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Preface

The 14th International Symposium on Graph Drawing (GD 2006) was held in
Karlsruhe, Germany, during September 17-20, 2006. The conference attracted
108 participants from 18 countries.

In response to the call for papers, the Program Committee received 91 sub-
missions by (co)-authors from 31 countries. At least three Program Committee
members reviewed each submission, and after an intensive evaluation phase, the
Program Committee selected 33 long papers, 5 short papers, as well as one sys-
tem demo and 3 posters. The authors received extensive comments and excerpts
from the discussion on their papers. The best paper award went to Jan Arne
Telle and David R. Wood for their paper with the title “Planar Decompositions
and the Crossing Number of Graphs with an Excluded Minor.”

The Chairs of the conference invited two distinguished lecturers: Emo Welzl
from the ETH in Zürich gave a very nice and inspiring presentation on “The
Number of Crossing-Free Configurations in Planar Point-Sets.” Oliver Deussen
from the Universität Konstanz talked about “The Algorithmic Beauty of Virtual
Nature.” Abstracts of the two invited lectures can also be found in this volume.

An ambitious graph drawing contest took place this year under the guidance
of Christian Duncan, who also included a report in this volume. In the soft-
ware exhibition the industrial sponsors of the conference, Tom Sawyer Software,
yWorks GmbH and ILOG Inc., had the chance to provide a closer look at the
products and developments. Furthermore, Ralph Schunk (Universität zu Köln)
presented his software tool “CUPE - CUBIC Pathway Editor.”

Many people contributed to the success of GD 2006. First of all, the authors
of submitted contributions deserve special thanks, as well as the members of the
Program Committee for the careful work and the extensive discussions. For the
organizational aspects, we are especially grateful to Lilian Beckert and Michael
Baur, who kept the meeting running and took care of all the big and small things
which have to be considered during such a meeting.

The conference received considerable support from the hosting organization,
Universität Karlsruhe (TH), and from the German Research Foundation DFG.
Furthermore, we are grateful to our two gold sponsoring partners, Tom Sawyer
Software and yWorks GmbH, as well as to the silver sponsor, ILOG Inc.

Next year, the symposium will take place in Sydney, Australia, and will be
hosted by Seok-Hee Hong and Takao Nishizeki at the University of Sydney.

October 2006 Michael Kaufmann
Dorothea Wagner
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The Number of Triangulations
on Planar Point Sets

Emo Welzl

Institute of Theoretical Computer Science
ETH Zurich, Switzerland

Abstract. We give a brief account of results concerning the number of
triangulations on finite point sets in the plane, both for arbitrary sets
and for specific sets such as the n × n integer lattice.

Given a finite point set P in the plane, a geometric graph is a straight line em-
bedded graph with vertex set P where no segment realizing an edge contains
points from P other than its endpoints. We are interested in crossing-free geo-
metric graphs on a given planar point set, i.e. segments are not allowed to share
points other than common endpoints. A maximal crossing-free geometric graph
on a point set P is called a triangulation of P .

Fig. 1. All triangulations of five points in convex position

If, as it is the case in Fig. 1, the points are in convex position, i.e. vertices of a
convex polygon, then every triangulation clearly must contain all edges of “its”
convex polygon, and we are left with choosing a triangulation for this polygon.
Euler was the first to consider how many choices there are for a convex n-gon,
but it was proven only later that this number is Cn−2, where Cm := 1

m+1

(2m
m

)
=

Θ(m−3/24m), known as the Catalan numbers; (see, e.g., also Pólya’s article On
Picture-Writing [14]).

The example of four points already shows that position matters: Four points
in convex position allow two triangulations, while there is only one otherwise.
David Avis was perhaps the first to ask what the maximal possible number of
triangulations of a general n-point set is. An upper bound of nO(n) is easy to
obtain, but in 1982 Ajtai, Chvátal, Newborn, and Szemerédi [3] showed that for
any set of n points the number of all crossing-free geometric graphs is at most
cn for c = 1013. The constant in the bound for triangulations has been suc-
cessively improved [18,6,17,16]. The currently best bound of 43n [15] is derived

M. Kaufmann and D. Wagner (Eds.): GD 2006, LNCS 4372, pp. 1–4, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 E. Welzl

via considering random triangulations of finite point sets in general position
with triangular convex hull. For a random non-extreme vertex in such a ran-
dom triangulation one can show that it has degree 3 with probability at least
1
43 (“random” refers here always to “uniformly at random”); interestingly, this
yields the claimed bound on the number of triangulations.

Note that every crossing-free geometric graph is contained in some triangula-
tion and a triangulation has at most 3n − 6 edges. Therefore, any bound of the
form τn for triangulations yields a bound of 23n−6τn < (8τ)n for all crossing-free
geometric graphs; so this stands at 344n.

The 43n-bound is probably far from optimal. On the other end [2] show that
there are sets of n points with as many as Ω(8.48n) triangulations.

Lattice triangulations. The extremal properties for general point sets are still
wide open, but even for “simple” concrete point sets the number of triangulations
seems hard to analyze. One such example is the n × n integer lattice Ln×n :=
{0, 1, . . . , n}2 (with (n + 1)2 points); see [9] for a brief discussion of problems
where lattice triangulations occur.

Fig. 2. Triangulated 20 × 20 lattice

The number of triangulations of Ln×n was first shown in [13] to be at most
64n2

(this is, in fact, more than the general upper bound known today). Anclin
[4] improved that to 8n2

with the following argument: First, it is easy to show
that in every triangulation each edge contains exactly one of the half-integral
points (1

2{0, 1, . . . , 2n})2\Ln×n as its midpoint, and, conversely, every such half-
integral point lies on one of the edges. Second, he proves that if we choose the
edges through these half-integral points in a row by row and left-to-right fashion,
then at each point there are at most two choices compatible with the edges chosen
so far. Half-integral points on the boundary leave no choice, so there are at most
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3n2 − 2n binary choices to be made which readily yields the 8n2
bound. As one

soon realizes, even interior half-integral points often allow only one choice as
we get to them, which indicates that the bound over counts. Indeed, [10] argue
that the bound can be set to O(6.86n2

), the best estimate currently known. The
existence of at least Ω(4.15n2

) triangulations on Ln×n was certified in [9].

Other special point sets. There are a few special types of configurations other
than convex position for which the number of triangulations is known; see Fig. 3
for such sets (we skip formal definitions of the configurations and we ignore
polynomial factors in the counting).

Fig. 3. The double circle (20 points), the double chain (18 points), and the double
zig-zag chain (18 points). Edges shown are those which have to appear in every trian-
gulation of the set.

The double circle has
√

12
n
,
√

12 ≈ 3.4641, triangulations [8], which is obvi-
ously significantly less than for convex position and the smallest number known
for n points in general position (no three points on a line). For some time the
double chain considered in [7] with 8n triangulations was the set exhibiting the
most triangulations known, but then [2] analyzed the double zig-zag chain with√

72
n
,
√

72 ≈ 8.4853, triangulations.

Algorithmic aspects. In [5] it is shown that the set of all triangulations of a
point set can be enumerated in time O(t · poly(n)), where t is the number of
triangulations. But when it comes to counting, i.e. computing this number t,
nothing is known at all other than some heuristics [1].

An interesting related question is that of the mixing rate of the random walk
on the flip graph of all triangulations of a given point set. In this graph the
triangulations represent vertices, and two triangulations are adjacent if we can
obtain one from the other by removing one edge and replacing it by another one
(an operation called edge-flip). This graph is connected and has diameter O(n2).
A random walk (with some waiting time for technical reasons) will eventually
produce a random triangulation, but nothing is known about the time it takes
for that to happen—other than the case of points in convex position, where
polynomial time mixing has been demonstrated [11,12]. Polynomial time mixing
of this random walk would imply polynomial time generation of an approximate
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random triangulations, and (with help of the result in [15]) polynomial time
approximate counting of triangulations.
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The Algorithmic Beauty of Digital Nature

Oliver Deussen

University of Constance, Germany
Oliver.Deussen@uni-konstanz.de
http://graphics.uni-konstanz.de

In recent years the development of graphics hardware and efficient rendering
algorithms enabled game developers to create large landscapes and render them
at interactive rates. However, the shown scenes are still rough approximations
that do not reach the complexity of real nature. To obtain sufficient simulations
with a degree of realism that comes close to nature, a couple of problems have
to be solved. In this extended abstract these challenges are roughly sketched,
references are given for further readings.

1 Modelling

Creating a good scene requires powerful modeling algorithms at different levels.
First a sufficient set of plant models has to be created. Nature is very diverse:
modeling the most important plants that are found in Europe requires thousands
of different models, and this is why efficient modeling algorithms for plants have
to be found. In our software xfrog we combine rule-based modeling methods with
procedural elements. This allows us creating a large variety of models efficiently.
For an overview of the method I refer to [1]. Figure 1 shows an example of
modeling a sunflower. The user combines components to create the model. The
components describe parts of the plant or multiplication algorithms.

The plant models then have to be combined to a virtual landscape. At this
stage other modeling programs are needed that enables the user to edit a huge
number of plant objects. The plants interact with each other; complex patterns
arise due to seeding mechanisms and the fight for resources. Sometimes, the de-
velopment of a landscape has to be simulated. We developed a series of modeling
tools ranging from painting interfaces for plant distributions up to complex eco-
logical simulation algorithms. Chapter Three of [1] gives an overview of possible
methods.

2 Level-of-Detail Modeling

Having modeled plant models and positions, we end up with very complex ge-
ometry even for a small landscape. A single tree model may consist of millions
of surfaces, a complete forest of billions or trillions. Efficient level-of-detail al-
gorithms are necessary to obtain interactive rendering of these scenes. Unfortu-
nately, standard algorithms for computer graphics fail here since a plant consists

M. Kaufmann and D. Wagner (Eds.): GD 2006, LNCS 4372, pp. 5–7, 2007.
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Fig. 1. Construction of a sunflower model

of many isolated triangles while conventional surfaces in graphics typically are
smooth. Therefore, we developed special Level-of-Detail algorithms for plants
that work with pointsets or so-called billboard clouds. In Figure 2 a represen-
tation of a complex plant by sets of billboards is shown. If standard clustering
techniques are used to determine proper billboards artifacts occur. An improved
method uses clustering together with semantic information about the model
(see [2]).

3 Rendering

Rendering the models is also an interesting task. The interaction of light with
the plant surfaces and especially leaves is not trivial. Subsurface scattering and
different optical properties of plant tissues require to adapt standard render-
ing techniques to these models. This is done by modeling the leaves as layered
surfaces with different optical properties. Doing so, we are able to simulate the
optical properties (Figure 3(a)).

4 Non-photorealistic Rendering

For many applications photorealistic rendering is not optimal. This is why we
also focussed on abstract representations of plants. This encompasses pen-and-
ink illustrations as well as watercolor simulations. We combine photorealistic
and abstract representations in order to visualize existing and planned elements
in landscapes. This is used in gardening, landscaping, and architecture.
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(a) (b)

Fig. 2. a) Approximation of a tree model by sets of billboards. Left the original model,
in the middle a standard k-means clustering, on the right an improved clustering; b)
Landscape with billboard plants.

(a) (b)

Fig. 3. a) Rendering a plant model with translucency; b) Non-photorealistic rendering
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Abstract. The typical use of force-directed layout is to create organic-
looking, straight-edge drawings of large graphs while combinatorial tech-
niques are generally preferred for high-quality layout of small to medium
sized graphs. In this paper we integrate edge-routing techniques into a
force-directed layout method based on constrained stress majorisation.
Our basic procedure takes an initial layout for the graph, including poly-
line paths for the edges, and improves this layout by moving the nodes
to reduce stress and moving edge bend points to straighten the edges
and reduce their overall length. Separation constraints between nodes
and edge bend points are used to ensure that nodes do not overlap edges
or other nodes and that no additional edge crossings are introduced.

Keywords: graph layout, constrained optimisation, force-directed lay-
out, edge routing.

1 Introduction

Researchers and practitioners in various fields have been arranging diagrams
automatically using physical “mass-and-spring” models since at least 1965 [1].
Typically, the objective of such force-directed techniques is to minimise the dif-
ference between actual and ideal separation of nodes [2], for example:

stress(X) =
∑

i<j

wij(||Xi − Xj || − dij)2 (1)

where wij is typically 1
dij

2 , Xi gives the placement in two or more dimensions
of the ith node and dij is the ideal distance between nodes i and j based on the
graph path length between them.

One of the attractive qualities of such physical models is that the physical
analogy can be easily extended to include additional aesthetic requirements by
adding additional forces between objects in the drawing. For example, to preserve
the edge crossings in an initial layout Bertault [3] added a repulsive force between
nodes and their projection points on edges, thus preventing nodes from passing
through edges during layout. This method was only applicable to layouts with
straight-line edges and point-size nodes. Brandes et al. [4] and later Finkel and
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Fig. 1. A directed graph drawn us-
ing constrained force-directed layout.
Separation constraints are used to en-
sure: (1) directed edges point down-
wards; (2) selected nodes are horizon-
tally or vertically aligned; (3) the draw-
ing fits within the page boundaries;
and (4) nodes do not overlap edges or
other nodes. Allowing constraints be-
tween nodes and edges means that edge
routing criteria can also be considered,
e.g., keeping edges as straight as pos-
sible while avoiding unnecessary cross-
ings. The “history of unix” graph data
is from http://www.graphviz.org.

Tamassia [5] allowed the edges to bend by treating dummy nodes as control
points for splines. The problem with these methods is that the splines could not
easily be prevented from overlapping one another and creating new crossings.

Recently, the force-directed model has been extended to allow separation con-
straints of the form u+g ≤ v, enforcing a minimum gap g between the positions
u and v of pairs of objects in either the x or y dimensions in the drawing [6]. The
basic idea is to modify the iterative step in functional majorisation [7] to solve
a one-dimensional quadratic objective subject to the separation constraints for
that dimension. Previously, it has been shown that separation constraints al-
low aesthetic requirements—such as placement of nodes below other nodes in
directed graphs or containment of nodes in clusters—to be integrated into force-
directed layout [6]. In this paper we show how they can be used to take into
account aesthetic criteria involving edge routing.

Our basic procedure takes as input an initial layout for the graph including
poly-line paths for the edges and rectangular bounding boxes for the node labels
(or other text or graphics associated with nodes). This layout is then improved
by moving nodes and edge bend points so that edges are straightened and made
more uniform in length. Our approach is similar in spirit to that of Bertault,
but instead of introducing repulsive forces between nodes and edges we introduce
separation constraints between edge bend points and nodes and other edges. The
result is drawings with no overlap between nodes and edges, and which preserve
the edge crossing properties of the starting layout. Further, these drawings should
have low stress with respect to the original goal function (1) while minimizing
edge bends and overall edge length.

Our method—explored in detail in Section 2—has three main advantages
over previous approaches. First, separation constraints allow us to guarantee
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that edge-edge crossings will not be introduced and that there will be no overlap
between nodes or between nodes and edges. Second, since our approach is based
on functional majorization it has better convergence properties than the earlier
approaches which were solved with iterative local-search methods similar to those
introduced by Kamada and Kawai [2] or Fruchterman and Reingold [8]. Third,
as illustrated in Figure 1, we can use additional separation constraints to enforce
other aesthetic criteria in the layout.

A key question is how to obtain the initial layout. Bertault [3] considered
input generated with a planarisation based technique [9]. Such methods seek to
find a maximal planar subgraph, draw this subgraph with no edge crossings, and
then use heuristics to reinsert edges whilst creating as few crossings as possible.1

Typically, the resulting drawings have few edge crossings but are aesthetically
displeasing, which is why techniques such as that of Bertault [3] or the earlier
simulated annealing based beautification algorithm [11] have been suggested as
post-processing steps to improve the layout. The procedure described here can
also be used for this purpose.

In Section 3 we introduce an alternative approach for obtaining the initial
layout. Our technique first positions the nodes by performing a force-directed
layout on the graph, ignoring edge routing. Next, we use the incremental connec-
tor routing library described in [12] to find the connector routes that minimize
edge length and amount of bend. We then iteratively improve this using a simple
greedy heuristic, re-routing the edges with the largest number of crossings to re-
duce crossings as long as this does not lead to very long edges or a large number
of bends, as seen in Figure 7. The advantage of our technique is that the heuris-
tic considers number of edge crossings, edge length, number of bends and degree
of “bendiness.” Clearly, all of these measures are important [13, 14] and since
there is a trade-off between them it is important to consider them together. As
far as we know this is the first approach to do so since previous approaches have
either been planarization based and only considered the number of crossings [9],
or have not considered crossings at all [15, 16, 12].

2 Modelling Edge Routing in Force-Directed Layout

We assume as input a graph G = (V, E) and a layout for the graph. Each node
v ∈ V has a bounding box of dimensions given by width(v) and height(v), and
each edge e has a minimum width width(e). The routing for each edge consists of
a curved or piece-wise linear path between and around node bounding boxes. We
use the functions xpos(e, h) which returns a list of intersection points between
the edge e and the line y = h; top(e) and bottom(e) which return the topmost
and bottom-most coordinate, respectively, through which e passes. The functions
ypos(e, h), leftlimit(e) and rightlimit(e) are defined symmetrically.

1 Of course there is no guarantee that such reinsertion strategies produce a drawing
that is optimal with respect to crossings since the general crossing minimisation
problem is NP-complete [10].
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Fig. 2. The bend b1 will be
straightened to its projection
point on the line p1b2, e.g., in
the x-dimension, to x1. Bend b2

will be similarly straightened
towards the line b1p2. The po-
tential bend points a1 and a2

will be straightened to the line
segment between actual bend
points or the ends of the line,
i.e., a1 will be straightened to
the line segment p1b1.

Recall from [7] that in functional majorisation the value of the stress func-
tion (1) is reduced by alternately minimising quadratic forms in the horizontal
and vertical axes that bound the stress functions:

xT Lx − lTx x , yT Ly − lTy y (2)

where: x and y are |V | dimensional vectors of node positions in each axis; the
|V |× |V | Hessian matrix L is the graph Laplacian; and the linear arguments lx,y

are computed before processing each axis based on the difference between ideal
separation of nodes and their actual separation at the current placement (for
details see [7]).

The input to our new layout problem includes bend points for some edges.
Ideally we would like such edges to be straightened while still satisfying the
original node separation objectives of the goal function and without creating
any node/edge, node/node intersections.

Consider a bend point b = (xb, yb) on a line from p1 = (x1, y1) to p2 = (x2, y2).
The minimal change to the position of b which straightens the line is to move b
to its projection pb on to the line p1p2. We let tb be distance of pb along p1p2,
that is, pb = p1 + tb(p2 − p1) where tb = p1b·p1p2

||p1p2||2 (from the dot product rule for
scalar projection) Since all paths have minimal length and bends we have that
the projection point must lie between p1 and p2, i.e. that 0 ≤ tb ≤ 1 .

So for an edge (vi, vj) ∈ E with one bend at position b we can straighten
the edge when moving vertices and bend points horizontally by minimising
f(xi, xj , xb) = (xb − (1 − tb)xi − tbxj)2. If an edge is routed through multiple
bend points b[1], b[2], ..., b[n] we can straighten all bends by minimising:

f(xi, xb[1], xb[2]) +
n−1∑

k=2

f(xb[k−1], xb[k], xb[k+1]) + f(xb[n−1], xb[n], xj)

and similarly, when placing points vertically, we will straighten edges by min-
imising an equivalent set of expressions over y. This is illustrated in Figure 2.
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(a) Identifying bends and potential
bends for horizontal placement

(b) A complex set of constraints generated
by the opening of node v

Fig. 3. Examples showing the separation constraints (dashed arrows) required to pre-
vent the creation of new node/node and node/edge crossings when moving nodes hor-
izontally

In summary, for the three variables u, v, b involved in each bend b, we have
f(u, v, b) = (u, v, b)T H(u, v, b) where

H(f(u, v, b)) = ∇2f(u, v, b) = 2 ·

⎛

⎝
(1 − tb)2 tb(1 − tb) tb − 1
tb(1 − tb) t2b −tb

tb − 1 −tb 1

⎞

⎠ (3)

Thus, if B is the set of bends (or potential bends, as will be discussed later) we
have to define |B| new variables and to redefine the goal functions (2) in terms of
m = |V | + |B| variables. We define a new matrix A that contains the quadratic
terms for each bend and the ideal node separation terms of the graph Laplacian:

A = L′ +
∑

b∈B

Ab (4)

where L′ is an m × m matrix with the top-left |V | × |V | cells set to L and the
remaining cells 0; for each bend b ∈ B, Ab is a symmetric matrix with the 9
cells corresponding to the variables u, v, b set to the entries in H(f(u, v, b)) as
above and all other cells 0. This gives us a new goal function to minimise in each
dimension. For example in the x dimension we have:

xT Ax + l′T x (5)

Where the linear terms in (2) are unaffected by the new quadratic terms so l′ is
simply an m-vector s.t. l′ = [l|0, . . .]. It is simple to prove that A is symmetric
and positive semi-definite meaning that efficient convex optimisation methods
such as the gradient-projection method described in [6] are applicable. Further,
since each bend point requires only a small number of entries in the A matrix the
complexity of the optimisation process will increase only linearly in the number
of additional bend variables when a sparse matrix data-structure is used.

We solve this quadratic objective subject to a set of separation constraints.
These constraints prevent: bend points and hence edges from overlapping any
node’s bounding box; nodes overlapping one another; bend points passing through
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another edge and so increasing the number of edge crossings; and guarantee a
minimum separation between parallel edges.

Figure 3 shows the constraints generated for when moving nodes horizon-
tally. Notice that additional bend points are introduced in some straight edge
segments. A new bend-point is created wherever the top or bottom of a node
is visible from that segment where nodes restrict visibility but edges do not.
We distinguish between the original active bends and these additional potential
bends. We only want an edge to bend at a potential bend point if the node asso-
ciated with that bend point (which is currently not touching the edge) is moved
as a result of straightening other edges and collides with the edge. We therefore
straighten potential bend points to the line segment between active bend points
(see Figure 2) and weight them significantly more than active bend points, to
avoid introducing new bends where possible.

Figure 4 gives an algorithm for generating these constraints for the x-direction:
the code for the y-direction is symmetric. We generate the constraints using
a line-sweep algorithm related to standard rectangle overlap detection meth-
ods [17] and the non-overlap constraint generation algorithm [18]. To generate
horizontal constraints, we perform a vertical sweep through the nodes and edges,
keeping a horizontal “scan line” list of open nodes sorted by horizontal position
and an unsorted list of open edges. When the scan line reaches the top of a new
node, v, this is added to the list and its left and right node neighbours, l and
r, are computed. The function neighbourhood x constraints searches along the
scan line at y between l and r for intersections with open edges. Bend variables
are created at these intersection points and constraints are generated between
them. Constraints between edges and the nodes to which they are connected
should not be generated or else edges may become “wrapped” around their end-
points. We therefore consider several cases for constraint generation. Case A
generates constraints between adjacent bend points for edges not connected to
l, r or v. Case B considers edges to the right of l or v, skipping those edges
connected to l or v, and Case C similarly handles edges to the left of v or r.
These three cases are illuminated in Figure 3(b).

The worst-case time complexity of procedure generate x constraints(V, E) is
O(|V |(|V | + |E| log |E|)) and it will generate O(|V | · (|V | + |E|)) constraints.

3 Computing the Initial Layout

The algorithm given in the previous section requires an initial layout including
node positions and poly-line routes for edges. One approach is to use a planari-
sation based technique [9]. These seek to find a maximal planar subgraph, draw
this in a planar way, and then reinsert edges whilst producing few crossings.
However, algorithms for drawing strictly planar graphs (or subgraphs) generally
require further refinement and so our algorithm can be used for this purpose. An
example is shown in Figure 8. We have also explored an alternative approach for
obtaining the initial layout and edge routing. This is novel, so we describe it in
more detail. It has four main steps.
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procedure generate x constraints(V, E)
C ← ∅
Events ← {(top(v), Open, v), (bottom(v), Close, v)|v ∈ V }
∪{(top(e), Open, e), (bottom(e), Close, e)|e ∈ E}

sort Events by decreasing y position
# OpenNodes is maintained in order of each node’s x position
OpenNodes← ∅
OpenEdges← ∅ % OpenEdges is unordered
for each (y, type, obj ) ∈ Events do

if obj is a node then
v ← obj
l← first node to left of v in OpenNodes
r ← first node to right of v in OpenNodes
Z ← Z∪neighbourhood x constraints(v, l, r, y, OpenEdges)

if type = Open then
if obj is a node then

insert(obj,OpenNodes,xpos(obj))
else if obj is an edge then

add obj to OpenEdges
endif

else if type = Close then
delete obj from OpenNodes / OpenEdges

endif
endfor

return Z

procedure neighbourhood x constraints(v, l, r, y, OpenEdges)
# If l (or r) is unspecified we say l(or r) = 0 and include all edges to the left (or right) of v.
L← ∅, minx = −∞
if l 	= 0 then

L← {l}, minx = xpos(l)
endif
L← L ∪ {dummyNode(e, x, y)|e ∈ OpenEdges ∧ x ∈ xpos(e, y)
∧ minx < x < xpos(v) ∧ e is not connected to l or v} ∪ {v} ∪ . . .

. . . similarly add dummy nodes for edges between v and r including r (if r 	= 0)
uA ← uB ← uC ← 0
for each w ∈ L in ascending xpos order do

A: if edge(w) ∧ ¬end(w) ∈ {v, l, r} then
if uA 	= 0 then

Z ← Z ∪ {xpos(uA) + (width(uA) + width(w))/2 ≤ xpos(w)}
uA ← w

else if node(w) then
uA ← 0

endif
B: if edge(w) then

if isend(uB , edge(w)) then
skipList ← skipList ∪ {w}

else
for each s ∈ skipList do

Z ← Z ∪ {xpos(s) + (width(s) + width(w))/2 ≤ xpos(w)}
skipList ← ∅

endif
else if node(w) then

skipList ← {w}
uB ← w

endif
for each w ∈ L in descending xpos order do

C: # symmetrical to B
# May need to also generate constraints l, v and v, r if necessary

return Z

Fig. 4. Vertical scan algorithm to create a set Z of constraints to prevent node/edge
or node/node overlap when moving nodes horizontally. The procedures gener-
ate y constraints and neighbourhood y constraints for the horizontal scan are symmet-
rical. Constraints generated for the three distinct cases A, B and C are illustrated in
Figure 3(b).
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The first step is to position the nodes by performing a force-directed layout on
the graph, ignoring edge routing. A method such as [18] can be used to remove
node overlap, allowing edges to be routed between neighbouring nodes.

Step two is to use the incremental poly-line connector routing library described
in [12] to compute poly-line routes for each edge, which minimise edge length and
amount of bend. This is done by constructing a visibility graph for the nodes,
itself containing a node for each vertex of the bounding box of each node in the
original graph. The visibility graph contains an edge between two nodes iff they
are mutually visible, i.e., there is no intervening obstacle. Next, the edge paths
are routed using an A� based-search to find the best route for each edge. The
cost of routing each edge is O((|E| + |V |) log |V |) where |E| is the number of
edges in the visibility graph.

Step three uses a simple greedy heuristic to reduce the number of edge cross-
ings. Each edge with crossings is considered once, in decreasing order of crossings.
Again we use an A� based-search to find the best route for each edge, though this
time the cost includes a penalty for each crossing. The cost of routing each edge
taking into account edge-crossings is currently O(|S|(|E|+|V |) log |V |) where |E|
is the number of edges in the visibility graph and |S| the number of segments in
the routed edges.

The penalty for an edge route is simply the sum of the penalties for its seg-
ments where the penalty for an edge segment is given by:

cost = l + αs +
βa log(a + 1)

10
+ γscc (6)

where: α, β, γ are user specifiable penalties for, respectively, the segment penalty,
the angle penalty and the crossing penalty. l is the length of the segment. a is
the angle away from a straight line that this segment makes with the previous
segment, scaled to the range 0 ≤ a ≤ 10, therefore a = 0 means the two segments
make a straight line. If this is not the first segment and a > 0, then s = 1,
otherwise s = 0. Finally, scc is the number of crossings for the segment.

The penalty function incorporates the three main features of poly-line edge
routing that have been shown to affect user comprehension: edge length, num-
ber of bends and degree of bendiness [14]. The ability to use a flexible penalty
function allows us to adjust the initial routing to match the desired combination
of aesthetic criteria and their tradeoffs. Setting a very high penalty for crossings
will produce routings with few crossings but this is not always ideal. By reducing
the penalty we produce more pleasing routings such as the one shown in Fig-
ure 7(b). In this case, the four crossings at the perimeter are avoided but the one
in the middle is allowed since it would otherwise result in a path of significantly
greater length and amount of bendiness.

Finding poly-line edge crossings for a graph is not as simple as just determin-
ing the intersections between the segments of all edge paths. It is common for
edges to bend around the same node corner or to share paths for part of their
route, i.e., running along the same paths in the visibility graph. In these cases
we want to distinguish between situations where they cross and where they only
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(a) Initial force-directed
layout

(b) Edges rerouted to re-
duce crossings

(c) After straightening
edges

Fig. 6. A small example showing the main steps in our layout process

touch or run parallel. We do this by comparing the order of edges entering and
leaving shared paths or common bend points.

Since the length of the shared path has no effect on whether the two edges
cross, we can treat bend points equivalently to shared paths. We start by looking
for cases where the segments of two edges have a single shared endpoint. This
is the beginning of a shared path or a common bend point. Such bend points
always pass around the corner of a node, so we determine the order of edges
entering the shared path at this point by finding which edge runs closest to the
node. From here we follow the common segments along the shared path until
they diverge again. We then determine the order of edges leaving the shared
path, taking into account features of the bends such as the winding directions.

Fig. 5. An exaggerated example of the
nudging we perform on shared edge
bend points

If the two orders are different then we can
tell that the edges cross along the shared
path, rather than running parallel.

Finally, in step four, line segments are
adjusted to slightly separate edges routed
around the same corner of a node. This
involves nudging the bend points of edges
along shared paths, or at the points they
cross or touch, as shown in Figure 5. To do
this a sorted order for each of these points
and shared paths is kept when determin-
ing crossings. This nudging step prevents
the creation of additional edge crossings
during the layout step.

4 Discussion

Figure 6 demonstrates how the edge routing and straightening procedures are ap-
plied in practice. We begin with the output of an unconstrained stress-
majorisation layout in which edge routing is ignored. Edges are all close to their
ideal length thus minimising (1). We apply edge routing as described above, pe-
nalising routes with crossings. A planar layout is obtained but with longer edges
and a number of bends. Constraints are then generated using the algorithm from
Figure 4 and the stress majorisation layout is rerun subject to these constraints.
The result retains the planar layout but the edges are straightened.
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(a) Initial force-
directed layout

(b) Edges routed to pe-
nalise crossings

(c) With edge straightening

Fig. 7. An example graph from Kamada-Kawai [2]

(a) Output of a planar graph layout algorithm (b) With edge
straightening

Fig. 8. Applying edge straightening to the output of a planar layout algorithm

Figure 7 shows an example graph from Kamada and Kawai [2]. Note that the
graph is planar, yet our routing allows one crossing to remain because removing
the final crossing would require a very long edge. The result is a layout with more
consistent edge length and greater symmetry than a completely planar drawing
would permit.

Figure 8 shows the result of applying the edge straightening method directly
to the output of a typical planar graph layout algorithm. The layout is consid-
erably compacted by allowing edges to bend while the edge routing topology is
preserved. Note that the layout is somewhat compressed by the requirement to
preserve the ideal distance between two nodes on the outer face that have fin-
ished up on opposite sides of the drawing. This could perhaps be alleviated by
a further refinement step that relaxed ideal distances between nodes connected
by an edge following a long route.

Our final example in Figure 9 is more typical of the type of graphs encoun-
tered in actual applications, namely: nodes have variable size bounding boxes
depending on the labels required; there are many more edges than our previ-
ous examples; and there are a small number of nodes of high degree, e.g., the
two highest degree nodes have 19 and 8 connections. In Figures 9(b) and 9(c)
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(a) Initial force-directed lay-
out: 43 crossings

(b) With edges routed to pe-
nalise crossings and straight-
ened: 18 crossings

(c) With additional con-
straints to require downward
pointing edges: 26 crossings

Fig. 9. A more realistic graph visualisation application (a Bayesian net)

edges that share a common path have been separated using the method de-
scribed in Section 3. Note that we have not applied such a separation where
edges share a common end point—the main goal of nudging being to disam-
biguate routes that come together and then diverge. Figure 9(c) demonstrates
how other constraints—in this case downward pointing directed-edges—can be
used in addition to edge straightening constraints. This is also demonstrated in
the example shown in Figure 1.

The entire process, including computation of the initial layout, routing of all
edges and then the straightening phase takes only a few seconds for each of the
examples shown.

5 Conclusion and Further Work

Extending stress majorisation techniques to handle separation constraints allows
us to naturally handle a wide number of aesthetic criteria and drawing conven-
tions. Here we have shown that separation constraints allow edge routing to be
integrated into force-directed layout. The precise encoding is not obvious, and
relies on using separation constraints in combination with a modification to the
one-dimensional quadratic objective function to essentially model an arbitrary
linear inequality.

Another contribution of the paper is to present a simple heuristic for finding
poly-line edge routes that tries to minimise the number of edge crossing while
still taking into account the edge length and degree of bendiness. There has
been surprisingly little research into such heuristics and we believe that there is
considerable scope for further work.

We think it is significant that our algorithm can be used to improve layouts
obtained with planarization based methods. We plan to further explore how
force-directed layout can be combined with such combinatorial techniques.
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Abstract. Most force-directed graph drawing algorithms depend for
speed crucially on efficient methods for approximating repulsive forces
between a large number of particles. A combination of various tree data
structures and multi-pole approximations has been successfully used by
a number of authors. If a multi-level approach is taken, in the late (and
due to the large number of particles computationally intensive) steps,
movements of particles are quite limited. We utilize this fact by basing
force-calculations on an easy updatable tree data structure. Using ex-
plicit distance checks instead of relying on implicit guarantees provided
by quadtrees and avoiding local expansions of the multi-pole expansion
leads to a very simple implementation that is faster than comparable
earlier methods. The latter claim is supported by experimental results.

1 Introduction

In several force-directed graph drawing methods [1,2,3,4] the nodes of a graph
to be drawn are modeled as charged particles that repel each other and edges
are represented as springs with some ”ideal” length that attract or repel the two
incident nodes, depending on their actual length. A placement of nodes that min-
imizes the total energy in the system often results in a nice straight line drawing
of the underlying graph. This placement is achieved by iteratively computing
the total force acting on each node and then moving the nodes accordingly.

In order to make this approach work in practice for large graphs, two consid-
erations are crucial: Firstly, as a naive approach to calculating repulsive forces
would take O(N2) steps per iteration for a graph with N nodes, we need a fast
method for approximating these forces with sufficiently high accuracy.

Secondly, to avoid an overly large number of iterations, we need a multi-
level approach that first generates a series of coarsened graphs G1,. . . ,Gk from
the initial graph G0, generates a drawing for the small graph Gk, and then re-
fines this drawing by constructing an initial placement for the nodes of Gi from
the node positions in Gi+1 which is then optimized by force-directed iterations.
Note, that at each refinement level we start with a ”reasonable” initial placement
of nodes.
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Though we have implemented such a coarsening/refinement approach (along
the lines suggested by Hachul and Jünger [5]), it is not further discussed in
this paper; its focus is on a simple and efficient approach to approximation of
repulsive forces.

2 Previous Work

Beginning with Barnes and Hut [6] a number of force approximation schemes
have been developed and used in the context of graph drawing [7,8] that use
quadtrees or variants thereof for hierarchical clustering of particles and approx-
imating forces either by substituting a ”group particle” at the center of gravity
for the particles of a cluster [6] or by calculation of multipole expansions [9] for
the clusters. These approaches differ in how the tree is constructed and whether
explicit distance calculations are used to steer the following force calculations
or if implicit properties of the quadtree’s topology are used. Hachul [10] , af-
ter careful analysis of different quadtree construction methods, came up with
the reduced bucket quadtree that can be constructed in O(N log N) steps for N
particles.

One drawback of quadtrees is that they divide the area containing the particles
into subregions of equal size, not equal population. If particles are not uniformly
distributed, they become unbalanced and quite involved algorithms [10] are
needed to achieve O(N log N) complexity for tree construction.

3 The Enclosing-Circle-Enhanced Modified k-d-Tree

As opposed to quadtrees, k-d-trees introduced by Bentley [11] partition the set
of particles based on population, not on space.

3.1 Definition of the Tree Data Structure

We use a variant of a 2-d-tree, defined as follows: The root node represents
the set of all N particles. Each node representing k particles has two children,
where the left child contains the k/2 particles with lowest coordinates and the
right child the remaining k − k/2 particles. (Note: throughout the paper we use
integer division). If the bounding rectangle of a node with dimensions dx and
dy has dx > dy, i.e., it is ”horizontally oriented”, the x-coordinate is used for
splitting, otherwise the y-coordinate. (This is different from Bentley’s k-d-trees,
where coordinate directions are used in a strict round robin fashion; it helps to
avoid long skinny regions which group points together that are far away from
each other).

The leafs of the tree are buckets, i.e., they contain a list of particles. The
bucket size is bounded by a predefined parameter B. Each bucket contains b
particles with B/2 ≤ b ≤ B. (Unless pathologically N < B/2).

In each leaf we store center and radius of the smallest circle enclosing all
particles of its bucket. The interior nodes too contain enclosing circles of their
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subtree, either exact values or upper bounds, depending on the tree construction
method, see below.

3.2 Tree Construction

Such a tree can be constructed in O(N log N) steps as follows:
First, we build two singly linked lists of particles and sort one list by x-

coordinates, the other one by y-coordinates. This takes O(N log N) steps using
list merge sort or any other appropriate method.

We create the root node, determine its appropriate splitting direction and
append the node, its splitting direction, and the two initial lists to a queue of
nodes to be processed.

Then, in the main loop of the algorithms, a node, its lists, and its splitting
direction are popped from the queue and the node is split if it contains more
than B particles. Splitting a node proceeds as follows: we traverse one of the two
sorted lists up to the median element, mark the traversed elements, and transfer
them to a list L1 (this takes k/2 steps for a node representing k particles). The
remaining particles are transferred to list L2 (list concatanation, one step). Next,
we split the second list (the other coordinate direction) based on the marks just
made: elements are popped from the list and depending on their mark appended
to one or the other of two result lists. Note, that the lists stay sorted during
this step. This costs another k steps. Finally, two child nodes are created and
appended to the queue together with the four lists just created. If the node taken
from the queue contains not more than B nodes, a leaf is created containing
one of the associated particle lists. By construction the resulting tree is fully
balanced. The work at each level of the tree is O(N). Thus, with O(log N) tree
levels and including the initial sorting step, the overall complexity is O(N log N),
independent of how particles are distributed in the plane.

It remains to discuss how the enclosing circles are created. For the leafs, we
could employ any algorithm without affecting the overall complexity, as the size
of the buckets is bounded. However, luckily, there is a very efficient method
that computes the smallest enclosing circle for a set of n points in the plane in
O(n) expected time, introduced by Welzl [12]. If we used this method during
tree construction, when the sets of particles for each node and leaf are readily
available, the overall expected time complexity became O(N log N).

However, there is a faster method - both from the complexity point of view
and in practice -, if we sacrifice some accuracy. We proceed in four passes: In
the first pass, the tree is constructed as described. In the second pass, smallest
enclosing circles are calculated for leafs, using Welzl’s algorithm. In the third
pass, traversing the tree from the leafs bottom up, the bounding circles of nodes
are initialized with the largest leaf-circle in their subtree, which is easily found
by selecting the larger circle of the two children of a node. In the last pass,
for each leaf, node-circles in the path from the leaf up to the root are modified
- if needed - such that they fully overlap with the leaf-circle. (Passes two to
four could be replaced by just combining pairs of circles bottom up, but this
gives inferior results). Passes one to three take O(N) steps, the last pass takes
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O(N log N) steps, as the paths from leaf to root have O(log N) length. In general,
the bounding circles calculated by this method will be 10 to 15% larger than the
smallest enclosing circle of the set of particles in the subtree, but this method
is significantly faster than the exact method and - as experiments have shown -
does not significantly degrade the speed of force calculations carried out based
on the tree.

