Commutative Semirings 301

4 An Acceleration for Arbitrary cc-Semirings

We show that the Hopkins-Kozen and Newton’s accelerations are two instances
of a general acceleration for arbitrary cc-semirings, which we call the cc-scheme.
The proof relies on lemmata from [5] and [4], which we reformulate and generalise
so that they hold for arbitrary cc-semirings.

The cc-scheme is given by:

ν(0) = 0 and ν(k+1) = ν(k) + f ′(ν(k))∗ · δ(ν(k)),

where δ(ν(k)) is any vector s.t. ν(k) + δ(ν(k)) = f(ν(k)).
The scheme leaves the choice of δ(ν(k)) free, but there is always at least one
δ(ν(k)) satisfying the condition (see Lemma 2 below).

The following theorem states that the cc-scheme accelerates the Kleene scheme
(fk(0))k∈N.

Theorem 3. Let x = f(x) be a system of power series over a cc-semiring.
Then the iterates ν(k) of the cc-scheme exist and satisfy fk(0) ≤ ν(k) ≤ μf for
all k ≥ 0.

The proof uses the following fundamental property of derivatives in cc-semirings:

Lemma 1 (Taylor’s Theorem, cf. [5]). Let f(x) and d be vectors of power
series over a cc-semiring. Then

f(x) + f ′(x) · d ≤ f(x + d) ≤ f(x) + f ′(x + d) · d.

The following lemma assures the existence of a suitable δ(ν(k)) for each k.

Lemma 2. Let ν(k) be the k-th iterate of the cc-scheme. For all k ≥ 0 :
f(ν(k)) ≥ ν(k). So, there is a δ(ν(k)) such that ν(k) + δ(ν(k)) = f(ν(k)).

What remains to show for Theorem 3 is fk(0) ≤ ν(k) ≤ μf (cf. [2]).
In the rest of the section we show that the Hopkins-Kozen acceleration and

Newton’s acceleration are special cases of the cc-scheme.

4.1 Idempotent cc-Semirings

If addition is idempotent, we have x ≤ y iff x + y = y, as x ≤ y implies that
there is a d with x+ d = y so that x+ y = x+(x+ d) = x+ d = y. By Lemma 2
we have ν(k) ≤ f(ν(k)). In the cc-scheme (see above) we therefore may choose
δ(ν(k)) = f(ν(k)). Moreover, since f ′(ν(k))∗ ≥ 1 by the definition of the Kleene
star and since ν(k) ≤ f(ν(k)) by Lemma 2 we get

ν(k) ≤ f(ν(k)) ≤ f ′(ν(k))∗ · f(ν(k))

and by idempotence

ν(k) + f ′(ν(k))∗ · f(ν(k)) = f ′(ν(k))∗ · f(ν(k)) .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

302 J. Esparza, S. Kiefer, and M. Luttenberger

So the cc-scheme collapses in the idempotent case to

ν(0) = 0 and ν(k+1) = f ′(ν(k))∗ · f(ν(k)).

In other words, ν(k+1) results from ν(k) by applying the operator Nf (x) :=
f ′(x)∗ · f(x). Recall that the Hopkins-Kozen sequence is given by

κ(0) = f(0) and κ(k+1) = f ′(κ(k))∗ · κ(k).

So it is obtained by repeatedly applying the Hopkins-Kozen operator Hf (x) :=
f ′(x)∗ · x, starting from f(0). While the two sequences are not identical, the
following theorem shows that they are essentially the same.

Theorem 4.

1. For all k > 0 : κ(k−1) ≤ ν(k) ≤ κ(k).
2. For all k ≥ 0 : κ(k) = Hk

f (f(0)) = N k
f (f(0)).

4.2 The Semiring over the Nonnegative Reals

We now consider the cc-semiring 〈R+ ∪ {0, ∞}, +, ·, 0, 1〉. In order to instantiate
the cc-scheme, we have to choose δ(ν(k)) so that ν(k) + δ(ν(k)) = f(ν(k)) holds.
By Lemma 2 we have ν(k) ≤ f(ν(k)), and so we can take δ(ν(k)) = f(ν(k))−ν(k).
The cc-acceleration becomes

ν(0) = 0 and ν(k+1) = ν(k) + f ′(ν(k))∗ · (f(ν(k)) − ν(k)) .

It is easy to see that for any nonnegative real-valued square matrix A, if∑
k∈N

Ak = A∗ has only finite entries, then (1 − A)−1 exists and equals A∗.
If this is the case for A = f ′(ν(k))∗, then Newton’s method coincides with
the cc-acceleration for the reals and thus converges to μf . In [4] Etessami and
Yannakakis give sufficient conditions for f ′(ν(k))∗ = (1 − f ′(ν(k)))−1 when f is
derived from a recursive Markov chain.

5 Convergence Speed in Idempotent Semirings

In the first subsection we want to analyse how many steps the Newton iteration
or, equivalently, the Hopkins-Kozen iteration needs to reach μf when we consider
an idempotent cc-semiring 〈A, +, ·, 0, 1〉, i.e. we have the additional equation
1 + 1 = 1. In the subsequent subsection we then generalise the obtained results
to the setting of commutative Kleene algebras.

5.1 Idempotent cc-Semirings

In this subsection f again denotes a system of n power series in the variables
X = {x1, . . . , xn}, i.e. we have fi(x) =

∑
ι∈Nn c

(i)
ι xι, where xι denotes the

product xι1
1 · . . . · xιn

n and c
(i)
ι ∈ A for all ι ∈ N

n and 1 ≤ i ≤ n. We define the
concept of derivation trees of our system f as in formal language theory.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Fixed Point Equations over Commutative Semirings 303

Notation 2. In the following, if u is a node of a tree t, we identify u with the
subtree of t rooted at u. In particular, t is also used to denote t’s root. The
height h(t) of t is defined as usual, e.g. a tree consisting only of a single node
has height 0.

Definition 1. A partial derivation tree t of xi is a labelled tree satisfying:

– every node of t is labelled by either an element of A or an element of X ,
– its root is labelled by xi, and
– for each node u of t labeled by some variable xk the following holds: Let pu(x)

be the product of the labels of u’s children. Then pu is a summand of fk, i.e.
there exists a ι ∈ N

n with c
(k)
ι �= 0 and c

(k)
ι xι = pu(x).

We call a partial derivation tree t a derivation tree if no leaf of t is labelled by
a variable. The yield Y (t) of a derivation tree t is the product of the labels of its
leaves.

As in the case of formal languages we have the following

Theorem 5.

1. The sum of yields of all derivation trees of xi with height ≤ h equals (fh(0))i.
2. The sum of yields of all derivation trees of xi equals (μf)i.

In the following we show that because of commutativity and idempotence already
a special class of derivation trees is sufficient to reach μf .

Definition 2 (cf. Fig. 5.1). The dimension dim(t) of a tree t is defined by:

1. A tree of height 0 or 1 has dimension 0.
2. Let t be a tree of height h(t) > 1 with children c1, c2, . . . , cs where dim(c1) ≥

dim(c2) ≥ . . . dim(cs). Let d1 = dim(c1). If s > 1, let d2 = dim(c2), other-
wise let d2 = 0. Then we define

dim(t) :=
{

d1 + 1 if d1 = d2

d1 if d1 > d2.

Note that for a derivation tree t we have h(t) > dim(t).

Definition 3. Let t be a derivation tree. We denote with V (t) the number of
distinct variables appearing as labels in t. We call t compact if dim(t) ≤ V (t).

In the following, we state two central lemmata that lead to the main result of this
section. Lemma 3 tells us that it is sufficient to consider only compact derivation
trees. Lemma 4 shows the connection between the dimension of a derivation tree
and the Hopkins-Kozen sequence.

Lemma 3. For each derivation tree t of xi there is a compact derivation tree t′

of xi with equal yield.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

304 J. Esparza, S. Kiefer, and M. Luttenberger

T<k

T<k

T<k

Tk−1 Tk−1

(a) (b) (c)

Fig. 1. (a) shows the general structure of a tree of dimension k, where T<k (Tk−1)
represents any tree of dimension < k (= k − 1). (b) and (c) give some idea of the
topology of one-, resp. two-dimensional trees in general.

Lemma 4. Let t be a derivation tree of xi s.t. dim(t) ≤ k. Then Y (t) ≤ (κ(k))i.3

The proof of Lemma 3 bears some similarity to the proof of the pumping lemma
for context free languages. Let us call a partial derivation tree a pumping tree (p-
tree) if it has exactly one leaf which bears the same label as its root and all other
leaves are labelled by elements of A. Because of commutativity, reallocating such
a p-tree from one subtree of t to another one does not change t’s yield. We use a
reallocation procedure to inductively reduce the dimension of t’s subtrees, which
eventually results in decreasing the dimension of t itself.

Theorem 6. Let f : An → An be a system of power series over an idempotent
cc-semiring 〈A, +, ·, 0, 1〉. Then μf = κ(n).

Proof. First recall that by Theorem 3 (ν(k) ≤ μf) and Theorem 4 (κ(k−1) ≤
ν(k) ≤ κ(k)) we have κ(n) ≤ μf . Obviously, V (t) ≤ n for every derivation tree
t of xi. Lemma 3 allows to assume that t is compact, i.e. dim(t) ≤ V (t) ≤ n.
Lemma 4 thus implies Y (t) ≤ (κ(n))i. Therefore the sum of yields of derivation
trees of xi is less than or equal to (κ(n))i. But Theorem 5 tells us that this sum
is already (μf)i. Hence μf ≤ κ(n) ≤ μf . ��

Remark 2. The bound of this theorem is tight as can be shown by a general-
isation of Example 1: If f(x) = (x2

2 + a, x2
3, . . . , x

2
n, x2

1)
�, then (κ(k))1 = a for

k < n, but a2n ≤ (κ(n))1 = (μf)1.

5.2 Generalisation to Commutative Kleene Algebras

Notation 3. Let M be any set. Then RExpM denotes the set of regular expres-
sions generated by the elements of M . We write RM : RExpM → 2M∗

for their
canonical interpretation as languages.

3 In fact one can similarly show that (κ(k))i equals exactly the sum of yields of all
derivation trees of xi of dimension less than or equal to k.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Fixed Point Equations over Commutative Semirings 305

For this subsection, let f denote a system of n regular expressions fi ∈ RExpK∪X .
We are again interested in the least solution μf of x = f(x), but this time over
the commutative Kleene algebra 〈K, +, ·,∗ , 0, 1〉. A commutative Kleene algebra is
an idempotent commutative semiring 〈K, +, ·, 0, 1〉 where the ∗-operator is only
required to satisfy these two equations for all a, b, c ∈ K:

1 + aa∗ ≤ a∗ and a + bc ≤ c → b∗a ≤ c.

In [5] it is proved that μf can be computed by applying the Hopkins-Kozen
operator Hf to f(0) for a finite number of times. In addition, Hi

f (f(0)) ≤ μf for
all i ∈ N.

As in the setting of cc-semirings the Hopkins-Kozen operator is defined by
Hf (x) = f ′(x)∗x. For H to be well defined over Kleene algebras, one has to
define the partial derivatives ∂

∂xj
over RegK∪X . This is done in [5] just as in the

case of cc-semirings (see the beginning of Section 3), however the equation for
the

∑
-operator is replaced by the axiom ∂α∗

∂xj
= α∗ ∂α

∂xj
for α ∈ RExpK∪X .

We lift the result of the previous subsection to commutative Kleene algebras,
improving the O(3n) bound in [5]. More precisely we show that

f(Hn
f (f(0))) = Hn

f (f(0)). (2)

In order to prove (2) we appeal to Redko’s theorem [1] that essentially states
that an equation of terms over any commutative Kleene algebra holds if it holds
under the canonical commutative interpretation. See [2] for a technical justifica-
tion of this fact. Let Σ be the finite set of elements of K appearing in f . The
canonical commutative interpretation cΣ : RExpΣ → 2N

Σ

is then defined by
cΣ(α) = {#w | w ∈ RΣ(α)}, where #w is the Parikh-vector of w ∈ Σ∗, i.e.
a ∈ Σ appears exactly (#w)a-times in w. We omit the subscript of cΣ in the
following. The idempotent cc-semiring of sets of Parikh-vectors CΣ is defined by
CΣ = 〈2N

Σ

, ∪, +, ∅, {0}〉 with A + B = {a + b | a ∈ A, b ∈ B} for all A, B ⊆ N
Σ

and
∑

S =
⋃

S for all S ⊆ 2N
Σ

. By Redko’s theorem, we can prove (2) by
showing c(f(Hn

f (f(0)))) = c(Hn
f (f(0))) over CΣ.

For any function g : RExpΣ → RExpΣ , let gc denote the commutative inter-
pretation of g as a map over CΣ, i.e. c(g(α)) = gc(c(α)) for all α ∈ RExpΣ . In
particular c(α∗) =

⋃
i∈N

c(αi). Notice that this definition is consistent with the
axiomatic definition of derivatives of ∗-expressions, since

c(
∂

∂xi
(α∗))=c(α∗ ∂

∂xi
(α)) =

⋃

j∈N

c(αj)
∂

∂xi
(c(α)) =

∂

∂xi

⋃

j∈N

c(αj) =
∂

∂xi
(c(α∗)).

We then have (Hf)c = Hf c . Furthermore, by Theorem 6, Hn
f c(fc(∅)) solves the

equation system x = f c(x) over CΣ. Combined, we have

c(f(Hn
f (f(0))))= f c((Hn

f)c(f c(∅))) = f c(Hn
f c(fc(∅))) = Hn

f c(fc(∅)) = c(Hn
f (f(0))).

This proves the following theorem.

Theorem 7. Let f ∈ RExpn
K∪X define a system x = f(x) over a commutative

Kleene algebra 〈K, +, ·,∗ , 0, 1〉. Then μf = κ(n).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

306 J. Esparza, S. Kiefer, and M. Luttenberger

6 A Hierarchy of Accelerations

In this section we apply the Hopkins-Kozen acceleration to itself. Let x = f(x) be
an equation system of degree-2-polynomials over a commutative Kleene algebra.
Any polynomial equation system (even with ∗-expressions) can be reduced to
this “Chomsky normal” form by introducing auxiliary variables.

Recall the Hopkins-Kozen operator Hf (x) = f ′(x)∗x. As shown in [5] and
in the previous section, the sequence Hi

f (f(0)) is “faster” than f i(f(0)) to the
extent that the fixed point iteration of Hf reaches μf in a finite number of
steps, whereas the fixed point iteration of f may not reach μf . We study in this
section how fast accelerations HHf , HHHf

, . . . are compared to Hf . We write H1

for Hf and Hi+1 for HHi = (∂
∂x (Hi(x)))∗x. In the following we mean Hf when

the subscript of H is omitted. Our hierarchy theorem states that using Hi once
amounts to using H i-times:

Theorem 8. For all i ≥ 1 : Hi(x) = Hi(x).

Combined with Theorem 6 we conclude that the least fixed point μf can be
computed by (a) iteratively applying H to f(0) (n times) or (b) computing the
operator Hn and applying it to f(0) once or (c) computing the operator Hn and
applying it to f(0) once. A discussion which method is most appropriate depends
on the the particular applications and is beyond the scope of this paper.

Example 2. We continue Example 1 where we have shown that H2(f(0)) = μf .
Now we illustrate Theorem 8 by showing that H2(f(0)) = μf . We have

H(x) = f ′(x)∗x = (x1x2)∗
(

x1 + x2
2

x2
1 + x2

)

,

H′(x) = (x1x2)∗
(

1 + x3
2 x2

1 + x2

x2
2 + x1 1 + x3

1

)

,

H′(f(0)) =
(

1 a2

a 1 + a3

)

and H′(f(0))∗ = (a3)∗
(

1 a2

a 1

)

.

So H2(f(0)) = H′(f(0))∗f(0) = (a3)∗
(

a
a2

)

= μf .

7 Conclusions

We have studied the Hopkins-Kozen acceleration scheme for solving fixed point
equations x = f(x) over commutative Kleene algebras [5]. We have shown that,
maybe surprisingly, the scheme is tightly related to Newton’s method for approx-
imating a zero of a differentiable real function. Loosely speaking, the scheme is
the result of generalising Newton’s method to commutative ω-continuous semi-
rings in a very straightforward way, and then instantiating this generalisation to
the case in which addition is idempotent. In the proof we very much profit from
a result by Etessami and Yannakakis on using Newton’s method to solve fixed

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Fixed Point Equations over Commutative Semirings 307

point equations derived from recursive Markov chains [4]. At the same time,
our result extends Etessami and Yannakakis’ result to arbitrary commutative
ω-continuous semirings, a much more general algebraic setting.

We have also proved that the Hopkins-Kozen scheme terminates after n iter-
ations for a system of n equations, improving on the O(3n) bound of [5]. As in
[5], our bound holds for arbitrary commutative Kleene algebras.

Finally, we have studied the result of applying the scheme to itself, leading
to a sequence of faster and faster accelerations. The Hopkins-Kozen scheme can
be “arbitrarily faster” than the basis scheme derived from Kleene’s theorem
(the scheme computing (fk(0))k≥0) because it is guaranteed to terminate, while
Kleene’s scheme is not. We have shown that, on the contrary, the reduction in
the number of iterations achieved by subsequent accelerations is very moderate:
one iteration of the scheme obtained by applying k times the acceleration to
itself is already matched by k iterations of the Hopkins-Kozen scheme.

Our work can be extended in several directions. Our proof of the new bound
relies on formal languages concepts, and is therefore very non-algebraic. We
intend to search for an algebraic proof. We also plan to investigate accelerations
for the non-commutative case.

Acknowledgements

We thank Volker Diekert for helpful discussions and the anonymous referees for
useful comments.

References

1. J.H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.
2. J. Esparza, S. Kiefer, and M. Luttenberger. On fixed point equations over commu-

tative semirings. Technical report, 2006.
3. J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic pushdown au-

tomata. In LICS 2004. IEEE Computer Society, 2004.
4. K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars,

and monotone systems of nonlinear equations. In STACS, pages 340–352, 2005.
5. M. W. Hopkins and D. Kozen. Parikh’s theorem in commutative Kleene algebra.

In Logic in Computer Science, pages 394–401, 1999.
6. D. Kozen. On Kleene algebras and closed semirings. In B. Rovan, editor, Proc.

Math. Found. Comput. Sci., volume 452 of Lecture Notes in Computer Science,
pages 26–47, Banska-Bystrica, Slovakia, 1990. Springer-Verlag.

7. W. Kuich. Handbook of Formal Languages, volume 1, chapter 9: Semirings and
Formal Power Series: Their Relevance to Formal Languages and Automata, pages
609 – 677. Springer, 1997.

8. J.M. Ortega. Numerical Analysis: A Second Course. Academic Press, New York,
1972.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Exponential Lower Bound for
Prefix Gröbner Bases in Free Monoid Rings

Andrea Sattler-Klein

Technische Universität Kaiserslautern, Fachbereich Informatik
Postfach 3049, 67653 Kaiserslautern, Germany

sattler@informatik.uni-kl.de

Abstract. We show by an example that the number of reduction steps
needed to compute a prefix Gröbner basis in a free monoid ring by in-
terreduction can in fact be exponential in the size of the input. This
answers an open question posed by Zeckzer in [Ze00].

Keywords: algorithms, computational complexity, rewriting, Gröbner
bases.

1 Introduction

The importance of the theory of Gröbner bases for ideals in commutative poly-
nomial rings over fields as introduced by Buchberger in 1965 has led to various
generalizations. An important one is the theory of prefix Gröbner bases intro-
duced by Madlener and Reinert in [MaRe93] (see also [Re95]) for handling right-
ideals in monoid and groups rings. Their work generalizes the theory introduced
by Mora for Gröbner bases in non-commutative polynomial rings [Mo86] (see
also [Mo94]) and has recently been further generalized to modules over monoid
rings in [AcKr06].

Based on the ideas of Madlener and Reinert, Zeckzer has developed the system
MRC, a system for computing prefix Gröbner bases in monoid and group rings
(see [ReZe98],[ReZe99],[Ze00]). In [Ze00] Zeckzer also analyzed the complexity
of some related problems and algorithms. The general procedure for computing
prefix Gröbner bases does not terminate in general, since it may happen that for
the given input no finite prefix Gröbner basis exists. Therefore, Zeckzer restricted
his attention to the case of prefix Gröbner bases in free monoid rings, since in
this case termination of the procedure is guaranteed. For special cases he derived
some exponential upper bounds as well as some exponential lower bounds for
the time complexity of the algorithm, where the later ones depend essentially on
the underlying field.

The algorithm for computing prefix Gröbner bases in free monoid rings is
based on rewriting techniques. If we do not take into account the field oper-
ations performed then the time needed by the algorithm corresponds to the
number of reduction steps that are performed. Therefore, it is interesting to es-
tablish bounds for the number of reduction steps that have to be performed by

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 308–319, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Exponential Lower Bound for Prefix Gröbner Bases 309

the algorithm. In [Ze00] Zeckzer also studied this aspect. For all of his exam-
ples the computation of prefix Gröbner bases can be done with only polynomial
many reduction steps provided an appropriate strategy is used. Based on this
observation he asked the following question which is the first one in his list of
open problems formulated on page 242:

“Is there a strategy such that prefix Gröbner basis computation can be done
with only polynomial many prefix reduction steps?”

In the following we will answer this question in the negative by showing an
example where the corresponding algorithm always needs exponentially many
reduction steps independently of the strategies used within. For doing this, we
will first investigate reduction strategies and characterize a strategy that is op-
timal for left-normalized prefix Gröbner bases. On the one hand, this result is
interesting on its own. On the other hand, it is very useful for the proof of our
main example.

Due to lack of space we will omit all proofs in the following. We refer to the
full version of the paper for the proofs (see [Sa07]).

2 Preliminaries

In the following we introduce the basic definitions and foundations that are
needed when considering prefix Gröbner bases in free monoid rings from a
rewriter’s point of view. For further reading concerning prefix Gröbner bases
we refer to [MaRe93], [Re95] and [Ze00].

Let Σ be a finite alphabet and let K be a computable field. Then Σ∗ denotes
the set of all strings (words) over Σ including the empty string ε, i.e., Σ∗ is the
free monoid generated by Σ. For u, v ∈ Σ∗ and Γ ⊆ Σ∗, uΓv denotes the set
{ uwv | w ∈ Γ }. Moreover, for a set Γ ⊆ Σ∗ and a number n ∈ IN0, Γ n denotes
the set { u1u2...un | u1, u2, ..., un ∈ Γ }. An ordering > on Σ∗ is called admissible
if u > v implies xuy > xvy for all u, v, x, y ∈ Σ∗, and it is called wellfounded if
there is no infinite descending chain u1 > u2 > u3 > For a finite set Γ ⊆ Σ∗

and a total ordering on Σ∗, max>Γ denotes the largest string of Γ w.r.t. >.
The free monoid ring K[Σ∗] is the ring of all formal sums (called polynomials)∑n
i=1 αi ∗ wi (n ∈ IN0) with coefficients αi ∈ K − {0} and terms wi ∈ Σ∗ such

that for all i, j ∈ {1, ..., n} with i �= j, wi �= wj holds. The products αi ∗ wi

(αi ∈ K −{0}, wi ∈ Σ∗) are called monomials and the set of all terms occurring
in a polynomial p is denoted by T (p). Instead of 1 ∗ wi we will also sometimes
simply write wi. For a polynomial p =

∑n
i=1 αi ∗wi, a string x ∈ Σ∗ and β ∈ K,

β · p ◦ x denotes the polynomial
∑n

i=1(β · αi) ∗ wix. Moreover, for a finite set
Γ ⊆ Σ∗,

∑
Γ denotes the polynomial

∑
w∈Γ 1 ∗ w.

A pair (α∗t, r) with α ∈ K−{0}, t ∈ Σ∗ and r ∈ K[Σ∗] is called a rule. Given
a total wellfounded admissible ordering > on Σ∗ we associate with each non-zero
polynomial p ∈ K[Σ∗] a rule (l, r) ∈ KΣ∗ × K[Σ∗] with l = α ∗ t (α ∈ K − {0},
t ∈ Σ∗), namely the one that satisfies the following two properties: 1. l−r = p, 2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

310 A. Sattler-Klein

(l, r) is compatible with >, i.e., t > s for all s ∈ T (r). Accordingly, we associate
with a set F ⊆ K[Σ∗] of polynomials the set of corresponding rules that are
compatible with >. For a rule (l, r) ∈ KΣ∗ × K[Σ∗] we also write l → r. If the
coefficient of the left-hand side of a rule (l, r) associated with a polynomial p is
1 then (l, r) as well as p are called monic. A set of rules R ⊆ KΣ∗ × K[Σ∗] is
called monic if each rule of R is monic.

A set of rules R ⊆ KΣ∗ × K[Σ∗] induces a reduction relation →R on K[Σ∗]
which is defined in the following way: For p, q ∈ K[Σ∗], p →R q if and only if
there exists a rule (α ∗ t, r) ∈ R (with α ∈ K and t ∈ Σ∗), a monomial β ∗ s
in p (with β ∈ K, s ∈ Σ∗) and a string x ∈ Σ∗ such that 1. tx = s and 2.
q = p − β ∗ s + (β · α−1) · r ◦ x. We also write p −→β∗s R q in this case to indicate
the monomial that is substituted by the reduction step and say that the rule
α∗ t → r (prefix) reduces p to q in one step. If α∗ t → r (with α ∈ K, t ∈ Σ∗ and
r ∈ K[Σ∗]) is a rule, β ∈ K and x ∈ Σ∗ then (β ·α) ∗ tx →R β · r ◦x is called an
instance of the rule α∗ t → r. A polynomial p ∈ K[Σ∗] is called (prefix) reducible
w.r.t. a set of rules R ⊆ KΣ∗ × K[Σ∗] if there exists a polynomial q ∈ K[Σ∗]
with p →R q. Otherwise, p is called R-irreducible.

As usually, →∗
R denotes the reflexive and transitive closure of →R, i.e., p →∗

R q
means that p can be reduced to q in n reduction steps for some n ∈ IN0. We
also write p →n

R q if p reduces to q in n steps and we denote by D→R(p, q)
the minimum of the set {n ∈ IN0 | p →n

R q} in this case. If p →∗
R q holds,

then q is called a descendant of p. An irreducible descendant of p is called a
normal form of p. If p has a unique normal form w.r.t. R then this normal
form is denoted by NFR(p). Moreover, ↔∗

R denotes the reflexive, symmetric
and transitive closure of →R. Two sets of rules R, S ⊆ KΣ∗ ×K[Σ∗] are called
equivalent if ↔∗

R = ↔∗
S .

If (α ∗ t, r1) and (β ∗ s, r2) (α, β ∈ K and t, s ∈ Σ∗) are two rules of R ⊆
KΣ∗ × K[Σ∗] such that t = sx for some x ∈ Σ∗ then (r1, (α · β−1) · r2 ◦ x) is
a critical pair (of R) and the corresponding polynomial r1 − (α · β−1) · r2 ◦ x is
called a (prefix) S-polynomial (of R). A set of rules R ⊆ KΣ∗ ×K[Σ∗] is called
confluent if for all p, q, r ∈ K[Σ∗] the following holds: If q and r are descendants
of p then they are joinable in R, i.e., they have a common descendant w.r.t. R.
Moreover, R is called noetherian (or terminating) if no infinite chain of the form
p0 →R p1 →R p2 →R ... exists. If R is compatible with a total wellfounded
admissible ordering then it is noetherian. If in addition, each critical pair of R is
joinable in R, or in other words, each S-polynomial of R is R-reducible to 0, then
R is confluent. R ⊆ KΣ∗ × K[Σ∗] is called left-normalized if for all (l, r) ∈ R,
l is irreducible w.r.t. R − {(l, r)}. Moreover, R is called right-normalized if for
all (l, r) ∈ R, r is irreducible w.r.t. R and it is called interreduced if it is left-
and right-normalized.

Let F ⊆ K[Σ∗] be a set of non-zero polynomials, let > be a total wellfounded
admissible ordering on Σ∗ and let R ⊆ KΣ∗ × K[Σ∗] be the associated set
of rules. Then a set of rules S ⊆ KΣ∗ × K[Σ∗] is called a prefix Gröbner
basis for F (or for R) w.r.t. > if the following holds: 1. ↔∗

S = ↔∗
R , 2. S is

compatible with > , 3. S is confluent. If S is a prefix Gröbner basis for a set

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Exponential Lower Bound for Prefix Gröbner Bases 311

F ⊆ K[Σ∗], then a polynomial p is an element of the right-ideal generated by
F if and only if its uniquely determined S-normal form is equal to 0. For a set
F ⊆ K[Σ∗] (R ⊆ KΣ∗ ×K[Σ∗]) of non-zero polynomials (of rules) and a given
total wellfounded admissible ordering > on Σ∗ there exists a uniquely determined
finite, monic set R∗ ⊆ KΣ∗ × K[Σ∗] that is an interreduced prefix Gröbner
basis for F (R) w.r.t. >. Since in a left-normalized set R ⊆ KΣ∗×K[Σ∗] there
are no critical pairs, any left-normalized set R ⊆ KΣ∗ × K[Σ∗] compatible
with some total wellfounded admissible ordering > is a prefix Gröbner basis. On
the other hand, the set R associated with F ⊆ K[Σ∗] and > can be effectively
transformed in a finite prefix Gröbner basis for F by normalizing the left-hand
sides.

Obviously, if in a set R ⊆ KΣ∗ × K[Σ∗] of rules, each rule (α ∗ t, r) (with
α ∈ K, t ∈ Σ∗) is replaced by (1 ∗ t, α−1 ∗ r) then the resulting system is a monic
system that is equivalent to R. Therefore, we will assume in the following that
the rules of a set R ⊆ KΣ∗ × K[Σ∗] are always monic ones.

Since for our complexity analysis we will not take into account the field op-
erations that have to be performed we define the size of a set of rules indepen-
dently of the coefficients occurring: The size of the empty word is defined by
size(ε) := 1, while the size of a nonempty word w is its length. Moreover, for a
non-zero polynomial p ∈ K[Σ∗], the size is defined by size(p) :=

∑
t∈T (p) size(t)

and for p = 0, size(p) := 1. Further, for a set R ⊆ KΣ∗ × K[Σ∗] of rules,
size(R) is defined as

∑
(l,r)∈R(size(l) + size(r)).

3 Reduction Strategies

It is a well known fact that for a given prefix Gröbner basis R ⊆ KΣ∗ × K[Σ∗]
and a given polynomial p ∈ K[Σ∗], the number of reduction steps needed to
compute a normal form of p w.r.t. R can be exponential in the size of the input.

Examples of this kind can be found for instance in [Ze00]. Note that the
corresponding prefix Gröbner bases Rn considered in the literature are compati-
ble with some length-lexicographical ordering, but not with the length ordering.
However, it is not difficult to see that even for a length ordering a similar example
can be constructed as our first example shows.

Example 1.
Let K be an arbitrary computable field, let Σ = { g, f, x, y } and let > ⊆ Σ∗×Σ∗

be the length ordering on Σ∗. Moreover, for n ∈ IN0, let Rn ⊆ KΣ∗ ×K[Σ∗] be
defined as follows:

Rn = { g2f → x + y } ∪ { g2i+2f → g2ifx + g2ify | 1 ≤ i ≤ n}.

Then for all n ∈ IN0, Rn is compatible with > and left-normalized. Hence, it is
a prefix Gröbner basis. Moreover, for all n ∈ IN0 the following holds:

1. size(Rn) = 3n2 + 10n + 5

2. NFRn(g2n+2f) =
∑

{x, y}n+1

3. D→Rn
(g2n+2f,

∑
{x, y}n+1) = 2n+1 − 1

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

312 A. Sattler-Klein

This example as well as those given in the literature lead to the following ques-
tion: Can similar phenomena occur when a fixed prefix Gröbner basis R is con-
sidered? Or is the length of a reduction sequence with respect to a fixed prefix
Gröbner basis R bounded by a polynomial?

The next example illustrates that such a polynomial bound does not exist in
general even if the given prefix Gröbner basis is interreduced and moreover, even
if it is compatible with a length-ordering, in addition. Moreover, the example
shows that the number of reduction steps needed for normalizing a polynomial
with respect to a given interreduced prefix Gröbner basis R can essentially de-
pend on the reduction strategy used.

Example 2.
Let K be an arbitrary computable field, let Σ = { a, b, c, d, g } and let > ⊆
Σ∗ × Σ∗ be the length ordering on Σ∗. Moreover, let R ⊆ KΣ∗ × K[Σ∗] be
defined as follows:

R = { ab → a+d , ac → a+d , db → a+d , dc → a+d , ag → 0 , dg → 0 }.

Then R is an interreduced prefix Gröbner basis that is compatible with > and
we have for all n ∈ IN0:

1. a(bc)ng →22n+1−1
R 0

2. a(bc)ng →≤4n+1
R 0

As the proof of the example shows (see [Sa07]), exponentially many reduction
steps are needed to reduce the term a(bc)ng (n ∈ IN0) to its normal form if
always a minimal (w.r.t. >) reducible monomial is reduced first. Since for all
n ∈ IN0, the number of terms occurring in a reduction sequence starting with
a(bc)ng is linear in n and since the corresponding coefficients are always 1, there
must exist at least one monomial that is reduced exponentially many times. One
such monomial is 1 ∗ dg for instance.

On the other hand, the lengths of the reduction sequences starting with
a(bc)ng (n ∈ IN0) can be bounded by a linear function if always a maximal
(w.r.t. >) reducible term is reduced first. Analysis of the corresponding reduc-
tion sequences shows that in this case any monomial is reduced at most once in
a sequence.

Does there exist a reduction strategy that is optimal for prefix Gröbner basis
in that it always leads to normalizing reduction sequences that are of minimal
length?

The above observations suggest to investigate the reduction strategy prefer-
ring large terms (w.r.t. >) in this context. To this end we introduce the following
definition.

Definition 1.
Let K be an arbitrary computable field, let Σ be an alphabet, let > be a total
admissible wellfounded ordering on Σ∗ and let R ⊆ KΣ∗ × K[Σ∗] be a set of
rules compatible with >. Then the relation ↪→R ⊆ K[Σ∗] × K[Σ∗] is defined

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Exponential Lower Bound for Prefix Gröbner Bases 313

as follows: If p, q ∈ K[Σ∗], then p ↪→R q iff p −→α∗t R q where t = max>{s ∈
T (p) | s is →R-reducible} and α ∈ K .

Moreover, based on this definition ↪→α∗t R , ↪→∗
R, ↪→n

R and D↪→R are defined
analogously to −→α∗t R, →∗

R, →n
R and D→R .

And in fact, it turns out that the observation made in Example 2 can be
generalized: In a ↪→R-reduction sequence, for each term t a monomial of the
form α ∗ t will be reduced at most once. More precisely, the following holds:

Lemma 2.
Let K be an arbitrary computable field, let Σ be an alphabet, let > be a total
admissible wellfounded ordering on Σ∗ and let R ⊆ KΣ∗ × K[Σ∗] be a set of
rules compatible with >. Moreover, let p0, p1, p2 ∈ K[Σ∗] be polynomials and let
α0 ∗ t0, α1 ∗ t1 be monomials.

If p0 ↪→α0∗t0 R p1 −→α1∗t1 R p2 then t0 > t1 .

Corollary 3.
Let K be an arbitrary computable field, let Σ be an alphabet, let > be a total
admissible wellfounded ordering on Σ∗ and let R ⊆ KΣ∗ × K[Σ∗] be a set of
rules compatible with >. Moreover, let p0, p1, p̄1, p2 ∈ K[Σ∗] be polynomials and
let α0 ∗ t0, α1 ∗ t1 be monomials.

If p0 ↪→α0∗t0 R p1 ↪→∗
R p̄1 ↪→α1∗t1 R p2 then t0 > t1 .

This fact might suggest that the ↪→R-reduction strategy is always very efficient.
However, this is not true in general: As our next example illustrates it is possible
to construct a sequence of prefix Gröbner bases Sn (n ∈ IN0) and a sequence
of polynomials pn (n ∈ IN0) such that the length of each normalizing ↪→Sn -
sequence starting with pn grows exponentially in n while a shortest normalizing
→Sn -reduction sequence for pn is of constant length.

Example 3.
Let K be an arbitrary computable field, let Σ = { g, f, x, y, a, b, c, d } and let >
⊆ Σ∗×Σ∗ be any length-lexicographical ordering on Σ∗. Moreover, for n ∈ IN0,
let Rn ⊆ KΣ∗ × K[Σ∗] and Sn ⊆ KΣ∗ × K[Σ∗] be defined as follows:

Rn = { g2f → x + y } ∪ { g2i+2f → g2ifx + g2ify | 1 ≤ i ≤ n}
∪ { g2(n+1)+2f → g2(n+1)fx + g2(n+1)fy + d }
∪ { xx → 0 , xy → 0 , yx → 0 , yy → 0 }

Sn = Rn ∪ { a2n+8 → b2n+7, b2n+7 → c2n+6, b2n+7 → d, c2n+6 → g2n+4f }
Then for all n ∈ IN0, Sn is a prefix Gröbner basis that is compatible with > and
for pn = a2n+8 + b2n+7 + (−1) ∗ c2n+6 + (−1) ∗ d we have:

1. size(Sn) = 3n2 + 30n + 78

2. NFSn(pn) = 0

3. D→Sn
(pn, 0) = 3

4. D↪→Sn
(pn, 0) ≥ 2n+3 + 1

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

314 A. Sattler-Klein

As mentioned above if a reduction sequence is not a ↪→-sequence, then it may
happen that a fixed term t will be reduced many times in the same reduction
sequence. This fact can lead to very inefficient reduction processes as shown in
Example 2. Nevertheless, as the Example 3 illustrates this fact can also be very
advantageous: If the term t can be reduced using different rules, then doing this
can lead to an essential abbreviation in the corresponding ↪→-sequence.

However, if this situation does not arise, i.e., if it is either not possible or not
allowed to reduce different occurrences of a term t using different rules during a
reduction sequence then the ↪→-relation is a reduction strategy that is optimal
with regard to the length of the normalizing reduction sequences. To prove this
we will make use of the following technical lemma.

Lemma 4.
Let K be an arbitrary computable field, let Σ be an alphabet, let > be a total
admissible wellfounded ordering on Σ∗ and let R ⊆ KΣ∗ × K[Σ∗] be a set of
rules that is compatible with >. Moreover, let k ≥ 0, let p, p1, p̂ ∈ K[Σ∗] be
polynomials where p̂ is R -irreducible, let α ∈ K, s ∈ Σ∗ and l → r a rule of R
such that the following conditions hold:

1. p −→α∗s {l→r} p1

2. p1 ↪→k
R p̂ where for any β ∈ K the monomial β ∗ s is either not

reduced in the ↪→R-sequence or only with the rule l → r

Then the following holds:

p ↪→≤k+1
R p̂

where for any term t ∈ Σ∗, if there exists a coefficient β ∈ K such that β ∗ t is
reduced with the rule l′ → r′ in this sequence, then there is a coefficient ζ ∈ K
such that the monomial ζ ∗ t is also reduced in the sequence p −→α∗s {l→r} p1 ↪→k

R p̂
with the rule l′ → r′ .

The idea of the proof of Lemma 4 is to rearrange the reduction steps appro-
priately such that the resulting sequence is a ↪→-sequence. To this end the step
−→α∗s {l→r} has to be put on the right place in the list of ↪→-steps. Doing this can
result in shortening the original sequence due to the fact that at the moment
when the −→α∗s {l→r} -step should be applied, the term s may no longer occur in
the current polynomial.

By an iterated application of the construction used in the proof of Lemma
4, on the last non-↪→R-reduction step we can transform any →R-sequence into
a corresponding ↪→R-sequence that is either as long as the original sequence or
even shorter.

Theorem 5.
Let K be an arbitrary computable field, let Σ be an alphabet, let > be a total
admissible wellfounded ordering on Σ∗ and let R ⊆ KΣ∗ × K[Σ∗] be a set
of rules that is compatible with >. Moreover, let k ≥ 0, let p, p̂ ∈ K[Σ∗] be
polynomials where p̂ is R -irreducible such that

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Exponential Lower Bound for Prefix Gröbner Bases 315

p →k
R p̂ where for each term t, a monomial of the form β ∗ t is either

not reduced in the →R-sequence or always with the same rule.

Then the following holds:

p ↪→≤k
R p̂ .

At a first sight, the restriction on the reduction sequence p →k
R p̂ in Theorem 5

might seem to be rather artificial. But, in practice these conditions are usually
fulfilled: In existing implementations of reduction methods for prefix Gröbner
bases, such as in the system MRC (see e.g. [Ze00]) for instance, a rule for reducing
a reducible monomial α∗t is usually chosen independently from the coefficient α.

However, if R is left-normalized then the condition on the reduction sequence
p →k

R p̂ in Theorem 5 is obviously fulfilled, since then for each R-reducible term
t there exists exactly one rule in R that is applicable. Thus, Theorem 5 shows
that when analyzing the derivational complexity D→R of a left-normalized prefix
Gröbner basis R with regard to the normalizing sequences, it suffices to consider
the normalizing ↪→R-reduction sequences since these sequences are of minimal
length. Moreover, for a left-normalized prefix Gröbner basis R any reduction
sequence of the form p ↪→∗

R NFR(p) is uniquely determined.

Theorem 6.
Let K be an arbitrary computable field, let Σ be an alphabet, let > be a total
admissible wellfounded ordering on Σ∗ and let R ⊆ KΣ∗ × K[Σ∗] be a left-
normalized prefix Gröbner basis compatible with >. Then for all p ∈ K[Σ∗] the
following holds:

D→R(p, NFR(p)) is equal to the length of the uniquely determined reduction
sequence p ↪→∗

R NFR(p) .

We will make use of this result in the next section when analyzing the complexity
of the computation of prefix Gröbner bases by interreduction.

3.1 Computation of Interreduced Prefix Gröbner Bases

A terminating set R ⊆ KΣ∗ × K[Σ∗] of rules is a prefix Gröbner basis if
and only if all S-polynomials of R can be reduced with the rules of R to zero.
Hence, in particular, any left-normalized, terminating set R ⊆ KΣ∗ × K[Σ∗]
is a prefix Gröbner basis. On the other hand, a set R ⊆ KΣ∗ × K[Σ∗] that is
compatible with some total admissible wellfounded ordering >, but not a prefix
Gröbner basis can be transformed into an equivalent prefix Gröbner basis by
left-normalizing R w.r.t. > (see [Mo86],[Re95]).

In practice, interreduced, i.e., left- and right-normalized, prefix Gröbner bases
are usually considered since in general, the additional simplification of the right-
hand sides of the rules leads to “smaller” systems which often allow shorter
reduction sequences. To compute an interreduced prefix Gröbner basis for a set
R ⊆ KΣ∗×K[Σ∗] compatible with some total admissible wellfounded ordering
> the following interreduction algorithm is usually used (see e.g. [Ze00]).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

316 A. Sattler-Klein

ALGORITHM 1: PGB

INPUT: A total admissible wellfounded ordering > on Σ∗ and a non-empty
set R ⊆ KΣ∗ × K[Σ∗] compatible with >.

OUTPUT: An interreduced prefix Gröbner basis B of R compatible with >.

begin
while there is a (l, r) ∈ R such that l − r is reducible w.r.t. R − {(l, r)} do

begin
R := R − { (l, r) };
p̄ := NORMALIZE (l − r, R);
if p̄ �= 0 then R := R ∪ { MAKE RULE(p̄, >) };
end;

B := R;
end

where for a polynomial p and for a set of rules R, the subprocedure NORMALIZE
computes a normal form of p w.r.t. R and where for a polynomial p and a total
admissible wellfounded ordering >, the subprocedure MAKE RULE transforms
p in the corresponding rule w.r.t. >.

What is the time complexity of this algorithm?
Of course, the number of reduction steps needed to interreduce a set R

w.r.t. an appropriate ordering > by the algorithm PGB can essentially depend
on the strategies used within, more precisely, on the strategy used for normaliz-
ing polynomials and on the strategy used to select the rule that will be reduced
next. In [Ze00] Zeckzer has studied the time complexity of the algorithm PGB.
He analyzed many examples and observed that there is no obvious strategy for
the algorithm PGB that always leads to only polynomial many reduction steps,
although for all of his examples the number of reduction steps needed by the
algorithm PGB is bounded by a polynomial function.

We will prove that such a strategy does not exist by giving an example where
the algorithm PGB always needs exponentially many reduction steps indepen-
dently of the strategies used within.

Before explaining our main example we want to emphasize the following in-
teresting phenomenon: In general, left-normalizing a set R may need many more
reduction steps than interreducing the set. For instance, if we extend in Example
1 the systems Rn (n ∈ IN0) by the rule g2n+2ff → 0 then left-normalization
of the extended system R′

n corresponds to normalizing the polynomial g2n+2ff
and hence, requires an exponential number of reduction steps (cf. Example 1,
p. 311).

Nevertheless, it is possible to interreduce the system R′
n in such a way that

only polynomially many reduction steps are needed: To this end we first right-
normalize the set Rn. This can be done in a polynomial number of reduction
steps if the rules are considered in increasing order with respect to the size of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Exponential Lower Bound for Prefix Gröbner Bases 317

their left-hand sides. Using this right-normalized system it is then possible to
compute the Rn-normal form of g2n+2ff using one reduction step only.

However, as our next example shows even interreduction of a set R according
to the algorithm PGB can require exponentially many reduction steps.

Theorem 7.
Let K be an arbitrary computable field, let Σ = { g, f, G, F, x, y, h, b } and let
> ⊆ Σ∗×Σ∗ be any length-lexicographical ordering on Σ∗. Moreover, for n ≥ 1,
let

Sn = Rn ∪ R′
n

∪ { b2n+4 → g2n+2f , b2n+4h → G2n+2Fh + x , xh → y }
where

Rn = { g2f → x + y } ∪ { g2i+2f → g2ifx + g2ify | 1 ≤ i ≤ n} ,

R′
n = { G2F → x + y } ∪ { G2i+2F → G2iFx + G2iFy | 1 ≤ i ≤ n} .

Then for all n ≥ 1 the following holds:

1. Sn is compatible with >.

2. size(Sn) = 6n2 + 28n + 30

3. Given (Sn, >) as input the algorithm PGB performs

≥ 2n/2

reduction steps, independently of the strategies used within.

4. Given (Sn, >) as input the algorithm PGB generates the interreduced

prefix Gröbner basis

S∗
n = { g2i+2f → 0 | 0 ≤ i ≤ n} ∪ { G2i+2F → 0 | 0 ≤ i ≤ n}

∪ { b2n+4 → 0 , x → 0 , y → 0 } .

We want to emphasize one interesting aspect of the last example: All rules of
Sn except the rule b2n+4h → G2n+2Fh + x are left-normalized w.r.t. the other
rules. Moreover, interreduction of the system Sn − { b2n+4h → G2n+2Fh + x },
that is right-normalization of the set Sn − { b2n+4h → G2n+2Fh + x }, can be
performed by using only polynomially many reduction steps. Nevertheless, the
resulting interreduced system contains exponentially many monomials and in
order to generate the system S∗

n all the monomials of the right-hand sides have
to be reduced to 0. Thus, exponentially many reduction steps will be needed to
generate the set S∗

n even if we proceed as described.

4 Concluding Remarks

We have studied the time complexity of the algorithm PGB which generates
prefix Gröbner bases in free monoid rings by interreduction and derived by an

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

318 A. Sattler-Klein

example an exponential lower bound for the number of reduction steps that
are needed in general. This gives an answer to the first of the open problems
formulated in [Ze00].

Obviously, the complexity of an algorithm based on the kind of prefix reduc-
tion considered here can essentially depend on the following two parameters: 1.
The underlying field K. 2. The underlying wellfounded ordering >.

We want to emphasize that these two parameters do not play an important
role in the example that we have used to prove the exponential lower bound. First
of all, the example works for an arbitrary computable field. Secondly, it is based
on an arbitrary length-lexicographical ordering on the given alphabet. In fact,
all rules that will be generated by the algorithm PGB are even compatible with
the length-ordering. In practice, the orderings used for computing prefix Gröbner
bases belong either to the class of length-lexicographical orderings, to the class of
Knuth-Bendix orderings (which is a superclass of the previous one) or to the class
of syllable orderings, which means these are those that are also usually used for
completing string rewriting systems (see [Ze00]). It is not difficult to see that our
example also works for any syllable ordering satisfying b > g > G > h > x > y
for instance. Thus the derived lower bound holds for almost all settings that are
of practical interest.

Since in Theorem 7 the computable field K can be chosen arbitrarily, the
example also gives a partial answer to the second open problem formulated
by Zeckzer in [Ze00] asking for the time complexity of prefix Gröbner bases
computation in ZZ2[Σ∗]. For K = ZZp where p > 2 and for K = Q, Zeckzer
proved an exponential lower bound for the time needed to compute interreduced
prefix Gröbner bases by showing that the size of an interreduced system can grow
exponentially in the size of the input system in such a way that exponentially
many coefficients have to be computed separately. Nevertheless, the number of
reduction steps that will be performed by the algorithm PGB is bounded by a
polynomial function in Zeckzer’s examples.

However, Theorem 7 shows that even in the case K = ZZ2 in general it is not
possible to compute interreduced prefix Gröbner bases in polynomial time by
using the algorithm PGB. Thus, one question that arises is whether or not there
exists a more efficient algorithm for the computation of prefix Gröbner bases
in ZZ2[Σ∗].

Another question that arises is how good the lower bound derived for the
algorithm PGB in this paper is in fact. In [Ze00] Zeckzer has derived an expo-
nential upper bound for the algorithm PGB for the class of length-lexicographical
orderings and for the class of Knuth-Bendix orderings, respectively. His re-
sults show that the lower bound derived here is rather sharp. However, for the
class of syllable orderings it is still an open problem to derive a (non-trivial)
upper bound for the number of reduction steps performed by the algorithm
PGB.

Acknowledgement. I would like to thank the referees for their valuable
comments.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Exponential Lower Bound for Prefix Gröbner Bases 319

References

[AcKr06] Peter Ackermann and Martin Kreuzer. Gröbner Basis Cryptosystems.
AAECC (17) (2006), pp. 173–194.

[MaRe93] Klaus Madlener and Birgit Reinert. On Gröbner Bases in Monoid and
Group Rings. Proc. ISSAC’93, pp. 54–263. ACM Press, 1993.

[Mo86] Theo Mora. Gröbner Bases for Non-Commutative Polynomial Rings. Proc.
AAECC-3 (1986), LNCS 229, pp. 353–362. Springer, 1986.

[Mo94] Theo Mora. An Introduction to Commutative and Noncommutative
Gröbner Bases. Theoretical Computer Science 134 (1994), pp. 131–173.

[Re95] Birgit Reinert. On Gröbner Bases in Monoid and Group Rings. PhD thesis,
Universität Kaiserslautern, 1995.

[ReZe98] Birgit Reinert and Dirk Zeckzer. MRC - A System for Computing Gröbner
Bases in Monoid and Group Rings. Presented at the 6th Rhine Workshop
on Computer Algebra. Sankt Augustin, 1998.

[ReZe99] Birgit Reinert and Dirk Zeckzer. MRC - Data Structures and Algorithms
for Computing in Monoid and Group Rings. Applicable Algebra and Engi-
neering, Communications and Computing 10(1), pp. 41–78, 1999.

[Sa07] Andrea Sattler-Klein. An Exponential Lower Bound for Prefix Gröbner
Bases in Free Monoid Rings. Internal Report, Universität Kaiserslautern,
to appear in 2007.

[Ze00] Dirk Zeckzer. Implementation, Applications, and Complexity of Prefix
Gröbner Bases in Monoid and Group Rings. PhD thesis, Universität Kaiser-
slautern, 2000.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Cubic Kernel for Feedback Vertex Set

Hans L. Bodlaender

Department of Information and Computing Sciences, Utrecht University, P.O. Box
80.089, 3508 TB Utrecht, the Netherlands

hansb@cs.uu.nl

Abstract. In this paper, it is shown that the Feedback Vertex Set

problem on unweighted, undirected graphs has a kernel of cubic size. I.e.,
a polynomial time algorithm is described, that, when given a graph G
and an integer k, finds a graph H and integer k′ ≤ k, such that H has
a feedback vertex set with at most k′ vertices, if and only if G has a
feedback vertex set with at most k vertices, and H has at most O(k3)
vertices and edges. This improves upon a result by Burrage et al. [8] who
gave a kernel for Feedback Vertex Set of size O(k11).

One can easily make the algorithm constructive, and transform a min-
imum size feedback vertex set of H with at most k′ vertices into a min-
imum size feedback vertex set of G. The kernelization algorithm can be
used as a first step of an FPT algorithm for Feedback Vertex Set,
but also as a preprocessing heuristic for the problem.

1 Introduction

The Feedback Vertex Set problem is a classic and fundamental graph prob-
lem, with several applications. See e.g., [13] for an overview paper on this and
related problems. In this paper, we consider the undirected and unweighted case
of the problem. I.e., we are given an undirected graph G = (V, E), and an inte-
ger k, and ask if there is a set of vertices S with |S| ≤ k, such that each cycle
of G contains at least one vertex from S. To facilitate the description of the
algorithms, we allow G to have parallel edges.

As in [12,18], we consider the fixed parameter case of this problem; i.e., k is
seen as the parameter, and is considered to be small. For more information on
fixed parameter tractability, see [12,18]. A parameterized problem with input I
and parameter k is said to be fixed parameter tractable (i.e., in FPT), if there
is an algorithm that solves the problem in p(|I|, k) · f(k) time, where p is a
polynomial and f an arbitrary function. Feedback Vertex Set is one of the
problems, known to be fixed parameter tractable. The problem was first shown
to be in FPT by Downey and Fellows [11]. In a series of papers, faster FPT algo-
rithms were obtained [4,12,2,20,16,21,15,10]. The currently best known bounds
(concentrating on the function of k), are a probabilistic algorithm that finds with
high probability the feedback vertex set of size at most k, if existing, and uses
O(4kkn) time [2], and a deterministic algorithm that uses O(10.567kp(n)) time
(p a polynomial) [10] (see also [15].) An exact algorithm for Feedback Vertex

Set with a running time of O(1.8899n) was recently found by Razgon [22].

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 320–331, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Cubic Kernel for Feedback Vertex Set 321

Kernelization is a technique that yields a proof that a problem belongs to FPT
(assuming it is known that the problem is decidable), and that gives mathemat-
ical insight to the commonly used technique of preprocessing. A kernelization
algorithm takes an input-parameter pair, and transforms it to an equivalent
input-parameter pair (called the kernel), such that for the latter, the size of the
input is a function of the (possibly new) parameter, and the new parameter is at
most the old parameter. The kernelization algorithm is supposed to run in time
that is both polynomial in the size of the input and the value of the parameter.
If we have a kernel, then we can run any existing algorithm on the kernel, and
obtain an algorithm that uses O(p(n, k)+f(k)) time, p a polynomial and f some
function.

In a certain sense, kernelization is the very often used technique of preprocess-
ing with in addition a mathematical guarantee on the quality of the preprocess-
ing (the size of the input that remains after the preprocessing.) So, kernelization
is for preprocessing what approximation algorithms are for heuristics (i.e., an
approximation algorithm can be seen as a heuristic with a guarantee for the
quality.)

The long open problem whether there existed a kernel of size polynomial in
k for Feedback Vertex Set was recently resolved by Burrage et al. [8], who
obtained a kernel for Feedback Vertex Set with O(k11) vertices. In this
paper, we improve on the size of this kernel, and show that Feedback Vertex

Set has a kernel with O(k3) vertices. The kernelization algorithm uses the 2-
approximation algorithm for Feedback Vertex Set of [1] or [3] as a first step,
and then uses a set of relatively simple reduction rules. A combinatorial proof
shows that if no rule can be applied, then the graph has O(k3) vertices, k the
parameter in the reduced instance.

Some of the techniques in this paper were taken from, or inspired by techniques
from [8]. Missing proofs can be found in [7].

2 Preliminaries

We allow graphs to have parallel edges; we let {w, v} denote the same edge as
{v, w}. A pair of vertices {v, w} is called a double edge in a graph G = (V, E), if
E contains at least two edges of the form {v, w}. {v, w} is a non-edge, if there
is no edge of the form {v, w} in E, and is a non-double edge, if there is at most
one edge of the form {v, w} in E. A set of vertices W ⊆ V is a feedback vertex
set in G = (V, E), if G[V − W] is a forest, i.e., for each cycle in G, there is at
least one vertex on the cycle that belongs to W .

If there is a double edge {v, w}, then these form a cycle of length two. Thus,
each feedback vertex set W must contain v or w. We will use this fact frequently
in the paper, i.e., when we want to ensure for a pair v, w that v or w belongs to
each feedback vertex set, we take a double edge {v, w}.

Two paths are said to be vertex disjoint, if all their internal vertices are
different. (I.e., we allow that vertex disjoint paths share endpoints.)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

322 H.L. Bodlaender

3 A Kernelization Algorithm for Feedback Vertex Set

We assume that we have as input a graph G = (V, E), and an integer k. The
algorithm either returns no, in which case we are sure that G has no feedback
vertex set of size at most k, or a pair (G′, k′), such that G has a feedback vertex
set of size at most k, if and only if G′ has a feedback vertex set of size k′. (Instead
of returning no, we could instead output a clique with k + 3 vertices.) The
algorithm runs in time, polynomial in |V |+ |E| and in k. The number of vertices
and edges in G′ is bounded by O(k3). It is also possible to give a constructive
version, i.e., one where we can turn a minimum size feedback vertex set of G′

of size at most k′ into a minimum size feedback vertex set of G in polynomial
time. This will be discussed in Section 3.3.

The algorithm has two phases: an initialization phase, and an improvement
and reduction phase. During the algorithm, we maintain a graph G, initially the
input graph, and an integer k. During both phases, we possibly could determine
that the graph has no feedback vertex set of value k, and return no. In the
improvement and reduction phase, we possibly may decrease the value of k.
When this happens, we restart the initialization phase, but now with the smaller
number k and the modified graph.

During the algorithm, we have two special sets of vertices, called A and B.
These play the following roles: A will be invariantly a feedback vertex set of G,
and B will be the vertices in V − A that have a double edge to a vertex in A.

3.1 Initialization Phase

We assume that we are given a graph G = (V, E), and an integer k. If k = 0,
then we return yes, if G is a forest, and no otherwise. So, suppose k ≥ 1.

The first step of the kernelization algorithm is to run the approximation al-
gorithm of Bafna et al. [1] or the algorithm of Becker and Geiger [3]. These
algorithms have a performance ratio of 2. Suppose this approximation algorithm
returns a feedback vertex set A of G. If |A| > 2k, then from the performance
ratio it follows that there is no feedback vertex set of size at most k, and we
return no.

Otherwise, we continue with the next step, and also initialize the set B as
B = {w ∈ V − A | ∃v ∈ A : there are at least two edges {v, w} ∈ E}. I.e., if
there is a double edge between a vertex v ∈ A and a vertex w �∈ A, then w is
added to B. This can be done in O(|V | + |E|) time using bucket sort.

3.2 Improvement and Reduction Rules

In this section, we give a number of improvement and reduction rules. Improve-
ment rules add double edges to G; reduction rules remove edges and or vertices
from G.

Each of the rules transforms the pair (G, k). We say that a rule is safe, if,
whenever it transforms (G, k) to (G′, k′), we have that G has a feedback vertex
set of size k, if and only if G′ has a feedback vertex set of size k′. In addition,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Cubic Kernel for Feedback Vertex Set 323

we require that A is invariantly a feedback vertex set in the graph. We will show
that each of the given rules is safe. For several rules, their safeness uses the
following simple principle, earlier also used in [8].

Proposition 1. Let G = (V, E), and v ∈ V , such that there is at least one
feedback vertex set W in G of minimum size with v ∈ W . Then a rule that
removes v and its incident edges from G, and decreases k by one is safe.

In our description below, we assume always that we restart the initialization
phase, whenever k is decreased by one. This just simplifies some counting ar-
guments (in particular, it ensures that |A| ≤ 2k); it is also possible to give a
variant without such restarts. We first give some simple rules, whose safeness is
easy to see. Many are taken from [8].

Rule 1 Islet Rule
If v has degree zero, then remove v from G.

Rule 2 Twig Rule
If v has degree one, then remove v and its incident edge from G.

Rule 3 Triple Edge Rule
If there are three or more parallel edges of the form {v, w}, then remove all but
two of these edges.

As a result of the Triple Edge rule, we have between each pair of vertices either
0, 1, or 2 edges when this rule cannot be applied.

Rule 4 Degree Two Rule
Suppose v has degree two. Let the edges, incident to v be {v, w} and {v, x}. If
w = x, then remove v and w, and their incident edges; decrease k by one, and
restart the initialization phase. Otherwise, remove v, its incident edges, and add
an edge {w, x} to G. If {w, x} becomes a double edge, and w ∈ A, x �∈ A ∪ B,
then add x to B. If {v, w} becomes a double edge, and x ∈ A, w �∈ A ∪ B, then
add w to B.

Note that the Degree Two rule can create a parallel edge. An important rule
is the Improvement rule. It is inspired by the improvement rule, used in [5,6,9]
in the context of algorithms to compute treewidth.

Rule 5 Improvement Rule
Suppose v ∈ A, w ∈ V , v �= w. Suppose there is no double edge between v and
w, and that there are at least k +2 vertex disjoint paths from v to w in G. Then
add two edges {v, w} to G. If v /∈ A ∪ B, then put w in B.

For a given pair of vertices, v, w ∈ V , one can compute in polynomial time
the maximum number of vertex disjoint paths from v to w, using standard flow
techniques. Nagamochi and Ibaraki [17] gave an algorithm that uses O(k2n) time
for checking if there are k vertex disjoint paths between a given pair of vertices.
See also [23, Chapter 9]. Lemma 1 shows that the Improvement rule is safe.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

324 H.L. Bodlaender

v

w

v

w

Fig. 1. The Improvement Rule

Lemma 1. Suppose there are at least k +2 vertex disjoint paths from v to w in
G. For each feedback vertex set S of size at most k, v ∈ S or w ∈ S.

Proof. If S is a feedback vertex set of size at most k and v, w �∈ S, then at least
two paths from v to w do not contain a vertex in S. These paths and v and w
form a cycle; contradiction. 	

Rule 6 Flower Rule
Let v ∈ A. Suppose there is a collection of at least k + 1 cycles in G, such that
each pair of cycles intersects only in v.
Then remove v and all its incident edges from G, and decrease k by one. Restart
the initialization phase with the new graph and new value of k.

I.e., we look for a set of cycles, that are vertex disjoint, except that they inter-
sect in the vertex v. Lemma 2 formulates the Flower rule as a special case of
generalized matching, hence it can be checked in polynomial time, see e.g., [14].

Lemma 2. Let G′ = (V ′, E′) be the graph obtained from G by adding to each
vertex w �= v two new vertices w1 and w2, with edges {w1, w2}, {w1, w}, and
{w2, w}. There is a collection of k + 1 cycles in G such that each pair of cycles
intersects only in v, if and only if there is a set of edges F ′ ⊆ E′, such that v is
incident to exactly 2k + 2 edges in F ′, each new vertex is incident to one edge
in F ′, and each vertex w ∈ V − {v} is incident to exactly two edges in F ′.

Safeness of the Flower rule follows from the next lemma.

Lemma 3. Let v ∈ A. Suppose there is a collection of at least k +1 cycles in G
such that no two different cycles in the collection share another vertex except v.
Then v belongs to each feedback vertex set S in G of size at most k.

Proof. Consider a feedback vertex set S in G with v �∈ S. Then, each cycle
in the collection contains a vertex in S, and these are all different vertices, so
|S| ≥ k + 1. 	

A simple special case of the Flower rule is the following.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Cubic Kernel for Feedback Vertex Set 325

Rule 7 Large Double Degree Rule
Suppose v ∈ V , such that there are at least k + 1 vertices w with {v, w} a double
edge. Then remove v and its incident edges, and decrease k by one. Restart the
initialization phase with the new graph and new value of k.

To describe the two abdication rules, we introduce some additional terminology.
This terminology will also be used in the counting arguments.

a

b

c
d

v

Fig. 2. Example of the Abdication Rules: a and d govern the drawn piece. The first
abdication rule will remove the edge {a, u}; the second abdication rule will remove d
and all edges incident to c. After these step, more reduction rules can be applied.

A piece is a connected component of G[V −A−B]. Let X be the set of vertices
of a piece. The border of this piece is the set of vertices in A∪B that is adjacent
to a vertex in X . A vertex v in the border of a piece governs the piece, if it has
a double edge to each other vertex w �= v in the border of the piece.

Rule 8 First Abdication Rule
Suppose v ∈ A∪B governs a piece with vertex set X. If there is exactly one edge
with one endpoint v and one endpoint in X, (i.e., one edge of the form {v, w}
with w ∈ X), then remove this edge {v, w} with w ∈ X from G.

As a result of the First Abdication rule, v will no longer belong to the border
of the piece.

Lemma 4. The First Abdication rule is safe.

Proof. Let v, w, X be as in the First Abdication rule. Let G′ be the graph,
obtained by removing the edge {v, w}.

We claim that for each set S ⊆ V , S is a feedback vertex set in G, if and only
if S is a feedback vertex set in G′. If S is a feedback vertex set in G, then, S is
also a feedback vertex set in the subgraph G′. Suppose S is a feedback vertex
set in G′. Each cycle in G that is not a cycle in G′ uses the edge {v, w}. Hence,
if v ∈ S, S is also a feedback vertex set in G. Suppose v �∈ S. As v governs the
piece X , all vertices in the border of the piece except v must belong to S. Each
cycle that uses the edge {v, w} uses besides v one other border vertex of the
piece (as v has only one edge to the piece, and the vertex set of a piece induces
a tree), and thus contains a vertex in S. So, again S is a feedback vertex set.

As removing the edge {v, w} does not change the collection of feedback vertex
sets, the rule is safe. 	

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

326 H.L. Bodlaender

Rule 9 Second Abdication Rule
Suppose v ∈ A ∪ B governs a piece with vertex set X. If there are at least two
edges with one endpoint v and one endpoint in X, then remove v and all its
incident vertices from G, and decrease k by one. Restart the initialization phase
with the new graph and new value of k.

It is straightforward to see that we can check in polynomial time whether an ab-
dication rule is possible for given G, A, B. Safeness of the Second Abdication
rule follows from Lemma 5.

Lemma 5. Suppose v ∈ A∪B governs a piece with vertex set X. Suppose there
are at least two edges with one endpoint v and one endpoint in X. Then there is
a minimum size feedback vertex set in G that contains v.

Consider a piece with vertex set X with border set Y , such that for each pair of
disjoint vertices in Y , there is a double edge. Consider what happens when we
apply the abdication rules to this piece. Each vertex in Y governs the piece. If
v ∈ Y has one edge to the piece, this edge will be removed, and v no longer is
in the border of X . If v ∈ Y has two or more edges to the piece, then v itself
is removed. Thus, after all the vertices in Y have been handled, the border of
X will be empty. A piece with an empty border is a connected component of G
that is a tree: it is a subgraph of G[V −A] and hence does not have a cycle. Now,
repeated application of the Twig rule, and then an application of the Islet rule
will remove all vertices in the piece.

Above, we have seen that the given rules remove each piece for which there
is a double edge between each pair of disjoint vertices in its border. A direct
consequence of this is the following lemma.

Lemma 6. Suppose none of the Rules 1 – 9 can be applied to G. Suppose Y ⊆ V
is the border of a piece in G. Then there are two disjoint vertices v, w ∈ Y such
that {v, w} is not a double edge.

A graph G = (V, E), with sets A, B, and integer k is called a reduced instance,
if none of the rules 1 – 9 is applicable anymore. We show that reduced instances
have O(k3) vertices and edges.

Lemma 7. In a reduced instance, there are at most 2k vertices in A and at
most 2k2 vertices in B.

Proof. We start with a set A of size at most 2k. During the algorithm, we
recompute A whenever k is changed.

Each vertex in B has at least one neighbor in A to which it has a double
edge, but no vertex in A has more than k neighbors to which it has a double
edge, otherwise the Large Double Degree rule can be applied. So the result
follows. 	

We construct an auxiliary graph, which we call the B-piece graph. In the B-piece
graph, there are two types of vertices: each vertex in B is a vertex in the B-piece

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Cubic Kernel for Feedback Vertex Set 327

graph, and for each piece, there is a vertex representing the piece in the B-piece
graph. The B-piece graph is bipartite, with an edge between a vertex v ∈ B and
a vertex x representing a piece, if B is in the border of the piece.

Lemma 8. (i) The B-piece graph is a forest.
(ii) Let v ∈ B be in the border of a piece with vertex set X. Then there is at

exactly one edge from v to a vertex in X.

Lemma 9. Suppose we have a reduced instance. There are at most 8k3+9k2+k
pieces.

Proof. (Sketch.) We associate each piece to a non-double edge in its border (cf.
Lemma 6. To a pair v, w ∈ A, we can associate at most k + 1 pieces, otherwise
there are k + 2 disjoint paths from v to w, and the Improvement rule would
have created a double edge {v, w}. To a pair v, w ∈ B, we can associate at most
one piece, otherwise the B-piece graph is a forest. We omit from this abstract
the more detailed counting of the number of pieces associated with pairs {v, w},
v ∈ A, w ∈ B. 	

We now count the number of vertices and edges in the pieces. To do so, we
consider subsets of the vertices in pieces. C ⊆ V \ (A∪B) is the set of vertices in
a piece that are adjacent to a a vertex in A∪B. Vertices in D = V \ (A∪B ∪C)
are only adjacent to vertices in C ∪ D. As C ∪ D induces a forest, and vertices
in D have degree at least three in G and hence in G[C ∪ D], and as a forest has
less vertices of degree three than it has leaves, |D| < |C|.

To estimate C, we define for each v ∈ A ∪ B, Cv = {w ∈ C | {v, w} ∈ E}
as the set of vertices in pieces, adjacent to v. The sets Cv are partitioned into
two sets, Cv,1, and Cv,≥2. Cv,1 is the set of the vertices w ∈ Cv, such that w is
the only vertex in its piece that is adjacent to v. Cv,≥2 = Cv − Cv,1 is the set
of vertices w ∈ Cv, such that the piece of w has at least one other vertex, also
adjacent to v.

We give a number of different lemmas that give bounds on the size of these
sets. In each case, we assume we have a reduced instance. For omitted proofs,
see [7].

Lemma 10. Let v ∈ A. |Cv,1| ≤ 3k2 + 3k − 1.

Proof. Consider a vertex w ∈ Cv,1, and the piece containing w. As v does not
govern this piece (otherwise the First Abdication rule would be applicable),
there is a vertex x ∈ (A ∪B) −{v}, in the border of the piece for which the pair
{v, x} is not a double edge. For each w ∈ Cv,1, we associate w with such a vertex
x in the border of the piece of w with x �= v and {v, x} is not a double edge.

No vertex x ∈ A ∪ B has more than k + 1 vertices associated to it. Suppose
x has k + 2 or more vertices in Cv,1 associated to it. For each vertex w in Cv,1,
associated to x, we take the path, starting at v, and moving through the piece
containing w to x. As each of these paths uses a different piece, we have k + 2
vertex disjoint paths from v to x, and hence the Improvement rule will add

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

328 H.L. Bodlaender

the double edge {v, x}. However, if {v, x} is a double edge, no vertices in Cv,1

will be associated to x, contradiction.
There are at most k vertices in A∪B that have two or more vertices associated

to it. Suppose we have at least k + 1 vertices in A ∪ B that have two or more
vertices associated with it. For each vertex x in A ∪ B that has two or more
vertices associated with it, we build a cycle as follows. Suppose X1, X2 are
pieces containing vertices associated to x. Start at v, more through X1 to x, move
from x through X2 to v. As all pieces used by these cycles are different, these
cycles only intersect at v, and thus the Flower rule applies. This contradicts
the assumption that we have a reduced instance.

Now we can count the number of vertices in Cv,1, or, equivalently, the total
over all x ∈ A ∪ B − {v} of the number of vertices associated to x. There are
at most |A| + |B| − 1 vertices to which one vertex is associated. There are at
most k vertices in A ∪ B − {v} to which two or more vertices are associated,
and to each, at most k + 1 vertices are associated. This gives a total of at most
2k + 2k2 − 1 + k(k + 1) = 3k2 + 3k − 1. 	

Lemma 11. Let v ∈ A. |Cv,≥2| ≤ k2 + 3k + 3.

Proof. (Sketch.) If for some v ∈ A, |Cv,≥2| > k2 + 3k + 3, then a detailed
construction shows that we can build a collection of k + 1 cycles that only share
v. Hence, the Flower rule can be applied, and the instance is not reduced. 	

Lemma 12.
∑

v∈B |Cv| ≤ 8k3 + 11k2 + k − 1.

Proof. By Lemma 8, if v ∈ B, then Cv,≥2 = ∅. So, for all v ∈ B, Cv = Cv,1.
Suppose w ∈ Cv,1, v ∈ B. The B-piece graph has an edge from v to the

piece that contains w. As w is the only vertex in this piece incident to v, we can
associate this edge to w. Now each vertex in

⋃
v∈B Cv has at least one edge from

the B-piece graph associated to it, and hence |
⋃

v∈B Cv| is at most the number
of edges of the B-piece graph. As the B-piece graph is a forest (Lemma 8), the
number of edges in this graph is smaller than the number of vertices, which
equals |B| plus the number of pieces. By Lemmas 7 and 9, the result follows. 	

Theorem 1. In a reduced instance, there are O(k3) vertices and O(k3) edges.

Proof. We have |A| = O(k), |B| = O(k2). For each v ∈ A, |Cv| ≤ |Cv,1| +
|Cv,≥2| = O(k2). Thus |C| = O(k3), and hence |D| = O(k3).

As G[V −A] is a forest, there are O(|V −A|) = O(k3) edges with no endpoint in
A. Thus, we only need to count the edges with at least one endpoint in A. There
are O(|A|2) = O(k2) edges with both endpoints in A and O(|A| · |B|) = O(k3)
edges with one endpoint in A and one endpoint in B. By definition, there are no
edges between vertices in A and vertices in D. If there is an edge {v, w}, v ∈ A,
w ∈ C, then w ∈ Cv, and there is no parallel edge to this one (otherwise w ∈ B,
so the number of edges in A × C equals

∑
v∈A |Cv| = O(k3). 	

Theorem 2. There is a polynomial time algorithm, that, given a graph G and
an integer k, finds a graph H with O(k3) vertices and edges, such that G has a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Cubic Kernel for Feedback Vertex Set 329

feedback vertex set with at most k vertices, if and only if H has a feedback vertex
set with at most k vertices.

Obtaining a fast implementation, e.g., with a proper choice of data structures,
is an interesting issue. In this paper, we concentrated on the combinatorial as-
pects, and refrained from discussion such implementation issues and the precise
asymptotic running time of the kernelization algorithm.

3.3 A Constructive Version

It is not hard to transform the algorithm to a constructive one. Place each
vertex, removed by the Self-loop rule, Flower rule, Second Abdication rule,
or Large Double Degree rule is placed in a set S. Suppose the kernelization
algorithm transforms the pair (G, k) to a pair (G′, k′). Then, if W is a minimum
size feedback vertex set in G′ of size at most k′, then W ∪ S is a minimum size
feedback vertex set in G.

4 Discussion

In this paper, we showed that the Feedback Vertex Set problem on undi-
rected graphs has a kernel of size O(k3).

Several variants of the algorithm are also possible. E.g., we can refrain from
doing a restart after k has been decreased. Also, some rules can be replaced
by other rules, e.g., the Flower rule can be replaced by a rule, that applies
the 2-approximation algorithm of [1] or [3] to a weighted variant, with v weight
2k + 1, and all other vertices weight one. If this approximation algorithm gives
a solution of weight at least 2k +1, then v must be part of any optimal solution,
and thus we remove v, decrease k by one, and restart the initialization phase. See
the full paper [7] for a further discussion. It would be interesting to perform an
experimental evaluation of this, and similar algorithms for Feedback Vertex

Set kernelization. What techniques will give fast algorithms and/or small kernel
sizes. How well do these algorithms perform on data obtained from real-life
applications? We can also use the kernelization algorithm as a preprocessing
heuristic, using for k the best upper bound known for the minimum size feedback
we have from one or more heuristics.

It is to be expected that with small (or larger) changes, improvements to
the constant in the O(k3) bound on the kernel size are possible. It is also to be
expected that in a similar way, we can obtain a kernel for the case where vertices
have integer weights with the parameter k an upper bound on the sum of the
weights of the vertices in the vertex set.

We end the paper with mentioning two open problems.

– Is there a kernel for Feedback Vertex Set of size o(k3)? See e.g., the
discussion in [8].

– Is it possible to carry over the techniques to the related Loop Cut Set

problem? In this problem, we are given a directed (acyclic) graph G = (V, A),

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

330 H.L. Bodlaender

and ask for a minimum size set of vertices S, such that the undirected graph,
obtained by first removing all arcs whose tail is in S, and then dropping
direction of edges, is a forest. This problem is motivated by the algorithm of
Pearl [19] for computing inference in probabilistic networks. See e.g., [3,2].

– The Directed Feedback Vertex Set problem and Feedback Arc Set

problems, where we look for a minimum size set of vertices or arcs in a
directed graph G, such that each cycle in G contains a vertex or arc in
the set, are still not known to be in FPT. Membership in FPT of these
problems is a long outstanding open problem. As having a kernel for these
problems would imply membership in FPT, it is probably very hard to find
a kernelization algorithm for these problems.

Acknowledgments

I thank Mike Fellows, Eelko Penninkx and Richard Tan for discussions and
suggestions.

References

1. V. Bafna, P. Berman, and T. Fujito. A 2-approximation algorithm for the undi-
rected feedback vertex set problem. SIAM J. Disc. Math., 12:289–297, 1999.

2. A. Becker, R. Bar-Yehuda, and D. Geiger. Randomized algorithms for the loop
cutset problem. J. Artificial Intelligence Research, 12:219–234, 2000.

3. A. Becker and D. Geiger. Optimization of Pearl’s method of conditioning and
greedy-liker approximation algorithms for the vertex feedback set problem. Acta
Informatica, 83:167–188, 1996.

4. H. L. Bodlaender. On disjoint cycles. Int. J. Found. Computer Science, 5(1):59–68,
1994.

5. H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25:1305–1317, 1996.

6. H. L. Bodlaender. Necessary edges in k-chordalizations of graphs. Journal of
Combinatorial Optimization, 7:283–290, 2003.

7. H. L. Bodlaender. A cubic kernel for feedback vertex set. Technical Report UU-CS-
2006-042, Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands, 2006.

8. K. Burrage, V. Estivill-Castro, M. R. Fellows, M. A. Langston, S. Mac, and F. A.
Rosamond. The undirected feedback vertex set problem has a poly(k) kernel.
In H. L. Bodlaender and M. A. Langston, editors, Proceedings 2nd International
Workshop on Parameterized and Exact Computation, IWPEC 2006, pages 192–
202. Springer Verlag, Lecture Notes in Computer Science, vol. 4169, 2006.

9. F. Clautiaux, J. Carlier, A. Moukrim, and S. Négre. New lower and upper bounds
for graph treewidth. In J. D. P. Rolim, editor, Proceedings International Work-
shop on Experimental and Efficient Algorithms, WEA 2003, pages 70–80. Springer
Verlag, Lecture Notes in Computer Science, vol. 2647, 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Cubic Kernel for Feedback Vertex Set 331

10. F. K. H. A. Dehne, M. R. Fellows, M. A. Langston, F. A. Rosamond, and
K. Stevens. An o(2O(k)n3) fpt algorithm for the undirected feedback vertex set
problem. In L. Wang, editor, Proceedings 11th International Computing and Com-
binatorics Conference COCOON 2005, pages 859–869. Springer Verlag, Lecture
Notes in Computer Science, vol. 3595, 2005.

11. R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness.
Congressus Numerantium, 87:161–178, 1992.

12. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1998.
13. P. Festa, P. M. Pardalos, and M. G. C. Resende. Feedback set problems. In

Handbook of Combinatorial Optimization, Vol. A., pages 209–258, Amsterdam,
the Netherlands, 1999. Kluwer.

14. A. M. H. Gerards. Matching. In M. O. Ball et al., editor, Handbooks in Operations
Research and Management Sciences, Volume 7, Network Models, chapter 3, pages
135–224. Elsevier Science, Amsterdam, 1995.

15. J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke. Improved fixed-
parameter algorithms for two feeback set problems. In Proc. 9th Int. Workshop
on Algorithms and Data Structures WADS 2004, pages 158–168. Springer Verlag,
Lecture Notes in Computer Science, vol. 3608, 2004.

16. I. A. Kanj, M. J. Pelmajer, and M. Schaefer. Parameterized algorithms for feedback
vertex set. In R. G. Downey and M. R. Fellows, editors, Proceedings 1st Interna-
tional Workshop on Parameterized and Exact Computation, IWPEC 2004, pages
235–248. Springer Verlag, Lecture Notes in Computer Science, vol. 3162, 2004.

17. H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica, 7:583–596,
1992.

18. R. Niedermeier. Invitation to fixed-parameter algorithms. Oxford Lecture Series in
Mathematics and Its Applications. Oxford University Press, 2006.

19. J. Pearl. Probablistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. Morgan Kaufmann, Palo Alto, 1988.

20. V. Raman, S. Saurabh, and C. R. Subramanian. Faster fixed parameter tractable
algorithms for undirected feedback vertex set. In Proceedings 13th International
Symposium on Algorithms and Computation, ISAAC 2002, pages 241 – 248.
Springer Verlag, Lecture Notes in Computer Science, vol. 2518, 2002.

21. V. Raman, S. Saurabh, and C. R. Subramanian. Faster algorithms for feedback
vertex set. Proceedings 2nd Brazilian Symposium on Graphs, Algorithms, and Com-
binatorics, GRACO 2005, Electronic Notes in Discrete Mathematics, 19:273–279,
2005.

22. I. Razgon. Exact computation of maximum induced forest. In L. Arge and
R. Freivalds, editors, 10th ScandinavianWorkshop on Algorithm Theory, SWAT
2006, pages 160–171. Springer Verlag, Lecture Notes in Computer Science, vol.
4059, 2006.

23. A. Schrijver. Combinatorial Optimization. Polyhedra and Efficiency. Springer,
Berlin, 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Union of Minimal Hitting Sets:
Parameterized Combinatorial Bounds and

Counting

Peter Damaschke

School of Computer Science and Engineering
Chalmers University, 41296 Göteborg, Sweden

ptr@cs.chalmers.se

Abstract. We study how many vertices in a rank-r hypergraph can
belong to the union of all inclusion-minimal hitting sets of at most k ver-
tices. This union is interesting in certain combinatorial inference prob-
lems with hitting sets as hypotheses, as it provides a problem kernel
for likelihood computations (which are essentially counting problems)
and contains the most likely elements of hypotheses. We give worst-case
bounds on the size of the union, depending on parameters r, k and the
size k∗ of a minimum hitting set. (Note that k ≥ k∗ is allowed.) Our
result for r = 2 is tight. The exact worst-case size for any r ≥ 3 remains
widely open. By several hypergraph decompositions we achieve nontriv-
ial bounds with potential for further improvements.

Keywords: algorithms, parameterization, combinatorial inference, count-
ing, hypergraph transversals.

1 Introduction

A quite general and fundamental type of inference problem is to conclude a set
of causes from a set of observed effects. We are given a set V of n causes, a set E
of effects, a relation R ⊂ V ×E, and a set O ⊂ E of observed effects. (A cause or
effect is either present or absent.) We consider two models which we denote (∀)
and (∃). Under (∀), each present cause v generates all effects e with (v, e) ∈ R.
Under (∃), each present cause v generates some effects e with (v, e) ∈ R. We
suppose no interference, i.e., causes generate effects independently. We want to
infer the set C of present causes. Since each e ∈ O must be explained by some
cause, this is just a hitting set problem in a certain hypergraph: Under (∃), any
C ⊆ V containing some v from each V (e) := {v : (v, e) ∈ R}, e ∈ O, is a valid
hypothesis, i.e., candidate for set C. In other words, constraint |C ∩ V (e)| ≥ 1
must be satisfied for all e ∈ O. Hitting sets are also called transversals, of the
hypergraph with vertex set V and hyperedges V (e), e ∈ O. Under (∀) we can
first discard all v ∈ V for which not all e ∈ E, (v, e) ∈ R are in O. Then we are
back to the hitting set problem, with the remaining causes. Besides constraints
|C ∩ V (e)| ≥ 1, e ∈ O, we may know some a priori bound k on the number of

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 332–343, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Union of Minimal Hitting Sets 333

present causes, giving the constraint |C| ≤ k. We may know further constraints
|C ∩ Y | ≤ k or |C ∩ Y | ≥ k for several Y ⊂ V and integers k, however, we will
focus on hitting sets with one total size limit k, because this setting appears
naturally, e.g., in diagnostics (cf. references in [11]).

An example is the reconstruction of unknown mixtures of proteins by peptide
mass fingerprinting and a database of mass spectra [7]. (The following exposition
is simplified, to stress the connection to hitting sets. We ignore possible exper-
imental and database errors which just require slight extensions of the model.
For background information on peptide mass fingerprinting see [1].) In order
to avoid costly isolation of proteins prior to identification, one may digest the
entire mixture by certain enzymes. Proteins are split in peptides whose masses
are identified by mass spectrometry. Checking the mass spectrum of the given
mixture against a database of mass spectra of candidate proteins, one can in
principle compute the mixtures that are consistent with the observed masses.
A mixture is known to contain at most a certain number of proteins (think of
30-50), being a small fraction of proteins listed in the database (think of thou-
sands). Assuming that all masses of peptides of present proteins occur in the
measured spectrum, model (∀) applies. We first discard all candidate proteins
having non-observed peptide masses. For many e ∈ O there remains only one
candidate protein with a peptide of mass e, that is: V (e) = {v}. We put aside
these v (they must be present in any possible mixture), along with all e where
(v, e) ∈ R. This trivial preprocessing leaves us with a small hitting set problem
instance. The number k of further (unsure) proteins can be considerably smaller
than the mixture size.

Combinatorics alone cannot infer which of the many hypotheses (hitting sets
of size at most k) explains the data correctly, thus we want a summary of all con-
sistent solutions, rather than one particular solution (cf. the general discussions
in [4,8]), as a basis for further investigations, i.e., conducting additional informa-
tive experiments that finally point to a unique or most likely solution. But what
is a useful summary? Plain enumerations are in general big and hardly com-
prehensible. Some compressed representation is preferable. Following [12], the
version space of an inference problem is the family of all hypotheses consistent
with the data. A set C in the version space is called most specific (most general)
if no proper subset (superset) of C is in the version space. These extremal hy-
potheses determine the version space. In our case, it consists of all hitting sets
of size at most k, or k-hitting sets for short, hence the most specific hypotheses
are the minimal k-hitting sets. (Distinguish carefully between inclusion-minimal,
and minimum cardinality.) The most general hypotheses are those sets of size
k that extend some minimal hitting set. Still, there can be too many different
minimal k-hitting sets, but they heavily overlap. On the other hand, in infer-
ence tasks as above we are in the first place interested in evidence for presence
or absence of every single v ∈ V . A natural approach, especially if no solution
is preferred a priori, is to count for each v the hypotheses in the version space
with and without v. This yields posterior probabilities for the presence of causes.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

334 P. Damaschke

(The approach can be adapted to more complicated priors by weighting, to joint
presence of several causes, etc.)

In the following we study the abstract problem. We are given a hypergraph
with n vertices, and a number k
 n. Throughout the paper, U(k) denotes
the union of all minimal k-hitting sets, and k∗ the minimum size of a hitting
set. In Section 2 we show that, once U(k) is known, one can easily count all
k-hitting sets containing any specific v ∈ V , and that all vertices not in U(k)
appear in the same (least!) number of k-hitting sets. Which means that U(k)
is a kernel for the counting problem, and vertices in U(k) are the most likely
candidates for present causes. These preliminaries motivate the study of: |U(k)|,
the complexity of computing U(k), and of counting all hitting sets of a given size.
Obviously, these problems include as a special case the problem of computing k∗,
which is NP-complete, and even unlikely to be fixed-parameter tractable (FPT),
with k∗ itself as the parameter [3]. However, for hypergraphs of fixed rank r
(maximum size of a hyperedge), enumerating the minimal k-hitting sets is FPT
[8]. Enumeratiing and counting small vertex covers is also addressed in [9,4].

Small ranks are common in our inference problem. Often, many effects e are
characteristic for only a few possible causes each, that is, hyperedges V (e) are
small. If, in a practical problem instance, the rank is not small enough for efficient
hitting set computations, we may fix a small threshold r and, in the first place,
restrict our instance to those e ∈ O with |V (e)| ≤ r. By ignoring constraints the
version space can grow by extra hypotheses that could be ruled out when the
whole data set O was taken into account. But, on the positive side, the restricted
instance becomes computationally feasible, and the skipped constraints may be
considered afterwards in an ad hoc way for the concrete instance. Intuitively,
constraints |C ∩ Y | ≥ 1 with large Y are less powerful and will not affect the
version space too much. Due to this discussion we study the aforementioned
problems for hypergraphs of fixed (usually very small) rank r.

Note that our problems are void if r = 1, and in case r = 2 we are faced with
k-vertex covers in graphs. In [8] we proved that U(k) has less than min(rkr , krk)
vertices and can be computed in linear time in the size of the hypergraph (but
exponential time in the parameters). The more interesting part is when k > r.
To be precise, we proved |U(k)| ≤ (r −1)kr +k and gave simple examples where
|U(k)| = Θ(kr), with a tiny factor depending on r. An open question is: How
large can U(k) actually be, in the worst case? In view of the role of U(k), better
upper bounds are desirable, including the constant for any fixed r. In the rest of
the paper we make new contributions to this question.

For the vertex cover case (r = 2) we found in [8] that |U(k)| ≤ 1
4k2 + O(k),

which is a tight bound as a function of k. In Section 3 below we “stratify” this
result, taking also the relation between k and k∗ into account: We prove the
tight bound (k − k∗ + 2)k∗. To our best knowledge, previous related work has
considered only the case k = k∗: An upper bound for the union of minimum
vertex covers, in relation to the size of a minimum vertex cover and maximum
matching, is given in [2]. (Results in [2] are formulated in terms of stable sets, i.e.,
complements of vertex covers.) In the same paper, NP-hardness of computing

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Union of Minimal Hitting Sets 335

U(k∗) is proved. This hardness result already for r = 2 adds further motivation
to using the parameterized framework. The bound on |U(k∗)| has been further
improved in [6] (among many other results).

In Section 4 we turn to general r. Using some hypergraph decomposition we
improve the factor in |U(k)| = O(kr) from r − 1 to essentially log2 r. Actually,
our result is stronger. We relate |U(k)| to the number h of hyperedges in an
equivalent reduced hypergraph and show |U(k)| ≤ log2 r · h if h = Θ(kr), and
due to an earlier result we have h ≤ kr. (If h = o(kr) then |U(k)| is smaller
anyhow.) Hence, improved bounds on h would further reduce |U(k)|, too, but
this part must be left for further research. By a somewhat different decomposition
we get even sharper results for r ≤ 6. Section 5 points out open questions.

2 A Kernel for Counting Small Hitting Sets

In this section we show how to use U(k) to count the k-hitting sets containing
any given vertex. For any h with k∗ ≤ h ≤ k, let s(h) be the number of different
hitting sets D ⊆ U(k) such that |D| = h. For any vertex v let sv(h) be the
number of different hitting sets D ⊆ U(k) such that |D| = h and v ∈ D.

Lemma 1. The number of different k-hitting sets containing a fixed vertex v
equals∑k

h=k∗ sv(h)
∑k−h

i=0

(
n−|U(k)|

i

)
if v ∈ U(k), and

∑k
h=k∗ s(h)

∑k−1−h
i=0

(
n−1−|U(k)|

i

)
if v /∈ U(k).

Proof. Every k-hitting set extends some minimal k-hitting set C ⊆ U(k) possibly
by further vertices. Since |C| ≥ k∗, any k-hitting set shares at least k∗ vertices
with U(k). In order to count all k-hitting sets containing some v we just have
to consider the different hitting sets in U(k) of each cardinality h, and add all
possible combinations of at most k − h vertices outside U(k). ��

Corollary 1. All vertices v /∈ U(k) belong to exactly the same number of dif-
ferent k-hitting sets, and this number is smaller than that for any v ∈ U(k).

This follows from Lemma 1 by direct comparison of terms. For the problem of
counting how many solutions contain a certain vertex v we give the following
reduction. Note that the counts are different only for v ∈ U(k), thus |U(k)|
determines how many different values have to be computed.

Proposition 1. Consider a hypergraph with n vertices, and hyperedges of total
size M (sum of cardinalities, regardless of intersections). Say, some algorithm
counts the hitting sets with exactly h vertices in a hypergraph of n vertices in
T (n, h) time, where T is some monotone function. Then we can compute, for
all vertices v, the number of k-hitting sets that contain v, within time O(|U(k)| ·
(M + (k − k∗ + 1) · T (|U(k)|, k))), plus the time for computing U(k) itself.

Proof. Do the following separately (from scratch) for each v ∈ U(k) and for one
(arbitrary) v /∈ U(k).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

336 P. Damaschke

(1) Take the given hypergraph and delete the hyperedges containing v, but keep
the other vertices therein.
(2) Delete all vertices outside U(k) from all hyperedges.
(3) Count the hitting sets of size h − 1, for all k∗ ≤ h ≤ k.
(4) Use the formulae in Lemma 1 with the so obtained sv(h) and s(h).

Correctness is easy to establish, from the definition of D, Lemma 1 and Corol-
lary 1. The time bound follows from the monotonicity of T . Time O(M) suffices
for the auxiliary operations in (1) and (2), and the binomial coefficients for step
(4) can be precomputed. ��

How complicated are the subroutines of this algorithm? As mentioned earlier,
computing U(k) and counting all hitting sets of a given size are FPT in param-
eters k, r. The basic idea for counting is to branch on carefully selected vertices
and thus obtain a repetition-free enumeration of the hitting sets. Branching can
be stopped when the “residual” hypergraphs are simple enough for counting the
hitting sets directly in polynomial time. A complexity result for the enumeration
of k-vertex covers is in [4]: A structure computable in O∗(1.47k) time is used
to output the smallest vertex covers successively with linear delay. The same
construction can be used to count all vertex covers with h vertices in O∗(1.47h)
time. Similar nontrivial bounds for any fixed rank r > 2 would be interesting.
The state-of-the-art techniques for k-hitting sets (as in [10,11]) do not directly
yield counting results, as several reduction rules do not apply here.

3 The Union of Minimal Vertex Covers of Bounded Size

For a subset X of vertices in a graph, N(X) denotes the set of all vertices with
a neighbor in X . If X is independent then N(X) ∩ X = ∅. The following simple
lemma holds for minimal (not necessarily minimum!) vertex covers.

Lemma 2. Let C be a fixed minimal vertex cover. Let D be any other minimal
vertex cover, and I := C \ D. Then we have D = (C \ I) ∪ N(I). Consequently,
D is uniquely determined by I.

Proof. Straightforward. Omitted due to space limitations. ��

It follows |U(k)| ≤ (k + 1)k∗: Take some C with k∗ vertices, and observe that
|N(v)| ≤ k for each v ∈ C that appears in some I = C\D, |D| ≤ k. Below we will
improve this bound, but already now we can limit the complexity of computing
U(k) to O(k∗k) instances of the vertex cover (optimization) problem. Finding a
minimum vertex cover is FPT, the currently best time bound is in [5].

Theorem 1. Computing U(k) in a graph G has at most the complexity of com-
puting the following items: (1) one minimum vertex cover in G, (2) one mini-
mum vertex cover in O(k∗k) subgraphs, each being of size O(k∗k) and computable
in polynomial time.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Union of Minimal Hitting Sets 337

Proof. Compute a minimum vertex cover C, using your favorite FPT algorithm.
If some vertex in C has degree larger than k, it must be in every k-vertex
cover, thus, remove that vertex and all incident edges, reducing the problem to
an instance with k := k − 1. Repeat this elimination step recursively until all
degrees in C are bounded by the current k. This eventually gives a minimum
vertex cover C′ in the remaining graph G′ and a number k′ ≤ k∗ such that
all vertices in C′ have degree at most k′ in G′. By Lemma 2, the union of all
minimal vertex covers in G′ is entirely in C′ ∪ N(C′). This finally restricts the
problem to a kernel of no more than (k + 1)k∗ vertices v. For each v in this
kernel do the following (from scratch). Decide that v be in the vertex cover,
delete all incident edges, and find out whether the remainder of the kernel has a
(k′ − 1)-vertex cover, again using your favorite FPT algorithm. The result says
whether v ∈ U(k) or not. ��

The following result improves the simple bound on |U(k)| especially when k is
close to k∗. It also absorbs Theorem 3 from [8] as a special case.

Theorem 2. We have |U(k)| ≤ (k − k∗ + 2)k∗, and this bound is tight.

Proof. To establish the lower bound, consider the disjoint union of k∗ stars,
each with a central vertex connected to x + 1 leaves, where x = k − k∗. The
centers build a minimum vertex cover and, obviously, minimal vertex covers of
size k = k∗ + x involve all the (x + 2)k∗ = (k − k∗ + 2)k∗ vertices.

We are going to prove the upper bound. Let C be some fixed vertex cover
of size k∗. By Lemma 2, any other minimal vertex cover D (of any size) has
the form D = (C \ I) ∪ N(I). Since I = C \ D is in the complement of a
vertex cover, I is an independent set, hence I ∩ N(I) = ∅. Conversely, each
independent set I ⊆ C yields a vertex cover D = (C \ I) ∪ N(I). Since C has
minimum size, |N(I) \ C| ≥ |I| holds for every independent set I ⊆ C. For
making |D| ≤ k = k∗ + x true, it must be |N(I) \ C| ≤ |I| + x.

Due to these necessary conditions, we call an independent set I ⊆ C a replace-
ment set if |N(I) \ C| ≤ |I| + x and (C \ I) ∪ N(I) is actually a minimal vertex
cover, in particular, no vertex from C \ I can be removed without uncovering
some edge. Now it suffices to prove the following

Claim: The union of the N(I)\C of all replacement sets I has at most (x+1)k∗

vertices.
Let I1, I2, I3, . . . be a non-extendible sequence of replacement sets such that

It+1 �⊆
⋃t

j=1 Ij for each t ≥ 1. It suffices to prove the Claim for replacement sets
in this sequence, as the N(I)\C for further replacement sets I cannot contribute
more vertices to the union. Define Δt :=

⋃t
j=1 N(Ij) \ C. We shall prove that

|Δt| ≤ |
⋃t

j=1 Ij | + xt. Since our sequence can consist of at most k∗ replacement
sets, this would imply the Claim and finish the proof.

We apply induction on t. Induction base t = 1 is true by the definition of
replacement sets. Suppose that our induction hypothesis holds for some t. The
induction step has to show |Δt ∪ (N(It+1) \ C)| ≤ |(

⋃t
j=1 Ij) ∪ It+1| + x(t + 1).

Since I ′ := (
⋃t

j=1 Ij) ∩ It+1 is contained in a replacement set, I ′ is an inde-
pendent set, thus |N(I ′) \ C| ≥ |I ′|. Furthermore, note that for any vertex sets

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

338 P. Damaschke

A, B ⊆ C in a graph the trivial relation N(A∩B)\C ⊆ N(A)∩N(B)\C holds.
In particular, N(I ′) \ C ⊆ Δt ∩ N(It+1) \ C. For the cardinalities we get

∣
∣
∣
∣
∣
∣
(

t⋃

j=1

Ij) ∩ It+1

∣
∣
∣
∣
∣
∣
= |I ′| ≤ |N(I ′) \ C| ≤ |Δt ∩ N(It+1) \ C|.

Since |Δt| ≤ |
⋃t

j=1 Ij |+xt by the induction hypothesis for t, and |N(It+1)\C| ≤
|It+1| + x (replacement set), the induction hypothesis for t + 1 follows:

|Δt ∪ (N(It+1) \ C)| = |Δt| + |N(It+1) \ C| − |Δt ∩ (N(It+1) \ C)|

≤ |
t⋃

j=1

Ij | + xt + |It+1| + x −

∣
∣
∣
∣
∣
∣
(

t⋃

j=1

Ij) ∩ It+1

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
(

t⋃

j=1

Ij) ∪ It+1

∣
∣
∣
∣
∣
∣
+ x(t + 1).

��

Lemma 2 has another nice consequence. In [8] we computed a repetition-free
concise description (suitably defined) of all minimal k-vertex covers in O∗(1.74k)
time. (A more“dirty” description that tolerates redundant vertex covers is ob-
tained much easier in O(1.62k) time.) By Lemma 2, we get an explicit enumera-
tion faster if 2k∗

< 1.74k, that is, if k > 1.25k∗: Compute some minimum vertex
cover C, and test for all independent sets I ⊆ C whether (C \ I) ∪ N(I) is a
minimal k-vertex cover. (For every I, the time is polynomial in k as it suffices
to consider vertices of degree at most k.) However, for k < 1.25k∗ the concise
description is still more efficient.

4 The Union of Minimal Hitting Sets of Bounded Size in
Hypergraphs of Bounded Rank

The degree of a vertex in a hypergraph is the number of hyperedges it belongs
to. Theorem 7 in [8] can be rephrased as follows:

Theorem 3. For any hypergraph G of rank r, and integer k, there exists a
hypergraph G′ of rank r on the same vertex set such that: G′ has exactly the
same minimal k-hitting sets as G, and all vertex degrees in G′ are at most kr−1.

The proof is done by a reduction process that computes G′ from G in polynomial
time. If there is a k-hitting set at all, it also follows immediately:

Corollary 2. G′ contains at most kr hyperedges which cover at most (r−1)kr+k
vertices. Hence the last expression also bounds |U(k)| in G′ (and thus in G).

In this section we will much improve the constant factor r − 1, for any r. The
number kr of hyperedges in Corollary 2 is a tight bound: Take r disjoint sets of
k vertices and choose one vertex from each set, in all possible ways. However,
this example has only kr vertices, each with degree kr−1. The basic observation

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Union of Minimal Hitting Sets 339

leading to better upper bounds on |U(k)| is that hypergraphs with large |U(k)|
must also have many vertices of small degrees, and then, existence of k-hitting
sets imposes further restrictions. The largest |U(k)| we could find is (r−1)r−1

r!rr−1 kr ≈
1

er!k
r: Take a set C of roughly r−1

r k vertices and create 1
r k hyperedges for every

D ⊂ C with |D| = r−1, by adding 1
r k different single vertices to D. In fact, each

vertex of such a hypergraph is in some minimal k-hitting set. Note that almost all
vertices in these examples have degree 1, so that we get (approximately) |U(k)|
hyperedges. We will prove that, on the other hand, |U(k)| is at most log2 r times
the number of hyperedges in the reduced hypergraph G′.

We need some technical preparations. In a t-uniform hypergraph, all hyper-
edges have the same size t. A subset X of vertices cuts a hyperedge e if neither
X ∩ e = ∅ nor X ⊇ e.

Lemma 3. Any t-uniform hypergraph possesses a subset X of vertices that cuts
all hyperedges, subject to a fraction of at most 1/2t−1.

Proof. Put vertices in X independently with probability 1/2. Then a hyperedge
is either disjoint to X or contained in X , respectively, with probability 1/2t.
Hence some of these cases appears with probability 1/2t−1. By linearity of ex-
pectation, an expected fraction of 1/2t−1 of all hyperedges is not cut by X .
Finally, since our random X has not cut this expected number of hyperedges,
there exists an X that has not cut at most this number of hyperedges. ��

Lemma 4. Let H be a minimal hitting set in a hypergraph G. Partition the
family of hyperedges of G into s subfamilies. (Every hyperedge is put in one
subfamily.) Then there exist Hi such that H = H1 ∪ . . . ∪ Hs, and Hi is a
minimal hitting set of the ith subfamily.

Proof. Straightforward. Omitted due to space limitations. ��

Now we are ready for an improved asymptotic upper bound, relating |U(k)| to
the number of hyperedges therein. Notice that our construction only serves to
prove the bound, hence it does not need to be efficient.

Theorem 4. (1) In hypergraphs of rank r with h = Θ(kr) hyperedges, we have
that |U(k)| ≤ (1 + o(1)) log2 r · h. Consequently, (2) in any hypergraph with rank
r we have that |U(k)| ≤ (1 + o(1)) log2 r · kr.

Proof. First note that (2) follows in fact from (1). By Theorem 3 it suffices to
consider the reduced hypergraph with all vertex degrees bounded by kr−1, and
h ≤ kr. If h > 1

r kr = Θ(kr), we can apply (1). If h is smaller, then the trivial
relation |U(k)| ≤ rh gives (2) as well. Next we are going to prove (1).

Our construction involves some free parameters we will fix afterwards. For
some integer d, a vertex in G is d-thin (d-fat) if its degree is smaller than d (at
least d). Suppose that our hypergraph G with at most h hyperedges contains
(1 − a)rh d-thin vertices (i.e., factor a is defined by that.) Clearly, the sum of
vertex degrees in G is at most rh. Hence at most a

drh vertices are d-fat.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

340 P. Damaschke

We diminish the hyperedges of G as follows: From every hyperedge with at
least t d-thin vertices, we select t such vertices arbitrarily. In the resulting t-
uniform hypergraph we take a set X as in Lemma 3 and delete the vertices
of X from G. If a hyperedge has more than t d-thin vertices, we also delete
one of these surplus vertices. Let G0 be the so obtained hypergraph. G0 has
still at most h hyperedges and a

drh d-fat vertices. All hyperedges from G with
more than t d-thin vertices are diminished by construction, i.e., they have lost
some vertices. From the hyperedges with exactly t d-thin vertices, a fraction of
u/2t−1, u ≤ 1 is undiminished, by Lemma 3. Let b<, b=, b> be the number of
hyperedges of G with < t, = t, > t d-thin vertices, respectively, divided by h.
Note that b< + b= + b> = 1. Summation of all worst-case bounds yields that
the undiminished hyperedges together have less than (a

dr + b<(t − 1) + b=ut
2t−1)h

vertices. By definition, every diminished hyperedge has size at most r − 1 in G0.
At most (b= + b>)(1−u)h/2t−1 diminished hyperedges in G0 do not have d-thin
vertices anymore, also by Lemma 3.

Now, consider any minimal k-hitting set H in G. We decompose the family
of hyperedges of G into three subfamilies: undiminished hyperedges, diminished
hyperedges retaining some d-thin vertices in G0, and diminished hyperedges
without d-thin vertices in G0. By Lemma 4 there exist A, B, C ⊆ H which
are minimal hitting sets of these three subfamilies in the mentioned order, with
H = A∪B∪C. Trivially, A is contained in the union of undiminished hyperedges,
which has at most (a

dr+ b<(t−1)+ b=ut
2t−1)h vertices as stated above. Similarly, C

is contained in the union of diminished hyperedges that lose all d-thin vertices.
This union is of size at most (b= + b>)(1−u) r

2t−1 h (namely, r times the number
of these hyperedges).

Encasing also B in a small enough vertex set (independent of the set H it
comes from!) is more complicated. We shall construct from B some minimal hit-
ting set B0 of the diminished hyperedges in G0, and then use B0, its relationship
to B, and the smaller rank r − 1, to bound the number of hyperedges that may
intersect B. Start with B0 := B. Next, every vertex v in B0 that does no longer
exist in G0 is deleted from B0. Since B was minimal, some hyperedge in the
subfamily (diminished, with some d-thin vertex left) that contained v does no
longer intersect B0. Since v was d-thin, this affects at most d−1 hyperedges, for
each v. From each temporarily uncovered hyperedge we insert instead in B0 some
d-thin vertex of G0. These newly added vertices in B0 can make other vertices
in B0 redundant, i.e., unnecessary for hitting any hyperedge in the subfamily.
In this case we remove some redundant vertices one-by-one from B0, until B0 is
again a minimal hitting set. This is our final B0.

In the worst case we have |B| = k, each vertex in B had to be replaced by
d − 1 others, and no vertex got redundant. Thus, |B0| ≤ (d − 1)k. Since B0 is
in the union of minimal hitting sets of that size, in a hypergraph of diminished
hyperedges, we conclude from the loose bound in Corollary 2 that B0 is con-
tained in a fixed set of O((k(d − 1))r−1) = O((d−1)r−1

k kr) vertices, with a factor

depending on r only. Since h = Θ(kr), we can write this as O((d−1)r−1

k h). It
remains to count the vertices v in all possible B that do not occur in the sets

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Union of Minimal Hitting Sets 341

B0. These are deleted vertices and redundant vertices in some B. For any such
v, some other vertex in any hyperedge containing v must remain in the hitting
set B0. More specifically: A deleted v is in the same hyperedge with some d-thin
w ∈ B0, and a redundant v became redundant because of a new d-thin vertex
w ∈ B0 in the same hyperedge, as v was not redundant before in B. In summary,
each v ∈ B \ B0 is assigned to some d-thin w ∈ B0 in the same hyperedge of G.
Since all these w are d-thin, belong to a fixed set as specified above, and G has
rank r, the union of all B is bounded in size by O(r(d−1)r

k h).
Summing up all bounds, the union of all minimal k-hitting sets has at most
(

a

d
r + b<(t − 1) +

b=ut

2t−1
+ (b= + b>)(1 − u)

r

2t−1
+ O

(
r(d − 1)r

k

))

h (1)

vertices. Recall that a ≤ 1, u ≤ 1 and b< + b= + b> = 1. These parameters
depend on the hypergraph and cannot be chosen, but it is safe to take the worst
case. In contrast, we can freely choose d and t. The first and last summand in
(1) play no role for the asymptotics: As k grows, we can have d → ∞ and make
the last term go to 0 at the same time, and by d → ∞ the first term goes to 0,
too. For fixed t we have to maximize b<(t − 1) + b=ut

2t−1 + (b= + b>)(1 − u) r
2t−1 .

Since b= appears in two terms and b> in one of them, we can set b> = 0, and
with b := b< the expression simplifies to

b(t − 1) +
(1 − b)ut

2t−1
+ (1 − b)(1 − u)

r

2t−1
. (2)

Note that our variables b, u form three coefficients b, (1−b)u, (1−b)(1−u), being
arbitrary nonnegative numbers that sum up to 1. Hence the maximum of (2) is
max{t−1, t

2t−1 , r
2t−1 }. Finally we choose t so as to minimize this maximum. This

gives the result. ��

Due to |U(k)| = Θ(kr), we define f(r) to be the smallest factor where |U(k)| ≤
f(r)kr +o(kr). Trivially, f(1) = 1, and in [8] we got f(2) = 1

4 . Theorem 4 implies
f(r) ≤ log2 r for large enough r, and the proof also yields specific bounds for
fixed r: f(3) ≤ 3

2 , f(r) ≤ 2 for 4 ≤ r ≤ 8, f(r) ≤ r
4 for 9 ≤ r ≤ 12, f(r) ≤ 3 for

13 ≤ r ≤ 24, etc. In the remainder of this section we prove better upper bounds
for r up to 6 through a different hypergraph decomposition.

Let H be a fixed minimum hitting set in a hypergraph G of rank r. Unlike
case r = 2, we call I ⊆ H a replacement set if there exists a minimal hitting
set H ′ such that I = H \ H ′, and |H ′| ≤ k. Let I be any fixed replacement
set. We define a hypergraph G(I) whose hyperedges are the sets e \ I, for all
hyperedges e in G with ∅ �= e ∩ H ⊆ I. Vertices in a gypergraph are w.l.o.g. the
vertices contained in its hyperedges. (Since we are interested in hitting sets, we
may ignore isolated vertices.)

We decompose G(I) into several hypergraphs GJ , each equipped with a sub-
family of the hyperedges of G(I), as follows. GJ is defined as the hypergraph of
rank r− j (j = |J |), consisting of those hyperedges e\J of G(I) with e∩H = J .
(Note that GJ is the same for each I ⊇ J , hence we do not need subscript I.)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

342 P. Damaschke

Lemma 5. For any fixed I, any minimal hitting set H ′ with H\H ′ = I contains
vertices only from H and from minimal hitting sets of the GJ , J ⊆ I, 0 < |J | < r.

Proof. Straightforward from Lemma 4. Omitted due to space limitations. ��

Theorem 5. The union of all minimal k-hitting sets in a hypergraph of rank 3
has at most 1

4k∗(k2 + (k∗)2) + k∗k vertices.

Proof. Consider a minimum hitting set H , thus k∗ = |H |. For each v ∈ H let
Iv be some maximum replacement set with xv ∈ Iv, and xv = |Iv|. (We can
assume that Iv exists, since a vertex of H in no replacement set belongs to every
minimal hitting set, and putting these vertices aside we get a reduced instance
with smaller k and k∗.) We define x = maxv xv. For each v we distinguish xv −1
two-vertex sets J with v ∈ J ⊆ Iv. Due to Lemma 5, all vertices of U(k) are in
H or in minimal hitting sets of the GJ , 1 ≤ |J | ≤ 2.

The GJ with |J | = 1 contribute together at most 1
4

∑
v∈H(k − k∗ + xv)2

vertices to U(k). This because the GJ have rank 2, at most k − k∗ + xv vertices
outside H are allowed in every minimal hitting set of GJ , J = {v}, and f(2) = 1

4 .
The GJ with |J | = 2 have rank 1. Thus, every vertex in GJ , |J | = 2, J ⊆ I

(any replacement set) must be in every hitting set that extends H \ I, limiting
the total number of vertices in all these GJ , J ⊆ I, to k − k∗ + |I|.

We apply this observation in two ways: All GJ of distinguished sets J , |J | = 2,
contribute together at most k∗(k − k∗ + x) ≤ k∗k vertices to U(k). Each of the
remaining GJ with |J | = 2, these are fewer than 1

2 ((k∗)2 −
∑

v∈H xv) pairs,
contributes at most k − k∗ + x vertices to U(k). Altogether we obtain

|U(k)| ≤ 1
4

∑

v∈H

(k − k∗ + xv)2 +
1
2
((k∗)2 −

∑

v∈H

xv)(k − k∗ + x) + k∗k.

After rewriting (k∗)2 =
∑

v∈H k∗, algebraic manipulation easily yields

|U(k)| ≤ 1
4
k∗(k2 − (k∗)2 + 2k∗x) +

1
4

∑

v∈H

xv(xv − 2x) + k∗k.

Since the middle term is negative, and x ≤ k∗, we get the claimed result. ��

We believe that this is not yet optimal. Note especially that the optimal bound
for r = 2 (Theorem 2) is linear in k−k∗ for any fixed k∗. An intriguing question is
whether a similar bound with factor k−k∗ in the main term holds also for r = 3
(whereas the result in Theorem 5 is always cubic). This would be interesting
when limits k close to k∗ are used.

Corollary 3. We have f(3) ≤ 1
2 , f(4) ≤ 19

24 , f(5) ≤ 9
8 , f(6) ≤ 779

480 .

Proof. Consider r = 3. For any fixed k, our bound from Theorem 5 is maximized
when k∗ = k, and then it becomes 1

2k3, hence f(3) ≤ 1
2 . Next, Lemma 5 implies

|U(k)| ≤ k +
r−1∑

j=1

(
k

j

)

f(r − j)kr−j ≤ k +
r−1∑

j=1

f(r − j)
j!

kr.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Union of Minimal Hitting Sets 343

Neglect of the lower-order term k gives the recursion f(r) ≤
∑r−1

j=1
f(r−j)

j! that
we apply to r = 4, 5, 6. ��

Unfortunately, this recursive formula grows exponentially in r. But the bounds
for r ≤ 6 are considerably better than those from the general Theorem 4.

5 Conclusions

The union U(k) of minimal k-hitting sets is useful in combinatorial inference.
We have |U(k)| = O(kr) in hypergraphs of rank r, but the factor depending on
r is open. We have significantly improved a previous upper bound, using some
intricate hypergraph decompositions, but still there seems to be a fundamental
lack of understanding of these kernels. We believe that the techniques intro-
duced here are more powerful than what the current results exhibit. Bounds
on the number of hyperedges in the kernel would further reduce the bounds on
|U(k)|, too. Finally, the parameterized complexity of counting k-hitting sets in
hypergraphs of rank r deserves investigation.

Acknowledgment. This work has been initiated and partially supported by
the Combinatorial Search Algorithms in Bioinformatics group at the University
of Bielefeld, led by Ferdinando Cicalese, through his Sofja Kovalevskaja Award
2004 from the Alexander von Humboldt Foundation.

References

1. V. Bafna, K. Reinert. Mass spectrometry and computational proteomics, in: En-
cyclopedia of Genetics, Genomics, Proteomics and Bioinformatics, Wiley 2005

2. E. Boros, M.C. Golumbic, V.E. Levit. On the number of vertices belonging to all
maximum stable sets of a graph, Discrete Appl. Math. 124 (2002), 17-25

3. J. Chen, X. Huang, I.A. Kanj, G. Xia. Strong computational lower bounds via
paramterized complexity, J. Comp. and System Sci. 72 (2006), 1346-1367

4. J. Chen, I.A. Kanj, J. Meng, G. Xia, F. Zhang. On the effective enumerability of
NP problems, 2nd IWPEC 2006, LNCS 4169, 215-226

5. J. Chen, I.A. Kanj, G. Xia. Improved parameterized upper bounds for vertex cover,
31st MFCS 2006, LNCS 4162, 238-249

6. M. Chlebik, J. Chlebikova. Crown reductions for the minimum weighted vertex
cover problem, ECCC Report 101 (2004), to appear in Discrete Appl. Math.

7. F. Cicalese, Center for Biotechnology, Univ. Bielefeld (personal communication)
8. P. Damaschke. Parameterized enumeration, transversals, and imperfect phylogeny

reconstruction, Theoretical Computer Science 351 (2006), 337-350, special issue of
selected papers from IWPEC 2004

9. H. Fernau. On parameterized enumeration, COCOON 2002, LNCS 2387, 564-573
10. H. Fernau. A top-down approach to search-trees: Improved algorithmics for 3-

hitting set. ECCC Report 073 (2004)
11. H. Fernau. Parameterized algorithms for hitting set: The weighted case, 6th CIAC

2006, LNCS 3998, 332-343
12. T. Mitchell. Machine Learning, McGraw-Hill 1997

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Optimal, Edges-Only Fully Dynamic
Algorithm for Distance-Hereditary Graphs�

Marc Tedder and Derek Corneil

Department of Computer Science, University of Toronto,
10 King’s College Road, Room 3302, Toronto, Ontario, Canada, M5S 3G4

{mtedder,dgc}@cs.toronto.edu

Abstract. The problem of dynamically recognizing a class of graphs has
received much attention recently. Given an input graph and a sequence
of operations (vertex and edge additions and deletions) to be performed
on that graph, the algorithm must determine after each operation if the
resulting graph is still a member of the class in question. This paper
presents the first dynamic recognition algorithm for distance-hereditary
graphs. The algorithm handles edge additions and deletions, and is opti-
mal in that each operation can be performed in constant time. In doing
so, the paper completely characterizes when an edge can be added to
and removed from a distance-hereditary graph with the result remaining
distance-hereditary, and develops a new representation for these graphs
in terms of cographs.

Keywords: dynamic algorithm, graph recognition, distance-hereditary,
cograph.

1 Introduction

Many networks are dynamic in nature: networks expand and contract; hubs
and transition lines fail and are repaired or replaced. The underlying graph sees
these changes as additions and deletions of vertices and edges. Throughout these
changes the network must continue to function properly, which often means the
underlying graph must maintain some property – connectivity, for instance. The
dynamic recognition problem for a family of graphs is related. The input is a
triple 〈G, σ, Π〉; G is the initial graph, σ is a sequence of operations (vertex
and edge additions and deletions) to apply to G, and Π is a family of graphs for
which membership is to be verified after each operation; the algorithm halts after
the first operation where membership in Π no longer holds. Such an algorithm
usually operates by maintaining a representation of the graph as it changes,
which it uses to verify membership in Π . The running time of these algorithms
is the worst-case time required for a single operation. Dynamic graph algorithms

� This research was partially funded by the Natural Sciences and Engineering Research
Council (NSERC) of Canada and the Ontario Graduate Scholarship (OGS) program.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 344–355, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Optimal, Edges-Only Fully Dynamic Algorithm 345

that accommodate addition and deletion of both vertices and edges are called
fully dynamic; those only allowing edge addition and deletion are said to be
edges-only fully dynamic.

The problem of dynamically recognizing a family of graphs has received con-
siderable attention recently. All of [1,2,3,4,5,6,7,8,9,10,11] dynamically recognize
a class of graphs in one way or another. This is useful in a network setting
since membership in a class of graphs confers certain desirable properties. The
distance-hereditary graphs, for example, ensure that all induced paths between
a pair of vertices have the same length. This paper presents the first dynamic
graph algorithm for (connected) distance-hereditary graphs. We give an optimal,
edges-only fully dynamic graph algorithm where Π is membership in the class
of (connected) distance-hereditary graphs; the algorithm is optimal in that each
operation can be performed in constant time.

2 Preliminaries

All graphs in this paper are simple and undirected. The distance-hereditary graphs
in this paper are all connected. The edge {x, y} is specified as xy; G − xy is the
graph G with xy removed, and G + xy is the graph G with xy added. References
to a component could be to the set of vertices defined by the component or to the
graph induced by the component; the meaning will be clear from the context.

A collection of sets S is arboreal if for any two sets s, s′ ∈ S, either s ⊆ s′,
s′ ⊂ s, or s ∩ s′ = ∅. Let E(S) = {e|∃s ∈ S such that e ∈ s}. An arboreal
collection of sets can be organized in a forest: the vertices of each tree are the
elements of S∪E(S); the parent of a vertex is the smallest set in S that properly
contains that vertex.

A vertex is universal to a set of vertices S if it is adjacent to all vertices in S;
a vertex is isolated from S if it is not adjacent to any vertex in S. When x ∈ S,
x is universal to S when x is adjacent to every vertex in S − {x}; similarly for
x isolated from S. A module is a set of vertices M such that every vertex not in
M is either universal to M or isolated from M .

Non-leaf vertices of a tree are referred to as the internal vertices of the tree.
A two-way connection between a pair of objects refers to a pointer from one

object to the other, along with a second pointer in the opposite direction.
The algorithm assumes it is supplied with pointers to the endpoints of the

edge to be added or deleted.
All other definitions and notation used in this paper can be found in the book

of West [12].

2.1 Cographs

Cographs are those graphs not containing an induced P4 . The modular decom-
position tree (see [13,14]) of a cograph is called its cotree. Each internal vertex
of a cotree is labeled by 1 or 0, with the labels alternating on any path from
the root to a leaf, starting with 1 at the root when the graph is connected,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

346 M. Tedder and D. Corneil

and 0 when disconnected. The following follows from the definition of modular
decomposition and will be used in the paper:

Remark 1. Two vertices in a cograph are adjacent if and only if their least
common ancestor in the graph’s cotree is labeled by 1.

2.2 Distance-Hereditary Graphs

A graph G is distance-hereditary when the distance between any two vertices in
any connected induced subgraph is the same as in G.

Hangings are an important algorithmic tool for distance-hereditary graphs. A
hanging of a graph G with respect to one of its vertices, v, is a division of G
into horizontal and vertical subgraphs. The horizontal subgraph is the disjoint
union of the graphs G[Li], where Li is the set of vertices distance i from v. The
vertical subgraph consists of the vertices of G and the edges between different
Li’s. In this paper the terms level and layer are used interchangeably for each
Li; a reference to Li could mean the set of vertices itself or the graph induced
by the set, the meaning being clear from the context.

Notation. For any hanging of a graph, the following is used:

– N i(x) = N(x) ∩ Li. The notion of a closed-neighbourhood is extended:
N i[x] = N i(x) ∪ {x}.

– If x ∈ Li, then N−(x) = N i−1(x); this is called the up-neighbourhood of x.
An up-neighbourhood is non-trivial when |N−(x)| > 1, and trivial otherwise.
Notation is abused somewhat when the up-neighbourhood has cardinality
one: N−(x) = y is used instead of N−(x) = {y}.

– Subscripts are sometimes added to make clear the graph to which these
objects belong. For example, N−

G (x) is the up-neighbourhood of x in G,
while N−

H (x) is the up-neighbourhood of x in H .

Definition 1. Fix a hanging of a graph G. Two vertices x and y are tied with
respect to this hanging if there exists a vertex z such that x, y ∈ N−(z); in this
case x and y are said to be tied via z.1

Bandelt and Mulder [15], Hammer and Maffray [16], and D’atri and Moscarini
[17] independently characterized distance-hereditary graphs in terms of their
hangings. The Bandelt and Mulder characterization is used in this paper:

Theorem 1. [15] Fix a hanging of a graph G. Then G is distance-hereditary if
and only if the following all hold:

1. For any two vertices x and y in the same component of Li, N−(x) = N−(y).
2. Each level is a cograph.
3. For v ∈ Li, if x, y ∈ N−(v) belong to different components C and C′ of

Li−1, then C ∪ C′ ⊆ N−(v) and N−(x) = N−(y).

1 This definition differs from what is traditionally seen in the literature.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Optimal, Edges-Only Fully Dynamic Algorithm 347

4. If x and y belong to different components of Li then either N−(x) ⊆ N−(y),
N−(y) ⊂ N−(x), or N−(x) ∩ N−(y) = ∅.

5. For v ∈ Li, if x, y ∈ N−(v) belong to the same component of Li−1, then any
vertex of Li−1 not in N−(v) is either adjacent to both x and y or to neither.

The next fact follows from conditions 3 and 5 of Theorem 1:

Remark 2. If z ∈ Li+1, then N−(z) is a module of G[Li].

Hammer and Maffray [16] defined a relation ≈ on the vertices of a distance-
hereditary graph:

Definition 2. [16] Fix a hanging of a distance-hereditary graph G. Then x ≈ y
with respect to this hanging if and only if x, y ∈ Li and either x and y are in the
same component of G[Li] or are tied with respect to the hanging.

Remark 3. [16] The relation ≈ is an equivalence relation.

Notation. The equivalence class of x with respect to ≈ is denoted [x].

The next fact follows from conditions 1 and 3 of Theorem 1:

Remark 4. If x, y ∈ [x], then N−(x) = N−(y).

3 The Representation

In this section we outline the representation employed by our algorithm. Let G
be a distance-hereditary graph; fix a hanging of G; consider an arbitrary level
Li and the set,

S = {N−(x)|x ∈ Li+1, |N−(x)| > 1}∪
{{u}|u ∈ Li, �x ∈ Li+1, u ∈ N−(x), |N−(x)| > 1}.

Conditions 1 and 4 of Theorem 1 imply that S is an arboreal collection of sets;
hence, its elements can be organized in a forest. If x and y are leaves of the same
tree in this forest, then there is at least one z ∈ Li+1 such that x, y ∈ N−(z).
So by conditions 1 and 3 of Theorem 1, N−(x) = N−(y); in this sense, we can
speak of each of these trees as having an up-neighbourhood; note that distinct
trees can have the same up-neighbourhood. Unifying the trees with the same
up-neighbourhood under a common root still leaves a forest; call each of these
unified trees a common parent tree (CPT), and use CPTG(x) to denote the
CPT of x in G; Fig. 1 provides an example.

Let T be some CPT of level Li, and consider one of its internal vertices, call
it s. Recall that s corresponds to N−(z) for some z ∈ Li+1. Also note that s can
have two types of children: those that are themselves up-neighbourhoods, and
those that are vertices of Li – internal vertices of T and leaves of T , respectively;
let c1, . . . , ck be s’s children of the first type, and ck+1, . . . , c� its children of
the second type. Form the graph Gs as follows: the vertices are s, c1 . . . , c�;

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

348 M. Tedder and D. Corneil

v10

v1

v4 v5 v7 v8
v9

v11 v12 v13

v3

v14

v6

v2

...

...

(a)

v6 v7

v4 v5

v8 v9

v3

(b)

Fig. 1. (a) Three levels in a distance-hereditary graph; (b) the CPT ’s of the second
level

adjacencies are defined according to G: cj is adjacent to cj′ if and only if ∃x ∈ cj

and ∃y ∈ cj′ such that x and y are adjacent in G.2 Using the fact that G[Li] is
a cograph (condition 2 of Theorem 1), we can easily show that Gs is a cograph.
Hence, for each internal node s of a CPT , we can associate a cograph Gs; note
that some vertices in a CPT participate in two such cographs (non-root internal
CPT vertices) while others only participate in one (the root and leaves of a
CPT). The cotrees of these cographs compose our representation.

The cotrees can be stored in the natural way: each child with a pointer to its
parent, with siblings in a doubly-linked list, and a link from the parent to the
head of this sibling list. Our algorithm requires additional pointers. As mentioned
above, each CPT has a unique up-neighbourhood, and this up-neighbourhood
corresponds to an internal vertex of some other CPT . Let T be a CPT and r
its root; in addition to the pointers r requires for its cograph Gr, we will also
have it maintain a two-way connection with the CPT vertex corresponding to
its up-neighbourhood. These additional pointers link the cotrees and serve to
differentiate roots, leaves, and internal vertices of CPT ’s .

If there are n vertices in G, there can be at most n distinct up-neighbourhoods.
The number of CPT vertices is therefore linear in n, and since the size of a
cotree is linear in the size of the graph it encodes, the representation used by
the algorithm is linear in the size of G.

4 Edge Deletion

4.1 Safely Deleting Edges from Distance-Hereditary Graphs

Given a distance-hereditary graph G, our algorithm must determine when G−xy
is distance-hereditary, and must do so using our representation. Consider the case
where N−

G (x) = y and x is not tied. Say y ∈ Li, x ∈ Li+1, and let C be the

2 We are abusing notation somewhat. One of cj and cj′ might not be a set, in which
case they correspond to a vertex of G and should be thought of as singleton sets.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Optimal, Edges-Only Fully Dynamic Algorithm 349

component of x in G[Li+1]; let GC,y be G[C ∪{y}]. By condition 1 of Theorem 1,
y is universal in GC,y ; combining this with condition 2 allows us to conclude
that GC,y is a cograph.

Consider GC,y − xy; what happens when this is not a cograph? Then it con-
tains a P4 on which x and y must reside (non-consecutively). Let p be such a P4 ,
and suppose z and w are the other vertices on p. Now, w and z are non-adjacent
but connected, and GC,y is a cograph, so there must be a u ∈ C adjacent to
both w and z. We know u and x are adjacent as otherwise {x, z, u, w} would
induce a P4 , contradicting GC,y being a cograph. But then in G − xy either
condition 3 or 5 of Theorem 1 is violated by {x, u, z, w}, meaning G − xy is not
distance-hereditary. Hence, GC,y − xy being a cograph is necessary for G − xy
being distance-hereditary. It turns out that this is also sufficient (the proof can
be found in [18]):

Theorem 2. Assume N−
G (x) = y and that x is not tied. Say y ∈ Li and x ∈

Li+1, and let C be the component of x in Li+1 in G, and GC,y the subgraph of
G induced by the vertices of C ∪ {y}. Then G − xy is distance-hereditary if and
only if GC,y − xy is a cograph.

So in this case our algorithm need only use its representation to verify that
GC,y − xy is a cograph. This is made simpler by the following lemma, which
reduces things to a question of adjacencies in G:

Lemma 1. GC,y − xy is a cograph if and only if for all q ∈ [x]G − N i+1
G (x), q

is universal to N i+1
G (x).

Proof. (Necessity:) Assume GC,y − xy is a cograph. Suppose there is a q ∈
[x]G − N i+1

G (x), and for contradiction let w ∈ N i+1
G (x) be a vertex not adjacent

to q. Since x is not tied, C = [x]G; thus, q ∈ C. But then {x, y, w, q} induces a
P4 in GC,y − xy, a contradiction.

(Sufficiency:) Assume for all q ∈ [x]G−N i+1
G (x), that q is universal to N i+1

G (x).
For contradiction, suppose GC,y − xy is not a cograph. Then GC,y − xy has a
P4 , say p. With G distance-hereditary, GC,y must be a cograph by conditions
1 and 2 of Theorem 1. So x and y must both reside on p. Let z and w be
the other vertices on p. Note that y is adjacent to both z and w, by condi-
tion 1 of Theorem 1. So without loss of generality, p = x, z, y, w. But then
w ∈ C − N i+1

G (x) = [x]G − N i+1
G (x), and w is not adjacent to z ∈ N i+1

G (x), a
contradiction. �

The preceding lemma says that when |[x]G| = 1, G − xy is distance-hereditary.
However, G − xy is disconnected when |[x]G| = 1, so our algorithm should
halt in this case. The vertex x is not tied – not a member of a non-trivial up-
neighbourhood – and therefore a child of the root of its CPT , meaning x is a
vertex of Gr, where r is the root of its CPT . With |[x]G| = 1, we also know x
is only adjacent to r in Gr. Such a graph can only be described by the cotree in
Fig. 2(a); moreover, it is clear that this configuration implies |[x]G| = 1.

Since the configuration in Fig. 2(a) can be verified in constant time, we will
concentrate on the case where |[x]G| > 1. As before, x must be a vertex in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

350 M. Tedder and D. Corneil

1

r 0

· · ·
x

(a)

1

r x · · ·

(b)

· · ·

· · ·

1

r 0

x

1

(c)

1

0 · · ·

· · ·

r

x

(d)

1

r 0

· · ·
1

0

x

· · ·

· · ·

(e)

Fig. 2. The five possibilities for Gr when N−(x) = y, x is not tied, and G − xy is
distance-hereditary

Gr since it is not tied. It not being tied also means [x]G = C, where C is the
component of x in its level. Fig.’s 2(b)-(d) give four possibilities for the cotree of
Gr. In the first two, x must be universal to [x]G; clearly, these are the only two
possibilities for this occurring, the first when the leaves of CPTG(x) are all in
[x]G, the second when they are not. In the third configuration, [x]G −N i+1

G (x) is
non-empty and forms a join with N i+1

G (x); furthermore, when the all the leaves
of CPTG(x) are in [x]G, this is the only configuration that can describe this
scenario. In the fourth configuration, if c is a child of r in CPTG(x), then c /∈ [x]G
precisely when it descends from x’s great-grandparent (but not grandparent)
in the cotree. This leaves for consideration the graph described by the cotree
rooted at x’s grandparent, which is the same as the third configuration but with
r removed. Hence,

Lemma 2. When N−
G (x) = y and x is not tied, G−xy is distance-hereditary if

and only if Gr is described by one of the four configurations in Fig.’s 2(b)-(d).

With a pointer to x, each of these configurations can be checked in constant
time, which gives us the following:

Corollary 1. It can be determined in constant time if G − xy is distance-
hereditary when N−

G (x) = y and x is not tied.

So far we have looked at deleting xy where N−
G (x) = y and x is not tied. We

must also consider the cases where N−
G (x) = y and x is tied; where y ∈ N−

G (x)
and |N−

G (x)| > 1; and where x and y reside in the same level. Luckily, the
obvious necessary conditions for G − xy being distance-hereditary also end up
being sufficient for these, just as they were in the first case, with the proofs
closely following the one provided there (the statement of the conditions can be
found in [18]). Still more, each set of conditions can be reduced to the existence
of (constant time verifiable) local configurations in our representation, just as
with the first case.

These configurations also help us distinguish the cases. In Fig. 2, for example,
x is a vertex of Gr and thus not tied, while access to r is easily obtained via

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Optimal, Edges-Only Fully Dynamic Algorithm 351

x. Through the two-way connection r maintains with N−
G (x), we can check in

constant time if N−
G (x) = y. Similar steps identify the other cases. Complete

details of this and the other cases can be found in [18].

Lemma 3. The algorithm can distinguish the different cases for deletion in con-
stant time, and in each, determine if G − xy is distance-hereditary in constant
time.

4.2 Updating the Representation

Having determined that G − xy is distance-hereditary, our algorithm must then
update its representation to account for the removal of xy. Fig. 3(a) displays
three levels of a distance-hereditary graph G. In it, |C| > 1, where C is the
component of x in its level; N−

G (x) = y; x is tied and universal to [x]G; and
N−

G (zj) = [x]G and N−
G (uj) = [x]G −{x} , for all j. It can be shown that G−xy

is distance-hereditary in this case (see [18]).

...

...

· · · zkz1 z2 u1 u�

x

y

· · ·

(a)

· · · zk u1 u�

y

· · ·

...

...

x z1 z2

(b)

Fig. 3. (a): Three levels of a distance-hereditary graph; (b): the levels with xy removed

Figure 3(b) shows what happens when xy is removed. Since x’s up-neighbour-
hood changes, so too must its CPT . Let p be the parent of x in CPTG(x), and
p′ its grandparent. In this example, x has exactly one sibling in CPTG(x), call
it s. Note that N−

G (zj) = p and N−
G (uj) = s, for all j; hence, p ceases to exist in

G−xy, while s persists. So three changes are required of the representation: the
deletion of Gp (without deleting x), the removal of p from Gp′ , and the addition
of s to Gp′ . The first is easy. Regarding the last two, note that because s ⊂ p,
the modularity of p in G[Li+1] (see fact 2) means p can simply be replaced by
s in Gp′ . These changes are constant time operations with the supplied pointer
to x.

With x removed from CPTG(x), we now must add it to its new CPT . Since
they share an up-neighbourhood in G − xy, the zj ’s, uj’s, and x must be made
to share a CPT . Let Tz be CPTG(zj) and rz its root; let Tu be CPTG(uj) and
ru its root. The algorithm adds x to Tz, then merges the result with Tu.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

352 M. Tedder and D. Corneil

Observe that x is not tied in G − xy, so it is a child of rz in Tz – it must be
made a vertex of Grz . Also observe that x is universal to the z′js – universal to
the leaves of Tz – and so universal in Grz . In other words, we must make x a
sibling of rz in the cotree of Grz . This can be done in constant time since access
to rz can be obtained in constant time through its two-way connection with p.

Let Tx,z be the result of adding x to Tz; note that rz is the root of Tx,z .
Merging Tx,z and Tu means creating a new root r and making the children of rz

and ru its only children. In terms of our representation, this means creating a
new vertex r, creating the graph Gr (which consists of the vertices of Grz and
Gru minus z and u), and deleting Grz and Gru . The first of these tasks is easy,
and the second task will be performed in such a way that both it and the third
task will be constant time operations: Gr will be built from Grz and Gru .

The adjacencies between the vertices in Grz remain the same there as in Gr,
as do those in Gru . Since Tz and Tu were distinct CPT ’s in G, none of the leaves
of Tz are adjacent to those of Tu; this means no vertex of Grz is adjacent to a
vertex of Gru in Gr (recall that x is not adjacent to any uj in G or G − xy).
This gives us enough information to form Gr from Grz and Gru .

0 0

1

· · ·

α1 αk′

xrz

(a)

0 0 0

1

ru

β1 β2 β�′

· · ·

(b)

0

1

ru

β

(c)

Fig. 4. (a): Grz after x has been added. (b)-(c): the two possibilities for Gru : when ru

has more than one sibling (b) and when ru has exactly one sibling (c). Note that some
of the α’s and β’s could be empty, that is, could be leaves.

Figure 4(a) shows Grz after adding x, while (b) and (c) show the two possibil-
ities for Gru . From these configurations, and the adjacencies just described, the
possibilities for Gr are those described in Fig. 5. Access to ru can be obtained
in constant time through its two-way connection with s; so, if the bold objects
represent new data items, and all other items are reused, a constant time merge
can clearly be obtained. Deleting Grz and Gru is now easy since only rz and ru

remain of those graphs, respectively.
The preceding discussion was intended to illustrate the deletion of xy when

N−
G (x) = y with x tied and |C| > 1, where C is the component of x in G[Li+1].

What is true in this example – x not being tied in G−xy, the leaves of CPTG(zj)
being the vertices by which x is tied in G, and x being universal to these vertices
in G−xy – is easily seen to hold in general. However, it may be that � = 0; that
is, there could be no vertex u with N−

G (u) = [x]G − {x} . In this case, removing
x from CPTG(x) is slightly different since x has siblings other than s′, but the
steps are similar. Also, the algorithm need not merge Tx,z with Tu: it can stop
with the formation of Tx,z .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Optimal, Edges-Only Fully Dynamic Algorithm 353

r

0

β1

0

β2

0

β�′

0

α1

0

αk′

1

0

1 1

x· · · · · ·

(a)

αk′

0

0 0

1

r

β 1

· · ·x

α1

(b)

Fig. 5. (a): Gru when Gru is described by Fig. 4(b); (c): Gru when Gru is described
by Fig. 4(c)

When N−
G (x) = y and x is tied with |C| = 1, x moves to Li+3 in G − xy.

Following the approach employed above – using the definitions of the structures
involved, the configurations that must be present (because G − xy is distance-
hereditary), and making careful reuse of existing data objects – allows for con-
stant time updating in this case too. In fact, the same technique yields constant
time updating procedures for the other three major cases – when N−

G (x) = y and
x is not tied, when y ∈ N−

G (x) and |N−
G (x)| > 1, and when x and y reside in the

same level; complete details can be found in [18]. The following is a consequence
of this and Lemma 3:

Lemma 4. There exists a constant time dynamic graph algorithm recognizing
(connected) distance-hereditary graphs under a sequence of edge deletions.

5 Edge Addition

Edge addition can be handled in much the same way as edge deletion: first
characterize when it is “safe” to add an edge to a distance-hereditary graph;
reduce these conditions to configurations in the representation, all of which can
be verified in constant time; then use the presence of these configurations, the
definitions of the constructs involved, and carefully reuse existing structures to
accomplish the updating of the representation in constant time.

The process is divided into four cases: adding an edge within a layer, be-
tween adjacent layers, between layers distance-two apart, and between layers
distance-three apart. Adding an edge between layers more than distance-three
apart necessarily creates a hole – induced cycle of length at least five – which
is forbidden for distance-hereditary graphs (see [15,16]). The conditions for each
case appear in the appendix; details of their verification and the updating re-
quired afterwards can be found in [19]. Combining this with Lemma 4 provides
the main result of the paper:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

354 M. Tedder and D. Corneil

Theorem 3. There exists an optimal, edges-only fully dynamic algorithm for
the recognition of (connected) distance-hereditary graphs.

References

1. Crespelle, C., Paul, C.: Fully dynamic algorithm and certificate for directed
cographs. In Hromkovic, J., Nagl, M., Westfechtel, B., eds.: WG: Graph-Theoretic
Concepts in Computer Science, International Workshop. Number 3353 in Lecture
Notes in Computer Science, Springer (2004) 93–104

2. Crespelle, C., Paul, C.: Fully dynamic algorithm for modular decomposition and
recognition of permutation graphs. In: WG: Graph-Theoretic Concepts in Com-
puter Science, International Workshop. (2005)

3. Corneil, D., Perl, Y., Stewart, L.: A linear recognition algorithm for cographs.
Siam J. Comput. 14 (1985) 926–934

4. Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper
circular-arc graphs and proper interval graphs. SIAM J. Comput. 25 (1996) 390–
403

5. Hsu, W.L.: On-line recognition of interval graphs in O(m + nlogn) time. In:
Selected papers from the 8th Franco-Japanese and 4th Franco-Chinese Conference
on Combinatorics and Computer Science, London, UK, Springer-Verlag (1996) 27–
38

6. Hell, P., Shamir, R., Sharan, R.: A fully dynamic algorithm for recognizing and
representing proper interval graphs. SIAM J. Comput. 31 (2001) 289–305

7. Ibarra, L.: A fully dynamic algorithm for recognizing interval graphs using the
clique-separator graph. Technical report, University of Victoria (2001)

8. Ibarra, L.: Fully dynamic algorithms for chordal graphs. In: SODA ’99: Proceedings
of the tenth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia,
PA, USA, Society for Industrial and Applied Mathematics (1999) 923–924

9. Jamison, B., Olariu, S.: Recognizing P4-sparse graphs in linear time. Siam J.
Comput 21 (1992) 381–406

10. Nikolopoulos, S.D., Palios, L., Papadopoulos, C.: A fully dynamic algorithm for the
recognition of P4-sparse graphs. In: WG: Graph-Theoretic Concepts in Computer
Science, International Workshop. (2006)

11. Shamir, R., Sharan, R.: A fully dynamic algorithm for modular decomposition and
recognition of cographs. Discrete Applied Mathematics 136 (2004) 329–340

12. West, D.B.: Introduction to Graph Theory. 2nd. edn. Prentice Hall Inc., Upper
Saddle River, NJ (2001)

13. Brandstadt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA (1999)

14. Dahlhaus, E., Gustedt, J., McConnell, R.M.: Efficient and practical modular de-
composition. In: SODA ’97: Proceedings of the eighth annual ACM-SIAM sym-
posium on Discrete algorithms, Philadelphia, PA, USA, Society for Industrial and
Applied Mathematics (1997) 26–35

15. Bandelt, H., Mulder, H.: Distance-hereditary graphs. J. Comb. Theory Ser. B 41
(1986) 182–208

16. Hammer, P.L., Maffray, F.: Completely separable graphs. Discrete Appl. Math.
27 (1990) 85–99

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Optimal, Edges-Only Fully Dynamic Algorithm 355

17. D’Atri, A., Moscarini, M.: Distance-hereditary graphs, steiner trees, and connected
domination. SIAM J. Comput. 17 (1988) 521–538

18. Tedder, M.: An optimal algorithm recognizing distance-hereditary graphs under a
sequence of edge deletions. Master’s thesis, University of Toronto (2006)

19. Tedder, M.: An optimal, edges-only fully-dynamic algorithm recognizing distance-
hereditary graphs. In preparation (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Search Algorithm for the Maximal Attractor
of a Cellular Automaton

Enrico Formenti1 and Petr Kůrka1,2

1 Laboratoire I3S, Université de Nice Sophia Antipolis,
2000, route des Lucioles, Les Algorithmes - bât Euclide B, BP 121,

06903 Sophia Antipolis - Cedex, France
2 Center for Theoretical Study, Charles University in Prague,

Jilská 1, CZ-11000 Praha 1, Czechia

Abstract. We present an algorithm that finds the maximal attractor
(limit set) of those cellular automata whose maximal attractor is a sofic
subshift.

Keywords: cellular automata, limit sets, sofic subshifts.

1 Introduction

The maximal attractor (limit set) is one of its most intensively studied structures
in cellular automata theory [1,2,3]. It is the intersection of all forward images of
the state space. A cellular automaton is called stable, if the maximal attractor is
attained in a finite number of forward images. In this case, the maximal attractor
is a sofic subshift, and its structure can be obtained by an algorithm. However,
the problem whether a cellular automaton is stable is undecidable (Culik, Pachl
and Yu [4]), the set of stable cellular automata being only recursively enumerable.

The maximal attractor of an unstable cellular automaton may but need not
be sofic. In fact, its language complexity may be arbitrarily high. The only con-
straint is that the complement of its language is recursively enumerable (Culik,
Hurd and Yu [1]). There are other constraints of dynamical nature: The maximal
attractor contains a homogenous configuration i.e. of the form aZ (see Hurley [5])
and it is chain-mixing for the shift (see Formenti and Kůrka [6]).

To determine the maximal attractor of a given cellular automaton is not
always a simple task. One can estimate the maximal attractor from above by the
forward images of the state space, but it is undecidable whether this procedure
ever ends. In the present paper we propose a method for the construction of
the maximal attractor from bellow. The key role in this procedure is played by
signal subshifts (see Kůrka [7]) which are infinite subshifts consisting of weakly
periodic configurations of a given period (p, q), i.e., satisfying F qσp(x) = x.
Signal subshifts are of finite type and can be easily computed. All signal subshifts
are contained in the maximal attractor.

Our algorithm works for some cellular automata with a finite number of
signal subshifts. From them, we build their join - a larger subshift which is still

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 356–366, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Search Algorithm for the Maximal Attractor of a Cellular Automaton 357

included in the maximal attractor. Then, we construct the forward images of
the join, obtaining an increasing sequence of subshifts included in the maxi-
mal attractor. If this procedure stops in finite time, we test a special condition
of decreasing preimages. A subshift has decreasing preimages, if the preimage
of any word not in the language contains a shorter word which is not in the
language. This condition is decidable, and a subshift which satifies it already
includes whole maximal attractor. While our algorithm is not (and cannot be)
universal, it works for a large class of cellular automata.

2 Subshifts and Cellular Automata

For a finite alphabet A, denote by A∗ :=
⋃

n≥0 An the set of words over A. The
length of a word u = u0 . . . un−1 ∈ An is denoted by |u| := n. The word of
zero length is λ. We say that u ∈ A∗ is a subword of v ∈ A∗ (u � v) if there
exists k such that vk+i = ui for all i < |u|. We denote by u[i,j) = ui . . . uj−1

and u[i,j] = ui . . . uj subwords of u associated to intervals. We denote by AZ the
space of A-configurations, or doubly-infinite sequences of letters of A equipped
with the metric d(x, y) := 2−n, where n = min{i ≥ 0 : xi �= yi or x−i �= y−i}.

The shift map σ : AZ → AZ is defined by σ(x)i := xi+1. For any nonzero u ∈
A∗ we have a σ-periodic configuration uZ ∈ AZ defined by (uZ)i = u|i| mod |u|
for i ∈ Z. A subshift is a nonempty subset Σ ⊆ AZ, which is closed and strongly
σ-invariant, i.e., σ(Σ) = Σ.

For a subshift Σ there exists a set D ⊆ A∗ of forbidden words such that
Σ = ΣD := {x ∈ AZ : ∀u � x, u �∈ D}. A subshift is uniquely determined by its
language

L(Σ) :=
⋃

n≥0

Ln(Σ), where Ln(Σ) := {u ∈ An : ∃x ∈ Σ, u � x}.

A subshift Σ ⊆ AZ is transitive, if for any words u, v ∈ L(Σ) there exists
w ∈ A∗ such that uwv ∈ L(Σ).

If x ∈ AZ is a configuration and I ⊆ Z is an interval, denote by x|I : I → A
the restriction of x to I. The extended language of Σ is

L̃(Σ) = {x|I : x ∈ Σ, I ⊆ Z is an interval}.

A cellular automaton is a continuous map F : AZ → AZ which commutes with
the shift map, i.e., Fσ = σF . For a cellular automaton F there exists a local
rule f : Ad+1 → A such that F (x)i = f(x[i−m,i−m+d]) for some memory m ∈ Z

and diameter d ≥ 0. The local rule can be extended to a map f : A∗ → A∗ by
f(u)i := f(u[i,i+d]) for 0 ≤ i < |u| − d. The maximal attractor (limit set) of a
cellular automaton F is ΩF =

⋂
n≥0 Fn(AZ).

3 Sofic Subshifts

A subshift Σ ⊆ AZ is sofic if its language L(Σ) is regular. Sofic subshifts are
usually described by labelled graphs. A labelled graph over an alphabet A is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

358 E. Formenti and P. Kůrka

a structure G = (V, E, s, t, l), where V is a finite set of vertices, E is a finite
set of edges, s, t : E → V are the source and target maps, and l : E → A
is a labelling function. A finite or infinite word w ∈ E∗ ∪ EZ is a path in G
if t(wi) = s(wi+1) for all i. The source and target of a finite path w ∈ En are
s(w) := s(w0), t(w) := t(wn−1). The label of a path is defined by l(w)i := l(wi).
A subshift Σ is sofic if there exists a labelled graph G such that Σ = ΣG is the
set of labels of all doubly infinite paths in G. In this case we say that G is a
presentation of Σ (see e.g. Lind and Marcus [8], or Kitchens [9]). Among all
presentations of a sofic subshift there exists a minimal one which corresponds to
the minimal deterministic finite automaton which recognizes its language.

A labelled graph G = (V, E, s, t, l) is connected if for any two vertices q, r ∈
V there exists a path w ∈ E∗ from q to r. A subgraph of a graph G is a graph
G′ = (V ′, E′, s′, t′, l′), such that V ′ ⊆ V , E′ = {e ∈ E : s(e) ∈ V ′ & t(e) ∈ V ′},
and s′, t′, l′ coincide respectively with s, t, l on E′. A connected component
of G is a subgraph of G which is connected and maximal with this property.
The subshift of a connected graph is transitive. Conversely, every transitive sofic
subshift Σ ⊆ AZ has a connected presentation.

A subshift Σ is of finite type (SFT), if Σ = ΣD for some finite set D ⊆ A∗

of forbidden words. A forbidden word is minimal if it does not contain another
forbidden words as factor. The order o(Σ) of a SFT is the length of its longest
minimal forbidden word. A configuration x ∈ AZ belongs to Σ iff x[i,i+o(Σ)) ∈
L(Σ) for all i ∈ Z. Any SFT is sofic: if p = o(Σ) − 1, the canonical graph
G = (V, E, s, t, l) of Σ is given by V = Lp(Σ), E = Lp+1(Σ), s(u) = u[0,p),
t(u) = u[1,p] and l(u) = up.

We say that a labelled graph G is p-distinguishing, if for any two paths
v, w ∈ Ep with t(v) = t(w) we have l(v) = l(w). In this case there exist labelling
functions ν : V → Ap and π : E → Ap+1. For q ∈ V we have ν(q) = u iff there
exists a path v ∈ Ep such that t(v) = q and l(v) = u. For e ∈ E we have π(e) = u
iff there exists a path w ∈ Ep+1 such that wp = e and l(w) = u. Any sofic
subshift has a p-distinguishing presentation for any p > 0. If G = (V, E, s, t, l) is
a presentation of Σ, we define a graph G′ = (V ′, E′, s′, t′, l′), where V ′ ⊆ Ep is
the set of paths of G of length p, E′ ⊆ Ep+1 is the set of paths of G of length
p + 1, s′ and t′ are the prefix and suffix maps and l′(u) = l(up). Then G′ is a
p-distinguishing presentation of Σ.

Given two sofic subshifts Σ0, Σ1 ⊆ AZ, their union and intersection (provided
non-empty) are sofic subshifts. Moreover there exists an algorithm which con-
structs a presentation of Σ0 ∪Σ1 and Σ0 ∩Σ1 from those of Σ0 and Σ1. It is also
decidable whether Σ0 ⊆ Σ1. Given a labelled graph G it is decidable whether
ΣG is a SFT (see Lind and Marcus [8], page 94).

Proposition 1. Let Σ ⊆ AZ be a sofic subshift and F : AZ → AZ a cellular
automaton with local rule f : Ad+1 → A. Then F (Σ) and F−1(Σ) are sofic
subshifts, and there exists an algorithm which constructs their graphs from the
local rule f and a graph of Σ.

Proof. Let G = (V, E, s, t, l) be a presentation of Σ. Let V0 be the set of paths of
G of length d, and let E0 be the set of paths of G of length d+1. define the source

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Search Algorithm for the Maximal Attractor of a Cellular Automaton 359

and target maps by s0(u) = u[0,d), t0(u) = u[1,d]. Then G0 = (V0, E0, s0, t0, f) is
a presentation of F (Σ).
Set E1 = {(e, u) ∈ E × Ad+1 : l(e) = f(u)}, and define s1, t1 by s1(e, u) =
(s(e), u[0,d)), t1(e, u) = (t(e), u[1,d]). Finally set V1 = s1(E1) ∪ t1(E1) ⊆ V × Ad

and define the labelling function by l1(e, u) = ud. Then G1 = (V1, E1, s1, t1, l1)
is a presentation of F−1(Σ).

4 Join of Subshifts

Definition 1. Given an integer c ≥ 0, the c-join Σ0
c∨ Σ1 of subshifts Σ0, Σ1 ⊆

AZ consists of all configurations x ∈ AZ such that either x ∈ Σ0 ∪ Σ1, or there
exist integers b, a such that b − a ≥ c, x(−∞,b) ∈ L̃(Σ0), and x[a,∞) ∈ L̃(Σ1).

Examples of joins of subshifts are given in Figure 4 and 5.

Proposition 2. The c-join of two subshifts is a subshift and the operation of
c-join is associative. A configuration x ∈ AZ belongs to Σ1

c∨ · · · c∨ Σn iff there
exist integers k > 0, 1 ≤ i1 < i2 < · · · < ik ≤ n, and intervals I1 = (a1, b1), I2 =
[a2, b2), . . . , Ik = [ak, bk) such that a1 = −∞, bk = ∞, aj < aj+1, bj < bj+1,
bj − aj+1 ≥ c, and x|Ij

∈ L̃(Σij).

am−1 bm−1

am bm

b = b′
m

y

a = a′
m+1

z

Fig. 1. Associativity of the join

Proof. It is clear that the c-join of two subshifts is a subshift. We prove by
induction the formula for Σ1

c∨ · · · c∨ Σn. Let x ∈ (Σ1
c∨ · · · c∨ Σn−1)

c∨ Σn, so
there exists y ∈ Σ1

c∨ · · · c∨ Σn−1, z ∈ Σn and integers a, b such that x(−∞,b) =
y(−∞,b), x[a,∞) = z[a,∞) and b − a ≥ c. By the induction hypothesis there exist
integers k and intervals I1, . . . Ik such that y|Ij

∈ L̃(Σij). Let m be the unique
index such that bm−1 < b ≤ bm (see Figure 1). Set i′j := ij for j ≤ m and
i′m+1 = n. For k ≤ m + 1 define intervals I ′j := [a′

j , b
′
j) by

a′
j :=

{
aj for j ≤ m
max{a, am + 1} for j = m + 1 , b′j :=

⎧
⎨

⎩

bj for j < m
b for j = m
∞ for j = m + 1

Then clearly x|I′
j

∈ L̃(Σi′
j
) and b′j − a′

j+1 = bj − aj+1 ≥ c for j < m. If a′
m+1 =

am + 1, then b′m − a′
m+1 = b − am − 1 ≥ bm−1 − am ≥ c. If a′

m+1 = a, then
b′m − a′

m+1 = b − a ≥ c. Similarly it can be shown that the formula holds for
x ∈ Σ1

c∨ (Σ2
c∨ · · · c∨ Σn) provided it holds for z ∈ Σ2

c∨ · · · c∨ Σn. This proves
associativity. ��

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

360 E. Formenti and P. Kůrka

Proposition 3. Let Σ0, Σ1 ⊆ AZ be sofic subshifts and c ≥ 0. Then Σ0
c∨ Σ1 is

a sofic subshift and there exists an algorithm which constructs its presentation
from those of Σi.

Proof. Let Gi = (Vi, Ei, si, ti, li) be c-distinguishing presentations of Σi, and
assume that V0 ∩V1 = ∅ and E0 ∩E1 = ∅. We have labelling functions πi : Ei →
Ac+1. Set V = V0 ∪ V1,

E = E0 ∪ E1 ∪ {(e0, e1) ∈ E0 × E1 : π0(e0) = π1(e1)}.

The source, target and label maps extend si, ti, li. For the new edges we have
s(e0, e1) = s0(e0), t(e0, e1) = t1(e1), l(e0, e1) = l0(e0) = l1(e1). Then ΣG =
Σ0

c∨ Σ1. ��

5 Signal Subshifts

Definition 2. Let F : AZ → AZ be a cellular automaton. A configuration x ∈
AZ is weakly periodic, if F qσp(x) = x for some q > 0 and p ∈ Z. We call (p, q)
the period of x and p/q its speed. Let Σ(p,q) := {x ∈ AZ : F qσp(x) = x} be the
set of all weakly periodic configurations with period (p, q). A signal subshift is
any infinite Σ(p,q).

Remark that Σ(p,q) is closed and σ-invariant, so it is a subshift provided it is
nonempty. Moreover, Σ(p,q) is F -invariant and F : Σ(p,q) → Σ(p,q) is bijective,
so Σ(p,q) ⊆ ΩF . If Σ(p,q) is finite, it consists only of σ-periodic configurations.
Figures 4 and 5 show some examples of signal subshifts.

Proposition 4. Let F : AZ → AZ be a cellular automaton with diameter d and
memory m, so F (x)i = f(x[i−m,i−m+d]).

(1) If Σ(p,q) is nonempty, then it is a subshift of finite type.
(2) If Σ(p,q) is infinite, then m − d ≤ p/q ≤ m.
(3) If p0/q0 < p1/q1, then Σ(p0,q0) ∩ Σ(p1,q1) ⊆ {x ∈ AZ : σp(x) = x}, where

p = q(p1
q1

− p0
q0

) and q = lcm(q0, q1) (the least common multiple).

Proof. (1) Set D := {u ∈ Adq+1 : f q(u) �= umq−p}. Then Σ(p,q) = ΣD.
(2) If x ∈ Σ(p,q), then xi = f q(x[i+p−mq,i+p−mq+dq]). If p − mq + dq < 0,

then there exists a function g : Amq−p → Amq−p such that x[i+p−mq+1,i] =
g(x[i+p−mq,i−1]) for every i ∈ Z. This is possible only if x is σ-periodic. Moreover,
the period of x is bounded, so Σ(p,q) is finite. The proof is similar for p > mq.

(3) Set p2 = qp0/q0, p3 = qp1/q1. If x ∈ Σ(p0,q0) ∩ Σ(p1,q1), then σ−p2(x) =
F q(x) = σ−p3(x), so σp2−p3(x) = x. ��
A positively expansive CA1 has no signal subshifts (see [7] for a proof). The shift
cellular automaton σ : AZ → AZ has the unique signal subshift Σ(−1,1) = AZ.
A cellular automaton with infinitely many signal subshifts with infinitely many
speeds has been constructed in [7].

1 A CA f is positively expansive iff there exists ε > 0 such that for all x, y ∈ AZ,
x �= y implies that there exists an integer n such that d(fn(x), fn(y)) > ε.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Search Algorithm for the Maximal Attractor of a Cellular Automaton 361

aj a′
j b′

j−1 bj−1 aj+1 a′
j+1 b′

j bj

aj −qvj−1 bj−1−qvj aj+1−qvj bj −qvj+1

vj−1 m m−d vj vj m m−d vj+1

x
Σij−1

Σij Σij+1

y
Σij−1 Σij

Σij+1

Fig. 2. Preimage of a configuration in the join

Theorem 5. Consider a cellular automaton F : AZ → AZ and the signal sub-
shifts Σ(p1,q1), . . . , Σ(pn,qn) with decreasing speeds, i.e., pi/qi > pj/qj for i < j.
Set q := lcm{q1, . . . qn} (the least common multiple). There exists c ≥ 0 such that
for Σ := Σ(p1,q1)

c∨ · · · c∨ Σ(pn,qn) we have Σ ⊆ F q(Σ) and therefore Σ ⊆ ΩF .

Proof. Let m be the memory of F and d its diameter. If i < j then m − d ≤
pj

qj
< pi

qi
≤ m, so 0 < pi

qi
− pj

qj
≤ d. Set

c := max
{

q

(
pj

qj
− pi

qi
+ d

)

: i < j & Σi ∩ Σj �= ∅
}

≥ 0

Let y ∈ Σ, 1 ≤ i1 < i2 · · · < ik ≤ n and let I1 = (a1, b1], . . . , Ik = [ak, bk) be
intervals such that the restrictions y|Ij

belong to L̃(Σ(pij
,qij

)). Let vj := pij /qij

be the speed of the ij-th signal. The configurations in Σij ∩Σij+1 are σ-periodic
with period nj := q(vj − vj+1). Let u be the prefix of y|Ij

of length nj−1 and
let v be the suffix of y|Ij

of length nj . Since c ≥ nj−1 and c ≥ nj , we get y(j) =
uN(y|Ij

)vN ∈ Σ(pij
,qij

) and F qσqvj (y(j)) = y(j). Set Jj = [aj −qvj−1, bj −qvj+1).
For the endpoints of these intervals we get (bj−qvj+1)−(aj+1−qvj) = bj−aj+1+
qnj ≥ c. There exists a unique configuration x such that x|Jj

= σqvj (y(j))|Jj
.

We show F q(x) = y. Set a′
j := aj + q(m − vj−1), b′j := bj + q(m − d − vj+1) (see

Figure 2). For a′
j ≤ k ≤ b′j we have

F q(x)k = f q(x[k−qm,k−qm+qd]) = f q(σqvj (y(j))[k−qm,k−qm+qd])

= F qσqvj (y(j))k = (y(j))k = yk

We have b′j − a′
j+1 = bj−1 − aj − q(vj+1 − vj + d) ≥ c − c = 0, so the intervals

[a′
j , b

′
j) cover whole Z, and F q(x) = y. Thus Σ ⊆ F q(Σ). It follows that for any

k > 0 we have Σ ⊆ F kq(Σ) ⊆ F kq(AZ), so Σ ⊆ ΩF . ��

6 Decreasing Preimages

Definition 3. Let f : Ad+1 → A be a local function of a cellular automaton.
We say that a subshift Σ ⊆ AZ has m-decreasing preimages, if for each
u ∈ A∗ \ L(Σ), each v ∈ f−m(u) contains as a subword a word w ∈ A∗ \ L(Σ)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

362 E. Formenti and P. Kůrka

such that |w| < |u| (the condition is satisfied trivially if f−m(u) = ∅). We say
that Σ has decreasing preimages, if it has m-decreasing preimages for some
m > 0.

Example 1. The maximal attractor of the ECA128 F (x)i = xi−1xixi+1 has
decreasing preimages.

Proof. We have ΩF = {x ∈ AZ : ∀n > 0, 10n1 �� x}. If u ∈ A∗ \ L(ΩF), then
it contains 10n1 as a subword, and each preimage v of u contains 10n−21 as a
subword. ��

Example 2. There exists a cellular automaton such that ΩF (AZ) does not have
decreasing preimages.

3 0 3 0 0 3 0 0 0 3 1 1 2 3 0 0 0 0 3 0 1 1 2 3 1 1 1 1 3 2 1 1 0 3
3 1 3 0 1 3 0 0 1 3 1 2 0 3 0 0 0 1 3 0 1 2 0 3 1 1 1 2 3 2 1 1 1 3
3 2 3 0 2 3 0 0 2 3 2 0 1 3 0 0 0 2 3 0 2 0 1 3 1 1 2 0 3 2 1 1 2 3
3 2 3 1 0 3 0 1 0 3 2 0 2 3 0 0 1 0 3 1 0 0 2 3 1 2 0 1 3 2 1 2 0 3
3 2 3 1 1 3 0 1 1 3 2 1 0 3 0 0 1 1 3 1 0 1 0 3 2 0 0 2 3 2 2 0 1 3
3 2 3 1 2 3 0 1 2 3 2 1 1 3 0 0 1 2 3 1 0 1 1 3 2 0 1 0 3 2 2 0 2 3
3 2 3 2 0 3 0 2 0 3 2 1 2 3 0 0 2 0 3 1 0 1 2 3 2 0 1 1 3 2 2 1 0 3
3 2 3 2 1 3 1 0 1 3 2 2 0 3 0 1 0 1 3 1 0 2 0 3 2 0 1 2 3 2 2 1 1 3
3 2 3 2 2 3 1 0 2 3 2 2 1 3 0 1 0 2 3 1 1 0 1 3 2 0 2 0 3 2 2 1 2 3
3 2 3 2 2 3 1 1 0 3 2 2 2 3 0 1 1 0 3 1 1 0 2 3 2 1 0 1 3 2 2 2 0 3
3 2 3 2 2 3 1 1 1 3 2 2 2 3 0 1 1 1 3 1 1 1 0 3 2 1 0 2 3 2 2 2 1 3
3 2 3 2 2 3 1 1 2 3 2 2 2 3 0 1 1 2 3 1 1 1 1 3 2 1 1 0 3 2 2 2 2 3

Fig. 3. Nondecreasing preimages

Proof. The alphabet is A = {0, 1, 2, 3}, d = 2, m = −1, and the transition table
f : A3 → A is given by

x02 : 1, x03 : 1, x12 : 2, x13 : 2, 02x : 0, 12x : 0,

where x ∈ A and the first applicable rule is used, otherwise the letter is un-
changed. The letter 3 is stationary, and the binary value of a word u ∈ {0, 1, 2}∗
between two threes increases by one every two time steps out of three. Let x
be a configuration such that x(−∞,0] = 0N3. Then for each n, the sequence
f i(x)[−n,0] is eventually periodic with preperiod n − 1 and period pn = 3 · 2n−1,
so Fn−1+pn(x)[−n,0] = Fn−1(x)[−n,0] (see Figure 3). It follows that F i(x)[−n,0] ∈
L(ΩF) for i ≥ n−1. On the other hand, if u ∈ {0, 1, 2}n\{2n}, then 3u3 �∈ L(ΩF).
In particular, if n > 1 then no word 3F i(x)[−n,0] belongs to L(ΩF). Thus
u = 3Fn−1(x)[−n,0] �∈ L(ΩF), but for m < pn we have

v = 3m+1Fn−1+pn−m(x)[−n,0]3m ∈ f−m(u)

and each subword of v of length |u| = n + 2 belongs to L(ΩF). ��

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Search Algorithm for the Maximal Attractor of a Cellular Automaton 363

Proposition 6. If a subshift Σ ⊆ AZ has decreasing preimages, then ΩF ⊆ Σ.

Proof. By the assumption, if u ∈ A∗\L(Σ) and u ∈ L(ΩF), then each v ∈ f−m|u|

contains as a subword w ∈ A∗ \L(Σ) with |w| = 0. This is a contradiction, since
w = λ ∈ L(Σ). Thus f−m|u|(u) is empty and u �∈ L(ΩF). Thus L(ΩF) ⊆ L(Σ)
and ΩF ⊆ Σ. ��
Proposition 7. There exists an algorithm, which decides whether for a given
cellular automaton and given m > 0, a given sofic subshift has m-decreasing
preimages.

Proof. By the assumption both L(Σ) and L(F−m(Σ)) are regular languages. It
follows that the language

L = {v ∈ A∗ : fm(v) �∈ L(Σ), ∀k ≤ md + 1, v[k,k+|v|−md−1) ∈ L(Σ)}

is regular too and we can construct its recognizing finite automaton from that of
L(Σ). Since L is empty iff Σ has m-decreasing f -preimages, we get the deciding
procedure. ��
Corollary 8. Let F be a cellular automaton, let Σ1, . . . , Σn be signal subshifts
with decreasing speeds, and set q := lcm(q1, . . . , qn). If F kq(Σ1

c∨ · · · c∨ Σn) has
decreasing preimages for some k, c, then ΩF = F kq(Σ1

c∨ · · · c∨ Σn).

Proposition 9. The set of cellular automata whose maximal attractor is a sofic
subshift with decreasing preimages is recursively enumerable.

Proof. Generate successively all sofic subshifts, verify whether they are strongly
invariant and whether they have decreasing preimages. ��
While the algorithm based on Proposition 9 is rather time-consuming, and would
not give practical results, there is a faster algorithm based on signal subshifts
and their join. Given a local rule f with diameter d and memory m, consider
the procedure Omega(f,m,n) which performs the following steps:

procedure Omega(f,m,n)

1. Construct all signal subshifts with periods (pi, qi) such that qi ≤ n, and
(m − d)qi ≤ pi ≤ mqi. Denote by q the least common multiple of qi.

2. Order the signal subshifts obtained in step 1 by decreasing speeds and con-
struct their c-join Σ, where c is given in the proof of Theorem 5.

3. Construct F q(Σ), F 2q(Σ), . . . and test whether F kq(Σ) = F (k+1)q(Σ).
4. If step 3 ends with F kq(Σ) = F (k+1)q(Σ), verify whether F kq(Σ) has decreas-

ing preimages. If so, ΩF = F kq(Σ) has been found.

The procedure Omega(f,m,n)may fail to give a result if it repeats indefinitely
step 3, or if step 4 gives the negative result. To get a procedure not depending on
n, one can perform concurrently procedures Omega(f,m,1), Omega(f,m,2). . .,
so that by time n(n+1)/2, n steps of Omega(f,m,1) have been performed, n−1
steps of Omega(f,m,2), etc. The algorithm ends whenewer one of the procedures

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

364 E. Formenti and P. Kůrka

Omega(f,m,n) stops, otherwise it runs indefinitely. The implementation of this
algorithm is currently under progress.

7 Examples

Example 3 (ECA 128). The product rule F (x)i = xi−1xixi+1.

We have two (nontransitive) signal subshifts (see Figure 4)

Σ(1,1) = {x ∈ AZ : 10 �� x}, Σ(−1,1) = {x ∈ AZ : 01 �� x}.

Their intersection is the finite subshift {0Z, 1Z}. The maximal attractor is con-
structed in Figure 4. In the first row, 1-distinguishing presentations for Σ(1,1)

and Σ(−1,1) are constructed. Their join is constructed in the second row. In

the third row, the minimal presentation of Σ(1,1)
1∨ Σ(−1,1) is given. As it has

decreasing preimages, it equals ΩF .

0 1 1 0

1 01
0

0 1 1 0

1 0

0 1 0

1 0

Σ(1,1) Σ(−1,1)

Σ(1,1)
1∨ Σ(−1,1)

Σ(1,1)
1∨ Σ(−1,1) = ΩF

Fig. 4. ECA 128 and its signal subshifts

Example 4 (ECA 184). The traffic rule F (x)i =1 iff x[i−1,i] =10 or x[i,i+1] =
11.

We have two signal subshifts (see Figure 5) representing holes and jams

Σ(1,1) = {x ∈ AZ : 11 �� x} ∪ {1Z}
Σ(−1,1) = {x ∈ AZ : 00 �� x} ∪ {0Z}.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Search Algorithm for the Maximal Attractor of a Cellular Automaton 365

0

1

0

1

0 1

1

0

1

0

1

0 11 0

1

1
0

0

0

1

0

1

0 11 0

Σ(1,1) Σ(−1,1)

Σ(1,1)
1∨ Σ(−1,1)

Σ(1,1)
1∨ Σ(−1,1) = ΩF

Fig. 5. ECA 184 and its signal subshifts

Their intersection is the finite subshift {0Z, 1Z, (01)Z, (10)Z}. There is one
more (nontransitive) signal subshift Σ(0,1) = {x ∈ AZ : ∀i < j, xi ≤ xj}. The
maximal attractor is constructed in Figure 5. In the first row, 1-distinguishing
presentations for Σ(1,1) and Σ(−1,1) are constructed. Their join is constructed in

the second row. In the third row, the minimal presentation of Σ(1,1)
1∨ Σ(−1,1)

is given. As it has decreasing preimages, it equals ΩF .

Acknowledgments

The research was partially supported by the Research Program CTS MSM
0021620845.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

366 E. Formenti and P. Kůrka

References

1. Culik, K., Hurd, L.P., Yu, S.: Computation theoretic aspects of cellular automata.
Physica D 45 (1990) 357–378

2. Maass, A.: On sofic limit sets of cellular automata. Ergodic Theory and Dynamical
Systems 15 (1995) 663–684

3. Kari, J.: Rice’s theorem for the limit sets of cellular automata. Theoretical computer
science 127 (1994) 229–254

4. Culik, K., Pachl, J., Yu, S.: On the limit set of cellular automata. SIAM Journal
on Computing 18 (1989) 831–842

5. Hurley, M.: Attractors in cellular automata. Ergodic Theory and Dynamical Systems
10 (1990) 131–140

6. Formenti, E., Kůrka, P.: Subshift attractors of cellular automata. Nonlinearity 20
(2007) 1–13

7. Kůrka, P.: On the measure attractor of a cellular automaton. Discrete and Contin-
uous Dynamical Systems Supplement volume 2005 (2005) 524–535

8. Lind, D., Marcus, B.: An introduction to symbolic dynamics and coding. Cambridge
University Press, Cambridge (1995)

9. Kitchens, B.P.: Symbolic Dynamics. Springer-Verlag, Berlin (1998)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Universal Tilings

Grégory Lafitte1 and Michael Weiss2,�

1 Laboratoire d’Informatique Fondamentale de Marseille (LIF), CNRS – Université
de Provence, 39, rue Joliot-Curie, F-13453 Marseille Cedex 13, France

2 Centre Universitaire d’Informatique, Université de Genève, 24, rue Général Dufour,
1211 Genève 4, Switzerland

Abstract. Wang tiles are unit size squares with colored edges. To know
if a given finite set of Wang tiles can tile the plane while respecting
colors on edges is undecidable. Berger’s proof of this result shows the
equivalence between tilings and Turing machines and thus tilings can
be seen as a computing model. We thus have tilings that are Turing-
universal, but there lacks a proper notion of universality for tilings. In
this paper, we introduce natural notions of universality and completeness
for tilings. We construct some universal tilings and try to make a first
hierarchy of tile sets with a universality criteria.

1 Introduction

Tilings were first introduced by Wang [Wan61]. A tile is a unit size square with
colored edges. Two tiles can be assembled if their common edge has the same
color. A finite set of tiles is called a tile set. To tile consists of assembling tiles
from a tile set on the grid Z

2.
Wang was the first to conjecture that if a tile set tiles the plane, then it

tiles it in a periodic way. Another famous problem is to know whether a tile set
tiles the entire plane or not. It is called the domino problem. Berger proved the
undecidability of the domino problem by constructing an aperiodic set of tiles,
i.e., a tile set that can generate only non-periodic tilings [Ber66]. Simplified
proofs can be found in [Rob71] and later [AD96]. As a corollary, Berger’s result
shows that Wang’s conjecture is false. The main argument of this proof was to
simulate the behaviour of a given Turing machine with a tile set, in the sense that
the Turing machine M stops on an instance ω if and only if the tile set τ〈M,ω〉
does not tile the plane. Hanf and later Myers [Mye74, Han74] have strengthened
this and constructed a tile set that has only non-recursive tilings.

From this, we have that there exists tile sets that can generate only non-
periodic tilings of the plane, and others, that can generate only non-recursive
tilings of the plane. But in all those cases, Durand [Dur99] proved that if a tile
set tiles the plane, then it can tile the plane in a quasiperiodic way, i.e., a tiling
where each pattern appears regularly along the tiling.

� This author has been supported by the FNS grant 200020-105515.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 367–380, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

368 G. Lafitte and M. Weiss

The core main result from Berger’s theorem is that tilings are Turing equiva-
lent and so, there is a notion of computability for tilings. The tilings’ computabil-
ity can be studied from different points of view. One of them is universality. A
universal Turing machine is a machine that can simulate all other Turing ma-
chines.We have to move away from Turing universality and see more specifically
how can universality be defined for tilings. Asking the question of universality for
tilings is equivalent to asking the question of how a tiling computes because we
expect from a universal tiling to be able to give back the process of computation
of each tiling. So, how can a tiling simulate another tiling?

In order to answer our question, we introduce different notions to tackle the
search for natural universality. The main thing about tilings’ computability con-
sists in the way the tiles are assembled to tile the plane. So, we can see a given
tiling T from different scales. The lowest scale is the tiling. By partitioning a
given tiling into rectangles of same size, we obtain another tiling, where the tiles
are the rectangular patterns. It is the tiling T seen from a higher scale. By this
principle, we define strong reductions and weak reductions. By those reductions,
we reach our goal : we have a notion of simulation.

We are now able to define universality and completeness for tilings. Since we
have two kinds of reductions (weak and strong) and that a tiling can be universal
for all the tilings (dense), or just for one tiling for each tile set (sparse), then we
have four kinds of universality.

The main goal of this paper is to show the existence or the non-existence of
the different universality notions. We will construct a complete tile set, i.e., a
tile set such that for each tiling P , our complete tile set can generate a tiling Q
with P � Q. We prove that a tile set is complete if and only if it generates a
universal weak tiling.

The main result is to construct a strong universal tiling that can simulate, for
each tile set τ , a countable infinity of tilings from τ . That is the strongest result
we can obtain, because having a strongly dense universal tiling, i.e., a tiling that
simulates all tilings, is impossible, because there is a countable set of reductions
but an uncountable set of tilings. Those results yield a classification on tile sets
that is actually a hierarchy.

In the first part, we introduce the different notions used along the paper
(pattern sets, reductions, completeness, universalities) and prove some obvious
results from those definitions. The second part concentrates on completeness,
by relating it to universality, and by constructing our first complete tile set.
The last part explains universality, by constructing weak and strong universal
tilings, and by giving some results following from those. Lastly we construct a
non-periodic tile set that generates a universal tiling and propose a classification
of the different universality and completeness notions seen along the paper.

2 Notions of Tilings’ Universality and Completeness

First, we give the definitions of the basic notions of tilings. A tile is an oriented
unit size square with colored edges from C, where C is a finite set of colors. A

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Universal Tilings 369

tile set is a finite set of tiles. To tile consists of placing the tiles of a given tile
set on the grid Z

2 such that two adjacent tiles share the same color on their
common edge. Since a tile set can be described with a finite set of integers, then
we can enumerate the tile sets, and τi will designate the ith tile set.

Let τ be a tile set. A tiling P generated by τ is called a τ -tiling. It is associated
to a tiling function fP where fP (x, y) gives the tile at position (x, y) in P . In this
paper, when we will say: ”Let P be a tiling”, we mean that there exists a tile
set τ such that P is a τ -tiling of the plane. The set of all tilings is T. A pattern
m is a finite tiling. If it is generated by τ , we call it a τ -pattern. A pattern m is
associated to a tiling partial function fm, defined on a finite subset of N

2 such
that fm(x, y) gives the tile at the position (x, y) in m. A finite set of rectangular
τ -patterns is a τ -pattern set. We explain how to tile the plane with a pattern
set.

Definition 1. A pattern set M of {a×b} τ-patterns tiles the plane if there exists
0 ≤ c < a, 0 ≤ d < b and a function fPM : { c + k1a | k1 ∈ Z } × { d + k2b | k2 ∈
Z } −→ M such that the function f τ

PM
: Z

2 −→ τ defined by: f τ
PM

(c+k1a+x, d+
k2b+ y) = f(fPM

(c+k1a,d+k2b))(x, y) for all 0 ≤ x < a and 0 ≤ y < b, is a τ-tiling
function of the plane. Here, f(fPM

(c+k1a,d+k2b)) is the tiling partial function of
the pattern fPM (c + k1a, d + k2b). With the same notation as above, we define
the function sPM : Z

2 → M by sPM (k1, k2) = fPM (c + k1a, d + k2b).

This definition explains in a formal way what we expect intuitively. To tile the
plane with a pattern set consists in putting the patterns side by side in a subgrid
of Z

2 in such a way that color matching is respected. By analogy with tilings,
we say that PM is a M -tiling and it is associated to the pattern tiling function
fPM .

The second function in the definition, sPM , is another way to define PM : if
sPM (x, y) gives the pattern mi, then sPM (x+1, y) gives the pattern that touches
mi on its east side in PM . The same is true for the south, north and west side
of a pattern in PM .

Easy5

Q.P.

Fig. 1. An Easy5-tiling P and a pattern tiling Q extracted from it

In the previous definition, we used a tiling function f τ
PM

. It can be associated to
a τ -tiling P because f τ

PM
is defined from Z

2 to τ and respects the color matching.
So, we have a strong connection between P and PM because both of them give
rise to the same geometric tiling Q (by geometric tiling, we mean the grid Z

2

filled with the appropriate tiles). That is one of the main notions of this paper.
A given tiling can be seen from different heights. Here, P is the smallest height,
the unit size level. PM is a higher level, the {a × b} level. Obviously, a tiling of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

370 G. Lafitte and M. Weiss

the plane can be seen with an infinity of different scales. From this infinity of
different ways to see a tiling, we expect to obtain a notion of universality for
tilings.

More formally, let M be a τ -pattern set, Q be a M -tiling and P be a τ -
tiling. We say that Q is extracted1 from P if f τ

Q = fP (figure 1). P describes the
geometric tiling with unit size squares while Q describes it with {a×b}-patterns.

From the above notions, we are able to define intuitively what we mean by
tilings’ reductions. From a given tiling P , we can extract an infinity of pattern
tilings. Let P ′ be one of them. By definition, there exists a pattern set M such
that P ′ is a M -tiling. M is a finite set of {a×b} patterns. We can associate to M
a tile set τ with a function R : M → τ such that two patterns m1 and m2 match
if and only if the tiles R(m1) and R(m2) match in the same way. It can be easily
shown that any pattern set can be associated to a tile set with this property.
With R we can build a τ -tiling Q defined by: fQ(x, y) = R ◦ sP ′(x, y). Since P ′

is extracted from P , and since Q works as P ′ works, so Q can be thought to
be ”easier” than P . That is our idea of reduction, and now we define it more
formally:

Definition 2. Let P be a τ-tiling and Q be a τ ′-tiling.
Q reduces strongly to P , denoted by Q � P if there exists a set of τ-patterns

M , a M -tiling P ′ extracted from P and a function R : M −→ τ ′ such that
∀ (x, y) ∈ Z

2, R ◦ sP ′(x, y) = fQ(x, y). R is called the reduction core function
and its size is the size of the patterns of M , i.e., size(R)∈ N

2.
Q reduces weakly to P ,denoted by Q � P , if there exists a set of τi-patterns

M , a M -tiling P ′ extracted from P and a function R : M −→ τ ′ such that
for any {p × q}-pattern m of Q there exists a, b ∈ Z

2 such that m(x, y) =
R ◦ sP ′(a + x, b + y) for all 0 ≤ x < p, 0 ≤ y < q.

When we want to specify R we denote the reduction by �
R or �R.

As we have seen above, if Q � P then we can extract from P a pattern tiling
P ′ that simulates Q in the sense that the patterns of P ′ represent the tiles of
Q. We will say that Q is the tiling associated to the pattern tiling P ′ or that P ′

simulates Q. The important thing is that different patterns of P ′ can represent
the same tile of Q. But the converse is impossible by definition (a pattern of P ′

cannot represent different tiles of Q). Concerning the weak reduction, if Q � P
then we can extract from P a pattern tiling P ′ such that all patterns of Q are
simulated somewhere in P ′.

We can extend naturally our strong reduction definition to patterns. Let A be
a τ -pattern and B be a τ ′-pattern. We say that A � B if we can extract from B
a M -tiling B′ that simulates A, where M is a set of τ ′-patterns. For patterns,

1 We note that in most papers on tilings the word extract is already used in the
following sense: if a tile set can tile square patterns of ever-increasing sizes, then it
can tile the plane; one can extract from this set of patterns a tiling of the plane. In
this paper, extract will, most of the time, refer to the pattern tiling taken from a
given tiling. It is specified when we use extract to mean “extraction of a tiling from
a set of patterns of ever-increasing sizes”.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Universal Tilings 371

the weak reduction is equivalent to the strong reduction since weak reduction is
locally equivalent to strong reduction.

Those reductions have the following property:

Lemma 1. � and � are preorders on T, where T is the set of all possible tilings.

We do not have an order on T, because the antisymmetric property is not re-
spected: we can find two tilings P and Q such that P � Q and Q � P but
P �≡ Q (By P �≡ Q we mean that P and Q are not the representation of the
same tiling up to a color permutation, or, in an equivalent way, that there is no
trivial reduction of size (1, 1) between P and Q).

With the definition of reduction, we can now define the notions of complete-
ness and universality.

Definition 3. Let A be a set of tilings. A tile set τ is A-complete if for any
tiling P ∈ A, there exists a τ-tiling Q such that P � Q. If A = T then τ is called
complete.

This completeness notion is natural in the sense that it corresponds to what one
would expect: any tiling can be reduced to some instance tiling of our complete
tile set in such a way that to answer any question about our tiling it suffices to
study the instance tiling of our complete tile set.

We expect from a universal tiling to have in its construction much of the
information of all the other tilings. For tilings, we have different ways to define
the information contained in a given tiling and can distinguish mainly two kinds
of information for a tiling. The first, and the most natural, is the tiling itself
(how it is built). The second consists in studying the different patterns that
appear in the tiling. Those two ways to consider a tiling’s information give rise
to two ways to consider universality. Does a tiling contain enough information to
explain the behaviour of all other tilings (we call it strong dense universality), or
only the behaviour of a tiling for each tile set (strong sparse universality)? Does
a tiling contain enough information to simulate all the patterns of any tiling
(weak dense universality) or only the patterns of a tiling for each tile set (weak
dense universality)?

With this motivation, we have the following definitions:

Definition 4. Let Pu be a τ-tiling. Pu is:

– strongly dense universal if for any tiling Q, Q � Pu,
– strongly sparse universal if for all τ ′, there exists a τ ′-tiling Q, such that

Q � Pu,
– weakly dense universal if for any tiling Q, Q � Pu,
– weakly sparse universal if for all τ ′, there exists a τ ′-tiling Q, such that

Q � Pu.

We have the following properties:

Lemma 2. 1. Pu strongly (resp. weakly) dense universal ⇒ Pu strongly (resp.
weakly) sparse universal.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

372 G. Lafitte and M. Weiss

2. Pu strongly dense (resp. sparse) universal ⇒ Pu weakly dense (resp. sparse)
universal.

3. � preserves universalities.
4. � preserves weak universality.

We will show the existence or the non-existence of these universality notions
after the following section.

3 Completeness

The following theorem shows how complete tile sets and universal tilings relate.

Theorem 1. Assuming the existence of at least one complete tile set and one
weakly dense universal tiling, we have:

Let τ be a tile set. τ is complete if and only if there exists a weakly dense
universal τ-tiling.

Proof. [⇒]: Let τ be a complete tile set and Pu be a weakly dense universal tiling.
Since τ is complete, there exists a τ -tiling P such that Pu � P . � preserves weak
universality, therefore P is a weakly universal τ -tiling.

[⇐]: Let Pu be a weakly universal τ -tiling. By definition, for any tiling P there
exists R such that P �R Pu . We consider the set of patterns {Ai}i>0 where Ai

is the {i× i}-pattern of P centered around (0, 0). By definition, there exists a set
of patterns {Bi}i>0 of Pu such that Ai � Bi for all i. We can extract from the
set of patterns {Bi}i>0 of ever-increasing sizes, a τ -tiling P ′ such that P � P ′;
and so, τ is complete.

We now exhibit our first complete tile set. We can easily prove that the tile set
Easy5 (figure 1) is complete. In order to do this, we just have to see that we can
encode any tile set with square Easy5-patterns such that the Easy5-patterns
have a code on their borders that represent the tiles of the tile set. Then, we just
have to assemble the patterns in the same way that the tiles, that they represent,
are assembled in the tiling.

Theorem 2. Easy5 is complete.

We have a stronger result for complete tile sets: if τ is a complete tile set, then
for each tiling P , there exists an uncountable set of τ -tilings to which P reduces.

It would be interesting to find a non-trivial complete tile set, e.g., a complete
tile set that has only non-periodic tilings. We will construct such a tile set in
theorem 6. For now, we construct a more complex complete tile set that we will
use later on.

Since Berger’s proof of the undecidability of the domino problem, it is known
that we can simulate a Turing machine with a tiling. We briefly recall how to do
this.

Some tiles are used to transmit a symbol of the alphabet of the Turing ma-
chine, some are used to show that the state qi will act on the symbol aj at the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Universal Tilings 373

next step and finally, some are used to represent the transitions of the Turing
machine. More details of this construction can be found in [AD96].

We will now build a Turing machine M such that the space×time diagram of
the computation of M(ω) gives a rectangular pattern that simulates a tile from
the tile set τ|ω| (the |ω|th tile set).

Our Turing machine works with a semi-infinite tape. A typical input is ω = x$n

where x ∈ {0, 1}∗ and n depends on |x|. The length of ω represents the code
of the tile set we are working with, and the first part of ω, x, is the code of a
color of the set of color of τ|ω|. We know that we can encode a tile set, i.e., by
giving it an unique number or code in a same way that we do for Turing machines.
So the first step consists in decoding |ω| to find the different tiles that compose
τ|ω|. Then we check if x is the code of a color of τ|ω|. If yes, we choose in a non-
deterministic way a tile t of τ|ω| such that the color of its south side is x. We can
build our Turing machine such that after m steps of computation, the k next steps
of the computation are used to write the code of the west/east2 color of t (n and
k depending only on |ω|), i.e., in the space×time diagram of the Turing machine,
the first column from time m + 1 to m + k represents the code of the color of
the west side of t. The tiles that are not between the (m+1)th and the (m+ k)th

lines are all the blank tile �. We do the same for the east/west side (depending on
the first choice we made), i.e., in the space×time diagram of the Turing machine,
the last column from time m′ + 1 to m′ + k represents the code of the color of
the east side of t (m′ depending only on |ω|). The p last steps of computation are
used to write the code of the color of the north side of t completed with $’s and
�’s. For later usage, we precise that our Turing machine M does nothing when
the entrance is the empty word. This means that its corresponding space×time
diagram will be a rectangular space filled by blank tiles.

Computation of t, choice of

a tile with south color X
x2

SPACE

TIME

m+1

m+k Write the code of the east/west

side of the chosen tile

m’+1
m’+k

m’+k+p

x1 xs $ $

Write the code of the west/east

side of the chosen tile

Write the code of the north

side of the chosen tile

y2y1 ys $ $

z
z1

k

w
w

1

k

Fig. 2. The space×time diagram of M

The figure 2 represents the space×time diagram of our Turing machine. In
addition, we construct the Turing machine such that for two inputs of size p the
2 Our algorithm chooses in a non-determistic way either the west or the east side. This

non-determinism is essential for east/west matching of two diagrams.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

374 G. Lafitte and M. Weiss

machine uses exactly s(p) of space and t(p) of time. With this construction, we
are certain that two space×time diagrams have the same size if and only if the
inputs have the same lengths. That guarantees that the simulations of two tiles
from the same tile set give two diagrams of the same size. So, two diagrams will
match on their north/south side if and only if the two tiles that they simulate
match on their north/south side. For the east/west border the match rules are
different. During the computation, we can choose to write first the east color or
the west color. Then, two diagrams will match on their east/west border if and
only if the tiles they represent match on their east/west border, and if during
the computation, the two Turing machines they represent have done different
non-deterministic choices.

The idea is now to associate this Turing machine to its corresponding tiling,
called τu. By construction, τu generates patterns that correspond to the space×
time diagram of the simulation of a tile. We have a tiling that gives {s × t}-
patterns such that two patterns match if and only if they represent two tiles,
from the same tile set, that match. Hence, we can simulate with this tile set any
behaviour of any tile set. Therefore, τu is complete.

4 Universality

We now study the different universality notions defined above. We give some
results about universality before constructing our first universal tiling.

Theorem 3. 1. If Pu � P , where Pu is a strongly universal tiling and P is a
τ-tiling, then there exists a strongly universal τ-tiling.

2. Let Pu be a tiling. If Pu is strongly universal, then Pu is non-recursive.

Proof. 1. If Pu � P , then there exists a reduction R such that for any {n1×n2}-
pattern A of Pu there exists a {m1 × m2}-pattern B of P such that A �

R B.
We consider the set of patterns {Ai}i>0 where Ai is the {i × i}-pattern of Pu

centered around (0, 0). So, there exists a set of patterns {Bi}i>0 of Pu such that
Ai � Bi ∀ i. Thus, we can extract from {Bi}i>0 a τ -tiling Q such that Pu �

R Q.
Since � preserves universality, then Q is a strongly universal tiling.
2. Let Pu be a strongly sparse universal τ -tiling. We will prove that Pu is non-
recursive. By Hanf and later Myers [Mye74, Han74], we know that there exists
tile sets that produce only non-recursive tilings. Let τ ′ be such a tile set. Suppose
that Pu is recursive, i.e., fPu is recursive. Let Pnr be a non-recursive τ ′-tiling
such that Pnr � Pu. Let {Ri}i≥1 be the family of reduction core functions from
a set of τ -patterns to τ ′. {Ri}i≥1 is enumerable. If fPu is recursive, we can
compose it with the reductions Ri and obtain the recursive tiling functions of
all τ ′-tilings that reduce to Pu. By definition Pnr reduces strongly to Pu, thus
one of those recursive tiling functions defines Pnr. This is a contradiction, hence
Pu is non-recursive.

The first result we obtain, concerning the different universality notions, is the
non-existence of strongly dense universal tilings. This is due to a countability

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Universal Tilings 375

argument. We only have a countable set of possible reductions for a given tiling,
but an uncountable set of tilings.

Theorem 4. Strongly dense universal tilings do not exist.

We now study the weak version of universality for tilings. The idea of the con-
struction is to build our tiling in the same way that we can construct a Turing
machine simulating every step of all the Turing machines by simulating at step
i the first i computing steps of the first i Turing machines. Similarly, we con-
struct a weakly dense universal tiling that enumerates all possible patterns of
all tilings. They are countable so we can simulate all of them in the same tiling.
Thus, we obtain the following result:

Theorem 5. There exists a weakly dense universal tiling.

Of course, weak dense universality implies weak sparse universality.
We still have a last universality notion to study: strong sparse universality,

i.e., a tiling that can simulate at least one tiling for each tile set. We can still
use the Easy5 tile set to show the non-emptiness of this class. In the following
theorem, we propose a non-periodic tile set that will generate a strongly sparse
universal tiling, that is universal in a more ”natural” way than Easy5.

Theorem 6. There exists a non-periodic tile set that generates a strongly sparse
universal tiling.

Proof. The idea is to simulate a Turing machine in an aperiodic tiling. For
this, we use Robinson’s tiling. We give some explanations on how to force the
computation of a Turing Machine in Robinson’s tiling. We again refer the reader
to [Rob71] and [AD96] for a detailed construction.

obstruction color

2.1.

Fig. 3. The hierarchical structure and the obstruction zone in Robinson’s tiling

The main idea is to use the hierarchical pattern construction that is generated
by Robinson’s tiling. It gives rise to 2n − 1 square patterns (figure 3.1). We note
that two squares of sizes 22n − 1 and 22m − 1 cannot intersect if n �= m. The
idea is to compute a given Turing machine in the squares of size 22n − 1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

376 G. Lafitte and M. Weiss

In order to do this, the squares of size 22n−1 send an obstruction color outside
their borders. That is an intuitive fact that we can do this with a tiling but it is
a quite technical result to prove. Figure 3.2 shows the hierarchical construction
with the obstruction tiles.

In this figure there appears white spaces, i.e., areas without obstruction color
spaces. Those spaces are called free. Those white spaces are the computation
spaces, where the Turing machine M will be simulated. On each free tile, we
superimpose the tiles representing our Turing machine as we explained in section
3. The tiles that are obstructed in one direction (horizontally or vertically) will
transmit the information of the computation of our Turing machine in the other
direction. By construction, the tiles that are obstructed in both direction have no
information to transmit. Thus, we can impose to the lowest free spaces of a square
to start the simulation of our Turing machine on an empty tape with a given
state. Then, by transmission of the information horizontally and vertically, we
will simulate in each square of size 22n −1, the first steps of our Turing machine.

We now take the Turing machine M described in figure 2. We built it to force
that on any input of length n, if M stops, then it stops using exactly s(n) spaces
and t(n) steps. We modify it to permit that t(n) = k × s(n) = k × n2, ∀n . Since
we work in linear space and time, we can modify M to satisfy those conditions.

We also modify Robinson’s tiling by simulating any tile of Robinson’s tiling
with patterns of size {1 × k}. The k is the same constant that relates the time
function and the space function of M . The tiling that we obtain is Robinson’s
tiling stretched horizontally with a factor k. Thus, in each square of size 22n −1,
we will have the equivalent of a square of size n2 × (k n2) of free tiles.

Now, we just have to simulate our Turing machine M in these spaces. We can
force the south-west free tile of any square pattern to be the tile that simulates
M on state q0. We force that the tiles that touch the south border of the square
represent any of the four symbols {0, 1, $, �}. Then, the computation of M on
this input will say if it was a correct input, and will halt in exactly t(n) steps
and s(n) spaces if it was correct. We can force that the computation tiles match
the north board of the square if and only if they are in a final state. Thus, we
fill the free tiles of a square if and only if the input was x$n�m, such that x is
the code of a color of τ|x|+n and the computation uses |x| + n + m spaces and
halts after k × (|x| + n + m) steps to give a simulation of a tile of τ|x|+n.

With this construction, we fill any pattern of a given size with the simulations
of some tiles from the same tile set. To guarantee that this simulation works, we
modify the obstruction color sent by the squares outside their borders. We add
four kinds of obstruction colors: c0, c1, c$ and c�, representing the four symbols
{0, 1, $, �}. For example, the obstruction color c$ will be sent if the first tile
inside the square is a computation tile, and is a tile representing the symbol $.
Thus, all the squares of a given size will represent a tiling P of a certain tile set
because we have guaranteed that the matching rules were respected. Then, P
reduces to our construction.

The last point consists in checking that at least one tiling for each tile set
will reduce to our construction. It is the case because in our construction of M ,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Universal Tilings 377

we guarantee that each number represents a tile set, and thus, for each tile set,
there exists a unique size of rectangular free spaces where the tile set will be
simulated and so, any tile set that tiles the plane has a tiling that reduces to
our construction. We have specified that our Turing machine does nothing when
the entrance is the empty word. Its special space×time diagram corresponds to
the blank tile. Thus, all the free spaces of a given square size will be filled with
blank tiles. It is used when a tile set does not tile the plane to guarantee that
our final universal tiling will tile the plane.

In this theorem, we constructed a tiling P1 that simulates a tiling for each tile
set. For a given tile set τi, we can choose the τi-tiling that we will simulate in
P1. At a certain step of our computation, our tiling P1 will simulate its own
tile set. We can imagine that we will simulate a τi tiling P2 which is a strongly
sparse universal tiling such that P2 simulates for any tile set τi another τi-tiling
than the τi-tiling simulated in P1. Thus, by transitivity, with this construction,
P1 simulates at least 2 tilings for each tile set. At a certain point P2 will also
simulate its own tile set, etc. By iterating this process, we can build a tiling that
simulates for each tile set τ a countable infinity of τ -tilings.

The following theorem gives the conditions needed by a tile set to generate a
universal tiling that simulates a countable infinity of tilings for each tile set.

Theorem 7. Let τ be a tile set. If for any countable set A = {P1, P2, P3, . . . | Pj

is a τj-tiling ∀j } there exists a τ-tiling PA such that Pj � PA for all Pj ∈ A,
then there exists a strongly sparse universal τ-tiling Pu such that for all τj there
exists a countable infinite set Aj = {Pj1 , Pj2Pj3 , . . .} of τj-tilings such that Pjk

�

Pu for all j, k. We say that a tiling has the universal infinity property (UIP) if
it satisfies the conditions of this theorem.

Proof. Let τ be a tile set that satisfies the hypothesis of the theorem. Since τ
is a tile set, there exists i such that τ = τi. We consider the set A1 composed
of P 1

1 , P 1
2 , . . . such that, for all j, P 1

j is a τj-tiling and P 1
i is a τi-tiling that

simulates all tilings of the set A2. By induction, we define An to be composed
of Pn

1 , Pn
2 , . . . such that, for all j, Pn

j is a τj-tiling and Pn
i is a τi-tiling that

simulates all tilings of the set An+1.
If we choose the sets An in such a way that An

⋂
Am = ∅ for all n, m, then

by simulating all tilings of the set A1, Pu will simulate a countable infinity of
tilings for each tile set.

Since in theorem 6 we can choose the tiling that we want to simulate for a
given tile set, Easy5 and the tile set of theorem 6 have the universal infinity
property. We can see that a tile set with UIP has the highest class of universality.
The following theorem shows that this property is equivalent to other notions
mentionned above.

Theorem 8. The following statements are equivalent:
1. τ has the universal infinity property;
2. τ is complete;
3. τ generates a weakly dense universal tiling.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

378 G. Lafitte and M. Weiss

Proof. 1 ⇒ 2: Let τ be a tile set with the universal infinity property. Then, for
any subset A = {P1, P2, . . .}, where Pj is a τj-tiling, there exists a τ -tiling P
such that Pi � P for all Pi ∈ A. Thus, for any tiling Q, there exists a τ -tiling P
such that Q � P . So, τ is complete.

1 ⇐ 2: Let τ be a complete tile set and τ ′ a tile set with the universal infinity
property. Since τ is complete, for any τ ′-tiling Pk there exists a τ -tiling Qk such
that Pk � Qk. Since the theorem 6 shows the existence of at least one tile set
with the universal infinity property, then we can reduce all of its tilings to our
complete tile set τ and thus, τ has the universal infinity property.

2 ⇔ 3: By theorem 1.

We have shown that completeness, generating weak dense universality and uni-
versal infinity property are equivalent. In fact, it is the finest universality class
we can get, based on our reduction notion. We call this class [UIP].

The class [UIP] is really interesting in the sense that two tile sets τ and τ ′

of [UIP] have the following property: for any τ -tiling P , there exists an infinity
of τ ′-tilings {Qi}i>0 such that P � Qi. In a certain way, the tile sets of [UIP]
generate tilings with the same behaviour.

In figure 4, we illustrate the obtained classification of the different universality
and completeness notions seen along the paper.

-Generates a weak dense universal tiling

- Complete -UIP

Generates a strongly sparse universal tiling
Generates a weakly sparse universal tiling

Other tile sets

Fig. 4. The universality classification for tile sets

To clarify this classification, we aim to show that some non-periodic tile sets
do not belong to [UIP]. To prove this, we recall the quasiperiodic function
associated to a tiling. For a given tiling P , the quasiperiodic function GP gives
for each n, the smallest m such that any pattern of size n in P appears at least
once in any m×m-square pattern of P . Of course, GP is not a total function for
all P . We can have a tiling Q where a given pattern of size s appears only once
in Q and thus, GQ(s) will not be defined. Nevertheless, Durand [Dur99] showed
that if a tile set tiles the plane, then it can tile it in a quasiperiodic way, i.e.,
the quasiperiodic function associated to this tiling is total.

We have the following results:

Theorem 9. Let P and Q be two tilings of the plane. If there does not exist
c ∈ N such that GQ(cn) > GP (n) ∀ n, then P �� Q.

Proof. Suppose that P � Q with a reduction of size (a, b). That means that any
{c × d}-pattern of P is simulated by a {ca × bd}-pattern of Q. By the theorem’s

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Universal Tilings 379

condition, there exists at least one n such that GQ(a × b × n) < GP (n). Thus
there exists a pattern m of P of size n that appears less frequently in P than
any pattern of Q of size a × b × n appears in Q. Hence, no pattern of Q of size
a × b × n can represent the pattern m and thus, P �� Q.

Since [CD04], we know that there exists tile sets that generate only tilings with
a non-recursive quasiperiodic function. Thus, if P is a universal strong tiling,
then GP cannot be recursive. Since Robinson’s tile set gives rise only to tilings
with recursive quasiperiodic functions, Robinson’s tilings are not universal.

5 Concluding Remarks

We have shown that there exists a strongly sparse universal tiling that can
simulate a countable infinity of tilings for each tile set. That is the strongest
universality notion we can get. In fact, having a tile set with this property is
equivalent to completeness and to generating a weakly sparse universal tiling.
But we have also shown that there is no strongly universal tiling that simulates
all tilings, because of an argument of countability.

The constructions were generated by the trivial tile set EASY5. But we also
show that even non-periodic tile sets can generate universality and be complete.
There remains the question: are all non-periodic tile sets, that generate only
tilings with a non-recursive quasiperiodic function, complete?

Acknowledgements

We warmly thank Jacques Mazoyer for his startling remarks and all his advices,
and Bruno Durand for the stimulating discussions.

References

[AD96] Allauzen (C.) et Durand (B.), The Classical Decision Problem, appendix
A: “Tiling problems”, p. 407–420. Springer, 1996.

[Ber66] Berger (R.), « The undecidability of the domino problem », Memoirs of
the American Mathematical Society, vol. 66, 1966, p. 1–72.

[CD04] Cervelle (J.) et Durand (B.), « Tilings: recursivity and regularity », The-
oretical Computer Science, vol. 310, no 1-3, 2004, p. 469–477.

[CK97] Culik II (K.) et Kari (J.), « On aperiodic sets of Wang tiles », in Foun-
dations of Computer Science: Potential - Theory - Cognition, p. 153–162,
1997.

[DLS01] Durand (B.), Levin (L. A.) et Shen (A.), « Complex tilings », in Proceedings
of the Symposium on Theory of Computing, p. 732–739, 2001.

[Dur99] Durand (B.), « Tilings and quasiperiodicity », Theoretical Computer Sci-
ence, vol. 221, no 1-2, 1999, p. 61–75.

[Dur02] Durand (B.), « De la logique aux pavages », Theoretical Computer Science,
vol. 281, no 1-2, 2002, p. 311–324.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

380 G. Lafitte and M. Weiss

[Han74] Hanf (W. P.), « Non-recursive tilings of the plane. I », Journal of Symbolic
Logic, vol. 39, no 2, 1974, p. 283–285.

[Mye74] Myers (D.), « Non-recursive tilings of the plane. II », Journal of Symbolic
Logic, vol. 39, no 2, 1974, p. 286–294.

[Rob71] Robinson (R.), « Undecidability and nonperiodicity for tilings of the plane »,
Inventiones Mathematicae, vol. 12, 1971, p. 177–209.

[Wan61] Wang (H.), « Proving theorems by pattern recognition II », Bell System
Technical Journal, vol. 40, 1961, p. 1–41.

[Wan62] Wang (H.), « Dominoes and the ∀∃∀-case of the decision problem », in
Proceedings of the Symposium on Mathematical Theory of Automata, p. 23–
55, 1962.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Complexity of Unary
Tiling-Recognizable Picture Languages�

Alberto Bertoni1, Massimiliano Goldwurm1, and Violetta Lonati1

Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano
Via Comelico 39/41, 20135 Milano – Italy

{bertoni,goldwurm,lonati}@dsi.unimi.it

Abstract. We give a characterization, in terms of computational com-
plexity, of the family Rec1 of the unary picture languages that are tiling
recognizable. We introduce quasi-unary strings to represent unary pic-
tures and we prove that any unary picture language L is in Rec1 if and
only if the set of all quasi-unary strings encoding the elements of L is rec-
ognizable by a one-tape nondeterministic Turing machine that is space
and head-reversal linearly bounded. In particular, the result implies that
the family of binary string languages corresponding to tiling-recognizable
square languages lies between NTime(2n) and NTime(4n). This also im-
plies the existence of a nontiling-recognizable unary square language that
corresponds to a binary string language recognizable in nondeterministic
time O(4n log n).

Classification: automata and formal languages, computational com-
plexity.

Keywords: unary picture languages, tiling systems, Turing machine
head reversal.

1 Introduction

Picture languages have been introduced in the literature as two-dimensional
extension of traditional string languages, a picture being a two-dimensional array
of elements from a finite alphabet. They have been originally considered as formal
models for image processing in connection with problems of pattern recognition.
Several classical tools and concepts have been used to classify picture languages
and study their properties: regular expressions [8], grammars [12], automata [6],
logic formulas [5].

One of the main effort in this area is to capture the notion of recognizabil-
ity. In particular, various notions of two-dimensional finite automaton have been
proposed and studied in the literature [6,7]. An interesting formal model for the
recognition of picture languages is given by the so-called tiling systems intro-
duced in [3], which are based on projection of local properties. A tiling system τ
is defined by a finite set Θ of square pictures of size 2 together with a projection
� This work has been supported by the Project M.I.U.R. COFIN “Automata and

formal languages: mathematical and application driven studies”.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 381–392, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

382 A. Bertoni, M. Goldwurm, and V. Lonati

between alphabets. Roughly speaking, a language is recognized by τ if each of
its elements can be obtained as a projection of a picture whose subpictures of
size 2 belong to Θ. The class of picture languages recognized by such systems
satisfy relevant properties, which resemble classical properties of regular string
languages [4].

A special case is represented by pictures over a one-letter alphabet: in this
case only the shape of the picture is relevant, and hence a unary picture is sim-
ply identified by a pair of positive integers. In this context, a general goal is
to define techniques to describe families of recognizable languages, or to con-
struct examples of non-recognizable languages [4,7]. For instance, families of
tiling-recognizable unary picture languages are introduced in [4] by means of
integer functions or in [2] by means of special regular expressions, whereas in [7]
two-dimensional automata are used to recognize unary languages and several
strategies to explore pictures are presented.

In this work we give a complexity result concerning the unary picture lan-
guages recognized by tiling systems. We characterize such a family by means of
non-deterministic Turing machines that are space and head-reversal bounded.
More precisely, we introduce a notion of quasi-unary strings to represent pairs of
positive numbers and we prove that a unary picture language L is tiling recog-
nizable if and only if the set of all quasi-unary strings encoding the sizes of the
elements of L is recognizable by a one-tape non-deterministic Turing machine
M that works within max(n, m) space and executes at most min(n, m) head
reversals, on the input representing the pair (n, m).

In particular for the case of squares, this result allows us to relate the recog-
nizability of unary square pictures to nondeterministic time complexity bounds.
Informally, it shows that the complexity of the binary encodings of tiling-
recognizable unary square picture languages is located between NTime(2n) and
NTime(4n). This yields a large variety of examples of picture languages that
are tiling recognizable. For instance, all sets of binary encodings of NP problems
correspond to tiling-recognizable (unary square) picture languages.

Also, our characterization allows us to use separating results on time complex-
ity classes as a tool for defining recognizable and non-recognizable unary picture
languages. In particular, using a property proved in [11], we show the existence
of a unary square language that is not tiling recognizable, but corresponds to a
binary string language recognizable in nondeterministic time O(4n log n).

2 Preliminaries on Picture Languages

Given a finite alphabet Σ, a picture (or two-dimensional string) over Σ is either
a two-dimensional array (i.e., a matrix) of elements of Σ or the empty picture
λ. The set of all pictures over Σ is denoted by Σ∗∗; a picture language (or
two-dimensional language)over Σ is a subset of Σ∗∗.

Given a picture p ∈ Σ∗∗, we use rp and cp to denote the number of rows and
columns of p, respectively. The pair (rp, cp) is called the size of p. By definition we
have rp > 0 and cp > 0, except for the empty picture λ that has size (0, 0). The

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Complexity of Unary Tiling-Recognizable Picture Languages 383

symbol in p with coordinates (i, j) is denoted by p(i, j), for every 1 ≤ i ≤ rp and
1 ≤ j ≤ cp. If rp = cp, then p is called a square picture and the size of p is simply
rp. A square language is a picture language containing only square pictures. If the
alphabet Σ is a singleton, then the pictures over Σ∗∗ are called unary pictures.
A unary picture language is a subset of Σ∗∗, where Σ is a singleton.

For any picture p ∈ Σ∗∗ of size (m, n), we use p̂ to denote a new picture of
size (m + 2, n + 2) obtained by surrounding p with a special boundary symbol
� �∈ Σ. Such boundary will be useful when describing scanning strategies for
pictures.

Many operations can be defined between pictures and picture languages. In
particular, we recall the operations of row and column concatenation. Let p and
q be pictures over Σ∗∗ of size (rp, cp) and (rq, cq), respectively. If rp = rq, we
define the column concatenation p � q between p and q as the picture of size
(rp, cp + cq) whose i-th row equals the concatenation of the i-th rows of p and q,
for every 1 ≤ i ≤ rp. If cp = cq, we define the row concatenation p�q analogously.
Clearly, � and � are partial operations over the set Σ∗∗. These definitions can
be extended to picture languages and iterated: for every language L ⊆ Σ∗∗, we
set L0� = L0� = {λ}, Li� = L�L(i−1)� and Li� = L�L(i−1)�, for every i ≥ 1.
Thus, one can define the row and column closures as the transitive closures of
� and �:

L∗� =
⋃

i≥0

Li� L∗� =
⋃

i≥0

Li�,

which can be seen as a sort of two-dimensional Kleene star. Another useful
operation is the so-called rotation: given p ∈ Σ∗∗, its rotation pR is the picture
of size (cp, rp) defined by (pR)ij = prp+1−j,i.

From the recognizability view point, various approaches have been proposed.
In particular, here we consider the class Rec and its definition in terms of tiling
systems [3,4]. First, we recall the definition of local picture language.

Definition 1. A tile is a square picture of size 2; for every picture p, T (p)
denotes the set of all tiles that are subpictures of p. A picture language L ⊆ Γ ∗∗

is called local if there exists a finite set Θ of tiles over the alphabet Γ ∪{�} such
that L = {p ∈ Γ ∗∗ | T (p̂) ⊆ Θ}. In this case we write L = L(Θ).

We also need the notion of projection of pictures and picture languages. Let
π : Γ → Σ be a mapping between two alphabets. Given a picture p ∈ Γ ∗∗, the
projection of p by π is the picture π(p) ∈ Σ∗∗ such that π(p) (i, j) = π(p(i, j)) for
every pair of coordinates i, j. Analogously, the projection of a language L ⊆ Γ ∗∗

by π is the set π(L) = {π(p) | p ∈ Γ ∗∗} ⊆ Σ∗∗.

Definition 2. A tiling system is a 4-tuple τ = 〈Σ, Γ, Θ, π〉 where Σ and Γ
are two finite alphabets, Θ is a finite set of tiles over the alphabet Γ ∪ {�} and
π : Γ → Σ is a projection. A picture language is tiling recognizable if there
exists a tiling system 〈Σ, Γ, Θ, π〉 such that L = π(L(Θ)). Rec is the class of
picture languages that are tiling recognizable.

Notice in particular that any local language is tiling recognizable.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

384 A. Bertoni, M. Goldwurm, and V. Lonati

The class Rec satisfies some remarkable properties. For instance it can be
defined as the class of languages recognized by online tessellation automata,
that are special acceptors related to cellular automata [6]; they can be expressed
by formulas of existential monadic second order [5]; they can be defined by means
of regular-like expressions based on certain composition rules between pictures
[4]. In particular we will use the fact that Rec is closed with respect to the
operations ∪, �, �,∗� ,∗� ,R.

Finally, since we are interested in unary pictures, we also introduce the fol-
lowing

Definition 3. Rec1 is the subclass of Rec containing the unary picture lan-
guages that are tiling recognizable.

3 Characterization of Rec1

In this section, we state our main result, that is a characterization of the class
of unary picture languages that are tiling recognizable.

To this aim, consider the alphabet Σ = {◦} and notice that any unary picture
p ∈ {◦}∗∗ is identified by its size, that is by the pair (rp, cp). Thus, unary pictures
(i.e. pairs of positive integers) can be encoded by quasi-unary strings as follows.
We consider the set of unary strings over Σ

U = {◦n | n > 0}

and the following sets of strings that are unary except for one special letter h or
v (not occurring in first position):

Qh = {◦nh ◦k | n > 0, k ≥ 0} ,

Qv = {◦nv ◦k | n > 0, k ≥ 0} .

We call quasi-unary string over the alphabet {◦, h, v} any string in Q = U ∪Qh ∪
Qv. The length of any quasi-unary string x is denoted as usual by |x|, whereas
we use ◦|x| to denote the length of the longest prefix of x in ◦+. The use of
symbols h and v allows us to distinguish among squares, horizontal (with more
columns than rows), and vertical rectangles. Thus, a quasi-unary string x ∈ Qh

represents the unary horizontal rectangle of size (◦|x|, |x|); x ∈ Qv represents the
unary vertical rectangle of size (|x|, ◦|x|); whereas x ∈ U represents the unary
square of size |x|.

Summarizing the previous definitions, the encoding φ from unary pictures to
quasi-unary strings can be stated as follows: for every picture p ∈ {◦}∗∗, we have

φ(p) =

⎧
⎨

⎩

◦rp h ◦cp−rp−1 if rp < cp

◦rp if rp = cp

◦cp v ◦rp−cp−1 if rp > cp

Notice that |φ(p)| = max(rp, cp), while ◦|φ(p)| = min(rp, cp).
Now, let us introduce the complexity classes of quasi-unary languages that we

shall use to characterize the class of tiling-recognizable unary languages.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Complexity of Unary Tiling-Recognizable Picture Languages 385

Definition 4. NSpaceRevQ is the class of quasi-unary string languages that
can be recognized by 1-tape nondeterministic Turing machines working within |x|
space and executing at most ◦|x| head reversals, for any input x in Q.

Our main theorem can then be stated as follows:

Theorem 1. A unary picture language L is in Rec1 if and only if φ(L) belongs
to NSpaceRevQ.

The proof of Theorem 1 is split into two parts. In section 4 we prove that if L
is in Rec1, then φ(L) belongs to NSpaceRevQ, whereas in Section 5 we prove
the inverse.

4 Recognizability Implies the Complexity Bound

In this section we prove that, if L is a tiling-recognizable unary picture language,
then φ(L) is in NSpaceRevQ. In order to prove such a result, let Θ be a finite
set of tiles over some alphabet Γ , and consider the following problem.

Size Representability (Θ)
Instance: a quasi-unary string x ∈ Q.
Question: does there exist p ∈ L(Θ) whose size is represented by x?

Lemma 1. The problem Size Representability (Θ) is in NSpaceRevQ for
every finite set of tiles Θ.

Proof. We define a Turing machine M for the Size Representability problem,
that nondeterministically tries to generate some p ∈ L(Θ) of the required size.
First of all, M establishes if x ∈ Qh, x ∈ Qv, or x ∈ U . This can be done
nondeterministically without head reversals. If x ∈ Qh or x ∈ U , then the
generation is performed row by row, otherwise the generation has to be done
column by column. The input is accepted if and only if such a generating process
can be accomplished. We describe in details only the steps executed in the case
x ∈ Qh; the other cases are similar and are left to the reader.

The working alphabet Γ ′ of M contains the symbols ◦, h, v, � �
, all the pairs
(a, b) ∈ (Γ ∪ {�}) × (Γ ∪ {�}), and their marked versions (a, b) and (ã, b). The
symbols (a, b) shall be used in correspondence with a pair of adjacent symbols in
some column of the picture p generated during the computation; the overlined
symbols shall be used as bookmarks at the ◦|x|-th cell, tildes shall be used to
implement a counter.

The machine M works only on the portion of the tape containing the input
x, which we call the working portion of the tape. The computation behaves as
follows:

1. First of all, M reads the tape rightwards until the first blank, nondeter-
ministically replacing each input symbol according to Θ, whenever such a
replacement is possible. More precisely:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

386 A. Bertoni, M. Goldwurm, and V. Lonati

– the leftmost symbol is replaced by some pair (�, a) such that the tile t1
in the figure below belongs to Θ;

– any next symbol is replaced by some pair (�, b) in such a way that, for
each pair of consecutive pairs (�, b) and (�, b′), the tile t2 in the figure
belongs to Θ (the position of the symbol h is preserved by using overlined
pairs);

– the rightmost symbol ◦ is replaced by some pair (�, c) such that the tile t3
in the figure belongs to Θ. At any position, if no replacement is allowed,
then M halts and rejects.

t1 =
� �

� a
t2 =

� �

b b′
t3 =

� �

c �

2. M changes direction and reads all the working portion of the tape without
head reversals, replacing each symbol (a, b) by (b, c) in such a way that the
ending symbols and each pair of consecutive symbols do respect Θ (as in
point 1). Such a procedure is repeated (◦|x| − 1)-many times. Observe that
this task can be performed by using the first (◦|x|) cells of the tape (those
that precede some overlined symbol of Γ ′) and marking one cell with a tilde
at each repetition. Also during this phase, if no replacement is allowed, then
M halts and rejects.

3. After the (◦|x| − 1)-th repetition of step 2, M changes direction and reads
all the working portion of the tape again, without head reversals. Now each
symbol (a, b) is replaced by (b, �) according to Θ, and whenever no replace-
ment is allowed, then M halts and rejects.

The input x is accepted if and only if the procedure can be concluded, that is, if
and only if there exists a picture p ∈ L(Θ) of size (◦|x|, |x|). Since the machine
M works exactly in space |x| and executes exactly ◦|x| head reversals, the proof
is complete.

Theorem 2. If L is a unary picture language in Rec1, then φ(L) belongs to
NSpaceRevQ.

Proof. Let 〈{◦}, Γ, Θ, π〉 be a tiling system for L, and consider the Turing ma-
chine M that solves the problem Size Representability(Θ). Now notice that
π maps all symbols of Γ to ◦, that is π forgets the content of p and preserves
only its size. Thus x ∈ φ(L) = φ(π(L(Θ))) means that there is a picture in L(Θ)
whose size is represented by x. Therefore M exactly recognizes the set φ(L) and
this concludes the proof.

5 The Complexity Bound Implies Recognizability

To prove the inverse of Theorem 2, we first introduce an auxiliary picture lan-
guage, associated with the accepting computations of a 1-tape nondeterministic

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Complexity of Unary Tiling-Recognizable Picture Languages 387

Turing Machine. A similar approach is used in [3] to prove that the emptiness
problem for the family Rec is undecidable.

5.1 The Accepting-Computation Language of a Turing Machine

Let M be a 1-tape nondeterministic Turing machine M , and let Σ and Λ be the
input and the working alphabet (Λ contains the blank symbol �
). We denote by
Q the set of states, which includes the initial state q0 and a unique accepting
state qyes. Also let δ : Q × Λ → 2Q×Λ×{+,−} be the transition function of M .
Without loss of generality, we assume M can never print the blank symbol �
,
and hence (q, c, x) ∈ δ(p, a) implies c �= �
. Then, set ΛQ = {σq | σ ∈ Λ, q ∈ Q},
a configuration of M is a string C = xσqy ∈ Λ∗ΛQΛ∗ which represents the
instantaneous description of the machine where xσy is the work portion of the
tape, q is the current state and the head scans the cell containing σ on the right
of x. If q = q0 and x is the empty string, then C is the initial configuration of
M on input σy. If q = qyes then C is an accepting configuration. We assume the
machine halts in every accepting configuration.

Given two configurations C and D of M , we write C � D whenever M can
go from C to D without head reversals, possibly by several distinct moves. We
call run such a sequence of moves.

We define an accepting computation1 of M on input x ∈ Σ∗ as a string of the
form

W = W1 � W2 � · · · � Wn

such that all Wj ’s are configurations of M , W1 is the initial configuration on input
x, Wn is an accepting configuration, Wi � Wi+1 holds for each i = 1, . . . , n − 1,
and there is a head reversal at Wi for every 1 < i < n, that is, in the runs from
Wi−1 to Wi and from Wi to Wi+1, the head moves to opposite directions.

Given an accepting computation W , let m = maxi |Wi| and consider the
picture of size n × m containing the string Wi (possibly followed by �
’s) on the
i-th row, for 1 ≤ i ≤ n. Notice that, from such a picture, one can recover the
input and the sequence of runs but not the complete step-by-step computation
on the same input.

The accepting-computation language of M is defined as the set A(M) of all
pictures corresponding to any accepting computation of M . Note that every
accepting computation W of M corresponds to a picture w ∈ A(M) such that
rw − 2 equals the number of head reversals executed in W (corresponding to
W2, · · · , Wn−1) and cw is the space used in W .

Example 1. Let M be a Turing machine such that {a, b, c} is the input and
working alphabet, Q = {1, 2, 3, 4, 5, y} is the set of states, y is the accepting
state. Then, consider the sequence of moves represented in the following table,
where (σ′, q′, ∗) ∈ δ(σ, q):

1 We remark that usually the term computation refers to a description of the sequence
of all single moves the machine executes. Rather, here we refer to this concept using
the expression step-by-step computation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

388 A. Bertoni, M. Goldwurm, and V. Lonati

q 0 1 4 2 1 4 5 1 4 0 2 3 2 4 2 0
σ a b a c b c a b c b c a b a a c

q′ 1 4 2 1 4 5 1 4 0 2 3 2 4 2 0 y

σ′ c a c b a b c a b a b b a c b b

∗ + + + + + − − + + + + − − + − −

The picture w associated to such a computation W = W1 � W2 � · · · � W7 is
given by

a0 b a c b c c a → W1

c a c b a c4 c a → W2

c a c b1 c b c a → W3

w = c a c a b a b a3 → W4

c a c a b a4 a b → W5

c a c a b c a2 b → W6

c a c a by b b b → W7

Proposition 1. The accepting-computation language of a 1-tape nondetermin-
istic Turing machine is in Rec.

Sketch of the proof. One can prove that, for every given 1-tape nondeterministic
Turing machine M , the accepting-computation language L of M is the projection
of a suitable language L′ in Rec. The complete proof of this fact is omitted
because of space constraints. Here we just say that, given M , for every picture
w ∈ L it is possible to define a new picture w′ ∈ L′ by marking some symbols of
w, so that w′ encodes all information about the step-by-step computation of M
on input w. Then, since such a computation can be described locally (the head
touches only two cells at each step), L′ can be recognized by a tiling system.
Hence, L is in Rec, too. �

5.2 Overlap of Picture Languages

We now introduce a partial operation in the set of all picture languages (over
all alphabets). Given two picture languages L1 and L2, we consider every pair
of pictures p ∈ L1 and q ∈ L2 with the same size and having the first row in
common, and we glue them along the first row. The collection of all these pairs
is called the overlap L1 L2.

More formally, given two pictures p and q of the same size (n, m), let p × q
be the picture such that (p × q)(i, j) = (p(i, j), q(i, j)) for every 1 ≤ i ≤ n and
1 ≤ j ≤ m. Then, the overlap of L1 and L2 is defined as

L1 L2 = {p × q | p ∈ L1, q ∈ L2, rp = rq, cp = cq,

p(1, j) = q(1, j) for every 1 ≤ j ≤ cp}

Proposition 2. Given two picture languages in Rec, their overlap is still
in Rec.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Complexity of Unary Tiling-Recognizable Picture Languages 389

Proof. Let L1 and L2 be two picture languages over the alphabets Σ1 and Σ2,
respectively, and assume that they are in Rec. Then, for each i ∈ {1, 2}, there
exists a tiling system 〈Σi, Γi, Θi, πi〉 recognizing Li. Set

Top(Θi) = {t ∈ Θi | t =
� �

a b
where a, b ∈ Γi ∪ {�}}

and let Left(Θi), Right(Θi), and Bottom(Θi) be defined analogously. Also, define
Inner(Θi) as the set of tiles of Θi that do not belong to any of the previous set.
Now, let Γ = Γ1 × Γ2 and define Θ as the union of the sets Inner(Θ), Left(Θ),
Right(Θ), Bottom(Θ), Top(Θ), where:

Inner(Θ) = { (a1, a2) (b1, b2)

(c1, c2) (d1, d2)
| ai bi

ci di

∈ Inner (Θi), i ∈ {1, 2}},

Left(Θ) = { � (a1, a2)

� (b1, b2)
| � ai

� bi

∈ Left(Θi), i ∈ {1, 2} },

Bottom(Θ) and Right(Θ) are defined similarly, whereas Top(Θ) is given by

Top(Θ) = { � �

(a1, a2) (b1, b2)
| � �

ai bi

∈ Top(Θi), i ∈ {1, 2} and

π1(a1) = π2(a2), π1(b1) = π2(b2)}.

Finally, set π = π1 × π2, that is, for each pair (a1, a2) ∈ Γ , set π(a1, a2) =
(π1(a1), π2(a2)). Clearly, 〈Σ1 × Σ2, Γ, Θ, π〉 is a tiling system recognizing the
overlap of L1 and L2.

We are now able to prove the second part of Theorem 1.

Theorem 3. Given any unary picture language L, if the quasi-unary string
language φ(L) is in NSpaceRevQ, then L is tiling recognizable.

Proof. Since φ(L) is in NSpaceRevQ, it is recognized by a 1-tape nondetermin-
istic Turing machine M that works in |x| space for any input x ∈ Q, and exe-
cutes at most ◦|x| head reversals during each computation. Thus, the accepting-
computation language A(M) of such a Turing machine is in Rec, by Proposition
1, and so is the language Ā obtained from A(M) by replacing the symbol ◦q0

by ◦ in the upper-leftmost cell of each picture in A(M). As a consequence, the
following language is in Rec, too:

A′ = Ā �
(
�
∗�

)∗�

(observe that any picture in A′ can be seen as a picture in Ā possibly extended
downwards with rows of blanks).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

390 A. Bertoni, M. Goldwurm, and V. Lonati

Now, let us introduce some special picture languages that shall be used to
bind the size of a picture, (i.e., they play the role of mask languages). Let Es be
the set of all unary squares and set

Eh = Es � h∗�
� ◦∗∗ and Ev = Es � v∗�

� ◦∗∗.

In other words, any p ∈ Es ∪ Eh contains, on each row, the quasi-unary string
representing its own size, while if p ∈ Ev, then p contains, on each row, the
quasi-unary string representing the size of pR. Moreover consider the picture
languages

Ls = A′ Es, Lh = A′ Eh and Lv = (A′ Ev)R.

and set L′ = Ls ∪ Lh ∪ Lv.
By Proposition 2, also L′ is tiling recognizable, and it turns out that L =

π(L′). Indeed, by the previous definition, we have that any quasi-unary string
x representing a picture of π(L′) is an accepted input of M , and hence it also
represents a picture in L. Thus, L and π(L′) being unary, we get π(L′) ⊆ L.

On the other hand, assume p ∈ L. First of all, notice that φ(p) is accepted
by M , hence there exists a ∈ Ā having φ(p) on the first row and such that
ca = max(rp, cp) and ra ≤ min(rp, cp). Let a′ ∈ A′ be the extension of a that has
exactly min(rp, cp) rows, and notice that a′ is a horizontal rectangle or a square,
independently of the shape of p. Moreover, consider the picture up = φ(p)◦|x|�.
Notice that, if p is a horizontal rectangle, then up ∈ Eh; if p is a vertical rectangle,
then up ∈ Ev, otherwise, if p is a square, up ∈ Es. In any case, up has the
same size as a′. Hence, if p is a square or a horizontal rectangle, then we have
p = π(a′ up); otherwise we have p = π

(
(a′ up)R

)
. In all cases, p ∈ π(L′) and

hence L ⊆ π(L′). Thus, L = π(L′) is in Rec1 and this concludes the proof.

6 Square Languages

In this last section we focus on unary square languages, that is on unary picture
languages whose elements are all squares. As should be clear at this moment of
the exposition, square languages are nothing but sets of positive integers, and so
far we represented them by unary strings over the alphabet {◦}. In the following
definition, we introduce a subclass of NSpaceRevQ that concerns only square
languages and their representation.

Definition 5. NSpaceRevU is the class of unary string languages that can be
recognized by 1-tape nondeterministic Turing machines working within n space
and executing at most n head reversals, for any input of length n.

Integers can also be represented with the classical binary encoding and this
suggest to define the binary complexity class corresponding to the previous def-
inition.

Definition 6. NSpaceRevB is the class of binary string languages that can be
recognized by 1-tape nondeterministic Turing machines working within 2n space
and executing at most 2n head reversals, for any input of length n.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Complexity of Unary Tiling-Recognizable Picture Languages 391

Notice that the families NSpaceRevU and NSpaceRevB are related to the well-
known time complexity classification. In particular, denoting by NTimeU (f(n))
(resp. NTimeB(f(n))) the class of unary (resp. binary) string languages that
can be recognized by 1-tape nondeterministic Turing machines working within
f(n) time for any input of length n, we have the following relations:

NTimeU (n) ⊆ NSpaceRevU ⊆ NTimeU (n2),

NTimeB(2n) ⊆ NSpaceRevB ⊆ NTimeB(4n). (1)

Theorem 1 can then be re-stated using these new classes, obtaining the fol-
lowing corollary.

Corollary 1. Given a unary square language L, the following statements are
equivalent:

– L is in Rec1,
– {◦rp | p ∈ L} ∈ NSpaceRevU ,
– {Bin(rp) | p ∈ L} ∈ NSpaceRevB ,

where Bin(n) is the binary encoding of the positive integer n.

The previous corollary provides a useful tool to verify whether a unary square
language is tiling recognizable. For instance, it proves that the set of unary square
pictures whose size is a prime number is in Rec1, since it is well-known that the
set of prime numbers is recognizable in polynomial time[1]. More generally, if π is
a NP problem, let Lπ be the language of all binary encodings of positive instances
of π. Then, the picture language {p ∈ ◦∗∗ | ∃x ∈ Lπ such that Bin (rp) = 1x}
belongs to Rec1.

A further, more complex, tiling-recognizable picture language can be built
by considering INEQ(RE,2), i.e. the inequality problem of regular expressions
with squaring, studied by Meyer and Stockmeyer in [9,10]. It is known that this
problem is complete in the class NExpTime =

⋃
c≥1 NTime(2cn) and hence it

is not even included in NP by well-known separation results [11]. It is not diffi-
cult to prove that a rather natural binary encoding of INEQ(RE,2) belongs to
NTimeB(2n) and hence, by the previous corollary and Equation 1, the corre-
sponding family of unary square pictures is tiling recognizable.

Another consequence of Corollary 1 concerns the construction of unary square
languages that are not tiling recognizable. For instance one can prove the exis-
tence of a unary square language that is not tiling recognizable, but such that
the set of binary encoding of its sizes is not too far (from a complexity view
point) from the class NSpaceRevB . In order to present such an example, for
any function f : N → R

+, let us define 2t-NTimeB(f) as the class of binary
string languages that are recognizable by 2-tape nondeterministic Turing ma-
chines working within time f(n) on every input of length n.

Proposition 3. There exists a unary square picture language L �∈ Rec1 such
that the string language S = {x ∈ {0, 1}∗ | 1x = Bin(rp) for a picture p ∈ L}
belongs to 2t-NTimeB(4n log n).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

392 A. Bertoni, M. Goldwurm, and V. Lonati

Proof. The existence of such language is guaranteed by a property proved in [11].
If T1, T2 : N → R

+ are two running-time functions such that T1(n + 1)/T2(n)
tends to 0 as n goes to infinity, then there exists a language S ⊆ {0, 1}∗
that belongs to 2t-NTimeB(T2(n)) but does not belong to 2t-NTimeB(T1(n)).
Setting T1(n) = 4n, T2(n) = 4n log n, and observing that 2t-NTimeB(4n) ⊇
NSpaceRevB , by Theorem 1 we have that S is in 2t-NTimeB(4n log n) whereas
L cannot be tiling recognizable.

Concluding, we observe that a natural problem arising from our characteriza-
tion result is whether a separation property, similar to the one proved in [11],
also holds for complexity classes defined by bounding the number of head re-
versals. This would lead to simpler unary picture languages that are not tiling
recognizable.

References

1. M. Agrawal, N. Kayal, N. Saxena. PRIMES is in P. Annals of Mathematics, 160(2):
781-793, 2004.

2. M. Anselmo, D. Giammarresi, M. Madonia. Regular expressions for two-
dimensional languages over one-letter alphabet. In Proc. 8th DLT, C.S. Calude, E.
Calude and M.J. Dinneen (Eds.), LNCS 3340, 63–75, Springer-Verlag, 2004.

3. D. Giammarresi, A. Restivo. Recognizable picture languages. Int. J. Pattern Recog-
nition and Artificial Intelligence, Special Issue on Parallel Image Processing, 31–42,
1992.

4. D. Giammarresi, A. Restivo. Two-dimensional languages. In Handbook of Formal
Languages, G. Rosenberg and A. Salomaa (Eds.), Vol. III, 215 – 268, Springer-
Verlag, 1997.

5. D. Giammarresi, A. Restivo, S. Seibert, W. Thomas. Monadic second order logic
over rectangular pictures and recognizability by tiling system. Information and
Computation, 125(1):32–45, 1996.

6. K. Inoue, I. Takanami. A survey of two-dimensional automata theory. In Proc. 5th
Int. Meeting of Young Computer Scientists, J. Dasson, J. Kelemen (Eds.), LNCS
381, 72–91, Springer-Verlag, 1990.

7. J. Kari, C. Moore. New results on alternating and non-deterministic two-
dimensional finite state automata. In Proc. 18th STACS, A. Ferreira, H. Reichel
(Eds.), LNCS 2010, 396–406, Springer-Verlag, 2001.

8. O. Matz. Regular expressions and context-free grammars for picture languages. In
Proc. 14th STACS, LNCS 1200, 283–294, Springer-Verlag, 1997.

9. A.R. Meyer and L.J. Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential space. Proc. 13th Annual IEEE Symp. on
Switching and Automata Theory 125-129, 1972.

10. A.R. Meyer and L.J. Stockmeyer. Words problems requiring exponential time.
Proc. 5th ACM Symp. on Theory of Computing 1-9, 1973.

11. J. I. Seiferas, M. J. Fischer, A. R. Meyer. Separating nondeterministic time com-
plexity classes. Journal of ACM, 25(1): 146–167, 1978.

12. R. Siromoney. Advances in array languages. In Graph-grammars and their applica-
tions to Computer Science, Ehrig et al. Eds., LNCS 291, 549–563, Springer-Verlag,
1987.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Characterization of Strong Learnability
in the Statistical Query Model�

Hans Ulrich Simon

Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany
simon@lmi.rub.de

Abstract. In this paper, we consider Kearns’ [4] Statistical Query
Model of learning. It is well known [3] that the number of statistical
queries, needed for “weakly learning” an unknown target concept (i.e. for
gaining significant advantage over random guessing) is polynomially re-
lated to the so-called Statistical Query dimension of the concept class.
In this paper, we provide a similar characterization for “strong learning”
where the learners final hypothesis is required to approximate the un-
known target concept up to a small rate of misclassification. The quantity
that characterizes strong learnability in the Statistical Query model is
a surprisingly close relative of (though not identical to) the Statistical
Query dimension. For the purpose of proving the main result, we provide
other characterizations of strong learnability which are given in terms of
covering numbers and related notions. These results might find some
interest in their own right. All characterizations are purely information-
theoretical and ignore computational issues.

1 Introduction

Kearns’ Statistical Query (SQ) model [4] is an elegant abstraction from Valiant’s
PAC learning model [7]. In this model, instead of having direct access to random
examples (as in the PAC learning model) the learner obtains information about
random examples via an oracle that provides estimates of various statistics about
the unknown concept. Kearns showed that any learning algorithm that is suc-
cessful in the SQ model can be converted, without much loss of efficiency, into
a learning algorithm that is successful in the PAC learning model despite noise
uniformly applied to the class labels of the examples. In the same paper where
Kearns showed that SQ learnability implies noise-tolerant PAC learnability, he
developed SQ algorithms for almost all concept classes known to be efficiently
learnable in the PAC learning model. This is why the SQ model attracted a lot
of attention in the Computational Learning community.

� This work was supported in part by the IST Programme of the European Commu-
nity, under the PASCAL Network of Excellence, IST-2002-506778. This publication
only reflects the authors’ views. Part of this work was done during a visit of the
Helsinki Institute of Information Technology.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 393–404, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

394 H.U. Simon

Blum et al. [3] have shown that the number of statistical queries, needed
for weakly learning a concept class, is polynomially related to the largest num-
ber of pairwise “almost orthogonal” concepts from this class (the so-called SQ
dimension). Ke Yang [8] presented an alternative (stronger but polynomially re-
lated) lower bound on the number of statistical queries. It is stated in terms of
the eigenvalues of the correlation matrix associated with the concept class. The
problem of characterizing strong learnability in the SQ model was left open in
these papers.

Köbler and Lindner [5] characterized strong learnability in the SQ model in
terms of the so-called “general dimension” (a variant of the abstract combina-
torial dimension from [1]). The general dimension can be viewed as the number
of queries needed when the SQ oracle behaves like a uniform non-adaptive ad-
versary that returns answers according to a fixed scheme (the same scheme for
all learners). Köbler and Lindner show that this number is polynomially related
to the number of queries needed in the worst-case where the SQ oracle behaves
like an adaptive and non-uniform adversary (the strongest adversary of the par-
ticular learner). Loosely speaking, the result by Köbler and Lindner tells that
the handicap of being non-adaptive and uniform does not make the adversary
substantially weaker. The general dimension has no algebraic flavor. In contrast,
the results in this paper make extensive use of algebraic properties of the corre-
lation matrix associated with the concept class. We conjecture that our results
can also serve as a tool for the computation of the general dimension.

Models related to the SQ model: We would like to mention briefly that the SQ
model has a predecessor: the model of “Learning by Distances” [2]. The former
model is a special case of the latter (but the inventors of the latter model did
not reveal the relation to noise-tolerant learning).

The SQ model is furthermore equivalent to a conceptually simpler model
where statistical queries (as they were originally defined by Kearns) are replaced
by “correlation queries”. For the purpose of our theoretical analysis, the simpler
model is more convenient. For this reason, we do not bother the reader with the
definition of the original model. Instead we define the SQ model in section 2
directly within the Correlation Query framework. The reader interested in the
formal proof of equivalence between the two models is referred to [6].

In the original model by Kearns, “concepts” and “query functions” are ±1-
valued. In this paper, it will be more convenient to deal with real-valued functions
instead. The traditional setting of concept learning (with binary functions) will
however be subsumed as a special case.

Structure of the paper: In section 2, we provide the reader with rigorous defi-
nitions and notations (including the notions of weak and strong learning in the
SQ model). Section 3 briefly reviews the known bounds on the number of sta-
tistical queries and the known characterization of weak learnability in terms of
the (Weak) Statistical Query dimension (SQdim). In section 4, we define the
Strong Statistical Query dimension (SQDim∗) and present a characterization
of strong learnability in terms of this dimension. It should be stressed that, al-
though SQDim∗ is a close relative of SQdim, the mathematical analysis of strong

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Characterization of Strong Learnability in the Statistical Query Model 395

learnability in the SQ model is much more involved than the preceding analysis
of weak learnability.

2 Definitions and Notations

Concept Learning: A concept is a function f of the form f : X → {±1}. A
concept class, denoted as F , is a set of concepts. Throughout this paper, X
is a finite set called the domain. An element x ∈ X is called an instance. A
labeled instance (x, b) ∈ X × {±1} is called an example for f if b = f(x).
D : X → [0, 1] denotes a mapping that assigns probabilities to instances such
that D(x) ≥ 0 for all x ∈ X and

∑
x∈X D(x) = 1. Notations PrD[·] and ED[·]

refer to the probability of an event and to the expectation of a random variable,
respectively. A function h : X → {±1} (not necessarily from F) is called a
(binary) hypothesis. Informally, the goal of a learner for concept class F is to
infer from “partial information” about an unknown target concept f∗ ∈ F a
hypothesis h∗ whose probability of misclassification, PrD[h(x) �= f(x)], is small.
A notion that helps to keep track of the progress made by the learner is the
so-called “version space”. Formally, the version space is a subclass F ′ ⊆ F of
the concept class (initially F ′ = F) that consists of all concepts being consistent
with the partial information that is currently available to the learner. The formal
notion of “partial information” depends on the learning model in consideration.
The reader might perhaps be familiar with the PAC learning model [7] where the
information given to the learner consists of random examples for the unknown
target concept. In this paper, we will be mainly concerned with the SQ model
that is outlined in the remainder of this section.

Correlation Matrix: The real-valued functions on domain X form an |X |-dimen-
sional vector space that can be equipped with the following inner product:

〈h1, h2〉D :=
∑

x∈X

D(x)h1(x)h2(x) = ED[h1(x)h2(x)]

This inner product induces the so-called D-norm: ‖h‖D := 〈h, h〉D. Note that
‖h‖D = 1 if h is a ±1-valued function, and ‖h‖D ≤ 1 if h is a function with
values in [−1, 1]. In the sequel, F denotes a class of real-valued functions, and
CF ∈ [−1, 1]F×F such that CF [f1, f2] := 〈f1, f2〉D denotes the correlation matrix
induced by F . Note that CF is positive semidefinite.

Ingredients of the SQ Model: Notions F , X, D, f∗ are understood as in the gen-
eral concept learning framework except that F is a function class (with concept
classes as a special case). The learner has access to random examples only indi-
rectly through queries that are answered by an oracle. To this end, let Q denote
a function class from which the learner picks its so-called query functions and
its final hypothesis. Throughout the paper, we assume that F ⊆ Q and that
1 ≤ B < ∞ is an upper bound on the D-norm of functions from Q. A query is of
the form (h, τ) where h ∈ Q and τ > 0. τ is called the tolerance parameter. Upon

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

396 H.U. Simon

such a query, the oracle returns a τ-approximation for 〈h, f∗〉D, i.e. it returns a
number c that satisfies

〈h, f∗〉D − τ ≤ c ≤ 〈h, f∗〉D + τ . (1)

Like in the general framework of concept learning, the learner will stop at some
point and return a final hypothesis h∗ ∈ Q. We will measure the “efficiency”
of the learner by the number of queries that it passes to the oracle (in the
worst-case) and by the smallest tolerance parameter τ that is ever used during
learning. We will measure the “success” of the learner by the correlation between
the target function f∗ and the final hypothesis h∗.

Statistical Learning Complexity: We say that q = q(τ, γ) queries are sufficient to
learn F with query functions and final hypothesis chosen from Q if there exists
a learning procedure L (with unbounded computational resources) that achieves
the following. For every possible target function f∗ ∈ F and for every possible
policy for the oracle (subject to (1)), L asks at most q−1 queries (with tolerance
parameter set to τ or a larger value) until it comes up with a final hypothesis
h∗ ∈ Q (a kind of q-th query function) whose correlation with f∗ is at least γ.
SLCF ,Q(τ, γ) denotes the smallest number of queries that is sufficient for that
purpose. If Q consists of all functions of the form h : X → R such that ‖h‖D ≤ 1,
we simply write SLCF (τ, γ).1

Parameterized Classes, Weak and Strong Learnability: A parameterized function
class is of the form F = ∪n≥1Fn. Similarly, Q = ∪n≥1Qn. We say that F
is weakly learnable in the SQ model with query functions and final hypothesis
chosen from Q if there exist functions γ(n) > 0 and τ(n) > 0 such that 1/γ(n),
1/τ(n), and SLCFn,Qn(τ(n), γ(n)) are polynomially bounded in n. We say that F
is strongly learnable in the SQ model with query functions and final hypothesis
chosen from Q if there exists a function τ(n, ε) > 0 such that 1/τ(n, ε) and
SLCFn,Qn(τ(n), 1 − ε) are polynomially bounded in n and 1/ε.

Notations and Facts from Matrix Theory: Although we assume some familiarity
with basic concepts from matrix theory, we provide the reader with a refreshment
of his or her memory and fix some notation. The Euclidean norm of a vector
u ∈ R

d is denoted as ‖u‖. The real eigenvalues of a symmetric matrix A are
denoted as λ1(A) ≥ λ2(A) ≥ λ3(A) ≥ · · ·. We finally would like to mention the
following fact (known as Gers̆gorin’s Disc Theorem): for any (d × d)-matrix M
with complex entries, the union of discs,

d⋃

i=1

⎧
⎨

⎩
z

∣
∣
∣
∣
∣
∣
|z − Mi,i| ≤

∑

j:1≤j≤d,j �=i

|Mi,j |

⎫
⎬

⎭
,

covers all (complex) eigenvalues of M . Here, | · | denotes the absolute value of
a complex number. The theorem holds in particular for symmetric real-valued
matrices where all eigenvalues are reals.
1 An analogous convention is made in the sequel for other notions depending on Q.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Characterization of Strong Learnability in the Statistical Query Model 397

3 Known Bounds on the Number of Statistical Queries

The following beautiful result by Ke Yang presents a lower bound on statistical
learning complexity in terms of the eigenvalues of the correlation matrix CF .

Theorem 1 ([8]). Assume that all query and target functions have D-norm at
most 1. Then,

∑SLCF (τ,γ)
i=1 λi(CF) ≥ |F| · min{γ2, τ2}.

Definition 1 (Covering Number). A set of functions h1, . . . , hk ∈ Q is
called a τ -cover of F if, for every function f ∈ F , there exists an index i ∈
{1, . . . , k} such that 〈f, hi〉D ≥ τ . We denote the size of the smallest τ-cover by
CNumF ,Q(τ).

The following result is easy to infer from Ke Yang’s proof of Theorem 1:

Corollary 1. Assume that τ ≤ γ. Then, SLCF (τ, γ) ≥ CNumF (τ) and

CNumF (τ)∑

i=1

λi(CF) ≥ |F| · τ2 . (2)

Definition 2 (Weak SQ Dimension). Let SQDimF denote the largest num-
ber d such that F contains functions f1, . . . , fd with the following property:2

∀1 ≤ i < j ≤ d : |〈fi, fj〉D| <
1

d − 1
(3)

Let d := SQDimF . Consider a maximal sequence f1, . . . , fs ∈ F with the prop-
erty that |〈fi, fj〉D| < 1/d for all 1 ≤ i < j ≤ s. These functions form a 1/d-cover
(because, otherwise, the sequence could be extended). Thus, s ≥ CNumF ,F(1/d).
On the other hand, s ≤ d (because, otherwise, the sequence witnesses that
SQDimF ≥ d+1). We conclude that the following holds (provided that F ⊆ Q):

SQDimF ≥ CNumF ,F

(
1

SQDimF

)

≥ CNumF ,Q

(
1

SQDimF

)

. (4)

Ke Yang [8] inferred from Theorem 1 that for d = SQDimF the following
(slight improvement on an older result from [3]) holds:

SLCF (d−1/3, d−1/3) ≥ 1
2

· d1/3

From Corollary 1, one can infer a slightly more general result:

Corollary 2. Assume τ ≤ γ. Then,

SLCF(τ, γ) ≥ CNumF(τ) ≥ 1
2

· τ2 · SQDimF .

2 If we replace 1/(d − 1) on the right hand side of (3) by 1/d3, we obtain the original
definition (from [3]) of the SQ dimension of F .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

398 H.U. Simon

Weak learnability in the SQ model can be perfectly characterized in terms of
the weak SQ dimension:

Corollary 3 ([3]). A parameterized function class F = ∪n≥1Fn is weakly learn-
able in the SQ-model if and only if the growth rate of SQDimFn

is polynomially
bounded in n.

Proof. Direction “only if” is obvious from Corollary 2. Direction “if” easily fol-
lows from (4). ��

4 Strong Learnability in the SQ Model

It is well-known that there exist concept classes that are weakly, but not strongly,
learnable. These classes will have a reasonably small SQ dimension. This rules
out the possibility of characterizing strong learnability in the SQ model by the
weak SQ dimension. As for strong learnability, we need, on one hand, stronger
lower bounds and, on the other hand, (reasonably well) matching upper bounds.
It turns out that satisfactory (lower and upper) bounds are obtained in terms
of the SQ dimension of classes of the form

F − g := {f − g : f ∈ F}

provided that the set of “admissible shift functions” g is carefully chosen. A se-
rious technical obstacle is the fact that possibly SLCF−g,Q(τ, γ) > SLCF ,Q(τ, γ)
such that lower bounds on SLCF−g,Q(τ, γ) are not necessarily lower bounds on
SLCF ,Q(τ, γ). We shall proceed as follows:

– As for the upper bound, we will pursue a “halving strategy” where the
learner proceeds in stages and, at any fixed stage, tries to “halve” the current
version space. This will lead to the notion of “statistical halving complexity”
SHCF ,Q(τ).

– As for the lower bound, we will exploit the fact that the statistical halving
complexity is invariant under shifts such that lower bounds on SHCF−g,Q(τ)
are lower bounds on SHCF ,Q(τ).

– Shift functions g that lead to “unbiased” classes F − g will play a crucial
role.

The remainder of this section is devoted to the statement and proof of the main
result.

4.1 Central Definitions and Main Result

The following definition is tailored such that a learner with a γ-nontrivial version
space is actually forced to “halve” it in order to achieve a correlation of at least γ
with the target function. This prepares the ground for relating statistical learning
and statistical halving complexity to each other.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Characterization of Strong Learnability in the Statistical Query Model 399

Definition 3 (Trivial Subclasses). We say that F ′ ⊆ F is a (γ, Q)-trivial
subclass of F if there exists a function h ∈ Q that has a correlation of at least γ
with at least half of the functions in F ′. The remaining subclasses of F are said
to be (γ, Q)-nontrivial.

Definition 4 (Unbiased Function Classes and Admissible Functions).
The average of the functions in F is given by

BF :=
1

|F|
∑

f∈F
f .

F is called unbiased if BF (x) = 0 for every x ∈ X. A function g : X → R is
called (γ, Q)-admissible for F if it has the form g = BF ′ for a (γ, Q)-nontrivial
subclass F ′ of F .

The following (obvious) result sheds some light on the significance of the pre-
ceding definitions:

Lemma 1. 1. F − BF is unbiased.
2. For every function h : X → R, the correlation between h and the functions

from an unbiased class (like, for example, F − BF) is zero on the average.

Here comes the central new notion that allows for a characterization of strong
learnability in the SQ model.

Definition 5 (Strong SQ Dimension). The strong SQ dimension associated
with F and Q is the function

SQDim∗
F ,Q(γ) := sup

F ′
SQDimF ′−BF′ ,

where F ′ ranges over all (γ, Q)-nontrivial subclasses of F . In addition, we define

SQDim∗∗
F ,Q(γ) := sup

g
SQDimF−g ≥ SQDim∗

F ,Q(γ) ,

where g ranges over all functions that are (γ, Q)-admissible for F .3

With these definitions, our main result reads as follows:

Theorem 2. Assume that all query and target functions have D-norm at most
1. A parameterized function class F = ∪n≥1Fn is strongly learnable in the SQ-
model with query functions and final hypothesis chosen from Q = ∪n≥1Qn if and
only if the growth rate of SQDim∗

Fn,Qn
(1 − ε) is polynomially bounded in n and

1/ε.

3 Throughout the paper, the default value for a supremum ranging over the empty set
is 1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

400 H.U. Simon

4.2 A Detour on Halving Complexity and Half-Covering Numbers

As explained in the beginning of section 4, statistical halving complexity will be
the right notion for our purpose because of its invariance to shifts. Here comes
the formal definition:

Definition 6 (Statistical Halving Complexity). SHCF ,Q(τ) denotes the
smallest number of queries that is sufficient to “halve” function class F in the
sense that at most half of the functions from F are consistent with the answers
that are received from the oracle. We furthermore define

SHC∗
F ,Q(τ, γ) := sup

F ′
SHCF ′,Q(τ)

where F ′ ranges over all (γ, Q)-nontrivial subclasses of F .

Note that a subclass might be harder to halve than the class itself. It is however
obvious that, for every function g : X → R,

SHCF ,Q(τ) = SHCF−g,Q(τ) . (5)

The following notion relates to statistical halving complexity pretty much as
the covering number relates to statistical learning complexity:

Definition 7 (Half-Covering Number). A set of functions h1, . . . , hk ∈ Q
is called a τ -half-cover of F if, for at least half of the functions f ∈ F , there
exists an index i ∈ {1, . . . , k} such that 〈f, hi〉D ≥ τ . We denote the size of the
smallest τ-half-cover by HCNumF ,Q(τ).

Recall that B denotes an upper bound on the D-norm of query functions. The
following result is the analogue to Corollary 1:

Theorem 3. SHCF ,Q(τ) ≥ HCNumF ,Q(τ) and

HCNumF,Q(τ)∑

i=1

λi(CF) ≥ |F|
2

· τ2

B2
.

The proof is a slight modification of Ke Yang’s proof of Theorem 1. We briefly
note that

SHCF ,Q(τ)
(5)
= SHCF−g,Q(τ)

Th.3
≥ HCNumF−g,Q(τ) . (6)

We will see in Lemmas 2 and 4 that SLC is closely related to SHC∗. Fur-
thermore, SHC∗ can be shown to be closely related to the following variants of
half-covering numbers:

HCNum∗
F ,Q(τ, γ) := sup

F ′
HCNumF ′−BF′ ,Q(τ)

HCNum∗∗
F ,Q(τ, γ) := sup

F ′
sup

g:X→R

HCNumF ′−g,Q(τ)

In both definitions, F ′ ranges over all (γ, Q)-nontrivial subclasses of F .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Characterization of Strong Learnability in the Statistical Query Model 401

Lemma 2. SLCF ,Q(τ, γ) ≥ SHC∗
F ,Q(τ, γ) ≥ HCNum∗∗

F ,Q(τ, γ).

Proof. The second inequality is obtained by applying (6) to every (γ, Q)-
nontrivial subclass F ′ ⊆ F .
The first inequality can be seen as follows. If there exists no (γ, Q)-nontrivial
subclass of F , it holds because SLCF ,Q(τ, γ) ≥ 1. Otherwise, consider a (γ, Q)-
nontrivial subclass F ′ ⊆ F such that SHCF ′,Q(τ) = SHC∗

F ,Q(τ, γ). It is easily
seen that

SLCF ,Q(τ, γ) ≥ SLCF ′,Q(τ, γ) ≥ SHCF ′,Q(τ) ,

where the second inequality holds thanks to the (γ, Q)-non-triviality of F ′. ��

In order to establish an upper bound on SHC∗ in terms of HCNum∗, we have
to work harder. Imagine a learner who received the information that the target
function, f∗, has a correlation of at least τ with query function h. If the vast
majority of concepts shared this property with f∗, the learner would make only
little progress. If, however, the correlation between h and the functions of the
current version space is zero on the average, then, as compensation for the func-
tions with correlation at least τ , there will be a certain fraction of concepts that
correlate negatively with h and that fall out of the version space. This explains
why the fact that F − BF is unbiased will play a central role in the proof of the
following result:

Lemma 3. SHC∗
F ,Q(τ/4, γ) < 2/τ + HCNum∗

F ,Q(2τ, γ).

Proof. Consider a (γ, Q)-nontrivial subclass F ′ ⊆ F such that SHC∗
F ,Q(τ/4, γ)=

SHCF ′,Q(τ/4). (The case that no such subclass exists is trivial.) Recall that
SHCF ′,Q(τ/4) = SHCF ′−BF′ ,Q(τ/4) such that we can focus on the halving prob-
lem for F ′ − BF ′ . We proceed by case analysis.

Case 1: ∃h ∈ Q : |{f ∈ F ′ : 〈h, f − BF ′〉D ≥ 3τ/2}| ≥ |F ′|/2.
Pass (h, τ/4) to the oracle. If it returns a value smaller than than 5τ/4 such
that the true correlation with the target function is smaller than 3τ/2, then,
by our case assumption, we have halved F ′ at the expense of one query only.
So let us assume that the oracle returns a value of at least 5τ/4 such that the
true correlation with the target function from F ′ − BF ′ must be at least τ .
Let α denote the fraction of functions from F ′ −BF ′ whose correlation with
h is at least τ such that the version space shrinks by factor α. According to
Lemma 1, the average correlation between h and functions from F ′ − BF ′ is
zero. It follows that ατ + (1 − α)(−1) ≤ 0, or equivalently, α ≤ 1/(1 + τ).

Case 2: ∀h ∈ Q : |{f ∈ F ′ : 〈h, f − BF ′〉D ≥ 3τ/2}| < |F ′|/2.
Consider the smallest (2τ)-half-cover, say h1, . . . , hk ∈ Q, for F ′ − BF ′ .
Clearly, k ≤ HCNum∗

F ,Q(2τ, γ). Pass (h1, τ/4), . . . , (hk, τ/4) to the oracle.
If it ever returns a value of at least 7τ/4, then the true correlation with the
target function is at least 3τ/2 and, according to our case assumption, the
version space shrinks immediately by factor 1/2. If the oracle returns only
values smaller than 7τ/4, then the true correlation is smaller than 2τ and,
by the definition of a (2τ)-half-cover, F ′−BF ′ is halved after the k-th query.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

402 H.U. Simon

The punch-line of this discussion is that, either we can shrink F ′−BF ′ by factor
1/(1+τ) at the expense of a single query, or we can halve F ′−BF ′ at the expense
of at most HCNum∗

F ,Q(2τ, γ) queries. In the former case, we are not quite done
with halving F ′−BF ′ but we can iterate the procedure. Since 1/(τ+1)2/τ < 1/2,
the theorem follows. ��

Putting Lemmas 2 and 3 together, it follows that SHC∗ can be “sandwiched”
by HCN∗:

HCNum∗
F ,Q(τ, γ) ≤ HCNum∗∗

F ,Q(τ, γ)≤ SHC∗
F ,Q(τ, γ)<

1
2τ

+HCNum∗
F ,Q(8τ, γ)

(7)
For the purpose of sandwiching SLC by SHC∗, we state the following result:

Lemma 4. SLCF ,Q(τ, γ − 2τ) ≤ SHC∗
F ,Q(τ, γ) · �log |F|�.

Proof. As long as the current version space F ′ is not (γ, Q)-trivial, we can use
SHCF ′,Q(τ, γ) ≤ SHC∗

F ,Q(τ, γ) queries to halve it. If the current version space
F ′ is (γ, Q)-trivial, we can use the function h ∈ Q with correlation at least γ
to at least half of the functions in F ′ as query function. The value returned by
the oracle will either prove that h has correlation at least γ − 2τ with the target
function or it will halve the version space. In the former case, we can output h
as the final hypothesis. In the latter case, we enter the next stage. We conclude
that either we identify the target function exactly after �log |F|� halving-stages
or we have found a function with correlation at least γ − 2τ on the way. ��

Combining Lemma 2 and Lemma 4, we obtain

SHC∗
F ,Q(τ, γ) ≤ SLCF ,Q(τ, γ) ≤ SHC∗

F ,Q(τ, γ + 2τ) · �log |F|� . (8)

4.3 Proof of the Main Result

Theorem 2 is a direct consequence of the three lemmas below and of the previ-
ous “sandwich-results” (inequalities (7) and (8)). Lemma 5 implies that param-
eterized classes with a super-polynomial strong SQ dimension are not strongly
learnable. Lemmas 6 and 7 imply that parameterized classes with a polynomially
bounded strong SQ dimension are strongly learnable.

Lemma 5. Let d := SQDim∗∗
F ,Q(1 − ε). If ε2 · d ≥ 640, then the following holds:

HCNum∗∗
F ,Q

(
τ, 1 − ε

4

)
≥ 1

40
· τ2 · d

Proof. Choose a (1 − ε, Q)-nontrivial subclass F ′ ⊆ F and set g := BF ′ such
that SQDim∗∗

F ,Q(1 − ε) = SQDimF−g. Furthermore choose f1, . . . , fd ∈ F such
that the the absolute values of the pairwise correlations of f1 − g, . . . , fd − g are
smaller than 1/(d − 1). The following three claims are proven in the full paper:

Claim 1: The correlation between g and any function from Q is bounded by
1 − ε/2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Characterization of Strong Learnability in the Statistical Query Model 403

Claim 2: Let F ′′ := {f1, . . . , fd}. Then, λ1(CF ′′−g) < 5.
Claim 3: F ′′ is (1 − ε/4, Q)-nontrivial.

We are now in the position to complete the proof of the lemma. We can con-
clude from the (1 − ε/4, Q)-non-triviality of F ′′ that HCNum∗∗

F ,Q(τ, 1 − ε/4) ≥
HCNumF ′′−g,Q(τ). We can furthermore conclude from Theorem 3 (with F ′′ − g
in the role of F , and B = 2) and Claim 2 that

5 · HCNumF ′′−g,Q(τ) > λ1(CF ′′−g) · HCNumF ′′−g,Q(τ) ≥ d

8
· τ2 .

Division by 5 yields the lemma. ��

Lemma 6. Let d := SQDim∗
F ,Q(1 − ε) and assume that4

Q̃ := {f − BF ′ : f ∈ F , F ′ ⊆ F} ⊆ Q . (9)

Then, the following holds:

HCNum∗
F ,Q

(
1
d
, 1 − ε

)

≤ d

Proof. Choose a (1 − ε, Q)-nontrivial subclass F ′ ⊆ F and set g := BF ′ such
that

HCNum∗
F ,Q

(
1
d
, 1 − ε

)

= HCNumF ′−g,Q

(
1
d

)

.

Let d′ := SQDimF ′−g. Since F ′ is (1 − ε, Q)-nontrivial, we can conclude that
d′ ≤ d. Furthermore, by assumption (9), F ′ − g ⊆ Q̃ ⊆ Q. The proof is now
completed as follows:

HCNumF ′−g,Q

(
1
d

)

≤ CNumF ′−g,Q

(
1
d

)

≤ CNumF ′−g,Q

(
1
d′

)
(4)

≤ d′ ≤ d

��

Assumption (9) is not essential for the following reason: if F is strongly learnable
in the SQ model with query functions and final hypothesis chosen from Q ∪
Q̃, then F is already strongly learnable in the SQ model with query functions
and final hypothesis chosen from Q. This is an immediate consequence of the
following

Lemma 7. A query of the form (h̃, τ) such that h̃ ∈ Q̃ can be simulated by
means of O(1/τ2) queries of the form (h, τ/3) such that h ∈ F .

Proof. According to the definition of Q̃, h̃ = f−BF ′ for some function f ∈ F and
a subclass F ′ ⊆ F . Let f∗ denote the unknown target function. Query (f, τ/3)
provides us with a τ/3-approximation ĉ1 of 〈f, f∗〉D. 〈BF ′ , f∗〉D is the aver-
age correlation between the target function and a function from F ′. Hoeffding
4 Assumption (9) looks strange. See however Lemma 7 below for a justification.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

404 H.U. Simon

bounds imply that there exist O(1/τ2) functions in F ′ such that their average
correlation with f∗ equals 〈BF ′ , f∗〉D up to an additive term τ/3. If we get to
know these O(1/τ2) correlations only up to another additive term τ/3 (the tol-
erance parameter), the resulting estimation, say ĉ2, for 〈BF ′ , f∗〉D will be only
a 2τ/3-approximation. Clearly, ĉ1 − ĉ2 is a τ -approximation of 〈h̃, f∗〉D. This
shows that O(1/τ2) queries with tolerance τ/3 and query functions from F are
sufficient to simulate the query (h̃, τ). ��
Our results imply the following lower and upper bound on the statistical halving
complexity in terms of the strong SQ dimension d := SQDim∗

F ,Q(1 − ε):

SHC∗
F ,Q

(
τ, 1 − ε

4

) L.2
≥ HCNum∗∗

F ,Q
(
τ, 1 − ε

4

) L.5
≥ 1

40 · τ2 · d

SHC∗
F ,Q

(
1
8d , 1 − ε

) L.3
< 4d + HCNum∗

F ,Q
(

1
d , 1 − ε

) L.6
≤ 5 · d

The inequality marked “L.6” is only valid under assumption (9). Without this
assumption, we have to replace 5 ·d by O(d/τ2). The gap between the lower and
the upper bound is not tremendous but it would be interesting to know whether
it can be narrowed.

Acknowledgments. Thanks to Heikki Mannila, Esko Ukkonen, and Aristides
Gionis for helpful discussions. Thanks to the anonymous referees for their com-
ments and suggestions, for pointing my attention to the paper by Köbler and
Lindner about the general dimension (and for fixing a flaw in the first version of
the paper).

References

1. José L. Balcázar, Jorge Castro, and David Guijarro. A new abstract combinatorial
dimension for exact learning via queries. Journal of Computer and System Sciences,
64(1):2–21, 2002.

2. Shai Ben-David, Alon Itai, and Eyal Kushilevitz. Learning by distances. Information
and Computation, 117(2):240–250, 1995.

3. Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishai Mansour, and
Steven Rudich. Weakly learning DNF and characterizing statistical query learning
using Fourier analysis. In Proceedings of the 26th Annual Symposium on Theory of
Computing, pages 253–263, 1994.

4. Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal
of the Association on Computing Machinery, 45(6):983–1006, 1998.

5. Johannes Köbler and Wolfgang Lindner. A general dimension for approxmately
learning boolean functions. In Proceedings of the 13th International Conference on
Algorithmic Learning Theory, pages 139–148, 2002.

6. Hans Ulrich Simon. Spectral norm in learning theory: some selected topics. In
Proceedings of the 17th International Conference on Algorithmic Learning Theory,
pages 13–27, 2006. Invited Talk.

7. Leslie G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

8. Ke Yang. New lower bounds for statistical query learning. Journal of Computer
and System Sciences, 70(4):485–509, 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Consistency of Discrete Bayesian
Learning

Jan Poland

Graduate School of Information Science and Technology
Hokkaido University, Japan
jan@ist.hokudai.ac.jp

http://www-alg.ist.hokudai.ac.jp/∼jan

Abstract. This paper accomplishes the last step in a series of consis-
tency theorems for Bayesian learners based on discree hypothesis class,
being initiated by Solomonoff’s 1978 work. Precisely, we show the gen-
eralization of a performance guarantee for Bayesian stochastic model
selection, which has been proven very recently by the author for finite
observation space, to countable and continuous observation space as well
as mixtures. This strong result is (to the author’s knowledge) the first
of this kind for stochastic model selection. It states almost sure con-
sistency of the learner in the realizable case, that is, where one of the
hypotheses/models considered coincides with the truth. Moreover, it im-
plies error bounds on the difference of the predictive distribution to the
true one, and even loss bounds w.r.t. arbitrary loss functions. The set of
consistency theorems for the three natural variants of discrete Bayesian
prediction, namely marginalization, MAP, and stochastic model selec-
tion, is thus being completed for general observation space. Hence, this
is the right time to recapitulate all these results, to present them in a uni-
fied context, and to discuss the different situations of Bayesian learning
and its different methods.

1 Introduction

“When you have eliminated the impossible, whatever remains must be the truth.”
This famous quote describes the induction principle of Sherlock Holmes, whose
observations and conclusions are always correct. Real world observations usually
lack this desirable property, instead they are noisy. Thus, Bayes’ rule, eliminat-
ing the improbable, has emerged as a successful induction principle in practice.
This paper aims at collecting and generalizing statements of the form: “When
you have eliminated the improbable, whatever remains is almost sure to behave
like the truth.” We will give different but tightly connected forms of this asser-
tion: Asymptotic almost sure consistency results and bounds on the error of a
predictor based on Bayes’ rule.

The main technical result of this paper is the generalization of the consis-
tency theorem for Bayesian stochastic model selection, obtained recently for
finite observation space [1], to continuous observation space. It will be proven

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 405–416, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

406 J. Poland

in Section 3. This completes a series of recent performance guarantees obtained
for all three fundamental ways of Bayesian learning. It therefore motivates a
comparative presentation of all these results, discussing the basics of Bayesian
learning, the fundamental variants of Bayesian induction, and the state of the
art of Bayesian learning theorems. This is subject of the next section.

2 Bayesian Learning

Bayes’ famous rule,

P (H |D) =
P (D|H) · P (H)

P (D)
, (1)

says how the probability of a hypothesis H is updated after observing some
data D. Still, different specific induction setups can use Bayes’ rule. First, there
are different possibilities to define the input space, the observation space, and
the hypothesis space. Second, a hypothesis class endowed with a probability
distribution can be used for induction in principally three different ways.

The reader should keep in mind that Bayes’ rule is no theorem in general.
Under the assumption that hypotheses and data are both sampled from a joint
probability distribution that coincides with the prior P (H), (1) would be a the-
orem. However, Bayes’ rule is commonly not applied under such an assumption,
in particular the distribution P (H) on the hypotheses is usually merely a belief
distribution, there is no probabilistic sampling mechanism generating hypotheses
assumed. Hence, Bayes’ rule is motivated intuitively in the first place. Still, many
optimality results and performance guarantees have been shown for Bayesian in-
duction (e.g. in [2,3,4]), including the results of the present work.

2.1 Hypotheses, History, Inputs, Observation Spaces

Let X be the observation space. We work in an online prediction setup in discrete
time, that is, in each time step t = 1, 2, . . ., an observation xt ∈ X is revealed
to the learner. The task of the learner will be to predict xt before he observes
it. One question of fundamental technical impact concerns the structure of the
observation space X . We restrict our attention to the two most important cases
of (a) X being discrete (finite or countable) and (b) continuous X ⊂ R

d for
suitable dimension d ∈ N.

A hypothesis ν specifies a probability distribution on the observation space X .
In the simplest case, it does not depend on any input, these hypotheses represent
the assumption that the observed data is independently identically distributed
(i.i.d.). In all other cases, there is some input space Z, and a hypothesis maps
inputs to distributions on X . In fact, technically, the inputs play no role at all,
as we will see in the following. We therefore may assume the existence of an
arbitrary input space Z without any structure (which may consist of just one
point, meaning that there are no inputs at all), and inputs are generated by
an arbitrary process. This covers (even more than) two of the most important
learning setups: Classification, where the data is conditionally i.i.d. given the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Consistency of Discrete Bayesian Learning 407

inputs, and prediction of non-i.i.d. sequences, where in each time step t, we may
define the input zt = (x1, . . . , xt−1) to be the observation history seen so far.
Generally, we will denote the history of inputs and observations by

h1:t−1 = h<t = (z1, x1, z2, x2, . . . , zt−1, xt−1)

(observe that two pieces of notation have been introduced here).
Now, a hypothesis is formally defined as a function

ν : Z → M1
D+C(X).

Here, M1
D+C(X) denotes the probability distributions on X ⊂ R

d, that are mix-
tures of discrete distributions (with nonzero mass concentrated on single points)
and distributions with continuous density functions. We make this restriction
mainly because we wish to be able to define all subsequent quantities, in par-
ticular Bayesian posteriors, effortlessly and uniquely (except perhaps on a set of
measure zero).1 In particular, we have

∫

dν(·|z) = 1 for all z ∈ Z.

Note that we consistently use this integral notation, also for discrete observation
space (in which case the integral is in reality a sum).

A Bayesian learner is always based on a hypothesis class C = {ν1, ν2, . . .}.
In this work with the title “discrete Bayesian learning”, we restrict to discrete,
i.e. finite or countable, hypothesis classes (and in the notation we assume a
countable hypothesis class from now on, without loss of generality). Before the
learning process starts, each hypothesis ν ∈ C is endowed with a prior weight
wν ∈ (0, 1), such that

∑
ν∈C wν = 1.

Hypothesis classes considered in statistics are usually continuously parame-
terized. One motivation to study discrete classes is that they are technically
simpler, so they can serve as a basis for the more advanced continuous case. In
the continuous case, some Bayesian predictors such as MAP (see below) are not
consistent at all, while others such as MML (minimum message length) [5,6] and
MDL (minimum description length) [7] require appropriate discretization. Also,
countable hypothesis classes always admit stronger performance guarantees than
possible for their continuously parameterized counterparts. In particular, we will
be able to show almost sure consistency, whereas only convergence in probability
holds in the continuous case (e.g. in [3,4,8]). Another important motivation to
consider discrete hypothesis classes, studied in depth in Algorithmic Informa-
tion Theory, lies in the fact that computers can – even in the limit – handle at
most discrete (or discretized) classes, also if the original model was continuously
parameterized. We do not discuss this point in detail here, see e.g. [9,10].

We rewrite Bayes’ rule (1) using new notation: For a hypothesis ν ∈ C, current
prior weights wν′(h<t) of all hypotheses ν′ ∈ C depending on the history h<t,
input zt, and observation xt, we set the posterior weight of ν to
1 It easy to see that the continuity assumption can be immediately slightly lifted.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

408 J. Poland

wν(h1:t) =
ν(xt|zt) · wν(h<t)∑

ν′∈C ν′(xt|zt) · wν′(h<t)
, (2)

Note that we actually need to distinguish three variants of Bayes’ rule (not to
be confused with the three variants of Bayesian prediction discussed below): In
the case of discrete observation space, the quantities ν′(x|z) (and therefore also
the sum in the denominator) are probabilities, while for continuous observation
space, they are densities. Finally, if at least one hypothesis ν ∈ C is a mixture
of a discrete and a continuous distribution, then all ν′(x|z) must be treated as
mixtures in the following way: If for an observation x ∈ X , there is a hypothesis
assigning non-zero mass to x, then the ν′(x|z) are treated as probabilities (and
all hypotheses assigning merely a non-zero density to that particular x will get
posterior weight 0). Otherwise, the ν′(x|z) are treated as densities.

2.2 Three Fundamental Variants of Bayesian Prediction

Given a set of hypotheses C and some observed data h1:t = (z1, x1, . . . , zt, xt), a
legitimate question is asking which of the hypotheses in C has actually generated
the data. It is clear that this question might not be well-defined if the process
generating the data, which we will call μ in the sequel, is not member of C.
Actually, one can immediately construct examples where any Bayesian learner
produces very undesirable results in this non-realizable learning setup (see [11]
for sophisticated examples). In this work, we will restrict to the realizable case,
where the true distribution generating the observations is contained in the class,
μ ∈ C. (But recall that this only refers to the distribution of the observation
given the inputs, we do not need any assumption on the generation of the inputs
zt). Of course, the learner does not know in advance which element of C is the
true distribution μ.

However, hypothesis identification has technical difficulties. For instance, con-
sider the case where two hypothesis are in C that make (almost) identical predic-
tions, one of them being the true one. Then it is (almost) impossible to identify
the right one, but if we just want to make predictions, we need not care: Choosing
any of the two will yield (almost) perfect predictions.

So from now on, we restrict our focus to prediction. That is, for given history
h<t and current input zt ∈ Z, we are interested in a predictive distribution2

on the observation space X that comes as closely to the truth as possible. Our
hypothesis class endowed with the Bayesian posterior

(
wν′(h<t)ν′∈C

)
offers us

three fundamental ways to obtain such a prediction:

1. Marginalization. If we apply Bayes’ rule (1) to the modified setting where
the next observation xt takes the place of the hypothesis H , then, as an
easy computation shows, we get a predictive distribution ξ(xt|zt, h<t) by
integrating the predictions of all hypotheses w.r.t. the current posterior:

2 In many prediction tasks, a single value is required as prediction, rather than a
distribution. Such a single prediction can be derived from a predictive distribution,
e.g. by minimizing a risk function, as briefly discussed at the end of Section 2.4.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Consistency of Discrete Bayesian Learning 409

ξ(x|zt, h<t) =
∑

ν′∈C
wν′(h<t)ν′(x|zt). (3)

2. Maximum a posteriori (MAP). If we are interested in a single hypothesis’
prediction, then we may choose the hypothesis with maximal a-posteriori
belief value, abbreviated as MAP hypothesis:

ν∗
h<t

= argmax
ν∈C

{wν(h<t)} and m(xt|zt, h<t) = ν∗
h<t

(xt|zt), (4)

where the latter m(xt|zt, h<t) is the MAP prediction.
3. Stochastic model selection. The third possibility is to randomize and

sample a hypothesis according to the probability distribution defined by the
current posterior. This stochastic model selection can be formally written as

Ξ(xt|zt, h<t) = Ñ(xt|zt) where Ñ ∈ C (5)

and P(Ñ = ν′) = wν′(h<t) for all ν′ ∈ C.