Fig. 1. k-d-tree like partioning of a set of particles into leaf rectangles and correspend-
ing bounding circles

Figure 1 shows for a small example the partitioning of the plane into rect-
angular areas achieved by building the 2-d-tree from a set of particles. We see
also the enclosing circles for the leaf nodes of the tree. Note that in general,
these circels are smaller than the circumscribed circle of the corresponding leaf-
rectangle, that had to be used for distance calculations if our circles were not
available.

3.3 Tree Update

In the main loop of the force-directed spring embedder, particles are moved
according to the total force acting on them. Due to the multi-level approach



24 U. Lauther

taken, these movements are small because particle positions are initialized with
reasonable values derived from the previous level in the hierarchy of coarsened
graphs. Therefore, there is no need to create the tree from scratch for each
iteration. (It is created from scratch for each level of the hierarchy). Instead, we
keep the tree structure and just update the enclosing circles in leafs and interior
nodes, provided the average movement of particles in the last iteration was small
(less than 10% of of the average leaf radius). For each particle, we follow the path
from its leaf to the root of the tree and check if it is still inside the enclosing circle
of the node. If not, the enclosing circle is appropriately enlarged. Otherwise, we
are done with this particle as nodes further up cannot be affected. Typically,
this loop terminates already at the bottom level and the typical runtime is 10
times smaller than that for building the tree from scratch. Nevertheless, we may
rebuild the graph every, say 10th, iteration in order to avoid too much inaccuracy
of bounding circles, without affecting speed significantly.

This speedup strategy is especially valuable at the last of the multi-level steps
where the full graph is processed and node movements are small.

3.4 Tree Storage

As the size of the tree is known from the very beginning and its structure does
not change, it is convenient to store the tree (actually pointers to interior tree
nodes and leafs) in an array, just as a binary heap is conventionally stored: for
a node at position i we find its predecessor at position i/2 and its children at
positions 2i and 2i + 1. Thus we save three pointers per node.

4 Calculation of Repulsive Forces

As invented by Greengard [9] and thoroughly discussed by Hachul [10] our
calculation of repulsive forces is based on p − term multipole expansions of the
potential energy due to groups of charged particles represented by nodes of our
tree.

4.1 Calculation of p-Term Multipole Expansions

In what follows, coordinates, forces, and coefficients are complex numbers. For
coordinates, we can convert between two-dimensional vectors and complex num-
bers in the obvious way, for forces we have to take the conjugate first. Formulas
are taken from [10] where also proofs have been given.

The p-term multipole expansion with parameter p

e(z) = a0 log(z − z0) +
∑p

k=1
ak

(z−z0)k

with coefficients

a0 = m and ak = −
∑m

i=1
(pi−z0)k

k
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approximates the potential energy at point z with |z−z0| > r due to m particles
with unit charge located in the plane at points pi within a circle with radius r
around z0.

From the p-term multipole expansion we can derive the approximate force
f(z) that acts on a particle with unit charge at position z outside the circle
(z0, r) as

f(z) = a0
(z−z0)

−
∑p

k=1
k·ak

(z−z0)k+1

For the efficient calculation of p-term multipole expansions in the nodes we
also need to know that a p-term multipole-expansion around center z0 can be
shifted to a new position z1. The coefficients bi for the shifted expansion are
obtained by

b0 = a0 and bl = −a0(z−z1)l

l +
∑l

k=1 ak(z0 − z1)l−k
(

l−1
k−1

)

Using these formulas, we first calculate the coefficients a0 . . . ap of the p-term
multipole expansion for each leaf of the tree. Then, traversing the tree bottom
up, we shift the expansions of the children of a node to the node’s center and
add the two sets of coefficients. The whole process takes O(p2N log N) steps.

In [10] in addition to multipole expansions so called local expansions are
defined and used for force calculations. To simplify the implementation we do
not, however, use local expansions.

4.2 Using p-Term Multipole Expansions

The multipole expansions (i.e., their coefficients) are calculated once for each
iteration of the force-directed placement, after the tree of particles has been
built or updated. Force-calculation is then a quite simple step. We loop over all
leafs L1 of the tree and proceed as follows:

– For the b particles in the leaf’s bucket, we calculate the mutual repulsive
forces directly; this takes b(b − 1)/2 steps.

– Then we need to calculate the forces from the other particles in the tree.
We use a stack of interior nodes or leafs to be processed which is initialized
with the root node. While the stack is not empty we pop an interior node
or leaf and compare it with the current leaf L1. If the popped element is
sufficiently far away, we use its multipole expansion to find the forces acting
on the particles of the current leaf. Otherwise, if it is an interior node, its
two children are pushed on the stack for further processing. If it is a leaf L2,
we loop over the particles in L1 and either, if L2 is sufficiently far away from
a particle, calculate the forces acting on it due to the multipole expansion
of L2, or else calculate the forces acting on the particle from those of L2
directly. In the first case we need p calculations per particle, in the latter b
calculations, with p the parameter of the p-term-multipole expansion and b
the number of particles in leaf L2.
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The partial forces calculated as described are accumulated in the respective
particles, so that we end up with the total repulsive force acting on each particle.

It remains to specify what ”sufficiently far away” means. A particle is con-
sidered sufficiently far away from a node with radius R of its bounding circle if
its distance from the node’s center is ≥ 2R. A leaf with radius r is considered
sufficiently far away if the same condition holds for all points enclosed by the
leaf’s bounding circle, i.e., if for the distance d between the two centers we have
d > 2R + r. We tried to parameterize these conditions as in [6], as weaker
distance requirements would speed up calculations, but this leads to a rapid
degradation of accuracy if the node’s circular bounds have been calculated ex-
actly. If, however, the faster approximation is used for the calculation of node
circles (that leads to larger bounds), we can compensate for this by multiplying
node radii by 0.9 without degrading accuracy of force calculations too much.

As we have seen, we use explicit distance calculations between leafs and/or
nodes to steer the algorithm instead of relying on implicit distance guarantees
that come with quadtrees but require evolved bookkeeping of possibly interacting
nodes [10]. We gain in simplicity and - as we will see, in speed - but we loose
the possibility to give complexity results for this step. Thus, the efficiency of the
method is shown by experimental results.

5 Experimental Result

The proposed algorithms have been implemented in C++ using our own C++-
class library of basic algorithms and data structures [13] and as part of a spring
embedder project. As the runtime of a spring embedder depends on many fac-
tors, e.g., local cooling schemes, termination conditions, translation of forces into
particle movements, we focus here on the runtime for building and updating the
particle tree and for the calculation of repulsive forces. Hachul [10] has made
thorough comparisons of his reduced bucket quadtree based implementation with
a number of other approximative methods and has shown his approach to be su-
perior in all cases. It seems therefore justified to compare with his results only.
For this purpose, we use the same particle distributions and numbers. We also
use a similar hardware- and software platform (Intel Pentium 4 running Linux),
however with a different clock rate. To make results comparable, we scaled our
CPU-times such that running times for a naive O(N2) force calculation become
identical.

5.1 Particle Distributions

We use these particle distributions as defined by Hachul [10]:

Uniform. Particles are uniformly distributed within the square [0, 1] × [0, 1].
Non-uniform. 20% of the particles are uniformly distributed within the square

[0, 1] × [0, 1]. The remaining particles are to equal parts distributed within
circles with their center at (1

2 , 1
2 ) and radius 1

4 , 1
16 , 1

64 , and 1
256 , respectively.
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Quasi-converging. Here particles are distributed on the line connecting (0,0)
and P = (0, 1025). Particle i is placed at position

3
4 P

2i−1 for i = 1, 2, . . . until
xi becomes < 10−25. The remaining particles are uniformly distributed on
the line connecting (0,0) and P = (10−25, 10−25).

5.2 Running Times for Tree Construction

For the distributions described and particle numbers between 8000 and 128000
the particle tree was built and compared with the faster tree construction method
TCb of [10]. The bucket size was fixed at 16 for all runs. As expected, the run-
ning times are independent of the distribution, with one exception: due to the
correlation between x- and y-coordinates in the quasi-convergent distribution,
the second pass of sorting in our method becomes very fast. The measured run-
ning times confirm the expected complexity of O(N log N) for all distributions.
In general, our tree construction method is slower than that for the quadtree,
with the exception of the quasi-convergent distribution, where the quadtree is
significantly slower. However, in the spring-embedder application, in most cases
the tree can be updated instead of building it from scratch, which is about 10
times faster.

To clarify, the running times in Table 1 show the time for building the tree
once from scratch. This has to be done once per iteration in the implementation
of [10], but is done only every 10th iteration in our approach; so the actual time
spent on tree building is significatly smaller than the table seems to indicate.

Table 1. Running time for building the tree data structure (Note that the time needed
for dynamically updating the tree after small movements of particles is by a factor of
about 10 lower.)

Distribution Number of particles Hachul’s Our’s
uniform 8000 0.01 0.03

16000 0.03 0.08
32000 0.06 0.17
64000 0.12 0.38

128000 0.30 0.83
non-uniform 8000 0.02 0.03

16000 0.03 0.08
32000 0.08 0.17
64000 0.15 0.38

128000 0.34 0.84
quasi-converging 8000 0.22 0.02

16000 0.44 0.06
32000 0.71 0.13
64000 1.49 0.27

128000 2.75 0.64
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5.3 Running Times for Force-Calculations

Now we compare the running times for calculation of repulsive forces. In [10],
measurements were made with different parameter settings giving low, medium,
and high accuracy, the latter being defined by an approximation error below
10−4. We restrict our comparisons to this high accuracy case, which is achieved
- as in [10] - by setting the parameter p of the multipole expansion equal
to 6, 7, and 8 for the uniform, non-uniform, and quasi-converging distributions,
respectively. The bucket size of the tree was again fixed at 16. Note that the times
given refer just to the force calculations, excluding tree building and updating.

Table 2. Running time for calculation of repulsive forces

Distribution Number of particles Hachul’s Our’s Exact
uniform 8000 0.29 0.13 7.99

16000 0.50 0.28 34.92
32000 1.29 0.66 142.16
64000 2.26 1.37 568.64

128000 5.54 3.14 2274.56
non-uniform 8000 0.32 0.27 7.80

16000 0.61 0.57 35.14
32000 1.40 1.18 142.16
64000 2.58 2.55 568.64

128000 5.88 5.54 2274.56
quasi-converging 8000 0.29 0.16 7.83

16000 0.60 0.34 35.08
32000 1.06 0.71 142.16
64000 2.13 1.45 568.64

128000 4.00 3.13 2274.56

We see that our running times for force calculations for the uniform and for
the quasi converging distribution are significantly lower than in the quadtree
based approach and slightly smaller for the non-uniform distribution.

6 Conclusions

We have introduced a new particle tree variant, that stores smallest enclosing
circles in its nodes and can be built fully balanced in O(N log N) steps indepen-
dent of the particle distribution. After small movements of particles the tree can
efficiently be updated, without any changes to its structure. Using explicit dis-
tance calculations between leafs and nodes and avoiding the calculation of local
expansions, we achieve an easy to implement multipole expansion based approx-
imation method for calculation of repulsive forces that compares - concerning
speed and implementation efford - favorably with earlier work.
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Abstract. We present a fast spectral graph drawing algorithm for drawing undi-
rected connected graphs. Classical Multi-Dimensional Scaling yields a quadratic-
time spectral algorithm, which approximates the real distances of the nodes in the
final drawing with their graph theoretical distances. We build from this idea to
develop the linear-time spectral graph drawing algorithm SSDE. We reduce the
space and time complexity of the spectral decomposition by approximating the
distance matrix with the product of three smaller matrices, which are formed by
sampling rows and columns of the distance matrix. The main advantages of our
algorithm are that it is very fast and it gives aesthetically pleasing results, when
compared to other spectral graph drawing algorithms. The runtime for typical 105

node graphs is about one second and for 106 node graphs about ten seconds.

1 Introduction

A graph G = (V,E) is a pair where V is the vertex set and E is the edge set, which is a
binary relation over V . The graph drawing problem is to compute an aesthetically pleas-
ing layout of vertices and edges so that it is easy to grasp visually the inherent structure
of the graph. In this paper, we only consider straight-line edge drawings for which a
variety of aesthetic criteria have been studied: number of edge crossings; uniform node
densities; symmetry. Depending on the aesthetic criteria of interest, various approaches
have been developed, and a general survey can be found in [13,22].

For straight-line edge drawings, the graph drawing problem reduces to the problem
of finding the coordinates of the vertices in two dimensions. A popular approach is to
define an energy function or a force-directed model with respect to vertex positions,
and to iteratively compute a local minimum of the energy function. The positions of
the vertices at the local minimum produce the final layout. This approach is generally
simple and easy to extend to new energy functions. Various energy functions and force
models have been studied (see for example [6,12]) and there exist several improvements
to handle large graphs, most of them concentrating on a multi-scale paradigm. Multi-
scale approaches involve laying out a coarser level of the graph first, and then taking
advantage of this coarse layout to compute the vertex positions at a finer level (see for
example [9,24]).

Spectral graph drawing was first proposed by Hall in 1970 [8] and it has become
popular recently. We use the term spectral graph drawing to refer to any approach that
produces a final layout using the spectral decomposition of some matrix derived from
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the vertex and edge sets of the graph. A general introduction can be found in [14]. In this
paper, we present the spectral graph drawing algorithm SSDE (Sampled Spectral Dis-
tance Embedding), using a similar formulation that was introduced in [5], which uses
Classical Multi-Dimensional Scaling (CMDS) techniques for graph drawing. CMDS
for graph drawing was first introduced in [17] and recently, a similar idea using CMDS
technique, was proposed by Koren and Harel in [15] using a slightly different formu-
lation. CMDS uses the spectral decomposition of the graph theoretical distance matrix
to produce the final layout of the vertices. In the final layout, the pair-wise Euclidean
distances of the vertices approximate the graph theoretical distances. The main disad-
vantage of this technique from the computational perspective is that one must perform
an all-pairs shortest path computation, which takes O(|V ||E|) time. The space com-
plexity of the algorithm is also quadratic since one needs to keep all the pair-wise dis-
tances. This prevents large graphs having more than 10,000 nodes from being drawn
efficiently.

SSDE uses an approximate decomposition of the distance matrix, reducing the space
and time complexity considerably. Some theoretical properties of such matrix decom-
positions have been studied in [20]. The fact that the distance matrix is symmetric al-
lows us to express the decomposition in a simpler way. SSDE consists of three main
steps:

(i) Sampling: a constant number c of nodes are sampled from the graph for which the
graph theoretical distances to all other nodes are computed. Let the matrices C and
R denote the corresponding rows and columns of the distance matrix that have been
computed, where R = CT . The complexity of this step is O(c|E|) for unweighted
graphs, using BFS for each sampled node.

(ii) Computing Φ+: Based on the information in C and R, we form Φ , which is a
c × c matrix keeping the entries which are common in C and R. Since we need its
pseudo-inverse Φ+, the complexity of this step is O(c3), which involves computing
a pseudo-inverse via the singular value decomposition (SVD) of Φ .

(iii) Spectral Decomposition: We find the optimal rank-d spectral reconstruction of the
product CΦ+R, to embed in d-dimensions. The complexity of this step is O(cd|V |),
using the power iteration, which finds the largest eigenvalues of a matrix and its
associated eigenvectors.

SSDE can be used to produce a d-dimensional embedding, the most practical be-
ing d = 2,3. We focus on d = 2 in this paper. We present the results of our algorithm
through several examples, including run-times and embedding errors. Compared to sim-
ilar techniques, we observe that our algorithm is fast enough to handle graphs up to 106

nodes in about 10 seconds. A comparison of SSDE with two popular spectral graph
drawing algorithms (HDE and ACE) is given in Figure 1: SSDE produces very good
drawings of almost every mesh-like graph we have tried, with comparable or better run-
ning times. One of the main exceptions is tree-like graphs or more generally graphs with
low algebraic connectivity, which are problematic for all three spectral graph drawing
techniques mentioned.

The problem our algorithm addresses is that of embedding a finite metric space in
R

2 under the l2-norm [19]. Most research in this area of mathematics has focused on
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SSDE HDE ACE

Fig. 1. Comparison of SSDE with other spectral methods (HDE and ACE) on the finite element
mesh of a cow with |V | = 1820, |E| = 7940

determining what kinds of finite metric spaces are embeddable using low-distortion
embeddings. Our work does not provide any guarantees on the distortion of the result-
ing embedding, which is an active area of research. We do, however, give the intuition
behind why our algorithm constructs a good embedding using limited data on the dis-
tances between the points. Another paper using this kind of approach is [21], which
introduces a different formulation via the Nystrom approximation.

1.1 Related Work

There are general methods to draw graphs, and detailed information about different ap-
proaches can be found in [13,22]. Our algorithm is based on spectral decomposition
which yields the problem of computing the eigenvalues and eigenvectors of certain ma-
trices related to the structure of the graph. The formulation is mathematically clean, in
that exact solutions can be found, because eigenvectors and eigenvalues can be com-
puted exactly in O(|V |3) time. Our work falls within the category of fast spectral graph
drawing algorithms, which is the related work we elaborate upon.

High-Dimensional Embedding (HDE) described in [10] by Harel and Koren em-
beds the graph in a high dimension (typically 50) with respect to carefully chosen pivot
nodes. One then projects the coordinates into two dimensions by using a well-known
multivariate analysis technique called principal component analysis (PCA), which in-
volves computing the first few largest eigenvalues and eigenvectors of the covariance
matrix of the points in the higher dimension.

ACE (Algebraic multigrid Computation of Eigenvectors) [16] minimizes Hall’s
Energy function E = 1

2 ∑n
i, j=1 wi j(xi − x j)2 in each dimension, modulo some non-

degeneracy and orthogonality constraints (n is the number of nodes, xi is the one-
dimensional coordinate of the ith node and wi j is the weight of the edge between i and
j). This minimization problem can be reduced to obtaining the eigen-decomposition
of the Laplacian of the graph. A multi-scaling approach is also used, creating coarser
levels of the graph and relating them to the finer levels using an interpolation matrix.

Both of the methods described above are fast due to the small sizes of the matri-
ces processed. Specifically, the running time of ACE depends on the structure of the
graph while HDE provides better image quality and run-times. But, they may result in
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aesthetically unpleasant drawings of certain graphs and some of these problems are
illustrated in Figure 1.

1.2 Notation

We use i, j,k, . . . for indices of vectors and matrices, bold uncapitalized letters x,y,z
for vectors in R

d and bold capitalized letters for matrices. Typically, M,N are used
to represent n × n matrices and X,Y,Z for n × d matrices, which represent n vectors
in R

d . A(i) denotes the ith row of the matrix A and A(i) denotes its ith column. The
pseudo-inverse of a matrix A is denoted as A+. The norm of a vector ‖x‖ is the standard
Euclidean norm. The transpose of a vector or a matrix is denoted as xT ,MT .

2 Spectral Decomposition of the Distance Matrix and CMDS

Given a graph G = (V,E) with n nodes, let V = {v1,v2, . . . ,vn}. The distance matrix
D is the symmetric n × n matrix containing all the pair-wise distances, i.e., Di j is the
length of the shortest path between vi and v j. Suppose that the position at which vertex
vi is placed is xi. We are seeking a positioning that approximates the graph theoretical
distances with the Euclidean distances, i.e,

‖xi − x j‖ ≈ Di j, for i, j = 1,2, . . . ,n. (1)

A suitable algebraic manipulation as presented in [4] on (1) yields the following equa-
tion, which is the basic idea of CMDS:

YYT ≈ −1
2

γγγLγγγ = M. (2)

where Y is an n × d matrix containing the coordinates of the points, L is the n × n
matrix keeping the squares of the distances between nodes and γγγ = 1

n In − 1n1n
T is a

projection matrix. We want to approximate M as closely as possible. The metric that
CMDS chooses is the spectral norm, so we wish to find the best rank-d approximation to
M with respect to the spectral norm. This is a well-known problem, which is equivalent
to finding the largest d eigenvalues of M. The final centralized coordinates are then
given by Y = [

√
λ1u1, . . . ,

√
λdud ], where λ1, . . . ,λd are the first d eigenvalues of M

and u1, . . . ,ud are the associated eigenvectors.

CMDS(G)
1: Compute D using an APSP algorithm on G
2: Define matrix L such that Li j = D2

i j .

3: return Y = PowerIteration(− 1
2 γγγLγγγ ,ε)

Fig. 2. The spectral graph drawing algorithm based on CMDS
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Finding a rank-d approximation of M = − 1
2 γγγLγγγ , which corresponds to computing

the largest d eigenvalues and eigenvectors, is performed by a standard procedure typi-
cally referred to as the power iteration, rather than by an exact algorithm which would
have O(|V |3) time complexity.

3 Approximate Distance Matrix Reconstruction

The running time of the CMDS technique is quadratic in terms of the number of nodes
even for sparse graphs since one needs to compute and store all-pairs’ shortest path
lengths. In this section, we will first briefly explain the intuition behind SSDE, which
breaks the quadratic complexity of this technique and actually yields a fast, linear time
algorithm. Then, we will present the mathematical formulation.

3.1 Intuition

SSDE tries to construct an approximation to the distance matrix without computing
all the entries in it. In the previous section, we noted that the distance matrix might
have rank larger than d. But, the rank of the distance matrix is expected to be small
in terms of the number of nodes in the graph, even if it is larger than d. This intuitive
reasoning stems from a famous result from low distortion embedding theory. In 1984,
Johnsson and Lindenstrauss [11] proved that n points in high dimension can be embed-
ded into O( logn

ε2 ) dimensions with ε distortion. This means, roughly speaking that the
set of points can be reconstructed in low dimension while preserving all the pair-wise
distances and hence that the effective rank of the distance matrix is much smaller than
its full dimension. This suggests that one can extract much of the information about the
matrix by performing computations on matrices having much smaller ranks.

Specifically, SSDE approximates the distance matrix with the product of three
smaller matrices, which have linear size in terms of the number of nodes in the graph.
In order to do this, reasoning from the fact that the distance matrix has low rank, the
columns of the distance matrix can approximately be expressed as a linear combination
of a small number of its columns. The algorithm essentially consists of choosing this
small number of columns, constructing the whole matrix appropriately and computing
the coordinates of the vertices via the spectral decomposition of this matrix. A variant
of the particular approximation that we will use has been studied in [20]. In [20], the
sampling approach used assumes that the whole matrix is known using one pass. Since,
this would lead to a quadratic time algorithm, our approach must use online sampling.
One can either sample the columns randomly or use a simple greedy algorithm, which
seems to give a better set of columns.

3.2 Formulation

Let i1, i2, . . . , ic be a set of distinct indices where c is a predefined positive integer
smaller than n and 1 ≤ ik ≤ n for k = 1, . . .c. Let C = [L(i1),L(i2), . . . ,L(ic)]. If C is
chosen carefully, under the assumptions mentioned above, any column L(i) can approx-
imately be written as a linear combination of the columns of C, i.e.

L(i) ≈ Cααα(i) for i = 1,2, . . . ,n, (3)
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where ααα(i) is a c × 1 vector. Denoting ααα = [ααα(1),ααα (2), . . . ,ααα(n)], we have

L ≈ Cααα (4)

Let ΦΦΦ be the c × c matrix such that ΦΦΦ jk = Li j ik for j,k = 1, . . .c. Note that since we
also have CT = [L(i1),L(i2), . . . ,L(ic)], ΦΦΦ can be interpreted as the intersection of C and
CT on the matrix L. Now, since the columns of L can approximately be expressed as a
linear combination of the columns of C, the columns of CT can also be expressed as a
linear combination of the columns of ΦΦΦ . This gives

CT ≈ ΦΦΦααα (5)

where ααα is the same matrix as we defined above. If ΦΦΦ has full rank, (5) yields ααα =
ΦΦΦ−1CT . Combining this with (4), we have L = CΦΦΦ−1CT . More generally, we do not
assume that ΦΦΦ has full rank, so we have

L ≈ CΦΦΦ+CT (6)

where ΦΦΦ+ is the pseudo-inverse of ΦΦΦ (See [7] for the definition of pseudo-inverse).
The last expression indicates that we can approximate the distance matrix L by the
multiplication of three smaller matrices, which all have at most linear size in terms of
n. Note that C is n × c and ΦΦΦ is c × c.

4 The Algorithm SSDE

The algorithm SSDE, which uses the procedures that we will define shortly is summa-
rized in Figure 5. As stated in the introduction, the algorithm consists of three main
steps:

(1) Sampling: The first step of the algorithm is to compute the columns that define C
and ΦΦΦ . This is equivalent to choosing a particular set of nodes and computing the
graph theoretical distances to all other nodes in the graph. We propose two methods
to sample c nodes:

(i) Random Sampling: The c nodes are sampled uniformly at random.
(ii) Greedy Sampling: The first node is chosen uniformly at random. Then, at each

step, we choose the furthest node to the set of nodes that have already been
chosen until c nodes are chosen.

Note that, the second method stated above is also known to be a 2-approximation
algorithm to the k-center problem [23]. This method was also used in [9] and [10]in
different contexts. The procedure for performing these operations is presented in
Figure 3. Even though c can be treated as a parameter to the algorithm, we have
experienced that setting c = 25 is enough for getting good results on practically
all graphs we have tried. The sampling step, overall requires O(c|E|) time as we
initiate a BFS from c nodes in the graph.
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ComputeCandPhi(G, method, c)
1: if method = random then
2: Select c vertices uniformly at random
3: for k = 1 to c do
4: Ck ← dist(ik,V ) // BFS
5: end for
6: else if method = greedy then
7: i1 ← uni f rnd(1, |V |) // Choose uniformly at random
8: C1 ← dist(i1,V ) // BFS
9: for k = 2 to c do

10: ik ← max
1≤ j≤n

min
1≤l≤k

{C jl} // Choose the furthest node

11: Ck ← dist(ik,V ) // BFS
12: end for
13: end if
14: Compute ΦΦΦ // ΦΦΦk j = Cik j

15: return (C,ΦΦΦ)

Fig. 3. The procedure computing the matrices C and ΦΦΦ

(2) Computing Φ+: We find the pseudo-inverse ΦΦΦ+ by first computing the singular
value decomposition ΦΦΦ = UΣΣΣVT , which can be performed in O(c3) time using
standard procedures (see for example [7]). The pseudo-inverse can then be com-
puted by the expression ΦΦΦ+ = VΣΣΣ+UT . Here, ΣΣΣ+ is the diagonal matrix keeping
the reciprocals of the non-zero singular values, which are stored in ΣΣΣ . Unfortu-
nately, in order to get numerically stable results, it is not enough to compute the
reciprocals of the singular values, since the small singular values which are close
to zero should actually be ignored, as they may be the result of numerical impreci-
sion and will result in huge instability in ΣΣΣ+. To prevent such instability, we use a
regularization method that was presented in [18], which uses the expression

σi

σi
2 + α/σi

2 (7)

for the reciprocals in ΣΣΣ+, where σi is the ith diagonal entry in ΣΣΣ . The parameter α
is the regularization parameter, which must be chosen judiciously in order not to
distort the reciprocals of the large singular values too much. On the other hand, it
should result in values close to zero for the small singular values. Our experiments
revealed that α = σ1

3 is good enough for practical purposes where σ1 is the largest
singular value. However, we keep it as a parameter of the procedure.

(3) Spectral Decomposition: Having computed the pseudo-inverse of ΦΦΦ , we compute
L̂ = CΦΦΦ+CT from which we obtain M̂ = − 1

2 γγγL̂γγγ . Then, analogous to (2), we
obtain the coordinates of the points in the embedding using the spectral decompo-
sition of M̂, which approximates M. This requires computing the top d eigenvalues
and eigenvectors, for which we use a standard procedure called the power iteration
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(See Figure 4). In the power iteration, the main computational task is to repetitively
multiply a randomly chosen vector with the matrix whose eigenvalues and eigen-
vectors are sought. In our power iteration, starting from the right, the matrix-vector
multiplications (line 5 and line 15) can be performed using O(c|V |) scalar additions
and multiplications. The total number of iterations until a predefined convergence
condition holds, depends on the matrix processed. But, since the convergence is
exponential (see for example [7]), in practice, a constant number of iterations is
enough. Overall, the running time of the power iteration step of the algorithm is
O(c|V |).

PowerIteration(C, ΦΦΦ+, ε)
1: current ← ε; y1 ← random/‖random‖
2: repeat
3: prev ← current
4: u1 ← y1
5: y1 ← − 1

2 γγγCΦΦΦ+CT γγγu1
6: λ1 ← u1 ·y1 % compute the eigenvalue
7: y1 ← y1/‖y1‖
8: current ← u1 ·y1
9: until |current/prev| ≤ 1+ ε

10: current ← ε; y2 ← random/‖random‖
11: repeat
12: prev ← current
13: u2 ← y2
14: u2 ← u2 −u1(u1 ·u2) % orthogonalize against u1
15: y2 ← − 1

2 γγγCΦΦΦ+CT γγγu2
16: λ2 ← u2 ·y2 % compute the eigenvalue
17: y2 ← y2/‖y2‖
18: current ← u2 ·y2
19: until |current/prev| ≤ 1+ ε
20: return (

√
λ1y1

√
λ2y2)

Fig. 4. The power iteration method for finding eigenvectors and eigenvalues (d = 2)

The embedding is obtained directly from the eigenvectors and eigenvalues, which
are returned by the power iteration.

5 Results

We have implemented our algorithm in C++, and Table 1 gives the running time results
on a Pentium 4HT 3.0 GHz processor system with 1 GB of memory. We present the re-
sults of running the algorithm on several graphs of varying sizes up to about 2,000,000
nodes. We set c = 25, since our experiments have revealed that this is enough to get good
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SSDE(G, method)
1: (C,ΦΦΦ) ← ComputeCandPhi(G, method, c)
2: (U,ΣΣΣ ,VT ) ← SVD(ΦΦΦ)
3: ΣΣΣ+ ← Regularize(ΣΣΣ , α)
4: ΦΦΦ+ ← VΣΣΣ+UT

5: return Y = PowerIteration(C,ΦΦΦ+,ε)

Fig. 5. The spectral graph drawing algorithm SSDE

drawings. For the power iteration, we set the tolerance ε = 10−7. The running times in
Table 1 do not include the file I/O that is used to access and store the coordinates of
the nodes. In Table 1, we present the results for CMDS and SSDE with c = 25,50 and
greedy sampling. Along with the running time, we also give the Frobenius norm of the
relative error matrix for the embedding, εεε , where εi j = 1 − D′

i j/Di j and DDD,DDD′′′ are the
true distance matrix and distance matrix implied by the embedding respectively. The
normalized Frobenius errors computed in Table 1 are defined as

‖εεεF ′ ‖ =

√√
√
√ 1

n2 ∑
i�= j

(1 −
D′

i j

Di j
)2. (8)

These errors might be interpreted as a quantification of the quality of the embedding,
and can be used to compare SSDE to CMDS. As can be inferred from Table 1, SSDE is
a good approximation to CMDS, which becomes more so as c increases.

SSDE is able to draw graphs up to 106 nodes in about ten seconds, which is compa-
rable to the other fast spectral methods. The last three graphs in the table are road maps
of states [1]. As is empirically verified from these graphs, the asymptotic running time
of the algorithm is linear. Figure 6 demonstrates the quality of the drawings for some
benchmark graphs. In all the graphs except finan512, we used the greedy sampling
method. Random sampling seems to work better for finan512 because of its special
structure. We have observed that the algorithm is able to reveal the general structure
of almost all the graphs we tested, as well as the finer structure of some of the graphs
successfully, where other spectral methods have difficulty. An example is the finan512
graph, where the overall structure is clearly visible, and one can also see the finer struc-
ture of the small ”towers” attached to the main cycle. Figure 7 compares the results
of the exact algorithm CMDS, and SSDE, which is approximate but far more efficient.
We demonstrate the results of SSDE for both random and greedy sampling. The figure
shows that SSDE does not sacrifice much in the way of picture quality as compared
to CMDS. For all the drawings mentioned, it is important to note that exact pictures
may change depending on which specific nodes are sampled, but the typical structure
is consistent. The quality of the drawing for random and greedy sampling also doesn’t
differ much, but our experiments showed that the greedy sampling tends to give more
consistent results.
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Table 1. Running time and embedding errors of CMDS and SSDE for several graphs. (Most of
these graphs can be downloaded from [1], [2] and [3]). Missing entries are graphs where it was
too costly to compute the entire distance matrix.

Graph |V| |E| CMDS SSDE(c=25) SSDE(c=50)
‖εεεF ′‖ Time(sec) ‖εεεF ′‖ Time(sec) ‖εεεF ′ ‖ Time(sec)

3elt 4720 13722 0.382 8.47 0.432 0.015 0.398 0.04
sierpinski08 9843 19683 0.17 24.72 0.203 0.03 0.19 0.07
Grid 100x100 10000 19800 0.17 29.73 0.192 0.03 0.186 0.06
crack 10240 30380 0.085 45.00 0.103 0.045 0.09 0.10
4elt2 11143 32818 0.252 48.77 0.291 0.07 0.283 0.14
4elt 15606 45878 0.308 133.33 0.375 0.13 0.342 0.25
sphere 16386 49152 0.291 136.69 0.334 0.14 0.312 0.27
finan512 74752 261120 - - - 0.68 - 1.43
ocean 143437 409593 - - - 1.65 - 3.56
144 144649 1074393 - - - 2.85 - 6.03
wave 156317 1059331 - - - 2.40 - 4.78
auto 448695 3314611 - - - 9.96 - 21.67
Florida 1048506 1330551 - - - 10.04 - 23.45
California 1613325 1989149 - - - 17.91 - 36.13
Texas 2073870 2584159 - - - 21.69 - 45.89

(a) (b)

(c) (d)

Fig. 6. Layouts of (a) 50x50 grid with |V | = 2500, |E| = 4900, (b) 3elt with |V | = 4720, |E| =
13722, (c) cti with |V | = 16840, |E| = 48232, (d) finan512 with |V | = 74752, |E| = 261120
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CMDS SSDE Greedy SSDE Random

4970
|V | = 4970
|E| = 7400

running time = 5.04 sec. running time = 0.01 sec. running time = 0.01 sec.

sierpinski08
|V | = 9843
|E| = 19683

running time = 24.72 sec. running time = 0.03 sec. running time = 0.03 sec.

Fig. 7. Comparison of pure CMDS and SSDE

6 Conclusion and Future Work

We have presented a fast spectral graph drawing algorithm, which significantly im-
proves the idea of Classical Multi-Dimensional Scaling (CMDS), by using sampling
techniques over nodes to reduce the time complexity of computing the distance matrix.
We use a sparse approximation to the distance matrix obtained through sampling. The
spectral decomposition of this sampled matrix yields the desired embedding. The run-
ning time of our algorithm is mainly governed by the shortest path computations for the
sampled nodes and the power iteration procedure where we compute the coordinates of
the points via the spectral decomposition, which in total is linear in the size of the graph.
SSDE gives competitive running times with very good drawings for a broad range of
graphs, and at the same time it does not sacrifice quality as compared to CMDS.

The typical graphs for which SSDE is not suited are graphs with low algebraic con-
nectivity (such as trees for which special purpose algorithms exist) and dense graphs
which are difficult to visualize anyway. Usually, as the graph gets denser, the sampled
nodes cannot extract enough information about the spectrum of the distance matrix. We
would like to mention that this shortcoming of SSDE applies to many real world graphs.
However, these are issues faced by all the fast spectral methods discussed here.

The rigorous mathematical analysis of sampling methods and specifically their im-
plications on the error of the difference between the real distance matrix and the approx-
imation is the context of future work. The sampling step intuitively tries to pick a set of
columns whose volume in |V | dimensions is as large as possible, which implies a better
approximation to the distance matrix. An interesting problem would be to consider the
performance of greedy sampling with respect to the optimal choice of samples.
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Abstract. We present a novel sampling-based approximation technique
for classical multidimensional scaling that yields an extremely fast layout
algorithm suitable even for very large graphs. It produces layouts that
compare favorably with other methods for drawing large graphs, and it
is among the fastest methods available. In addition, our approach allows
for progressive computation, i.e. a rough approximation of the layout can
be produced even faster, and then be refined until satisfaction.

1 Introduction

The term multidimensional scaling (MDS) refers to a family of techniques for
dimensionality reduction that are used to represent high-dimensional data in
low-dimensional space while approximately preserving distances. For drawing
graphs, methods based on the objective function of distance scaling are used
widely, but the classical scaling approach has only occasionally been recognized
as a useful alternative [7,21,24]. Indeed the computational complexity of this
method is quadratic in the input size and thus prohibitive for large graphs.

In this paper we propose a sampling-based approximation technique to over-
come this restriction and to reduce time and space complexity essentially to
linearity. The proposed algorithm is simple to implement, yet extremely fast
and therefore applicable to very large graphs. Moreover, it allows for progressive
computation by very quickly producing a rough approximation of the layout,
which can then be improved by successive refinement.

This paper is organized as follows. Background on multidimensional scaling
and derived methods is provided in Section 2. In Section 3 we introduce two
variants of the eigensolver approach, which are evaluated and compared to each
other in Section 4. Section 5 concludes our contribution.

2 Related Work

The first MDS algorithm is due to Torgerson [30] and nowadays referred to as
classical MDS or classical scaling. Its objective is a low-dimensional representa-
tion of high-dimensional data by fitting inner products; it has a global optimum
which can be directly computed by spectral decomposition. The method we pro-
pose in this paper is an efficient approximation of classical scaling.

M. Kaufmann and D. Wagner (Eds.): GD 2006, LNCS 4372, pp. 42–53, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Another MDS variant best known and most widely used today has been pro-
posed by Kruskal [22] and is sometimes distinguished as distance scaling. The
objective is to directly fit Euclidean distances in the drawing to the given graph-
theoretical distances, typically by minimizing a stress measure. It is performed
by iterative replacement according to a spring model of attracting and repelling
forces or an energy model, as widely known in the graph drawing literature [18],
or by iterative algebraic techniques [12]. Due to their time and space complex-
ity, straightforward implementations of distance scaling methods are restricted
to data sets of moderate cardinality.

In the graph drawing literature, methods based on linear algebra have become
popular in recent years. Examples are High-Dimensional Embedding (HDE) [15],
fast multiscale approaches based on eigenvectors of the Laplacian [20], subspace-
restricted layout [19], and stress majorization [12].

Poor scalability to large data sets due to quadratic complexity is a well-known
problem of all MDS algorithms. It was addressed as early as in the 1960s [23], and
since then, many approaches to speeding up spring-force computations have been
devised [6,16,25,26]. Likewise, methods for speeding up the spectral methods
have been proposed [11,31]. Closest to our approach is Landmark MDS [10];
we give an experimental comparison in Sect. 4. Relationships between these
approaches are discussed in [2,27]. For more general surveys on sparse techniques
for dimensionality reduction and related spectral methods see [5,28].

MDS seems to have been the first computerized layout method used for draw-
ing social networks [17] towards the end of the 1960s. Even in this restricted
application domain there are many extensions and variants, such as incremental
or interactive MDS [1,4,8,32]. For further information about MDS, its history,
and other applications we refer the reader to recent textbooks [3,9].

3 Multidimensional Scaling and Its Approximation

Let Δ ∈ R
n×n denote a symmetric matrix of metric dissimilarities or distances

δij between items i, j ∈ {1, . . . , n}. The goal of multidimensional scaling is to
find positions xi ∈ R

d in d-dimensional space, d � n, such that ‖xi − xj‖ ≈ δij ,
i.e. distances are represented well in this low-dimensional space. Note that for
notational convenience we write positions xi as column vectors, and that d ∈
{2, 3} for visualization purposes. With Δ(2) we denote matrix Δ with squared
entries, i.e. [Δ(2)]ij = [Δ]2ij .