Note that for given history h<t, the first two methods are deterministic, while
stochastic model selection uses additional randomness.

All three prediction methods are practically important. In particular, stochas-
tic model selection is related to some learning algorithms for statistical models,
in particular Monte Carlo methods. There are other possibilities than the stated
three to use a Bayesian hypothesis class for prediction. MAP is tightly related
to MML and MDL, but the terms MML and MDL are (also) used for (slightly,
in the case of discrete hypothesis class) different concepts [12,7]. Also, there is a
“dynamic” variant of MAP defined in [10], where a MAP hypothesis is chosen
for each possible outcome xt. Anyway: many, if not most, Bayesian prediction
methods can be roughly grouped into the three principles “integrate over all
hypothesis”, “take the hypothesis with the best current score”, and “select one
hypothesis at random according to the current belief distribution”. And we hold
(but that is a matter of taste) that the above representants are the simplest and
most natural of the prediction methods to consider.

2.3 Performance Guarantees for Bayesian Learners

We are now ready to state the performance guarantees for the three Bayesian
learners defined in (3), (4), and (5). We start with the technically easiest case
of marginalization (3). Actually, this result has been originally discovered by
Solomonoff [13] within the context of Algorithmic Information Theory.

Recall that μ ∈ C is the true distribution generating the data, and ξ is the
marginalization predictor. The Hellinger distance between the ξ-predictions and
μ-predictions at time t is given by

h2
t (μ, ξ) :=

∫

d
(√

μ(·|zt) −
√

ξ(·|zt, h<t)
)2

. (6)

It clearly depends on the history h<t and the current input zt. Our main technical
results are all stated as cumulative (i.e., over t = 1, . . . , ∞) bounds on the
Hellinger distance (that is, errors) of the predictive probabilities to the truth.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

410 J. Poland

Theorem 1. If μ ∈ C, then for any sequence of inputs z1, z2, . . .,

∞∑

t=1

Eμh2
t (μ, ξ) ≤ log w−1

μ (7)

holds, where log denotes the natural logarithm and wμ is the prior weight of the
true distribution. Eμ refers to the fact that the expectation is taken w.r.t. the
true distribution μ, i.e., all observations are generated w.r.t. μ conditional to
the inputs, and this expectation is computed.

It should not be surprising that the quantity wμ appears on the r.h.s. and there-
fore has an impact on how large the error on the l.h.s. can grow. After all, if the
Bayesian learner assigns a high prior weight to the true distribution, the error
should be small. The remarkable fact is the logarithmic dependence in wμ. As
by Kraft’s inequality, the logarithm of a weight can be interpreted as its descrip-
tion length, (7) is a very strong result asserting that the cumulative error never
exceeds the description length of the true distribution. In a sense: When finding
the truth single-handedly, our error is at most the number of bits a teacher needs
to tell us the truth.

Although the proof of the theorem is very simple using (12) below, we omit it
due to space constraints and because it has been given several times. Actually,
one can use different techniques to show the result: The standard procedure
exploits the the dominance property of the Bayes mixture, a possible alternative
uses a potential function. The latter is the way we will choose to prove the
assertions for stochastic model selection below.

Results for MAP (4) similar to Theorem 1 have been shown in [10].

Theorem 2. Assume μ ∈ C. Suppose that, for any history with nonzero proba-
bility density, the hypotheses always admit the specification of a (not necessarily
unique) MAP hypothesis ν∗. This is satisfied for instance if all hypotheses cor-
respond to continuous probability densities that are uniformly bounded. Then

∞∑

t=1

Eμh2
t (μ, m) ≤ 21w−1

μ . (8)

The proof uses telescoping and dominance. The most remarkable (and worry-
ing) fact here is the bound O(w−1

μ) on the r.h.s. While the logarithm in (7) is
sufficiently small to be of practical significance, the exponentially larger quan-
tity O(w−1

μ) is generally huge. One can construct examples where this bound is
sharp [14]. Fortunately, this does not necessarily imply that the MAP predic-
tions are bad, the actual error is smaller in many important cases. Still, there
are situations where MAP predictions tend to be “unbalanced” and therefore
unfavorable compared to marginalization. Stochastic model selection often gives
better results in such cases.

Before concentrating on stochastic model selection for the remainder of this
paper, we briefly discuss implications of the bounds stated so far.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Consistency of Discrete Bayesian Learning 411

2.4 Almost Sure Consistency and Other Implications

One important consequence of any finite bound on the expected cumulative
Hellinger error is almost sure consistency of the predictor in the Hellinger sense.
That is, the Hellinger distance of the predictive to the true distribution tends
to zero almost surely (see e.g. [10]). In case of a finite or countable observation
space X , this implies in particular convergence of all predictive probabilities
ξ(xt|zt, h<t) to the true probabilities μ(xt|zt). In case of a continuous observation
space, the predicted probability masses of any measurable subset of X converges
to the true mass. However, we cannot conclude the convergence of moments, e.g.
the expectation, without making further assumptions.

Other implications of Theorems 1 and 2 are loss bounds of a Bayes-optimal de-
cision maker based on the predictive distribution, w.r.t. arbitrary loss functions.
Assertions like [10, Theorem 27] are easily obtainable. Due to space constraints,
we do not discuss this issue further here.

3 Stochastic Model Selection

The corresponding theorem for stochastic model selection (5), which is the main
technical result of this paper, reads as follows.

Theorem 3. Assume μ ∈ C. Then, for any sequence of inputs z1, z2, . . .,

∞∑

t=1

EμEΞh2
t (ξ, Ξ) ≤ (1 + Π)

[
log(1 + H) − log(wμ)

]
(9)

holds. The quantities H and Π, the Shannon entropy and the μ-entropy potential
of the hypothesis class, are defined below. EΞ serves as a reminder that the Ξ-
predictor is randomized.

The quantity H in the theorem is the Shannon entropy of the hypothesis class
w.r.t. the current posterior distribution,

H(h<t) = H
(
[wν(h<t)]ν∈C

)
= −

∑

ν∈C
wν(h<t) log wν(h<t).

If we write just H as in the theorem, this corresponds to the prior (or, below
in the proofs, to the current posterior). Moreover, we define the current entropy
potential of the hypothesis class relative to the true distribution μ as

Π
(
(wν)ν∈C

)
= sup

{
H

(
(w̃ν∑

ν′ w̃ν′
)ν∈C

)
: w̃μ = wμ ∧ w̃ν ≤ wν ∀ν ∈ C \ {μ}

}
(10)

and Π(h<t) = Π
(
[wν(h<t)]ν∈C

)
This can be paraphrased as “worst-case en-

tropy of the class under all possible Bayesian updates where the true distribution

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

412 J. Poland

always has evidence value 1”. We use the same convention as before: writing just
Π corresponds to the prior, or, in the proofs below, to the current posterior.

It was shown in [1] that Π ≤ Hw−1
μ always holds. This implies in particular

that Π is finite if and only if H is finite. Moreover, the bound in (9) is, in
the worst case, not much worse than the corresponding bound for MAP (8).
However, the desirable relation Π = O(− log wμ) holds if the tails of the prior
are sufficiently light [1]. So in these cases, stochastic model selection performs
almost as well as marginalization (7).

As the triangle inequality is valid for the Hellinger distance, Theorem 3 shows
in particular almost sure consistency of prediction by stochastic model selection,
provided that the Shannon entropy H of the hypothesis class is finite. Lower
bounds that essentially match (9) have been given in [1].

Proof of Theorem 3. This follows immediately from the three subsequent Lem-
mata, which are generalizations of their counterparts in [1]: (11) and (13) are
chained, and their expected sum is taken from t = 1, . . . , T . Then the assertion
follows immediately, because P(h1:T) ≥ 0 always holds. Lemma 6 finally makes
sure that Lemma 5 and therefore (13) are applicable. �

Lemma 4. If the current entropy of the hypothesis class is finite, H(h<t) < ∞,
then, for any input zt,

H(h<t) − Ext∼ξ(·|zt,h<t)H(h1:t) ≥ Eh2
t (ξ, Ξ). (11)

Proof. It is a well-known fact, shown e.g. in [15, p. 178], that the Hellinger dis-
tance of two probability distributions μ and ν on X never exceeds their Kullback-
Leibler divergence:

h2(μ, ν) =
∫

d
(√

μ(·) −
√

ν(·)
)2 ≤

∫

dμ(·) log
μ(·)
ν(·) . (12)

Therefore, we have

H(h<t) − Ext∼ξ(·|zt,h<t)H(h1:t) =
∑

ν∈C
wν(h<t)

∫

dν(x|zt) log ν(x|zt)
ξ(x|zt,h<t)

≥
∑

ν∈C
wν(h<t)h2(ξ, ν) = Eh2

t (ξ, Ξ). �

Lemma 5. Assume μ ∈ C. Suppose that we have some continuous function
B

(
(wν)ν∈C

)
= B(h<t), depending in a continuous way on the current posterior

and therefore depending on the history, with the following properties:

(i) B(h<t) ≥ H(h<t) (dominates the entropy),
(ii) Ext∼μ(·|zt)B(h1:t) ≤ B(h<t) (expectation decreases),

(iii) the value of B(h<t) can be approximated arbitrarily
closely by restricting to a finite model class.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Consistency of Discrete Bayesian Learning 413

Then, for any history and current input, consider the potential function

P(h<t) =
[
K(h<t) + log(1 + H(h<t))

]
(1 + B(h<t)),

with K(h<t) = − logwμ(h<t) being the complexity potential. Then we have

P(h<t) − Ext∼μ(·|zt)P(h1:t) ≥ H(h<t) − Ext∼ξH(h1:t). (13)

Proof. The assertion has been already proven for finite X [1, Lemma 11]. In
order to show the generalization, we may decompose X into two subsets X =
X discrete ∪ X continuous, where X discrete is the at most countable set of points
where any of the distributions in C has a non-zero mass concentration. We can
prove the assertion for the discrete and the continuous parts separately. The
discrete part follows simply by approximating, so we focus on the continuous
part and assume without loss of generality that all distributions are (piecewise)
continuous probability densities.

We show the assertion by assuming the contrary

Ext∼μ(·|zt)P(h1:t) − P(h<t) > Ext∼ξH(h1:t) − H(h<t) (14)

and obtaining a contradiction. Dropping the history h<t from the notation, (14)
is equivalent to

Ex∼μP(x) − P > Ex∼ξH(x) − H + 11ε for some ε > 0. (15)

We may assume without loss of generality that X is compact, and that there
is a number R > 0 such that

max
x∈X

H(x)ξ(x) ≤ R and max
x∈X

ξ(x) ≤ R. (16)

To see this, just choose X̃ ⊂ X compact and sufficiently large, such that both
(16) and Ex∼ξ|X̃ H(x) ≥ Ex∼ξH(x) − ε hold, this is possible because ξ(x)H(x)
is integrable w.r.t. the Lebesgue measure λ. Then, replace X by X̃ and (15) by

Ex∼μP(x) − P > Ex∼ξH(x) − H + 10ε. (17)

Next, we argue that we may even assume without loss of generality that C is
finite. To this aim, first start with approximating P(x) by a step function P̃(x)
that is piecewise constant on relatively compact subsets A1, A2, . . . , An ⊂ X and
takes only finitely many (namely n) values ỹ1, . . . , ỹn > 0. We choose P̃(x) such
that it is dominated by P(x), with the property

Ex∼μP̃(x) ≥ Ex∼μP(x) − ε.

This is possible since P(x) is measurable and non-negative.
We choose an even smaller step function P(x) that is likewise constant on

A1, . . . , An and is strictly dominated by P̃(x), such that

Ex∼μP(x) ≥ Ex∼μP(x) − 2ε (18)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

414 J. Poland

and P(x) = P̃(x) − εi = ỹi − εi := yi for x ∈ Ai, where εi > 0 for all 1 ≤ i ≤ n.
Then, for each x ∈ A1, B(x) and therefore P(x) can be approximated with
finitely many hypotheses. Since P(x) ≥ ỹi, we can find a finite set of hypotheses
F(x) such that P F̃(x) > yi for any F̃ ⊃ F(x), where P F̃(x) denotes the potential
computed with only the hypotheses in F̃ . Since P F̃(·) is continuous (while F̃ is
fixed), we have that P F̃(x̃) > yi holds even within an open superset x̃ ∈ U(x) of
x. For each x ∈ A1, there is such an open U(x), and they form an open cover of
Ā1. Since Ā1 is compact, there is a finite subcover U(x1)∪ . . .∪U(xm) ⊃ A1. We
may choose F1 = F(x1)∪. . .∪F(xm) in order to obtain a finite set of hypotheses
approximating P(x) sufficiently closely on all of A1.

Analogous approximations F2, . . . , Fn are obtained for all other A2, . . . , An.
Also, we choose a finite set of hypotheses F0 ⊂ C such that all supersets F̃ ⊃ F0

approximate the prior P up to ε. Take the union F = F0 ∪ F1 ∪ . . . ∪ Fn. Then,
from (18), we conclude that

Ex∼μP(x) − P F̃ > Ex∼μP(x) − P − 3ε.

and P F̃(x) ≥ P(x) for all x ∈ X and any F̃ ⊃ F . We make sure that μ ∈ F .
We perform the same construction an approximation of H(x) from above.

Since X was already assumed to be compact, the constant function R, which
dominates ξ(x)H(x) according to (16) is integrable w.r.t. the Lebesgue measure
λ. Therefore, we may refine the partitioning (Ai)k

i=1 of X̃, obtaining a new
partitioning (Ãi)m

i=1 of X̃ , such that H(x)ξ(x) is approximated from above within
ε by functions constant on each Ãi. We may choose the approximators H(x)
and ξ(x) slightly larger, such that they need only finitely many hypotheses. We
incorporate these hypotheses into F .

Altogether, this shows that we may indeed assume that C is finite, if we replace
(17) with

Ex∼μP(x) − P > Ex∼ξH(x) − H + 4ε, (19)

knowing that P(x) ≤ P(x) and H(x) ≥ H(x) for all x ∈ X .
In the next step, we further decrease X a tiny little bit and define X ⊂ X

such that
ν(X) < 1 for all (finitely many!) ν ∈ C. (20)

Set Ai = Ai ∩ X for all 1 ≤ i ≤ n. While choosing X , we make sure that it is
not too small. Namely, we assert

μ(Ai)
(
1 − ε

2yi

)
< μ(Ai) for all 1 ≤ i ≤ n, (21)

Ex∼μ|X P(x) ≥ Ex∼μP(x) − ε, and (22)

1 − ξ(X) <
ε

2 log |C| , (23)

where |C| is the number of hypotheses in C.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Consistency of Discrete Bayesian Learning 415

In the last step, construct a refining partition (A′
i)

k
i=1 of (Ãi∩X)m

i=1 and lower
and upper approximations ν, ν for each ν ∈ C, with the following properties:

∫

X

ν < 1 for all ν ∈ C, possible due to (20), (24)
∫

Ai

μ ≥ μ(Ai)
(
1 − ε

yi

)
for all 1 ≤ i ≤ n, possible due to (21), (25)

1 −
∫

X

ξ <
ε

log |C| , possible due to (23). (26)

Now choose (with λ being the Lebesgue measure)

X ′ = {0, 1, . . . , k}, x′
i = arg min

x∈A′
i

P(x) for all 1 ≤ i ≤ k,

ν′
i = ν(x′

i)λ(A′
i) (1 ≤ i ≤ k, ν ∈ C), ν′

0 = 1 −
k∑

i=1

ν′
i for all ν ∈ C,

H′
i = H

(
(wνν′

i
∑k

j=0 wνν′
j

)

ν∈C

)

= H(x′
i), P ′

i = P
(

(wνν′
i

∑k
j=0 wνν′

j

)

ν∈C

)

= P(x′
i).

By (24), each ν′ is in fact a measure on X ′. Justifying the following estimations
with the respective equations before, we have

k∑

i=0

μ′
iP ′

i − P ≥
k∑

i=1

μ′
iP ′

i − P ≥ Eμ|X P − P
(25)

≥ Eμ|X P − P − ε

(22)

≥ EμP − P − 2ε
(19)

≥ EξH − H + 2ε ≥ Eξ|X H − H + 2ε

≥
k∑

i=1

ξ′iH′
i − H + 2ε

(26)

≥
k∑

i=0

ξ′iH′
i − H + ε.

The last estimate is true since H′
0 ≤ log |C| holds. This is the desired contradic-

tion to the finite case. �

The next Lemma states that the entropy potential in fact satisfies the require-
ment on the function B from the previous Lemma. From the conditions (i)−(iii),
we only need to verify (ii), as (i) and (iii) are obviously true.

Lemma 6. For any history h<t and current input zt,

Ext∼μ(·|zt)Π(h1:t) ≤ Π(h<t).

Proof. This follows from a reduction to the finite case [1, Theorem 16] that is
similar and simpler than the proof of the previous Lemma. �

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

416 J. Poland

References

1. Poland, J.: The missing consistency theorem for Bayesian learning: Stochastic
model selection. In: Algorithmic Learning Theory, 16h International Conference,
ALT (LNAI 4264). (2006) 259–273

2. Blackwell, D., Dubins, L.: Merging of opinions with increasing information. Annals
of Mathematical Statistics 33 (1962) 882–887

3. Clarke, B.S., Barron, A.R.: Information-theoretic asymptotics of Bayes methods.
IEEE Trans. Inform. Theory 36 (1990) 453–471

4. Barron, A.R., Rissanen, J.J., Yu, B.: The minimum description length principle in
coding and modeling. IEEE Trans. Inform. Theory 44 (1998) 2743–2760

5. Wallace, C.S., Boulton, D.M.: An information measure for classification. Computer
Jrnl. 11 (1968) 185–194

6. Wallace, C.S., Dowe, D.L.: Minimum Message Length and Kolmogorov Complexity.
Computer Journal 42 (1999) 270–283

7. Rissanen, J.J.: Fisher Information and Stochastic Complexity. IEEE Trans. Inform.
Theory 42 (1996) 40–47

8. Barron, A.R., Cover, T.M.: Minimum complexity density estimation. IEEE Trans.
Inform. Theory 37 (1991) 1034–1054

9. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability. Springer, Berlin (2004)

10. Poland, J., Hutter, M.: Asymptotics of discrete MDL for online prediction. IEEE
Transactions on Information Theory 51 (2005) 3780–3795

11. Grünwald, P., Langford, J.: Suboptimal behaviour of Bayes and MDL in classi-
fication under misspecification. In: 17th Annual Conference on Learning Theory
(COLT). (2004) 331–347

12. Comley, J.W., Dowe, D.L.: Minimum message length and generalized Bayesian
nets with asymmetric languages. In Grünwald, P., Myung, I.J., Pitt, M.A., eds.:
Advances in Minimum Description Length: Theory and Applications. (2005) 265–
294

13. Solomonoff, R.J.: Complexity-based induction systems: comparisons and conver-
gence theorems. IEEE Trans. Inform. Theory 24 (1978) 422–432

14. Poland, J., Hutter, M.: MDL convergence speed for Bernoulli sequences. Statistics
and Computing 16 (2006) 161–175

15. Borovkov, A.A., Moullagaliev, A.: Mathematical Statistics. Gordon & Breach
(1998)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VPSPACE and a Transfer Theorem
over the Reals

Pascal Koiran and Sylvain Perifel

LIP�, École Normale Supérieure de Lyon
{Pascal.Koiran,Sylvain.Perifel}@ens-lyon.fr

Abstract. We introduce a new class VPSPACE of families of polyno-
mials. Roughly speaking, a family of polynomials is in VPSPACE if its
coefficients can be computed in polynomial space. Our main theorem
is that if (uniform, constant-free) VPSPACE families can be evaluated
efficiently then the class PARR of decision problems that can be solved
in parallel polynomial time over the real numbers collapses to PR. As a
result, one must first be able to show that there are VPSPACE families
which are hard to evaluate in order to separate PR from NPR, or even
from PARR.

Keywords: computational complexity, algebraic complexity, Blum-
Shub-Smale model, Valiant’s model.

1 Introduction

Two main categories of problems are studied in algebraic complexity theory:
evaluation problems and decision problems. A typical example of an evaluation
problem is the evaluation of the permanent of a matrix, and it is well known
that the permanent family is complete for the class VNP of “easily definable”
polynomial families [18]. Deciding whether a multivariate polynomial has a real
root is a typical example of a decision problem. This problem is NP-complete in
the Blum-Shub-Smale model of computation over the real numbers [1,2].

The main purpose of this paper is to provide a transfer theorem connecting
the complexity of evaluation and decision problems. This paper is therefore in
the same spirit as [11]. In that paper, we showed that if certain polynomials
can be evaluated efficiently then certain decision problems become easy. The
polynomials considered in [11] are those that can be written as exponential-
size products of polynomials that are easy to compute (see [11] for a precise
definition) over some field K. The decision problems under consideration are
those that are in NP in the structure (K, +, −, =), in which multiplication is not
allowed.

In the present paper we work with a larger class of polynomial families, which
we call VPSPACE. Roughly speaking, a family of polynomials (of possibly expo-
nential degree) is in VPSPACE if its coefficients can be evaluated in polynomial

� UMR 5668 ENS Lyon, CNRS, UCBL, INRIA.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 417–428, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

418 P. Koiran and S. Perifel

space. For instance, we show that resultants of systems of multivariate poly-
nomial equations form a VPSPACE family. Our main result is that if (uniform,
constant-free) VPSPACE families can be evaluated efficiently then the class PARR

of decision problems that can be solved in parallel polynomial time over the real
numbers collapses to PR. This result relies crucially on a combinatorial lemma
due to Grigoriev [9] and especially on its effective version, recently established
in [5]. The class PARR plays roughly the same role in the theory of computation
over the reals as PSPACE in discrete complexity theory. In particular, it con-
tains NPR [1] (but the proof of this inclusion is much more involved than in the
discrete case). It follows from our main result that in order to separate PR from
NPR, or even from PARR, one must first be able to show that there are VPSPACE
families which are hard to evaluate. This seems to be a very challenging lower
bound problem, but it is still presumably easier than showing that the perma-
nent is hard to evaluate.

Organization of the paper. Section 2 recalls some notions and notations from
algebraic complexity (Valiant’s model, the Blum-Shub-Smale model). A uniform
version of the class VPSPACE is defined in Section 3. The next two sections of the
paper are devoted to the transfer theorem. Section 4 deals with sign conditions,
an important tool from computational real algebraic geometry. The transfer the-
orem is stated at the beginning of Section 5, and proved thereafter.

Some of the proofs can be found in the full version of this paper [12]. In
addition, the full version contains several other results. In particular, it is shown
that resultants of multivariate polynomial systems form a VPSPACE family. The
definition of the nonuniform class VPSPACE is given and the hypothesis that
VPSPACE families are easy to evaluate is discussed. It is shown that (assuming
the generalized Riemann hypothesis) this hypothesis is equivalent to: VP =
VNP and P/poly = PSPACE/poly. The conjunction of these two equalities is an
extremely strong assumption: by results from [3] (see [10]), it implies, assuming
again GRH, that NC/poly = PSPACE/poly. This conjunction of equalities is still
apparently consistent with our current understanding of complexity theory. We
also discuss the uniform, constant-free version of the hypothesis that VPSPACE
families are easy to evaluate. It turns out that this stronger hypothesis implies
that PSPACE collapses to the polynomial-time uniform version of NC. Such a
dramatic collapse of complexity classes looks extremely unlikely, but as far as
we know it cannot be refuted with the current methods of complexity theory.

2 Preliminaries

The notions of boolean complexity theory that we use are quite standard. In the
present section, we focus on algebraic complexity.

2.1 The Blum-Shub-Smale Model

In contrast with boolean complexity, algebraic complexity deals with other struc-
tures than {0, 1}. In this paper we will focus on the ordered field (R, +, −, ×, ≤) of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VPSPACE and a Transfer Theorem over the Reals 419

the real numbers. Although the original definitions of Blum, Shub and Smale [2,1]
are in terms of uniform machines, we will follow [16] by using families of algebraic
circuits to recognize languages over R, that is, subsets of R

∞ =
⋃

n≥0 R
n.

An algebraic circuit is a directed acyclic graph whose vertices, called gates,
have indegree 0, 1 or 2. An input gate is a vertex of indegree 0. An output gate is
a gate of outdegree 0. We assume that there is only one such gate in the circuit.
Gates of indegree 2 are labelled by a symbol from the set {+, −, ×}. Gates of
indegree 1, called test gates, are labelled “≤ 0?”. The size of a circuit C, in
symbols |C|, is the number of vertices of the graph.

A circuit with n input gates computes a function from R
n to R. On input

ū ∈ R
n the value returned by the circuit is by definition equal to the value of its

output gate. The value of a gate is defined in the usual way. Namely, the value
of input gate number i is equal to the i-th input ui. The value of other gates is
then defined recursively: it is the sum of the values of its entries for a +-gate,
their difference for a −-gate, their product for a ×-gate. The value taken by a
test gate is 0 if the value of its entry is > 0 and 1 otherwise. We assume without
loss of generality that the output is a test gate. The value returned by the circuit
is therefore 0 or 1.

The class PR is the set of languages L ⊆ R
∞ such that there exists a tuple

ā ∈ R
p (independent of n) and a P-uniform family of polynomial-size circuits

(Cn) satisfying the following condition: Cn has exactly n+ p inputs, and for any
x̄ ∈ R

n, x̄ ∈ L ⇔ Cn(x̄, ā) = 1. The P-uniformity condition means that Cn can
be built in time polynomial in n by an ordinary (discrete) Turing machine. Note
that ā plays the role of the machine constants of [1,2].

As in [4], we define the class PARR as the set of languages over R recognized by
a PSPACE-uniform family of algebraic circuits of polynomial depth (and possibly
exponential size), with constants ā as for PR. Note at last that we could also
define similar classes without constants ā. We will use the superscript 0 to denote
these constant-free classes, for instance P0

R
and PAR0

R
.

2.2 Valiant’s Model

In Valiant’s model, one computes polynomials instead of recognizing languages.
We thus use arithmetic circuits instead of algebraic circuits. A book-length treat-
ment of this topic can be found in [3].

An arithmetic circuit is the same as an algebraic circuit but test gates are not
allowed. That is to say we have indeterminates x1, . . . , xu(n) as input together
with arbitrary constants of R; there are +, − and ×-gates, and we therefore
compute multivariate polynomials.

The polynomial computed by an arithmetic circuit is defined in the usual
way by the polynomial computed by its output gate. Thus a family (Cn) of
arithmetic circuits computes a family (fn) of polynomials, fn ∈ R[x1, . . . , xu(n)].
The class VPnb defined in [13] is the set of families (fn) of polynomials computed
by a family (Cn) of polynomial-size arithmetic circuits, i.e., Cn computes fn

and there exists a polynomial p(n) such that |Cn| ≤ p(n) for all n. We will
assume without loss of generality that the number u(n) of variables is bounded

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

420 P. Koiran and S. Perifel

by a polynomial function of n. The subscript “nb” indicates that there is no
bound on the degree of the polynomial, in contrast with the original class VP of
Valiant where a polynomial bound on the degree of the polynomial computed
by the circuit is required. Note that these definitions are nonuniform. The class
Uniform VPnb is obtained by adding a condition of polynomial-time uniformity
on the circuit family, as in Section 2.1.

The class VNP is the set of families of polynomials defined by an exponential
sum of VP families. More precisely, (fn(x̄)) ∈ VNP if there exists (gn(x̄, ȳ)) ∈ VP
and a polynomial p such that |ȳ| = p(n) and fn(x̄) =

∑
ε̄∈{0,1}p(n) gn(x̄, ε̄).

We can also forbid constants from our arithmetic circuits in unbounded-degree
classes, and define constant-free classes. The only constant allowed is 1 (in order
to allow the computation of constant polynomials). As for classes of decision
problems, we will use the superscript 0 to indicate the absence of constant: for
instance, we will write VP0

nb (for bounded-degree classes, we are to be more
careful; see [13]).

Note at last that arithmetic circuits are at least as powerful as boolean circuits
in the sense that one can simulate the latter by the former. Indeed, we can for
instance replace ¬u by 1 − u, u ∧ v by uv, and u ∨ v by u + v − uv. This proves
the following classical lemma.

Lemma 1. Any boolean circuit C can be simulated by an arithmetic one of size
at most 3|C|, in the sense that on boolean inputs, both circuits output the same
value.

3 The Class VPSPACE

3.1 Definition

We fix an arbitrary field K. The definition of VPSPACE will be stated in terms
of coefficient function. A monomial xα1

1 · · · xαu(n)

u(n) is encoded in binary by α =
(α1, . . . , αu(n)) and will be written x̄α.

Definition 1. Let (fn) be a family of multivariate polynomials with integer co-
efficients. The coefficient function of (fn) is the function a whose value on input
(n, α, i) is the i-th bit a(n, α, i) of the coefficient of the monomial x̄α in fn. Fur-
thermore, a(n, α, 0) is the sign of the coefficient of the monomial x̄α. Thus fn

can be written as

fn(x̄) =
∑

α

(
(−1)a(n,α,0)

∑

i≥1

a(n, α, i)2i−1x̄α
)
.

The coefficient function is a function a : {0, 1}∗ → {0, 1} and can therefore be
viewed as a language. This allows us to speak of the complexity of the coefficient
function.

Definition 2. The class Uniform VPSPACE0 is the set of all families (fn) of
multivariate polynomials fn ∈ K[x1, . . . , xu(n)] satisfying the following require-
ments:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VPSPACE and a Transfer Theorem over the Reals 421

1. the number u(n) of variables is polynomially bounded;
2. the polynomials fn have integer coefficients;
3. the size of the coefficients of fn is bounded by 2p(n) for some polynomial p;
4. the degree of fn is bounded by 2p(n) for some polynomial p;
5. the coefficient function of (fn) is in PSPACE.

We have chosen to define first Uniform VPSPACE0, a uniform class without con-
stants, because this is the main object of study in this paper. In keeping with the
tradition set by Valiant, however, the class VPSPACE, defined in the full version
of this paper [12], is nonuniform and allows for arbitrary constants.

3.2 An Alternative Characterization

Let Uniform VPAR0 be the class of families of polynomials computed by a
PSPACE-uniform family of constant-free arithmetic circuits of polynomial depth
(and possibly exponential size). This in fact characterizes Uniform VPSPACE0.

Proposition 1. The two classes Uniform VPSPACE0 and Uniform VPAR0 are
equal.

Proof. Let (fn) be a Uniform VPSPACE0 family. In order to compute fn by an
arithmetic circuit of polynomial depth, we compute all its monomials in parallel
and sum them in a divide-and-conquer-fashion. The resulting family of arith-
metic circuits is uniform due to the uniformity condition on (fn).

For the converse, take an arithmetic circuit of polynomial depth. We show
that we can build a boolean circuit of polynomial depth which takes as input
the encoding α of a monomial and computes the coefficient of x̄α. We proceed by
induction, computing the coefficient of x̄α for each gate of the original arithmetic
circuit. For the input gates, this is easy. For a +-gate, it is enough to add both
coefficients. For a gate a × b, we compute in parallel the sum of the cd over all
the monomials x̄β and x̄γ such that β +γ = α, where c is the coefficient of x̄γ in
the gate a, and d the coefficient of x̄β in the gate b. The whole boolean circuit
remains uniform and of polynomial depth. Therefore, the coefficient function is
in PSPACE by the “parallel computation thesis”. 	

We see here the similarity with PARR, which by definition are those languages
recognized by uniform algebraic circuits of polynomial depth. But of course there
is no test gate in the arithmetic circuits of Uniform VPSPACE0.

4 Sign Conditions

4.1 Definition

Given are s polynomials f1, . . . , fs ∈ Z[x1, . . . , xn]. A sign condition is merely
an s-tuple S ∈ {−1, 0, 1}s. Intuitively, the i-th coordinate of S represents the
sign of fi: −1 for < 0, 0 for 0, and 1 for > 0. Accordingly, the sign condition of a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

422 P. Koiran and S. Perifel

point x̄ ∈ R
n is the tuple S ∈ {−1, 0, 1}s such that Si = −1 if fi(x̄) < 0, Si = 0

if fi(x̄) = 0 and Si = 1 if fi(x̄) > 0.
Of course some sign conditions are not realizable, in the sense that the poly-

nomials can nowhere take the corresponding signs (think for instance of x2 + 1
which can only take positive values over R). We say that a sign condition is
satisfiable if it is the sign condition of some x̄ ∈ R

n and we call N the number
of satisfiable sign conditions. The key result detailed in the next section is that
among all possible sign conditions, there are few satisfiable ones (i.e. N is small),
and there exists a polynomial space algorithm to enumerate them all.

4.2 A PSPACE Algorithm for Sign Conditions

The following theorem will prove to be a central tool in our proofs. The bound
on the number of satisfiable sign conditions follows from the Thom-Milnor
bounds [14] (see Grigoriev [8, Lemma 1]); the enumeration algorithm is from
Renegar [17, Prop. 4.1].

Theorem 1. Let f1, . . . , fs ∈ Z[x1, . . . , xn] be s polynomials of maximal degree
d, and whose coefficients have bit size ≤ L. Then:

1. there are N = (sd)O(n) satisfiable sign conditions;
2. there is an algorithm using work space (log L)[n log(sd)]O(1) which, on input

(f1, . . . , fs) in dense representation, and (i, j) in binary, outputs the j-th
component of the i-th satisfiable sign condition.

If S is the i-th satisfiable sign condition produced by this enumeration algorithm,
we say that the rank of S is i (the rank is therefore merely the index of the sign
condition in the enumeration). Note that if d = 2nO(1)

, s = 2nO(1)
and L = 2nO(1)

as will be the case, then the work space of the algorithm is polynomial in n.

4.3 Enumerating All Possibly Tested Polynomials

In the execution of an algebraic circuit, the values of some polynomials at the
input x̄ are tested to zero. If two points x̄ and ȳ have the same sign condition
with respect to all polynomials possibly tested to zero, then they will either both
belong to the language, or both be outside of it: indeed the results of all the tests
will be the same during the execution of the circuit. Therefore we can handle
sign conditions (i.e. boolean words) instead of algebraic inputs.

Note that in order to find the sign condition of the input x̄, we have to be able
to enumerate in polynomial space all the polynomials that can ever be tested to
zero in some computation of an algebraic circuit. This is done as in [7, Th. 3].

Proposition 2. Let C be a constant-free algebraic circuit with n variables and
of depth d.

1. The number of different polynomials possibly tested to zero in some compu-
tation of C is 2d2O(n).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VPSPACE and a Transfer Theorem over the Reals 423

2. There exists an algorithm using work space (nd)O(1) which, on input C and
integers (i, j) in binary, outputs the j-th bit of the i-th of these polynomials.

The proof can be found in the full version of this paper [12]. Note that this
proposition can also be useful when our algebraic circuit is not constant-free: it
is enough to replace the constants by fresh variables. The only risk is indeed to
take more polynomials into account since we have replaced specific constants by
generic variables.

5 A Transfer Theorem

In this section we prove our main result.

Theorem 2. Uniform VPSPACE0 = Uniform VP0
nb =⇒ PAR0

R = P0
R
.

Note that the collapse of the constant-free class PAR0
R to P0

R
implies the collapse

of PARR to PR: just replace constants by new variables in order to transform a
PARR problem into a PAR0

R
problem, and then replace these variables by their

orignal values in order to transform a P0
R

problem into a PR problem.
Let A ∈ PAR0

R
: it is decided by a uniform family (Cn) of constant-free algebraic

circuits of polynomial depth. For convenience, we fix n and work with Cn. For
the proof of Theorem 2 we will need to find the sign condition of the input x̄
with respect to the polynomials f1, . . . , fs of Proposition 2, that is to say, with
respect to all the polynomials that can be tested to zero in an execution of
Cn. We denote by N the number of satisfiable sign conditions with respect to
f1, . . . , fs.

Note that most of the forthcoming results depend on the polynomials
f1, . . . , fs, therefore on the choice of Cn. For instance, once Cn and f1, . . . , fs are
chosen, the satisfiable sign conditions are fixed and we will speak of the i-th sat-
isfiable sign condition without referring explicitly to the polynomials f1, . . . , fs.

In order to find the sign condition of the input, we will give a polynomial-
time algorithm which tests some VPSPACE family for zero. Here is the formalized
notion of a polynomial-time algorithm with VPSPACE tests.

Definition 3. A polynomial-time algorithm with Uniform VPSPACE0 tests is a
Uniform VPSPACE0 family (fn(x1, . . . , xu(n))) together with a uniform constant-
free family (Cn) of polynomial-size algebraic circuits endowed with special
test gates of indegree u(n), whose value is 1 on input (a1, . . . , au(n)) if
fn(a1, . . . , au(n)) ≤ 0 and 0 otherwise.

Observe that a constant number of Uniform VPSPACE0 families can be used in
the preceding definition instead of only one: it is enough to combine them all in
one by using “selection variables”. The following Theorem 3 is the main result
en route to showing the transfer theorem. It is proved via successive lemmas in
Sections 5.1 to 5.3: we proceed as in [9] but constructively.

Theorem 3. There is a polynomial-time algorithm with Uniform VPSPACE0

tests that, on input x̄, computes the rank of the sign condition of x̄ with respect
to f1, . . . , fs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

424 P. Koiran and S. Perifel

5.1 Truncated Sign Conditions

A truncated sign condition is merely an element T of {0, 1}s. Contrary to full
sign conditions, only the two cases = 0 and �= 0 are distinguished. We define in
a natural way the truncated sign condition T of a point x̄: Ti = 0 if and only if
fi(x̄) = 0.

Of course, there are fewer satisfiable truncated sign conditions than full ones,
and of course there exists a polynomial space algorithm to enumerate them.
Furthermore, truncated sign conditions can be viewed as subsets of {1, . . . , s}
(via the convention k ∈ T ⇐⇒ Tk = 1), therefore enabling us to speak of
inclusion of truncated sign conditions.

We fix an order ≤T compatible with inclusion and easily computable in par-
allel, e.g. the lexicographic order. Let us call T (i) the i-th satisfiable truncated
sign condition with respect to this order.

Lemma 2. There is an algorithm using work space polynomial in n which, on
input (f1, . . . , fs) in dense representation, and (i, j) in binary, outputs the j-th
component of T (i) (the i-th satisfiable truncated sign condition with respect to
≤T).

Proof. It is enough to use the algorithm of Theorem 1, followed by a fast parallel-
sorting procedure, for instance Cole’s parallel merge-sort algorithm [6]. 	

Note that the truncated sign condition of the input x̄ is the maximal truncated
satisfiable sign condition T satisfying ∀i, Ti = 1 ⇒ fi(x̄) �= 0. Hence we have to
find a maximum. This will be done by binary search.

Lemma 3. There is a Uniform VPSPACE0 family (gn) of polynomials satisfying,
for real x̄ and boolean i,

gn(x̄, i) =
∏

j≤i

(∑

k �∈T (j)

fk(x̄)2
)
.

Proof. Lemma 2 asserts that deciding whether k �∈ T (j) is in PSPACE.
Then we use twice the closure of Uniform VPSPACE0 under exponential sum

and product (see the full version of this paper [12]). 	

Proposition 3. There is a polynomial-time algorithm with Uniform VPSPACE0

tests which on input x̄ outputs the rank m of its truncated sign condition T (m).

Proof. The algorithm merely consists in performing a binary search thanks to
the polynomials of Lemma 3: if the truncated sign condition of the input x̄ is
T (m), then

∏
j≤i

(∑
k �∈T (j) fk(x̄)2

)
= 0 if and only if m ≤ i. By making i vary, we

find m in a number of steps logarithmic in the number of satisfiable truncated
sign conditions, i.e. in polynomial time. 	

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VPSPACE and a Transfer Theorem over the Reals 425

5.2 Binary Search for the Full Sign Condition

We say that a (full) sign condition S is compatible with the truncated sign
condition T if ∀i, Ti = 0 ⇔ Si = 0 (i.e. they agree for “= 0” and for “ �= 0”).
Let N ′ denote the number of (full) satisfiable sign conditions compatible with
the truncated sign condition of the input x̄. Obviously, N ′ ≤ N . The following
lemma is straightforward after Lemma 2 and Theorem 1.

Lemma 4. There is an algorithm using work space polynomial in n which, on
input (i, j, k), ouputs the j-th bit of the i-th satisfiable sign condition compatible
with T (k).

Since we know the truncated sign condition of x̄ after running the algorithm of
Proposition 3, we know which polynomials vanish at x̄. We can therefore discard
the zeros in the (full) compatible satisfiable sign conditions. Hence we are now
concerned with two-valued sign conditions, that is, elements of {−1, 1}s′

with
s′ ≤ s. In what follows arithmetic over the field of two elements will be used,
hence it will be simpler to consider that our sign conditions have values among
{0, 1} instead of {−1, 1}: 0 for > 0 and 1 for < 0. Thus sign conditions are viewed
as vectors over {0, 1}, or alternately as subsets of {1, . . . , s′}. The set {0, 1}s′

is
endowed with the inner product u.v =

∑
i uivi(mod 2), and we say that u and

v are orthogonal whenever u.v = 0 (see [5]).
The following proposition from [5] will be useful. It consists in an improvement

of the result of [9]: first (and most importantly), it is constructive, and second,
the range [N ′/2 −

√
N ′/2, N ′/2 +

√
N ′/2] here is much better than the original

one [N ′/3, 2N ′/3].

Proposition 4. Let V be a set of N ′ vectors of {0, 1}s′
.

1. There exists a vector u orthogonal to at least N ′/2 −
√

N ′/2 and at most
N ′/2 +

√
N ′/2 vectors of V .

2. Such a vector u can be found on input V by a logarithmic space algorithm.

Our aim is to find the sign condition of x̄. We will use Proposition 4 in order
to divide the cardinality of the search space by two at each step. This is based
on the following observation: if u ∈ {0, 1}s′

, the value of the product
∏

j∈u fj(x̄)
is negative if the inner product of u and the sign condition of x̄ is 1, and is
positive otherwise. The idea is then to choose u judiciously so that the number
of satisfiable sign conditions having the same inner product with u as the sign
condition of x̄ is halved at each step. Therefore, in a logarithmic number of steps,
the sign condition of x̄ will be uniquely determined. This gives the following
algorithm for finding the sign condition of x̄.

– Let E be the set of all the satisfiable sign conditions.
– While E contains more than one element, do

• Find by Proposition 4 a vector u orthogonal to at least |E|/2 −
√

|E|/2
and at most |E|/2 +

√
|E|/2 vectors of E.

• Let b be the result of the test “
∏

j∈u fj(x̄) < 0?”.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

426 P. Koiran and S. Perifel

• Let the new E be the set of all sign conditions in E which have inner
product b with u.

– Enumerate all the satisfiable sign conditions and find the one that produces
exactly the same results as in the loop: this is the sign condition of x̄.

Note that the number of steps is O(log N ′), which is polynomial in n. The last
step of this algorithm (namely, recovering the rank of the sign condition of x̄
from the list of results of the loop) is detailed in Section 5.3.

We now show how to perform this algorithm in polynomial time with
Uniform VPSPACE0 tests. The main technical difficulty is that according to Defi-
nition 3 we can use only one VPSPACE family, whereas we want to make adaptive
tests. We therefore have to store the intermediate results of the preceding tests
in some variables c̄ (a “list of choices”) of the VPSPACE polynomial. Propo-
sition 4 shows that, by reusing space, there exists a logspace algorithm that,
given any set V of N ′ vectors together with a “list of choices” c ∈ {0, 1}l (with
l = O(log N ′)), enumerates l + 1 vectors u(1), . . . , u(l+1) satisfying the following
condition (�):

– u(1) is orthogonal to at least N ′/2 −
√

N ′/2 and at most N ′/2 +
√

N ′/2
vectors of V .

– Let Vi ⊆ V be the subset of all the vectors v ∈ V satisfying ∀j ≤ i, v.u(j) =
cj . Then the vector u(i+1) is orthogonal to at least |Vi|/2 −

√
|Vi|/2 and at

most |Vi|/2 +
√

|Vi|/2 vectors of Vi.

Note that |Vi| is roughly divided by 2 at each step, so the number of steps is
O(log N ′). In particular, since s′ and N ′ are simply exponential, the following
lemma is easily derived by combining what precedes with Lemma 4.

Lemma 5. There is an algorithm using work space polynomial in n which, on
input (i, j, k, c) in binary, outputs the j-th bit of u(i) ∈ {0, 1}N ′

, where the vectors
u(1), . . . , u(l+1) satisfy condition (�) for the input consisting of:

– the set V of the N ′ (full) satisfiable sign conditions compatible with T (k),
– together with the list of choices c ∈ {0, 1}l.

Lemma 6. There exists a Uniform VPSPACE0 family (hn) satifsying, for real x̄
and boolean (i, k, c):

hn(x̄, i, k, c) =
∏

j∈u(i)

fj(x̄),

where u(1), . . . , u(l+1) are defined as in Lemma 5 (in particular they depend on
T (k)).

Proof. Lemma 5 asserts that deciding whether j ∈ u(i) is done in polynomial
space. The closure of Uniform VPSPACE0 under exponential products (see [12])
then concludes the proof. 	

Therefore, by a Uniform VPSPACE0 test, one is able to know the sign of the
polynomial hn(x̄, i, k, c) =

∏
j∈u(i) fj(x̄). As mentioned before, this gives us the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VPSPACE and a Transfer Theorem over the Reals 427

inner product of u(i) and the (full) sign condition of x̄: this sign is < 0 if and
only if the inner product is 1. By beginning with c = 0 · · · 0 (step 1), and at step
i ≥ 2 letting ci−1 = 1 if and only if the preceding test was < 0, the number
of sign conditions that have the same inner products as that of x̄ is divided by
(roughly) two at each step. At the end, we therefore have a list of choices c that
only the sign condition of x̄ fulfills. This proves the following lemma.

Lemma 7. There is a polynomial-time algorithm with Uniform VPSPACE0 tests
which on input x̄ outputs the list of choices c (defined as above) which uniquely
characterizes the sign condition of x̄, provided we know the rank k of the trun-
cated sign condition T (k) of x̄.

We are now able to recover the rank of the sign condition of x̄ from this infor-
mation, as explained in the next section.

5.3 Recovering the Rank of the Sign Condition

Lemma 8. There is an algorithm using work space polynomial in n which, on
input c ∈ {0, 1}l (a list of choices) and k, outputs the rank of a satisfiable sign
condition compatible with T (k) that fulfills the list of choices c.

Proof. In polynomial space we recompute all the vectors u(i) as in Lemma 5,
then we enumerate all the sign conditions thanks to Theorem 1 until we find one
that fulfills the list of choices c. 	

The proof of Theorem 3 follows easily from Proposition 3 and Lemmas 7–8.

5.4 A Polynomial-Time Algorithm for PARR Problems

Remember that A ∈ PAR0
R

and (Cn) is a uniform family of polynomial-depth
algebraic circuits deciding A.

Lemma 9. There is a (boolean) algorithm using work space polynomial in n
which, on input i (the rank of a satisfiable sign condition), decides whether the
elements of the i-th satisfiable sign condition S are accepted by the circuit Cn.

Proof. We follow the circuit Cn level by level. For test gates, we compute the
polynomial f to be tested. Then we enumerate the polynomials f1, . . . , fs as
in Proposition 2 for the circuit Cn and we find the index j of f in this list.
By consulting the j-th bit of the i-th satisfiable sign condition with respect to
f1, . . . , fs (which is done by the polynomial-space algorithm of Theorem 1), we
therefore know the result of the test and can go on like this until the output
gate. 	

Theorem 4. Let A ∈ PAR0
R. There exists a polynomial-time algorithm with

Uniform VPSPACE0 tests that decides A.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

428 P. Koiran and S. Perifel

Proof. A is decided by a uniform family (Cn) of polynomial depth algebraic
circuits. On input x̄, thanks to Theorem 3 we first find the rank of the sign
condition of x̄ with respect to the polynomials f1, . . . , fs of Proposition 2. Then
we conclude by Lemma 9. 	

Theorem 2 follows immediately from this result. One could obtain other ver-
sions of these two results by changing the uniformity conditions or the role of
constants.

References

1. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation.
Springer-Verlag, 1998.

2. L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines.
Bulletin of the American Mathematical Society, 21(1):1–46, 1989.

3. P. Bürgisser. Completeness and Reduction in Algebraic Complexity Theory. Num-
ber 7 in Algorithms and Computation in Mathematics. Springer, 2000.

4. O. Chapuis and P. Koiran. Saturation and stability in the theory of computation
over the reals. Annals of Pure and Applied Logic, 99:1–49, 1999.

5. P. Charbit, E. Jeandel, P. Koiran, S. Perifel, and S. Thomassé. Finding a vector
orthogonal to roughly half a collection of vectors. Available from http://perso.ens-
lyon.fr/pascal.koiran/publications.html. Accepted for publication in Journal of
Complexity, 2006.

6. R. Cole. Parallel merge sort. SIAM J. Comput., 17(4):770–785, 1988.
7. F. Cucker and D. Grigoriev. On the power of real Turing machines over binary

inputs. SIAM Journal on Computing, 26(1):243–254, 1997.
8. D. Grigoriev. Complexity of deciding Tarski algebra. Journal of Symbolic Compu-

tation, 5:65–108, 1988.
9. D. Grigoriev. Topological complexity of the range searching. Journal of Complexity,

16:50–53, 2000.
10. P. Koiran. Valiant’s model and the cost of computing integers. Computational

Complexity, 13:131–146, 2004.
11. P. Koiran and S. Perifel. Valiant’s model: from exponential sums to exponen-

tial products. In Mathematical Foundations of Computer Science, volume 4162 of
Lecture Notes in Computer Science, pages 596–607. Springer-Verlag, 2006.

12. P. Koiran and S. Perifel. VPSPACE and a Transfer Theorem over the Reals. 2006.
Available from http://prunel.ccsd.cnrs.fr/ensl-00103018.

13. G. Malod. Polynômes et coefficients. PhD thesis, Université Claude Bernard Lyon
1, July 2003.

14. J. Milnor. On Betti numbers of real varieties. Proceedings of the American Math-
ematical Society, 15(2):275–280, 1964.

15. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
16. B. Poizat. Les petits cailloux. Aléas, 1995.
17. J. Renegar. On the computational complexity and geometry of the first-order

theory of the reals, part 1. Journal of Symbolic Computation, 13:255–299, 1992.
18. L. G. Valiant. Completeness classes in algebra. In Proc. 11th ACM Symposium on

Theory of Computing, pages 249–261, 1979.
19. L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation

of polynomials using few processors. SIAM Journal on Computing, 12(4):641–644,
1983.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Symmetric Signatures in Holographic
Algorithms

Jin-Yi Cai1,� and Pinyan Lu2,��

1 Computer Sciences Department, University of Wisconsin
Madison, WI 53706, USA

jyc@cs.wisc.edu
2 Department of Computer Science and Technology, Tsinghua University

Beijing, 100084, P.R. China
lpy@mails.tsinghua.edu.cn

Abstract. In holographic algorithms, symmetric signatures have been
particularly useful. We give a complete characterization of these symmet-
ric signatures over all bases of size 1. These improve previous results [4]
where only symmetric signatures over the Hadamard basis (special basis
of size 1) were obtained. In particular, we give a complete list of Boolean
symmetric signatures over bases of size 1.

It is an open problem whether signatures over bases of higher
dimensions are strictly more powerful. The recent result by Valiant [18]
seems to suggest that bases of size 2 might be indeed more powerful than
bases of size 1. This result is with regard to a restrictive counting version
of #SAT called #Pl-Rtw-Mon-3CNF. It is known that the problem is
#P-hard, and its mod 2 version is ⊕P-hard. Yet its mod 7 version
is solvable in polynomial time by holographic algorithms. This was
accomplished by a suitable symmetric signature over a basis of size 2 [18].
We show that the same unexpected holographic algorithm can be realized
over a basis of size 1. Furthermore we prove that 7 is the only modulus
for which such an “accidental algorithm” exists.

1 Introduction

Valiant has recently developed the theory of matchgate computations and
holographic algorithms [13,15]. This is a novel methodology to design polynomial
time algorithms. With this methodology, for some seemingly exponential time
computations, one can design a custom made process to carry out exponentially
many cancellations so that the computation can actually be done in polynomial
time. Frequently the technical content of this design process amounts to finding
a suitable signature.

These algorithms can appear quite unintuitive and exotic. So far, the main
impact of this new theory is not so much as solving every day algorithmic
� Supported by NSF CCR-0208013 and CCR-0511679.

�� Supported by the National Natural Science Foundation of China Grant 60553001 and
the National Basic Research Program of China Grant 2007CB807900,2007CB807901.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 429–440, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

430 J.-Y. Cai and P. Lu

problems, but rather pointing out the existence of some unexpected ways of
doing computation. Thus, to us, the most intriguing aspect of the new theory
is its broader implication in complexity theory. A case in point is the following
restrictive version of #SAT (the problem of counting satisfying assignments),
called #Pl-Rtw-Mon-3CNF. Here we consider only planar Boolean formulae
in Conjunctive Normal Form with 3 variables in each clause. Furthermore we
assume each variable appears positively (Monotone) and in exactly two clauses
(Read twice). (This problem can also be stated naturally as a Vertex Cover
problem on 2-3-regular planar bipartite graphs.) #Pl-Rtw-Mon-3CNF has been
studied before, including its approximate versions [7,6,1]. It is known to be #P-
hard. Moreover counting the satisfying assignments modulo 2 for such formulae
is ⊕P-hard. However, Valiant [18] showed that a surprising polynomial time
(he called it an “accidental”) algorithm exists for this counting problem mod 7,
denoted #7Pl-Rtw-Mon-3CNF, using holographic algorithms. What makes this
work is a particular symmetric signature exists over the field Z7. This is what
Valiant called an “accidental or freak object” [18].1

Suppose we all believe P �= NP. Unless and until a proof of P �= NP is found,
one should regard this as an open problem. Then it is reasonable to ask where
do we derive our confidence in this assertion. Certainly this is not due to any
strong unconditional lower bound. We believe this confidence is based on the
fact that all existing algorithmic approaches do not seem to tackle a myriad of
NP-hard problems. Valiant’s new theory of holographic algorithms challenges us
to re-examine this belief critically. To put it bluntly, if you haven’t seen these
“exotic” or “accidental” algorithms, and haven’t looked closely at how such
algorithms behave, then how do you know such algorithms do not exist for one
NP-hard problem? As Valiant pointed out [15], “any proof of P �= NP may need
to explain, and not only to imply, the unsolvability” of NP-hard problems in this
framework.

Valiant actually introduced two related theories, first, matchgate / match-
circuit [13], and second, holographic algorithms [15]. In the first theory, the
basic notion is a matchgate and its character, defined by Pfaffians. He used this
theory to simulate a fragment of quantum computations. In the second, a new
ingredient was added, that of a linear vector basis through which computation is
expressed. In this second theory, the matchgates are assumed to be planar, and
each matchgate is associated with a signature defined by the Perfect Matching
polynomial PerfMatch. Then the computation is ultimately done in terms of the
Fisher-Kasteleyn-Temperley (FKT) method [8,9,12] via the Holant Theorem [15].
After the development from [3,4], a certain unification of the two theories was
achieved. Basically, using the algebraic properties of Pfaffians, we were able
to achieve a complete characterization of realizable characters in [3]. In [4] an
equivalence theorem was proved for matchgates/characters on the one hand and

1 From Valiant [18]: “. . . the situation with the P = NP question is not dissimilar to
that of other unresolved enumerative conjectures in mathematics. The possibility
that accidental or freak objects in the enumeration exist cannot be discounted, if
the objects in the enumeration have not been systematically studied previously.”

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Symmetric Signatures in Holographic Algorithms 431

planar-matchgates/signatures on the other, thereby the characterization theorem
also applies to planar matchgates and their standard signatures. In this paper,
we will use these results.

Due to space limitations, we will omit most definitions, and refer the readers
to [13,15,3,4,2]. A planar matchgate Γ = (G, X, Y) is a weighted graph G =
(V, E, W) with a planar embedding, having external nodes, the input nodes
X and the output nodes Y , placed on the outer face. Define PerfMatch(G) =∑

M

∏
(i,j)∈M wij , where the sum is over all perfect matchings M . The standard

signature, u = u(Γ), is defined to be a 2|Y | × 2|X| matrix whose entries are
indexed by subsets X ′ ⊆ X and Y ′ ⊆ Y , and the entry at (row Y ′, column X ′)
is uZ = PerfMatch(G−Z), where Z = X ′∪Y ′. Here G−Z denotes the subgraph
of G obtained by removing the subset of nodes in Z (and all their incident edges).
Matchgates with only output nodes are called generators. Matchgates with only
input nodes are called recognizers.

In the design of holographic algorithms so far, the most useful signatures
have been the so-called symmetric signatures. A symmetric signature is one
where uZ only depends on the cardinality of Z; we denote this by σ|Z|. Thus,
a symmetric signature of a generator or a recognizer with k external nodes can
be identified with a vector of k + 1 entries σ = [σ0, σ1, . . . , σk]. The ingenious
idea of holographic algorithms is that one can transform the standard signatures
under a linear transformation of the basis vectors. Under this transformation,
the symmetric signature will remain a symmetric signature, but will have a clear
combinatorial meaning. E.g., σ = [0, 1, 1, 1] will mean a Boolean OR. These
combinatorial interpretations, when applied with the Holant Theorem [15], lead
to polynomial time algorithms. The symmetric signatures are responsible for a
majority of the interesting polynomial time algorithms in the new theory.

To understand the limit of holographic algorithms, and to develop a sub-
stantial theory for this new methodolgy, we must come to grips with what
can or cannot be done by signatures of matchgates, under all possible basis
transformations. This is still a rather remote goal. For now we can only say
something intelligent on symmetric signatures, and over bases of size 1.

In this paper, we give a complete characterization of symmetric signatures
over bases of size 1. Our characterization is valid for all fields with characteristic
p �= 2. These improve previous results [4] where only symmetric signatures over
the Hadamard basis, which is a special basis of size 1, were obtained. In [4],
those results were proved using properties of Krawtchouk polynomials. Here
we are able to prove a much stronger results without the use of these special
polynomials. We also give a complete list of Boolean symmetric signatures over
bases of size 1.

It is an open problem whether signatures over bases of higher dimensions are
strictly more powerful. The recent result by Valiant [18] seems to suggest that
this might be the case. He considered a restrictive version of #SAT, called #Pl-
Rtw-Mon-3CNF: To count the number of satisfying assignments for a planar
monotone read-twice 3CNF formula. The problem is #P-hard for counting [6,1]
and ⊕P-hard for counting mod 2. But Valiant showed that it is solvable by

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

432 J.-Y. Cai and P. Lu

an exotic holographic algorithm for counting mod 7. In order to do that, he
used a suitable signature, with a basis of size 2. We show that the same
holographic algorithm for #7Pl-Rtw-Mon-3CNF can be realized over a basis
of size 1. Furthermore we prove that 7 is the only modulus for which such an
“accidental algorithm” exists.

2 Holographic Algorithms for #7Pl-Rtw-Mon-3CNF

We briefly review some background information on holographic algorithms.
We use the tensor theoretic treatment for matchgates (see [2]). Let b denote

the standard basis for two dimensional space (or size 1), b = [e0, e1] =[(
1
0

)

,

(
0
1

)]

. Consider another basis β = [n, p] =
[(

n0

n1

)

,

(
p0

p1

)]

. Let T be

the transformation matrix from b to β, where T =
[
n0 p0

n1 p1

]

, and β = bT . For

convenience, denote T = (tij) and T−1 = (t̃ij). (Upper index is for row and lower
index is for column.)

Each generator (with n output nodes) is associated with a contravariant tensor
G. Each recognizer (with n input nodes) is associated with a covariant tensor
R. The standard signature of a matchgate is the expression of its matchgate
tensor under the standard basis for the tensor product space. Under a basis
transformation β = bT , these tensors take different forms, and transform either
contravariantly or covariantly.

More concretely, the contravariant tensor G of a generator transforms under
the basis transformation β = bT as

(G′)i′
1i′

2...i′
n =

∑
Gi1i2...in t̃

i′
1

i1
t̃
i′
2

i2
· · · t̃i

′
n

in
(1)

Here the entry of the standard signature Gi1i2...in = PerfMatch(G−Z), and the
bit string i1i2 . . . in denotes subset Z. Correspondingly, the covariant tensor R
of a recognizer transforms as

(R′)i′
1i′

2...i′
n

=
∑

Ri1i2...inti1i′
1
ti2i′

2
· · · tin

i′
n

(2)

(where the sum is with all matching upper and lower indices.)
Let’s consider #Pl-Rtw-Mon-3CNF. We are given a planar formula in 3CNF

form, where each variable appears positively, and appearing in exactly 2 clauses.
By being a planar formula [10] our formula can be drawn as a planar bipartite
graph (L, R, E), where each variable x is represented by a node in L, and each
clause C is represented by a node in R, such that they are connected iff x appears
in C. Because it is a Read-twice 3CNF, each node in L has degree 2, and each
node in R has degree 3.

Now we replace each node in L by a generator with 2 outputs, and replace
each node in R by a recognizer with 3 inputs, and connect each generator output
and recognizer input in the natural way. This means that, suppose x appears in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Symmetric Signatures in Holographic Algorithms 433

C, and G[x] and R[C] are the generator and recognizer for x and C respectively,
then there is an edge (with assigned weight 1) connecting one output of G[x]
and one input of R[C].

This is called a matchgrid Ω. If Ω has g generators G[i] and r recognizers R[j],
and w(= 2g = 3r) connecting wires, the beautiful Holant Theorem of Valiant [15]
states that under any basis β,

Holant(Ω) = PerfMatch(G), (3)

where
Holant(Ω) =

∑

x∈β⊗f

{[Π1≤i≤gG[i]x] · [Π1≤j≤rR[j]x]} . (4)

(In tensor language, this is called a contraction.)
Now imagine we were able to find a generator matchgate G, a recognizer

matchgate R, and a basis β over the field of complex numbers C, such that G
has a signature [1, 0, 1] and R has a signature [0, 1, 1, 1]. Note that the signature
[1, 0, 1] = 1n⊗n+0(n⊗ p+ p⊗n)+1p⊗ p has the clear combinatorial meaning
of two equal signals nn or pp, and [0, 1, 1, 1] has the Boolean meaning of OR.
Thus the exponential sum represented by Holant(Ω) in (4) counts exactly the
number of satisfying assignments of the original Boolean formula, since each
such assignment contributes exactly one to the sum defining Holant(Ω).

However, Holant(Ω) is not computed by its defining expression (4), but rather
as PerfMatch(G) in (3) by the Holant Theorem. Notice how fragments of actual
Boolean assignments to the 3CNF formula, represented by the signature entries,
get all “mixed up holographically” by the transformation in (1) and (2), so that
each fragment is split into exponentially many “shares” which then get summed
up in (3). The latter can be computed in polynomial time by the FKT method.
Now if we were able to find such matchgates and a basis over C such that the
(symmetric) signatures have the desired form, it would have collapsed #P to P.

However, Valiant showed that one can find such matchgates and a basis over
Z7, but a larger basis of size 2 is used (we will not formally define this notion
for space limitations). The resulting Holant counts the number of satisfying
assignments modulo 7. This is surprising, especially because it is known that the
problem modulo 2 is ⊕P-hard.

In the rest of this section we prove that the problem can be solved using a
basis of size 1. Moreover, modulo 7 is the only modulus for which this is possible.

Theorem 1. For Z7 and for basis β = [n, p] =
[(

n0

n1

)

,

(
p0

p1

)]

=
[(

1
6

)

,

(
3
5

)]

,

there is a generator for [1, 0, 1] and a recognizer for [0, 1, 1, 1].

Remark: We recall that the notation is for symmetric signatures. Thus for
a generator, [1, 0, 1] denotes (1, 0, 0, 1)T in dimension 4, and for a recognizer,
[0, 1, 1, 1] denotes (0, 1, 1, 1, 1, 1, 1, 1, 1) in dimension 8.

Proof: It is a simple fact that the standard signature (3, 0, 0, 5)T is realizable
by a generator matchgate with 2 outputs. This can be shown directly by a direct

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

434 J.-Y. Cai and P. Lu

construction [15] or it follows from the general theory of standard signature
realizability theorem in terms of matchgate identities [15,3,4]. Similarly the
standard signatures [0, 3, 0, 5] is realizable by a recognizer, with 3 inputs.

A simple calculation shows that n ⊗ n + p ⊗ p = (3, 0, 0, 5)T for the chosen
basis β over Z7. Thus the generator has signature [1, 0, 1] under the basis β.

As a recognizer, its signature uβ w.r.t. the basis β and its standard signature
u are related by the equation

uβ = uT⊗3, where T =
[
n0 p0

n1 p1

]

.

We can calculate its signature w.r.t. β, and we find the symmetric signature
[r0, r1, r2, r3], where
r0 = 3 × 3n2

0n1 + 5n3
1 = 0,

r1 = 3(n2
0p1 + 2n0n1p0) + 5n2

1p1 = 1,
r2 = 3(p2

0n1 + 2p0p1n0) + 5p2
1n1 = 1,

r3 = 3 × 3p2
0p1 + 5p3

1 = 1.
Therefore this matchgate recognizes [0, 1, 1, 1]. �
Corollary 1. There is a polynomial time algorithm for #7Pl-Rtw-Mon-CNF.

For bases of size 1, we can further prove that a similar technique can not be
applied to any other #kPl-Rtw-Mon-3CNF problem unless k = 7. This result
may highlight the true “accidental” nature of the polynomial time algorithm
for #7Pl-Rtw-Mon-3CNF. (The proof is omitted here, and is given in the full
paper[5].)

Theorem 2. Characteristic 7 is the unique characteristic of a field for which
there is a common basis of size 1 for generating [1, 0, 1] and recognizing [0, 1, 1, 1].

3 Symmetric Signatures

In this section we give a closed form solution to characterize all symmtric
signatures of generators and recognizers, under any basis of size 1. Our closed
form applies to complex numbers C and to all fields with characteristic p greater
than the arity n of the matchgate. Since we can calculate (tij) and (t̃ij) from [n, p],
we need only consider recognizers. The situation for generators is similar.

In tensor analysis we have the following proposition, which is straightfarward
from (1)(2).

Proposition 1. If a tensor T is symmetric in one basis, it is still symmetric
after transforming to other basis.

Since we focus on the case of two dimensional space V spanned by {e0, e1}, all
the symmetric tensors in V⊗n form a n + 1 dimensional space, which can be
denoted by σ = [σ0, σ1, . . . , σn]. The symmetric signature transforms as follows
under a basis transformation:

σ′
k′ =

∑

k

σkak
k′ , (5)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Symmetric Signatures in Holographic Algorithms 435

where

ak
k′ =

k∑

s=0

(
k′

s

)(
n − k′

k − s

)

(t11)
s(t01)

k′−s(t10)
k−s(t00)

n−k−k′+s. (6)

We can rewrite (6) as

ak
k′ = (t01)

k′
(t00)

n−k′
k∑

s=0

(
k′

s

)(
n − k′

k − s

) (
t11t

0
0

t01t
1
0

)s (
t10
t00

)k

. (7)

A matchgate is called an even or an odd matchgate, precisely when it has an
even or an odd number of nodes. The parity consideration is crucial in signatures
of matchgates, as they are defined in terms of perfect matchings. More subtle, but
just as important, are the matchgate identities [15,3]. From the work of [3,4] we
know the following precise information regarding symmetric standard signatures.

Lemma 1. Suppose Γ is an even matchgate, with symmetric standard signature
σ = [σ0, σ1, . . . , σn]. Then for all odd i, σi = 0, and there exist constants r1, r2

and λ, such that σ2i = λ · (r1)[n/2]−i · (r2)i.

Lemma 2. Suppose Γ is an odd matchgate, with symmetric standard signature
σ = [σ0, σ1, . . . , σn]. Then for all even i, σi = 0, and there exist constants r1, r2

and λ, such that σ2i+1 = λ · (r1)[(n−1)/2]−i · (r2)i.

Let’s substitute r1 = b2 and r2 = c2 (if necessary in an extension field). Since
b = 0 and c = 0 is trivial, we assume at least one of them is non-zero.

Case 1: even n and even matchgate
In this case, we have σk = λbn−kck, ∀k even, and σk = 0, ∀k odd. From (5) and
(7) we get:

σ′
k′ =

n∑

k=0

σkak
k′

= λ
∑

k even

bn−kckak
k′

= λ(t01)
k′

(t00)
n−k′ ∑

k even

bn−kck

[
k∑

s=0

(
k′

s

)(
n − k′

k − s

)(
t11t

0
0

t01t
1
0

)s (
t10
t00

)k
]

= λ(t01)
k′

(t00)
n−k′

n∑

s=0

(
k′

s

)(
ct11
t01

)s

bk′−s

⎡

⎣
∑

k even, k≥s

(
n − k′

k − s

)

bn−k′−k+s

(
ct10
t00

)k−s
⎤

⎦ .

Now the second sum within the brackets is

∑

k even, k≥s

(
n − k′

k − s

)

bn−k′−k+s

(
ct10
t00

)k−s

=
1
2

[(

b +
ct10
t00

)n−k′

±
(

b − ct10
t00

)n−k′]

,

Choose + if s is even and − if s is odd.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

436 J.-Y. Cai and P. Lu

Therefore, we have

σ′
k′ =

1
2
λ(t01)

k′
(t00)

n−k′

[(

b +
ct10
t00

)n−k′

+
(

b − ct10
t00

)n−k′][
n∑

s even

(
k′

s

)(
ct11
t01

)s

bk′−s

]

+
1
2
λ(t01)

k′
(t00)

n−k′

[(

b +
ct10
t00

)n−k′

−
(

b − ct10
t00

)n−k′][
n∑

s odd

(
k′

s

)(
ct11
t01

)s

bk′−s

]

=
1
2
λ(t01)

k′
[(bt00 + ct10)

n−k′
+ (bt00 − ct10)

n−k′
] · 1

2

[(

b +
ct11
t01

)k′

+
(

b − ct11
t01

)k′]

+
1
2
λ(t01)

k′
[(bt00 + ct10)

n−k′ − (bt00 − ct10)
n−k′

] · 1
2

[(

b +
ct11
t01

)k′

−
(

b − ct11
t01

)k′]

=
1
2
λ[(bt00 + ct10)

n−k′
(bt01 + ct11)

k′
+ (bt00 − ct10)

n−k′
(bt01 − ct11)

k′
].

Case 2: odd n and even matchgate
In this case, we have σk = λbn−1−kck, ∀k even, and σk = 0 ,∀k odd. From (5)
and (7) we get:

σ′
k′ =

n∑

k=0

σkak
k′ = λ

∑

k even

bn−1−kckak
k′ . (8)

If b �= 0, let λ′ = λ/b, we can have the similar calculation as Case 1 and get the
following form:

σ′
k′ =

1
2
λ′[(bt00 + ct10)

n−k′
(bt01 + ct11)

k′
+ (bt00 − ct10)

n−k′
(bt01 − ct11)

k′
]. (9)

Otherwise b = 0, then σn−1 = λcn−1, and σk = 0, ∀k �= n−1. In this subcase,
let λ′ = λcn−1 = σn−1. The only non-zero term in (5) is when k = n − 1 and
further more the only non-zero terms in (6) are when s = k′ and s = k′ − 1:

σ′
k′ =

n∑

k=0

σkak
k′

= σn−1a
n−1
k′

= λ′((n − k′)(t11)
k′

(t10)
n−1−k′

t00 + k′(t11)
k′−1t01(t

1
0)

n−k′
).

The situations of case 3 “odd n and odd matchgate” and case 4 “even n and
odd matchgate” are similar with case 1 and case 2. Detail is omitted here and
is given in the full paper [5].

To sum up, we get the following theorem: (We assume the characteristic of
the field is not 2)

Theorem 3. A symmetric signature [x0, x1, . . . , xn] for a recognizer is realizable

under the basis β = [n, p] =
[(

n0

n1

)

,

(
p0

p1

)]

iff it takes one of the following forms:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Symmetric Signatures in Holographic Algorithms 437

– Form 1: there exist (arbitrary) constants λ, s, t and ε where ε = ±1, such
that for all i, 0 ≤ i ≤ n,

xi = λ[(sn0 + tn1)n−i(sp0 + tp1)i + ε(sn0 − tn1)n−i(sp0 − tp1)i]. (10)

– Form 2: there exist (arbitrary) constants λ,such that for all i, 0 ≤ i ≤ n,

xi = λ[(n − i)n0(p1)i(n1)n−1−i + ip0(p1)i−1(n1)n−i]. (11)

– Form 3: there exist (arbitrary) constants λ,such that for all i, 0 ≤ i ≤ n,

xi = λ[(n − i)n1(p0)i(n0)n−1−i + ip1(p0)i−1(n0)n−i]. (12)

Similarly we can prove

Theorem 4. A symmetric signature [x0, x1, . . . , xn] for a generator is realizable

under the basis β = [n, p] =
[(

n0

n1

)

,

(
p0

p1

)]

iff it takes one of the following forms:

– Form 1: there exist (arbitrary) constance λ, s, t and ε where ε = ±1, such
that for all i, 0 ≤ i ≤ n,

xi = λ[(sp1 − tp0)n−i(−sn1 + tn0)i + ε(sp1 + tp0)n−i(−sn1 − tn0)i]. (13)

– Form 2: there exist (arbitrary) constants λ,such that for all i, 0 ≤ i ≤ n,

xi = λ[(n − i)p1(n0)i(−p0)n−1−i − in1(n0)i−1(−p0)n−i]. (14)

– Form 3: there exist (arbitrary) constants λ,such that for all i, 0 ≤ i ≤ n,

xi = λ[−(n − i)p0(−n1)i(p1)n−1−i + in0(−n1)i−1(p1)n−i]. (15)

We wish to obtain another characterization of realizable symmetric signatures.
First, we deal with some degenerate cases. The following three cases are called
degenerate:

– In Form 1, sn0 + tn1 = 0 or sn0 − tn1 = 0.
– In Form 2, n1 = 0.
– In Form 3, n0 = 0.

In Form 1, if sn0+tn1 = 0 and sn0−tn1 = 0, then all the realizable signatures
take the following form (λ is arbitrary):

[0, 0, · · · , 0, λ]. (16)

In Form 1, if sn0 + tn1 = 0 and sn0 − tn1 �= 0, or sn0 + tn1 �= 0 and
sn0 − tn1 = 0, then all the realizable signatures take the following form (a, q, λ
are arbitrary):

[a, aq, aq2, · · · , aqn−1, λ]. (17)

Notice that (16) is a special case of (17), we will not consider (16) later.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

438 J.-Y. Cai and P. Lu

In Form 2, if n1 = 0, then all the realizable signatures take the following form
(λ1, λ2 is arbitrary):

[0, 0, · · · , 0, λ1, λ2]. (18)

In form 3, if n0 = 0, then all the realizable signatures take the following form
(λ1, λ2 is arbitrary):

[0, 0, · · · , 0, λ1, λ2].

This is the same as (18).
Besides these degenerate cases, we can rewrite the sequence defined in Form 1

as xi = Aαi+Bβi, and the sequence defined Form 2 or Form 3 as xi = αi(Ai+B).
Both are solutions to second-order homogeneous linear recurrences (xi =
axi−1 + bxi−2). To sum up in a more symmetric way, we have the following
theorem: (We assume the the characteristic of the field p �= 2 and p � |n.)

Theorem 5. A symmetric signature [x0, x1, · · · , xn] is realizable on some basis
of size 1 iff there exists three constants a, b, c(not all zero), such that ∀k, 0 ≤ k ≤
n − 2,

axk + bxk+1 + cxk+2 = 0. (19)

Proof
“⇒”:
Since [x0, x1, · · · , xn] is realizable, from Theorem 3 (4), xi takes one of the forms
in Theorem 3 (4). If it is degenerate as (17), we can let a = −q, b = 1, c = 0.
If it is degenerate as (18), we can let a = 1, b = 0, c = 0. Otherwise it is a
second-order homogeneous linear recurring sequence xi = a0xi−1 + b0xi−2, we
can let a = b0, b = a0, c = −1. Therefore if [x0, x1, · · · , xn] is realizable on
some basis of size 1 , there exists three constants a, b, c (not all zero), such that
∀k, 0 ≤ k ≤ n − 2, axk + bxk+1 + cxk+2 = 0.
“⇐”:
If c = 0 and b = 0, then a �= 0. From (19), we know xk = 0, ∀k, 0 ≤ k ≤ n − 2.
So {xi} takes the form (18), which is realizable.
If c = 0 and b �= 0, form (19) we have axk + bxk+1 = 0, ∀k, 0 ≤ k ≤ n − 2. Let
q = −a/b, we have xk+1 = xkq, ∀k, 0 ≤ k ≤ n − 2. Therefore {xi} takes the
form (17), which is realizable.

Otherwise c �= 0, substituting a0 = −b/c, b0 = −a/c, we have xk+2 = a0xk+1+
b0xk, ∀k, 0 ≤ k ≤ n − 2. The characteristic equation is x2 − a0x − b0 = 0. Let
α, β be the two roots of the characteristic equation. If α �= β, we can calculate
A, B such that xi = Aαi + Bβi, ∀i, 0 ≤ i ≤ n. If A = B = 0, then xi =
0, ∀i, 0 ≤ i ≤ n, which trivially realizable. If A = 0 and B �= 0 (the case B = 0
and A �= 0 is similar), then xi = Bβi. Let ε = s = 1, t = 0, λ = B/2, n0 =
1, p0 = β, n1 = 0, p1 = 1 in (10), we know it is realizable. Otherwise AB �= 0, let
λ = ε = s = t = 1 in (10), we have the following equations:

n0 + n1 = n
√

A (20)

n0 − n1 = n
√

B (21)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Symmetric Signatures in Holographic Algorithms 439

p0 + p1 = α
n
√

A (22)

p0 − p1 = β
n
√

B (23)

From the above equations, we can get the value of n0, n1, p0, p1 and we
conclude that xi = Aαi + Bβi is realizable.

If α = β we can calculate A, B such that xi = αi(Ai + B), ∀i, 0 ≤ i ≤ n.
If α = 0 or A = 0, the above argument shows it is realizable. Otherwise let
λ = n1 = 1, p1 = α, n0 = B

n , p0 = Aα + Bα
n in form (11), we conclude that

xi = αi(Ai + B) is realizable. �
Corollary 2. Over the complex numbers C as well as all fields F of character-
istic p > 3, every signature [x0, x1, x2, x3] is realizable on some basis of size 1.

Proof: View r1 = (x0, x1, x2), r2 = (x1, x2, x3) as two vectors in 3-dimension
Euclid space. Geometrically, there exists a non-zero vector r0 = (a, b, c) such
that r0 ⊥ r1 and r0 ⊥ r2. That is ax0 + bx1 + cx2 = 0 and ax1 + bx2 + cx3 = 0.
From Theorem 5, we know that [x0, x1, x2, x3] is realizable. �

4 Boolean Symmetric Signatures

In this section, we consider the realizability of a special family of symmetric
signatures, which we call boolean symmetric signatures (BSS).

Definition 1. A signature of a generator or a recognizer is called a Boolean
Symmetric Signature (BSS) iff it is symmetric [x0, x1, . . . , xn] and ∀i ∈ [n], xi ∈
{0, 1}.

From Corollary 2 and Theorem 5 , we can conclude that:

Theorem 6. When n ≤ 3, all BSS are realizable.

When n ≥ 4, the set of realizable BSS is rather sparse. More precisely we have
the following theorem:

Theorem 7. When n ≥ 4, a BSS [x0, x1, . . . , xn] is realizable on some
basis of size 1 iff it has one of the following forms (λ, λ1, λ2 ∈ {0, 1} is
arbitrary): [λ1, 0, 0, · · · , 0, λ2], [1, 1, · · · , 1, λ], [λ, 1, 1, · · · , 1], [0, 0, · · · , 0, λ1, λ2],
[λ1, λ2, 0, 0, · · · , 0], [1, 0, 1, 0, · · · , 0(1)], [0, 1, 0, 1, · · · , 0(1)]

Proof: From Theorem 5, we can check that all the forms are all realizable.
Using theorem 5 and checking all the possible values of x0, x1, x2, x3, we can

prove that these forms are the only possible cases. Detail is omitted here and is
given in the full paper [5] �

Acknowledgments

We would like to thank Leslie Valiant for many comments and questions,
particularly for pointing out a mistake in an earlier draft. We also thank

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

440 J.-Y. Cai and P. Lu

Andrew Yao, and his group of students in Tsinghua University, while the first
author visited Tsinghua and gave lectures.

References

1. R. Bubley, and M. Dyer, Graph orientations with no sink and an approximation
for a hard case of #SAT, ACM SODA , (1997) 248-257.

2. J-Y. Cai and V. Choudhary. Valiant’s Holant Theorem and Matchgate Tensors.
In Proceedings of TAMC 2006. Lecture Notes in Computer Science vol. 3959. pp
248-261. Also available as ECCC TR05-118.

3. J-Y. Cai and V. Choudhary. On the Theory of Matchgate Computations.
Submitted. Also available as ECCC TR06-018.

4. J-Y. Cai and V. Choudhary. Some Results on Matchgates and Holographic
Algorithms. In Proceedings of ICALP 2006, Part I. Lecture Notes in Computer
Science vol. 4051. pp 703-714. Springer.

5. J-Y. Cai and Pinyan Lu. On Symmetric Signatures in Holographic Algorithms.
Available at Electronic Colloquium on Computational Complexity Report TR06-
135.

6. H.B. Hunt and M.V. Marathe, V. Radhakrishnan and R.E. Stearns. The complexity
of planar counting problems. SIAM J. Comput. 27:4 (1998) 1142-1167.

7. H. B. Hunt III and R. E. Stearns. The complexity of very simple Boolean formulas
with applications. SIAM J. Comput., 19:1 (1990) 44-70.

8. P. W. Kasteleyn. The statistics of dimers on a lattice. Physica, 27: 1209-1225
(1961).

9. P. W. Kasteleyn. Graph Theory and Crystal Physics. In Graph Theory and
Theoretical Physics, (F. Harary, ed.), Academic Press, London, 43-110 (1967).

10. D. Lichtenstein, Planar formulae and their uses. SIAM J. on Computing 11 (1982)
329-343.

11. K. Murota. Matrices and Matroids for Systems Analysis, Springer, Berlin, 2000.
12. H. N. V. Temperley and M. E. Fisher. Dimer problem in statistical mechanics –

an exact result. Philosophical Magazine 6: 1061– 1063 (1961).
13. L. G. Valiant. Quantum circuits that can be simulated classically in polynomial

time. SIAM Journal on Computing, 31(4): 1229-1254 (2002).
14. L. G. Valiant. Expressiveness of Matchgates. Theoretical Computer Science, 281(1):

457-471 (2002). See also 299: 795 (2003).
15. L. G. Valiant. Holographic Algorithms (Extended Abstract). In Proc. 45th IEEE

Symposium on Foundations of Computer Science, 2004, 306–315. A more detailed
version appeared in Electronic Colloquium on Computational Complexity Report
TR05-099.

16. L. G. Valiant. Holographic circuits. In Proc. 32nd International Colloquium on
Automata, Languages and Programming, 1–15, 2005.

17. L. G. Valiant. Completeness for parity problems. In Proc. 11th International
Computing and Combinatorics Conference, 2005.

18. L. G. Valiant. Accidental Algorithms. In Proc. 47th Annual IEEE Symposium on
Foundations of Computer Science 2006, 509–517.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Randomly Rounding Rationals with Cardinality
Constraints and Derandomizations

Benjamin Doerr

Max–Planck–Institut für Informatik, Saarbrücken, Germany

Abstract. We show how to generate randomized roundings of rational
vectors that satisfy hard cardinality constraints and allow large devi-
ations bounds. This improves and extends earlier results by Srinivasan
(FOCS 2001), Gandhi et al. (FOCS 2002) and the author (STACS 2006).
Roughly speaking, we show that also for rounding arbitrary rational vec-
tors randomly or deterministically, it suffices to understand the problem
for {0, 1

2} vectors (which typically is much easier). So far, this was only
known for vectors with entries in 2−�

Z, � ∈ N.
To prove the general case, we exhibit a number of results of indepen-

dent interest, in particular, a quite useful lemma on negatively correlated
random variables, an extension of de Werra’s (RAIRO 1971) coloring re-
sult for unimodular hypergraphs and a sufficient condition for a unimod-
ular hypergraph to have a perfectly balanced non-trivial partial coloring.

We also show a new solution for the general derandomization problem
for rational matrices.

1 Introduction and Results

Randomized rounding is one of the core primitives in randomized algorithmics.
In the last few years it was observed that dependent randomized rounding has
some important advantages over the classical, independent variant. Of particu-
lar interest are randomized roundings that satisfy cardinality constraints. In this
paper, we continue earlier work on how to generate such randomized roundings.
We improve the results of Srinivasan [Sri01a] and Gandhi et al. [GKPS02] in
terms of run-time and generality, and own work [Doe06] in that we allow arbi-
trary rational numbers instead of only those having a finite binary expansion.
This work is a continuation of [Doe06]. Though we try to give as much details as
possible, some more general information on randomized rounding and cardinality
constraints has to be found there.

1.1 Randomized Rounding

A central problem in different areas is to round a vector x to an integer one y
in such a way that the rounding errors |(Ax)i − (Ay)i|, i ∈ [m] := {1, . . . , m},
are small for some given m × n matrix A. This problem has to be solved if the
solution of the relaxation of an integer linear program has to be retransformed
into in integer one, but also in other algorithmic applications where the linear

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 441–452, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

442 B. Doerr

program is less visible (e.g., Gnewuch, Srivastav and the author [DGS05] used
it to construct evenly distributed point sets for numerical integration purposes).

A highly successful approach to such rounding problems is the one of ran-
domized rounding introduced by Raghavan and Thompson [RT87, Rag88]. Here
the integer vector y is obtained from x by rounding each component j indepen-
dently with probabilities derived from the fractional part of xj . In particular, if
x ∈ [0, 1]n, we have Pr(yj = 1) = xj and Pr(yj = 0) = 1 − xj independently for
all j ∈ [n].

Since the components are rounded independently, the rounding error |(Ax)i −
(Ay)i| in constraint i is a sum of independent random variables. Thus it is highly
concentrated around its mean, which by choice of the probabilities is zero. Large
deviation bounds like the Chernoff inequality allow to quantify such violations
and thus yield performance guarantees.

The corresponding derandomization problem is to transform this randomized
approach into deterministic rounding algorithms that keep the rounding errors
|(Ax)i − (Ay)i| below some threshold.

1.2 Hard Constraints

Whereas the independence in rounding the variables ensures that the rounding
errors |(Ax)i − (Ay)i| are small, it is very weak in guaranteeing that a constraint
is satisfied without error. We call a constraint hard constraint if we require our
solution to satisfy it without violation. In this paper, we are mainly concerned
with cardinality constraints. These are constraints on unweighted sums of vari-
ables. Naturally, we assume that these constraints form a totally unimodular
system (cf. Section 2).

Hard cardinality constraints of this type occur frequently in diverse areas
of optimization. Some examples of rounding problems with hard constraints in-
clude routing applications ([RT91, Sri01a]), many flow problems ([RT87, RT91]),
partial and capacitated covering problems ([GKPS02, GHK+06]), and different
approaches to the digital halftoning problem ([STT01, Doe04b, Doe04a]).

At FOCS 2001, Srinivasan [Sri01a] presented a way to compute randomized
roundings that respect the constraint that the sum of all variables remains un-
changed (one global cardinality constraint) and fulfill some negative correlation
properties. This approach was then extended by Gandhi, Khuller, Parthasarathy
and Srinivasan [GKPS02] to obtain degree preserving randomized roundings of
edge weights in bipartite graphs. By this we mean that the sum of weights of all
edges incident with some vertex is not changed by the rounding. The roundings
of Gandhi et al. also fulfill negative correlation properties, but only on sets of
edges incident with a common vertex.

Both Srinivasan [Sri01a] and Gandhi et al. [GKPS02] do not consider the de-
randomization problem. For the bipartite edge weight rounding problem, Ageev
and Sviridenko [AS04] state that any randomized rounding algorithm “will be
too sophisticated to admit derandomization”.

This problem was overcome in the author’s last years STACS paper [Doe06].
Among other results, we gave a simpler way to generate the randomized

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Randomly Rounding Rationals with Cardinality Constraints 443

roundings used in [Sri01a] and [GKPS02]. One consequence was that this ap-
proach could be derandomized easily. However, this new approach only worked
for numbers that have a finite binary expansion.

1.3 Our Contribution

In this paper, we extend the work of [Doe06] in that we can now treat arbitrary
rational numbers. More precisely, we show that if we can generate randomized
roundings with cardinality constraints and large deviation bounds for all {0, 1

2}
vectors, then we can do so for arbitrary rational vectors. The same is true for
the derandomization problem.

This result is interesting from the theoretical point of view in that it shows that
rounding arbitrary rationals is not too much different from rounding numbers
having finite binary expansion, but also from the practical point of view. Since
the {0, 1

2} case, both randomized and derandomized, for many problems is quite
easy (cf. again [Doe06]), our result immediately yields a simpler and often faster
way to generate the randomized roundings used in Srinivasan [Sri01a], Gandhi et
al. [GKPS02], Sadakane, Takki-Chebihi and Tokuyama [STT01] and [Doe04b].

Also, there are some problems where rational number with small denominator
naturally occur and have to be rounded. Klein and the author [DK06] have
some related results on the controlled rounding problem from statistics. However,
these results are different from ours in that no large deviation bounds were
obtained (one of the key difficulties we had to overcome). Also, there a rounding
problem with a particular structure was regarded, whereas we allow any totally
unimodular hard constraint matrix for which {0, 1

2} rounding can be computed.
To establish the randomized construction, we prove several result of inde-

pendent interest, namely a quite useful lemma on negatively correlated random
variables (Lemma 1), an extension of de Werra’s result on the multi-color dis-
crepancy of unimodular hypergraphs (Lemma 2) and a necessary condition for
a unimodular hypergraph to have a zero-discrepancy non-trivial partial coloring
(Lemma 4).

In the last section of this paper, we extend the derandomization result
of [Doe06] to arbitrary non-negative rational matrices. This derandomization
problem used to be a long-standing open problem until its solution by Srivastav
and Stangier [SS96]. Note that Raghavan’s derandomization [Rag88] needs to
compute the exponential function and in consequence in the RAM model only
works for binary matrices (as pointed out in Section 2.2 of his paper).

The solution in [SS96] is complicated, resulting in an O(mn2 log(mn)) run-
time for m × n matrices (and a 30 pages paper). This was partially overcome
in [Doe06], where a simple O(mn�) time derandomization was given for matrices
all whose entries are multiples of 2−�. For general matrices, it was argued that
before-hand one can round the matrix to the one that only has such entries and
pay for this through an extra additional error of 2−�n in the large deviation
bound. Hence, to get this extra error small, one typically has to accept an extra
logarithmic factor in the run time.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

444 B. Doerr

In this paper, give a simple derandomization for arbitrary non-negative ma-
trices. If p ∈ N is a common denominator of the matrix entries, it has run time
O(mn log p). For small p, this is clearly superior.

2 Randomized Rounding, Constraints and Correlation

For a number r write [r] = {n ∈ N | n ≤ r}, �r� = max{z ∈ Z | z ≤ r}, �r� =
min{z ∈ Z | z ≥ r} and {r} = r − �r�. We write z ≈ r if z ∈ {�r� , �r�}. We use
these notations for vectors as well (component-wise).

Let x ∈ R. A real-valued random variable y is called randomized rounding of
x if Pr(y = �x� + 1) = {x} and Pr(y = �x�) = 1 − {x}. Since only the fractional
parts of x and y are relevant, we usually have x ∈ [0, 1]. In this case, we have

Pr(y = 1) = x,

Pr(y = 0) = 1 − x.

For x ∈ R
n, we call y = (y1, . . . , yn) randomized rounding of x if yj is a random-

ized rounding of xj for all j ∈ [n].
The algorithmic concept of randomized rounding can be formulated as follows:

Fix a number n ∈ N, the number of variables to be rounded. Let X ⊆ [0, 1]n.
This is the set of vectors for which we allow randomized rounding. Typically, this
will be [0, 1]n or a suitably rich subset thereof. A family (Prx)x∈X of probability
distributions on {0, 1}n is called randomized rounding, if for all x ∈ X , a sample
y from Prx is a randomized rounding of x.

As described in the introduction, we are interested in roundings that satisfy
some hard constraints. Though usually we will only regard cardinality constraints
(requiring the sum of some variable to be unchanged), it will be convenient to
encode hard constraints in a matrix B. Our aim then is that a rounding y of x
satisfies By = Bx. Of course, if Bx is not integral, this can never be satisfied.
We therefore relax the condition to By ≈ Bx. If y is a randomized rounding of
x, this is equivalent to saying that By is a randomized rounding of Bx.

Besides satisfying hard constraints we still want to keep other rounding errors
small (as does independent randomized rounding). A useful concept here is the
one of negative correlation.

Let Xj , j ∈ S, be a family of random variables taking values in some finite
set Ω. We call the Xj, j ∈ S, negatively correlated if

∀S0 ⊆ S ∀ω ∈ Ω : Pr(∀j ∈ S0 : Xj = ω) ≤
∏

j∈S0

Pr(Xj = ω).

As shown in [PS97], negative correlation of binary variables implies the usual
Chernoff-Hoeffding bounds on large deviations.

It turns out that hard constraints and negative correlation cannot always be
achieved simultaneously. We therefore restrict ourselves to negative correlation
on certain sets of variables. Let S ⊆ 2[n] be closed under taking subsets, that is,
S0 ⊆ S ∈ S implies S0 ∈ S.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Randomly Rounding Rationals with Cardinality Constraints 445

Definition 1. We call (Prx) randomized rounding with respect to B and S, if
for all x a sample y from Prx satisfies the following.

(A1) y is a randomized rounding of x.
(A2) By is a randomized rounding of Bx.
(A3) For all S ∈ S, ∀b ∈ {0, 1} : Pr(∀j ∈ S : yj = b) ≤

∏
j∈S Pr(yj = b).

In this language, we know the following. Clearly, independent randomized round-
ing is a randomized rounding with respect to the empty matrix B and S = 2[n].
Srinivasan [Sri01a] showed that for the 1 × n matrix B = (1 . . . 1), random-
ized roundings with respect to B and S = 2[n] exist and can be generated
in time O(n). Let G = (V, E) be a bipartite graph and B = (bij) i∈V

j∈E
its

vertex-edge-incidence matrix. For v ∈ V let Ev = {e ∈ E | v ∈ e}. Gandhi
et al. [GKPS02] showed that there are randomized roundings with respect to
B and S = {E0 | ∃v ∈ V : E0 ⊆ Ev}. They can be generated in time O(mn).
From [Doe03, Doe04b], we have that if B is totally unimodular, then randomized
roundings with respect to B and S = ∅ exist. Recall that a matrix is totally uni-
modular if each square submatrix has determinant −1, 0 or 1. If B is not totally
unimodular, then not even for X = {0, 1

2}n a randomized rounding (Prx)x∈X

with respect to B and S = ∅ exists.
Throughout the paper let A ∈ [0, 1]mA×n and x ∈ [0, 1]n. Let B be a totally

unimodular mB × n matrix.

3 Rounding Rationals

In this section, we show that arbitrary rational vectors have randomized round-
ings with respect to B and S if all half-integral vectors do.

For convenience, let us abbreviate Zp := {0, 1
p , 2

p , . . . , p−1
p } and Zp = Zp ∪

{1}. Also, we write nint(x) to denote the number of non-integral entries of the
vector x. We will need to solve integer systems of linear equations over a totally
unimodular matrix. Clearly, this can be done in polynomial time. Since in many
cases, a particular structure of the matrix is known, we prefer not to use a general
bound, but rather explicitly denote by c(B, n) the time complexity to solve an
integer linear system over a submatrix of B having n columns.

Theorem 1. Assume that for each x ∈ {0, 1
2}n there is a randomized rounding

y of x with respect to B and S.

(a) For each x ∈ Zn
p there is a randomized rounding y of x with respect to B

and S.
(b) If each of the half-integral roundings in the assumption can be generated in

time at most T , then the rounding in the conclusion can be generated in
expected time O((T + pc(B, n))p2 log n).

(c) If each of the half-integral roundings in the assumption can be generated in
time at most O(T nint(x)/n), that is, linear in the number of non-integers,
and also c(B, k) = O(c(B, n)k/n) is at least linear in k, then the rounding
in the conclusion can be generated in expected time O((T + pc(B, n))p2).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

446 B. Doerr

To prove the theorem, besides some elementary facts on random walks, we need
a number of non-trivial lemmas (Lemma 1, 2 and 4), which are of independent
interest for various reasons. For reasons of space, all proofs had to be omitted.
The following lemma, roughly speaking, shows that the expected product of
negatively correlated random variables is at most the product of the expectations
of the variables. This lemma (again) shows the power of the concept of negative
correlation.

Lemma 1. Let ε1, . . . , εn be negatively correlated and uniformly distributed
−1, 1 random variables. Let x1, . . . , xn ∈ [0, 1] and d1, . . . , dn ∈ R such that
0 ≤ dj ≤ xj for all j ∈ [n]. Then

E

(∏

j∈[n]

(xj + εjdj)
)

=
∑

z∈{−1,1}n

Pr(ε = z)
∏

j∈[n]

(xj + zjdj) ≤
∏

j∈[n]

xj .

The lemma above would have been easier if we assumed negative association
instead of correlation. However, as pointed out in [Doe06], some of the distribu-
tions we use are not negativly associated.

The following result extends an old result of de Werra [dW71], namely that
unimodular hypergraphs have p–color discrepancy less than one.

Lemma 2. Let B be a totally unimodular mB ×n matrix and x ∈ Z
n

p such that
Bx ∈ Z

mB . Then there are x(1), . . . , x(p) ∈ {0, 1
p}n such that

(i) x =
∑p

k=1 x(k);
(ii) ∀k ∈ [p] : Bx(k) = 1

pBx;

(iii) ∀i ∈ [n], k ∈ [p] : xi = 0 ⇒ x
(k)
i = 0.

They can be computed in time O(pc(B, nint(x)).

Without proof, we state the following elementary fact.

Lemma 3. Let I be an even cardinality subset of [p] drawn uniformly at random.
Let ∅ �= J ⊂ [p]. Then Pr(|I ∩ J | odd) = 1

2 .

The final ingredient of the proof of Theorem 1 is the following.

Lemma 4. Let B be a totally unimodular mB × n matrix and x ∈ Z
n

p . Then
there is a random x′ ∈ Zn

2 such that

(i) for all i ∈ [n], x′
i = 1

2 ⇒ xi /∈ {0, 1};
(ii) for all i ∈ [mB], (Bx)i ∈ Z ⇒ (Bx′)i ∈ Z;

(iii) for all i ∈ [n] such that xi /∈ {0, 1}, Pr(x′
i = 1

2) = 1
2 .

Such an x′ can be generated in time O(pc(B, nint(x))).

The result above also answers a very natural question concerning colorings of
hypergraphs. It is known that the vertices of unimodular hypergraphs (those,
which have a totally unimodular incidence matrix) can be two-colored with dis-
crepancy at most one, that is, in such a way that in each hyperedge, the number

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Randomly Rounding Rationals with Cardinality Constraints 447

of red vertices deviates from that of blue vertices by at most one (which occurs
exactly for odd cardinality hyperedges).

A non-trivial question is whether one can two-color only some vertices, but
with discrepancy zero, that is, in a way that each hyperedge has exactly the
same number of vertices in both colors. This is known as partial coloring and
frequently used in iterative coloring procedures. The lemma above shows that
partial coloring is possible if one can assign weights to the vertices in such a way
that all weights are multiples of 1/p and the total weight of each hyperedge is an
integer. We end this deviation by adding, but not proving, that this condition is
also necessary.

We are now ready to prove Theorem 1.

Proof. Let x ∈ Zn
p . We claim that the following algorithm does the job:

1. y(0) := x, t := 0
2. while y(t) /∈ {0, 1}n do
3. compute x′ ∈ {0, 1

2}n from y(t) as in Lemma 4
4. generate y′ as randomized rounding of x′ with respect to B and S
5. y(t+1) := y(t) + 2

p (y′ − x′)
6. t := t + 1
7. output y := y(t)

Let us first argue that the resulting y is a randomized rounding of x. Let
i ∈ [n]. Is it easy to check from the algorithm that the following invariant is
maintained: y

(t)
i ∈ Zp, E(y(t)

i) = xi and Pr(|y(t)
i − xi| < 1) = 1. Since also

Pr(yi ∈ Z) = 1, we see that yi is a randomized rounding of xi.
Since B is a −1, 0, 1 matrix, basically the same line of argument shows that

By is a randomized rounding of Bx. Note that here condition (ii) of Lemma 4 is
crucial. It ensures that once (By(t))i becomes integral, it never changes. Before
that, just by construction, (By(t))i changes in steps of 1

p only.

Let S ∈ S. By induction on t, we prove E(
∏

i∈S y
(t)
i) ≤

∏
i∈S xi. There is

nothing to show for t = 0. For t ≥ 1, we compute

E(
∏

i∈S

y
(t)
i) =

∑

z∈Z
n
p

Pr(y(t−1) = z)E(
∏

i∈S

y
(t)
i | y(t−1) = z)

≤
∑

z∈Z
n
p

Pr(y(t−1) = z)
∏

i∈S

y
(t−1)
i = E(

∏

i∈S

y
(t−1)
i) ≤

∏

i∈S

xi,

where the first inequality follows from Lemma 1 and the negative correlation of
the ±1 random variables 2(y′

i − x′
i), and the second one from induction hypoth-

esis.
We omit the run time analysis for reasons of space. The key observations

is that a single component of y(t) does a random walk on {0, 1
p , . . . , 1} with

absorbing barriers 0 and 1. ��

If the denominator p in the theorem above can be written as product of smaller
integers p = p1 . . . p�, we may apply the above reasoning on the factors separately

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

448 B. Doerr

and gain a substantial run-time improvement. In particular, the p2 term becomes
∑�

k=1 p2
k. For reasons of space, we omit the details.

4 Derandomizations

We now show how the rounding approach described in the previous section can
be derandomized using a classical derandomization in each iteration. Since the
errors in each iteration may add, the total error bound is of larger order than
in the randomized setting. It depends on the circumstances whether this can be
tolerated or whether it is preferable to round x to a vector having finite binary
expansion (typically of length log n) and use the approach of [Doe06].

A derandomization of a randomized rounding (with constant c) is an algorithm
that computes for given A ∈ [0, 1]mA×n and x ∈ [0, 1]n a y ∈ {0, 1}n such that
for all i ∈ [mA],

|(Ax)i − (Ay)i| ≤ c
√

max{(Ax)i, ln(2mA)} ln(2mA).

It thus achieves (with minor loss) the existential bounds given by randomized
rounding.

A number of derandomizations are known. We sketch some results relevant in
the following and refer to the successor [Doe06] of this paper for more details.
The classical derandomization by Raghavan [Rag88] via so-called pessimistic es-
timators runs in time O(mAn) and achieves a constant of c = e − 1. In the
RAM model, it works for all A ∈ {0, 1}mA×n and x ∈ ([0, 1] ∩ Q)n. If one allows
precise computations with real numbers in constant time (in particular expo-
nential functions), then this extends to arbitrary A ∈ [0, 1]mA×n. As discussed
in the introduction, Srivastav and Stangier [SS96] give a derandomization for all
A ∈ ([0, 1] ∩ Q)mA×n in the RAM model, though at the price of an increased
run-time of O(mAn2 log(mAn)). The constant here is c =

√
3. In [Doe06], this

result was improved to a run time of O(mAn log n). The constant in this case is
4(e − 1)(1 + o(1)).

Theorem 2. Let A ∈ [0, 1]mA×n and B be totally unimodular. Let A be an
algorithm which for any x ∈ {0, 1

2 , 1}n computes a rounding y of x such that
By ≈ Bx and

∀i ∈ [mA] : |(Ax)i − (Ay)i| ≤ c
√

max{(Ax)i, ln(2mA)} ln(2mA).

Then for each x ∈ Zn
p , a rounding y such that By ≈ Bx and

∀i ∈ [mA] : |(Ax)i − (Ay)i| ≤ 1
2cp(ln(n) + 1)

√
max{ p

2 (Ax)i, ln(2mA)} ln(2mA)

can be computed by 1
2p2(ln(n) + 1) times invoking A and solving a system of

linear equations over B. If the complexity c(A, n) of the first and c(B, n) of the
latter in fact is proportional to the number of non-integers of x, then a run time
of O(p2 log(p)(c(A, n) + pc(B, n))) can be achieved.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Randomly Rounding Rationals with Cardinality Constraints 449

Derandomizing Lemma 3 yields the following deterministic version of Lemma 4.

Lemma 5. Let B be a totally unimodular mB × n matrix and x ∈ Z
n

p . Then a
x′ ∈ Zn

2 such that

(i) for all i ∈ [n], x′
i = 1

2 ⇒ xi �= 0;
(ii) for all i ∈ [mB], (Bx)i ∈ Z ⇒ (Bx′)i ∈ Z;

(iii) |{i ∈ [n] | x′
i = 1

2}| ≥ 1
2 |{i ∈ [n] | xi �= 0, 1}|;

can be computed in time O(pc(B, nint(x))).

Derandomizing the algorithm given in the proof of Theorem 1 is now the heart
of the following proof of Theorem 2.

Proof. For all x ∈ Z
n

p , let w(x) =
∑n

i=1 p2xi(1 − xi). We analyse the following
algorithm.

1. y(0) := x, t := 0
2. while y(t) /∈ {0, 1}n do
3. compute x′ ∈ {0, 1

2}n from y(t) as in Lemma 5
4. compute y′ as rounding of x′ as in the assumptions of the theorem
5. if w(y(t) + 2

p (y′ − x′)) ≤ w(y(t) + 2
p (−y′ + x′))

then y(t+1) := y(t) + 2
p (y′ − x′)

else y(t+1) := y(t) + 2
p (−y′ + x′)

6. t := t + 1
7. output y := y(t)

Since the output y of this algorithm could also have been generated by the
algorithm in the proof of Theorem 1 (assuming suitable random choices and
noting that 2x′ − y′ is an as good rounding of x′ as is y′), we immediately see
that y ≈ x and By ≈ Bx. Hence it remains to show the large deviations bound
and the run-time.

The large deviation bounds will depend heavily on the final value of t, so let
us estimate this first. To this end, we first analyze the behaviour of the weight
function w in step 5 of the algorithm. For all r ∈ Zp, we have

p2(r + 1
p)(1 − r − 1

p) + p2(r − 1
p)(1 − r + 1

p) = 2p2r(1 − r) − 2.

Since we chose the alternative leading to a smaller weight in line 5, we
have w(y(t+1)) ≤ w(y(t)) − nint(x′). By construction, we have nint(x′) ≥
1
2 nint(y(t)) ≥ 2

p2 w(y(t)). We conclude that w(y(t+1)) ≤ w(y(t))(1 − 2/p2). Hence

w(y(p2 ln(n)/2)) ≤ w(y(0))/n ≤ p2/4. Now since nint(x′) is always at least one,
we see that another at most p2/4 iterations suffice to reduce the weight to zero,
which means that y(t) is integral. Hence our algorithm terminates after at most
t = 1

2p2(ln(n) + 1) iterations.
By construction,

∣
∣
∣(Ay(t+1))i − (Ay(t))i

∣
∣
∣ ≤ 2

pc
√

max{(Ax′)i, ln(2mA)} ln(2mA)

≤ 2
pc

√
max{ p

2 (Ax)i, ln(2mA)} ln(2mA).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

450 B. Doerr

The large deviation bound now follows from the triangle inequality. The proof
of the run-time bound is omitted. ��

5 Application of the General Scheme

In this section, we analyse what the above methods yield for some of the random-
ized roundings with hard constraints regarded so far. We start with the simplest
example of disjoint cardinality constraints.

5.1 Disjoint Constraints

Throughout this subsection let B ∈ {0, 1}mB×n and ‖B‖1 := maxj

∑
i |bij | = 1.

For the generation of the roundings, this is a microscopic extension of Srini-
vasan’s [Sri01a] setting, who regarded a single cardinality constraint involving
all variables.

Let us assume that B is stored in some O(n) space datastructure allowing
amortized linear time enumerations of the sets {j ∈ [n] | bij = 1} for all i ∈ [mB].
Then it is easy to see that c(B, k) = O(k). From [Doe06], we already know that
the {0, 1

2} case can be solved highly efficiently. For any x ∈ {0, 1
2}n, a randomized

rounding with respect to B and 2[n] can be generated in time O(nint(x)). Hence
Theorem 1 yields the following.

Theorem 3. For any x ∈ Zn
p , a randomized rounding with respect to B and

2[n] can be generated in time O(p2n).

We now derandomize the construction above. Again, the {0, 1
2} case was settled

in [Doe06]. For convenience, let us restrict ourselves to 0, 1 matrices, so that
we can apply Raghavan’s derandomization (cf. Section 4). Then for all A ∈
{0, 1}mA×n and x ∈ {0, 1

2}n a rounding y of x such that By ≈ Bx and

∀i ∈ [mA] : |(Ax)i − (Ay)i| ≤ 2(e − 1)
√

max{(Ax)i, ln(4mA)} ln(4mA)

can be computed in time O(nint(x)). Combining this with Theorem 2, we obtain
the following derandomized version of Srinivasan’s results.

Theorem 4. Let A ∈ {0, 1}mA×n. Let x ∈ Zn
p . Then in time O(p3 log(p)n) a

binary vector y can be computed such that By ≈ Bx and

∀i ∈ [mA] : |(Ax)i−(Ay)i| ≤ (e−1)p(ln(n)+1)
√

max{ p
2 (Ax)i, ln(4mA)} ln(4mA).

Note that the run time above is linear in n. This cannot be achieved with the
approach in [Doe06]. If we approximate x by an element of Zn

2� and then use
the result from [Doe06], we have to choose � at least logarithmic in n to keep
the errors inflicted by the approximation small. Thus we would end up with a
run-time of Θ(n log n).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Randomly Rounding Rationals with Cardinality Constraints 451

5.2 Bipartite Edge Weight Rounding

In this subsection, we consider sets of cardinality constraints where each variable
may be contained in up to two constraints. We use the graph theoretic language
of Gandhi et al. [GKPS02]. Let G = (V, E) be a bipartite graph with edge
weights w : E → Zp. Let B ∈ {0, 1}V ×E such that (Bw)v =

∑
e�v w(e) for all

v ∈ V . Let S = {E0 ⊆ E | ∃v ∈ V ∀e ∈ E0 : v ∈ e}. In [Doe06], we showed that
for any w ∈ {0, 1

2}E , a randomized rounding with respect to B and S can be
generated in time O(nint(w)).

The more interesting part is efficiently computing the half-integral vector as
in Lemma 4. However, since we know the structure of the hard constraints, this
also can be done directly in linear time.

Lemma 6. Let w ∈ ZE
p . Then we can compute in time O(nint(w)) an x′ : E →

{0, 1
2} such that

(i) x′
e �= 0 ⇒ we �= 0;

(ii) (Bw)v ∈ N0 ⇒ (Bx′)v ∈ N0;
(iii) we �= 0 ⇒ Pr(x′

e = 1
2) ≥ 1

2 .

Hence again Theorem 1 yields the following.

Theorem 5. For any w ∈ ZE
p , a randomized rounding with respect to B and S

can be generated in time O(p2n).

Note that the time complexity here is superior to the O(|E||V |) bound of Gandhi
et al. [GKPS02], unless p is large.

Let us derandomize this result. For Lemma 6, this is again easy using the
known structure of the constraints. Derandomizing the {0, 1

2} case was settled
in [Doe06]. Together with Theorem 2, we obtain the following derandomization
of the result of Gandhi et al. [GKPS02]

Theorem 6. Let A ∈ {0, 1}mA×E such that for each i ∈ [mA] there is a v ∈ V
such that for all e ∈ E, e � v whenever aiv �= 0. Let x ∈ ZE

p . Then in time
O(p3 log(p)n) a binary vector y can be computed such that By ≈ Bx and

∀i ∈ [mA] : |(Ax)i − (Ay)i| ≤ (e − 1)p(ln(|E|) + 1)
√

max{ p
2 (Ax)i, ln(4mA)} ln(4mA).

6 General Derandomization

In this section, we give a simple derandomization for the case that the constraint
matrix A is rational and we do not have hard constraints. Note that such would
in many cases not lead to additional problems. As demonstrated in [Doe06], in
the {0, 1

2} case the problem with hard constraints can be reduced to one without.

Theorem 7. Let A ∈ Z
m×n

p and x ∈ ([0, 1] ∩ Q)n. Let � = �log2 p�. Then in
time O(mn�) in the RAM model, a y ∈ {0, 1}n can be computed such that for
all i ∈ [m],

|(Ax)i − (Ay)i| ≤ 4(e − 1)
√

max
{
(Ax)i, ln(2(� + 1)m)

}
ln(2(� + 1)m).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

452 B. Doerr

Proof. Write A =
∑�

k=0
2k

p A(k) with A(k) ∈ {0, 1}m×n for all k ∈ [�] ∪ {0}.
Apply Raghavan’s derandomization (cf. Section 4) to the (� + 1)m × n matrix
obtained from stacking the A(k). With some care in the calculations, the result
follows. ��

References

[AS04] A. A. Ageev and M. I. Sviridenko. Pipage rounding: a new method of
constructing algorithms with proven performance guarantee. J. Comb.
Optim., 8:307–328, 2004.

[DGS05] B. Doerr, M. Gnewuch, and A. Srivastav. Bounds and constructions for the
star-discrepancy via δ-covers. Journal of Complexity, 21:691–709, 2005.

[DK06] B. Doerr and C. Klein. Unbiased rounding of rational matrices. In
FSTTCS 2006, volume 4337 of LNCS, pages 200–211, 2006. Springer-
Verlag.

[Doe03] B. Doerr. Non-independent randomized rounding. In SODA 2003, pages
506–507, 2003.

[Doe04a] B. Doerr. Global roundings of sequences. Information Processing Letters,
92:113–116, 2004.

[Doe04b] B. Doerr. Nonindependent randomized rounding and an application to
digital halftoning. SIAM Journal on Computing, 34:299–317, 2004.

[Doe06] B. Doerr. Generating randomized roundings with cardinality constraints
and derandomizations. In STACS 2006, volume 3884 of LNCS, pages 571–
583, 2006. Springer-Verlag.

[dW71] D. de Werra. Equitable colorations of graphs. Rev. Française Informat.
Recherche Opérationnelle, 5(Ser. R-3):3–8, 1971.

[GHK+06] R. Gandhi, E. Halperin, S. Khuller, G. Kortsarz, and A. Srinivasan. An
improved approximation algorithm for vertex cover with hard capacities.
J. Comput. Syst. Sci., 72:16–33, 2006.

[GKPS02] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan. Dependent
rounding in bipartite graphs. In FOCS 2002, pages 323–332, 2002.

[PS97] A. Panconesi and A. Srinivasan. Randomized distributed edge coloring
via an extension of the Chernoff-Hoeffding bounds. SIAM J. Comput.,
26:350–368, 1997.

[Rag88] P. Raghavan. Probabilistic construction of deterministic algorithms: Ap-
proximating packing integer programs. J. Comput. Syst. Sci., 37:130–143,
1988.

[RT87] P. Raghavan and C. D. Thompson. Randomized rounding: A technique for
provably good algorithms and algorithmic proofs. Combinatorica, 7:365–
374, 1987.

[RT91] P. Raghavan and C. D. Thompson. Multiterminal global routing: a deter-
ministic approximation scheme. Algorithmica, 6:73–82, 1991.

[Sri01a] A. Srinivasan. Distributions on level-sets with applications to approxima-
tions algorithms. In FOCS 2001, pages 588–597, 2001.

[SS96] A. Srivastav and P. Stangier. Algorithmic Chernoff-Hoeffding inequalities
in integer programming. Random Structures & Algorithms, 8:27–58, 1996.

[STT01] K. Sadakane, N. Takki-Chebihi, and T. Tokuyama. Combinatorics and
algorithms on low-discrepancy roundings of a real sequence. In ICALP
2001, volume 2076 of LNCS, pages 166–177, 2001. Springer-Verlag.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cheating to Get Better Roommates in a
Random Stable Matching

Chien-Chung Huang

Dartmouth College
villars@cs.dartmouth.edu

Abstract. This paper addresses strategies for the stable roommates
problem, assuming that a stable matching is chosen at random. We in-
vestigate how a cheating man should permute his preference list so that
he has a higher-ranking roommate probabilistically.

In the first part of the paper, we identify a necessary condition for
creating a new stable roommate for the cheating man. This condition
precludes any possibility of his getting a new roommate ranking higher
than all his stable roommates when everyone is truthful. Generalizing
to the case that multiple men collude, we derive another impossibility
result: given any stable matching in which a subset of men get their best
possible roommates, they cannot cheat to create a new stable matching in
which they all get strictly better roommates than in the given matching.

Our impossibility result, considered in the context of the stable mar-
riage problem, easily re-establishes the celebrated Dubins-Freedman The-
orem. The more generalized Demange-Gale-Sotomayor Theorem states
that a coalition of men and women cannot cheat to create a stable match-
ing in which everyone of them gets a strictly better partner than in the
Gale-Shapley algorithm (with men proposing). We give a sharper result:
a coalition of men and women cannot cheat together so that, in a newly-
created stable matching, every man in the coalition gets a strictly better
partner than in the Gale-Shapley algorithm while none of the women in
the coalition is worse off.

In the second part of the paper, we present two cheating strategies
that guarantee that the cheating man’s new probability distribution over
stable roommates majorizes the original one. These two strategies do not
require the knowledge of the probability distribution of the cheating man.
This is important because the problem of counting stable matchings is
#P-complete. Our strategies only require knowing the set of stable room-
mates that the cheating man has and can be formulated in polynomial
time. Our second cheating strategy has an interesting corollary in the
context of stable marriage with the Gale-Shapley algorithm. Any woman-
optimal strategy will ensure that every woman, cheating or otherwise,
ends up with a partner at least as good as when everyone is truthful.

1 Introduction

In the stable roommates problem [4], 2n people are to be assigned to n rooms,
each of which accommodates two of them. Each man m ∈ R (following con-
vention, we assume that all participants in R are male) has a strictly-ordered

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 453–464, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

454 C.-C. Huang

preference list in which he ranks all other men in R−{m}. Given any matching,
two men preferring each other to their assigned roommates comprise a blocking
pair. A matching without blocking pairs is stable. For a man m ∈ R, man m′

is called his stable roommate if there exists any stable matching containing the
couple {m, m′}; otherwise, m′ is an unstable roommate for him.

The stable roommates problem is more general than the stable marriage prob-
lem [4]. However, unlike stable marriage, whose strategic aspects have been in-
vestigated extensively [2,5,6,9,10,14,16], the cheating strategies for the stable
roommates problem have not received much attention.

In contrast to stable marriage, the stable roommates problem does not always
allow stable matchings. In this work, we assume that in the given problem in-
stance, stable matchings do exist and that one is chosen at random. Supposing
that a participant has complete knowledge of all others’ preferences, we study
what can be done to his preference list so that he gets a better roommate prob-
abilistically.

Major Results of This Work. The first part of our paper identifies a nec-
essary condition for the cheating man m to make an unstable roommate m′ who
ranks higher than his lowest-ranking stable roommate become a stable one. This
condition demands that, in the falsified list, m′ has to rank higher than at least
one of m’s stable roommates, say m′′, and m′′ originally ranks higher than m′ in
the truthful list of m. Hence, this condition rules out any chance of the cheating
man obtaining a roommate ranking higher than all his stable roommates.

We then generalize to the case of multiple men forming a coalition. Given
any stable matching in which a subset of men all get their best possible room-
mates, we prove that they cannot cheat together to create a stable matching in
which they all get strictly better roommates than in the given matching. In the
context of the stable marriage problem with the Gale-Shapley algorithm, our
impossibility result easily re-establishes the celebrated Dubins-Freedman Theo-
rem [2]: A coalition of men cannot cheat together and all get better partners.
The more general Demange-Gale-Sotomayor Theorem [1] states that a coalition
of men and women cannot cheat together and all get better partners than in
the Gale-Shapley algorithm. In fact, we have a sharper result: a coalition of men
and women cannot cheat together so that in a newly-created stable matching,
every man in the coalition gets a strictly better partner than in the Gale-Shapley
stable matching, while no woman involved in the coalition is worse off.

In the second part of the paper, assuming that a stable matching is chosen
uniformly at random, we exhibit two strategies that ensure the cheating man to
have a new probability distribution over stable roommates which majorizes the
original one. Here we define the term “probability majorization” as follows. Let
Pi(m) and P ′

i (m) be the probabilities of m’s getting his i-th ranking roommate
in a uniformly random stable matching, when he is truthful and otherwise. P ′

majorizes P if for 1 ≤ t ≤ n,
∑t

i=1 P ′
i (m) ≥

∑t
i=1 Pi(m). The first strategy guar-

antees that in all the newly-created stable matchings, he gets the best possible
stable roommate; moreover, it can be formulated in constant time. The second
strategy is an optimal strategy for the cheating man to destroy low-ranking

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cheating to Get Better Roommates in a Random Stable Matching 455

stable roommates. We use the term “optimal” in the sense that if our second
strategy cannot eliminate someone, say mk, as a stable roommate of m, then
there does not exist any other strategy to achieve this without causing some-
one else ranking lower than mk to become a new (and unwanted) roommate.
In the context of stable marriage with the Gale-Shapley algorithm, our second
strategy has the auxiliary consequence that any optimal cheating strategy for
a sole cheating woman (Teo, Sethuraman and Tan suggested how to formulate
such a strategy in [16]) will ensure her to get one of her original stable partners
and every other woman to get a partner ranking at least as high as when every-
one is truthful. This fact was also independently discovered by Sethuraman and
Teo [15]. Our second strategy costs O(n4) time.

Our two strategies do not need to know the probability distribution over
stable roommates of the cheating man. The only knowledge required is the set
of roommates he has; this can be obtained in O(n2) time [3]. We think strategies
not involving the knowledge of the exact probability distribution are important,
because to obtain the exact probability distribution can be computationally
expensive. For one thing, if we want to enumerate the set of stable matchings,
Knuth [13] pointed out the number of stable matchings can be exponential;
for the other, supposing we know the set of possible stable roommates of the
cheating man, it is very unlikely we can count the number of stable matchings
for each of his stable roommate in polynomial time, otherwise, in polynomial
time, we can count the total number of stable matchings, which has been proved
by Irving and Leather [12] to be a #P-complete problem.

Related Work. The stable roommates problem, along with the stable mar-
riage problem, was formulated by Gale and Shapley [4]. They proved that sta-
ble matchings always exist for the latter, but not necessarily for the former.
Knuth [13] posed the open problem of finding an algorithm for the stable room-
mates problem; this problem was solved by Irving [11]. The book of Gusfield
and Irving [7] is probably the best reference for algorithmic issues on the sta-
ble roommates problem. Some group cheating strategies for the random stable
matching in the marriage case are explored in [9]. For strategic behavior in the
stable matching problem, Roth and Sotomayor have a rather detailed treatment
in [14].

Structure of the Paper. Section 2 presents a necessary condition for a
cheating man to get a new stable roommate. In Section 3, we discuss the more
general case of multiple men colluding, and we exhibit a number of impossibility
results. In Sections 4 and 5, we present the two cheating strategies for a cheat-
ing man that make his new probability distribution majorize the original one.
Finally, in Section 6, we draw the conclusion and discuss some open questions.

Notation and Terminology. Throughout this paper, we refer to the cheat-
ing man as m. His preference list is decomposed as (U0(m), m1, U1(m), m2, · · · ,
Uk−1(m), mk, Uk(m)), where mi, 1 ≤ i ≤ k is his set of stable roommates and
Uj(m), 0 ≤ j ≤ k constitute his (ordered) subset of unstable roommates. When
referring to the roommate of a particular person m† in the matching M , we write
M(m†). As a shorthand for the preference list of m, we often write (PL,M (m),

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

456 C.-C. Huang

M(m), PR,M (m)), where M is any matching, stable or otherwise. PL,M (m) is
the sub-list containing all the men ranking higher than M(m); and similarly
for PR,M (m). Colloquially, we often say the elements of PL,M (m) (PR,M (m))
are the men on the left (respectively, right) of M(m). Given an ordered list A,
πr(A) is any permutation of A; suppose A and B are ordered lists,

∏
r(A, B)

is an arbitrary combination of A and B such that the elements of A and of B
retain their original order in the combined list.

In m’s preference list, if m′ ranks strictly higher than m′′, we write m′ �m m′′.
If m′ �m m′′, then either m′ �m m′′, or m′ = m′′. If m falsifies his list such that
m′ ranks higher than m′′, we write m′ �f

m m′′. When everyone is truthful, we
refer to the collection of their preference lists as “true” lists. When any one of
them lies, the resulting lists are referred to as “falsified.” Given two matchings
M and M ′, if a subset of men G ⊆ R all prefer M to M ′ or are indifferent, we
write M �G M ′; if all of them strictly prefer M to M ′, we write M �G M ′.

As we will switch back and forth between stable roommate and stable mar-
riage, we also introduce notation for the latter problem. The collection of men
and women are M and W . The men-optimal/women-pessimal matching (found
by the Gale-Shapley men-proposing algorithm) is MM; analogously, the women-
optimal/men-pessimal matching is MW . Throughout this work, when we refer
to the Gale-Shapley algorithm, we implicitly assume the men-proposing version.

2 In Search of a New Roommate

In this section, we study how to create a new stable roommate for the cheating
man.

Targeting a Roommate Ranking Higher than All Stable Room-
mates. To motivate our cheating strategy, assume that the cheating man m
hopes to get a new roommate m0 ∈ U0(m) who ranks higher than all of his stable
roommates. However, the feeling is not reciprocal and m ranks lower than all of
m0’s stable roommates (otherwise, {m, m0} would block some stable matching).
Is there a strategy for m to make m0 his new stable roommate? Unfortunately
for him, we will answer in the negative in the following discussion.

Proposition 1. Let M be any stable matching. If m submits a preference list
of the form (πr(PL,M (m)−X), M(m), πr(PR,M (m)∪X)), where X ⊆ PL,M (m),
the matching M remains stable with regard to the falsified lists.

This proposition states that man m can shift some men from the left to the right
of M(m) without worrying about losing M(m) as a stable roommate. The next
proposition identifies a strategy which is not effective for creating a new stable
roommate.

Proposition 2. Suppose Mφ is an unstable matching with regard to the true
lists. Moreover, m falsifies his list so that Mφ becomes stable. Then it is impos-
sible that the falsified list of m is of the form:

(πr(PL,Mφ(m) ∪ X), Mφ(m), πr(PR,Mφ(m) − X)), where X ⊆ PR,Mφ (m).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cheating to Get Better Roommates in a Random Stable Matching 457

Proposition 2 eliminates all but one possible strategy: the cheating man m shifts
some subset of men ranking higher than m0 to the right of m0 in his falsified list.
This might create the chance of making an unstable matching Mφ ⊃ {m, m0}
become stable. This is possible if in Mφ, with regard to the true lists, all blocking
pairs involve m. We now present our first primary result. Its full proof can be
found in [8].

Lemma 1. Let M be a stable matching and Mφ(m) be an unstable roommate
of m with regard to the true lists. Suppose Mφ(m) �m M(m) and all blocking
pairs for Mφ involve m. Then at least one of the blocking pairs {m, mx} is a
stable pair and mx �m Mφ(m).

Proof. (Sketch) We remark that if m wishes to make Mφ(m) a stable room-
mate, by Proposition 2, he has to submit a falsified list of the form (PL,Mφ(m)−
X, Mφ(m),

∏
r(PR,Mφ(m), X)), where X ⊆ PL,Mφ(m). Moreover, by Proposi-

tion 1, M remains stable with regard to the falsified lists.
Our proof plan is as follows: with regard to the falsified lists, we introduce an

algorithm that transforms the stable matching M into another stable matching
M � such that M �(m) �m M(m) and M �(m) ∈ X . Finally, we prove that M � is
also stable with regard to the true lists, thereby arriving at the conclusion.
�

Specializing Lemma 1 to the case that the cheating man m is getting his highest-
ranking stable roommate in M , we get the conclusion that a new stable matching
Mφ, in which Mφ(m) = m0 �m M(m) = m1 cannot be realized by shifting some
men ranking higher than m0 to the right of m0 in the falsified list.

Theorem 1. Given any stable roommates instance in which stable matchings
exist, a sole cheating man cannot create a new stable roommate ranking higher
than all his stable roommates by any strategy.

An interesting corollary follows from Lemma 1 and Proposition 1.

Corollary 1. Suppose the cheating man m submits a preference list of the form
(πr(U0(m)), m1, πr(U1(m)), m2, · · · , mk−1, πr(Uk−1(m)), mk, Uk(m)). Then the
set of stable matchings remain identical to the case when everyone is truthful.

We remark that this corollary does not consider permuting Uk(m). In fact, it is
possible that by permuting Uk(m) alone a new stable roommate is formed. But
obviously, m has no interest in creating a new roommate of such low rank.

A Necessary Condition for Creating a New Stable Roommate. Our
attempt at making m0 ∈ U0(m) a new stable roommate has been thwarted.
Suppose m now realizes the difficulty of getting m0; he compromises his ideal
and considers creating another stable roommate ranking between m1 and mk.
How can he achieve this? As mentioned in the proof of Lemma 1, after we apply
the algorithm to get another stable matching M � from the given stable matching
M , the cheating man m ends up with M �(m) ∈ X , where X is the set of men
ranking higher than Mφ(m) being shifted to the right of Mφ(m). This suggests
a necessary condition of making Mφ stable.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

458 C.-C. Huang

Theorem 2. Let mi+ε ∈ Ui(m), where 1 ≤ i ≤ k − 1, be an unstable roommate
of the cheating man m. A necessary (but not sufficient) condition of making mi+ε

a new stable roommate is that at least one original stable roommate ranking
higher than mi+ε has to become lower-ranked than mi+ε in the falsified list of m.

3 Multiple Men Cheat Together

In this section, we generalize to the case of multiple cheaters. Propositions 1 and
2 can be adapted straightforwardly and will be used in the proofs.

Theorem 3. Let M be a stable matching. Suppose Mφ is an unstable matching
such that Mφ �G M where G ⊆ R, moreover, there exists a non-empty subset
G′ ⊆ G such that men in G′ get their highest-ranking roommates in M and
Mφ �G′ M . If there do not exist strategies for men in G − G′ to make Mφ a
stable matching, then there does not exist any strategy for men in G collectively
to make Mφ become stable.

Proof. By the generalized version of Proposition 2, the only possible strategy
for man mγ ∈ G − G′ to make Mφ stable is to falsify his list in the form
(πr(PL,Mφ(mγ) − X), Mφ(mγ), πr(PR,Mφ (mγ), X)), where X ⊆ PL,Mφ(mγ). If
after all men in G − G′ have falsified their lists in this way, Mφ becomes stable,
the theorem is trivially true. Therefore, we assume Mφ remains unstable after all
men in G − G′ falsify their lists. Now choose any man m′

γ ∈ G′. By Theorem 1,
there does not exist any strategy for man m′

γ to make Mφ(m′
γ) a new stable

roommate. So however m′
γ permutes his list, Mφ remains unstable. The same

argument applies to the rest of the men in G′ and so we have the theorem.
�

Theorem 3 leads to several interesting corollaries.

Corollary 2. Let M be any stable matching in which a non-empty subset G ⊆ R
of men are matched to their highest-ranking stable roommates. There does not
exist any strategy for the men in G to create a new stable matching Mφ in which
every man in G gets a better roommate than in M .

In the context of the stable marriage problem, the celebrated Dubins-Freedman
Theorem [2] can be easily re-established by Corollary 2.

Corollary 3. (Dubins-Freedman Theorem): In the stable marriage prob-
lem, a coalition of men cannot falsify their preference lists so that everyone of
them gets a strictly better partner than in the men-optimal matching.

Proof. Choose any subset of men G ⊆ M. Apply Corollary 2 to G and the men-
optimal matching MM.
�

A stronger theorem by Demange, Gale and Sotomayor [1] states that a coalition
of men and women cannot cheat together so that everyone of them gets a strictly
better partner than in the men-optimal matching MM. We give a sharper result.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cheating to Get Better Roommates in a Random Stable Matching 459

Corollary 4. In the stable marriage problem, a coalition of men and women
cannot falsify their preference lists to create a stable matching in which every
man in the coalition gets a strictly better partner than in the original men-optimal
matching, while none of the women involved in the coalition is worse off.

Proof. Let G ⊂ M ∪ W be a coalition of men and women. Since in the men-
optimal matching MM, men already have their best possible partners, by Theo-
rem 3, a new stable matching M ′ that M ′ �G MM and M ′ �G∩M MM can only
be created by the falsified lists of women in G ∩ W . So we suppose all women in
G ∩ W falsify their lists and M ′ becomes a new stable matching.

To make M ′ stable, by the generalized version of Proposition 2, the only
effective strategy for each woman w ∈ G ∩ W is that she submits a falsified list
of the form (πr(PL,M ′(w)−X), M ′(w), πr(PR,M ′ (w)∪X)), where X ⊆ PL,M ′(w).
Let the falsified list of w be Pw. We create another falsified list P ′

w, which only
differs from Pw in that all members in PR,M ′ (w) are restored to their original
order in the truthful list of w. By the generalized version of Proposition 1, if
we replace Pw with P ′

w, the matching M ′ remains stable. The reason for this
pre-processing will be clear shortly.

We make the following two observations. (1) In the Gale-Shapley algorithm,
women only receive proposals from men ranking lower than their MM-partners.
Given w ∈ G ∩ W , since M ′(w) �w MM(w), in her falsified list, how she moves
about men ranking higher than M ′(w) does not affect the execution of the Gale-
Shapley algorithm. (2) Given w ∈ G ∩ W , in P ′

w, men in PR,M ′(w) have the
same relative order as in woman w’s truthful list. Therefore, women, whether
in G or not, will make entirely the same decision about rejecting and accepting
men as when everyone is truthful. Combining the two observations, we conclude
that applying the Gale-Shapley algorithm to the falsified lists will lead to the
original matching MM.

Finally, if M ′ can become stable by the falsified lists of women in G∩W , then
the men in G∩M get better partners in M ′ than in MM. The men-optimality of
the latter (since it is produced by the Gale-Shapley algorithm) is then violated.
This finishes the proof.
�

This result again manifests the difficulty of men cheating. If a coalition of men
try to lobby some women to falsify their lists also (on the premise that none of
the women involved will be worse off), there still does not exist any chance of
forming a successful strategy for them. The only way for a coalition of men to get
better partners in a new stable matching is that they ask for the collaboration
of other fellow men, as has been shown in [9].

4 Strategy A

We return to the theme of the strategies for a sole cheating man m. Supposing
a stable matching is chosen uniformly at random, in this section and the next,
we present two strategies for him so that his probability distribution over stable
roommates majorizes the original one.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

460 C.-C. Huang

By Theorem 1, there is nothing more the cheating man m can do to get any
member in U0(m). Nonetheless, these unapproachable men still serve a purpose.
If we move all of them en masse to the immediate right of m1, there is a chance
that more stable matchings containing {m, m1} are thus created (since men
in U0(m) constitute potential blocking pairs to unstable matchings containing
{m, m1}). However, if these men are moved to the right of mi, i > 1, other new
stable matchings containing {m, m2}, {m, m3}, · · · {m, mi} may crop up, which
is not as a good outcome as we simply “squeeze” U0(m) between m1 and U1(m).
From the above discussion, the following strategy is immediate:

Theorem 4. (Strategy A): Suppose the cheating man m submits a falsified
list of the form (m1, πr(U0(m)), U1(m), m2, PM,R(m)) where M ⊃ {m, m2}. For
m, the new probability distribution over roommates majorizes the original one
when everyone is truthful. More generally, such a list will majorize the prob-
ability distribution induced by any list of m in the following form (U0(m) −
X, m1,

∏
r(X, PR,M ′(m))), where X ⊆ U0(m) and M ′ ⊃ {m, m1}.

5 Strategy B

We introduce another strategy which destroys low-ranking stable roommates of
the cheating man m. In this section, when we say we destroy a stable roommate
mi, we mean the cheating man m manipulates his preference list so that all
stable matchings containing {m, mi} become unstable. We call mi destructible
if m can destroy mi without other stable roommates ranking lower than mi

being formed.
To build up some intuition, assume that our preliminary goal is to destroy

all stable matchings containing {m, mk}. By Proposition 1, this can only be
achieved by shifting some men from Uk(m) to the left of mk. But this move
involves some risk: some of these shifted men in Uk(m) may become new stable
roommates of m, which is a worse outcome for him.

We define three categories for the members in Uk(m):

Definition 1. Uk(m) is decomposed into (interleaving) ordered subsets A∪B ∪
C. For a man m† ∈ Uk(m), let man m submit a falsified list of the form
(U0(m), m1, U1(m), m2, · · · , Uk−1(m), m†, mk, Uk(m) − m†), then:

– m† ∈ A, if mk is no longer a stable roommate and m† does not become a
new stable roommate of m.

– m† ∈ B, if mk remains a stable roommate but m† does not become a new
stable roommate of m.

– m† ∈ C, if m† becomes a new stable roommate of m, while mk remains/is
no longer a stable roommate of m.

The following algorithm suggests a procedure to systematically make all sta-
ble matchings containing {m, mk} become unstable without creating any new
unwanted stable roommate in Uk(m).

We outline the general idea of the algorithm Destroy-Bad before proving
its mathematical properties. The first part of the algorithm is concerned with

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cheating to Get Better Roommates in a Random Stable Matching 461

0: Algorithm Destroy-Bad: Input (U0(m), m1, · · · , Uk−1(m), mk, Uk(m))

1: For All m† ∈ Uk(m)

2: Shift m† to the immediate left of mk. Observe whether m† is in A, B, or in C.
3: If A �= ∅ Then /* In this case, mk is destructible.
4: Output the list (U0(m), m1, · · · , Uk−1(m), ma, mk, Uk(m) − ma), where ma ∈ A.
5: If B �= ∅ Then
6: If P ′ = (U0(m), m1, · · · , Uk−1(m), πr(B), mk, Uk(m) − B) destroys mk Then Output P ′

7: Else
8: For All m† ∈ Uk(m) − B

9: If P ′′ = (U0(m), m1, · · · , Uk−1(m), πr(B), m†, mk, Uk(m) − B − m†) destroys mk

10: Then Output P ′′

11: Output P ′

12: If C = Uk(m) Then Output the input preference list (U0(m), m1, · · · , Uk−1(m), mk, Uk(m))

Fig. 1. Algorithm Destroy-Bad: Given a preference list, this algorithm returns a new
preference list which: (1) if mk is destructible, destroys mk without causing any man
ranking lower than mk−1 to become a new stable roommate; (2) if mk is indestructible,
ensures m has a new probability distribution over his roommates which majorizes the
original one

identifying which group, as defined in Definition 1, the members in Uk(m) fall
into. Note the fact that we shift m† to the “immediate” left of mk. This artifice
preserves the maximum likelihood of preventing m† from becoming a new stable
roommate of m.

If group A is not empty, we achieve our goal trivially. If B is not empty, we
shift all of its members to the immediate left of mk. The idea is that, even though
separately, each of them is unable to destroy mk, their combined presence on
the left of mk might succeed. There might be a concern that, when being moved
en masse, some of the men in B may become new stable roommates of m. We
will prove shortly that this is not the case.

Supposing the combined efforts of B on the left of mk cannot destroy mk, we
still need to check one more time the status of the remaining members in Uk(m).
Some of them, say mc, can be transformed from a member of C to a member of
A (but not B, as we will prove later on). The reason is that more members of B
being on the left of mc might serve as more potential blocking pairs to matchings
containing {m, mc}. Given that, there is still one more caveat here. One might
imagine that after we shift “more than one“ members in Uk(m) − B to the left
of mk, we might have more chance of destroying mk while still avoiding any
member in Uk(m) − B being shifted from becoming new (and unwanted) stable
roommates. We shall also discuss why this is not the case below.