In graph drawing and network analysis, Δ frequently consists of shortest-path
distances (see, e.g., [8] for an alternative graph distance). In other contexts it is
often induced by a high-dimensional feature space with an associated distance
function.

In this section, we briefly describe a standard technique for multidimensional
scaling, a recently introduced method for its fast approximation, and our new
variant of this approximation. It turns out that, technically, our method is very
similar to one of the fastest algorithms for drawing large graphs [15], but elimi-
nates some of its shortcomings. This is outlined in Sect. 3.5.
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3.1 Classical MDS

We briefly describe the scaling method known as Classical MDS [30]. Recall that
we are looking for an embedding in d-dimensional space, i.e. a matrix X ∈ R

n×k

with X = [x1, . . . , xn]T , such that δij ≈ ‖xi − xj‖. Since this implies

δ2
ij ≈ ‖xi − xj‖2 = (xi − xj)T (xi − xj) = xT

i xi − 2xT
i xj + xT

j xj ,

consider the matrix B = XXT of inner products bij = xT
i xj . While we do not

know X , it can be shown that

bij = −1
2

(

δ2
ij − 1

n

n∑

r=1

δ2
rj − 1

n

n∑

s=1

δ2
is +

1
n2

n∑

r=1

n∑

s=1

δ2
rs

)

,

so that B can also be obtained by double-centering the matrix of squared dis-
similarities Δ(2), i.e. each column and each row of B sums to zero.

Knowing B, positions X are reasonably reconstructed using the eigendecom-
position B = V ΛV T , where Λ is the diagonal matrix of the eigenvalues of B,
and V is the orthonormal matrix of its eigenvectors. Simply let

X = V (d)Λ1/2
(d) ,

where Λ(d) ∈ R
d×d is the diagonal matrix of the d largest eigenvalues of B and

V (d) ∈ R
n×d is an n × d matrix of associated eigenvectors. Thus, the essence

of classical scaling is to fit inner products rather than distances as in distance
scaling.

It is important to note that the two or three required eigenvectors can be
computed by power iteration, i.e. by repeatedly multiplying a starting vector
x ∈ R

n with B. The iterate is periodically normalized; further eigenvectors
are found by orthogonalization against previously computed eigenvectors. See,
e.g., [13] for background on matrix computations.

The running time for drawing an unweighted graph with n vertices and
m edges by performing classical MDS on its matrix Δ of shortest-path dis-
tances is thus O(nm) for computing Δ using breadth-first search, Θ(n2) for
constructing B, and another O(n2) per iteration. Running times and also stor-
age requirements are therefore prohibitive for large graphs.

3.2 Landmark MDS

Landmark MDS (LMDS) [10] is a fast method for approximating the results
of Classical MDS using a sparsification of the transformed distance matrix. It
is based on distinguishing a few items as landmarks, and computing the eigen-
decomposition only on the double-centered matrix of squared distances among
those landmarks. Positions of non-landmarks are then determined as linear com-
binations of landmark positions, i.e. items are placed in the weighted barycenter
of all landmarks where the weights are derived from the original distances.
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The rationale is that a set of appropriate reference points is sufficient to de-
termine the projection into low-dimensional space. To be representative, the
k landmarks, d < k � n, should be distributed well. Common experience shows
that a MaxMin strategy, in which the next landmark maximizes the minimum
distance to the previous landmarks, yields satisfactory results. Note that this
corresponds to a well-known 2-approximation of the k-center problem in facility
location. We have tried other simple strategies such as MaxSum, random selec-
tion, and hybrids, but none proved to be superior consistently. More advanced
techniques are proposed in [29].

Time and space complexity of LMDS are significantly smaller than for Clas-
sical MDS. Landmark selection and distance computations are carried out in
O(k · |E|) time, each power iteration step requires only O(k2) time, and the final
positioning is done in O(kn) time. Since, in general, choosing k < 100 yields
satisfactory results on most practical instances, LMDS can be regarded a linear-
time algorithm. Moreover, it is only necessary to store the Θ(kn) distances to
landmarks.

3.3 Pivot MDS

We now introduce a new variant of sparse MDS which we call Pivot MDS
(PMDS). It is motivated by a potential shortcoming of the LMDS strategy to po-
sition landmarks only with respect to each other: it is possible that the (already
available) distance information to non-landmarks can be utilized to improve the
quality of the result.

Recall that Classical MDS is based on an eigendecomposition of the double-
centered n×n-matrix of squared distances B, and that Landmark MDS is based
on the corresponding decomposition of the double-centered k × k-submatrix of
squared distances among selected items only. Pivot MDS is based on the double-
centered n × k-submatrix C of squared distances from every item to those se-
lected, having entries

cij = −1
2

(

δ2
ij − 1

n

n∑

r=1

δ2
rj − 1

k

k∑

s=1

δ2
is +

1
nk

n∑

r=1

k∑

s=1

δ2
rs

)

,

where i ∈ {1, . . . , n} and j ∈ {1, . . . , k}, and thus contains all distance informa-
tion available.

Note that the n-dimensional left singular vectors of C ∈ R
n×k are equal to

the eigenvectors of CCT ∈ R
n×n. If they are computed using power iteration,

an iteration consists of two steps: first, positions of pivots are determined using
the current positions of all items (multiplication with CT ∈ R

k×n), and then all
items are positioned relative to the pivots (multiplication with C ∈ R

n×k).1

1 This interpretation motivates the name “pivot,” in contrast to “landmarks” which
are first assigned their final location and then used to determine the position of all
other items.
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An intuitive interpretation is that the eigenvectors of CCT approximate the
eigenvectors of B2, and thus of B. This follows from the assumption

[
B2]

ij
=

[
BBT

]
ij

=
n∑

�=1

bi�bj� ≈
k∑

�=1

ci�cj� =
[
CCT

]
ij

,

so matrix entries [B2]ij and [CCT ]ij represent the same type of transformed
distance sums, though in the latter case with a truncated list of intermediaries.
If these are sufficiently well distributed, the relative size of entries in CCT is
representative for those in B2.

At face value the iteration time of PMDS is O(kn). However, we can rewrite
(CCT )i = C(CT C)i−1CT so that the iteration is performed only on the k × k-
matrix CT C. The initial multiplication with CT can be omitted (in Sect. 3.4 we
will argue, though, that it is sometimes desirable), since the starting vector is
arbitrary. The final multiplication with C is similar to the final projection step
of LMDS. The algorithm is summarized in Alg. 1.

Except for the additional O(kn+k2n) cost of double-centering and computing
CT C, the running time is therefore essentially the same as in LMDS.

Algorithm 1: Pivot MDS
Input: undirected graph G = (V, E), number k ∈ N of pivots
Output: coordinates x, y ∈ R

n

select k pivots from V
for i ∈ {1, . . . , k} do

i-th column of Δ(k) ← BFS(i-th pivot)

C ← doublecenter
(
Δ(k)(2)

)

(v1, v2) ← poweriterate(CT C) // 2 largest eigenvectors
x ← Cv1, y ← Cv2

3.4 Progressive MDS

When using pivot approximation there is a natural trade-off between running
time and memory usage; users might have to experiment with various numbers of
pivots and different strategies. Instead of iteratively re-executing the algorithm
with a larger set of pivots for layout improvement, we propose to use a progressive
form of MDS computation that we shall describe in the following.

Let Δ(k) ∈ R
n×k denote a submatrix of the matrix of pairwise distances, and

let x ∈ R
n be a component in the placement computed by PMDS based on it.

To improve approximation quality, Δ(k) can be extended by a certain number of
new pivot columns to Δ(k′) ∈ R

n×k′
(k′ ≥ k). Note that all operations for com-

puting the new columns in Δ(k′), double-centering of Δ(k′)(2) to obtain C′, and
determination of matrix C′T C′ can be implemented to run in O ((k′ − k) · |E|).
The new vector x′ ∈ R

n is computed by replacing C with C′ in Algorithm 1.
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Fig. 1. Progressively drawing the finan512 graph (|V | = 74752, |E| = 261120) with
increasing pivot set (k = 3, 6, 12, 25, 50, 100) using the minmax strategy

To prevent artificial effects through rotation and reflection in the transition
from x to x′ due to indeterminacies in the basis of the eigenspace of C′T C′,
the initial solution y ∈ R

k for the power iteration is derived from the previous
layout by y = C′T x. Compared to random initialization, the iteration process for
computing the new layout x′ is thus more likely to converge towards a solution
close to x, and we have observed that transitions between intermediate layouts
tend to become smoother and visually more pleasing.

For smaller graphs, pivots may be added in batches before computing the
layout, while it can make more sense for very large graphs to extend Δ(k) col-
umn by column, after each insertion computing the layout anew. In Sect. 4 our
experiments indicate that most of the running time of Pivot MDS is consumed
by the distance computations, while a layout based on these distances can be
computed quickly. It is thus worthwhile to progressively compute the layout until
the quality does not improve significantly.

3.5 Pivot MDS vs. HDE

In retrospect, our proposed method is reminiscent of another fast algorithm for
drawing large graphs, the high-dimensional embedder (HDE) of [15].

HDE proceeds as follows: From a set of k selected nodes (the pivots), distances
to all other nodes are determined. These distances are, however, neither squared
nor double-centered, but directly interpreted as coordinates in a k-dimensional
space. In this space, they are centered to place the mean at zero coordinate, and
yield a high-dimensional embedding X ∈ R

n×k. This k-dimensional embedding
is then projected into two dimensions by Principal Component Analysis (PCA),
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i.e. by computing the two largest eigenvectors of the covariance matrix 1
nXT X ∈

R
k×k. The final coordinates are then obtained by matrix multiplication with X

analog to PMDS.
While this appears technically similar to PMDS, it is important to note that

both approaches are motivated by different intuitions and produce different re-
sults: HDE transforms k possibly correlated variables (the embedding X) into
two uncorrelated variables (the layout). In contrast, the objective of PMDS is
to directly find low-dimensional coordinates with inner products complying with
the given dissimilarities δij . More details about the fundamental differences of
the two approaches and experiments can be found in [21].

Both PMDS and HDE have approximately the same running time complexity
of O(k · |E| + k2n), while PMDS appears to yield drawings of superior quality.

4 Evaluation

The algorithms were implemented in Java SDK 1.4.1. All experiments were con-
ducted under MS Windows XP Version 2002 SP2 on an Intel Pentium-M CPU
with 1.6GHz and 512MB of main memory.

We used a set of test graphs for drawing and for evaluating the scalability of
our approach. We measured the CPU running times for distance computation
and the layout algorithm. Descriptions of the test graphs are given in [14,15].

4.1 Running Time

Figure 2 shows for both Pivot and Landmark MDS that the running time for the
breadth-first searches for matrix C in O(km) time indeed dominates over the
computation times for spectral decomposition of CT C and the final coordinates,
which together are in O(k3 + k2n) time. The larger the graph and the smaller k
in relation to n, the more apparent this effect becomes. LMDS is slightly faster
than Pivot MDS because it does not require the construction of CT C.

We have used straightforward, non-optimized implementations for distance
computations and matrix operations. Therefore, we expect that using special-
ized libraries with sophisticated algorithms and data structures yields significant
improvements on the absolute values of the measured times.

One important consequence from our observation is that the number of pivots
used for the approximation and the pivot strategy can be crucial for the ratio
between quality and running time. The next subsection gives more details on
the quality of the approximation relative to (full) Classical MDS.

4.2 Quality

To assess their approximation quality, we compared the approximated layouts
with those given by full Classical MDS. Procrustes analysis (see, e.g., [9]), a
technique popular in data analysis and statistics, is used to assess how similar
two configurations X, Y ∈ R

n×d with X = [x1, . . . , xn]T , Y = [y1, . . . , yn]T are
up to translation, dilation, and rotation. It is the sum of squared distances
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name |V | |E| BFS layout total
ug380 1104 3231 0.05 0.03 0.08
fidap006 1651 23914 0.16 0.01 0.17
esslingen1 2075 4769 0.07 0.01 0.08
3elt 4720 13722 0.22 0.05 0.27
power 4941 6594 0.17 0.05 0.22
add32 4960 9462 0.15 0.02 0.17
bcsstk33 8738 291583 1.96 0.05 2.01
whitaker3 9800 28989 0.34 0.04 0.38
crack 10240 30380 0.45 0.05 0.50
4elt2 11143 32818 0.41 0.06 0.47
4elt 15606 45878 0.78 0.08 0.86
sphere 16386 49152 0.81 0.09 0.90
fidap011 16614 537374 3.52 0.08 3.60
bcsstk31 35588 572914 4.36 0.19 4.54
bcsstk32 44609 985046 7.09 0.25 7.34
finan512 74752 261120 4.11 0.40 4.50
ocean 143437 409593 10.24 0.82 11.06
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Fig. 2. Left: Pivot MDS running times in seconds using 50 pivots, measured for the set
of test graphs. Right: Total running times required by distance computations, Pivot
MDS, and Landmark MDS (the latter two including distance computation) with in-
creasing pivot numbers, as measured for esslingen1 and bcsstk32.

R2 =
n∑

i=1

(xi − yi)
T (xi − yi) ,

where both configurations consist of two-dimensional coordinates (i.e., d = 2).
Procrustes analysis translates, dilates, and rotates X such that R2 is minimized
with respect to Y . It can be shown (see, e.g., [3]) that 0 ≤ R2 ≤ 1 and that the
minimum value is given by the Procrustes statistic

R2 = 1 −
(
tr(XT Y Y T X)1/2

)2

tr(XT X)tr(Y T Y )
,

which is the sum the squared distances between X after the best possible trans-
formation (with respect to Y ), and Y . If the two configurations can be per-
fectly matched, R2 = 0; if they cannot be matched at all by any transformation,
R2 = 1. We may assume that both configurations have the centroid in the origin.

We computed the R2 value for the esslingen1 graph with Pivot and Land-
mark MDS, using the maxmin and the random pivot strategy, as depicted in
Figure 3 with respect to the layout by full MDS. It can be seen that our method
is almost consistently superior to Landmark MDS and that it seems to give more
stable results. An interesting observation for both algorithms is that using the
minmax pivot strategy yields good results with a small number of pivots, while,
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Fig. 3. Procrustes statistic vs. number of pivots for esslingen1. Upper row: Quality
of PMDS and LMDS for practical use (3 ≤ k ≤ 400). Lower row: the same for the full
scope (3 ≤ k ≤ n, larger step size in the plot). All curves reach 0 at k = n.

starting from a certain point, systematic pivot selection creates an unbalanced
approximation leading to deterioration of quality. In contrast, using a random
pivot strategy initially requires a larger number of pivots to obtain the same
approximation quality, but displays a more monotonic behavior.

As the Procrustes statistic can be computed efficiently, it is suitable for com-
paring intermediate layouts when increasing the number of pivots, and may be
used as a termination criterion. Progression may be stopped when the value of
R2 for consecutive layouts falls below a given threshold, indicating that little to
no quality improvement can be expected by adding more pivots.

It is important to note that there are graphs for which Classical MDS (even
without approximation) may be of poor quality due to the fact that the two
dimensions in the layout are not sufficient for expressing the higher-dimensional
structure of the data. In contrast, graphs with a very regular structure, such as
finite-element meshes, often have a direct relation between coordinates in a low-
dimensional space and graph-theoretical distances, and therefore almost surely
yield useful layouts.

This is frequently referred to as the intrinsic dimensionality of the data. It can
be estimated by the eigenvalue distribution: Few large positive and a large num-
ber of “almost zero” (hence rather uninformative) eigenvalues suggest a small
number of intrinsic dimensions (which can be captured in a low-dimensional
representation well); many large positive eigenvalues indicate a high intrinsic di-
mensionality and that there is little hope to get a feasible low-dimensional layout
with any distance-based method.
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Fig. 4. Layouts of the esslingen1 graph using Pivot MDS approximation with 50
pivots (left), and by full Classical MDS (or, equivalently, 2075 pivots). The Procrustes
statistic yields R2 = 0.0085, indicating an excellent “fit”.

Fig. 5. The US power grid graph (|V | = 4941, |E| = 6594). Left: Pivot MDS using
100 pivots. Right: The same after postprocessing by a spring embedder. Pivot MDS
appears to give a better layout of the grid structure, while the spring embedder displays
regional density better. This suggests the use of our method for efficient generation of
initial placements for further processing, which is crucial for many algorithms.

Fig. 6. Drawings of the graphs bcsstk31 (|V | = 35588, |E| = 572914) and bcsstk32

(|V | = 44609, |E| = 985046) with 200 pivots. In the experimental study of [14] these
graphs posed serious difficulties for most methods.
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5 Conclusion

We have proposed a simple and efficient method for drawing very large undi-
rected graphs based on MDS. With pivot approximation it can be implemented
to run in linear time and with linear memory.

The graph layout can be made progressive by extending the set of pivots incor-
porated in the layout computation. This allows for quick generation and display
of a decent preview layout, which can then be refined by further computation
carried out in the background.

In our experiments, we found that generally a very small number of pivots is
sufficient and that running time for computing the eigenvectors was negligible
with respect to setting up the distance-submatrix C. The essential difference to
LMDS is that CT C contains more relations than just those between landmarks.
LMDS and PMDS are therefore equally efficient in practice. We also noted,
however, that PMDS indeed requires fewer pivots in general to reach the same
quality level, while offering greater overall stability.

Even though our prototypical implementation is written in Java, and we did
not perform any optimization, the running times compare favorably with the
fastest methods available, and are likely to be reduced significantly in a dedicated
implementation.
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Angle and Distance Constraints on Tree Drawings

Ulrik Brandes and Barbara Schlieper�

Department of Computer & Information Science, University of Konstanz

Abstract. We consider planar drawings of trees that must satisfy con-
straints on the angles between edges incident to a common vertex and on
the distances between adjacent vertices. These requirements arise natu-
rally in many applications such as drawing phylogenetic trees or route
maps. For straight-line drawings, either class of constraints is always
realizable, whereas their combination is not in general. We show that
straight-line realizability can be tested in linear time, and give an algo-
rithm that produces drawing satisfying both groups of constraints to-
gether in a model where edges are represented as polylines with at most
two bends per edge or as continuously differentiable curves.

1 Angle and Distance Constraints

We are interested in planar drawings of simple undirected graphs G = (V, E).
Throughout this paper, we assume that G is planar and let n = |V | denote the
number of vertices and m = |E| the number of edges. We are particularly inter-
ested in drawing trees T = (V, E), i. e. graphs that are connected and acyclic.
Denote by T (e, v) the tree obtained from splitting T by removing e ∈ E and
choosing the component that contains v ∈ V . For any r ∈ V let Tr be the tree
rooted at r, and Tr(v) the subtree of all descendants of v (including v itself).
Clearly, Tr(r) = T and Tr(v) = T (v, e) if v �= r and e is the unique first edge on
the path from v to r. With {v, w} we refer to the undirected edge incident to v
and w.

The implications of the following two types of constraints on drawings of a
graph G are investigated.

Distance constraints: A drawing of a graph G = (V, E) satisfies distance
constraints δ : E → R

+, if all pairs of adjacent vertices {v, w} ∈ E are
exactly at distance δ(v, w).

Angle constraints: A graph is said to be embedded (combinatorially), if the,
say, counterclockwise cyclic ordering of edges incident to the same vertex
is prescribed. For an embedded graph G = (V, E), let A ⊆ E × E be the
angle set, where (e1, e2) ∈ A iff both edges share a vertex v and e2 is the
counterclockwise next edge after e1 around v.
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A drawing of an embedded graph G = (V, E) satisfies angle constraints
α : A → (0, 2π], if the angle between all pairs (e1, e2) ∈ A is exactly α(e1, e2).
Note that α is frequently called an angle assignment.
A necessary requirement for angle constraints to be satisfiable is that they
sum to 2π around every vertex, and to (dG(f) − 2)π around every inner
face f with dG(f) vertices. Such a set of angle constraints is called locally
consistent, and we assume that all given angle constraints are.

A graph with angle and/or distance constraints is called realizable in the
straight-line model (or straight-line realizable for short), if there exists a planar
straight-line drawing in the plane, such that all constraints are satisfied.

2 Straight-Line Realizability

Testing straight-line realizability is known to be NP-complete for both distance-
constrained graphs (even if all edges are constrained to have unit length) [5] and
angle-constrained graphs [7]. For trees, arbitrary distance and angle constraints
can be satisfied, though not necessarily in the same drawing.

Theorem 1. For any tree T = (V, E) with locally consistent angle constraints
α (or distance constraints δ), a planar straight-line drawing satisfying α (or δ)
can be determined in linear time.

Proof. A drawing of T satisfying any locally consistent angle constraints, can be
determined in linear time using a simple postorder traversal to create a balloon
layout [9]: starting with an empty circle of arbitrary radius around each leaf,
parent edges are stretched such that the enclosing circles of subtrees rooted at
siblings do not intersect when satisfying the angle constraints.

An algorithm for drawing any distance-constrained tree in linear time is given
in [1]. ��

Note that straight-line drawings of trees with both angle and distance constraints
are completely determined (up to translation and rotation).

Theorem 2. Straight-line realizability of trees with both angle and distance con-
straints can be tested in linear time.

Proof. We show that straight-line realizability testing is equivalent to testing
simplicity of polygonal chains, which can be done in linear time [3].

Since a polygonal chain can be viewed as a tree with angle and distance con-
straints, trees cannot be tested faster than polygonal chains. On the other hand,
an embedded tree with l leaves can be covered by l paths p1, . . . , pl connecting
each leaf with the first leaf encountered in a right-first search. Due to the given
constraints, each path corresponds to a polygonal chain, and the tree is realiz-
able if and only if all pi, 1 ≤ i ≤ l are simple. Since the union of these paths
corresponds to an Euler tour around the tree, the total size of the polygonal
chains is 2m = 2n − 2. ��
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3 Polyline Representation

If an angle and distance constrained tree is not straight-line realizable, it can
still be drawn without edge intersections by allowing polylines. In the remainder
of the section, we will prove the following theorem.

Theorem 3. For a tree, a planar polyline drawing that satisfies locally consis-
tent angle and distance constraints and has at most two bends per edges can be
determined in linear time.

In the first step we calculate an initial layout of Tr for an arbitrary root r ∈ V
with the length-preserving algorithm of [1] and given edge lengths δ. We exploit
an invariant characteristic of the layouts computed.

Theorem 4. For a tree with given vertex positions a planar polyline drawing
that satisfies locally consistent angle constraints and has at most two bends per
edge can be determined in linear time, if the given vertex positions are such that
disjoint subtrees are contained in disjoint wedges.

This is a special case of the problem to find a drawing of a planar graph with
fixed vertices and pre-specified angles between the edges incident to the same
vertex [2]. A related problem is embedding a planar graph on a fixed set of points
in the plane. The graph can be drawn without edge intersections using at most
two bends per edge in polynomial time, if the mapping between the vertices V
and the points P is not fixed [8]. However, if the mapping is fixed i. e., each
vertex has a fixed position such that the straight-line drawing is not necessarily
planar, up to O(n) bends per edge can be needed to guarantee planarity and
this bound is known to be asymptotically optimal in the worst case [10]. Note
that these strategies do not yield drawings that satisfy angle constraints. Angle
constraints have to be satisfied for example when drawing graphs with good
angular resolution. A planar graph can be embedded and drawn planar with
at most one bend per edge, such that for each (e1, e2) ∈ A sharing a vertex
v ∈ V it is α(e1, e2) ≥ 1

d(v) where d(v) denotes the degree of v [4]. For not
necessarily planar graphs angular resolution and the number of edge crossings
can be improved modifying a force-directed graph drawing algorithm into an
algorithm for drawing graphs with curved edges [6]. Note that for these drawings
no distances constraints are to be satisfied.

In our drawings edges will be represented as polylines. The polyline of an edge
{v, w} will be determined by the endpoints of two control segments incident to
v and w.

We guarantee the planarity in two steps: For a vertex v ∈ V

– we determine the direction of each initial control segment.
– we determine the length for each initial control segment.

In Sect. 3.1 we define a rotation angle β to guarantee certain situations
regarding the angles of the initial control segments incident to a vertex v and
those of the straight lines from v to the corresponding neighbors. In Sect. 3.2
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Fig. 1. Rotating the angle template

we determine the control segment lengths to avoid intersections in the remaining
situations.

We will focus on each vertex a constant number of times and look at all
incident edges so the overall running time is linear.

Let v be a vertex we focus on with k incident control segments s0 . . . sk−1 (in
counterclockwise order) belonging to the k polylines of edges e0 . . . ek−1 to the k
neighbors w0 . . . wk−1 of v. We refer to the absolute angle of a control segment si

with γi = γ0 +
∑k−1

t=0 αt and li its length. Further, let s′i be the control segment
for ei incident to wi with angle γ′i and length l′i. Let pi denote the target point
of si and p′i the target point of s′i, λi the angle of the line from v to wi and λ′i
the angle of the same line, but from wi to v.

3.1 Control Segment Angles

Since only the relative angles between consecutive control segments incident to
v are given, to determine the final layout we have to choose the absolute angle
for one of the control segments. We start with γ0 = λ0 and then rotate the whole
angle template by an angle β i. e., update each angle γi = γi +β. For a neighbor
wi of v the angular deviation is θ(i) = (γi − λi) mod 2π. We say that wj lies
between si and wi, if (γi − λj) mod 2π < (γi − λi) mod 2π.

We assume that for each neighbor wi the endpoint p′i of the control segment
incident to wi lies on the same side of the line (v, pi) and will assure this when
determining the control segment lengths (see (7),(8)). The following two situ-
ations will cause intersections in the starting configuration, because ei will be
intersecting with e0 (see Fig. 2 for illustration). For a pair si, wi we say that

i and 0 are clockwise crossing if
θ(i) ≤ π and w0,s0 lie between si and wi,

(1)

i and 0 are counterclockwise crossing if
θ(i) ≥ π and w0,s0 lie between wi and si.

(2)



58 U. Brandes and B. Schlieper

(a) clockwise crossing (b) counterclockwise crossing

Fig. 2. Two cases in the start situation

Lemma 1. At any vertex v ∈ V , there are either clockwise or counterclockwise
crossings, if any.

Proof. Assume i1 fulfills Equation (1) and i2 Equation (2), then s0 lies between
si1 and si2 and w0 lies between wi2 and wi1 . The orders of the control segments
and of the neighbors are fixed, hence i1 < i2 and i1 > i2, which is a contradiction.

��

If a vertex v has a neighbor wi such that i and 0 are clockwise crossing we rotate
v’s angle template counterclockwise. If i and 0 are counterclockwise crossing for
an 0 ≤ i ≤ k−1 this is the mirrored case and can be solved by rotating clockwise.
After rotating the angle template we will have (see Fig. 3):

Lemma 2 (counterclockwise sheering). For 0 ≤ i, j ≤ k−1, wj lies between
wi and si with angular deviation θ(i) > π, if and only if also si lies between wj

and sj with θ(j) > π.

Lemma 3 (clockwise sheering). For 0 ≤ i, j ≤ k − 1, wj lies between si and
wi with angular deviation θ(i) < π, if and only if also si lies between sj and wj

with θ(j) < π.

In these two situations we can avoid intersections by determining the control
segment lengths.

We say sj is pulled between si and wi, if it was (λi − γj) mod 2π < π before
rotation, but is (λi−γj) mod 2π > π and sj lies between si and wi after rotation.
We say si is pushed over wj , if it was (λj − γi) mod 2π < π before rotation, but
is (λj − γi) mod 2π > π and wj lies between si and wi after rotation.

Of all pairs si, wi for which i and 0 are clockwise crossing let imin be the one
for which the angular deviation θ(i) is minimal and of all pairs si, wi for which i
and 0 are not clockwise crossing but θ(i) < π let imax be the one for which θ(i)
is maximal.

We rotate the angle template counterclockwise by an angle β with

0 ≤ π − θ(imin) < β < π − θ(imax) ≤ π (3)

Lemma 4. For every vertex v there is a feasible rotation β, i. e. θ(imin) >
θ(imax).
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(a) counterclockwise sheering (b) clockwise sheering

Fig. 3. Two solvable situations

Proof. For imax > imin the vertex wimax lies between w0 and wimin because the
order of neighbors is fixed. imax and 0 are not clockwise crossing, hence simax

lies between w0 and wimax . So it must be θ(imin) > θ(imax) because both simax

and wimax lie between simin and wimin with θ(imax) < π. The proof for the case
imax > imin is analogous. ��

Lemma 5. These bounds are sharp.

Proof. For β ≤ π − θ(imin) it would still be θ(imin) ≤ π after rotation and
both w0 and s0 would still lie between simin and wimin , hence eimin would be
intersecting with e0.

For β ≥ π − θ(imax) it would be θ(imax) ≥ π after rotation and both wimin

and simin would lie between wimax and simax , hence eimin would be intersecting
with eimax . ��

Within these bounds we can now optimize any objective function, for example
the sum over all squared angular deviations θ(i)2 for 0 ≤ i ≤ k − 1. See [2] for
other reasonable objective functions.

To proof Lemma 2 and Lemma 3 we first proof the following:

Lemma 6. If θ(i) > π after rotation for 0 ≤ i ≤ k−1, before and after rotation
neither w0 nor s0 can lie between wi and si.

Proof. If θ(i) > π before rotation, w0 and s0 cannot have lain between wi and
si, because i and 0 would have been counterclockwise crossing. We rotate coun-
terclockwise by an angle β < π, hence they cannot after rotation as well.

If θ(i) ≤ π before rotation but θ(i) > π after, i and 0 must have been
clockwise crossing before rotation, so w0 and s0 cannot lie between wi and si

after rotation. ��

Lemma 7. If θ(i) < π after rotation for 0 ≤ i ≤ k − 1, not both w0 and s0 can
lie between si and wi.

Proof. Before rotation i and 0 cannot have been clockwise crossing, so by ro-
tating counterclockwise by an angle β < π from the start situation λ0 = γ0,
it can only happen that either si is pushed over w0 or s0 is pulled between si

and wi. ��
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Corollary 1. For the angular deviation of a vertex wi, θ(i) = π is impossible
for any 0 ≤ i ≤ k − 1.

Proof. of Lemma 2 (Lemma 3 can be proven with the same ideas)

“⇒” Neither s0 nor w0 can lie between wi and si (Lemma 6) so w0 cannot lie
between wi and wj and we have j < i. Because the order of control segments
is fixed s0 cannot lie between si and sj , hence s0 must lie between sj and wi

and s0 lies between sj and wj . If it was θ(j) ≤ π s0 must have been pulled
between sj and wj (Lemma 7) so s0 must have lain between wi and si which
is a contradiction to Lemma 6.

“⇐” Neither s0 nor w0 can lie between wj and sj (Lemma 6) so s0 cannot lie
between si and sj and we have j < i. Because the order of neighbors is fixed
w0 cannot lie between wi and wj , hence w0 must lie between sj and wi and
w0 lies between si and wi. If it was θ(i) ≤ π si must have pushed over w0
(Lemma 7), so also sj must have pushed over w0, hence w0 must have lain
between wj and sj which is a contradiction to Lemma 6.

��

3.2 Control Segment Lengths

In the remaining situations we can avoid intersections by determining first the
radius rv of the circle containing all control segments incident to a vertex v and
then the lengths l and l′ of an edge e’s control segments. We have to make sure
that none of the three segments of an edge e’s polyline can intersect with any
segment of another polyline. The maximal possible radius rv is determined such
that:

– control segments incident to different neighbors of v can not intersect
– the control segments incident to v can not intersect with a control segment

incident to any of v’s neighbors

For an edge e = {v, w} the maximal possible length of e’s control segment s
incident to v is determined such that:

– neither the middle segment of e nor the control segment s can intersect with
a control segment incident to another neighbor

– neither the middle segment of e nor the control segment s can intersect with
the middle segment of another edge

When we computed the initial layout of Tr a wedge with size ωv was assigned
to each vertex v in which v’s subtree T (v) was lying and that was divided among
the children. The children’s wedges are rooted in v. We now look at the unrooted
tree T and all the wedges of v’s neighbors are rooted in v. The vertex w0, that had
been v’s parent in Tr, is now lying in an opposed wedge with size ωw0 = 2π −ωv
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(a) wedges for vertex v (b) line (v, pi) (c) range of wi

Fig. 4.

(see Fig. 4(a)). To guarantee that the control segments incident to one neighbor
are not intersecting with the control segments of another neighbor, we determine
for 0 ≤ i ≤ k − 1:

rwi <

{
sin ωwi

2 · ‖ wi − v ‖2 if ωwi < π

sin(π − ωwi

2 )· ‖ wi − v ‖2 otherwise
(4)

We also have to guarantee that the control segments incident to v are not
intersecting with the control segments incident to one of v’s neighbors:

rv ≤ 1
2
min{δ{ei}}0≤i≤k−1 (5)

The computations in (4) and (5) will be done first for each vertex v ∈ V to
determine rv, which we will need in the following.

A neighbor wi cannot be involved both in a clockwise and a counterclockwise
sheering. Let i and (i + 1) mod k (we will write i + 1 in the remainder) be
counterclockwise sheering. We have to further determine the length li+1 of the
control segment si+1.

The polyline of an edge ei+1 might intersect with ei or another edge incident to
wi if a line through p′i+1 and pi+1 would be intersecting with the circle containing
all control segments incident to wi. We can avoid this by choosing li+1 such that
si+1 is not intersecting with a tangent line to wi’s circle through p′i+1. Further,
si+1 must not intersect with the line gi = (pi, p

′
i). We use the maximal length

rwi here to determine possible coordinates of p′i. If we focus on wi later, s′i might
have to be shortened, hence si+1 must not intersect with the line (pi, wi) and
the tangent line to wi’s circle through wi+1. See Figure 5(a) for illustration.

The computations for a length li+1 such that si+1 is not intersecting with one
of these lines, are all very similar. We show the computation here for the line
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(a) Lines (b) length of si+1

Fig. 5. Bounding control segments

gi = (pi, p
′
i) (note that the length li has to be fixed already) with absolute angle

ηi and φi the angle between gi and si in (6) (see Figure 5(b) for illustration):

li+1 <
sin φi · li

sin(π − φi − γi+1 + γi)
(6)

In Sect. 3.1 we assumed that the neighbor wi and the endpoint p′i of the
control segment incident to wi lie on the same side of the line (v, pi). We assure
this by choosing l′i, the length of s′i, such that s′i does not intersect with the line
(v, pi) (see Fig. 4(b)):

If (γ′i − λ′i) mod 2π > π and θ(i) > π:

l′i <
sin(γi + π − λi) · δ(ei)
sin(−γi + λi − λ′i + γ′i)

(7)

If (γ′i − λ′i) mod 2π < π and θ < π:

l′i <
sin(λi − γi − π) · δ(ei)
sin(−λi + γi − γ′i + λ′i)

(8)

Let wi be one neighbor of v. We call the (smallest) sector of wi’s wedge, in
which the control segment s′i incident to wi is lying, the range of wi. If another
control segment sj incident to v is lying within this range, the polylines of ei and
ej can be intersecting without i and j clockwise or counterclockwise sheering.
We avoid this by choosing the length l′i of s′i such that s′i is not intersecting with
the line (v, pj) (see Fig. 4(c)), the computation is analog to (7) and (8).

With these control segments lengths we can draw the edges’ polylines without
intersections (see also Lemma 9). In Fig. 7(a) a tree after determining the
vertex positions in displayed with an arbitrary rotation angle for each vertex v
and control segment lengths smaller than rv. In Fig. 7(b) the rotation angle
is determined like shown in Sect. 3.1 and the control segment lengths like in
Sect. 3.2.
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4 Curve Representation

Instead of using polylines we can also represent the edges as smooth curves. A
cubic Bézier curve is determined by two endpoints b0, b3 and two inner control
points b1, b2. We call the segments b0b1 and b3b2 the (initial) control segments,
while b1b2 is called inner segment. A Bézier curve is contained in the convex hull
of its defining points, and the tangents at its endpoints are collinear with the
initial control segments, so the outgoing angle of a Bézier curve is the angle of
its control segment. For the Bézier curve of an edge we use the control segments
of the corresponding polyline as initial control segments. We refer to the Bézier
curve from v to wi for 0 ≤ i ≤ k −1 with ci and Hi the convex hull of its control
points. In the remainder of this section we will proof the following theorem.

Theorem 5. For a tree, a planar drawing that satisfies locally consistent angle
and distance constraints while representing edges as continuously differentiable
curves consisting of at most two cubic Bézier curves and a straight line segment
can be determined in linear time.

Even if the polylines of two edges are not intersecting, the hulls of the corre-
sponding Bézier curves can intersect. Three borders of a curve’s hull are the
line segments of the corresponding polyline, and when determining the control
segment lengths we avoided most intersections, but in case of a clockwise or
counterclockwise sheering we have to split an edge’s curve by adding control
segments.

Let i and i + 1 be counterclockwise sheering. When all the control segment
lengths in the tree are determined, we split a curve ci. Let qi be the intersection
point of the lines (v, pi+1) and gi. The splitting point mi must lie on gi between
the point qi and pi. Rooted at mi we add two diametral opposed control segments
sm1

i and sm2
i on gi, with sm1

i pointing to pi and sm2
i pointing to p′i. (See Fig. 6

for illustration.) Now we can describe ci by two Bézier curves smoothly attached
(continuously differentiable, because the angle at mi has size π) one by si and
sm1

i and one by s′i and sm2
i . When we later focus on wi, we might have to split

ci to avoid intersections with curves incident to wi. If then the splitting point
cannot lie between qi and pi, we will add a second splitting point on gi, otherwise
one splitting point will be sufficient.

This procedure induces that li has to be calculated first. Therefore we create
a vertex list L+ sorted by increasing index and θ(i) < π for each wi ∈ L+.

If for v there is a pair i and (i−1) mod k clockwise sheering this is symmetri-
cally the same situation and will be solved with the same strategy. We will need
a vertex list L− sorted by decreasing index and θ(i) > π for each wi ∈ L−. We
can create both types of vertex lists testing all neighbors wi for 0 ≤ i ≤ k − 1 in
counterclockwise order.

Lemma 8. Neither the vertex list L+ nor L− will contain all neighbors of v.

Proof. We start with the angular deviation θ(0) = 0. If we do not have to
rotate v’s angle template the neighbor w0 will be in none of the vertex lists. Iff
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Fig. 6. Splitting a curve

there is a neighbor wi of v such that i and 0 are clockwise crossing we rotate
counterclockwise by an angle β < π until θ(i) > π. After rotation it will be
θ(0) < π, hence w0 and wi will be in different vertex lists. Rotating clockwise is
the mirrored case. ��

Lemma 9. The resulting tree layout is planar.

Proof. For any vertex v the curve or polyline of an edge ei+1 incident to v
can cause problems, if the hull Hi+1 is intersecting with the wedge of another
neighbor of v. With the strategy presented previously we made sure, that Hi

and Hi+1 are not intersecting.
By determining the length of si+1 in (6) we also made it impossible for Hi+1

to intersect with any wedge or control segment of one of wi’s neighbors different
from v. With this, Hi+1 can not intersect with any line from a point in wi’s circle
to a point in the wedge of one of wi’s neighbors different from v, thus Hj cannot
intersect with any hull of a curve incident to wi or any vertex in the subtree
T (wi, {wi, v}).