Finally, suppose the algorithm finds that A = ∅ and B �= ∅, and unfortunately,
shifting B to the left of mk still cannot destroy mk. The cheating man m still
should adopt the new preference list suggested by Algorithm Destroy-Bad.
The reason is that the more members that we shift to the left of mk, the more
likely we are able to destroy stable matchings containing {m, mk} (but not all of
them). Destroying stable matchings containing {m, mk} helps for our probability
majorization purpose.

Optimality of Strategy B. We prove the correctness of Algorithm Destroy-
Bad and a number of mathematical properties of the members of Uk(m). We

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

462 C.-C. Huang

first show that men in B being moved together will not cause any of them to
become a new stable roommate of m.

Lemma 2. Let Uk(m) be decomposed into interleaving ordered subsets A∪B∪C
as defined in Definition 1. Suppose |B| ≥ 1 and let m submit a list of the form
(U0(m), m1, · · · , Uk−1(m), πr(B), mk, Uk(m) − B). Then there are no new stable
matchings containing {m, mb} where mb ∈ B. Moreover, suppose A = ∅ and in
the new preference list, all members of B are shifted to the immediate left of mk

but mk remains a stable roommate of m. All members in Uk(m) − B can only
belong to group A or group C.

Proof. For the first part, the case of |B| = 1 is trivial. As to the case of |B| > 1,
we prove by contradiction. Sort men in B in arbitrary order (mb1, mb2, · · · , mbx).
We shift mb1 to the immediate left of mk, and then shift mb2 to the immediate left
of mb1 and so forth. By Proposition 2, if after mbi is moved, he does not become
a new stable roommate, the subsequent shifts involving mb(i+1), mb(i+2), · · · will
not change the status of mbi. Thus, we only need to worry about the man in B
who is being shifted at this point.

Let mbi be the first man becoming a new stable roommate of m in the process.
We refer to the preference list at this point as Pi. We then create another list
P ′

i which differs from Pi in that mb1, mb2, · · · mb(i−1) are shifted back to their
original positions in Uk(m). By the definition of group B, {m, mbi} is not part
of a stable matching given P ′

i . However, based on Pi, {m, mbi} is part of a stable
matching. Combining the two facts, we violate Proposition 1.

For the second part, if there is any member m† ∈ Uk(m) − B belonging to
group B, i.e., in the preference list P ′

m = (U0(m), m1, · · · , Uk−1(m), πr(B), m†,
mk, Uk(m) − B − m†), m† is not a stable roommate but mk still is. We create
another preference list by shifting all members of B back to their original places.
Then, m† becomes a stable roommate of m but originally in P ′

m, all members of
B are unstable roommates. Thus we violate Theorem 2.
�

As alluded to previously, there might be a concern that the members in C, being
shifted in a group, instead of individually, between B and mk, might succeed in
destroying mk without causing any of themselves to become a stable roommate
of m. The following lemma dissipates this concern.

Lemma 3. Let Uk(m) be decomposed into interleaving ordered subsets A∪B∪C
as defined in Definition 1. Suppose C = Uk(m). Given any subset C′ ⊆ C, let the
cheating man m submit a preference list of the form (U0(m), m1, · · · , Uk−1(m),
πr(C′), mk, C −C′), then there exists at least one man in C′ who becomes a new
stable roommate of m.

Proof. We prove by contradiction. We choose the minimal set C′ ⊆ C such that
a falsified list of the stated form violates this lemma (no new stable roommates in
C′ are formed). Sorting the members in C′ in arbitrary order (mc1, mc2, · · · , mcx),
we shift mc1 to the immediate left of mk, and then mc2 to the immediately left of
mc1 and so forth. We claim that after each round i of this operation, 1 ≤ i < x,
at least one man in {mc1, mc2, · · · , mci} is a stable roommate of m (otherwise,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cheating to Get Better Roommates in a Random Stable Matching 463

the minimality of C′ is violated). Only in the last round x, shifting mcx to the
immediate left of mc(x−1), all men in C′ are not stable roommates of m. Let the
preference list at this point be Px. We create another preference list P ′

x in which
all men in C′, except mcx, are shifted back to their original positions in Uk(m).
By the definition of group C, given P ′

x, mcx is a stable roommate of m. But in
Px, he is not. Combining these two facts, we violate Proposition 2.
�

We now show that Algorithm Destroy-Bad is an optimal strategy in the sense
that if the combined members of B cannot destroy mk, mk must be indestruc-
tible. The full proof of the following theorem can be found in [8].

Theorem 5. (Strategy B): Algorithm Destroy-Bad is an optimal strategy
for the cheater m to destroy mk. Moreover, the preference list output by Al-
gorithm Destroy-Bad will not cause any stable matching containing {m, mi},
where 1 ≤ i ≤ k − 1, to become unstable.

Some Implications of Strategy B. It is obvious that Algorithm Destroy-
Bad can be repeatedly applied; moreover, every time a stable roommate mi is
destroyed, mi−1 becomes a new lowest-ranking stable roommate of m. We can
use this idea to prove the following corollary. The full proof can be found in [8].

Corollary 5. In the stable marriage problem with the Gale-Shapley algorithm,
a woman-optimal strategy will cause every woman, cheating or otherwise, to get
a partner ranking at least as high as when everyone is truthful.

By Corollary 5, women have common interest in cheating. When a woman cheats
to get herself a better partner, she is also doing all other women a favor (and all
men a disfavor).

Algorithm Destroy-Bad can be applied repeatedly to destroy as many low-
ranking stable roommates as possible. The first part of Algorithm Destroy-Bad
(identifying which group the members in Uk(m) fall into) has to linearly check
at most O(n) people. For each member, this checking can be done in time O(n2)
by Feder’s algorithm [3]. Since there are at most O(n) stable roommates, Algo-
rithm Destroy-Bad needs to be applied at most the same amount of rounds.
Summing up, Strategy B takes O(n4) time.

6 Conclusion

In this paper, we identified a necessary condition for a sole cheating man to get
a new stable roommate. We also presented a number of impossibility results for
a coalition of cheating men in the context of both stable roommates and stable
marriage. When a stable matching is chosen uniformly at random, we exhibited
two strategies that induce a new probability distribution majorizing the original
one.

There is an interesting algorithmic issue closely related to our basic assump-
tion. To our knowledge, so far there does not exist an efficient algorithm for
finding a nearly-uniformly random stable matching. Indeed, even for the simpler
stable marriage, no such algorithm appears to be known. It is well known that

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

464 C.-C. Huang

the stable matchings for an instance of stable marriage constitute a distributive
lattice (possibly of exponential size) [7]. Since every distributive lattice is the
lattice of ideals of some partially ordered set, we can ask the following more gen-
eral question: given a poset P , is there a randomized polynomial-time algorithm
for sampling an ideal of P from a nearly uniform probability distribution?

Acknowledgment

I thank my adviser Peter Winkler for many helpful discussions. I am also in-
debted to two anonymous reviewers who gave detailed comments on my sub-
mitted version. One of them especially directed my attention to the algorithmic
issue of the random stable matching and pointed out an incorrect remark I made
about counting stable matchings.

References

1. G. Demange, D. Gale, and M. Sotomayor. A further note on the stable matching
problem. Discrete Applied Mathematics, 16:217–222, 1987.

2. L. Dubins and D. Freedman. Machiavelli and the Gale-Shapley algorithm. Amer-
ican Mathematical Monthly, 88:485–494, 1981.

3. T. Feder. A new fixed point approach for stable networks and stable marriages.
Journal of Computer and System Sciences, 1:233–294, 1992.

4. D. Gale and L. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69(1):9–15, 1962.

5. D. Gale and M. Sotomayor. Ms. Machiavelli and the stable matching problem.
American Mathematical Monthly, 92:261–268, 1985.

6. D. Gale and M. Sotomayor. Some remarks on the stable matching problem. Dis-
crete Applied Mathematics, 11:223–232, 1985.

7. D. Gusfield and R. Irving. The Stable Marriage Problem. The MIT Press, 1989.
8. C.-C. Huang. Cheating to get better roomates in a random stable matching.

Technical Report TR2006-582, Computer Science Department, Dartmouth Col-
lege, 2006.

9. C.-C. Huang. Men cheating in the Gale-Shapley stable matching algorithm. In
14th Annual European Symposium on Algorithms (ESA), 2006.

10. N. Immorlica and M. Mahdian. Marriage, honesty, and stability. In Proceedings
of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 53–62, 2005.

11. R. Irving. An efficient algorithm for the stable room-mates problem. Journal of
Algorithms, 6:577–595, 1985.

12. R. Irving and P. Leather. The complexity of counting stable marriages. SIAM
Journal on Computing, 15:655–667, 1986.

13. D. Knuth. Mariages stables et leurs relations avec d’autre problèmes combinatoires.
Les Presses de l’université de Montréal, 1976.

14. A. Roth and M. Sotomayor. Two-sided matching: A study in game-theorectic mod-
eling and analysis. Cambridge University Press, 1990.

15. J. Sethuraman. Private communication, 2006.
16. C.-P. Teo, J. Sethuraman, and W.-P. Tan. Gale-Shapley stable marriage problem

revisited: Strategic issues and applications. Management Science, 47:1252–1267,
2001.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Deterministic Algorithm for Summarizing
Asynchronous Streams over a Sliding Window

Costas Busch1 and Srikanta Tirthapura2

1 Department of Computer Science
Rensselaer Polytechnic Institute, Troy, NY 12180, USA

buschc@cs.rpi.edu
2 Department of Electrical and Computer Engineering

Iowa State University, Ames, IA 50010, USA
snt@iastate.edu

Abstract. We consider the problem of maintaining aggregates over re-
cent elements of a massive data stream. Motivated by applications in-
volving network data, we consider asynchronous data streams, where the
observed order of data may be different from the order in which the data
was generated. The set of recent elements is modeled as a sliding times-
tamp window of the stream, whose elements are changing continuously
with time. We present the first deterministic algorithms for maintaining
a small space summary of elements in a sliding timestamp window of an
asynchronous data stream. The summary can return approximate an-
swers for the following fundamental aggregates: basic count, the number
of elements within the sliding window, and sum, the sum of all element
values within the sliding window. For basic counting, the space taken by
our summary is O(log W · log B · (log W + log B)/ε) bits, where B is an
upper bound on the value of the basic count, W is an upper bound on
the width of the timestamp window, and ε is the desired relative error.
Our algorithms are based on a novel data structure called splittable his-
togram. Prior to this work, randomized algorithms were known for this
problem, which provide weaker guarantees than those provided by our
deterministic algorithms.

1 Introduction

Many massive data sets naturally occur as streams; elements of a stream are
visible to the processor in a sequence, one after another, and random access is
impossible. Often, streams are too large to be stored in memory, and have to
be processed in a single pass using extremely limited workspace, typically much
smaller than the size of the data. Examples include IP packet streams observed
by internet routers, a stream of stock quotes observed by an electronic stock
exchange, and a sequence of sensor observations observed by an aggregator. In
spite of the volume of the data and a highly constrained model of computation,
in all the above applications it is important to maintain reasonably accurate
estimates of aggregates and statistics on the data.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 465–476, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

466 C. Busch and S. Tirthapura

In many applications, only the most recent elements of a stream are impor-
tant. For example, in a stream of temperature readings obtained from a sensor
network, it may be necessary to maintain the moving average of the tempera-
ture over the last 1 hour. In network monitoring, it is useful to track aggregates
such as the volume of traffic originating from a particular subnetwork over a
recent window of time. Motivated by such applications, there has been extensive
work [1,6,7,2,5,9] on designing algorithms to compute aggregates over a sliding
window of the most recent elements of a data stream.

Most previous work on computing aggregates over a stream has focused on a
synchronous data stream where it is assumed that the order of arrival of elements
in the data aggregator is the same as the time order of their generation. However,
in many applications, especially those involving network data, this may not be
the case. Data streams may be asynchronous, and the order of arrival of elements
may not be the same as their order of generation. For example, nodes in a sensor
network generate observations that are aggregated at the sink node. When data
is being transmitted to the sink, different observations may experience different
delays in reaching the sink due to the inherent asynchrony in the network. Thus,
the received order of observations at the sink may be different from the time
order in which data was generated. If each data item had a timestamp that was
tagged at the time of generation, the sink may observe a data stream whose
elements are not arriving in increasing order of timestamps. Asynchronous data
streams are inevitable anytime two streams of observations, say A and B, fuse
with each other and data processing has to be done on the stream formed by the
interleaving of A and B. Even if individual streams A or B are not inherently
asynchronous, i.e. elements within A or within B arrive in increasing order of
timestamps, when the streams are fused, the stream could become asynchronous.
For example, if the network delay in receiving stream B is greater than the
delay in receiving elements in stream A, then the aggregator may consistently
observe elements with earlier timestamps from B after elements with more recent
timestamps from A.

We consider the problem of maintaining aggregates over recent elements of an
asynchronous data stream. An asynchronous stream is modeled as a sequence
of elements R = d1, d2, . . . , dn observed by an aggregator node, where d1 is the
element that was received the earliest and dn is the element that was received
most recently. Each element is a tuple di = (vi, ti) where vi is the value of the
observation, and ti is a timestamp, tagged at the time the value was generated.
Let c denote the current time at the aggregator. We are interested in all elements
that have a timestamp within w of the current time, i.e. all elements in the set
Rw = {d = (v, t) ∈ R |t ∈ [c − w, c]}. Since this window of allowed timestamps
[c − w, c] is constantly changing with the current time c, we call it a sliding
timestamp window. When the context is clear, we sometimes use the term sliding
timestamp window to refer to the set Rw.

Definition 1. For 0 < ε < 1, an ε-approximation to a number X is a number
Y such that |X − Y | ≤ εX.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Deterministic Algorithm for Summarizing Asynchronous Streams 467

Contributions. We present the first deterministic algorithms for summarizing
asynchronous data streams over a sliding window. We first consider a funda-
mental aggregate called the basic count, which is simply the number of ele-
ments within the sliding window. We present a data structure that can summa-
rize an asynchronous stream in a small space and is able to provide a prov-
ably accurate estimate of the basic count. More precisely, let W denote an
upper bound on the window size and B denote an upper bound on the basic
count. For any ε ∈ (0, 1), we present a summary of the stream that uses space
O(log W · log B · (log W + log B)/ε) bits. For any window size w ≤ W presented
at the time of query, the summary can return an ε-approximation to the num-
ber of elements whose timestamps are in the range [c − w, c] and arrive in the
aggregator no later than c, where c denotes the current time. The time taken to
process a new stream element is O(log W · log B) and the time taken to answer
a query for basic count is O(log B + log W

ε).
We next consider a generalization of basic counting, the sum problem. In

a stream whose observations {vi} are positive integer values, the sum prob-
lem is to maintain the sum of all observations within the sliding window,∑

{(v,t)∈R |t∈[c−w,c]} v. Our summary for the sum provides similar guarantees
as for basic counting. For any ε ∈ (0, 1) the summary for the sum uses space
O(log W · log B · (log W + log B)/ε) bits, where W is an upper bound on the
window size, and B is an upper bound on the value of the sum. For any win-
dow size w ≤ W , the summary can return an ε-approximation to the sum of all
element values within the sliding window [c − w, c]. The time taken to process
a new stream element is O(log W · log B) and the time taken to answer a query
for the sum is O(log B + log W

ε).
It is easy to verify that even on a synchronous data stream, a stream sum-

mary that can return the exact value of the basic count within the sliding window
must use Ω(W) space in the worst case. The reason is that using such a summary
one can reconstruct the number of elements arriving at each instant within the
sliding window. Hence, to achieve space efficiency it is necessary to introduce
approximations. Datar et. al. [5] show lower bounds for the space complexity of
approximate basic counting on a synchronous stream. They show that if a sum-
mary has to return an ε-approximation for the basic count on distinct timestamp
elements, then it should use space at least Ω(log2 W/ε). Since the synchronous
stream is a special case of an asynchronous stream, the above lower bound of
Ω(log2 W/ε) applies to approximate basic counting over asynchronous streams
too. To compare our results for basic counting with this lower bound, let us con-
sider the case when the timestamps of the elements are unique. In such a case,
log B = O(log W), since the value of the basic count cannot exceed W , and thus
the space required by our summary is O(log3 W/ε).

Techniques. Our algorithm for basic counting is based on a novel data structure
that we call a splittable histogram. The data structure consists of a small number
of histograms that summarize the elements within the sliding window at various
granularities. Within each histogram, the elements in the sliding window are
grouped into buckets, that are each responsible for a certain range of timestamps.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

468 C. Busch and S. Tirthapura

Arriving elements are placed in appropriate buckets within this histogram. When
a bucket becomes “heavy”, i.e. gets too many elements, it is split in half to
produce two buckets of smaller sizes, each responsible for a smaller range of
timestamps. Buckets may be recursively split if the again become too heavy
due to future insertions. A key technical ingredient is the analysis of the error
resulting from this recursive splitting of buckets. In contrast, earlier uses of
histograms in processing data streams over a sliding window, for example, Datar
et al. [5] and Arasu and Manku [1] have all been based on merging smaller
histogram buckets into larger ones, rather than splitting them as we do here.

Comparison to Prior Work. Prior to our work, deterministic algorithms were
known for summarizing synchronous streams over a sliding window [5,7], but
only randomized algorithms were known for summarizing asynchronous streams.
In a previous work, Tirthapura, Xu and Busch [12] presented randomized algo-
rithms for summarizing asynchronous streams over a sliding window. Their sum-
mary yields an (ε, δ)-approximation for the sum problem and for basic count-
ing, i.e. the answer returned is within a relative error ε of the actual answer
with probability at least 1 − δ; this is a weaker guarantee that is provided by
the deterministic algorithm. The space used by their algorithm for the sum is
O((1

ε2)(log 1
δ)(log W log B)), where W is a bound on the maximum window size,

B is an upper bound on the value of the sum, ε is the relative error, and δ is the
failure probability. When compared with our deterministic algorithm, which uses
space O(log W · log B · (log W + log B)/ε), the randomized algorithm arguably
takes more space, since (log W +log B) is typically smaller than (1

ε)(log 1
δ). Thus,

the deterministic algorithm that we present here not only gives a stronger guar-
antee than the randomized one but also (arguably) uses lesser space. Neverthe-
less, the randomized algorithm in [12] has the advantage of being more flexible
and it can be used for other aggregates, including the median and quantiles.

Related Work. With the exception of [12], earlier work on summarizing data
streams over a sliding window have all considered the case of synchronous
streams, where the stream elements appear in increasing order of timestamps.
Datar et al. [5] were the first to consider basic counting over a sliding window un-
der synchronous arrivals. They present a deterministic algorithm for summariz-
ing synchronous streams which is based on a data structure called the exponential
histogram. This summary can give an ε-approximate answer for basic counting,
sum and other aggregates. For a sliding window size of maximum size W , and an
ε relative error, the space taken by the exponential histogram for basic counting
is O(1

ε log2 W), and the time taken to process each element is O(log W) worst
case, and O(1) amortized. Their summary for the sum of elements within the
sliding window has space complexity O(1

ε log W (log W +logm)), and worst case
time complexity of O(log W + log m) where m is an upper bound on the value
of an item. Gibbons and Tirthapura [7] gave an improved algorithm for basic
counting that uses the same space as in [5], but whose time per element is O(1)
worst case. Since then, there has been much work on summarizing synchronous
data streams to approximate various aggregates over a sliding window, including

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Deterministic Algorithm for Summarizing Asynchronous Streams 469

Arasu and Manku [1] on frequency counts and quantiles, Babcock et al. [2] on
variance and k-medians, Feigenbaum et al. [6] on the diameter of a set of points.
Much other recent work on data stream algorithms has been surveyed in [10].

2 Basic Counting

For basic counting, the values of the stream elements do not matter, so the stream
is essentially a sequence of timestamps R = t1, t2, . . . , tn. The timestamps may
not be distinct and do not necessarily arrive in an increasing order. Let c denote
the current time. The goal is to maintain a sketch of R which will provide an
answer for the following query: for a user-provided w ≤ W , which is given at
the time of the query, return the number of elements in the current timestamp
window [c − w, c].

2.1 Algorithm

We assume that timestamps are non-negative integers. The universe of possible
timestamps is divided into intervals I0, I1, . . . of length W each; I0 = [0, W −
1], I1 = [W, 2W − 1], . . . , Ik = [kW, (k + 1)W − 1], A separate data structure
Di is maintained for each interval Ii, and all timestamps belonging in Ii are
inserted into Di. If c is the current time, then any timestamp that is less than
c − W will never be useful for a query, whether current or future. Thus we only
need to maintain data structures Di for those Ii that intersect [c − W, c]. It is
easy to verify that there exists j ≥ 0 such that [c − W, c] ⊂ Ij ∪ Ij+1. Thus,
the only data structures that are needed at time c are Dj and Dj+1, and the
algorithm only needs to maintain two such data structures at any time. When
a query is asked for the basic count over a timestamp window of width w ≤ W ,
there are two possibilities:

(1)The window [c−w, c] is completely contained within Ij , i.e. [c−w, c] ⊆ Ij .
In this case Dj is queried for the number of elements in the range [c − w, c], and
this estimate is returned by the algorithm.

(2)The window [c − w, c] falls partially in Ij and in Ij+1. In such a case, the
algorithm consults Dj for the number of elements in the range [c−w, (j+1)W−1]
and consults Dj+1 for the number of timestamps in the range [(j + 1)W, c], and
returns the sum of the two estimates. If each estimate is within an ε relative
error of the correct value, their sum is also within an ε relative error of the total
number of elements in the sliding timestamp window.

In the remainder of this section, we discuss the algorithms for maintaining
and querying data structure D0. Other Dis can be maintained similarly. For
D0 we assume that all timestamps are in the range [0, W − 1]. Without loss of
generality, we assume W is a power of 2 (since W only needs to be an upper
bound on the window size, it is always acceptable to increase it without affecting
the correctness). Let B be an upper bound on the number of elements with
timestamps in I0 = [0, W − 1]. Let M = �log B	, and α =

⌈
(1 + log W) · 2+ε

ε

⌉

where ε is the desired relative error.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

470 C. Busch and S. Tirthapura

Intuition: Our algorithm is based on a novel data structure splittable his-
togram, which we introduce here. Data structure D0 consists of M + 1 his-
tograms S0, S1, . . . , SM . Each histogram Si consists of no more than α buckets.
Each bucket in Si is a tuple b = 〈w(b), l(b), r(b)〉 where: which is (1)[l(b), r(b)] ⊆
[0, W −1] is the range of all timestamps the bucket is responsible for and (2)w(b)
is the weight of the bucket which is an estimate of the number of elements with
timestamps in the range [l(b), r(b)].

The timestamp ranges of different buckets within Si are disjoint. For each
i = 0, . . . , M , we maintain the following invariant for Si: If Si has two or more
buckets, then the weight of every bucket in Si is in the range [2i, 2i+1 −1], except
for those buckets which are responsible for a single timestamp. Intuitively, if
i1 > i2, then histogram Si1 contains “coarser’ information about the distribution
of elements than does Si2 , since it uses buckets of a larger size. Modulo some
significant details, this setup is similar to the one used in Datar et. al. [5] and
Gibbons and Tirthapura [7] to process synchronous streams.

An arriving element with timestamp t is inserted into every Si, i = 0, . . . , M .
Within Si, the element is inserted into a bucket b which is responsible for the
timestamp of the element (t ∈ [l(b), r(b)]), and the weight w(b) of the bucket
is incremented. Since stream elements are arriving asynchronously, the bucket
into which the arriving element is inserted may not be the bucket responsible
for the most recent timestamps. This is a fundamental departure from the way
histograms were employed to process synchronous streams in previous work [5,7].
The algorithms in [5,7] rest on the fact that an arriving element is always inserted
into the most recent bucket. Thus, when the size of the most recent bucket
exceeds 2i, the most recent bucket is “closed” and a new bucket is created to
hold future elements.

In our case, since elements arriving in the future may fall into a bucket which
is not the most recent bucket, we are unable to “close” a bucket. Thus, due to
arrival of elements in an arbitrary order, the weight of a bucket may increase
and may reach 2i+1, causing it to become too heavy. A heavy bucket of the
form 〈2i+1, l, r〉 is “split” into two lighter buckets 〈2i, l, (l + r + 1)/2 − 1〉 and
〈2i+1, (l + r + 1)/2, r〉, each of which has half the weight of the original bucket,
and is responsible for half the timestamp range of the original bucket.

Clearly, this splitting is inaccurate, since in the earlier grouping of all 2i+1

elements into a single bucket, the information about the timestamps of the in-
dividual elements has already been lost, and assigning half the elements of the
bucket into half the timestamp range may be incorrect. The key intuition here
is that the error due to this split is controlled, and is no more than 2i at each
bucket resulting from the split. Any future insertions of elements in the times-
tamp range [l, r] are considered more carefully, since they are being inserted
into buckets whose timestamp ranges are smaller. The buckets resulting from
the split may further increase in weight due to future insertions, and may split
recursively. The error due to splitting may accumulate, but only to a limited
extent, as we prove. A bucket resulting from log W recursive splits is respon-
sible for only a single timestamp, since the range of timestamps for a bucket

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Deterministic Algorithm for Summarizing Asynchronous Streams 471

decreases by a factor of 2 during every split, and the initial bucket is responsible
for a timestamp range of length W . A bucket that is responsible for a single
timestamp is treated as a special case, and is not split further, even if its weight
increases beyond 2i+1.

Due to the splits, the number of buckets within Si may increase beyond α,
in which case we only maintain the α buckets that are responsible for the most
recent timestamps. Given a query for the basic count in window [c − w, c], the
different Sis are examined in increasing order of i. For smaller values of i, Si

may have already discarded some buckets that are responsible for timestamps
in [c − w, c]. But, there will always be a level � ≤ M that will have all buckets
intersecting the range [c − w, c] (this is formally proved in Lemma 2). The algo-
rithm selects the earliest such level to answer the basic counting query, and we
show that the resulting relative error is within ε.

The algorithm for basic counting is given below. Algorithm 1 describes the
initialization of the data structure, Algorithm 2 describes the steps taken to pro-
cess a new element with a timestamp t, and Algorithm 3 describes the procedure
for answering a query for basic count.

Algorithm 1. Basic Counting: Initialization
α ←

⌈
(1 + log W) · 2+ε

ε

⌉
, where ε is the desired relative error;

S0 ← φ; T0 ← −1;

for i = 1, . . . , M do
Si is a set with a single element 〈0, 0, W − 1〉;
Ti ← −1;

end

2.2 Proof of Correctness

Let c denote the current time. We consider the contents of sets Si and the values
of Ti at time c. For any time t, 0 ≤ t ≤ c, let st denote the number of elements
with timestamps in the range [t, W − 1] which arrive until time c. For level i,
0 ≤ i ≤ M , ei

t is defined as follows.

Definition 2.
ei

t =
∑

{b∈Si|l(b)≥t}
w(b)

Lemma 1. For any level i ∈ [0, M], for any t such that Ti < t ≤ c, |st − ei
t| ≤

2i · (1 + log W)

Proof. For level i = 0 we have st = e0
t , since each element x with timestamp

t′, where t ≤ t′ ≤ W − 1, is counted in the bucket b = 〈w(b), t′, t′〉 which is a
member of S0 at time c. Thus, |st − e0

t | = 0.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

472 C. Busch and S. Tirthapura

Algorithm 2. Basic Counting: When an element with timestamp t ar-
rives

// level 0
if there is bucket 〈w(b), t, t〉 ∈ S0 then

Increment w(b);
else

Insert bucket 〈1, t, t〉 into S0;
end

// level i, i > 0
for i = 1, . . . , M do

if there is bucket b = 〈w(b), l(b), r(b)〉 ∈ Si with t ∈ [l(b), r(b)] then
Increment w(b);
if w(b) = 2i+1 and l(b) �= r(b) then

// bucket too heavy, split
// note that a bucket is not split
// if it is responsible for only a single time stamp

New bucket b1 = 〈2i, l(b), l(b)+r(b)+1
2 − 1〉;

New bucket b2 = 〈2i, l(b)+r(b)+1
2 , r(b)〉;

Delete b from Si;
Insert b1 and b2 into Si;

end
end

end

// handle overflow
for i = 0, . . . , M do

if |Si| > α then
// overflow
Discard bucket b∗ ∈ Si such that r(b∗) = minb∈Si r(b);
Ti ← r(b∗);

end
end

Algorithm 3. Basic Counting: Query(w)
Input: w, the width of the query window, where w ≤ W
Output: An estimate of the number of elements with timestamps in [c − w, c]

where c is the current time
Let � ∈ [0, . . . , M] be the smallest integer such that T� < c − w;

return
∑

{b∈S�|l(b)≥c−w} w(b);

Consider now some level i > 0. We can construct a binary tree A whose nodes
are all the buckets that appeared in Si up to current time c. Let b0 = 〈0, 0, W −1〉
be the initial bucket which is inserted into Si during initialization (Algorithm
1). The root of A is b0. For any bucket b ∈ A, if b is split into two buckets bl

and br, then bl and br will appear as the respective left and right children of b
in A. Note that in A a node is either a leaf or has exactly two children. Tree A

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Deterministic Algorithm for Summarizing Asynchronous Streams 473

has depth at most log W (the root is at depth 0), since every time that a bucket
splits the time period divides in half, and the smallest time period is a discrete
time step. For any node b ∈ A let A(b) denote the subtree with root b; we will
also refer to this as the subtree of b.

Consider now the tree A at time c. The buckets in Si appear as the |Si|
rightmost leaves of A. Let S′

i denote the set of buckets in Si with l(b) ≥ t.
clearly, ei

t =
∑

b∈S′
i
w(b). The buckets in S′

i are the |S′
i| rightmost leaves of A.

Suppose that S′
i �= ∅ (the case S′

i = ∅ is discussed below). Let b′ be the leftmost
leaf in A among the buckets in S′

i. Let p denote the path in A from the root to
b′. For the number of nodes |p| of p it holds |p| ≤ 1+ log W . Let H1 (H2) be the
set that consists of the right (left) children of the nodes in p, such that these
children are not members of the path p. Note that b′ /∈ H1 ∪ H2. The union of
b′ and the leaves in the subtrees of H1 (∪b∈H2A(b)) constitute the nodes in S′

i.
Further, each bucket b /∈ S′

i is in a leaf in a subtree of H2.
Consider some element x with timestamp t′. Initially, when x arrives it is

initially assigned to the bucket b which t′ belongs to. If b splits to two (children)
buckets b1 and b2, then we can assume that x is assigned arbitrarily to one of
the two new buckets arbitrarily. Even through x’s timestamp may belong to b1,
x may be assigned to b2, and vice-versa. If again the new bucket splits, x is
assigned to one of its children, and so on. Note that x is always assigned to a
leaf of A.

At time c, we can write

ei
t = st + |X1| − |X2 ∪ X3|, (1)

such that: X1 is the set of elements with timestamps in [0, t−1] which are assigned
to buckets in S′

i; X2 is the set of elements with timestamps in [l(b′), W −1] which
are assigned to buckets outside of S′

i; and, for t < l(b′), X3 is the set of elements
with timestamps in [t, l(b′)−1] which are assigned to buckets outside of S′

i, while
for t = l(b′), X3 = ∅. Note that the sets X1, X2, X3 are disjoint.

First, we bound |X1|. Consider some element x ∈ X1 with timestamp in
[0, t − 1] which at time c appears assigned to a leaf bucket bl ∈ S′

i. Since bl ∈ S′
i,

t cannot be a member of the time range of bl, that is, t /∈ [l(bl), r(bl)]. Thus, x
could not have been initially assigned to bl. Suppose that bl �= b′. Then, there is
a node b̂ ∈ H1 such that bl is the leaf of the subtree A(̂b). None of the nodes in
A(̂b) contain t in their time range, since all the leaves of A(̂b) are members of S′

i.
Therefore, x could not have been initially assigned to A(̂b). Thus, x is initially
assigned to a node bp ∈ p′ = p − {b′}, since x could not have been assigned
to any node in the subtrees of H2 which would certainly bring x outside of S′

i.
Similarly, if bl �= b′, x is initially assigned to a node bp ∈ p′. Since at most 2i+1

elements are initially assigned to the root, and at most 2i elements are initially
assigned to each of the subsequent nodes of p′, we get:

|X1| ≤ 2i · (|p′| − 1) + 2i+1 = 2i · |p| ≤ 2i · (1 + log W). (2)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

474 C. Busch and S. Tirthapura

With a similar analysis (the details are omitted due to space constraints) in
can be shown that:

|X2 ∪ X3| ≤ 2i · (1 + log W). (3)

Combining Equations 1, 2, and 3 we can bound st − ei
t:

−2i · (1 + log W) ≤ −|X1| ≤ st − ei
t ≤ |X2 ∪ X3| ≤ 2i · (1 + log W).

Therefore, |st − ei
t| ≤ 2i · (1 + log W). In case S′

i = ∅, ei
t = st − |X3| = 0, and the

same bound follows immediately. ��
Lemma 2. When asked for an estimate of the number of timestamps in [c−w, c]
(1)There exists a level i ∈ [0, M] such that Ti < c − w, and
(2)Algorithm 3 returns e�

c−w where � ∈ [0, M] is the smallest level such that
T� < c − w.

The proof of Lemma 2 is omitted due to space constraints, and can be found in
the full version [3]. Let � denote the level used by Algorithm 3 to answer a query
for the number of timestamps in [c − w, c]. From Lemma 2 we know � always
exists.

Lemma 3. If � > 0, then sc−w ≥ (1+log W)·2�

ε .

Proof. If � > 0, it must be true that T�−1 ≥ c − w, since otherwise level � − 1
would have been chosen. Let t = T�−1 + 1. Then, t > c − w, and thus sc−w ≥ st.
From Lemma 1, we know st ≥ e�−1

t − (1 + log W) · 2�−1. Thus we have:

sc−w ≥ e�−1
t − (1 + log W) · 2�−1 (4)

We know that for each bucket b ∈ S�−1, l(b) ≥ t. Further we know that each
bucket in S�−1 has a weight of at least 2�−1 (only the initial bucket in S�−1

may have a smaller weight, but this bucket must have split, since otherwise T�−1

would still be −1). Since there are α buckets in S�−1, we have:

e�−1
t ≥ α2�−1 ≥ (1 + log W) · 2 + ε

ε
· 2�−1 (5)

The lemma follows from Equations 4 and 5. ��
Theorem 1. The answer returned by Algorithm 3 is within an ε relative error
of sc−w.

Proof. Let X denote the value returned by Algorithm 3. If � = 0, it can be
verified that Algorithm 3 returns exactly sc−w (proof omitted due to space con-
straints). If � > 0, from Lemmas 1 and 2, we have |X − sc−w| ≤ (1 + log W) · 2�.
Using Lemma 3, we get |X − sc−w| ≤ ε · sc−w as needed. ��
Theorem 2. The worst case space required by the data structure for basic count-
ing is O((log W · log B) · (log W + log B)/ε) where B is an upper bound on the
value of the basic count, W is an upper bound on the window size w, and ε is
the desired upper bound on the relative error. The worst case time taken by Al-
gorithm 2 to process a new element is O(log W · log B), and the worst case time
taken by Algorithm 3 to answer a query for basic counting is O(log B + log W

ε).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Deterministic Algorithm for Summarizing Asynchronous Streams 475

The proof is omitted due to space constraints, and can be found in the full
version [3].

3 Sum of Positive Integers

We now consider the maintenance of a sketch for the sum, which is a generaliza-
tion of basic counting. The stream is a sequence of tuples R = d1 = (v1, t1), d2 =
(v2, t2), . . . , dn = (vn, tn) where the vis are positive integers, corresponding to
the observations, and tis are the timestamps of the observations. Let c denote
the current time. The goal is to maintain a sketch of R which will provide an
answer for the following query. For a user provided w ≤ W that is given at the
time of the query, return the sum of the values of stream elements that are within
the current timestamp window [c−w, c]. Clearly, basic counting is a special case
where all vis are equal to 1.

An arriving element (v, t), is treated as v different elements each of value 1
and timestamp t, and these v elements are inserted into the data structure for
basic counting. Finally, when asked for an estimate for the sum, the algorithm
for handling a query in basic counting (Algorithm 3) is used. The correctness
of this algorithm for the sum follows from the correctness of the basic counting
algorithm (Theorem 1). The space complexity of this algorithm is the same as
the space complexity of basic counting, the only difference being that the number
of levels in the algorithm for the sum is M = �log B	, where B is an upper bound
on the value of the sum within the sliding window (in the case of basic counting,
B was an upper bound on the number of elements within the window).

If naively executed, the time complexity of the above procedure for processing
an element (v, t) could be large, since v could be large. The time complexity of
processing an element can be reduced by directly computing the final state of
the basic counting data structure after inserting all the v elements. The intu-
ition behind the faster processing is as follows. The element (v, t) is inserted
into each of the M + 1 levels. In each level i, i = 0, . . . , M , the v elements are
inserted into Si in batches of unit elements (1, t) taken from (v, t). A batch con-
tains enough elements to cause the current bucket containing timestamp t to
split. The next batch contains enough elements from v to cause the new bucket
containing timestamp t to split, too, and so on. The process repeats until a
bucket containing timestamp t cannot split further. This occurs when at most
O(max(v/2i, log W)) batches are processed (and a similar number of respective
new buckets is created), since at most O(2i) elements from v are processed at
each iteration in a batch, and a bucket can be recursively split at most log W
times until it is responsible for only one timestamp, at which point no further
splitting can occur (and any remaining elements are directly inserted into this
bucket). The complete algorithm for processing (v, t) and its analysis can be
found in the full version of the paper [3], where it is proved that upon receiving
element (v, t), the algorithm for the sum simulates the behavior of Algorithm 2
upon receiving v elements each with a timestamp of t.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

476 C. Busch and S. Tirthapura

Theorem 3. The worst case space required by the data structure for the sum is
O((log W · log B)(log W + log B)/ε) bits where B is an upper bound on the value
of the sum, W is an upper bound on the window size w, and ε is the desired
upper bound on the relative error. The worst case time taken by the algorithm
for the sum to process a new element is O(log W · log B), and the time taken to
answer a query for the sum is O(log B + (log W)/ε).

References

1. A. Arasu and G. Manku. Approximate counts and quantiles over sliding win-
dows. In Proc. ACM Symposium on Principles of Database Systems (PODS), pages
286–296, 2004.

2. B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan. Maintaining variance and
k-medians over data stream windows. In Proc. 22nd ACM Symp. on Principles of
Database Systems (PODS), pages 234–243, June 2003.

3. C. Busch and S. Tirthapura. A deterministic algorithm for summarizing asyn-
chronous streams over a sliding window. Technical report, Iowa State University,
2006. Available at http://archives.ece.iastate.edu/view/year/2006.html.

4. G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Space- and time-
efficient deterministic algorithms for biased quantiles over data streams. In Proc.
ACM Symposium on Principles of Database Systems, pages 263–272, 2006.

5. M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over
sliding windows. SIAM Journal on Computing, 31(6):1794–1813, 2002.

6. J. Feigenbaum, S. Kannan, and J. Zhang. Computing diameter in the streaming
and sliding-window models. Algorithmica, 41:25–41, 2005.

7. P. Gibbons and S. Tirthapura. Distributed streams algorithms for sliding windows.
Theory of Computing Systems, 37:457–478, 2004.

8. S. Guha, D. Gunopulos, and N. Koudas. Correlating synchronous and asynchronous
data streams. In Proc.9th ACM International Conference on Knowledge Discovery
and Data Mining (KDD), pages 529–534, 2003.

9. A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (recently)
frequent items in distributed data streams. In Proc. IEEE International Conference
on Data Engineering (ICDE), pages 767–778, 2005.

10. S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and
Trends in Theoretical Computer Science. Now Publishers, August 2005.

11. U. Srivastava and J. Widom. Flexible time management in data stream systems.
In Proc. 23rd ACM Symposium on Principles of Database Systems (PODS), pages
263–274, 2004.

12. S. Tirthapura, B. Xu, and C. Busch. Sketching asynchronous streams over a slid-
ing window. In Proc. 25th annual ACM symposium on Principles of distributed
computing (PODC), pages 82–91, 2006.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://archives.ece.iastate.edu/view/year/2006.html

Arithmetizing Classes Around NC1 and L

Nutan Limaye, Meena Mahajan, and B.V. Raghavendra Rao

The Institute of Mathematical Sciences, Chennai 600 113, India
{nutan,meena,bvrr}@imsc.res.in

Abstract. The parallel complexity class NC1 has many equivalent mod-
els such as bounded width branching programs. Caussinus et.al[10] con-
sidered arithmetizations of two of these classes, #NC1 and #BWBP. We
further this study to include arithmetization of other classes. In partic-
ular, we show that counting paths in branching programs over visibly
pushdown automata has the same power as #BWBP, while counting
proof-trees in logarithmic width formulae has the same power as #NC1.
We also consider polynomial-degree restrictions of SCi, denoted sSCi,
and show that the Boolean class sSC1 lies between NC1 and L, whereas
sSC0 equals NC1. On the other hand, #sSC0 contains #BWBP and is
contained in FL, and #sSC1 contains #NC1 and is in SC2. We also inves-
tigate some closure properties of the newly defined arithmetic classes.

1 Introduction

The parallel complexity class NC1, comprising of languages accepted by logarith-
mic depth, polynomial size, bounded fan in Boolean circuits, is of fundamental
interest in circuit complexity. NC1 is known to be contained within logarithmic
space L. The classes NC1 and L have many equivalent characterizations. Bounded
width branching programs BWBP, as well as bounded width circuits SC0, (both
of polynomial size), were shown by Barrington [6] to be equivalent to NC1, while
it it is folklore that poly size O(log n) width circuits SC1 equals L.

However, arithmetizations of these classes are not necessarily equivalent. In
[10], Caussinus et al proposed three arithmetizations of NC1: (1) counting proof-
trees in an NC1 circuit, (2) computation by a poly size log depth circuit over +
and ×, and (3) counting paths in a nondeterministic bounded width branching
program. It is straightforward to see that the first two definitions of function
classes, over N, coincide (see for instance [25,27]); and this class is denoted
#NC1. It is shown in [10] that the third class, #BWBP, is contained in #NC1,
though the converse inclusion is still open. (However, the arithmetizations over
Z are shown to coincide.) Also, using the programs over monoids framework,
[10] observe that #BWBP equals #BP-NFA, the class of functions that count
the number of accepting paths in a nondeterministic finite-state automaton NFA
when run on the output of a deterministic branching program. It is known (see
e.g. [3,27]) that #NC1 has Boolean poly size circuits of depth O(log n log∗ n) and
is thus very close to NC1. It follows from more recent results [11] that #NC1 is
contained in FL; see e.g. [3].

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 477–488, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

478 N. Limaye, M. Mahajan, and B.V.R. Rao

We continue this study here (and also extend it to L) by arithmetizing other
Boolean classes also known to be equivalent to NC1. The first extension we con-
sider is from NFA to VPA. Visibly pushdown automata (VPA) are ε-moves-free
pushdown automata whose stack behaviour (push/pop/no change) is dictated
solely by the input letter under consideration. They are also referred to as input-
driven pda, and have been studied in [18,8,14,5] etc. In [14], languages accepted
by such pda are shown to be in NC1, while in [5] it is shown that such pda can be
determinized. Thus they lie properly between regular languages and determinis-
tic context-free languages, and membership is complete for NC1. The arithmetic
version we consider is #BP-VPA, counting the number of accepting paths in a
VPA, when run on the output of a deterministic branching program. Clearly,
this contains #BP-NFA; we show that in fact the two are equal. Thus adding a
stack to an NFA but restricting its usage to a visible nature adds no power to
the closure of the class under projections.

Next we consider arithmetic formulae. It is known that formulae F (circuits
with fanout 1 for each gate) and even log width formulae LWF have the same
power as NC1 [16]. Applying either of definition (1) or (2) above to formulae give
the function classes #F and #LWF. It is known [9] that #LWF ⊆ #F = #NC1.
We show that this is in fact an equality. Thus even in the arithmetic setting,
LWF have the full power of NC1.

Next we consider bounded width circuits. SC is the class of polynomial size
poly log width (width O(logi n) for SCi) circuits, and corresponds in the uni-
form setting to a simultaneous time-space bound. (SC stands for Steve’s Classes,
named after Stephen Cook who proved the first non-trivial result about polyno-
mial time log-squared space PLoSS, i.e. SC2, in [12]. See for instance [17]). It is
known that SC0 equals NC1 [6]. However, this equality provably does not carry
over to the arithmetic setting, since it is easy to see that even SC0 over N can
compute values that have exponentially long representation. So we consider the
restriction to polynomial degree, denoted by sSC0, before arithmetizing to get
#sSC0. We note that in the Boolean setting, this is not a restriction at all; sSC0

equals NC1 as well. However, the arithmetization does not appear to collapse to
either of the existing classes. We show that #sSC0 lies between #BWBP and FL.

The polynomial-degree restriction of SC0 immediately suggests a similar re-
striction on all the SCi classes. We thus explore the power of sSCi and sSC, the
polynomial-degree restrictions of SCi and SC respectively, and their correspond-
ing arithmetic versions #sSCi and #sSC. This restriction automatically places
the corresponding classes in LogCFL and #LogCFL, since LogCFL is known to
equal languages accepted by polynomial size polynomial degree circuits [23,21],
and since the arithmetic analogue also holds [25,19]. Thus we have a hierarchy of
circuit classes between NC1 and LogCFL. Other hierarchies sitting in this region
are poly size branching programs of poly log width, limited by NL in LogCFL,
and poly size log depth circuits with AND fan in 2 and OR fan in poly log, lim-
ited by SAC1 which equals LogCFL [24]; see [26]. In both of these hierarchies, [26]
establishes closure under complementation. For sSCi, we have a weaker result:
co-sSCi is contained in sSC2i.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Arithmetizing Classes Around NC1 and L 479

BWBP = BP-NFA
= BP-VPA = NC1

= LWF = sSC0 =
SC0

����������

L = SC1 ��

��������
�����

�
NL �� LogCFL

sSC1

�������������
LogDCFL

��������������
�� SC2

FNC1 �� #BWBP ��

��

���
��

��
��

��
��

��
��

��
#NC1

�� �����������
#L

		������������ NC2

#BP-NFA

��

#LWF

����������� FL ��

��											
FLogDCFL ��

		����������� #LogCFL

#BP-VPA

#sSC0

��

�� #sSC1 ��

���������������������
SC2

Fig. 1. Boolean classes and their arithmetizations

It is not clear what power the Boolean class sSC1 possesses: is it strong enough
to equal SC1, or is the polynomial degree restriction crippling enough to bring it
down to SC0=NC1? We show that all of #NC1 is captured by #sSC1, which is
contained in Boolean SC2. The maximal fragments of NC hitherto known to be in
SC were LogDCFL [22,13,15] and randomized log space RL [20]; we do not know
how this fragment compares with them. In fact, turning the question around,
studying sSC is an attempt to understand fragments of NC that lie within SC.

Our main results can be summarized in Figure 1. It shows that correspond-
ing to Boolean NC1, there are three naturally defined arithmetizations, while
the correct arithmetization of L is still not clear. We also show that the three
arithmetizations of NC1 coincide under modulo tests, for any fixed modulus.

A key to understanding function classes better is to investigate their closure
properties. We present some such results concerning #sSCi.

This paper is organized as follows. Definitions and notation are presented
in Section 2. Sections 3 and 4 present the bounds on #BP-VPA and #LWF,
respectively. Section 5 introduces and presents bounds involving sSCi and #sSCi.
Some closure properties of these classes are presented in Section 6, where also the
collapse of the modulus test classes NC1= ⊕NC1 = ⊕BWBP = ⊕sSC0 follows.

2 Preliminaries

By NC1 we denote the class of languages which can be accepted by a family
{Cn}n≥0 of polynomial size O(log n) depth bounded circuits, with each gate
having a constant fan-in. A branching program is a layered acyclic graph G with

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

480 N. Limaye, M. Mahajan, and B.V.R. Rao

edges labeled by constants or literals, and with two special vertices s and t. It
accepts an input x if it has an s � t path where each edge is labeled by a
true literal or the constant 1. BWBP denotes the class of languages that can
be accepted by polynomial size bounded width branching programs. BWC is the
class of languages which can be accepted by a family {Cn}n≥0 of constant width,
polynomial size circuits, where width of a circuit is the maximum number of gates
at any level of the circuit. A branching program can be equivalently viewed as
a skew circuit i.e, a circuit in which each AND gate has at most one input wire
that is not a circuit input; hence BWBP is in BWC. SCi is the class of languages
which can be accepted by a family {Cn}n≥0 of polynomial size circuits of width
O((log n)i). Thus by definition, BWC = SC0. For SCi we assume, without loss
of generality, that every gate has fan-in O(1) (fan-in f = O((log n)i) is replaced
by a width O(1), depth O(f) circuit). LWF is the class of languages accepted by
a family {Fn}n≥0 of polynomial size formulae with width bounded by O(log n).
Without the width bound, denote the family of poly size formula by F.

For defining branching programs over automata, we follow notation from [10].
A nondeterministic automaton is a tuple of the form (Q, Δ, q0, δ, F), where Q is
the finite set of states, Δ is the input alphabet, q0 ∈ Q is the initial state, F ⊆ Q
is the set of accepting states and δ : Q × Σ → P(Q).

A projection P = (Σ, Δ, S, B, E) over Δ is a family P = (Pn)n∈N of n-
projections over Δ, where an n-projection over Δ is a finite sequence of pairs
(i, f) with 1 ≤ i ≤ n and f : Σ → Δ. The length of the sequence is denoted by
Sn, its j-th instruction by (Bn(j), En(j)) where S : N → N, B : N × N → N,
E : N × N → ΔΣ . B pulls out a letter xB|x|(j) ∈ Σ from the input x and E
projects it to a letter in the alphabet Δ. Thus the string x ∈ Σ∗ is projected to
a string P (x) ∈ Δ∗. FDLOGTIME uniformity for the projections is assumed.

A branching program over an automaton N is a projection P = (Σ, Δ, S, B, E).
It accepts x ∈ Σ∗ if N accepts P (x). BP-NFA is the class of languages recognized
by uniform poly length branching programs over a nondeterministic automaton1.

A visibly pushdown automaton (VPA) is a pda M = (Q, Qin, Δ, Γ, δ, QF) work-
ing over an input alphabet Δ that is partitioned as (Δc, Δr, Δint). Q is a finite
set of states, Qin, QF ⊆ Q are the sets of initial and final states respectively, Γ
is the stack alphabet containing a special bottom-of-stack marker ⊥, and accep-
tance is by final state. The transition function δ is constrained so that: If a ∈ Δc,
then δ(p, a) = (q, γ) (push move, independent of top-of-stack). If a ∈ Δr, then
δ(p, a, γ) = q (pop move), and δ(p, a, ⊥) = q (pop on empty stack). If a ∈ Δint,
then δ(p, a) = q (internal move, independent of top-of-stack). The input letter
completely dictates the stack movement. Also the pda is assumed to be ε-move-
free, while δ is allowed to be non-deterministic.

BP-VPA is the class of all languages recognized by uniform polynomial length
branching programs over a VPA.

In [6], Barrington showed that NC1= BWBP= BWC. As observed in [10],
BWBP coincides with BP-NFA; thus NC1= BP-NFA. Istrail and Zivkovic showed

1 In [10], this class is called BP. We introduce this new notation to better motivate the
next definition, of BP-VPA.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Arithmetizing Classes Around NC1 and L 481

in [16] that NC1= LWF. In [14], Dymond showed that acceptance by VPAs can
be checked in NC1, and hence BP-VPA= NC1. Thus

Lemma 1 ([6,10,16,14]). NC1= BWBP= SC0= LWF= BP-NFA= BP-VPA

The corresponding arithmetic classes are defined as follows:

#BWBP = {f : {0, 1}n → N | f = #s � t paths in a BWBP}

#NC1 =

⎧
⎨

⎩
f : {0, 1}n → N |

f can be computed by a poly size
O(log n) depth bounded fan in circuit
over {+, ×, 1, 0, xi, xi}.

⎫
⎬

⎭

#BP-NFA =

{

f : {0, 1}n → N |
f(x) = #accept(Pn, x) for some uni-
form poly length BP P over an NFA
N

}

Here, #accept(P, x) denotes the number of distinct accepting paths of N on the
projection of x, P (x).

For each of these counting classes, the corresponding Gap classes are defined
by allowing the constant −1 in the circuit.

Though the above classes are all equal in the Boolean setting, in the arithmetic
setting the equivalences are not established, and strict containments are also not
known. The best known relationships among these classes are as below.

Lemma 2 ([10]).
FNC1 ⊆ #BWBP = #BP-NFA ⊆ #NC1 ⊆ GapBWBP = GapNC1 ⊆ L.

3 Counting Accepting Runs in Visibly Pushdown
Automata

We introduce a natural arithmetization of BP-VPA, by counting the number of
accepting paths in a VPA rather than in an NFA. Given a uniform poly length
branching program P over a VPA M , #accept(P, x) denotes the number of dis-
tinct accepting paths of M on the projection of x.

Definition 1. #BP-VPA =

{

f : {0, 1}n → N |
f(x) = #accept(Pn, x) for
some uniform poly length BP
P over a VPA M

}

The main result of this section is that adding a visible pushdown to an NFA adds
no power to the corresponding counting class. That is,

Theorem 1. #BP-NFA= #BP-VPA

Proof. #BP-NFA⊆ #BP-VPA is obvious from the definition. To show #BP-VPA⊆
#BP-NFA, we place #BP-VPA in #BWBP below, and then use Lemma 1.

Let f ∈ #BP-VPA. There exists a uniform polynomial length branching pro-
gram P over a VPA M = (Q, Δ, Qin, Γ, δ, QF). Let input w be projected to
P (w) = x ∈ Δn, where Δ = (Δc, Δr, Δint), |x| = n. So f(w) = #accM (x).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

482 N. Limaye, M. Mahajan, and B.V.R. Rao

The strategy is as follows. We first construct an equivalent VPA M ′ that
never needs to perform a pop on an empty stack. A TC0 circuit transforms x to
a string y over a larger alphabet, such that #accM (x) = #accM ′(y). This latter
quantity, #accM ′ (y), is counted by paths in a BWBP G whose edges are labeled
by NC1 predicates involving M ′ and y. Thus each edge can be replaced by an
equivalent BWBP, and the whole graph is still a BWBP.

The VPA M ′ = (Q′, Δ′′, Q′
in, Γ ′, δ′, Q′

F) is essentially the same as M . It has
two new input symbols A, B, and a new stack symbol X . A is a push symbol on
which X is pushed, and B is a pop symbol on which X is expected and popped.
M ′ has a new state q′ that is the only initial state. M ′ expects an input from
A∗Δ∗B∗. On the prefix of A’s it pushes X ’s. When it sees the first letter from
Δ, it starts behaving like M . The only exception is when M performs a pop
move on ⊥, M ′ can perform the same move on ⊥ or on X . On the trailing suffix
of B’s it pops X ’s. It is straightforward to design δ′ from δ.

The TC0 circuit does the following. It counts the difference d between the
number of push and pop symbols in Anx. It then outputs y = AnxBd. By the
way M ′ is constructed, it should be clear that #accM (x) = #accM ′(y) and that
M ′, on y, never pops on an empty stack. In fact y is well-matched, i.e. for every
push there exists a corresponding pop and vice versa.

We now describe the layered directed acyclic graph G, with nodes s, t such
that #Gs � t = #accM ′(y). It will be clear that G can be constructed in NC1.

Let V = {(q, X, i) | q ∈ Q′ ∪ {g}, X ∈ Γ ′ ∪ {⊥}, (g /∈ Q′), 0 ≤ i ≤ (n + 1)}.
At layer 0 we need only the vertex labeled s = (q′, ⊥, 0). Layer i, for 1 ≤ i ≤ n,
contains vertices of the form (q, X, i) ∀q ∈ Q′ and ∀X ∈ Γ ′. At layer n + 1,
we keep only t = (g, ⊥, n + 1). This describes the vertex set of G. Note that
every layer has a constant number of vertices. The vertex labels are intended to
denote surface configurations of M ′, i.e. state, top-of-stack, tape head position.
For VPAs, the tape head position is also the time-stamp.

Now we describe the edge set of G. The edges should trace out computations
of M ′. Thus if (q, Z ′) ∈ δ′(p, yi) for yi ∈ Δ′

c, then we put an edge from (p, Z, i−1)
to (q, Z ′, i) for each Z. Also, if (q, Z) ∈ δ′(p, yi) for yi ∈ Δ′

int, then we put an edge
from (p, Z, i−1) to (q, Z, i) for each Z. The problematic case is when yi ∈ Δ′

r. If
q ∈ δ′(p, yi, Z), then we want to put an edge from (p, Z, i − 1) to (q, Z ′, i). But
we don’t know Z ′; it is the stack symbol that is uncovered when Z is popped.

In TC0, first find the matching symbol j, j < i, such that yj ∈ Δc and the
symbol Z pushed by M ′ while reading yj is popped while reading yi. Since y
is well-matched, this matching symbol is uniquely defined. Note that the stack
never dips below Z between yj+1...yi−1. M ′ can go from (p, Z, i − 1) to (q, Z ′, i)
and hence we should put this edge in G if and only if for some p′, p” ∈ Q′,

(a) (p′′, Z) ∈ δ′(p′, yj) (so there is an edge from (p′, Z ′, j − 1) to (p′′, Z, j)),
(b) M ′ can move from (p′′, Z) to (p, Z) on reading the string yj+1...yi−1 (and

without dipping below Z on the stack),
(c) q ∈ δ′(p, yi, Z), and
(d) M ′ can reach the configuration (p′, Z ′, j − 1) starting from s = (q′, ⊥, 0)

and reading the string y1...yj−1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Arithmetizing Classes Around NC1 and L 483

(a) and (c) are determined by a simple lookup of δ′. (b) and (d) are in NC1, and
hence in deterministic BWBP, since the following is established in [14].

Proposition 1 ([14]). Determining whether a pair of height-matched surface
configurations of a VPA is realizable (one is reachable from the other without
dipping below the given stack top) is in NC1.

(b) is already in the required form to use this result. To check (d), we need to pad
the string y1...yj−1 with appropriate number of extra copies of B to get a well-
matched string, and then check realizability. As argued above, this can be done
in TC0. Thus, the AND of the four conditions is recognised by a deterministic
BWBP. We insert this BWBP in G, identifying its start and sink vertices with
(p, Z, i − 1) and (q, Z ′, i).

Also put all the edges of the form 〈(p, ⊥, n),(g, ⊥, n + 1)〉 provided p ∈ F ′

This completely describes the graph G. Simple induction proves that the num-
ber of accepting paths in the VPA M equals #Gs � t. �

4 Counting Proof Trees in (Log Width) Formula

We show that the result of [16], log width formula capture NC1, holds in the
arithmetized setting too. This result is crucially used in showing Theorem 4.

Definition 2. #F =
{

f : {0, 1}n → N | f can be computed by a poly size
formula over {+, ×, 1, 0, xi, xi}.

}

#LWF =
{

f : {0, 1}n → N | f can be computed by a poly size O(log n)
width formula over {+, ×, 1, 0, xi, xi}.

}

Theorem 2. #LWF = #F = #NC1

Proof. Clearly, #LWF ⊆ #F. It follows from [9] (see also [3]) that #F is in #NC1.
To show that #NC1 is in #LWF, we observe that the construction of Lemma 2
in [16], establishing that NC1 ⊆ LWF, preserves proof-trees. �

5 Polynomial Degree Small-Width Circuits and Their
Arithmetization

We now consider arithmetization of SC. A straightforward arithmetization of any
Boolean circuit class over (∧, ∨, xi, xi, 0, 1) is to replace each ∨ gate by a + gate
and each ∧ gate by a × gate. In the case of SC0 (SCi in general), this enables
the circuit to compute infeasible values (i.e exponential sized values), which
makes the class uninteresting. Hence we propose bounded degree versions of
these classes and then arithmetize them. The degree of a circuit is the maximum
degree of any gate in it, where the degree of a leaf is 1, the degree of an ∨ or +
gate is the maximum of the degrees of its children, and the degree of a ∧ or ×
gate is the sum of the degrees of its children.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

484 N. Limaye, M. Mahajan, and B.V.R. Rao

Definition 3. sSCi is the class of languages accepted by Boolean circuits of
polynomial size, O(logi n) width and polynomial degree.

#sSCi is the class of functions computed by arithmetic circuits of polynomial
size, O(logi n) width and polynomial degree. Equivalently, it is the class of func-
tions counting the number of proof trees in an sSCi circuit.

sSC =
⋃

i≥0 sSCi #sSC =
⋃

i≥0 #sSCi

Note that SC circuits can have internal NOT gates as well; moving the negations
to the leaves only doubles the width. However, when we restrict degree as in sSC,
we explicitly disallow internal negations. The circuits have only AND and OR
gates, and constants and literals appear at leaves.

It is known that polynomial-size circuits of polynomial degree, irrespective of
width or depth, characterize LogCFL, which is equivalent to semi-unbounded log
depth circuits SAC1, and hence is contained in NC2 [23,21,24]. This equivalence
also holds in the arithmetic settings for # and for Gap, see [25,19,4]. Thus

Proposition 2. For all i ≥ 0,
(1) sSCi ⊆ LogCFL. (2) #sSCi ⊆ #LogCFL. (3) GapsSCi ⊆ GapLogCFL

A BP can be viewed as a skew circuit, and a skew circuit’s degree is bounded
by its size; so BWBP is contained in sSC0. But SC0 = BWBP = NC1. Thus

Proposition 3. sSC0 = SC0 = NC1.

If such an equality (sSCi = SCi) holds for any other level i ≥ 2, it would bring
a larger chunk of SC into the NC hierarchy.

We now show that the individual bits of each #sSCi function can be com-
puted in polynomial time using O(logi+1) space. However, the Boolean circuits
constructed may not have polynomial degree.

Theorem 3. For all i ≥ 0, #sSCi ⊆ GapsSCi ⊆ SCi+1

Proof. We show how to compute #sSCi in SCi+1. The result for Gap follows
since subtraction can be performed in SC0.

Let f ∈ #sSCi. Let d be the degree bound for f . Then the value of f can
be represented using d ∈ nO(1) bits. By the Chinese Remainder Theorem, f
can be computed exactly from its residues modulo the first O(dO(1)) primes,
each of which has O(log d) = O(log n) bits. These primes are small enough that
they can be found in log space. Further, due to [11], the computation of f from
its residues can also be performed in L= SC1; see also [2]. If the residues can
be computed in SCk, then the overall computation will also be in SCk because
we can think of composing the computations in a sequential machine with a
simultaneous time-space bound.

It thus remains to compute f mod p where p is a small prime. Consider a
bottom-up evaluation of the #sSCi circuit, where we keep track of the values of
all intermediate nodes modulo p. The space needed is log p times the width of
the circuit, that is, O(logi+1 n) space, while the time is clearly polynomial. �

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Arithmetizing Classes Around NC1 and L 485

In particular, bits of an #sSC0 function can be computed in SC1, which equals
L. On the other hand, similar to the discussion preceding Proposition 3, we know
that #BWBP is contained in #sSC0. Thus

Corollary 1. FNC1 ⊆ #BWBP ⊆ #sSC0 ⊆ FL.
GapNC1 = GapBWBP ⊆ GapsSC0 ⊆ FL.

We cannot establish any direct connection between #sSC0 and #NC1. Thus this
is potentially a third arithmetization of the Boolean class NC1, the other two
being #BWBP and #NC1.

We also do not know whether sSC1 properly restricts SC1=L. Even if it does,
it cannot fall below NC1, since NC1 = sSC0(Proposition 3). We note that this
holds in the arithmetic setting as well:

Theorem 4. #NC1 ⊆ #sSC1.

Proof. From Theorem 2, we know that #NC1 equals #LWF. But an LWF has log
width and has poly degree since it is a formula; hence #LWF is in #sSC1. �

Since sSC is sandwiched between NC1 and LogCFL, both of which are closed
under complementation, it is natural to ask whether the levels of sSC are closed
under complement. While we are unable to show this, we show that for each i,
co-sSCi is contained in sSC2i; thus sSC as a whole is closed under complement.

Theorem 5. For each i ≥ 1, co-sSCi is contained in sSC2i.

Proof. Our approach for complementing sSCi is similar to that of [7] for comple-
menting LogCFL. ([7] uses inductive counting on the circuit equivalent of LogCFL,
semi-unbounded log depth circuits.) However, one problem is that the construc-
tion of [7] uses NC1 circuits for threshold internally, and if we use these directly,
the degree will blow up. So for the thresholds, we use the construction from [26].
A careful analysis of the parameters then yields the result.

Let Cn be a boolean circuit of length l, width w = O(logi n) and degree p.
Without loss of generality, assume that Cn has only ∨ gates at odd levels and ∧
gates at even levels. Also assume that all gates have fan in 2 or less. If an input
literal is read by a gate at level k, the literal is counted as a gate at level k − 1.
We construct a boolean circuit C′

n, which computes C̄n. C′
n contains a copy of

Cn. Besides, for each level k of Cn, C′
n contains the gates cc(g|c) where g is a

gate at level k of Cn and 0 ≤ c ≤ w, and gates count(c, k) for 0 ≤ c ≤ w. These
represent the conditional complement of g assuming the count at the previous
level is c, and verifying that the count at level k is c, and are defined as follows:

cc(g|c) =

{
cc(a1|c) ∨ cc(a2|c), if g = a1 ∧ a2

Thc(b1, · · · , bj), if g = a1 ∨ a2

where b1, · · · , bj range over all gates at the previous level except a1 and a2.

count(c, k) =

⎧
⎪⎨

⎪⎩

Th1(c, k) ∧
∨w

d=0[count(d, k − 1) ∧ Th0(c, k, d)] if k > 0
1 if k = 0, c = # of inputs with value 1 at level 0
0 otherwise

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

486 N. Limaye, M. Mahajan, and B.V.R. Rao

Thc is the c-threshold value of its inputs , Th1(c, k) = Thc of all original gates
at current level, Th0(c, k, d) is Thk−c of all cc(g|d) at the current level. Finally,
the output gate of C′

n is comp(g) =
∨w

c=0 Count(c, l−1)∧cc(g|c), where g is the
output gate of Cn, at level l. Correctness follows from the analysis in [7].

A crucial observation, used also in [7], is that any root-to-leaf path goes
through at most two threshold blocks.

To achieve small width and small degree, we have to be careful about how
we implement the thresholds. Since the inputs to the threshold blocks are com-
puted in the circuit, we need monotone constructions. We do not know whether
monotone NC1 is in monotone sSC0. But for our purpose, the following is suffi-
cient: Lemma 4.3 of [26] says that any threshold on K bits can be computed by
a monotone branching program of width O(K) and size O(K2) (hence degree
O(K2)). The thresholds we use have K = O(w2). The threshold blocks can be
staggered so that the O(w2) extra width appears as an additive rather than
multiplicative factor. Hence the width of C′

n is O(w2).
Let q be the degree of a threshold block; q ∈ O(K2) ∈ O(w4). If the inputs to

a threshold block come from computations of degree p, then the overall degree
is pq. A cc(g|c) gate is a threshold block applied to gates of Cn at the previous
level, and these gates all have degree at most p. So the cc(g|c) gate has degree at
most pq. Also, the degree of a count(c, k) gate is bounded by the sum of (1) the
degree of a count(c, k − 1) gate, (2) the degree of a threshold block applied to
gates of Cn, and (3) the degree of a threshold block applied to cc(g|c) gates.
Hence it is bounded by pO(1)wO(1)l, where l is the depth of Cn. Thus, the entire
circuit has polynomial degree. �

6 Extensions and Closure Properties

In this section, we show that some closure properties that hold for #NC1 and
#BWBP also hold for #sSC0. (Construction details are omitted due to space
restrictions.) The simplest closures are under addition and multiplication, and
it is straightforward to see that #sSC0 is closed under these. The next are weak
sum and weak product: add (or multiply) the value of a two-argument function
over a polynomially large range of values for the second argument. (See [10,27]
for formal definitions.) A simple staggering of computations yields:

Lemma 3. For each i ≥ 0, #sSCi is closed under weak sum and weak product.

#NC1 and #BWBP are known to be closed under decrement f � 1 = max{f −
1, 0} and under division by a constant � f

m�. ([1] credits Barrington with this
observation for #NC1.) We show that these closures hold for #sSC0 as well.
The following property will be useful.

Proposition 4. For any f in #sSC0 or #NC1, and for any constant m, the
value f mod m is computable in FNC1.

Lemma 4. #sSC0 is closed under decrement and under division by a constant.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Arithmetizing Classes Around NC1 and L 487

Another consequence of Proposition 4 can be seen as follows. We have three
competing arithmetizations of the Boolean class NC1. The most natural one is
#NC1, defined by arithmetic circuits. It contains #BWBP, which is contained
in #sSC0, though we do not know the relationship between #NC1 and #sSC0.
Applying a “> 0?” test to any yields the same class, NC1. We show that applying
a “≡ 0 mod p?” test to any also yields the same language class, namely NC1.

Definition 4. For a function class #C, ModpC denotes the class of languages
L such that for some f ∈ #C, ∀x ∈ Σ∗ : x ∈ L ⇐⇒ f(x) ≡ 0 mod p.

Theorem 6. For any fixed p, ModpBWBP = ModpsSC0 = ModpNC1 = NC1.

Proof. From Proposition 4, for f ∈ {#sSC0, #BWBP, #NC1}, and a constant m,
the value [f(x) mod m] can be computed in FNC1. Hence the predicate [f(x) ≡
0 mod m] can be computed in NC1. �

Another natural way to produce boolean circuits from arithmetic circuits is by
allowing the circuit to perform test-for-zero operations. Such circuits, known as
Arithmetic-Boolean circuits, were introduced by von zur Gathen, and have been
studied in the literature; see e.g. [28,9,3]. We extend this by looking at bounded
width restrictions.

Definition 5. Let C be any of the arithmetic circuit classes studied above. Then
Arith-Bool C is defined to be the set of languages accepted by circuits from C
with the following additional gates, and with Boolean output. (Here y is either a
constant or a literal.)

test(f) =
{

0 if f = 0
1 otherwise select(f0, f1, y) =

{
f0 if y = 0
f1 if y = 1

Assigning deg(select(f0, f1, y)) = 1 + max{deg(f0), deg(f1)} and deg(test(f)) =
deg(f), we have the following,

Lemma 5. (1) Arith-Bool#NC1 =#NC1.[3] (2) Arith-Bool#BWBP=#BWBP.
(3) Arith-Bool#sSC0 = #sSC0

However, for the Gap classes, we do not have such a collapse. Analogous to the
definitions of SPP and SPL, define a class SNC1: it consists of those languages L
for which the characteristic function χL is in GapNC1. Then we have:

Lemma 6. Arith-BoolGapNC1 = GapNC1 if and only if SNC1 = C=NC1.

References

1. M. Agrawal, E. Allender, and S. Datta. On TC0, AC0, and arithmetic circuits.
Journal of Computer and System Sciences, 60(2):395–421, 2000.

2. E. Allender. The division breakthroughs. BEATCS: Bulletin of the European
Association for Theoretical Computer Science, 74, 2001.

3. E. Allender. Arithmetic circuits and counting complexity classes. In Complexity
of Computations and Proofs, Quaderni di Matematica Vol. 13, pages 33–72, 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

488 N. Limaye, M. Mahajan, and B.V.R. Rao

4. E. Allender, J. Jiao, M. Mahajan, and V. Vinay. Non-commutative arithmetic
circuits: depth reduction and size lower bounds. Theoretical Computer Science,
209:47–86, 1998.

5. R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC, pages 202–
211, 2004.

6. D. Barrington. Bounded-width polynomial-size branching programs recognize ex-
actly those languages in NC1. JCSS, 38(1):150–164, 1989.

7. A. Borodin, S. Cook, P. Dymond, W. Ruzzo, and M. Tompa. Two applications of
inductive counting for complementation problems. SIAM Journal of Computation,
18(3):559–578, 1989.

8. B. V. Braunmuhl and R. Verbeek. Input-driven languages are recognized in log n
space. In Proc. FCT, LNCS, pages 40–51, 1983.

9. S. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal parallel algorithm
for formula evaluation. SIAM J. Comput., 21(4):755–780, 1992.

10. H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC1

computation. JCSS, 57:200–212, 1998.
11. A. Chiu, G. Davida, and B. Litow. Division in logspace-uniform NC1. RAIRO

Theoretical Informatics and Applications, 35:259–276, 2001.
12. S. A. Cook. Deterministic CFL’s are accepted simultaneously in polynomial time

and log squared space. In STOC, pages 338–345, 1979.
13. P. Dymond and S. Cook. Complexity theory of parallel time and hardware. Infor-

mation and Computation, 80:205–226, 1989.
14. P. W. Dymond. Input-driven languages are in log n depth. In Information Pro-

cessing Letters, pages 26, 247–250, 1988.
15. H. Fernau, K.-J. Lange, and K. Reinhardt. Advocating ownership. In V. Chandru

and V. Vinay, editors, Proc. 16th FST&TCS, LNCS 1180, pages 286–297, 1996.
16. S. Istrail and D. Zivkovic. Bounded width polynomial size Boolean formulas com-

pute exactly those functions in AC0. Infor. Proc. Letters, 50:211–216, 1994.
17. D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, ed., Handbook

of Theoretical Computer Science, Volume A, pages 67–161. 1990.
18. K. Mehlhorn. Pebbling mountain ranges and its application to DCFL-recognition.

In Proc. 7th ICALP, pages 422–432, 1980.
19. R. Niedermeier and P. Rossmanith. Unambiguous auxiliary pushdown automata

and semi-unbounded fan-in circuits. Inform. and Comp., 118(2):227–245, 1995.
20. N. Nisan. RL ⊆ SC. Computational Complexity, 4(11):1–11, 1994.
21. W. Ruzzo. Tree-size bounded alternation. Journal of Computer and System Sci-

ences, 21:218–235, 1980.
22. S.Cook. Characterizations of pushdown machines in terms of time-bounded com-

puters. Journal of Assoc. Comput. Mach., 18:4–18, 1971.
23. I. Sudborough. On the tape complexity of deterministic context-free language.

Journal of Association of Computing Machinery, 25(3):405–414, 1978.
24. H. Venkateswaran. Properties that characterize LogCFL. Journal of Computer and

System Sciences, 42:380–404, 1991.
25. V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic

circuits. In Proc. Structure in Complexity Theory Conference, pages 270–284, 1991.
26. V. Vinay. Hierarchies of circuit classes that are closed under complement. In Proc.

11th Annual IEEE Conference on Computational Complexity, pages 108–117, 1996.
27. H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer-

Verlag New York Inc., 1999.
28. J. von zur Gathen and G. Seroussi. Boolean circuits versus arithmetic circuits.

Information and Computation, 91(1):142–154, 1991.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Polynomially Bounded
Perfect Matching Problem Is in NC2�

Manindra Agrawal1, Thanh Minh Hoang2, and Thomas Thierauf3

1 IIT Kanpur, India
2 Ulm University, Germany

3 Aalen University, Germany

Abstract. The perfect matching problem is known to be in P, in ran-
domized NC, and it is hard for NL. Whether the perfect matching prob-
lem is in NC is one of the most prominent open questions in complexity
theory regarding parallel computations.

Grigoriev and Karpinski [GK87] studied the perfect matching problem
for bipartite graphs with polynomially bounded permanent. They showed
that for such bipartite graphs the problem of deciding the existence of a
perfect matchings is in NC2, and counting and enumerating all perfect
matchings is in NC3. For general graphs with a polynomially bounded
number of perfect matchings, they show both problems to be in NC3.

In this paper we extend and improve these results. We show that for
any graph that has a polynomially bounded number of perfect matchings,
we can construct all perfect matchings in NC2. We extend the result to
weighted graphs.

1 Introduction

Whether there is an NC-algorithm for testing if a given graph contains a per-
fect matching is an outstanding open question in complexity theory. The prob-
lem of deciding the existence of a perfect matching in a graph is known to be in
P [Edm65], in randomized NC2 [MVV87], and in nonuniform SPL [ARZ99]. This
problem is very fundamental for other computational problems (see e.g. [KR98]).
Another reason why a derandomization of the perfect matching problem would
be very interesting is, that it is a special case of the polynomial identity testing
problem.

Since no NC-algorithm is known for testing the existence of perfect match-
ings in a common graph, some special cases of the perfect matching prob-
lem have been investigated intensively. For example, NC-algorithms have been
found the perfect matching problem for regular bipartite graphs [LPV81], dense
graphs [DHK93], strongly chordal graphs [DK86] and planar graphs [Kas67,
Vaz89]. The unique perfect matching problem is considered in [HMT06].

Grigoriev and Karpinski [GK87] considered the perfect matching problem for
bipartite graphs with polynomially bounded number of perfect matchings, i.e. a

� Supported by DFG grant Scho 302/7-1.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 489–499, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

490 M. Agrawal, T.M. Hoang, and T. Thierauf

promise problem. They showed that the decision version of the perfect matching
problem for such graphs is solvable in NC2. and that all perfect matchings for
such graphs can be constructed in NC3. For general graphs, their techniques
bring both problems into NC3.

We extend the result of Grigoriev and Karpinski [GK87] to arbitrary weighted
graphs and improve the upper bound to NC2. That is, we show that on input
of some graph G one can construct all perfect matchings of G in NC2, if G has
a polynomially bounded number of perfect matchings. We show the result for
bipartite graphs in Section 3 and then extend it to general graphs in Section 4.
In Section 5 we generalize our techniques to graphs with polynomially bounded
weights.

When we restrict ourselves to the decision version or the counting version of
the problem, we get logspace counting classes inside NC2 as upper bounds for
these problems.

2 Preliminaries

Let G = (V, E) be an undirected graph. A matching in G is a set M ⊆ E, such
that no two edges in M have a vertex in common. A matching M is called perfect
if every vertex occurs as an endpoint of some edge in M . Define

PM (G) = { M | M is a perfect matching in G }.

Bipartite Graphs. Let G be bipartite, that is we can partition the nodes into
V = L ∪ R such that there are no edges in L and in R. We assume w.l.o.g. that
|L| = |R = n, otherwise G has no perfect matching. The bipartite adjacency
matrix of G is the n × n matrix A = (ai,j), where

ai,j =

{
1 if (i, j) ∈ E, for i ∈ L and j ∈ R,

0 otherwise.

The bipartite Tutte matrix of G is the n × n matrix T = (ti,j), where

ti,j = ai,j xi,j ,

for indeterminates xi,j . The determinant of T is

det(T) =
∑

π∈Sn

sign(π)
n∏

i=1

ai,π(i) xi,π(i).

det(T) is a multi-linear polynomial. Each non-vanishing term sign(π)
n∏

i=1

xi,π(i)

corresponds to one perfect matching Mπ = { (i, π(i)) | 1 ≤ i ≤ n } ∈ PM (G). In
particular we have

Theorem 1 (Tutte 1952). Let G be a bipartite graph. G has a perfect matching
iff det(T) �= 0.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Polynomially Bounded Perfect Matching Problem Is in NC2 491

General Graphs. Let G be a graph with n nodes. W.l.o.g. assume that n is even,
otherwise G has no perfect matchings. Let A = (ai,j) be the n × n adjacency
matrix of G. Note that A is symmetric. The skew-symmetric Tutte matrix of G
is the n × n matrix T = (ti,j), where

ti,j =

{
ai,j xi,j , if i ≤ j,

−aj,i xj,i, otherwise,

for indeterminates xi,j . The Pfaffian of T is

pf(T) =
∑

M∈PM (G)

sign(M) ·
∏

(i, j) ∈ M
i < j

ai,j xi,j .

The sign is defined as follows. Consider perfect matching

M = {(i1, j1), (i2, j2), . . . , (ik, jk)} ∈ PM (G)

for k = n/2. By convention, we have il < jl for all l. The sign of M is defined
as the sign of the permutation

(
1 2 3 4 · · · n − 1 n
i1 j1 i2 j2 · · · ik jk

)

∈ Sn

It is known that the sign of M does not depend on the order in which the edges
are given, i.e. the sign is well defined.

pf(T) is a multi-linear polynomial. Each non-vanishing term sign(M).∏

(i, j) ∈ M
i < j

xi,j corresponds to one perfect matching M ∈ PM (G). The Pfaffian

and the determinant of a matrix are known to be closely related.

Theorem 2. det(T) = pf2(T).

In particular we have

Theorem 3 (Tutte 1952). Graph G has a perfect matching iff det(T) �= 0.

Linear Algebra. The following matrix is called a Vandermonde matrix

V =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 · · · 1
a1 a2 · · · an

a2
1 a2

2 · · · a2
n

...
...

...
an−1
1 an−1

2 · · · an−1
n

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

It is known that
det(V) =

∏

i�=j

(ai − aj).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

492 M. Agrawal, T.M. Hoang, and T. Thierauf

Hence, in the case when a1, a2, . . . , an are pairwise distinct the matrix V is non-
singular. The inverse can be written as

V −1 =
1

det(V)
adj(V),

where adj(V) is the adjoint of V .

Complexity Classes. The classes NCk, for fixed k, consists of families of Boolean
circuit with ∧-, ∨-gates of fan-in 2, and ¬ -gates, of depth O(logk n) and of
polynomial size. NC = ∪k≥0NCk.

Standard arithmetic operations like addition, subtraction, multiplication and
integer division are known to be in NC1. Many problems from linear algebra
like computing powers of a matrix are in NC2. A break-through result was that
the determinant of a matrix is computable in NC2 [Ber84].

For a nondeterministic Turing machine M , we denote the number of accepting
and rejecting computation paths on input x by accM (x) and by rejM (x), respec-
tively. The difference of these two quantities is gapM , i.e., for all x: gapM (x) =
accM (x) − rejM (x). The complexity class GapL is defined as the set of all func-
tions gapM (x), where M is a nondeterministic logspace bounded Turing machine.
Most notably, we have

Theorem 4. [Dam91, Tod91, Vin91, Val92] The determinant of an integer ma-
trix is complete for GapL.

And similarly for the Pfaffian we have

Theorem 5. [MSV99] The Pfaffian of an integer matrix is complete for GapL

GapL is closed under addition, subtraction, and multiplication. It is not known
to be closed under integer division. In particular, consider the inverse of matrix
like in the above example, V −1 = 1

det(V)
adj(V). The entries of the adjoint matrix

are determinants and can therefore be computed in GapL. But we don’t know
whether the entries of V −1 can be computed in GapL too because of the division
by det(V). However, with the adjoint matrix we have the entries of det(V)V −1

in GapL.
The class C=L (Exact Counting in Logspace) is the class of sets A for which

there exists a function f ∈ GapL such that ∀x : x ∈ A ⇐⇒ f(x) = 0. A
problem complete for C=L is the singularity problem, where one has to decide
whether the determinant of an integer matrix is zero. C=L is closed under union
and intersection, but is not known to be closed under complement.

Problems that can be expressed as a (unbounded) boolean combination of
sets from C=L are captured by the class AC0(C=L) of sets being AC0-reducible
to C=L. Allender, Beals, and Ogihara [ABO99] defined and studied this class.
They show for example that the problem to decide whether a system of linear
equations has a solution is complete for AC0(C=L). We have the following
inclusions.

NL ⊆ C=L ⊆ AC0(C=L) ⊆ NC2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Polynomially Bounded Perfect Matching Problem Is in NC2 493

Cook [Coo85] defined the class DET as the class of sets that are NC1-reducible
to the determinant. Since the determinant is complete for GapL, we denote DET
by NC1(GapL). We have NC1(GapL) ⊆ NC2.

3 Bipartite Graphs

In this section we prove the following theorem.

Theorem 6. All perfect matchings of a bipartite graph with a polynomially
bounded number of perfect matchings can be constructed in NC2.

Let G = (V, E) be a bipartite graph with |V | = 2n nodes and let A = (ai,j) be
the bipartite adjacency matrix of G. Let p be a polynomial and assume that G
has at most p(n) perfect matchings. Define

b
(m)
i,j (x) = ai,j pi,j xmni+j mod r,

where pi,j are pairwise different primes, x is an indeterminate, r is a prime such
that r > n2p2(n), and 0 ≤ m < r. We can choose max{ pi,j | 1 ≤ i, j ≤ n } =
O(n3) by the Prime Number Theorem. For 1 ≤ m < r define matrices

Bm(x) =
(
b
(m)
i,j (x)

)
.

The determinant of Bm(x) is a polynomial dm(x), where

dm(x) = det(Bm(x)) =
∑

π∈Sn

sign(π)
n∏

i=1

ai,π(i) pi,π(i) xmni+π(i) mod r

=
∑

π∈Sn

sign(π)(
n∏

i=1

ai,π(i) pi,π(i)) xem(π),

where em(π) =
∑n

i=1(m
ni+π(i) mod r) are the exponents of x in dm(x).

The crucial point here is, that the summands of em(π) are taken modulo r.
Therefore the degree of polynomial dm(x) is bounded by D = n(r − 1), which
is a polynomial in n. Without the mod r we would have exponential degree. On
the other hand, without the mod r, for any π ∈ Sn the exponent of x is unique.
We show in the following that this also holds modulo r, at least for some m.

Lemma 1. Let π1, . . . , πt ∈ Sn for some t ≤ p(n). Then there exists an m < r
such that em(πi) �= em(πj), for all i �= j.

Proof . The values em(πi) can be seen as evaluations of polynomials over the
field Zr in the following way. Define

qπ(z) =
n∑

i=1

zni+π(i).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

494 M. Agrawal, T.M. Hoang, and T. Thierauf

Then we have em(πi) ≡ qπ(m) (mod r), for any m. To prove the lemma, we
have to show that qπi(m) �≡ qπj (m) (mod r), for some m < r and for all i �= j.

Notice first that qπi �= qπj , for any i �= j. Now the degree of the q-polynomials
is bounded by n2 + n ≤ 2n2. Hence any two of them can agree on at most 2n2

points. Thus in any field of size larger than
(

t
2

)
2n2 we have a point where all

polynomials qπi pairwise differ. Note that
(

t

2

)

2n2 ≤ t2n2 ≤ p2(n)n2 < r.

Hence there is an appropriate m in Zr. �

It follows that if G has t perfect matchings for some t ≤ p(n), then there exists
an m < r such that polynomial dm(x) has precisely t terms. That is,

dm(x) =
D∑

k=0

c
(m)
k xk,

where precisely t of the coefficients c
(m)
k are non-zero. Moreover, the non-zero

coefficients are of the form

c
(m)
k = sign(π)

n∏

i=1

pi,π(i)

for some π ∈ Sn such that k = em(π). We want to compute these coefficients.
Define the Vandermonde matrix V = (vi,j) by vi,j = ij, for 0 ≤ i, j ≤ D.

Define vectors

dm = (dm(0) dm(1) · · · dm(D))T

cm = (c(m)
0 c

(m)
1 · · · c

(m)
D)T

The evaluation of polynomial dm(x) at points 0, . . . , D can now be written as

dm = V cm.

Therefore we obtain the coefficient vector by the equation

cm = V −1dm.

By the latter equation, cm can be computed in NC2.

Lemma 2. cm ∈ NC2.

Proof . The matrices V and Bm(x) can be computed in NC1 for any x ≤ D.
Vector dm can be computed by computing the determinant of matrix Bm(x) for
different values of x, which is in NC2 by Theorem 4. Also, V −1 can be computed
in NC2. �

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Polynomially Bounded Perfect Matching Problem Is in NC2 495

The final step is to determine the prime factors pi,j of the non-zero coefficients
in cm, because these factors define perfect matchings as explained above. Given
a non-zero c

(m)
k , we can test in NC1 whether c

(m)
k ≡ 0 (mod pi,j) since all pi,j

are O(n3). In summary, we can construct all perfect matchings of G in NC2 if
we have the right value of m.

To find the right value for m, we compute cm for all m ∈ {1, . . . , r − 1} in
parallel. We can take any m such that cm has a maximum number of non-zero
entries. The procedure remains in NC2.

In fact, we get a slightly better upper bound. Note first that the entries of
all vectors det(V)cm = adj(V)dm can be computed in GapL. Having all these
values, the remaining computation can be done in NC1. Recall in particular
that integer division is in NC1 [CDL01].

Suppose we want to know only whether there exists some perfect matching
(decision problem) or count the number of perfect matchings (counting prob-
lem). For the decision problem it suffices to determine whether cm is non-zero
for some m. Note that this is equivalent to det(V)cm being non-zero. For the
counting problem we have to count the number of non-zero entries of cm, for
an m such that cm has a maximum number of non-zero entries.

Corollary 1. For bipartite graphs with a polynomially bounded number of per-
fect matchings

1. the decision problem is in coC=L,
2. the counting problem is in AC0(C=L),
3. the construction problem is in NC1(GapL).

4 General Graphs

In this section we extend Theorem 6 to non-bipartite graphs.

Theorem 7. All perfect matchings of a graph with a polynomially bounded num-
ber of perfect matchings can be constructed in NC2.

Let G = (V, E) be an undirected graph with |V | = n nodes. We assume that n
is even, otherwise G has no perfect matchings. Let A = (ai,j) be the adjacency
matrix of G. Let p be a polynomial and assume that G has at most p(n) perfect
matchings. We define matrices Bm(x) =

(
b
(m)
i,j (x)

)
in a similar fashion as before.

The definition is now according to the Tutte matrix of G:

b
(m)
i,j (x) =

{
ai,j pi,j xmni+j mod r, if i ≤ j,

−aj,i pj,i xmnj+i mod r, otherwise,

for pairwise different primes pi,j of size O(n3), an indeterminate x, a prime r
such that r > n2p2(n), and 1 ≤ m < r.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

496 M. Agrawal, T.M. Hoang, and T. Thierauf

The Pfaffian of Bm(x) is a polynomial pm(x), where

pm(x) = pf(Bm(x)) =
∑

M∈PM (G)

sign(M) ·
∏

(i, j) ∈ M
i < j

ai,j pi,j xmni+j mod r

=
∑

M∈PM (G)

sign(M) · (
∏

(i, j) ∈ M
i < j

ai,j pi,j) xem(M),

where
em(M) =

∑

(i, j) ∈ M
i < j

(mni+j mod r)

are the exponents of x in pm(x). Similar as in Lemma 1 we have that there is
some m < r where the exponents em(M) pairwise differ.

Note that em(M) ≤ (r − 1)n/2. Let D = (r − 1)n/2. Then we can write

pm(x) =
D∑

k=0

c
(m)
k xk.

Define the Vandermonde matrix V = (vi,j) by vi,j = ij , for 0 ≤ i, j ≤ D. Define
vectors

pm = (pm(0) pm(1) · · · pm(D))T

cm = (c(m)
0 c

(m)
1 · · · c

(m)
D)T

As in the bipartite case we have pm = V cm, from which we get cm = V −1pm.
By Theorem 5, cm can be computed in NC2.

Corollary 2. For graphs with a polynomially bounded number of perfect match-
ings,

1. the decision problem is in coC=L,
2. the counting problem is in AC0(C=L),
3. the construction problem are in NC1(GapL).

5 Weighted Graphs

In this section we extend Theorem 7 to graphs with small weights. Let G = (V, E)
be an undirected graph with |V | = n nodes. Let A = (ai,j) be the adjacency
matrix of G and W = (wi,j) be the symmetric matrix that gives weight wi,j to
edge (i, j), where all weights are polynomially bounded in n.

There are several variants of problems we might consider: the minimal perfect
matching problem asks for a perfect matching of minimum weight. In its promise
version, we assume that there are at most polynomially many perfect matching of
minimum weight. Analogously, there is the maximum perfect matching problem.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Polynomially Bounded Perfect Matching Problem Is in NC2 497

But actually, we can solve a more general problem. It suffices that for some
weight w there are at most p(n) many perfect matching of weight w, for some
polynomial p.

Theorem 8. Let G be a weighted graph with polynomially bounded weights such
that G has a polynomially bounded number of perfect matchings of some weight w.
Then all perfect matchings of G of weight w can be constructed in NC2.

Define matrices Bm(x, y) =
(
b
(m)
i,j (x, y)

)
in two variables x and y that incorpo-

rate the weights of G:

b
(m)
i,j (x, y) =

{
ai,j pi,j ywi,j xmni+j mod r, if i ≤ j,

−aj,i pj,i ywj,i xmnj+i mod r, otherwise,

for pairwise different primes pi,j of size O(n3), indeterminates x and y, a prime r
such that r > n2p2(n), and 1 ≤ m < r.

The Pfaffian of Bm(x, y) is a polynomial pm(x, y), where

pm(x, y) = pf(Bm(x, y))=
∑

M∈PM (G)

sign(M) ·
∏

(i, j) ∈ M
i < j

ai,j pi,j ywi,j xmni+j mod r

=
∑

M∈PM (G)

sign(M) · (
∏

(i, j) ∈ M
i < j

ai,j pi,j) yw(M) xem(M)

where em(M) =
∑

(i, j) ∈ M
i < j

(mni+j mod r). By a similar argument as in Lemma 1

we have that there is some m < r where the exponents em(M) pairwise differ,
and this suffices for our purpose.

The degree of x in pm(x, y) is bounded by (r − 1)n/2. Let d = (r − 1)n/2+1,
so that the degree of x in pm(x, y) is strictly less than d. We transform pm(x, y)
into polynomial Pm(x) with just one variable by setting

Pm(x) = pm(x, xd).

Then we have

Pm(x) =
∑

M∈PM (G)

sign(M) · (
∏

(i, j) ∈ M
i < j

ai,j pi,j) xdw(M)+em(M)

By our choice of d we have d > em(M). Let w be any fixed weight and consider
a perfect matching M of weight w. Then we have

dw < dw + em(M) < d(w + 1).

That is, the degrees of x in Pm(x) for perfect matchings of different weights w
are in disjoint intervals of the form (dw, d(w+1)). Let D be the degree of Pm(x).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

498 M. Agrawal, T.M. Hoang, and T. Thierauf

We have D ≤ dwmax, where wmax is the maximum weight of any matching. Note
that wmax ≤ max{ wi,j | 1 ≤ i, j ≤ n }n/2. Let

Pm(x) =
D∑

k=0

c
(m)
k xk.

We have seen in Section 4 how to determine the coefficients c
(m)
k and how to

get the perfect matchings from these coefficients in NC2. Note that the perfect
matchings of weight w are represented by the coefficients c

(m)
k for dw < k <

d(w + 1).
Now, if there are at most p(n) perfect matchings of weight w, then all of

these will be listed by our NC2-circuit. Note however that we might list perfect
matchings of other weights as well. In case that the promise is for the minimum
(or maximum) weight perfect matching, we may discard non-optimal perfect
matchings.

6 Open Problems

We have the polynomial bound on the number of perfect matchings given as
a promise. Clearly the ultimate goal is to get rid of the promise and to put
the perfect matching problem in NC2. We conjecture that, modulo some small
modifications, our approach works for the general case. It remains to prove this.

Acknowledgments

We thank Eric Allender for clarifying various subtleties concerning logspace
computations.

References

[ABO99] E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank and
feasible systems of linear equations. Computational Complexity, 8:99 –126,
1999.

[ARZ99] E. Allender, K. Reinhardt, and S. Zhou. Isolating, matching, and counting:
uniform and nonuniform upper bounds. Journal of Computer and System
Sciences, 59:164–181, 1999.

[Ber84] S. Berkowitz. On computing the determinant in small parallel time using
a small number of processors. Information Processing Letters, 18:147–150,
1984.

[CDL01] A. Chiu, G. Davida, and B. Litow. Division in logspace-uniform NC1.
RAIRO Theoretical Informatics and Applications, 35:259–276, 2001.

[Coo85] S. Cook. A taxonomy of problems with fast parallel algorithms. Information
and Control, 64:2–22, 1985.

[Dam91] C. Damm. DET = L(#L). Technical Report Informatik-Preprint 8, Fach-
bereich Informatik der Humboldt-Universität zu Berlin, 1991.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Polynomially Bounded Perfect Matching Problem Is in NC2 499

[DHK93] E. Dahlhaus, P. Hajnal, and M. Karpinski. On the parallel complexity
of hamiltonian cycles and matching problem in dense graphs. Journal of
Algorithms, 15:367–384, 1993.

[DK86] E. Dahlhaus and M. Karpinski. The matching problem for strongly chordal
graphs is in NC. Technical Report 855-CS, University of Bonn, 1986.

[Edm65] J. Edmonds. Maximum matching and a polyhedron with 0-1 vertices. Jour-
nal of Research National Bureau of Standards, 69:125–130, 1965.

[GK87] D. Grigoriev and M. Karpinski. The matching problem for bipartite graphs
with polynomially bounded permanent is in NC. In 28th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 166–172.
IEEE Computer Society Press, 1987.

[HMT06] T. M. Hoang, M. Mahajan, and T. Thierauf. On the Bipartite Unique
Perfect Matching Problem. In Automata, Languages and Programming, 33rd
International Colloquium, (ICALP), Lecture Notes in Computer Science
4051, pages 453–464. Springer-Verlag, 2006.

[Kas67] P. W. Kastelyn. Graph theory and crystal physics. In F. Harary, editor,
Graph Theory and Theoretical Physics, pages 43–110. Academic Press, 1967.

[KR98] M. Karpinski and W. Rytter. Fast Parallel Algorithms for Graph Matching
Problems. Oxford University Press, 1998.

[LPV81] G. Lev, M. Pippenger, and L. Valiant. A fast parallel algorithm for routing
in permutation networks. IEEE Transactions on Computers, C-30:93–100,
1981.

[MSV99] M. Mahajan, P. Subramanya, and V Vinay. A combinatorial algorithm
for pfaffians. In 5th Annual International Conference on Computing and
Combinatorics (COCOON), Lecture Notes in Computer Science 1627, pages
134–143. Springer-Verlag, 1999.

[MVV87] K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix
inversion. In 19th ACM Symposium on Theory of Computing, pages 345–
354. ACM Press, 1987.

[Tod91] S. Toda. Counting problems computationally equivalent to the determinant.
Technical Report CSIM 91-07, Dept. of Computer Science and Information
Mathematics, University of Electro-Communications, Chofu-shi, Tokyo 182,
Japan, 1991.

[Val92] L. Valiant. Why is boolean complexity theory difficult. In M.S. Paterson,
editor, Boolean Function Complexity, London Mathematical Society Lecture
Notes Series 169. Cambridge University Press, 1992.

[Vaz89] V. Vazirani. NC algorithms for computing the number of perfect matchings
in K3,3-free graphs and related problems. Information and computation,
80(2):152–164, 1989.

[Vin91] V Vinay. Counting auxiliary pushdown automata and semi-unbounded
arithmetic circuits. In 6th IEEE Conference on Structure in Complexity
Theory, pages 270–284, 1991.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Languages with Bounded Multiparty
Communication Complexity�

Arkadev Chattopadhyay1, Andreas Krebs2, Michal Koucký3, Mario Szegedy4,
Pascal Tesson5, and Denis Thérien1

1 School of Computer Science, McGill University, Montreal
{achatt3, denis}@cs.mcgill.ca
2 Universität Tübingen, Germany

mail@krebs-net.de
3 Mathematical Institute, Academy of Sciences, Czech Republic

koucky@math.cas.cz
4 Rutgers University, New Jersey

szegedy@cs.rutgers.edu
5 Laval University, Québec

pascal.tesson@ift.ulaval.ca

Abstract. We study languages with bounded communication complex-
ity in the multiparty “input on the forehead model” with worst-case
partition. In the two-party case, languages with bounded complexity are
exactly those recognized by programs over commutative monoids [19].
This can be used to show that these languages all lie in shallow ACC0.

In contrast, we use coding techniques to show that there are languages
of arbitrarily large circuit complexity which can be recognized in con-
stant communication by k players for k ≥ 3. However, we show that if
a language has a neutral letter and bounded communication complexity
in the k-party game for some fixed k then the language is in fact regu-
lar. We give an algebraic characterization of regular languages with this
property. We also prove that a symmetric language has bounded k-party
complexity for some fixed k iff it has bounded two party complexity.

1 Introduction

The “input on the forehead” multiparty model of communication, introduced by
Chandra, Furst and Lipton [7], is a powerful tool in the study of branching pro-
grams [2,6,7] and shallow-depth Boolean circuits (among many others [11,13,14]).
However, it is still, in many regards, not well-understood as both upper bounds
[1,12] and lower bounds [2,7,18] for the model appear very challenging. In particu-
lar, good lower bounds on the k-party non-interactive communication complexity
of an explicit function f when k > log n have long been sought since they would
� Supported in part by the NSF (M. Szegedy), NSERC (A. Chattopadhyay, P. Tes-

son, D. Thérien), FQRNT (D. Thérien), grant GA-CR 201/05/0124, ITI-1M0545
(M. Koucký) and the A.V. Humboldt Foundation (P. Tesson and D. Thérien). We
thank Pavel Pudlák for suggesting the use of the Hales-Jewett Theorem.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 500–511, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Languages with Bounded Multiparty Communication Complexity 501

yield size-lower bounds for ACC0 circuits computing f [9], and even more modest
lower bounds Ω(log3 n) for particular functions like Disjointness in the three-party
setting would imply separation of different proof systems [5].

We obtain significant insight into the multiparty model by focusing on functions
that have bounded k-party complexity, where k ≥ 3 is an arbitrary constant. For
the two-party model, languages with bounded communication complexity have
many nice characterizations [19] implying, in particular, that any language with
bounded two-party complexity can be computed by very shallow ACC0 circuits. In
contrast, we show in Section 3 that there are languages with arbitrarily large uni-
form circuit complexity whose three-party communication complexity is bounded
by a constant even for the worst-case partition of the input instances among the
players. An analogous result for non-uniform circuit complexity can also be de-
rived. These languages are constructed using specially crafted error-correcting
codes. Because of these results, we cannot expect to obtain characterizations of
languages of bounded multiparty complexity which are as nice as those for the
two-player case.

There are several key features that make the multiparty communication model
so powerful: first, every input bit is seen by several players, second, every (k−1)-
tuple of input positions is seen by at least one of the k players, and third,
all players know the partitioning of the input, i.e., they know which positions
they actually see. Multiparty communication complexity upper bounds typi-
cally rely heavily on all these properties. If we remove the first two properties
then we obtain essentially the multiparty “input in the hand” model which is
computationally even weaker than the two-party communication model. To un-
derstand how crucial the last property is, we consider two restricted classes of
languages/functions in which this advantage is in some sense taken away.

First, we consider in Section 4 languages with a neutral letter [4,3], i.e. a letter
which can be inserted or deleted at will in an input word without affecting its
membership in the language. We show that every such language having bounded
k-party communication complexity for some fixed k is regular. Furthermore, we
characterize this class of regular languages in terms of algebraic properties of
their minimal automaton. Our results indicate that the presence of a neutral
letter is thus a severe handicap in the multiparty game and suggests that it
might be easier to prove communication complexity lower bounds under this
assumption.

Finally, in Section 5 we use the Ramsey-like theorem of Gallai [10] to prove
that for any fixed k ≥ 3 the symmetric functions that can be computed in
bounded k-party communication complexity by k-players are exactly the sym-
metric functions that have bounded 2-party complexity.

In Section 2 we show, using a Ramsey-theoretical argument reminiscent of [7],
that k parties need to exchange ω(1) bits of communication to verify that their
k inputs in {0, 1}n represent a partition of [n]. This result is of independent
interest and also gets used in two of our proofs later.

Due to lack of space, we omit proofs of Lemmas 11, 17 and 23. These proofs
are contained in the more complete version [8].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

502 A. Chattopadhyay et al.

2 Multiparty Communication Complexity

The multiparty model of communication complexity was first introduced by
Chandra, Furst and Lipton [7]. In this game, k players P1, . . . , Pk wish to collab-
orate to compute a function f : Σn → {0, 1}. The n input letters are partitioned
into k sets X1, . . . , Xk ⊆ [n] and each participant Pi knows the values of all the
inputs except the ones of Xi. This game is often referred to as the “input on the
forehead” model since it is convenient to picture that player i has the letters of Xi

written on his forehead, available to everyone but himself. Players exchange bits,
according to an agreed upon protocol, by writing them on a public blackboard.
The protocol specifies whose turn it is to speak, and what the player broadcasts
is a function of the communication history and the input he has access to. The
protocol’s output is a function of what is on the blackboard after the protocol’s
termination. We denote by Dk(f) the k-party communication complexity of f ,
i.e. the number of bits exchanged in the best protocol for f on the worst case
input and for the worst-case partition of inputs. More generally, we consider
functions f : Σ∗ → {0, 1} and thus view Dk(f) as a function of input length.

The information available to individual players overlaps a lot since any input
letter is known to k−1 of the k players. Thus, the power of the multiparty model
increases with the number of players involved as the fraction of inputs available
to each player increases.

A subset S of ΣX1×...×Xk is a cylinder in the ith dimension if membership
in S is independent of the ith coordinate, i.e. if for all x1, x2, . . . , xk and any x′

i

we have (x1, . . . , xi, . . . , xk) ∈ S if and only if (x1, . . . , x
′
i, . . . , xk) ∈ S. We say

that S is a cylinder intersection if S =
⋂

1≤i≤k

Si where Si is a cylinder in the

ith dimension. A cylinder intersection is called f -monochromatic if the function
f evaluates to the same value on every input instance in the intersection. The
following lemma underlies all lower bound arguments for the multiparty model:

Lemma 1 (see [13]). Let f : ΣX1×...×Xk → {0, 1} be a function of k-inputs.
Any k-party communication protocol of cost c computing f partitions the input
space into at most 2c f -monochromatic cylinder intersections, each intersection
corresponding to a possible communication exchange by players.

We say that a set of k elements of ΣX1×...×Xk forms a star if it is of the form:

(x′
1, x2, . . . , xk), (x1, x

′
2, . . . , xk), . . . , (x1, x2, . . . , x

′
k)

where the xi are values for the input bits letters in Xi for each i with xi �= x′
i.

In that case, we call (x1, x2, . . . , xk) the center of this star. These notions lead
to a useful characterization of cylinder intersections.

Lemma 2 (see [13,7]). A set S ⊆ ΣX1×...×Xk is a cylinder intersection if and
only if the center of any star contained in S is itself an element of S.

A k-rectangular reduction r from L ⊆ {0, 1}n×k to K ⊆ {0, 1}l(n)×k is a k-tuple of
functions (r1, . . . , rk) with each ri : {0, 1}n → {0, 1}l(n) such that (x1, . . . , xk) ∈
L iff (r1(x1), . . . , rk(xk)) ∈ K. The length of the reduction is �.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Languages with Bounded Multiparty Communication Complexity 503

Observation 3. Let L ⊆ {0, 1}n×k and K ⊆ {0, 1}l(n)×k be languages such
that there exists a rectangular reduction r from L to K of length l. Then, the
communication complexity of L for the partition for which r exists is at most
Dk(K)(l(n)).

Lower bounds for the k-party communication complexity of the functions Partk
and GIPk,p will be particularly useful. Both functions take as input an n × k
Boolean matrix A and we think of the ith column of A as representing a subset
xi of [n] = {1, . . . n}. We define Partk(A) = 1 iff each row contains exactly one
1 (i.e. the xi form a partition of [n]) and GIPk,p = 1 iff the number of all-1 rows
of A (i.e. the size of the intersection of the xi) is divisible by p. It is clear that
for the k-party game the worst input partition for GIPk,p and Partk is the one
where player Pi holds the bits of column i on his forehead.

Lemma 4 ([2,11]). Dk(GIPk,p) = Ω(n) for all constants k, p ≥ 2.

More precisely, the best known lower bound for GIPk,p is Ω(n/4k) and holds
even for k growing as a function of n but we only consider the case where k is
constant.

We establish a lower bound on the k-party communication complexity of
Partk by applying a Ramsey-theoretical result known as the Hales-Jewett The-
orem. The n-tuples v1, . . . , vt ∈ [t]n are said to form a combinatorial line if the
vj are distinct and for each 1 ≤ i ≤ n either all the vj agree on co-ordinate i

(i.e. vj
i = vj′

i for all 1 ≤ j ≤ j′ ≤ t) or we have vj
i = j for all 1 ≤ j ≤ t.

Theorem 5 (Hales-Jewett [10]). For any integers c, t there exists an integer
n = HJ(c, t) such that if all vectors in [t]n are colored with c colors then there
is a monochromatic combinatorial line v1, . . . , vt (i.e. a line whose elements all
were assigned the same color).

We now prove:

Lemma 6. For all k, Dk(Partk) = ω(1).

Proof. Consider the input as a collection of k subsets of [n]. Consider any input
(S1, . . . , Sk) that is accepted by a protocol for Partk. For every 1 ≤ j ≤ n, the
element j lies in exactly one of the Si. Using this observation, these inputs can
be put in one-to-one correspondence with n-tuples in [k]n. As an example for
k = 3 and n = 4, we have Part3({4}, {1, 3}, {2}) = 1 and this input corresponds
to the n-tuple (2, 3, 2, 1).

Suppose that the k-party communication complexity of Partk is bounded,
for some k, by a constant c. To every input accepted by a protocol for Partk,
(i.e. to every element in [k]n), we assign one of 2c colors corresponding to the
communication history resulting from that particular input. If n is large enough
then by the Hales-Jewett Theorem this set contains a monochromatic combina-
torial line v1, . . . , vk. Let T ⊆ [n] be the (non-empty) set of positions on which
the vj differ and for each i ≤ k denote as Si the set of positions on which
all the vj are i. By definition of the above one-to-one correspondence, we have

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

504 A. Chattopadhyay et al.

that T, S1, . . . , Sk form a partition of [n] and all the inputs (S1 ∪ T, S2, . . . Sk),
(S1, S2 ∪ T, . . . Sk), . . . , (S1, S2, . . . Sk ∪ T) induce the same communication his-
tory. By Lemma 2, and since these inputs form a star, their center (S1, S2, . . . Sk)
also induces that same communication and must thus belong to Partk. However
S1 ∪ . . . ∪ Sk = [n] − T �= [n] so we get a contradiction.

The proof of Lemma 6 only considers those instances of Partk in which any two
subsets held by the k players are disjoint. Further, it is easily verified that the
input instance (the center of the star) on which the players are forced to make an
error, also has this disjointness property. These observations yield the following
slightly stronger result: define the promised problem RPartnk to be Partnk with
the promise that the k sets given to players are pairwise disjoint and are subsets
of [n].

Corollary 7. For each k, RPartnk cannot be solved using c bits of communica-
tion whenever n ≥ HJ(k, 2c).

Note that an n × k matrix A belongs to Partk iff none of its rows contains two
1 and the total number of 1 entries in A is n. If k ≥ 3 then k players can check
the first condition using k bits of communication since any pair of input bits is
accessible to at least one player. They are then left with verifying that the sum
of the input bits is n which can, surprisingly, be achieved with a communication
cost much less than the trivial O(log n) [7].

3 Functions with Bounded Multiparty Complexity but
High Time/Space Complexity

In this section we exhibit languages of arbitrarily large computational complexity
but with bounded multiparty communication complexity. For a language L and
an encoding C : {0, 1}∗ → {0, 1}∗, we denote by C(L) the set {C(x); x ∈ L}. We
prove that for a suitably chosen error-correcting code C, any language L is such
that its encoding C(L) has bounded multiparty communication complexity. We
will choose C such that the corresponding encoding and decoding function are
efficiently computable and hence the complexities of L and C(L) will be closely
related.

As a warm-up, we start with the unary encoding CU defined as follows: for
x ∈ {0, 1}∗, CU(x) = 0x102n−x−1, where n is the length of x and x is interpreted
as an integer between 0 and 2n − 1. Hence, CU encodes bit strings of length n
into strings of length 2n having a single 1 in a one-to-one way.

Lemma 8. For any language L and integer k ≥ 3, Dk(CU(L)) ≤ 3.

Proof. Without loss of generality k = 3. On an input w that is split among
the three parties, the players need to verify two things: 1) whether w is a valid
encoding of some string x, and 2) whether the corresponding string x is in L.
To verify the first property the players only need to check whether at least one
of them sees a 1 and whether none of them sees two or more 1s. They can

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Languages with Bounded Multiparty Communication Complexity 505

communicate their observations regarding this using six bits in total. Next, one
of the players who sees the one, determines the unique string x with CU(x) = w.
He can do this solely based on the position of the one since he knows how
w is partitioned. This player can also determine whether x ∈ L and hence
w ∈ CU(L). He communicates his conclusion to the other parties by sending one
more bit. Hence in total players exchange at most seven bits. The protocol can
be optimized so that each player simultaneously sends one bit of information for
the total of three bits.

The disadvantage of the unary encoding is its inefficiency: because codewords
are exponentially longer than the words they encode, we cannot provide effi-
cient reductions between L and C(L). A better encoding can be obtained by
concatenating Reed-Solomon codes with the unary encoding. In the 3-party sce-
nario at least one of the parties has on its forehead at least a 1/3-fraction of the
input. Hence, if the chosen encoding has the property that from an arbitrary
1/3-fraction of the input the whole word can be reconstructed (assuming the
input is an encoding of some word, i.e., assuming that the input is a codeword)
the other two parties can reconstruct the whole input and verify whether the
parts on remaining foreheads are consistent with such an input. With the proper
choice of parameters Reed-Solomon codes have this property.

Let n be a large enough integer, m = 	log2 3n
 and d = n/m. Any string
x ∈ {0, 1}n can be interpreted as a sequence of d elements from GF [2m]. Define
px to be the degree d−1 polynomial over GF [2m] whose coefficients are given by
x. Define the Reed-Solomon encoding by CRS(x) = px(g0)px(g1) · · · px(g3d−1),
where GF [2m] = {g0, g1, . . . , g2m−1}, and we will encode each gi as a binary
string in {0, 1}m. Furthermore, define the concatenation of the Reed-Solomon
encoding with the unary encoding by CRS◦U(x) = CU(px(g0)) · · · CU(px(g3d−1)).
Codewords thus consist of 3d blocks of 2m bits (corresponding to the 3d symbols
of the Reed-Solomon encoding) with each block containing exactly one 1. Thus,
CRS◦U encodes strings of length n into strings of length O(n2). Furthermore,
CRS◦U can be encoded and decoded in polynomial time and so the languages
L and CRS◦U(L) are polynomial-time equivalent. Note that the decoding task
at hand does not require us to perform error correction in the usual sense: we
simply want to identify if an input is a codeword (since we reject all words that
are not codewords) and we only care about decoding true codewords.

Lemma 9. For any language L and any k ≥ 3, Dk(CRS◦U(L)) ≤ 6

Proof. Without loss of generality k = 3 as all but the first two players can
pretend they are the same party. Let m = 	log2 3n
 and d = n/m. To check if
an input is a codeword, the players can easily check that there are never two
1s in a single block of input bits. They cannot, however, verify at constant cost
that each of the 3d blocks contains at least one 1 since this task is essentially the
partition problem whose complexity we lower bounded in Lemma 6. We proceed
differently: an input w of length 3d · 2m can only be a codeword if at least one
player (say player 1) has on its forehead at least d ones and this player can be
identified with three bits of communication. These d ones determine d elements

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

506 A. Chattopadhyay et al.

of GF [2m] hence players 2 and 3 can each privately reconstruct from them the
unique degree d − 1 polynomial p that coincides with these elements. Players
2 and 3 now know that if the input is a codeword then it must be the one
corresponding to p and player 2 can check that the bits on player 3’s forehead
are consistent with that hypothesis while player 3 can similarly cross-check the
input bits on player 2’s forehead. If this cross-checking procedure is successful,
player 2 can determine the unique x such that px = p, verify x ∈ L and send the
result to all parties. Overall, only six bits of communication suffice to decide if
the input is from CRS◦U(L).

As an immediate corollary to this lemma and the fact that the complexity of
CRS◦U(L) is polynomially related to the complexity of L we obtain:

Corollary 10. The class of languages with bounded multi-party communication
complexity contains languages with arbitrarily large time and space complexity.

In order to obtain also languages with essentially the largest possible circuit
complexity we need codes that map n bits into O(n) bits. We can obtain such
codes by concatenating Reed-Solomon codes with codes provided by the follow-
ing lemma and the unary code CU .

Lemma 11 (see [8]). For any integer n ≥ 1, there exists a linear map C8 :
{0, 1}n → GF [8]39n such that every w ∈ C8({0, 1}n) is uniquely determined by
any one-third of its coordinates.

By concatenating CRS with C8 and CU we obtain the code CRS◦8◦U with polyno-
mial time encoding and decoding that maps n bit strings into O(n) bit strings.

Corollary 12. For any k ≥ 3, the class of languages with bounded k-party
communication complexity contains languages with 2Ω(n) circuit complexity.

4 Languages with a Neutral Letter

A language L ∈ Σ∗ is said to have a neutral letter e if for all u, v ∈ Σ∗ we have
uv ∈ L iff uev ∈ L. Thus, adding or deleting e anywhere in a word w does not
affect membership in L. If a language has a neutral letter then membership in L
cannot depend, as in Lemma 8, on having specific value on a specific input posi-
tion and, at least intuitively, this seems to take away a lot of the power inherent
to the multiparty communication model. The neutral letter hypothesis was help-
ful in obtaining length lower bounds on bounded-width branching programs [4]
and was central to the Crane-Beach Conjecture [3]. In this section, we give a
precise characterization of languages with a neutral letter that have bounded
k-party complexity for some fixed k. We first show that all such languages must
be regular and then characterize them in terms of algebraic properties of their
minimal automaton.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Languages with Bounded Multiparty Communication Complexity 507

4.1 Proving Regularity

Let C ≥ 0 be an integer and let G be a family of functions over Σ∗ with finite
range R. We say that inputs with length at most C determine the functions of
G if every function g : Σ≤C → R has at most one extension to Σ∗ in G. Now, let
Ck,c be the family of functions with a neutral letter and k-party communication
complexity at most c. We show:

Lemma 13. Functions of Ck,c are determined by inputs of length at most C =
HJ(k, 22c), a constant.

We obtain this lemma as a corollary to

Lemma 14. For any C > 0 if the functions of Ck,c are not determined by inputs
of size C then RPartnk can be solved by k parties with 2c communication, where
n ≥ C is some number.

Lemma 14 and Corollary 7 together imply Lemma 13 immediately.

Proof. (Lemma 14) For any word w ∈ Σ∗, we shall denote by we the word
obtained from w by deleting all occurrences of e in w. The ith letter of w will be de-
noted by wi. Also, for k words w1, . . . , wk, each of length �, let w = w1♦ . . .♦wk de-
note the word obtained by interleaving the k words in the following way : |w| = �k
and for all 1 ≤ i ≤ �k, wi = wm

j+1 if i = (m − 1)k + j with 0 ≤ j < k. Let us
assume that f and g are in Ck,c, such that they are not identical, but the minimal
string v ∈ {Σ − e}∗ such that f(v) �= g(v) has length at least C. We show below
a k party protocol that solves RPart

|v|
k by communicating at most 2c bits.

Our protocol will work using a k-rectangular reduction r to language H ⊂
Σ|v|×k, where (y1, . . . , yk) ∈ H iff v = (y1♦ · · ·♦yk)e. Consider an instance of
RPart

|v|
k in which player i’s forehead holds a |v| bit vector representing set Ii.

Then, Ii ∩ Ij = ∅ if i �= j. We define ri as follows : let yi = ri(Ii). Then, yj
i = vj

if j ∈ Ii, otherwise yj
i = e. The simple observation that is key to our argument,

is that (y1♦ · · ·♦yk)e is v if ∪k
i=1Ii = [|v|] and otherwise it is a word u, where

|u| < |v|. This shows that r is indeed a reduction from RPart
|v|
k to H .

The observation above and the property of v (i.e. f(u) = g(u), whenever
|u| < |v|) imply the following : y = y1♦ . . .♦yk is in H iff f(y) �= g(y). The
condition f(y) �= g(y) can be checked with 2c bits of communication by running
the c-bit protocol on f and g separately. Thus, 2c bits of communication are
enough to solve H and hence RPart

|v|
k .

Let f : Σ∗ → {0, 1} be a function in Ck,c: For a word w ∈ Σ∗, we define the
function fw : Σ∗ → {0, 1} by fw(z) = f(wz). Note that each fw is also in Ck,c.
Applying Lemma 13, the functions {fw} are determined by inputs of length at
most C = HJ(k, 22c). It follows that the equivalence relation on Σ∗ defined by
u ∼ v iff f(uz) = f(vz) for all z ∈ Σ∗ has at most 2(|Σ|−1)C

equivalence classes.
It is well-known that if ∼ has finite index then f is regular and we obtain

Theorem 15. If f is a function with a neutral letter such that Dk(f) = O(1)
for some fixed k, then f is regular.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

508 A. Chattopadhyay et al.

4.2 Regular Languages with Bounded Complexity

A monoid M is a set with a binary associative operation and a distinguished
identity element 1M . A language L ⊆ Σ∗ is recognized by a finite monoid M if
there is a morphism φ from the free monoid Σ∗ to M and a set F ⊆ M such
that L = φ−1(F). A restatement of Kleene’s Theorem states that L is regular
iff it is recognized by some finite monoid. If L is regular, the syntactic monoid
M(L) of L is the transformation monoid of L’s minimal automaton [15] and is
the smallest monoid recognizing L.

The word problem for M is the function eval which maps a string w =
w1 . . . wn ∈ M∗ to the product eval(w1 . . . wn) = w1 · w2 · · · · · wn. We define the
k-party communication complexity of M , denoted Dk(M) as the communication
complexity of its word problem. Two of the authors gave a complete classifica-
tion result for the two-party communication complexity of finite monoids [20]
and this led to a similar classification for the two-party complexity of regular
languages. The communication complexity of monoids was first studied in [17]
from which we use the following:

Lemma 16. Let L be a regular language with a neutral letter and let M = M(L)
be its syntactic monoid. Then for any k ≥ 2 we have Dk(L) = Θ(Dk(M)).

A finite group is nilpotent if it is the direct product of p-groups and a monoid
lies in the class Gnil if all its subgroups are nilpotent. The class DO consists of
monoids satisfying the identity (xy)ω(yx)ω(xy)ω = (xy)ω .

Lemma 17. If M is a finite monoid outside of DO then Dk(M)=ω(1) for all k.

The lemma is proved in the full version of our paper (see [8]): we show that if
M lies outside DO then for any k there exists a rectangular reduction of linear
length from either GIPk,p or Partk to the word problem of M .

Theorem 18 ([17]). Let G be a group. If G is in Gnil then there exists a
constant k ≥ 2 such that Dk(G) = O(1). Otherwise Dk(G) = Ω(n) for all k.

In this case also, the lower bound is obtained through a rectangular reduction
from GIPk,p to the word problem of any non-nilpotent finite group. The upper
bound, on the other hand, stems from a combinatorial description of languages
recognized by nilpotent groups. We say that a word u = a1 . . . at with ai ∈ Σ
is a subword of the word w if w can be factorized as w0a1w1 . . . wt−1atwt and
we denote by

(
w
u

)
the number of such factorizations. We say that a language L

counts subwords of length k modulo m if membership of w in L depends on the
values modulo m of

(
w
u1

)
, . . . ,

(
w
ut

)
for some ui with |ui| ≤ k. One can show that

the syntactic monoid of a regular language L is a nilpotent group iff there exist
k, m ≥ 2 such that L counts subwords of length k modulo m [22].

For a ∈ Σ and L, K ⊆ Σ∗, the concatenation LaK is said to be perfectly
unambiguous if L ⊆ (Σ − {a})∗ or K ⊆ (Σ − {a})∗. If LaK is perfectly unam-
biguous then any w ∈ LaK can be uniquely factorized as wLawK with wL ∈ L
and wK ∈ K since the a can only be the first or last occurrence of a in w. Let

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Languages with Bounded Multiparty Communication Complexity 509

VΣ be the smallest class of regular languages over Σ that contains both the
subword-counting languages and the languages Σ∗

0 for each Σ0 ⊆ Σ and which
is closed under Boolean operations and perfectly unambiguous concatenations.
The next lemma can be inferred from [20].

Lemma 19. A language L ⊆ Σ∗ is recognized by a monoid in DO ∩ Gnil iff it
is in VΣ.

We can now give a characterization of monoids that have bounded multiparty
communication complexity for some suitably large constant k.

Theorem 20. Let L ⊆ Σ∗ be a regular language with a neutral letter and syn-
tactic monoid M . If M lies in DO ∩ Gnil then there exists a constant k such
that Dk(L) = O(1). Otherwise, we have Dk(L) = ω(1) for all k.

Proof. To obtain the upper bound, it suffices to show, by Lemma 19, that every
language in VΣ has bounded k-party complexity for some k and we argue from
the definition of VΣ .

First, any language Σ∗
0 has bounded two-party communication complexity

since players only need to check that the input letters they have access to in-
deed belong to Σ0. Furthermore, if K counts subwords of length k modulo m,
then Dk+1(K) = O(1) because any k-tuple of input letters is available to at
least one player in the (k + 1)-party game and the value of

(
w
u

)
modulo m can

thus be computed with communication k · 	log m
 if |u| ≤ k. Clearly, Boolean
combinations of languages with bounded k-party complexity also have bounded
k-party complexity and it remains to show that if L and K have bounded k-
party complexity and L ⊆ (Σ − {a})∗ then LaK has bounded (k + 1)-party
complexity. Players proceed as follows: each party broadcasts the identity of the
player which, in their opinion, holds on the forehead the first occurrence of a in
the input. This requires k · 	log k
 bits of communication and the player holding
that first occurrence will be the only dissenting voice since that letter is seen by
all other parties. Since k+1 ≥ 3, the k remaining players now know the position
of the first a and they simulate the k-party protocols for L and K on the prefix
and suffix at constant cost.

For the lower bound, if M is not in DO then Dk(M) = ω(1) for all k by
Lemma 17. If M contains a non-nilpotent group G then Dk(G) = Ω(n) for all
k by Theorem 18 and we clearly have Dk(M) ≥ Dk(G). So for all k, we have
Dk(M) = ω(1) and, by Lemma 16, Dk(L) = ω(1).

Combining this result with Theorem 15 we get

Theorem 21. If L is a language with a neutral letter and bounded k-party com-
munication complexity for some fixed k then L is regular and M(L) ∈ DO∩Gnil.

Note that the class DO ∩ Gnil is decidable. Also, the corresponding regular
languages have a nice logical characterization [21] and one can see from the
definition of VΣ that they all lie in ACC0.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

510 A. Chattopadhyay et al.

5 Symmetric Functions

For w ∈ Σ∗, we denote as |w|a the number of occurrences of a in w. A function
f : Σ∗ → {0, 1} is symmetric if its value depends only on the values |w|a for
a ∈ Σ. Intuitively k ≥ 3 parties computing a symmetric function only get limited
benefits from the features of the multiparty model since their protocol cannot
significantly rely on the precise set of input positions accessible to each player
or on the fact that any (k − 1)-tuple of bits is seen by one party. We formalize
this idea by showing that any symmetric f with bounded k-party complexity for
a fixed k in fact has bounded two-party complexity.

Let us first deal with functions with boolean inputs. To any symmetric
function f : {0, 1}n → {0, 1}, we will naturally associate the function f̂ : {0, . . . ,

n} → {0, 1} such that f(x) = f̂(|x|1) for every x ∈ {0, 1}n and say that f is
(�, r, p)−periodic if f̂(a) = f̂(a + p) for � ≤ a ≤ n − r.

Theorem 22. If f : {0, 1}n → {0, 1} is symmetric and has bounded k-party
communication complexity then in fact f has bounded two-party complexity.

In the full version (see [8]), we extend this theorem to symmetric functions with
non-Boolean domains. The result in the Boolean case is established through the
next lemma. Recall that a simultaneous protocol is one in which each player
sends a single message to an extra party (the referee) who then computes the
answer solely based on the messages he received. In particular, the message
sent by a party does not depend on messages sent by other parties. Since a
k-party protocol of communication cost c can be easily turned into a k-party
simultaneous protocol with cost ck2c, functions of bounded complexity in the
simultaneous model are exactly those with bounded complexity in the standard
model.

Lemma 23. For any constants k, c with k ≥ 1 there exists an integer Nk+1 =
N(k + 1, c) such that every symmetric boolean function f : {0, 1}n → {0, 1} that
has a k +1-party simultaneous protocol of complexity c for the input partition in
which players X1, . . . , Xk each get Nk+1 bits and player Xk+1 gets the remaining
n − kNk+1 bits is (�, r, p)-periodic for some �, r ≤ kNk+1 and some p ≤ Nk+1.

Theorem 22 then follows by observing that an (�, r, p)-periodic function has
2-party simultaneous communication complexity roughly 2 · 	log(� + r + p)
.
The proof of Lemma 23, given in the full version ([8]), proceeds by induction
on k. The base case is due to [19] and our induction step uses a non-trivial
“player elimination” technique (as in [16]). More precisely, we use the Ramsey-
like theorem of Gallai [10] to show that if f has a (k + 1)-party protocol of
bounded cost then there exists a large set of inputs P for the foreheads of the
first k players on which player Pk+1 always sends the same communication. This
renders the (k + 1)st player irrelevant if the input lies in P and allows the use
of the induction hypothesis.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Languages with Bounded Multiparty Communication Complexity 511

References

1. A. Ambainis. Upper bounds on multiparty communication complexity of shifts. In
Proc. 13th STACS, pages 631–642, 1996.

2. L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols, pseudorandom genera-
tors for logspace, and time-space trade-offs. JCSS, 45(2):204–232, 1992.

3. D. A. M. Barrington, N. Immerman, C. Lautemann, N. Schweikardt, and
D. Thérien. First order expressibility of languages with neutral letters or: The
Crane Beach conjecture. JCSS, 70(2):101–127, 2005.

4. D. A. M. Barrington and H. Straubing. Superlinear lower bounds for bounded-
width branching programs. JCSS, 50(3):374–381, 1995.

5. P. Beame, T. Pitassi, and N. Segerlind. Lower bounds for Lovász-Schrijver systems
and beyond follow from multiparty communication complexity. In ICALP, pages
1176–1188, 2005.

6. P. Beame and E. Vee. Time-space tradeoffs multiparty communication complexity
and nearest neighbor problems. In 34th STOC, pages 688–697, 2002.

7. A. K. Chandra, M. L. Furst, and R. J. Lipton. Multi-party protocols. In STOC’83,
pages 94–99, 1983.

8. A. Chattopadhyay, A. Krebs, M. Koucký, M. Szegedy, P. Tesson and D. Thérien.
Languages with bounded multiparty communication complexity. In ECCC TR06-
118, 2006.

9. M. Goldmann and J. H̊astad. Monotone circuits for connectivity have depth
(log n)2−o(1). SIAM J. Comput., 27(5):1283–1294, 1998.

10. R. L. Graham, B. L. Rotschild, and J. H. Spencer. Ramsey Theorey. Series in
Discrete Mathematics. Wiley Interscience, 1980.

11. V. Grolmusz. Separating the communication complexities of MOD m and MOD p
circuits. In Proc. 33rd FOCS, pages 278–287, 1992.

12. V. Grolmusz. The BNS lower bound for multi-party protocols in nearly optimal.
Information and Computation, 112(1):51–54, 1994.

13. E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University
Press, 1997.

14. N. Nisan. The communication complexity of treshold gates. In Combinatorics,
Paul Erdös is Eighty, Vol. 1, pages 301–315, 1993.

15. J.-E. Pin. Syntactic semigroups. In Handbook of language theory, volume 1, chap-
ter 10, pages 679–746. Springer Verlag, 1997.

16. P. Pudlák. An application of Hindman’s theorem to a problem on communication
complexity. Combinatorics, Probability and Computing, 12(5–6):661–670, 2003.

17. J.-F. Raymond, P. Tesson, and D. Thérien. An algebraic approach to communica-
tion complexity. ICALP, 1443:29–40, 1998.

18. R. Raz. The BNS-Chung criterion for multi-party communication complexity.
Computational Complexity, 9(2):113–122, 2000.

19. M. Szegedy. Functions with bounded symmetric communication complexity, pro-
grams over commutative monoids, and ACC. JCSS, 47(3):405–423, 1993.

20. P. Tesson and D. Thérien. Complete classifications for the communication com-
plexity of regular languages. Theory of Computing Systems, 38(2):135–159, 2005.

21. P. Tesson and D. Thérien. Restricted two-variable sentences, circuits and commu-
nication complexity. In ICALP pages 526–538, 2005.

22. D. Thérien. Subword counting and nilpotent groups. In Combinatorics on Words:
Progress and Perspectives, pages 195–208. Academic Press, 1983.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Approximation Algorithms for Minimum
Cycle Bases of Graphs

Telikepalli Kavitha1, Kurt Mehlhorn2, and Dimitrios Michail2

1 Indian Institute of Science, Bangalore, India
kavitha@csa.iisc.ernet.in

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany
{mehlhorn,michail}@mpi-inf.mpg.de

Abstract. We consider the problem of computing an approximate min-
imum cycle basis of an undirected edge-weighted graph G with m edges
and n vertices; the extension to directed graphs is also discussed. In this
problem, a {0, 1} incidence vector is associated with each cycle and the
vector space over F2 generated by these vectors is the cycle space of G.
A set of cycles is called a cycle basis of G if it forms a basis for its cycle
space. A cycle basis where the sum of the weights of the cycles is mini-
mum is called a minimum cycle basis of G. Cycle bases of low weight are
useful in a number of contexts, e.g. the analysis of electrical networks,
structural engineering, chemistry, and surface reconstruction.

We present two new algorithms to compute an approximate minimum
cycle basis. For any integer k ≥ 1, we give (2k − 1)-approximation algo-
rithms with expected running time O(kmn1+2/k + mn(1+1/k)(ω−1)) and
deterministic running time O(n3+2/k), respectively. Here ω is the best
exponent of matrix multiplication. It is presently known that ω < 2.376.
Both algorithms are o(mω) for dense graphs. This is the first time that
any algorithm which computes sparse cycle bases with a guarantee drops
below the Θ(mω) bound.

We also present a 2-approximation algorithm with O(mω
√

n log n) ex-
pected running time, a linear time 2-approximation algorithm for planar
graphs and an O(n3) time 2.42-approximation algorithm for the complete
Euclidean graph in the plane.

1 Introduction

Let G = (V, E) be an undirected connected graph with m edges and n vertices.
A cycle of G is any subgraph of G where each vertex has even degree. Associated
with each cycle C is an incidence vector x, indexed on E, where for any e ∈ E,
xe is 1 if e is an edge of C and 0 otherwise. The vector space over F2 generated
by the incidence vectors of cycles is called the cycle space of G. It is well known
that this vector space has dimension N = m − n + 1, where m is the number of
edges of G and n is the number of vertices. A maximal set of linearly independent
cycles is called a cycle basis. The edges of G have non-negative weights assigned
to them. A cycle basis where the sum of the weights of the cycles is minimum
is called a minimum cycle basis of G. We use the abbreviation MCB to refer

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 512–523, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Approximation Algorithms for Minimum Cycle Bases of Graphs 513

to a minimum cycle basis. Minimum cycle bases are of considerable practical
importance and therefore the problem of computing an MCB has received con-
siderable attention. An early paper is by Stepanec [1]. Horton [2] presented the
first polynomial time algorithm. Faster and/or alternative algorithms were later
presented by de Pina [3], Golynski and Horton [4], Berger et al. [5], and Kavitha
et al. [6]. The current fastest algorithm [6] has running time O(m2n+mn2 log n).
Implementations are discussed in [7,8,9].

An important application of the MCB problem is the construction of sparse
systems when solving problems in electrical networks [10,3,5]. Other applications
are in structural engineering [11], chemistry and biochemistry [12], and surface
reconstruction from point clouds [13]. In most applications, the computation
of an MCB is a preprocessing step. The use of an MCB ensures sparseness
and translates into faster running times of the main algorithm. Unfortunately,
even the fastest exact minimum cycle basis algorithm has a running time of
Θ(m2n + mn2 log n). This may dominate the running time of the application.

However, most applications can work with any cycle basis and any constant
factor approximate minimum cycle basis may be substituted for a minimum
cycle basis without much affect on the application. In [6] an α-approximation
algorithm for any α > 1 is presented for the MCB problem; its running time is
o(m2n + mn2 log n)+ Θ(mω), where ω is the exponent of matrix multiplication.
It is known [14] that ω < 2.376. The time bound of Θ(mω) is still prohibitive for
some of the applications. It results from Gaussian elimination on m × m linear
systems.

We present a new approximation approach which leads to vastly improved
time bounds. In particular, for any integer k ≥ 1, we give two (2k − 1) approxi-
mation algorithms with expected running time O(kmn1+2/k + mn(1+1/k)(ω−1))
and deterministic running time O(n3+2/k), respectively. Both algorithms are
o(mω) for sufficiently dense graphs, the first algorithm for number of edges
m > max(n1+1/k,

ω−1
√

kn1+2/k) and the second algorithm for m > n
3
ω + 2

kω =
n1.26+ 0.84

k . The first algorithm is faster for sparser graphs and the second al-
gorithm for denser graphs. More precisely, the second algorithm is faster for
m > n4−ω+ 3−ω

k which with the current upper bound on ω is m > n1.624+ 0.624
k .

Our algorithms work in two phases. The first phase is a very fast computation
of a large number of cycles (all but O(n1+1/k) cycles) in an approximate MCB.
The second part is a more expensive computation of the remaining cycles. We
present two different ways for computing these remaining cycles, leading to the
above two algorithms, each faster for different graph densities. Only the second
phase needs a null space computation; it is a null space computation of a square
system of size O(n1+1/k). Our new algorithms are fast even when implemented
without fast matrix multiplication. Furthermore, by combining the techniques of
both the algorithms, we get an even faster algorithm at the expense of a larger
approximation factor.

We also present a 2-approximation algorithm with O(mω
√

n log n) expected
running time. For sparse graphs, this is subcubic. Moreover, we develop very
fast approximation algorithms for some special graph classes. For planar graphs

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

514 T. Kavitha, K. Mehlhorn, and D. Michail

we give a linear time 2-approximation algorithm and for the complete Euclidean
graph in the plane we give a 2.42-approximation algorithm with running time
O(n3). In higher dimensions we give a k-approximation algorithm for any k > 1
with running time O(sdn3 log n) where s = 4(k + 1)/(k − 1) and d is the fixed
dimension.

The minimum cycle basis problem for directed graphs is less studied. Poly-
nomial time algorithms are given in [15,16,17,18]. The fastest deterministic al-
gorithm [17] has running time O(m3n + m2n2 log n) and there is a Monte Carlo
algorithm [18,17] with running time O(m2n+mn2 log n). Some of our algorithms
generalize to directed graphs. We give a deterministic (2k − 1)-approximation
algorithm with running time O(n4+3/k), a Monte Carlo (2k − 1)-approximation
algorithm with running time O(n3+2/k), and a 2-approximation algorithm with
expected running time O(mω

√
n log n).

Preliminaries. Let T be any spanning tree in G(V, E), let e1, . . . , eN be the edges
of E \ T in some arbitrary but fixed order, and let eN+1, . . . , em be the edges
in T in some arbitrary but fixed order. We frequently view cycles in terms of
restricted incidence vectors1, that is, each cycle is a vector in {0, 1}N .

We use S and R to denote subsets of E \ T . Each such subset gives rise to an
incidence vector in {0, 1}N . We use 〈C, S〉 to denote the standard inner product
of vectors C and S. We say that a vector S is orthogonal to C if 〈C, S〉 = 0. In
the field F2, 〈C, S〉 = 1 if and only if C contains an odd number of edges of S.

For a cycle C, we use w(C) =
∑

e∈C w(e) to denote its weight. We use
wG(MCB) to denote the weight of a minimum cycle basis of graph G. When
it is clear by the context we omit G and write w(MCB). The following lemma
gives us a lower bound on w(MCB). See [6] for a proof.

Lemma 1 (de Pina [3]). Let R1, . . . , RN be linearly independent vectors in
{0, 1}N and let Ai be a shortest cycle in G such that 〈Ai, Ri〉 = 1. Then
∑N

i=1 w(Ai) ≤ w(MCB).

The sets Ri = {ei}, 1 ≤ i ≤ N , are clearly independent. The shortest cycle
C with 〈C, Ri〉 = 1 consists of the edge ei plus the shortest path in G \ {ei}
connecting its endpoints. We use SCi to denote this cycle. The cycle exists,
since there is always the spanning tree path in E \{ei} connecting the endpoints
of ei. Let SC = {SCi | 1 ≤ i ≤ N} be the shortest cycle multiset and let
w(SC) =

∑
C∈SC w(C) be its weight. By applying Lemma 1 to the cycles in SC,

we obtain Lemma 2.

Lemma 2. w(SC) ≤ w(MCB).
1 For a cycle C, use C to denote its incidence vector in {0, 1}N (restricted to e1, . . . , eN)

and C∗ to denote its incidence vector in {0, 1}m. Consider a set of cycles C1, . . . ,
Ck. Clearly, if the vectors C∗

1 to C∗
k are dependent, then so are the vectors C1 to Ck.