Hull Hi+1 intersecting with the wedge of the neighbor wi+2 is the mirrored
case. ��

5 Discussion

We presented efficient algorithms for drawing trees with constraints on distances
between adjacent vertices and angles between incident edges. There is plenty of
opportunity for further work. For instance, we would like to address angle and
distance constraints together to improve both vertex placements and angle ro-
tations, and enlarge the class of graphs on which our methods work. A major
challenge is to implement the rotation method of [2] so that planarity is main-
tained always.
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(a) random rotation (b) polylines (c) curves

Fig. 7. Drawings of a tree with fixed vertices and angles
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Abstract. Given a tree T spanning a set of points S in the plane, we
study the problem of drawing T using only line segments aligned with a
fixed set of directions C. The vertices in the drawing must lie within a
given distance r of each original point p ∈ S , and an objective function
counting the number of bends must be minimised. We propose five ver-
sions of this problem using different objective functions, and algorithms
to solve them. This work has potential applications in geographic map
schematisation and metro map layout.

1 Introduction

A schematic drawing is one in which line segments conform to a restricted set
of orientations, often for the purpose of increasing readability. Schematic draw-
ings are widely used in many application areas, including electronics, software
engineering and visualising geographical networks.

There has been extensive research into orthogonal graph drawing, where edges
of a graph are drawn as sequences of alternating horizontal and vertical line
segments; see Eiglsperger et al. [5] for a survey. Lauther and Stübinger [8],
and subsequently Brandes et al. [2], investigated the problem of generating
orthogonal schematic plans from sketch drawings. Hong et al. [7], Stott and
Rodgers [13] and Nöllenburg and Wolff [12] looked at the layout of metro maps, in
which lines generally conform to horizontal, vertical and diagonal (45◦ and 135◦)
orientations.

A popular topic in cartography is polygonal line simplification, and this has
also been investigated in a setting of restricted orientations [10,11]. Cabello et
al. [3] presented an algorithm to construct various types of schematisations of
geographical networks, in which vertex positions remain unmodified but edges
are redrawn in a schematised way.

Particularly of interest are certain point placement problems in computational
geometry. Cabello and van Kreveld [4] study the problem of aligning as many
points as possible in a given set of orientations. If a planar graph is defined on
� National ICT Australia is funded through the Australian Government’s Backing

Australia’s Ability initiative, in part through the Australian Research Council.
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bends

ends

(a) (b)

p
D(p, r)

ε r

Fig. 1. (a) A tree (left) and a schematisation of the tree (right). Some bends (along
edges) and ends (at vertices) are marked. (b) The grid Gε.

the points, and only points connected in the graph are considered, they prove the
problem NP-hard, even when only one orientation is used for alignment. They
show that discrete forms of the problem can be solved more efficiently, however.
This motivates us to discretise our own problems; we detail this later in this
section.

In this paper, we aim to produce schematic drawings of trees from initial
sketch, geographical or automatic layouts. We propose five problems. Each takes
as input a tree T spanning a point set S, and the output should be a schemati-
sation of the tree’s initial layout (See Fig. 1(a)).

To be considered a schematisation, we require that line segments in the draw-
ing align with certain orientations, and that they pass within a certain distance
of each original point p ∈ S. In addition, we want to minimise an objective
function M(p) defined for each point p ∈ S. M(p) measures the complexity of
the lines from p to all of p’s children in T .

We formally define the concept of a tree schematisation as follows.

Definition 1. Given a tree T spanning a point set S, a set of directions C and
a real number r > 0, a tree schematisation T ′ of T is a layout of T such that:

1. every line segment of T ′ is aligned with a direction c ∈ C,
2. for every p ∈ S, the corresponding point p′ in the schematisation lies inside

the disc D(p, r) centred at p with radius r
3.

∑
p∈SM(p) is minimised.

The complexity of a tree schematisation can be measured in a number of ways.
The primary difference between the five problems we propose lies in the objec-
tive function M(p). The choice of M(p) defines how to calculate a cost for each
point of a given schematisation. Each problem bases this choice on a particular
assumption of how to measure complexity. Some of the problems also take ad-
ditional input in the form of a set of coloured paths covering T , which in turn
affects the objective function.

Henceforth, we call the five problems π1 - π5. The objective functions asso-
ciated with each of these are denoted M1(p) - M5(p). We refer to the value of
these functions for a schematisation as the M1 cost, M2 cost, etc.
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Each objective function measures the number of bends and ends in a given
schematisation, as illustrated in Fig. 1(a). We use the term bend to mean a
change in direction of a line between two vertices in the tree T . We use end to
mean a bend at a vertex; that is, a line that does not continue through a vertex
in a single direction. What counts as an end depends on the particular problem;
we detail this in the following sections.

In this paper, we assume that the set of directions C is constructed by dividing
the angle 2π by a given even integer m of desired directions, i.e. the ith direction
in C is defined by an angle of 2πi

m . m must be even to ensure that for every
direction c ∈ C, the opposite direction c is also in C. We look at a discretised
version of the general problem of constructing tree schematisations. We place a
finite set of points inside each disc D(p, r), and the constructed schematisation
must choose one of these points for the position of the vertex p ∈ T . We use
a global grid Gε with ε horizontal and vertical spacing between grid points to
obtain the set of points Gε(p) for each disc D(p, r). Gε(p) is the set of grid points
in Gε that lie inside D(p, r). There are O( r2

ε2 ) such points (See Fig. 1(b)).
Sections 2 and 3 define π1 - π5 in detail. Section 4.1 presents a general method

for computing tree schematisations on the grid Gε. This method runs in time
exponential in the degree of the tree. In many applications, the degree may
be considered constant. In this case, the time complexity of the method is
O( r4

ε4 |C|(3+Δ(T ))n), where Δ(T ) is degree of T and n is the number of vertices.
However, π1 - π5 can be solved in time polynomial in the degree of the tree;
Sections 4.2 - 4.5 give algorithms for this, based on the general method.

2 Coloured Tree Problems

Problems π1 and π2 involve coloured trees; they take as input a set P of ele-
mentary paths covering the tree T , with each path identified by a distinct colour
(See Fig. 2).

Problem π1: Single edges only. In π1, we assume that the paths in the set
P are edge-disjoint (as in Fig. 2(a)), and we want to minimise the number of
bends and ends along each of the coloured paths independently.

Choose an arbitrary leaf of T to be the root vertex. For any vertex p in T , let
N(p) be the set of vertices adjacent to p and let ch(p) ⊆ N(p) be the set of p’s
children. We define π1’s objective function M1(p) as:

M1(p) =
∑

q∈N(p) ends1(q, p) +
∑

q∈ch(p) 2 × bends(q, p)

where ends1(q, p) = 0 if there is an edge of the same colour as (q, p) entering p
from the opposite side, or 1 otherwise, and bends(q, p) is the number of bends
along the edge between q and p. Fig. 3 shows examples. The multiplication of
bends by 2 equates the cost of a bend in an edge with two ends at a vertex,
which may visually appear the same.
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(a) (b)

root

p

ch(p)

root

p

N(p)

Fig. 2. An example of a “coloured tree”, with solid, dashed, dotted and light grey lines
representing four different coloured paths. The left example shows an edge-disjoint
path cover (π1), and the right shows a path cover with multiple edges allowed (π2).
The children ch(p) and neighbourhood N(p) of the point p are illustrated.

p

2

0

0

0
p

3

1

1
p

3

1

1

(a) (b) (c)p’s parent
p’s parent p’s parent

Fig. 3. Counting ends and bends in π1. A bend costs the same as two ends. The M1(p)
costs are (a) (1 bend) = 2, (b) (1 bend + 3 ends) = 5, and (c) (1 bend + 3 ends) = 5.

Problem π2: Multiple independent edges. Problem π2 removes the re-
quirement for the coloured paths to be edge-disjoint; more than one path may
contain an edge between the same two vertices (See Fig. 2(b)). Given multiple
edges in the input, it holds that M2(p) = M1(p). Every edge between the same
pair of vertices counts towards the cost, where in π1 there could only be one
edge between each adjacent pair of vertices.

π2 requires that the endpoints of multiple edges between two nodes must
coincide in the schematisation, but not the number of bends in the edge nor the
orientations of the line segments.

3 Uncoloured Tree Problems

The three remaining problems, π3 - π5, take uncoloured trees; they assume that
no covering set of paths is given. This leads to ambiguity in how to count ends,
particularly when many lines in the schematisation enter a vertex in the same
direction. π3 - π5 model three different possibilities.
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(c)(a) (b)

Fig. 4. Three lines entering a vertex in the same direction, with (a) no lines, (b) one
line and (c) three lines in the opposite direction

Problem π3: Parallel lines remain separate. π3 assumes that multiple
edges, or any lines entering a vertex in a single direction, are drawn separately.
For every line entering a vertex in a certain direction, there must be another
line entering the vertex in the opposite direction, otherwise the line is counted
as an end. The examples shown in Fig. 4(a), (b) and (c) give 3, 2 and 0 ends,
respectively. The objective function is:

M3(p) =
∑

c∈C
1
2 × |edges(p, c) − edges(p, c)| +

∑
q∈ch(p) 2 × bends(q, p)

where edges(p, c) is the number of c-directed lines entering p, and edges(p, c) is
the number of lines entering p in the opposite direction to c. The factor of 1

2
ensures counting ends in each pair of opposing directions only once.

Problem π4: Parallel lines merge to line on opposite side. Problem π4
assumes that lines entering a vertex from the same direction are allowed to
merge without cost inside the vertex, given the presence of at least one line in
the opposing direction. If there is no line in a given direction, an end is counted
for every line in the opposing direction. If one or more lines are placed in a pair
of opposing directions, there are no ends.

M4(p) =
∑

q∈N(p) ends4(q, p) +
∑

q∈ch(p) 2 × bends(q, p)

where ends4(q, p) = 0 if there is any edge entering p from the opposite direction
to the edge (q, p), or 1 otherwise. In this problem, the examples in Fig. 4(a), (b)
and (c) produce 3, 0 and 0 ends respectively.

Problem π5: Parallel lines always merge. The final problem, π5, assumes
that lines entering a vertex from the same direction are drawn as a single line;
that is, parallel lines merge to a single line before a vertex. As soon as at least
one line is present in the opposite direction, no ends are counted. M5(p) is
equal to:

1
2

∑
c∈C |sign(edges(p, c)) − sign(edges(p, c))| + 2

∑
q∈ch(p) bends(q, p)

where sign(x) = 1 if x > 0, or 0 otherwise. For the examples in Fig. 4, the
number of ends are 1, 0 and 0 for (a), (b) and (c) respectively.

4 Algorithms for Tree Schematisation

In this section, we present an algorithm to produce a schematisation of a given
tree, without considering the specific objective function being used. The algo-
rithm is then modified for each of the problems π1 - π5 to provide a more efficient
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solution in each case. In all cases, we use the grid discretisation introduced in
Section 1. First, we define an important concept used throughout this section.

Definition 2. Given a set of directions C, a C-directed path between two points
p and q is a polygonal chain from p to q in which every line segment is parallel
to some direction in C.

4.1 A General Solution

Start by choosing an arbitrary leaf vertex to be the root vertex proot of the tree
T . Perform a post-order traversal on T , visiting each point p ∈ S once from the
leaves to the root. The algorithm finds optimal solutions for each subtree Tp of
T rooted at p, and during its traversal of T propagates these solutions upward,
until a complete solution has been generated at the root vertex. We use the
term M cost to denote the value of the objective function M(p). The M cost of
a subtree of T is the summed M cost of all points in the schematisation of the
subtree.

For each vertex p, given a grid point p′ ∈ Gε(p) and an direction c ∈ C, let
Mmin(p, p′, c) be the minimum M cost of the subtree of T rooted at p, assuming
that the schematisation passes through p′, and that the path from p to p’s
parent will leave p′ in direction c. We will refer to the direction c as the parent
direction from p. We assume in this description that there is only one edge from
p to p’s parent, and hence only one C-directed path can be constructed in the
schematisation. In the problem π2, p may have multiple edges to its parent, and
the schematisation may use different directions for each. In this case, we perform
the same steps several times, once for each edge. This process is further detailed
in Section 4.2.

When the algorithm visits the vertex p, it computes and stores for every point
p′ ∈ Gε(p), and for every parent direction c ∈ C the value of Mmin(p, p′, c), along
with the corresponding solution. If p has k children, then k paths must be stored
for each solution. Thus O( |C|kr2

ε2 ) values are stored at each vertex p.
As introduced in Section 1, the objective function being minimised by the

algorithm may be divided into a count of bends and ends. We can count the
number of bends by considering each child q ∈ ch(p) in turn.

Given two grid points p′ ∈ Gε(p), q′ ∈ Gε(q), let δ(q′, p′, c1, c2) be the mini-
mum number of bends needed by a C-directed path from q′ to p′ that starts in
direction c1 ∈ C and ends in direction c2 ∈ C. This value can computed in O(1)
time. Compute δ(q′, p′, c1, c2) for every pair of grid points p′ ∈ Gε(p), q′ ∈ Gε(q)
and for each pair of directions c1, c2 ∈ C. These values are the minimum number
of bends required for any possible path from q to p. Now add Mmin(q, q′, c1) to
these and store the minimum solution for every child q, grid point p′, final path
direction c2, and parent direction c. To calculate Mmin(p, p′, c), it remains only
to count the number of ends.

Unlike bends, ends cannot generally be counted independently for each of p’s
children. Let k be the number of children of p. If k ≤ 1, i.e. p is a leaf vertex or
a vertex with only one child, then only the edge between p and p’s parent, or its
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interaction with the single child edge, needs to be considered in calculating the
number of ends.

If k > 1 then the solution will, in general, be far more complicated, since the
end cost of the C-directed path from each child will depend on the paths from
the other children. It can be shown that it is NP-hard to compute the solution
with minimum end cost, even in a somewhat restricted case (See Section 4.5).

A brute force approach can be used to explore all solutions over the entire set
of p’s children. There are

(|C|k
k

)
such solutions, which is a number exponential in

k. Sections 4.2 - 4.5 give methods to compute minimum end cost solutions for
π1 - π5 that need only time polynomial in k.

Once proot has been processed, the entire tree has been traversed. Now find the
minimum value of Mmin(proot, p

′, c) over all grid points in Gε(proot). A schemati-
sation can be traced back through the tree, from root to leaves, following stored
solutions of minimum cost at each vertex.

Since we start by finding a locally optimal solution at each leaf vertex, and
then augment these solutions to find an optimal solution for the subtree rooted
at every parent vertex, it is clear by induction that the solution obtained at proot

is optimal for the entire tree.

Time complexity. The time complexity of the algorithm depends on the spe-
cific problem being solved. However, a minimum time complexity of Ω( r4

ε4 |C|3k)
for processing each vertex p can be noted, as in all five cases δ(q′, p′, c1, c2) values
must be computed for the k children of p. This equates to Ω( r4

ε4 |C|3n) over an
entire tree of n vertices.

4.2 Problems π1 and π2

The objective function M1(p) counts bends and ends only along each individual
coloured path. Hence, the solution for one path has no effect on the solution
for another, and they may be treated independently. M2(p) is the same, but
multiple edges must be taken into account.

The algorithm. For any coloured path containing the vertex p, one can consider
all solutions in polynomial time, since there are at most two edges of that colour
incident to p. Find the best solution for every colour, and sum the M1 costs to
get Mmin(p, p′, c) over all of p’s children.

In π2, there may be multiple coloured edges from p to p’s parent. In this case,
consider a different parent direction for each colour in turn, and repeat the above
process. As the colours are independent, choose the best solution for each and
sum them to get the total M2 cost.

Time complexity. We compute the Mmin(p, p′, c) values for each p ∈ S in time
O( r4

ε4 |C|3k). We visit each of the n points in the tree only a constant number of
times, so a total of O( r4

ε4 |C|3n) time is needed to solve π1. The time complexity
for π2 increases in the worst case by a factor of |P|, giving O( r4

ε4 |C|3|P|n) overall.
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Fig. 5. (a) A vertex p with three neighbours q1, q2, q3 (left) and the corresponding
matching graph G = (V, E) (right). (b) The bipartite matching graph G = (U, V, E)
constructed for π4. Every node in V is connected by |V | = |C′| edges to nodes in U ,
representing the |C′| lowest cost paths entering p in the corresponding direction.

4.3 Problem π3

In order to minimise the cost function M3(p), we want to match each individual
C-directed path entering p with a different path coming in to p in the opposite
direction. We only want to do this if the number of bends on the edges does not
overcome the reduced end cost, however.

We propose a transformation from this problem to a minimum cost maximum
cardinality matching problem. A matching on a graph is a set of vertex-disjoint
edges. A maximum cardinality matching is such a set that is as large as possi-
ble. A minimum cost maximum cardinality matching is a maximum cardinality
matching in which the sum of edge weights is minimal. A detailed introduction
to graph matching can be found in the literature [9]. Gabow [6] details an al-
gorithm to solve weighted matching problems for a graph G = (V, E) in time
O(|V |(|E| + |V | log |V |)).

The algorithm. Let q1, q2, . . . , q|N(p)| be the neighbouring vertices of p in T .
Consider in turn each qi, 1 ≤ i ≤ |N(p)|. For every direction c2 ∈ C, compute the
minimum M3 cost assuming that the minimum-bend C-directed path from qi to
p enters p in direction c2 and that there is no matching path in the direction
opposite to c2. Store the minimum of these values, and the associated direction.
Consider now every pair of p’s neighbours qi, qj , 1 ≤ i ≤ |N(p)|, 1 ≤ j ≤ |N(p)|,
and similarly compute and store the minimum M3 cost solution for every c2 ∈ C
assuming that the C-directed path from qi enters p in direction c2 and the path
from qj enters in the direction opposite to c2. Ties for the minimum cost may
be broken arbitrarily. If either qi or qj is p’s parent, consider only the parent
direction c for that path from that vertex.

Construct a graph G = (V, E) as follows (See Fig. 5(a)). Add a node vi to V
for every qi. Add an edge to E between every pair of nodes vi, vj , with a weight
of the minimum M3 cost if the C-directed paths from qi and qj enter p from
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opposite directions. This allows each path to be matched in G, with the same
cost as if they entered p in opposite directions.

Next add a second node ui to V for every qi. Add an edge to E between every
pair of nodes ui, vi with a weight of the minimum M3 cost if the path from qi

to p is unmatched by a path entering p in the opposite direction. Finally, add a
zero weight edge between every node pair ui, uj.

Compute a minimum cost maximum cardinality matching η on G. Transform
back to the original problem by considering each pair of matched nodes in η.
If both nodes correspond to the same child qi, then the direction that gives
the minimal M3 cost independent of other children is taken for qi’s path to p.
Otherwise, the nodes correspond to two different children in the original problem,
and the their paths are made to enter p in the pair of opposing directions that
gave minimal M3 costs.

Time complexity. The graph G takes O(|C|k2) time to generate, and con-
tains O(k) nodes and O(k2) edges. Computing the matching therefore takes
O(k3) time. Hence, the total time complexity is O( r4

ε4 |C|3n+ r2

ε2

∑
p∈S(|C|dT (p)3+

|C|2dT (p)2)), where dT (p) is the degree of p in T .

4.4 Problem π4

In contrast to π3, in π4 we need only one path entering p in a given direction to
match many in the opposite direction.

Throughout this section, we say that a direction c is used by a schematisation
if there is a C-directed path in the schematisation from at least one neighbour
of p that enters p in direction c. The direction c is not used if there is no such
path.

Our approach again uses a transformation to a graph matching problem, this
time matching edges to each of a subset C′ ⊆ C of directions. The matching
problem assumes that an optimal solution exists that uses every direction in
the given subset C′, and does not use any other directions. To find a globally
optimal solution, the algorithm processes all 2|C| subsets of C (assuming k ≥ |C|,
otherwise only subsets of cardinality at most k are considered). We expect |C|
to be a small constant in most practical applications.

The algorithm. Process every subset C′ ⊆ C for which |C′| ≤ k as follows. Let
q1, q2, . . . , qk be the children of p in T . For each qi, 1 ≤ i ≤ k and every direction
c ∈ C′, calculate the M4 cost if the C-directed path from qi enters p in direction
c, with no path entering p in the opposite direction. For now, store the solution
that gives the lowest M4 cost, breaking ties arbitrarily.

Once all children have been processed, an initial schematisation is constructed
from the set of stored solutions. If this schematisation uses every direction c ∈ C′,
then we are done; there is no possibility of reducing the end count, as an end
will only be counted if there is an unused direction. If one or more directions
are unused, we must satisfy our assumption of an optimal solution using exactly
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the set of directions C′, by choosing some of the paths to enter p in the unused
directions.

Compute for every direction c ∈ C′ the set of |C′| children whose C-directed
paths to p give the lowest additional M4 cost if required to enter p in direction
c. Call this set chc(p). The additional M4 cost for each child q ∈ chc(p) will be
the cost difference between the initial schematisation and the one obtained if the
path from q enters p in direction c.

Now construct a bipartite graph G = (U, V, E) for matching (See Fig. 5(b)).
For each child qi that was added to chc(p) for any c ∈ C′, add exactly one node
ui to U . For every direction cj ∈ C′, add one node vj to V . Construct an edge
between every pair of nodes ui ∈ U, vj ∈ V for which it holds that ui ∈ chcj(p).
Set the weight of the edge ui, vj equal to the additional M4 cost for the child
qi’s C-directed path to enter p in direction cj.

G now contains O(|C′|2) nodes and O(|C′|2) edges. Compute a matching from
U to V as in Section 4.3. Once a matching is computed, modify the initial
schematisation as follows. For each matched pair of nodes ui ∈ U, vj ∈ V , replace
the initial path from qi to p with a minimum-bend C-directed path that enters p
in direction vj . All other paths remain as in the initial schematisation. We now
have a schematisation that uses every direction in the set C′, and is of minimal
cost for C′.

After computing such a schematisation for all subsets C′ ⊆ C, take the schema-
tisation that produces the minimum M4 cost, breaking ties arbitrarily; this is
an optimal solution. Note that if k < |C|, the algorithm needs only to consider
those subsets C′ ⊆ C where |C′| ≤ k.

Time complexity. The algorithm explores O(2|C|) subsets of directions. For
each of these subsets, we can then populate the set chc(p) for every direc-
tion c ∈ C′ in O(|C|2k) time, since choosing the ith largest of n numbers can
be done in O(n) time [1]. The graph G is constructed in O(|C|2) time, and
O(|C|4| log |C|) time is needed to compute a matching from G. We therefore
need O( r4

ε4 |C|3k + r2

ε2 2|C|(|C|6 log |C| + |C|4k)) time to process the vertex p, and
O( r4

ε4 |C|3n + r2

ε2 2|C||C|6 log |C|n) time for T .

4.5 Problem π5

π5 counts 1 end for each direction used if the opposing direction is not used, or
0 otherwise. Let μ(p′, q′, q, c1, cj) = M5(q, q′, c1) + δ(q′, p′, c1, cj) be the M5 cost
calculated by the algorithm of Section 4.1, before counting ends.

In order to count ends, we need only consider directions cj ∈ C that correspond
to a cost of at most 1 more than the minimum μ(p′, q′, q, c1, cj) value. By using
two opposite directions for the C-directed paths from two children q1, q2 ∈ ch(p),
we can save at most 2 from the M5 cost. Hence, if either path entering p in those
directions had a μ(p′, q′, q, c1, cj) value of 2 or more greater than the optimal,
there must be a pair of unopposed directions for the two paths with equal or
lower M5 cost.
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Given this fact, π5 appears somewhat simpler than π4. However, it can be
shown to be NP-hard. Let ChildPathPlacement be the problem of choosing
a direction cj ∈ C for the path from each qi ∈ ch(p) such that the corresponding
schematisation gives a total M5 cost of m.

Theorem 1. ChildPathPlacement is NP-complete.

The proof of Theorem 1 is by a straightforward reduction from SetCover; we
omit it here due to space restrictions.

It is clear that ChildPathPlacement can be solved if the π5 problem can
be solved, which leads to our final result for this section.

Corollary 1. π5 is NP-hard.

π5 can be solved using the same algorithm as π4.
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Abstract. We consider drawings of trees in which all edges incident to
leaves can be extended to infinite rays without crossing, partitioning the
plane into infinite convex polygons. Among all such drawings we seek the
one maximizing the angular resolution of the drawing. We find linear
time algorithms for solving this problem, both for plane trees and for
trees without a fixed embedding. In any such drawing, the edge lengths
may be set independently of the angles, without crossing; we describe
multiple strategies for setting these lengths.

1 Introduction

Suppose we wish to draw a tree in the plane by first setting the slopes of its
edges, and then independently setting the edge lengths. For what choices of
slopes are we guaranteed that the drawing will be non-self-crossing, no matter
what lengths are chosen?

To answer this question, we define a convex arch to be a polygonal chain
spanning a range of angles of at most π, so that the edges occur on the chain
in sorted order by their angles within that range (Figure 1). We say that a tree
drawing has convex faces if the path between all consecutive pairs of leaves (in
the radial order of leaves around the root of the tree) is a convex arch.

If a tree drawing has convex faces, then the edges incident to the leaves may
be extended to infinite rays, transforming each arch into an infinite convex poly-
gon. These polygons partition the plane, similarly to the partition formed by
a farthest neighbor Voronoi diagram (Figure 2; see also [1] for Voronoi related
tree drawing algorithms). There can be no crossings within any of these convex
faces, so the drawing is planar, regardless of the drawing’s edge lengths. Con-
versely, any partition of the plane into finitely many infinite convex polygonal
faces comes from a tree drawing in this way.

Tree drawings with convex faces, such as the one in Figure 3, can be visually
appealing. For instance, the convexity of the faces makes it easy to visually
separate vertices in different subtrees of the tree. However in terms of the angular
resolution of a drawing (the minimum angle between any two edges incident on
the same vertex [2]) drawings with convex faces may require much sharper angles
than nonconvex drawings, and we wish to alleviate this fault by using as wide
angles as possible. This motivates the main problem we consider here:
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Fig. 1. Left: a convex arch. Center: not a convex arch, as the angles span a range larger
than π. Right: not a convex arch, as the angles of the segments are not in sorted order.

Fig. 2. The farthest point Voronoi diagram partitions the plane into infinite polygonal
cells, much like the partition formed by extending the leaf edges of a tree drawing with
convex faces

Fig. 3. A tree drawn with convex faces
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Fig. 4. Different embeddings of a tree can have different optimal angular resolutions

Tree Drawing With Convex Faces and Optimal Angles:
Given as input a tree T , find a drawing of T with convex faces, having the
maximum angular resolution possible among all such drawings.

We consider two different versions of this problem. In one version a plane em-
bedding of T is given by ordering the edges at each vertex; this ordering must be
respected by the drawing. In the other version, the edges at each node of T may
be permuted arbitrarily. The optimal angular resolution may differ depending
on which version of the problem we consider; for instance, in the tree shown in
Figure 4, the embedding on the left has optimal angular resolution 2π/5 while
the right embedding has optimal angular resolution π/2. Our main results are
that the optimal angular resolution, and a drawing achieving that resolution,
may be found in linear time, both for the plane case and the unembedded case.

Our tree drawing algorithms set the slopes of all edges in the drawing, before
setting the lengths of the edges and placing the vertices. For the slope-setting
phase, the definition of having convex faces and the angular resolution do not
depend on the choice of root for T , so we may assume that initially T is unrooted.
However, it will be useful to choose a particular root, depending on the structure
of T . After the slopes are set, we may return to the original root of T (if it has
one) and use that information when we set edge lengths and place vertices.

The problem of choosing slopes so that any setting of edge lengths is non-
crossing can also be solved by drawings in which the faces are non-convex, as
long as paths between consecutive leaves have ranges of angles of at most π;
for instance the nonconvex path on the right of Figure 1 is always non-crossing.
However, this additional generality does not allow for improved angular resolu-
tion, so we restrict our attention to drawings with convex faces henceforth.

2 Paths and Rakes

Before describing our main algorithm, we treat some special cases that are prob-
lematic for it. These same cases, as subtrees of our input tree, also play a key
role in our main algorithm itself.

A path is a tree in which all nodes have degree at most two. Clearly, the opti-
mal angular resolution for a drawing of a path with convex faces is π, achieved
by a drawing in which all vertices lie on a common line.

We define a rake to be a tree in which all nodes have degree at most three,
and in which some path connects all degree-three vertices. Let T be a rake, and
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Fig. 5. Optimal angular resolution drawings of rakes. Left: a rake with no double turns,
with angular resolution 2π/3. Center: a rake with three double turns (marked by the
gray triangles), requiring angular resolution 7π/12. Right: a construction with angular
resolution π/2 for any rake.

let P be a minimal directed path connecting all degree three vertices of T . If T is
embedded in the plane, each degree-three vertex v interior to P has one incoming
edge in P , one outgoing edge in P , and one unoriented edge not belonging to
P . We say that P makes a left turn at v if the clockwise ordering of these three
edges is the incoming edge, the outgoing edge, and the unoriented edge, and we
say that P makes a right turn at v otherwise. We define a double turn to be a
pair of consecutive turns in P that are both left or both right.

Lemma 1. An unembedded rake has optimal angular resolution 2π
3 . An embed-

ded rake with k double turns has optimal angular resolution π(1
2 + 1

6+2k ).

Proof. If a rake has no double turns, it may be drawn with its edges lying on
the edges of a tiling of the plane by regular hexagons, as shown in Figure 5(left),
and if the input is an unembedded rake then we may choose an embedding in
which the turns alternate left and right and achieve this angular resolution. This
is clearly optimal for any tree with degree three nodes.

For an embedded rake with double turns, such as the one in Figure 5(center),
we consider the sequence of angles between consecutive leaves of the tree. These
angles must be nonnegative and total 2π. If the angular resolution is π

2 + ε, then
the angle between the two paths incident to a degree three node that is not a
turn is at least π

2 +ε. The angle between one of these paths and the path incident
to the nearest turn is at least 2ε, because these two paths are connected via two
angles of at least π

2 + ε. Similarly, the angle between the two paths in a double
turn is at least 2ε. Remaining pairs of consecutive leaves may be parallel. Adding
all these angles, we get 2(π

2 + 3ε) for the angles near the ends of the paths, and
2ε for each double turn, for a total of π + (6 + 2k)ε. Since this must equal at
most 2π, an upper bound on angular resolution of the stated form follows.

To achieve this bound, first assign angles to the leaves of the tree exactly
matching the formula above: π

2 + ε between the two paths incident to a degree
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Fig. 6. A triple rake with one double turn and one short path. The optimal angular
resolution for this tree as embedded is 5π/18.

three node that is not a turn, etc. The path edges are then assigned angles of
π
2 + ε from the preceding leaf. With this angle assignment, all paths between
consecutive leaves are seen to form convex arches, so, as we have already dis-
cussed, we may assign edge lengths arbitrarily resulting in a tree drawing with
convex faces and the stated angular resolution. ��

When k is large, the angular resolution π(1/2 + 1/(6 + 2k)) closely approaches
π/2. A very simple construction achieves angular resolution π/2 for any rake:
simply draw the path connecting the degree three nodes by a monotonic path
consisting of alternating and horizontal line segments, with the path proceeding
horizontally after each right turn and vertically after each left turn, as shown in
Figure 5(right). More generally, the same algorithm shows the following:

Lemma 2. Let T be a rake, and let two slopes θ1 and θ2 be given. Then T may
be drawn with all edges having slopes θ1 or θ2, so that all faces of T except the
outer face at its root are convex.

When |θ1 − θ2| ≤ π/2, the angular resolution of the drawing produced by
Lemma 2 is |θ1 − θ2|. We will use this construction as part of our algorithm
for drawing trees that are not rakes.

3 Triple Rakes

Given a tree T ′, in which the maximum vertex degree is three, let T ′ be the
minimal spanning subtree of the degree three vertices in T . T is a rake if and
only if T ′ is a path, but the next simplest case is when T ′ contains a single degree
three vertex t. In this case, if we root T at t, the three subtrees descending from
t are rakes, so we call T a triple rake (Figure 6).

If T is embedded, then in each of the three paths of T ′, oriented from t to a
leaf, we may define left turns, right turns, and double turns as we did in rakes.
Additionally, we define a short path in T ′ to be a path with no turns; that is, a
single degree three vertex connected by paths to t and to two leaves.

Lemma 3. If T is an unembedded triple rake with s short paths, its optimal
angular resolution is π(1

2 + 1
2(9−2s) ). If T is an embedded triple rake with s short

paths and d double turns, its optimal angular resolution is π(1
2 + 1

2(9−2s+2d) ).
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Proof. The unembedded case follows from the embedded case, by embedding the
tree with no double turns. For the embedded case, we assume that the optimal
angular resolution is π/2 + ε, and count the number of times the angles increase
by ε as we progress around the leaves of a drawing of the tree, as we did in
Lemma 1. The angle between the two bottom leaves of a rake is at least π/2+ ε,
and in a rake that does not come from a short path the angle between one of
the two bottom leaves and the next nearest path is another 2ε. Additionally, as
in Lemma 1, each double turn leads to an angle increase of 2ε. The total angle
increase as we go around the tree is 3π/2 + (9 − 2s + 2d)ε = 2π, from which the
bound follows. This analysis fixes the angles of all leaves of the tree, from which
it is straightforward to find a drawing achieving the stated bound. ��

4 Plane Trees

We are ready to describe our general bound for the optimal angular resolution
of a plane embedded tree. We assume our tree T is not a path, rake, or triple
rake, as those special cases were handled in previous sections. As the problem
of tree drawing with convex faces does not depend on the root of the tree, we
choose a new root r as follows:

– If T contains a vertex incident to four or more edges, we let r be any such
vertex.

– Otherwise, let T ′ be the minimal subtree of T containing all degree-three
vertices in T ; T ′ can be formed by removing from T all leaves of T , and all
paths of degree-two vertices in T that lead to a leaf. T ′ cannot be a path, as
we have assumed that T is not a rake. Therefore, there exists a vertex in T ′

with degree three. We let r be any such vertex.

Once we have rooted T at r, we consider for each node v and each child w of
v the subtree Tw formed by v, w, and all descendants of w. It will be important
for our algorithms to be able to determine whether Tw is a path or rake.

Lemma 4. For all w we can determine whether Tw is a path, a rake, or a tree
that is not a path or rake, in total time O(n).

The algorithm for performing this determination is a simple bottom-up calcula-
tion on T ; we omit the details.

We define a fork at v to be a subsequence of two or more children wi of v,
contiguous in the ordering of the children given by the plane embedding of T
such that the trees Twi for the first and last child in the subsequence are paths
and all intermediate trees are rakes (Figure 7). We can also identify a fork with a
subtree, formed by v, the subsequence of children in the fork, and all descendants
of those children. When v is not the root, the sequence of children of v is a linear
order, but for the root v = r we consider this sequence as a cyclic order and
allow any linear subsequence of this order. In particular, when r has one child
forming a path subtree and all its other children form rakes, we consider the
sequence starting at the path, continuing through all the rakes, and ending at
the path again to form a fork.
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Fig. 7. A vertex with three forks. The subtrees descending from the top vertex of the
figure contain additional forks.

Lemma 5. If Tw is a rake, it contains exactly one fork, at the bottommost vertex
with two children. Otherwise there are at least two forks at vertices of Tw.

Proof. We use induction on the height of Tw. If w has one child x, and Tw is not
a rake, then Tx is also not a rake, and the result follows. If w has two children,
and Tw is not a rake, then either one child x is not a rake, and again the result
follows, or both children are rakes, and we have one fork in each. If w has three
or more children, one of which is neither a path nor a rake, then we have two
forks in that child alone. If there are two or more rakes, then again we have one
fork in each. If there is only one rake descending from w, then the other two
subtrees descending from w are paths, and we have one fork at w itself and one
in the rake. Finally, if all descendants of w form paths, then there are at least
two forks at w. ��

Lemma 6. Let F be a fork at a vertex v, containing r rakes, in a tree drawing
with convex faces and angular resolution θ. Then the angle between the first leaf
and the last leaf in F is at least (r + 1)θ.

Proof. That angle is needed just for the r + 2 edges connecting v to its children
in the fork. Adding the remaining edges in the fork cannot decrease the angle
any further. ��

Lemma 7. Let T be a tree containing f forks, as rooted at r. Then any drawing
of T with convex faces has angular resolution at most 2π/f .

Proof. We prove more generally that, if T has f forks at some node v or its
descendants, in a drawing with angular resolution θ, then the angle between the
first and last leaves descending from v is at least fθ. The result comes from
applying this bound to the trees descending from the children of the root.

To prove a lower bound of fθ on the angle between the first and last leaves
descending from v, we use induction on the height of the subtree. The sequence
of slopes of leaves increases monotonically as we proceed clockwise around the
tree, increasing (by induction) by θ times the number of forks in each subtree



84 J. Carlson and D. Eppstein

that is not a path or rake. In a rake that is not part of a fork, the bottommost
two paths must have an angle of at least θ, matching the single fork (Lemma 5)
that exists in the rake. Finally, each fork at v, containing r rakes, leads to a total
of (r + 1) forks when we include the fork within each rake, and by Lemma 6 the
increase in angle in this case again matches the number of forks. ��

Lemma 8. In a tree that is not a path, rake, or triple rake, rooted at r as
described above, there are at least four forks in the tree.

Proof. If two or more of the trees descending from children of r are not paths or
rakes, the result follows from Lemma 5. If r has four or more children, exactly
one of which is not a path or rake, then the other three children have two rakes,
or form a fork with one rake, or form two forks; in all cases there are two forks
from the non-rake child and two from the other three children. If r has four or
more children, all of which are paths or rakes, then each path has a fork clockwise
of it and each rake has a form inside it, so again the total number of forks is at
least four. Finally, if r has degree three, then (by our choice of root) none of the
subtrees descending from it is a path, and (since the tree is not a triple rake) at
least one of these subtrees is not a rake, so we get two forks from this non-rake
subtree and one each from the other two subtrees. ��

By Lemmas 7 and 8, the angular resolution of a tree that is not a path, rake, or
triple rake is at most π/2, so we may use the construction of Lemma 2.

Lemma 9. Let T be a tree containing f forks, as rooted at r. Then T has a
drawing with convex faces and angular resolution 2π/f .

Proof. We assign slopes to the edges of T in postorder. In a subtree containing
f ′ forks, the angle from the first leaf to the last leaf will be 2πf ′/f ; thus, the
total angle around the entire tree will be 2π as desired. When assigning slopes
to the edges of the subtree rooted at v, we consider the children of v in order.

Each subtree that is not a path or rake has its first leaf slope equal to that
of the leaf immediately preceding the tree, and by induction can be drawn with
the stated angle bound. We choose the slope of the edge leading from v to the
subtree in such a way that it bisects the angle formed by the subtree’s first and
last leaves; in this way, the angle between two consecutive edges incident to v
is half the angle spanned by the two subtrees, and thus at most π. In addition,
this choice of slope is guaranteed to be at least 2π/f greater than that of the
first leaf in the subtree, and at least 2π/f less than that of the last leaf in the
subtree, so each edge incident to v will form an angle of at least 2π/f with the
preceding and succeeding edges. Finally, we can show that (together with our
choice of slopes for other types of subtree) this choice of root slope will always
be within the range of slopes of the edges at the child vertex of the subtree.

Each path that is not the second path of a fork is given a slope equal to that
of the previous leaf. Each rake that is part of a contiguous sequence of rakes
following a path is drawn using Lemma 2 in a way that increases the slope by
2π/f , matching the bound for a subtree with a single fork; we align the root edge
of the rake with the slope of its last leaf. Each other rake is drawn by Lemma 2
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with its root edge aligned with the slope of its first leaf. Finally, the second path
of any fork is assigned a slope greater than the preceding leaf by 2π/f . ��

Putting these lemmas together, we have the following result:

Theorem 1. Let T be an unrooted plane tree. Then in time O(n) we can find
a drawing of T with convex faces and optimal angular resolution.

Proof. We first test whether T is a path, rake, or triple rake. If it is a path, we
embed it trivially with angular resolution π. If it is a rake, we apply Lemma 1,
and if it is a triple rake, we apply Lemma 3. Otherwise, we root T as described
at the start of this section, determine which subtrees are paths and rakes, count
forks at each node, and apply the drawing method described in Lemma 9. The
optimality of the angular resolution of this method follows from Lemma 7. ��

5 Unembedded Trees

We are now ready to handle trees that do not have a plane embedding already
fixed. Our choice of root at the beginning of the previous section does not depend
on the embedding, so we may use it without change. However, the definition of
a fork depends strongly on the embedding. Our goal in finding an embedding
maximizing the angular resolution is to minimize the number of forks. To do
so, define the excess of a node v that is not the root of the tree to be Ev =
max(0, Pv −Nv −1), where Pv is the number of trees descending from v that are
paths and Nv is the number of trees descending from v that are neither paths nor
rakes. For the root r, define Pr and Nr similarly, and let Er = max(0, Pv − Nv).
The total excess E(T ) is the sum of the excesses at each node.

Lemma 10. Every plane embedding of tree T has at least E(T ) forks. There
exists an embedding of T with exactly E(T ) forks.

Proof. In any embedding, at node v there are Pv paths, forming Pv − 1
potentially-consecutive pairs of paths (Pv pairs in the cyclic order at the root).
At most Nv of these pairs can be separated by a subtree that is not a path or
a rake, and the remaining pairs form forks, so there are at least Ev forks at v
and E(T ) overall. This bound may be achieved by, at each node, placing the
paths and the trees that are not paths or rakes in alternating order for as many
alternations as possible. The placement of rakes in the ordering at each vertex
and the ordering of the descendants within each rake does not affect the number
of forks in T . ��

Theorem 2. Let T be an unrooted unembedded tree. An embedding of T and
its drawing with convex faces and optimal angular resolution can be found in
O(n) time. If T is not a path, rake, or triple rake, the optimal angular resolution
among all drawings of T with convex faces is 2π/E(T ).

Proof. We first test whether T is a path, rake, or triple rake. If it is a path, we
embed it trivially with angular resolution π. If it is a rake, we apply Lemma 1,
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Fig. 8. The same tree as Figure 3, drawn with all edge lengths equal

Fig. 9. The same tree as Figure 3, drawn with edge length inversely proportional to
the distance from the root

and if it is a triple rake, we apply Lemma 3. Otherwise, we root T as described at
the start of the previous section, embed it with the minimum number of forks via
Lemma 10, and apply Theorem 1 to the resulting embedded tree using the same
root. The bound on the angular resolution follows from Lemmas 7, 9 and 10. ��

6 Setting the Lengths

Although our focus has been on the edge slopes for tree drawings, we can not
produce an actual drawing without setting the edge lengths. Our slopes have
been chosen specifically to allow any possible setting of edge length, without
introducing a crossing, so we may choose these lengths arbitrarily, to advance
some aesthetic criterion for the drawing or convey some additional information
about the tree. We discuss three possible choices of edge length.

Uniform Edge Lengths:
Assigning all edges the same length can produce a pleasantly uniform ver-
tex spacing. Since all vertices are treated equivalently, this type of drawing
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Fig. 10. The same tree as Figure 3, drawn with edge length proportional to the square
root of the number of descendants of the edge’s top vertex

is appropriate for unrooted trees. Trees with uniform edge lengths are shown
in Figures 4, 5(center), 6, and 8.

Radial Drawing:
We may place the root of a rooted tree at the center of a system of concentric
circles, and place each vertex on the circle corresponding to its distance from
the root. To do so, we set the lengths of the edges in preorder. When setting
the length of an edge (u, v), the placement of u on its circle will already
have been fixed. Since the circle for u is inside the circle for v, a ray from
u in the direction of the slope for edge (u, v) will intersect the circle for v
in a unique point, at which we place v. We then set the edge length to the
distance between the placements of its endpoints. A drawing in this style
is shown in Figure 3. This style of tree can be effective in making visually
apparent the root of the tree and the distance of each node from the root,
especially if the drawing is displayed with the concentric circles visible, as
they are in the figure. The root used for this placement algorithm need not
be the same as the root r that was chosen in our angle-setting algorithm.

Position in Tree:
Similarly to radial drawing, we may choose edge lengths that are functions
of the position of the edge in the tree. Two drawings of this type are shown
in Figures 9 and 10, with lengths that are functions of the distance from
the root and the size of the subtree rooted at the top vertex of the edge
respectively. It may also be of interest to vary edge lengths of this type
continuously, to morph between multiple viewpoints in the same tree.

Strength of Connection:
Since the lengths of edges may be arbitrary, we may use them to convey
additional information about the tree being drawn. For instance, if some
edges form stronger connections between their vertices than others, we may
display this by placing more strongly connected vertices closer together, and
more weakly connected vertices farther apart.



88 J. Carlson and D. Eppstein

7 Conclusions and Future Work

We have shown how to draw trees with convex faces and optimal angular resolu-
tion, among drawings that allow the edges to be drawn with any slope. However,
it may be of interest to require that no edge from a parent to child is directed
upwards (downward drawing) or that no edge is directed either upwards or to the
right (necessary but not sufficient for dominance drawing). Similar techniques
to the ones here, using a linear rather than circular ordering at the root of the
tree, can find drawings of these types, with convex faces (except, in the case of
dominance drawing, for the face above and to the right of the root) and optimal
angular resolution θ/f where θ is the range of allowed edge slopes and f is the
number of forks in the tree. We omit the details due to lack of space.

It is also natural to extend our drawing methods to graphs other than trees.
It seems likely that similar methods can optimize the angles of pseudotrees (con-
nected undirected graphs with a single cycle) drawn so the cycle forms a bounded
convex face and all other faces are convex and unbounded. Similarly, a reviewer
suggested Halin graphs, are formed from a tree with no degree-two vertices by
connecting its leaves into a cycle; we can form convex drawings of such graphs
by choosing edge lengths for the tree so that the leaves are in convex position,
but it is not clear how to optimize the angular resolution of such drawings.

Another reviewer suggested that it may be preferable to draw paths of degree-
two vertices with small bends between the edges rather than having all edges lie
on the same straight line, in order to make the vertex positions more apparent.
Such a preference could be quantified by a modified definition of angular reso-
lution, for instance one that measured the angle between any two consecutive
edges as the smallest of the two complementary angles formed by the edges’
lines; we expect that techniques similar to ours could be used to optimize this
modified angular resolution, although the details would differ and the faces of
the resulting drawings would likely be nonconvex.

We may also seek stronger optimality conditions for our drawings. In partic-
ular, consider the vector of angles between consecutive edges in a tree drawing,
sorted from smallest to largest. Our algorithm finds a vector with first coordi-
nate as large as possible, but can we find the maximum possible vector in the
lexicographic ordering of all possible vectors? For plane trees, it seems possible
to solve this problem in polynomial time by setting up a sequence of linear pro-
grams to optimize each successive coordinate of the vector of angles, but this is
neither efficient nor satisfactorily combinatorial. For unembedded trees, a solu-
tion to the lexicographic optimization problem seems even more difficult, and
we do not know whether it is likely to be polynomial or NP-hard.
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Abstract. We show an algorithm for constructing 3D straight-line drawings of
balanced constant degree trees. The drawings have linear volume and optimal
aspect ratio. As a side effect, we also give an algorithm for constructing 2D
drawings of balanced constant degree trees in linear area, with optimal aspect
ratio and with better angular resolution with respect to the one of [8]. Further,
we present an algorithm for constructing 3D poly-line drawings of trees whose
degree is bounded by n1/3 in linear volume and with optimal aspect ratio.

1 Introduction

The problem of constructing 3D drawings of trees with limited volume is interesting
both in practice and in theory and it has attracted the attention of several researchers.
Since a 2D drawing is also a 3D drawing then the results known for two-dimensional
drawings of trees are still valid in 3D. However, embedding a 2D drawing in three
dimensions fills the space only in one of its planes, while one would prefer a drawing
uniformally distributed in the embedding space. A widely used measure for expressing
this is given by the aspect ratio of a drawing, that is the ratio between the maximum
and the minimum edge of its bounding box. Clearly, considering a 2D drawing of an
n-nodes tree as a 3D drawing yields a bad (O(n1/2)) aspect ratio.

The state of the art in 2D can be summarized as follows. No algorithm is known
for drawing an n-nodes tree in O(n) area and such a bound is achieved only in spe-
cial cases. For example, if the degree of the nodes is bounded by n1/2, then the algo-
rithm of Garg and Rusu [7] constructs O(n) area straight-line drawings. As another
example, complete trees can be drawn straight-line in linear area with the algorithm of
Trevisan [8]. Concerning algorithms that work in three dimensions, Felsner et al. [5]
have shown how to draw in 3D any outerplanar graph and so any tree using linear vol-
ume. The drawings constructed by such an algorithm have bad (O(n)) aspect ratio. In
fact, they lie on the surface of a O(n) length triangular prism. However, the problem of
finding linear volume 3D drawings of trees with good aspect ratio is still open.

In this paper we contribute to the above problems: (1) In Section 3 we show how to
adapt the algorithm in [3] for constructing a linear volume 3D drawing of a balanced
tree with degree bounded by a constant. The aspect ratio is O(1). (2) As a side effect
of our technique we give an algorithm for drawing in 2D a balanced tree whose degree
is bounded by a constant in linear area, with constant aspect ratio and Ω(1/

√
n) angu-

lar resolution (Section 4). This improves the results of Trevisan that in [8] showed an
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algorithm for constructing drawings with the same area and aspect ratio, but with only
O(1/n) angular resolution. (3) In Section 5, we show how to construct a poly-line 3D
drawing of a tree with degree bounded by n1/3 in O(n) volume and O(1) aspect ratio.

2 Preliminaries

We assume familiarity with trees and their drawings [4] and assume that trees are rooted.
The degree of a node is the number of its children. The degree of a tree is the maximum
degree of one of its nodes. The height of a tree is the maximum length (number of nodes)
of a path from the root to a leaf. In the following we call Th a complete tree with height
h. We call rh its root and, if the degree of Th is k, T1,h−1, T2,h−1, . . . Tk,h−1 the sub-
trees of Th rooted at the children of rh. We call such children r1,h−1, r2,h−1, . . . rk,h−1.
For complete trees the number of nodes is a function of h and k. Namely, n = 1 + k +
k2 + . . . + kh−1 = kh−1

k−1 . Hence kh = n(k − 1) + 1 and so h = logk [n(k − 1) + 1].
A balanced tree is such that its height is logarithmic in the number of its nodes.

Grid drawings, straight-line drawings, and poly-line drawings are defined as usually
([4]). The bounding box B(Γ ) of a drawing Γ is the smallest rectangle (2D) or par-
allelepiped (3D) with edges parallel to the coordinate axes, that covers Γ completely.
We denote by left(B(Γ )), right(B(Γ )), back(B(Γ )), front(B(Γ )), bot(B(Γ )) and
top(B(Γ )) the sides of B(Γ ). In the 2D case x grows from left to right and y from
bottom to top. In the 3D case x grows from left to right, y from back to front and
z from bottom to top. The aspect ratio of Γ is the ratio between the maximum and
the minimum edge of B(Γ ). Γ is (strictly) upward in one coordinate direction if, for
each node, such coordinate is (less than) not greater than the same coordinate of its
children. The angular resolution of Γ is the minimum angle between two segments
incident to the same node. Γ satisfies the subtree separation property ([1]) if, for any
two node-disjoint subtrees of T , the bounding boxes of their partial drawings don’t in-
tersect. Γ satisfies the tip-over property ([8]) if, for any node, its children are drawn
on a line parallel to one coordinate axis. In the following we call x-line, y-line or z-
line a line parallel to the x-axis, y-axis or z-axis, respectively. Analogously, we call
xy-plane, xz-plane or yz-plane a plane parallel to the coordinate planes xy, xz and yz,
respectively.

3 Three-Dimensional Straight-Line Drawings of Balanced
Constant Degree Trees

In the following we show an algorithm to draw a balanced constant degree tree T in
three dimensions. First, add extra nodes to T until it is complete. This can be done with-
out altering the height h and the degree k of T . Now we have to construct a drawing
Γh of a complete tree Th. This can be done recursively as follows. If h = 1, then place
r1 in (0, 0, 0). If h > 1, suppose you have drawn Γ1,h−1, Γ2,h−1, . . . , Γk,h−1. We dis-
tinguish three cases: (i) if h mod 3 ≡ 2, then place Γ1,h−1, Γ2,h−1, . . . , Γk,h−1 so that
left(Γ1,h−1), . . . , left(Γk,h−1) are on the same yz-plane, so that back(Γ1,h−1), . . . ,
back(Γk,h−1) are on the same xz-plane and so that top(Γi,h−1) is one unit below
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bot(Γi+1,h−1), ∀i such that 1 ≤ i < k. Place rh one unit to the left and on the same x
line of r1,h−1 (see Fig. 1 (a)); (ii) if h mod 3≡0, then place Γ1,h−1, Γ2,h−1, . . . , Γk,h−1
so that bot(Γ1,h−1), . . . , bot(Γk,h−1) are on the same xy plane, so that back(Γ1,h−1),
. . . , back(Γk,h−1) are on the same xz-plane and so that right(Γi,h−1) is one unit
to the left of left(Γi+1,h−1), ∀i such that 1 ≤ i < k. Place rh one unit behind
and on the same y line of r1,h−1 (see Fig. 1 (b)); (iii) if h mod 3 ≡ 1, then place
Γ1,h−1, Γ2,h−1, . . . , Γk,h−1 so that bot(Γ1,h−1), . . . , bot(Γk,h−1) are on the same xy-
plane, so that left(Γ1,h−1), . . . , left(Γk,h−1) are on the same yz-plane and so that
front(Γi,h−1) is one unit behind back(Γi+1,h−1), ∀i such that 1 ≤ i < k. Place
rh one unit below and on the same z line of r1,h−1 (see Fig. 1 (c)). Finally, remove
from Th the extra nodes and their incident edges to obtain a drawing Γ of T . The al-
gorithm we have just described is the main ingredient in the proof of the following
theorem.

Theorem 1. Given an n-nodes balanced tree T with height h and constant degree k,
there exists an O(n) time algorithm that constructs a 3D crossing free straight-line grid
drawing Γ of G such that: the volume is O(n), the aspect ratio is O(1), Γ satisfies the
subtree separation property, Γ satisfies the tip-over property, and Γ is (strictly) upward
in each of the three coordinate directions.

Proof (sketch): We construct a straight-line drawing Γ of T by applying the algorithm
described in this section. By inductive arguments it’s easy to show that Γ is crossing-
free and satisfies the subtree separation property and the tip-over property. Further, by
an easy inductive analysis, it is possible to prove that Γh (and so Γ ) is contained in
a bounding box B(Γh) of dimension [O( 3

√
n) × O( 3

√
n) × O( 3

√
n)], [O( 3

√
n/k) ×

O( 3
√

n/k) × O( 3
√

nk2)], or [O( 3
√

nk) × O( 3
√

n/k2) × O( 3
√

nk)] if h mod 3 ≡ 1, if
h mod 3 ≡ 2, or if h mod 3 ≡ 0, respectively. Since k = O(1) the bounds on the
volume and on the aspect ratio of Γ follow. It’s easy to see that Γ is upward in each of
the three coordinate directions. A slight modification of the algorithm permits also to
produce strictly upward drawings: for this purpose, it is sufficient to translate, in the in-
ductive construction of the algorithm, the drawings of the subtrees T1,h−1, T2,h−1, . . . ,
Tk,h−1 by vectors (1, 0, 1), (1, 1, 0) and (0, 1, 1), for the case in which h mod 3 ≡ 0,
h mod 3 ≡ 1 and h mod 3 ≡ 2, respectively. Such a modification doesn’t alter the
asymptotic bounds on the volume and on the aspect ratio of Γ . Finally, the algorithm
can be easily implemented to run in linear time. �
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Fig. 1. Inductive construction of Γh: (a) h mod 3 ≡ 2. (b) h mod 3 ≡ 0. (c) h mod 3 ≡ 1.
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4 Two-Dimensional Drawings of Constant Degree Balanced Trees

We now apply a variation of the algorithm in Section 3 to draw a balanced constant
degree tree T in two dimensions. First, add extra nodes to T until it is complete.
Again, this can be done without altering the height h and the degree k of T . Now
we have to construct a drawing Γh of a complete tree Th. This can be done recur-
sively as follows. If h = 1, then place r1 in (0, 0). If h > 1, suppose you have
drawn Γ1,h−1, Γ2,h−1, . . . , Γk,h−1. We distinguish two cases: (i) if h is even, then place
Γ1,h−1, Γ2,h−1, . . . , Γk,h−1 so that bot(Γ1,h−1), . . . , bot(Γk,h−1) are on the same x-
line and so that left(Γi+1,h−1) is one unit to the right of right(Γi,h−1), ∀i such that
1 ≤ i < k. Place rh one unit below and on the same y-line of r1,h−1 (see Fig. 2 (a));
(ii) if h is odd, then place Γ1,h−1, Γ2,h−1, . . . , Γk,h−1 so that left(Γ1,h−1), . . . , left
(Γk,h−1) are on the same y-line and so that bot(Γi+1,h−1) is one unit above top(Γi,h−1),
∀i such that 1 ≤ i < k. Place rh one unit to the left and on the same x-line of r1,h−1
(see Fig. 2 (b)). Finally, remove from Th the extra nodes and their incident edges to
obtain a drawing Γ of T . We have the following theorem:

Fig. 2. Inductive construction of Γh: (a) h even. (b) h odd.

Theorem 2. Given an n-nodes balanced tree T with height h and constant degree k,
there exists an O(n) time algorithm that constructs a 2D planar straight-line grid draw-
ing Γ of T such that: the area is O(n), the aspect ratio is O(1), the angular resolution is
Ω (1/

√
n), Γ satisfies the tip-over property, Γ satisfies the subtree separation property,

and Γ is (strictly) upward in each of the two coordinate directions.

Proof (sketch): We construct a straight-line drawing Γ of T by applying the algorithm
described in this section. By inductive arguments it’s easy to show that Γ is planar and
satisfies the subtree separation property and the tip-over property. Further, by an easy
inductive analysis , it is possible to prove that Γh (and so Γ ) is contained in a bounding
box B(Γh) of dimension [O(

√
n)× O(

√
n)], or [O(

√
nk)× O(

√
n/k)], if h is odd, or

if h is even, respectively. Since k = O(1) the bounds on the area and on the aspect ratio
of Γ follow. It’s easy to see that Γ is upward in each of the three coordinate directions.
A slight modification of the algorithm similar to that described in Section 3 permits also
to produce strictly upward drawings without altering the asymptotic bounds on the area
and on the aspect ratio of Γ . We now analyze the angular resolution of Γ . It is possible
to show by induction that the angle between segments rk−1,h−1r1,h and rk,h−1r1,h,
say φ, is the smallest angle in Γh. We call l the length of the longest edge of B(Γh).
So l is the number of grid points on the longest edge of B(Γh) minus one, and so
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rk-1,h-1r1,h-1

r1,h

rk,h-1
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rk-2,h-1
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[l(k-1)-1]/k

[l(k-2)-2]/k

Fig. 3. Angular resolution of Γh

l = O(
√

nk). We now derive the value of sin(φ) by applying the trigonometric formula
sin(φ) = sin(α) cos(β) − sin(β) cos(α) to the angles α, β, and φ shown in Fig. 3 and
by applying the Pythagorean Theorem to the two rectangular triangles between vertices
r1,h, r1,h−1, rk−1,h−1, and rk,h−1:

sin(φ) =

(
k−1

k l − 1
k + 1

)
−

(
k−2

k l − 2
k + 1

)

√
(k−1

k l − 1
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√
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k + 1)2 + 1

>
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k

(l + 1)2 + 1
>

>
l

k(l2 + 2l + 2)
= Ω

(
1
kl

)
= Ω

(
1

k
3
2
√

n

)
= Ω

(
1√
n

)
.

Finally, the algorithm can be easily implemented to run in linear time. �
The table below compares some asymptotic properties of the algorithm shown in this
section with those of the algorithm of Trevisan ([8]).

algorithm area aspect ratio angular resolution subtree separation
Our Algorithm O(n) O(1) Ω (1/

√
n) YES

Algorithm [8] O(n) O(1) O (1/n) NO

5 Three-Dimensional Poly-line Drawings of Bounded Degree Trees

This section is devoted to the proof of the following theorem:

Theorem 3. Given a n-nodes tree T with degree k = O(nδ), where δ is a constant less
than 1

3 , there exists a three-dimensional poly-line crossing-free drawing Γ with O(n)
volume and O(1) aspect ratio.

The proof of the above theorem strongly exploits the techniques introduced in [6] by
Garg et al. They showed that given two constants δ and α, with 0 < δ < α < 1,
for every n-nodes tree T with degree k = O(nδ) it is possible to construct a two-
dimensional upward planar poly-line grid drawing Γ ′ with O(n) area, height H =
O(n1−α) and width W = O(nα). This is done as follows: (1) T is augmented with
dummy nodes to an homeomorphic tree T ′; (2) each node v of T ′ is associated with a
layer γ(v), so that for each edge (u, v) of T ′ |γ(u) − γ(v)| ≤ 1; (3) it is constructed a
planar straight-line drawing of T ′ with the property that y(v) = γ(v) for each vertex v;
(4) each dummy node is replaced by a bend, obtaining the poly-line drawing Γ ′ of T .
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To obtain a three-dimensional drawing Γ of T with the properties claimed in Theo-
rem 3, we suppose to apply the algorithm in [6]. Now we perform a “roll up” of Γ ′, in a
way very similar to that used in [2] to transform two-dimensional orthogonal drawings
in three-dimensional drawings. This is done as follows. First, subdivide Γ ′ in O(H1/2)
drawings Γ ′0, Γ ′1, . . . , Γ ′k, so that Γ ′i contains the part of Γ ′ between layers i · �H1/2�
and (i + 1) · �H1/2� − 1 (see Fig. 4 (b)). So the height of each Γ ′i is O(H1/2). Then
we move each Γ ′i to the plane z = i and we reflect each Γ ′i such that i is odd with
respect to xy-plane (see Fig. 4 (c)). More precisely, the transformation of Γ ′ in Γ con-
sists in assigning the three coordinates to each vertex and to each bend so that: (1) the
x-coordinate of each vertex (bend) v of T is equal to the x-coordinate of v in Γ ′; (2)
denoting by y∗(v) the y-coordinate of v in Γ ′, the y-coordinate of each vertex (bend)
v of T that belongs to Γ ′i , with i even (odd), is set equal to y∗(v) − i · �H1/2� (resp.
equal to (i + 1) · �H1/2� − y∗(v) − 1); (3) the z-coordinate of each vertex (bend) v
of T that belongs to Γ ′i is equal to i. From [6], we know that by setting α to 1/3, Γ ′

has height H = O(n2/3) and width W = O(n1/3). Further, by our construction, the
y-extension of Γ is H1/2 = O(n1/3) and the z-extension of Γ is equal to the number
of drawings Γ ′i , i.e. O(n1/3). So the volume and aspect ratio bounds claimed in Theo-
rem 3 follow. From the planarity of Γ ′ and from the property that each segment of such
drawing belongs to one layer or is between two consecutive layers it is easy to derive
that Γ is crossing-free.

z
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y

ΓΓ00’
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Fig. 4. (a) A planar poly-line upward grid drawing Γ ′ of T . (b) Subdivision of Γ ′ in partial
drawings Γ ′

0, Γ ′
1, . . . , Γ ′

k,. (c) Roll up of Γ ′ in a three-dimensional drawing Γ .
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Abstract. We consider the problem of simultaneous embedding of pla-
nar graphs. We demonstrate how to simultaneously embed a path and
an n-level planar graph and how to use radial embeddings for curvilinear
simultaneous embeddings of a path and an outerplanar graph. We also
show how to use star-shaped levels to find 2-bends per path edge simul-
taneous embeddings of a path and an outerplanar graph. All embedding
algorithms run in O(n) time.

1 Introduction

Embedding trees and other classes of planar graphs on predetermined point-
sets, small integer grids, and levels is motivated by graph layout algorithms and
applications in visualizing hierarchical information. Level and radial embeddings
can also be used for simultaneous embedding of graphs which are in turn useful
in dynamic graph visualization. Simultaneous embedding of planar graphs is also
motivated by its relationship with problems of graph and geometric thickness.

A geometric simultaneous embedding of two vertex-labeled planar graphs on n
vertices in the xy-plane is possible if there exists a labeled point set of size n such
that each of the graphs can be realized on that point set (using the vertex-point
mapping defined by the labels) with straight-line edges without crossings. For
example, any two paths can be simultaneously embedded, while there exist pairs
of outerplanar graphs that do not have a simultaneous embedding [3]. Geometric
simultaneous embeddings are quite restrictive: pairs of trees and triples of paths
may not have such embeddings. Less restrictive versions allow for larger classes
of graphs to be embedded without crossings, using few bends per edge [7].

Suppose an n-vertex path P is labeled 1 to n from one endpoint to the other.
In this paper, we show how to simultaneously embed P with an n-vertex planar
graph G (also labeled from 1 to n) that remains planar when the y-coordinate
of each vertex of G equals its label. We can restrict each vertex of G to lie
on the distinct horizontal line, or level, �j =

{
(x, j) | x ∈ R

}
given by its label

j ∈ {1, 2, . . . , n}. Such graphs are called level planar graphs with respect to the
labeling of G. The ability to simultaneously embed P and G in this way depends
� This work is supported in part by NSF grants CCF-0545743 and ACR-0222920.
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on the particular labeling of G. If G is not level planar for the given labeling,
then we give alternative simultaneous embedding techniques provided that G is
outerplanar: we retain the straight-line edges for G, but relax the edges of P to
be either composed of one circular arc each or to have 2 bends per path edge.

1.1 Related Work

Brass et al. [3] describe linear time algorithms for geometric simultaneous em-
beddings of pairs of paths, cycles, and caterpillars on an O(n)×O(n) grid. Geyer
et al. [10] show that tree-tree pairs do not always have a geometric simultane-
ous embedding, and the status of tree-path pairs is open. If bends on the edges
are allowed, Erten and Kobourov [7] show that tree-path pairs can be embed-
ded simultaneously using at most one bend per tree edge and no bends of path
edges on an O(n) × O(n2) grid. Moreover, pairs of planar graphs can be em-
bedded simultaneously using at most 3 bends per edge using an O(n2) × O(n2)
grid.

A related problem is that of level planarity, where the goal is to display graphs
according to a given hierarchical ordering of the vertices. Such graphs are called
level planar graphs [5]. In particular, Jünger and Leipert [11] present a linear time
planarity embedding algorithm for level planar graphs using PQ-trees, where the
resulting embedding is a set of linear orderings of vertices on each level. Once
a graph is determined level planar, Eades et al. [6] can produce a straight-
line drawing in O(|V |) time, though it may require exponential area. In [8], a
characterization of trees that are level planar for any possible labeling of the
vertices is given. These trees are called unlabeled level planar (ULP).

1.2 Our Contributions

We present results about simultaneous embeddings of pairs of graphs (P, G) on
n vertices without crossings, where P is always a path using curvilinear edges or
piecewise-linear edges and G is one of several different classes of planar graphs.
Our results illustrate the following trade-offs between the class of graphs to which
G can belong and the type of edges used for P :

1. If G is level planar, then we show how both G and P can be simultaneously
embedded with straight-line edges in O(n) time.

2. If G is outerplanar, we show how to find a plane drawing for G simultaneously
with a drawing for P that uses one circular arc per edge in O(n) time.

3. If G is outerplanar and piecewise-linear edges are desirable, we show how to
obtain a plane drawing for G simultaneously with a drawing for P that uses
two bends per edge in O(n) time.

Table 1 summarizes our current results regarding simultaneous embedding of
pairs of planar graphs and relevant previous results. Full details are given in [4].
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Table 1. Summary of results. ULP here stands for unlabeled level planar, as defined
above.

Pair (P , G) Edges in P Edges in G Condition Reference
(Path, Path) 0 bends 0 bends none [3]
(Path, Tree) 0 bends 1 bend none [7]
(Path, Planar) 0 bends 0 bends G is ULP Theorem 1
(Path, Planar) 0 bends 0 bends G level planar w.r.t. P Theorem 2
(Path, Outerplanar) circular arcs 0 bends none Theorem 3
(Path, Outerplanar) 2 bends 0 bends none Theorem 8
(Path, Tree) 0 bends 0 bends none Open

2 Geometric Simultaneous Embedding

We try to use standard notation when discussing level graphs while focusing on
the aspects of level graphs that give us simultaneous embeddings using straight-
line segments. In doing so, we omit from our definitions certain properties of
level graphs that are not directly relevant to our problem domain.

Let G(V, E) be an n-vertex undirected graph with a labeling L : V
1:1−→
onto

{1, 2, . . . , n}, which induces a level graph G(V, E, φ) with a bijective level as-
signment φ = L onto n levels. A vertex v in V is a j-level vertex if φ(v) = j. A
level drawing is level planar if it admits a plane drawing such that each j-level
vertex v can be embedded onto the horizontal line �j =

{
(x, j) | x ∈ R

}
. A level

graph is level planar if it has a level drawing.
While any planar graph G admits some labeling for which it is level planar,

only some planar graphs are level planar regardless of the labeling used. Such
graphs are called unlabeled level planar (ULP) [8] and they can be characterized
in terms of a pair of forbidden subtrees; see Fig. 1. Moreover, the linear-time
recognition and embedding algorithms for ULP trees yield a straightforward
way to simultaneously embed an n-vertex path and an n-vertex ULP tree as
illustrated in the following theorem.

Theorem 1. A geometric simultaneous embedding of an n-vertex graph G and
an n-vertex path P can be computed in O(n) time, provided G is ULP.

Proof. Label the vertices of P sequentially 1 to n, and label the vertices of G
so that L = φ for any n-level bijective assignment φ of the vertices in G and
P . If G happens to be a ULP tree, it is either a caterpillar, radius-2 star, or
degree-3 spider, each of which has an O(n) time algorithm [8] to produce a
compact straight-line level planar drawing of G. If G is not a tree, the O(n)
time algorithm of Eades et al. [6] can provide a planar straight-line drawing of
G with level assignment φ = L. Regardless, the y-coordinate of each j-vertex of
G matches its label j in a level drawing of G. Then we draw the path P in a
y-monotone fashion zig-zagging upward from one level to the next in O(n) time.
This completes our geometric O(n) time simultaneous embedding of P and G
since no path edges of P can cross given its y-monotone nature. ��
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(a) (b) (c) (d)

Fig. 1. Two forbidden trees T1 in (a) and T2 in (b) that fully characterize ULP trees,
and their embeddings with crossings in (c) and (d), respectively, for the given labelings.

The requirement for G to be ULP is overly restrictive. One can use the same
approach to simultaneously embed a planar graph G and a path P , provided
that G is level planar with respect to the labeling induced by P . This gives the
following theorem.

Theorem 2. A geometric simultaneous embedding of an n-vertex graph G and
an n-vertex path P can be computed in O(n) time, provided G is level planar
with respect to the labeling given by P .

The disadvantage of this approach to simultaneously embed a path and a planar
graph is that most planar graphs, including most trees, are not level planar for
some labeling. This is not surprising since it is a strong restriction to have a
predetermined order of the y-coordinates of the vertices. What is surprising,
however, is that introducing curvature to the levels, by using circles in lieu of
horizontal lines, is enough to allow us to embed all trees and outerplanar graphs
with circular arcs for path edges. We show this in the next section.

3 Simultaneous Embedding with Curves

This section combines straight-line embeddings of outerplanar graphs with paths
consisting of circular arcs to produce curvilinear simultaneous embeddings. First,
we describe how to obtain a plane drawing of an n-vertex outerplanar graph G
on a set of concentric circles such that each vertex lies on a distinct circle,
determined by the labeling of G. We then use this straight-line crossings-free
drawing of G to simultaneously embed G with an n-vertex path P , such that
each path edge consists of a circular arc that lies between adjacent concentric
circles. This will give the primary theorem of this section.

Theorem 3. An n-vertex outerplanar graph G can be simultaneously embedded
with an n-vertex path P in O(n) time such that G forms a plane drawing and P
is drawn without crossings using one circular arc per edge.
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3.1 Embedding an Outerplanar Graph on Concentric Circles

In this section, we describe how to embed a radial plane drawing of an labeled
n-vertex outerplanar graph G on a set of distinct n concentric circles using the
labeling of G. This is similar to a radial level planar embedding on n radial
levels, i.e., circles, except that we are using straight lines instead of radially
monotone polylines for edges. However, as straight-line edges are not necessarily
radially monotone, the radial level planarity test and embeddings algorithms of
Bachmaier et al. [1] cannot be directly applied here. Rather, we use the following
result from Bose [2].

Theorem 4. (Theorem 6.2 of [2]) If the input point set P is in convex position
then O(n) time and space is sufficient to straight-line embed G into P.

Using this theorem we can obtain our linear time radial straight-line embedding
of G onto n concentric circles given by the next lemma.

Lemma 5. Given a set C of n concentric circles {C1, C2, . . . , Cn} centered at
the origin o with monotonically increasing radii r1, r2, . . . , rn, it is a sufficient
condition that r1

rn
> cos 2π

n in order to obtain in O(n) time a radial plane drawing
of an n-vertex outerplanar graph G with vertices labeled 1 to n such that each
vertex with label j is embedded on circle Cj .

Proof Sketch: Our strategy is to first embed G using straight-line edges onto a
circle C with radius r centered at the origin o without crossings in O(n) time
via Theorem 4. We want the vertices of G evenly distributed along the circle,
i.e., on a point set P such that there is a point pi in P at a distance r from the
origin o, i.e., |opi| = r, at every radian angle θk = (k − 1)2π

n , where θk is the
angle ∠p1opk for k = 1, 2, . . . , n. Clearly, P forms a convex set; see Fig. 2(b).

Then we perturb the vertices in O(n) time in a radial direction so that each
one lies on its own circle according to the labeling of G, i.e., a vertex v labeled
j is placed on Cj where Cn = C. Finally, we determine that if our perturbation
is sufficiently small, i.e., r1

rn
> cos 2π

n , then the radial drawing remains free of
crossings. We do this by perturbing the point set P to match the new locations
of the vertices of G. We call this perturbed point set P ′; see Fig. 2(c).

We note that while Theorem 4 works for any convex point set P , which vertex
is embedded at which point of P is determined by the algorithm. We can show
that when rerunning the algorithm on point set P ′ instead of P , it makes the
same choices. In order to do that it suffices to show that when we perturb the
point set P to P ′ the following two conditions hold:

– all the points of P ′ remain in convex position and
– the order in which each point p′ of P ′ sees all the other points P ′ − p′ using

a radial line sweep centered at p′ remains the same.

Since the points P are uniformly distributed over all radial angles, retaining
the convexity of P ′ also achieves the condition of retaining relative positioning
provided that the points of P ′ are only perturbed in a radial direction. Next, we
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(a) (b) (c)

(d) (e) (f)

Fig. 2. The vertices of a 12-vertex outerplanar graph G are embedded on a circle in
(a). This embedding follows the general point set P given in (b). The points are then
perturbed radially inward so that each vertex with label j lies on Cj for j = 1, 2, . . . , 12,
where C12 is the outermost circle, yielding point set P ′ in (c). Drawing G on P ′ gives
(d). Crossings are avoided by restricting the ratio between the radii of C1 to Cn in (e)
giving (f).

show that r1
rn

> cos 2π
n is a sufficient condition in maintaining the convexity and

same convex hull of P when perturbing the points to P ′.
Perturbing the point pi+1 of P to lie on the innermost circle C1, while letting

its neighboring points pi and pi+2 along the convex hull of P , remain on C = Cn,
gives a worst case in terms of affecting the convexity of P . Fig. 2(e) illustrates
this. Let x denote the midpoint of pipi+2. In order for pi+1 to remain on the
convex hull of P , it is sufficient that the distance from o to x is less than r1,
the radius of the innermost circle C1. Since the angle ∠xopi is 2π

n , if the ratio of
r1
rn

> |ox|
rn

= cos 2π
n , then pi+1 will lie in the outer half-plane formed by the line

passing through pi and pi+2, i.e., the half-plane not containing the origin o. ��

3.2 Embedding a Path of Circular Arcs Between Concentric Circles

From Lemma 5, we have that given n distinct concentric circles C1, C2, . . . , Cn

of monotonically increasing radii r1, r2, . . . , rn, we can create a plane drawing of
any n-vertex outerplanar graph G(V, E) with labeling L : V

1:1−→
onto

{1, 2, . . . , n}
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(a) (b)

Fig. 3. Routing one circular arc per edge so that fits inside two consecutive concentric
circles is in (a). The concentric circles are centered at o where o′ is the center of a circle
that gives a curve connecting vi and vi+1 that stays within the annulus defined by Ci

and Ci+1. An example of this is given in (b) for the outerplanar graph from Fig. 2(a).

such that v ∈ CL(v) for all v ∈ V provided r1
rn

> cos 2π
n . Here we assume the

n-vertex path P is labeled sequentially 1 to n. We show how to route the edges
of the path using exactly one circular arc per path edge so that the arcs of
P form a radially monotone polyline, which implies that no two circular arcs
intersect.

Lemma 6. A radially monotonically increasing crossings-free drawing of an
n-vertex path P (V, E) with vertex set V = {v1, v2, . . . , vn} and edge set E ={
(v1, v2), (v2, v3), . . . , (vn−1, vn)

}
can be realized on n concentric circles C1, C2,

. . . , Cn, where vi ∈ Ci for 1, 2, . . . , n with one circular arc per edge.

Proof. It suffices to show that one circular arc always can be used to connect
two consecutive vertices on the path, vi and vi+1, such that the arc lies strictly
outside circle Ci and inside circle Ci+1 except for the end points of the arc at
vi and vi+1; see Fig. 3(a). Let o be center of the circles. We compute o′, the
center of the circle that forms the desired circular arc connecting vi and vi+1 as
follows. The center o′ is the intersection of the perpendicular bisector of vivi+1
and the line segment ovi+1. The radius of the circle centered at o′ is given by
the distance from o′ to vi. The shorter circular arc between vi and vi+1 connects
the two vertices and is located in the annulus between circles Ci and Ci+1.
Furthermore, the distance from c to any point along the arc from vi to vi+1
is monotonically increasing. Therefore, the entire path P can be realized as a
radially monotone polyline, implying no edge crossings, using one circular arc
per edge; see Fig. 3(b). ��

Lemma 5 together with Lemma 6 gives us Theorem 3. However, as noted, this
only works when we can restrict the radii of the concentric circles to be in a
small range. One might wonder whether it is possible to use radially uniform
concentric circles instead. The next subsection shows this is not the case.
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3.3 Trees on Radially Uniform Concentric Circles

In this section we give an example of a 406-vertex tree with a labeling from 1
to 406 that cannot be straight-line embedded on a set of 406 radially uniform
concentric circles such that each vertex lies on its respective circle.

Lemma 7. There exists an 406-vertex tree T (V, E) with labeling L : V
1:1−→
onto

{1, 2, . . .406} that cannot be straight-line embedded on a set C of 406 radially uni-
form concentric circles {C1, C2, . . . , Cn} centered at o with radii r1, r2, . . . , r406
such that ri = (i − 1)Δ for i = 1, 2, . . . , 406 for any Δ > 0, where each vertex
with label j is embedded on circle Cj.

Proof. Here we use the ULP forbidden tree T1 with 8 vertices from Fig. 1(a) to
construct a 406 vertex tree T with root x which has 45 subtrees of 9 vertices
each; see Fig. 4(a). Each of the 45 neighbors of x is a degree-2 vertex connected
to a copy of T1. We start by labeling x with 1 placing it on C1, which has radius
0, so x must be embedded at the center o.

Then we label each of its 45 neighbors with 362, 363, . . . , 406 so that at least
one subtree, which is a copy of T1, call it T ′1, must lie within the radian angle
2π
45 . W.l.o.g we assume that this sector is centered along a vertical line passing
through the center o since we can rotate the drawing of T as needed.