Conversely, assume that
�

i λiCi = 0. Then C =
�

i λiC
∗
i contains only edges in T .

Moreover, since C is a sum of cycles, each vertex has even degree with respect to C.
Thus, C = 0 and hence linear dependence of the restricted incidence vectors implies
linear dependence of the full incidence vectors. Thus we may restrict attention to
the restricted incidence vectors when discussing questions of linear independence.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Approximation Algorithms for Minimum Cycle Bases of Graphs 515

2 The New Approach

Our approximation algorithms are motivated by the shortest cycle multiset lower
bound (Lemma 2). We fix a parameter λ ≤ N and construct a set of linearly
independent cycles C1, . . . , Cλ such that w(Ci) ≤ (2k−1) ·w(SCi) for 1 ≤ i ≤ λ.
In the second phase, we extend the partial basis to a full basis. We offer two
alternatives for the second phase. Let t = 2k − 1.

Now we give the details of the first phase. We construct the cycles C1, . . . , Cλ

using a sparse t-spanner of G. A multiplicative t-spanner of a graph G is a
subgraph G′(V, E′), E′ ⊆ E such that for any u, v ∈ V we have w(SPG′(u, v)) ≤
t · w(SPG(u, v)) where SPG(u, v) denotes a shortest path in G from u to v.
When it is clear from the context we omit the subscript G and write SP(u, v).
Let G′(V, E′) be such a t-spanner of G. Since we can always add the edges in
the spanning tree T to E′, we may assume T ⊆ E′. We also assume that the
edges are indexed such that E \ E′ = {e1, . . . , eλ}.

For each edge ei = (u, v) ∈ E \E′, let Ci be formed by ei and SPG′(u, v). The
cycles Ci, 1 ≤ i ≤ λ are clearly independent since ei is contained in precisely Ci.
We have w(Ci) = w(ei) + w(SPG′(u, v)) ≤ w(ei) + t · w(SPG(u, v)) ≤ t · w(SCi).

The running time of phase 1 is easily estimated. As pointed out by Althöfer et
al. [19] every weighted undirected graph on n vertices has a (2k−1)-spanner with
O(n1+1/k) edges where k ≥ 1 is an integer. Such a spanner can be constructed
using an algorithm similar to Kruskal’s algorithm for constructing minimum
spanning trees. In order to build the spanner, consider all edges of the graph in
non-decreasing order of weight, adding each edge to the spanner if its endpoints
are not already connected, in the spanner, by a path using at most 2k −1 edges.
At any stage, the spanner is a (2k − 1)-spanner of the edges already considered,
and its unweighted girth is at least 2k + 1, so it has only O(n1+1/k) edges. The
above procedure can be implemented in O(mn1+1/k) time.

In the above spanner we are going to perform λ shortest path computa-
tions,one for each edge of G that is not in the spanner. Using Dijkstra’s al-
gorithm we need O(λ · (n1+1/k +n logn)) time and since λ ≤ m we can compute
both the spanner and the λ linearly independent cycles in time O(mn1+1/k). We
should mention that there are faster algorithms to construct similar spanners,
see for example [20]. However, the construction by Althöfer et al. suffices for our
purposes.

3 The Remaining Cycles

In the preceding section we computed most of the cycles of an approximate
minimum cycle basis. We are left with computing the remaining cycles. The
number of additional cycles is N − λ. Note that this is exactly the dimension
of the cycle space of the spanner G′. We present two different algorithms. The
first approach uses all the edges in G to construct the remaining cycles while the
second approach uses only the edges eλ+1, . . . , em of the spanner.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

516 T. Kavitha, K. Mehlhorn, and D. Michail

3.1 The First Approach

We first need to briefly review the algorithm in [6] in order to compute a min-
imum cycle basis; it refines a previous algorithm by de Pina [3]. The algorithm
is recursive. We immediately describe the modification of the algorithm needed
for our purposes.

The general step adds some number k of cycles to a partial basis PB of size
α. This step takes as input an integer k ≥ 1, and k linearly independent vectors
Sα+1, . . . , Sα+k orthogonal to the cycles in PB. These vectors, viewed as sets,
have the additional property that Sα+i ∩{eα+1, . . . , eN} = {eα+i} for 1 ≤ i ≤ k.
The step updates Sα+1, . . . , Sα+k and returns k cycles Zα+1, . . . , Zα+k such that
〈Zi, Sj〉 = δij for α + 1 ≤ i ≤ j ≤ α + k (here δij is 1 if i = j and 0 otherwise).
The update has the additional property that it does not affect the orthogonality
w.r.t the partial basis PB. Observe, that the cycles PB ∪ {Zα+1, . . . , Zα+k} are
linearly independent. To see this note that for any 1 ≤ i ≤ k, 〈Zα+i, Sα+i〉 = 1
while any cycle C in the span of PB ∪ {Zα+1, . . . , Zα+i−1} has 〈C, Sα+i〉 = 0.

The top level call: We call the recursive procedure with the partial basis of
phase 1, namely PB = {C1, . . . , Cλ} and ask it to compute μ = N −λ additional
cycles. Let us write the C1, . . . , Cλ in the form of a λ × N matrix with one row
per cycle. Then ⎛

⎜
⎝

C1

...
Cλ

⎞

⎟
⎠ =

(
Iλ B

)
(1)

where Iλ is the λ × λ identity matrix and B is a λ × μ matrix. The matrix has
this form since each of the edges ei for 1 ≤ i ≤ λ belongs only to the cycle Ci.
Set

(
Sλ+1 . . . Sλ+μ

)
=

(
B
Iμ

)

. (2)

Then the product of the matrix of C’s on the left side of Equation (1) and the
matrix of S’s on the left side of Equation (2) is B + B = 0, i.e., the S’s are
orthogonal to the C’s. Moreover, Sλ+i ∩ {eλ+1, . . . , eN} = eλ+i for 1 ≤ i ≤ μ.
The running time required to compute this null space basis is the time required
to output the already known matrix B. By using some sparse representation
of the vectors we need at most O(λ · μ) time. In the general case λ ≤ m and
μ = N − λ ∈ O(n1+1/k). Thus, initialization of phase 2 needs O(mn1+1/k) time.

The recursive case, k ≥ 2: Let � = �k/2�. We first call the algorithm recursively
with � and Sα+1 to Sα+�. The call will return cycles Zα+1 to Zα+� and updated
sets Sα+1 to Sα+�. We next update the sets Sα+�+1 to Sα+k. The set Sα+j ,
� + 1 ≤ j ≤ k, is replaced by a sum Sα+j +

∑
1≤i≤� βjiSα+i where the βji

are chosen such that the updated Sα+j becomes orthogonal to the cycles Zα+1

to Zα+�. Observe that orthogonality to the cycles in PB is not affected. The
update step is implemented using fast matrix multiplication and takes time
O(mkω−1). The final step is to call the algorithm recursively for the remaining

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Approximation Algorithms for Minimum Cycle Bases of Graphs 517

cycles. We therefore have the following recursion for the running time: T (k) =
T (�k/2�) + T (k/2�) + O(mkω−1) for k ≥ 2. This solves to T (k) = k · T (1) +
O(mkω−1). We call the algorithm with k = μ and hence have total running time
μ · T (1) + O(mμω−1).

The base case, k = 1: The algorithm computes a t-approximate shortest2 cycle
C with 〈C, Sα+1〉 = 1. The shortest cycle C with 〈C, Sα+1〉 = 1 can be computed
as follows. We set up an auxiliary graph G† with two copies, say v′ and v′′, for
each vertex v, and two copies e′ and e′′ for each edge e = (u, v) ∈ E. If e ∈ Sα+1,
the copies are (u′, v′′) and (u′′, v′) and if e �∈ Sα+1, the copies are (u′, v′) and
(u′′, v′′). Then a shortest cycle C with 〈C, Sα+1〉 = 1 corresponds to a shortest
path connecting the two copies of some vertex v minimized over all v. Such
a path can be found by n shortest path computations in the auxiliary graph.
In order to compute a t-approximate shortest cycle C with 〈C, Sα+1〉 = 1 we
compute t-approximate single source shortest paths between n pairs of vertices.

We need to perform a total of μn approximate shortest path computations.
Therefore, we require a faster algorithm than constructing a spanner. We use
an approximate distance oracle. Thorup and Zwick [20] constructed a structure
which answers (2k − 1)-approximate shortest path queries in time O(k). The
structure requires space O(kn1+1/k) and can be constructed in expected time
O(kmn1/k).

Using such a construction, we bound T (1) by the cost of computing the ap-
proximate distance oracle (O(kmn1/k) expected time) and the cost of performing
n queries to the oracle. Each query costs O(k) and thus a total cost of O(nk).
Forming the actual cycle can be done in time linear to its length which is O(n).
Thus, T (1) = O(kmn1/k) and therefore T (μ) = O(μkmn1/k + mμω−1). Since
μ ∈ O(n1+1/k) we get a bound of O(kmn1+2/k + mn(1+1/k)(ω−1)).

Approximation guarantee. We prove that the computed set of cycles is a t-
approximation of the MCB. Consider the vectors Sλ+1, . . . , SN at the end of the
algorithm and define Si = {ei} for 1 ≤ i ≤ λ. Then each Ci, 1 ≤ i ≤ N , is a
t-approximation of the shortest cycle in G having odd intersection with Si. All
we need to show is Lemma 3. Then the approximation guarantee follows from
Lemma 1.

Lemma 3. The vectors S1, . . . , SN are linearly independent.

Proof. Consider any i. We have 〈Ci, Si〉 = 1 and 〈Ci, Sj〉 = 0 for all j ≥ i + 1.
The latter holds for j > λ by the invariants of the recursive procedure and
it holds for i < j ≤ λ since Ci consists of edge ei and edges in the spanner
(which have index greater than λ) and Sj = {ej}. Thus, Si is independent of
the Si+1, . . . , SN and the lemma follows.

Theorem 1. For any integer k ≥ 1, a (2k − 1)-approximate MCB can be com-
puted in expected time O(kmn1+2/k + mn(1+1/k)(ω−1)) in undirected weighted
graphs. An O(log n)-approximate MCB in expected time O(mnω−1 + mn log n).
2 The original algorithm in [6] constructs a shortest cycle.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

518 T. Kavitha, K. Mehlhorn, and D. Michail

3.2 The Second Approach

Our second algorithm to compute the remaining cycles of our cycle basis, just
computes a minimum cycle basis of the t-spanner G′. The dimension of the cycle
space of G′ is μ = N − λ and thus we have the right number of cycles. Let
Cλ+1, . . . , CN be an MCB of G′. Cycles {C1, . . . , Cλ} ∪ {Cλ+1, . . . , CN} are by
definition linearly independent and we are also going to prove that they form a
t-approximation of an MCB of G.

For 1 ≤ i ≤ λ, we have Ci = ei + pi, where pi is a shortest path in G′

between the endpoints of ei. In order to show that cycles C1, . . . , CN are a
t-approximation of the MCB, we again define appropriate linearly independent
vectors S1, . . . , SN ∈ {0, 1}N and use Lemma 1. Consider the exact
algorithm in [6] executing with the t-spanner G′ as its input. Other than the cy-
cles Cλ+1, . . . , CN , the algorithm also returns vectors Rλ+1, . . . , RN ∈ {0, 1}N−λ

such that 〈Ci, Rj〉 = 0 for λ + 1 ≤ i < j ≤ N and Ci is a shortest cycle in G′

such that 〈Ci, Ri〉 = 1 for λ+1 ≤ i ≤ N . Moreover, the (N −λ)×(N −λ) matrix
whose j-th row is Rj is lower triangular with 1 in its diagonal. This implies that
the Rj ’s are linearly independent. Given any vector S ∈ {0, 1}N let S̃ be the
projection of S onto its last N − λ coordinates. In other words, if S is an edge
set of G, then let S̃ be the edge set restricted only to the edges of G′. We define
Sj for 1 ≤ j ≤ N as follows. Let S1, . . . , Sλ be the first λ unit vectors of {0, 1}N .
For λ + 1 ≤ j ≤ N define Sj as:

Sj = (−〈C̃1, Rj〉, . . . , −〈C̃λ, Rj〉, Rj,1, Rj,2, . . . , Rj,(N−λ)),

where Rj,1, . . . , Rj,(N−λ) are the coordinates of the vector Rj ∈ {0, 1}N−λ. Note
that the vectors Sj for 1 ≤ j ≤ N , defined above, are linearly independent. This
is because the N ×N matrix whose j-th row is Sj is lower triangular with 1’s in
its diagonal. The above definition of Sj ’s is motivated by the property that for
each 1 ≤ i ≤ λ, we have 〈Ci, Sj〉 = −〈C̃i, Rj〉 + 〈C̃i, Rj〉 = 0, since the cycle Ci

has 0 in all first λ coordinates, except the i-th coordinate, which is 1. Lemma 4,
shown below, together with Lemma 1, implies the correctness of our approach.

Lemma 4. Consider the above defined Sj for 1 ≤ j ≤ N and let Dj be the
shortest cycle in G such that 〈Dj , Sj〉 = 1. Cycle Cj has weight at most t times
the weight of Dj.

Proof. This is obvious for 1 ≤ j ≤ λ since Dj is a shortest cycle in G which uses
edge ej and Cj = ej + pj , where pj is a t-approximate shortest path between
the endpoints of ej . Consider now Dj for λ + 1 ≤ j ≤ N . If Dj uses any edge
ei for 1 ≤ i ≤ λ we replace it with the corresponding shortest path in the
spanner. This is the same as saying consider the cycle Dj +Ci instead of Dj. Let
D′

j = Dj +
∑

1≤i≤λ(ei ∈ Dj)Ci where (ei ∈ Dj) is 1 if ei ∈ Dj and 0 if ei /∈ Dj .
Then

〈D′
j , Sj〉 = 〈Dj , Sj〉 +

∑

1≤i≤λ

(ei ∈ Dj)〈Ci, Sj〉.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Approximation Algorithms for Minimum Cycle Bases of Graphs 519

But recall that our definition of Sj ensures that 〈Ci, Sj〉 = 0 for 1 ≤ i ≤ λ. This
implies that 〈D′

j , Sj〉 = 〈Dj , Sj〉 = 1. But D′
j by definition has 0 in the first λ

coordinates and S̃j = Rj , which in turn implies that 〈D̃′
j , Rj〉 = 1.

Cj is a shortest cycle in G′ such that 〈Cj , Rj〉 = 1. Thus, Cj has weight at
most the weight of D̃′

j , and by construction, D′
j has weight at most t times the

weight of Dj .

Thus, we have shown that the cost of our approximate basis is at most t times
the cost of an optimal basis. As a t-spanner we will again use a (2k−1)-spanner.
The best time bound in order to compute an MCB is O(m2n + mn2 log n) and
since a (2k − 1)-spanner has at most O(n1+1/k) edges the total running time
becomes O(n3+2/k).

Theorem 2. A (2k−1)-approximate MCB, for any integer k ≥ 1, in a weighted
undirected graph can be computed in time O(n3+2/k). An O(log n)-approximate
MCB can be computed in time O(n3 log n).

Further results. By combining the two approaches we can get even faster algo-
rithms in the expense of an increased approximation ratio. Due to space restric-
tions, details of this and several following results can be found in the full version
of this paper.

Our techniques for 2k−1 approximate minimum cycle basis can also be applied
to the minimum cycle basis problem in directed graphs. The problem definition
is described in Section 4.1. We simply state our results here.

Theorem 3. For any integer k ≥ 1, a (2k − 1) approximate MCB of a directed
graph with non-negative edge weights can be computed in time O(n4+3/k). If we
allow randomization it can be computed, with high probability, in time O(n3+2/k).

For some classes of graphs which admit better spanners, our approaches lead to
very fast approximation algorithms. For the complete Euclidean graph in two
dimensions we get a 2.42 approximation in time O(n3). Similar results can be
obtained in higher (but fixed) dimensions. For planar graphs we get a linear time
2 approximation by just returning the list of bounded faces.

Practical considerations. Both approaches (Section 3.1 and 3.2) use fast matrix
multiplication. However, they are also efficient even when used without fast
matrix multiplication. This fact has high practical value since high performance
fast matrix multiplication libraries are difficult to implement. Instead of the
O(m2n + mn2 log n) algorithm to compute an MCB in G′, use the O(m3 +
mn2 log n) algorithm from [3], which is the fastest algorithm to compute an
MCB without fast matrix multiplication.

Theorem 4. A (2k − 1)-approximate MCB, for any integer k ≥ 1, can be com-
puted in an undirected weighted graph without fast matrix multiplication in ex-
pected O(kmn1+2/k + mn2+2/k) and deterministic O(n3+3/k) time respectively.

Both our algorithms are o(mω) for sufficiently dense graphs and appropriate
values of k. Moreover, they are easy to implement efficiently. Preliminary exper-
iments suggest a significant speedup in practice.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

520 T. Kavitha, K. Mehlhorn, and D. Michail

4 A 2-Approximation Algorithm

For any undirected (connected) graph G = (V, E) with n vertices and m edges,
Horton [2] defined a set of O(mn) cycles and proved that it contains an MCB.
An MCB can be found by determining the least weight N = m − n + 1 linearly
independent cycles from this set, using Gaussian elimination. We define a set of
O(m

√
n log n) cycles and show that it contains a 2-approximate minimum cycle

basis; our set is a subset of Horton’s set. Again, the basis is extracted from the
set by determining the least weight N linearly independent cycles in it.

For a vertex x ∈ V and an edge e = (u, v) ∈ E, let C[x, e] = SP(x, u) + e +
SP(v, x) be the cycle consisting of the edge e and the shortest paths from x to
its endpoints. Horton’s collection consists of the cycles C[x, e] for all x ∈ V and
e ∈ E. We use a subset of Horton’s collection.

Definition 1. For v, x ∈ V and S ⊂ V , bunch(v, S) consists of all vertices
closer to v than to any vertex in S and cluster(x, S) consists of all vertices v
with x ∈ bunch(v, S).

Lemma 5 (Thorup and Zwick [21]). Given a weighted graph G = (V, E)
and 0 < q < 1, one can compute a set S ⊂ V of size O(nq log n) in expected
time O(m/q log n) such that |cluster(x, S)| = 1/q for all x ∈ V .

We take a value q = 1/
√

n log n here and first compute in expected time
O(m

√
n log3/2 n) a set S ⊂ V of O(

√
n log n) vertices as given in Lemma 5.

This ensures that cluster(v, S) has size
√

n logn for all v ∈ V . Also, bunch(v, S)
for all v can be computed in expected time O(m/q) [20], which is O(m

√
n log n).

We use two types of cycles:

– the O(m
√

n log n) cycles C[s, e] for all s ∈ S and e ∈ E,
– the cycles C[u, e] for each u ∈ V and e = (v, w) ∈ E and either v or w in

bunch(u, S). The number of such cycles is
∑

u∈V

∑
v∈bunch(u,S) deg(v). This

is the same as
∑

v∈V deg(v)·|cluster(v, S)|, which is
√

n log n
∑

v∈V deg(v) =
m

√
n log n.

Thus, our collection has O(m
√

n log n) cycles. We need to show that it con-
tains a 2-approximate cycle basis. Let B1, . . . , BN be the minimum cycle ba-
sis of G determined by Horton’s algorithm in order of increasing weight, i.e.,
w(B1) ≤ w(B2) ≤ · · · ≤ w(BN). We show that each Bi =

∑
C∈Ci

C where Ci

is a subset of our collection and each cycle in Ci has cost at most 2w(Bi). This
implies that our collection contains N linearly independent cycles A1, . . . , AN

with w(Ai) ≤ 2 · w(Bi) for i = 1, . . . , N . Assume otherwise and let j be min-
imal such that ∪i≤jCi contains less than j linearly independent vectors with
w(Ai) ≤ 2·w(Bi) for i = 1, . . . , j. Then j ≥ 1 and ∪i≤j−1Ci contains at least j−1
linearly independent vectors with w(Ai) ≤ 2 · w(Bi) for i = 1, . . . , j − 1. Also,
∪i≤jCi spans {B1, . . . , Bi} and hence contains at least i linearly independent
vectors. Thus, it contains a vector Aj linearly independent from {A1, . . . , Aj−1}.
Furthermore, Aj ∈ Ci for some i ≤ j and hence w(Aj) ≤ 2w(Bi) ≤ 2w(Bj),
a contradiction.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Approximation Algorithms for Minimum Cycle Bases of Graphs 521

Consider any Bi. If Bi belongs to our collection, we set Ci = {Bi}. Otherwise,
Bi = C[u, e] where e = (v, w) and neither v nor w is in bunch(u, S). Let s ∈ S be
the nearest vertex in S to u. Then, w(SP(s, u)) ≤ w(SP(u, v)) and w(SP(s, u)) ≤
w(SP(u, w)).

For any edge f ∈ Bi, the cycle C(s, f) is in our collection and furthermore
Bi =

∑
f∈Bi

C(s, f) since the paths from s to the endpoints of the edges in Bi

appear twice in this sum and cancel out. We set Ci = {C(s, f) | f ∈ Bi}. It
remains to show w(C(s, f)) ≤ 2w(Bi) for all f ∈ Bi. We distinguish cases.

Assume first that f �= e. Then f ∈ SP(u, v) or f ∈ SP(u, w). We may as-
sume w.l.o.g. that the former is the case. Then w(C(s, f)) ≤ w(SP(s, u)) +
w(SP(u, v))+w(SP(v, s)) since C(s, f) consists of f and the shortest paths from
s to the endpoints of f and w(SP(v, s)) ≤ w(SP(s, u)) + w(SP(u, v)) by the
triangle inequality. Thus w(C(s, f)) ≤ 2(w(SP(s, u)) + w(SP(u, v))) ≤ 2w(Bi)
since w(SP(s, u)) ≤ w(SP(u, w)).

Assume next that f = e. Then w(C(s, f)) = w(SP(s, v))+c(e)+w(SP(w, s)) ≤
w(SP(s, u)) + w(SP(u, v)) + c(e) + w(SP(s, u)) + w(SP(u, w)) ≤ 2w(SP(u, v)) +
c(e) + 2w(SP(u, w)) ≤ 2w(Bi).

We sort our collection in non-decreasing order of weight and do Gaussian
elimination on their incidence vectors, restricted to the N edges e1, . . . , eN . This
determines the least weight N linearly independent cycles in our collection. The
time taken for the Gaussian elimination step, which is the most expensive step
in our algorithm, is O(mω

√
n logn) using fast matrix multiplication.

Theorem 5. A 2-approximate MCB in an undirected graph G with non-negative
edge weights can be computed in expected time O(mω

√
n log n).

4.1 Extension to Directed Graphs

The above algorithm also holds for directed graphs. A cycle in a directed graph
is a cycle in the underlying undirected graph with edges traversable in both di-
rections. A {−1, 0, 1} edge incidence vector is associated with each cycle: edges
traversed by the cycle in the right direction get 1 and edges traversed in the
opposite direction get −1. The cycle space is the space generated by these cycle
vectors over Q. Note that the weight of a cycle is simply the sum of the weight
of its edges, independent of the orientation of these edges. Let C = (e1, . . . , ek)
be a cycle in a directed graph and let ei = (ui, ui+1). Then we can write
C =

∑k
i=1 SP(s, ui) + ei + SP(ui+1, s) where uk+1 = u1, since SP(s, ui) can-

cels SP(ui, s). Note that SP(a, b) for us here need not be a directed path - it is
a shortest path in the underlying undirected graph between a and b. However,
the incidence vector of this path in the directed graph would contain −1’s cor-
responding to edges which are traversed in the reverse direction. All the steps in
the above construction go through for directed minimum cycle bases too and we
have a collection of O(m

√
n logn) cycles which is a superset of a 2-approximate

directed minimum cycle basis.
However, when we do Gaussian elimination, we are no longer over F2 and so

the numbers could grow large. So we can no longer claim that the time taken for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

522 T. Kavitha, K. Mehlhorn, and D. Michail

Gaussian elimination is O(mω
√

n logn). But if we choose a prime p uniformly
at random from a collection of small primes and do the arithmetic in Gaussian
elimination modulo p, then our cost remains O(mω

√
n log n) and we will show

that with high probability we determine the cycles of a 2-approximate MCB.

Arithmetic modulo p. The problem with doing arithmetic modulo any number p
is that the least weight N linearly independent cycles in our collection could turn
out to be linearly dependent modulo p. That is, the determinant of the N × N
matrix M , defined by incidence vectors of these N cycles, is a multiple of p. In
that case, our algorithm is not guaranteed to return a 2-approximate minimum
cycle basis.

Now we will use the property that all the entries in the matrix M are −1, 0, 1,
to show a bounded error when p is a prime chosen uniformly at random from
a collection P = {p1, . . . , pN2} of N2 distinct primes, where each pi ≥

√
N . It

follows from Hadamard’s inequality that the absolute value of the determinant
of M is at most NN/2, since each of the N rows is a vector in {−1, 0, 1}N . Thus,
at most N elements of P can be divisors of det(M). So the probability that a
random element of P divides det(M) is ≤ N/N2 = 1/N . So with probability
1 − 1/N , arithmetic modulo p yields the least weight N linearly independent
cycles from the collection of O(m

√
n logn) cycles.

The value of π(r), the number of primes less than r, is given by r/6 log r ≤
π(r) ≤ 8r/log r [22]. So all the primes p1, . . . , pN2 are Õ(N2), and computing
them takes Õ(N2) time using a sieving algorithm. Arithmetic modulo p ensures
that all numbers are Õ(N2) and we can assume that arithmetic on O(log N) bit
numbers takes O(1) time. It follows that addition, subtraction and multiplication
in Zp can be implemented in unit time since p is Õ(N2). However, we also need
to implement division efficiently. Once p is chosen, we compute the multiplicative
inverses of all elements in Z

∗
p by the extended Euclid’s gcd algorithm by solving

ax = 1(modp) for each a ∈ Z
∗
p. This takes time O(log p) for each element and

hence O(p log p) = Õ(N2) for all the elements. Thus, we have shown the following
theorem.

Theorem 6. A 2-approximate minimum cycle basis can be computed with high
probability in expected time O(mω

√
n log n) in an directed graph G with n ver-

tices, m edges and non-negative edge weights.

5 Conclusions

In this paper we design faster algorithms for computing approximate minimum
cycle basis of undirected graphs. To the best of our knowledge it is the first time
that sparse cycle bases with a guarantee are computed in o(mω) time. Our tech-
niques extend also to the directed version of the minimum cycle basis problem
in which the base field is Q instead of F2. We present very fast approximate
algorithms for this version as well.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Approximation Algorithms for Minimum Cycle Bases of Graphs 523

References

1. Stepanec, G.F.: Basis systems of vector cycles with extremal properties in graphs.
Uspekhi Mat. Nauk 19 (1964) 171–175

2. Horton, J.D.: A polynomial-time algorithm to find a shortest cycle basis of a graph.
SIAM Journal of Computing 16 (1987) 359–366

3. de Pina, J.: Applications of Shortest Path Methods. PhD thesis, University of
Amsterdam, Netherlands (1995)

4. Golynski, A., Horton, J.D.: A polynomial time algorithm to find the minimum
cycle basis of a regular matroid. In: SWAT. (2002)

5. Berger, F., Gritzmann, P., de Vries, S.: Minimum cycle basis for network graphs.
Algorithmica 40(1) (2004) 51–62

6. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.E.: A faster algorithm for
minimum cycle basis of graphs. In: 31st International Colloquium on Automata,
Languages and Programming, Finland. (2004) 846–857

7. Huber, M.: Implementation of algorithms for sparse cycle bases of graphs. Tech-
nical report, Technische Universität München (2002) http://www-m9.ma.tum.de/
dm/cycles/mhuber.

8. Kreisbasenbibliothek CyBaL. http://www-m9.ma.tum.de/dm/cycles/cybal (2004)
9. Mehlhorn, K., Michail, D.: Implementing minimum cycle basis algorithms. In:

WEA. Volume 3503 of LNCS. (2005) 32–43
10. Swamy, M.N.S., Thulasiraman, K.: Graphs, Networks, and Algorithms. John Wiley

& Sons, New York (1981)
11. Cassell, A.C., Henderson, J.C., Ramachandran, K.: Cycle bases of minimal measure

for the structural analysis of skeletal structures by the flexibility method. In: Proc.
Royal Society of London Series A. Volume 350. (1976) 61–70

12. Gleiss, P.M.: Short Cycles, Minimum Cycle Bases of Graphs from Chemistry and
Biochemistry. PhD thesis, Fakultät Für Naturwissenschaften und Mathematik der
Universität Wien (2001)

13. Tewari, G., Gotsman, C., Gortler, S.J.: Meshing genus-1 point clouds using discrete
one-forms. Computers and Graphics (2006) to appear.

14. Coppersmith, D., Winograd, S.: Matrix multiplications via arithmetic progressions.
Journal of Symb. Comput. 9 (1990) 251–280

15. Kavitha, T., Mehlhorn, K.: A polynomial time algorithm for minimum cycle basis
in directed graphs. In: STACS 2005. Volume 3404 of LNCS. (2005) 654–665

16. Liebchen, C., Rizzi, R.: A greedy approach to compute a minimum cycle basis of
a directed graph. Inf. Process. Lett. 94(3) (2005) 107–112

17. Hariharan, R., Kavitha, T., Mehlhorn, K.: A faster deterministic algorithm for
minimum cycle basis in directed graphs. In: Proceedings of ICALP. Volume 4051
of LNCS. (2006) 250–261

18. Kavitha, T.: An Õ(m2n) randomized algorithm to compute a minimum cycle basis
of a directed graph. In: Proceedings of ICALP, LNCS 3580. (2005) 273–284

19. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete Comput. Geom. 9(1) (1993) 81–100

20. Thorup, M., Zwick, U.: Approximate distance oracles. In: ACM Symposium on
Theory of Computing. (2001) 183–192

21. Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of 13th ACM
Symposium on Parallel Algorithms and Architecture. (2001) 1–10

22. Apostol, T.M.: Introduction to Analytic Number Theory. Springer-Verlag (1997)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www-m9.ma.tum.de/dm/cycles/mhuber
http://www-m9.ma.tum.de/dm/cycles/mhuber
http://www-m9.ma.tum.de/dm/cycles/cybal

On Completing Latin Squares

Iman Hajirasouliha1, Hossein Jowhari1, Ravi Kumar2, and Ravi Sundaram3

1 Simon Fraser University, Burnaby, BC, Canada V5A 1S6
{ihajiras,hjowhari}@cs.sfu.ca

2 Yahoo! Research, Sunnyvale, CA 94089, USA
ravikumar@yahoo-inc.com

3 Northeastern University, Boston, MA 02115, USA
koods@ccs.neu.edu

Abstract. We present a (2
3 −ε)-approximation algorithm for the partial

latin square extension (PLSE) problem. This improves the current best
bound of 1− 1

e
due to Gomes, Regis, and Shmoys [5]. We also show that

PLSE is APX-hard.
We then consider two new and natural variants of PLSE. In the first,

there is an added restriction that at most k colors are to be used in the
extension; for this problem, we prove a tight approximation threshold of
1 − 1

e
. In the second, the goal is to find the largest partial Latin square

embedded in the given partial Latin square that can be extended to
completion; we obtain a 1

4 -approximation algorithm in this case.

1 Introduction

Latin squares are elementary combinatorial objects that have been studied for
a long time [14]. Informally, a Latin square is an n × n grid, where each cell is
filled with a number in {1, . . . , n} and each number occurs exactly once in every
row and every column. A partially filled latin square (PLS) is an n × n grid,
where each cell is either empty or filled with a number in {1, . . . , n} and each
number occurs at most once in every row and every column. Besides being inter-
esting objects from a mathematical point of view, PLSs have found applications
in statistical design, error-correcting codes, and more recently, optical routing.
Sudoku puzzles, one of the current fads, are PLSs with additional properties.

To motivate an algorithmic study of PLSs, consider their applications in op-
tical routers [1]. Routers in an optical network are connected by fiber optic links
that support a certain number of wavelengths. Each router has some input and
output links and is capable of switching wavelengths to avoid conflicts in fiber
links. Suppose the router has n input and n output ports and each link can carry
n different wavelengths. The snapshot of an active router can be modeled by a
PLS as follows. Associate each input port with a row and each output port with
a column in the PLS and consider a light signal that comes from the input port
i and is routed to the output port j with the new wavelength of k. This can be
reflected by assigning k to the cell (i, j) in the PLS.

The question of how much can we increase the utilization of the router is
precisely the problem of assigning numbers to the empty cells in a PLS; this is the

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 524–535, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Completing Latin Squares 525

PLS extension problem (PLSE). Colbourn [2] showed that the decision version
of PLSE is NP-complete. Kumar, Russell, and Sundaram [10] presented two
approximation algorithms for PLSE that achieves factors 1

3 and 1
2 (see Section 2

for definition of approximation). Gomes, Regis, and Shmoys [5] obtained an LP-
based approximation algorithm that achieves a factor 1 − 1

e , which is currently
the best known.

Consider the following two natural variants of the PLSE problem. In the k-
PLSE problem, the goal is to use at most k different numbers to fill the empty
cells in a PLS. This problem arises in optical routers when we wish to invest
in at most k new wavelengths, say because of resource considerations. In the
c-PLSE problem, the goal is to find the largest PLS embedded in the given PLS
that can be extended to completion. This problem arises naturally when we wish
to build out an existing network to completion while retaining as much of the
existing infrastructure as possible. To the best of our knowledge, neither k-PLSE
nor c-PLSE has been studied before.

1.1 Main Results

We obtain a (2
3 − ε)-approximation algorithm for the PLSE problem. This im-

proves the current best bound of 1− 1
e due to Gomes, Regis, and Shmoys [5]. Our

algorithm is based on local search and we analyze its performance by appealing
to a packing bound of Hurkens and Schrijver [8]. We also show that PLSE is
APX-hard, thereby strengthening the NP-hardness result of Colbourn [2].

We then study the k-PLSE problem. For this problem, we first show a natural
greedy algorithm that achieves an approximation factor 1

2 . We also show that a
randomized rounding procedure applied on the LP formulation of the problem
achieves a factor 1 − 1

e − ε. Moreover we show that this is almost the best
possible, i.e. no polynomial-time algorithm for k-PLSE can achieve factor better
than 1 − 1

e + ε unless P = NP.
Finally, for the c-PLSE problem, based on a theorem of Ryser [14], we present

a 1
4 -approximation algorithm.

2 Preliminaries

Let [n] = {1, . . . , n}. A partial Latin square (PLS) of order n is an n × n array
whose cells are empty or contain a color from [n], with the restriction that no
color is repeated in a row or column. When the PLS has no empty cells it is
simply called a latin square (LS). We denote the content of the (i, j)-th cell in
the PLS L by L(i, j). The number of non-empty cells of L is denoted |L|.

A PLS L′ is an extension of a PLS L if L′(i, j) = L(i, j) holds for all non-
empty cells L(i, j); we denote this by L � L′. Naturally, L′ can be obtained by
coloring some of the empty cells in L, while maintaining the coloring restriction.

The partial Latin square extension problem (PLSE) is, given a PLS L, color
the maximum number of empty cells in L using colors in [n], i.e., find PLS L′

such that L′ � L and |L′| is maximized. The k-partial latin square extension

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

526 I. Hajirasouliha et al.

problem (k-PLSE) is, given a PLS L of order n, color the maximum number
of empty cells in L by colors in [n] such that at most k colors are used in the
coloring. Note that, the colors originally present in L are counted when and only
when they are used again in L′. It is clear that PLSE is the same as n-PLSE. The
c-partial latin square extension problem (c-PLSE) is, given a PLS L of order n,
find the largest c, 0 ≤ c ≤ 1, such that L contains a PLS L′ with |L′| = c|L| and
L′ can be extended to completion. It is clear that when an instance of c-PLSE
has c = 1 it means that it can be extended to completion.

A ρ-approximation to these problems is to find a PLS L′ such that |L′| is
within ρ of the optimum solution to the problem, where 0 < ρ ≤ 1.

2.1 The 3EDM Problem

To facilitate the presentation of our results, we define the following new problem
called 3EDM : given a tripartite graph, this problem corresponds to finding the
largest number of edge disjoint triangles in the graph. Similarly, in the k-3EDM
problem, the goal is to find the largest number of edge disjoint triangles in
a tripartite graph, with the constraint that at most k vertices from the third
partition are touched by the triangles. We argue that 3EDM and PLSE problems
are equivalent, i.e., there are value-preserving reductions from PLSE to 3EDM
and vice versa.

Theorem 1. The PLSE and 3EDM problems are equivalent.

Proof. The reduction from PLSE to 3EDM is straightforward. Given an n × n
instance L of PLSE, create a tripartite graph G with 3×n vertices as follows. The
first partition in G represents the n rows, the second represents the n columns,
and the third represents the n colors. For each empty cell (i, j) in L and each
candidate color k that can be assigned to this cell, place a triangle between the
vertices i, j, k in G. It is easy to see that L can be extended to t additional cells
if and only if G has t edge-disjoint triangles.

Conversely, we show that there is a value-preserving reduction from 3EDM to
PLSE. Let G=(U∪V ∪W, E) be a tripartite graph and let n=max{|U |, |V |, |W |}.
We construct a PLS L of order 3n such that maximum number of edge disjoint
triangles in G equals the maximum number of entries that can be filled in L and
vice versa.

First we assume that every edge in G is contained in at least one triangle,
since edges that are not present in at least one triangle can always be removed
without affecting the solution. Next we assume that |V | = |U | = |W | = n,
since isolated vertices can be added to G without changing the solution. Let
U = {u1, . . . , un}, V = {v1, . . . , vn}, and W = {w1, . . . , wn}. Let L be an empty
PLS of order 3n; think of L as being composed of square blocks A1, . . . , A9, each
of dimension n × n; here the blocks are numbered in the row-major order. Now
we turn L into a PLS such that the entry (i, j) in L is empty and can be filled
with color k ≤ n if the triangle (ui, vj , wk) exists in G.

Let Ri be the index set of vertices in W such that ui is not connected to them.
For each r ∈ Ri, we fill an empty entry in the i-th row of A2 with color r. Note

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Completing Latin Squares 527

that we can do this for all i = 1, . . . , n without creating a conflict. Similarly let
Cj be the index set of vertices in W such that vj is not connected to them. For
each c ∈ Cj , we fill one of the empty entries in the j-th column of A4 with c.
Now it is easy to see that we can fill the entry (i, j) in L with color k ≤ n if the
triangle (ui, vj , wk) appears in G. However it is possible to fill these entries with
colors greater than n. To circumvent this problem, we use the additional blocks
in the following way.

Let A′
1 be the subset of entries in A1 such that (i, j) ∈ A′

1 if the edge (ui, vj)
does not appear in G. We fill in the entries in A′

1 with colors from the set
{n + 1, . . . , 2n}; this will ensure that the non-edge (ui, vj) does not contribute
to the PLSE solution. After this step, let A1j be the set of colors appearing in
j-th column of A1. For every r ∈ {n + 1, . . . , 2n}, if r /∈ A1j , then we place r in
an empty entry in the j-th column of A7. This way, we ensure that none of the
colors in {n+1, . . . , 2n} can be used to fill the empty entries of A1. Analogously,
the block A3 is used to ensure that none of the colors in {2n+1, . . . , 3n} can be
used to fill the empty entries of A1; this can be easily achieved by setting A3 to
be a complete Latin square with entries from {2n + 1, . . . , 3n}. Now it suffices
to fill in the remaining entries greedily except that we have to avoid filling the
entries of A2, A4, and A7 with colors from {1, . . . , n}. We can block A2 and A4

w.r.t {1, . . . , n} by placing appropriate colors in A6 and A8. We fill the empty
entries in A7 with colors from the set {2n + 1, . . . , 3n}). Now all entries except
the empty ones in A1 are either filled or blocked and we can place k in (i, j) if
and only if the triangle (ui, vj , wk) exists in G. This completes the proof. ��

In a similar manner, we can show that

Corollary 1. The k-PLSE and k-3EDM problems are equivalent.

3 Improved Bounds for the PLSE Problem

In this section we obtain a (2
3 − ε)-approximation algorithm for the PLSE prob-

lem; this improves the (1 − 1
e)-approximation algorithm of Gomes, Regis, and

Shmoys [5]. We then show that the PLSE problem is APX-hard.

3.1 A Local Search Algorithm

First, we state a well-known result of Hurkens and Schrijver [8].

Theorem 2 (Hurkens–Schrijver [8]). Let m, n, k, t be positive integers with
k ≥ 3. Let E1, . . . , Em be subsets of a set V of size n such that

1. each element of V is contained in at most k of the sets E1, . . . Em and
2. any collection of at most t sets among E1, . . . Em has a system of distinct

representatives in V .

Then we have

m

n
≤

{
k(k−1)r−k
2(k−1)r−k if t = 2r − 1
k(k−1)r−2
2(k−1)r−2 if t = 2r.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

528 I. Hajirasouliha et al.

We present a simple local search-based approximation algorithm for PLSE by
obtaining an algorithm for 3EDM.

Theorem 3. For any ε > 0, there is a (2
3 − ε)-approximation algorithm for the

3EDM problem.

Proof. Let G be the given graph with n vertices. Fix a t ≥ 1. Start with any
collection of edge-disjoint triangles from G. Iteratively perform local search by
replacing any sub-collection of s ≤ t triangles in the current solution with s + 1
triangles from the graph such that the collection continues to be edge disjoint.

It is obvious that the above heuristic run in polynomial time since the collec-
tion grows by at least one in each step and its size is upper bounded by n2. Let
opt denote the largest collection of edge disjoint triangles in G.

Now, we apply Theorem 2 to our situation by taking the sets E1, . . . , Em to
be the edge disjoint triangles of opt and Z to be the collection of edge disjoint
triangles found by our heuristic with edge intersection representing containment,
i.e., we say Ei contains zj, an element of Z, when the intersection of the triangle
in opt corresponding to Ei with the triangle corresponding to zj contains at
least an edge of the original graph.

Observe that both the conditions of Theorem 2 are met.

1. Since each of the two collections of triangles, the set corresponding to
E1, . . . , Em as well as the set corresponding to Z are edge disjoint there-
fore it follows that each Ei can intersect at most 3 zj and vice versa.

2. By the termination condition of the heuristic, every collection of t elements
from E1, . . . , Em must have a system of distinct representatives in Z, i.e.,
intersect at least t triangles from Z for otherwise we could replace s ≤ t
triangles from Z with at least s + 1 triangles from E1, . . . , Em.

Hence, when the heuristic terminates, the size of the collection as a fraction
of |opt| is at least (2− 3

2r)/(3− 3
2r) if t = 2r − 1 and (2− 2

2r)/(3− 2
2r) if t = 2r.

The proof is complete. ��

Note that the running time of the heuristic increases the closer we wish to get to
2
3 . In particular to beat the existing bound of 1 − 1

e [5], we can run the heuristic
with any t ≥ 7. Naively implemented, the running time of the heuristic in this
case is O(n26) since we are picking upto 8 triangles at a time from a maximum
possible collection of O(n3) triangles upto O(n2) times. From Theorem 1, we get

Corollary 2. For any fixed ε > 0 there exists a polynomial time algorithm that
approximates PLSE to within 2

3 − ε.

3.2 APX-Hardness

In this section we show that 3EDM is APX-hard. We prove that in the reduc-
tion of Holyer [7], if we restrict the input 3SAT instances to the instances of
5-OCC-MAX-3SAT—each variable occurs exactly five times in the formula—
then the reduction becomes gap preserving. Feige [4] proved that there is a con-
stant ε such that it is not possible to distinguish between satisfiable instances of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Completing Latin Squares 529

5-OCC-MAX-3SAT and ones where at most ε fraction of clauses are satisfiable,
unless P = NP. (The Holyer’s reduction was also used in [9] to prove the APX-
hardness of a variant of cycle covering. For sake of completeness here we repeat
the definitions. To avoid the confusion we use the notation used in [7,9].)

Theorem 4. 3EDM is APX-hard.

Proof. Let the graph H3,p be a graph with p2 vertices where V = {(x1 + x2 +
x3) ∈ Z3

n | x1 + x2 + x3 ≡ 0(mod p)} and two vertices (x1, x2, x3), (y1, y2, y3)
are connected if there are distinct i, j, and k such that xi ≡ yi(mod p), xj ≡
yj + 1(mod p) and xk ≡ yk − 1(mod p). As has been pointed out in [2], if we
choose p so that p ≡ 0(mod 3), then the graph becomes tripartite. The crucial
point is that there are just two ways to partition H3,p into triangles; this will
serve as a switch for modeling a truth assignment. We call the first a T -partition
and the second an F -partition. We define a patch to be an induced subgraph in
H3,p that consists of the triangle in center with three other triangles surrounding
it. When the central triangle belongs to a T -partition, we call it a T -patch and
otherwise an F -patch.

Let ℵ be an instance of 5-OCC-MAX-3SAT that consists of m = (5/3)n
clauses C = (C1, . . . , Cm) defined over n variables x1, . . . , xn where each Cj

consists of three literals �j,1, �j,2, and �j,3. For each variable xi in ℵ we create a
graph Xi that is a copy of H3,6. Also corresponding to each literal �j,k we create
a graph Cj,k that is a copy of H3,6. Now we glue the graphs in the following way.
If �j,k = xi, then we glue an F -patch of Xi with an F -patch of Cj,k and otherwise
(when �j,k = x̄i) we glue an F -patch of Xi with a T -patch of Cj,k. We also glue
Cj,1, Cj,2, and Cj,3 together at an F -patch from them and then remove the edge
of the central triangle in the F -patch. Note that we have chosen p = 6 so that we
have enough disjoint number of patches, also to ensure that the resulted graph is
tripartite, we arbitrarily color each copies of H3,6 with three colors and then we
glue the vertices with the same color. Let Gj be the graph after gluing together
the graphs Cj,1, Cj,2, and Cj,3. The following facts have been shown in [7].

1. In order to partition all of the edges in Gj , exactly one of the graphs
Cj,1, Cj,2, and Cj,3 should be F -partitioned.

2. If �j,1 = xi, then it is not possible that Cj,k and Xi are both F -partitioned.
If �j,k = x̄i then it is not possible that Cj,k is F -partitioned and Xi is
T -partitioned.

These facts imply

Lemma 1. The edges of the graph Gj can be partitioned into triangles if and
only if one of the literals in Cj is true.

Let t1 be the number of edge-disjoint triangles in H3,6 and let t2 be the number
of edge-disjoint triangles in Gj . Lemma 1 indicates that if ℵ is satisfiable, then
there are nt1 + 5/3nt2 = c1n edge-disjoint triangles in the final graph, where c1

is a constant. On the other hand if ℵ is not satisfiable, then for each unsatisfiable
clause Cj we have two possibilities: there is one edge that has been left or the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

530 I. Hajirasouliha et al.

there is one edge left in one of graphs corresponding to the variables involving
in Cj . Since each variable is in at most two unsatisfied clause (otherwise we can
switch it), we can conclude that if there are (1−ε)5/3n unsatisfiable clauses in ℵ,
then we can have at most t1n+5/3t2n−5/6(1−ε)n = c2n edge-disjoint triangles,
where c2 < c1. This shows that there is a constant α < c2/c1 such that if we
can α-approximate the number of edge-disjoint triangles in tripartite graphs,
then we can distinguish between satisfiable instances of 5-OCC-MAX-3SAT and
instances that at most ε fraction of them are satisfiable. This completes the
proof. ��

Corollary 3. PLSE is APX-hard.

4 The k-PLSE Problem

In this section we study the k-PLSE problem. First we present a simple greedy
algorithm that approximates to within a factor 1

2 . Next we show a randomized
approximation algorithm that achieves a factor 1− 1

e − ε. Finally, we prove that
k-PLSE is hard to approximate to within a factor 1 − 1

e + ε.

4.1 A Greedy Algorithm

Let Mi be the largest matching that extends the existing matching associated
with color i. Pick color j such that |Mj| = max{|M1|, . . . , |Mn|}, breaking ties
arbitrarily. Fill the cells in Mj with color j and repeat until k colors are used.

Theorem 5. The greedy algorithm approximates k-PLSE to within a factor 1
2 .

Proof. Let opt = {(i, j, k)} where the cell (i, j) has color k in the optimal
solution. Similarly we define S as the set of triples that represents the solution
returned by the greedy algorithm. For each triple (i, j, k) ∈ opt we determine
a triple (i′, j′, k′) ∈ S as accountable. We make the assignment in the order of
following three cases.

1. x = (i, j, k) ∈ opt and y = (i, j, k′) ∈ S. In this case, y is accountable for x.
2. x = (i, j, k) ∈ opt but the cell (i, j) is left uncolored in the greedy solution

while there exists a triple (i′, j′, k) ∈ S. Let Tk and T ′
k be the set of triples

representing the cells colored with k in opt and S respectively. Some of
the triples in Tk have already been considered and hence have their own
accountable. Consider the iteration that greedy algorithm uses color k. Since
the greedy algorithm picks the largest matching, for each unassigned triple
in Tk, we can pick a distinct triple in T ′

k as accountable.
3. x = (i, j, k) ∈ opt and the cell (i, j) is left uncolored in the greedy solution.

Moreover, the greedy algorithm has not used color k. To analysis this case,
let T k be the set of cells with this condition. Also let C = c1, . . . , ct be the
set of colors that appear in opt but not in S. Assume that we have ordered
the colors with respect to size of T ci (decreasing order). We similarly define

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Completing Latin Squares 531

C′ for the greedy solution where the ordering is based on the number of cells
colored, i.e. the size of T ′

c′
i

(decreasing order). Note that |C| = |C′| thus we

can assign ci to c′i for each 1 ≥ i ≥ t. It is easy to see that |T ′
c′

t
| > |T c1 | and

hence for each 1 ≥ i ≥ t we have |T ′
c′

i
| > |T ci |. This implies that for each cell

in T ci we can assign a distinct cell in T ′
c′

i
as accountable. Note that before

making these assignments, the triples in S representing the cells with color
in C′ are accountable to at most one triple in opt and hence at the end they
are accountable to at most two triples.

The above arguments show that at the end of the assignments, we do not
have a triple in S that is accountable for more than two triples in opt. This
completes the proof of the theorem. ��

We now show an examples where the above analysis is tight. Let k = 3 and

consider the PLS

2 3
2 1
3 2

1 2

. The greedy algorithm first chooses color 4

and if it decides to color the main diagonal. By this choice, at most 4 cells can
be filled while the optimum solution can be shown to color 8 cells.

4.2 A (1 − 1
e

− ε)-Approximation Algorithm

In this section we modify the LP formulation for PLSE problem defined in [5]
to get a (1 − 1

e − ε)-approximation for the k-PLSE problem. Let Mc be the
set of all matchings that extend the matching associated with color c and ycM

be the indicator variable associated with matching M ∈ Mc. The modified
formulation is:

maximize
n∑

c=1

∑

M∈Mc

|M |ycM (1)

subject to ∀c = 1, . . . , n :
∑

M∈Mc

ycM = 1

∀i, j = 1, . . . , n :
n∑

c=1

∑

M∈Mc:(i,j)∈M

ycM ≤ 1

n∑

c=1

∑

M∈Mc:|M|>0

ycM ≤ k

ycM ≥ 0

Note that the above LP has an exponential number of variables but only a
polynomial number of constraints. In [5] they solve this by showing its equiv-
alence to the related assignment LP; however, they also state that it can be

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

532 I. Hajirasouliha et al.

solved by using the ellipsoid method. We follow this latter approach and pro-
vide a sketch of this technique; details can be found in [6]. We transform the
above LP into its equivalent dual, which has a polynomial number of variables
and an exponential number of constraints, and solve it using the ellipsoid with
a separation oracle. The separation oracle solves the matching problem in an
appropriately defined bipartite graph to find violated constraints. This gives us
a non-degenerate basic feasible solution to the dual as well as the corresponding
set of tight constraints. Using complementary slackness we obtain the set of non-
zero variables in the primal (of which there will only be a polynomial number)
and solve the primal constraints to get a non-degenerate basic feasible primal
solution.

Now we round the primal solution as in [5] to get one matching for each color,
except that before rounding, we multiply each variable in the LP solution by
1 − ε. Note that we can do this rounding even though there are an exponential
number of primal variables because in the primal solution only a polynomial
number of them will be non-zero. Furthermore, we can use the Chernoff bound
to guarantee that at most k matchings with different colors have been picked
with some constant probability.

Theorem 6. Let k ≥ 2
ε2 (1 − ε)(ln 1

δ), 0 < ε ≤ 1
2 , and 0 ≤ δ ≤ 1. There is a

randomized (1 − 1
e − ε)-approximation algorithm for k-PLSE that succeeds with

probability at least 1 − δ.

Proof. Let y∗ be the optimal solution for the above LP and ȳ be the solution
obtained from y∗ after multiplying each variable by 1 − ε. Now for each color
c, we pick a matching from the set Mc such that matching ycM is picked with
probability ȳcM . If two or more matchings share cell (i, j) we color (i, j) arbitrary
with the color of one those matchings. Let opt and opt

′ be the cost of y∗ and ȳ
respectively. According to the argument in [5], the cost of solution produced by
the above rounding procedure is at least (1 − 1

e)opt
′. Since opt

′ = (1 − ε)opt,
we conclude that the cost of final solution is at least (1 − ε)(1 − 1

e)opt ≥ (1 −
1
e − ε)opt. It remains to prove that the solution is feasible, i.e., at most k
different colors have been picked. Let s =

∑n
c=1

∑
M∈Mc:|M|>0 ȳcM . We have

E(s) ≤ (1− ε)k and since s is the sum of a set of independent random variables,
we can apply the version of Chernoff bound used in [11] to bound the tail of s.
Given 0 ≤ ε′ ≤ 1 such that ε′ = ε

1−ε , we have,

Pr[s > k] = Pr[s > (1 + ε′)(1 − ε)k] ≤ exp
(

− (1 + ε)(1 + ε′)2k
2

)

≤ δ.

After simplification, we have Pr[s > k] < δ when k ≥ 2
ε2 (1 − ε)(ln 1

δ). This
completes the proof. ��

Note that if we settle for some constant probability of success, we can use brute
force search for values of k less than 2

ε2 (1 − ε)(ln 1
δ).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Completing Latin Squares 533

4.3 Hardness

We show that the k-PLSE problem is hard to approximate to within 1 − 1
e + ε,

unless P = NP.

Theorem 7. For any ε > 0, k-3EDM is not approximable to within 1−1/e+ ε,
unless P = NP.

Proof. We use the Max-k-Cover problem for the reduction. In the Max-k-Cover
problem, we are given several subsets of a ground set and we are asked to pick
k subsets that cover most of the ground set elements. Feige [4] proved that no
polynomial time algorithm for Max-k-Cover can have approximation ratio better
than 1 − 1

e , unless P = NP.
Given an instance of Max-k-Cover with the ground set {e1, . . . , en} and sub-

sets S1, . . . , Sm, we construct the tripartite graph G = (U ∪ V ∪ W, E) in the
following way. Let |U | = |V | = n and |W | = m. We place a perfect matching
between U and V where the edge (ui, vi) correspond to the element ei. Now if
ei ∈ Sk we connect ui and vi to wk, thereby creating the triangle (ui, vi, wk). It
is easy to see that every solution to the given instance of Max-k-Cover problem
corresponds to a solution to the k-3EDM problem and vice versa. ��

Corollary 4. For any ε > 0, k-PLSE is not approximable to within 1− 1/e+ ε,
unless P = NP.

5 The c-PLSE Problem

In this section we present a 1
4 -approximation algorithm for the c-PLSE problem.

Theorem 8. There exists a polynomial-time algorithm that approximates the
c-PLSE problem to within a factor 1

4 .

Proof. We show a stronger result, namely, every partial Latin square with T
filled cells has a subset with size of at least T/4 filled cells that can be extended
to completion.

Let P be a partial Latin square of order n with t filled cells. We distinguish
two cases. n = 2m: we divide the square into four blocks of size m × m and
then pick the block that has more filled cells (≥ T/4). By permuting rows and
columns, we exchange the picked block with the left upper hand block and then
clear the other cells. It is easy to see that we can complete the upper-left block in
any order. And for completing the square we invoke a famous theorem of Ryser
([12], also [14, Theorem 17.4]) that we state for the sake of completeness.

Theorem 9 (Ryser [12]). Let A be a partial Latin square of order n in which
cell (i, j) is filled if and only if i ≤ r and j ≤ s Then A can be completed if
and only if N(i) ≥ r + s − n for i = 1, . . . , n, where N(i) denotes the number of
elements of A that are equal to i.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

534 I. Hajirasouliha et al.

By Ryser’s theorem (letting r = s = m), the square is guaranteed to be ex-
tendible to completion.

The proof for the situation when n = 2m + 1 is similar except that here we
divide the square into four blocks of size m × (m − 1) with one cell left in the
center of square. If the cell which is left in the center is not empty, we permute
the rows and columns so that it becomes an empty cell. Again we pick the block
with more filled cells and using Ryser’s Theorem (let r = m, s = m + 1), we are
done. ��

We make the following remarks on the above theorem. Using the above approach
it is not possible to get better than a 1

2 approximation. Consider a square of order
2n. Place a LS from the colors {1, . . . , n} in the upper left section of the square
and similarly, place a LS from colors {n+1, . . . , 2n} in the bottom-right section.
It is easy to see that this is a blocked PLS and moreover in order to obtain a
completable subset of the filled cells, we have to cancel at least n2

4 of the filled
cells (In order to place a number in the empty cells at least one filled cell should
be canceled). In fact the combinatorial version of the c-PLSE problem is in of
itself a very interesting problem — what is the largest fraction f , 0 < f < 1
such that every PLS with T filled cells contains a PLS with at least fT filled
cells that can be extended to completion? We conjecture that the right answer
is f = 1

2 .

6 Conclusions

We defined two new and natural problems - k-PLSE and c-PLSE. We obtained
simple approximation algorithms for the PLSE, k-PLSE and c-PLSE problems.
We also showed APX-hardness for PLSE and a (1− 1

e)-hardness of approximation
for k-PLSE. Our result for PLSE is an improvement over the best known and
our result for k-PLSE is the best possible.

The main open problem is to improve the approximation ratio for PLSE.
Obtaining an explicit constant hardness of approximation is also an interesting
problem. Although there is a (1 − 1

e) hardness result for k-PLSE, the further
improvement for approximation of PLSE is not unlikely as the hardness of k-
PLSE seems to be of a different origin—for example, the worst-case instance for
k-PLSE is an easy instance for PLSE.

Embedding PLSs in LSs with the same order and with minimum loss of el-
ements poses many new directions and open problems. We conjecture that the
tight constant in Theorem 8 is 1

2 .

References

1. R. A. Barry and P. A. Humblet. Latin routers, design and implementation.
IEEE/OSA Journal of Lightwave Technology, pages 891–899, 1993.

2. C. J. Colbourn. The complexity of completing partial latin squares. Discrete
Applied Mathematics, 8:25–30, 1984.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Completing Latin Squares 535

3. T. Evans. Embedding incomplete latin squares. American Mathematical Monthly,
67:958–961, 1960.

4. U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM,
45(4):634–652, 1998.

5. C. P. Gomes, R. G. Regis, and D. B. Shmoys. An improved approximation algo-
rithm for the partial latin square extension problem. Operations Research Letters,
32(5):479–484, 2004.

6. M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinato-
rial Optimization. Springer-Verlag, 1988.

7. I. Holyer. The NP-completeness of some edge-partition problems. SIAM Journal
on Computing, 10(4):713–717, 1981.

8. C. A. J. Hurkens and A. Schrijver. On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. SIAM Journal on Discrete Mathematics, 2(1):68–72, 1989.

9. N. Immorlica, M. Mahdian, and V. S. Mirrokni. Cycle cover with short cycles. In
Proceedings of the 22nd Annual Symposium on Theoretical Aspects of Computer
Science, pages 641–653, 2005.

10. R. Kumar, A. Russell, and R. Sundaram. Approximating latin square extensions.
Algorithmica, 24(2):128–138, 1999.

11. P. Raghavan and C.D. Thompson. Randomized rounding: A technique for provably
good algorithms and algorithmic proofs. Combinatorica 7(4): 365-374, 1987.

12. H. J. Ryser. A combinatorial theorem with an application to latin rectangles.
Proceedings of the American Mathematical Society, 2:550–552, 1951.

13. B. Smetaniuk. A new construction on Latin squares I. A proof of the Evans
conjecture. Ars Combinatoria, XI:155–172, 1981.

14. J. H. van Lint and R. M. Wilson. A Course in Combinatorics. Cambridge Univer-
sity Press, 1992.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Small Space Representations for Metric
Min-Sum k-Clustering and Their Applications�

Artur Czumaj1 and Christian Sohler2

1 Department of Computer Science, University of Warwick, Coventry CV7 4AL, U.K.
czumaj@dcs.warwick.ac.uk

2 Heinz Nixdorf Institute and Department of Computer Science, University of
Paderborn, 33102 Paderborn, Germany

csohler@upb.de

Abstract. The min-sum k-clustering problem is to partition a metric
space (P, d) into k clusters C1, . . . , Ck ⊆ P such that

∑k
i=1

∑
p,q∈Ci

d(p, q)
is minimized. We show the first efficient construction of a coreset for this
problem. Our coreset construction is based on a new adaptive sampling
algorithm. Using our coresets we obtain three main algorithmic results.

The first result is a sublinear time (4+ε)-approximation algorithm for
the min-sum k-clustering problem in metric spaces. The running time of
this algorithm is Õ(n) for any constant k and ε, and it is o(n2) for all
k = o(log n/ log log n). Since the description size of the input is Θ(n2),
this is sublinear in the input size.

Our second result is the first pass-efficient data streaming algorithm
for min-sum k-clustering in the distance oracle model, i.e., an algorithm
that uses poly(log n, k) space and makes 2 passes over the input point
set arriving as a data stream.

Our third result is a sublinear-time polylogarithmic-factor-
approximation algorithm for the min-sum k-clustering problem for ar-
bitrary values of k.

To develop the coresets, we introduce the concept of α-preserving
metric embeddings. Such an embedding satisfies properties that (a) the
distance between any pair of points does not decrease, and (b) the cost
of an optimal solution for the considered problem on input (P, d′) is
within a constant factor of the optimal solution on input (P, d). In other
words, the idea is find a metric embedding into a (structurally simpler)
metric space that approximates the original metric up to a factor of α
with respect to a certain problem. We believe that this concept is an
interesting generalization of coresets.

1 Introduction

Clustering problems deal with the task of partitioning an input set of objects into
subsets called clusters. In typical applications as they occur in bioinformatics,

� Research supported in part by NSF ITR grant CCR-0313219, by EPSRC grant
EP/D063191/1, and by DFG grant Me 872/8-3.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 536–548, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Small Space Representations for Metric Min-Sum k-Clustering 537

pattern recognition, data compression, data mining, etc., clustering algorithms
are either used to find certain patterns in large data sets or to find a lossy rep-
resentation of the data that still maintains important features of the original
data set. Ideally, objects in the same cluster are “similar” while objects in differ-
ent clusters are not. To measure similarity between objects one typically defines
a metric on the set of objects. The closer the objects are in this metric, the
more similar they are, i.e., the metric is a measure of dissimilarity of objects.
One of the most natural definitions of clustering is to minimize the intra clus-
ter dissimilarity of objects. This problem is known as the min-sum k-clustering
problem and has received considerably attention in the past [3,7,8,11,16,22,23].
Min-sum k-clustering is the dual problem to another well-known problem, the
Max-k-cut problem (see, e.g., [9,16]), where the goal is to maximize the inter
cluster dissimilarity.

Unlike many other classical clustering problems, like k-median and k-means
clustering, in min-sum k-clustering it is possible that clusters of different den-
sities “overlap”. This makes the problem significantly different from k-median
and k-means, and combinatorially challenging. In many scenarios the property
that the clusters may “overlap” can give a better clustering, for example, it can
be used to detect outliers.

In typical applications of clustering, the data sets to be clustered tend to be
very large. Therefore, the scalability to massive data sets is one of the most im-
portant requirements a good clustering algorithm should satisfy. In this context,
even if polynomial-time algorithms may be efficient for small and medium-sized
inputs, they may become impractical for input sizes of several gigabytes. For
example, when we consider approximation algorithms for clustering problems in
metric spaces then they typically run in time Ω(n2), where n is the number of
input points. Clearly, such a running time is not feasible for massive data sets.
Similarly, we do not have several gigabytes of main memory available and our al-
gorithm cannot maintain the entire input in main memory, what calls for the use
of data streaming algorithm that passes only few times over the data. Our goal
is to develop clustering algorithms that require near linear (in n) running time
and/or polylogarithmic space and not more than a few passes over the input.

1.1 Related Work

The min-sum k-clustering problem was first formulated by Sahni and Gonza-
les [22]. It is known to be NP-hard and there is a 2-approximation algorithm
by Guttman-Beck and Hassin [11] with runtime nO(k). Bartal et al. [3] pre-
sented an O(ε−1 log1+ε n)-approximation algorithm running in time n2+O(1/ε)

and Fernandez de la Vega et al. [8] gave an (1 + ε)-approximation algorithm

with the runtime O(n3k2O(ε−k2
)). For points in R

d, Schulman [23] introduced
an algorithm for distance functions �2

2, �1 and �2 that computes a solution that
is either within (1 + ε) of the optimum or that disagrees with the optimum in
at most an ε fraction of points. For the basic case of k = 2 (complement to
the Max-Cut), Indyk [16] gave an (1 + ε)-approximation algorithm that runs in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

538 A. Czumaj and C. Sohler

time O(21/εO(1)
n (log n)O(1)), e.g., sublinear in the input description size. In [7],

the authors analyze the quality of uniform random sampling for the min-sum
k-clustering problem.

Sublinear time algorithms for clustering problems. A number of sub-
linear time algorithms have been developed for other clustering problems. For
the k-median problem (in general metrics), the quality of random sampling has
been investigated in [7]. Other sublinear time algorithms have been developed
in [14,21] and Õ(nk) algorithms for the k-median problem in metric spaces have
been presented in [20,24]. In [1], a sublinear time algorithm to estimate the cost
of the facility location problem has been developed.

Data streaming algorithms for clustering problems. Several data stream-
ing algorithms have been designed for clustering problems in Euclidean and gen-
eral metric spaces.

For a data stream of points from the Euclidean space R
d one can compute a

(1+ε)-approximation for k-median and k-means clustering in space polynomial in
log n, k, and ε and exponential in d [12]. This result was improved to polynomial
dependence in d in [6]. In [17] the study of dynamic geometric data streams was
initiated. In this model the input points come from the discrete space {1, . . . , Δ}d

and the stream consists of insert and delete operations. It was shown in [17] that a
(1+ε)-approximation for the k-median problem can, in principle, be computed in
small space. However, the running time to compute the approximation from the
summary was prohibitively large. Using a different approach, it was shown in [9]
how to quickly get a (1+ ε)-approximation for k-median, k-means and Max-Cut
in the dynamic model. For facility location a O(d log2 Δ)-approximation has been
given in [17]. For general metric spaces, there are constant factor approximation
algorithms for k-center [4] and k-median [5,10,24].

Coresets for other clustering problems. The concept of coresets has been
playing a critical role in the recent developments of efficient clustering algo-
rithms. Informally, a coreset is a small weighted point set that approximates
a larger unweighted point set with respect to a certain (clustering) problem.
For some geometric problems, like k-center or k-median clustering, coresets with
size independent of the number of points and the dimension of the underly-
ing Euclidean space exist [2]. Other coreset constructions for low-dimensional
Euclidean spaces have been developed and used to improve existing approxima-
tion algorithms and develop data streaming clustering algorithms [9,12,13]. It is
even possible to compute a coreset for the k-median clustering problem, whose
number of points is independent of the dimension [6].

To the best of our knowledge, previous approximation techniques for k-means
and k-median like [2,18,19] as well as the combination of the coreset construction
from [6] with the bicriteria approximation from [3] and the analysis of [7] cannot
be used to obtain coresets for min-sum k-clustering and the related balanced
k-median problem.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Small Space Representations for Metric Min-Sum k-Clustering 539

1.2 New Contributions

In this paper we construct small space representations for approximately good so-
lutions for the min-sum k-clustering problem and the related balanced k-median
problem, which is known to be within a factor 2 of the solution for the min-sum
k-clustering problem. We apply our constructions to design new efficient algo-
rithms for these problems. In particular, we develop a new adaptive sampling
scheme for balanced k-median. Based on this sampling scheme we obtain an
α-preserving embedding and a coreset for the balanced k-median and min-sum
k-clustering problem. Our constructions run in near linear time and can be im-
plemented to use small space. Using the developed tools, we obtain three main
algorithmic results.

First, we present a sublinear time constant factor approximation algorithm for
the case that k is small, i.e., k = o(log n/ log log n). For this choice of k, our algo-
rithm runs in O(n ·k ·(k log n/ε)O(k)) time and computes a (4+ε)-approximation
for the min-sum k-clustering problem. For ω(1) ≤ k ≤ O(log n

log log n), this is the
first constant-factor polynomial-time approximation algorithm for this problem.
Note that the running time of this algorithm is sublinear in the full descrip-
tion size of the metric space, which is Θ(n2). Furthermore, we can speed-up
the algorithm to run in time Õ(n k) + (k log n)O(k) and still achieve a constant
(but slightly worse one) factor approximation (this has been deferred to the full
version of the paper).

Our second result is a 2-pass data streaming algorithm that is a constant-
factor approximation for the min-sum k-clustering problem, that is, an algo-
rithm that uses poly(log n, k) space and requires two passes over the point set
P , which arrives in an arbitrary order. The output of the algorithm is a succinct
representation of the clustering. One more pass is needed to assign each point
to the corresponding cluster. This is the first data streaming algorithm for this
problem.

Our third result is a (log n)O(1)-approximation algorithm for min-sum k-
clustering that runs in Õ(n · kO(1)) time; hence, its running time is sublinear
even for large values of k. This result almost matches the approximation guar-
antee of the best polynomial-time algorithm for this problem for large k due to
Bartal et al. [3], and at the same time, it significantly improves the runtime.

New concepts and techniques. To obtain our first result we develop a new
adaptive random sampling algorithm PartitioningScheme. This algorithm
computes a set S of poly(k, log n, 1/ε) points that contains k centers, which
(together with the right partition of points) are a (2 + ε)-approximation to the
balanced k-median problem. Then we use a variation of exhaustive search to-
gether with a modified algorithm for the minimum cost assignment problem to
find the best centers in S. The idea to compute a small set of points that con-
tain good centers has been previously used in the context of k-median clustering
[24]. However, both, our algorithm and its analysis for the balanced k-median
are substantially different from previous work.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

540 A. Czumaj and C. Sohler

To obtain our second and the third algorithmic result, we introduce the con-
cept of α-preserving embedding, which we believe is interesting beyond the ap-
plications in this paper. To define the concept of an α-preserving embedding, let
Π be a minimization problem defined on finite metric spaces such that the cost
of any solution does not decrease when the distances in the metric space are
increased. Given two metric spaces (P, d) and (P, d′), we say that (P, d) has an
α-preserving embedding into (P, d′), if (i) for every two points p, q ∈ P it holds
d(p, q) ≤ d′(p, q), and (ii) the cost of an optimal solution for instance (P, d)
is within factor α of the cost of an optimal solution for instance (P, d′). We
use α-preserving embeddings to develop a coreset construction for the balanced
k-median and min-sum k-clustering problem. Such a coreset can be seen as a
small-space representation of the input metric space (P, d) that changes the cost
of an optimal solution by at most a constant factor and does not improve the
cost of other (bad) solutions significantly.

2 Preliminaries

Let (P, d) be a finite metric space and let n = |P |. For S ⊆ P and p ∈ P
we will define d(p, S) = minq∈S d(p, q). The min-sum k-clustering problem is to
partition P into k sets (clusters) C1, . . . , Ck such that

∑k
i=1

∑
p,q∈Ci

d(p, q) is
minimized. It is known that this problem is within a factor two approximation
(cf. [3, Claim 1]) of the balanced k-median problem, which is to find a set C =
{c1, . . . , ck} ⊆ P of k points (centers) and a partition of P into sets C1, . . . , Ck

that minimizes
∑k

i=1 |Ci| ·
∑

p∈Ci
d(p, ci).

Since min-sum k-clustering and balanced k-median approximate each other to
within a factor of 2, in our analysis, we will focus mostly on the latter problem.

For any set C = {c1, . . . , ck} of k points (centers) in P , we define

costk(P, C) = min
partition of P into

C1∪C2∪···∪Ck

k∑

i=1

|Ci| ·
∑

p∈Ci

d(p, ci) .

We abbreviate the cost of cluster Ci with associated center ci as cost(Ci) =
cost1(Ci, {ci}).

A balanced k-median of P is a set C∗ = {c∗1, . . . , c
∗
k} of k points (centers) in P

that minimizes the value of costk(P, C∗). We will use Optk to denote the cost of
a balanced k-median for P . Next, we introduce the notions of kernels and points
close to kernels.

Definition 1. Let C∗ = {c∗1, . . . , c∗k} be a balanced k-median and let C∗
1 , . . . , C∗

k

be the corresponding optimal partition of P . We define the kernel Kern(C∗
i) of

cluster C∗
i as

Kern(C∗
i) =

{

p ∈ C∗
i : d(p, c∗i) ≤ (1 + ε) · cost(C∗

i)
|C∗

i |2

}

.

We say that a point p is close to Kern(C∗
i), if d (p, Kern(C∗

i)) ≤ ε
k · Optk

|C∗
i |2 .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Small Space Representations for Metric Min-Sum k-Clustering 541

The next lemma follows easily from the triangle inequality.

Lemma 1. Let C∗ = {c∗1, . . . , c∗k} be a balanced k-median and let C∗
1 , . . . , C∗

k

be the corresponding optimal partition of P . Let C = {c1, . . . , ck} be any set of
points such that each ci is close to Kern(C∗

i). Then costk(P, C) ≤ (2+2ε) ·Optk.

Furthermore, simple counting arguments give the following.

Lemma 2. For every i, |Kern(C∗
i)| ≥ ε

1+ε · |C∗
i |.

The balanced k-median problem is defined similarly to another standard problem
of k-median. The difference is that in the k-median problem, our goal is to find a
set C∗ = {c∗1, . . . , c

∗
k} of k centers in P and a partition of P into C1, . . . , Ck that

minimize
∑k

i=1

∑
p∈Ci

d(p, ci). We will use the well-known and easy fact that if
cmed is the cost of an optimal solution of k-median for P , then cmed ≤ Optk ≤
|P | · cmed.

3 New Sampling-Based Partitioning Scheme

In this section we develop a partitioning scheme that with high probability finds
a set S of size Õ(k log n/ε3) that contains a point close to Kern(C∗

i) for every
cluster C∗

i of an optimal solution. By Lemma 1, it follows that these points
contain k centers that provide a good approximation to a balanced k-median.
In the next section we will see how to compute a (2 + ε)-approximation for the
balanced k-median from this set.

Algorithm RandomPartition. Our partitioning scheme uses algorithm Ran-

domPartition. This algorithm gets a “guess” Õptk for the cost Optk of an
optimal solution and a parameter �, which can be viewed as a “guess” for the
cluster size. Given these parameters, the algorithm selects a set S ⊆ P using
simple adaptive sampling. As we prove later in Lemma 4, if our “guess” Õptk for
Optk is good then for every cluster C∗

i of size (1−ε)·� ≤ |C∗
i | ≤ �, set S contains,

with high probability, a point p that is close to Kern(C∗
i). RandomPartition

is parameterized by s, which is closely related to the sample size and will be
specified later. (We assume that d(p, ∅) = +∞.)

RandomPartition (P, s, Õptk, �)
for each p ∈ P do

if d(p, S) > ε
k

· Õptk
�2

then with probability min
{

s
ε·� , 1

}
put p into S

return S

The running time of algorithm RandomPartition is O(n · |S|). Therefore
now, we want to find an upper bound on the size of the sample set S.

Lemma 3. Let 0 <
 < 1 be arbitrary. Let Õptk ≥ Optk/2. Then, for s ≥
15·ε2·ln(1/�)

k we have |S| ≤ 6·s·k
ε2 + k with probability at least 1 −
.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

542 A. Czumaj and C. Sohler

Proof. Let C∗
1 , . . . , C∗

k be an optimal partition of P and let c∗1, . . . , c
∗
k be the

corresponding optimal centers. We denote by t = ε
k · Õptk

�2 the threshold for the
distance to the set S used in the if-statement of algorithm RandomPartition.
We use the following simple fact that follows directly from the triangle inequality.

Claim 1. For each center c∗i , S contains at most one point p with d(p, c∗i) ≤ t/2.

It follows immediately that there can be at most k points in S with distance at
most t/2 to one of the cluster centers. We say that a point p ∈ P is an outlier,
if it has distance more than t/2 to every cluster center. We next analyze the
number of outliers.

Claim 2. The number of outliers is at most 4 · � · k/ε + k · �.

Proof. Let us call a cluster small, if it has at most � points. Otherwise, we call
a cluster large. The overall number of points in small clusters is at most k · �
and so the number of outliers in small clusters is at most k · �. Any outlier in a
large cluster contributes with at least � · t/2 to the cost of an optimal solution.
Therefore, there can be at most Optk/(t · �/2) ≤ 2 · Õptk/(t · �/2) = 4 · � · k/ε
outliers in large clusters. The claim follows by summing up the number of outliers
in small and large clusters. �	

Algorithm RandomPartition picks every outlier with probability at most
min

{
s

ε·� , 1
}
. If s

ε·� > 1, then s > ε · �. Since by Claim 1, the cardinality of
S is bounded by the number of outliers plus k, we get

|S| ≤ 4 · � · k/ε + k · � + k ≤ 6 · � · k/ε + k =
6 · ε · � · k

ε2
+ k ≤ 6 · s · k

ε2
+ k .

Hence, we only have to consider the case when s
ε·� ≤ 1. Let Out denote the set of

outliers. For 1 ≤ Yi ≤ |Out|, let Yi denote an independent 0-1-random variable
with Pr[Yi = 1] = s

ε·� . We get Pr
[
|S ∩Out| > 6 · s·k

ε2

]
≤ Pr

[∑|Out|
i=1 Yi > 6 · s·k

ε2

]
.

Clearly, the latter probability is maximized by maximizing |Out |. Let M =
5 ·� ·k/ε. Since by Claim 2, |Out| ≤ 4 ·� ·k/ε+k ·� ≤ M , we have Pr[

∑|Out|
i=1 Yi >

6 · s·k
ε2] ≤ Pr[

∑M
i=1 Yi > 6 · s·k

ε2]. Let us study the latter probability. We have,
E[

∑M
i=1 Yi] = s

ε·� · M = 5·s·k
ε2 . Now we can apply Chernoff bounds. We get

Pr
[M∑

i=1

Yi > 6 sk
ε2

]
= Pr

[M∑

i=1

Yi > (1 + 1/5)E[
M∑

i=1

Yi]
]

≤ e−(1/5)2E[
∑M

i=1 Yi]/3 ≤

for s ≥ 15 ε2 ln(1/�)
k . Thus, Pr

[
|S| ≤ 6 s k

ε2 +k
]

≥ Pr
[
|S∩Out | ≤ 6 s k

ε2

]
≥ 1−
. �	

Our next lemma shows that in our sampling algorithm, with a high probability,
every optimal cluster has at least one point that is close to its kernel and that
is in S.

Lemma 4. Let Õptk ≤ Optk, ε ≤ 1/2 and (1 − ε) · � ≤ |C∗
i | ≤ �. Then,

Pr[∃p ∈ S : p is close to Kern(C∗
i)] ≥ 1 −
 for s ≥ 4 · ln(1/
).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Small Space Representations for Metric Min-Sum k-Clustering 543

Proof. Let p be an arbitrary point in P that is not close to Kern(C∗
i). By

definition, we have then d(p, Kern(C∗
i)) > ε

k · Optk

|C∗
i |2 ≥ ε

k · Õptk

�2 . Now, if no
point in S is close to Kern(C∗

i), then for every point p in Kern(C∗
i) we have

d(p, S) > ε
k · Õptk

�2 and hence, every point from Kern(C∗
i) was considered for being

taken into S. Thus, the probability that S has no point that is close to Kern(C∗
i)

is at most Pr[
∑|Kern(C∗

i)|
j=1 Yi = 0], where the Yi are 0–1-random variables with

Pr[Yi = 1] = s
ε·� . This yields:

Pr
[
|Kern(C∗

i)|∑

j=1

Yi = 0
]

=
(
1 − s

ε · �

)|Kern(C∗
i)|

≤
(
1 − s

ε · �

)ε·�/4

≤ e−s/4 .

Hence, the lemma follows with s = 4 · ln(1/
). �	

Partitioning scheme. Now we present our partitioning scheme. First, we use
the fact that the cost cmed of an α-approximation for k-median provides us with
a lower bound of cmed/α and an upper bound of cmed ·n for balanced k-median.
We apply an Õ(n k)-time constant-factor approximation algorithm for k-median
to compute an approximate solution to this problem (see, e.g., [10,14,24]). Next,
we are trying to guess the right value Õptk for Optk. We use Õptk ≈ cmed ·n as a
first guess for the cost of an optimal solution. Then, we run RandomPartition

for � = 1, (1 + ε)�, (1 + ε)2�, . . . , n and build the union of the returned sets.
Next, we halve our guess Optk for the cost of the optimal solution and proceed in
a similar way until, eventually, RandomPartition returns a set which is larger
than the bound from Lemma 3. If s is sufficiently large then we know at this
point that with high probability our current guess Õptk is smaller than Optk/2.
Therefore, in the previous iteration (for the previous guess Õptk of Optk), we had
Õptk ≤ Optk, in which case we use properties of the set S proven in Lemma 4.

PartitioningScheme(P, s)
Compute cost cmed of an α-approximation for k-median in O(n · k) time
for i = �log(α · n)� downto 0 do

Si ← ∅
for j = 0 to �log1+ε n� do

X = RandomPartition(P, s, 2i · cmed/α, �(1 + ε)j�)
if |X| > 6 · s·k

ε2
+ k then return Si+1

Si ← Si ∪ X
return S0

Theorem 1. Let N = (2 + log(α · n)) · (2 + log1+ε n). Run Algorithm Parti-

tioningScheme with parameter s ≥ 4 ln(2Nk/δ) = O(log(k · log n/(δ ·ε)). Then
the algorithm runs in time O(n·log2 n·k·s

ε3) and finds a set S of O(s·k·log n
ε3) points

in P such that with probability at least 1 − δ, there is a set C of k points in S
for which cost(P, C) ≤ (2 + ε) · Optk.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

544 A. Czumaj and C. Sohler

4 Poly-time Constant Factor Approximation for Small k

In this section we will show how the result from Theorem 1 can be used to obtain
a polynomial-time constant factor approximation for balanced k-median for all
values of k = O(log n/ log log n). The underlying idea of our algorithm is that if
we have a good guess for a possible set of candidates for centers, then we can find
an almost optimal partition for this set, which will yield a good approximation
for balanced k-median.

We consider the problem of finding a constant factor approximation for bal-
anced k-median for a given fixed set of k centers. Let C = (c1, . . . , ck) be
a sequence of k cluster centers and consider an integer k-tuple 〈N1, . . . , Nk〉
with

∑k
i=1 Ni = n. Tokuyama and Nakano [25] showed that in time O(n k) +

Õ(
√

n k2.5) one can find a partition of a set P into subsets C∗
1 , . . . , C∗

k with
|C∗

i | = Ni for every i, that minimizes costk(P, C) =
∑k

i=1 |C∗
i |

∑
p∈C∗

i
d(p, ci).

This algorithm can be used to solve balanced k-median for a fixed set of k-centers
by considering all possible values of Ni. However, its running time would be
Ω(nk), which is prohibitively expensive. We describe now a O(1)-approximation
algorithm which has a significantly better runtime.

Let us fix C = (c1, . . . , ck). Our goal is to partition P into k subsets C1, . . . , Ck

for which the cost of the clustering
∑k

i=1 |Ci|
∑

p∈Ci
d(p, ci) is close to costk(P, C),

i.e., to the optimal cost, and which can be found by applying the algorithm from
[25] with the sizes of all clusters to be powers of (1 + ε).

Our idea is simple. Instead of calling the algorithm of Tokuyama and Nakano
[25] with the sizes of all clusters N1, . . . , Nk we do it with the sizes of clusters
λ1, . . . , λk, where each λi is of the form �(1 + ε)m� for an integer m, and Ni ≤
λi < (1 + ε) · Ni. The “fake” points of each set are to be chosen from a set of
additional points, from the set O� for an appropriate value of �. Here, for every
integer � we define set O� to be the set of � points such that for every u ∈ O�

and for every ci, we have d(u, ci) = 0. Observe that with such a definition of set
O� (and in particular, the requirement that d(u, ci) = 0 for every u ∈ O� and for
every ci) we will not obtain a metric instance of the problem, but the algorithm
of Tokuyama and Nakano [25] will still work.

Theorem 2. For every ε ≤ 1/8, there is a randomized algorithm for balanced k-
median that finds a (2 + ε)-approximate solution in time (O(n k) + Õ(

√
n k2.5)) ·

(O(k log2 n log(n/ε)/ε4))k. The algorithm fails with probability at most 1/poly(n).
It returns also a (4 + ε)-approximation for min-sum k-clustering.

5 α-Preserving Embeddings and Coresets

Let Π be any minimization problem on metric spaces that is monotone with re-
spect to distances, i.e., if the distances in the metric space increase then the cost
of an optimal solution for Π does not decrease. An embedding from a metric
space (P, d) into (P, d′) is α-preserving for Π if (a) the distance between any

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Small Space Representations for Metric Min-Sum k-Clustering 545

pair of points does not decrease, and (b) the cost of an optimal solution of Π
for (P, d′) is at most α times that for (P, d).

The concept of α-preserving embeddings can be viewed as a generalization
of coresets. In a coreset one tries to reduce the complexity of a problem by
reducing the size of the input set in such a way that the considered problem
is only slightly affected. The goal of α-preserving embeddings is to carry this
idea over to metric embeddings. In this context, the complexity of a problem
can be reduced by mapping a metric to a simpler metric in such a way that the
considered problem is still approximated.

5.1 (6 + ε)-Preserving Embedding for Balanced k-Median

We begin with a (6+ε)-preserving embedding into a shortest path metric (P, dG)
on a graph G = (P, E) consisting of poly(k, log n, 1/ε) stars whose centers (which
we call anchor points) are connected in a clique.

Let G be the graph whose edges are defined by the following procedure:

– Choose the set of anchor points to be the set S computed by Partition-

ingScheme.
– Every pair of anchor points p, q ∈ S is connected by an edge with distance

the same as in the metric space (P, d), i.e., dG(p, q) = d(p, q).
– Every point p ∈ P \ S is connected by an edge to the nearest anchor point;

the cost of this edge is the same as in the metric space (P, d).

Lemma 5. The embedding of (P, d) into (P, dG) as described above is a (6+ ε)-
preserving embedding for the balanced k-median problem.

5.2 Coresets for Balanced k-Median

In this section, we will design a coreset for balanced k-median for a given input
metric. We use the following notation of a coreset for balanced k-medians.

Definition 2 (α-coresets). Let (P, d) be a metric space with |P | = n. Let Q =
{q1, . . . , qs} ⊆ P be a set of poly(log n) points with integer weights w1, . . . , ws

that sum up to n. Let α1 · α2 ≤ α be positive parameters. A metric space (Q, d′)
is an α-coreset for (P, d) for balanced k-median, if there is a mapping τ : P → Q
with |τ−1(qi)| = wi such that
– for every partition of P into sets C1, . . . Ck and centers c1, . . . , ck ∈ Q:

1
α1

·
k∑

i=1

|Ci|
∑

p∈Ci

d(p, ci) ≤
k∑

i=1

|Ci|
∑

p∈Ci

d′(τ(p), τ(ci)) ,

– there exists a partition C1, . . . , Ck of P and centers c1, . . . , ck such that

k∑

i=1

|Ci|
∑

p∈Ci

d′(τ(p), τ(ci)) ≤ α2 · Optk .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

546 A. Czumaj and C. Sohler

Construction. To construct the coreset, we consider the graph G defined in
Section 5.1, and modify some of its distances and group some of its vertices
together. We begin with computing a constant approximation to the cost cmed

of the k-median problem and use Õptk = n · cmed as a rough approximation of
the cost of the balanced k-median. Then, we increase all edge distances smaller
than ε · Õptk/(cmed · n3) to the value of ε · Õptk/(cmed · n3); it is easy to see
that this transformation increases the cost of the optimal solution by not more
than a factor of (1+ ε). Next, let F be the set of edges connecting anchor points
to non-anchor points, F = {(u, v) ∈ G : u ∈ S and v ∈ P \ S}. We round the
distances corresponding to these edges up to the next power of (1 + ε). Clearly,
this changes the cost of any solution by at most (1 + ε) and only increases edge
weights. Since there can be no edges in F with cost more than Optk, there are
at most O(log(n/ε)/ε) different edge weights.

Let H denote the graph with these modified distances and let dH denote the
shortest path metric on H . We group the points from P \ S incident to the same
anchor point p ∈ S by their edge weights in H . This way, we obtain O(log(n/ε)/ε)
groupsV p

j such that each q in V p
j is incident to p ∈ S via an edge with cost wj . Since

all points in V p
j have equal distance to p, we would like to replace them by a single

weighted vertex with weight |V p
j |. The only difficulty stems from the fact that the

points in V p
j have pairwise distance 2·wj in H and this distance is reduced to 0 when

we join them. To reduce this effect, we subdivide V p
j into groupsV p

j,1, . . . , V
p
j,t of size

|V p
j |/t for t = 32 · (k/ε)3/2 (for simplicity, we assume that |V p

j |/t is integral). Each
group V p

j,�, 1 ≤ � ≤ t, is replaced by a single vertex of weight |V p
j |/t. Let us define

the mapping τ according to this replacement, i.e., every anchor point is mapped
to the corresponding anchor point, every non-anchor point is mapped by τ to its
replacement. Let us call the resulting new graph H ′ and let dH′ be the shortest
path metric induced by H ′. H ′ has |S| = O(k log n log(n/ε)/ε3) anchor points,
O(|S| t log(n/ε)/ε) other points, and O(|S|)2 + O(t k log n log2(n/ε)/ε4) edges.
In particular, if we set t = 32 · (k/ε)3/2, then H ′ has O(k2.5 log n log2(n/ε)/ε5.5)
points and O((k2 log n log2(n/ε)/ε5) · (log n +

√
k/ε)) edges.

Theorem 3. The shortest path metric on the weighted graph H ′ defined above
is a (6+ ε)-coreset (Q, d′) for the balanced k-median problem. It can be computed
in Õ(n · k · ln(1/δ)/ε3) time with probability 1 − δ. It is also a (12 + ε)-coreset
(Q, d′) for the min-sum k-clustering problem.

6 2-Pass Streaming Algorithm

We present here an application of our coresets to design the first efficient stream-
ing algorithm for min-sum k-clustering and balanced k-median. A streaming
algorithm for a problem in a metric space (P, d) takes as its input set P as a
read-only sequence of points p1, . . . , pn given one-by-one in an arbitrary order.
It can evaluate d(p, q) in constant time for any two points p, q stored in local
memory. The capacity of the local memory is polylogarithmic. A c-pass streaming
algorithm is an algorithm that makes c passes over the input sequence. Using our

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Small Space Representations for Metric Min-Sum k-Clustering 547

results from previous sections, we design a 2-pass streaming algorithm for bal-
anced k-median and min-sum k-clustering. Our algorithm begins with computing
the coreset from Theorem 3. To do this, we first observe that RandomParti-

tion is a data streaming algorithm. We can implement PartitioningScheme

by executing all calls to RandomPartition in parallel. This yields a one pass
algorithm to compute the set S. During the first pass we can also compute a
constant factor approximation for the cost of k-median using the algorithm from
[5]. In a second pass we compute for every point in P its distance to the nearest
neighbor in S and round it up to the next power of (1 + ε). From this rep-
resentation we compute our coreset and from the coreset we find (an implicit
representation of) a constant approximation to min-sum k-clustering using a
variation of the algorithm from Theorem 2.

Theorem 4. There is a 2-pass, O(1)-approximation algorithm for min-sum k-
clustering and balanced k-median. The algorithm uses poly(log n, k) space. The
time to compute the clustering is O(k log n))O(k).

7 Sublinear-Time Polylog-Approximation Factor
Algorithm

In Section 4, we presented a very fast algorithm that finds a (2+ε)-approximation
for balanced k-median and (4+ ε)-approximation for min-sum k-clustering. The
runtime of this algorithm is o(n2) (and hence, sublinear) for all values k ≤
(1
4 −o(1)) · log n

log(log n/ε) . A natural question is if we can apply similar techniques to
obtain good polynomial-time approximation algorithms for larger values of k, in
particular, for k = ω(log n

log log n). Prior to our work, for values k = ω(1), the best

polynomial-time algorithm achieved the approximation ratio of O(c log1+1/c n)
[3], for an arbitrary constant c > 0; the runtime is Ω(n2+O(1/c)). We can combine
the arguments from [3] with the techniques developed in previous sections to
obtain an algorithm that has a similar approximation guarantee as that in [3],
but which at the same time has superior running time.

Let us define an extension of balanced k-median: splittable weighted balanced
k-median. Let Q be a set of N points in a metric space. Let w : Q → N be a
function associating a multiplicity of every point in Q and let Q∗ be the mul-
tiset defined by taking every point q ∈ Q with multiplicity w(q). The splittable
weighted balanced k-median problem for Q is to solve the balanced k-median
problem for Q∗, i.e., to find a set of k points c1, . . . , ck in Q∗ and a partition
of Q∗ into Q∗

1, . . . , Q
∗
k that minimizes

∑k
i=1 |Q∗

i | ·
∑

q∈Q∗
i
d(q, ci). By combining

our coreset construction with an extension of the analysis of an approximation
algorithm for balanced k-median of Bartal et al. [3] to the splittable weighted
balanced k-median problem, we can prove the following.

Theorem 5. There is a randomized (log n)O(1)-approximation algorithm for
balanced k-median and min-sum clustering that runs in O(n kO(1) (log n)O(1))
time. The algorithm fails with probability at most 1

poly(n) .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

548 A. Czumaj and C. Sohler

References

1. M. Bădoiu, A. Czumaj, P. Indyk, and C. Sohler. Facility location in sublinear time.
ICALP, pp. 866–877, 2005.

2. M. Bădoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-sets.
STOC, pp. 250–257, 2002.

3. Y. Bartal, M. Charikar, and D. Raz. Approximating min-sum k-clustering in metric
spaces. STOC, pp. 11–20, 2001.

4. M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and
dynamic information retrieval. STOC, pp. 626–635, 1997.

5. M. Charikar, L. O’Callaghan, and R. Panigrahy. Better streaming algorithms for
clustering problems. STOC, pp. 30–39, 2003.

6. K. Chen. On k-median clustering in high dimensions. SODA, pp. 1177–1185, 2006.
7. A. Czumaj and C. Sohler. Sublinear-time approximation for clustering via random

sampling. ICALP, pp. 396–407, 2004.
8. W. Fernandez de la Vega, M. Karpinski, C. Kenyon, and Y. Rabani. Approximation

schemes for clustering problems. STOC, pp. 50–58, 2003.
9. G. Frahling and C. Sohler. Coresets in dynamic geometric data streams. STOC,

pp. 209–217, 2005.
10. S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams.

FOCS, pp. 359–366, 2000.
11. N. Gutmann-Beck and R. Hassin. Approximation algorithms for min-sum p-

clustering. Discrete Applied Mathematics, 89:125–142, 1998.
12. S. Har-Peled and S. Mazumdar. Coresets for k-means and k-medians and their

applications. STOC, pp. 291–300, 2004.
13. S. Har-Peled and A. Kushal. Smaller coresets for k-median and k-means clustering.

SoCG, pp. 126–134, 2005.
14. P. Indyk. Sublinear time algorithms for metric space problems. STOC, pp. 428–434,

1999.
15. P. Indyk. A sublinear time approximation scheme for clustering in metric spaces.

FOCS, pp. 154–159, 1999.
16. P. Indyk. High-Dimensional Computational Geometry. PhD thesis, Stanford, 2000.
17. P. Indyk. Algorithms for dynamic geometric problems over data streams. STOC,

pp. 373–380, 2004.
18. A. Kumar, Y. Sabharwal, and S. Sen. A simple linear time (1 + ε)-approximation

algorithm for k-means clustering in any dimensions. FOCS, pp. 454–462, 2004.
19. A. Kumar, Y. Sabharwal, and S. Sen. Linear time algorithms for clustering prob-

lems in any dimensions. ICALP, pp. 1374–1385, 2005.
20. R. Mettu and G. Plaxton. Optimal time bounds for approximate clustering. Ma-

chine Learning, 56(1-3):35–60, 2004.
21. A. Meyerson, L. O’Callaghan, and S. Plotkin. A k-median algorithm with running

time independent of data size. Machine Learning, 56(1–3): 61–87, July 2004.
22. S. Sahni and T. Gonzalez. P-complete approximation problems. JACM, 23:555–

566, 1976.
23. L. J. Schulman. Clustering for edge-cost minimization. STOC, pp. 547–555, 2000.
24. M. Thorup. Quick k-median, k-center, and facility location for sparse graphs.

SIAM Journal on Computing, 34(2):405–432, 2005.
25. T. Tokuyama and J. Nakano. Geometric algorithms for the minimum cost assign-

ment problem. Random Structures and Algorithms, 6(4):393–406, 1995.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Optimal Tableau-Based Decision Algorithm
for Propositional Neighborhood Logic

Davide Bresolin, Angelo Montanari, and Pietro Sala

Department of Mathematics and Computer Science, University of Udine, Italy
{bresolin,montana,sala}@dimi.uniud.it

Abstract. In this paper we focus our attention on the decision problem
for Propositional Neighborhood Logic (PNL for short). PNL is the proper
subset of Halpern and Shoham’s modal logic of intervals whose modalities
correspond to Allen’s relations meets and met by. We show that the
satisfiability problem for PNL over the integers is NEXPTIME-complete.
Then, we develop a sound and complete tableau-based decision procedure
and we prove its optimality.

1 Introduction

Temporal logics play an important role in several areas of computer science,
including artificial intelligence, specification and automatic verification of pro-
grams, and temporal databases. Even though interval-based temporal logics pro-
vide a natural framework for representing and reasoning about time, most work
has been devoted to point-based ones, which generally show a better compu-
tational behavior. In this paper, we focus our attention on the propositional
fragment of the interval logic of temporal neighborhood (PNL for short) [4,5].
We devise a NEXPTIME tableau-based decision procedure for PNL over the
integers (or a subset of them) and we prove its optimality.

Various propositional and first-order interval temporal logics have been pro-
posed in the literature (a comprehensive survey can be found in [6]). The most
significant propositional ones are Halpern and Shoham’s Modal Logic of Time
Intervals (HS) [8], Venema’s CDT logic [7,13], and Moszkowski’s Propositional
Interval Temporal Logic (PITL) [12]. Unfortunately, all of them turn out to be
undecidable. Halpern and Shoham’s logic has been shown to be undecidable for
several classes of linear and branching orders [8]. Venema’s CDT is powerful
enough to embed HS, and thus it is undecidable (at least) over the same classes
of orders. Finally, PITL has been shown to be undecidable over discrete lin-
ear orders by Moszkowski [12]; its undecidability over dense linear orders easily
follows from the undecidability of the Begin/End (BE) fragment of HS [6,9].

To get decidability, severe syntactic and/or semantic restrictions have been
imposed to interval-based temporal logics to make it possible to reduce them
to point-based ones [10]. One can get decidability by making a suitable choice
of the interval modalities. This is the case with the BB (Begin/Begun by) and
EE (End/Ended by) fragments of HS [6]. As an alternative, decidability can

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 549–560, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

550 D. Bresolin, A. Montanari, and P. Sala

be achieved by constraining the classes of temporal structures over which the
interval logic is interpreted. This is the case with the so-called Split Logics (SLs)
[11]. Finally, another possibility is to constrain the relation between the truth
value of a formula over an interval and its truth value over subintervals of it. As
an example, one can constrain a propositional variable to be true over an interval
if and only if it is true at its starting point (locality) or if and only if it is true over
all its subintervals (homogeneity) [12]. All these approaches differ in the nature
of the restrictions they impose, but they have a common feature: they replace
every interval with a point and, accordingly, interval-based temporal operators
with point-based ones. Hence, as pointed out in [10], the problem of proving the
decidability of interval logics without taking advantage of such a replacement
remains largely unexplored.

A first result in this direction has been obtained by Bresolin et al. in [1,3],
where the decidability of the future fragment of PNL (RPNL for short) over
the natural numbers is established. They basically prove that an RPNL formula
is satisfiable if and only if there exist a finite model, or an ultimately periodic
(infinite) one, with a finite representation of bounded size. In both cases, such
a model can be built starting from any model satisfying the formula by pro-
gressively removing exceeding points from it until the desired bound is reached.
The removal of a point d from a model causes the removal of all intervals either
beginning or ending at it. Since RPNL features only future time modalities, the
removal of intervals beginning at d is not critical. On the contrary, the removal
of intervals ending at d may introduce “defects”, that is, there may be existential
future temporal formulae that are not satisfied anymore. However, by properly
choosing the point d to remove, we can guarantee that there exist sufficiently
many points in the future of d which allows us to fix such defects (by possi-
bly changing the truth value of formulas over intervals ending at them) without
introducing new defects.

In this paper, we generalize the proof for RPNL to full PNL by showing that a
PNL formula is satisfiable if and only if there exist a finite model or an infinite one
with a finite representation of bounded size. As in the case of RPNL, such a model
can be obtained by removing exceeding points from a given model satisfying the
formula, but the removal process turns out to be much more involved. In contrast
with the case of RPNL, the removal of a point d from a PNL model may affect
the satisfiability of formulae over intervals in the past as well as in the future of d
. Hence, to fix the defects possibly caused by the removal of d, we must guarantee
that there exist sufficiently many points with the same characteristics as d both
in the future and in the past of d. Moreover, we must be sure that changing the
valuation of intervals that either end or start at these points does not generate
new defects. In the following, we show that this can actually be done.

The paper is organized as follows. In Section 2 we introduce syntax and se-
mantics of PNL. Then, in Section 3 we prove the decidability of PNL over the
integers (or a subset of them). In Section 4 we describe an optimal NEXPTIME
tableau-based decision procedure, and we prove its soundness and completeness.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Optimal Tableau-Based Decision Algorithm 551

Conclusions provide an assessment of the work and outline future research di-
rections. The details of missing proofs can be found in [2].

2 Propositional Neighborhood Logic

In this section, we give syntax and semantics of PNL interpreted over the set Z

of the integers or over a subset of it. To this end, we introduce some preliminary
notions. Let D = 〈D, <〉 be a strict linear order isomorphic to Z (or to a subset
of it). A strict interval on D is an ordered pair [di, dj] such that di, dj ∈ D and
di < dj . The set of all strict intervals over D will be denoted by I(D)− (here we
conform to the notation proposed in [5], where − is used to denote the lack of
point intervals, that is, intervals of the form [di, di]). The pair 〈D, I(D)−〉 is called
a strict interval structure. For every pair of intervals [di, dj], [d′i, d

′
j] ∈ I(D)−, we

say that [d′i, d
′
j] is a right (resp., left) neighbor of [di, dj] if and only if dj = d′i

(resp., d′j = di).

The language of (Strict) Propositional Neighborhood Logic (PNL for short)
consists of a set AP of propositional letters, the connectives ¬ and ∨, and the
modal operators 〈A〉 and 〈A〉. The other connectives, as well as the logical con-
stants � (true) and ⊥ (false), can be defined as usual. The formulae of PNL,
denoted by ϕ, ψ, . . ., are recursively defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈A〉ϕ | 〈A〉ϕ.

We denote by |ϕ| the length of ϕ, that is, the number of symbols in ϕ (in the
following, we shall use | | to denote the cardinality of a set as well). Whenever
there are no ambiguities, we call a PNL formula just a formula. A formula of the
forms 〈A〉ψ, ¬〈A〉ψ, 〈A〉ψ, or ¬〈A〉ψ is called a temporal formula (from now on,
we identify ¬〈A〉¬ψ with [A]ψ and ¬〈A〉¬ψ with [A]ψ).

A model for a PNL formula is a pair M = 〈〈D, I(D)−〉, V〉, where 〈D, I(D)−〉
is a strict interval structure and V : I(D)− −→ 2AP is a valuation function
assigning to every interval the set of propositional letters true over it. Given a
model M = 〈〈D, I(D)−〉, V〉 and an interval [di, dj] ∈ I(D)−, the semantics of
PNL is defined recursively by the satisfiability relation � as follows:

– for every propositional letter p ∈ AP , M, [di, dj] � p iff p ∈ V([di, dj]);
– M, [di, dj] � ¬ψ iff M, [di, dj] 	� ψ;
– M, [di, dj] � ψ1 ∨ ψ2 iff M, [di, dj] � ψ1 or M, [di, dj] � ψ2;
– M, [di, dj] � 〈A〉ψ iff ∃dk ∈ D such that dk > dj and M, [dj , dk] � ψ;
– M, [di, dj] � 〈A〉ψ iff ∃dk ∈ D such that dk < di and M, [dk, di] � ψ.

We place ourselves in the most general (and difficult) setting where there
are not constraints on the valuation function. As an example, given an interval
[di, dj], it may happen that p ∈ V([di, dj]) and p 	∈ V([d′i, d

′
j]) for all intervals

[d′i, d
′
j] (strictly) contained in [di, dj].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

552 D. Bresolin, A. Montanari, and P. Sala

3 Labeled Interval Structures and Satisfiability

In this section we introduce some preliminary notions and we establish some
basic results on which our tableau method for PNL relies (an intuitive account
of them can be found in [3]).

Let ϕ be a PNL formula to be checked for satisfiability and let AP be the set
of its propositional letters.

Definition 1. The closure CL(ϕ) of ϕ is the set of all subformulae of 〈A〉ϕ and
of their negations (we identify ¬¬ψ with ψ).

As it will become clear later, we put the formula 〈A〉ϕ and its negation in CL(ϕ)
to avoid that the removal process could delete all intervals over which ϕ holds.

Definition 2. The set of temporal formulae of ϕ is the set TF(ϕ) = {ζ ∈
CL(ϕ) : ζ = 〈A〉ψ or ζ = [A]ψ or ζ = 〈A〉ψ or ζ = [A]ψ}.

By induction on the structure of ϕ, we can easily prove that, for every formula
ϕ, | CL(ϕ)| is less than or equal to 2 · (|ϕ| + 1), while | TF(ϕ)| is less than or
equal to 2 · |ϕ|. We are now ready to introduce the notion of ϕ-atom.

Definition 3. A ϕ-atom is a set A ⊆ CL(ϕ) such that:

– for every ψ ∈ CL(ϕ), ψ ∈ A iff ¬ψ 	∈ A;
– for every ψ1 ∨ ψ2 ∈ CL(ϕ), ψ1 ∨ ψ2 ∈ A iff ψ1 ∈ A or ψ2 ∈ A.

We denote the set of all ϕ-atoms by Aϕ. We have that |Aϕ| ≤ 2|ϕ|+1. Atoms are
connected by the following binary relation.

Definition 4. Let LRϕ be a relation such that for every pair of atoms A1, A2 ∈
Aϕ, A1 LRϕ A2 if and only if (i) for every [A]ψ ∈ CL(ϕ), if [A]ψ ∈ A1 then
ψ ∈ A2 and (ii) for every [A]ψ ∈ CL(ϕ), if [A]ψ ∈ A2 then ψ ∈ A1.

We now introduce a suitable labeling of interval structures based on ϕ-atoms.

Definition 5. A ϕ-labeled interval structure (LIS for short) is a pair L =
〈〈D, I(D)−〉, L〉, where 〈D, I(D)−〉 is an interval structure and L : I(D)− →
Aϕ is a labeling function such that, for every pair of neighboring intervals
[di, dj], [dj , dk] ∈ I(D)−, L([di, dj]) LRϕ L([dj , dk]).

If we interpret the labeling function as a valuation function, LISs represent candi-
date models for ϕ. The truth of formulae devoid of temporal operators and that of
[A]/[A] formulae indeed follow from the definition of ϕ-atom and LRϕ, respec-
tively. However, to obtain a model for ϕ, we must also guarantee the truth of
〈A〉/〈A〉 formulae. To this end, we introduce the notion of fulfilling LIS.

Definition 6. A ϕ-labeled interval structure L = 〈〈D, I(D)−〉, L〉 is fulfilling if
and only if (i) for every temporal formula 〈A〉ψ ∈ TF(ϕ) and every interval
[di, dj] ∈ I(D)−, if 〈A〉ψ ∈ L([di, dj]), then there exists dk > dj such that ψ ∈
L([dj , dk]) and (ii) for every temporal formula 〈A〉ψ ∈ TF(ϕ) and every interval
[di, dj] ∈ I(D)−, if 〈A〉ψ ∈ L([di, dj]), then there exists dk < di such that ψ ∈
L([dk, di]).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Optimal Tableau-Based Decision Algorithm 553

The next theorem proves that for any given formula ϕ, the satisfiability of ϕ is
equivalent to the existence of a fulfilling LIS with an interval labeled by ϕ.

Theorem 1. A formula ϕ is satisfiable if and only if there exists a fulfilling LIS
L = 〈〈D, I(D)−〉, L〉 with ϕ ∈ L([di, dj]) for some [di, dj] ∈ I(D)−.

The implication from left to right is straightforward; the opposite implication is
proved by induction on the structure of the formula.

From now on, we say that a fulfilling LIS L = 〈〈D, I(D)−〉, L〉 satisfies ϕ
if and only if there exists an interval [di, dj] ∈ I(D)− such that ϕ ∈ L([di, dj]).
Since (the domain of) fulfilling LISs satisfying ϕ may be arbitrarily large or even
infinite, we must find a way to finitely establish their existence. In the following,
we first give a bound on the size of finite fulfilling LISs that must be checked
for satisfiability, when searching for finite ϕ-models; then, we show that we can
restrict ourselves to infinite fulfilling LISs with a finite bounded representation,
when searching for infinite ϕ-models.

Definition 7. Given a LIS L = 〈〈D, I(D)−〉, L〉 and a point d ∈ D, we define the
set of future temporal requests of d as the set REQL

f (d) = {〈A〉ξ, [A]ξ ∈ TF(ϕ) :
∃d′ ∈ D(〈A〉ξ, [A]ξ ∈ L([d′, d]))} and the set of past temporal requests of d as
the set REQL

p (d) = {〈A〉ξ, [A]ξ ∈ TF(ϕ) : ∃d′ ∈ D(〈A〉ξ, [A]ξ ∈ L([d, d′]))}. The
set of temporal requests of d is defined as REQL(d) = REQL

p (d) ∪ REQL
f (d).

We denote by REQϕ the set of all possible sets of requests. It is not difficult to

show that | REQϕ | is equal to 2
| TF(ϕ)|

2 .

Definition 8. Given a LIS L = 〈〈D, I(D)−〉, L〉, D′ ⊆ D, and R ∈ REQϕ, we
say that R occurs n times in D′ if and only if there exist exactly n distinct points
di1 , . . . , din ∈ D′ such that REQL(dij) = R, for all 1 ≤ j ≤ n.

We describe now the process of removing a point from a LIS. Given L =
〈〈D, I(D)−〉, L〉 and d ∈ D, let L−d be the set of all LIS L′ = 〈〈D′, I(D′)−〉, L′〉
such that D′ = D \ {d} and REQL′

(d) = REQL(d), for all d ∈ D \ {d}. L and L′

do not necessarily agree on the labeling of intervals, but they agree on the sets
of requests of points.

Given a fulfilling LIS L and a point d, it is not guaranteed that L−d contains
a fulfilling LIS. The removal of d indeed causes the removal of all intervals either
beginning or ending at it and thus there can be a point d < d (resp., d > d) such
that there exists a formula 〈A〉ψ ∈ REQL

f (d) (resp., 〈A〉ψ ∈ REQL
p (d)) which is

fulfilled in L, but not in any L′ ∈ L−d. The following lemma provides a sufficient
condition for preserving the fulfilling property when removing a point from L.

Lemma 1. Let L = 〈〈D, I(D)−〉, L〉 be a fulfilling LIS, f be the number of 〈A〉-
formulae in TF(ϕ), and p be the number of 〈A〉-formulae in TF(ϕ). If there exists
a point de ∈ D such that (i) there exist at least f · p + p distinct points d < de

such that REQL(d) = REQL(de) and (ii) there exist at least f · p + f distinct
points d > de such that REQL(d) = REQL(de), then there is one fulfilling LIS
L̂ ∈ L−de .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

554 D. Bresolin, A. Montanari, and P. Sala

Proof. Let L = 〈〈D, I(D)−〉, L〉 be a fulfilling LIS and let de ∈ D be a point such
that there exist at least f · p + p distinct points d < de such that REQL(d) =
REQL(de) and at least f · p + f distinct points d > de such that REQL(d) =
REQL(de). We define D

′ = 〈D \ {de}, <〉 and L′ = L|I(D′)− (the restriction of
L to the intervals on D

′). The pair L′ = 〈〈D′, I(D′)−〉, L′〉 is obviously a LIS in
L−de , but, as already pointed out, it is not necessarily a fulfilling one. We show
how the defects possibly caused by the removal of de can be fixed one-by-one by
properly redefining L′.

Consider the case of a point d < de and a formula 〈A〉ψ ∈ REQL
f (d) such

that ψ ∈ L([d, de]) and there are no d ∈ D \ {de} such that ψ ∈ L′([d, d])
(the symmetric case of d > de and 〈A〉ψ ∈ REQL

p (d) can be dealt with in the
same way). Let R = {dr ∈ D : dr > de ∧ REQL(dr) = REQL(de)}. To satisfy
the request 〈A〉ψ ∈ REQL(d) we change the labeling of an interval [d, dr], for
a suitable dr ∈ R. However, to avoid that such a change makes one or more
requests in REQL

p (dr) no more satisfied, we preliminarily redefine the labeling
L′. First, we take a minimal set of points P de ⊆ D \ {de} such that, for every
〈A〉ψ ∈ REQL

p (de) there exists a point di ∈ P de such that ψ ∈ L([di, de]). We
call P de the set of preserved past points for de. Then, for every point di ∈ P de, let
F di ⊆ D\{de} be a minimal set of points such that, for every 〈A〉ψ ∈ REQL

f (di)
there is a point df ∈ F di such that ψ ∈ L([di, df]). We call F di the set of
preserved future points for di.

Let G be the set of points R \
⋃

di∈P de F di . By the minimality requirements,
|P de | is bounded by p and |F di |, for each di ∈ P de, is bounded by f . Hence,
|
⋃

di∈P de F di | ≤ f ·p and, by Condition (ii), |G| is greater than or equal to f . Now,
we can use points in G to fulfill 〈A〉ψ ∈ REQL

f (d), without generating new defects,
as follows. Since REQL

f (d) contains at most f 〈A〉-formulae, there exists at least
one point dg ∈ G such that the atom L′([d, dg]) either fulfills no 〈A〉-formulae
or it fulfills only 〈A〉-formulae which are also fulfilled by an ϕ-atom L′([d, dk])
for some dk. Let dg one of such “useless” points. We can redefine L′([d, dg]) by
putting L′([d, dg]) = L([d, de]), thus fixing the problem for 〈A〉ψ ∈ REQL

f (d).
Since REQL(dg) = REQL(de), such a change has no impact on the right neighbor-
ing intervals of [d, dg]. On the contrary, there may exist one or more 〈A〉-formulae
in REQL

p (dg) which, due to the change in the labeling of [d, dg], are not satisfied
anymore. In such a case, however, we can recover satisfiability, without introduc-
ing any new defect, by putting L′([di, dg]) = L([di, de]) for all di ∈ P de .

In the same way, we can fix all possible other defects caused by the removal
of de. Let L̂ = 〈〈D′, I(D′)〉, L̂〉 be the resulting LIS. It is immediate to show that
L̂ is fulfilling and it belongs to L−de . ��

By taking advantage of Lemma 1, we can prove the following theorem.

Theorem 2. Let L = 〈〈D, I(D)−〉, L〉 be a finite fulfilling LIS that satisfies ϕ,
f be the number of 〈A〉-formulae in TF(ϕ), and p be the number of 〈A〉-formulae
in TF(ϕ). Then, there exists a finite fulfilling LIS L̂ = 〈〈D̂, I(D̂)−〉, L̂〉 that satisfies

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Optimal Tableau-Based Decision Algorithm 555

ϕ such that, for every d̂i ∈ D̂, REQL̂(d̂i) occurs at most m = 2fp + f + p times
in D̂.

Let us consider now the case of infinite (fulfilling) LISs. We start with a classi-
fication of points belonging the domain of the structure.

Definition 9. Given an infinite LIS L = 〈〈D, I(D)−〉, L〉, we partition the points
in D into the following sets:

– Fin(L) is the set of all points d ∈ D such that REQL(d) occurs finitely many
times in D;

– Infl(L) is the set of all points d ∈ D such that REQL(d) occurs infinitely
many times in D, but there exists a point dmax such that, for all d′ > dmax,
REQL(d′) 	= REQL(d);

– Infr(L) is the set of all points d ∈ D such that REQL(d) occurs infinitely
many times in D, but there exists a point dmin such that, for all d′ < dmin,
REQL(d′) 	= REQL(d);

– Inf(L) is the set of all points d ∈ D such that REQL(d) occurs infinitely
many times in D and, for every point d′, there exists d′′ < d′ such that
REQL(d′′) = REQL(d) and there exists d′′′ > d′ such that REQL(d′′′) =
REQL(d).

The following definition captures a particular subclass of infinite LISs that enjoy
a finite representation.

Definition 10. An infinite LIS L = 〈〈D, I(D)−〉, L〉 is ultimately periodic, with
left period l, infix i and right period r, if and only if there exists d0 ∈ D such
that for all k < 0, REQL(dk) = REQL(dk−l) and for all k ≥ 0, REQL(di+k) =
REQL(di+k+r).

The following theorem proves that if there exists an infinite fulfilling LIS that
satisfies ϕ, then there exists also an ultimately periodic fulfilling LIS that satisfies
it. Furthermore, it provides a bound to the left period, infix, and right period
of such a fulfilling LIS which closely resembles the one that we established for
finite ones.

Theorem 3. Let L = 〈〈D, I(D)−〉, L〉 be an infinite fulfilling LIS that satisfies
ϕ, f be the number of 〈A〉-formulae in TF(ϕ), and p be the number of 〈A〉-
formulae in TF(ϕ). Then, there exists an ultimately periodic fulfilling LIS L̂ =
〈〈D̂, I(D̂)−〉, L̂〉, with left period l, infix i and right period r, such that

1. for every dj ∈ Fin(L̂), REQL̂(dj) occurs at most m = 2fp + f + p times in
D;

2. for every dj ∈ Infr(L̂), REQL̂(dj) occurs exactly fp + p times in I, where
I is the set of points in the infix part of L̂;

3. for every dj ∈ Infl(L̂), REQL̂(dj) occurs exactly fp + f times in I;

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

556 D. Bresolin, A. Montanari, and P. Sala

4. for all points dj ∈ Inf(L̂), dj 	∈ I;
5. r ≤ | REQϕ | and l ≤ | REQϕ |;

6. for every dj ∈ Fin(L) and every formula 〈A〉ψ ∈ REQL̂
f (dj), there exists a

point dh ≤ di+(f ·p+f)·r such that ψ ∈ L̂([dj , dh]);

7. for every dj ∈ Fin(L) and every formula 〈A〉ψ ∈ REQL̂(dj), there exists a
point dh ≥ d−(f ·p+p)·l such that ψ ∈ L̂([dh, dj])

that satisfies ϕ.

4 A Tableau-Based Decision Procedure for PNL

In this section we define a tableau method for PNL over the integers (or a subset
of them). We begin with some basic definitions.

Given a formula ϕ, let m = 2fp + f + p, where f (resp. p) is the number
of 〈A〉-formulae (resp. 〈A〉-formulae) in CL(ϕ). A tableau for PNL is a special
decorated tree T . For each node n in a branch B, the decoration ν(n) is a tuple
〈[di, dj], An, REQn, Dn, x〉, where:

– [di, dj] ∈ I(Dn)−;
– REQn : Dn �→ REQϕ is a request function;
– Dn = 〈Dn, <〉 is a finite linear order;
– An ∈ Aϕ is such that: (i) for all [A]ψ ∈ REQn(di), ψ ∈ An, (ii) for all

[A]ψ ∈ REQn(dj), ψ ∈ An, (iii) for all ψ ∈ An, if ψ = 〈A〉ξ or ψ = [A]ξ,
then ψ ∈ REQn(di), and (iv) for all ψ ∈ An, if ψ = 〈A〉ξ or ψ = [A]ξ, then
ψ ∈ REQn(dj);

– x ∈ {R, L, F}, where R, L, and F respectively stand for right blocked, left
blocked, and free.

The root r of the tree is decorated by the empty decoration 〈∅, ∅, ∅, ∅, F〉.
Given a node n ∈ B, decorated with 〈[di, dj], An, REQn, Dn, x〉, and a future

existential formula 〈A〉ψ ∈ An, we say that 〈A〉ψ ∈ An is fulfilled on B if and
only if there exists a node n′ ∈ B such that ν(n′) = 〈[dj , dk], An′ , REQn′ , Dn′ , x〉
and ψ ∈ An′ . Conversely, we say that a past existential formula 〈A〉ψ ∈ An

is fulfilled on B if and only if there exists a node n′ ∈ B such that ν(n′) =
〈[dk, di], An′ , REQn′ , Dn′ , x〉 and ψ ∈ An′ . A node n is said to be active on B if
and only if An contains at least one (future or past) existential formula which is
not fulfilled on B.

Expansion rules. Let B a branch of a decorated tree T . We denote by DB and
REQB the linear order and the request function of the decoration of the last
node in B, respectively. Moreover, let dl and dr be the minimum and maximum
element of DB, respectively. The expansion rules for B are:

1. Right step rule: if there exists an active node n ∈ B, with ν(n) = 〈[di, dj], An,
REQn, Dn, x〉 and a non-fulfilled future existential formula in An, then ex-
tend DB to D′ = DB ∪{dr+1}, with dr+1 > dr. Then, take an atom A′ such

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Optimal Tableau-Based Decision Algorithm 557

that An LRϕ A′ and extend REQB to REQ′ : D′ �→ REQϕ in such a way
that for all [A]ψ ∈ REQ′(dr+1), ψ ∈ A′ and for all ψ ∈ A′, if ψ = 〈A〉ξ or
ψ = [A]ξ, then ψ ∈ REQ′(dr+1). Finally, add an immediate successor n′ to
the last node in B decorated as follows:

– if the number p of points d ∈ D′ with REQ′(d) = REQ′(dr+1) is less
than or equal to m, then ν(n′) = 〈[dj , dr+1], A′, REQ′, D′, F 〉;

– otherwise (p = m + 1), ν(n′) = 〈[dj , dr+1], A′, REQ′, D′, R〉.
2. Left step rule: if there exists an active node n ∈ B, with ν(n) = 〈[di, dj], An,

REQn, Dn, x〉 and a non-fulfilled past existential formula in An, then extend
DB to D′ = DB ∪ {dl−1}, with dl−1 < dl. Then, take an atom A′ such that
A′ LRϕ An and extend REQB to REQ′ : D′ �→ REQϕ in such a way that for
all [A]ψ ∈ REQ′(dl−1), ψ ∈ A′ and for all ψ ∈ A′, if ψ = 〈A〉ξ or ψ = [A]ξ,
then ψ ∈ REQ′(dl−1). Finally, add an immediate successor n′ to the last
node in B decorated as follows:

– if the number p of points d ∈ D′ with REQ′(d) = REQ′(dl−1) is less
than or equal to m, then ν(n′) = 〈[dl−1, di], A′, REQ′, D′, F 〉;

– otherwise (p = m + 1), ν(n′) = 〈[dl−1, di], A′, REQ′, D′, L〉.
3. Fill-in rule: if there exist two points di < dj such that there are no nodes in B

decorated with the interval [di, dj] and there exists a decoration 〈[di, dj], A′,
REQB, DB, F 〉, then expand B by adding an immediate successor n′, with
such a decoration, to the last node in B.

All rules expand the branch B with a new node. However, while the left and
right step rules add a new point d to DB and decorate the new node with a new
interval beginning or ending at d, the fill-in rule decorates it with a new interval
whose endpoints already belong to DB.

Expansion strategy. Given a decorated tree T and a branch B, we say that B is
right-blocked if there exists a node n decorated with 〈[di, dj], An, REQn, Dn, R〉,
while it is left-blocked if there exists a node n decorated with 〈[di, dj], An, REQn,
Dn, L〉. A branch is blocked if it is both left and right blocked.

An expansion rule is applicable on B if B is non-blocked and the application
of the rule generates a new node. The branch expansion strategy for a branch B
is the following one:

1. if the fill-in rule is applicable, apply the fill-in rule to B and, for every possible
choice for the decoration, add an immediate successor to the last node in B;

2. if the fill-in rule is not applicable and there exist two points di < dj ∈ DB

such that there are no nodes in B decorated with [di, dj], close the branch;
3. if B is not right-blocked and the right-step rule is applicable, then apply it

to B and, for every possible choice for the decoration, add an immediate
successor to the last node in B;

4. if B is not left-blocked and the left-step rule is applicable, then apply it to B
and, for every possible choice for the decoration, add an immediate successor
to the last node in B.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

558 D. Bresolin, A. Montanari, and P. Sala

Tableau. Let ϕ be the formula to be checked for satisfiability and let
〈[d0, d1], A1, REQ1, {d0, d1}, F 〉, . . . , 〈[d0, d1], Ak, REQk, {d0, d1}, F 〉 be the set of
decorations with 〈A〉ϕ ∈ REQi(d0). The initial tableau for ϕ consists of the
root, with the empty decoration, and k immediate successors n1, . . . nk. For each
1 ≤ i ≤ k, ni is decorated by 〈[d0, d1], Ai, REQi, {d0, d1}, F 〉. A tableau for ϕ is
any decorated tree T obtained by expanding the initial tableau for ϕ through
successive applications of the branch-expansion strategy to existing branches,
until the branch-expansion strategy cannot be applied anymore.

Fulfilling branches. Given a branch B of a tableau T for ϕ, we say that B is a
fulfilling branch if and only if B is not closed and one of the following conditions
holds:

1. B does not contain active nodes (finite model case);

2. B is right blocked and there exists at least one formula 〈A〉ψ not fulfilled in
B (right unbounded model case). Moreover, let dr be the greatest point in
DB. By the blocking condition, REQB(dr) is repeated m + 1 times in DB.
Let dk be the greatest point in DB, with dk < dr, such that REQB(dk) =
REQB(dr). The set {dk+1, . . . , dr}, called fulfilling right period, satisfies the
following conditions:

(a) for all di, dj ∈ {dk+1, . . . , dr}, there exists an atom Aij such that (i) for
all [A]ψ ∈ REQB(di), ψ ∈ Aij , and (ii) for all [A]ψ ∈ REQB(dj),
ψ ∈ Aij ;

(b) for all di ∈ {dk+1, . . . , dr} and 〈A〉ψ ∈ REQB(di), there exist a point
dj ∈ {dk+1, . . . , dr} and an atom Aij such that (i) ψ ∈ Aij , (ii) for all
[A]ξ ∈ REQB(di), ξ ∈ Aij , and (iii) for all [A]ξ ∈ REQB(dj), ξ ∈ Aij ;

(c) for all di ≤ dk such that REQB(di) does not occur in the right period,
all 〈A〉-formulae in REQB(di) are fulfilled in B.

3. B is left blocked and there exists at least one formula 〈A〉ψ not fulfilled in
B (left unbounded model case). Moreover, let dl be the smallest point in
DB. By the blocking condition, REQB(dl) is repeated m + 1 times in DB.
Let dk be the smallest point in DB, with dk > dl, such that REQB(dk) =
REQB(dl). The set {dl, . . . , dk−1}, called fulfilling left period, satisfies the
following conditions:

(a) for all di, dj ∈ {dl, . . . , dk−1}, there exists an atom Aij such that (i) for
all [A]ψ ∈ REQB(di), ψ ∈ Aij , and (ii) for all [A]ψ ∈ REQB(dj),
ψ ∈ Aij ;

(b) for all di ∈ {dl, . . . , dk−1} and 〈A〉ψ ∈ REQB(di), there exists a point
dj ∈ {dl, . . . , dk−1} and an atom Aji such that (i) ψ ∈ Aji, (ii) for all
[A]ξ ∈ REQB(dj), ξ ∈ Aji, and (iii) for all [A]ξ ∈ REQB(di), ξ ∈ Aji;

(c) for all di ≥ dk such that REQB(di) does not occur in the left period, all
〈A〉-formulae in REQB(di) are fulfilled in B.

4. if B is both right and left blocked, Conditions 2. and 3. must hold.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Optimal Tableau-Based Decision Algorithm 559

The decision procedure works as follows: given a formula ϕ, it constructs a
tableau T for ϕ and it returns “satisfiable” if and only if there exists at least
one fulfilling branch in T .

4.1 Soundness and Completeness

Soundness and completeness of the proposed method can be proved as follows.
Soundness is proved by showing how to construct a fulfilling LIS satisfying ϕ
from a fulfilling branch B in a tableau T for ϕ (by Theorem 1, it follows that ϕ
has a model). The proof must encompass both the case of non-blocked branches
(finite case) and of blocked ones (infinite case). Proving completeness consists in
showing that for any satisfiable formula ϕ, there exists a fulfilling branch B in
any tableau T for ϕ. Given a model for ϕ and the corresponding fulfilling LIS
L, we prove the existence of a fulfilling branch in T by exploiting Theorems 2
and 3.

Theorem 4. Given a formula ϕ and a tableau T for ϕ, if there exists a fulfilling
branch in T , then ϕ is satisfiable.

Theorem 5. Given a satisfiable formula ϕ, there exists a fulfilling branch in
every tableau T for ϕ.

The proofs of the theorems can be found in [2].

4.2 Optimality of the Proposed Method

In this section we provide a precise characterization of the computational com-
plexity of the satisfiability problem for PNL.

As for the computational complexity of the proposed decision procedure, ob-
serve that, by the blocking condition, after at most | REQϕ | ·m+1 applications
of the step rules, the expansion strategy cannot be applied anymore to a branch.
Moreover, given a branch B, between two successive applications of the step
rules, the fill-in rule can be applied at most k times, being k the number of
points in DB (as a matter of fact, k is exactly the number of applications of the
step rules up to that point). Since m = 2fp + p ≤ 2 · | TF(ϕ)|2 + | TF(ϕ)|, we
have that m is polynomial in the length of ϕ, while | REQϕ | is exponential in
it. If |ϕ| = n, the length of any branch B of a tableau T for ϕ is bounded by
(
| REQϕ | · (2 · | TF(ϕ)|2 + | TF(ϕ)|)

)2 = 2O(n), that is, the length of a branch is
exponential in |ϕ|. This implies that the satisfiability problem for PNL can be
solved by a (nondeterministic) algorithm that guesses a fulfilling branch B for
the formula ϕ in nondeterministic exponential time.

To give a NEXPTIME lower bound to the complexity of the satisfiability
problem for PNL we can exploit the computational complexity results for the
future-only fragment of PNL [3]. NEXPTIME-hardness of RPNL is proved
by reducing the exponential tiling problem to the satisfiability problem for
RPNL. Since RPNL is a fragment of PNL, the reduction presented in [3] proves
NEXPTIME-hardness of PNL as well.

Theorem 6. The satisfiability problem for RPNL is NEXPTIME-complete.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

560 D. Bresolin, A. Montanari, and P. Sala

5 Conclusions

In this paper, we focussed our attention on interval logics of temporal neighbor-
hood. We addressed the satisfiability problem for Propositional Neighborhood
Logic (PNL), interpreted over the integers (or a subset of them), and we showed
that it is NEXPTIME-complete. Moreover, we developed a sound and complete
tableau-based decision procedure for PNL and we proved its optimality. As for
possible extensions of the method, we are working on its generalization to the
whole class of linear orders as well as to other specific classes of temporal struc-
tures, such as dense ones.

References

1. D. Bresolin and A. Montanari. A tableau-based decision procedure for Right Propo-
sitional Neighborhood Logic. In Proc. of TABLEAUX 2005: 14th Conference on
Automated Reasoning with Analytic Tableaux and Related Methods, volume 3702
of LNAI, pages 63–77, Koblenz, Germany, September 2005. Springer.

2. D. Bresolin, A. Montanari, and P. Sala. An optimal tableau-based decision algo-
rithm for Propositional Neighborhood Logic. Technical report, Dipartimento di
Matematica e Informatica, Università di Udine, Italy, 2006.

3. D. Bresolin, A. Montanari, and G. Sciavicco. An optimal decision procedure for
Right Propositional Neighborhood Logic. Journal of Automated Reasoning, 2006.
DOI10.1007/s10817-006-9051-0.

4. Z. Chaochen and M. R. Hansen. An adequate first order interval logic. In W.P.
de Roever, H. Langmaak, and A. Pnueli, editors, Compositionality: the Significant
Difference, number 1536 in LNCS, pages 584–608. Springer, 1998.

5. V. Goranko, A. Montanari, and G. Sciavicco. Propositional interval neighborhood
temporal logics. Journal of Universal Computer Science, 9(9):1137–1167, 2003.

6. V. Goranko, A. Montanari, and G. Sciavicco. A road map of interval temporal
logics and duration calculi. Journal of Applied Non-Classical Logics, 14(1–2):9–54,
2004.

7. V. Goranko, A. Montanari, G. Sciavicco, and P. Sala. A general tableau method
for propositional interval temporal logics: theory and implementation. Journal of
Applied Logic, 4(3):305–330, 2006.

8. J. Halpern and Y. Shoham. A propositional modal logic of time intervals. Journal
of the ACM, 38(4):935–962, 1991.

9. K. Lodaya. Sharpening the undecidability of interval temporal logic. In Proc. of
6th Asian Computing Science Conference, volume 1961 of LNCS, pages 290–298.
Springer, 2000.

10. A. Montanari. Propositional interval temporal logics: some promising paths. In
Proc. of the 12th International Symposium on Temporal Representation and Rea-
soning (TIME), pages 201–203. IEEE Computer Society Press, 2005.

11. A. Montanari, G. Sciavicco, and N. Vitacolonna. Decidability of interval temporal
logics over split-frames via granularity. In Proc. of the 8th European Conf. on Logic
in Artificial Intelligence, volume 2424 of LNAI, pages 259–270. Springer, 2002.

12. B. Moszkowski. Reasoning about digital circuits. Tech. rep. stan-cs-83-970, Dept.
of Computer Science, Stanford University, Stanford, CA, 1983.

13. Y. Venema. A modal logic for chopping intervals. Journal of Logic and Computa-
tion, 1(4):453–476, 1991.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bounded-Variable Fragments of Hybrid Logics

Thomas Schwentick and Volker Weber

Fachbereich Informatik, Universität Dortmund, Germany
{thomas.schwentick,volker.weber}@udo.edu

Abstract. Hybrid logics extend modal logics by first-order concepts, in
particular they allow a limited use of variables. Unfortunately, in general,
satisfiability for hybrid formulas is undecidable and model checking is
PSPACE-hard. It is shown here that on the linear frame (ω,<), the re-
striction to one name, although expressively complete, has EXPSPACE-
complete satisfiability and polynomial time model-checking.

For the upper bound, a result of independent interest is found: Non-
emptiness for alternating two-way Büchi automata with one pebble is
EXPSPACE-complete.

1 Introduction

Hybrid logics extend modal and temporal logics by first-order concepts. They
aim at bringing together good properties of both sides, e.g., do be reasonably
expressive and yet decidable. There has been a lot of fundamental research on
hybrid logics over the last years and their applications range from verification
tasks to reasoning about semistructured data [5].

One of the most well known hybrid languages is HL(↓, @), which extends
modal logics by three concepts. Nominals are names for states of a model, i.e.,
they correspond to constants in first-order logic. The @-operator allows to ex-
press that a formula holds at a named state. Finally, the ↓-operator binds vari-
ables to the current state, creating on the fly names that can be referenced by
the @-operator. These concepts clearly increase the expressive power, although
they preserve the modal perspective. Unfortunately, satisfiability of HL(↓, @) is
undecidable [1] and model checking is PSPACE-complete [5].

These results are with respect to arbitrary structures. However, as in most
applications models are either linear or have a branching structure, there has
been some research in hybrid logics over such structures [2,6,15].

In this work, we focus on linear, initial, and discrete structures, as they occur
in linear time model checking. Previous work showed that HL(↓, @) is decid-
able over these structures, referred to as the frame of the natural numbers, but
with non-elementary complexity [6]. In the light of this high complexity there
have been successful attempts to identify more tractable cases, like restricting
formulas to existential fragments [6], disallowing certain patterns in formulas, or
allowing only models of bounded width [18].

We take a different approach here, reminiscent of a successful line of research
in classical logic, namely restricting the number of variables. Our main result is

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 561–572, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

562 T. Schwentick and V. Weber

that the one-variable fragment of HL(↓, @) has a satisfiability problem with ele-
mentary complexity, tractable model checking problem, and is still expressively
complete over the frame of the natural numbers. In contrast, the two-variable
fragment shares the non-elementary complexity with the full logic.

The proof of the upper bound for the one-variable fragment is by the automata
theoretic approach. Starting from [24], there has been quite some work by Vardi
and others using alternating (one-way) Büchi automata for linear time model
checking (see also [21]).

We use alternating two-way Büchi automata which, in order to simulate the
one variable, are further equipped with a pebble. Alternating two-way automata
have been already used for similar purposes in previous work [22,16,13]. In par-
ticular, it was shown in [13] that their non-emptiness problem is in PSPACE.
We show here that with one pebble the complexity is in EXPSPACE. We
think that this result is of general interest, especially for the automata theoretic
approach to temporal logics.

We start with basic definitions in Section 2. Section 3 contains the automata
theoretic results, while Section 4 is devoted to the bounded variable fragments
of hybrid logic. We conclude in Section 5.

We thank Henrik Björklund, Thomas Schneider, and the referees for many
insightful comments and suggestions.

2 Preliminaries

In this section, we give the basic definitions for hybrid logics and Büchi automata.

2.1 Hybrid Logics

The syntax of the hybrid logics we consider is defined as follows.

Definition 2.1. Let PROP = {p, q, . . .}, NOM = {i, j, . . .}, SVAR = {x, y, . . .}
be disjoint, countable sets of proposition symbols, nominals, and state variables,
respectively, and let ATOM denote PROP ∪ NOM ∪ SVAR.

The formulas of the hybrid language HL(↓, @) are as follows.

ϕ := � | a | ¬ϕ | ϕ ∧ ψ | Fϕ | @tϕ | ↓x.ϕ

where a ∈ ATOM, t ∈ NOM ∪ SVAR, and x ∈ SVAR.
The hybrid temporal language HT L(↓, @) has also formulas of the form Pϕ.

We use the common notations for the duals of the modalities, namely Gϕ for
¬F¬ϕ and Hϕ for ¬P¬ϕ. By omitting ↓ or @ from HL(↓, @), we indicate the
fragments without the respective operators.

As an example, θ =↓x.(F ↓y.(b ∧ @xG(Fy → a))) is an HL(↓, @) formula.
As for modal and temporal logics, semantics is defined by Kripke structures.

Definition 2.2. A hybrid model M is a tuple (M, R, V) consisting of a non-
empty set M of states, a binary accessibility relation R on M , and a valuation
V : PROP ∪ NOM → 2M , such that V (i) is a singleton for every i ∈ NOM.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bounded-Variable Fragments of Hybrid Logics 563

For a given model M, an assignment is a mapping g : SVAR → M . By gx
m we

denote the assignment that is identical to g, except that x is mapped to m. By
[V, g] we denote the disjoint union of the functions V and g.

The semantics of HT L(↓, @) is defined as follows:

M, g, m |= a iff m ∈ [V, g](a), a ∈ ATOM

M, g, m |= ¬ϕ iff M, g, m �|= ϕ

M, g, m |= ϕ ∧ ψ iff M, g, m |= ϕ and M, g, m |= ψ

M, g, m |= Fϕ iff for some n ∈ M : mRn and M, g, n |= ϕ

M, g, m |= Pϕ iff for some n ∈ M : nRm and M, g, n |= ϕ

M, g, m |= @tϕ iff M, g, [V, g](t) |= ϕ

M, g, m |=↓x.ϕ iff M, gx
m, m |= ϕ

A formula ϕ is called satisfiable if there is a model M, an assignment g for
M, and a state m ∈ M such that M, g, m |= ϕ.