Within this narrow sector, we observe that the tangents to the circles do
no intersect any other circle; see Fig. 4(b). This is because the radius of ri−1
is strictly less than ri cos 2π

2·45 = ri cos π
45 for i = 1, 2, . . . , 405. In particular,

r405 = 404 < r406 cos π
45 = 405 · 0.997564 = 404.013.

Then we label the kth copy of T1 with the labels from Fig. 1(c) adding the
value of (k−1)8+1 to the labels for k = 1, 2, . . . , 45. This preserves the y-ordering
of the labels such that T ′1 (the copy of T1 lying strictly within the radian angle

(a) (b)

Fig. 4. The 406-vertex tree in (a) cannot be drawn on radially uniform concentric
circles since there must exist one subtree that is a copy of T1 from Fig. 1(a) that fully
resides in a sector such that tangents of circles do not intersect any other circle. We
can rotate this sector so that it lies directly above o so that any vertices placed on
the concentric circular arc in this sector must have strictly increasing y-coordinates as
shown in (b).
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2π
45 sector) must have strictly increasing y-coordinates. Hence, if T ′1 could be
embedded on its circles, then it could be level planarly embedded, which is not
the case for the given labeling of T ′1. The inability to level planarly embed T ′1
forbids a straight-line embedding of T . ��

4 Simultaneous Embedding with Bends

This section combines straight-line embeddings of outerplanar graphs with paths
whose edges are drawn with bends. We introduce the notion of star-shaped levels
which allows us to obtain the main result of this section:

Theorem 8. An n-vertex outerplanar graph G can be simultaneously embedded
with an n-vertex path P in O(n) time such that G forms a plane drawing and P
is drawn without crossings with at most 2 bends per path edge.

4.1 Projecting a 3D Outerplanar Graph onto the 2D xy-Plane

We start by using the following theorem to get a 3-dimensional embedding of an
outerplanar graph onto a 3-side prism.

Theorem 9. (Felsner, Liotta and Wismath [9]) Every outerplanar graph G(V, E)
with n vertices admits a crossings-free straight-line grid drawing in three dimen-
sions in optimal O(n) volume that can be computed in O(n) time and with the ver-
tices of G drawn on the grid points of a prism.

The ability to do this projection can be used to give our next lemma.

Lemma 10. There exists a projection of a 3-dimensional outerplanar graph
G on a 3-sided regular prism onto the xy-plane that preserves the number of
straight-line edge crossings of G.

Proof Sketch: The embedding of [9] uses the shortest-path distance from some
arbitrary root vertex r to every other vertex in the outerplanar graph G. Let
dmod 3(v) denote the shortest-path distance from r modulo 3. Fig. 5 gives an
example of an outerplanar graph to be used in illustrating the embedding on
star-shaped levels. The 3-dimensional regular prism used for this embedding can
be visualized as standing vertically on a triangular base in the xy-plane in which
the vertical edges are numbered 0, 1, and 2 in clockwise order looking down from
the positive z-direction. Then G is “wrapped” around the prism such that each
vertex v is embedded along the edge dmod 3(v) of the prism; see Fig. 6.

We will use the prism to construct the star-shaped levels. Assume that the
base of the prism is an equilateral triangle with side length � and that the height
of the prism is 3�. Additionally, let r = �/2

√
3 be the radius of the circle that is

inscribed within the triangle; see Fig. 6(b). We need to shift all the vertices so
that they all lie along a fairly narrow band above the distance 2r from the base.
This is so that when we “unfold” each vertical side of the prism by laying it flat
on the xy-plane we do not introduce a crossing; compare Fig. 6(a) to (b).
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Fig. 5. Outerplanar graph G used as an example for embedding on star-shaped levels.
The vertices in this figure and Fig. 6 are in three different shapes (diamonds, circles,
and squares) according to whether the vertex is at a shortest-path distance of 0, 1, or
2 modulo 3 from vertex 1, respectively. The edges are colored one of three colors in a
similar fashion.

We pick the side of the rectangular face that is in a 90◦ counter-clockwise
direction from the prism’s base onto which to map the vertices along the prism
edge. The positions of the vertices are then mapped directly to their correspond-
ing positions along this projected edge in the xy-plane so that the edges on a
prism face map directly to straight-line segments in the xy-plane.

There is the possibility that extra crossings will be introduced between edges
incident to the same pair of prism edges in which one or both of the endpoints

(a) (b)

Fig. 6. Outerplanar graph G from Fig. 5 projected onto the xy-plane from its 3-
dimensional embedding. In (a) there are crossings since the vertices are not above
the 2r threshold, where r is radius of the circumscribed circle of the base of the prism.
In (b) there are no crossings since all the vertices achieve this threshold.



Simultaneous Graph Embedding with Bends and Circular Arcs 105

lie within a distance of 2r from this base. Once all the endpoints lie above this
threshold, which is the point at which an extension of an adjacent prism edge at
an angle of 120◦ would intersect the edge in the xy-plane, then no crossings can
occur. This is illustrated by projecting the outerplanar graph G from Fig. 5 onto
the xy-plane in which all the vertices are not above this threshold in Fig. 6(a),
but achieve this 2r threshold in Fig. 6(b) eliminating all crossings. ��

4.2 Simultaneous Embedding Using Star-Shaped Levels

In this section we show how to use the star-shaped levels generated by the
outerplanar graph G from the previous section to simultaneously embed a path
P with exactly 2 bends per edge giving our next lemma.

Lemma 11. There exists a 2-bend per path edge crossings-free drawing of a path
P using star-shaped levels for any vertex labeling.

Proof Sketch: Let ni be the number of vertices along the ith prism edge (for
i ∈ {0, 1, 2}, the shortest-path distance of the vertices from r modulo 3) where
nmax = max{n0, n1, n2} is then the total number of star-shaped levels required
for this simultaneous embedding. Next we need to perturb the ni vertices that
lie along edge i (after performing the above projection to the xy-plane) to lie
along one of nmax closely adjacent nested star-shaped levels. How close these
levels need to be is given by the subsequent lemma. Each star-shaped level has 6
sides and is a scaled-down version of the outermost level (w.r.t. the center of the
circle circumscribed within the triangular prism base). This includes the 3 prism
edges projected onto the xy-plane, and the 3 edges that each connect the top
of one projected prism edge to the bottom of the next in a clockwise direction,
termed connecting edges ; see the dashed 3-pointed star in Fig. 7.

When perturbing the vertices, we are careful to move a vertex in a direction
perpendicular to the prism edge (as well as all of the adjacent edges of the nested
levels) on which it resided. The problem with perturbing the vertices too much
is the introduction of crossings in G. For example, the outerplanar graph G in
Fig. 5 is shown in Fig. 7 on a set of star-shaped levels in which the levels are not
spaced sufficiently close enough, resulting in several crossings.

The vertices are placed clockwise from outermost to innermost star-shaped
level by the order given by the path labeling. However, in order to be able to route
the path back and forth between vertices that alternate back and forth between
adjacent sides of the prism, an extra connecting edge needs to be inserted to lie
half-way between every pair of adjacent connecting edges. Since we need one for
each level, an extra connecting edge also needs to be added to lie just interior
to the nmax

th innermost connecting edge. In Fig. 7 these are shown as dashed
line segments. We denote the levels along which the vertices lie as regular levels,
which are depicted in Fig. 7 with solid gray edges, and the in-between levels as
half-levels consisting of dashed edges.

The rule then for going from one vertex u to the next vertex v is that if
going clockwise, then v’s connecting regular level’s edge is used, otherwise, its
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Fig. 7. Outerplanar graph G from Fig. 5 embedded onto the star-shaped levels

connecting half-level’s edge is used. Hence, if going clockwise, 2 bends are intro-
duced at each endpoint of the connecting regular level’s edge corresponding to
the destination vertex. Otherwise, 2 bends are introduced at each endpoint of
the connecting half-level’s edge of the destination vertex. ��

As was the case with circular arcs, making the star-shaped levels sufficiently close
for a given outerplanar graph G, as well as an additional technical condition of
placing the vertices of G in close proximity along the middle portion of the prism
edge, avoids crossings as given by our final lemma. The proof of this lemma (along
with a detailed description of the geometry of the star-shaped levels) is included
in the technical report [4].

Lemma 12. Let G be an n-vertex outerplanar graph. Let δ be the maximum sep-
aration between two vertices of G along the same prism edge before perturbing
vertices onto the other star-shaped levels, and let Δ be the maximum separa-
tion between the nested star-shaped levels. Then G will be crossings-free when
embedded onto the star-shaped levels provided Δ < �

10n and δ < �
(n−1)2 .



Simultaneous Graph Embedding with Bends and Circular Arcs 107

5 Conclusions and Open Problems

We presented results in simultaneous embeddings of path and outerplanar graphs
with circular arc edges or a small number of bends. Other open problems include:

1. Do all tree-path pairs have geometric simultaneous embedding?
2. What is the complexity of determining whether two planar graphs admit a

geometric simultaneous embedding?
3. What is the complexity of determining whether a pair of graphs can be

simultaneously embedded?
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We would like to thank Jǐŕı Fiala, Ferran Hurtado, and David Wood for the
stimulating discussions about this problem.

References

1. C. Bachmaier, F. J. Brandenburg, and M. Forster. Radial level planarity testing
and embedding in linear time. J. Graph Algorithms Appl., 9(1):53–97, 2005.

2. P. Bose. On embedding an outer-planar graph in a point set. CGTA: Computational
Geometry: Theory and Applications, 23(3):303–312, 2002.

3. P. Brass, E. Cenek, C. A. Duncan, A. Efrat, C. Erten, D. Ismailescu, S. G.
Kobourov, A. Lubiw, and J. S. B. Mitchell. On simultaneous graph embedding. In
8th Workshop on Algorithms and Data Structures, pages 243–255, 2003.

4. J. Cappos, A. Estrella-Balderrama, J. J. Fowler, and S. G. Kobourov. Simulta-
neous graph embedding with bends and circular arcs. Technical Report TR06-02,
University of Arizona, 2006.

5. G. Di Battista and E. Nardelli. Hierarchies and planarity theory. IEEE Trans.
Systems Man Cybernet., 18(6):1035–1046 (1989), 1988.

6. P. Eades, Q. Feng, X. Lin, and H. Nagamochi. Straight-line drawing algorithms
for hierarchical graphs and clustered graphs. Algorithmica, 44(1):1–32, 2006.

7. C. Erten and S. G. Kobourov. Simultaneous embedding of planar graphs with few
bends. In 12th Symposium on Graph Drawing (GD), pages 195–205, 2004.

8. A. Estrella-Balderrama, J. J. Fowler, and S. G. Kobourov. Characterization of
unlabeled level planar trees. Manuscript accepted by 14th Symposium on Graph
Drawing, 2006.

9. S. Felsner, G. Liotta, and S. Wismath. Straight-line drawings on restricted integer
grids in two and three dimensions. Journal of Graph Algorithms and Applications,
7(4):363–398, 2003.

10. M. Geyer, M. Kaufmann, and I. Vrto. Two trees which are self-intersecting when
drawn simultaneously. In 13th Symposium on Graph Drawing, pages 201–210, 2005.
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Embedding Graphs Simultaneously with Fixed Edges�
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Abstract. We show that a planar graph and a tree can always be simultaneously
embedded with fixed edges and that two outerplanar graphs generally cannot.

1 Introduction

A simultaneous embedding of two planar graphs G1 and G2 is a pair of drawings of G1
and G2 such that each drawing is planar and each vertex common to G1 and G2 is repre-
sented by the same point in both drawings. Unfortunately, if one wishes to visualize the
edges of G1 and G2 as rectilinear segments (the so called geometric simultaneous em-
bedding), not all pairs of graphs can be embedded simultaneously. Erten and Kobourov
([4]), Brass et al. ([1]), and Geyer et al. ([7]) have shown that it is not always possible
to embed simultaneously with straight-line edges a planar graph and a path, three paths,
and two trees, respectively. On the other hand, if one permits that each edge of a graph
is displayed as a different Jordan curve (the so called simultaneous embedding), then
by the results of Pach and Wenger ([9]) any number of planar graphs can be embedded
simultaneously. Restricting the last constraints, one could permit that each edge is rep-
resented by a Jordan curve, but could force edges common to more graphs to have the
same representation in the drawing of each graph (the so called simultaneous embed-
ding with fixed edges). Di Giacomo and Liotta ([3]) showed that an outerplanar graph
and a cycle can always be simultaneously embedded with fixed edges, improving the
results in [4], where it is shown how to embed simultaneously with fixed (“consistent”)
edges a tree and a path. In [4] and [3] the problem of finding simultaneous embeddings
with fixed edges of pairs of trees and of pairs of planar graphs is explicitly mentioned.

In this paper we improve the results on simultaneous embedding with fixed edges
of graphs, by showing that there exist two outerplanar graphs that cannot be simulta-
neously embedded with fixed edges (Section 3) and that a planar graph and a tree can
always be simultaneously embedded with fixed edges (Section 4). Then in Section 5 we
give conclusions and suggest some open problems.

2 Preliminaries

We assume familiarity with graphs and their drawings (see e.g. [2]).
A drawing of a graph is a mapping of each vertex to a distinct point in the plane and

of each edge to a Jordan curve between the endpoints of the edge. A planar drawing is
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such that no two edges intersect. A planar graph is a graph that admits a planar drawing.
An embedding of a graph G is a circular ordering of the edges incident on each vertex of
G. An embedding of a graph specifies what are its faces in any drawing respecting such
embedding and so it specifies the dual graph of G that is the graph with one vertex for
each face of G and with one edge between two vertices if the corresponding faces share
an edge in G. A poly-line drawing is such that the edges are sequences of rectilinear
segments. A straight-line drawing is such that all edges are rectilinear segments. It has
been shown in [5] that every planar graph admits a planar straight-line drawing.

A simultaneous embedding with fixed edges of two graphs G1 = (V1, E1) and
G2 = (V2, E2) with a bijective mapping γ : V1 → V2 between their vertices is a
pair of drawings Γ1 and Γ2 of G1 and of G2, respectively, such that: (i) each of Γ1 and
Γ2 is a planar drawing, (ii) each vertex v2 = γ(v1), with v1 ∈ V1 and v2 ∈ V2, is
mapped in Γ2 to the same point where v1 is mapped in Γ1, and (iii) an edge belonging
to both E1 and E2 is represented by the same simple Jordan curve in Γ1 and Γ2. In this
paper we only deal with simultaneous embedding with fixed edges, so in the following,
unless otherwise specified, simultaneous embedding will always stand for simultaneous
embedding with fixed edges.

3 Simultaneous Embeddings of Outerplanar Graphs

In this section we show that there exist two outerplanar graphs that cannot be simulta-
neously embedded. This result was already obtained in [1] for geometric simultaneous
embedding. Although we believe that the pair of outerplanar graphs presented in [1] can
not be simultaneously embedded even in the fixed edges setting, this was never pointed
up and also the proof in [1] exploits the fact that the edges are drawn as segments.

Theorem 1. There exist two outerplanar graphs that can not be simultaneously em-
bedded with fixed edges.

To prove Theorem 1 we first show the topologies of two outerplanar graphs G1 and G2
and a bijective mapping γ between their vertices. We use the same name vi for a vertex
u of G1 and a vertex v of G2 to mean that v = γ(u).

Let G1 = (V1, E1) and G2 = (V2, E2) be two outerplanar graphs with six vertices
each and with E1 = {(v1, v2), (v1, v3), (v2, v3), (v1, v4), (v2, v4), (v2, v5), (v4, v5),
(v2, v6), (v3, v6)}, and E2 = {(v1, v2), (v1, v3), (v2, v3), (v1, v6), (v2, v6), (v2, v5),
(v6, v5), (v2, v4), (v3, v4)} (see Fig. 1). To show that G1 and G2 admit no simultaneous

v1

v4

v5

v2 v6

v3 v1

v5

v6 v4v2

v3

(a) (b)

Fig. 1. Outerplanar graphs (a) G1 and (b) G2



110 F. Frati

embedding with mapping γ between their vertices, we try to construct embeddings E1
of G1 and E2 of G2, proving that at least one between E1 and E2 must be non planar.

First we embed vertices v1, v2, and v3. These vertices form a cycle C1, that is com-
mon to E1 and E2, and that divides the plane in two parts, one inside and one out-
side C1. Then, after having drawn v4 and its incident edges, the plane is subdivided
in four regions F1, F2, F3, and F4, delimited by cycles between vertices (v1, v2, v3),
(v1, v2, v4), (v1, v3, v4), and (v2, v3, v4), respectively, each one with the fourth vertex
outside. This is because drawing v4 inside or outside C1 and changing the clockwise
order of the edges incident in v4 only permit to choose the external face of the simulta-
neous embedding, as shown in Fig. 2 (a) – (d). Since only the edges (v1, v4) and (v3, v4)
can intersect, regions F2, F3 and F4 can overlap, while region F1 can not intersect any
other region, as shown in Fig. 2 (e).

F1

F1

F1

F2

F3

F4

v3

v4

v1

v2

F1

F3

F4

F2

F2

v1
v3

v4

v2

v1

F1

F3

F3F3

F4

F2

v3

v2

v4

(a) (b) (c)

F1
F3

F4

F4

F2

v1

v4

v3

v2

F1

F3

F3

F3

F4

F2

v4

v2

v1 v3

(d) (e)

Fig. 2. Embedding vertices v1, v2, v3, and v4 with different external faces. (a) F1. (b) F2. (c) F3.
(d) F4. (e) Intersection between faces of E1 and E2.

Now we embed v6 and its incident edges. It is easy to observe that v6 must be placed
inside region F1. In fact if v6 is placed inside F2, then (v3, v6) intersects the cycle
(v1, v2, v4) in E1; if v6 is placed inside F4, then (v1, v6) intersects the cycle (v2, v3, v4)
in E2; if v6 is placed inside F3, then (v2, v6) either intersects an edge between (v1, v3)
and (v1, v4) in E1 or intersects an edge between (v1, v3) and (v3, v4) in E2. We have
shown that v4 and v6 must be placed one inside and the other outside C1. Note that v4
is adjacent to v5 in G1 and v6 is adjacent to v5 in G2. Hence, embedding v5 anywhere
in the plane creates an edge e from inside to outside C1. Since e intersects C1, that is
common to G1 and G2, there is not a placement for v5 preserving the planarity of both
E1 and E2 and this concludes the proof.
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4 Simultaneous Embedding of a Planar Graph and a Tree

In this section we prove the following theorem:

Theorem 2. A planar graph and a tree can be simultaneously embedded with fixed
edges with any established mapping between their vertices.

To prove Theorem 2 we show how to construct a simultaneous drawing of a planar
graph G and of a tree T with any mapping γ between their vertices.

Augment G to a triangular graph G′, by adding edges that will be removed later
and then, by using one of the well-known methods to draw with straight-line edges a
triangular graph ([5,6,10]), construct a straight-line drawing of G′ with dual graph D.
Note that the edges of T that are common to edges of G′ have been already drawn. Let
ET denote the set of edges of T that have still to be drawn. From now on, we call Γ the
current simultaneous drawing of G′ and T . Let also SN denote the set of already drawn
segments representing straight-line edges of T or representing parts of poly-line edges
of T . Now, until all the edges in ET have been drawn, choose one of them, say (u, v),
and draw it by using the following procedure that we call Add Edge.

1. Select a simple path p = (f1, f2, . . . , fk) in D with the following properties: (i) f1
is dual to a face of G′ that contains u, (ii) fk is dual to a face of G′ that contains v,
and (iii) each edge (fi, fi+1), 1 ≤ i < k, is not dual to an edge of G′ represented
by a segment in SN . Then, for every face Fi of G′ that is dual to a vertex fi of p,
1 ≤ i ≤ k, choose a point pi in the interior of the region representing Fi in Γ . For
every edge (w1, w2) of G′ dual to an edge (fi, fi+1) of p, 1 ≤ i < k, choose a
point ei in the interior of the segment representing (w1, w2) in Γ (see Fig. 3 (a)).

u f1

p1

pi

pi+1 pk

e1
ei

ei+1

ek-1

fi

w1

w2

fi+1
fk v

u p1

u1 uk
pk

ei

vi

vk-1

v1

vi-1

pi

ui

wi,2

w1,1 - wi,1 

w1,2

wi,3
wk,1

wk,2

v

(a) (b)

Fig. 3. (a) A path p in the dual graph D of G′, as in Step 1 of Add Edge. The vertices of G′ (of
D) are the black ones (the white ones). The pi’s are choosen coincident with the vertices of D.
The double circles show the ei’s. (b) G′ augmented and drawn as in Steps 2 and 3 of Add Edge.
Both the thin and the thick edges belong to G′. The thick segments show the polygonal line epol,
representing the edge (u, v) of T in Γ .

2. Augment G′ by adding to it a vertex ui for each vertex fi of p, 1 ≤ i ≤ k, and a
vertex vi for each edge (fi, fi+1) of p, 1 ≤ i < k. Add also to G′ the following
edges: for each face Fi dual to fi ∈ p, 1 < i < k, let (wi,1, wi,2) and (wi,2, wi,3) be
the edges of Fi dual to (fi−1, fi) and (fi, fi+1), respectively. Add to G′ the edges
(wi,1, ui), (wi,2, ui), (wi,3, ui), (vi−1, ui), and (vi, ui). Split (wi,1, wi,2) in two
edges (wi,1, vi−1) and (wi,2, vi−1) and split (wi,2, wi,3) in two edges (wi,2, vi) and
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(wi,3, vi). For the face F1 dual to f1 ∈ p let a and b be the vertices of F1 distinct
from u, and let (w1,1, w1,2) be the edge of F1 dual to (f1, f2). Add to G′ edges
(u, u1), (a, u1), (b, u1), and (v1, u1). Split (w1,1, w1,2) in two edges (w1,1, v1)
and (w1,2, v1). For the face Fk dual to fk ∈ p let c and d be the vertices of Fk

distinct from v and let (wk,1, wk,2) be the edge of Fk dual to (fk−1, fk). Add to
G′ edges (v, uk), (c, uk), (d, uk), and (vk−1, uk). Split (wk,1, wk,2) in two edges
(wk,1, vk−1) and (wk,2, vk−1).

3. As shown in Fig. 3 (b), map each ui to pi, 1 ≤ i ≤ k and each vi to ei, 1 ≤ i < k.
Draw the edges added to G′ as straight lines. Draw the edge (u, v) of T in Γ as
a polygonal line epol passing through points u, p1, e1, . . . , pi, ei, . . . , pk−1, ek−1,
pk, v.

4. Remove (u, v) from ET and add to SN every segment of epol.

When ET = ∅, the final drawing of G is obtained by deleting from the current G′

all the edges not belonging to G. Note that it is possible that some edges of G are now
represented by a polygonal line obtained by repeatedly splitting the starting straight-line
edge. The final drawing of T is formed by all the segments in SN .

We now show that the above described algorithm constructs a simultaneous embed-
ding of G and T . To check this, we show that: (i) the construction of the simultaneous
drawing of G and T starts from a partial simultaneous planar drawing, (ii) the planarity
of the drawing of G is preserved after each application of Add Edge, (iii) the planarity
of the drawing of T is preserved after each application of Add Edge, (iv) one can always
apply Add Edge until all the edges in ET have been drawn, and (v) each edge common
to G and T has the same representation in both the drawings of G and of T .

(i) The planarity of the starting simultaneous drawing Γ is a consequence of the
planarity of the straight-line drawings obtained by applications of the algorithms in
[5,6,10].

(ii) Each time one applies Add Edge to draw an edge of ET , G′ is augmented by
adding new vertices and new edges to it. This is done in such a way that both the
triangulation of G′ and the planarity of its current drawing are preserved, as can be
easily checked (see Figure 3).

(iii) After each execution of Add Edge the subgraph of T that has been already drawn
is a subgraph of G′. By construction, the last assertion is true after triangulating G and
after straight-line drawing G′ and it remains true also after each application of Add
Edge. To prove this, observe that at step 2 of Add Edge one augments G′ by adding
some new vertices and edges to it, then at step 3 one draws these new vertices and
edges. Then an edge of T is drawn as a polygonal line whose bends coincide with the
new vertices of G′ and whose edges coincide with some of the new edges of G′. So the
planarity of the drawing of T is a consequence of the planarity of the drawing of G′.

(iv) Suppose that when we are starting a new execution of Add Edge the dual graph
D of G′ is not connected after the removal of the edges that are dual to edges of T
represented by segments in SN . This is equivalent of saying that the removed edges
form a cutset for D. From [8] we know that:

Lemma 1. Let G be a planar graph and D be a geometric dual of G, then a set of
edges in G forms a cycle (or cutset) in G if and only if the corresponding set of edges
of D forms a cutset (res. cycle) in D.
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So the set of edges of T already drawn forms a cycle and this gives us a contradiction,
since T is a tree. So D is connected even after removing from it the edges that are
dual to edges of T already drawn and this permits us to select a path p in D with the
properties described at step 1 of Add Edge and to apply Add Edge.

(v) After triangulating G and after drawing the resulting triangular graph G′, the
edges that are common to both graphs are drawn as straight-line segments between the
same end-points and while applying Add Edge they are splitted in the same way. So the
edges that are common to G and T have the same drawing in Γ .

5 Conclusions

In this paper we have shown that two outerplanar graphs can not always be simulta-
neously embedded with fixed edges, while a planar graph and a tree can. Observe that
after the last execution of Add Edge (see Section 4) the dual graph D of the augmented
triangular graph G′ is still connected even after the removal from D of the edges dual
to edges of the tree. Hence an other execution of Add Edge is still possible and so the
algorithm proposed in Section 4 works more generally when the first graph is planar
and the second is a tree augmented by an edge. This straightforwardly implies that the
algorithm works also for a planar graph and a cycle. A drawback of the algorithm in
Section 4 is that of using a large number of bends, and so it remains an open problem
to find an algorithm for drawing a planar graph and a tree with fixed edges with only
a small number of bends and within a small area. As far as we know, it is also still
open the geometric simultaneous embedding of a tree and a path and the simultaneous
embedding without mapping ([1]) of two planar graphs.
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Abstract. We show that every graph G with maximum degree three has
a straight-line drawing in the plane using edges of at most five different
slopes. Moreover, if G is connected and has at least one vertex of degree
less than three, then four directions suffice.

1 Introduction

A planar layout of a graph G is called a straight-line drawing if the vertices of
G are represented by distinct points in the plane and every edge is represented
by a straight-line segment connecting the corresponding pair of points and not
passing through any other point representing a vertex. If it leads to no confusion,
in notation and terminology we make no distinction between a vertex and the
corresponding point and between an edge and the corresponding segment. The
slope of an edge of the layout is the slope of the segment representing it. Layouts
with few slopes and few bends have been extensively studied in “graph drawing”
[2]. In particular, Ungar proved that every three-connected cubic planar graph
(i.e., every vertex has degree three) can be drawn using only vertical and hori-
zontal straight-line edges and altogether at most three bends on the outer-face
[8].

Wade and Chu [9] introduced the following graph parameter: The slope num-
ber of a graph G is the smallest number s with the property that G has a
straight-line drawing with edges of at most s distinct slopes and with no bends.
Obviously, if G has a vertex of degree d, then its slope number is at least �d/2�,
because, according to the above definitions, in a proper drawing two edges are
not allowed to partially overlap. The question arises whether the slope num-
ber can be bounded from above by any function of the maximum degree d (see
[3]). Barát, Matoušek, and Wood [1] and, independently, Pach and Pálvölgyi [7]
proved that the answer is no for d ≥ 5. Trivially, every graph of maximum degree
two has slope number at most three. What happens if d = 3 or 4?

The aim of this note is to establish the following theorem.

Theorem 1. Every graph of maximum degree at most three has slope number at
most five.

Our terminology is somewhat unorthodox: by the slope of a line �, we mean the
angle α modulo π such that a counterclockwise rotation through α takes the

M. Kaufmann and D. Wagner (Eds.): GD 2006, LNCS 4372, pp. 114–125, 2007.
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x-axis to a position parallel to �. The slope of an edge (segment) is the slope of
the line containing it. In particular, the slopes of the lines y = x and y = −x
are π/4 and −π/4, and they are called Northeast (or Southwest) and Northwest
(or Southeast) lines, respectively.

For any two points p1 = (x1, y1), p2 = (x2, y2) ∈ R2, we say that p2 is to the
North (or to the South of p1 if x2 = x1 and y2 > y1 (or y2 < y1). Analogously,
we say that p2 is to the Northeast (to the Northwest) of p1 if y2 > y1 and p1p2
is a Northeast (Northwest) line. Directions are often abbreviated by their first
letters: N, NE, E, SE, etc. These four directions are referred to as basic. That
is, a line � is said to be of one of the four basic directions if � is parallel to one
of the axes or to one of the NE and NW lines y = x and y = −x.

The main tool of our proof is the following result of independent interest.

Theorem 2. Let G be a connected graph that is not a cycle and whose every
vertex has degree at most three. Suppose that G has at least one vertex of de-
gree less than three, and denote by v1, ..., vm the vertices of degree at most two
(m ≥ 1).

Then, for any sequence x1, x2, . . . , xm of real numbers, linearly independent
over the rationals, G has a straight-line drawing with the following properties:
(1) Vertex vi is mapped into a point with x-coordinate x(vi) = xi (1 ≤ i ≤ m);
(2) The slope of every edge is 0, π/2, π/4, or −π/4.
(3) No vertex is to the North of any vertex of degree two.
(4) No vertex is to the North or to the Northwest of any vertex of degree one.

It was shown by Dujmović at al. [3] that every planar graph with maximum
degree three has a drawing with noncrossing straight-line edges of at most three
different slopes, except that three edges of the outer-face may have a bend.

Eppstein [6], Duncan et al. [4], and Barát et al. [1] studied another parameter,
the geometric thickness of a graph, which is closely related to the slope number.

Max Engelstein [5], a student from Stuyvesant High School, New York has
shown that every graph of maximum degree three that has a Hamiltonian cycle
can be drawn with edges of at most five different slopes.

2 Embedding Cycles

Let C be a straight-line drawing of a cycle in the plane. A vertex v of C is said
to be a turning point if the slopes of the two edges meeting at v are not the
same.

We start with two simple auxiliary statements.

Lemma 2.1. Let C be a straight-line drawing of a cycle such that the slope of
every edge is 0, π/4, or −π/4. Then the x-coordinates of the vertices of C are
not independent over the rational numbers.

Moreover, there is a vanishing linear combination of the x-coordinates of the
vertices, with as many nonzero (rational) coefficients as many turning points
C has.
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Proof. Let v1, v2, . . . , vn denote the vertices of C in cyclic order (vn+1 = v1).
Let x(vi) and y(vi) be the coordinates of vi. For any i (1 ≤ i ≤ n), we have
y(vi+1) − y(vi) = λi (x(vi+1) − x(vi)) , where λi = 0, 1, or −1, depending on the
slope of the edge vivi+1. Adding up these equations for all i, the left-hand sides
add up to zero, while the sum of the right-hand sides is a linear combination of
the numbers x(v1), x(v2), . . . , x(vn) with integer coefficients of absolute value at
most two.

Thus, we are done with the first statement of the lemma, unless all of these
coefficients are zero. Obviously, this could happen if and only if λ1 = λ2 =
. . . = λn, which is impossible, because then all points of C would be collinear,
contradicting our assumption that in a proper straight-line drawing no edge is
allowed to pass through any vertex other than its endpoints.

To prove the second statement, it is sufficient to notice that the coefficient of
x(vi) vanishes if and only if vi is not a turning point. �

Lemma 2.1 shows that Theorem 2 does not hold if G is a cycle. Nevertheless,
according to the next claim, cycles satisfy a very similar condition. Observe, that
the main difference is that here we have an exceptional vertex, denoted by v0.

Lemma 2.2. Let C be a cycle with vertices v0, v1, . . . , vm, in this cyclic order.
Then, for any real numbers x1, x2, . . . , xm, linearly independent over the ra-

tionals, C has a straight-line drawing with the following properties:
(1) Vertex vi is mapped into a point with x-coordinate x(vi) = xi (1 ≤ i ≤ m);
(2) The slope of every edge is 0, π/4, or −π/4.
(3) No vertex is to the North of any other vertex.
(4) No vertex has a larger y-coordinate than y(v0).

Proof. We can assume without loss of generality that x2 > x1. Place v1 at
any point (x1, 0) of the x-axis. Assume that for some i < m, we have already
determined the positions of v1, v2, . . . vi, satisfying conditions (1)–(3). If xi+1 >
xi, then place vi+1 at the (unique) point Southeast of vi, whose x-coordinate is
xi+1. If xi+1 < xi, then put vi+1 at the point West of xi, whose x-coordinate
is xi+1. Clearly, this placement of vi+1 satisfies (1)–(3), and the segment vivi+1
does not pass through any point vj with j < i.

After m steps, we obtain a noncrossing straight-line drawing of the path
v1v2 . . . vm, satisfying conditions (1)–(3). We still have to find a right location
for v0. Let RW and RSE denote the rays (half-lines) starting at v1 and point-
ing to the West and to the Southeast. Further, let R be the ray starting at vm

and pointing to the Northeast. It follows from the construction that all points
v2, . . . , vm lie in the convex cone below the x-axis, enclosed by the rays RW and
RSE .

Place v0 at the intersection point of R and the x-axis. Obviously, the segment
vmv0 does not pass through any other vertex vj (0 < j < m). Otherwise, we
could find a drawing of the cycle vjvj+1 . . . vm with slopes 0, π/4, and −π/4.
By Lemma 2.1, this would imply that the numbers xj , xj+1, . . . , xm are not
independent over the rationals, contradicting our assumption. It is also clear that
the horizontal segment v0v1 does not pass through any vertex different from its
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endpoints because all other vertices are below the horizontal line determined by
v0v1. Hence, we obtain a proper straight-line drawing of C satisfying conditions
(1),(2), and (4).

It remains to verify (3). The only thing we have to check is that x(v0) does
not coincide with any other x(vi). Suppose it does, that is, x(v0) = x(vi) = xi

for some i > 0. By the second statement of Lemma 2.1, there is a vanishing
linear combination

λ0x(v0) + λ1x1 + λ2x2 + . . . + λmxm = 0

with rational coefficients λi, where the number of nonzero coefficients is at least
the number of turning points, which cannot be smaller than three. Therefore, if in
this linear combination we replace x(v0) by xi, we still obtain a nontrivial rational
combination of the numbers x1, x2, . . . , xm. This contradicts our assumption that
these numbers are independent over the rationals. �

3 The Embedding Procedure: Proof of Theorem 2

First we settle Theorem 2 in a special case.

Lemma 3.1 Let m, k ≥ 2 and let G be a graph consisting of two disjoint cycles,
C = {v0, v1, . . . , vm} and C′ = {v′0, v

′
1, . . . , v

′
m}, connected by a single edge v0v

′
0.

Then, for any sequence x1, x2, . . . , xm, x′1, x
′
2, . . . , x

′
k of real numbers, linearly

independent over the rationals, G has a straight-line drawing satisfying the fol-
lowing conditions:
(1) The vertices vi and v′j are mapped into points with x-coordinates x(vi) =
xi (1 ≤ i ≤ m) and x(vj) = x′j (1 ≤ j ≤ k).
(2) The slope of every edge is 0, π/2, π/4, or −π/4.
(3) No vertex is to the North of any vertex of degree two.

Proof of Lemma 3.1. Apply Lemma 2.2 to cycle C with vertices v0, v1, . . . , vm,
with assigned x-coordinates x1, x2, . . . , xm, and analogously, to the cycle C′, with
vertices v′0, v′1, . . . , v′k and assigned x-coordinates x′1, x′2, . . . , x′k. For simplicity,
the resulting drawings are also denoted by C and C′.

Let x0 and x′0 denote the x-coordinates of v0 ∈ C and v′0 ∈ C′. It follows from
Lemma 2.1 that x0 is a linear combination of x1, x2, . . . , xm, and x′0 is a linear
combination of x′1, x

′
2, . . . , x

′
k) with rational coefficients. Therefore, if x0 = x′0,

then there is a nontrivial linear combination of x1, x2, . . . , xm, x′1, x′2, . . . , x′k that
gives 0, contradicting the assumption that these numbers are independent over
the rationals. Thus, we can conclude that x0 �= x′0. Assume without loss of
generality that x0 < x′0. Reflect C′ about the x-axis, and shift it in the vertical
direction so that v′0 ends up to the Northeast from v0. Clearly, we can add the
missing edge v0v

′
0. Let D denote the resulting drawing of G. We claim that

D meets all the requirements of the Theorem. Conditions (1), (2), and (3) are
obviously satisfied, we only have to check that no vertex lies in the interior of
an edge. It follows from Lemma 2.2 that the y-coordinates of v1, . . . , vm are
all smaller than or equal to the y-coordinate of v0 and the y-coordinates of
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v′1, . . . , v
′
k are all greater than or equal to the y-coordinate of v′0. We also have

y(v0) < y(v′0). Therefore, there is no vertex in the interior of v0v
′
0. Moreover, no

edge of C (resp. C′) can contain any vertex of v′0, v′1, . . . , v′k (resp. v0, v1, . . . , vm)
in its interior. �

The rest of the proof is by induction on the number of vertices of G. The state-
ment is trivial if the number of vertices is at most two. Suppose that we have
already established Theorem 2 for all graphs with fewer than n vertices.

Suppose that G has n vertices, it is not a cycle and not the union of two cycles
connected by one edge. Let v1, v2, . . . , vm be the vertices of G with degree less
than three, and let the x-coordinates assigned to them be x1, x2, . . . , xm.

We distinguish several cases.

Case 1: G has a vertex of degree one.

Assume, without loss of generality, that v1 is such a vertex. If G has no vertex
of degree three, then it consists of a simple path P = v1v2 . . . vm, say. Place vm

at the point (xm, 0). In general, assuming that vi+1 has already been embedded
for some i < m, and xi < xi+1, place vi at the point West of vi+1, whose x-
coordinate is xi. If xi > xi+1, then put vi at the point Northeast of vi+1, whose
x-coordinate is xi. The resulting drawing of G = P meets all the requirements of
the theorem. To see this, it is sufficient to notice that if vj would be Northwest
of vm for some j < m, then we could apply Lemma 2.1 to the cycle vjvj+1 . . . vm,
and conclude that the numbers xj , xj+1, . . . , xm are dependent over the rationals.
This contradicts our assumption.

Assume next that v1 is of degree one, and that G has at least one vertex of
degree three. Suppose without loss of generality that v1v2 . . . vkw is a path in
G, whose internal vertices are of degree two, but the degree of w is three. Let
G′ denote the graph obtained from G by removing the vertices v1, v2, . . . , vk.
Obviously, G′ is a connected graph, in which the degree of w is two.

If G′ is a cycle, then apply Lemma 2.2 to C = G′ with w playing the role of
the vertex v0 which has no preassigned x-coordinate. We obtain an embedding
of G′ with edges of slopes 0, π/4, and −π/4 such that x(vi) = xi for all i > k
and there is no vertex to the North, to the Northeast, or to the Northwest of
w. By Lemma 2.1, the numbers x(w), xk+1 , . . . , xm are not independent over
the rationals. Therefore, x(w) �= xk, so we can place vk at the point to the
Northwest or to the Northeast of w, whose x-coordinate is xk, depending on
whether x(w) > xk or x(w) < xk. After this, embed vk−1, . . . , v1, in this order,
so that vi is either to the Northeast or to the West of vi+1 and x(vi) = xi.
According to property (4) in Lemma 2.1, the path v1v2 . . . vk lies entirely above
G′, so that no point of G can lie to the North or to the Northwest of v1.

If G′ is not a cycle, then use the induction hypothesis to find an embedding
of G′ that satisfies all conditions of Theorem 2, with x(w) = xk and x(vi) = xi

for every i > k. Now place vk very far from w, to the North of it, and draw
vk−1, . . . , v1, in this order, in precisely the same way as in the previous case. Now
if vk is far enough, then none of the points vk, vk−1, . . . , v1 is to the Northwest
or to the Northeast of any vertex of G′. It remains to check that condition (4)
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is true for v1, but this follows from the fact that there is no point of G whose
y-coordinate is larger than that of v1.

From now on, we can and will assume that G has no vertex of degree one.
A graph with four vertices and five edges between them is said to be a Θ-graph.

Case 2: G contains a Θ-subgraph.
Suppose that G has a Θ-subgraph with vertices a, b, c, d, and edges ab, bc, ac, ad,
bd. If neither c nor d has a third neighbor, then G is identical to this graph, which
can easily be drawn in the plane with all conditions of the theorem satisfied.

If c and d are connected by an edge, then all four points of the Θ-subgraph
have degree three, so that G has no other vertices. So G is a complete graph of
four vertices, and it has a drawing that meets the requirements.

Suppose that c and d have a common neighbor e �= a, b. If e has no further
neighbor, then a, b, c, d, e are the only vertices of G, and again we can easily
find a proper drawing. Thus, we can assume that e has a third neighbor f . By
the induction hypothesis, G′ = G \ {a, b, c, d, e} has a drawing satisfying the
conditions of Theorem 2. In particular, no vertex of G′ is to the North of f (and
to the Northwest of f , provided that the degree of f in G′ is one). Further,
consider a drawing H of the subgraph of G induced by the vertices a, b, c, d, e,
which satisfies the requirements. We distinguish two subcases.

If the degree of f in G′ is one, then take a very small homothetic copy of H
(i.e., similar copy in parallel position), and rotate it about e in the clockwise
direction through 3π/4. There is no point of this drawing, denoted by H ′, to
the Southeast of e, so that we can translate it into a position in which e is to
the Northwest of f ∈ V (G′) and very close to it. Connecting now e to f , we
obtain a drawing of G satisfying the conditions. Note that it was important to
make H ′ very small and to place it very close to f , to make sure that none of
its vertices is to the North of any vertex of G′ whose degree is at most two, or
to the Northwest of any vertex of degree one (other than f).

If the degree of f in G′ is two, then we follow the same procedure, except
that now H ′ is a small copy of H , rotated by π. We translate H ′ into a position
in which e is to the North of f , and connect e to f by a vertical segment. It is
again clear that the resulting drawing of G meets the requirements in Theorem
2. Thus, we are done if c and d have a common neighbor e.

Suppose now that only one of c and d has a third neighbor, different from
a and b. Suppose, without loss of generality, that this vertex is c, so that the
degree of d is two. Then in G′ = G \ {a, b, d}, the degree of c is one. Apply the
induction hypothesis to G′ so that the x-coordinate originally assigned to d is
now assigned to c (which had no preassigned x-coordinate in G). In the resulting
drawing, we can easily reinsert the remaining vertices, a, b, d, by adding a very
small square whose lowest vertex is at c and whose diagonals are parallel to the
coordinate axes. The highest vertex of this square will represent d, and the other
two vertices will represent a and b.

We are left with the case when both c and d have a third neighbor, other than
a and b, but these neighbors are different. Denote them by c′ and d′, respectively.
Create a new graph G′ from G, by removing a, b, c, d and adding a new vertex
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v, which is connected to c′ and d′. Draw G′ using the induction hypothesis, and
reinsert a, b, c, d in a small neighborhood of v so that they form the vertex set
of a very small square with diagonal ab. (See Figure 1.) As before, we have to
choose this square sufficiently small to make sure that a, b, c, d are not to the
North of any vertex w �= c′, d′, v of G′, whose degree is at most two, or to the
Northwest of any vertex of degree one. Thus, we are done if G has a Θ-subgraph.

So, from now on we assume that G has no Θ-subgraph.

Fig. 1. Replacing v by Θ

Case 3: G has no cycle that passes through a vertex of degree two.

Since G is not three-regular, it contains at least one vertex of degree two. Con-
sider a decomposition of G into two-connected blocks and edges. If a block
contains a vertex of degree two, then it consists of a single edge. The block de-
composition has a treelike structure, so that there is a vertex w of degree two,
such that G can be obtained as the union of two graphs, G1 and G2, having only
the vertex w in common, and there is no vertex of degree two in G1.

By the induction hypothesis, for any assignment of rationally independent
x-coordinates to all vertices of degree less than three, G1 and G2 have proper
straight-line embeddings (drawings) satisfying conditions (1)–(4) of the theorem.
The only vertex of G1 with a preassigned x-coordinate is w. Applying a vertical
translation, if necessary, we can achieve that in both drawings w is mapped into
the same point. Using the induction hypothesis, we obtain that in the union
of these two drawings, there is no vertex in G1 or G2 to the North or to the
Northwest of w, because the degree of w in G1 and G2 is one (property (4)).
This is stronger than what we need: indeed, in G the degree of w is two, so that
we require only that there is no point of G to the North of w (property (3)).

The superposition of the drawings of G1 and G2 satisfies all conditions of the
theorem. Only two problems may occur:

1. A vertex of G1 may end up at a point to the North of a vertex of G2 with
degree two.

2. The (unique) edges in G1 and G2, incident to w, may partially overlap.

Notice that both of these events can be avoided by enlarging the drawing of G1,
if necessary, from the point w, and rotating it about w by π/4 in the clockwise
direction. The latter operation is needed only if problem 2 occurs. This completes
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the induction step in the case when G has no cycle passing through a vertex of
degree two.

It remains to analyze the last case.

Case 4: G has a cycle passing through a vertex of degree two.

By assumption, G itself is not a cycle. Therefore, we can also find a shortest cycle
C whose vertices are denoted by v, u1, . . . , uk, in this order, where the degree of
v is two and the degree of u1 is three. The length of C is k + 1.

It follows from the minimality of C that ui and uj are not connected by an
edge of G, for any |i − j| > 1. Moreover, if |i − j| > 2, then ui and uj do not
even have a common neighbor (1 ≤ i �= j ≤ k). This implies that any vertex
v ∈ V (G \ C) has at most three neighbors on C, and these neighbors must be
consecutive on C. However, three consecutive vertices of C, together with their
common neighbor, would form a Θ-subgraph in G (see Case 2). Hence, we can
assume that every vertex belonging to G \C is joined to at most two vertices on
C.

Let Bi denote the set of all vertices of G\C that have precisely i neighbors on
C (i = 0, 1, 2). Thus, we have V (G \ C) = B0 ∪B1 ∪B2. Further, B1 = B2

1 ∪B3
1 ,

where an element of B1 belongs to B2
1 or B3

1 , according to whether its degree in
G is two or three.

Consider the list v1, v2, . . . , vm of all vertices of G with degree two. (Recall
that we have already settled the case when G has a vertex of degree one.) Assume
without loss of generality that v1 = v and that vi belongs to C if and only if
1 ≤ i ≤ j for some j ≤ m.

Let x denote the assignment of x-coordinates to the vertices of G with de-
gree two, that is, x = (x(v1), x(v2), . . . ,x(vm))= (x1, x2, . . . , xm). Given G,
C, x, and a real parameter L, we define the following so-called Embedding

Procedure(G, C,x, L) to construct a drawing of G that meets all requirements
of the theorem, and satisfies the additional condition that the y-coordinate of
every vertex of C is at least L higher than the y-coordinates of all other vertices
of G.

Step 1: If G′ := G \ C is not a cycle, then construct recursively a drawing of
G′ := G \ C satisfying the conditions of Theorem 2 with the assignment x′ of
x-coordinates x(vi) = xi for j < i ≤ m, and x(u′1) = x1, where u′1 is the unique
vertex in G \ C, connected by an edge to u1 ∈ V (C).

If G′ = G \ C is a cycle, then, by assumption, there are at least two edges
between C and G′. One of them connects u1 to u′1. Let uαu′α be another such
edge, where uα ∈ C and u′α ∈ G′. Since the maximum degree is three, u′1 �= u′α.
Now construct recursively a drawing of G′ := G \ C satisfying the conditions of
Lemma 2.2, with the assignment x′ of x-coordinates x(vi) = xi for j < i ≤ m,
x(u′1) = x1, and with exceptional vertex u′α.

Step 2: For each element of B2
1 ∪ B2, take two rays starting at this vertex,

pointing to the Northwest and to the North. Further, take a vertical ray point-
ing to the North from each element of B3

1 and each element of the set Bx :=
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{(x2, 0), (x3, 0), . . . , (xj , 0)}. Let R denote the set of all of these rays. Choose
the x-axis above all points of G′ and all intersection points between the rays in
R.

For any uh (1 ≤ h ≤ k) whose degree in G is three, define N(uh) as the
unique neighbor of uh in G\C. If uh has degree two in G, then uh = vi for some
1 ≤ i ≤ j, and let N(uh) be the point (xi, 0).

Step 3: Recursively place u1, u2, . . . uk on the rays belonging to R, as follows.
Place u1 on the vertical ray starting at N(u1) = u′1 such that y(u1) = L. Suppose
that for some i < k we have already placed u1, u2, . . . ui, so that L ≤ y(u1) ≤
y(u2) ≤ . . . ≤ y(ui) and there is no vertex to the West of ui. Next we determine
the place of ui+1.

If N(ui+1) ∈ B2
1 , then let r ∈ R be the ray starting at N(ui+1) and pointing

to the Northwest. If N(ui+1) ∈ B3
1 ∪Bx, let r ∈ R be the ray starting at N(ui+1)

and pointing to the North. In both cases, place ui+1 on r: if ui lies on the left-
hand side of r, then put ui+1 to the Northeast of ui; otherwise, put ui+1 to the
West of ui.

If N(ui+1) ∈ B2, then let r ∈ R be the ray starting at N(ui+1) and pointing
to the North, or, if we have already placed a point on this ray, let r be the other
ray from N(ui+1), pointing to the Northwest, and proceed as before.

G’

R
u

u

u12u

3

4

Fig. 2. Recursively place u1, u2, . . . uk on the rays belonging to R

Step 4: Suppose we have already placed uk. It remains to find the right position
for u0 := v, which has only two neighbors, u1 and uk. Let r be the ray at u1,
pointing to the North. If uk lies on the left-hand side of r, then put u0 on r to
the Northeast of uk; otherwise, put u0 on r, to the West of uk.

During the whole procedure, we have never placed a vertex on any edge, and
all other conditions of Theorem 2 are satisfied �.

Remark that the y-coordinates of the vertices u0 = v, u1, . . . , uk are at least L
higher than the y-coordinates of all vertices in G \ C. If we fix G, C, and x,
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u

u1

k

u1

uk

u0

u0

Fig. 3. Find the right position for u0

and let L tend to infinity, the coordinates of the vertices given by the above
Embedding Procedure(G, C,x, L) change continuously.

4 Proof of Theorem 1

We are going to show that any graph G with maximum degree three permits a
straight-line drawing using only the four basic directions (of slopes 0, π/2, π/4,
and −π/4), and perhaps one further direction, which is almost vertical and is
used for at most one edge in each connected component of G.

Denote the connected components of G by G1, G2, . . . , Gt. If a component
Gs is not three-regular, or if it is a complete graph with four vertices, then,
by Theorem 2, it can be drawn using only the four basic directions. If Gs has a
Θ-subgraph, one can argue in the same way as in Case 2 of the proof of Theorem
2: Embed recursively the rest of the graph, and attach to it a small copy of this
subgraph such that all edges of the Θ-subgraph, as well as the edges used for
the attachment, are parallel to one of the four basic directions. Actually, in this
case, Gs itself can be drawn using the four basic directions, so the fifth direction
is not needed.

Thus, in the rest of the proof we can assume that Gs is three-regular, it
has more than four vertices, and it contains no Θ-subgraph. For simplicity, we
drop the subscript and we write G instead of Gs. Choose a shortest cycle C =
u0u1 . . . uk in G. Each vertex of C has precisely one neighbor in G \ C. On the
other hand, as in the proof of the last case of Theorem 2, all vertices in G \ C
have at most two neighbors in C.

We distinguish two cases.
Case 1. G \ C is a cycle. Since G is three-regular, C and G \ C are of the same
size and the remaining edges of G form a matching between the vertices of C
and the vertices of G \ C. For any i, 0 ≤ i ≤ k, let u′i denote the vertex of G \ C
which is connected to ui. Denote the vertices of G \ C by v0, v1, . . . , vk, in cyclic
order, so that v1 = u′1. Then we have vi = u′0, for some i > 1. Apply Lemma
2.2 to G \ C with a rationally independent assignment x of x-coordinates to
the vertices v1, . . . , vk, such that x(v1) = 1, x(vi) =

√
2, and the x-coordinates

of the other vertices are all greater than
√

2. (Recall that v0 is an exceptional
vertex with no assigned x-coordinate.) It is not hard to see that if we follow the
construction described in the proof of Lemma 2.2, we also have x(v0) >

√
2.
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Case 2. G \ C is not a cycle. Let u′0 denote the neighbor of u0 in G \ C. Since
G has no Θ-subgraph, u′0 cannot be joined to both u1 and uk. Assume without
loss of generality that u′0 is not connected to u1. Let u′1 denote the neighbor of
u1 in G \ C.

Fix a rationally independent assignment x of x-coordinates to the vertices
of degree at most two in G \ C, such that x(u′0) =

√
2, x(u′1) = 1, and the

x-coordinates of the other vertices are all greater than
√

2. Consider a drawing
of G \ C, meeting the requirements of Theorem 2.

Now in both cases, let G′ denote the graph obtained from G after the re-
moval of the edge u0u

′
0. Clearly G \ C = G′ \ C, and for any L, Embedding

Procedure(G′, C,x, L) gives a drawing of G′. It follows from the construction,
that x(u0) = x(u1) = x(u′1) = 1, x(u′0) =

√
2. Therefore, for any sufficiently

small ε > 0 there is an L > 0 such that Embedding Procedure(G′, C,x, L)
gives a drawing of G′, in which the slope of the line connecting u0 and u′0 is
π
2 + ε.

We want to add the segment u0u
′
0 to this drawing. Since there is no vertex

with x-coordinate between 1 and
√

2, the segment u0u
′
0 cannot pass through any

vertex of G.
Summarizing: if ε is sufficiently small (that is, if L is sufficiently large), then

each component of the graph has a proper drawing in which all edges are of one
of the four basic directions, with the exception of at most one edge whose slope
is π

2 + ε. If we choose an ε > 0 that works for all components, then the whole
graph can be drawn using only at most five directions. This concludes the proof
of Theorem 1. �

5 Algorithm and Concluding Remarks

Based on the proof, it is not hard to design an algorithm to find a proper drawing,
in quadratic time.

First, if our graph is a circle, we have no problem drawing it in O(n) steps. If
our graph has a vertex of degree one then the procedure of Case 1 of the proof
of Theorem 2 requires at most O(m) time when we reinsert v1, . . . , vm.

We can check if our graph has any Θ-subgraph in O(n) time. If we find one,
we can proceed by induction as in Case 2 of the proof of Theorem 2. We can
reinsert the Θ-subgraph as described in Case 2 in O(1) time.

Now assume that we have a vertex v of degree two. Execute a breadth first
search from any vertex, and take a minimal vertex of degree two, that is, a vertex
v of degree two, all of whose descendants are of degree three. If there is an edge
in the graph connecting a descendant of v with a non-descendant, then there is
a cycle through v; we can find a minimal one with a breadth first search from it
and proceed as in Case 4. Otherwise, v can play the role of w in Case 3, and we
can proceed recursively.

Finally, if the graph is 3-regular, then we draw each component separately,
except the last step, when we have to pick an ε small enough simultaneously for
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all components, this takes O(n) steps. We only have to find the greatest slope
and pick an ε such that π

2 + ε is even steeper.
We believe that this algorithm is far from being optimal. It may perform a

breadth first search for each induction step, which is probably not necessary.
One may be able to replace this step by repeatedly updating the results of the
first search. We cannot even rule out that the problem can be solved in linear
time.
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Abstract. Many practical applications demand additional restrictions
on an admissible planar embedding. In particular, constraints on the
permitted (clockwise) order of the edges around a vertex, like so-called
side constraints, abound. In this paper, we introduce a set of hierarchical
embedding constraints that also comprises side constraints. We present
linear time algorithms for testing if a graph is ec-planar, i.e., admits a
planar embedding satisfying the given embedding constraints, as well as
for computing such an embedding. Moreover, we characterize the set of
all possible ec-planar embeddings and consider the problem of finding
a planar combinatorial embedding of a planar graph such that an ad-
ditional edge can be inserted with the minimum number of crossings;
we show that this problem can still be solved in linear time under the
additional restrictions of embedding constraints.

1 Introduction

Graphs are used in numerous application domains for visualizing information.
Examples include software engineering, data bases, business process modeling,
VLSI-design, and bioinformatics. In many cases, application specific layout rules
have to be observed which impose restrictions on an admissible graph layout.
Consequently, automatic layout systems have to respect these restrictions in
addition to the aesthetic criteria they try to optimize. In database diagrams,
for example, links between attributes should enter the tables only at the left or
right side of the corresponding attributes, the placement of reactants in chemical
reactions or biological pathways should reflect their role within the displayed
reactions, and in UML class diagrams, generalization edges should leave a class
object at the top and enter a base class object at the bottom. Many of these
layout rules impose restrictions on the admissible embeddings for a drawing.
Even more important is the possibility to use drawing restrictions in order to
express the user’s preferences and to guide the layout phase.

In this paper, we consider restrictions on the allowed order of incident edges
around a vertex, e.g., to specify groups of edges that have to appear consecutively
around the vertex or that have a fixed clockwise order. Such constraints occur,
e.g., in form of side constraints, where incident edges are assigned to the four
sides of a rectangular vertex, or port constraints where edges have prescribed
attachment points. In particular, we introduce three types of constraints which
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may be arbitrarily nested: grouping, oriented (prescribed clockwise order), and
mirror constraints (prescribed reversible order). We call a planar embedding
that fulfills the given set of constraints an ec-planar embedding.

Even though constraint handling is an important issue because of its relevance
in practical applications, e.g., in interactive graph drawing (see, e.g., [2, 15, 4,
3]), there is only few previous work concerning constraints on the admissible
embeddings of a graph. Di Battista et al. [6] consider embedding constraints that
appear in database schemas, and Dornheim [8] studies the problem of computing
embeddings satisfying topological constraints, where prescribed edges have to be
embedded inside or outside of a cycle, repsectively. On the other hand, linear
time complexity for planarity testing and embedding has been shown in [14, 5].

Our contribution is a linear time algorithm for testing if a graph with a set of
embedding constraints is ec-planar; see Sect. 5. The main challenge is to incor-
porate oriented constraints, where a given clockwise order needs to be satisfied.
Furthermore, we characterize all possible ec-planar embeddings using BC- and
SPQR-trees, which also yields a linear time algorithm for computing an ec-planar
embedding.

An important optimization goal for laying out graphs is the minimization of
crossings. The problem of minimizing the number of crossings in a drawing is
NP-hard [9] and no practically efficient method exists so far. The planarization
approach for crossing minimization first deletes a number of edges until the
remaining graph is planar and then carefully reinserts these edges so that the
number of crossings is minimized; see [12]. In [13], the problem of optimally
inserting an additional edge between vertices v and w into a planar graph G is
considered and an algorithm to solve the problem in linear time is given. The
algorithm first computes the SPQR-tree T of G and a shortest path Ψ between
nodes in T whose skeletons contain v and w, respectively. The optimal insertion
path is constructed by simply concatenating locally optimal insertion paths of
the tree nodes on Ψ . When embedding constraints have to be considered, locally
optimal solutions need not lead to globally optimal solutions and the greedy
approach cannot be applied anymore. In Sect. 6, we give a linear time algorithm
to solve the optimal edge insertion problem under the presence of embedding
constraints. Given an ec-planar graph G with embedding constraints C and an
additional edge e, our algorithm computes an ec-planar embedding of G with
respect to C, together with a crossing minimal insertion path for e.

All the proofs omitted in this paper can be found in [10].

2 Preliminaries

A combinatorial embedding of a planar graph G is defined as a clockwise ordering
of the incident edges for each vertex with respect to a crossing-free drawing of
G in the plane. A planar embedding is a combinatorial embedding together with
a fixed external face.

A block is a maximal 2-connected subgraph. The relationship between blocks
and cut vertices is given by the block-cutvertex tree, or BC-tree for short. If G
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is 2-connected, its SPQR-tree T represents the decomposition of G into its 3-
connected components comprising serial, parallel, and 3-connected structures;
see [7] for a formal definition. The respective structure is given by a skeleton
graph associated with each tree node, which is either a cycle (S-node), a bundle
of parallel edges (P-node), or a 3-connected simple graph (R-node). We denote
with skeleton(μ) the skeleton graph associated with node μ. In addition, Q-nodes
serve as representatives for the edges of G. For each vertex v of G, the nodes in
T whose skeletons contain v are called the allocation nodes of v.

If G is 2-connected and planar, its SPQR-tree T represents all combinatorial
embeddings of G. In particular, a combinatorial embedding of G uniquely defines
a combinatorial embedding of each skeleton in T , and fixing the combinatorial
embedding of each skeleton uniquely defines a combinatorial embedding of G.

3 Embedding Constraints

Let G = (V, E) be a graph. An embedding constraint specifies the admissible
clockwise order of the incident edges of a vertex in a combinatorial embedding of
G. In this paper, we consider the case where a vertex has at most one embedding
constraint and either all or none of the edges incident to a vertex are subject to
embedding constraints.

An embedding constraint at a vertex v ∈ V is a rooted, ordered tree Tv such
that its leaves are exactly the edges incident to v. The inner nodes of Tv, also
called constraint-nodes or c-nodes for short, are of three types: oc-nodes (oriented
constraint-nodes), mc-nodes (mirror constraint-nodes), and gc-nodes (grouping
constraint-nodes). Since Tv is an ordered tree, it imposes an order on its leaves
and thus on the incident edges of v. We consider this order as a cyclic order
and represent all admissible cyclic, clockwise orders of the incident edges of v
by defining, how the order of the children of c-nodes in Tv can be changed:

gc-node: The order of children may be arbitrarily permuted.
mc-node: The order of children may be reversed.
oc-node: The order of children is fixed.

Fig. 1 gives an example. A c-node with a single child is obviously redundant,
therefore we demand that each c-node has at least two children.

Let C be a set of embedding constraints at distinct vertices of G. A combi-
natorial embedding Γ of G observes the embedding constraints in C, if for each
embedding constraint Tv ∈ C, the cyclic clockwise order of the edges around v
in Γ is admissible with respect to Tv. A planar embedding observing the embed-
ding constraints in C is an ec-planar embedding with respect to C, and (G, C)
is ec-planar, if there exists an ec-planar embedding of G with respect to C.

4 ec-Expansion

A basic building block of the ec-planarity test is a structural transformation
applied to a given graph G with embedding constraints C. For each embed-
ding constraint Tv at vertex v, this transformation expands v according to the
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gc

oc gc gc gc

mc mc

Fig. 1. Embedding constraint Tv (left) and the corresponding expansion (right)

structure of Tv. We call the resulting graph the ec-expansion E(G, C) of G with
respect to C. The details of this transformation are given below.

4.1 Construction of the ec-Expansion

The ec-expansion E(G, C) of G with respect to C is constructed as follows. Let
Tv ∈ C be an embedding constraint and T ′v the subgraph obtained from Tv by
omitting its leaves. Recall that the leaves of Tv are exactly the edges incident to
v. We replace v in G by the tree T ′v and connect the edges incident to v with the
parents of the corresponding leaves. This transformation introduces a vertex in
G for every c-node in Tv. Each vertex u corresponding to an oc- or mc-node is
further replaced by a wheel gadget which is a wheel graph with 2d spokes, were
e1, . . . , ed are the edges incident to u. Then, the respective wheel gadget consists
of a cycle x1, y1, . . . , xd, yd of length 2d and a vertex, called hub, incident to every
vertex on the cycle. The vertex u is replaced by this wheel gadget, such that ei

is connected to xi for 1 ≤ i ≤ d. According to the type of the expanded c-node,
we distinguish between O-hubs (oc-nodes) and M-hubs (mc-nodes). We refer to
the edges introduced during the ec-expansion as expansion edges. Fig. 1 shows a
constraint tree and the corresponding expansion of the vertex. E(G, C) can be
constructed in linear time and its size is also linear in the size of G.

The purpose of the wheel gadgets is to model the fixed order of the children
of the corresponding c-node. Since a wheel gadget is a 3-connected graph, it
admits only two combinatorial embeddings that are mirror images of each other.
The order in which non-gadget edges are attached to the wheel cycle is either
the order given by the corresponding c-node, or the reverse order. Every face
incident to the hub is a triangle; we call these faces inner wheel gadget faces.

4.2 ec-Expansion and ec-Planar Embeddings

Though the ec-expansion serves as a tool for modeling the embedding constraints
in C, a planar embedding of E(G, C) needs to fulfill certain conditions in order
to induce an ec-planar embedding of G with respect to C. We call a planar
embedding Γ of E(G, C) ec-planar if
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1. the external face of Γ does not contain a hub;
2. every face incident to a hub is a triangle consisting solely of edges of the

corresponding wheel gadget; and
3. each O-hub h is oriented correctly, i.e., the cyclic, clockwise order of the

edges around h in Γ corresponds to the order specified by the corresponding
oc-node.

Let Γ be an ec-planar embedding of E(G, C). Then, we obtain an ec-planar
embedding of (G, C) as follows. For each vertex v ∈ G, there is a connected
subgraph Gv in E(G, C) resulting from expanding v. Let Ḡv ⊂ E(G, C) be the
rest of the graph, i.e., the graph induced by the vertices not contained in Gv.
The conditions above assure that the planar embedding Γv of Gv induced by
Γ is such that Ḡv lies in the external face of Γv. The edges that connect Gv

to Ḡv correspond to the edges incident to v in G. Their cyclic clockwise order
around Gv is admissible with respect to Tv, since the wheel gadgets fix the order
of the edges specified by oc- and mc-nodes, and O-hubs are oriented correctly.
We shrink Gv to a single vertex by contracting all edges in Gv while preserving
the embedding, thus resulting in an admissible order of the edges around v.

If we have an ec-planar embedding of (G, C), then the edges around each
vertex v are ordered such that the constraints in Tv are fulfilled. It is easy to see
that we can replace each such vertex v by the expansion graph corresponding to
Tv in such a way that we obtain an ec-planar embedding of E(G, C). Thus, we
get the following result:

Lemma 1. Let G be a graph with embedding constraints C. Then, (G, C) is ec-
planar if and only if E(G, C) is ec-planar. Moreover, every ec-planar embedding
of E(G, C) induces an ec-planar embedding of (G, C).

5 ec-Planarity Testing

Though it is sufficient to test each block of a graph separately for planarity, this
is not the case for ec-planarity. However, it is sufficient to test the blocks of the
ec-expansion separately as the following lemma shows.

Lemma 2. E(G, C) is ec-planar iff every block of E(G, C) is ec-planar.

Proof. If E(G, C) is ec-planar, then there is an ec-planar embedding of E(G, C),
and this embedding implies an ec-planar embedding for each block of E(G, C).

Suppose now that each block of E(G, C) is ec-planar. Since a wheel gadget
G in E(G, C) is 3-connected, G is completely contained in a single block B of
E(G, C) and therefore also the hub of G is not a cut vertex of E(G, C). For each
edge (u, v) ∈ G , the pair {u, v} is not a separation pair in B by construction,
hence every inner wheel face of G is also a face in every planar embedding of B.

We construct an ec-planar embedding of E(G, C) starting with an arbitrary
block B of E(G, C). Let Π be an ec-planar embedding of B. We add the remain-
ing blocks successively to Π . Let B′ be another block of E(G, C) that shares a
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vertex c with B, and let Π ′ be an ec-embedding of B′. Since c cannot be an O-
or M-hub, we can pick faces f ∈ Π and f ′ ∈ Π ′ that are incident to c and not
inner wheel gadget faces. We insert Π ′ with f ′ as external face into the face f
of Π . This results in an ec-planar embedding of B ∪ B′. We add the remaining
blocks in the same way, resulting in an ec-planar embedding of E(G, C). ��

If we can characterize all ec-planar embeddings of the blocks of E(G, C), the
construction in the proof of Lemma 2 also shows, how to enumerate all ec-planar
embeddings of E(G, C) by traversing its BC-tree. In the following, we devise such
a characterization. Let B be a block of E(G, C) and T its SPQR-tree.

Observation 1. Every wheel gadget G is completely contained within the skele-
ton of an R-node. In particular, the hub of G occurs only in the skeleton of a
single R-node.

If B is planar, then the skeleton of an R-node is a 3-connected planar graph,
thus having exactly two planar embeddings which are mirror images of each
other. We call two O-hubs contained in the same skeleton S conflicting if none
of the two planar embeddings of S orients both O-hubs correctly. The following
theorem gives us an easy to check condition for ec-planarity and characterizes
all possible ec-planar embeddings:

Theorem 1. Let G be a graph with embedding constraints C. Let B be a block
of E(G, C) and T its SPQR-tree. Then, the following holds:

1. B is ec-planar iff B is planar and no skeleton of an R-node of T contains
conflicting O-hubs.

2. If B is ec-planar, then the embeddings of the skeletons of T induce an ec-
planar embedding of B iff each O-hub in the skeleton of an R-node is oriented
correctly.

Proof. If B admits an ec-planar embedding, then this embedding induces embed-
dings of the skeletons of T such that every O-hub in the skeleton of an R-node is
oriented correctly. In particular, no R-node skeleton contains conflicting O-hubs.

Suppose now that B is planar and no R-node skeleton contains conflicting
O-hubs. For each R-node skeleton containing at least one O-hub, we can choose
planar embeddings such that all O-hubs are oriented correctly within the skele-
tons. We have to show that the embeddings of the skeletons induce an ec-planar
embedding of B, even if we choose arbitrary embeddings for the remaining skele-
tons. This holds, since every such embedding Π has the property that each O-hub
is oriented correctly, because wheel gadgets are completely contained within R-
node skeletons by Observation 1 and inner wheel gadget faces are preserved. We
can pick any face of Π as external face which is not an inner wheel face (such a
face always exists) and obtain an ec-planar embedding of B. ��

Function IsEcPlanar depicted in Alg. 1 applies Theorem 1 and devises a linear
time ec-planarity test, which can easily be extended so that it computes an ec-
planar embedding as well.
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1: function IsEcPlanar(Graph G, Constraints C) : bool
2: Construct ec-expansion E of (G, C).
3: if E is not planar then return false
4: for each block B of E do
5: Construct SPQR-tree T of B.
6: for each R-node μ ∈ T do
7: if skeleton(μ) contains two conflicting O-hubs then
8: return false
9: end if

10: end for
11: end for
12: return true
13: end function

Algorithm 1. Ec-planarity testing

Theorem 2. Let G = (V, E) be a graph with embedding constraints C. Then,
algorithm IsEcPlanar tests (G, C) for ec-planarity in time O(|V |+ |E|). More-
over, if (G, C) is ec-planar, an ec-planar embedding of (G, C) can also be com-
puted in time O(|V | + |E|).

Proof. By Lemma 1 and 2, it is sufficient to test every block of E(G, C) for
ec-planarity. Hence, the correctness of Alg. 1 follows from Theorem 1.

Constructing the ec-expansion and testing planarity [14] can be done in linear
time. For each block B of E(G, C), we construct its SPQR-tree, which requires
linear time in the size of B; see [11]. The check for conflicting O-hubs is easy to
implement: For each R-node skeleton S, we compute a planar embedding of S. If
this embedding contains both correctly as well as not correctly oriented O-hubs,
then there is a conflict, otherwise not. Since the total size of skeleton graphs is
linear in the size of B and a planar embedding can be found in linear time (see,
e.g., [5]), we need linear running time for each block. Hence, the total running
time is linear in the size of E(G, C), which is O(|V | + |E|).

In order to find an ec-planar embedding of G, we just have to compute em-
beddings of the skeleton graphs for each block as described in Theorem 1 and
combine the embeddings as described in the proof of Lemma 2. ��

6 ec-Edge Insertion

We first generalize the terms insertion path and traversing costs introduced
in [13]. Intuitively, the edges in an insertion path are the edges we need to cross
when inserting an edge (x, y) into an embedding. Let G + (x, y) be a graph
with embedding constraints C. An ec-edge insertion path for x, y in an ec-planar
embedding Π of G is a sequence of edges e1, . . . , ek of G satisfying the following
conditions:

1. There is a face fx ∈ Π with x, e1 ∈ fx, a face fy ∈ Π with ek, y ∈ fy, and
faces fi ∈ Π with ei, ei+1 ∈ fi for 1 ≤ i < k.
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2. The edge order around x and y is admissible with respect to C if (x, y) leaves
x via face fx and enters y via face fy.

Finding a shortest ec-insertion path in a fixed embedding Π is easy: We only
need to identify the set of faces Fx incident to x where the insertion path may
start, and Fy incident to y where it may end, and then find a shortest path in
the dual graph of Π connecting a face in Fx with a face in Fy.

We are interested in the shortest possible ec-insertion path among all ec-
planar embeddings of G, which we also call an optimal ec-insertion path in G. In
particular, we need to identify the required ec-planar embedding of G. In order
to represent all ec-planar embeddings of G, we apply Lemma 1 and use its ec-
expansion instead. More precisely, we use the subgraph K = E(G+(x, y), C)\e,
where e = (v, w) is the edge of E(G + (x, y), C) connecting the expansion of x
with the expansion of y. An ec-insertion path in an ec-planar embedding of K is
defined as before with the only difference that we replace the second condition
with

2′. e1, . . . , ek contains no expansion edge of K.

It is easy to see that we can also use this definition for a subgraph B of K and
two distinct vertices of B that are not hubs.

We adapt the notion of traversing costs defined in [13] to ec-planarity. Let
e be a skeleton edge, and let Π be an arbitrary ec-embedding of the graph
expansion+(e) (which is the expansion graph of e plus the edge e) with dual
graph Π∗, in which all edges corresponding to gadget edges have length ∞ and
the other edges have length 1. Let f1 and f2 be the two faces in Π separated by e.
We denote with P (Π∗, e) the length of the shortest path in Π∗ that connects f1
and f2 and does not use the dual edge of e. Hence, we have P (Π, e) ∈ IN∪{∞}.

Lemma 3. Let μ be a node in T and let e be an edge in skeleton(μ). Then, the
length of the path P (Π∗, e) is independent of the ec-embedding Π of expansion+

(e).

Proof. Let m be the number of edges in Ge := expansion+(e) and G′e be the
graph obtained from Ge by replacing each gadget edge with m+1 parallel edges.
Then, each embedding Π of Ge corresponds to an embedding Π ′ of G′e, and the
length of the path P (Π, e) is ∞ if and only if the corresponding path in Π ′ is
longer than m. Applying Lemma 1 in [13] and observing that the ec-embeddings
of Ge are a non-empty subset of the embeddings of Ge yields the lemma. ��

Thus, we define the ec-traversing costs c(e) of a skeleton edge e as the length of
the path P (Π∗, e) for an arbitrary ec-embedding Π of expansion+(e).

The hard part of the algorithm is to find an ec-insertion path in a block B of
K. Our task is to compute an optimal ec-insertion path between two nodes v, w of
B. In particular, we are not allowed to cross expansion edges of B. The function
OptimalEcBlockInserter shown in Alg. 2 and 3 solves this problem.

It starts by computing the SPQR-tree T of B and embeds the skeletons such
that they imply an ec-embedding of B, i.e, the R-node skeletons are embedded
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procedure OptimalEcBlockInserter(Block B of K, vertex v, vertex w)
Construct SPQR-tree T of B such that the embeddings of the skeletons imply
a feasible embedding of B.

Find the shortest path μ1, . . . , μk in T between an allocation node μ1 of v and
μk of w. Root T such that μk becomes the parent of μk−1 (if k > 1).

λ� := λr := 0 � length of shortest insertion path leaving to the left/ right

for i = 1, . . . , k do
let Si = skeleton(μi)

let Gi be the graph obtained from Si by replacing each edge not repre-
senting v or w with its expansion graph, and let Πi be the embedding of
Gi induced by the embeddings of the skeletons of T .

if μi is a P-node then
(φi

�, Δ
i
�) := (�, ε); (φi

r, Δ
i
r) := (r, ε) � no crossings required

else � S- or R-node
if i = 1 then

Lv := Rv := the set of incident faces of the copy of v in Si

else
let ev be the representative of v in Si

Lv := { the left face of ev}
Rv := { the right face of ev}

end if
if i = k then

Lw := Rw := the set of incident faces of the copy of w in Si

else
let ew be the representative of w in Si

Lw := { the left face of ew}
Rw := { the right face of ew}

end if � continued on next page. . .

Algorithm 2. Computation of an optimal ec-insertion path (2-connected case)

correctly. Then, the shortest path Υ := μ1, . . . , μk between an allocation node
of v and of w is identified. In order to achieve a consistent orientation, we root
T such that Υ is a descending path in the tree, i.e., μi is the parent of μi−1
for i = 2, . . . , k. Note that the rooting of the SPQR-tree implies a direction of
the skeleton edges: the edges in a skeleton with reference edge er = (s, t) are
directed such that the skeleton is a planar st-graph; see, e.g., [7]. This direction
is necessary in order to identify the left and the right face of an edge.

The algorithm traverses the path Υ from μ1 to μk−1 and iteratively computes
the lengths of the shortest ec-insertion paths that start from v and leave the
pertinent graph Pi of μi to the left or to the right, respectively, where all ec-
embeddings of Pi are considered. Here, left and right refer to the direction of
the reference edge of μi. These lengths are maintained in the variables λ� and
λr. Finally, when node μk is considered, this information is used to determine a
shortest insertion path ending at w.
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� Compute shortest ec-insertion paths (from l/r to l/r) within Gi.
� Note: p�r = p�� and prr = pr� if i ∈ {1, k}.
p�r := ShortestEcInsPath(Πi, Lv, Lw)
p�� := ShortestEcInsPath(Πi, Lv, Rw)
prr := ShortestEcInsPath(Πi, Rv , Lw)
pr� := ShortestEcInsPath(Πi, Rv, Rw)
� Collect possible solutions.
Λ� := { (λ� + |p��|, �, p��), (λr + |pr�|, r, pr�) }
Λr := { (λ� + |p�r|, �, p�r), (λr + |prr|, r, prr) }
if μi is an R-node that can be mirrored then

Λ� := Λ� ∪ { (λ� + |prr|, �, p∗
rr), (λr + |p�r|, r, p∗

�r) }
Λr := Λr ∪ { (λ� + |pr�|, �, p∗

r�), (λr + |p��|, r, p∗
��) }

end if
� Pick best solution.
(λ�, φ

i
�, Δ

i
�) := min1,3 Λ�

(λr, φ
i
r, Δ

i
r) := min1,3 Λr

end if
end for
� Build final ec-insertion path. Note: λ� = λr always holds here!
sk := � � Start with empty path.
for i := k downto 1 do � Collect path backward.

pi := Δi
si

; si−1 := φi
si

end for
return p1 + · · · + pk

end procedure

Algorithm 3. Procedure OptimalEcBlockInserter (part 2)

For each node μi, the following information is computed:

– φi
� (resp. φi

r) indicates if the shortest ec-insertion path leaving Pi to the left
(right) uses the shortest ec-insertion path that leaves Pi−1 to the left (in this
case the value is �) or to the right (the value is r).

– Δi
� (resp. Δi

r) is the subpath that is appended to the path leaving Pi−1 when
leaving Pi to the left (right).

These values are solely used for the purpose of creating the optimal ec-insertion
path at the end of the procedure. If s ∈ {�, r} denotes a side, we denote with s̄
the other side, i.e., �̄ = r and vice versa.

The for-loop starts by expanding all edges of the skeleton Si of μi except for
edges representing v or w. The resulting graph is called Gi. If 1 < i < k, then
Gi will contain two virtual edges ev (representing v) and ew (representing w).
Note that we obtain Pi (plus reference edge) by replacing ev with Pi−1.