The semantics is defined with respect to arbitrary Kripke structures, but most
applications require models with a linear or branching structure. In this paper,
we only consider the case of linear, initial, and discrete models, i.e., models based
on the frame1 (N, <) of the natural numbers with < as accessibility relation.

On these frames, the example formula θ above is equivalent to the strict
version of the LT L formula aUb.

By HT L(↓k, @) we denote the set of HT L(↓, @) formulas which use at most
k variables. We note that, over the natural numbers, HT L(↓, @) and HT L(↓)
are equivalent as one can simply substitute @xϕ by FP(x ∧ ϕ). Thus we obtain
the following.

Lemma 2.3. Over the natural numbers: For every HT L(↓1, @)-formula ϕ of
length n, there is an equivalent HT L(↓1)-formula ψ of length O(n).

2.2 Automata

For a given nonempty alphabet Σ, an infinite word is an infinite sequence
σ1, σ2, . . . of symbols from Σ.

A nondeterministic (one-way) Büchi automaton A is a tuple (Q, Σ, Q0, δ, F),
where Q is a finite set of states, Σ is a finite alphabet, Q0 ⊆ Q is a set of initial
states, δ : Q×Σ → 2Q is a transition function, and F ⊆ Q is the set of accepting
states.

A run r of A on an infinite word w = σ1, σ2, . . . is a sequence of states
q1, q2, . . ., such that q1 ∈ Q0 and qi+1 ∈ δ(qi, σi). A run r is accepting if some
accepting state occurs infinitely often in r, i.e., if inf(r) ∩ F �= ∅. An infinite
word w is accepted by A if there is an accepting run of A on w. The language
accepted by A is the set of all infinite words accepted by A and denoted L(A).

1 The tuple (M, R) is traditionally called a frame.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

564 T. Schwentick and V. Weber

Proposition 2.4 ([23]). Non-emptiness of non-deterministic Büchi automata
is complete for NL.

An alternating one-pebble Büchi automaton is an automaton which has a head
that can move along the input string in both directions. It can drop its peb-
ble at a position and it can lift the pebble again if its head is at the pebble
position. Furthermore, without affecting head or pebble, it can universally or
existentially branch into two independent sub-computations. More formally, it
is a tuple (Q, Σ, q0, δ, F), such that Q is a finite set of states, Σ is a finite al-
phabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states, and

δ : Q × Σ → (Q × Q × {∧, ∨, lift}) ∪ (Q × {left, right, drop})
is a transition function.

A configuration (q, i, j) ∈ Q × N × (N ∪ {⊥}) of A consists of a state, the
position of the head, and the position of the pebble, where ‘⊥’ means that the
pebble is not placed. A run ρ of A on an infinite word w = σ1, σ2, . . . is a possibly
infinite tree whose nodes are labeled with configurations.

This tree must be compatible with the transition function. For example, for
every node v labeled by a state (q, i, j),

– if δ(q, σ) = (q′, left), v has a child with configuration (q, i − 1, j);
– if δ(q, σ) = (q1, q2, ∧), v has two children labelled (q1, i, j) and (q2, i, j);
– if δ(q, σ) = (q1, q2, ∨), v has a child, labelled by (q1, i, j) or (q2, i, j).

Nodes v of the second kind are called universal, nodes of the third kind ex-
istential. A run is accepting if every infinite branch2 contains infinitely many
configurations with labels from F . Acceptance of A is defined as usual.

It is easy to see that this definition is essentially equivalent to a more liberal
one, in which transitions involve a Boolean combination of follow-up states.

We will make use of the following well-known theorem.

Theorem 2.5 (König’s Lemma). If in a tree each node has only finitely many
children and there are nodes of arbitrary depth, then the tree has an infinite path.

3 Non-emptiness of Alternating One-Pebble Büchi
Automata

In this section, we show that the complexity of non-emptiness for alternating
Büchi automata with one pebble is EXPSPACE-complete. This result is not
too surprising, as it matches the corresponding result on finite strings [11]. Nev-
ertheless, the infinite string case is considerably more involved and the proofs in
[10,11,9] cannot be easily adapted to this case.

Recall that a run of an alternating Büchi automata A with one pebble is an
infinite tree, the nodes of which are labeled with configurations (q, i, j), where q
is the state, i is the position of the head and j is the position of the pebble (⊥ if

2 We can assume that every branch is infinite. For an accepting leave, we simply move
to an accepting state that is never left again.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bounded-Variable Fragments of Hybrid Logics 565

the pebble is not present). We are interested in runs of the following particularly
simple structure. A run is homogeneous if, for every existential configuration
(q, i, j), all nodes with configuration (q, i, j) have the same configuration at their
child.

Note that the configuration graph of A on an input w can be seen as the
arena of a two-player game with a Büchi condition. Thus, from the existence
of memoryless winning strategies in such games [4,14] (see also [25]), it follows
that if A has an accepting run on input w then it also has a homogeneous
accepting run. Thus it is sufficent to check whether, for the given input, A has
a homogeneous accepting run.

Theorem 3.1. Non-emptiness of alternating one-pebble Büchi automata is com-
plete for EXPSPACE.

Proof. Hardness follows immediately from the corresponding result for finite
strings [11]. For the upper bound, we show that, for each alternating one-pebble
Büchi automaton A, there is an equivalent non-deterministic Büchi automaton
B of size |ΣA| · 22O(|QA|)

, which can be constructed from A in space exponential
in |QA|. The result then follows by Proposition 2.4. As already indicated above,
B checks, on input w, whether A has a homogeneous accepting run ρ on w.

A run is not accepting if and only if it has a non-accepting path. Thus, B
checks that ρ has no non-accepting path. The non-accepting paths can be clas-
sified as follows. First, a path can be bounded, i.e., there is some m such that all
head positions of π are at most m, otherwise, we call it unbounded.

There are two kinds of unbounded non-accepting paths:

(1a) At some point, the automaton drops the pebble at some position j and
never lift it again. In this case, all further configurations are of the form
(q, i, j), for some q, i.

(1b) Otherwise, the path has infinitely many configurations of the form (q, i, ⊥),
with arbitrarily large i.

Likewise, there are two kinds of bounded non-accepting paths.

(2a) The first kind drops the pebble at some position j and never lifts it again.
Thus, there are q and i such that (q, i, j) occurs infinitely often on π.
Consequently, there must be a subpath from configuration (q, i, j) to (q, i, j)
which does not visit any accepting state, does not lift the pebble, and does
not visit any positions larger than i.

(2b) The other kind of bounded paths has infinitely many configurations of
the form (q, i, ⊥), hence there is again a maximum i and a state q such
that (q, i, ⊥) occurs infinitely often and only finitely many nodes have a
configurations (p, i′, ⊥) with i′ > i. Therefore, there is a subpath from
configuration (q, i, ⊥) to (q, i, ⊥) which does not visit any accepting state
and does not visit any pebble-free positions larger than i.

In the following we describe the information that B maintains in order to
check that ρ has only accepting paths.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

566 T. Schwentick and V. Weber

For each i, let Si be the set of states q for which (q, i, ⊥) occurs in ρ. We
consider two kinds of left paths (right paths are defined accordingly):

– paths starting from a configuration (p, i, ⊥) and ending in a configuration
(q, i, ⊥) without an intermediate configuration (p′, i′, ⊥) with i′ > i (inter-
mediate configurations (p′, i′, j′) with j′ ≤ i and i′ > i are allowed);

– paths starting from a configuration (p, i, j) and ending in a configuration
(q, i, j), without any intermediate lifting of the pebble and without any in-
termediate configurations (p′, i′, j) with i′ > i.

For each i, we denote by Li the subset of Q × Q × {+, ∃}, such that

– (p, q, +) ∈ Li if and only if all left paths of ρ from (p, i, ⊥) to (q, i, ⊥) visit
an accepting state, and

– (p, q, ∃) ∈ Li if and only if ρ has a left path from (p, i, ⊥) to (q, i, ⊥),

and by Ri the subset of Q × Q × {+, ∃}, such that

– (p, q, +) ∈ Ri if and only if all right paths of ρ from (p, i, 0) to (q, i, 0) visit
an accepting state, and

– (p, q, ∃) ∈ Ri if and only if ρ has a right path from (p, i, 0) to (q, i, 0).

It should be noted that in the definition of Ri, the actual position of the pebble
does not matter, as long as it is smaller than i. The reader should also observe the
asymmetry between the Li and the Ri. The Li only concern sub-computations
from a configuration without pebble, the Ri only from a configuration with
pebble.

Furthermore, B uses the following sets which are parametrized by the current
position j of the pebble. Let, for each i ≥ 0, j ≤ i, Si,j be the set of states p
such that (p, i, j) occurs in ρ. Likewise, let Li,j be the subset of Q × Q × {+, ∃}
such that

– (p, q, +) ∈ Li,j if and only if all left paths of ρ from (p, i, j) to (q, i, j) visit
an accepting state and

– (p, q, ∃) ∈ Li,j if and only if ρ has a left path from (p, i, j) to (q, i, j).

Recall that left paths from a configuration (p, i, j) never lift the pebble.
Additionally, B uses sets Ui, Ui,j and R′

i which will be defined below. For
each i, we let Xi be the set {(Si,j, Li,j , Ui,j) | j ≤ i}. Finally, for each i, let
the characteristic vector Ci of position i be (Si, Li, Ri, R

′
i, Ui, Xi). The intended

state of B at position i is basically (Ci−1, Ci).
The sets of the form Si, Si,j , Ri and the transitions of A are guessed by B and

the remaining information can be determined from it. It is not hard to check
that local consistency of these sets can be tested by B. It should be noted that
the computation of Li uses Ri to handle subpaths that drop the pebble at i and
lift it sometimes later.

Whether a path of type (2b) exists at position i can be inferred from Li and
the transitions δq,i at position i. Likewise, paths of type (2a) can be tested with
the help of the sets Li,j.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bounded-Variable Fragments of Hybrid Logics 567

Thus, it remains to describe how to rule out paths of types (1a) and (1b) and
how to check that the sets Ri are correct.

To this end, we define an increasing sequence l0, l1, . . . of positions of w as
follows. First of all, l0 = 0. Given lk, lk+1 is the minimum l > lk such that the
following conditions hold.

(i) For each state q ∈ Slk , each subpath starting from a node with configura-
tion (q, lk, ⊥) and reaching a configuration (p, l, ⊥) contains an accepting
state.

(ii) For each j ≤ lk and each state q ∈ Slk,j , each subpath starting from a node
with configuration (q, lk, j), reaching a configuration (p, l, j) without lifting
the pebble contains an accepting state.

(iii) For each (p, q, ∃) ∈ Rlk , there is a path from (p, lk, 0) to (q, lk, 0) on which
all nodes have head positions i ≤ l.

With the help of König’s Lemma, it is not hard to see that such an l exists if
ρ is accepting.

For each k and each i, lk < i ≤ lk+1, let Ui be the set of states q such that there
is a node w with configuration (q, i, ⊥) and a path from a node v with position
lj to w that does not pass any accepting state and only has positions ≤ i. Note
that by the definition of lk+1, Ulk+1 = ∅. Likewise, for each i, j, j ≤ i, let Ui,j be
the set of states q such that there is a node w with configuration (q, i, j) and a
path from a node v with a configuration (q′, lk, j) to w that does not pass any
accepting state and only has positions ≤ i. Note that by the definition of lk+1,
Ulk+1 = ∅.

Finally, let R′
i be a set of tuples (p, q, ∃) ∈ Ri, which still have to be fulfilled

in order to satisfy condition (iii) for k.
The accepting states of B are those for which Ui = ∅, for all (S, L, U) ∈ Xi,

U = ∅ and R′
i = ∅.

It is not hard to see that B can maintain the characteristic vectors Ci and
that B accepts w if and only if A has a homogeneous accepting run.

Furthermore, there are at most doubly exponentially many different possible
sets Xi and thus the number of possible states of B is at most doubly exponential
in the size of QA. Using standard space saving techniques, B can be constructed
in space |ΣA| · 2O(|QA|).

4 Bounded-Variable Fragments over the Natural
Numbers

In this section, we turn to the complexity of bounded-variable fragments of hy-
brid logics. We first show that even the one-variable fragment is expressively com-
plete. Next, we prove that its satisfiability problem is EXPSPACE-complete
(the main result of this section) and that model checking can be done in poly-
nomial time. Finally, we show that two variables already cause non-elementary
complexity for satisfiability.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

568 T. Schwentick and V. Weber

4.1 Expressivity

As hybrid logics can be embedded into first-order logic by the Standard Trans-
lation [18], first-order logic is an upper bound for all considered fragments.

The unbounded language HT L(↓) is expressively complete, even over linear
structures [6]. It should be noted that over arbitrary frames HT L(↓, @) corre-
sponds to the bounded fragment and is therefore strictly less expressive than
first-order logic [3].

We use the classical result that LT L is expressively complete [12,8,7] and
thus, we obtain expressive completeness of HL(↓2, @) and HT L(↓1) by the
following two semantical equations.3

ϕUψ = ↓x.F ↓y.(ψ ∧ @xG(Fy → ϕ))
ϕUψ = ↓x.F(ψ ∧ H(Px → ϕ))

Proposition 4.1. HL(↓2, @) and HT L(↓1) are expressively complete over the
natural numbers.

In contrast, it can be shown by a bisimulation argument that HL(↓1, @) is
strictly less expressive. Intuitively, it cannot name a state and then talk about
smaller states. To overcome this weakness, it is sufficient to label the smallest
state by a special nominal i0.

Proposition 4.2. The language HL(↓1, @) is expressively complete over the
natural numbers with zero.

4.2 Satisfiability for the One-Variable Fragment

Although restricting the number of variables does not cause any loss of ex-
pressive power, there is a difference in succinctness of formulas. In fact, as a
consequence of the following result there are properties which can be expressed
non-elementarily more succinct with an unbounded number of variables than
with one variable.

Theorem 4.3. Satisfiability of HL(↓1, @), HT L(↓1), and HT L(↓1, @) over the
natural numbers is complete for EXPSPACE.

The lower bound can be proved by a reduction from the 2n-corridor tiling prob-
lem, known to be EXPSPACE-complete (cf. [19]).

We only give the proof of the upper bound, which is by a reduction to non-
emptiness of alternating one-pebble Büchi automata, which is in EXPSPACE
by Theorem 3.1. By Lemma 2.3, we only need to consider HT L(↓1).

We start with the observation that nesting of the ↓-operator can be avoided.
This simplifies the simulation of variables by one pebble.

Lemma 4.4. For every HT L(↓1)-formula ϕ of length n, there is an HT L(↓1)-
formula ψ of length O(n) without nested occurrences of the ↓-operator, such that,
over the natural numbers, ϕ is satisfiable if and only if ψ is satisfiable.
3 We stress that these equations hold for the frame of natural numbers.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bounded-Variable Fragments of Hybrid Logics 569

Proof. We add, for each sub-formula θ =↓ x.ξ of ϕ a new proposition pθ. In a
bottom-up fashion, we replace every occurrence of a formula θ by pθ and add to
ϕ one conjunct GH(pθ ↔ θ′), for every θ. Here θ′ results from θ by replacing all
sub-formulas ↓x.χ by the respective proposition. Note that the resulting formula
has indeed linear size. ��

Now, the proof of the upper bound is a straightforward extension of a proof in
[20], constructing an alternating Büchi automaton for a given LT L-formula.

Proposition 4.5. Satisfiability of an HT L(↓1) formula over the natural num-
bers can be decided in exponential space.

Proof. Given an HT L(↓1)-formula ϕ without nested occurrences of the ↓-oper-
ator, we build an alternating one-pebble Büchi automaton Aϕ = (Q, Σ, q0, δ, F),
with Σ = 2PROP∪NOM, such that ϕ holds at the initial state of some model over
the natural numbers if and only if Aϕ accepts the corresponding infinite word.

In the following, we denote the dual of a formula ψ by ψ. It is obtained from
ψ by switching ∧ and ∨, and by negating all other maximal subformulas, e.g.,
x ∨ (¬x ∧ Fp) = ¬x ∧ (x ∨ ¬Fp) (cf. [21]).

The set Q of states is the Fisher-Ladner-closure of ϕ, consisting of the sub-
formulas of ϕ, the formulas ψ ∨Fψ or ψ ∨Pψ for every subformula Fψ or Pψ of
ϕ, respectively, and the duals of all these formulas. The initial state q0 is ϕ. The
set F of accepting states contains � and all formulas of the form ¬Fψ from Q.
The latter is only needed to cover infinite branches consisting, from some point
on, entirely of states ¬Fψ. These branches result from evaluating formulas of
the type ¬Fψ. The branches spawned from such a branch verify that ¬ψ holds
all over the string.

The transition function δ is defined by induction on the formula structure.

δ(�, σ) = (�, stay) δ(p, σ) = (�, stay) if p ∈ σ
δ(x, σ) = (�, ⊥, lift) δ(ψ ∧ ξ, σ) = (ψ, ξ, ∧)

δ(¬ψ, σ) = δ(ψ, σ) δ(Fψ, σ) = (ψ ∨ Fψ, right)
δ(Pψ, σ) = (ψ ∨ Pψ, left) δ(↓x.ψ, σ) = (ψ, drop)

where p ∈ PROP ∪ NOM, x ∈ SVAR, and the notion of a dual is extended to δ
as follows. If δ(ψ, σ) = (χ, a) then δ(ψ, σ) = (χ, a), e.g., δ(ψ ∧ ξ, σ) = (ψ, ξ, ∨),
e.g., δ(Fψ, σ) = (¬ψ ∧ ¬Fψ, right), and δ(x, σ) = (⊥, �, stay).

The result follows by Theorem 3.1. ��

4.3 Model Checking

The model checking problem for hybrid logics is defined as follows: Given a
finite hybrid model M, an assignment g, and a hybrid formula ϕ, is there a
state m ∈ M such that M, g, m |= ϕ? It can be solved in polynomial time
for HT L(@), but is PSPACE-complete for HL(↓, @) [5]. Intuitively, the latter
hardness is mainly due to the nesting of variables. In the one variable case,
there is no real nesting of variables. Consequently, complexity drops down to
polynomial time again.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

570 T. Schwentick and V. Weber

Theorem 4.6. Model checking for HT L(↓1, @) can be done in polynomial time.

Proof. The algorithm uses a straightforward tableau approach. For each sub-
formula, ψ and each pair m, m′ of states it computes whether ψ holds at m if x
is assigned to m′. ��

4.4 The Two-Variable Fragment

As noted before, from the complexity results for HT L(↓, @) and HT L(↓1, @) and
the expressive completeness of HT L(↓1, @), one can conclude that the unbounded
language is non-elementarily more succinct. We show next that this succinctness
gap is located between the one-variable and the two-variable fragment.

Theorem 4.7. The satisfiability problem for HL(↓2, @) over the natural num-
bers has non-elementary complexity.

Proof. We give a reduction from the emptiness problem for star-free regular ex-
pressions built from union, concatenation, and negation. This problem is known
to have non-elementary complexity [17]. With a string of length i over an alpha-
bet Σ we associate a structure (N, <, pσ for all σ ∈ Σ, q), as shown in Figure 1.

0 1 2 3 4 5 6 7 . . .
pa pb pb pa pa q q

Fig. 1. The model used to represent the string abbaa as described in the proof of
Theorem 4.7 (edges caused by transitivity are left out)

All states beyond i carry the label q. The following formula ψ holds at state 0
if and only if the structure is an encoding of a string, e.g., every state belonging
to the string is labeled by exactly one pσ.

ψ = (¬q)∧ ↓x.F ↓y.((q ∧ Gq) ∧ @xG(Fy → (¬q ∧
∨

σ∈Σ

(pσ ∧
∧

σ �=σ′∈Σ

¬pσ′))))

We map every star-free expression α to a formula ϕα. The idea is that x and y
are always used to mark a substring which is matched with respect to a star-free
(sub-)expression. More precisely, x marks the left neighbor of the first position
of the substring and y marks the last position. We use Fψ as an abbreviation
for ψ ∨ Fψ:

ϕα = ψ∧ ↓x.F((¬q ∧ Gq)∧ ↓y.@xα′)

where α′ is inductively defined as follows:

ε′ = y σ′ = F(y ∧ pσ) ∧ ¬FFy , for all σ ∈ Σ
∅′ = ⊥ (α · β)′ = F(Fy∧ ↓y.@xα′∧ ↓x.β′)

(¬α)′ = ¬α′ (α ∪ β)′ = α′ ∨ β′

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bounded-Variable Fragments of Hybrid Logics 571

Note that ϕα might be exponentially larger than α, since every F doubles the
formula size, but this does not do any harm as we reduce from a problem with
non-elementary complexity. ��

By Lemma 2.3, this result also applies to the other two-variable fragments.

Corollary 4.8. The satisfiability problems for HT L(↓2) and HT L(↓2, @) over
the natural numbers have non-elementary complexity.

5 Conclusion

In this paper, we investigated bounded-variable fragments of hybrid logics con-
taining the ↓-operator to create names for states. We restricted to the widely
used frame of the natural numbers. We identified a fragment of HT L(↓, @), the
one-variable fragment, which has the same expressive power as the unbounded
language over such frames, but whose satisfiability problem is EXPSPACE-
complete (as opposed to non-elementary in the unbounded case) and allows for
polynomial time model checking (as opposed to PSPACE-complete).

We also showed that there is no benefit from restricting to two variables, since
complexity of satisfiability is as bad as in the unbounded case.

To prove these results, we showed that the non-emptiness problem for alter-
nating Büchi automata with one pebble is EXPSPACE-complete.

The next natural step is to see how these results translate to branching struc-
tures. We conjecture 2EXPTIME-completeness for HT L(↓1, @) over the class
of trees with the descendant relation.

References

1. C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for hybrid
logics. In Proc. of 13th Computer Science Logic (CSL ’99), volume 1683 of LNCS,
pages 307–321. Springer, 1999.

2. C. Areces, P. Blackburn, and M. Marx. The computational complexity of hybrid
temporal logics. Logic Journal of the IGPL, 8(5):653–679, 2000.

3. C. Areces, P. Blackburn, and M. Marx. Hybrid logics: Characterization, interpo-
lation and complexity. Journal of Symbolic Logic, 66(3):977–1010, 2001.

4. E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy.
In Proc. of 32nd IEEE Symposium on Foundations of Computer Science (FOCS),
pages 368–377. IEEE, 1991.

5. M. Franceschet and M. de Rijke. Model checking hybrid logics (with an application
to semistructured data). Journal of Applied Logic, 2005.

6. M. Franceschet, M. de Rijke, and B.-H. Schlingloff. Hybrid logics on linear struc-
tures: Expressivity and complexity. In 10th TIME / 4th ICTL, pages 192–202.
IEEE Computer Society, 2003.

7. D. M. Gabbay. The declarative past and imperative future: Executable temporal
logic for interactive systems. In Proc. of Temporal Logic in Specification 1987,
volume 398 of LNCS, pages 409–448. Springer, 1989.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

572 T. Schwentick and V. Weber

8. D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal basis of
fairness. In Conference Record of the 7th Annual ACM Symposium on Principles
of Programming Languages (POPL’80), pages 163–173. ACM Press, 1980.

9. N. Globerman and D. Harel. Complexity results for two-way and multi-pebble
automata and their logics. Theoretical Computer Science, 169(2):161–184, 1996.

10. P. Goralčik, A. Goralčiková, and V. Koubek. Alternation with a pebble. Informa-
tion Processing Letters, 38(1):7–13, 1991.

11. T. Jiang and B. Ravikumar. A note on the space complexity of some desicion
problems for finite automata. Information Processing Letters, 40:25–31, 1991.

12. H. Kamp. Tense logic and the Theory of Linear Order. PhD thesis, University of
California Los Angeles, 1968.

13. O. Kupferman, N. Piterman, and M. Y. Vardi. Extended temporal logic revisited.
In CONCUR 2001, volume 2154 of LNCS, pages 519–535. Springer, 2001.

14. A. W. Mostowski. Games with forbidden positions. Technical report, Uniwersytet
Gdanski, Instytut Matematyki, 1991.

15. M. Mundhenk, T. Schneider, T. Schwentick, and V. Weber. Complexity of hy-
brid logics over transitive frames. In Proc. of M4M-4, volume 194 of Informatik-
Berichte, pages 62–78. Humbold-Universität Berlin, 2005.

16. U. Sattler and M. Y. Vardi. The hybrid μ-calculus. In Proc. of IJCAR 2001,
volume 2083 of LNCS, pages 76–91. Springer, 2001.

17. L. J. Stockmeyer. The complexity of decision problems in automata theory and
logic. PhD thesis, MIT, 1974.

18. B. ten Cate and M. Franceschet. On the complexity of hybrid logics with binders.
In Proc. of 19th Computer Science Logic (CSL 2005), volume 3634 of LNCS, pages
339–354. Springer, 2005.

19. van Emde Boas. The convenience of tilings. In Complexity, Logic, and Recursion
Theory, volume 187 of Lecture Notes in Pure and Applied Mathematics, pages 331–
363. Marcel Dekker, Inc., 1997.

20. M. Y. Vardi. Nontraditional applications of automata theory. In Proc. of The-
oretical Aspects of Computer Software (TACS ’94), volume 789 of LNCS, pages
575–597. Springer, 1994.

21. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics
for Concurrency: Structure versus Automata, volume 1043 of LNCS, pages 238–
266. Springer, 1996.

22. M. Y. Vardi. Reasoning about the past with two-way automata. In Proc. of
ICALP’98, volume 1443 of LNCS, pages 628–641. Springer, 1998.

23. M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115(1):1–37, 1994.

24. P. Wolper, M. Y. Vardi, and A. P. Sistla. Reasoning about infinite computation
paths (extended abstract). In 24th Annual Symposium on Foundations of Computer
Science (FOCS), pages 185–194. IEEE, 1983.

25. W. Zielonka. Infinite games on finitely coloured graphs with applications to au-
tomata and infinite trees. Theoretical Computer Science, 200:135–183, 1998.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Rank-1 Modal Logics Are Coalgebraic

Lutz Schröder1 and Dirk Pattinson2

1 Department of Computer Science, University of Bremen, and DFKI Lab Bremen
2 Department of Computing, Imperial College London

Abstract. Coalgebras provide a unifying semantic framework for a wide
variety of modal logics. It has previously been shown that the class of
coalgebras for an endofunctor can always be axiomatised in rank 1. Here
we establish the converse, i.e. every rank 1 modal logic has a sound and
strongly complete coalgebraic semantics. As a consequence, recent results
on coalgebraic modal logic, in particular generic decision procedures and
upper complexity bounds, become applicable to arbitrary rank 1 modal
logics, without regard to their semantic status; we thus obtain purely
syntactic versions of these results. As an extended example, we apply
our framework to recently defined deontic logics.

1 Introduction

In recent years, coalgebras have received a steadily growing amount of atten-
tion as general models of state-based systems [18], encompassing such diverse
systems as labelled transition systems, probabilistic systems, game frames, and
neighborhood frames [21]. On the logical side, modal logic has emerged as the
adequate specification language for coalgebraically modelled systems. A vari-
ety of different frameworks have been proposed; here, we work with coalgebraic
modal logic [15], which allows for a high level of generality while retaining a close
relationship to the established syntactic and semantic tradition of modal logic.

In fact, one can reverse the viewpoint that coalgebraic modal logic is a spec-
ification language for coalgebras and regard coalgebra as a generic semantics
for modal logics of essentially arbitrary nature, including non-normal and non-
monotone ones. Under this perspective, coalgebraic modal logic is a generic no-
tion of modal logic that subsumes e.g. Hennessy-Milner logic, graded modal
logic [4], majority logic [13], probabilistic modal logic [12, 7], and coalition
logic [16], but also modal operators of higher arity as e.g. in conditional logic [3].

It has been shown in [20] that every coalgebraic modal logic can be
axiomatized by formulas of rank 1, i.e. with nesting depth of modal operators uni-
formly equal to 1 (logics of arbitrary rank are obtained by restricting the relevant
class of coalgebras, which play the role of generic frames); such axioms may be re-
garded as concerning precisely the single next transition step. Here, we establish
the converse: given a modal logic L of rank 1, we construct a functor ML that
provides a sound and strongly complete semantics for L; i.e. coalgebraic modal
logic subsumes all rank-1 modal logics. The functor ML, which can be viewed as
a generalization of the neighbourhood frame functor, is moreover a canonical se-

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 573–585, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

574 L. Schröder and D. Pattinson

mantics for L in a precise categorical sense; a finitary modification of ML provides
a canonical finitely branching semantics.

Besides rounding off the picture in a pleasant way, these results make the
rapidly expanding meta-theory of coalgebraic modal logic applicable to arbi-
trary rank-1 modal logics, even when the latter are given purely syntactically
or equipped with a semantics that fails to be, or has not yet been recognized
as, coalgebraic. This includes results on the Hennessy-Milner property [19] and
bisimulation-somewhere-else [10], and most notably generic decidability and
complexity results [20, 21], of which we now obtain purely syntactic versions.
As an extended example, we discuss applications of these results to recently
defined variants of deontic logic [5].

2 Coalgebraic Modal Logic

We briefly recapitulate the basics of the coalgebraic semantics of modal logic.
Coalgebraic modal logic in the form considered here has been introduced in [15],
generalising previous results [9, 17, 11, 14]. For the sake of readability, we restrict
the exposition to unary modalities. However, we emphasize that all our results
extend in a straightforward way to polyadic operators, found e.g. in conditional
and default logics [19].

A modal signature is just a set Λ of (unary) modal operators. The set F(Λ)
of Λ-formulas φ is defined by the grammar

φ ::= ⊥ | φ ∧ ψ | ¬φ | Lφ

where L ranges over all modalities in Λ. Other boolean operations are defined
as usual; propositional atoms can be expressed as constant modalities.

Generally, we denote the set of propositional formulas over a set V by Prop(V),
generated by the basic connectives ¬ and ∧, and the set of propositional tau-
tologies by Taut(V). We use variables ε etc. to denote either nothing or ¬. Thus,
a literal over V is a formula of the form εa, with a ∈ V . A clause is a finite,
possibly empty, disjunction of literals. The set of all clauses over V is denoted
by Cl(V). We denote by UpΛ(V) the set {La | L ∈ Λ, a ∈ V }. If V ⊆ F(Λ), we
also regard propositional formulas over V as Λ-formulas. We sometimes explic-
itly designate V as consisting of propositional variables ; these retain their status
across further applications of UpΛ and Prop (e.g. V is also the set of proposi-
tional variables for UpΛ(Prop(V))). An L-substitution is a substitution σ of the
propositional variables by elements of a set L; for a formula φ over V , we call
φσ an L-instance of φ. If L ⊂ P(X) for some X , then we also refer to σ as an
L-valuation.

Definition 1. A rank-1 clause (in Λ) over a set V of propositional variables is
an element of Cl(UpΛ(Prop(V))). A rank-1 (modal) logic is a pair L = (Λ, A),
where A is a set of rank-1 clauses in Λ.

Note that the definition of rank-1 clause rules out axioms involving purely propo-
sitional components, such as �a → a (results covering also such more general
axioms are under way); the archetypal rank-1 logic is K.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Rank-1 Modal Logics Are Coalgebraic 575

Given a rank-1 logic L = (Λ, A), we inductively define L-derivability �L from
a set Φ ⊆ F(Λ) as follows:

φ ∈ Taut(F(Λ))
Φ �L φ

φ ∈ Φ

Φ �L φ

Φ �L φ, φ → ψ

Φ �L ψ

ψ ∈ A

Φ �L ψσ

Φ �L φ ↔ ψ

Φ �L Lφ ↔ Lψ

where σ is an F(Λ)-substitution. The last rule above is referred to as the con-
gruence rule. We write �L ψ instead of ∅ �L ψ.

It has been shown in [20] that rank-1 clauses may be equivalently replaced by
one-step rules φ/ψ, where φ ∈ Prop(V) and ψ ∈ Cl(UpΛ(V)). We shall present
rank-1 logics as pairs L = (Λ, R), with R a set of one-step rules, when convenient;
in this case, the penultimate clause above is replaced by

Φ �L φσ φ/ψ ∈ R

Φ �L ψσ
.

The extension of R by the congruence rule is denoted RC . Coalgebraic modal
logic interprets modal formulas over coalgebras, which abstract from concrete
notions of reactive system; here, the interpretation of modalities is given by a
choice of predicate liftings. We recall the formal definitions:

Definition 2. Let T : Set → Set be a functor, referred to as the signature
functor, where Set is the category of sets. A T -coalgebra is a pair C = (X, ξ)
where X is a set (of states) and ξ is a function X → TX called the transition
function. A morphism (X1, ξ1) → (X2, ξ2) of T -coalgebras is a map f : X1 → X2

such that ξ2 ◦ f = Tf ◦ ξ1. States x, y in coalgebras C, D are behaviourally
equivalent if there exist coalgebra morphisms f : C → E and g : D → E such
that f(x) = g(y). A predicate lifting for T is a natural transformation λ : Q →
Q ◦ T op, where Q denotes the contravariant powerset functor Setop → Set.

We view coalgebras as generalised transition systems: the transition function
maps states to a structured set of successors

Assumption 3. We can assume w.l.o.g. that T preserves injective maps ([2],
proof of Theorem 3.2). For convenience, we will in fact sometimes assume that
TX ⊆ TY if X ⊆ Y . Moreover, we assume that T is non-trivial, i.e. TX =
∅ =⇒ X = ∅ (otherwise, TX = ∅ for all X).

Recall that a functor is ω-accessible if it preserves directed colimits.

Lemma 4. ([1], Proposition 5.2) For a set functor T , the following are equiva-
lent:

1. T is ω-accessible
2. T preserves directed unions
3. For every set X, TX =

⋃
Y ⊆X finite TY (recall Assumption 3).

The coalgebraic semantics of modal logics is defined as follows. Given a modal
signature Λ, a Λ-structure consists of a signature functor T and an assignment

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

576 L. Schröder and D. Pattinson

of a predicate lifting �L� for T to every modal operator L ∈ Λ. The satisfaction
relation |=C between states x of a T -coalgebra C = (X, ξ) and Λ-formulas is
defined inductively, with the usual clauses for the boolean operations. The clause
for a modal operator L is

x |=C Lφ ⇐⇒ ξ(x) ∈ �L��φ�C ,

where �φ�C = {x ∈ X | x |=C φ}. We drop the subscripts C when C is clear
from the context. When we speak of a coalgebraic modal logic informally, we
mean a Λ-structure; if the interpretation of modalities is clear from the context,
this structure is simply referred to as T .

Satisfaction of Λ-formulas is invariant under behavioural equivalence [15].
Conversely, Λ has the Hennessy-Milner property for T , i.e. states that satisfy
the same Λ-formulas are behaviourally equivalent, if T is ω-accessible and Λ is
separating in the sense that t ∈ TX is determined by the set {(L, A) ∈ Λ×P(X) |
t ∈ �L�(A)} [19].

Definition 5. Given a Λ-structure T , we write Φ |=T ψ for a Λ-formula ψ and
a set Φ ⊆ F(L) if, for every state x in every T -coalgebra, x |= ψ whenever x |= Φ
(i.e. x |= φ for all φ ∈ Φ). The logic L is sound over T if Φ |=T ψ whenever
Φ �L ψ, and strongly (weakly) complete if Φ �L ψ (�L ψ) whenever Φ |=T ψ
(∅ |=T ψ).

The requirement that axioms are of rank 1 means that every axiom makes asser-
tions precisely about the next transition step. This allows us to capture sound-
ness as a property exhibited in a single transition step as follows. Given a set X
and a P(X)-valuation τ , we define interpretations �φ�τ ⊂ X and �ψ�τ ⊂ TX for
φ ∈ Prop(V) and ψ ∈ Prop(UpΛ(Prop(V))) by the usual clauses for boolean oper-
ators and by �Lφ�τ = �L��φ�τ . We write X, τ |= φ if �φ�τ = X , correspondingly
for TX .

Definition 6. A rank-1 clause ψ (one-step rule φ/ψ) is one-step sound for a Λ-
structure T if TX, τ |= ψτ for each set X and each P(X)-valuation τ (such that
X, τ |= φ). An L-structure for a rank-1 logic L with signature Λ is a Λ-structure
for which all axioms (or rules) of L are one-step sound.

It is easy to see that one-step soundness impliess soundness, so L is sound for all
L-structures. Additional conditions guarantee weak completeness [20]. In gen-
eral, this is all one can hope for, as many coalgebraic modal logics fail to be
compact [20]. However, it will turn out that L is indeed strongly complete for
the canonical L-structure constructed below.

Example 7. We give a brief description of some coalgebraic modal logics, illus-
trating in particular the fact that many interesting modal logics are axiomatised
in rank 1. We mostly omit the definition of predicate liftings and the axiomati-
sations; for these and further examples, cf. [20, 21].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Rank-1 Modal Logics Are Coalgebraic 577

1. The Kripke semantics of the modal logic K, defined in terms of a single
operator � and the axioms �� and �(a → b) → �a → �b, is obtained as the K-
structure given by the covariant powerset functor P and ���(A) = P(A) ⊂ P(X)
for A ⊆ X .

2. Graded modal logic (GML) [4] has operators �k for k ∈ N of the nature ‘in
more than k successor states, it is the case that’. A GML-structure is given by the
finite multiset functor, which takes a set X to the set of maps A : X → N with
finite support, where A(x) = n is read ‘multiset A contains x with multiplicity n’.
Over this functor, one can also interpret the additional operator W of majority
logic [13], read ‘in at least half of the successor states, it is the case that’.

3. Probabilistic modal logic (PML) [12, 7] has modal operators Lp for p ∈
[0, 1] ∩ Q, read ‘in the next step, it is with probability at least p the case that’.
A PML-structure is given by the finite distribution functor, which takes a set X
to the set of finitely supported probability distributions over X .

3 From Rank-1 Logics to Coalgebraic Models

In this section we construct for a given rank-1 modal logic L a canonical L-
structure ML for which L is (sound and) strongly complete. Moreover, we consider
a finitely branching substructure Mfin

L of ML which is canonical among the
finitely branching L-structures. For Mfin

L , L is (sound and) weakly complete and
has the Hennessy-Milner property, i.e. states satisfying the same formulas are
behaviourally equivalent. This tradeoff is typical: the Hennessy-Milner property
holds only over finitely branching systems, while strong completeness will fail
over such systems due to the breakdown of compactness.

The construction of the canonical structure resembles the construction of
canonical models using maximally consistent sets, but works, like many concepts
explained in the previous section, at the single step level:

Definition 8. Let L = (Λ, A) be a rank-1 logic, and let X be a set. One-step
derivability Φ �X

L ψ of ψ ∈ Prop(UpΛ(P(X))) from Φ ⊆ Prop(UpΛ(P(X))) is
defined inductively by

φ ∈ Φ

Φ �X
L φ

φ ∈ Taut(UpΛ(P(X))
Φ �X

L φ

Φ �X
L φ → ψ Φ �X

L φ

Φ �X
L ψ

ψ ∈ A

Φ �X
L ψτ

where τ is a P(X)-valuation. (In the last clause, elements of Prop(P(X)) are
implicitly interpreted as elements of P(X) in the obvious way. If L is presented
by rules φ/ψ, the last clause is modified accordingly, with additional premise
X, τ |= φ.) The set Φ is one-step consistent if Φ ��X

L ⊥, and maximally one-step
consistent if Φ is maximal w.r.t. ⊆ among the one-step consistent subsets of
Prop(UpΛ(P(X))).

The canonical L-structure ML for L is now given by the functor ML that takes a
set X to the set of maximally one-step consistent subsets of Prop(UpΛ(P(X))).
For a map f : X → Y , ML(f) is defined by

ML(f)(Φ) = {φ ∈ Prop(UpΛ(P(Y))) | φσf ∈ Φ},

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

578 L. Schröder and D. Pattinson

where σf is the substitution A �→ f−1[A]. This definition is justified by

Lemma 9. For Φ ∈ ML(X), the set ML(f)(Φ) is maximally one-step consis-
tent.

Remark 10. From the point of view of Stone duality, a rank-1 logic defines a
functor L : BA → BA on the category BA of boolean algebras. In this framework,
the functor ML arises as the composition ML = USLQ̄ where Q̄ : Setop → BA
is the contravariant powerset functor, S : BAop → Stone is part of the duality
between Stone spaces and boolean algebras, and U : Stone → Set is the forgetful
functor; see [10] for details.

The interpretation of modal operators by predicate liftings for ML is now
obvious:

Theorem and Definition 11. The assignment

�L�A = {Φ ∈ ML(X) | LA ∈ Φ}.

defines an L-structure ML, the canonical L-structure.

Note that this immediately implies soundness of L over ML. We now turn to
strong completeness, which is established by a canonical model construction that
generalizes the standard notion of canonical Kripke structure. The carrier of the
canonical model is the set C of maximally consistent sets of L-formulas. The key
to the construction is the existence proof (rather than the explicit construction)
of a suitable ML-coalgebra structure on C, a technique first employed in [20]:

Lemma and Definition 12 (Existence Lemma). There exists a canonical
model, i.e. an ML-coalgebra structure ζ : C → MLC such that

ζ(A) ∈ �L�φ̂ iff Lφ ∈ A

for all L ∈ Λ, φ ∈ L, A ∈ C, where φ̂ = {B ∈ C | φ ∈ B}.

Lemma 13 (Truth Lemma). For canonical models (C, ζ), A |=(C,ζ) φ iff φ∈A.

Theorem 14 (Strong completeness). The logic L is strongly complete for ML.

Finally, we consider the Hennessy-Milner property (cf. Section 2). The func-
tor ML fails to be ω-accessible for obvious cardinality reasons. Intuitively, ML-
models have unbounded branching, while the Hennessy-Milner property can only
be expected for finitely branching systems (as is the case already for standard
Kripke models). We thus consider a subfunctor Mfin

L of ML that captures pre-
cisely the finitely branching models.

In order to construct Mfin
L , we can rely on the following general mechanism.

We define the ω-accessible part T fin of a set functor T by

T finX =
⋃

Y ⊆X finite TY ⊆ TX

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Rank-1 Modal Logics Are Coalgebraic 579

(recall Assumption 3). It is easy to see that T fin is a subfunctor of T . By
Lemma 4, T fin is ω-accessible. Moreover, T fin agrees with T on finite sets. A
predicate lifting λ for T restricts to a predicate lifting λfin for T fin given by
λfin

X A = λXA ∩ T finX .
We define the canonical finitely branching L-structure Mfin

L as the ω-accessible
part of ML, with modal operators interpreted by restricted predicate liftings as
described above. We then obtain

Theorem 15. L is weakly complete and has the Hennessy-Milner property for
Mfin

L .

Example 16. We give explicit descriptions (up to natural isomorphism) of ML
and Mfin

L in some concrete cases.

1. For L = ({�}, ∅), ML is the neighbourhood frame functor Q ◦ Qop.
2. For the standard modal logic K (Example 7.1), Mfin

K is the finite powerset
functor, while MK is the filter functor [6].

3. For graded modal logic GML (Example 7.2), Mfin
GML is a modification of the

finite multiset functor where elements of multisets may have infinite multiplicity.
4. For probabilistic modal logic PML (Example 7.3), Mfin

PML is a modification
of the finite distribution functor where events A are assigned ‘probabilities’ PA
which are downclosed subsets of the rational interval [0, 1] ∩ Q. Thus, the space
of ‘probabilities’ essentially consists of the interval [0, 1] and an additional copy
of [0, 1]∩Q, where the second copy of q ∈ [0, 1]∩Q is infinitesimally greater than
the first. The distributions P ∈ Mfin

L (X) are required to obey the axiomatization
of PML [21] w.r.t. the canonical semantics; it is presently unclear whether this
requirement can be replaced by a simpler condition.

4 An Adjunction Between Syntax and Semantics

We now set up an adjoint correspondence between rank-1 logics and set func-
tors as their semantic counterparts. This establishes the canonical structure of
a rank-1 logic as indeed canonical in a precise sense, i.e. as a universal model
capturing all other ones. This situation is analogous (although not in any obvi-
ous sense technically related) to similar correspondences in equational logics and
type theory: e.g. to a single-sorted equational theory, interpreted over cartesian
categories (i.e. categories with finite products) with a distinguished object, one
associates a Lawvere theory, which is again a cartesian category with a distin-
guished object and may simultaneously be regarded as an initial model and as
a semantic representation of the given theory. The situation is dual for modal
logics: the canonical structure serves as a final model of the given rank-1 logic,
into which all other models may be mapped.

We make the categorical setting precise by collecting all rank 1 modal logics
in a category ModL with morphisms (Λ1, A1) → (Λ2, A2) all maps h : Λ1 → Λ2

such that the induced translation of formulas maps axioms in A1 to derivable

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

580 L. Schröder and D. Pattinson

formulas in (Λ2, A2). The category of semantic structures is the category Fn =
[Set, Set] of set functors and natural transformations. We have a functor Th :
Fnop → ModL which takes a functor T to the logic (ΛT , AT), where ΛT is the
set of all predicate liftings for T , and AT is the set of all rank-1 clauses over
ΛT which are one-step sound for T . Given a natural transformation μ : T → S,
Th(μ) : Th(S) → Th(T) is the morphism taking a predicate lifting λ : Q →
Q◦Sop for S to the predicate lifting Qμ◦λ for T . Note that, in this terminology,
an L-structure is just a morphism of the form h : L → Th(T). In particular, the
canonical L-structure can be cast as a morphism ηL : L → Th(ML). The arrows
ηL are part of the announced adjunction:

Theorem 17. The canonical L-structure ηL is universal; i.e. for each L-
structure h : L → Th(T), there exists a unique natural transformation h# :
T → ML such that Th(h#)ηL = h.

In other words, the canonical structure is the final L-structure, where a morphism
of L-structures is a natural transformation between the associated functors which
is compatible with the interpretation of modal operators. A similar result holds
for the canonical finitely branching L-structure Mfin

L , which now becomes a
morphism ηfin

L : L → Th(Mfin
L).

Theorem 18. The L-structure ηfin
L is universal among the finitely branching

L-structures; i.e. for each L-structure h : L → Th(T) with T ω-accessible, there
exists a unique natural transformation h# : T → Mfin

L such that Th(h#)ηfin
L = h.

Theorems 17 and 18 allow us to replace rank-1 logics by functors in the defini-
tion of the coalgebraic semantics: an L-structure may equivalently be regarded
as a natural transformation T → ML; analogously, an L-structure over an ω-
accessible functor T may be regarded as a natural transformation T → Mfin

L .
We have

Proposition 19. An L-structure T is separating iff the associated natural trans-
formation T → ML is injective.

Thus, we have the following classification result.

Theorem 20. Up to natural isomorphism, the ω-accessible L-structures for
which L has the Hennessy-Milner property are precisely the subfunctors of the
canonical finitely branching L-structure Mfin

L .

5 Applications

A benefit of the coalgebraic semantics constructed above is that we can now
apply results on coalgebraic modal logic to arbitrary rank-1 modal logics, even
when the latter lack a formal semantics. This includes in particular the generic
decidability and complexity results of [20, 21], of which we now obtain purely
syntactic versions.

In [20], a generic finite model construction was given which yields criteria
for decidability and upper complexity bounds for coalgebraic modal logics. The

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Rank-1 Modal Logics Are Coalgebraic 581

generic complexity bounds generally do not match known bounds in particular
examples, typically PSPACE . This is remedied in [21], where a generic PSPACE
decision procedure for coalgebraic modal logics based on a shallow model con-
struction is given, at the price of stronger assumptions on the logic.

A crucial role in the algorithmic methods of [20] is played by the following
localised version of the satisfiability problem:

Definition 21. The one-step satisfiability problem for a Λ-structure T is to
decide, given a finite set X and a conjunctive clause ψ over UpΛ(P(X)), whether
ψ is one-step satisfiable, i.e. �ψ� ⊂ TX is non-empty.

The satisfiability problem of a coalgebraic modal logic is

− decidable if its one-step satisfiability problem is decidable
− in NEXPTIME if one-step satisfiability is in NP
− in EXPTIME if one-step satisfiability is in P

(cf. [20]). This instantiates to the canonical structure as follows.

Lemma 22. One-step satisfiability in ML is one-step consistency in L.

Corollary 23. The consistency problem of a rank-1 logic L (i.e. deciding
whether an L-formula φ is consistent) is

− decidable if one-step consistency (over finite sets) is decidable
− in NEXPTIME if one-step consistency is in NP
− in EXPTIME if one-step consistency is in P.

Corollary 24. The consistency problem of L = (Λ, R) is decidable if Λ is finite
and R is recursive (i.e. it is decidable whether a one-step rule φ/ψ is contained
in R up to propositional equivalence of premises).

The generic PSPACE -algorithm of [21] relies on a notion of strictly one-step
complete rule set. Rather than repeating the definition here, we recall that strict
one-step completeness follows from one-step completeness (i.e. TX, τ |= ψ im-
plies �X

L ψ for all ψ ∈ Prop(UpΛ(V))) in combination with resolution closedness.
The latter refers to a notion of rule resolution where propositional resolvents of
the conclusions of two rules are formed and the premises are combined by con-
junction, with possible subsequent elimination of propositional variables; cf. [21]
for a formal definition. As an example, consider the rules

(N)
a

�a
(RR)

a ∧ b → c

�a ∧ �b → �c
(RKn)

∧n
i=1 ai → b

∧n
i=1 �ai → �b

(n ≥ 0).

The rule set {(N), (RR)} presents the modal logic K, and its resolution closure
consists of the rules (RKn). Cf. [21] for further examples.

In [21], a shallow model property is proved based on strictly one-step complete
rule sets. The canonical semantics allows us to turn this into a shallow proof
property:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

582 L. Schröder and D. Pattinson

Definition 25. A set Σ of formulas is called closed if it is closed under sub-
formulas and negation, where ¬¬φ is identified with φ. The smallest closed set
containing a given formula φ is denoted Σ(φ). A subset H of Σ is called a Σ-
Hintikka set if ⊥ /∈ H and, for φ ∧ ψ ∈ Σ, φ ∧ ψ ∈ H iff φ, ψ ∈ H , and, for
¬φ ∈ Σ, ¬φ ∈ H iff φ /∈ H .

Theorem 26. Let L = (Λ, R), where R is resolution closed. Then �L φ iff
for every Σ(φ)-Hintikka set H containing ¬φ, there exist a clause

∨n
i=1 εiLiρi

over Σ(φ) and a rule ψ/
∨n

i=1(εiLiai) in RC such that �L ψ[ρi/ai]i=1,...,n and
εiLiρi /∈ H for all i.

Theorem 26 implies that for L as in the statement, every provable formula φ has
a tableau proof of linear depth which mentions only propositional combinations
of subformulas of φ, in particular mentions only the modal operators contained
in φ.

Remark 27. We hope to generalize Theorem 26 to more general classes of logics
(i.e. beyond rank 1), possibly using purely proof-theoretic methods. This would
also imply wider applicability of the generic PSPACE algorithm discussed below.

Corollary 28. Let L = (Λ, R) be a rank-1 logic with R resolution closed, and let
Λ0 ⊂ Λ. Let L0 = (Λ0, R0) where R0 consists of all R-rules that only mention Λ0-
operators. Then L conservatively extends L0, i.e. Φ �L φ implies that Φ �L0 φ
for all φ ∈ F(L0) and all Φ ⊆ F(L0).

Applied to majority logic (Example 7), this immediately leads to a complete
axiomatisation of the majority operator alone.

Example 29. In the presentation of [21], a resolution closed set of rules for
majority logic (Example 7.2) was given, consisting of the rules

(Mm)

∑n
i=1 ai +

∑v
r=1 cr + m ≤

∑k
j=1 bj +

∑w
s=1 ds

∧n
i=1 �kiai ∧

∧v
r=1 Wcr →

∨k
j=1 �lj bj ∨

∨w
s=1 Wds

(m ∈ Z)

with side conditions
∑n

i=1(ki + 1) −
∑k

j=1 lj + w − 1 − max(m, 0) ≥ 0 and
v−w+2m ≥ 0 (the sums in the premise refer to the — propositionally expressible
— arithmetic of characteristic functions, cf. [21]). By Corollary 28, the rules

(Wm)
∑v

r=1 cr + m ≤
∑w

s=1 ds∧v
r=1 Wcr →

∨w
s=1 Wds

(m ∈ Z)

with side conditions w−1−max(m, 0) ≥ 0 and v −w+2m ≥ 0 form a complete
axiomatisation of the majority operator W .

Theorem 26 suggests an obvious recursive algorithm for checking provability
(or, dually, consistency). In order to ensure that this algorithm is feasible, we
need to make sure that we never need to prove ‘small’ clauses by instantiating
propositional variables with identical formulas in ‘large’ rules. We thus further

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Rank-1 Modal Logics Are Coalgebraic 583

require reduction closedness of the rule set, in the sense that every rule instance
where a literal is duplicated in the conclusion can be replaced by an instance of
another rule where all literals are distinct; cf. [21] for a formal definition.

The main result of [21] states that the satisfiability problem of a Λ-structure
T is in PSPACE if T has a strictly one-step complete reduction closed rule
set which is PSPACE-tractable, which essentially means that the rules applied
according to Theorem 26 have representations whose size is polynomial in the
matched clause and from which the clauses of the premise are easily extracted
(again, cf. [21] for a formal definition). Applying this result to the canonical
L-structure, we obtain a purely syntactic criterion for a rank-1 logic to be in
PSPACE :

Theorem 30. The consistency (provability) problem of L = (Λ, R) is in
PSPACE if R has a resolution closure which has a PSPACE-tractable reduc-
tion closure.

6 Example: Deontic Logic

A typical application area for the above results are modal logics that come from
a philosophical background, such as epistemic and deontic logics, which are often
defined either without any reference to semantics at all or with a neighbourhood
semantics essentially equivalent to the canonical semantics described above. De-
ontic logics [8], which have received much recent interest in computer science as
logics for obligations of agents, are moreover often axiomatised in rank 1.

Standard deontic logic [3] is just the modal logic KD. This has been criticized
on the grounds that it entails the deontic explosion: if O is the modal obligation
operator ‘it ought to be the case that’, the K-axiom (Oa∧Ob) ↔ O(a∧b) implies
that in the presence of a single deontic dilemma, everything is obligatory, i.e.
Oa∧O¬a → Ob. Some approaches to this problem are summarized in [5], where
the novel solution is advocated to restrict at least one direction of K to the case
that a∧b is permitted, i.e. to P (a∧b), where P is the dual ¬O¬ of O. This leads
to the axioms

(PM) O(a ∧ b) ∧ P (a ∧ b) → Oa
(PAND) Oa ∧ Ob ∧ P (a ∧ b) → O(a ∧ b)

(in [5], (PM) is formulated as a rule (RPM)). Two systems are proposed (both
including the congruence rule): given the further axioms (N) O�, (P) ¬O⊥, and

(ADD) (Oa ∧ Ob) → O(a ∧ b),

DPM.1 is determined by (PM), (N), and (ADD), while DPM.2 is given by (PM),
(PAND), (N), and (P). A further system PA, consisting of (PAND), (P), (N),
and the standard monotonicity axiom is rejected, as it still leads to a form of
deontic explosion where everything permitted is obligatory in the presence of
a dilemma.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

584 L. Schröder and D. Pattinson

It is shown in [5] that DPM.1 and DPM.2 are sound and weakly complete
w.r.t. the obvious classes of neighbourhood frames, and that both logics are de-
cidable; the proofs are rather involved. In our framework, the situation presents
itself as follows. The neighbourhood semantics of [5] is easily seen to be precisely
the canonical semantics; the new insight here is that the semantics is coalgebraic.
The rest is for free: by Theorem 14, both DPM.1 and DPM.2 are even strongly
complete (the reason that the strong completeness proof fails in [5] is that an ex-
plicit construction of a canonical model is attempted). Decidability is immediate
by Corollary 24; the finite model property (proved in [5] using filtrations) follows
from the results of [20]. Moreover, the resolution closures of DPM.1 and DPM.2
enjoy the pleasant proof theoretic properties listed in Theorem 26. (The same
holds for PA, and in fact for rather arbitrary variations of the axiom system.) A
challenge that remains is to establish that DPM.1 and DPM.2 are in PSPACE
by the method described at the end of the previous section, the main problem
being to harness closure under reduction.

7 Conclusion

We have established that every modal logic L of rank 1 has a canonical coal-
gebraic semantics for which L is sound and strongly complete. Moreover, L
has a canonical finitely branching coalgebraic semantics for which L is sound
and weakly complete and has the Hennessy-Milner property, and from which
all finitely branching semantics for which L has the Hennessy-Milner property
are obtained as substructures. This is a converse to the previous insight that
every coalgebraic modal logic can be axiomatized in rank 1 [20]. It allows us
to formulate purely syntactic versions of semantics-based generic decidability
and complexity criteria for coalgebraic modal logic [20, 21], including e.g. the
result that every recursively axiomatised rank-1 logic with finitely many modal
operators is decidable. We have applied this framework to recently defined ver-
sions of deontic logic which accommodate deontic dilemmas [5]. In particular, we
have obtained decidability and strong completeness for these logics as immediate
consequences of our generic results, while the original work has rather involved
proofs and moreover establishes only decidability and weak completeness. Ap-
plication of the generic PSPACE upper bound [21] to these logics remains an
open problem.

We emphasise that the restriction to rank 1 is not an inherent limitation of
the coalgebraic approach — the fact that coalgebraic modal logics are of rank 1
is due to the interpretation of these logics over the whole class of coalgebras
for the relevant functor (in analogy to the standard modal logic K), and logics
outside rank 1 may be modelled by passing to suitable subclasses of coalgebras.
Ongoing work is aimed at pushing the generic results beyond strict rank 1;
preliminary results have been obtained for axioms that combine rank 1 with
rank 0, i.e. a coalgebraic counterpart of KT . A further point of interest is to
obtain completeness and decidability results for coalgebraic modal logics with
iteration, i.e. the coalgebraic counterpart of CTL.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Rank-1 Modal Logics Are Coalgebraic 585

References

[1] J. Adámek and H.-E. Porst. On tree coalgebras and coalgebra presentations.
Theoret. Comput. Sci., 311:257–283, 2004.

[2] M. Barr. Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci.,
114:299–315, 1993.

[3] B. Chellas. Modal Logic. Cambridge, 1980.
[4] K. Fine. In so many possible worlds. Notre Dame J. Formal Logic, 13:516–520,

1972.
[5] L. Goble. A proposal for dealing with deontic dilemmas. In Deontic Logic in

Computer Science, volume 3065 of LNAI, pages 74–113. Springer, 2004.
[6] H.-P. Gumm. Functors for coalgebras. Algebra Universalis, 45:135–147, 2001.
[7] A. Heifetz and P. Mongin. Probabilistic logic for type spaces. Games and Eco-

nomic Behavior, 35:31–53, 2001.
[8] R. Hilpinen. Deontic logic. In L. Goble, editor, The Blackwell Guide to Philo-

sophical Logic. Blackwell, 2001.
[9] B. Jacobs. Towards a duality result in the modal logic of coalgebras. In Coalgebraic

Methods in Computer Science, volume 33 of ENTCS. Elsevier, 2000.
[10] C. Kupke, A. Kurz, and D. Pattinson. Ultrafilter extensions for coalgebras. In

Algebra and Coalgebra in Computer Science, volume 3629 of LNCS, pages 263–
277. Springer, 2005.

[11] A. Kurz. Specifying coalgebras with modal logic. Theoret. Comput. Sci., 260:119–
138, 2001.

[12] K. Larsen and A. Skou. Bisimulation through probabilistic testing. Inform. Com-
put., 94:1–28, 1991.

[13] E. Pacuit and S. Salame. Majority logic. In Principles of Knowledge Representa-
tion and Reasoning, KR 04, pages 598–605. AAAI Press, 2004.

[14] D. Pattinson. Semantical principles in the modal logic of coalgebras. In Theoretical
Aspects of Computer Science, STACS 01, volume 2010 of LNCS, pages 514–526.
Springer, 2001.

[15] D. Pattinson. Expressive logics for coalgebras via terminal sequence induction.
Notre Dame J. Formal Logic, 45:19–33, 2004.

[16] M. Pauly. A modal logic for coalitional power in games. J. Logic Comput., 12:149–
166, 2002.

[17] M. Rößiger. Coalgebras and modal logic. In Coalgebraic Methods in Computer
Science, volume 33 of ENTCS. Elsevier, 2000.

[18] J. Rutten. Universal coalgebra: A theory of systems. Theoret. Comput. Sci.,
249:3–80, 2000.

[19] L. Schröder. Expressivity of coalgebraic modal logic: the limits and beyond. In
Foundations of Software Science And Computation Structures, volume 3441 of
LNCS, pages 440–454. Springer, 2005. Extended version to appear in Theoret.
Comput. Sci.

[20] L. Schröder. A finite model construction for coalgebraic modal logic. In Foun-
dations Of Software Science And Computation Structures, volume 3921 of LNCS,
pages 157–171. Springer, 2006. Extended version to appear in J. Logic Algebraic
Programming .

[21] L. Schröder and D. Pattinson. PSPACE reasoning for rank-1 modal logics. In Logic
in Computer Science, pages 231–240. IEEE, 2006. Presentation slides available
under www.informatik.uni-bremen.de/∼lschrode/slides/rank1pspace.pdf.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Quantum Algorithm for the Hidden
Subgroup Problem in Extraspecial Groups�

Gábor Ivanyos1, Luc Sanselme2, and Miklos Santha2,3

1 SZTAKI, Hungarian Academy of Sciences, H-1111 Budapest, Hungary
2 Univ Paris-Sud, Orsay, F-91405

3 CNRS, LRI, UMR 8623, Orsay, F-91405

Abstract. Extraspecial groups form a remarkable subclass of p-groups.
They are also present in quantum information theory, in particular in
quantum error correction. We give here a polynomial time quantum al-
gorithm for finding hidden subgroups in extraspecial groups. Our ap-
proach is quite different from the recent algorithms presented in [17]
and [2] for the Heisenberg group, the extraspecial p-group of size p3

and exponent p. Exploiting certain nice automorphisms of the extraspe-
cial groups we define specific group actions which are used to reduce the
problem to hidden subgroup instances in abelian groups that can be dealt
with directly.

1 Introduction

The most important challenge of quantum computing is to find quantum algo-
rithms that achieve exponential speedup over the best known classical solutions.
In this respect, the most extensively studied problem is the paradigmatic hidden
subgroup problem. Stated in a group theoretical setting, in HSP(G, f) we are
given explicitely a finite group G and we also have at our disposal a function f
that can be queried via an oracle, and which maps G into a finite set. We are
promised that for some subgroup H , f is constant on each left coset of H and
distinct on different left cosets. We say that f hides the subgroup H . The task
is to determine the hidden subgroup H . We measure the time complexity of an
algorithm by the overall running time when a query counts as one computational
step. An algorithm is called efficient if its time complexity is polynomial in the
logarithm of the order of G.

We don’t know any classical algorithm of polynomial query complexity for
the HSP, even in the restricted case of abelian groups. In this respect, proba-
bly the most important result of quantum computing is that the HSP can be
solved efficiently for abelian groups by quantum algorithms. We will call this
solution, for which one can find an excellent description for example in Mosca’s
� Research supported by the European Commission IST Integrated Project Qubit Ap-

plications (QAP) 015848, the OTKA grants T42559 and T46234, the NWO visitor’s
grant Algebraic Aspects of Quantum Computing, and by the ANR Blanc AlgoQP
grant of the French Research Ministry.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 586–597, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Quantum Algorithm for the HSP in Extraspecial Groups 587

thesis [15], the standard algorithm for HSP. The main quantum tool used in
the standard algorithm is Fourier sampling based on the approximate quantum
Fourier transform that can be efficiently implemented by a quantum algorithm
in case of abelian groups [11]. Among the important special cases of this general
solution one can mention Simon’s xor-mask finding [21], Shor’s factorization and
discrete logarithm finding algorithms [19], and Kitaev’s algorithm [11] for the
abelian stabilizer problem.

Since the realization of the importance of the abelian HSP, intensive efforts
have been made to solve the hidden subgroup problem also in finite non-abelian
groups. The intrinsic mathematical interest of this challenge is increased by the
fact that several famous classical algorithmic problems can be cast in this frame-
work, like for example the graph isomorphism problem. The successful efforts
for solving the problem can roughly be divided into two categories. The stan-
dard algorithm has been extended to some non-abelian groups by Rötteler and
Beth [18], Hallgren, Russell and Ta-Shma [8], Grigni, Schulman, Vazirani and
Vazirani [7] and Moore, Rockmore, Russell and Schulman [14] using efficient im-
plementations of the quantum Fourier transform over these groups. In a different
approach, Ivanyos, Magniez and Santha [10] and Friedl, Ivanyos, Magniez, San-
tha and Sen [5] have efficiently reduced the HSP in some non-abelian groups to
HSP instances in abelian groups using classical and quantum group theoretical
tools, but not the non-abelian Fourier transform.

All groups where the HSP has been efficiently solved are in some sense “close”
to abelian groups. Extraspecial groups, in which we present here an efficient
quantum algorithm, are no exception in this respect: they have the property
that all their proper factor groups are abelian. They form a subclass of p-groups,
where p is a prime number, and play an important role in the theory of this family
of groups. Extensive treatment of extraspecial groups can be found for example
in the books of Huppert [9] and Aschbacher [1].

Extraspecial 2-groups are heavily present in the theory of quantum error cor-
rection. They provide a bridge between quantum error correcting codes and bi-
nary orthogonal geometry [3]. They form the real subgroup of the Pauli group [4]
which plays a crucial role in the theory of stabilizer codes [6]. For general p, ex-
traspecial p-groups give rise to the simplest examples of Clifford codes, see [12].

Efficient solutions for the HSP have already been given in several specific
extraspecial groups. Extraspecial p-groups are of order p2k+1 for some integer
k. For odd p, they are of exponent p or p2, and extraspecial 2-groups are of
exponent 4. The class of groups for which Ivanyos, Magniez and Santha [10]
provide a solution include extraspecial p-groups when p is a fixed constant and
the input size grows with k. When p is fixed, the smallest extraspecial groups
are of size p3. Up to isomorphism there are two extraspecial groups of order p3.
Recently two independent works dealt with quantum algorithms for the HSP in
the group of exponent p, the Heisenberg group. Radhakrishnan, Rötteler and
Sen [17] have followed the standard algorithm with non-abelian Fourier trans-
form, and proved that strong Fourier sampling with a random basis leads to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

588 G. Ivanyos, L. Sanselme, and M. Santha

a query efficient quantum solution. In a subsequent work, Bacon, Childs and
van Dam [2] devised an efficient quantum algorithm, where a state estimation
technique, called the pretty good measurement, is used to reduce the HSP to
some matrix sum problem that they could solve classically.

In this paper we provide an efficient quantum algorithm for the HSP in any ex-
traspecial group. Our main contribution is an efficient algorithm in extraspecial
p-groups of exponent p when p grows with the input size. A simplified version of
this algorithm gives another solution for the groups of constant exponent. The
remaining case, groups of exponent p2 when p is large is easily reducible to the
case of groups of exponent p.

Our approach for groups of exponent p is completely different from the above
two solutions for the Heisenberg group. In our solution only abelian Fourier
transforms and von Neumann measurements are used. In fact, our algorithm is
a series of reductions, where we repeatedly use the standard algorithm for abelian
groups, or a slight extension of it. In this extension, instead of a classical hiding
functions we have an efficient quantum hiding procedure at our disposal. This
procedure outputs a quantum state for every group element so that the states
corresponding to group elements coming from the same left coset of the hidden
subgroup are identical, whereas the states corresponding to group elements from
different left cosets are orthogonal. Repeated invocations of the procedure might
yield different states for the same group element.

At the end of our reductions we are faced with the problem of creating an
efficient hiding procedure in the above sense for the subgroup HG′ of G, where
G is an extraspecial p-group of exponent p when p is large, G′ = {zi : 0 ≤
i ≤ p − 1} is its commutator, and H is the hidden subgroup. It is easy to
see, that if we could create the coset state |aHG′〉 for some a ∈ G, then the
group action multiplication from the right, which on a given group element g
would output |aHG′ · g〉, is a hiding procedure. Unfortunately, we can create
these states efficiently only when p is constant. In the general case, we can
create efficiently only the states |aHG′

u〉 for a random 0 ≤ u ≤ p − 1, where
|G′

u〉 = 1√
p

∑
i∈Zp

ω−ui|zi〉. Our main technical contribution is to show that
several (in fact four) copies of these states can be combined together so that the
disturbing phases cancel each other. To achieve this goal we exploit certain nice
automorphisms of the group to define more sophisticated group actions that can
be used for our purposes.

The structure of the paper is quite simple. After a discussion on the extension of
the standard algorithm and a basic description of extraspecial groups in Section 2,
our reduction steps are presented in Section 3. The summary of these reductions is
stated in Theorem 1: An efficient hiding procedure for HG′ is sufficient to solve
the HSP in an extraspecial group G. In Section 4 we establish our main result
in Theorem 2, the existence of an efficient solution for the HSP in extraspecial
groups. The proof is given according to the three cases discussed above. The most
important case of groups of exponent p when p is large is dealt with in Section 4.2,
where in Theorem 3 we provide the hiding procedure for HG′.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Quantum Algorithm for the HSP in Extraspecial Groups 589

2 Preliminaries

2.1 Extensions of the Standard Algorithm for the Abelian HSP

We will use standard notions of quantum computing for which one can consult
for example [13]. For a finite set X , we denote by |X〉 the uniform superposition

1√
|X|

∑
x∈X |x〉 over X . For a superposition |Ψ〉, we denote by supp(|Ψ〉) the

support of |Ψ〉, that is the set of basis elements with non-zero amplitude.
The general solution for the abelian HSP consists essentially of Fourier sam-

pling of the hiding function f . More specifically, it involves the creation of the
superposition

∑
g∈G|g〉|f(g)〉 and the Fourier transform over G. Clearly, for the

former part it is essential to have access to a hiding function. In fact, this re-
quirement can be relaxed in some sense, and in this paper we will use such a
relaxation. A relaxation was already used by Ivanyos et al. [10] who extended the
notion of the hiding function to quantum functions. More precisely, for a finite
set X , and a quantum function f : G → C

X , we say that f hides the subgroup
H of G if |f(g)〉 is a unit vector for every g ∈ G, and f is constant on the left
cosets of H , and maps elements from different cosets into orthogonal states. The
simple fact is proven in Lemma 1 of [10] that in the standard solution of HSP

for abelian groups, one can just as well use a quantum hiding function.
The standard algorithms for the abelian HSP in fact repeats polynomially

many times the Fourier sampling involving the same (classical or quantum)
hiding function. In fact, in each iteration a random element is obtained from
the subgroup orthogonal to H . Our extension is based on the observation, that
for the sampling, one doesn’t have to use the same hiding function in each
iteration, different hiding functions will do just as well the game. For the sake
of completeness we formalize this here and state the exact conditions that will
be used in our case.

We say that a set of vectors {|Ψg〉 : g ∈ G} from some Hilbert space H is a
hiding set for the subgroup H of G if

– |Ψg〉 is a unit vector for every g ∈ G,
– if g and g′ are in the same left coset of H then |Ψg〉 = |Ψg′〉,
– if g and g′ are in different left cosets of H then |Ψg〉 and |Ψg′〉 are orthogonal.

A quantum procedure is hiding the subgroup H of G if for every g ∈ G, on
input |g〉|0〉 it outputs |g〉|Ψg〉 where {|Ψg〉 : g ∈ G} is a hiding set for H . Let us
underline that we don’t require from a quantum hiding procedure to output the
same hiding set in different calls. The following fact recasts the existence of the
standard algorithm for the abelian HSP in the context of hiding sets.

Fact 1. Let G be a finite abelian group. If there exists an efficient quantum
procedure which hides the subgroup H of G then there is an efficient quantum
algorithm for finding H.

Proof. It is immediate from the proof of Lemma 1 in [10]: indeed, the exact
property of the quantum hiding function f which is used there is that {|g〉|f(g)〉 :
g ∈ G} forms a hiding set for H . ��

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

590 G. Ivanyos, L. Sanselme, and M. Santha

2.2 Extraspecial Groups

Let G be a finite group. For two elements g1 and g2 of G, we usually denote
their product by g1g2. If we conceive group multiplication from the right as a
group action of G on itself, we will use the notation g1 · g2 for g1g2. For a subset
X of G, we will denote by 〈X〉 the subgroup generated by X . The derived
subgroup G′ of G is defined as 〈{x−1y−1xy : x, y ∈ G}〉, and its center Z(G)
as {z ∈ G : gz = zg for all g ∈ G}. The Frattini subgroup Φ(G) is the
intersection of all maximal subgroups of G.

For an integer n, we denote by Zn the group of integers modulo n, and for a
prime number p, we denote by Z

∗
p the multiplicative group of integers relatively

prime with p. A p-group is a finite group whose order is a power of p. A p-group
G is extraspecial if G′ = Z(G) = Φ(G), and its center is cyclic of prime order p.

If G is an extraspecial p-group then |G| = p2k+1 for some integer k. The
elements of G can be encoded by binary strings of length O(k log p), and an
efficient algorithm on that input has to be polynomial in both k and log p.

The smallest non-abelian extraspecial groups are of order p3. For p = 2, we
have, up to isomorphism, two extraspecial 2-groups of order 8. These are the
quaternion group Q, and the dihedral group D4, the symmetry group of the
square in two dimensions. The exponent of both of these groups is p2 = 4.

For p > 2, up to isomorphism we have again two extraspecial p-groups of
order p3. The first one is the Heisenberg group Hp, which is the group of upper
triangular 3×3 matrices over the field Fp whose diagonal contains everywhere 1.
The exponent of Hp is p. The other one is Ap, the group of applications t
→ at+b
from Zp2 to Zp2 , where a ≡ 1 modulo p and b ∈ Zp2 . The exponent of Ap is p2.

We give now via relations equivalent definitions of the extraspecial p-groups
of order p3. These definitions will be useful for the arguments we will develop
in our algorithms. To emphasize the similarities between these groups, we will
take three generator elements x, y, z for each of them. The element z will always
generate the center of the group. Here are the definitions via relations:

Q = 〈x2 = y2 = [x, y] = z, z2 = 1〉,

D4 = 〈x2 = y2 = z2 = 1, [x, y] = z, [x, z] = [y, z] = 1〉,

Hp = 〈xp = yp = zp = 1, [x, y] = z, [x, z] = [y, z] = 1〉,

Ap = 〈xp2
= yp = 1, [x, y] = z = xp, [y, z] = 1〉.

From these definitions it is clear that every element in an extraspecial group of
order p3 has a unique representation of the form xiyjz� where i, j, � ∈ Zp.

Extraspecial p-groups of order p2k+1, for k > 1, can be obtained as the central
product of k extraspecial p-groups of order p3. If G1, . . . , Gk are extraspecial p-
groups of order p3 then their central product G1 Y . . .Y Gk is the factor group

G1 × . . . × Gk mod z1 = · · · = zk,

where zi is an arbitrary generator of Z(Gi) for i = 1, . . . , k.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Quantum Algorithm for the HSP in Extraspecial Groups 591

Since D4 Y D4 = QY Q, up to isomorphism the unique extraspecial 2-groups
of order 22k+1 are Yk

i=1 D4 and (Yk−1
i=1 D4)Y Q. All of these groups are of ex-

ponent p2 = 4. When p > 2, we have Hp Y Ap = Ap Y Ap. Therefore, up to
isomorphism the unique extraspecial p-groups of order p2k+1 are Yk

i=1 Hp and
(Yk−1

i=1 Hp)Y Ap. The former groups are of exponent p, the latter ones are of
exponent p2.

It follows from the above that any extraspecial group of order p2k+1 can be
generated by 2k+1 elements x1, y1, . . . , xk, yk and z. Any element of the group has
a unique representation of the form xi1

1 y
i′
1

1 · · ·xik

k y
i′
k

k z�, where i1, i
′
1, . . . , ik, i′k, � ∈

Zp. Also, G′ = Z(G) = {z�|� ∈ Zp}.

3 Reduction Lemmas

Our results leading to our main technical contribution can be the best described
via a series of reduction lemmas.

Lemma 1. Let G be an extraspecial p-group, and let us given an oracle f which
hides the subgroup H of G. Then finding H is efficiently reducible to find HG′.

Proof. Since G′ is a cyclic group of prime order, either G′ ⊆ H or G′ ∩H = {1}.
It is simple to decide which one of this cases holds by checking if f(z) = f(1).
If G′ ⊆ H then H = HG′, and therefore the algorithm which finds HG′ yields
immediatly H .

If G′ ∩H = {1} then we claim that HG′ is abelian. To see this, it is sufficient
to show that H is abelian, since G′ is the center of G. Let h1 and h2 be two
elements of H . Then there exists � ∈ Zp such that h1h2 = h2h1z

�. This implies
that z� is in G′ ∩ H and therefore z� = 1.

The restriction of the hiding function f to the abelian subgroup HG′ of G
hides H . Therefore the standard algorithm for solving the HSP in abelian groups
applied to HG′ with oracle f yields H . ��

We will show that finding HG′ can be efficiently reduced to the hidden subgroup
problem in an abelian group. For every element g = xi1

1 yj1
1 . . . xik

k yjk

k z� of G, we
denote by g the element xi1

1 yj1
1 . . . xik

k yjk

k . We define now the group G whose base
set is {g : g ∈ G}. Observe that this set of elements does not form a subgroup in
G. To make G a group, its law is defined by g1 ∗ g2 = g1g2 for all g1 and g2 in G.
It is easy to check that ∗ is well defined, and is indeed a group multiplication.
The group G is isomorphic to G/G′ and therefore is abelian. For our purposes a
nice way to think about G as a representation of G/G′ with unique encoding. In
fact, it is also easy to check that G is isomorphic to Z

2k
p . Finally let us observe

that HG′ ∩ G is a subgroup of (G, ∗) since HG′/G′ is a subgroup of G/G′,

Lemma 2. Let G be an extraspecial p-group, and let us given an oracle f which
hides the subgroup H of G. Then finding HG′ is efficiently reducible to find
HG′ ∩ G in G .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

592 G. Ivanyos, L. Sanselme, and M. Santha

Proof. Since HG′ = (HG′ ∩ G)G′, a generator set of HG′ in G is composed of
a generator set of HG′ ∩ G in G together with z. ��

The group G is abelian but we don’t have a hiding function for HG′ ∩ G. The
main technical result of our paper is that using the hiding function f for H in G,
we will be able to implement an efficient quantum hiding procedure for HG′ in G.
Our last reduction lemma just states that this is sufficient for finding HG′ ∩ G.

Lemma 3. Let G be an extraspecial p-group, and let us given an oracle f which
hides the subgroup H of G. If we have an efficient quantum procedure (using f)
which hides HG′ in G then we can find efficiently HG′ ∩ G in G .

Proof. The procedure which hides HG′ in G hides also HG′ ∩ G in G. Since G
is abelian, Fact 1 implies that we can find efficiently HG′ ∩ G. ��

Our first theorem is the consequence of these three lemmas. It says that if in an
extraspecial group we succeed to transform the oracle hiding the subgroup H
into a quantum procedure hiding HG′ then we can determine H . This reduction
is the basis of our algorithm.

Theorem 1. Let G be an extraspecial p-group, and let us given an oracle f
which hides the subgroup H of G. If we have an efficient quantum procedure
(using f) which hides HG′ in G then HSP(G, f) can be solved efficiently.

Observe that if G′ ⊆ H then HG′ = H , and therefore the following corollary is
immediate.

Corollary 1. Let G be an extraspecial p-group, and let us given an oracle f
which hides the subgroup H of G. If G′ ⊆ H then we can solve efficiently
HSP(G, f).

4 The Algorithm

We now describe the quantum algorithm which solves the HSP in extraspecial
groups. In fact, we will deal separately with three cases: groups of constant
exponent, groups of exponent p when p is large, and groups of exponent p2

when p is large. The case of constant exponent is actually not new, it follows
from a general result in [10]. Nevertheless, for the sake of completeness we show
how a simplified version of the algorithm for the second case works here. The
algorithm for extraspecial groups of exponent p that goes to infinity is our main
result. Finally, the case of groups of exponent p2 can be easily reduced to the
case of groups of exponent p. These results are summarized in our main theorem.

Theorem 2. Let G be an extraspecial p-group, and let us given an oracle f
which hides the subgroup H of G. Then there is an efficient quantum procedure
which finds H.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Quantum Algorithm for the HSP in Extraspecial Groups 593

4.1 Groups of Constant Exponent

In Theorem 9 of [10] it is proven that in general the HSP can be solved by a
quantum algorithm in polynomial time in the size of the input and the cardi-
nality of G′. This includes the case of extraspecial groups of constant exponent.
Nonetheless, for the sake of completeness we describe here an efficient procedure,
similar in spirit to the one used for the next case but much simpler.

First remark that for every a ∈ G, the set {|aHG′ · g〉 : g ∈ G} is hiding for
HG′ in G. The efficient hiding procedure for HG′ computes, for some a ∈ G, the
superposition 1√

p

∑
u∈Zp

|u〉|aHG′
u〉 which by Lemma 4 of Section 4.2 can be done

efficiently. Then the first register is measured. This is repeated until the result
of the observation is 0. Since p is constant, after a constant number of iteration
the superposition |0〉|aHG′

0〉 = |0〉|aHG′〉 is created and finally |aHG′ · g〉 is
computed.

Observe that this simplified approach can not work for large exponents since
p, the expected number of iterations, is not polynomial in the size of the input.

4.2 Groups of Exponent p When p Is Large

For every u ∈ Zp, let |G′
u〉 = 1√

p

∑
i∈Zp

ω−ui|zi〉 and observe that |G′
u · z〉 =

ωu|G′
u〉.

Lemma 4. There is an efficient quantum procedure which creates 1√
p

∑
u∈Zp

|u〉
|aHG′

u〉 where a is a random element from G.

Proof. We start with |0〉|0〉|0〉. Since we have access to the hiding function f , we
can create the superposition 1√

|G|
∑

g∈G|0〉|g〉|f(g)〉. Observing and discharging

the third register we get |0〉|aH〉 for a random element a. Applying the Fourier
transform over Zp to the first register gives |Zp〉|aH〉. Multiplying the second reg-
ister by z−i when i is the content of the first one results in 1√

p

∑
i∈Zp

|−i〉|aHzi〉.
A final Fourier transform in the first register creates the required superposition.

��

For j = 1, . . . , p−1, we define the automorphisms φj of G mapping xi to xj
i , yi to

yj
i and z to zj2

when i ∈ {1, . . . , k}. These maps (defined on generators) extend
in fact to automorphisms of G since the elements xj

1, y
j
1, . . . x

j
k, yj

k, zj2
generate

the group G and satisfy the defining relations.
In our next lemma we claim that the states |aHG′

u〉 are eigenvectors of the
group action of multiplication from the right by φj(g), whenever g is from HG′.
Moreover, the corresponding eigenvalues are some powers of the root of the unity,
the exponent does not depend on a, and the dependence on u and j is relatively
simple.

Lemma 5. We have

1. ∀h∈H, ∃�∈Zp, ∀a∈G, ∀u∈Zp, ∀j∈Z
∗
p, |aHG′

u · φj(h)〉 = ωu(j−j2)�|aHG′
u〉,

2. ∀a ∈ G, ∀u ∈ Zp, ∀j ∈ Z
∗
p, |aHG′

u · φj(z)〉 = ωuj2 |aHG′
u〉.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

594 G. Ivanyos, L. Sanselme, and M. Santha

Proof. To begin with let’s remark that for h ∈ H , we have |aHG′
u ·h〉 = |aHG′

u〉
and that |aHG′

u · z〉 = ωu|aHG′
u〉.

To prove the first part, let h be an element of H . Then φj(h) = hjzt where t
depends on h and j. We will show that t = (j − j2)� where � depends only on h.
This will imply the claim.

Let j0 be a fixed primitive element of Z
∗
p. Then φj0 (h) = hj0zs, for some s ∈

Zp. We set � = s(j0 − j2
0)−1, and k = hz�. Then φj0 (k) = hj0z�(j0−j2

0)z�j2
0 = kj0 .

Therefore φj(k) = kj and φj(h) = φj(k)φj(z−�) = hjz�(j−j2). The proof of the
second part is immediate. ��

The principal idea now is to take several copies of the states |aiHG′
ui

〉 and
choose ji so that the product of the corresponding eigenvalues becomes the
unity. Therefore the actions φj(g), when g is from HG′, will not modify the
combined state. It turns out that we can achieve this with four copies.

For a = (a1, a2, a3, a4) ∈ G4, u = (u1, u2, u3, u4) ∈ Z
4
p, j = (j1, j2, j3, j4) ∈

(Z∗
p)4 and g ∈ G, we define the quantum state |Ψa,u,j

g 〉 in C
G4

by

|Ψa,u,j
g 〉 = |a1HG′

u1
· φj1(g), a2HG′

u2
· φj2 (g), a3HG′

u3
· φj3(g), a4HG′

u4
· φj4 (g)〉.

Our purpose is to find an efficient procedure to generate triples (a, u, j) such
that for every g ∈ HG′ we have |Ψa,u,j

g 〉 = |a1HG′
u1

, a2HG′
u2

, a3HG′
u3

, a4HG′
u4

〉.
We call such triples appropriate. The reason to look for appropriate triples is that
they lead to hiding sets for HG′ in G as stated in the next lemma.

Lemma 6. If (a, u, j) is an appropriate triple then {|Ψa,u,j
g 〉 : g ∈ G} is hiding

for HG′ in G.

Proof. To see this, first observe that HG′ is a normal subgroup of G. If g1 and g2

are in different cosets of HG′ in G then for every j ∈ Z
∗
p, the elements φj(g1) and

φj(g2) are in different cosets of HG′ in G since φj is an automorphism of G. Also,
for every a ∈ G and for every u ∈ Zp we have supp(|aHG′

u〉) = supp(|aHG′〉),
and therefore supp(|aHG′

u · φj(b)〉) and supp(|aHG′
u · φj(b

′
)〉) are included in

different cosets and are disjoint. Thus for every a ∈ G4, u ∈ Z
4
p and j ∈ (Z∗

p)
4,

the states |Ψa,u,j
g1

〉 and |Ψa,u,j
g2

〉 are orthogonal.
If g1 and g2 are in the same coset of HG′ then g1 = gg2 for some g ∈ HG′,

and φji (g1) = φji(g)φji (g2). Thus |Ψa,u,j
g1

〉 = |Ψa,u,j
gg2

〉 = |Ψa,u,j
g2

〉. ��

Let us now address the question of existence of appropriate triples and efficient
ways to generate them. Let (a, u, j) be an arbitrary element of G4 × Z

4
p × (Z∗

p)4,
and let g be an element of HG′. Then g = hzt for some h ∈ H and t ∈ Zp,
and φji(g) = φji(h)φji (zt) for i = 1, . . . , 4. By Lemma 5 there exists � such that
|aiHG′

ui
·φj(h)〉 = ωui(ji−j2

i)�|aiHG′
ui

〉 and |aiHG′
ui

·φj(zt)〉 = ωuij
2
i t|aiHG′

ui
〉,

and therefore

|Ψa,u,j
g 〉 = ω

∑4
i=1(ui(ji−j2

i)�+uij
2
i t)|a1HG′

u1
, a2HG′

u2
, a3HG′

u3
, a4HG′

u4
〉.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Quantum Algorithm for the HSP in Extraspecial Groups 595

We say that u ∈ Z
4
p is good if the following system of quadratic equations has a

nonzero solution: {∑4
i=1 ui(ji − j2

i) = 0
∑4

i=1 uij
2
i = 0,

(1)

and we call a solution j a witness of u being good. It should be clear that for
every u, if u is good and j witnesses that then (a, u, j) is an appropriate triple.

The next lemma states that a random u is good with constant probability,
and that in this case one can find efficiently j witnessing that.

Lemma 7. For every a ∈ G4, we have

Pr u ∈ Z
4
pu is good ≥ (p − 9)/2p.

Moreover, when u is good a witness j can be found efficiently.

Proof. Let us simplify system (1) to the equivalent system
{∑4

i=1 uij
2
i = 0

∑4
i=1 uiji = 0.

(2)

To solve (2), we take j3 = 1 and j4 = −1, and we set v = u3+u4 and w = u3−u4.
We will show that for random (u1, u2, v, w) ∈ Z

4
p, the reduced system (3) has

a solution (j1, j2) ∈ (Z∗
p)2 with probability at least (p − 9)/2p, and that the

solution is easy to find:
{

u1j
2
1 + u2j

2
2 = − v

u1j1 + u2j2 = − w.
(3)

With probability at least 1 − 3p we have u1 �= 0, u2 �= 0, u1 + u2 �= 0. In
that case we can substitute j2 = −w+u1j1

u2
in the first equation and get in j1

the quadratic equation (u1u2 + u2
1)j

2
1 + 2u1wj1 + (w2 + vu2) = 0. It is a non

degenerate quadratic equation whose discriminant D = −4u1u2(w2 +(u2+u1)v)
is uniformly distributed in Zp since it is linear in v. Therefore D is a quadratic
residue with probability (p − 1)/2p, and we can efficiently compute a square
root of D modulo p (see, for example, subsection 13.3.1 of [20]). We also have to
ensure that j2 �= 0. If j2 is zero, then w2 = −vu1, which happens with probability
1/p. Therefore the probability of finding a solution (j1, j2) ∈ (Z∗

p)2 is at least
(p − 1)/2p − 4/p. ��

Theorem 3. Let G be an extraspecial p-group of exponent p, where p grows with
the input size, and let us given an oracle f which hides the subgroup H of G.
Then there is an efficient quantum procedure which hides HG′ in G.

Proof. We describe the efficient hiding procedure. It computes, for some a ∈ G4,
the superposition

1
p2

4⊗

i=1

∑

ui∈Zp

|ui〉|aiHG′
ui

〉,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

596 G. Ivanyos, L. Sanselme, and M. Santha

which by Lemma 4 can be done efficiently, and then it measures the registers
for the ui. This is repeated until a good u ∈ Z

4
p is measured. By Lemma 7,

this requires a constant expected number of iterations. Also, when a good u is
measured, it finds efficiently a solution j ∈ (Z∗

p)
4 for system (1). Such a triple

(a, u, j) is appropriate, and therefore by Lemma 6 {|Ψa,u,j
g 〉 : g ∈ G} is hiding

for HG′ in G. Using the additional input |g〉, the procedure finally computes
|Ψa,u,j

g 〉. ��
The proof of Theorem 2 in that case follows from Theorem 1 and Theorem 3.

4.3 Groups of Exponent p2 When p Is Large

Here we deal with the group G = Ap Y(Yk−1
i=1 Hp), where we start with a function

f hiding some subgroup H . As in Lemma 1, we will distinguish the cases when
G′ ⊆ H and when G′ ∩ H = {e}. The first case is already taken care of by
Corollary 1.

If G′ ∩ H = {e} then H contains only elements whose order is at most p.
Indeed an element of order p2 cannot be in H since the pth power of such an
element is in G′. Therefore H is a subgroup of K = 〈y1, x2, y2, . . . , xk, yk, z〉,
where x1 is the unique generator of order p2 of G. The subgroup K is also (iso-
morphic to) a subgroup of Yk

i=1 Hp. We claim that we can extend the restriction
of f to K into a function F defined on the whole group Yk

i=1 Hp that also hides
H . Such an extension can be defined for example as F (xi1

1 yj1
1 . . . xik

k yjk

k z�) =
(i1, f(yj1

1 . . . xik

k yjk

k z�)), and it is easy to see that it is indeed a hiding func-
tion. Therefore the problem is reduced to the HSP in extraspecial groups of
exponent p.

5 Concluding Remarks

The main technical contribution of the present paper is a quantum procedure
which hides HG′ in an extrapsecial p-group G where p is a large prime. We
remark that it is possible to present the proof of its correctness in terms of
irreducible representations of G. However, the present approach is shorter and it
does not make use of concepts of noncommutative representation theory. Finally,
our method can in turn be extended to finding hidden subgroups efficiently in
arbitrary finite two-step nilpotent groups, that is groups G satisfying G′ ≤ Z(G).
This extension will be the subject of a subsequent paper.

Acknowledgment. The authors are grateful to Péter Pál Pálfy for his useful
remarks and suggestions.

References

1. M. Aschbacher. Finite Group Theory. Cambridge University Press, 2000.
2. D. Bacon, A. Childs, and W. van Dam. From optimal measurement to efficient

quantum algorithms for the hidden subgroup problem over semidirect product
groups. In Proc. 46th IEEE FOCS, pages 469–478, 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Quantum Algorithm for the HSP in Extraspecial Groups 597

3. A. Calderbank, E. Rains, P. Shor and N. Sloane. Quantum error correction and
orthogonal geometry. Phys. Rev. Lett., 78:405–408, 1997.

4. A. Calderbank, E. Rains, P. Shor and N. Sloane. Quantum error correction via
codes over GF(4). IEEE Transactions on Information Theory, 44(4):1369–1387,
1998.

5. K. Friedl, G. Ivanyos, F. Magniez , M. Santha and P. Sen. Hidden translation and
orbit coset in quantum computing. In Proc. 35th ACM STOC, pages 1–9, 2003.

6. D. Gottesman. Stabilizer Codes and Quantum Error Correction. PhD Thesis,
Caltech, 1997.

7. M. Grigni, L. Schulman, M. Vazirani, and U. Vazirani. Quantum mechanical algo-
rithms for the nonabelian Hidden Subgroup Problem. In Proc. 33rd ACM STOC,
pages 68–74, 2001.

8. S. Hallgren, A. Russell, and A. Ta-Shma. Normal subgroup reconstruction and
quantum computation using group representations. SIAM J. Comp., 32(4):916–
934, 2003.

9. B. Huppert. Endliche Gruppen. Vol. 1, Springer Verlag, 1983.
10. G. Ivanyos, F. Magniez, and M. Santha. Efficient quantum algorithms for some

instances of the non-Abelian hidden subgroup problem. Int. J. of Foundations of
Computer Science, 14(5):723–739, 2003.

11. A. Kitaev. Quantum measurements and the Abelian Stabilizer Problem. Techni-
cal report, Quantum Physics e-Print archive, 1995. http://xxx.lanl.gov/abs/
quant-ph/9511026.

12. A. Klappenecker, P. K. Sarvepalli. Clifford Code Constructions of Operator Quan-
tum Error Correcting Codes Technical report, Quantum Physics e-Print archive,
2006. http://xxx.lanl.gov/abs/quant-ph/0604161.

13. M. Nielsen and I. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

14. C. Moore, D. Rockmore, A. Russell, and L. Schulman. The power of basis selection
in Fourier sampling: Hidden subgroup problems in affine groups. In Proc. 15th
ACM-SIAM SODA, pages 1106–1115, 2004.

15. M. Mosca. Quantum Computer Algorithms. PhD Thesis, University of Oxford,
1999.

16. M. Püschel, M. Rötteler, and T. Beth. Fast quantum Fourier transforms for a
class of non-Abelian groups. In Proc. 13th AAECC, volume 1719, pages 148–159.
LNCS, 1999.

17. J. Radhakrishnan, M. Rötteler and P. Sen. On the power of random bases in
Fourier sampling: hidden subgroup problem in the Heisenberg group. In Proc.
32nd ICALP, LNCS vol. 3580, pages 1399–1411, 2005.

18. M. Rötteler and T. Beth. Polynomial-time solution to the Hidden Subgroup Prob-
lem for a class of non-abelian groups. Technical report, Quantum Physics e-Print
archive, 1998. http://xxx.lanl.gov/abs/quant-ph/9812070.

19. P. Shor. Algorithms for quantum computation: Discrete logarithm and factoring.
SIAM J. Comp., 26(5):1484–1509, 1997.

20. V. Shoup. A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, 2005.

21. D. Simon. On the power of quantum computation. SIAM J. Comp., 26(5):1474–
1483, 1997.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://xxx.lanl.gov/abs/quant-ph/9511026
http://xxx.lanl.gov/abs/quant-ph/9511026

Weak Fourier-Schur Sampling,
the Hidden Subgroup Problem,

and the Quantum Collision Problem

Andrew M. Childs1, Aram W. Harrow2, and Pawe�l Wocjan3

1 Institute for Quantum Information, California Institute of Technology,
Pasadena, CA 91125, USA
amchilds@caltech.edu

2 Department of Computer Science, University of Bristol,
Bristol, BS8 1UB, UK
a.harrow@bris.ac.uk

3 School of Electrical Engineering and Computer Science,
University of Central Florida, Orlando, FL 32816, USA

wocjan@cs.ucf.edu

Abstract. Schur duality decomposes many copies of a quantum state
into subspaces labeled by partitions, a decomposition with applications
throughout quantum information theory. Here we consider applying Schur
duality to the problem of distinguishing coset states in the standard ap-
proach to the hidden subgroup problem. We observe that simply measur-
ing the partition (a procedure we call weak Schur sampling) provides very
little information about the hidden subgroup. Furthermore, we show that
under quite general assumptions, even a combination of weak Fourier sam-
pling and weak Schur sampling fails to identify the hidden subgroup. We
also prove tight bounds on how many coset states are required to solve
the hidden subgroup problem by weak Schur sampling, and we relate this
question to a quantum version of the collision problem.

1 Introduction

The hidden subgroup problem (hsp) is a central challenge for quantum compu-
tation. On the one hand, many of the known fast quantum algorithms are based
on the efficient solution of the abelian hsp [21, 22, 38, 41]. On the other hand,
the nonabelian hsp has potential applications: in particular, the graph isomor-
phism problem can be reduced to the hsp in the symmetric group [8, 14], and
the shortest lattice vector problem can be reduced to a variant of the hsp in the
dihedral group [36]. Unfortunately, no efficient algorithms are known for these
two instances of the nonabelian hsp. However, some partial progress has been
made: there is a subexponential time algorithm for the dihedral hsp [31,37], and
it is known how to solve the hsp efficiently for a variety of other nonabelian
groups [2, 16, 17, 19, 25, 28, 33].

In the hsp for a group G, we have black-box access to a function f : G → S,
where S is some finite set. We say that f hides a subgroup H ≤ G provided

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 598–609, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Weak Fourier-Schur Sampling, the HSP, and the Quantum Collision Problem 599

f(g) = f(g′) iff g−1g′ ∈ H . The goal is to determine H (say, in terms of a
generating set) as quickly as possible. In particular, we say that an algorithm
for the hsp in G is efficient if it runs in time poly(log |G|).

Nearly all quantum algorithms for the hsp use the so-called standard method,
in which we query f on a uniform superposition of group elements and then
discard the function value, giving a coset state |gH〉 := |H |−1/2 ∑

h∈H |gh〉 for
some unknown, uniformly random g ∈ G. This state is described by the density
matrix

ρH :=
1

|G|
∑

g∈G

|gH〉〈gH | =
1

|G|
∑

h∈H

R(h) (1)

(called a hidden subgroup state), where R is the right regular representation of
G, satisfying R(g)|g′〉 = |g′g−1〉 for all g, g′ ∈ G. Now the hsp is reduced to the
problem of distinguishing the states ρH for the possible H ≤ G.

The symmetry of ρH can be exploited using Fourier analysis. In particular, the
group algebra CG decomposes under the commuting left and right multiplication
actions of G as

CG
G×G∼=

⊕

σ∈Ĝ

Vσ ⊗ V∗
σ (2)

where Ĝ denotes a complete set of irreducible representations (or irreps) of G,
and Vσ and V∗

σ are the (row and column, respectively) subspaces acted on by
σ ∈ Ĝ. The unitary transformation that relates the standard basis for CG and
the basis for the spaces Vσ ⊗ V∗

σ is the Fourier transform, which can be carried
out efficiently for most groups of interest [7, 12, 23, 32].

Since ρH is invariant under the left multiplication action of G, the decompo-
sition (2) shows that it is block diagonal in the Fourier basis, with blocks labeled
by the irreps σ ∈ Ĝ. For each σ, there is a dim Vσ × dim Vσ block that appears
dimVσ times (or in other words, the state is maximally mixed in the row space).
Thus, without loss of information, we can measure the irrep name σ and discard
the information about which σ-isotypic block occurred.

The process of measuring the irrep name σ is referred to as weak Fourier sam-
pling. For most nonabelian groups (including the symmetric group [19, 25] and
the dihedral group), weak Fourier sampling alone produces insufficient informa-
tion to identify the hidden subgroup H . To obtain further information about H ,
we must perform a refined measurement inside the resulting subspace. This is
referred to as strong Fourier sampling, and there are many possible ways to do
it, especially if G has large irreps.

Of course, with either weak or strong Fourier sampling, a single hidden sub-
group state is not sufficient to determine H : we must repeat the sampling pro-
cedure to obtain statistics. However, repeating strong Fourier sampling a poly-
nomial number of times is not sufficient for some groups (such as the symmetric
group), even if measurements can be chosen adaptively and unlimited classical
processing is allowed [34]. To solve the hsp in general, we must perform a joint
measurement on k = poly(log |G|) copies of ρ⊗k

H . In fact, there are groups (again
including the symmetric group) for which the measurement must be entangled

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

600 A.M. Childs, A.W. Harrow, and P. Wocjan

across Ω(log |G|) copies [24]. Thus the difficulty of the general hsp may be at-
tributed at least in part to that fact that highly entangled measurements are
required. While O(log |G|) copies are always information-theoretically sufficient
[15] (so that, in particular, the query complexity of the hsp is polynomial), there
are many groups for which it is not known how to efficiently extract the identity
of the hidden subgroup.

Although previous work on the hsp has focused almost exclusively on Fourier
sampling, there is another measurement that can also be performed without loss
of information. The idea is to exploit the symmetry of ρ⊗k

H under permutations of
the k registers. Thus, we should consider the decomposition of (CG)⊗k afforded
by Schur duality [18], which decomposes k copies of a d-dimensional space as

(Cd)⊗k
Sk×Ud∼=

⊕

λ�k

Pλ ⊗ Qd
λ (3)

where the symmetric group Sk acts to permute the k registers and the unitary
group Ud acts identically on each register. The subspaces Pλ and Qd

λ correspond
to irreps of Sk and Ud, respectively. They are labeled by partitions λ of k (denoted
λ	k), i.e., λ = (λ1, λ2, . . .) where λ1 ≥ λ2 ≥ . . . and

∑
j λj = k. (We can restrict

our attention to partitions with at most d parts, since dimQd
λ = 0 if λd+1 > 0.)

Since ρ⊗k
H is invariant under the action of Sk, the decomposition (3) shows that

it is block diagonal in the Schur basis with blocks labeled by λ 	 k. For each λ,
there is a dimQ|G|

λ ×dimQ|G|
λ block that appears dimPλ times (or in other words,

the state is maximally mixed in the permutation space). Thus, no information
is lost if we measure the partition λ and discard the permutation register. By
analogy to weak Fourier sampling, we refer to the process of measuring λ as weak
Schur sampling. This is a natural measurement to consider not only because it
can be performed without loss of information, but also because it is a joint
measurement of all k registers, and we know that some measurement of this
kind is required to solve the general hsp. Unfortunately, we will see in Section 2
(and see also Corollary 4 below) that weak Schur sampling with k = poly(log |G|)
provides insufficient information to solve the hsp unless the hidden subgroup is
very large (in which case the problem is easy, even for a classical computer).

In fact, since both weak Fourier sampling and weak Schur sampling can be per-
formed without loss of information, it is possible to perform both measurements
simultaneously (with the caveat that we must discard the irrelevant information
about the order in which the irreps of G appear). Even though the statistics of
the irrep name σ and the partition λ do not provide enough information to iden-
tify the hidden subgroup, this does not preclude the possibility that their joint
distribution is more informative. However, we will see in Section 3 that unless
we are likely to see the same representation more than once under weak Fourier
sampling (which is typically not the case), the Fourier and Schur distributions
are nearly uncorrelated. Formally, we have

Theorem 1 (Failure of weak Fourier-Schur sampling). The probability
that weak Fourier-Schur sampling (defined in Section 3) applied to ρ⊗k

H (defined

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Weak Fourier-Schur Sampling, the HSP, and the Quantum Collision Problem 601

in (1)) provides a result that depends on |H | is at most k2d2
max|H |/|G|, where

dmax is the largest dimension of an irrep of G.

This implies that k needs to be large for most cases of interest, including the
dihedral and symmetric groups.

Corollary 2 (Weak Fourier-Schur sampling on DN and Sn). (a) Weak
Fourier-Schur sampling on the dihedral group DN cannot distinguish the trivial
subgroup from a hidden reflection with constant advantage (i.e., success prob-
ability 1

2 + Ω(1)) unless k = Ω(
√

N). (b) Weak Fourier-Schur sampling on
the symmetric group Sn or on the wreath product Sn � Z2 cannot distinguish
the trivial subgroup from an order 2 subgroup with constant advantage unless
k = exp(Ω(

√
n)).

The proof that weak Schur sampling fails is based on the simple observation
that distinguishing the trivial subgroup from a subgroup of order |H | in this
way requires us to distinguish 1-to-1 from |H |-to-1 functions on G, i.e., to solve
the |H |-collision problem for a list of size |G|. Since there is an Ω(3

√
|G|/|H |)

quantum lower bound for this problem [1], poly(log |G|) registers are insufficient.
In fact, the problem resulting from the hsp is potentially harder, since the basis
in which the collisions occur is inaccessible to the Schur measurement. This
naturally leads to the notion of a quantum collision problem, and raises the
question of how quickly it can be solved on a quantum computer, which we
discuss in Section 4.

We first consider a sampling version of the quantum r-collision problem. Using
results on the asymptotics of the Plancherel measure on the symmetric group,
we prove that k = Θ(d/r) registers are necessary and sufficient to solve this
problem. In particular, we have

Theorem 3 (Quantum collision sampling problem). Given ρ⊗k, distin-
guishing between [case A] ρ = I/d and [case B] ρ2 = ρ/ d

r (i.e., ρ is pro-
portional to a projector of rank d/r) is possible with success probability 1 −
exp(−Θ(kr/d))/2. In particular, constant advantage is possible iff k = Ω(d/r).

In addition to providing the first results on estimation of the spectrum of a
quantum state in the regime where k d2, this gives tight estimates of the
effectiveness of weak Schur sampling, which we see requires an exponentially
large (in log |G|) number of copies to be successful.

Corollary 4 (Failure of weak Schur sampling). Applying weak Schur sam-
pling to ρ⊗k

H (where ρH is defined in (1)), one can distinguish the case |H | ≥ r
from the case H = {1} with constant advantage iff k = Ω(|G|/r).

The connection between Theorem 3 and Corollary 4 is explained in Section 2.
In Section 4 we also introduce a black box version of the quantum collision

problem. We show that it can be solved using O(3
√

d/r log d/r) queries, nearly
matching the query lower bound from the classical problem.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

602 A.M. Childs, A.W. Harrow, and P. Wocjan

2 Weak Schur Sampling

We begin by considering only the permutation symmetry of ρ⊗k
H , without taking

into account symmetry resulting from the group G. In other words, we consider
only the Schur decomposition (3), and we perform weak Schur sampling, i.e., a
measurement of the partition λ.

The projector onto the subspace labeled by a particular λ 	 k is

Πλ :=
dimPλ

k!

∑

π∈Sk

χλ(π)P (π) (4)

(see e.g. [40, Theorem 8]), where χλ is the character of the irrep of Sk labeled by λ
and P is the (reducible) representation of Sk that acts to permute the k registers,
i.e., P (π)|i1〉 . . . |ik〉 = |iπ−1(1)〉 . . . |iπ−1(k)〉 for all i1, . . . , ik ∈ {1, . . . , d}. For any
dk-dimensional density matrix γ, the distribution under weak Schur sampling is

Pr(λ|γ) = tr(Πλγ) . (5)

To use weak Schur sampling in a quantum algorithm, it is important that
the measurement of λ can be done efficiently. The simplest implementation of
the complete Schur transform [5], which fully resolves the subspaces Pλ and Qd

λ,
runs in time poly(k, d), and thus is inefficient when d is exponentially large, as
in the hsp. It can be modified to run in time poly(k, log d) either by a relabeling
trick [26, footnote in Section 8.1.2] or by generalized phase estimation [4, 26]
(which may be viewed as a generalization of the well-known swap test [6, 10]).
Generalized phase estimation only allows us to measure λ, but for weak Schur
sampling this is all we need. In this procedure, we prepare an ancilla register in
the state 1√

k!

∑
π∈Sk

|π〉, use it to perform a conditional permutation P (π) on
the input state γ, and then perform an inverse Fourier transform over Sk [7] on
the ancilla register. Measurement of the ancilla register will then yield λ ∈ Ŝk,
interpreted as a partition of k, distributed according to (5).

The distribution of λ according to weak Schur sampling is invariant under
the actions of the permutation and unitary groups, since these groups act only
within the subspaces Pλ and Qd

λ, respectively. In other words, for any U ∈
Ud, any π ∈ Sk, and any dk-dimensional density matrix γ, we have Pr(λ|γ) =
Pr(λ|P (π)U⊗k γ U †⊗kP (π)†). In particular, the invariance under U⊗k implies
that for γ = ρ⊗k, the distribution according to weak Schur sampling depends
only on the spectrum of ρ.

Now it is easy to see that weak Schur sampling on k = poly(log |G|) copies of
ρH provides insufficient information to solve the hsp. The state ρH is propor-
tional to a projector of rank |G|/|H |, since

ρ2
H =

1
|G|2

∑

h,h′∈H

R(hh′) =
|H |
|G| ρH . (6)

Because the distribution of measurement outcomes Pr(λ|ρ⊗k
H) depends only on

the spectrum of ρH , and this spectrum depends only on |H |, different subgroups

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Weak Fourier-Schur Sampling, the HSP, and the Quantum Collision Problem 603

of the same order cannot be distinguished by weak Schur sampling. In fact, even
distinguishing the trivial hidden subgroup from a hidden subgroup of order |H | ≥
2 (which would suffice for, e.g., graph isomorphism) requires an exponential
number of hidden subgroup states.

Suppose that weak Schur sampling could distinguish between hidden subgroup
states corresponding to H = {1} and some particular H of order |H | ≥ 2. Since
the distribution of λ depends only on the spectrum, this would mean that we
could distinguish k copies of the maximally mixed state I|G|/|G|, where Id is the
d × d identity matrix, from k copies of the state J|G|/|H|/(|G|/|H |), where Jd′

is a projector onto an arbitrary subspace of dimension d′. This in turn would
imply that we could distinguish 1-to-1 functions from |H |-to-1 functions using
k queries of the function. Then the quantum lower bound for the |H |-collision
problem [1] shows that k = Ω(3

√
|G|/|H |) copies are required.

Of course, this does not mean that O(3
√

|G|/|H |) copies are sufficient. In fact,
it turns out that a linear number of copies is both necessary and sufficient, as
we will show by a more careful analysis in Section 4. There we will sketch the
proof of Theorem 3, which by the arguments of this section implies Corollary 4.

3 Weak Fourier-Schur Sampling

In the previous section, we showed that weak Schur sampling provides insufficient
information to efficiently solve the hsp. However, even though weak Fourier
sampling typically also does not provide enough information, it is conceivable
that the joint distribution of the two measurements could be substantially more
informative. In this section, we will see that this is not the case: provided weak
Fourier sampling fails, so does weak Fourier-Schur sampling.

Since neither measurement constitutes a loss of information, it is in princi-
ple possible to perform both weak Fourier sampling and weak Schur sampling
simultaneously. If we perform weak Fourier sampling in the usual way, measur-
ing the irrep label for each register, then we will typically obtain a state that
is no longer permutation invariant. However, since the irrep labels are identi-
cally distributed for each register, the order in which the irreps appear carries
no information. Only the type of the irreps, i.e., the number of times each irrep
appears, is relevant. Thus, it suffices to perform what we might call weak Fourier
type sampling, in which we only measure the irrep type. Equivalently, we could
perform complete weak Fourier sampling and then either randomly permute the
k registers, or perform weak Schur sampling and discard the Pλ register.

We begin by performing weak Fourier sampling. The hidden subgroup state
ρH defined in (1) has the following block structure in the Fourier basis:

ρH
∼=

1
|G|

⊕

σ∈Ĝ

IdimVσ ⊗
∑

h∈H

σ(h)∗ =:
∑

σ∈Ĝ

Pr(σ)
IdimVσ

dimVσ
⊗ ρH,σ . (7)

Here the probability of observing the irrep σ under weak Fourier sampling is
Pr(σ) = (dimVσ/|G|)

∑
h∈H χσ(h)∗ and the state conditioned on this observa-

tion is ρH,σ =
(∑

h∈H χσ(h)
)−1 ∑

h∈H |σ〉〈σ| ⊗ σ(h)∗

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

604 A.M. Childs, A.W. Harrow, and P. Wocjan

Repeating weak Fourier sampling k times, we get ρH,σ = ρH,σ1 ⊗ · · · ⊗ ρH,σk
,

where σ := (σ1, σ2, . . . , σk) ∈ Ĝk may be viewed either as the actual outcome of
the k instances of weak Fourier sampling, or merely as a representative of the
irrep type, as discussed above. Given this state, the conditional probability of
observing the partition λ is

Pr(λ|σ) = tr(Πλ ρH,σ) =
dim Pλ

k!

∑

π∈Sk

χλ(π) tr[P (π) ρH,σ] . (8)

Note that tr[P (π) ρH,σ] = 0 if π(σ) �= σ, where π(σ) = (σπ−1(1), . . . , σπ−1(k)).

Proof (Theorem 1). Assume that σ is multiplicity-free, i.e., that all the σi’s
are different. In this case the traces are zero for all π �= 1 (the identity of
Sk). Then Pr(λ|σ) = dimPλ

k! χλ(1) tr ρH,σ = (dimPλ)2

k! , which is nothing but the
Plancherel distribution over Ŝk, and which in particular is independent of the
hidden subgroup H . This shows that we cannot extract any information about
H provided that we have obtained a multiplicity-free σ.

Finally, we can use |χσ(h)| ≤ dimVσ to show that the probability of any σ is
≤ d2

max|H |/|G|, and then use a union bound to prove that σ is multiplicity-free
with probability ≥ 1 −

(
k
2

)
d2
max|H |/|G|.

In [11] two of us considered an alternative approach to graph isomorphism based
on the nonabelian hidden shift problem. It can be shown that weak Fourier-Schur
sampling fails for similar reasons when applied to hidden shift states instead of
hidden subgroup states.

4 The Quantum Collision Problem

In Section 2, we saw that weak Schur sampling cannot efficiently solve the hsp

since this would require solving the collision problem. In fact, the problem faced
by weak Schur sampling is considerably harder, since no information is available
about the basis in which collisions occur. This motivates quantum generalizations
of the usual (i.e., classical) collision problem, which we study in this section.

Let us briefly review the classical problem. The classical r-collision problem is
the problem of determining whether a black box function with d inputs (where
r divides d) is 1-to-1 or r-to-1. This problem has classical (randomized) query
complexity Θ(

√
d/r)—as evidenced by the well-known birthday problem—and

quantum query complexity Θ(3
√

d/r) [1,9]. The classical algorithm is quite sim-
ple: after querying the function on O(

√
d/r) random inputs, there is a reason-

able probability of seeing a collision, provided one exists. The quantum algo-
rithm is slightly more subtle, making use of Grover’s algorithm for unstructured
search [20]. In particular, while the classical algorithm queries the black box non-
adaptively, it is essential for the quantum algorithm to make adaptive queries.

Here we first consider a sampling version of the quantum collision problem,
which is closely connected to the weak Schur sampling approach to the hsp, and
then study a full-fledged black box version of the problem.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Weak Fourier-Schur Sampling, the HSP, and the Quantum Collision Problem 605

The quantum collision sampling problem. The quantum r-collision sam-
pling problem is the problem of deciding whether one has k copies of the d-
dimensional maximally mixed state or of a state that is maximally mixed on
an unknown subspace of dimension d/r. This is exactly the problem faced by
the weak Schur sampling approach to the hsp, so our results on the quantum
collision sampling problem give tight bounds on the effectiveness of weak Schur
sampling. It turns out that k = Θ(d/r) copies are necessary and sufficient to
distinguish these two cases with constant advantage, as stated by Theorem 3.

Proof sketch (Theorem 3). Weak Schur sampling is the optimal strategy to dis-
tinguish states ρ with [case A] ρ = I/d or [case B] ρ2 = ρ/ d

r . We call the resulting
distribution of λ 	 k arising in case A the Schur distribution, Schur(k, d), with

Pr(λ) =
dim Pλ dimQd

λ

dk
=

(dimPλ)2

k!

∏

(i,j)∈λ

(

1 +
j − i

d

)

. (9)

The second equality follows from Stanley’s formula for dimQd
λ [42], interpreting

λ as a Young diagram, where (i, j) ∈ λ iff 1 ≤ j ≤ λi. The outcomes in case B
are also Schur-distributed (by a simple representation-theoretic argument), but
here the distribution is Schur(k, d/r).

Our first goal is to show that the distributions Schur(k, d) and Schur(k, d/r)
are close when k d/r. We do this by showing that when k d, Schur(k, d) is
close to the Plancherel distribution of λ 	 k, Planch(k), for which

Pr(λ) =
(dim Pλ)2

k!
. (10)

Using (9) and (10), the �1 distance Δk,d := ‖ Schur(k, d) − Planch(k)‖1 is

Δk,d = E
λ�k

∣
∣
∣
∣
∣

∏

(i,j)∈λ

(

1 +
j − i

d

)

− 1

∣
∣
∣
∣
∣

(11)

where the expectation is over Planch(k). Using Cauchy-Schwartz and the in-
equality 1 + x ≤ ex, we can upper bound (11) by

Δ2
k,d ≤ E

λ�k
exp

(

2
∑

(i,j)∈λ

j − i

d

)

=
∞∑

m=1

2m

m! dm
E

λ�k
v1(λ)m , (12)

where v1(λ) :=
∑

(i,j)∈λ(j − i). Finally, we use calculations of the moments of v1

obtained by Kerov in the course of describing the asymptotically Gaussian fluc-
tuations about the limiting shape of the typical diagram under the Plancherel
distribution [29]. This establishes Δk,d ≤

√
2(k/d), and it follows from the tri-

angle inequality that Schur(k, d) and Schur(k, d/r) are close when k d/r.
Conversely, we would like to show that if k � d/r, then Schur(k, d) is far

from Schur(k, d/r). We do this by first proving a lower bound on Δk,d (using
similar techniques as in the upper bound on Δk,d, as well as a one-sided Cheby-
shev inequality showing v1(λ)2 ≥ Ω(k2) with constant probability). Then we

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

606 A.M. Childs, A.W. Harrow, and P. Wocjan

combine this with the upper bound on Δk,d and use a monotonicity argument
(‖Schur(k, d1) − Schur(k, d2)‖1 ≥ ‖Schur(k, rd1) − Schur(k, rd2)‖1) to separate
the Schur distributions. This completes the proof sketch.

To put Theorem 3 in context, we can compare it to results on spectrum
estimation. When k → ∞ with d fixed, applying the measurement {Πλ}λ�k to
ρ⊗k and outputting λ̄ := λ/k has long been known to be a valid estimator of
the spectrum of ρ [30]. Indeed, if r1 ≥ . . . ≥ rd are the eigenvalues of ρ, then
tr Πλρ⊗k ≤ (k +1)d(d−1)/2 exp

(
−kD(λ̄‖r)

)
, where D(p‖q) :=

∑
i pi log(pi/qi) is

the (classical) relative entropy [13,27]. This inequality is usually only interesting
when k = Ω(d2), so our Theorem 3 can be viewed as the first positive result for
spectrum estimation in the regime where k = o(d2).

A black box for the quantum collision problem. A complete definition of
the quantum collision problem requires us to specify a unitary black box that
hides the function, and that allows us to make adaptive queries. We now propose
one such definition, and show that the resulting quantum r-collision problem can
be solved in O(3

√
d/r log d/r) queries, nearly matching the Ω(3

√
d/r) lower bound

from the classical collision problem.
Consider a quantum oracle that implements the isometry |i〉 �→ |i〉|ψf(i)〉,

where B := {|ψ1〉, . . . , |ψd〉} is an arbitrary (unknown) orthonormal basis of C
d

and f is either a 1-to-1 function or an r-to-1 function. The goal is to determine
which is the case using as few queries as possible. We assume that the isometry
is extended to a unitary operator R acting on C

d ⊗C
d by |i〉|y〉 �→ |i〉U |y⊕f(i)〉,

where U :=
∑

i |ψi〉〈i| is the unitary matrix effecting a transformation from the
standard basis to B. We also assume we can perform its inverse R†.

By considering the case where the basis B (or equivalently U) is known, it is
clear that the quantum lower bound for the usual collision problem implies an
Ω(3

√
d/r) lower bound for the quantum collision problem as well. We present

an algorithm for this problem that uses only O(3
√

d/r log d/r) queries. The ba-
sic idea is to adapt the quantum algorithm for the classical collision problem
[9]. That algorithm is not directly applicable to the quantum problem since we
cannot check equality of quantum states. However, the swap test can determine
whether two states are identical or orthogonal with one-sided error of 1/2. With
O(log d) copies of each state, this error (and the resulting state disturbance) can
be reduced to 1/ poly(d). We use this amplified swap test to prove

Theorem 5. The query complexity of the quantum r-collision problem for a list
of size d is O(3

√
d/r log d/r).

Proof. We first outline the quantum algorithm of [9] for the classical collision
problem. The algorithm builds a table of a random set of 3

√
d/r items and uses

Grover’s algorithm to search the remaining items for a collision with an entry
of the table. The entries of the table are distinct with high probability. If f is
r-to-1, there are (r − 1)(d/r)1/3 solutions among < d items, for a total query
complexity of O(

√
d/[r(d/r)1/3]) = O((d/r)1/3).

Now we adapt this algorithm to the quantum problem. Using the amplified
swap test, we can effectively test equality using m := 2 + 2 log d/r copies of the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Weak Fourier-Schur Sampling, the HSP, and the Quantum Collision Problem 607

quantum states, increasing the query complexity only by a factor of O(log d/r).
For this to work, it is important that we can reuse the states corresponding to
the entries in the table, so we will need m copies of each state in the table as
well. Iterating this swap test, we find that the error after � Grover iterations
is at most � · 21−m/2 ≤ �r/d. Since the number of Grover iterations is � =
O((d/r)1/3), the total error is asymptotically negligible, and we obtain nearly
the same performance as in the classical collision problem.

5 Discussion

We have shown that weak Fourier-Schur sampling typically provides insufficient
information to solve the hidden subgroup problem. Nevertheless, it remains pos-
sible that Schur duality could be a useful tool for the hsp. Just as weak Fourier
sampling refines the space into smaller subspaces in which we can perform strong
Fourier sampling, even when it alone fails to solve the hsp, so we can use weak
Fourier-Schur sampling to decompose the space even further. The Schur de-
composition has the additional complication that the refined subspaces are no
longer simply tensor products of single-copy subspaces, but this may actually be
an advantage since entangled measurements are known to be necessary for some
groups. Also, Schur sampling may be useful for implementing optimal measure-
ments, which are typically entangled [2, 3].

In principle, strong Fourier-Schur sampling is guaranteed to provide enough
information to solve the hsp, simply because the hidden subgroup states are
always distinguishable with k = poly(log |G|) copies. However, it would be inter-
esting to find a new efficient quantum algorithm for some hsp based on strong
Fourier-Schur sampling. Perhaps a first step in this direction would be to an-
alyze the performance of measurement in a random basis, as has been studied
extensively in the case of weak Fourier sampling [19, 33, 35, 39].

Moving away from our original motivation of the hsp, the quantum collision
problem may be of independent interest. As discussed in Section 4, our results
on the quantum collision sampling problem can be viewed as an exploration of
spectrum estimation with k = o(d2) copies, but much remains unknown about
that regime. Many open problems also remain regarding variants of the black
box version of the quantum collision problem.

Acknowledgments. We thank Scott Aaronson, Andris Ambainis, Masahito
Hayashi, Keiji Matsumoto, Pranab Sen, and Umesh Vazirani for helpful discus-
sions. We also thank Patrick Hayden for organizing a Bellairs Research Institute
workshop on representation theory in quantum information, at which the seeds
for this work were planted. This work was supported in part by the National
Science Foundation under grant PHY-456720, by the Army Research Office un-
der grant W9111NF-05-1-0294, by the European Commission under Marie Curie
grants ASTQIT (FP6-022194) and QAP (IST-2005-15848), and by the U.K. En-
gineering and Physical Science Research Council through “QIP IRC.”

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

608 A.M. Childs, A.W. Harrow, and P. Wocjan

References

[1] S. Aaronson and Y. Shi, Quantum lower bounds for the collision and the element
distinctness problems, J. ACM 51 (2004), no. 4, 595–605.

[2] D. Bacon, A. M. Childs, and W. van Dam, From optimal measurement to effi-
cient quantum algorithms for the hidden subgroup problem over semidirect product
groups, Proc. 46th FOCS, 2005, pp. 469–478.

[3] , Optimal measurements for the dihedral hidden subgroup problem, Chicago
J. Th. Comp. Sci. (2006), no. 2.

[4] D. Bacon, I. L. Chuang, and A. W. Harrow, Efficient quantum circuits for Schur
and Clebsch-Gordan transforms, quant-ph/0407082.

[5] , The quantum Schur transform: I. Efficient qudit circuits, to appear in
Proc. 18th SODA, 2007, available at quant-ph/0601001.

[6] A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa, and C. Macchi-
avello, Stabilisation of quantum computations by symmetrisation, SIAM J. Com-
put. (1997), 1541–1557.

[7] R. Beals, Quantum computation of Fourier transforms over symmetric groups,
Proc. 29th STOC, 1997, pp. 48–53.

[8] R. Boneh and R. Lipton, Quantum cryptanalysis of hidden linear functions, Proc.
Advances in Cryptology, LNCS 963, 1995, pp. 424–437.

[9] G. Brassard, P. Høyer, and A. Tapp, Quantum cryptanalysis of hash and claw-
free functions, Proc. 3rd Latin American Symposium on Theoretical Informatics,
LNCS 1380, 1998, pp. 163–169.

[10] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Quantum fingerprinting, Phys.
Rev. Lett. 87 (2001), 167902.

[11] A. M. Childs and P. Wocjan, On the quantum hardness of solving isomorphism
problems as nonabelian hidden shift problems, quant-ph/0510185.

[12] D. Coppersmith, An approximate Fourier transform useful in quantum factoring,
Technical Report RC 19642, IBM Research Division, Yorktown Heights, NY, 1994,
quant-ph/0201067.

[13] M. Christandl and G. Mitchison, The spectra of density operators and the Kro-
necker coefficients of the symmetric group, Commun. Math. Phys. 261 (2006),
no. 3, 789–797.

[14] M. Ettinger and P. Høyer, A quantum observable for the graph isomorphism prob-
lem, quant-ph/9901029.

[15] M. Ettinger, P. Høyer, and E. Knill, Hidden subgroup states are almost orthogonal,
quant-ph/9901034.

[16] K. Friedl, G. Ivanyos, F. Magniez, M. Santha, and P. Sen, Hidden translation and
orbit coset in quantum computing, Proc. 35th STOC, 2003, pp. 1–9.

[17] D. Gavinsky, Quantum solution to the hidden subgroup problem for poly-near-
Hamiltonian groups, Quant. Inf. Comp. 4 (2004), 229–235.

[18] R. Goodman and N. R. Wallach, Representations and Invariants of the Classical
Groups, Cambridge University Press, Cambridge, 1998.

[19] M. Grigni, L. Schulman, M. Vazirani, and U. Vazirani, Quantum mechanical al-
gorithms for the nonabelian hidden subgroup problem, Combinatorica 24 (2004),
137–154.

[20] L. K. Grover, A fast quantum mechanical algorithm for database search, Proc. 28th
STOC, 1996, pp. 212–219.

[21] S. Hallgren, Polynomial-time quantum algorithms for Pell’s equation and the prin-
cipal ideal problem, Proc. 34th STOC, 2002, pp. 653–658.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

quant-ph/0407082
quant-ph/0601001
quant-ph/0510185
quant-ph/0201067
quant-ph/9901029
quant-ph/9901034

Weak Fourier-Schur Sampling, the HSP, and the Quantum Collision Problem 609

[22] , Fast quantum algorithms for computing the unit group and class group of
a number field, Proc. 37th STOC, 2005, pp. 468–474.

[23] L. Hales and S. Hallgren, An improved quantum Fourier transform algorithm and
applications, Proc. 41st FOCS, 2000, pp. 515–525.

[24] S. Hallgren, C. Moore, M. Rötteler, A. Russell, and P. Sen, Limitations of quantum
coset states for graph isomorphism, Proc. 38th STOC, 2006, pp. 604–617.

[25] S. Hallgren, A. Russell, and A. Ta-Shma, The hidden subgroup problem and quan-
tum computation using group representations, Proc. 32nd STOC, 2000, pp. 627–
635.

[26] A. W. Harrow, Applications of coherent classical communication and the Schur
transform to quantum information theory, Ph.D. thesis, MIT, 2005.

[27] M. Hayashi and K. Matsumoto, Quantum universal variable-length source coding,
Phys. Rev. A 66 (2002), 022311.

[28] G. Ivanyos, F. Magniez, and M. Santha, Efficient quantum algorithms for some
instances of the non-abelian hidden subgroup problem, Int. J. Found. Comp. Sci.
14 (2003), 723–739.

[29] S. Kerov, Gaussian limit for the Plancherel measure of the symmetric group,
Comptes Rendus Acad. Sci. Paris, Sér. I 316 (1993), 303–308.

[30] M. Keyl and R. F. Werner, Estimating the spectrum of a density operator, Phys.
Rev. A 64 (2001), 052311.

[31] G. Kuperberg, A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem, SIAM J. Comput. 35 (2005), 170–188.

[32] C. Moore, D. N. Rockmore, and A. Russell, Generic quantum Fourier transforms,
Proc. 15th SODA, 2004, pp. 778–787.

[33] C. Moore, D. N. Rockmore, A. Russell, and L. J. Schulman, The hidden subgroup
problem in affine groups: Basis selection in Fourier sampling, Proc. 15th SODA,
2004, pp. 1113–1122.

[34] C. Moore, A. Russell, and L. J. Schulman, The symmetric group defies strong
Fourier sampling, Proc. 46th FOCS, 2005, pp. 479–490.

[35] J. Radhakrishnan, M. Rötteler, and P. Sen, On the power of random bases in
Fourier sampling: Hidden subgroup problem in the Heisenberg group, Proc. 32nd
ICALP, LNCS 3580, 2005, pp. 1399–1411.

[36] O. Regev, Quantum computation and lattice problems, Proc. 43rd FOCS, 2002,
pp. 520–529.

[37] , A subexponential time algorithm for the dihedral hidden subgroup problem
with polynomial space, quant-ph/0406151.

[38] A. Schmidt and U. Vollmer, Polynomial time quantum algorithm for the compu-
tation of the unit group of a number field, Proc. 37th STOC, 2005, pp. 475–480.

[39] P. Sen, Random measurement bases, quantum state distinction and applications to
the hidden subgroup problem, quant-ph/0512085.

[40] J. P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathe-
matics, vol. 42, Springer, New York, 1977.

[41] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer, SIAM J. Comput. 26 (1997), 1484–1509.

[42] R. P. Stanley, Theory and application of plane partitions, Studies in Appl. Math.
1 (1971), 167–187 and 259–279.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

quant-ph/0406151
quant-ph/0512085

Quantum Network Coding

Masahito Hayashi1, Kazuo Iwama2,�, Harumichi Nishimura3,��,
Rudy Raymond4, and Shigeru Yamashita5,� � �

1 Japan Science and Technology Agency, ERATO-SORST Quantum Computation
and Information Project, Tokyo 113-0033, Bunkyo-ku, Hongo 5-28-3, Japan†

masahito@qci.jst.go.jp
2 School of Informatics, Kyoto University, Kyoto 606-8501, Sakyo-ku,

Yoshida-Honmachi, Japan
iwama@kuis.kyoto-u.ac.jp

3 School of Science, Osaka Prefecture University, Sakai 599-8531, Gakuen-cho, Japan
hnishimura@mi.s.osakafu-u.ac.jp

4 Tokyo Research Laboratory, IBM Japan, Yamato 242-8502,
Simotsuruma 1623-14, Japan

raymond@jp.ibm.com
5 Graduate School of Information Science, Nara Institute of Science and Technology

Nara 630-0192, Ikoma, Takayama-cho 8916-5, Japan
ger@is.naist.ac.jp

Abstract. Since quantum information is continuous, its handling is
sometimes surprisingly harder than the classical counterpart. A typical
example is cloning; making a copy of digital information is straightfor-
ward but it is not possible exactly for quantum information. The question
in this paper is whether or not quantum network coding is possible. Its
classical counterpart is another good example to show that digital infor-
mation flow can be done much more efficiently than conventional (say,
liquid) flow.

Our answer to the question is similar to the case of cloning, namely,
it is shown that quantum network coding is possible if approximation is
allowed, by using a simple network model called Butterfly. In this net-
work, there are two flow paths, s1 to t1 and s2 to t2, which shares a single
bottleneck channel of capacity one. In the classical case, we can send two
bits simultaneously, one for each path, in spite of the bottleneck. Our re-
sults for quantum network coding include: (i) We can send any quantum
state |ψ1〉 from s1 to t1 and |ψ2〉 from s2 to t2 simultaneously with a
fidelity strictly greater than 1/2. (ii) If one of |ψ1〉 and |ψ2〉 is classi-
cal, then the fidelity can be improved to 2/3. (iii) Similar improvement
is also possible if |ψ1〉 and |ψ2〉 are restricted to only a finite number
of (previously known) states. (iv) Several impossibility results including
the general upper bound of the fidelity are also given.

� Supported in part by Scientific Research Grant, Ministry of Japan, 16092101.
�� Supported in part by Scientifis Research Grant, Ministry of Japan, 18244210.

� � � Supported in part by Scientific Research Grant, Ministry of Japan, 16092218.
† Also, Superrobust Computation Project, Information Science and Technology

Strategic Core, (21st Century COE by MEXT), Graduate School of Information
Science and Technology, The University of Tokyo, Japan.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 610–621, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Quantum Network Coding 611

1 Introduction

In [1], Ahlswede, Cai, Li and Yeung showed that the fundamental law for network
flow, the max-flow min-cut theorem, no longer applies for “digital information
flow.” The simple and nice example in [1] is called the Butterfly network as
illustrated in Fig. 1. The capacity of each directed link is all one and there are
two source-sink pairs: s1 to t1 and s2 to t2. Notice that both paths have to use the
single link from s0 to t0 and hence the total amount of (conventional commodity)
flow in both paths is bounded by one, say, 1/2 for each. In the case of digital
information flow, however, the protocol shown in Fig. 2 allows us to transmit
two bits, x and y, simultaneously. Thus, we can effectively achieve larger channel
capacity than what can be achieved by simple routing. This is known as network
coding since [1] and has been quite popular (see Network coding home page [16]
for recent developments).

Network coding obviously exploits the two side links, s1 to t2 and s2 to t1,
which are completely useless graph-topologically. Now the primary question in
this paper is whether this is also possible for quantum information: Our model
is the same butterfly network with (unit-capacity) quantum channels and our
goal is to send two qubits from s1 to t1 and s2 to t2 simultaneously. To this end,
one should notice that the protocol in Fig. 2 uses (at least) two tricks. One is
the EX-OR (Exclusive-OR) operation at node s0; one can see that the bit y is
encoded by using x as a key which is sent directly from s1 to t2, and vise versa.
The other is the exact copy of one-bit information at node t0. Are there any
quantum counterparts for these key operations?

Neither seems easy in the quantum case: For the copy operation, there is the
famous no-cloning theorem. Also, there is no obvious way of encoding a quantum
state by a quantum state at s0. Consider, for example, a simple extension of the
classical operation at node s0, i.e., a controlled unitary transform U as illustrated
in Fig. 3. (Note that classical EX-OR is realized by setting U = X “bit-flip.”)
Then, for any U , there is a quantum state |φ〉 (actually an eigenvector of U) such
that |φ〉 and U |φ〉 are identical (up to a global phase). Namely, if |ψ1〉 = |φ〉,
then the quantum state at the output of U is exactly the same for |ψ2〉 = |0〉
and |ψ2〉 = |1〉. This means their difference is completely lost at that position
and hence is completely lost at t1 also.

Thus it is highly unlikely that we can achieve an exact transmission of two
quantum states, which forces us to consider an approximate transmission. As an
approximation factor, we use a (worst-case) fidelity between the input state |ψ1〉
at s1 (|ψ2〉 at s2, resp.) and the output state ρρρ1 at t1 (ρρρ2 at t2, resp.) Recall
that the fidelity is at most 1.0 by definition and 0.5 is automatically achieved
by outputting a completely mixed state. Thus our question is whether we can
achieve a fidelity of strictly greater than 0.5.

Our Contribution. This paper gives a positive answer to this question. We
first show that we do need the (topologically useless) side channels for our goal
exactly as in the classical case (Theorem 1). Namely, without them, we can
prove that for any protocol, there exists a quantum state |ψi〉 (i = 1 or 2) and
its output state ρρρi such that F (|ψi〉, ρρρi) ≤ 1/2. We then give our protocol which

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

612 M. Hayashi et al.

Fig. 1. Fig. 2. Fig. 3. Fig. 4.

achieves a fidelity of strictly greater than 1/2 for the butterfly network (Theo-
rem 2). The idea is discretization of (continuous) quantum states. Namely, the
quantum state from s2 is changed into classical two bits by using what we call
“tetra measurement.” Those two bits are then used as a key to encode the state
from s1 at node s0 (“group operation”) and also to decode it at node t1. Our
protocol also depends upon the approximate cloning by Bužek and Hillery [7].
This obviously distorts quantum states, but interestingly, it also has a merit (cre-
ating entanglement between cloned states) by which we can handle the second
problem on the state distinguishability previously mentioned.

Note that the present general lower bound for the fidelity is only slightly better
than 1/2 (some 0.52). However, if we impose restriction, the value becomes much
better. For example, if |ψ1〉 is a classical state (i.e. either |0〉 or |1〉), then the
fidelity becomes 2/3 (Theorem 4). Similar improvement is also possible if |ψ1〉
and |ψ2〉 are restricted to only a finite number of (previously known) states,
especially if they are the so-called quantum random access coding states [2].
By using those states, we can design an interesting protocol which can send
two classical bits from s1 to t1 (similarly two bits from s2 to t2) but only one
of them, determined by adversary, should be recovered. It is shown that the
success probability for this protocol is 1/2+

√
2/16 (Theorem 6), but classically

the success probability for any protocol is at most 1/2.
On the negative side, several upper bounds for the fidelity are given. Again,

the most general one (Theorem 3) may not seem very impressive (some 0.983),
but it is improved under restrictions. In particular, if we impose the BC (bit-
copy) assumption, we can prove an upper bound of 11/12 (Theorem 5). (BC
means that whenever we need to copy a classical bit, we use the classical (exact)
copy, which seems quite reasonable.) We also give a limit of transmitting random
access coding states. Note that Theorem 6 can be extended to the three-bit case
(with success probability some 0.525) but that is the limit; no protocol exists
for the four-bit transmission with success probability strictly greater than 1/2
(Theorem 8).

Related Work. We usually allow approximation and/or errors in quantum
computation, which seems to be an essence of its power in some occasions. One
example is observed in communication complexity: The quantum communica-
tion complexity to compute the equality function EQn exactly is n [15]. How-
ever, even one qubit communication enables us to compute EQn with success
probability larger than 1/2. Another example can be seen in locally decodable

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Quantum Network Coding 613

codes and private information retrievals: Any 2n-bit Boolean function F can be
computed with success probability > 1/2 from an (n+1)-qubit information [24].
Namely, n + 1 qubits can encode 2n classical bits for computing any Boolean
function approximately.

Thus “1/2 + ε for very small ε” seems very powerful. Interestingly, this is not
the case in some other occasions. the Nayak bound [18] says that there is no
way to send two bits by one qubit with success probability > 1/2. Moreover,
[14] shows that one-qubit random access coding for four bits can only be done
with success probability at most 1/2, although we can enjoy a good success
probability up to three bits. In this context, our model in this paper also shows
a clear difference depending on whether or not the two side links exist.

The study of coding methods on quantum information and computation has
been deeply explored for error correction of quantum computation (since [23])
and data compression of quantum sources (since [21]). Recall that their tech-
niques are duplication of data (error correction) and average-case analysis (data
compression). Those standard approaches do not seem to help in the core of
our problem. More tricky applications of quantum mechanism are quantum tele-
portation [4], superdense coding [5], and a variety of quantum cryptosystems
including the BB84 key distribution [3]. The random access coding by Ambai-
nis, Nayak, Ta-shma, and Vazirani [2] is probably most related one to this paper,
which allows us to encode two or more classical bits into one qubit and decode
it to recover any one of the source bits. Our third protocol is a realization of this
scheme on the Butterfly network.

The introduction of quantum network coding [13] triggered several new stud-
ies: Leung, Oppenheim, and Winter [17] examined the asymptotic relation be-
tween the amount of quantum information and channel capacities on the Butter-
fly network (and more). Shi and Soljanin [22] considered multicasting networks
from the viewpoint of lossless compression and decompression of copies of quan-
tum states.

2 The Model

Our model is described as a quantum circuit which corresponds to Fig. 1. The
information sources at nodes s1 and s2 are pure one-qubit states |ψ1〉 and |ψ2〉.
(It turns out, however, that the result does not change for mixed states because
of the joint concavity of the fidelity [19].) Any node does not have prior en-
tanglement with other nodes. At every node, a physically allowable operation,
i.e., trace-preserving completely positive map (TP-CP map), is done, and each
edge can send only one qubit. They are implemented by unitary operations with
additional ancillae and by discarding all qubits except for the output qubits [19].

Our goal is to send |ψ1〉 to node t1 and |ψ2〉 to node t2 as well as possible.
The quality of data at node tj is measured by the fidelity between the original
state |ψj〉 and the state ρρρj output at node tj by the protocol. Here, the fidelity

between two quantum states ρρρ and σσσ are defined as F (σσσ,ρρρ) =
(
Tr

√
ρρρ1/2σσσρρρ1/2

)2

as in [8,6,9]. (The other common definition is Tr
√

ρρρ1/2σσσρρρ1/2.) In particular, the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

614 M. Hayashi et al.

fidelity between a pure state |ψ〉 and a mixed state ρρρ is F (|ψ〉, ρρρ) = 〈ψ|ρρρ|ψ〉.
(To simplify the description, for a pure state |ψ〉〈ψ| we often use the vector
representation |ψ〉 and we also use bold fonts for a 2 × 2 or 4 × 4 density matrix
for exposition.) We call the minimum of F (|ψ1〉, ρρρ1) over all one-qubit states |ψ1〉
and |ψ2〉 the fidelity at node t1 and similarly for fidelity at node t2.

Before presenting our protocols achieving a fidelity of strictly greater than
1/2, we show that the two side links, which are useless graph-topologically, are
indispensable. One might think this is trivial from the Nayak bound [18]. Namely,
if the two inputs are classical 0/1 bits, then they cannot be sent using a single
quantum channel (s0 to t0) with success probability (= fidelity) greater than 1/2.
This is not true since our definition only requires a fidelity at each sink. In fact,
we can achieve a fidelity of at least 0.75 in our definition, by simply using the
one-qubit random access coding for two bits [2] and the phase-covariant cloning
(a kind of approximated cloning) [6,9]. (Note that 0.752 > 0.5 but this does not
violate the Nayak bound since the success probabilities at the two sides are not
independent.) The proof of the following theorem needs a careful consideration
of physical operations on the Bloch ball (see, e.g., [10,20]) and the trace distance.
In this paper, the trace distance between two quantum states ρρρ and ρ′ρ′ρ′ is defined
to be ||ρρρ − ρ′ρ′ρ′||tr without the normalization factor 2 as in [19]. (If two states are
qubits, this distance is equal to the geometrical distance of the corresponding
points in the Bloch ball.)

Theorem 1. No quantum protocol can achieve fidelity larger than 1/2 if both
side links are removed from the Butterfly.

Proof. We show that, for any proper protocol, if the fidelity at t2 is larger than
1/2 (say, 1/2 + ε with ε > 0) then the fidelity at t1 is strictly less than 1/2. For
our purpose, we consider the case where the sources at s1 and s2 are a qubit
|ψ〉 and a classical bit b, respectively. We can assume that they are sent to s0

without any transformation (since otherwise their operations at s1 and s2 can
be delayed until s0). Now, let Eb be the images of the Bloch ball resulting from
operations at s0 when b is sent from s2. Let the distance between E0 and E1 be
the minimum trace distance between any state in E0 and that in E1. Then, the
following lemma holds from the fidelity requirement at t2:

Lemma 1. The distance between E0 and E1 is at least 4ε.

Proof. Let Cb be the TP-CP map at s0 when b is sent from s2. We can re-
gard the operations at t0 and t2 along the path s2-t2 as the measurement de-
fined by a POVM (positive operator-valued measure) {E0, E1}. (Recall that
any measurement is defined by a POVM {Ei}i, that is, each operator Ei is
positive and

∑
i Ei = I.) Then, to prove the lemma we need to show that

for any one-qubit states |ψ〉, |ψ′〉, ||C0(|ψ〉) − C1(|ψ′〉)||tr ≥ 4ε. However, by
the fidelity requirement at t2, for any |ψ〉, |ψ′〉 and any b = 0, 1, it must hold
that Tr(EbCb(|ψ〉)) ≥ 1/2 + ε and Tr(EbC1−b(|ψ′〉)) ≤ 1/2 − ε. Thus, we have
||C0(|ψ〉) − C1(|ψ′〉)||tr ≥

∑
b=0,1 |TrEb(C0(|ψ〉) − C1(|ψ′〉))| ≥ 4ε, where the

first inequality is obtained from the following fact: For any quantum states ρρρ,ρρρ′,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Quantum Network Coding 615

||ρρρ − ρρρ′||tr equals max{F0,F1}
∑

b |TrFb(ρρρ − ρρρ′)| where the maximization is over
all POVMs {F0, F1} [19].

By Lemma 1, the center of the Bloch ball is outside at least one of E0 and E1.
Now let Fb be the final images at t1 when b is the source at s2, and let T be the
composite TP-CP map of t0 and t1 along the path s1-t1. Note that F0 = T (E0)
and F1 = T (E1), and T is linear. Since T transforms the Bloch ball into an
ellipsoid within the Bloch ball [10,20], the center of the Bloch ball is outside one
of ellipsoids F0 and F1, say F0. This means that there exists some input state
|ψ〉 at s1 such that |ψ〉 and its output state ρρρψ at t1 are in different half of the
Bloch ball, that is, F (|ψ〉, ρρρψ) < 1/2. Therefore the fidelity at t1 is < 1/2.

3 Protocol for Crossing Two Qubits

Theorem 2. There exists a quantum protocol whose fidelities at nodes t1 and
t2 are 1/2 + 2/81 and 1/2 + 2

√
3/243, respectively.

3.1 Overview of the Protocol

Fig. 4 illustrates our protocol, Protocol for Crossing Two Qubits (XQQ). As
expected, the approximated cloning is used at nodes s1, s2 and t0. At node
s0, we first apply the tetra measurement to the state of one-qubit system Q3

and obtain two classical bits r1r2. Their different four values suggest which part
of the Bloch sphere the state of Q3 sits in. These four values are then used
to choose one of four different operations, the group operations, to encode the
state of Q2. These four operations include identity I, bit-flip X , phase-flip Z,
and bit+phase-flip Y . At node t1, we apply the reverse operations of these four
operations (actually the same as the original ones) for the decoding purpose.

At node t2, we recover the two bits r1r2 (actually the corresponding quantum
state for the output state) by comparing Q1 and Q6. This should be possible
since Q2 (≈ Q1) is encoded into Q5 (≈ Q6) by using r1r2 as a key but its
implementation is not obvious. It is shown that for this purpose, we can use the
Bell measurement together with the fact that Q1 and Q2 are partially entangled
as a result of cloning at node s1.

Remark. It is not hard to average the fidelities at t1 and t2 by mixing the
encoding state at t1 with the Bell state (|00〉 + |11〉)/

√
2, implying 1/2 + 2(2 −√

3)/27 ≈ 0.52 at both sinks.

3.2 Building Blocks

Universal Cloning (UC). As the first tool of our protocol, we recall the no-
tion of the approximated cloning by Bužek and Hillery [7], called the universal
cloning. Let |Ψ+〉 = 1√

2
(|01〉 + |10〉). Then, it is given by the TP-CP map UC

defined by UC(|0〉〈0|) = 2
3 |00〉〈00| + 1

3 |Ψ+〉〈Ψ+|, UC(|0〉〈1|) =
√

2
3 |Ψ+〉〈11| +√

2
3 |00〉〈Ψ+|, UC(|1〉〈0|) =

√
2

3 |11〉〈Ψ+| +
√

2
3 |Ψ+〉〈00|, UC(|1〉〈1|) = 2

3 |11〉〈11| +
1
3 |Ψ+〉〈Ψ+|. This map is intended to clone not only classical states |0〉 and |1〉

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

616 M. Hayashi et al.

but also any superposition equally well by mixing the symmetric state |Ψ+〉 with
|00〉 and |11〉 as the output. Let ρρρ1 = Tr2UC(|ψ〉) and ρρρ2 = Tr1UC(|ψ〉), where
Tri is the partial trace over the i-th qubit. Then, easy calculation implies that
ρρρ1 = ρρρ2 = 2

3 |ψ〉〈ψ| + 1
3 · III

2 . We call its induced map |ψ〉 �→ ρρρ1 (or |ψ〉 �→ ρρρ2) the
universal copy.

Tetra Measurement (TTR). Next, we introduce the tetra measurement.
We need the following four states |χ(00)〉 = cos θ̃|0〉 + eıπ/4 sin θ̃|1〉, |χ(01)〉 =
cos θ̃|0〉 + e−3ıπ/4 sin θ̃|1〉, |χ(10)〉 = sin θ̃|0〉 + e−ıπ/4 cos θ̃|1〉, and |χ(11)〉 =
sin θ̃|0〉 + e3ıπ/4 cos θ̃|1〉 with cos2 θ̃ = 1/2 +

√
3/6, which form a tetrahedron

in the Bloch sphere representation. The tetra measurement, denoted by
TTR, is defind by the POVM { 1

2 |χ(00)〉〈χ(00)|, 1
2 |χ(01)〉〈χ(01)|, 1

2 |χ(10)〉〈χ(10)|,
1
2 |χ(11)〉〈χ(11)|}.

Group Operation (GR). In what follows, let X = |0〉〈1| + |1〉〈0| be the
bit-flip operation, Z = |0〉〈0| − |1〉〈1| be the phase-flip operation, and Y = XZ.
Notice that the set of unitary maps on one-qubit states ρρρ �→ WρρρW † (W =
I, Z, X, Y) is the Klein four group. The group operation under a two-bit string
r1r2, denoted by GR(ρρρ, r1r2), is a transformation defined by GR(ρρρ, 00) = ρρρ,
GR(ρρρ, 01) = Zρρρ, GR(ρρρ, 10) = Xρρρ, and GR(ρρρ, 11) = Y ρρρ. Note that we frequently
use simplified expressions like Xρρρ instead of XρρρX†.

3D Bell Measurement (BM). Moreover, for recovering |ψ2〉 at node t2 we
introduce another new operation based on the Bell measurement, BM(Q, Q′)
(or BM(σσσ)), which applies the following three operations (a), (b), and (c) with
probability 1/3 for each, to the state σσσ (a 4× 4 density matrix) of the two-qubit
system Q ⊗ Q′: (a) Measure σσσ in the Bell basis {|Φ+〉, |Φ−〉, |Ψ+〉, |Ψ−〉}, and
output |0〉 if the measurement result for |Φ+〉 = |00〉+|11〉√

2
or |Φ−〉 = |00〉−|11〉√

2

is obtained, and |1〉 otherwise. (b) Measure σσσ similarly, and output |+〉 if the
measurement result for |Φ+〉 or |Ψ+〉 is obtained, and |−〉 otherwise. (c) Measure
σσσ similarly, and output |+′〉 = 1√

2
(|0〉 + ı|1〉) if the measurement result for |Φ+〉

or |Ψ−〉 = |01〉−|10〉√
2

is obtained, and |−′〉 = 1√
2
(|0〉 − ı|1〉) otherwise.

3.3 Protocol XQQ and Its Performance Analysis

Protocol XQQ: Input |ψ1〉 at s1, and |ψ2〉 at s2; Output ρρρ1
out at t1, and ρρρ2

out

at t2.

Step 1. (Q1, Q2) = UC(|ψ1〉) at s1, and (Q3, Q4) = UC(|ψ2〉) at s2.
Step 2. Q5 = GR(Q2, TTR(Q3)) at s0.
Step 3. (Q6, Q7) = UC(Q5) at t0.
Step 4 (Decoding at node t1 and t2). ρρρ1

out = GR(Q7, TTR(Q4)), and ρρρ2
out =

BM(Q1, Q6).

We give the proof of Theorem 2 by analyzing protocol XQQ (see [13] for
details and similarly for the remaining part of the paper). For this purpose, we
introduce the notion of shrinking maps (also known as a depolarizing channel
[19]), which plays an important role in the following analysis of XQQ: Let ρρρ be
any quantum state. Then, if a map C transforms ρρρ to p · ρρρ + (1 − p)III

2 for some

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Quantum Network Coding 617

0 ≤ p ≤ 1, then C is said to be p-shrinking. The following three lemmas are
immediate:

Lemma 2. If C is p-shrinking and C′ is p′-shrinking, then C◦C′ is pp′-shrinking.

Lemma 3. If C is p-shrinking, F (ρρρ, C(ρρρ)) ≥ 1/2 + p/2 for any state ρρρ.

Lemma 4. The universal copy is 2/3-shrinking.

Computing the Fidelity at Node t1. We first investigate the quality of the
path from s1 to t1. Fix ρρρ2 = |ψ2〉〈ψ2| as an arbitrary state at node s2 and consider
four maps C1: |ψ1〉 → Q2, C2[ρρρ2]: Q2 → Q5, C3: Q5 → Q7 and C4[ρρρ2]: Q7 →
ρρρ1

out. We wish to compute the composite map Cs1t1 = C4[ρρρ2] ◦ C3 ◦ C2[ρρρ2] ◦ C1

and its fidelity. We need two more lemmas before the final one (Lemma 7).

Lemma 5. C3 ◦ C2[ρρρ2] = C2[ρρρ2] ◦ C3.

Lemma 6. (Main Lemma) C4[ρρρ2] ◦ C2[ρρρ2] is 1
9 -shrinking.

Lemma 7. For any |ψ1〉, F (|ψ1〉, Cs1t1(|ψ1〉)) ≥ 1/2 + 2/81.

Proof. By Lemma 5, Cs1t1 = C4[ρρρ2] ◦ C2[ρρρ2] ◦ C3 ◦ C1. C3 and C1 are both
2/3-shrinking by Lemma 4 and C4[ρρρ2] ◦ C2[ρρρ2] is 1

9 -shrinking by Lemma 6. It
then follows that Cs1t1 is 4

81 -shrinking by Lemma 2 and its fidelity is at least
1/2 + 2/81 by Lemma 3.

Now we prove Lemma 6. See Fig. 4 again. Since we are discussing C4[ρρρ2]◦C2[ρρρ2],

let ρρρ1 =
(

a b
c d

)

be the state on Q2, ρρρ2 = |ψ2〉〈ψ2| =
(

e f
g h

)

be the state at s2

and assume that Q5 = Q7. We calculate the state on Q2 ⊗ Q3 ⊗ Q4, the state
on Q5 ⊗Q4 (= Q7 ⊗Q4) and ρρρ1

out in this order. For Q2 ⊗Q3 ⊗Q4, recall that ρρρ2

is cloned into Q3 and Q4 and so, by the TP-CP map UC in Sec. 3.2, the state
on Q2 ⊗ Q3 ⊗ Q4 is written as the tensor product of ρρρ1 and

|0〉〈0| ⊗
(

2e

3
|0〉〈0| +

f

3
|0〉〈1| + g

3
|1〉〈0| + 1

6
|1〉〈1|

)

+ |0〉〈1| ⊗
(

1
6
|1〉〈0| + f

3
III

)

+ |1〉〈0| ⊗
(

1
6
|0〉〈1| + g

3
III

)

+ |1〉〈1| ⊗
(

1
6
|0〉〈0|+ f

3
|0〉〈1| +

g

3
|1〉〈0|+ 2h

3
|1〉〈1|

)

.

Then, we apply the group operation to the first two bits of Q2 ⊗ Q3 ⊗ Q4. In
general, for Q ⊗ Q′, GR(Q, TTR(Q′)) is given as follows.

Lemma 8. Let ρρρ be the state on Q. Then, GR(Q, TTR(Q′)) is the following
TP-CP map:

ρρρ ⊗ |0〉〈0| �→ 1√
3
V (I, Z)ρρρ +

√
3 − 1√

3
III

2
, ρρρ ⊗ |1〉〈1| �→ 1√

3
V (X, Y)ρρρ +

√
3 − 1√

3
III

2
,

ρρρ ⊗ |0〉〈1| �→ 1
2
√

3
(V (I, X)ρρρ − V (Y, Z)ρρρ + ı(V (I, Y)ρρρ − V (Z, X)ρρρ)),

ρρρ ⊗ |1〉〈0| �→ 1
2
√

3
(V (I, X)ρρρ − V (Y, Z)ρρρ − ı(V (I, Y)ρρρ − V (Z, X)ρρρ)).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

618 M. Hayashi et al.

Here, V (I, Z)ρρρ = 1
2 (Iρρρ+Zρρρ), and V (X, Y)ρρρ, V (I, X)ρρρ, V (Y, Z)ρρρ, V (I, Y)ρρρ, and

V (Z, X)ρρρ are similarly defined. Those six operations are III-invariant (meaning
it maps III to itself) TP-CP maps.

Now the state on Q5 ⊗ Q4 is obtained by applying Lemma 8 to the state on
Q2 ⊗ Q3 ⊗ Q4. From now on, we omit the term for III

2 . Namely, if the one-qubit
state is ρρρ + αIII

2 , we only describe ρρρ. This is not harmful since any operation in
this section is III-invariant and hence the III

2 term can be recovered at the end by
using the trace property. Thus, the state on Q5 ⊗ Q4 looks like

1√
3
V (I, Z)ρρρ1 ⊗

(
2e

3
|0〉〈0| + 1

6
|1〉〈1|

)

+
1√
3
V (I, Z)ρρρ1 ⊗

(
f

3
|0〉〈1| + g

3
|1〉〈0|

)

+
1

2
√

3
V (I, X ; I, Y ; +)ρρρ1 ⊗ 1

6
|1〉〈0| + 1

2
√

3
V (I, X ; I, Y ; +) ⊗ f

3
III

+
1

2
√

3
V (I, X ; I, Y ; −)ρρρ1 ⊗ 1

6
|0〉〈1| + 1

2
√

3
V (I, X ; I, Y ; −) ⊗ g

3
III

+
1√
3
V (X, Y)ρρρ1⊗

(
1
6
|0〉〈0|+2h

3
|1〉〈1|

)

+
1√
3
V (X, Y)ρρρ1⊗

(
f

3
|0〉〈1|+ g

3
|1〉〈0|

)

,

where V (I, X ; I, Y ; ±)ρρρ = V (I, X)ρρρ − V (Y, Z)ρρρ ± ı(V (I, Y)ρρρ − V (Z, X)ρρρ), and
the terms such that the state of Q5 is III

2 are omitted.
We next transform the state of Q5 ⊗Q4 to ρρρ1

out by using Lemma 8 again. For
example, V (I, Z)ρρρ1 ⊗ |0〉〈0| is transformed to 1√

3
V (I, Z)V (I, Z)ρρρ1. To simplify

the resulting formula, the following lemma is used.

Lemma 9. 1) V (I, Z)V (I, Z)ρρρ1 = V (X, Y)V (X, Y)ρρρ1 =
(

a 0
0 d

)

.

2) V (I, Z)V (X, Y)ρρρ1 = V (X, Y)V (I, Z)ρρρ1 =
(

d 0
0 a

)

.

3) V (I, X)V (I, X)ρρρ1 = V (Y, Z)V (Y, Z)ρρρ1 = 1
2

(
1 b + c

b + c 1

)

.

4) V (I, X)V (Y, Z)ρρρ1 = V (Y, Z)V (I, X)ρρρ1 = 1
2

(
1 −b − c

−b − c 1

)

.

5) V (I, Y)V (I, Y)ρρρ1 = V (Z, X)V (Z, X)ρρρ1 = 1
2

(
1 b − c

c − b 1

)

.

6) V (I, Y)V (Z, X)ρρρ1 = V (Z, X)V (I, Y)ρρρ1 = 1
2

(
1 c − b

b − c 1

)

.

7) For any two operators V, V ′ taken from any different two sets of
{V (I, Z), V (X, Y)}, {V (I, X), V (Y, Z)}, and {V (I, Y), V (Z, X)}, V V ′ρρρ1 = III

2 .

Now it is a routine calculation to obtain ρρρ1
out =

(
m1 m2

m3 m4

)

where m1 through

m4 are equations using a, b, c and d (e, f, g and h disappear). Using the fact that
a + d = 1, we have ρρρ1

out = 1
9ρρρ1 + 1

9III. Recovering the completely mixed state
omitted in our analysis, we obtain C4[ρρρ2] ◦ C2[ρρρ2](ρρρ1) = 1

9ρρρ1 + 8
9 · III

2 . Thus, the
map is 1

9 -shrinking. This completes the proof of Lemma 6.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Quantum Network Coding 619

Computing the Fidelity at Node t2. By analyzing the quality of the path
from s2 to t2, we have F (|ψ2〉, ρρρ2

out) ≥ 1/2 + 2
√

3/243. Its analysis is different
from the previous one by the antisymmetry of the protocol. Details are given in
the complete version.

3.4 Upper Bounds

The following theorem shows a general upper bound for the fidelity of crossing
two qubits over Butterfly. Recall that we showed in Sec. 1 (also Fig. 3) that the
operation at s0 must not resemble a controlled unitary operation. Thus, it must
be a more general TP-CP map (unitary operation with some ancillae). The basic
idea of the proof is by showing that a good TP-CP map, the one which results
in the protocol with fidelity close to 1.0, can be “approximated” by a controlled
unitary operation. Hence, the fidelity of sending two qubits over Butterfly must
be bounded away from 1.0. Similar to the proof of Theorem 1, we use a geometric
view of the TP-CP map on the Bloch ball. However, it is much complicated since
we have to consider the side links.

Theorem 3. Let q be the fidelity of a protocol for crossing two qubits simulta-
neously. Then, q < 0.983.

4 Protocol for Crossing a Qubit and a Bit

This section deals with the case where one of two sources (say, at s2) is a classical
bit. Under this situation, we can design a protocol, called as XQC (crossing a
quantum bit and a classical bit), whose fidelity is much better than XQQ.

Theorem 4. XQC achieves the fidelities of 13/18 and 11/18 at t1 and t2. (By
averaging the fidelities at both sinks as before, we can also have a protocol whose
fidelities are the same 2/3 at t1 and t2.)

On the contrary, assuming that the copies of the bit at s2 are sent to s0 and t1,
we can obtain an upper bound that is significantly better than Theorem 3. In
general, this assumption, denoted as the BC (bit-copy) assumption, is reasonable
since whenever we need to send a bit to multiple nodes in the network, simply
sending its (classical) copies does not appear to cause disadvantages.

Theorem 5. Let p be the fidelity of a protocol for crossing a bit and a qubit
under the BC assumption. Then, p < 11/12.

5 Protocols for Crossing Two Multiple Bits

In this section, we consider the case that both sources are restricted to be one
of the four (2, 1, 0.85)-quantum random access (QRA) coding states [2]. Note
that (m, n, p)-QRA coding is the coding of m bits to n qubits such that any
one bit chosen from the m bits is recovered with probability at least p. In this
case, we can achieve a much better fidelity. As an application, we can consider

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

620 M. Hayashi et al.

a more interesting problem where each source node receives two classical bits,
namely, x1x2 ∈ {0, 1}2 at s1, and y1y2 ∈ {0, 1}2 at s2. At node t1, we output
one classical bit Out1 and similarly Out2 at t2. Now an adversary chooses two
numbers i1, i2 ∈ {1, 2}. Our protocol can use the information of i1 only at node t1
and that of i2 only at t2. Our goal is to maximize F (xi1 , Out1) and F (yi2 , Out2),
where F (xi1 , Out1) turns out to be the probability that xi1 = Out1 and similarly
for F (yi2 , Out2). The key of our protocol X2C2C is also on how to encode at s0:
its operation at s0 combines an optimal measurement MM2 to estimate which
QRA coding state is sent from s2, with the group operation similar to XQQ.

Theorem 6. X2C2C achieves a fidelity of 1/2 +
√

2/16 at both t1 and t2.

By contrast, any classical protocol cannot achieve a success probability greater
than 1/2 for the following reason: Let fix y1 = y2 = 0. Then the path from s1 to
t1 is obviously equivalent to the (2, 1, p)-classical random access coding, where
the success probability p is at most 1/2 [2].

Extending X2C2C, we can construct the protocol X3C3C which solves the
problem with probability > 1/2 for the case when each source node receives three
bits. The key of X3C3C is to need eight operations instead of four in X2C2C.
So, we use not only the Pauli operations but an approximation of the universal
NOT gate [8,11], which maps a point within the Bloch sphere into its antipodes.

Theorem 7. X3C3C achieves a fidelity of 1/2 + 2/81 at both sinks.

Interestingly, there is no X4C4C, which is an immediate corollary of the nonex-
istence of (4, 1, p > 1/2)-QRA coding [14].

Theorem 8. If an X4C4C protocol achieves fidelity q, then q ≤ 1/2.

6 Beyond the Butterfly Network – Concluding Remarks

Obviously a lot of future work remains. First of all, there is a large gap between
the current upper and lower bounds for the achievable fidelity, which should
be narrowed. Equally important is to consider more general networks. To this
direction, it might be interesting to study the network introduced in [12]. It has
k source-sink pairs (si, ti) all of which share a single link from s0 to t0. For the
network, we can design the protocol XQk by a simple extension of XQQ. The
idea is to decompose the node s0 (similarly for t0) into a sequence of nodes of
indegree two. At each of those nodes, we do exactly the same thing as before,
i.e., encoding one state by the two bits obtained from the other state. It is not
hard to see that such a protocol achieves a fidelity strictly better than 1/2.

References

1. R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network information flow.
IEEE Transactions on Information Theory 46 (2000) 1204–1216.

2. A. Ambainis, A. Nayak, A. Ta-shma, and U. Vazirani. Dense quantum coding and
quantum finite automata. J. ACM 49 (2002) 496–511.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Quantum Network Coding 621

3. C. H. Bennett and G. Brassard. Quantum cryptography: public key distribution
and coin tossing. Proc. IEEE International Conference on Computers, Systems and
Signal Processing, pp. 175–179, 1984.

4. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters.
Teleporting an unknown quantum states via dual classical and Einstein-Podolsky-
Rosen channels. Phys. Rev. Lett. 70 (1993) 1895–1899.

5. C. H. Bennett and S. J. Wiesner. Communication via one- and two-particle oper-
ators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69 (1992) 2881–2884.

6. D. Bruß, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello. Phase-covariant
quantum cloning. Phys. Rev. A 62 (2000) 012302.

7. V. Bužek and M. Hillery. Quantum copying: Beyond the no-cloning theorem. Phys.
Rev. A 54 (1996) 1844–1852.

8. V. Bužek, M. Hillery, and R. F. Werner. Optimal manipulation with qubits: uni-
versal NOT gate. Phys. Rev. A 60 (1999) 2626–2629.

9. H. Fan, K. Matsumoto, X.-B. Wang, and H. Imai. Phase-covariant quantum
cloning. J. Phys. A: Math. Gen. 35 (2002) 7415–7423.

10. A. Fujiwara and P. Algoet. One-to-one parametrization of quantum channels. Phys.
Rev. A 59 (1999) 3290–3294.

11. N. Gisin and S. Popescu. Spin flips and quantum information for antiparallel spins.
Phys. Rev. Lett. 83 (1999) 432–435.

12. N. J. Harvey, R. D. Kleinberg, and A. R. Lehman. Comparing network coding with
multicommodity flow for the k-pairs communication problem. MIT LCS Technical
Report 964, September 2004.

13. M. Hayashi, K. Iwama, H. Nishimura, R. Raymond, and S. Yamashita. Quantum
network coding. Talk at 9th QIP, 2006. quant-ph/0601088.

14. M. Hayashi, K. Iwama, H. Nishimura, R. Raymond, and S. Yamashita. (4, 1)-
quantum random access coding does not exist. New J. Phys. 8 (2006) 129.

15. P. Høyer and R. de Wolf. Improved quantum communication complexity bounds
for disjointness and equality. Proc. 19th STACS, Lecture Notes in Comput. Sci.
2285 (2002) 299–310.

16. R. Koetter. Network coding home page. http://tesla.csl.uiuc.edu/˜koetter/ NWC/
17. D. Leung, J. Oppenheim, and A. Winter. Quantum network communication –the

butterfly and beyond. quant-ph/0608233.
18. A. Nayak. Optimal lower bounds for quantum automata and random access codes.

Proc. 40th IEEE FOCS, pp. 369–376, 1999.
19. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information,

Cambridge, 2000.
20. M. B. Ruskai, S. Szarek, and E. Werner. An analysis of complete-positive trace-

preserving maps on 2 × 2 matrices. Lin. Alg. Appl. 347 (2002) 159–187.
21. B. Schumacher. Quantum coding. Phys. Rev. A 51 (1995) 2738–2747.
22. Y. Shi and E. Soljanin. On multicast in quantum network. Proc. 40th Annual

Conference on Information Sciences and Systems, 2006.
23. P. Shor. Scheme for reducing decoherence in quantum computer memory. Phys.

Rev. A 52 (1995) 2493–2496.
24. S. Wehner and R. de Wolf. Improved lower bounds for locally decodable codes and

private information retrieval. Proc. 32nd ICALP, Lecture Notes in Comput. Sci.
3580 (2005) 1424–1436.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reachability in Unions of Commutative
Rewriting Systems Is Decidable�

Miko�laj Bojańczyk and Piotr Hoffman

Institute of Informatics, Warsaw University, Poland
{bojan,piotrek}@mimuw.edu.pl

Abstract. We consider commutative string rewriting systems (Vector
Addition Systems, Petri nets), i.e., string rewriting systems in which all
pairs of letters commute. We are interested in reachability: given a rewrit-
ing system R and words v and w, can v be rewritten to w by applying
rules from R? A famous result states that reachability is decidable for
commutative string rewriting systems. We show that reachability is de-
cidable for a union of two such systems as well. We obtain, as a special
case, that if h : U → S and g : U → T are homomorphisms of com-
mutative monoids, then their pushout has a decidable word problem.
Finally, we show that, given commutative monoids U , S and T satisfy-
ing S ∩ T = U , it is decidable whether there exists a monoid M such
that S ∪ T ⊆ M ; we also show that the problem remains decidable if we
require M to be commutative, too.

Topic classification: Logic in computer science – rewriting.

1 Summary of Results

A string rewriting system R over a finite alphabet Σ is simply a finite set of rules
of the form v �→ w, where v and w are words over Σ (string rewriting systems
are also called semi-Thue systems). Such a system defines a one-step rewriting
relation →R and a multistep rewriting relation →∗

R on words over Σ: a word
v rewrites in one step to a word w if there exist words t, v0, u, w0 ∈ Σ∗ such
that v = tv0u, w = tw0u and v0 �→ w0 is a rule of R; the multistep rewriting
relation is the reflexive-transitive closure of the one-step relation. In the sequel,
the statement “v rewrites to w in R” shall mean that v →∗

R w.
The (uniform) reachability problem is defined as follows: Given a string rewrit-

ing system R and words v and w in the alphabet of that system, answer whether
v rewrites to w in R? This problem is one of the most basic undecidable prob-
lems. However, for appropriate restrictions on the form of the rewriting system
R, the problem may become decidable.

A string rewriting system is said to be commutative if for any two letters a
and b of the alphabet it contains the rule ab �→ ba. Commutative string rewriting

� First author supported by the EC Research Training Network Games, second author
by EC project Sensoria (No. 016004).

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 622–633, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reachability in Unions of Commutative Rewriting Systems Is Decidable 623

systems are also called Vector Addition Systems or Multiset Rewriting Systems,
since they treat words as multisets of letters — or elements of N

Σ, where Σ is
the alphabet. These systems are equivalent to Petri nets.

The following is a famous result [1,2]:

Theorem 1. Reachability in commutative string rewriting systems is decidable.

If RΣ and RΓ are rewriting systems over alphabets Σ and Γ , which may be
distinct and may have a non-empty intersection, then one may consider the
union system RΣ ∪ RΓ over the alphabet Σ ∪ Γ . This system is constructed by
simply taking both the rules from RΣ , as well as the rules from RΓ .

Note that the union of string rewriting systems may be much more complex
than its parts. This is shown by the following example.

A string rewriting system is said to be symmetric if for any rule v �→ w in the
system, the system also contains the rule w �→ v. Such systems are called Thue
systems. Sapir [3] (for an outline of the proof see [4]) constructed two symmetric
string rewriting systems R1 and R2 such that the sets

{v#w : v rewrites to w in R1} {v#w : v rewrites to w in R2}

are both regular languages, but reachability in the (symmetric) union R1 ∪ R2

is undecidable!
In this paper, we consider unions of commutative string rewriting systems. We

do not make any assumptions on how the alphabets Σ and Γ of these systems
relate to each other, whether they are disjoint or not, etc. Notice that the union
RΣ ∪ RΓ of commutative systems RΣ and RΓ will not be commutative itself:
if a is a letter from Σ \ Γ and b a letter from Γ \ Σ, then ab �→ ba will not be
in the union system; moreover, ab will in general not rewrite to ba in the union
system.

The main contribution of the paper is the following theorem:

Theorem 2. Let RΣ and RΓ be commutative string rewriting systems. Then
the reachability problem in the union RΣ ∪ RΓ is decidable.

This theorem properly extends Th. 1. Its proof is quite complex, and in the next
two sections we only outline it. The full proof will be found in the full version of
this paper. The same applies to other omitted proofs.

In Sec. 4, we present results related to amalgamations [5] of commutative
monoids. Some of these results are straightforward consequences of Th. 2, while
others do not depend on it. The following is obtained easily from Th. 2:

Corollary 1. Let h : U → S and g : U → T be homomorphisms of commutative
monoids, and let h′ : S → P and g′ : T → P form a pushout of h and g
(i.e. h′ ◦ h = g′ ◦ g and any homomorphisms h′′ : S → P ′ and g′′ : T → P ′

with h′′ ◦ h = g′′ ◦ g can be factored as u ◦ h′ = h′′ and u ◦ g′ = g′′ for a unique
homomorphism u : P → P ′). Then P has a decidable word problem.

If the homomorphisms h and g above are injective, then without loss of generality
one may assume that S ∩T = U and that h and g are inclusions. In this case the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

624 M. Bojańczyk and P. Hoffman

pushout P is called the amalgamated product. If S and T are given by symmetric
rewrite systems, then the amalgamated product is given by the union of these
systems.

In algebra, the following natural problem is considered [5,6,7,8,9,3]: Given
monoids U , S and T satisfying S ∩ T = U , answer whether some monoid M
jointly extends S and T , that is, such that M ⊇ S ∪ T . If so, S ∪ T is said
to embed into M , or to be embeddable. To see why a union of monoids may
not be embeddable, consider two distinct copies Z1 and Z2 of the integers with
zero and addition, intersecting on the natural numbers with zero and addition:
Z1 ∩ Z2 = N. The union Z1 ∪ Z2 is not embeddable, because the two copies
−11, −12 of −1 would have to be identified:

−11 = −11 + 1 + −12 = −12 .

The embeddability problem is in general undecidable. In fact, Sapir [3] proved
the following result:

Theorem 3. It is undecidable, given finite monoids U , S and T that satisfy
S ∩ T = U , whether there exists a monoid jointly extending S and T .

We prove that in the case of commutative monoids the situation is rather differ-
ent. More precisely, the following theorems hold:

Theorem 4. It is decidable, given commutative monoids U , S and T that satisfy
S∩T = U , whether there exists a commutative monoid jointly extending S and T .

Theorem 5. It is decidable, given commutative monoids U , S and T that satisfy
S ∩ T = U , whether there exists a monoid jointly extending S and T .

2 Theorem 2: Proof Strategy

This section and the next section are devoted to a proof of Th. 2. We begin by
outlining the proof strategy.

When rewriting a word v into a word w in the system RΣ ∪ RΓ , each inter-
mediate step can be decomposed into a number of blocks, which are words from
either Σ∗ or Γ ∗. Since the system is a union of two systems, one over Σ and the
other over Γ , a single rewriting rule can only be applied within such a block.
At first glance, in order to rewrite the word v into w, we may need to introduce
new blocks along the way; moreover, there is no apparent bound on the number
of these introduced blocks. The essence of our proof is that such a bound in fact
exists. We show that we need only consider derivations where almost all blocks
can be found already in v or w. Then we show that, when the number of intro-
duced blocks is bounded, the problem is decidable by a reduction to reachability
in commutative rewriting systems and an application of Th. 1.

We now give a formal definition of derivation, and then state the two key
results: Prop. 1, which says that only derivations with a bounded number of new
blocks are needed, and Prop. 2, which says that reachability is decidable when
restricted to such derivations. The proof of the former is outlined in Sec. 3.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reachability in Unions of Commutative Rewriting Systems Is Decidable 625

A derivation is a proof that one word can be rewritten into another, annotated
with some geometrical structure. We will use this structure when manipulating
derivations.

A derivation is a sequence of rows. A row contains a global state, which is
simply a word u over Σ ∩Γ , and a sequence of nodes labeled by words over Σ or
words over Γ (in particular, labels with words over Σ ∩ Γ are allowed as well).
Each row corresponds to a word in the derivation: the concatenation of all the
node labels. The first row in a derivation is called the source row, while the last
row is called the target row. The most important information in the derivation
is an edge relation. The idea is that an edge connects a node in one row with the
corresponding node in the next row. There are several ways – called rules – in
which nodes in one row can be connected to nodes in the next row. Because the
global state and labels are elements of Σ∗ or of Γ ∗, and because we are interested
in commutative string rewriting systems, the order of letters in the global state
and in the labels is irrelevant. Therefore, we treat the global state and the labels
as multisets, and if v and w are two such multisets, then we consider them equal
if each letter appears in v and w the same number of times. Concatenation on
such words is really just multiset union, and we denote such a union by v + w.
The empty multiset is denoted by ε.

The rules on how one row may be connected to the next row are the following:

– Transition rule. This is the only rule where the underlying rewriting system
is invoked. In this case, the label of one of the nodes is rewritten according
to the system RΣ or RΓ . The global state can also be used in this rule. More
formally, if v + u rewrites in one step to w + u′ in the system RΣ or RΓ ,
where u, u′ ∈ (Σ ∩ Γ)∗, then two rows can be connected as follows (in the
first column, we have the global state, in the subsequent columns we have
the contents of the rows):

u v1 . . . vi−1 v vi+1 . . . vn

u′ v1 . . . vi−1 w vi+1 . . . vn

The remaining rules are structural rules, which account for creating, deleting,
separating and merging nodes.

– Load rule. In this rule a value u2 from the global state u + u′ is loaded into
a node with label v:

u + u′ v1 . . . vi−1 v vi+1 . . . vn

u v1 . . . vi−1 v + u′ vi+1 . . . vn

This rule has a dual Store rule, which works exactly in the opposite direction,
taking a value u′ ∈ (Σ ∩ Γ)∗ from a node labeled v + u′ and storing it into
the global state. (These rules could be simulated by transition rules, if both
rewriting systems contained the rule ε �→ ε.)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

626 M. Bojańczyk and P. Hoffman

– Creation rule. In this rule, a new node with empty label is created. The new
node has indegree 0. The graph looks as follows:

u v1 . . . vi−1 vi . . . vn

u v1 . . . vi−1 ε vi . . . vn

This rule has a dual Delete rule, again working in the exact opposite direc-
tion: it removes a node labeled by ε.

– Merge rule. In this rule, two neighboring nodes with labels v and w are
merged into one node with label v + w without affecting the global state. In
this case v and w must either both belong to Σ∗, or both belong to Γ ∗.

u v1 . . . vi−1 v w vi . . . vn

u v1 . . . vi−1 v + w vi . . . vn

Again, the merge rule has a dual Split rule, where a node with label v + w
is split into two nodes with labels v and w.

A derivation is just an annotated way of showing that a word v can be rewrit-
ten into another word w in RΣ ∪ RΓ . This is formally stated in the following
lemma:

Lemma 1. For any words v = a1 . . . an and w = b1 . . . bk over Σ ∪Γ , v rewrites
to w in RΣ ∪ RΓ iff there is a derivation with a source row containing a global
state ε and nodes labeled a1, . . . , an, and a target row containing a global state ε
and nodes labeled b1, . . . , bk.

Note that the large majority of edges connect nodes with the same labels. A rule
is said to act on a node if this is not the case. Formally, the transition rule acts
on two nodes (with labels v and w), the store and load rules act on two nodes
(with labels v + u′ and v), the creation and deletion rules act on one node each
(with label ε), while the merge and split rules act on three nodes each (with
labels v, w and v + w).

Two nodes in a derivation are considered connected if they are connected by
an edge (orientation of the edges is irrelevant). A component is a maximal set of
nodes that can be pairwise connected by a sequence of edges.

In general, a component can contain labels from both Σ∗ and Γ ∗, since edges
can go from Γ ∗ to (Γ ∩ Σ)∗, and then to Σ∗. However, we can absorb the word
from (Γ ∩ Σ)∗ into the global state using a load and a deletion rule, and then
recreate and restore this node (in a new component) using a creation and store
rule, which shows:

Lemma 2. For any derivation, there exists a derivation with the same source
and target rows and such that each of its components contains nodes that are
either all labeled by words from Σ∗, or all labeled by words from Γ ∗.

From now on we shall assume that all derivations are of the above type.
Th. 2 is an immediate corollary of Lemmas 1 and 2, and the following two

propositions:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reachability in Unions of Commutative Rewriting Systems Is Decidable 627

Proposition 1. For any derivation, there is a derivation that has the same
source and target rows and uses at most k + 2 creation rules, where k is the
number of nodes in the target row.

Proposition 2. Given k ∈ N and source and target rows, it is decidable whether
there is a derivation containing at most k creation rules with the given source
and target rows.

3 Theorem 2: Eliminating Creation Rules

In this section we outline our proof of Prop. 1.
Our strategy is as follows. First we show in Sec. 3.2 that without loss of gener-

ality one may consider only derivations without islands (islands are components
that intersect neither the source, nor the target row). Then we show in Sec. 3.3
and 3.4 that every derivation is equivalent to one where each component con-
tains at most one creation rule. This is done in two steps. First in Sec. 3.3 we
show that a weaker condition – called compactness – can be obtained. Then in
Sec. 3.4 we show how compactness implies Prop. 1.

First however, we need to provide some auxiliary definitions.

3.1 Partial Derivations

A partial derivation is a generalized type of derivation that can also use a silent
rule:

u v1 . . . vn

u′ v1 . . . vn

Partial derivations are used to decompose non-partial ones into pieces: if we
remove part of a derivation, we must still keep track of the changes to the global
state that are caused by the removed part. These changes are witnessed by the
silent rule.

Two partial derivations D, D′ are considered equivalent, if they have the same
number of rows, same source and target rows, same global states, and use silent
rules in the same rows.

At the risk of confusion, we will omit the word partial from the term partial
derivation. The previously defined derivations – ones without silent rules – will
be referred to as non-partial.

We now introduce two operations on derivations: one extracts a smaller deriva-
tion from a larger one, the other combines several derivations into a single one.

Subderivations. Let X be a union of components. We denote by D[X] the
derivation where only nodes coming from X are left, and the other nodes are
removed. Moreover, rules that acted on nodes outside X are replaced by silent
rules (which may modify the global state). The following lemma proves the
correctness of this construction:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

628 M. Bojańczyk and P. Hoffman

Lemma 3. If X is a union of components in D, then D[X] is a derivation.

We say that derivations D1, . . . , Dn are compatible if they have the same number
of rows, they have the same global states in each row, and for each row, at most
one of the derivations uses a non-silent rule. Compatible derivations D1, . . . , Dn

can be joined into a bigger derivation D1 · · · Dn by concatenation. In each row
of the concatenated derivation, we have a concatenation of the appropriate rows
in D1, . . . , Dn.

Lemma 4. If derivations D1, . . . , Dn are compatible, then the concatenation
D1 · · ·Dn is a derivation.

3.2 Island Removal

Recall that an island in a derivation is a component that has nodes neither in
the source, nor in the target row. As a first step, we eliminate islands. This
process is rather straightforward: we move all islands to the right side of the
derivation. Since all islands are either of type Σ∗ or of type Γ ∗, they can be
squeezed into two components. We will from now on assume that the derivation
does not contain any islands.

3.3 Compact Components

Recall that we want to convert a derivation into one where each component
has at most one creation rule. In this section we prove a weaker version of this
statement, where only the number of “unguarded” creation rules is bounded.

A neighbor of x is a node in the same row, which is directly to the left or
right of x. A node is guarded if it has a neighbor in the same component. A
component is compact if each created node is either guarded or is the only node
of the component in its row. In particular, a compact component has at most
one unguarded created node.

The following proposition is the main result of this section:

Proposition 3. Every derivation is equivalent to one with all components com-
pact.

The rest of this section is devoted to a proof of Prop. 3. The proof is by induction
on the number of components in the derivation. Before we proceed with the proof,
we introduce several auxiliary concepts.

Paths and enclosures. A path is a connected set of nodes X such that each
node x ∈ X is connected with at most two nodes from X . Nodes x ∈ X that are
connected to exactly one node in X are called ends of the path. A path with at
least two nodes has exactly two ends. Note that the path need not be a directed
path: for instance, if two nodes x, y in one row are merged into a node x · y in
the next row, then the three nodes {x, y, x · y} form a path, whose ends are the
nodes x and y.

An enclosure is a path X , whose ends x, y ∈ X are either both in the source
row, or both in the target row. The nodes z that satisfy x < z < y are called

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reachability in Unions of Commutative Rewriting Systems Is Decidable 629

the base of the enclosure (the order < and its non-strict version ≤ refer to which
node comes first in a row). An enclosure is called tight if its base does not contain
nodes in the same component as X . The cobase is the set of nodes in the source
and in the target rows that are not in the base and are not x, y. An enclosure X
partitions the nodes of a derivation into three parts:

– The enclosure X itself.
– The interior in(X) of the enclosure. These are the nodes that can be con-

nected to the base of the enclosure without passing through X .
– The exterior ex(X) of the enclosure. These are the remaining nodes. Stated

differently, these are the nodes that can be connected to the cobase of the
enclosure without passing through X .

Note that both the exterior and interior can contain nodes from the component
of X . We extend the notions of interior and exterior to arbitrary sets of nodes
X : the interior in(X) is the union of all interiors in(Y) of all enclosures Y ⊆ X .
The exterior is the intersection of all the exteriors ex(Y).

We say that a set of nodes Y is enclosed by a set of nodes X if Y ⊆ in(X).
The height of a set of nodes is the number of rows used by this set. The inner

depth of an enclosure X is the maximal height of an enclosed component. The
outer depth is the height of the enclosure.

One outermost component. When there is only one component, the state-
ment is trivial. A component is outermost in a derivation if it is not enclosed by
any other component. It can be shown that one only needs to consider derivations
with one outermost component:

Lemma 5. Without loss of generality, one can consider only derivations with
one outermost component.

Compacting. By the above lemma, we may assume that the derivation in
Prop. 3 has only one outermost component, which we call X . We now proceed
to the heart of the proof of Prop. 3: making components compact.

The procedure we are going to use does not create any new nodes, nor does
it modify the type of rules used or the global state. It only rearranges the order
of nodes in each row. In particular, all the transformed derivations will have the
same nodes.

The following straightforward lemma is given without proof:

Lemma 6. One can find tight enclosures X1, . . . , Xn with pairwise disjoint in-
teriors such that all components enclosed by X are enclosed by one of the Xi.

For each i = 0, . . . , n, we will inductively correct our derivation, so that the
following invariant is satisfied:

– All components enclosed by X1, . . . , Xi are compact.
– For j = 1, . . . , i, one cannot find nodes y1 ≤ x ≤ y2 lying in one row and

such that x ∈ X and the nodes y1, y2 �∈ X are enclosed by Xj .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

630 M. Bojańczyk and P. Hoffman

It can be shown that at the end of the process all components become compact,
and hence Prop. 3 is obtained:

Lemma 7. If the invariant is satisfied for i = n, then all components in the
derivation are compact.

So, we now proceed to prove the invariant. The base case i = 0 is immediate. So
let us assume that the invariant holds for i − 1; our aim is to make it hold for i.

We assume without loss of generality that the base of Xi is in the source row.
Let Y be the components that are enclosed by Xi. Each of these components has
nodes in the source row, but no nodes in the target row (since they are enclosed
by Xi). Let y be a node of maximal depth k (row number) among all nodes in
components from Y. One can see that y is unique, since it must be acted upon in
a deletion rule, and in each row only one rule is applied. Let Y be any path with
one end in y and the other end in the source row (such a path must exist, since
there are no islands). By maximality of k, both the path Y and all components
in Y are contained in the rows up to k.

We define three groups of nodes of the derivation:

– The nodes A (for “above”) whose depth is at most k;
– The nodes B (for “below”) whose depth is strictly greater than k.
– The nodes C that belong to one of the components Y.

Note that A ∩ B = ∅ and C ⊆ A. Our strategy is to partition the set A \ C into
two parts: A0 and A1. The idea is that nodes in A0 are to the left of the path
Y , while nodes in A1 are to the right. Now as it is, this is not a clear concept,
since the path Y may bend and turn many times; hence the need for a more
formal definition. The definition we provide is based on the parity of the number
of turns in the path Y . Using this definition, we will reorder the nodes in A so
that in each row, all nodes in A0 are to the left of all nodes in A1. Finally, we
will apply the induction assumption to C, and then place it between A0 and A1

as in Fig. 1.

Fig. 1. Reordering the derivation to make it compact

Let x be a node in Y . We say x node is bending if it is the target of merge
of two nodes from Y or the source of a split into two nodes from Y . Otherwise

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reachability in Unions of Commutative Rewriting Systems Is Decidable 631

the node is called nonbending. Note that both ends of Y are nonbending. Given
a node x /∈ Y , we write #(x) for the number of nonbending nodes in Y that are
in the same row as x and to the left of x. (This value is 0 when x is outside A.)
We define A0 (resp. A1) to be the set of nodes x ∈ A \ C where #(x) is even
(resp. odd).

Let D[C] be a derivation obtained from D by only leaving the nodes from
C. By the induction assumption, D[C] is equivalent to a compact derivation E.
This derivation E only uses rows 1, . . . , k. We now construct a derivation D′

where the components contained by enclosures X1, . . . , Xi are compact. This
derivation is obtained from D as follows.

– A row j = 1, . . . , k of the derivation D′ is obtained as follows. We first place
all the nodes from row j in D that belong to A0 (preserving the order from
D). Then we insert the j-th row of E. Finally, we place the nodes from row
j in D that belong to A1 (again, preserving the order).

– The rows > k are left unaltered.

The following lemmas show the correctness of this construction; this concludes
the proof of Prop. 3.

Lemma 8. D′ is a derivation.

Lemma 9. In D′ the invariant holds for i.

3.4 Few Creation Rules

In this section we conclude the proof of Prop. 1. We show that a derivation
without islands and with all components compact can be transformed into one
with few creation rules. Together with the island removal from Sec. 3.2 and the
compacting procedure from Prop. 3, this concludes our proof of Prop. 1.

Let D be a derivation, and x a created node. The node x lies in some com-
ponent X , which is compact. Since X is compact, x must either be guarded, or
be the only node of the X in its row. We show that if x is guarded, then the
derivation can be modified so that all nodes remain as in D, and all rules but
the one creating x remain as in D as well; the rule creating x will be replaced
by a split rule.

The modification of D is straightforward. If x is guarded, then it must have
a neighbor x′ from X on its left or right side. Suppose x′ lies to the right of x
and has label v:

u v1 . . . vi−1 v vi . . . vn

u v1 . . . vi−1 ε v vi . . . vn

All we have to do is replace this creation rule by a split rule. This is done by
adding an arrow from the node labeled v in the upper row to the node x in
the lower row. Since v = ε + v, we obtain a legitimate split rule. The same
procedure may be used if x′ lies to the left of x. Applying this construction

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

632 M. Bojańczyk and P. Hoffman

iteratively gives us a derivation where all created nodes are the only nodes of their
component in their row. Thus, in components that intersect with the source row,
no created nodes may appear. In other components, at most one created node
may appear per component. Since there are no islands, all the other components
must intersect with the target row. Therefore there are at most as many creation
rules as there are nodes in the target row.

4 Embeddability of Unions of Commutative Monoids

Any symmetric string rewriting system R over an alphabet Σ naturally defines
a monoid MR: it is the quotient of the free monoid Σ∗ by the least congruence
containing the rules of R. Elements of the monoid MR are equivalence classes of
the form [v], where v is a word over Σ; classes [v] and [w] are equal iff v rewrites
to w in R. The word problem for MR is defined as follows: given words v and
w over Σ, answer whether [v] = [w] holds, that is, whether v and w represent
the same element of the monoid MR. Th. 2 implies that the word problem is
decidable for monoids MR, where R is the union of two commutative symmetric
string rewriting systems; since pushouts of commutative monoids are of this
form, Cor. 1 follows.

We now turn to the embeddability of unions of commutative monoids. Let
U , S and T be commutative monoids given by symmetric commutative string
rewriting systems RU , RS and RT over the alphabets Σ∩Γ , Σ and Γ respectively,
satisfying S ∩ T = U . Note that words u, u′ over Σ ∩ Γ rewrite one to another
in RU if and only if they rewrite to each other in RS (resp., RT). This follows
from the fact that U is a submonoid of S (resp., T).

We ask whether a monoid M exists such that S ∪ T ⊆ M . A second question
is whether the monoid M can be commutative. It is well-known [5] that if such
an M exists, then as M one may take the pushout of the inclusions of U into
S and of U into T (if M is to be commutative, then one takes the pushout
in the category of commutative monoids). This is expressed by the slogan: if
S ∪ T is embeddable, then it is embeddable in its pushout. Let P together with
homomorphisms σ : S → P , τ : T → P be the pushout (or commutative
pushout). All that has to be checked is whether σ and τ define an embedding of
S ∪ T in the pushout, that is, whether they are “jointly injective”. Formally,

Lemma 10. S ∪ T is embeddable if and only if:

1. σ and τ are injective,
2. for all s ∈ S and t ∈ T , if σ(s) = τ(t), then s = t ∈ U .

The pushout and commutative pushout of S ∪ T may be defined easily. The
pushout is given by the union Rnc = RS ∪RT over Σ∪Γ , while the commutative
pushout is given by the union Rc = RS∪RT ∪{ab �→ ba|a ∈ Σ, b ∈ Γ} over Σ∪Γ ;
here σ and τ are the canonical homomorphisms. This together with Lemma 10
leads to the following result:

Lemma 11. S ∪ T is embeddable if and only if:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reachability in Unions of Commutative Rewriting Systems Is Decidable 633

1. for all words v, v′ over Σ, if v rewrites to v′ in Rnc, then the same is true
in RS, and an analogous implication holds for Γ and RT ,

2. for all words v over Σ and w over Γ , if v rewrites to w in Rnc, then there
is a word u over Σ ∩ Γ such that w rewrites to u in RS and u rewrites to w
in RT .

An analogous equivalence, with Rnc is replaced by Rc, holds for embeddability in
a commutative monoid.

It can be shown that in the commutative case the above conditions can be
effectively checked, and thus Th. 4 follows. The proof is based on the following
powerful result of Taiclin [10]:

Theorem 6. Given a symmetric commutative string rewriting system over a
finite alphabet {a1, . . . , ak}, one can compute a Presburger formula θ of 2k vari-
ables, such that:

(n1, . . . , nk) θ (m1, . . . , mk)

holds in (Nk, 0k, +k) if and only if an1
1 . . . ank

k rewrites to am1
1 . . . amk

k in the
system.

As for embeddability in a monoid which is not necessarily commutative (Th. 5),
this follows from Th. 4 and from the following proposition:

Proposition 4. If a union of commutative monoids is embeddable, then it is
embeddable in a commutative monoid.

References

1. Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM
J. Comp. 13 (1984) 441–459

2. Kosaraju, S.R.: Decidability of reachability in vector addition systems (preliminary
version). In: STOC’82, ACM (1982) 267–281

3. Sapir, M.V.: Algorithmic problems for amalgams of finite semigroups. J. Algebra
229 (2000) 514–531

4. Hoffman, P.: Unions of equational monadic theories. In: RTA’06. Volume 4098 of
LNCS. (2006) 81–95

5. Howie, J.M.: Fundamentals of Semigroup Theory. London Math. Soc. Monogr.
(N.S.), No. 12. Oxford Univ. Press (1996)

6. Howie, J.M.: Embedding theorems with amalgamation for semigroups. Proc. Lon-
don Math. Soc. (3) 12 (1962) 511–534

7. Howie, J.M.: Epimorphisms and amalgamations: A survey of recent progress. Coll.
Math. Soc. J. Bolyai 39 (1981) 63–82

8. Hall, T.E.: Representation extension and amalgamation for semigroups. Quart. J.
Math. Oxford (2) 29 (1978) 309–334

9. Birget, J.C., Margolis, S., Meakin, J.: On the word problem for tensor products
and amalgams of monoids. Intnl. J. Alg. Comp. 9 (1999) 271–294

10. Taiclin, M.A.: Algorithmic problems for commutative semigroups. Soviet Math.
Dokl. 9 (1968) 201–204

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Associative-Commutative Deducibility
Constraints�

Sergiu Bursuc1, Hubert Comon-Lundh1, and Stéphanie Delaune1,2

1 Laboratoire Spécification & Vérification, ENS de Cachan & CNRS, France
{bursuc,comon,delaune}@lsv.ens-cachan.fr

2 School of Computer Science, University of Birmingham, UK

Abstract. We consider deducibility constraints, which are equivalent to
particular Diophantine systems, arising in the automatic verification of
security protocols, in presence of associative and commutative symbols.
We show that deciding such Diophantine systems is, in general, unde-
cidable. Then, we consider a simple subclass, which we show decidable.
Though the solutions of these problems are not necessarily semi-linear
sets, we show that there are (computable) semi-linear sets whose mini-
mal solutions are not too far from the minimal solutions of the system.
Finally, we consider a small variant of the problem, for which there is a
much simpler decision algorithm.

1 Introduction

During the past ten years there has been a lot of work devoted to the logical
verification of security protocols (as opposed to computational security). In gen-
eral, the security problem is undecidable. Many authors designed subclasses for
which there are decision algorithms (e.g. [14,1,5,12]). However, these techniques
assume most of the time a perfect cryptography: the algebra of messages must be
a free algebra. On the other hand, many protocols rely on algebraic properties of
some primitives, for instance the Abelian Groups properties of the multiplication
of exponents in modular exponentiation or the associativity, commutativity and
nilpotence of exclusive or. Sometimes, the protocols cannot be executed when
these properties are not considered.

Another research direction consists, instead of considering subclasses of proto-
cols, to bind the search for an attack to a limited number of protocol instances.
We get a reasonable confidence in the protocol security if we show that, say,
after any 10 plays of the protocol there is no attack. In the free algebra case,
the security problem for such a fixed number of sessions is co-NP-complete [15].
This result has then been extended beyond the perfect cryptography assump-
tion: for exclusive or [7,3], for some properties of modular exponentiation [2,13],
for properties combining exclusive or and homomorphisms [10] and other com-
binations [4].

� This work was partly supported by the RNTL project PROUVÉ 03V360, ACI-SI
Rossignol, and EPSRC project EP/E029833.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 634–645, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Associative-Commutative Deducibility Constraints 635

However, it seems that every new protocol comes with its own relevant al-
gebraic properties. That is what happened to us when we were faced to a case
study of electronic purse submitted to us by France Télécom (see [9]). In [6] two
of us gave a result allowing to reduce many equational theories to associativity
and commutativity only, at the price of considering many particular instances
of the protocol. In particular, the above-mentioned properties of modular expo-
nentiation, the exclusive-or properties, and the properties used in the electronic
purse protocol can be reduced to associativity and commutativity alone. Now,
this raises the problem of designing an algorithm solving the security problem
in an algebra of messages, modulo associativity and commutativity. This were
the reasons why we came to the problem, which is studied in this paper.

We consider the simplest instance of the problem (and we hope to be able to
reduce many other situations to this one using combination techniques such as
those described in [4]). A (AC)-deducibility constraint is a conjunction of expres-
sions T � u where u is a simple term and T is a finite set of simple terms. A simple
term is an expression λ1x1 + . . . + λkxk + w where λ1, . . . , λk ∈ N and w ∈ N

m.
A solution of T � u is an assignment σ of the variables x1, . . . , xk to vectors
of N

m such that there is a linear combination of the simple terms tσ of T ,
which equals uσ. It is not difficult to see that such problems can be reduced to
(non-linear) Diophantine systems. Unfortunately, the converse is also true: AC-
deducibility constraints are undecidable. Then, we consider a subclass of such
constraints: first we assume a (classical) monotonicity condition between the sets
Ti, which corresponds to the increasing of intruder’s knowledge. We also assume
that every term u in a constraint T � u contains at most one variable. This
ensures the determinacy of protocol executions, but there might be weaker con-
ditions which ensure both determinacy and decidability. The core of our paper
is a decision algorithm for this class of Diophantine equations.

Our decidability proof works as follows. We first define a relation between con-
straints, which is derived from an occurrence relation on variables, and consider
the strongly connected components for this relation. In each of such components
we show that, if there is a solution, then there is one, which is not far (w.r.t.
Euclidian distance) of a solution of some (finitely many) computable semi-linear
sets. Then the last step consists in proving that the restrictions of minimal so-
lutions of the whole system to minimal strongly connected components are not
far from minimal solutions of the minimal strongly connected components. This
allows to derive an algorithm (in NEXPTIME), which solves our constraints.

In a last part of the paper, we consider another interpretation of the constraint
system. In this interpretation, the intruder is not only allowed to add messages,
but also to substract them. In this interpretation, we show that there is a much
simpler decision procedure.

2 AC-Deducibility Constraints and Diophantine Equations

As explained in the introduction, several algebraic properties have been studied
recently [7,3,2]. In [6], we gave a result allowing us to reduce many relevant

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

636 S. Bursuc, H. Comon-Lundh, and S. Delaune

equational theories to associativity and commutativity only. In this section, we
focus on this particular equational theory. We consider simple messages built
from constants, variables and the symbol + only. Moreover, the only intruder
capability consists in adding messages. We believe that many other intruder
inference systems can be reduced to this simple one, by combination techniques.

2.1 Basic Definitions

Let A be a finite set of constants, X be a set of variable symbols disjoint from A
and + be an associative and commutative (AC) symbol, which will be assumed
later to have a neutral element 0. Terms are expressions

n1 · X1 + . . . + nk · Xk + m1 · a1 + . . . + ml · al

where n1, . . . , nk, m1, . . . , ml are positive (non null) integers, X1, . . . , Xk are
distinct variable symbols and a1, . . . , al are distinct constant symbols. Other
writings of terms (e.g. with repeated variables or constants or with some null
coefficients) are normalized into the above canonical form.

Let t be a term and u be a constant or a variable. The number of occurrences
of u in t, denoted by |t|u, is 0 if u does not occur in t, and the coefficient of
u in t otherwise. |t|max the integer max({|t|a | a ∈ A}) and by tX (resp. t0)
the term such that |tX |a = 0 for every a ∈ A (resp. |t0|X = 0 for every X ∈ X)
and t = tX + t0. A ground term t is a term such that t0 = t. It can also be viewed
as a vector of non-negative integers, whose dimension is |A|. A substitution (resp.
a ground substitution) is a mapping from a finite subset of X , called its domain
to the set of terms (resp. ground terms). Substitutions are extended, as usual, to
endomorphisms of the term algebra. We write {X1 �→ t1, . . . , Xp �→ tp} the sub-
stitution σ whose domain is {X1, . . . , Xp} and such that, ∀i = 1, .., p, Xiσ = ti. A
ground substitution {X1 �→ t1, . . . , Xp �→ tp} can be represented by a p-columns
matrix whose ith column is Xiσ.

Example 1. Let A = {a, b, c, d} and let t be the ground term 2a + b + c. The
representation of t as a vector is described below. We have that |t|max = 2. The
substitution σ = {X1 �→ t, X2 �→ 2d} can be represented as follows.

t :=

⎛

⎜
⎜
⎝

2
1
1
0

⎞

⎟
⎟
⎠ σ :=

⎛

⎜
⎜
⎝

2 0
1 0
1 0
0 2

⎞

⎟
⎟
⎠

N
n is ordered with the product ordering: if Λ = (λ1, . . . , λn), Λ′ = (λ′

1, . . . , λ
′
n) ∈

N
n, Λ ≤ Λ′ if and only if ∀i ∈ {1..n}, λi ≤ λ′

i. Λ < Λ′ if and only if Λ ≤ Λ′

and Λ �= Λ′. This ordering is a well-ordering: in any infinite sequence of vectors,
there is an infinite increasing subsequence. Following the vector representation of
ground terms, this ordering is also used to compare ground terms. For instance
a + b < 2a + b + c. It can also be extended to ground substitutions: σ ≤ σ′

iff dom(σ) = dom(σ′) and ∀X ∈ dom(σ), Xσ ≤ Xσ′. The following definition
expresses the intruder deduction capabilities: given the messages t1, . . . , tn, he
is able to build any combination of them:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Associative-Commutative Deducibility Constraints 637

Definition 1 (AC-deducibility). Given terms t1, . . . , tn, u, we write t1, . . . ,
tn �u if there are non-negative integers λ1, . . . , λn such that λ1·t1+. . .+λn·tn =u.

Example 2. 2a + x, b + x, a + c � 7a + 2x + 3c with λ1 = 2, λ2 = 0 and λ3 = 3.

Definition 2 (AC-deducibility constraint). An AC-deducibility constraint is
an expression T � u where T is a finite set of terms and u is a term. An AC-
deducibility constraint system C is a finite conjunction of such constraints. A
ground substitution σ is a solution of t1, . . . , tn � u if its domain contains the
variables of t1, . . . , tn, u and t1σ, . . . , tnσ � uσ. σ is a solution of a constraint
system C if it is a solution of every individual AC-deducibility constraint.

The previous definition allows to express the ability to mount an attack in a
given number of steps: initially, the intruder knows a finite set of messages T0

and must be able to build an instance of the message u1 expected by some
honest agent. He replies by sending a corresponding message v1, which increases
the intruder knowledge. Again, from T0 and v1, the intruder must be able to
build an instance of u2 and gets the corresponding instance of v2,... and after n
such steps the intruder can deduce a message s, which was supposed to be secret.
This translates into the constraint system

T0 � u1 ∧ T0, v1 � u2 ∧ . . . ∧ T0, v1, . . . , vn � s

The details of this formalism are reported in many papers (see e.g. [15]). Vari-
ables in the terms represent the pieces of the messages that cannot be analysed
by the agent: it could be nonces or cyphertexts whose key is unknown. The
agent will accept any message in place of this variable. That is how many clas-
sical logical attacks are constructed: the intruder, at some point, replaces the
expected message with a message, which only differs from the correct one in the
non-analyzable parts. Hence, finding a solution to the above AC-deducibility con-
straint system amounts to find (constructible) fake instances allowing to retrieve
the secret after n steps.
Example 3. Consider the system a � X ∧ a, X + b � Y . Typical solutions
of this systems are {X �→ 2a, Y �→ 5a + 2b}, {X �→ k1a; Y �→ k2k1a + k2b},
with k1, k2 ≥ 0.

Putting together Definitions 1 and 2, we get the following problem, whose deci-
sion is the subject of this paper:

Given an AC-deducibility constraint system T1 � u1, . . . Tn � un, does
there exist a substitution σ such that,

∃(λi,t)i∈{1..n},t∈Ti
∈ N

|T1|+...+|Tn|.
n∧

i=1

∑

t ∈ Ti

λi,ttσ = uiσ

Definition 3 (minimal solution). Let C be an AC-deducibility constraint sys-
tem and σ be a solution to C. σ is a minimal solution of C if for every solution σ′

of C, σ′ �< σ.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

638 S. Bursuc, H. Comon-Lundh, and S. Delaune

2.2 From AC-Deducibility Constraints to Diophantine Equations ...

In the above problem, if the set of constants is {a1, . . . , am}, the equality holds iff
the coefficients of every ai are identical on both sides. Assuming that X1, . . . , Xp

are the variables of the system C of n AC-deducibility constraints, A={a1,. . . ,am}
and σ is a solution to C, we consider the variables xi,j , representing the coef-
ficient of aj in Xiσ and the coefficients λk,t of the term t ∈ Tk in the kth con-
straint Tk � uk. Then C has a solution iff there is a solution to the conjunction,
for k = 1..n, j = 1..m of the equations

∑

t ∈ Tk

λk,t(|t|aj +
p∑

i=1

|t|Xi xi,j) = |uk|aj +
p∑

i=1

|uk|Xi xi,j (1)

This is a system of n × m quadratic Diophantine equations, whose variables
are xi,j , λk,t. In addition, we add equations ruling out the solutions Xi = 0.

Example 4. Consider the constraint system 2a � X1 ∧ 2a, X1+b � 3X2+a and
assume that a, b are the only two constants. This constraint can be translated
into the equivalent Diophantine system

∃ λ1,1, λ2,1, λ2,2.

⎧
⎪⎪⎨

⎪⎪⎩

2λ1,1 = x1,1

0 = x1,2

2λ2,1 + λ2,2x1,1 = 3x2,1 + 1
λ2,2x1,2 + λ2,2 = 3x2,2

which can also be expressed in matricial notation:

∃ Λ.

⎛

⎜
⎜
⎝

2 0 0
0 0 0
0 2 x1,1

0 0 x1,2 + 1

⎞

⎟
⎟
⎠ · Λ =

⎛

⎜
⎜
⎝

x1,1

x1,2

3x2,1 + 1
3x2,2

⎞

⎟
⎟
⎠

We also ensure that x1,1 �= 0 and x2,1, x2,2 are not both 0, adding x1,1 = 1 + z1

and x2,1 + x2,2 = 1 + z2.

This shows that we can reduce our problem to some Diophantine systems. Such
systems seem to be particular ones. Unfortunately, this is not true, as we show
in the next section.

2.3 ... and Back

We show here that we can also go back from Diophantine systems: any Diophan-
tine system can be encoded in an AC-deducibility constraint system. Hence:

Proposition 1. The problem of deciding whether a system of deducibility con-
straints has a solution is undecidable.

To prove this result, we use the following formulation of Hilbert’s 10th problem,
known to be undecidable [8]. Note that we can simulate the product by using
the identity (u + v)2 = u2 + v2 + 2uv.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Associative-Commutative Deducibility Constraints 639

INPUT: a finite set S of Diophantine equations where each equation is of the
form: xi = m, xi + xi′ = xj , or xj = x2

i .
OUTPUT: Does S have a solution in N?

Given an instance S of Hilbert’s 10th problem with n variables x1, . . . , xn we
built an AC-constraint system C(S), such that S has a solution iff C(S) has a
solution. We use three constants a, b, c and assume first that variables of C can be
mapped to 0 (neutral element). This is not a restriction as we may then reduce
the problem to systems of AC-deducibility constraints by guessing first which
variables are assigned to 0.

Our encoding. Let n (resp. p) be the number of equations (resp variables) in S.
We describe below how we build the first part A(p) of our constraint system.
For every i = 1, . . . , p, the constraint system A(p) contains the following five
deducibility constraints whose free variables are Xi, Yi, and Zi:

a � Xi b � Yi a � Zi a + b � Xi + Yi Xi + b � Zi + Yi

Lemma 1. Let p ∈ N and σ a solution of A(p). For i = 1, ..p, |Ziσ|a = |Xiσ|2a.

The part B(S) = {d1, . . . , dn} of our coding which depends on S = {e1, . . . , en}
and contains one deducibility constraint per equation and is built as follows:

– if ek is xi = m then dk is Xi + c � m · a + c
– if ek is xi + xi′ = xj then dk is Xi + Xi′ + c � Xj + c,
– if ek is xi = x2

j then dk is Xi + c � Zj + c.

Example 5. Let Se = {x1 = 2, x3 = x2
2, x2 + x3 = x1}. We obtain for B(Se)

X1 + c � 2a + c X3 + c � Z2 + c X2 + X3 + c � X1 + c

3 A Decidable Class of AC-Deducibility Constraints

AC-deducibility constraints are undecidable. However, fortunately, we may im-
pose relevant restrictions on our constraint system.

3.1 Well-Formed and Simple Constraint System

Given a set of terms T , we let T 0 be the ground terms of T and TX be the
non-ground terms of T , so that T = T 0 � TX . The first restriction we consider
is monotonicity. As we have seen before when we sketched how the security
problem is expressed, the left members of the constraints were increasing, w.r.t.
inclusion. This is not by chance: this corresponds to the assumption that the
intruder never forgets any information. We add now this assumption:

Definition 4. A system C is monotone (resp. monotone w.r.t. ground terms) if
its constraints can be ordered T1 � u1, . . . , Tn � un in such a way that Ti ⊆ Ti+1

(resp. T 0
i ⊆ T 0

i+1) for any i such that 1 ≤ i < n.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

640 S. Bursuc, H. Comon-Lundh, and S. Delaune

The next restriction corresponds to the way in which variables are bounded:
messages u1, . . . , un are sent in this order over the network. When it is sent, the
corresponding instance of ui is determined (and not before). Hence, each time
a variable occurs first in some ui, it must not have occurred before in some Tj ,
with j ≤ i. Furthermore, the protocol must be deterministic: upon reception of
ui (or its instance), the agent must not have any choice in sending its message.
For instance, a protocol rule, which, upon receiving X + Y , states that X must
be replied, is ambiguous on many instances, and cannot be implemented in a
reasonable way. Determinacy is ensured by introducing the variables one by one:

Definition 5 (well-formed). Let C = {T1 � u1, . . . , Tn � un} be a monotone
constraint system. We say that C is well-formed if it satisfies
1. (origination property) for every i ≤ n for every X ∈ vars(Ti), there ex-

ists j < i such that X ∈ vars(uj). We will write min(X) the index of the
constraint in which X appears for the first time.

2. (deterministic) for all X, Y ∈ vars(C), if X �= Y then min(X) �= min(Y).

The notion of origination and the notation min(X) are defined in a similar way
on constraint systems which are monotone w.r.t. ground terms. The hypotheses
introduced so far are not considered as real restriction and have already been
used in [3,2]. We will actually require a stronger property, implying determinacy:

Definition 6 (simple). A deducibility constraint T � u is said simple if u is of
the form βX + u0 for some variable X, some β ∈ N and some ground term u0.
A constraint system C is said simple if all the constraints in C are simple.

By convention, β = 0 means that u = u0 and u0 = 0 means that u = βX.

Example 6. The system C described below is simple and well-formed.

2a � X1 + a ∧ 2a, X1 + b � 3X2 + b ∧ 2a, X1 + b, X2 � a

As in Section 2.2, each ground substitution can be viewed as a p × m tuple
of integers if there are p variables in its domain and m constants. Then, to
each AC-deducibility constraint system C, we can associate the set of tuples of
integers S(C) corresponding to its set of solutions.

Sets of integers defined by solutions of AC-deducibility constraint systems
strictly include semi-linear sets. Using an example similar to Example 3, we can
define, using AC-deducibility constraints, the set of triples {(u,v,uv+w) | u, v, w∈
N}, which is not semi-linear and might even not be semi-polynomial [11].

The remainder of this section is devoted to the proof of the following theorem.

Theorem 1. The problem of deciding whether a simple and well-formed AC-
deducibility constraint system has a solution is decidable.

We will allow assignments to 0, a neutral element for +. This is not a restriction,
since we can force variables to be distinct of 0 by guessing, for each variable of
the system, a constant cX and replacing X with cX + X ′ in the system. This
replacement preserves simplicity and well-formedness.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Associative-Commutative Deducibility Constraints 641

3.2 The Algorithm

From now, by “constraint system” we mean a simple well-formed AC-deducibility
constraint system.

First step. In a first phase, given a constraint system Ti � ui, we guess what are
the useful terms Ui in each TX

i , i.e. we guess which coefficients are assigned 0.

Definition 7 (solution compatible with U). Let C={T1 � u1, . . . , Tn � un}
be a constraint system. Let U be the sequence (U1, . . . , Un) with Ui ⊆ TX

i . Let σ
be a solution of C. We say that σ is compatible with U if there exists a tuple of
λk,t ∈ N, one for each k ∈ {1, ..., n}, t ∈ Tk such that:

∀k ≤ n.

{∑
t∈Tk

λk,ttσ = ukσ
∀t ∈ TX

k . λk,t �= 0 ⇔ t ∈ Uk

Example 7. Consider the constraint system C described in Example 6. Let U be
the sequence (∅, {X1 + b}, {X2}). Consider the substitution σ = {X1 �→ a, X2 �→
a}. We claim that σ is a solution of C compatible with U . Indeed, we may choose
λ1,2a = λ2,2a = λ2,X1+b = λ3,X2 = 1 and λi,t = 0 otherwise.

Second step. This step consists in constructing a dependency graph on variables:

Definition 8. Let C = {T1 � u1, . . . , Tn � un} be a constraint system. Let U be
a sequence (U1, . . . , Un) with Ui ⊆ TX

i . The relation RU
occ on vars(C) is defined

by:

X RU
occ Y ⇔ ∃i.

{
Y ∈ vars(ui), and
X ∈ vars(t) for some term t ∈ Ui.

We consider the equivalence relation =U
occ. We have X =U

occ Y if, and only if,
X ≺U

occ Y and Y ≺U
occ X where ≺U

occ is the transitive closure of RU
occ. We de-

note by [=U
occ] the equivalence classes induced by =U

occ. ≺U
occ is then an ordering

on [=U
occ]. In the last example, X1 ≺U

occ X2 and [=U
occ] = {{X1}, {X2}}.

Third step. Now, we choose one of the minimal classes (minimal strongly con-
nected component in the graph) and solve the subsystem consisting of variables
in that class.

Definition 9. Let C = {T1 � β1X1 + u1, . . . , Tn � βnXn + un} be a simple
constraint system. Let U be the sequence (U1, . . . , Un) with Ui ⊆ TX

i and M be
a minimal class of [=U

occ]. We let CM(C, U) be the constraint system defined as
follows.

CM(C, U) = {T 0
i ∪ Ui � βiXi + ui | Xi ∈ M}.

Example 8. Consider the system C described in Example 6 and the sequence U
described in Example 7. We have M = {X1} and CM(C, U) = {2a � X1 + a}.

We first show that this subsystem inherits good properties of the original system.
However, note that CM(C, U) is not always monotone.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

642 S. Bursuc, H. Comon-Lundh, and S. Delaune

Lemma 2. Let C = {T1 � u1, . . . , Tn � un} be a simple and well-formed con-
straint system. Let U be the sequence (U1, . . . , Un) with Ui ⊆ TX

i and M be a
minimal class of [=U

occ]. The minimal component CM(C, U) is simple, monotone
w.r.t. ground terms and satisfies the origination property.

Then, we prove that the set of solutions of CM(C, U) can be represented by a
semi-linear set. We also show that we can compute a bound δ(CM(C, U)) on
minimal solutions of such systems. This is detailed in section 3.3.

Fourth step. We prove (this is the subject of section 3.4) that a minimal solution
of the system is “not far” from a minimal solution of CM(C, U), for which we
computed a bound. Then we guess a partial substitution, on the variables of
the minimal class, within the computed bound, and replace it in the system. At
this point, we eliminated at least one variable, while keeping the set of minimal
solutions. We only have to iterate the process, until all variables are eliminated.

Summary of the procedure. Let C = {T1 � u1, . . . , Tn � un} be a simple and
well-formed constraint system.

1. Guess U
2. Compute [=U

occ]
3. While [=U

occ] �= ∅:
(a) extract a system CM(C, U)
(b) Compute the minimal solutions S of this system
(c) Guess a replacement in C of the variables of CM(C, U), which is at a

distance bounded by δ from a solution in S.

This procedure yields a finite set of AC-deducibility constraint systems in which
every term is ground. The satisfiability of such systems can be decided in non-
deterministic polynomial time by reducing it to linear Diophantine equations.

3.3 The Case of a Strongly Connected Variable Graph

In this section, we show that the solutions of CM(C, U) is a semi-linear set.

Lemma 3. Let C′ = CM(C, U) = {T1 � β1X1 + u1, . . . , Tn � βnXn + un} There
exists a bound η(C′) ∈ N, effectively computable from C′, such that for every
solution σ of C′ compatible with (TX

1 , . . . , TX
n), there exist a tuple of λi,t ∈ N,

one for each k ∈ {1, . . . , n}, t ∈ Ti, such that:

(t ∈ TX
i ⇒ λi,t ≤ η(C′)) ∧

∑

t∈Ti

λi,ttσ = βiXiσ + ui

To prove this lemma, we simply use, for each variable, a non trivial cycle on it
in the graph RU

occ. Assuming X occurs in t and putting together all inequalities
along the cycle we get λi,t ≤ (

∏

j∈c

βj)(1 +
∑

j∈c

|uj |max) where c is the cyclic

sequence of indices starting from i.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Associative-Commutative Deducibility Constraints 643

Now the coefficients of non-ground terms are bounded, we are back to lin-
ear Diophantine systems: we can guess a value ri,t, within the above-computed
bound, for the coefficients λi,t when t is not ground, and get an equivalent (dis-
junction of) systems

n∧

i=1

∑

t∈T 0
i

λi,tt +
∑

t∈T X
i

ri,tt = βiXi + ui (2)

whose variables are the remaining λi,t and the Xi. We also let the homogeneous
system be:

n∧

i=1

∑

t∈T 0
i

λi,tt +
∑

t∈T X
i

ri,tt
X = βiXi (3)

Lemma 4. For the system C′ = CM(C, U), the solutions of (1) form a semi-
linear set. Given an assignment θ of the λi,t (t non ground) to ri,t, we let Σ0(θ) be
the minimal solutions of (2) and Σh(θ) be the minimal non-null solutions of (3).
Each solution of C′ assigns the λi,t, for t not ground, to some ri,t ≤ η(C′), which
defines a substitution θ. Then the remaining solutions assign the variables to the
vectors V0 +

∑N
i=1 μiVi for V0 ∈ Σ0(θ), Σh(θ) = {V1, . . . , VN} and μ1, . . . , μN

are arbitrary non-negative integers.

For the next step, we need to compute a distance within which the restriction
of the minimal solutions of C to variables of CM(C, U) lie. Then let

δ(CM(C, U), θ) =
∑

σ ∈ Σ0(θ)

σ + β(CM(C, U)) ·
∑

σ ∈ Σh(θ)

σ

where β(C) =
∏

X∈vars(C) βmin(X). Let δ(CM(C, U)) = maxθ≤θ0(δ(CM(C, U), θ))
where θ0 assigns η(CM(C, U)) to all variables.

3.4 The Projections of Global Minimal Solutions Are Not Far from
Minimal Solutions of the Minimal Classes

In this section, we show that if a simple and well-formed constraint system C
has a solution compatible with a given sequence U , then there is one such σ
satisfying σ|M ≤ δ(CM(C, U)). The proof relies on the above bound,

Proposition 2. Let C = {T1 � β1X1+u1, . . . , Tn � βnXn+un} be a simple and
well-formed constraint system. Let U be the sequence (U1, . . . , Un) with Ui ⊆ TX

i

and M be a a minimal class of [=U
occ]. If σ is a minimal solution of C compatible

with U then σ|M ≤ δ(CM(C, U)).

This also concludes the proof of the main theorem: the algorithm is roughly
described in Section 3.2 and we can now complete the last step of the loop:
we guess an assignment σ|M of the variables of CM(C, U), within a finite set,
bounded by δ(CM(C, U)).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

644 S. Bursuc, H. Comon-Lundh, and S. Delaune

4 Another Deducibility System

In this section, we consider again AC-deducibility constraint systems, but with a
different interpretation of the deducibility relation. More precisely, we keep the
same definitions as in Section 2, except for Definition 1 which becomes:

Definition 10. t1, . . . , tn � u iff ∃λ1, . . . , λn ∈ Z such that
∑n

i=1 λiti = u.

The main difference is now the ability of using negative coefficients. Note however
that we do not have any opposite symbol: variables can only be substituted by
positive combinations of constants. This new inference system, denoted by I±,
allows us to obtain a procedure, which is simpler than the one presented in
the previous section and also to deal with a broader class of constraint systems.
Moreover, the additional capabilities given to the attacker through this inference
system is realistic in most of our applications.

Theorem 2. The problem of whether a well-formed constraint system has a
solution w.r.t. I± is decidable.

Note that we allow here right hand sides to contain more than one variable.
For the proof of this theorem, we perform a variable elimination. Considering
a minimal constraint (w.r.t. inclusion of left hand sides), it has the form T �
βX + u0: by origination, T can only contain ground terms and, by determinacy,
the right hand side contains at most one variable. We eliminate X by showing
that there is a bound on the coefficients of t ∈ T in a solution:

Lemma 5. Let C be a well-formed satisfiable (w.r.t. I±) constraint system. Let
T � βX +u0 be a constraint of C with a minimal left hand side, with β ∈ N and
u0 a ground term. Then there exists a solution σ of C and coefficients λ1,t for
t ∈ T such that

∑
t∈T λ1,tt = βXσ + u0 and ∀t ∈ T.0 ≤ λ1,t ≤ β + |u0|max.

This lemma heavily relies on the ability to substract. For instance, if the coef-
ficient of some t is negative in a solution, then we increase the coefficient and
the corresponding value of X . Then, this is compensated in other constraints by
substracting to coefficients what is added by the new contribution of X .

5 Conclusion

We have shown the decidability of two deducibility constraint systems modulo
associativity and commutativity. These results are a first step towards a gen-
eral decision procedure for security protocols in a bounded number of sessions.
Our results have several weaknesses. The first one is algorithmic complexity. An
analysis of the algorithms show that they are in NEXPTIME. It is not clear
whether this would be applicable in practice. There is a hope still, since security
protocols are in general very small (up to 6 protocol rules). Only an implemen-
tation would prove the usefulness of the method. There is however a long way
before implementing the techniques. We need first to establish a combination re-
sult, which would allow to handle more complicated constructions and inference

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Associative-Commutative Deducibility Constraints 645

systems. The last weakness of our results is the additional condition (right hand
side only contain one variable) we have in Theorem 1. It is not clear that it is
necessary. Though protocols generally satisfy this condition, it might not be the
case for the constraints which are computed using the procedure of [6].

References

1. B. Blanchet and A. Podelski. Verification of Cryptographic Protocols: Tagging
Enforces Termination. Theoretical Computer Science, 333(1-2):67–90, 2005.

2. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the security
of protocols with Diffie-Hellman exponentiation and product in exponents. In
Proc. 23rd Conf. on Foundations of Software Technology and Theoretical Computer
Science (FST&TCS’03), vol. 2914 of LNCS, pages 124–135. Springer-Verlag, 2003.

3. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP decision pro-
cedure for protocol insecurity with XOR. In Proc. 18th IEEE Symp. Logic in
Computer Science (LICS’03), pages 261–270. IEEE Comp. Soc. Press, 2003.

4. Y. Chevalier and M. Rusinowitch. Hierarchical combination of intruder theories.
In Proc. 17th International Conference on Rewriting Techniques and Applications
(RTA’06), volume 4098 of LNCS, pages 108–122. Springer, 2006.

5. H. Comon and V. Cortier. Tree automata with one memory, set constraints and
cryptographic protocols. Theoretical Computer Science, 331(1):143–214, 2005.

6. H. Comon-Lundh and S. Delaune. The finite variant property: How to get rid of
some algebraic properties. In Proc. 16th Int. Conf. on Rewriting Techniques and
Applications (RTA’05), vol. 3467 of LNCS, pages 294–307. Springer, 2005.

7. H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and
insecurity decision in presence of exclusive or. In Proc. 18th IEEE Symp. Logic in
Computer Science (LICS’03), pages 271–280. IEEE Comp. Soc. Press, 2003.

8. M. Davis, Y. Matijasevich, and J. Robinson. Hilbert’s tenth problem, Diophantine
equations: positive aspects of a negative solution. In Proc. of Symposia in Pure
Maths, pages 323–378, 1976.

9. S. Delaune. Vérification des protocoles cryptographiques et propriétés algébriques.
Thèse de doctorat,ENS Cachan, France, 2006.

10. S. Delaune, P. Lafourcade, D. Lugiez, and R. Treinen. Symbolic protocol analysis in
presence of a homomorphism operator and exclusive or . In Proc. 33rd International
Colloquium on Automata, Languages and Programming (ICALP’06), volume 4052
of LNCS, pages 132–141. Springer, 2006.

11. W. Karianto, A. Krieg, and W. Thomas. On intersection problems for polynomially
generated sets. In Proc. 33rd International Colloquium on Automata, Languages
and Programming (ICALP’06), volume 4052 of LNCS. Springer, 2006.

12. G. Lowe. Towards a completeness result for model checking of security protocols.
J. Computer Security, 7(2–3):89–146, 1999.

13. J. Millen and V. Shmatikov. Symbolic protocol analysis with an abelian group
operator or Diffie-Hellman exponentiation. J. Computer Security, 13(3):515–564,
2005.

14. R. Ramanujam and S. P. Suresh. Decidability of context-explicit security protocols.
J. Computer Security, 13(1), 2005.

15. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions
is NP-complete. In Proc.14th IEEE Computer Security Foundations Workshop,
2001.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Automatic Analysis of Recursive
Security Protocols with XOR�

Ralf Küsters1 and Tomasz Truderung2

1 ETH Zurich
ralf.kuesters@inf.ethz.ch

2 University of Kiel and Wroc�law University
tomasz.truderung@ii.uni.wroc.pl

Abstract. In many security protocols, such as group protocols, princi-
pals have to perform iterative or recursive computations. We call such
protocols recursive protocols. Recently, first results on the decidability
of the security of such protocols have been obtained. While recursive
protocols often employ operators with algebraic, security relevant prop-
erties, such as the exclusive OR (XOR), the existing decision procedures,
however, cannot deal with such operators and their properties. In this
paper, we show that the security of recursive protocols with XOR is de-
cidable (w.r.t. a bounded number of sessions) for a class of protocols in
which recursive computations of principals are modeled by certain Horn
theories. Interestingly, this result can be obtained by a reduction to the
case without XOR. We also show that relaxing certain assumptions of
our model lead to undecidability.

1 Introduction

In group protocols and other classes of security protocols a protocol step per-
formed by a principal (i.e., receiving a message and then sending a message)
typically involves recursive or iterative computation. We will refer to such pro-
tocols by recursive protocols, in contrast to non-recursive protocols where the
computation performed in one protocol step is simple and does not require re-
cursion. Many, in fact, most of the recursive protocols proposed in the litera-
ture employ operators, such as Diffie-Hellman exponentiation and exclusive OR
(XOR), which have algebraic, security relevant properties (see, e.g., [12,13,7]).
The present work is concerned with the automatic security analysis of such pro-
tocols. While recently first results on the decidability of the security (more pre-
cisely, the secrecy property) of recursive protocols have been obtained [8,10,15],
these results do not take into account operators with algebraic properties (see
also the related work).

The attacks on recursive protocols presented in the literature illustrate that
dealing with algebraic properties of operators is security relevant (see, e.g.,
[12,13,7]). One example is the Recursive Authentication (RA) protocol proposed

� This work was partially supported by the DFG under grant KU 1434/4-1.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 646–657, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Automatic Analysis of Recursive Security Protocols with XOR 647

by Bull and Otway [1]. In this protocol, a key distribution server receives a list
of (arbitrary many) requests of pairs of principals who want to establish session
keys among them. The server processes this list iteratively, generates the session
keys, and then distributes them. In [11], Paulson proved that the RA protocol
is secure under the assumption that session keys are distributed using (ideally)
secure encryption. However, Ryan and Schneider [13] showed that there is an
attack on the protocol if XOR is used to distribute keys, which in fact was the
original proposition by Bull and Otway: In the attack by Ryan and Schneider,
the adversary is given one session key generated by the server and using this key
he can obtain all other session keys by chaining messages via XOR.

Contribution of this work. In this paper, we extend the model for recur-
sive protocols proposed in [15], henceforth called the Horn theory model, by
adding XOR (along with its algebraic properties). In the Horn theory model,
recursive/iterative computations performed by principals in one protocol step
are modeled by certain Horn theories, hence the name. While in models for non-
recursive protocols XOR can be added without losing decidability of security
(w.r.t. a bounded number of sessions) [2,6]—security even remains NP-complete
just as in the case without XOR [2]—for recursive protocols things are more in-
volved. We show that a näıve extension of the Horn theory model by XOR leads
to undecidability of security. (As a byproduct we also obtain undecidability in
case complex keys are used in the Horn theory model, a fact that has not been
observed before.) More precisely, we obtain undecidability in case principals may
conjoin arbitrary messages received from the network by XOR. Conversely, we
show decidability in case principals may only conjoin a fixed message, i.e., a
message that does not depend on messages received from the network, with a
message that depends on messages received from the network. We call protocols
which only contain such principals ⊕-linear. From a practical point of view, ⊕-
linear protocols are sufficient in many cases, e.g., for the RA protocol and other
protocols [13,2,7]. We emphasize that we do not constrain the intruder in its
ability to conjoin messages by XOR.

The technique used to obtain decidability is very different to the one in [15].
In fact, the main part of our proof is to reduce the security problem in the
Horn theory model with XOR to the one without XOR. More precisely, we first
prove certain properties of attacks involving XOR. Based on these properties
we then reduce the security problem to the case without XOR, which by [15] is
decidable. In the reduction we use the ability of principals to perform recursive
computations in order to mimic applications of the XOR operator.

Further Related Work. For non-recursive protocols decidability of security
(w.r.t. a bounded number of sessions) was shown for several operators with al-
gebraic properties, e.g., XOR [2,6], Diffie-Hellman Exponentiation [3,14], and
commuting public-key encryption [4]. However, the models employed in these
works cannot handle recursive computations of principals, such as the compu-
tation of the server in the RA protocol. The techniques differ as well: Due to
the absence of recursive computations, the reduction technique developed in the
present work is not applicable in these models. Conversely, the techniques for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

648 R. Küsters and T. Truderung

bounding the size of attacks and the constraint solving techniques employed in
[2,6,3,14,4] cannot immediately be applied to recursive protocols.

In [8,10], transducers were used to model recursive computations of principals.
The expressiveness of these transducer-based models is orthogonal to the Horn
theory model: While the transducer-based models allow to output messages of
complex structure, in the Horn theory model only lists (or sets) of messages
of a more simple structure can be produced. The main disadvantage of the
transducer-based model is that, unlike the Horn theory model, messages cannot
be tested for equality without losing decidability. This, as already observed in
[10], immediately implies that security is undecidable in the transducer-based
model with XOR (or Diffie-Hellman exponentiation) since these operators allow
for (implicit) equality tests between arbitrary messages. In the transducer-based
model, even one equality test (or alternatively, one application of the XOR op-
erator) suffices for the undecidability.

Horn theories have also been used for the automatic analysis of non-recursive
protocols (see, e.g., [5,16] and references therein). The results and techniques
employed in these works are very different to the ones presented here: The main
goal of these works, which also consider operators with algebraic properties,
is automatic protocol analysis w.r.t. an unbounded number of sessions, where,
however, the intruder knowledge is over-approximated.

Structure of the paper. In the following section, we introduce our protocol
and intruder model, with an example presented in Section 3. The undecidability
and decidability results are stated in Section 4 and 5, respectively. We conclude
in Section 6. We refer the reader to our technical report for full proofs [9].

2 The Protocol and Intruder Model

In this section, we introduce our protocol and intruder model, including mes-
sages, principals, protocols, and attacks, along the lines of [15] where, unlike the
model in [15], here messages may contain the exclusive OR (XOR).

Horn theories. Let Σ be a finite signature, V be a set of variables, and T
denote the set of terms over Σ and V . Ground terms are terms without variables.
Substitutions are defined as usual. The application of a substitution σ to a term
t is denoted by tσ. Substitutions are defined on sets of terms and atoms (see
below) in the obvious way. For a unary predicate q and a (ground) term t ∈ T
we call q(t) a (ground) atom. For a set S of terms we write q(S) for the set
{q(s) | s ∈ S} of atoms. Let ∼ be a congruence relation over T . We write
q(t) ∼ q′(t′) if q = q′ and t ∼ t′. A (unary) Horn theory T is a finite set of
Horn clauses of the form a1, . . . , an ⇒ a0 with atoms ai for every i. Given a set
of ground atoms A and a ground atom a, we say that a can be derived from A
w.r.t. T (written A �T a) if there exists a derivation for a from A using T , i.e.,
there exists a sequence b1, . . . , bl of ground atoms such that bl ∼ a and for every
i ∈ {1, . . . , l} we either have bi ∈ A or there exists a substitution σ and a Horn
clause a1, . . . , an ⇒ a0 in T such that a0σ ∼ bi and for every j ∈ {1, . . . , n}
there exists k ∈ {1, . . . , i − 1} with ajσ ∼ bk.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Automatic Analysis of Recursive Security Protocols with XOR 649

Messages. Let A be a finite set of constants (also called atomic messages),
such as principal names, nonces, and keys, and let K be a subset of A (the set
of keys). We assume that 0, Sec ∈ A and that there is a bijection ·−1 on K
which maps every public (private) key k to its corresponding private (public)
key k−1. Let ΣA (or simply Σ) be a finite signature consisting of all constants
from A, the unary function symbol hash(·) (hashing), and the following binary
function symbols: 〈·, ·〉 (pairing), {·}· (symmetric encryption), {|·|}· (public key
encryption), and ⊕ (exclusive OR).

The set of terms over Σ and V is defined by the following grammar:

T ::= A | V | hash(T) | 〈T , T 〉 | {T }K | {|T |}K | T ⊕ T .

Note that we assume atomic keys, i.e., keys used to encrypt messages are required
to be constants. We denote by Var(t) the set of variables occurring in t.

Ground terms, i.e., terms without variables are called messages. To model
the algebraic properties of XOR, we consider the congruence relation ∼ on T
induced by the following equational theory:

x ⊕ y = y ⊕ x

(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)
x ⊕ x = 0
x ⊕ 0 = x

For example, we have that a⊕b⊕{|0|}k⊕b⊕{|c ⊕ c|}k ∼ a. (Due to the associativity
of ⊕ we often omit brackets and simply write a ⊕ b ⊕ c instead of (a ⊕ b) ⊕ c or
a ⊕ (b ⊕ c).)

Principals and Protocols. A protocol step consists of a protocol rule and a
send program. A protocol rule is of the form t → q(s) where t, s ∈ T and q is
some unary predicate symbol. A send program Φ is a unary Horn theory where
every Horn clause is of one of the following forms:

q′(t) ⇒ q′′(x) with x ∈ Var(t), (1)
q′′′(s) ⇒ I (s′) with Var(s′) ⊆ Var(s), (2)

where I is a distinguished unary predicate symbol, which will model the network,
and hence, the intruder, q′, q′′, q′′′ �= I are arbitrary (not necessarily different)
unary predicate symbols, t is a linear term (i.e., every variable in t occurs at
most once) which does not contain the symbol ⊕, and the terms s and s′ may
be non-linear and may contain ⊕. Intuitively, clauses of the form (1), called
push clauses, allow a principal to recursively traverse a term from top to bottom
(e.g., process a list). Clauses of the form (2), called send clauses, are used by a
principal to perform checks on messages (by matching them against s) and to
output messages on the network, as will be clearer from the following definition:

For a ground atom q(m), we define the set of terms sent using Φ by

�q(m)�Φ = {m′ : q(m) �Φ I (m′)}.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

650 R. Küsters and T. Truderung

Now, the intuition behind a protocol step which consists of a protocol rule
t → q(s) and a send program Φ is that a principal, after having received a term
tθ for some ground substitution θ, sends all the terms from the set �q(sθ)�Φ on
the network, i.e., to the intruder, by running the send program Φ.

The decidability result in [15] in the Horn theory model without XOR works
if t in (1) is flat, i.e., is of the form t = f(x1, . . . , xn) where the variables xi are
not required to be different. We could also allow such terms in (1). However,
(complex) linear terms are better suited for modeling protocols. It is easy to see
that linear terms in (1) can be turned into flat form by using auxiliary predicate
symbols.

A principal Π is a finite edge-labeled tree where every edge is labeled by a
protocol step. If the protocol rule of a protocol step is of the form t → q(s), we
require that every variable occurring in s also occurs in t or the left-hand side of a
protocol rule preceding t → q(s) in the tree Π . We also assume, w.l.o.g., that the
set of predicates used in send programs of different protocol steps are pairwise
disjoint, except that I may be used in all of the send programs. The intuition
is that if a principal waits at a node of the tree and receives a message, then
she can apply one of the protocol steps whose left-hand side (i.e., the left-hand
side of the corresponding protocol rule) matches with the incoming message, and
after having run the corresponding send program, moves to the next node.

For a principal Π we call a sequence π of protocol steps a run of Π if π is a
sequence of protocol steps obtained when traversing Π from the root to some
node of Π (not necessarily a leaf).

A protocol P is a tuple (Π1, . . . , Πl) of principals Πi. We assume, w.l.o.g.,
that the set of variables of protocol rules of different principals are disjoint.

Attack. The intruder is the standard Dolev-Yao intruder extended by the abil-
ity to apply the XOR operator [6,2]. Formally, the intruder is modeled by the
following Horn theory T⊕ where k ∈ K and x, y ∈ V :

I (x), I (y) ⇒ I (〈x, y〉) I (x), I (k) ⇒ I ({x}k) I ({x}k), I (k) ⇒ I (x)

I (〈x, y〉) ⇒ I (x) I (x), I (k) ⇒ I ({|x|}k) I ({|x|}k), I (k−1) ⇒ I (x)
I (〈x, y〉) ⇒ I (y) I (x) ⇒ I (hash(x)) I (x), I (y) ⇒ I (x ⊕ y)

Given a protocol P = (Π1, . . . , Πl), a protocol execution scheme of P is a
sequence of protocol steps π = π1, . . . , πn such that each πi can be assigned to
one of the principals Π1, . . . , Πl and such that, for every i, the subsequence of
elements of π assigned to Πi is a run of Πi, i.e., π is an interleaving of runs of
the Πi.

Now, an attack on P is a pair (π, θ) where π = ((ti → qi(si), Φi))n
i=1 is a

protocol execution scheme of P and θ is a ground substitution of the variables
in Var({t1, s1, . . . , tn, sn}) such that

I (0), I (�q1(s1θ)�Φ), . . . , I (�qi−1(si−1θ)�Φ) �T⊕ I (tiθ), for i = 1, . . . , n (3)
I (0), I (�q1(s1θ)�Φ), . . . , I (�qn(snθ)�Φ) �T⊕ I (Sec) (4)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Automatic Analysis of Recursive Security Protocols with XOR 651

where Φ =
⋃n

i=1 Φi (recall that different send programs use disjoint sets of pred-
icates, except that they all may use I). Condition (3) says that in every step
of the protocol execution the intruder is able to derive the message expected
by the respective principal and (4) says that at the end he is able to derive the
secret Sec. Note that, w.l.o.g., initially the intruder only knows the constant 0:
One can define a designated principal that expects to receive 0 and in return
outputs messages the intruder is allowed to know, e.g., public keys. A proto-
col is called insecure if there exists an attack on it. Let Attackgeneral = {P |
P is an insecure protocol} denote the corresponding decision problem.

3 An Example Protocol

To illustrate our model, we present a formal description of the Recursive Au-
thentication (RA) Protocol [1]. In what follows, we abbreviate messages of
the form 〈m0, . . . , 〈mn−1, mn〉 · · ·〉 by m0, . . . , mn and messages of the form
〈m, hash(〈k, m〉)〉, i.e., a message m along with a keyed hash on m, by hashk(m).

The key distribution server S of the RA protocol shares a long-term (symmet-
ric) key with every principal and performs only one (recursive) protocol step in
a protocol run. In this protocol step, S receives an a priori unbounded sequence
of requests of pairs of principals who want to obtain session keys for secure com-
munication and then generates so-called certificates which contain the session
keys. An example of the kind of message S receives is

hashKc(C, S, Nc, hashKb
(B, C, Nb, hashKa(A, B, Na, −))) (5)

where Nc, Nb, and Na are nonces generated by C, B, and A, respectively, and
Kc, Kb, and Ka are the long-term keys shared between the server S and the prin-
cipals C, B, and A, respectively. Recall that, for instance, hashKa(A, B, Na, −)
stands for the message 〈〈A, 〈B, 〈Na, −〉〉〉, hash(〈Ka, 〈A, 〈B, 〈Na, −〉〉〉〉)〉. Mes-
sage (5) consists of three requests and indicates that C wants to share a session
key with S, B with C, and A with B. The constant “−” marks the end of the
sequence of requests. We emphasize that messages sent to S may contain an
arbitrary number of requests—which must be processed by S recursively. Now,
given message (5), S processes the requests starting from the outermost. First, S
generates two certificates for C, namely, 〈C, S, Kcs ⊕hashKc(Nc), {C, S, Nc}Kcs〉
and 〈C, B, Kbc ⊕ hashKc(Nc), {C, B, Nc}Kbc

〉 (from these certificates C can eas-
ily deduce Kcs and Kbc and check whether the encrypted messages have the
expected form). In the same way, certificates for B and A are generated, where
A only obtains one certificate (containing the session key for communication
with B).

Formally, the protocol step performed by S is as follows, where we assume
that P0, . . . , Pn are the principals that may participate in the RA protocol, with
Pn = S, and every Pi, i < n, shares a long-term key Ki with S: The protocol
rule of S is simply x → q(x) and the send program consists of the following Horn
clauses, where j ≤ n and i, i′ < n:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

652 R. Küsters and T. Truderung

q(〈〈x1, 〈x2, 〈x3, x4〉〉〉, x5〉) ⇒ q(x4)
q(hashKi(Pi, Pj , x, −)) ⇒ I(Mi,j)

q(hashKi(Pi, Pj , x, hashKi′ (Pi′ , Pi, x1, x2))) ⇒ I(M ′
i,i′)

q(hashKi(Pi, Pj , x, hashKi′ (Pi′ , Pi, x1, x2))) ⇒ I(Mi,j)

where Mi,j = 〈Pi, Pj , Kij ⊕hashKi(x), {Pi, Pj , x}Kij 〉 and M ′
i,i′ = 〈Pi, Pi′ , Ki′i⊕

hashKi(x), {Pi, Pi′ , x}Ki′i
〉. The server would also check whether the first request

is addressed to it. This can easily be captured by using another predicate; how-
ever, for simplicity of presentation this is not modeled here. The model of the
principals P0, . . . , Pn−1 of the RA protocol is rather standard as they do not need
to perform recursive computations. We therefore omit their formal specification
here.

4 Undecidability of the General Case

We prove the following theorem (see [9] for details):

Theorem 1. The problem Attackgeneral is undecidable.

The main intuition behind the proof is that, by combining recursive computa-
tions and XOR, it can be checked whether a sequence C0, . . . , Cn of configu-
rations corresponds to an (accepting) computation of a Turing machine. More
precisely, let Mi = Ci, . . . , Cn. The intruder can guess a sequence C0, . . . , Cn

and then a single principal performing just one protocol step checks whether i)
C0 corresponds to the initial configuration, ii) Cn corresponds to a final config-
uration, and iii) Ci+1 is a successor configuration of Ci, for every i < n. If i) and
ii) are satisfied, the principal outputs {M0}k and {Mn}k ⊕ Sec, respectively, to
the intruder. If iii) is satisfied, for i, the principal outputs {Mi}k ⊕ {Mi+1}k to
the intruder. Now, if all checks—i), ii), and iii) for every i < n—are successful,
and hence, the sequence of configurations is a valid computation, the intruder
can XOR all messages obtained from the principal. This yields Sec. If at least
one check failed, at least one “link” in the XOR chain would be missing in order
to obtain Sec.

A similar reduction as the one sketched above also works if XOR is replaced
by symmetric encryption where keys may be arbitrary messages (complex keys).
Hence, we also obtain the following theorem, where Attackcompkey is the secu-
rity problem in our model with complex keys (and without XOR).

Theorem 2. The problem Attackcompkey is undecidable.

5 Decidability of ⊕-Linear Protocols

In the proof of undecidability (Theorem 1) we used that a principal may con-
join two messages by XOR where both messages may depend on messages re-
ceived from the network. In ⊕-linear protocols, defined next, this is forbidden.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Automatic Analysis of Recursive Security Protocols with XOR 653

In this section, we show that the existence of attacks can be decided for ⊕-linear
protocols.

A protocol P is ⊕-linear if for each subterm of the form t ⊕ s occurring in P
(both in protocol rules and in send programs), t or s is ground. For example, if the
term (x⊕a)⊕y with a ∈ A, x, y ∈ V occurs in P , then P is not ⊕-linear. The RA
protocol (Section 3) is an example of an ⊕-linear protocol; see, e.g., [2] for another
example. Let Attack⊕−linear = {P | P is an ⊕-linear, insecure protocol}.

The main result of this paper is:

Theorem 3. The problem Attack⊕–linear is decidable.

Before we provide a proof sketch of this theorem, we note that our result extends
the decidability results presented in [6,2] for non-recursive protocols to recursive
protocols, in case the protocols are ⊕-linear and restricted to atomic keys.

The proof of Theorem 3 consists of two main steps: First, we prove certain
properties of derivations in the Horn theory model with XOR (Section 5.1).
Based on these properties we then reduce the security problem to the case with-
out XOR, which by [15] is decidable. In the reduction we use the ability of
principals to perform recursive computations in order to mimic operations in-
volving XOR. The reduction is sketched in Section 5.2. An initial (minor) step,
not further discussed in this extended abstract, is to turn a protocol into simple
form. This is used to combine all derivations carried out in (3) and (4) into a
single derivation from I(0) to I (Sec). So, we may consider an attack as a single
derivation, called attack derivation (see [9] for details).

5.1 Good Derivations

In this section, we identify and analyze properties of attack derivations.
First, we need to introduce some notation and terminology. We call a term

standard if its top-symbol is not ⊕; otherwise, it is called non-standard. For a
protocol P , let SP denote the set of all the ground subterms of terms occurring
in P and let CP be the set consisting of all terms of the form t1 ⊕ · · · ⊕ tn with
ti ∈ SP modulo ∼. Elements of CP are referred to by c and decorations thereof.
In what follows, non-standard terms will be written as c ⊕ t1 ⊕ · · · ⊕ tn where c
stands for a (ground) term in CP and t1, . . . , tn are standard terms not in CP . A
term is CP -long (or just long, if CP is clear from the context) if it is of the form
c ⊕ t1 ⊕ · · · ⊕ tn, for n > 1. Otherwise it is called CP -short (or just short).

We now introduce what we call modest and normal derivations and prove
properties about them.

A derivation is modest if it uses the rules depicted in Figure 1 instead of
I (x), I (y) → I (x ⊕ y) where c, c0, . . . , cn ∈ CP and t, t′, t1, . . . , tn are standard
ground terms not in CP ; s and s′ are arbitrary ground terms. We observe that
in a modest derivation long terms may only be used to obtain an element of
CP , by applying rule (6). In all other rules ((7)–(10)), only short terms may
be conjoined by XOR. However, (10), which allows to combine an unbounded
number of short terms, may produce a long term.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

654 R. Küsters and T. Truderung

I (s), I (s′) → I (c) for s ⊕ s′ ∼ c (6)

I (c ⊕ t), I (c) → I (t) (7)

I (c ⊕ t), I (c′) → I (c ⊕ c′ ⊕ t) for c �∼ 0 and c ⊕ c′ �∼ 0 (8)

I (t), I (c) → I (c ⊕ t) (9)

I (c0), I (c1 ⊕ t1), . . . , I (cn ⊕ tn) →
I (c ⊕ t1 ⊕ · · · ⊕ tn)

for n > 1, where the terms
t1, . . . , tn are pairwise distinct
and c ∼ c0 ⊕ · · · ⊕ cn

(10)

Fig. 1. ⊕-Rules in Modest Derivations

The next lemma states that it is enough to consider modest derivations. There-
fore, in the remainder of this section we will assume derivations to be modest.

Lemma 1. If there exists an attack on P , then this attack can be proven by a
modest derivation.

We now introduce normal derivations. In a normal derivation, applications of
certain classes of rules are grouped into segments and segments occur in a certain
order. In this extended abstract, we will only define some aspects of normal
derivations (see [9] for a full definition).

If b1, . . . , bl is a derivation, then bi, bi+1, . . . , bj for i ≤ j is a subsequence of
the derivation. A segment of a derivation is a maximal subsequence which does
not contain any atom of the form I (c), for some c ∈ CP , or any atom obtained
by a protocol rule.

Rule (8) is called variant rule. A variant segment of a derivation is a maxi-
mal subsequence of a segment containing only atoms obtained by variant rules.
Among others, a normal derivation satisfies the following conditions: (i) it does
not contain two atoms a, a′ such that a ∼ a′, (ii) each segment contains at most
one variant segment, and (iii) variant rules do not use as a premise an atom
obtained from a variant rule. We can show the following:

Lemma 2. If there exists an attack on P , then there exists a modest and normal
derivation for this attack.

Because the cardinality of the set CP is exponentially bounded w.r.t. the size of
P , the number of segments in an attack derivation is also exponentially bounded
in the size of P . Now, as a result of Lemma 2 and the definition of normal
derivations we obtain:

Lemma 3. In a modest and normal attack derivation the number of variant
segments is exponentially bounded in the size of the protocol.

We now show that the number of long terms can be bounded in attack deriva-
tions. The key is the notion of a profile of a standard term. A profile α is defined
w.r.t. an attack derivation δ and consists of an element c in CP and a natural

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Automatic Analysis of Recursive Security Protocols with XOR 655

number k. Roughly speaking, two standard ground terms satisfy the same profile
if they behave similarly w.r.t. c in the k-th segment of δ. In particular, if two
terms have the same profile, each of them can be used instead of the other one
when long terms are constructed by Rule (10). So, for a given derivation δ and
a profile α, we will fix a term tδα and use it whenever a term of profile α is used
to build a long term.

If c ⊕ t1 ⊕ · · · ⊕ tk, for k > 1, is a long term, the positions where t1, . . . , tn
occur are called unimportant. We can show the following lemma:

Lemma 4. If there exists an attack on a protocol, then there exists a normal
attack derivation δ for this protocol such that whenever terms t, t′ of the same
profile α occur in δ at unimportant positions, then t = t′.

We call derivations of the form described in Lemma 4 good. Now, from the
definition of profiles it immediately follows that the number of different profiles
is (exponentially) bounded in the size of the protocol. Together with Lemma 4
we obtain:

Corollary 1. If a term c ⊕ t1 ⊕ · · · ⊕ tn occurs in a good attack derivation,
then n is bounded exponentially in the size of the protocol. Furthermore, in a
good attack derivation for a protocol, the number of distinct terms of the form
c ⊕ t1 ⊕ · · · ⊕ tn, for n > 1, is bounded by some (computable) number M in the
size of the protocol.

5.2 Reduction to the ⊕-Free Case

We now show how the security problem can be reduced to the ⊕-free case, i.e.,
given a protocol P we construct a protocol P+ which does not contain ⊕ such
that there exists an attack on P (in the sense defined in Section 2) iff there exists
an attack on P+ in the ⊕-free setting. The main steps are i) to represent terms
with ⊕ by ⊕-free terms and ii) to mimic intruder rules involving ⊕ in the ⊕-free
setting.

For i)—representing terms—we use additional constants: a new constant e
and, for each equivalence class [c]∼, c ∈ CP , a new constant denoted by [c]. Now,
for a term t, we obtain its ⊕–free representation, denoted by �t�, by recursively
applying to each non-standard subterm of t the following transformation: a sub-
term of the form c ⊕ t (recall that, according to our convention, c ∈ CP and t is
a standard term not in CP) is transformed into {t}[c], and a subterm of the form
c⊕ t1 ⊕· · ·⊕ tn, for n > 1, is transformed into {{t1, {. . . , {〈tn−1, tn〉}e . . .}e}e

}
[c]

.
We also substitute every c ∈ CP by the constant [c].

Now, we turn to intruder rules involving ⊕ and show how they can be mim-
icked in the ⊕-free setting. By the results of Section 5.1, we may assume that
attack derivations are modest, normal, and good. In particular, by Lemma 1, it
suffices to mimic rules (6) to (10):

– Rule (7) and (9): These rules can easily be mimicked by ordinary intruder
rules (decryption and encryption). Consider, for instance, rule (7): In the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

656 R. Küsters and T. Truderung

original attack atoms I (c ⊕ t) and I (c) are used to obtain I (t). Now, I (�t�)
can be derived from I (�c ⊕ t�) = I ({�t�}[c]) and I (�c�) = I ([c]) by the
standard decryption rule.

– Rule (6): The result of this rule is of the form I (c) with c ∈ CP . Because
there is a bounded number, say L, of elements in CP , we can mimic this rule
by adding L principals to P each with a single protocol step of the form
〈{x}[c], {x}[c′]〉 → I ([c ⊕ c′]).

– Rule (10): The result of this rule is a long term and we know, by Corollary
1, that the number of such terms is bounded by a constant M which only
depends on the size of the protocol, so, again, we can handle this case by
adding a bounded number of principals each with a single protocol step of
the form

〈[c0], {y1}[c1]
, . . . , {yn}[cn]〉 → I ({{y1, {. . . , {yn−1, yn}e . . .}

e
}

e
}
[c]

).

– Rule (8): By Lemma 3, we know that the number of variant segments (i.e.,
blocks of atoms obtained by the variant rule) is bounded by a number N
depending only on the protocol size and that no element obtained by a
variant rule is necessary as a premise of a variant rule in the same variant
segment. Hence, each of these variant segments can be handled by a protocol
step of the following form: (Note that it performs recursive computation.)

z → p(z) with the following send program:

p(〈x, y〉) ⇒ p(y)
p(〈x, y〉) ⇒ p′(x)
p′(〈{x}[c], [c

′]〉) ⇒ I ({x}[c⊕c′]) for c, c′ ∈ CP

More details on the construction of P+ can be found in [9]. We can show:

Lemma 5. For an ⊕-linear protocol P there exists an attack on P (in the sense
of Section 2) if and only if there exists an attack on P+ in the ⊕-free setting.

Since the security of P+ is decidable [15] and P+ can effectively be computed
from P , Theorem 3 follows. A more careful analysis of the complexity of our
construction reveals that the size of P+ is double exponential in the size of P .
As the secrecy of P+ can be decide in NexpTime [15], we obtain a 3-NexpTime

upper bound, which, however, we believe can be reduced to NexpTime by a more
careful construction and a refinement of the proof in [15].

6 Conclusion

In this work, we have proved that security (w.r.t. a bounded number of sessions)
is decidable for the class of ⊕-linear protocols. This is the first decidability result
for recursive protocols involving algebraic properties of operators. We have also
shown that relaxing certain assumptions of our model lead to undecidability of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Automatic Analysis of Recursive Security Protocols with XOR 657

security. Our decidability result was obtained in a modular way by first reducing
the problem of deciding security in the Horn theory model with XOR to the
one without XOR and then using the existing decidability result for the latter
model. We expect that the modular proof technique developed in this paper also
helps to deal with other operators, such as Diffie-Hellman exponentiation.

References

1. J.A. Bull and D.J. Otway. The authentication protocol. Technical Report
DRA/CIS3/PROJ/CORBA/SC/1/CSM/436-04/03, Defence Research Agency,
Malvern, UK, 1997.

2. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP Decision
Procedure for Protocol Insecurity with XOR. In LICS 2003, pages 261–270. IEEE,
Computer Society Press, 2003.

3. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the Security
of Protocols with Diffie-Hellman Exponentiation and Products in Exponents. In
FSTTCS 2003, volume 2914 of LNCS, pages 124–135. Springer, 2003.

4. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the Security
of Protocols with Commuting Public Key Encryption. ENTCS, 125(1):55–66, 2005.

5. H. Comon-Lundh and V. Cortier. New Decidability Results for Fragments of First-
order Logic and Application to Cryptographic Protocols. In RTA 2003, volume
2706 of LNCS, pages 148–164. Springer, 2003.

6. H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and
insecurity decision in presence of exclusive or. In LICS 2003, pages 271–280. IEEE,
Computer Society Press, 2003.

7. V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic properties used
in cryptographic protocols. Journal of Computer Security, 14(1):1–43, 2006.

8. R. Küsters. On the Decidability of Cryptographic Protocols with Open-ended Data
Structures. International Journal of Information Security, 4(1–2):49–70, 2005.

9. R. Küsters and T. Truderung On the Automatic Analysis of Recursive Secu-
rity Protocols with XOR. Technial Report, 2007. Available from http://people.
inf.ethz.ch/kuestral/publications html/KuestersTruderung-TR-STACS-2007.pdf.

10. R. Küsters and T. Wilke. Automata-based Analysis of Recursive Cryptographic
Protocols. In STACS 2004, volume 2996 of LNCS, pages 382–393. Springer, 2004.

11. L.C. Paulson. Mechanized Proofs for a Recursive Authentication Protocol. In
CSFW-10, pages 84–95. IEEE Computer Society Press, 1997.

12. O. Pereira and J.-J. Quisquater. A Security Analysis of the Cliques Protocols
Suites. In CSFW-14, pages 73–81, IEEE Computer Society Press, 2001.

13. P.Y.A. Ryan and S.A. Schneider. An Attack on a Recursive Authentication Pro-
tocol. Information Processing Letters, 65(1):7–10, 1998.

14. V. Shmatikov. Decidable Analysis of Cryptographic Protocols with Products and
Modular Exponentiation. In (ESOP 2004), volume 2986 of LNCS, pages 355–369.
Springer, 2004.

15. T. Truderung. Selecting theories and recursive protocols. In CONCUR 2005,
volume 3653 of LNCS, pages 217–232. Springer, 2005.

16. K.N. Verma, H. Seidl, and T. Schwentick. On the complexity of equational horn
clauses. In CADE 2005, volume 3328 of LNCS, pages 337–352. Springer, 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improved Online Algorithms for the
Sorting Buffer Problem�

Iftah Gamzu1,�� and Danny Segev2

1 School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel
iftgam@post.tau.ac.il

2 School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
segevd@post.tau.ac.il

Abstract. An instance of the sorting buffer problem consists of a metric
space and a server, equipped with a finite-capacity buffer capable of
holding a limited number of requests. An additional ingredient of the
input is an online sequence of requests, each of which is characterized by
a destination in the given metric; whenever a request arrives, it must be
stored in the sorting buffer. At any point in time, a currently pending
request can be served by drawing it out of the buffer and moving the
server to its corresponding destination. The objective is to serve all input
requests in a way that minimizes the total distance traveled by the server.

In this paper, we focus our attention on instances of the problem in
which the underlying metric is either an evenly-spaced or a continuous
line metric. Our main findings can be briefly summarized as follows:

1. We present a deterministic O(log n) competitive algorithm for n-
point evenly-spaced line metrics. This result improves on a random-
ized O(log2 n) competitive algorithm due to Khandekar and Pandit.

2. We devise a deterministic O(log N log log N) competitive algorithm
for continuous line metrics, where N is the input sequence length.

3. We establish the first non-trivial lower bound for the evenly-spaced
case, by proving that the competitive ratio of any deterministic al-
gorithm is at least 2+

√
3√

3
≈ 2.154.

1 Introduction

An instance of the sorting buffer problem consists of a metric space (V, d), a
server initially positioned at ρ0 ∈ V , and a finite-capacity sorting buffer, capable
of holding up to k requests. An additional ingredient of the input is an online
sequence σ = 〈σ1, . . . , σN 〉 of N requests, each of which corresponds to a point
in V ; whenever a request arrives, it must be stored in the sorting buffer. At any
point in time, a currently pending request σi can be served by drawing it out
� Due to space limitations, some proofs are omitted from this extended abstract.

We refer the reader to the full version of this paper (currently available online at
http://www.math.tau.ac.il/∼segevd), in which all missing details are provided.

�� Supported by the German-Israeli Foundation and by the Israel Science Foundation.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 658–669, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improved Online Algorithms for the Sorting Buffer Problem 659

of the buffer and moving the server to σi. The objective is to serve all input
requests in a way that minimizes the total distance traveled by the server.

The sorting buffer problem models a diverse collection of applications in net-
working, file server management, computer graphics, and even in the automotive
industry. Due to space limitations, we refer the reader to directly related papers
[5,8,9] and the references therein for a comprehensive review of these applica-
tions. However, to the best of our knowledge, essentially no non-trivial results are
known for this problem in its utmost generality, i.e., when the given metric space
has no particular structure. In fact, this statement holds even for the seemingly
simple offline version, in which the input sequence σ is known in advance.

In light of this state of affairs, we focus our attention on instances of the
problem in which the underlying metric is either an evenly-spaced line metric
or a continuous line metric. More formally, in the former case V = {1, . . . , n},
whereas in the latter V = R, noting that the distance function in both cases is
d(p, q) = |p− q|. Although such restricted settings may appear to be very simple
at first glance, we proceed by demonstrating that line metrics capture one of the
most fundamental problems in the design of storage systems.

In most disk devices, the seek time, which is the time it takes the disk arm to
move to the proper cylinder, dominates the time it takes to complete a read/write
request. Consequently, reducing the mean seek time can dramatically improve
the performance of the underlying storage system. Needless to say, when requests
are served in the exact same order by which they arrive (i.e., FIFO order), the
seek time is a predetermined constant. However, modern disks are capable of
handling requests in an out-of-order fashion by maintaining a limited capacity
buffer, in which requests can be temporarily stored. Hence, a scheduling policy
that utilizes such a buffer to reorder requests may achieve a significant improve-
ment over FIFO scheduling. Efficiently designing and implementing buffer-based
scheduling policies has become one of the foremost objectives in the design of
storage systems; it is referred to as the disk arm scheduling problem (see, for
example, [10,11]). This problem can be modeled as a sorting buffer instance on a
line metric. Specifically, the disk’s cylinders correspond to a set of points on the
real line, the disk arm corresponds to the server, and the buffer used to reorder
read/write requests corresponds to the sorting buffer.

The evenly-spaced line case has recently been studied by Khandekar and Pan-
dit [7], who proposed a randomized online algorithm that obtains an expected
competitive ratio of O(log2 n) against an oblivious adversary. Their approach is
based on probabilistically embedding the given metric into a distribution over
binary hierarchically well-separated trees [2,3,6]. It is worth noting that even
though an embedding of this nature may seem somewhat artificial, the struc-
tural properties it guarantees considerably simplify the tasks of suggesting a
buffer management policy and analyzing its performance.

1.1 Our Results

Evenly-spaced line metrics. The main result of this paper is a deterministic
online algorithm for the sorting buffer problem on an evenly-spaced line metric,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

660 I. Gamzu and D. Segev

which yields a competitive ratio of O(log n). This result improves on the random-
ized O(log2 n) competitive algorithm due to Khandekar and Pandit [7]. It also
refutes their conjecture, stating that a deterministic strategy is unlikely to ob-
tain a non-trivial competitive ratio. The specifics of this algorithm are presented
in Section 2.

Continuous line metrics. We study the sorting buffer problem on a continu-
ous line metric, and employ the algorithm mentioned in the previous item as a
subroutine to devise a deterministic online algorithm. Consequently, we achieve
a competitive ratio of O(log N log log N), where N denotes the length of the
input sequence. This result appears in Section 3.

A deterministic lower bound. We establish the first non-trivial lower bound
for the sorting buffer problem on an evenly-spaced line metric. Specifically, we
prove that the competitive ratio of any deterministic online algorithm is at least
2+

√
3√

3
≈ 2.154. This result settles, to some extent, an open question due to

Khandekar and Pandit [7], who posed the task of attaining lower bounds on
the achievable competitive ratio as a foundational objective for future research.
Further details are provided in Section 4.

1.2 Related Work

Räcke, Sohler and Westermann [9] seem to have been the first to study the sorting
buffer problem in online settings, concentrating on the uniform case, in which
all pairwise distances are equal. Their main result was a deterministic online
algorithm that has a competitive ratio of O(log2 k), where k denotes the buffer
capacity. They also established a lower bound on the competitive ratio of several
well-known heuristics. For example, they proved a lower bound of Ω(k) on the
performance of the Most-Common-First strategy and a lower bound of Ω(

√
k)

on that of FIFO and Least-Recently-Used. Later on, Englert and Westermann
[5] improved the main result of Räcke et al. [9], by suggesting a deterministic
O(log k) competitive algorithm. In fact, their algorithm extends to a non-uniform
case which is referred to as a star-like metric. They also investigated the possible
gain in using a sorting buffer and showed that, for any metric space, a buffer of
size k cannot reduce the total distance traveled by a factor of more than 2k − 1.
Very recently, Englert, Röglin and Westermann [4] suggested an alternative way
of analyzing the algorithm of Englert and Westermann [5], and experimentally
evaluated the performance of several strategies on random input sequences.

A concurrent line of work, initiated by Kohrt and Pruhs [8], studied the offline
setting. They considered a maximization version of the sorting buffer problem,
in which the objective is to maximize the cost reduction compared to a bufferless
schedule, and proposed a polynomial-time 20-approximation on a uniform met-
ric. Subsequently, Bar-Yehuda and Laserson [1] examined a generalized variant,
for which they presented a polynomial-time algorithm that achieves an approx-
imation ratio of 9.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improved Online Algorithms for the Sorting Buffer Problem 661

2 Evenly-Spaced Line Metrics

In this section, we study the sorting buffer problem on an evenly-spaced line
metric, and devise a deterministic online algorithm that achieves a competitive
ratio of O(log n). Prior to describing the finer details of our approach, we in-
troduce the notion of a doubling partition, which will considerably simplify the
suggested algorithm and its analysis.

Definition 1. A doubling partition with respect to a point p ∈ V , denoted by
DP(p), is a partition of V \{p} into 2(�logn�+1) pairwise-disjoint sets of points
L0(p), . . . , L�log n�(p), R0(p), . . . , R�log n�(p), where

Li(p) =
{
q < p : 2i ≤ d(q, p) < 2i+1

}
, Ri(p) =

{
q > p : 2i ≤ d(q, p) < 2i+1

}
.

Figure 1 provides a concrete example to a doubling partition in an evenly-spaced
line metric.

4

R(p)
2

R(p)
3 3

L(p)
4

L(p)
2

L(p)
1

L(p)
0

R(p)
0

R(p)
1

R(p)
4pL(p)

621 3 5 7 8 9 10 11 12 14 15 1613

Fig. 1. A doubling partition in an evenly-spaced 16-point line metric with respect to
the point p = 4. Note that empty doubling partition sets are marked with ∅.

2.1 The Algorithm

Noting that Englert and Westermann [5, Thm. 1] established an upper bound of
O(k) on the competitive ratio of the FIFO strategy for any metric space, we may
assume in the remainder of this section that k ≥ 2(�log n� + 1). Furthermore,
for ease of exposition, it would be convenient to denote m = 2(�log n� + 1) and
assume that k is an integral multiple of m.

Algorithm Moving Partition works in phases, each of which is logically built
from an accumulation step, in which newly read requests are stored, followed by
a clearance step, in which the server travels to clear subsets of pending requests.

Phase initialization: Let p be the current position of the server. Associate
a unique k

m -sized sub-buffer (of the k-sized sorting buffer) with each of the m
point sets in DP(p).

The accumulation step: Store each arriving request in the sub-buffer corre-
sponding to the doubling partition set this request relates to1. If the current
request relates to p, it is served immediately. This step ends when one of the
sub-buffers becomes full or when the sequence of requests ends.

1 A request relates to S ⊆ V when the destination of this request lies in S.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

662 I. Gamzu and D. Segev

The clearance step:

– If one of the sub-buffers is full, let 0 ≤ t ≤ �log n� be the maximal index for
which at least one of Rt(p) and Lt(p) has at least k

2m pending requests in
its corresponding sub-buffer. We assume without loss of generality that the
latter property is satisfied by Rt(p) (henceforth, the maximal half-full set),
and designate its leftmost point by q. Move the server p � leftmost point of
Lt(p) � rightmost point of Rt(p) � q, while clearing all pending requests
that relate to

⋃t
i=0(Li(p) ∪ Ri(p)) along the way. Then, the phase ends.

– If the sequence of requests ends, move the server p � leftmost point in buffer
� rightmost point in buffer, while clearing all pending requests along the
way. Then, the algorithm ends.

Figure 2 illustrates how the server travels during the clearance step when one
of the sub-buffers becomes full. We remark that if Lt(p) is the maximal half-full
set (instead of Rt(p)), the server travels in a completely symmetrical way. That
is, the server first travels to the rightmost point of Rt(p), then to the leftmost
point of Lt(p), and finally to q, which is the rightmost point of Lt(p) in this case.

10 21

0

02

q

1

R(q)R(q) R(q)L(q)L(q) L(q)

21 3
R(p)R(p)

0
R(p)L(p) R(p)pL(p)

Fig. 2. The server’s movement during the clearance step, when its initial position is p
and the maximal half-full set is R2(p)

2.2 Analysis

To prove the correctness of Algorithm Moving Partition, it is sufficient to show
that, at any point in time, the sorting buffer holds at most k pending requests.
However, the following theorem demonstrates that the suggested algorithm sat-
isfies an even stronger property.

Theorem 2. At any point in time, none of the sub-buffers (associated with the
current doubling partition) overflows.

Proof. We prove, by induction on the number of phases, that every sub-buffer
contains strictly less than k

m pending requests at the beginning of any phase. The
theorem follows by observing that sub-buffers cannot overflow during a phase
(particularly, during the accumulation step).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improved Online Algorithms for the Sorting Buffer Problem 663

The induction claim is trivially satisfied at the beginning of the first phase,
since the sorting buffer is currently empty. Suppose the claim is satisfied at the
beginning of phase � and suppose that in the clearance step of this phase, all
pending requests that relate to

⋃t
i=0(Li(p)∪Ri(p)) are cleared and that the final

position of the server is q, which is without loss of generality the leftmost point
of Rt(p). We next show that every sub-buffer associated with a set in DP(q),
which is exactly the doubling partition at the beginning of phase � + 1, contains
strictly less than k

m pending requests:

Li(q) for 0 ≤ i ≤ t. It is easy to verify that
⋃t

j=0 Lj(q) ⊆
⋃t

j=0(Lj(p)∪Rj(p))∪
{p}. Thus, since all pending requests that relate to

⋃t
j=0(Lj(p) ∪ Rj(p)) ∪ {p}

were served during the clearance step, it follows that the sub-buffer associated
with Li(q) is empty.
Li(q) for t + 1 ≤ i ≤ �log n�. Consider a point v ∈ Li(q). Notice that d(v, q) ≥
2i, d(q, p) = 2t, and d(v, p) + d(p, q) = d(v, q) since v < p < q. Hence, we have

d(v, p) = d(v, q) − d(p, q) ≥ 2i − 2t ≥ 2i − 2i−1 = 2i−1 .

On the other hand, d(v, p) < d(v, q) < 2i+1. Consequently, v ∈ Li−1(p) ∪ Li(p).
This implies that any pending request that relates to Li(q) was previously stored
in one of the sub-buffers associated with Li−1(p) and Li(p). Recall that every
sub-buffer associated with a set of DP(p) holds at most k

2m −1 pending requests
at the end of a clearance step. Thus, the sub-buffer associated with Li(q) holds
at most k

m − 2 pending requests.
Ri(q) for 0 ≤ i ≤ �log n�. Now consider a point v ∈ Ri(q). Clearly, v ∈ Rj(p)
for some j ≥ i. Accordingly, all the metric points of Ri(q) appear in at most
two consecutive sets of DP(p). Arguments similar to those of the previous item
imply that the sub-buffer associated with Ri(q) holds at most k

m − 2 pending
requests.

In what follows, we prove that the algorithm under consideration achieves a
competitive ratio of O(log n). For ease of presentation, it would be convenient
to view the evenly-spaced line metric as an undirected graph G = (V, E) with
V = {1, . . . , n} and E = {(1, 2), . . . , (n − 1, n)}. In addition, we introduce the
following notation:

– Let OPT denote the total distance traveled by the server in an optimal
solution, and let ON denote the total distance traveled by the server in
Algorithm Moving Partition.

– Let P be the sequence of points p0, p1, . . . , p�, where pi is the position of the
server at the end of the i-th phase of Algorithm Moving Partition. Note that
p0 is the initial server position ρ0 and that p� is the position of the server
just before the final clearance step begins.

– Let CP (e) be the number of times the edge e ∈ E is crossed with respect
to the walk determined by the points of P (i.e., the walk p0 � p1 �
· · · � p�), and let COPT(e) be the number of times this edge is crossed in
the optimal solution. Notice that

∑
e∈E CP (e) =

∑�
i=1 d(pi−1, pi) whereas∑

e∈E COPT(e) = OPT.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

664 I. Gamzu and D. Segev

Lemma 3. ON ≤ 7
∑

e∈E CP (e) + 2 · OPT.

Proof. Consider a phase 1 ≤ i ≤ �, in which a full sub-buffer was detected, and let
t be the index of the maximal half-full set of that phase. Then, the total distance
traveled by the server in this phase, denoted by ONi, is at most 3(2t+1 − 1) +
(2t − 1) ≤ 7 · 2t, while d(pi−1, pi) = 2t. Thus,

∑�
i=1 ONi ≤ 7

∑�
i=1 d(pi−1, pi) =

7
∑

e∈E CP (e).
During the clearance step of the final phase (i.e., phase � + 1), the server

clears all pending requests in the buffer. Obviously, the total distance ON�+1

traveled by the server in this phase satisfies ON�+1 ≤ 2 · OPT, as the server
crosses each edge between the leftmost and the rightmost requests that have
ever arrived (including the initial server position) at most twice, and any feasible
solution must cross each such edge at least once. Hence, ON =

∑�+1
i=1 ONi ≤

7
∑

e∈E CP (e) + 2 · OPT.

Lemma 4. CP (e) ≤ (12m + 4)COPT(e) for every e ∈ E.

Proof. Let e = (i, i + 1). We first prove the following two claims.

Claim I: COPT(e) ≥ 1 whenever CP (e) ≥ 1. Assume without loss of gen-
erality that the first time e is crossed in the walk determined by P is from left
to right. Accordingly, the initial position of the server must reside left of e (i.e.,
p0 ∈ {1, . . . , i}), and there must be at least one request that resides right of e
(i.e., in {i + 1, . . . , n}). Thus, in any feasible solution, the server must cross e.

Claim II: COPT(e) ≥
⌊ CP (e)
6m+2

⌋
. In every clearance step of Algorithm Moving

Partition, each of the m sub-buffers that has at least k
2m pending requests is

cleared. Thus, at the beginning of each phase, the overall number of pending
requests is at most k

2 . Also notice that each time P crosses e from left to right,
the server clears at least k

2m requests that reside right of e. Consequently, in
3m+1 times P crosses e from left to right, at least (3m+1) k

2m − k
2 > k requests

must have arrived to the right of e. Since similar arguments are applicable to the
opposite case (i.e., when e is crossed from right to left), and since e is alternately
crossed by P from different directions, it follows that during 6m + 2 times P
crosses e, any algorithm must cross it at least once.

The lemma clearly holds when CP (e) = 0. When CP (e) ≥ 1, the claims stated
above imply that CP (e)

6m+2 ≤
⌊CP (e)

6m+2

⌋
+ 1 ≤ 2COPT(e), or equivalently CP (e) ≤

(12m + 4)COPT(e).

Theorem 5. Algorithm Moving Partition is O(log n) competitive.

Proof. Using the previously stated results, we have

ON ≤ 7
∑

e∈E

CP (e)+2·OPT≤7(12m+4)
∑

e∈E

COPT(e)+2·OPT=(84m+30)OPT ,

where the first inequality follows from Lemma 3, and the second is due to
Lemma 4. Since m = 2(�log n� + 1), it follows that ON = O(log n)OPT.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improved Online Algorithms for the Sorting Buffer Problem 665

3 Continuous Line Metrics

In this section, we present a deterministic online algorithm that attains a com-
petitive ratio of O(log N log log N) for continuous line metrics. We begin by
considering an inherently simpler setting, in which certain properties of the in-
put sequence are known in advance. Later on, we show that the dependency on
these properties can be eliminated by utilizing online “guessing” techniques.

3.1 A Semi-online Algorithm

In the following, we deal with a restricted special case of the problem under
consideration, in which we have a prior knowledge of two input-related char-
acteristics: Ñ , an upper bound on the number of requests (i.e., N ≤ Ñ), and
D̃, an upper bound on the maximal distance between the initial server position
and any input request (i.e., σi ∈ [ρ0 − D̃, ρ0 + D̃], for every 1 ≤ i ≤ N). We
now propose Discretized Simulation, a deterministic online algorithm for these
particular settings.
Discretization: Let V be the set of Ñ+1 points equally dividing [ρ0−D̃, ρ0+D̃]
into Ñ disjoint intervals, each of length 2D̃

Ñ
. In addition, let σ̃ = 〈σ̃1, . . . , σ̃N 〉 be

the discretized input sequence, in which σ̃i is the point in V nearest to σi, where
ties are broken arbitrarily.
Simulation: Apply Algorithm Moving Partition to the input sequence σ̃. Move
the server to clear requests in the exact same order by which they are cleared in
Moving Partition.
Analysis. Since all algorithms described in this section are assumed to have
identical sorting buffer sizes k and initial server positions ρ0, as far as notation is
concerned – we may focus on their input sequences. Consequently, we use OPTσ

to denote the total distance traveled by the server in an optimal algorithm when
the input sequence is σ, DSσ to denote the total distance traveled in Algorithm
Discretized Simulation when the input sequence is σ, and MPσ̃ to denote the total
distance traveled in Algorithm Moving Partition when the input sequence is σ̃.

Lemma 6. OPTσ̃ ≤ OPTσ + 2D̃ and DSσ ≤ MPσ̃ + 2D̃.

Proof. In what follows, we prove the first inequality, noting that the second
inequality can be easily established by using nearly identical arguments. To
prove OPTσ̃ ≤ OPTσ + 2D̃, it is sufficient to show that the entire sequence σ̃
can be processed within a traveling distance of at most OPTσ + 2D̃. For this
purpose, let ALG(σ̃) denote the algorithm that serves requests from σ̃ in exactly
the same order by which the corresponding requests of σ are served in an optimal
algorithm whose input sequence is σ. In other words, if the j-th request ρj served
by the latter algorithm is σi, then the j-th request ρ̃j served by ALG(σ̃) is σ̃i.
Notice that

d(ρ̃j , ρ̃j+1) ≤ d(ρ̃j , ρj) + d(ρj , ρj+1) + d(ρj+1, ρ̃j+1) ≤ d(ρj , ρj+1) +
2D̃

Ñ
,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

666 I. Gamzu and D. Segev

where the second inequality holds since d(ρj , ρ̃j) ≤ D̃
Ñ

, for every 0 ≤ j ≤ N . It
follows that the total distance traveled by the server in ALG(σ̃) is

N−1∑

j=0

d(ρ̃j , ρ̃j+1) ≤
N−1∑

j=0

d(ρj , ρj+1)+N · 2D̃

Ñ
≤ OPTσ +2D̃ .

Theorem 7. DSσ = O(log Ñ) · (OPTσ + D̃).

Proof. Using the previously stated results, we have

DSσ ≤ MPσ̃ + 2D̃ ≤ c log Ñ · OPTσ̃ + 2D̃ ≤ c log Ñ · (OPTσ + 2D̃) + 2D̃ .

The first inequality follows from the second claim in Lemma 6. The second
inequality follows from Theorem 5, stating that there exists a constant c > 0
such that MPσ̃ ≤ c log Ñ · OPTσ̃. Finally, the last inequality is due to the first
claim in Lemma 6.

3.2 A Fully-Online Algorithm

In what follows, we show that the dependency on knowing Ñ and D̃ in advance,
exhibited by Algorithm Discretized Simulation, can be eliminated by guessing
these parameter in online fashion. The specifics of our approach are formally
presented in Algorithm Doubling Simulation, which works in phases, each of which
is logically built from a simulation step and a doubling step. We initially set
Ñ = 4 and D̃ = 0.
The simulation step: Simulate the execution of Algorithm Discretized Simula-
tion, assuming that Ñ and D̃ are upper bounds on the number of requests and
the maximal distance between ρ0 and any input request, respectively. Move the
server to clear requests in the exact same order by which they are cleared in Dis-
cretized Simulation. This step ends when the next input point σ̃ is the (Ñ +1)-th
request arrived so far or when σ̃ /∈ [ρ0 − D̃, ρ0 + D̃].
The doubling step: Let p be the current position of the server. Move the server
p � ρ0 − D̃ � ρ0 + D̃ � ρ0, while clearing all pending requests in the sorting
buffer along the way. If σ̃ is the (Ñ + 1)-th request arrived so far, set Ñ = Ñ2.
If σ̃ /∈ [ρ0 − D̃, ρ0 + D̃], set D̃ = 2d(ρ0, σ̃). Then, the phase ends.
Analysis. For the purpose of analyzing the performance of Algorithm Doubling
Simulation, we introduce the following notation:

– Let T be the number of phases in the algorithm, and let Ñt and D̃t denote
the values of Ñ and D̃ at the beginning of phase t, respectively.

– Let OPT denote the total distance traveled by the server in an optimal algo-
rithm, and let ON denote the total distance traveled in Algorithm Doubling
Simulation.

– Let ONsim
t and ONdbl

t denote the total distance traveled by the server in the
simulation and doubling steps of phase t, respectively. Notice that ON =∑T

t=1(ONsim
t + ONdbl

t).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improved Online Algorithms for the Sorting Buffer Problem 667

– Let �t be the sub-sequence of σ that consists of the requests processed in
phase t of the algorithm. Notice that σ = 〈�1, . . . , �T 〉. Additionally, let
OPTt denote the total distance traveled by the server in an optimal solution
where the initial position of the server is ρ0 and the input sequence is �t.

Lemma 8. log ÑT < 2 logN .

Lemma 9. ONdbl
t ≤ 5D̃t for every 1 ≤ t ≤ T .

Lemma 10.
∑T

t=1 D̃t ≤ 2(log log N + 2)OPT.

Lemma 11.
∑T

t=1 OPTt ≤ OPT + 6
∑T

t=1 D̃t.

Proof. Consider the execution of an optimal algorithm, and break it up into
T sub-executions such that for every 1 ≤ t ≤ T − 1, the t-th sub-execution
begins when the first request of �t arrives and ends just before the first request
of �t+1 arrives. Specifically, it ends after the algorithm serves a request, whose
destination is qt, that precedes the arrival of the first request of �t+1. In addition,
sub-execution T begins when the first request of �T arrives and ends when the
algorithm ends. Now suppose we modify each of these sub-executions in the
following way:

– For every 1 ≤ t ≤ T − 1, when sub-execution t ends, we move the server
qt � ρ0 − D̃t � ρ0 + D̃t � ρ0, and clear all pending requests in the sorting
buffer along the way.

– For every 2 ≤ t ≤ T , when sub-execution t begins, we move the server
ρ0 � qt−1.

It is easy to verify that the movement of the server in this modified execution
is valid and that the total distance traveled is at most OPT + 6

∑T
t=1 D̃t, which

follows from the fact that without loss of generality qt ∈ [ρ0 − D̃t, ρ0 + D̃t], for
every 1 ≤ t ≤ T − 1.

We now argue that, for every 1 ≤ t ≤ T , the total distance traveled in
modified sub-execution t provides an upper bound on OPTt. This follows from
the observation that at the beginning of modified sub-execution t, the server is
positioned at ρ0, and that at the end of this sub-execution, all requests of �t

were served. Hence,
∑T

t=1 OPTt ≤ OPT + 6
∑T

t=1 D̃t.

Theorem 12. Algorithm Doubling Simulation is O(log N log log N) competitive.

Proof. Using the previously stated results, we have

ON =
T∑

t=1

(ONsim
t + ONdbl

t) ≤ c

T∑

t=1

(
log Ñt · (OPTt + D̃t)

)
+ 5

T∑

t=1

D̃t

≤ 2c logN · OPT + (14c logN + 5)
T∑

t=1

D̃t

≤
(
(2c log N) + 2(log log N + 2)(14c logN + 5)

)
OPT

= O(log N log log N)OPT .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

668 I. Gamzu and D. Segev

The first inequality is obtained by combining Lemma 9 and Theorem 7, stating
that there exists a constant c > 0 such that ONsim

t ≤ c log Ñt · (OPTt + D̃t) for
every 1 ≤ t ≤ T . The second inequality holds since log Ñt ≤ log ÑT < 2 logN for
every 1 ≤ t ≤ T , which follows from Lemma 8, in conjunction with Lemma 11.
Finally, the last inequality is due to Lemma 10.

4 A Lower Bound for Any Deterministic Algorithm

In this section, we establish a lower bound of 2.154 on the competitive ratio of
any deterministic online algorithm for the sorting buffer problem. We begin by
introducing the notion of laziness, which reduces the objective of proving a lower
bound for any deterministic online algorithm to that of proving a lower bound
for the family of deterministic lazy algorithms.

Definition 13. A lazy algorithm for the sorting buffer problem is an algorithm
that satisfies the following properties:

1. The server stores newly read requests as long as the buffer is not full.
2. When the buffer holds a request that relates to the current server position,

the server clears it immediately.

Theorem 14. The competitive ratio of any deterministic online algorithm is at
least 2+

√
3√

3
≈ 2.154, even for evenly-spaced line metrics.

Proof. The forthcoming arguments will be based on the fact that every sorting
buffer algorithm can be made lazy without increasing the total distance traveled
by the server. Having this observation in mind, suppose we are given a line metric
in which the left-to-right order of the points is p, p0, . . . , pk−1, with d(p, p0) =
α(k − 1) and d(pi, pi+1) = 1 for every 0 ≤ i ≤ k − 2, where α > 0 is a parameter
whose value will be determined later. We assume, for simplicity, that α(k − 1)
is integral. Hence, by adding dummy points the specified metric can be viewed
as an evenly-spaced line metric on α(k − 1) + k points.

Let p0 be the initial position of the server, k be the size of the sorting buffer,
and σk−1 = 〈pk−1 p1 p2 · · · pk−1 p pk−1〉 be the input sequence given by the ad-
versary. We identify any lazy deterministic algorithm with the maximal index
i for which, given the sequence σk−1, the server initially travels from p0 to
p1, . . . , pi, and then travels to p. For all algorithms identified with i < k − 1, the
adversary changes the input sequence to σi = 〈pk−1 p1 p2 · · · pk

i+1 p〉, that is, the
postfix 〈pi+2 · · · pk−1 p pk−1〉 of σk−1 is replaced by 〈pk−1

i+1 p〉. We now consider
two cases, depending on which sequence was picked by the adversary:

Case I: The input sequence was σk−1. The total distance traveled by the
server is at least (3+2α)(k−1), since it moves p0 � pk−1 � p � pk−1. However,
the optimal distance is at most (1+2α)(k − 1), as all requests can be cleared by
traveling p0 � p � pk−1. Thus, the competitive ratio of any lazy deterministic
online algorithm identified with k − 1 is at least 3+2α

1+2α .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improved Online Algorithms for the Sorting Buffer Problem 669

Case II: The input sequence was σi, for i < k − 1. The total distance
traveled by the server is at least 3α(k − 1) + 4i + 2, since it moves p0 � pi �
p � pi+1 � p, whereas an optimal solution travels p0 � pi+1 � p, to obtain
a total distance of α(k − 1) + 2i + 2. Thus, the competitive ratio of any lazy
deterministic online algorithm identified with i is at least

3α(k − 1) + 4i + 2
α(k − 1) + 2i + 2

≥ 3α(k − 1) + 4k − 6
α(k − 1) + 2k − 2

=
3α + 4
α + 2

− 2
(α + 2)(k − 1)

,

where the inequality holds since the left-hand side is minimized when i = k − 2.
It follows that for any ε > 0 we can pick a sufficiently large value of k so that

3α + 4
α + 2

− 2
(α + 2)(k − 1)

≥ 3α + 4
α + 2

− ε .

Therefore, the competitive ratio of any lazy deterministic online algorithm
on an evenly-spaced line metric is at least maxα>0 min

{
3+2α
1+2α , 3α+4

α+2 − ε
}
. By

optimizing the value of α (i.e., setting α∗ =
√

3−1
2), we obtain a lower bound of

2+
√

3√
3

− ε for any ε > 0. However, recall that we assumed α(k − 1) to be integral.
Since α∗ is irrational and k is an integer, it follows that this assumption does not
hold. Nevertheless, this difficulty can be resolved by standard approximation of
an irrational number by a rational number, losing an extra additive factor of ε
in the lower bound.

References

1. R. Bar-Yehuda and J. Laserson. Exploiting locality: Approximating sorting buffers.
In 3rd WAOA, pages 69–81, 2005.

2. Y. Bartal. Probabilistic approximations of metric spaces and its algorithmic ap-
plications. In 37th FOCS, pages 184–193, 1996.

3. Y. Bartal. On approximating arbitrary metrices by tree metrics. In 30th STOC,
pages 161–168, 1998.

4. M. Englert, H. Röglin, and M. Westermann. Evaluation of online strategies for
reordering buffers. In 5th WEA, pages 183–194, 2006.

5. M. Englert and M. Westermann. Reordering buffer management for non-uniform
cost models. In 32nd ICALP, pages 627–638, 2005.

6. J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbi-
trary metrics by tree metrics. Journal of Computer and System Sciences, 69(3):485–
497, 2004.

7. R. Khandekar and V. Pandit. Online sorting buffers on line. In 23rd STACS, pages
584–595, 2006.

8. J. S. Kohrt and K. Pruhs. A constant approximation algorithm for sorting buffers.
In 6th LATIN, pages 193–202, 2004.

9. H. Räcke, C. Sohler, and M. Westermann. Online scheduling for sorting buffers.
In 10th ESA, pages 820–832, 2002.

10. A. Silberschatz, P. B. Galvin, and G. Gagne. Applied operating system concepts.
John Wiley and Sons, Inc., 2000. Disk scheduling is discussed in Section 13.2.

11. A. S. Tanenbaum. Modern Operating Systems. Prentice Hall PTR, second edition,
2001. Disk scheduling is discussed in Section 5.4.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cost Sharing Methods for Makespan and
Completion Time Scheduling�

Janina Brenner and Guido Schäfer

Institute of Mathematics, Technical University Berlin, Germany
{brenner,schaefer}@math.tu-berlin.de

Abstract. Roughgarden and Sundararajan recently introduced an al-
ternative measure of efficiency for cost sharing mechanisms. We study
cost sharing methods for combinatorial optimization problems using this
novel efficiency measure, with a particular focus on scheduling problems.
While we prove a lower bound of Ω(log n) for a very general class of prob-
lems, we give a best possible cost sharing method for minimum makespan
scheduling. Finally, we show that no budget balanced cost sharing meth-
ods for completion or flow time objectives exist.

Keywords: game theory, mechanism design, cost sharing mechanisms,
combinatorial optimization, scheduling problems.

1 Introduction

Many combinatorial optimization problems are concerned with establishing a
good or service at a minimum cost. Often, these problems can be viewed as
consisting of a set of users that act strategically in order to receive this service.
In a scheduling context, we can imagine jobs to be owned by agents wishing
their jobs to be executed on a machine. Besides finding a way of providing the
service, the problem is then to distribute the resulting cost among the users in a
fair manner. Meanwhile, the service provider may have to decide upon a subset
of users that are served.

In this paper, we study cost sharing mechanisms for combinatorial optimiza-
tion problems, with a particular focus on scheduling problems. The general set-
ting is as follows. We are given a set U of n players that are interested in a
certain service. Every player i ∈ U has a private utility ui ≥ 0 for receiving this
service and announces a bid bi ≥ 0 which designates the maximum price she
is willing to pay. Associated with the underlying optimization problem, we are
given a non-decreasing cost function C : 2U → R

+ describing the minimum cost
of serving a set of players S ⊆ U .

A cost sharing mechanism M first solicits all bids {bi}i∈U from players in U ,
and based on these bids (i) determines a set S ⊆ U of players that receive the

� This work was supported by the DFG Research Center Matheon “Mathematics for
key technologies”.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 670–681, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cost Sharing Methods for Makespan and Completion Time Scheduling 671

service, and (ii) for every player i ∈ S, fixes a non-negative payment xi(S) that
she has to pay for the service. This payment is usually referred to as the cost share
of a player i ∈ S. We assume that the mechanism complies with the following
three natural assumptions: (a) a player is not charged more than her bid, (b) a
player is charged only if she receives service, and (c) a player is guaranteed to
receive service if she reports a sufficiently high bid.

Define the benefit of a player i as ui − xi if i receives service and as zero
otherwise. We assume that each player’s strategy is to maximize her benefit.
Since the outcome computed by the cost sharing mechanism solely depends on
the bids {bi}i∈U , a player may have an incentive to misreport her actual utility,
i.e., to declare a bid bi �= ui, if advantageous.

There are several desirable properties of a cost sharing mechanism: A cost
sharing mechanism M is β-budget balanced if the cost shares charged to the
players in S deviates by at most a factor β ≥ 1 from the actual cost C(S), i.e.,

C(S)/β ≤
∑

i∈S

xi(S) ≤ C(S). (1)

If β = 1, we simply call the cost sharing mechanism budget balanced.
A mechanism is called strategyproof if bidding truthfully, i.e., announcing

bi = ui, is a dominant strategy for every player. If this is true even if players
collude, then we call a mechanism group-strategyproof. For a set S ⊆ U , define
u(S) :=

∑
i∈S ui. A cost sharing mechanism M is called efficient if it selects a

set of players that maximizes the social welfare u(S) − C(S).
Classical results in economics [8, 24] state that budget balance and efficiency

cannot be achieved simultaneously; even for simple cost functions and if only
strategyproofness is required. As a consequence, most of the previous work has
concentrated on either achieving budget balance or efficiency.

Very recently, Roughgarden and Sundararajan [25] introduced an alternative
efficiency measure that attempts to circumvent the intractability results. They
define the social cost of a set S ⊆ U as

Π(S) := u(U \ S) + C(S).

A mechanism is said to be α-approximate if the set of players it determines has
social cost at most α times the minimum social cost (over all subsets of U). It is
not hard to see that a set S minimizes the social cost iff it maximizes the social
welfare.

A large class of group-strategyproof cost sharing mechanisms are based on a
framework due to Moulin and Shenker [20]. This framework provides a means to
obtain group-strategyproof cost sharing mechanisms from cross-monotonic cost
sharing methods (definitions are given below). Moreover, Immorlica et al. [13]
prove that every group-strategyproof cost sharing mechanism (satisfying some
natural conditions) corresponds to a cross-monotonic cost sharing method.

Our Results. In this paper, we study cost sharing methods for optimization
problems in light of the new efficiency measure introduced by Roughgarden and
Sundararajan [25]. Our contribution is threefold:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

672 J. Brenner and G. Schäfer

1. Lower Bound on Approximability of Cost Sharing Methods. We present
a general inapproximability result for cost sharing methods of combinatorial
optimization problems. In particular, we prove that there is no cost sharing
method that is α-summable and satisfies cost recovery for any α < log n, where
n denotes the number of players. Our proof holds if the underlying cost function
satisfies a certain “stability” property.

As a consequence, our result implies a lower bound of log n on the approx-
imability of cost sharing mechanisms for various optimization problems, such
as, for instance, facility location, minimum spanning tree (and thus also min-
imum Steiner tree and forest), single-source rent-or-buy, minimum makespan
scheduling, etc. Despite its generality, our lower bound is tight for some specific
problems such as facility location and minimum makespan scheduling.

2. An Optimal Cost Sharing Method for Makespan Scheduling. We study the
minimum makespan scheduling problem, one of the most fundamental problems
in scheduling theory, in a cost sharing context. In this problem, we are given a set
of jobs N that have to be executed on m parallel machines. The goal is to assign
all jobs to the machines such that the maximum completion time is minimized.
We assume that jobs act strategically and attempt to get processed at a low
cost. We develop a cross-monotonic cost sharing method for this problem that
is (2 − 1/m)-budget balanced and log n-approximate; this is tight with respect
to both budget balance and approximability.

3. Budget Balance of Cost Sharing Methods for other Scheduling Problems.
There are several other scheduling problems that can be considered in a cost
sharing context. We show that for scheduling problems in which we aim at
minimizing the total (weighted) completion (or flow) time, there is no cross-
monotonic cost sharing method that is β-budget balanced for any β < n/2.

Previous and Related Work. The development of cost sharing mechanisms
for combinatorial optimization problems has recently attracted a lot of attention
in the theoretical computer science literature.

The framework of Moulin and Shenker [20] has been applied to game-theoretic
variants of classical optimization problems such as fixed multicast [1, 5, 6], sub-
modular cost sharing [20], Steiner trees [14, 15], facility location, single-source
rent-or-buy network design [22,19,10] and Steiner forests [16]. Lower bounds on
the budget balance factor that is achievable by a cross-monotonic cost sharing
mechanism are given in [13,17]. Very recently, researchers started to investigate
cost sharing mechanisms in light of the novel efficiency measure of Roughgarden
and Sundararajan; see [9, 25, 26, 4].

Very notably, although network design problems have been studied extensively
in a cost sharing context, very little attention has been given to scheduling prob-
lems; in particular if jobs are assumed to act strategically, and group-
strategyproofness is a desirable objective. In most of the previous works, authors
have either concentrated on scheduling problems where machines act selfishly [21,
2, 18], or strategyproofness (but not group-strategyproofness) is an issue [23, 11].

Related to our work is the recent work of Bleischwitz and Monien [3]. The au-
thors present a cross-monotonic cost sharing method for the minimum makespan

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cost Sharing Methods for Makespan and Completion Time Scheduling 673

scheduling problem. However, as we argue below, their cost sharing mechanism
does not approximate social cost.

2 Preliminaries

Moulin Mechanisms. A cost sharing method ξ is a function ξ : U ×2U → R
+ that

assigns to each user i ∈ U and subset S ⊆ U a non-negative cost share ξ(i, S).
We define ξ(i, S) := 0 for all i ∈ U \ S, for all S ⊆ U . ξ is cross-monotonic if the
cost share of a player does not increase as the player set grows; more formally,
for all S′ ⊆ S ⊆ U and for every i ∈ S′, it holds that ξ(i, S′) ≥ ξ(i, S).

Similar to the definition in (1), ξ is β-budget balanced if

∀S ⊆ U : C(S)/β ≤
∑

i∈S

ξ(i, S) ≤ C(S).

We say that ξ satisfies β-cost recovery if the first inequality holds; it is competitive
if the latter inequality is fulfilled.

Moulin and Shenker [20] showed that, given a budget balanced and cross-
monotonic cost sharing method ξ, the following cost sharing mechanism M(ξ)
satisfies budget balance and group-strategyproofness: Initially, let S := U . If
for each player i ∈ S, the cost share ξ(i, S) is at most her bid bi, we stop.
Otherwise, remove from S all players whose cost shares are larger than their
bids, and repeat. Eventually, let S be the final player set and define the payments
as xi(S) := ξ(i, S) for all i ∈ S. Jain and Vazirani [14] later observed that the
result of Moulin and Shenker also holds if one considers approximately budget
balanced and cross-monotonic cost sharing methods.

Yet another fairness concept in cooperative game theory that we use in this
paper is the β-core. A cost sharing method ξ is in the β-core iff it is β-budget
balanced and

∀S′ ⊆ S ⊆ U :
∑

i∈S′

ξ(i, S) ≤ C(S′).

Social Welfare vs. Social Cost. A mechanism M is said to be α-approximate if
it computes a final set SM of social cost at most α times the minimum over
all sets S ⊆ U , i.e., Π(SM) ≤ α · Π(S) for all S ⊆ U . Since u(U) − Π(S) =
u(S) − C(S), the traditional definition of efficiency, and u(U) is a constant, a
set S has minimum social cost iff it has maximum efficiency.

Roughgarden and Sundararajan [25] revealed a relation between the approx-
imability of a Moulin mechanism M(ξ) and a property of the cost sharing
method ξ: Assume we are given an arbitrary order σ on a subset S ⊆ U of
players, i.e., S = {i1, . . . , i|S|}, where ij ≺σ ik if and only if 1 ≤ j < k ≤ |S|.
We define Sj ⊆ S as the (ordered) set of the first j players of S according to
the order σ. A cost sharing method ξ is α-summable if for every ordering σ and
every subset S ⊆ U :

|S|∑

j=1

ξ(ij , Sj) ≤ α · C(S). (2)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

674 J. Brenner and G. Schäfer

Roughgarden and Sundararajan [25] proved that the Moulin mechanism M(ξ)
is (α + β)-approximate and β-budget balanced if the underlying cost sharing
method ξ is α-summable and β-budget balanced. Moreover, the authors argue
that max{α, β} is a lower bound on the approximability of M(ξ).

In this paper, we use [n] to denote the set {1, . . . , n}. Moreover, we define Hn

to be the n-th harmonic number, i.e., Hn :=
∑n

i=1 1/i. As n grows to infinity,
Hn ≈ log n, and we use both values interchangeably.

3 A General Lower Bound on Summability

In this section, we prove a lower bound of Ω(log n) on the summability of cost
sharing methods. Our lower bound holds if the underlying cost function C satis-
fies a certain “stability” property, which is fulfilled by a variety of combinatorial
optimization problems such as facility location, Steiner tree, parallel machine
scheduling, etc. Together with the recent result of Roughgarden and Sundarara-
jan [25], this shows that for several problems, the approximability of Moulin
mechanisms cannot be better than Ω(log n).

Theorem 1. Let ξ be a cost sharing method on a universe U that satisfies the β-
cost recovery condition with respect to a cost function C. Suppose that there is a
set S ⊆ U with |S| ≥ |U |/γ for some constant γ ≥ 1 such that C(S′) ≥ C(S)/δ
for all S′ ⊆ S and some constant δ ≥ 1. Then ξ is not α-summable for any
α < H�n/γ�/(β · δ), where n is the number of players in U .

Proof. It is sufficient to prove that there exists an order σ on U such that

|S|∑

j=1

ξ(ij , Sj) ≥
H�n/γ�
β · δ

· C(S),

where Sj is the set of the first j players in S and ij is the jth player of S (ordered
according to σ).

We construct σ by determining the sets Sj and users ij inductively as follows.
Initially, set j = |S| and assign Sj = S. Now, suppose we have determined sets
S|S|, . . . , Sj . By an average argument, there must exist a user i ∈ Sj such that

ξ(i, Sj) ≥ C(Sj)
β · |Sj |

=
C(Sj)
β · j ≥ C(S)

βδ · j ,

since ξ satisfies the β-cost recovery condition. The last inequality holds because
Sj ⊆ S. Assign ij := i and Sj−1 := Sj \ {ij}.

Let S = {i1, . . . , i|S|} be the set of players in S ordered according to the order
σ constructed above. We have

|S|∑

j=1

ξ(ij , Sj) ≥
(

1 +
1
2

+ · · · +
1

|S|

)

· C(S)
βδ

≥
H�n/γ�

βδ
· C(S),

where we exploit that |S| ≥ n/γ and |S| ∈ N. ��

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cost Sharing Methods for Makespan and Completion Time Scheduling 675

This lower bound applies to many problems, as e.g. to the following ones:

Example 1 (Fixed-tree Multicast Problem). Users are located at vertices of an
undirected graph and wish to receive a broadcasting service which is produced
in a root vertex. The cost of serving a set of users U is the cost of a minimum
spanning tree containing U and the root. An instance fulfilling the conditions of
the above theorem is the one in which all users are located on the same vertex
which is connected to the root by an edge of length 1. There are better lower
bounds for this problem.

Example 2 (Facility Location Problem). Users are located at vertices and wish
to be connected to an open facility. Facilities can be opened at a given subset of
vertices. Here, a sample instance is the one in which there is only one vertex v
at which a facility may be opened, and all users are located directly on v. Then,
the cost of a solution is independent of the number of users and equal to the
opening cost of the facility. This lower bound is tight, as has been shown in [26].

Another example for which Theorem 1 applies is the makespan machine
scheduling problem that we define in Section 4. There, we show that the bound
on summability is tight for this problem.

4 Minimum Makespan Scheduling

We consider the classical minimum makespan scheduling problem. We are given
a set of n jobs N that have to be scheduled on m identical machines. Each
job i ∈ N has a non-negative processing time pi, which is the time needed to
execute i on one of the machines. We denote the completion time of job i by Ci.
Every machine can execute at most one job at a time; preemption of jobs is not
allowed. The objective is to schedule all jobs in N on the m machines such that
the maximum completion time maxi∈N Ci, also called makespan, is minimized.
Following the naming scheme introduced by Graham et al. [7], this problem is
referred to as P | |Cmax.

In a game-theoretic variant of the machine scheduling problem, each job is
associated with a player, who wants her job to be processed on one of the m
machines. We therefore identify the universe of players U with the set of jobs N .
The cost C(S) incurred to schedule all jobs in S is the minimum makespan. We
are interested in designing a cost sharing mechanism for the minimum makespan
scheduling problem that is β-budget balanced and α-approximate for every pos-
sible instance.

Let pmax(S) denote the maximum processing time over all jobs in S. Define
μ(S) as the average machine load, i.e., μ(S) :=

∑
i∈S pi/m. The following fact

is folklore (see, e.g., [12]).

Fact 1. For a given set S ⊆ U of jobs, let C(S) be the makespan of an optimal
schedule for S. The following two inequalities hold:

1. C(S) ≤ μ(S) + (1 − 1
m) · pmax(S);

2. C(S) ≥ max{μ(S), pmax(S)}.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

676 J. Brenner and G. Schäfer

4.1 Cross-Monotonic Cost Shares

Bleischwitz and Monien [3] describe a cross-monotonic cost sharing method ξbm

for the above machine scheduling problem. We briefly review their cost sharing
method.1

We call a job i large with respect to S if pi = pmax(S) and small otherwise.
Let
(S) be the number of large jobs in S. Given a subset S ⊆ U of the jobs, we
define the cost share of i ∈ S as:

ξbm(i, S) :=

⎧
⎪⎪⎨

⎪⎪⎩

pi

m
+

pi − μ(S)

(S)

if pi = pmax(S) and pi > μ(S),

pi

m
otherwise.

(3)

The intuition is as follows: Every job gets a cost share of pi/m. If the average
machine load μ(S) is less than the maximum processing time pmax(S), every
large job additionally obtains an equal share of the cost pmax(S) − μ(S). We
summarize one of the main results of Bleischwitz and Monien [3] in the following
theorem.

Theorem 2. ξbm is a (2m/(m+1))-budget balanced cross-monotonic cost shar-
ing method for the minimum makespan scheduling problem. Moreover, there is
no β-budget balanced cross-monotonic cost sharing method ξ for this problem,
for any β < 2m/(m + 1).

Albeit Theorem 2 proves that the Moulin mechanism M(ξbm), driven by the
cost sharing method ξbm by Bleischwitz and Monien, is optimal with respect to
budget balance, we show below that it is far from being optimal with respect to
social cost. In fact, the social cost of the final set SM output by M(ξbm) can be
as large as n/2 times the optimal social cost, where n is the number of jobs in
the universe U .

Lemma 1. For every n ∈ N, there exists an instance of the minimum makespan
scheduling problem such that the cost sharing method ξbm is not α-summable for
any α < n/2.

Proof. It is sufficient to define an instance of the minimum makespan scheduling
problem on n jobs and a permutation σ for which the cost share sum in (2) with
respect to ξbm is at least n/2 times the minimum makespan.

Let U := {i1, . . . , im} be an (ordered) set of m jobs, where m = n is the
number of machines. Define the processing time of job ij to be pij := 1+(j −1)ε
for all j ∈ [m] and some small ε > 0. Since the number of jobs equals the number
of machines, the makespan of an optimal assignment for U is C(U) = 1+(m−1)ε.

1 At first sight, the cost shares that we state here differ from the ones defined by
Bleischwitz and Monien in [3]. However, it can easily be verified that both definitions
are in fact equivalent; we feel that the definition we present here is more intuitive.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cost Sharing Methods for Makespan and Completion Time Scheduling 677

Observe that the processing time of job ij, j ∈ [m], is maximum among all
jobs in the set Sj = {i1, . . . , ij}, i.e., ij is large. Furthermore, ij is the only large
job in Sj and thus
(Sj) = 1. The average machine workload of Sj is

μ(Sj) =
1
m

j∑

l=1

pil
=

1
m

(

j +
j(j − 1)ε

2

)

≤ 1 + (j − 1)ε = pmax(Sj).

Hence, the cost share that job ij obtains with respect to Sj is

ξbm(ij , Sj) =
pij

m
+ pij − μ(Sj) = pij − μ(Sj−1),

where we define S0 := ∅. We obtain

ξbm(ij , Sj) = (1 + (j − 1)ε) − 1
m

(

(j − 1) +
(j − 1)(j − 2)ε

2

)

≥ 1 − j − 1
m

.

Therefore,
m∑

j=1

ξbm(ij , Sj) ≥ m − m(m − 1)
2m

=
m

2
+

1
2

≥ m

2
(1 + (m − 1)ε) =

m

2
· C(U),

where the last inequality holds if we choose ε sufficiently small. ��
Intuitively, this high summability gives voice to the fact that processing times
exceeding the average workload μ(S) are punished in an unfair manner: Instead
of sharing the additional cost of pmax(S) − μ(S) among all jobs for which pi >
μ(S), only those jobs attaining the maximum processing time come up for it.
We tackle this problem in the next section.

4.2 Approximate Cost Shares

We continue by proposing new cost shares ξbs for the minimum makespan
scheduling problem that are still (2−1/m)-budget balanced and cross-monotonic,
but concurrently log n-summable. This is tight in terms of both budget balance
and summability.

We use a different definition of small and large jobs here: A job i is large with
respect to S iff pi > μ(S) and small otherwise. The cost share of a job i ∈ S
with respect to S is defined as

ξbs(i, S) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pi

m
+

pi∫

μ(S)

1
|{j ∈ S : pj ≥ t}| dt if pi > μ(S),

pi

m
otherwise.

(4)

Intuitively, every job receives a cost share of pi/m. A large job i obtains some
additional cost share: for every time instant t ∈ [μ(S), pi], i shares the cost of
1dt evenly with all other jobs in S whose processing time is at least t.

We show that ξbs is a cost sharing method that satisfies cross-monotonicity
and approximate budget balance and summability.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

678 J. Brenner and G. Schäfer

Theorem 3. ξbs is a cross-monotonic, (2−1/m)-budget balanced and (Hn +1)-
summable cost sharing method for the minimum makespan scheduling problem.

The proof of Theorem 3 follows from Lemmas 2, 3 and 4 that are given below.

Lemma 2. ξbs is cross-monotonic.

Proof. Consider some set S ⊆ U and a job i ∈ S. We prove that if a new job
j /∈ S is added to S, the cost share of i does not increase.

If i was small in S, then it remains small, and hence i’s cost share stays pi/m.
If i was large in S and becomes small in S ∪ {j}, then i’s cost share decreases
to pi/m. It remains to show that the cost share of i does not increase if i stays
large. Note that by adding job j, the number of jobs whose processing time is
at least t for some t ≥ 0 does not decrease. Moreover, we have

pi∫

μ(S)

1
|{j ∈ S : pj ≥ t}| dt ≥

pi∫

μ(S∪{j})

1
|{j ∈ S ∪ {j} : pj ≥ t}| dt,

since μ(S) ≤ μ(S ∪ {j}). This concludes the proof. ��
We show next that the budget balance condition is satisfied.

Lemma 3. ξbs is (2 − 1/m)-budget balanced.

Proof. It is easy to verify that with the cost share definition in (4) we have
∑

i∈S

ξ(i, S) = max{μ(S), pmax(S)}.

By Fact 1, C(S) ≥ max{μ(S), pmax(S)}, which proves competitiveness. More-
over, the cost shares satisfy (2 − 1/m)-cost recovery because

(

2 − 1
m

)

· max{μ(S), pmax(S)} ≥ μ(S) +
(

1 − 1
m

)

pmax(S) ≥ C(S),

where the last inequality follows from Fact 1. ��
Finally, we prove that the cost shares fulfill O(log n)-summability.

Lemma 4. ξbs is (Hn + 1)-summable.

Proof. Let σ be an arbitrary order on the jobs in U , and let S :={i1, . . . , i|S|}⊆ U
be a subset of U ordered according to σ. First, observe that

|S|∑

j=1

ξbs(ij , Sj) ≤
|S|∑

j=1

⎛

⎜
⎝

pij

m
+

pij∫

μ(S)

1
|{k ∈ Sj : pk ≥ t}| dt

⎞

⎟
⎠

≤
|S|∑

j=1

⎛

⎝
pij

m
+

pij∫

0

1
|{k ∈ Sj : pk ≥ t}| dt

⎞

⎠

≤ μ(S) +
|S|∑

j=1

pij∫

0

1
|{k ∈ Sj : pk ≥ t}| dt.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cost Sharing Methods for Makespan and Completion Time Scheduling 679

Fix a point in time t ∈ [0, pmax(S)]. Define r(t) as the number of jobs in S
whose processing time is at least t. Using this definition, we obtain

|S|∑

j=1

pij∫

0

1
|{k ∈ Sj : pk ≥ t}| dt =

pmax(S)∫

0

r(t)∑

r=1

1
r

dt =

pmax(S)∫

0

Hr(t) dt ≤ pmax(S) ·H|S|.

Thus,

|S|∑

j=1

ξbs(ij , Sj) ≤ μ(S)+pmax(S)·H|S| ≤ (Hn+1)·C(S). ��

Lemma 4 is tight, as the following corollary shows.

Corollary 1. Let ξ be a cost sharing method for the minimum makespan
scheduling problem that satisfies the β-cost recovery condition. Then the summa-
bility of ξ is no better than Hn/β.

Proof. Consider an instance that consists of n jobs with unit processing times
and m := n machines. Clearly, C(S) = 1 = C(U) for all S ⊆ U . Theorem 1 now
gives a lower bound of Hn/β. ��

5 Minimum Weighted Completion Time Scheduling

In the minimum weighted completion time scheduling problem, we are given a set
of n jobs N and m identical machines. Each job i ∈ N has a processing time pi

and a weight wi. The objective is to assign all n jobs to the m machines such
that the total weighted completion time

∑
i∈N wiCi is minimized.

In the cost sharing context, we define U := N as before, and let C be the
total weighted completion time of an optimal schedule. We show that the β-core
of this scheduling problem is empty for β < (n + 1)/2.

Theorem 4. Consider the 1-machine minimum completion time scheduling
problem 1| |

∑
i Ci. There is no cost sharing method ξ that is in the β-core for

any β < (n + 1)/2.

Proof. Let U be a set of n jobs and define pi := 1 for each i ∈ U . Clearly,
the optimal cost for every singleton set {i}, i ∈ U , is C({i}) = 1. The β-core
property therefore implies that the cost share of i is at a most 1, i.e., ξ(i, S) ≤ 1
for all i ∈ S and for all S ⊆ U . On the other hand, C(S) = |S|(|S| + 1)/2 for all
S ⊆ U .

The condition of β-cost recovery now implies that for every S ⊆ U

β ≥ C(S)
∑

i∈S ξ(i, S)
≥

|S|(|S|+1)
2

|S| =
|S| + 1

2
. ��

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

680 J. Brenner and G. Schäfer

Since every β-budget balanced cross-monotonic cost sharing method is in the β-
core, this theorem implies the same lower bound for the budget balance factor of
cross-monotonic cost sharing methods for the 1-machine minimum completion
time scheduling problem. Remind that cross-monotonic and n-budget balanced
cost sharing methods trivially exist for these problems.

This result also carries over to all scheduling problems that are generaliza-
tions of the 1-machine minimum completion time scheduling problem, as e.g. the
minimum weighted flow time scheduling problem, and problems with additional
constraints such as release or due dates.

6 Conclusion

We proved that in many cases, efficiency is not approximable within less than
logarithmic factors even with the new approach of social cost. This reduces the
hope to find truly efficient cost sharing mechanisms, while on the other hand
allowing us to evaluate social cost approximation factors in terms of their highest
polylogarithmic power.

We studied cost sharing methods for the two cases of minimum makespan
and minimum completion time scheduling. Our results demonstrate that differ-
ent scheduling problems can behave very differently. While the completion time
setting raises the question of how to handle problems for which the here exam-
ined framework does not allow for any (reasonable) solutions, there are many
more scheduling problems that deserve to be studied.

References

1. A. Archer, J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. Approx-
imation and collusion in multicast cost sharing. Games and Economic Behavior,
47(1):36–71, 2004.

2. A. Archer and E. Tardos. Truthful mechanisms for one-parameter agents. In Proc.
of the 42nd Annual Sympos. on Foundations of Computer Science, pages 482–491.
IEEE Computer Society, 2001.

3. Y. Bleischwitz and B. Monien. Fair cost-sharing methods for scheduling jobs on
parallel machines. In Proc. of the 6th Int. Conf. on Algorithms and Complex-
ity, volume 3998 of Lecture Notes in Comput. Sci., pages 175–186, Berlin, 2006.
Springer.

4. S. Chawla, T. Roughgarden, and M. Sundararajan. Optimal cost-sharing mecha-
nisms for steiner forest problems. submitted to WINE.

5. J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. Hardness results for
multicast cost-sharing. Theoretical Computer Science, 304:215–236, 2003.

6. J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharing the cost of multicast
transmissions. J. Comput. System Sci., 63(1):21–41, 2001. Special issue on internet
algorithms.

7. R. Graham, E. Lawler, J. Lenstra, and A. Rinnooy Kan. Optimization and approx-
imation in deterministic sequencing and scheduling: a survey. Annals of Discrete
Mathematics, 5:287–326, 1979.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cost Sharing Methods for Makespan and Completion Time Scheduling 681

8. J. Green, E. Kohlberg, and J. J. Laffont. Partial equilibrium approach to the free
rider problem. Journal of Public Economics, 6:375–394, 1976.

9. A. Gupta, J. Könemann, S. Leonardi, R. Ravi, and G. Schäfer. An efficient cost-
sharing mechanism for the prize-collecting steiner forest problem. In ACM-SIAM
Sympos. on Discrete Algorithms. ACM Press, 2007. to appear.

10. A. Gupta, A. Srinivasan, and É. Tardos. Cost-sharing mechanisms for network
design. In Proc. of the Seventh Int. Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, 2004.

11. B. Heydenreich, R. Müller, and M. Uetz. Decentralization and mechanism design
for online machine scheduling. unpublished manuscript.

12. D. Hochbaum, editor. Approximation Algorithms for NP-hard Problems. PWS
Publishing Company, 1997.

13. N. Immorlica, M. Mahdian, and V. S. Mirrokni. Limitations of cross-monotonic
cost sharing schemes. In Proc. of the Sixteenth Annual ACM-SIAM Sympos. on
Discrete Algorithms, pages 602–611. ACM Press, 2005.

14. K. Jain and V. Vazirani. Applications of approximation algorithms to cooperative
games. In Proc. of the 33rd Annual ACM Sympos. on the Theory of Computing
(STOC), pages 364–372, 2001.

15. K. Kent and D. Skorin-Kapov. Population monotonic cost allocations on MSTs. In
Proc. of the 6th Int. Conf. on Operational Research (Rovinj, 1996), pages 43–48.
Croatian Oper. Res. Soc., Zagreb, 1996.

16. J. Könemann, S. Leonardi, and G. Schäfer. A group-strategyproof mechanism for
Steiner forests. In Proc. of the Sixteenth Annual ACM-SIAM Sympos. on Discrete
Algorithms, pages 612–619. ACM Press, 2005.

17. J. Könemann, S. Leonardi, G. Schäfer, and S. van Zwam. From primal-dual to
cost shares and back: a stronger LP relaxation for the Steiner forest problem. In
Automata, Languages and Programming, volume 3580 of Lecture Notes in Comput.
Sci., pages 930–942. Springer, Berlin, 2005.

18. A. Kovacs. Fast monotone 3-approximation algorithm for scheduling related ma-
chines. In Proc. of the 13th Annual European Sympos. on Algorithms, Lecture
Notes in Comput. Sci. Springer, 2005.

19. S. Leonardi and G. Schäfer. Cross-monotonic cost sharing methods for connected
facility location games. Theor. Comput. Sci., 326(1-3):431–442, 2004.

20. H. Moulin and S. Shenker. Strategyproof sharing of submodular costs: budget
balance versus efficiency. Econom. Theory, 18(3):511–533, 2001.

21. N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic
Behavior, pages 166–196, 2001.

22. M. Pál and É. Tardos. Group strategyproof mechanisms via primal-dual algo-
rithms. In Proc. of the 44th Sympos. on the Foundations of Computer Science
(FOCS), pages 584–593, 2003.

23. R. Porter. Mechanism design for online real-time scheduling. In Proc. of the ACM
Conference on Electronic Commerce. ACM Press, 2004.

24. K. Roberts. The characterization of implementable choice rules. In J. J. Laffont,
editor, Aggregation and Revelation of Preferences. North-Holland, 1979.

25. T. Roughgarden and M. Sundararajan. New trade-offs in cost-sharing mechanisms.
In STOC, 2006.

26. T. Roughgarden and M. Sundararajan. Approximately efficient cost-sharing mech-
anisms. arXiv report, http://www.arxiv.org/pdf/cs.GT/0606127, June 2006.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.arxiv.org/pdf/cs.GT/0606127

Planar Graphs: Logical Complexity and
Parallel Isomorphism Tests

Oleg Verbitsky�

Institut für Informatik
Humboldt Universität zu Berlin, D-10099 Berlin

verbitsk@informatik.hu-berlin.de

Abstract. We prove that every triconnected planar graph on n ver-
tices is definable by a first order sentence that uses at most 15 variables
and has quantifier depth at most 11 log2 n + 45. As a consequence, a
canonic form of such graphs is computable in AC1 by the 14-dimensional
Weisfeiler-Lehman algorithm. This gives us another AC1 algorithm for
the planar graph isomorphism.

1 Introduction

Let Φ be a first order sentence about graphs in terms of the adjacency and the
equality relations. We say that Φ distinguishes a graph G from a graph H if Φ
is true on G but false on H . We say that Φ defines G if it distinguishes G from
every H non-isomorphic to G. The logical depth of a graph G, denoted by D(G),
is the minimum quantifier depth of a Φ defining G.

The k-variable logic consists of those first order sentences which use at most k
variables (each of the k variables can occur a number of times). The logical width
of a graph G, denoted by W (G), is the minimum k such that G is definable by
a Φ in the k-variable logic. If k ≥ W (G), let Dk(G) denote the logical depth
of G in the k-variable logic. Similarly, for non-isomorphic graphs G and H we
let Dk(G, H) denote the minimum quantifier depth of a k-variable sentence Φ
distinguishing G from H .

The latter parameter is relevant to the Graph Isomorphism problem, namely,
to the k-dimensional Weisfeiler-Lehman algorithm (see [1,5] for the description
and history). Cai, Fürer, and Immerman [1] prove that, if k ≥ W (G) − 1, then
the output of this algorithm is correct for all input pairs (G, H). Furthermore,
this condition on k is necessary if we consider the width of G in the logic with
counting quantifiers. The latter parameter of G, as shown in [1], can be linear in
the number of vertices.

Note that the k-dimensional Weisfeiler-Lehman algorithm is polynomial-time
only if k is constant. Thus, the algorithm can be successful only for classes
of graphs whose width in the logic with counting quantifiers is bounded by a
constant. Cai, Fürer, and Immerman ask if this is the case for planar graphs.
An affirmative answer is given by Grohe [3].
� Supported by an Alexander von Humboldt fellowship.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 682–693, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Planar Graphs: Logical Complexity and Parallel Isomorphism Tests 683

In [5] we extend the approach to Graph Isomorphism suggested in [1] by
taking into consideration not only the dimension but also the number of rounds
performed by the Weisfeiler-Lehman algorithm. It turns out that the logarithmic-
round k-dimensional Weisfeiler-Lehman algorithm is implementable in TC1 and
its count-free version even in AC1. We apply this fact in [5] to show that the
isomorphism problem for graphs of bounded treewidth is in TC1 (earlier Grohe
and Marino [4] proved that such graphs have bounded width in the logic with
counting).

According to [5], to put the isomorphism problem for a class of graphs C in
AC1, it suffices to prove that, for a constant k, we have Dk(G, G′) = O(log n)
for all G and G′ in C. We now apply this approach to planar graphs. Due to
the efficient decomposability of graphs into triconnected components [8], it is
enough to treat the class of triconnected planar graphs.1

Theorem 1. Let G and G′ be non-isomorphic triconnected planar graphs and
let G have n vertices. Then D15(G, G′) < 11 log2 n + 45.

Corollary 2. The isomorphism problem for triconnected planar graphs is solv-
able in AC1 by the logarithmic-round 14-dimensional Weisfeiler-Lehman algo-
rithm.

The seminal polynomial-time algorithm for this problem is designed by Hop-
croft and Tarjan [6,7]. The first AC1 algorithm follows from a work of Miller
and Reif [11]. Another AC1 algorithm is suggested in [5]. Both [11] and [5] start
with AC1 embedding of input graphs (as in [14]) and then use different methods
to test isomorphism of the plane drawings. The new algorithm of Corollary 2
is combinatorially much simpler and more direct. In particular, we now do not
need any embedding procedure. Curiously, the Weisfeiler-Lehman approach to
Graph Isomorphism appeared a bit earlier even than [6,7] (cf. [15]), but only now
we are able to establish that this method, and even its parallel version, works
correctly for triconnected planar graphs.

With not so much extra work, we are able to strengthen Theorem 1.

Theorem 3. For a triconnected planar graph G on n vertices we have D15(G) <
11 log2 n + 45.

In the framework of [5], this means that an appropriate modification of the
logarithmic-round 14-dimensional Weisfeiler-Lehman algorithm computes a
canonic form of a triconnected planar input graph, putting this problem in the
class AC1. Miller and Reif [11] show that the canonization of planar graphs AC1-
reduces to the triconnected case. Using this reduction, we hence obtain a new
AC1-algorithm for the planar graph isomorphism problem.
1 Theorem 1 cannot be extended to biconnected planar graphs. For example, to distin-

guish between two complete bipartite graphs K2,n−1 and K2,n, we need to use n first
order variables. We could try to extend Theorem 1 to all planar graphs by allowing
counting quantifiers but this would require a further delicate analysis (and anyway
would not lead us to Corollary 4 directly, since introducing counting quantifiers
weakens an AC1 bound to a TC1 bound).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

684 O. Verbitsky

Corollary 4. The canonization problem for planar graphs is solvable in AC1.

Theorem 3 is also a contribution in a recent line of research [10,12,13] devoted
to a general study of the logical depth D(G) as a mysterious graph invariant.

Sections 2 and 3 contain the necessary preliminaries. The proof of Theorem
1 takes Sections 4 and 5. Theorem 3 is proved in Section 6.

2 Ehrenfeucht-Fräıssé Games

Here we introduce the main technical tool for establishing first order definability
properties of finite structures. Let G and G′ be graphs with disjoint vertex
sets. The r-round k-pebble Ehrenfeucht-Fräıssé game on G and G′, denoted by
Ehrk

r (G, G′), is played by two players, Spoiler and Duplicator, with k pairwise
distinct pebbles p1, . . . , pk, each given in duplicate. Spoiler starts the game. A
round consists of a move of Spoiler followed by a move of Duplicator. At each
move Spoiler takes a pebble, say pi, selects one of the graphs G or G′, and places
pi on a vertex of this graph. In response Duplicator should place the other copy
of pi on a vertex of the other graph. It is allowed to move previously placed
pebbles to another vertex and place more than one pebble on the same vertex.

After each round of the game, for 1 ≤ i ≤ k let xi (resp. x′
i) denote the vertex

of G (resp. G′) occupied by pi, irrespectively of who of the players placed the
pebble on this vertex. If pi is off the board at the moment, xi and x′

i are unde-
fined. If after each of r rounds the component-wise correspondence (x1, . . . , xk)
to (x′

1, . . . , x
′
k) is a partial isomorphism from G to G′, this is a win for Duplicator;

Otherwise the winner is Spoiler.
Let v̄ = (v1, . . . , vm) and v̄′ = (v′1, . . . , v

′
m) be sequences of vertices in, respec-

tively, G and G′ and let m ≤ k. We write Ehrk
r (G, v̄, G′, v̄′) to denote the game

that begins from the position where, for every i ≤ m, the vertices vi and v′i are
already pebbled by pi.

Proposition 5. (Immerman, Poizat, see [9, Theorem 6.10]) Dk(G, G′)
equals the minimum r such that Spoiler has a winning strategy in Ehrk

r (G, G′).

All the above definitions and statements have a perfect sense for any kind of
structures. Say, in Section 5 we deal with structures having ternary and quater-
nary relations. The notion of a partial isomorphism for such structures should
be understood appropriately.

For our convenience, everywhere below it is assumed that vertex names cor-
respond to pebbling; for example, vertices v in G and v′ in G′ are always under
the same pebbles. Furthermore, we will write Spoiler wins with meaning that
Spoiler has a strategy winning against any Duplicator’s strategy.

3 Graph-Theoretic Notation and Definitions

The vertex set of a graph G is denoted by V (G). The distance between vertices
u and v is denoted by d(u, v). If u and v are in different connected components,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Planar Graphs: Logical Complexity and Parallel Isomorphism Tests 685

we set d(u, v) = ∞. The set Γ (v) = {u : d(u, v) = 1} is called the neighborhood
of a vertex v in G and deg v = |Γ (v)| is the degree of v.

A graph is k-connected if it has at least k + 1 vertices and remains connected
after removal of any k − 1 vertices. Biconnected and triconnected graphs corre-
spond to k = 2, 3.

A sphere graph is a graph drawn in a sphere with no edge crossing. A spherical
embedding of a graph G is an isomorphism from G to a sphere graph G̃. As very
well known, a graph G is planar iff it has a spherical embedding. Two spherical
embeddings σ : G → G̃ and τ : G → Ĝ are equivalent if the isomorphism τ ◦σ−1

is induced by a homeomorphism of a sphere taking G̃ onto Ĝ. A classical theorem
of Whitney says that all spherical embeddings of a triconnected planar graph G
are equivalent (see, e.g., [2]).

Throughout the paper log n denotes the binary logarithm. Unless stated oth-
erwise, n will denote the number of vertices in a graph G.

4 Capturing Unique Embeddability by First Order
Formalism

To prove Theorem 1, we have to design a strategy allowing Spoiler to win the
Ehrenfeucht-Fräıssé game on non-isomorphic triconnected planar graphs G and
G′ with 15 pebbles in less than 11 logn + 45 rounds. A crucial fact on which the
strategy will be based is the rigidity of triconnected planar graphs as stated in the
Whitney theorem. In this section we aim at developing an important ingredient
of the strategy forcing Duplicator to respect this rigidity at least locally.

A configuration C in a graph G is a set of labeled vertices of G. In fact, labels
will be the pebbles in an Ehrenfeucht-Fräıssé game. At the same time we will
often use a label as a name of a vertex. By an X-configuration we mean 5 pairwise
distinct vertices labeled by x, y, u, v, and w such that x, y, u, v ∈ Γ (w). By an H-
configuration we mean 6 pairwise distinct vertices labeled by x, y, z, u, v, and w
such that z and w are adjacent, x, y ∈ Γ (z), and u, v ∈ Γ (w). Thus, contraction
of the edge {z, w} makes an H-configuration an X-configuration. Suppose that
G is a triconnected planar graph and consider its unique spherical embedding.
We call an X-configuration C collocated if u, x, y, v occur around w exactly in
this order (up to cyclic shifts and the direction of a roundabout way). We call an
H-configuration C collocated if xzwu and yzwv are segments of the two facial
cycles containing the edge {z, w}. A configuration obtained from a collocated X-
or H-configuration by interchanging the labels x and y will be called a twisted
configuration.

We will treat X- and H-configurations uniformly, setting z = w for X-
configurations. Whenever we use the term configuration alone, it will refer to
any X- or H-configuration.

Lemma 6. Let G and G′ be triconnected planar graphs, G having n vertices.
Let C = {x, y, z, u, v, w} and C′ = {x′, y′, z′, u′, v′, w′} be sets of pebbled vertices
in, respectively, G and G′ such that C is a collocated configuration and C′ is a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

686 O. Verbitsky

twisted configuration. Starting with this position, Spoiler wins the Ehrenfeucht-
Fräıssé game on G and G′ with 15 pebbles in less than 6 log n + 26 moves.

The proof of Lemma 6 is omitted due to space limitation and can be found
in [16].

5 Proof of Theorem 1

Lemma 6 allows us to reduce the Ehrenfeucht-Fräıssé game on G and G′ to the
game on their spherical embeddings (which are unique by the Whitney theo-
rem). We use two combinatorial specifications for the concept of an embedding.
One is a standard notion of a rotation system. The other is a related, but in a
sense “poorer”, notion of a layout system (see Subsections 5.1 and 5.3 for the
definitions). Denote the rotation and the layout systems for G and G′ by R and
R′ and by L and L′ respectively. As we proved in [5], every rotation system is
succinctly definable, in particular, Spoiler has an efficient winning strategy in
the Ehrenfeucht-Fräıssé game on R and R′. In Subsection 5.2 we will see that
Spoiler can win the game on L and L′ by emulating the game on R and R′. In
its turn, Lemma 6 allows Spoiler to win the game on G and G′ by emulating the
game on L and L′. This emulation is presented in Subsection 5.4. After all these
steps are made, the proof of Theorem 1 in Subsection 5.5 follows easily.

5.1 Two Specifications of a Graph Embedding

The following definitions are introduced for a connected graph G with minimum
vertex degree at least 3.

A rotation system R = 〈G, T 〉 is a structure consisting of a graph G and a
ternary relation T on V (G) satisfying the following conditions:

(1) If T (a, b, c), then b and c are in Γ (a), the neighborhood of a in G.
(2) For every a the binary relation Ta(b, c) = T (a, b, c) is a directed cycle on

Γ (a) (i.e., for every b there is exactly one c such that Ta(b, c), for every c there
is exactly one b such that Ta(b, c), and the digraph Ta is connected).

If G is embedded in a surface, it is supposed that Ta describes the circular
order in which the edges of G incident to a occur if we go around a clockwise.

Given a rotation system R = 〈G, T 〉, we define another rotation system R∗ =
〈G, T ∗〉 by T ∗

a (b, c) = Ta(c, b) and call it the conjugate of R. Geometrically, R∗

is a variant of R if we look at R from the other side of the surface. Obviously,
(R∗)∗ = R.

A layout system L = 〈G, T, Q〉 is a structure consisting of a graph G and
two relations on V (G), ternary T and quaternary Q, satisfying the following
conditions:

(1) If T (a, b, c), then b and c are in Γ (a). Furthermore, for every a the bi-
nary relation Ta(b, c) = T (a, b, c) is an undirected cycle on Γ (a) (that is, Ta is
symmetric, irreflexive, and connected).

(2) If Q(b1, a1, a2, b2), then b1, a1, a2, b2 is a path in G or, if b1 = b2, it is a
cycle. Every pair (a1, a2) with a1 and a2 adjacent in G extends to exactly two

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Planar Graphs: Logical Complexity and Parallel Isomorphism Tests 687

quadruples (b1, a1, a2, b2) and (c1, a1, a2, c2) satisfying Q. Moreover, for both i =
1, 2, the bi and ci are the neighbors of a3−i in the cycle Tai , that is, T (ai, a3−i, bi)
and T (ai, a3−i, ci) are both true.

Relations T and Q also have clear geometric meaning. Namely, Ta determines
the (undirected) circular order in which the edges of G incident to a are em-
bedded. Note that now we specify no clockwise (or counter-clockwise) direction
around a. This is the point where a layout system deviates from a rotation sys-
tem. Thus, if a vertex a1 and its neighborhood are already embedded and a2

is adjacent to a1, we have still two different ways to embed the neighborhood
of a2. The proper choice is determined by Q. Namely, it is supposed that the
facial cycle going via b1, a1, a2 goes further via b2 and the facial cycle going via
c1, a1, a2 goes further via c2.

Given a rotation system R = 〈G, TR〉, we associate with it a layout system
L(R) = 〈G, TL, Q〉 according to the geometric meaning. Namely, TL is defined by
TL(a, b, c) = TR(a, b, c)∨TR(a, c, b). To define Q, we first introduce the successor
and the predecessor functions on Γ (a), sa and pa, by the equalities c = sa(b)
and b = pa(c) if TR(a, b, c) = 1. Now we set the following two relations true:
Q(pa1(a2), a1, a2, sa2(a1)) and Q(sa1(a2), a1, a2, pa2(a1)). As easily seen, L(R) =
L(R∗).

Let L = L(R). The following simple lemma says that the pair {R, R∗} is
reconstructible from L.

Lemma 7. If L(R′) = L(R), then either R′ = R or R′ = R∗.

In fact, Lemma 7 is essentially strengthened below, see Lemma 10. The following
result is obtained in [5, Theorem 10].

Theorem 8. For a rotation system R = 〈G, T 〉, we have D5(R) < 3 log n + 8.

5.2 Reducing the Play on Layout Systems to the Play on Rotation
Systems

Lemma 9. Let R = 〈G, T 〉 and R′ = 〈G, T ′〉 be rotation systems. Let L =
L(R) and L′ = L(R′). Suppose that, while T (a1, b1, c1) = T (a2, b2, c2) = 1
in R, in R′ we have T ′(a′

1, b
′
1, c

′
1) = T ′(a′

2, c
′
2, b

′
2) = 1. Then Spoiler wins

Ehr92 log n+4(L, a1, b1, c1, a2, b2, c2, L
′, a′

1, b
′
1, c

′
1, a

′
2, b

′
2, c

′
2).

Proof. Case 1: a1 = a2 = a. Correspondingly, suppose that a′
1 = a′

2 = a′. The
case that {b1, c1} and {b2, c2} intersect is simple; we hence suppose that all these
vertices are pairwise distinct. Spoiler restricts play to the graphs Ta \ {b1, b2}
and T ′

a′ \ {b′1, b
′
2}, where Ta and T ′

a′ denote undirected cycles in the structures
L and L′. In these graphs d(c1, c2) = ∞ while d(c′1, c

′
2) < ∞ and hence Spoiler

wins in less than log deg a + 1 moves using the standard halving strategy.
Case 2: a1 and a2 are adjacent. It suffices to consider a special subcase where

b1 = a2 and b2 = a1. Spoiler can force either this subcase or Case 1 in 2
extra moves. By the definition of L(R), we have Q(c1, a1, a2, c2) = 0 whereas
Q′(c′1, a′

1, a
′
2, c

′
2) = 1, which is a win for Spoiler.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

688 O. Verbitsky

Case 3: d(a1, a2) ≥ 2. Spoiler reduces this case to Case 2 in �log d(a1, a2)�
moves. He first pebbles a vertex a3 on the midway between a1 and a2 and
then two more vertices b3, c3 so that T (a3, b3, c3) = T (ai, bi, ci), i = 1, 2. For
Duplicator’s response a′

3, b
′
3, c

′
3, assume that one of the relations T ′(a′

3, b
′
3, c

′
3) or

T ′(a′
3, c

′
3, b

′
3) is true for else Spoiler has already won. We have either T ′(a′

3, b
′
3, c

′
3)

= T ′(a′
1, b

′
1, c

′
1) or T ′(a′

3, b
′
3, c

′
3) = T ′(a′

2, b
′
2, c

′
2). In either case, one of the tuples

(ai, bi, ci, a3, b3, c3), for i = 1 or i = 2, is similar to the initial position, while the
distance between the two a-vertices has decreased. Spoiler just iterates this trick
sufficiently many times.

Let W (S, S′) denote the minimum k such that non-isomorphic structures S and
S′ are distinguishable in the k-variable logic.

Lemma 10. Let R = 〈G, T ′〉 and R′ = 〈G, T 〉 be rotation systems such that
neither R′ ∼= R nor R′ ∼= R∗. Suppose that m ≥ max{W (R, R′), W (R∗, R′)} and
set k = 3 + max{m, 6}. Let L = L(R) and L′ = L(R′). Then

Dk(L, L′) ≤ max{Dm(R, R′), Dm(R∗, R′)} + 2 log n + 7.

Proof. We design a strategy for Spoiler in Ehrk(L, L′). In the first three rounds
he pebbles vertices a0, b0, c0 in V (G) so that T (a0, b0, c0) = 1. Denote Du-
plicator’s responses by a′

0, b
′
0, c

′
0 and suppose that either T ′(a′

0, b
′
0, c

′
0) = 1 or

T ′(a′
0, c

′
0, b

′
0) = 1 (otherwise Spoiler has won). Without loss of generality, sup-

pose the former (otherwise just interchange b0 and c0 and consider R∗ and T ∗

instead of R and T). Starting from the 4-th round, Spoiler emulates Ehrm(R, R′)
keeping the pebbles on a0, b0, c0. His win in this game means that either the
equality, or the adjacency in G, or the ternary relation is violated. The former
two cases imply also Spoiler’s win in Ehrk(L, L′). In the latter case we arrive
at the conditions of Lemma 9 and Spoiler needs no more than 2 logn + 4 extra
moves to win.

5.3 The Layout and the Rotation System of a Triconnected Planar
Graph

Let σ be an embedding of a connected graph G with minimum degree at least 3
in a sphere. Recall that, by definition, σ is an isomorphism from G to a sphere
graph G̃. We define the rotation system Rσ = 〈G, Tσ〉 according to a natural
geometric meaning. Namely, for a ∈ V (G) and b, c ∈ Γ (a) we have Tσ(a, b, c) = 1
if, looking at the neighborhood of σ(a) in G̃ from the standpoint at the sphere
center, σ(b) is followed by σ(c) in the clockwise order. Note that R∗

σ corresponds
to the view on G̃ from the outside. We can define the layout system Lσ also
geometrically, as described in Subsection 5.1. Equivalently, we set Lσ = L(Rσ).

Let σ : G → G̃ and τ : G → Ĝ be two spherical embeddings of G. Suppose
that they are equivalent, that is, τ ◦ σ−1 is induced by a homeomorphism from
the sphere where G̃ is drawn onto the sphere where Ĝ is drawn. Since τ ◦ σ−1

takes a facial cycle to a facial cycle, we have Lσ = Lτ . By Lemma 7, we also
have {Rσ, R∗

σ} = {Rτ , R∗
τ}.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Planar Graphs: Logical Complexity and Parallel Isomorphism Tests 689

Given a triconnected planar graph G, we define LG = Lσ and RG = Rσ for
σ being an arbitrary embedding of G in a sphere. By the Whitney theorem, the
definition does not depend on a particular choice of σ if we agree that RG is
defined up to taking the conjugate.

5.4 Reducing the Play on Graphs to the Play on Layout Systems

Lemma 11. Suppose that G and G′ are non-isomorphic triconnected planar
graphs. Let LG = 〈G, T, Q〉 and LG′ = 〈G′, T ′, Q′〉.
1. If T (a, b, c) = T ′(a′, b′, c′), then Spoiler wins Ehr156 log n+28(G, a, b, c, G′, a′,

b′, c′).
2. If Q(b1, a1, a2, b2) = Q′(b′1, a′

1, a
′
2, b

′
2), then Spoiler wins Ehr156 log n+30(G, b1,

a1, a2, b2, G
′, b′1, a

′
1, a

′
2, b

′
2).

Proof. 1. Let b, c ∈ Γ (a) and b′, c′ ∈ Γ (a′). Suppose that T (a, b, c) = 0 while
T ′(a′, b′, c′) = 1 (the other case is symmetric). The former condition implies
that deg a ≥ 4 and in the embedding of G the vertices b and c are separated by
vertices s, t ∈ Γ (a) \ {b, c}. Spoiler pebbles such s and t. Let Duplicator respond
with s′, t′ ∈ Γ (a′) \ {b′, c′}. Without loss of generality, suppose that, if in the
embedding of G′ we go around a′ in the order b′, c′ and so on, then we meet s′

before t′ (otherwise just change the notation by transposing s and t).

Consider X-configurations C = u x y v w
s b t c a

and C′ = u′ x′ y′ v′ w′

s′ b′ t′ c′ a′ . Here the

bottom row consists of vertices and the top row of their labels. Clearly, C is

collocated. Since the configuration C̃′ =
u′ x′ y′ v′ w′

s′ t′ b′ c′ a′ is collocated, the C′ is

twisted. By Lemma 6, Spoiler wins having made at most 6 log n + 28 moves in
total.

2. Let, say, Q(b1, a1, a2, b2) = 0 and Q′(b′1, a
′
1, a

′
2, b

′
2) = 1. Assume that we are

not in the conditions of Item 1 and that the equality relation is always respected
by Duplicator. In particular, T (a2, a1, b2) = T (a1, a2, b1) = 1. It easily follows
that b′1 = b′2 and that neither of the facial cycles going through a1a2 is a triangle.

Spoiler pebbles the vertices c1 and c2 in G such that C = x y z u v w
c2 b2 a2 b1 c1 a1

is a

collocated H-configuration. Denote Duplicator’s responses by c′1 and c′2. Unless

we arrive at the conditions of Item 1, the configuration C′ = x′ y′ z′ u′ v′ w′

c′2 b′2 a′
2 b′1 c′1 a′

1
is

twisted and Spoiler wins by Lemma 6.

Lemma 12. Suppose that G and G′ are non-isomorphic triconnected planar
graphs. Denote L = LG and L′ = LG′ . Let m ≥ W (L, L′) and k = max{m, 15}.
Then

Dk(G, G′) ≤ Dm(L, L′) + 6 logn + 30.

Proof. We have to design a strategy for Spoiler in Ehrk(G, G′). He emulates
Ehrm(L, L′) following an optimal strategy for this game. His victory in Ehrm(L,
L′) means that one of the conditions of Lemma 11 is met and hence Spoiler
needs 6 log n + 30 extra moves to win Ehrk(G, G′).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

690 O. Verbitsky

5.5 Finishing the Proof of Theorem 1

Let L = LG and L′ = LG′ . Let R = RG and R′ = RG′ (any of the two conjugated
variants can be taken). Applying successively Lemmas 12, 10, and 8, we get

D15(G, G′) ≤ D15(L, L′) + 6 log n + 30
≤ max{D5(R, R′), D5(R∗, R′)} + 8 logn + 37
< 11 logn + 45.

6 Defining a Triconnected Planar Graph (Proof of
Theorem 3)

We now prove Theorem 3. It differs from Theorem 1, which we already proved,
by allowing G′ to be an arbitrary graph non-isomorphic to G. Luckily, the proof
techniques we used for Theorem 1 are still applicable. The idea is to show that
for every G′ one of two possibilities must be the case: Either G′ even locally
is far from being triconnected planar and Spoiler can efficiently exploit this
difference or G′ is locally indistinguishable from a triconnected planar graph,
in particular, with G′ we can naturally associate a rotation system, and hence
Spoiler can apply the strategy of Theorem 1 designed for triconnected planar
graphs.

Let G be a triconnected planar graph on n vertices. We use the tight con-
nection between logical distinguishability of two structures and the Ehrenfeucht-
Fräıssé game on these structures. Lemma 6 for X-configurations can be rephrased
as follows: For every collocated X-configuration C in G and every twisted X-
configuration T in a triconnected planar graph H (a possibility that H ∼= G is
not excluded), there is a first order formula ΦC,T (w, x, y, v, u) of quantifier depth
less than 6 logn+26 with 15 variables, of which the variables w, x, y, v, u are free,
such that G, C |= ΦC,T and H, T |= ΦC,T . Similar formulas ΨC,T (z, w, x, y, v, u)
exist for H-configurations.

Given a collocated X-configuration C in G, define ΦC to be the conjunc-
tion of ΦC,T over all twisted configurations T . A problem with this definition
is that there are infinitely many triconnected planar graphs H and twisted X-
configurations T in them. However, every ΦC,T has quantifier depth at most
6 logn + 26 and, as well known, over a finite vocabulary there are only finitely
many inequivalent first order formulas of a bounded quantifier depth. If ΦC,T1

and ΦC,T2 are logically equivalent, then we put in ΦC only one of these formulas
thereby making ΦC well-defined. Furthermore, we define Φ(w, x, y, v, u) to be the
disjunction of ΦC over all collocated X-configurations C in G. We also suppose
that Φ explicitly says that x, y, v, u are pairwise distinct and all adjacent to w.

Similarly, for H-configurations we define a formula Ψ(z, w, x, y, v, u) by Ψ =∨
C(

∧
T ΨC,T).

Notice that the order of variables we have chosen for Φ(w, x, y, v, u) plays
some role. Namely, if the 5-tuple (w, x, y, v, u) is a collocated X-configuration
as defined in Section 4, then in the embedding of G the vertices x, y, v, u occur

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Planar Graphs: Logical Complexity and Parallel Isomorphism Tests 691

around w in the order as written. Introduce two permutations σ = (xyvu) and
τ = (xu)(yv). The former corresponds to the cyclic shift of the four vertices
around w, the latter corresponds to a reflection (changing the direction around
w). Define

Φ̂(w, x, y, v, u) =
1∧

i=0

3∧

j=0

Φ(w, τ iσj(x), τ iσj(y), τ iσj(v), τ iσj(u)).

We now make an important observation: Φ̂ has a clear geometric meaning for
5-tuples of vertices of G.

Lemma 13. Let a ∈ V (G) and bj ∈ Γ (a) for all j ≤ 4. In the embedding of
G, the vertices b1, b2, b3, b4 occur around a in the order as written if and only if
G, a, b1, b2, b3, b4 |= Φ̂.

Proof. Indeed, suppose that b1, b2, b3, b4 is a right order around a. Then the X-

configuration C = x y v u w
b1 b2 b3 b4 a

is collocated and remains so after reassigning the

labels x, y, v, u with respect to the permutation τ iσj for any i and j. It remains
to notice that Φ is true for any collocated X-configuration by construction.

For the opposite direction, suppose that b1, b2, b3, b4 is a wrong order around
a. Consistently with the previous notation, let σ = (1234) and τ = (14)(23). A
key observation here is that, for some permutation π = τ iσj , the X-configuration

T = x y v u w
bπ(1) bπ(2) bπ(3) bπ(4) a

is twisted. By the definition of ΦC,T , we have

G, a, bπ(1), bπ(2), bπ(3), bπ(4) |= ¬ΦC,T for every collocated X-configuration C in
G. It follows that G, a, bπ(1), bπ(2), bπ(3), bπ(4) |= ¬ΦC for every C and hence
G, a, bπ(1), bπ(2), bπ(3), bπ(4) |= ¬Φ. Equivalently, we have G, a, b1, b2, b3, b4 |=
¬Φ(w, π(x), π(y), π(v), π(u)). Thus, G, a, b1, b2, b3, b4 |= ¬Φ̂(w, x, y, v, u), as
required.

Let ∼ denote the adjacency relation. Define a first order statement

AG = ∀x, y1, y2, y3, y4

(
4∧

i=1

yi ∼ x ∧
∧

i�=j

¬(yi = yj) →

(

Φ̂(x, y1, y2, y3, y4) ∨ Φ̂(x, y2, y1, y3, y4) ∨ Φ̂(x, y1, y3, y2, y4)
)

∧
(

Φ̂(x, y1, y2, y3, y4) → ¬Φ̂(x, y2, y1, y3, y4) ∧ ¬Φ̂(x, y1, y3, y2, y4)
))

,

The quantifier depth of AG is at most 6 log n+31. Note that y1y2y3y4, y2y1y3y4,
and y1y3y2y4 are the three possible arrangements of four vertices up to the
action of the dihedral group D4 = {τ iσj}i,j . Saying that exactly one of these
arrangements corresponds to the geometric order around x, the AG is true on G.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

692 O. Verbitsky

Suppose now that G′ is an arbitrary graph non-isomorphic to G. We have to
bound D15(G, G′) from above. We assume that G′ is connected and has minimum
degree at least 3; otherwise Spoiler wins fast. If G′ |= AG, then G and G′ are
distinguished by AG and hence D15(G, G′) ≤ 6 logn + 31.

Suppose that G′ |= AG. The AG ensures that, for every vertex a in G′ and
b1, b2, b3, b4 ∈ Γ (a), we have a unique (up to shifting and redirecting) ordering of
b1, b2, b3, b4 satisfying Φ̂(x, y1, y2, y3, y4). We use it to associate with G′ a layout
system L′ = 〈G′, T ′, Q′〉 (as if this ordering corresponds to some embedding
of G′). Given a ∈ V (G′) of degree at least 4, we first want to define pairs
b, c ∈ Γ (a) such that b and c are neighboring in this “pseudo-embedding” of G′.

We let N(a, b, c) = ¬∃s, t Φ̂(a, b, s, c, t). Consider a first order sentence

BG = ∀a, b
(

deg a ≥ 4 ∧ b ∼ a → ∃=2 c N(a, b, c)
)

(written with harmless shorthands). This sentence has a clear geometric meaning
and is true on G. If G′ |= BG, then G and G′ are distinguished by BG and we
are done.

Suppose that G′ |= BG. We are now able to define a ternary relation T ′ on
V (G′). Suppose that b′, c′∈Γ (a′) and b′ =c′. If deg a′ = 3, we set T ′(a′, b′, c′) = 1.
Let deg a′ ≥ 4. In this case we set T ′(a′, b′, c′) = 1 iff N(a′, b′, c′) is true.

The BG ensures that, for every a′, T ′
a′ is a union of cycles. If T ′

a′ is discon-
nected for some a′, Spoiler wins fast. He first pebbles the a′. Denote Duplicator’s
response in G by a. Spoiler restricts further play to Γ (a) and Γ (a′) and follows
his winning strategy in the game on graphs (TG)a and T ′

a′ , one of which is
connected and the other is not. Spoiler’s win in this game entails disagreement
N(a, b, c) = N(a′, b′, c′) for some pebbled b, c in G and the corresponding b′, c′ in
G′. In the next two moves Spoiler forces disagreement between the truth values
of Φ̂ on some 5-tuples and wins in 6 logn + 26 extra moves.

Suppose hence that T ′
a′ is connected for every a′, i.e, is a cycle on Γ (a′).

Similarly to the above, we can use the formula Ψ to construct a sentence ΛG of
quantifier depth at most 6 logn + 32 providing us with the following dichotomy.
If G′ |= ΛG, the G and G′ are distinguished by ΛG and we are done. Otherwise Ψ
in a natural way determines a quaternary relation Q′ such that L′ = 〈G′, T ′, Q′〉
is a layout system.

We have to consider the latter possibility. In its turn, it splits into two cases.
If L′ = L(R′) for no rotation system R′, this means that, if we fix a triple
a′
1, b

′
1, c

′
1 with T ′(a′

1, b
′
1, c

′
1) = 1 and set T ′

R′(a′
1, b

′
1, c

′
1) = 1, then there are a triple

a′
2, b

′
2, c

′
2 and two a′

1-a
′
2-paths P1 and P2 such that propagation of the truth value

of T ′
R′(a′

1, b
′
1, c

′
1) along P1 and P2 gives different results, say, T ′

R′(a′
2, b

′
2, c

′
2) = 1

for P1 and T ′
R′(a′

2, c
′
2, b

′
2) = 1 for P2. Spoiler pebbles a′

1, b
′
1, c

′
1, a

′
2, b

′
2, c

′
2. Let

Duplicator respond with a1, b1, c1, a2, b2, c2 in G. Suppose that TR(a1, b1, c1) = 1
for R ∈ {RG, R∗

G}. Spoiler wins similarly to the proof of Lemma 9, using P1 if
TR(a2, c2, b2) = 1 and P2 if TR(a2, b2, c2) = 1. This argument works only if P1

and P2 are not too long. It is not hard to show that, if the diameter of G′ is
smaller than n, then we have a choice of such paths with P1 of length less than

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Planar Graphs: Logical Complexity and Parallel Isomorphism Tests 693

n and P2 of length less than 2n. The case of G and G′ having different diameters
is easy for Spoiler.

If L′ = L(R′) for some rotation system R′, then Spoiler plays as if G′ was a
triconnected planar graph. Namely, he follows the strategy of Section 5 using L′

for LG′ and R′ for RG′ . Spoiler’s win in this simulation means that he forces
pebbling some tuples of vertices in G and G′ on which the formula Φ or the for-
mula Ψ disagree, and hence logarithmically many extra moves suffice for Spoiler
to have a win in Ehr15(G, G′). The proof is complete.

Acknowledgment. I acknowledge valuable discussions with Martin Grohe on
the topic and am grateful to Hans-Jürgen Prömel for his kind hospitality during
my two-year research stay at the Humboldt-University of Berlin.

References

1. Cai, J.-Y., Fürer, M., Immerman, N.: An optimal lower bound on the number of
variables for graph identification. Combinatorica 12 (1992) 389–410

2. Diestel, R.: Graph theory. Springer-Verlag (2006)
3. Grohe, M.: Fixed-point logics on planar graphs. In: Proc. of the Ann. Conf. on

Logic in Computer Science (1998) 6–15
4. Grohe, M., Marino, J.: Definability and descriptive complexity on databases of

bounded tree-width. In: Proc. of the 7th Int. Conf. on Database Theory. Lecture
Notes in Computer Science, Vol. 1540. Springer-Verlag (1999) 70–82

5. Grohe, M., Verbitsky, O.: Testing graph isomorphism in parallel by playing a game.
In: Automata, Languages and Programming (ICALP 2006). Lecture Notes in Com-
puter Science, Vol. 4051. Springer-Verlag (2006) 3–14

6. Hopcroft J.E.: An n log n algorithm for isomorphism of planar triply connected
graphs. Technical Report CS-192. Stanford University (1971)

7. Hopcroft, J.E., Tarjan, R.E.: Isomorphism of planar graphs (working paper). In:
Complexity of computer computations. Plenum Press (1972) 131–152

8. Hopcroft, J.E., Tarjan, R.E.: Deviding a graph into triconnected components.
SIAM Journal on Computing 2 (1973) 135–158

9. Immerman, N.: Descriptive complexity. Springer-Verlag (1999)
10. Kim, J.-H., Pikhurko, O., Spencer, J., Verbitsky, O.: How complex are random

graphs in first order logic? Random Structures and Algorithms 26 (2005) 119–145
11. Miller, G.L., Reif, J.H.: Parallel tree contraction. Part 2: further applications. SIAM

J. Comput. 20 1128–1147
12. Pikhurko, O., Spencer, J., Verbitsky, O.: Succinct definitions in first order graph

theory. Annals of Pure and Applied Logic 139 (2006) 74–109
13. Pikhurko, O., Veith, H., Verbitsky, O.: First order definability of graphs: tight

bounds on quantifier rank. Discrete Applied Mathematics 154 (2006) 2511–2529
14. Ramachandran, V., Reif, J.: Planarity testing in parallel. J. Comput. Syst. Sci. 49

(1994) 517–561
15. Weisfeiler, B.Yu., Lehman, A.A.: A reduction of a graph to a canonical form and

an algebra arising during this reduction (in Russian). Nauchno-Technicheskaya
Informatsia, Seriya 2. 9 (1968) 12–16

16. Verbitsky, O.: Planar graphs: Logical complexity and parallel isomorphism tests.
E-print (2006) http://arxiv.org/abs/cs.CC/0607033

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Enumerating All Solutions for Constraint
Satisfaction Problems�

Henning Schnoor and Ilka Schnoor

Institut für Theoretische Informatik, Universität Hannover, Appelstr. 4, 30167
Hannover, Germany

{henning, ilka}.schnoor@thi.uni-hannover.de

Abstract. We contribute to the study of efficient enumeration algo-
rithms for all solutions of constraint satisfaction problems. The only al-
gorithm known so far, presented by Creignou and Hébrard [CH97] and
generalized by Cohen [Coh04], reduces the enumeration problem for a
constraint language Γ to the decision problem for a slightly enlarged
constraint language Γ+, i.e., it yields an efficient enumeration algorithm
for the case where CSP(Γ+) is tractable. We develop a new class of al-
gorithms, yielding efficient enumeration algorithms for a broad class of
constraint languages. For the three-element domain, we achieve a first
step towards a dichotomy theorem for the enumeration problem.

Keywords: computational complexity, constraints, enumeration.

1 Introduction

Constraint satisfaction problems (CSPs) have attracted considerable attention
in complexity theory. Especially the non-uniform version of the problem, CSP(Γ)
has been studied. Here, we fix a constraint language Γ, which is a set of fini-
tary relations over an arbitrary domain. The problem CSP(Γ) is the satisfiability
problem for propositional formulas, where the form of the clauses appearing is
restricted by Γ, so-called Γ -formulas. If the domain is Boolean, then these prob-
lems generalize many common restrictions of the satisfiability problem (2SAT,
3SAT, Horn-SAT, etc). In the non-Boolean case, CSP(Γ) can generalize problems
as colorability in graphs, scheduling problems, database queries, and others. In
fact, most combinatorial problems where the goal is to find some assignment to
variables which needs to satisfy a collection of “local” conditions can be seen as
a CSP. Due to this property, CSPs can be seen as the “combinatorial core of
complexity theory” [CKS01], and are of interest for theoretical reasons as well.

The complexity of CSP(Γ) was first studied by Thomas Schaefer. In his sem-
inal paper [Sch78], he showed that in the Boolean case, this problem is always
solvable either in polynomial time, or is NP-complete, and he gave easy criteria
for Γ which allow for a polynomial time decision procedure. The study of con-
straint satisfaction problems becomes much more challenging when considering
non-Boolean domains. For example, Bulatov proved that an analog of Schaefer’s
� Supported in part by grant DFG VO 630/5-2.

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 694–705, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Enumerating All Solutions for Constraint Satisfaction Problems 695

dichotomy holds for the case where the domain is of cardinality three [Bul06],
but the proof is much more involved. It is conjectured that dichotomy results
hold for arbitrary finite domains. In fact, CSP is in a certain context the largest
class of problems for which such results are possible [FV98].

Besides satisfiability of formulas, other computational goals have been studied,
as for example optimal satisfiability [RV00], counting the number of solutions
for constraint formulas [CH96], and equivalence and isomorphism [BHRV02] for
a fixed constraint language Γ. In many of these cases, dichotomy theorems have
been proven for Boolean domains. A lot of research has been done for the case
where the domain is a non-Boolean finite set, see e.g. [JCG97], [Dal05], [DK06],
and [Bul06].

A problem which is very relevant in practice is the enumeration problem for
constraint formulas, which we study in this paper. Here the task is to enumerate,
for a given Γ -formula, the set of its solutions. Roughly speaking, an “efficient”
algorithm requires only polynomial time for each solution it generates. Such
an algorithm can only exist if the satisfiability problem for Γ -formulas can be
solved in polynomial time. For the Boolean domain, the question in which cases
efficient enumeration algorithms exist has been studied by Creignou and Hébrard
in [CH97]. In [Coh04], it was shown that their algorithm can be applied to
arbitrary finite domains. The algorithm reduces the enumeration problem to
the decision problem as follows: for the constraint language Γ, let Γ+ be the
constraint language containing the relations from Γ and relations representing
literals over the domain D, i.e., it lets us express clauses like x = α for variables
x and values α from D. If the satisfiability problem for Γ+ can be solved in
polynomial time, then a search-reduces-to-decision algorithm can be used to
generate all solutions to a Γ -formula. This is the only enumeration algorithm for
constraint formulas known so far, and in [CH97], it was shown that it is indeed
the only one for the Boolean domain. It has been conceivable that this is also true
for arbitrary domains, i.e., that Γ -formulas can be efficiently enumerated if and
only if the constraint satisfaction problem for Γ+ can be solved in polynomial
time. In exhibiting a new class of enumeration algorithms, we prove that this is
not the case, unless P = NP. The contribution of this paper is as follows:

1. We consider refinements of the notion of efficient enumeration, demanding
that the solutions can be generated not only efficiently, but also in highly cus-
tomizable order. We show that for a constraint language Γ, this can be done
efficiently if and only if the above-mentioned criterion is met, i.e., CSP(Γ+)
can be solved in polynomial time.

2. We develop efficient enumeration algorithms for broad classes of constraint
languages Γ for which CSP(Γ+) cannot be solved in polynomial time (unless
P = NP). All of these cannot be enumerated by the known search-reduces-
to-decision algorithm.

3. For the three-element case, we obtain a first step towards a full classification.
We show that in the case where the constraint language satisfies an algebraic
condition, our algorithms cover all cases that exist. Hence, we obtain a di-
chotomy theorem for enumeration in this case.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

696 H. Schnoor and I. Schnoor

The structure of the paper is as follows: In Section 2, we state the necessary
definitions and known results from the literature. In Section 3, we present the
above-mentioned refinement of enumeration algorithms to deal with orderings,
and show that such an algorithm exists if and only if CSP(Γ+) is tractable. Then
we present our new enumeration algorithms, and show that there is a broad class
of constraint languages for which these give an efficient enumeration procedure.
The technically most involved result of the paper is Theorem 3.8, which gives
an easily verifiable criterion that a constraint language Γ needs to fullfill for
our algorithms to be applicable. Section 4 contains the mentioned dichotomy
theorem for a subclass of constraint languages over the three-element domain.

All proofs can be found in the extended version of the paper [SS06a].

2 Preliminaries

For a domain D and a number n, an n-ary relation over D is a subset of Dn. In
this paper, all domains are finite. A constraint language Γ over D is a finite set
of relations over D. We say that a relation or a constraint language is Boolean,
if the domain has cardinality 2. A Γ -formula is a conjunction of the form

ϕ = R1(x1
1, . . . , x

1
n1

) ∧ · · · ∧ Rk(xk
1 , . . . , xk

nk
),

where the Ri are relations from Γ of arity ni (we use the same symbol for
the relation and its predicate). The set of occurring variables is denoted with
VAR (ϕ) . An assignment I : VAR (ϕ) → D satisfies ϕ, or is a solution of ϕ,
if for every 1 ≤ i ≤ k, (I(xi

1), . . . , I(xi
ki

)) ∈ Ri holds (we write I |= ϕ). The
formula ϕ is satisfiable if there exists a solution of ϕ. The set of solutions of
ϕ is denoted with SOL (ϕ) . The problem CSP(Γ) is to decide whether a given
Γ -formula is satisfiable. A constraint language Γ is tractable if CSP(Γ) can be
solved in polynomial time. For Boolean constraint languages Γ, Schaefer showed
that CSP(Γ) is solvable in P or is NP-complete [Sch78]. This dichotomy also
holds for the three-element case [Bul06].

For v ∈ Dn, we write v[i] for the i-th component of v. For a formula ϕ
and strings t1 and t2, ϕ[t1/t2] is obtained from ϕ by simultaneously replacing
every occurrence of t1 with t2. For a set D and values a, b ∈ D, the function
fa→b : D → D is defined as f(a) = b, and f(α) = α for all α ∈ D \ {a} . For
f : D → D and v ∈ Dn, let f(v) := (f(v[1]), . . . , f(v[n])). For a relation R ⊆ Dn

let f(R) := {f(v) | v ∈ R}. For a formula ϕ(x1, . . . , xn) =
∧l

i=1 Ri(xi
1, . . . , x

i
ki

)
let f(ϕ)(x1, . . . , xn) =

∧l
i=1 f(Ri)(xi

1, . . . , x
i
ki

), and finally for an assignment
I : VAR (ϕ) → D, let f(I) be the assignment defined as f(I)(x) := f(I(x)).

Definition 2.1. Let f : Dk → D, and let R be an n-ary relation over D. We
say R is closed under f, or f is a polymorphism of R, if for all v1, . . . ,vk ∈ R,
it holds that

(
f
(
v1[1], . . . ,vk[1]

)
, f

(
v1[2], . . . ,vk[2]

)
, . . . , f

(
v1[n], . . . ,vk[n]

))
∈ R,

i.e., the tuple obtained from applying f coordinate-wise to v1, . . . ,vk is in R.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Enumerating All Solutions for Constraint Satisfaction Problems 697

We denote the set of polymorphisms of R with Pol(R). For a constraint language
Γ, Pol(Γ) is the set of functions which are polymorphisms of all relations in Γ.
It is known that the set Pol(Γ) determines the complexity of CSP(Γ) up to
logspace reductions [ABI+05]. In the enumeration context, this can be shown
not to be the case. A counter-example is omitted for space reasons.

We define a Boolean relation or a Boolean constraint language to be Schaefer,
if it has a polymorphism depending on at least two of its variables.

In general a formula has an exponential number of solutions. Therefore for an
enumeration algorithm to be considered efficient, we do not require it to give all
solutions in polynomial time, but to generate the solutions with polynomial delay
[JPY88]: the algorithm has to enumerate all solutions of ϕ in such a way that
the time between each pair of assignments, between the start of the algorithm
and the first solution, and between the last solution and the termination of
the algorithm is polynomial in the input size. We also require each solution to
be printed exactly once. A constraint language Γ has an efficient enumeration
algorithm, if there is a polynomial delay algorithm which, when given a Γ -formula
ϕ as input, enumerates the set SOL (ϕ) with polynomial delay.

Let us consider one of the simplest types of enumeration algorithms conceiv-
able, suggested in [Val79]. For a formula ϕ with VAR (ϕ) = {x1, . . . , xn} , and
for each α ∈ D, we check if ϕ ∧ (x1 = α) is satisfiable. If yes, we recursively
enumerate the solutions of ϕ[x1/α] augmented with the assignment x1 = α. If
the satisfiability tests in this approach can be performed in polynomial time,
then this is a polynomial-delay enumeration algorithm for the solutions of ϕ.
Obviously, if P = NP, then all satisfiability tests of this nature can be done in
polynomial time, and we always have an efficient enumeration algorithm. There-
fore, for this paper we assume P �= NP. Also note that, if Γ has an efficient
enumeration algorithm, then CSP(Γ) ∈ P. For a constraint language Γ over D,
let Γ+ := Γ ∪ {{(α)} | α ∈ D} . The unary relations {(α)} can be used to force
a variable to the value α ∈ D, and hence in Γ+ we have the power to express
literals. The algorithm outlined above yields the following theorem.

Theorem 2.2 ([CH96, Coh04]). If CSP(Γ+) ∈ P, then Γ has an efficient
enumeration algorithm.

There is a large class of constraint languages Γ which are tractable, but for
which tests of the form above are NP-complete. However, in the Boolean case
it turns out that if some constraint language Γ has any efficient enumeration
algorithm, then the algorithm outlined above works [CH97].

To summarize the above, for a constraint language Γ to have a polynomial-
delay algorithm it is required that CSP(Γ) ∈ P. Furthermore, if CSP(Γ+) ∈ P,
such an algorithm is guaranteed to exist. Therefore we are only interested in
constraint languages Γ such that CSP(Γ) ∈ P, and CSP(Γ+) /∈ P. We show
that there is a rich class of these languages which still have a polynomial-delay
enumeration algorithm. The following proposition can easily be proven using
results on the algebraic structure of constraint satisfaction problems from e.g.
[BKJ00], [BJK05]. For the three-element case, this implies that in the cases we
consider, we have a constant polymorphism or a polymorphism of the form fa→b.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

698 H. Schnoor and I. Schnoor

Proposition 2.3. Let Γ be a constraint language such that CSP(Γ) ∈ P, and
CSP(Γ+) /∈ P. Then Γ has a non-injective unary polymorphism f which, re-
stricted to its range, is the identity.

3 Efficient Enumeration Algorithms

For more readability we restrict ourselves to one-element constraint languages
{R} from now on. It can easily be shown that this is not a real restriction. By
abuse of notation we refer to such a constraint language {R} simply as R.

3.1 Lexicographical Orderings

We extend the algorithm given above: The input is a formula ϕ with VAR (ϕ) =
{x1, . . . , xn} and n orderings <1, . . . , <n on D. Let D = α1, . . . , αk such that
α1 <n · · · <n αk. For each i from 1 to k we check if ϕ ∧ (xn = αi) is satisfiable
and in this case enumerate the solutions of ϕ[xn/αi], by applying the algorithm
recursively to ϕ[xn/αi] and <1, . . . , <n−1, and augment the solutions with the
assignment xn = αi. This algorithm prints the solutions of ϕ in the following
order: I1 ∈ SOL (ϕ) is printed earlier than I2 ∈ SOL (ϕ) if and only if there is
an i such that I1(xi) <i I2(xi) and j > i implies that I1(xj) = I2(xj).

We call an enumeration algorithm with this property a variable lexicograph-
ical enumeration algorithm for Γ. Boolean constraint languages are efficiently
enumerable if and only if they have efficient variable lexicographical enumera-
tion algorithms, i.e., if we can print the solutions with polynomial delay in every
possible variable lexicographical order. This follows from [CH97].

The next theorem says, that in the general case as well all constraint languages
Γ which have efficient variable lexicographical order enumeration algorithms are
those for which CSP(Γ+) is tractable. Hence, if there is an efficient variable lex-
icographical order enumeration algorithm, then the one explained above works.
In the Boolean case, this is true as soon as there is any efficient enumeration
algorithm for Γ. Later we will see that this is not true if we leave the Boolean do-
main: here there are constraint languages Γ which have an efficient enumeration
algorithm, but Γ+ is not tractable. Hence, they cannot be efficiently enumerated
in variable lexicographical order.

Theorem 3.1. Let Γ be a constraint language over D. There exists an efficient
variable lexicographical enumeration algorithm for Γ if and only if CSP(Γ+) is
tractable.

3.2 Partial Enumerability

We give an example for a relation R which has a polynomial-delay enumeration
algorithm, and where R+ is not tractable—i.e., we show that there are more
efficiently enumerable relations than the ones covered by Theorem 2.2. Due to
Theorem 3.1, this implies that for non-Boolean domains, there are constraint

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Enumerating All Solutions for Constraint Satisfaction Problems 699

languages which can be enumerated efficiently, but not with a variable lexi-
cographical order algorithm. We then show how the ideas highlighted in this
example can be generalized.

Example 3.2. Let R := {(2, 0, 0, 2), (2, 0, 2, 0), (2, 2, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0),
(1, 1, 0, 0), (1, 0, 0, 0)}. Then R is efficiently enumerable, and R+ is not tractable.

Proof Sketch. CSP(R+) is NP-complete: CSP(1-in-3) is NP-complete (this follows
from [Sch78]), where 1-in-3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} . CSP(1-in-3) reduces to
CSP(R+) by forcing one additional variable to 2.

To see that R has an efficient enumeration algorithm, consider the following
approach: it can be verified that f2→1 ∈ Pol(R), and that f2→1(R) is closed
under the Boolean AND operator. Thus, f2→1(R) is Schaefer, and has an efficient
enumeration algorithm due to [CH97]. It can be seen that f2→1(R) = R∩{0, 1}4 .
Therefore enumerating, for a given R-formula ϕ, the solutions of f2→1(ϕ), is
the same as enumerating all solutions of ϕ which assign each of the variables
x ∈ VAR (ϕ) one of the values 0 and 1.

If we can efficiently enumerate, for each solution I as above, all “compatible”
solutions J for which f2→1(J) = I, then we can enumerate all solutions of ϕ.
This is because for an arbitrary solution J of ϕ, f2→1(J) is a solution of ϕ as
well, since f2→1 ∈ Pol(R). Hence the solution J appears in this enumeration
scheme.

It remains to prove that for each solution I |= ϕ, I : VAR (ϕ) → {0, 1} , we
can enumerate the set of all J fulfilling the above conditions efficiently. This is,
in essence, a Boolean problem: given such an assignment I, we want to exchange
some of the occurring 1s with 2s, such that the assignment J obtained this way
satisfies ϕ. Variables x such that I(x) = 0 are left unmodified. Therefore, this
is a Boolean problem involving the values 1 and 2. It is natural that there is a
Boolean constraint language, which we will later introduce as Γ E1→E2

R , that can
be used to express the “possibilities of changing 1s into 2s.” Intuitively, Γ E1→E2

R

is obtained as follows: for each v ∈ {0, 1}4
, consider the relation Rv, containing

all tuples v′ ∈ R such that f2→1(v′) = v. Rv describes the combinations of 2s
and 1s that are “allowed.” Since we are not interested in the occurring 0s here—
they are fixed and we do not change these assignments—we only look at those
components of Rv in which 1s and 2s appear. We will introduce the constraint
language Γ E1→E2

R arising here formally later in this section. �

Our approach applied in the example is to enumerate solutions in two steps: First
we look for all solutions that map to {0, 1}. For each of these, we then enumerate
all “fitting” solutions mapping to {0, 1, 2}. These are obtained by changing some
of the appearing 1s into 2s. Hence, we can see the 1 as a “placeholder” for a value
which is either 1 or 2. We could therefore identify the value 1 with the set {1, 2} ,
since this gives all possibilities for the “fitting” solutions. This is a central idea
in our algorithms and we formalize it with partial assignments. These assign, to
each variable, not a single value but a set of possible values i.e. a subset of D.
The assigned subsets must form a partition of the domain. This generalization of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

700 H. Schnoor and I. Schnoor

the ideas from Example 3.2 is relevant for two reasons: In this more general case,
we do not rely on the presence of a special polymorphism anymore, as in the
example. Further, this generalizations allows nesting of algorithms, and enables
us to state the dichotomy theorem in Section 4.

We introduce some notation on partitions and equivalence relations. Let D be
a domain, and E a partition of D. We often identify E with its corresponding
equivalence relation, denoted by ∼E . The discrete partition of D, Ddisc, corre-
sponding to the equality predicate on D, is defined as Ddisc = {{α} | α ∈ D} .
We often identify a partition E and the set of unary relations representing the
classes in E. With fE we denote the function assigning each α ∈ D its equiva-
lence class. For a relation R, R/E is defined as fE(R), and for partitions E1 and
E2 of a domain D we say E2 is a refinement of E1 (E2 ≤ E1) if α ∼E2 β implies
α ∼E1 β.

Let Γ be a constraint language over D, E1 a partition of D, and ϕ a Γ -formula.
We say I : VAR (ϕ) → E1 is a partial E1-assignment. If E2 is a refinement of
E1 and J is a partial E2-assignment, then we say J is compatible with I if
for all x ∈ VAR (ϕ) , J(x) ⊆ I(x). We also apply this notion to tuples, i.e., if
v1 ∈ En

1 , v2 ∈ En
2 , then we say v2 is compatible with v1 if for all i ∈ {1, . . . , n} ,

v2[i] ⊆ v1[i]. We identify partial Ddisc-assignments J for ϕ and assignments
J : VAR (ϕ) → D, i.e., for such an assignment we say J is compatible with I if
J(x) ∈ I(x) for all x ∈ VAR (ϕ) . A partial assignment I is a partial E1-solution
of ϕ if there exists some J : VAR (ϕ) → D, J |= ϕ such that J is compatible with
I. We denote the set of partial E1-solutions of ϕ with SOLE1 (ϕ) .

Definition 3.3. Let E1 and E2 be partitions of D, such that E2 is a refinement
of E1, and R a relation over D.

– R is efficiently E1-enumerable, if there is a polynomial delay algorithm
which, given an R-formula ϕ, enumerates SOLE1 (ϕ) .

– R is efficiently E1 → E2-enumerable, if there exists a polynomial-delay al-
gorithm which, given an R-formula ϕ and an assignment I : VAR (ϕ) → E1,
enumerates all partial solutions J ∈ SOLE2 (ϕ) which are compatible with I.

– R is efficiently E1→D-enumerable, if R is efficiently E1→Ddisc-enumerable.

The following theorem is one of our main results, and shows how our approach
can be used to obtain enumeration algorithms. In Sect. 3.3, we will show that
the prerequisites for this theorem are met by a large class of relations.

Theorem 3.4. Let E1 and E2 partitions of D such that E2 is a refinement of
E1, and let R be a relation over D.

1. If R is efficiently E1-enumerable and efficiently E1 → E2-enumerable, then
R is efficiently E2-enumerable.

2. If CSP({R} ∪ E1) ∈ P then R is efficiently E1-enumerable.
3. If R is efficiently E1-enumerable and efficiently E1 → D-enumerable, then

R has an efficient enumeration algorithm.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Enumerating All Solutions for Constraint Satisfaction Problems 701

This theorem applies to Example 3.2 with E1 = {{0} , {1, 2}} and E2 = Ddisc =
{{0} , {1} , {2}} . R is efficiently E1-enumerable: if we consider the relation
f2→1(R) = R ∩ {0, 1}4 , then this enables us, for a given R-formula ϕ, to enu-
merate all solutions I : VAR (ϕ) → {0, 1} . Now for any solution J |= ϕ, the
“Boolean solution” f2→1(J) is also a solution of ϕ, and it can easily be seen that
f2→1(J) ∼E1 J. Since we can, for every E1-solution, find all compatible solutions
of ϕ (see proof sketch of Example 3.2), R is efficiently E1 → Ddisc-enumerable.

It follows directly from Theorem 3.4 that if we have partitions Ek ≤ · · · ≤ E1

of D, such that CSP{R} ∪ E1 ∈ P, R is efficiently Ei → Ei+1-enumerable for
each 1 ≤ i < k, and Ek = Ddisc, then R has an efficient enumeration algorithm.
Note that this result allows to combine different types of algorithms to build an
enumeration algorithm for R.

The previous theorem generalizes Theorem 2.2: R+ is tractable if and only if
{R} ∪ Ddisc is, therefore, due to Theorem 3.4, in this case R is efficiently Ddisc-
enumerable. Further, every relation is trivially efficiently Ddisc → D enumerable.

3.3 Enumerability Criteria

In this section we present conditions for partial enumerability, i.e. conditions
which guarantee that some relation is efficiently E-enumerable or efficiently
E1 → E2-enumerable. We show here that there is a rich class of relations meeting
the conditions required in Theorem 3.4. The conditions we give can be verified
by looking at a constraint language over a smaller domain, thus giving an in-
ductive criterion. The result for partial E-enumerability is quite easy, but needs
special prerequisites, which we define now.

Definition 3.5. Let R be a relation over D, and E a partition of D. We say that
E′ is a representation system of E compatible with R, if E′ contains exactly one
element of each equivalence class in E, and fE′ ◦ fE : D → E′ ∈ Pol(R), where
fE′

: E → E′ is the function assigning each equivalence class its corresponding
value in E′.

This definition can be illustrated at the relation R given in Example 3.2. Recall
that R has the polymorphism f2→1. This gives a canonical partition of the
domain D = {0, 1, 2} : Let E := {{0} , {1, 2}} . Since f2→1 is a polymorphism of
R, E′ := {0, 1} is a representation system of E compatible with R : fE′ ◦ fE is
just the function f2→1. Note that fE′ ◦ fE is the canonical function assigning
each α ∈ D its representative in E′. If this function is a polymorphism, then for
each partial E-solution I of an R-formula ϕ, fE′

(I) is a solution of ϕ. This is
used in the proof for the following Theorem:

Theorem 3.6. Let R be a relation over D, and let E be a partition of D such
that there is a representation system of E compatible with R. Then R is efficiently
E-enumerable if and only if R/E is efficiently enumerable.

We showed that f2→1(R) from Example 3.2 is Schaefer. With the above defini-
tions, this is the same relation as R/E. Therefore, R/E has an efficient enumeration

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

702 H. Schnoor and I. Schnoor

algorithm due to [CH97], and since E′ is a representation system of E compatible
with R, we know that R is efficiently E-enumerable by Theorem 3.6.

The corresponding criterion for E1 → E2-enumerability is more technical, but
holds without prerequisites: to decide whether a relation R is efficiently E1 → E2

enumerable, it suffices to consider a constraint language Γ E1→E2
R , which we define

now. This is the language Γ mentioned in the proof sketch for Example 3.2,
allowing us, for each “Boolean solution” I, to enumerate all solutions J such
that f2→1(J) = I. The definition is more general: we want to enumerate, for a
given partial solution I, all “fitting” E2-solutions, where E2 is a refinement of
E1. Remember that in Example 3.2, we were not interested in those parts of the
relation which are set to 0, we only wanted to get all possible combinations of 1
and 2. The natural generalization is that we are not interested in classes from E1

which are not partitioned further in E2. For partial E1-solutions I and partial
E2-solutions J compatible with I, and variables x such that I(x) = Di ∈ E1,
if Di ∈ E2, then J(x) = Di has to hold as well. Therefore, these aspects of the
relation R are not interesting when determining possible E2 solutions compatible
with a given E1 solution. Hence, the corresponding components of the relation
R are disregarded in the following definition:

Definition 3.7. 1. Let R be an n-ary relation, and let I ⊆ {1, . . . , n} , such
that I = {i1, . . . , ik} . Then RI(xi1 , . . . , xik

) is the relation obtained from
R(x1, . . . , xn) by existentially quantifying all of the variables xj such that
j /∈ I, i.e.

RI(xi1 , . . . , xik
) ⇔ ∃j1 . . . ∃jn−kR(x1, . . . , xn),

where {1, . . . , n} \ I = {j1, . . . , jn−k} .
2. Let R be an n-ary relation over D. Let E1 and E2 be partitions of D such

that E2 is a refinement of E1. For v ∈ En
1 , we define

vE1→E2 := {t ∈ En
2 | t compatible with v, there is a u ∈ R comp. with t} ,

Iv = {i ∈ {1, . . . , n} | v[i] /∈ E2} , RE1→E2
v := vE1→E2

Iv
,

and finally, let Γ E1→E2
R :=

{
RE1→E2

v | v ∈ En
1

}
.

The relation vE1→E2
Iv

describes sets of solutions compatible with a given partial
solution: for a constraint application R(x1, . . . , xn) and a tuple v ∈ En

1 , the set
vE1→E2 contains the partial solutions J : {x1, . . . , xn} → E2 compatible with v.
As explained above, in those cases where the equivalence classes from E2 also
appear in E1, the corresponding values are disregarded by existentially quantify-
ing over the corresponding parts of the relation vE1→E2 . Observe that Γ E1→E2

R

is a constraint language over the domain {D2 ∈ E2 | D2 /∈ E1} , i.e. the domain
containing those equivalence classes from E2 which are proper refinements of
classes in E1.

An important case is when E2 = Ddisc. Then the relation RE1→E2
v describes

the possible “real” solutions which are compatible with a given partial E1 assign-
ment. Here, equivalence classes which only contain one element play a crucial

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Enumerating All Solutions for Constraint Satisfaction Problems 703

role. Since Ddisc cannot refine these, elements in such classes “disappear,” and
hence the language Γ E1→E2

R is over a smaller domain. Therefore we can use our
knowledge of the cases with smaller domains to solve the question if an efficient
enumeration algorithm exists for Γ E1→E2

R .
We take another look at the relation R from Example 3.2, and construct

the constraint language Γ E→D
R . Remember that D = {0, 1, 2} , and we chose the

partition E = {{0} , {1, 2}} . We denote the equivalence class {0} with 0, and the
class {1, 2} with 1. Let v1 := (1, 0, 0, 1), v2 := (1, 0, 1, 0), v3 := (1, 1, 0, 0), v4 :=
(1, 0, 0, 0). Every tuple in R is E-equivalent to one of these four tuples. Therefore,
for any v /∈ {v1,v2,v3,v4} , the relation vE→D is empty. By definition, the
following equations hold:

v1
E→D = {(2, 0, 0, 2), (1, 0, 0, 1)} RE→D

v1
= {(2, 2), (1, 1)}

v2
E→D = {(2, 0, 2, 0), (1, 0, 1, 0)} RE→D

v2
= {(2, 2), (1, 1)}

v3
E→D = {(2, 2, 0, 0), (1, 1, 0, 0)} RE→D

v3
= {(2, 2), (1, 1)}

v4
E→D = {(1, 0, 0, 0)} RE→D

v4
= {(1)}

Hence Γ E→D
R only contains the relations {(2, 2), (1, 1)} and {(1)} . If we view

these as relations over the Boolean domain by e.g. identifying the occurring
2s with the Boolean 0, then this language is closed under the Boolean AND.
Therefore, Γ E→D

R is Schaefer, thus this language has an efficient enumeration
algorithm. This implies that R is E → D-enumerable: for a relation R it holds
that Γ E1→E2

R is enumerable if and only if R is E1 → E2 enumerable, as shown
by the following Theorem 3.8, which is our main technical result. The character-
ization it gives can be used, with Theorem 3.4, to prove the existence of efficient
enumeration algorithms inductively. The proof relies on the ideas explained in
the proof sketch for Example 3.2, and in the discussion above.

Theorem 3.8. Let R be an n-ary relation over a domain D, and let E1, E2

be partitions of D such that E2 is a refinement of E1. Then R is efficiently
E1 → E2-enumerable if and only if Γ E1→E2

R is efficiently enumerable.

4 Towards a Dichotomy for Three-Element Domains

We obtain a complete classification of the case where all polymorphisms are
conservative on some partition E = {{a, b} , {c}} , in the three-element case. This
is proven using implementation results: for the negative cases, we show that the
relation R can “express” some other relation in a way preserving enumerability.
Note that this result is not an algebraic characterization in the usual sense, since
Γ E→D

R being Schaefer does not only depend on the set of polymorphisms of R.
For a set C ⊆ D and a function f : Dn → D, we say that f is conservative on C
if α1, . . . , αn ∈ C implies f(α1, . . . , αn) ∈ C.

Theorem 4.1. Let D be a 3-element domain, let R ⊆ Dn, and let there be
some partition E = {{a, b} , {c}} of D, such that all polymorphisms of R are
conservative on the classes in E.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

704 H. Schnoor and I. Schnoor

– If fa→b /∈ Pol(R) and fb→a /∈ Pol(R), then R has an efficient enumeration
algorithm if and only if R is tractable.

– Otherwise, R has an efficient enumeration algorithm if and only if Γ E→D
R is

Schaefer and R/E is Schaefer (or P = NP).

The proof uses a “canonical way” to express relations, which only needs a limited
number of existentially quantified variables. The key method is to find represen-
tations which can “re-use” existential variables, so that when transforming a
formula over one constraint language to another, we only need to add a con-
stant number of them. This multiplies the number of satisfying solutions by a
constant only, and this implementation can be used for enumeration problems
after sorting out a few technical issues.

5 Conclusion and Future Research

We have exhibited new enumeration algorithms for constraint languages, and
shown that these cover more cases than previously known from [CH97] and
[Coh04]. In [SS06a] we present more algorithms that work for cases not covered
by algorithms in this paper. These algorithms can be nested and combined with
others by using Theorem 3.4. Moreover for three-element domains we present
conditions for non-enumerability besides the conservative case.

We believe that the next step to obtain broader negative results than the ones
we have is to apply algebraic methods to the enumeration problem. The applica-
tion of such methods has been very successful for the complexity classification of
the decision problem. In [SS06a], we show that the standard algebraic approach
to CSPs does not work with enumeration. In [SS06b], we present a refinement
of the usual algebraic methods, which hopefully will lead to further results for
the enumeration problem.

Acknowledgment

We thank Nadia Creignou and Heribert Vollmer for very helpful discussions and
advice on the presentation of this paper. We also thank the anonymous referees
for their suggestions.

References

[ABI+05] E. Allender, M. Bauland, N. Immerman, H. Schnoor, and H. Vollmer. The
complexity of satisfiability problems: Refining Schaefer’s Theorem. In Pro-
ceedings of the 30th International Symposium on Mathematical Founda-
tions of Computer Science, pages 71–82, 2005.

[BHRV02] E. Böhler, E. Hemaspaandra, S. Reith, and H. Vollmer. Equivalence and
isomorphism for Boolean constraint satisfaction. In Computer Science
Logic, volume 2471 of Lecture Notes in Computer Science, pages 412–426,
Berlin Heidelberg, 2002. Springer Verlag.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Enumerating All Solutions for Constraint Satisfaction Problems 705

[BJK05] A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM J. Comput., 34(3):720–742, 2005.

[BKJ00] A. Bulatov, A. Krokhin, and P. Jeavons. Constraint satisfaction prob-
lems and finite algebras. In 27th International Colloquium on Automata,
Languages and Programming, pages 272–282, 2000.

[Bul06] A. Bulatov. A dichotomy theorem for constraint satisfaction problems on
a 3-element set. Journal of the ACM, 53(1):66–120, 2006.

[CH96] N. Creignou and M. Hermann. Complexity of generalized satisfiability
counting problems. Information and Computation, 125:1–12, 1996.

[CH97] N. Creignou and J.-J. Hébrard. On generating all solutions of generalized
satisfiability problems. Informatique Théorique et Applications/Theoretical
Informatics and Applications, 31(6):499–511, 1997.

[CKS01] N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of
Boolean Constraint Satisfaction Problems. Monographs on Discrete Ap-
plied Mathematics. SIAM, 2001.

[Coh04] D. Cohen. Tractable decision for a constraint language implies tractable
search. Constraints, 9(3):219–229, 2004.

[Dal05] V. Dalmau. Generalized majority-minority operations are tractable. In
Prakash Panangaden, editor, Proceedings of the Twentieth Annual IEEE
Symp. on Logic in Computer Science, LICS 2005, pages 438–447. IEEE
Computer Society Press, June 2005.

[DK06] V. Dalmau and A. Krokhin. Majority constraints have bounded path-
width duality. Technical Report NI06017-LAA, Isaac Newton Institute for
Mathematical Sciences, 2006.

[FV98] T. Feder and M. Y. Vardi. The computational structure of monotone
monadis SNP and constraint satisfaction: a study through Datalog and
group theory. SIAM Journal on Computing, 28(1):57–104, 1998.

[JCG97] P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints.
Journal of the ACM, 44(4):527–548, 1997.

[JPY88] D. Johnson, C. Papadimitriou, and M. Yannakakis. On generating all
maximal independent sets. Inf. Process. Lett., 27(3):119–123, 1988.

[RV00] S. Reith and H. Vollmer. Optimal satisfiability for propositional calculi and
constraint satisfaction problems. In Proceedings of the 25th International
Symposium on Mathematical Foundations of Computer Science, volume
1893 of Lecture Notes in Computer Science, pages 640–649. Springer Ver-
lag, 2000.

[Sch78] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings
10th Symposium on Theory of Computing, pages 216–226. ACM Press,
1978.

[SS06a] H. Schnoor and I. Schnoor. Enumerating all solutions for constraint satis-
faction problems. In Complexity of Constraints, no. 06401 in Dagstuhl Sem-
inar Proceedings, 2006. <http://drops.dagstuhl.de/opus/volltexte/2006/
804>

[SS06b] H. Schnoor and I. Schnoor. New algebraic tools for constraint satisfaction.
In Complexity of Constraints, no. 06401 in Dagstuhl Seminar Proceedings,
2006. <http://drops.dagstuhl.de/opus/volltexte/2006/805>

[Val79] L. G. Valiant. The complexity of enumeration and reliability problems.
SIAM Journal of Computing, 8(3):411–421, 1979.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Author Index

Abiteboul, Serge 1
Agrawal, Manindra 489

Berstel, Jean 73
Bertoni, Alberto 381
Berwanger, Dietmar 188
Bienvenu, Laurent 260
Blanchet-Sadri, Francine 97
Boasson, Luc 73
Bodlaender, Hans L. 320
Bojańczyk, Miko�laj 622
Brandt, Felix 212
Brenner, Janina 670
Bresolin, Davide 549
Bürgisser, Peter 133
Bursuc, Sergiu 634
Busch, Costas 465

Cai, Jin-Yi 429
Caragiannis, Ioannis 61
Carton, Olivier 73
Chattopadhyay, Arkadev 500
Childs, Andrew M. 598
Coja-Oghlan, Amin 121
Comon-Lundh, Hubert 634
Corneil, Derek 344
Courcelle, Bruno 37
Czumaj, Artur 536

Damaschke, Peter 332
Delaune, Stéphanie 634
Doerr, Benjamin 441
Dumitrescu, Adrian 175

Elsässer, Robert 163
Esparza, Javier 296

Fagnot, Isabelle 73
Fischer, Eldar 109
Fischer, Felix 212
Formenti, Enrico 356
Funke, Stefan 272

Gafni, Joshua D. 97
Gamzu, Iftah 658

Gimbert, Hugo 200
Glaßer, Christian 248
Goldwurm, Massimiliano 381

Hajirasouliha, Iman 524
Harrow, Aram W. 598
Hayashi, Masahito 610
Heggernes, Pinar 236
Hoang, Thanh Minh 489
Hoffman, Piotr 622
Holzer, Markus 212
Huang, Chien-Chung 453
Hundt, Christian 284

Ivanyos, Gábor 586
Iwama, Kazuo 610

Jowhari, Hossein 524

Kavitha, Telikepalli 512
Kiefer, Stefan 296
Koiran, Pascal 417
Koucký, Michal 500
Král’, Daniel 224
Krebs, Andreas 500
Krivelevich, Michael 121
Kumar, Ravi 524
Kunde, Manfred 49
Kůrka, Petr 356
Küsters, Ralf 646

Lafitte, Grégory 367
Laue, Sören 272
Lee, Troy 145
Limaye, Nutan 477
Lískiewicz, Maciej 284
Lombardy, Sylvain 85
Lonati, Violetta 381
Lu, Pinyan 429
Luttenberger, Michael 296

Mahajan, Meena 477
Mehlhorn, Kurt 512
Michail, Dimitrios 512
Montanari, Angelo 549

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

708 Author Index

Newman, Ilan 157
Nishimura, Harumichi 610

Pattinson, Dirk 573
Perifel, Sylvain 417
Poland, Jan 405

Rabinovich, Yuri 157
Rao, B.V. Raghavendra 477
Raymond, Rudy 610

Sala, Pietro 549
Sanselme, Luc 586
Santha, Miklos 586
Sattler-Klein, Andrea 308
Sauerwald, Thomas 163
Schäfer, Guido 670
Schnoor, Henning 694
Schnoor, Ilka 694
Schröder, Lutz 573
Schwentick, Thomas 561
Segev, Danny 658
Selman, Alan L. 248
Simon, Hans Ulrich 393
Sohler, Christian 536
Suchan, Karol 236
Sundaram, Ravi 524
Szegedy, Mario 500

Tedder, Marc 344
Tesson, Pascal 500
Thérien, Denis 500
Thierauf, Thomas 489
Tirthapura, Srikanta 465
Todinca, Ioan 236
Tóth, Csaba D. 175
Travers, Stephen 248
Truderung, Tomasz 646
Twigg, Andrew 37

Vardi, Moshe Y. 12
Verbitsky, Oleg 682
Vilenchik, Dan 121
Villanger, Yngve 236

Wagner, Dorothea 23
Wagner, Klaus W. 248
Weber, Volker 561
Weiss, Michael 367
Willhalm, Thomas 23
Wilson, Kevin H. 97
Wocjan, Pawe�l 598

Yahalom, Orly 109
Yamashita, Shigeru 610

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

	Title page
	Preface
	Organization
	Table of Contents
	A Calculus and Algebra for Distributed Data Management
	Introduction
	A Stream Calculus: ActiveXML
	A Stream Algebra
	Conclusion

	The Büchi Complementation Saga
	Introduction
	Background
	Complementation Via Ranks
	Tight Rankings
	Concluding Remarks

	Speed-Up Techniques for Shortest-Path Computations
	Introduction
	Preliminaries
	Definitions
	Shortest Path Problem

	Speed-Up Techniques
	Bidirectional Search
	Goal-Directed Search or A*
	Hierarchical Methods
	Node and Edge Labels
	Combining Speed-Up Techniques

	Conclusion

	Compact Forbidden-Set Routing
	Introduction
	Preliminaries
	The Case of Tree Width
	Balanced Tree Width Expressions
	Compact Forbidden-Set Routing for Small Tree Width

	The Case of m-Clique Width
	Balanced m-Clique Width Expressions
	Adjacency Labelling for m-Clique Width Graphs
	Enriching the Adjacency Labelling
	Compact Forbidden-Set Routing for Small mcwd

	Open Problems

	A New Bound for Pure Greedy Hot Potato Routing
	Introduction
	The Problem and Notations
	The New Bound
	Extensions

	Wavelength Management in WDM Rings to Maximize the Number of Connections
	Introduction
	Iterative Algorithms for the maxColoring Problem
	Applications to maxRPC
	Approximating the Profit Version of maxPC

	A First Investigation of Sturmian Trees
	Introduction
	Sturmian Trees
	Rank and Degree
	Slow Automata
	Trees with Finite Rank
	A Tree of Degree One
	Characterization

	A Tree with Infinite Rank
	Concluding Remarks

	On the Size of the Universal Automaton of a Regular Language
	Introduction
	Notations
	Universal Automaton
	Maximal Size of the Universal Automaton
	A Family of NFAs with Large Universal Automata
	Unary Alphabets

	Correlations of Partial Words
	Introduction
	Definitions, Notations, and Preliminary Results
	Characterizations of Correlations
	Structural Properties of Δ_n, Δ'_n and Φ_n
	Counting Correlations

	Testing Convexity Properties of Tree Colorings
	Introduction
	Convex Colorings
	Variants of Convexity
	Weighted and Distribution-Free Property Testing
	Our Results

	Testing Convexity on Trees
	A Distribution-Free Convexity Test for Trees
	Implementation of the Computation Step in Algorithm 1
	A Lower Bound for Testing Convexity
	A Convexity Test for Paths

	Quasi-convexity of Trees
	Relaxed Convexity Properties
	Bibliography

	Why Almost All k-Colorable Graphs Are Easy
	Introduction
	Phase Transitions, Clusters, and Graph Coloring Heuristics
	Results and Techniques
	Related Work
	Paper's Structure

	The Coloring Algorithm
	Properties of a Random Instance from Guniformn,m,k
	Balancedly k-Colorable Graphs
	Setting the Exchange Rate
	Coloring Using SDP
	Dense Subgraphs
	The Core Vertices

	Proofs of Theorems 1 and 2
	Discussion

	On Defining Integers in the Counting Hierarchy and Proving Arithmetic Circuit Lower Bounds
	Introduction
	Preliminaries
	Integers Definable in the Counting Hierarchy
	The Counting Hierarchy
	The Constant-Free Valiant Model

	Permanent Versus Integers and Univariate Polynomials

	A New Rank Technique for Formula Size Lower Bounds
	Introduction
	Preliminaries
	Linear Algebra
	Formula Size and Communication Complexity

	Rank Technique
	Application to Parity
	Hierarchy of Techniques

	Hard Metrics from Cayley Graphs of Abelian Groups
	Introduction
	General Abelian Groups
	When the Group Is \Z_2^n

	Broadcasting vs. Mixing and Information Dissemination on Cayley Graphs
	Introduction
	Notation and Definitions
	Broadcasting vs. Mixing
	Broadcasting on Cayley Graphs
	A New Martingale-Based Technique
	Conclusions

	Light Orthogonal Networks with Constant Geometric Dilation
	Introduction
	Reduction to Axis-Aligned Polygons
	Our Algorithm in a Nutshell
	Reduction to Axis-Aligned Subdivisions
	Reduction to Lofty Axis-Aligned Polygons

	Subdividing Axis-Aligned Lofty Polygons
	Subdividing Lofty Polygons into Lofty Pocketed Mountains
	Subdividing Lofty Mountains
	Subdividing Lofty Pocketed Mountains

	Admissibility in Infinite Games
	Introduction
	Basic Notions
	Value Characterisation
	One-Step Soundness
	Progress and Stabilisation
	Infinite Games on Finite Graphs

	Pure Stationary Optimal Strategies in Markov Decision Processes
	Introduction
	Markov Decision Processes
	Controllable Markov Chains and Strategies
	Probability Distribution Induced by a Strategy
	Payoff Functions
	Values and Optimal Strategies in Markov Decision Processes

	Optimal Positional Control
	Unification of Classical Results
	Generating New Examples of Positional Payoff Functions
	Mixing with the Liminf Payoff
	The Approximation Operator
	The Hierarchical Product
	Towards a Quantitative Specification Language?

	Conclusion

	Symmetries and the Complexity of Pure Nash Equilibrium
	Introduction
	Preliminaries
	Strategic Games
	Symmetries in Multi-player Games
	Nash Equilibrium

	Solving Symmetric Games
	Games with a Constant Number of Actions
	Games with a Growing Number of Actions

	Threshold Symmetries
	Conclusion and Future Work

	Computing Representations of Matroids of Bounded Branch-Width
	Introduction
	Definitions
	Structural Observations
	Algorithm
	Computing Auxiliary Matrices
	Computing Representations
	Finale

	Concluding Remarks

	Characterizing Minimal Interval Completions Towards Better Understanding of Profile and Pathwidth (Extended Abstract)
	Introduction
	Definitions and Terminology
	Folding Interval Graphs
	Unfolding
	Extracting Minimal Interval Completions: The Algorithm

	The Complexity of Unions of Disjoint Sets
	Introduction
	Preliminaries
	Unions of Disjoint NP-Complete Sets Are Not Easy
	Unions of Disjoint Sets from the High-Hierarchy
	Uniformly Hard Languages in NP

	The Complexity of Disjoint Unions
	Disjoint Sets Whose Union Is at Most as Hard as the Single Components
	Disjoint Sets Whose Union Is Harder Than the Single Components

	Kolmogorov-Loveland Stochasticity and Kolmogorov Complexity
	Introduction
	Selection Rules vs Strategies
	Selection Rules
	Strategies

	Effective Hausdorff Dimension and Stochasticity
	Kolmogorov-Loveland Stochasticity for Finite Binary Sequences

	Bounded-Hop Energy-Efficient Broadcast in Low-Dimensional Metrics Via Coresets
	Introduction
	Bounded-Hop Energy-Efficient Broadcast in \mathbb{R}^2
	Properties of Low-Dimensional Metrics
	Computing HFDs in Shortest-Path Metrics
	A Near-Linear Time Algorithm
	Hierarchical Routing in Doubling Metrics

	Metrics of Bounded Doubling Dimension
	Hierarchical Fat Decompositions (HFD)
	A Characterization of Metrics of Bounded Doubling Dimension
	Optimizing Energy-Efficiency in Low-Dimensional Metrics

	On the Complexity of Affine Image Matching
	Introduction
	Previous Work
	Our Contribution

	Preliminaries
	Algorithm Development
	Restricting the Problem to One Dimensions
	The One-Dimensional Problem
	The Polynomial Time Algorithm

	Generalisations
	Conclusions and Further Work

	On Fixed Point Equations over Commutative Semirings
	Introduction
	ω-Continuous Semirings
	Systems of Power Series

	Two Acceleration Schemes
	The Hopkins-Kozen Acceleration
	Newton's Acceleration

	An Acceleration for Arbitrary cc-Semirings
	Idempotent cc-Semirings
	The Semiring over the Nonnegative Reals

	Convergence Speed in Idempotent Semirings
	Idempotent cc-Semirings
	Generalisation to Commutative Kleene Algebras

	A Hierarchy of Accelerations
	Conclusions

	An Exponential Lower Bound for Prefix Gr¨obner Bases in Free Monoid Rings
	Introduction
	Preliminaries
	Reduction Strategies
	Computation of Interreduced Prefix Gröbner Bases

	Concluding Remarks

	A Cubic Kernel for Feedback Vertex Set
	Introduction
	Preliminaries
	A Kernelization Algorithm for Feedback Vertex Set
	Initialization Phase
	Improvement and Reduction Rules
	A Constructive Version

	Discussion

	The Union of Minimal Hitting Sets: Parameterized Combinatorial Bounds and Counting
	Introduction
	A Kernel for Counting Small Hitting Sets
	The Union of Minimal Vertex Covers of Bounded Size
	The Union of Minimal Hitting Sets of Bounded Size in Hypergraphs of Bounded Rank
	Conclusions

	An Optimal, Edges-Only Fully Dynamic Algorithm for Distance-Hereditary Graphs
	Introduction
	Preliminaries
	Cographs
	Distance-Hereditary Graphs

	The Representation
	Edge Deletion
	Safely Deleting Edges from Distance-Hereditary Graphs
	Updating the Representation

	Edge Addition

	A Search Algorithm for the Maximal Attractor of a Cellular Automaton
	Introduction
	Subshifts and Cellular Automata
	Sofic Subshifts
	Join of Subshifts
	Signal Subshifts
	Decreasing Preimages
	Examples

	Universal Tilings
	Introduction
	Notions of Tilings' Universality and Completeness
	Completeness
	Universality
	Concluding Remarks

	On the Complexity of Unary Tiling-Recognizable Picture Languages
	Introduction
	Preliminaries on Picture Languages
	Characterization of Rec_1
	Recognizability Implies the Complexity Bound
	The Complexity Bound Implies Recognizability
	The Accepting-Computation Language of a Turing Machine
	Overlap of Picture Languages

	Square Languages
	References

	A Characterization of Strong Learnability in the Statistical Query Model
	Introduction
	Definitions and Notations
	Known Bounds on the Number of Statistical Queries
	Strong Learnability in the SQ Model
	Central Definitions and Main Result
	A Detour on Halving Complexity and Half-Covering Numbers
	Proof of the Main Result

	On the Consistency of Discrete Bayesian Learning
	Introduction
	Bayesian Learning
	Hypotheses, History, Inputs, Observation Spaces
	Three Fundamental Variants of Bayesian Prediction
	Performance Guarantees for Bayesian Learners
	Almost Sure Consistency and Other Implications

	Stochastic Model Selection

	VPSPACE and a Transfer Theorem over the Reals
	Introduction
	Preliminaries
	The Blum-Shub-Smale Model
	Valiant's Model

	The Class VPSPACE
	Definition
	An Alternative Characterization

	Sign Conditions
	Definition
	A PSPACE Algorithm for Sign Conditions
	Enumerating All Possibly Tested Polynomials

	A Transfer Theorem
	Truncated Sign Conditions
	Binary Search for the Full Sign Condition
	Recovering the Rank of the Sign Condition
	A Polynomial-Time Algorithm for PAR_{\rr} Problems

	On Symmetric Signatures in Holographic Algorithms
	Introduction
	Holographic Algorithms for #7Pl-Rtw-Mon-3CNF
	Symmetric Signatures
	Boolean Symmetric Signatures

	Randomly Rounding Rationals with Cardinality Constraints and Derandomizations
	Introduction and Results
	Randomized Rounding
	Hard Constraints
	Our Contribution

	Randomized Rounding, Constraints and Correlation
	Rounding Rationals
	Derandomizations
	Application of the General Scheme
	Disjoint Constraints
	Bipartite Edge Weight Rounding

	General Derandomization

	Cheating to Get Better Roommates in a Random Stable Matching
	Introduction
	In Search of a New Roommate
	Multiple Men Cheat Together
	Strategy A
	Strategy B
	Conclusion

	A Deterministic Algorithm for Summarizing Asynchronous Streams over a Sliding Window
	Introduction
	Basic Counting
	Algorithm
	Proof of Correctness

	Sum of Positive Integers

	Arithmetizing Classes Around NC1 and L
	Introduction
	Preliminaries
	Counting Accepting Runs in Visibly Pushdown Automata
	Counting Proof Trees in (Log Width) Formula
	Polynomial Degree Small-Width Circuits and Their Arithmetization
	Extensions and Closure Properties

	The Polynomially Bounded Perfect Matching Problem Is in NC2
	Introduction
	Preliminaries
	Bipartite Graphs
	General Graphs
	Weighted Graphs
	Open Problems

	Languages with Bounded Multiparty Communication Complexity
	Introduction
	Multiparty Communication Complexity
	Functions with Bounded Multiparty Complexity but High Time/Space Complexity
	Languages with a Neutral Letter
	Proving Regularity
	Regular Languages with Bounded Complexity

	Symmetric Functions

	New Approximation Algorithms for Minimum Cycle Bases of Graphs
	Introduction
	The New Approach
	The Remaining Cycles
	The First Approach
	The Second Approach

	A 2-Approximation Algorithm
	Extension to Directed Graphs

	Conclusions

	On Completing Latin Squares
	Introduction
	Main Results

	Preliminaries
	The 3EDM Problem

	Improved Bounds for the PLSE Problem
	A Local Search Algorithm
	APX-Hardness

	The k-PLSE Problem
	A Greedy Algorithm
	A $(1-\frac{1}{e} - \epsilon)$-Approximation Algorithm
	Hardness

	The c-PLSE Problem
	Conclusions

	Small Space Representations for Metric Min-Sum k-Clustering and Their Applications
	Introduction
	Related Work
	New Contributions

	Preliminaries
	New Sampling-Based Partitioning Scheme
	Poly-time Constant Factor Approximation for Small k
	α-Preserving Embeddings and Coresets
	(6 + $(6 + \epsilon)$)-Preserving Embedding for Balanced k-Median
	Coresets for Balanced k-Median

	2-Pass Streaming Algorithm
	Sublinear-Time Polylog-Approximation Factor Algorithm

	An Optimal Tableau-Based Decision Algorithm for Propositional Neighborhood Logic
	Introduction
	Propositional Neighborhood Logic
	Labeled Interval Structures and Satisfiability
	A Tableau-Based Decision Procedure for PNL
	Soundness and Completeness
	Optimality of the Proposed Method

	Conclusions

	Bounded-Variable Fragments of Hybrid Logics
	Introduction
	Preliminaries
	Hybrid Logics
	Automata

	Non-emptiness of Alternating One-Pebble Büchi Automata
	Bounded-Variable Fragments over the Natural Numbers
	Expressivity
	Satisfiability for the One-Variable Fragment
	Model Checking
	The Two-Variable Fragment

	Conclusion

	Rank-1 Modal Logics Are Coalgebraic
	Introduction
	Coalgebraic Modal Logic
	From Rank-1 Logics to Coalgebraic Models
	An Adjunction Between Syntax and Semantics
	Applications
	Example: Deontic Logic
	Conclusion

	An Efficient Quantum Algorithm for the Hidden Subgroup Problem in Extraspecial Groups
	Introduction
	Preliminaries
	Extensions of the Standard Algorithm for the Abelian HSP
	Extraspecial Groups

	Reduction Lemmas
	The Algorithm
	Groups of Constant Exponent
	Groups of Exponent p When p Is Large
	Groups of Exponent p^2 When p Is Large

	Concluding Remarks

	Weak Fourier-Schur Sampling, the Hidden Subgroup Problem, and the Quantum Collision Problem
	Introduction
	Weak Schur Sampling
	Weak Fourier-Schur Sampling
	The Quantum Collision Problem
	Discussion

	Quantum Network Coding
	Introduction
	The Model
	Protocol for Crossing Two Qubits
	Overview of the Protocol
	Building Blocks
	Protocol XQQ and Its Performance Analysis
	Upper Bounds

	Protocol for Crossing a Qubit and a Bit
	Protocols for Crossing Two Multiple Bits
	Beyond the Butterfly Network -- Concluding Remarks
	Summary of Results
	Theorem 2: Proof Strategy
	Theorem 2: Eliminating Creation Rules
	Partial Derivations
	Island Removal
	Compact Components
	Few Creation Rules

	Embeddability of Unions of Commutative Monoids

	Associative-Commutative Deducibility Constraints
	Introduction
	AC-Deducibility Constraints and Diophantine Equations
	Basic Definitions
	From AC-Deducibility Constraints to Diophantine Equations ...
	... and Back

	A Decidable Class of AC-Deducibility Constraints
	Well-Formed and Simple Constraint System
	The Algorithm
	The Case of a Strongly Connected Variable Graph
	The Projections of Global Minimal Solutions Are Not Far from Minimal Solutions of the Minimal Classes

	Another Deducibility System
	Conclusion

	On the Automatic Analysis of Recursive Security Protocols with XOR
	Introduction
	The Protocol and Intruder Model
	An Example Protocol
	Undecidability of the General Case
	Decidability of \xor-Linear Protocols
	Good Derivations
	Reduction to the \xor-Free Case

	Conclusion

	Improved Online Algorithms for the Sorting Buffer Problem
	Introduction
	Our Results
	Related Work

	Evenly-Spaced Line Metrics
	The Algorithm
	Analysis

	Continuous Line Metrics
	A Semi-online Algorithm
	A Fully-Online Algorithm

	A Lower Bound for Any Deterministic Algorithm
	Cost Sharing Methods for Makespan and Completion Time Scheduling

	Introduction
	Preliminaries
	A General Lower Bound on Summability
	Minimum Makespan Scheduling
	Cross-Monotonic Cost Shares
	Approximate Cost Shares

	Minimum Weighted Completion Time Scheduling
	Conclusion

	Planar Graphs: Logical Complexity and Parallel Isomorphism Tests
	Introduction
	Ehrenfeucht-Fraïssé Games
	Graph-Theoretic Notation and Definitions
	Capturing Unique Embeddability by First Order Formalism
	Proof of Theorem 1
	Two Specifications of a Graph Embedding
	Reducing the Play on Layout Systems to the Play on Rotation Systems
	The Layout and the Rotation System of a Triconnected Planar Graph
	Reducing the Play on Graphs to the Play on Layout Systems
	Finishing the Proof of Theorem 1

	Defining a Triconnected Planar Graph (Proof of Theorem 3)

	Enumerating All Solutions for Constraint Satisfaction Problems
	Introduction
	Preliminaries
	Efficient Enumeration Algorithms
	Lexicographical Orderings
	Partial Enumerability
	Enumerability Criteria

	Towards a Dichotomy for Three-Element Domains
	Conclusion and Future Research

	Author Index