If μi is a P-node, then the optimal ec-insertion path leaving Pi−1 to the left
(right) is also an optimal ec-insertion path leaving Pi to the left (right); we just
need to permute the parallel edges in Si such that ev is the leftmost (rightmost)
edge. Otherwise, we have four possibilities for extending an ec-insertion path
leaving Pi. Such a path may start in a face left or right of ev, and may end in
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a face left or right of ew. In addition, we have to consider two special cases: if
i = 1 then Gi contains v and the ec-insertion path may start in any face incident
to v; if i = k then Gi contains w and the ec-insertion path may end in any face
incident to w. We compute the (at most) four possible shortest ec-insertion paths
using the function ShortestEcInsPath(Π, Fs, Ft). Here Π is an ec-embedding
of an ec-expansion, Fs are the faces where the insertion path may start, and Ft

are the faces where it may end. The ec-insertion path is found using BFS in
the dual graph of Π , where edges corresponding to gadget edges are removed
(which means that it is forbidden to cross their primal counterparts). We call
these shortest ec-insertion paths p��, p�r, pr�, prr, where p�� stands for the path
starting in a face in Lv and ending in a face in Rw etc. We have two choices for
a shortest ec-insertion path leaving Pi to the left if we consider only the given
embedding of the skeleton of μi:

– We leave Pi−1 to the left (or start at v if i = 1) and end in a face in Rw

(e.g., we enter ew from right). This path has length λ� + |p��|.
– We leave Pi−1 to the right (or start at v if i = 1) and end in a face in Rw

(e.g., we enter ew from left). This path has length λr + |pr�|.

For the shortest ec-insertion path leaving Pi to the right, we have two similar
cases. Further choices are possible if μi is an R-node that can be mirrored. We
could mirror the embedding of Si, expand the skeleton edges as before such that
we obtain an embedding Π̃i, and compute the four paths in Π̃i again. Notice
that Π̃i is not simply the mirror image of Πi. However, this is not necessary. We
observe that, e.g., the path p̃�� is obtained from prr by reversing the subsequences
of edges that have been created by expanding a common skeleton edge of Si. We
call this path p∗rr. A similar argumentation holds for p̃�r, p̃r�, p̃rr. It follows that
we have at most four possible choices for leaving Pi to the left and to the right,
respectively. Among all possible choices, we pick the shortest one.

After processing all nodes μi, it is easy to reconstruct the best ec-insertion
path from v to w using φi

�/r and Δi
�/r. Notice that λ� = λr holds at the end,

since Lk
w = Rk

w.

Theorem 3. Let B = (V, E) be a block of K and let v and w be two distinct ver-
tices of B. Then, Function OptimalEcBlockInserter computes an optimal
ec-insertion path for v and w in B in time O(|E|).

The edge insertion algorithm can easily be generalized to connected graphs by
using the same technique as in [13] for the unconstrained edge insertion.

7 Conclusion and Future Work

We introduced a flexible concept of embedding constraints which allows to model
a wide range of constraints on the order of incident edges. We presented a linear
time algorithm for testing ec-planarity, as well as a characterization of all possible
ec-embeddings. The latter is in particular important for developing algorithms
that optimize over the set of all ec-planar embeddings. We showed that optimal
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edge insertion can still be performed in linear time when embedding constraints
have to be respected. In order to devise practically successful graph drawing
algorithms, the following problems should be considered:

– Incorporate the concept of embedding constraints into the planarization ap-
proach [1, 12] so that also non-ec-planar graphs can be handled. In particular,
algorithms for finding ec-planar subgraphs are required; this problem can,
e.g., be solved in quadratic time using successive ec-planarity testing.

– Solve the so-called orientation problem for orthogonal graph drawing, e.g.,
allow to fix some edges to attach only at the top side of a rectangular vertex.

– In some applications, only a subset of the edges is subject to embedding
constraints at a vertex v, i.e., some edges can attach at arbitrary positions.
Hence, we wish to extend the concept of embedding constraints for so-called
free edges that are not contained in the tree Tv.
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Abstract. A straight-line drawing of a plane graph is called an open
rectangle-of-influence drawing if there is no vertex in the proper inside
of the axis-parallel rectangle defined by the two ends of every edge. In
an inner triangulated plane graph, every inner face is a triangle although
the outer face is not always a triangle. In this paper, we first obtain
a sufficient condition for an inner triangulated plane graph G to have
an open rectangle-of-influence drawing; the condition is expressed in
terms of a labeling of angles of a subgraph of G. We then present an
O(n1.5/log n)-time algorithm to examine whether G satisfies the condi-
tion and, if so, construct an open rectangle-of-influence drawing of G on
an (n − 1) × (n − 1) integer grid, where n is the number of vertices in G.

1 Introduction

Recently automatic aesthetic drawing of graphs has created intense interest due
to their broad applications, and as a consequence, a number of drawing methods
have come out [1,3,4,5,6,12,13,14,15]. The most typical drawing of a plane graph
G is a straight-line drawing in which all vertices of G are drawn as points and
all edges are drawn as straight-line segments without any edge-intersection. A
straight-line drawing is called a grid drawing if all vertices are put on grid points
of integer coordinates. Figure 1 depicts three grid drawings of the same graph.

In this paper, we deal with a type of a grid drawing under an additional con-
straint, known as a “rectangle-of-influence drawing” [11]. A rectangle-of-influence
of an edge e is an axis-parallel rectangle having e as one of its diagonals. In each
of Figs. 1(a)–(c) a rectangle-of-influence is shaded for an edge e = (u, v) drawn
by a thick line. We call a grid drawing a rectangle-of-influence drawing (or sim-
ply an RI-drawing) if there is no vertex in a rectangle-of-influence of any edge.
Figures 1(a) and (b) depict RI-drawings, while Fig. 1(c) depicts a grid drawing
which is not an RI-drawing. An RI-drawing often looks pretty, since vertices
tend to be separated from edges.

M. Kaufmann and D. Wagner (Eds.): GD 2006, LNCS 4372, pp. 138–149, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Open Rectangle-of-Influence Drawings of Inner Triangulated Plane Graphs 139
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Fig. 1. (a) A closed RI-drawing, (b) an open RI-drawing, and (c) a non-RI-drawing of
an inner triangulated plane graph without filled 3-cycles

A rectangle-of-influence of an edge e is closed if it contains the boundary of
a rectangle, and is open if it does not contain the boundary. In a closed RI-
drawing every rectangle-of-influence is regarded as a closed one, while in an open
RI-drawing every rectangle-of-influence is regarded as an open one. In a closed
RI-drawing, there is no vertex except the ends not only in the proper inside of
a rectangle-of-influence of each edge but also on the boundary, as illustrated in
Fig. 1(a). In an open RI-drawing, there may be a vertex other than the ends
on the boundary of a rectangle, as illustrated in Fig. 1(b). Thus a closed RI-
drawing is an open RI-drawing, but an open RI-drawing is not always a closed
RI-drawing.

Biedl et al. [1] showed that a plane graph G has a closed RI-drawing if and
only if G has no filled 3-cycle, that is, a cycle of three vertices such that there is
a vertex in the proper inside. They also presented a linear-time algorithm to find
a closed RI-drawing of G on an (n − 1) × (n − 1) grid if G has no filled 3-cycle,
where n is the number of vertices in G. It is also known that every 4-connected
plane graph with four or more vertices on the outer facial cycle has an open
RI-drawing on a smaller grid, that is, a W × H grid with W + H ≤ n, and
such a drawing can be found in linear time [12], where W and H are the width
and height of an integer grid, respectively. A plane graph G may have an open
RI-drawing even if G has a filled 3-cycle. However, a necessary and sufficient
condition for an open RI-drawing has not been known.

In a triangulated plane graph, all facial cycles are 3-cycles. In an inner trian-
gulated plane graph, all inner facial cycles are 3-cycles although the outer facial
cycle is not necessarily a 3-cycle, as illustrated in Fig. 2(a). Every plane graph
can be augmented to an inner triangulated plane graph under some constraint
[2].

In this paper we deal with open RI-drawings of triangulated plane graphs and
inner triangulated plane graphs. We first show that one can decide in linear time
whether a given triangulated plane graph G has an open RI-drawing, and that
if G has such a drawing then it can be constructed in linear time on a W × H



140 K. Miura, T. Matsuno, and T. Nishizeki

W < n - 1

H < n -1

(a) (b) (c)

G
G

G*

C1

C2

C1

C2

H

W

Fig. 2. (a) An inner triangulated plane graph G with two maximal filled 3-cycles C1

and C2, (b) an open RI-drawing of G, and (c) a graph G∗ without filled 3-cycles

grid with W + H = n, where n is the number of vertices in G. (See Fig. 3.)
We then obtain a sufficient condition for an inner triangulated plane graph G to
have an open RI-drawing. (See Figs. 2(a) and (b).) Our condition is expressed
in terms of a labeling of angles of a subgraph G∗ of G with integers 0, 1, 2, 3
and 4, where G∗ is obtained from G by removing all vertices and edges in the
proper inside of every maximal filled 3-cycle of G. Figure 2(c) depicts G∗ for G
in Fig. 2(a). Note that G∗ is an inner triangulated plane graph. We also present
an O(n1.5/ logn)-time algorithm to examine whether G satisfies the condition
and, if so, construct an open RI-drawing of G on an (n − 1) × (n − 1) grid. The
complexity O(n1.5/ logn) is due to a step where the algorithm finds a perfect
matching in a bipartite graph. It would be interesting to know if the complexity
can be improved. In the case where G has no filled 3-cycle, our algorithm provides
a closed RI-drawing of G. It is an alternative algorithm to the algorithm of Biedl
et al. [1] for the family of inner triangulated plane graphs with no filled 3-cycle.

W+ H = n

u

v

w w

v

u

(a) (b)
W

H

C

T

Fig. 3. (a) A triangulated plane graph G, and (b) an open RI-drawing D of G

2 Drawing Triangulated Plane Graphs

Suppose that G is a triangulated plane graph with four or more vertices as
illustrated in Fig. 3(a), and that G has an open RI-drawing D as illustrated in
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Fig. 3(b). The outer facial cycle C = uvw of G is a filled 3-cycle, and is drawn
as a triangle T in D. A straight-line segment is oblique if it is neither horizontal
nor vertical. Two or three sides of T are oblique; otherwise, T has exactly one
oblique side, and hence T is a right-angled triangle having both a vertical side
and a horizontal side; since the proper inside of such a triangle T is covered by
the open rectangle-of-influence of the oblique side, the inner vertices of G could
not be drawn. Thus there are the following three cases to consider.

(a) Two sides of T are oblique and the other side is horizontal, as illustrated
in Fig. 4(a);

(b) Two sides of T are oblique and the other side is vertical, as illustrated in
Fig. 4(b); and

(c) all the three sides of T are oblique, as illustrated in Fig. 4(c).

Only the line segments in T drawn by thick lines in Figs. 4(a)–(c) are not
covered by the open rectangle-of-influences of three edges of C. Therefore, all
inner vertices of G must be located on the thick line segments in Figs. 4(a)–(c).
Thus one can know that the graph G and the drawing D must have the structure
illustrated in Fig. 4(f). More precisely, one of the three vertices u, v and w of
C, say w, is adjacent to all the other vertices z1, z2, · · · , zn−1 in G. One may
assume that z1 = v, zn−1 = u, and z1, z2, · · · , zn−1 is a path in the triangulated
plane graph G. Then, for some index c, 2 ≤ c ≤ n − 2, every edge of G, that
is neither incident to w nor on the path z1, z2, · · · , zn−1, joins vertices zi and zj

with 1 ≤ i < c < j ≤ n − 1. The drawings in Figs. 4(d) and (e) are particular
cases in which exactly two of the three outer vertices, say v and w, are adjacent
to all the other vertices in G and hence c = 2. Note that G = K4 if each of u, v
and w is adjacent to all the other vertices in G.

Conversely, if G has the structure above, illustrated in Fig. 4(f), then G has
an open RI-drawing on a W ×H grid such that W +H = n. Note that W = n−c
and H = c for the index c above.

We thus have the following theorem.

Theorem 1. One can decide in linear time whether a given triangulated plane
graph G has an open RI-drawing or not. If G has such a drawing, then it can be
constructed in linear time on a W × H grid such that W + H = n.

3 Drawing Inner Triangulated Plane Graphs

In this section, we first present a sufficient condition for an inner triangulated
plane graph G to have an open RI-drawing, and then give an algorithm to
examine whether G satisfies the condition and, if so, construct an open RI-
drawing of G. We may assume that G is 2-connected.

3.1 Sufficient Condition

If G has no filled 3-cycle, then G has a closed RI-drawing [1], which is an open
RI-drawing. Therefore, we may assume without loss of generality that G has
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T
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(d) (e) (f)

T

Fig. 4. (a)–(c) Three shapes of triangle T , and (d)–(f) graphs G and drawings D

filled 3-cycles. Let C1, C2, · · · , Ck, k ≥ 1, be the maximal filled 3-cycles of G.
The plane graph G in Fig. 2(a) has two maximal filled 3-cycles C1 and C2 drawn
by thick lines, and hence k = 2. We denote by G(Ci) the inside graph induced
by the vertices of Ci and the vertices inside Ci. G(Ci) is a triangulated plane
graph. (Figure 3(a) depicts G(C1) for the graph G and a maximal filled 3-cycle
C1 in Fig. 2(a).) One may assume without loss of generality that the inside graph
G(Ci) for every maximal filled 3-cycle Ci has an open RI-drawing; otherwise, G
has no open RI-drawing.

One can transform an arbitrary open RI-drawing of G in a way that every
edge of G∗ is oblique. (The proof is omitted in this extended abstract.) Thus,
one may assume without loss of generality that, in an open RI-drawing D of G,
every edge of G∗ is oblique, as illustrated in Fig. 2(b). A vertex on the outer
facial cycle of G∗ is called an outer vertex, while a vertex not on the outer facial
cycle is called an inner vertex. An angle of (a polygonal drawing of) a face of G∗

is called an angle of G∗. (See Fig. 7.) An angle of an inner face is called an inner
angle, while an angle of the outer face is called an outer angle. At each vertex
v in G∗, draw two lines, one with slope 0 and one with slope ∞, as illustrated
in Fig. 5. These two lines define four half-lines at v. We say that an angle at v
contains a number i of the four half-lines, 0 ≤ i ≤ 4, if the region of the plane
defined by that angle contains i half-lines at v. Thus, in Fig. 5, angles α0, α1, α2
and α3 contain 0,1,2 and 1 half-lines, respectively. In Fig. 6, the outer angles of
outer vertices vi, 0 ≤ i ≤ 4, contains i half-lines.

Our condition is expressed in terms of a labeling of G∗. A labeling L∗ of G∗ is
an assignment of label 0,1,2,3 or 4 to each angle of G∗, as illustrated in Fig. 7(a).
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v

0

1

2

3

Fig. 5. Angles α0, α1, α2 and α3

v0

v1

v2

v3

v4

Fig. 6. Non-convex outer polygon

Label i, 0 ≤ i ≤ 4, means that the angle with label i contains i half-lines. We
say that a grid drawing D∗ of G∗ realizes the labeling L∗ if every angle labeled
i by L∗ contains i half-lines in D∗ for each i, 0 ≤ i ≤ 4. For a grid drawing D∗

of G∗, we denote by L(D∗) the labeling of G∗ induced by D∗.
Let D∗ be a drawing of G∗ in an open RI-drawing D of G, and let L(D∗) be

a labeling of G∗ induced by D∗. Clearly L(D∗) satisfies the following condition:
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Fig. 7. (a) A good labeling L∗ of G∗, and (b) a good open RI-drawing D∗ of G∗

realizing L∗

(a) For each vertex v of G∗, the labels around v total to 4.

We now claim that L(D∗) satisfies the following condition:

(b) Every inner facial 3-cycle C of G∗ has labels 0, 1 and 1. If C is a maximal
filled 3-cycle in G, then the vertex labeled 0 in C is adjacent to all the other
vertices of the inside graph G(C) of C; (See Fig. 8.)

Since every edge of G∗ is oblique in D∗, every inner facial 3-cycle C of G∗ is
drawn as a triangle T having three oblique sides. Furthermore, two angles in C
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0
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0

1

C C

(a) (b)

1

Fig. 8. Labelings of (a) a non-filled 3-cycle C and
(b) a filled 3-cycle C

0

0
2

C

Fig. 9. A triangle such that an
angle contain two half-lines

contain exactly one half-line and the other angle does not contain any half-line
as illustrated in Fig. 8(b); if an angle in C contains two half-lines, then the vertex
of the angle would be in the proper inside of the rectangle-of-influence of the
longest edge of T as illustrated in Fig. 9. Hence C has labels 0, 1 and 1 in the
labeling L(D∗). If C is a maximal filled 3-cycle in G, then G(C) is a triangulated
plane graph and the vertex of C labeled 0 is adjacent to all the other vertices of
G(C) as shown in Section 2. Thus L(D∗) satisfies Condition (b).

Thus it is necessary for G to have an open RI-drawing that G∗ has a labeling
satisfying Conditions (a) and (b). However, the converse is not true. We will
show in Section 3.2 that G has an open RI-drawing if G∗ has a labeling satisfying
Conditions (a), (b) and the following additional condition:

(c) Every outer angle has label 2, 3 or 4.

A labeling of G∗ satisfying Conditions (a)–(c) is called a good labeling. (The good
labeling has a close relation with the regular edge-labeling of Kant and He [10].)
We thus have the following theorem.

Theorem 2. An inner triangulated plane graph G has an open RI-drawing if
G∗ has a good labeling.

One may prefer to draw the outer facial cycle of G as a convex polygon, for
which each outer angle contains two, three or four half-lines. We say that an
open RI-drawing D of G is good if each outer angle contains two, three or four
half-lines. For example, the drawings in Figs. 1(a), 1(b), 2(b) and 3(b) are good
open RI-drawings, while an open RI-drawing having the non-convex outer facial
polygon in Fig. 6 is not good. It should be noted that the outer facial polygon
of a good open RI-drawing is not necessary a convex polygon. Indeed our result
implies that G has a good open RI-drawing if and only if G∗ has a good labeling.

3.2 Computing an Open RI-Drawing from a Good Labeling

Suppose that G∗ has a good labeling L∗ as illustrated in Fig. 7(a). Remem-
ber that we assume that each triangulated plane graph G(Ci) has an open
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RI-drawing. We first obtain an open RI-drawing Di of each G(Ci) as in Sec-
tion 2. We then construct an open RI-drawing D∗ of G∗ from L∗, as illustrated
in Fig. 7(b). We finally embed in D∗ each drawing Di after adjusting the size of
Di to the triangular drawing of Ci in D∗, as illustrated in Fig. 2(b). We claim
that the resulting drawing is an open RI-drawing of G.

Our algorithm for constructing D∗ from L∗ consists of the following three
steps.

(Step 1) Directing each edge (u, v) of G∗, we construct a directed graph Gx as
illustrated in Fig. 10(a); u → v if x(u) < x(v) must hold in an open RI-drawing
D∗ of G∗ realizing the labeling L∗, where x(u) and x(v) are x-coordinates of u
and v, respectively. Similarly, we construct a directed graph Gy as illustrated in
Fig. 10(c). More precisely, we construct Gx and Gy as follows.

Let v1 and v2 be any two outer vertices consecutively appearing clockwise on
the outer facial cycle of G∗. A drawing obtained from an open RI-drawing D∗

of G by rotating it 90◦, 180◦ or 270◦ is also an open RI-drawing. Therefore, one
may assume without loss of generality that x(v1) < x(v2) and y(v1) < y(v2) in
D∗. Let C = v1v2v3 be the inner facial 3-cycle of G∗ having the edge (v1, v2).
Then the good labeling L∗ assigns label 0 to one of the vertices v1, v2 and v3 of
C and assigns label 1 to the other two vertices. If v1 has label 0, then we decide
that x(v1) < x(v2) < x(v3) and y(v1) < y(v3) < y(v2) and hence v1 → v2,
v1 → v3 and v2 → v3 in Gx and v1 → v2, v1 → v3 and v3 → v2 in Gy, as
illustrated in Fig. 11(a). If v2 has label 0, then we decide that v1 → v2, v1 → v3
and v3 → v2 in Gx and v3 → v1, v3 → v2 and v1 → v2 in Gy. If v3 has label 0,
then we decide that v1 → v2, v1 → v3 and v2 → v3 in Gx and v3 → v1, v3 → v2
and v1 → v2 in Gy. Thus we direct each edge of C for Gx and Gy. We then direct
the edges of each inner facial 3-cycle sharing an edge with C for Gx and Gy.
Repeating the operation for each inner facial 3-cycle of G, we obtain a directed
graph Gx and Gy. One can show that each of Gx and Gy is acyclic and has
exactly one vertex of in-degree zero, and every other vertex has in-degree one or
more. (Condition (c) is crucial in this proof, which is omitted in this extended
abstract, due to the page limitation.)

(Step 2) For each edge e = u → v of Gx, we assign an integer weight w(e)
to e. The weight w(e) implies that x(u) + w(e) ≤ x(v) in D∗. We decide w(e)
as follows. If an inner facial cycle C of G∗ is not filled in G, then we give, as a
weight w(e), either 1 or 2 to each edge e of C, as illustrated in Fig. 11(a). If C
is filled in G, then we assign a weight w(e) to each edge e of C, as illustrated in
Fig. 11(b); the value w(e) depends on both the number of vertices in G(C) and
the index c in Section 2. Since each inner edge e receives two weights from the
two facial cycles containing e, we assign e the larger one as w(e).

(Step 3) Let sx be the source of Gx, that is, the vertex having in-degree
zero. Since Gx is acyclic and every vertex u other than sx has in-degree one or
more, one can find in linear time the longest path from sx to each vertex u in
Gx. We decide the x-coordinate x(u) of u to be the length of the longest path.
Similarly, we compute the y-coordinate y(u). Thus we obtain a drawing D∗ of
G∗, as illustrated in Fig. 7(b).
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Fig. 10. (a) Directed graph Gx, (b) directed graph Gy , (c) weights in Gx, and (d)
weights in Gy

In order to verify Theorem 2, it suffices to prove that the drawing D∗ realizes
a given good labeling L∗ of G∗, that is, L(D∗) = L∗, and that the drawing D
obtained from D∗ and Di is a good open RI-drawing of G. The proof is omitted
in this extended abstract, due to the page limitation. One can easily show that
D is drawn on an (n − 1) × (n − 1) grid.

One can construct in linear time a good open RI-drawing D∗ of G∗ from a
given good labeling L∗ of G∗. Therefore, one can construct a good open RI-
drawing D of G from L∗ in linear time.

3.3 Algorithm for Computing a Good Labeling

In this subsection we show how to find a good labeling of G∗.
We assign each angle of G∗ with label 0, 1, x or y as illustrated in Fig. 12(a).

Labels x and y are undecided at this moment; x will be decided to be 0 or 1
and y to be 2, 3 or 4. For every inner facial 3-cycle C of G∗ that is not filled in
G, we assign a label x to each of the three angles in C. For every inner facial
3-cycle C = uvw of G∗ that is filled in G, we assign labels as follows: if exactly
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Fig. 11. Directions and weights w(e) of edges e in Gx and Gy ; (a) non-filled 3-cycle
C, and (b) filled 3-cycle C

one of u, v and w is adjacent to all the other vertices of G(C) as the case of C1
in Fig. 2(a), then we assign 0 to the vertex and assign 1 to each of the other two
vertices; if exactly two are adjacent to all the other vertices of G(C) as the case
of C2 in Fig. 2(a), then we assign label x to each of them and assign 1 to the
other; if each of u, v and w is adjacent to all the other vertices of G(C), then
G(C) = K4 and hence we assign a label x to each of u, v and w. We finally assign
a label y to each of the outer angles. Our problem is to determine values of all
x’s and y’s so that the resulting labeling of G∗ satisfies Conditions (a)–(c).

Let Gf be a new graph constructed from G∗ as illustrated in Fig. 12(b).
(The detailed construction is omitted in this extended abstract.) Let f be an
appropriately chosen function V (Gf ) → {0, 1, · · · , 4}; f(v) is attached to each
vertex v in Fig. 12(b). An f -factor of Gf , drawn by solid lines in Fig. 12(b), is
a spanning subgraph of Gf in which each vertex v has degree f(v) [7]. We can
show that G∗ has a good labeling, as illustrated in Fig. 12(d), if and only if Gf

has an f -factor.
Let Gd be a new graph constructed from Gf and f , as illustrated in Fig. 12(c).

We can show that Gf has an f -factor if and only if Gd has a perfect matching.
A perfect matching of Gd is drawn by thick lines in Fig. 12(c). Since Gd is a
bipartite graph and has O(n) vertices and edges, one can determine in time
O(n1.5/ logn) whether Gd has a perfect matching [8,9].

One can construct a good labeling of G∗ from an f -factor of Gf or a perfect
matching of Gd in linear time. We thus have the following theorem.

Theorem 3. For an inner triangulated plane graph G, one can determine
whether G∗ has a good labeling and, if so, compute a good labeling L∗ of G∗ in
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time O(n1.5/ log n). From L∗ one can construct an open RI-drawing of G on an
(n − 1) × (n − 1) grid in linear time.
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Fig. 12. (a) A labeling of G∗ by labels 0,1,x and y, (b) an f -factor of Gf , (c) a perfect
matching of a decision graph Gd, and (d) a good labeling of G∗
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Abstract. Tree decompositions of graphs are of fundamental impor-
tance in structural and algorithmic graph theory. Planar decompositions
generalise tree decompositions by allowing an arbitrary planar graph to
index the decomposition. We prove that every graph that excludes a
fixed graph as a minor has a planar decomposition with bounded width
and a linear number of bags.

The crossing number of a graph is the minimum number of crossings in
a drawing of the graph in the plane. We prove that planar decompositions
are intimately related to the crossing number, in the sense that a graph
with bounded degree has linear crossing number if and only if it has
a planar decomposition with bounded width and linear order. It follows
from the above result about planar decompositions that every graph with
bounded degree and an excluded minor has linear crossing number.

Analogous results are proved for the convex and rectilinear crossing
numbers. In particular, every graph with bounded degree and bounded
tree-width has linear convex crossing number, and every K3,3-minor-free
graph with bounded degree has linear rectilinear crossing number.

1 Introduction

The crossing number of a graph G, denoted by cr(G), is the minimum number
of crossings in a drawing1 of G in the plane; see the survey [16]. Crossing num-
ber is an important measure of non-planarity, with applications in discrete and
computational geometry, graph visualisation, and VLSI circuit design.
� The full version of this extended abstract is reference [17].

�� The research of David Wood is supported by a Marie Curie Fellowship of the Eu-
ropean Community under contract 023865, and by the projects MCYT-FEDER
BFM2003-00368 and Gen. Cat 2001SGR00224.

1 A drawing of a graph represents each vertex by a distinct point in the plane, and
represents each edge by a simple closed curve between its endpoints, such that the
only vertices an edge intersects are its own endpoints, and no three edges intersect at
a common point (except at a common endpoint). A crossing is a point of intersection
between two edges (other than a common endpoint). Undefined terminology can be
found in the monographs [5, 10].
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Upper bounds on the crossing number are the focus of this paper. Obviously
cr(G) ≤

(‖G‖
2

)
for every graph G, where |G| := |V (G)| and ‖G‖ := |E(G)|. A

graph family F has linear crossing number if for some constant c, every graph
G ∈ F has crossing number cr(G) ≤ c |G|. For example, Pach and Tóth [11]
proved that graphs of bounded genus and bounded degree have linear crossing
number. Our main result states that bounded-degree graphs that exclude a fixed
graph as a minor have linear crossing number.

Theorem 1. For every graph H there is a constant c = c(H), such that every
H-minor-free graph G has crossing number at most c Δ(G)2 |G|.

Theorem 1 implies the above-mentioned result of Pach and Tóth [11], since
graphs of bounded genus exclude a fixed graph as a minor (although the de-
pendence on Δ is different in the two proofs; see Section 5). Moreover, there are
graphs with a fixed excluded minor and unbounded genus. For other recent work
on minors and crossing number see [3, 8].

Note that the assumption of bounded degree in Theorem 1 is unavoidable.
For example, the complete bipartite graph K3,n has no K5-minor, yet has Ω(n2)
crossing number [12]. Conversely, bounded degree does not by itself guarantee
linear crossing number. For example, a random cubic graph on n vertices has
Ω(n) bisection width, which implies that it has Ω(n2) crossing number. Also
note that c ≤ 20

3 in Theorem 1 with H = K5; see [17]. The proof of Theorem 1
is based on planar decompositions, which are introduced in the next section.

2 Graph Decompositions

Let G and D be graphs, such that each vertex of D is a set of vertices of G
(called a bag). We allow distinct vertices of D to be the same set of vertices in
G; that is, V (D) is a multiset. For each vertex v of G, let D(v) be the subgraph
of D induced by the bags that contain v. Then D is a decomposition2 of G if:

– D(v) is connected and nonempty for each vertex v of G, and
– D(v) and D(w) touch3 for each edge vw of G.

Let D be a decomposition of a graph G. The width of D is the maximum
cardinality of a bag. The order of D is the number of bags. D has linear order if
its order is O(|G|). If the graph D is a tree, then the decomposition D is a tree
decomposition. If the graph D is a cycle, then the decomposition D is a cycle
decomposition. The decomposition D is planar if the graph D is planar. The
genus of the decomposition D is the genus of the graph D.

A decomposition D of a graph G is strong if D(v) and D(w) intersect for each
edge vw of G. The tree-width of G, denoted by tw(G), is 1 less than the minimum

2 Decompositions, when D is a tree, were introduced by Robertson and Seymour.
Diestel and Kühn [6] first generalised the definition for arbitrary graphs D.

3 Subgraphs A and B of a graph G intersect if V (A) ∩ V (B) �= ∅, and A and B touch
if they intersect or v ∈ V (A) and w ∈ V (B) for some edge vw of G.
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width of a strong tree decomposition of G. For example, a graph has tree-width
1 if and only if it is a forest. Graphs with tree-width 2 (called series-parallel)
are planar, and are characterised as those graphs with no K4-minor. Tree-width
is particularly important in structural and algorithmic graph theory.

For applications to crossing number, tree decompositions are not powerful
enough: even the n × n planar grid has tree-width n. Lemmas 10 and 11 in
Section 4 prove the following theorem, which says that planar decompositions
are the right type of decomposition for applications to crossing number.

Theorem 2. A family of graphs with bounded degree has linear crossing number
if and only if every graph in the family has a planar decomposition with bounded
width and linear order.

Every tree T satisfies the Helly property: every collection of pairwise intersecting
subtrees of T have a vertex in common. It follows that if a tree T is a strong
decomposition of G then every clique of G is contained in some bag of T . Other
graphs do not have this property. It will be desirable (for performing k-sums in
Section 3) that (non-tree) decompositions have a similar property. We therefore
introduce the following definitions.

For p ≥ 0, a p-clique is a clique of cardinality p. A (≤ p)-clique is a clique
of cardinality at most p. For p ≥ 2, a decomposition D of a graph G is a p-
decomposition if each (≤ p)-clique of G is a subset of some bag of D, or is
a subset of the union of two adjacent bags of D. An ω(G)-decomposition of
G is called an ω-decomposition, where ω(G) is the maximum cardinality of a
clique of G. A p-decomposition D of G is strong if each (≤ p)-clique of G is a
subset of some bag of D. Observe that a (strong) 2-decomposition is the same
as a (strong) decomposition, and a (strong) p-decomposition also is a (strong)
q-decomposition for all q ∈ [2, p].

In Section 6, we prove the following theorem, which is one of the main con-
tributions of the paper.

Theorem 3. For every graph H there is an integer k = k(H), such that every
H-minor-free graph G has a planar ω-decomposition of width k and order |G|.

3 Manipulating Decompositions

In this section we describe four tools for manipulating graph decompositions.
Our first tool describes the effect of contracting an edge in a decomposition. The
elementary proof is in the full paper.

Lemma 4 ([17]). Suppose that D is a planar (strong) p-decomposition of a
graph G with width k. Say XY is an edge of D. Then the decomposition D′

obtained by contracting the edge XY into the vertex X ∪ Y is a planar (strong)
p-decomposition of G with width max{k, |X ∪ Y |}. In particular, if |X ∪ Y | ≤ k
then D′ also has width k.
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Lemma 5. Suppose that a graph G has a (strong) planar p-decomposition D of
width k and order at most c|G| for some c ≥ 1. Then G has a (strong) planar
p-decomposition of width c′k and order |G|, for some c′ depending only on c.

Proof. Without loss of generality, D is a planar triangulation. By a result of
Biedl et al. [1], D has a matching M of at least 1

3 |D| edges. Applying Lemma 4
to each edge of M , we obtain a (strong) planar p-decomposition of G with width
at most 2k and order at most 2

3 |D|. By induction, for every integer i ≥ 1, G has
a (strong) planar p-decomposition of width 2ik and order at most (2

3 )i|D|. With
i := �log3/2 c�, the assumption that |D| = c|G| implies that G has a (strong)
planar p-decomposition of width 2ik and order |G|. 	


Our second tool describes how two decompositions can be composed.

Lemma 6. Suppose that D is a (strong) p-decomposition of a graph G with
width k, and that J is a decomposition of D with width �. Then G has a (strong)
p-decomposition isomorphic to J with width k�.

Proof. Let J ′ be the graph isomorphic to J that is obtained by renaming each
bag Y ∈ V (J) by Y ′ := {v ∈ V (G) : v ∈ X ∈ Y for some X ∈ V (D)}. There
are at most � vertices X ∈ Y , and at most k vertices v ∈ X . Thus each bag
of J ′ has at most k� vertices. First we prove that J ′(v) is connected for each
vertex v of G. Let A′ and B′ be two bags of J ′ that contain v. Let A and
B be the corresponding bags in D. Thus v ∈ X1 and v ∈ Xt for some bags
X1, Xt ∈ V (D) such that X1 ∈ A and Xt ∈ B (by the construction of J ′). Since
D(v) is connected, there is a path X1, X2, . . . , Xt in D such that v is in each
Xi. In particular, each XiXi+1 is an edge of D. Now J(Xi) and J(Xi+1) touch
in J . Thus there is path in J between any vertex of J that contains X1 and any
vertex of J that contains Xt, such that every bag in the path contains some Xi.
In particular, there is a path P in J between A and B such that every bag in P
contains some Xi. Let P ′ := {Y ′ : Y ∈ P}. Then v ∈ Y ′ for each bag Y ′ of P ′

(by the construction of J ′). Thus P ′ is a connected subgraph of J ′ that includes
A′ and B′, and v is in every such bag. Therefore J ′(v) is connected. In the full
paper [17] we prove that for each (≤ p)-clique C of G, (a) C is a subset of some
bag of J ′, or (b) C is a subset of the union of two adjacent bags of J ′.
Moreover, if D is strong then case (a) always occurs. 	


The third tool converts a decomposition into an ω-decomposition with a small
increase in the width. A graph G is d-degenerate if every subgraph of G has a
vertex of degree at most d.

Lemma 7. Every d-degenerate graph G has a strong ω-decomposition isomor-
phic to G of width at most d + 1.

Proof. It is well known (and easily proved) that G has an acyclic orientation such
that each vertex has indegree at most d. Replace each vertex v by the bag {v}∪
N−G (v). Every subgraph of G has a sink. Thus every clique is a subset of some
bag. The set of bags that contain a vertex v are indexed by {v} ∪ N+

G (v), which



154 D.R. Wood and J.A. Telle

induces a connected subgraph in G. Thus we have a strong ω-decomposition.
Each bag has cardinality at most d + 1. 	


Lemmas 6 and 7 imply:

Lemma 8. Suppose that D is a decomposition of a d-degenerate graph G of
width k. Then G has a strong ω-decomposition isomorphic to D of width k(d+1).

Our fourth tool describes how to determine a planar decomposition of a clique-
sum of two graphs, given planar decompositions of the summands4. Let G1
and G2 be disjoint graphs. Suppose that C1 and C2 are k-cliques of G1 and
G2 respectively, for some integer k ≥ 0. Let C1 = {v1, v2, . . . , vk} and C2 =
{w1, w2, . . . , wk}. Let G be a graph obtained from G1 ∪G2 by identifying vi and
wi for each i ∈ [1, k], and deleting an arbitrary (possibly empty) subset of the
edges between vertices in C1 (= C2). Then G is a k-sum of G1 and G2. An �-sum
for some � ≤ k is called a (≤ k)-sum. For example, if G1 and G2 are planar then
it is easily seen that every (≤ 2)-sum of G1 and G2 is also planar.

Lemma 9. Suppose that for integers p ≤ q, a graph G is a (≤ p)-sum of graphs
G1 and G2, and each Gi has a (strong) planar q-decomposition Di of width ki.
Then G has a (strong) planar q-decomposition of width max{k1, k2} and order
|D1| + |D2|.

Proof. Let C := V (G1) ∩ V (G2). Then C is a (≤ p)-clique, and thus a (≤ q)-
clique, of both G1 and G2. Thus for each i, (1) C ⊆ Xi for some bag Xi of Di,
or (2) C ⊆ Xi ∪ Yi for some edge XiYi of Di. If (1) is applicable, which is the
case if Di is strong, then consider Yi := Xi in what follows.

Let D be the graph obtained from the disjoint union of D1 and D2 by adding
edges X1X2, X1Y2, Y1X2, and Y1Y2. By considering X1Y1 to be on the outerface
of G1 and X2Y2 to be on the outerface of G2, observe that D is planar, as
illustrated in Figure 1.

G1 G2
X2

X1

(a)

G1

G2X1 Y1

X2

Y2(b)

Fig. 1. Sum of (a) strong planar decompositions, (b) planar decompositions

We now prove that D(v) is connected for each vertex v of G. If v ∈ V (G1)
then D(v) = D2(v), which is connected. If v ∈ V (G2) then D(v) = D1(v), which
4 Leaños and Salazar [9] recently proved related results on the additivity of crossing

numbers.
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is connected. Otherwise, v ∈ C. Thus D(v) = D1(v) ∪ D2(v). Since v ∈ X1 ∪ Y1
and v ∈ X2 ∪ Y2, and X1, Y1, X2, Y2 induce a connected subgraph (⊆ K4) in D,
we have that D(v) is connected.

Each (≤ q)-clique B of G is a (≤ q)-clique of G1 or G2. Thus B is a subset
of some bag of D, or B is a subset of the union of two adjacent bags of D.
Moreover, if D1 and D2 are both strong, then B is a subset of some bag of D.
Therefore D is a q-decomposition of G, and if D1 and D2 are both strong then
D is also strong. The width and order of D are obviously as claimed. 	


4 Planar Decompositions and the Crossing Number

The following lemma is the key link between planar decompositions and the
crossing number of a graph.

Lemma 10. Suppose that D is a planar decomposition of a graph G of width k.
Then the crossing number of G satisfies

cr(G) ≤ 2 Δ(G)2
∑

X∈V (D)

(|X|+1
2

)
≤ k(k + 1)Δ(G)2 |D| .

Proof. Fix a straight-line drawing of D with no crossings. Let ε > 0. Let Rε(X)
be the open disc of radius ε centred at each vertex X in the drawing of D. For
each edge XY of D, let Rε(XY ) be the union of all segments with one endpoint
in Rε(X) and one endpoint in Rε(Y ). For some ε > 0, Rε(X) ∩ Rε(Y ) = ∅ for
all distinct bags X and Y of D, and Rε(XY ) ∩ Rε(AB) = ∅ for all edges XY
and AB of D that have no endpoint in common.

For each vertex v of G, choose a bag Sv of D that contains v. For each vertex
v of G, choose a point p(v) ∈ Rε(Sv), and for each bag X of D, choose a set
P (X) of

∑
v∈X degG(v) points in Rε(X), so that no two points coincide, no three

points are collinear, and no three segments, each connecting two points, cross at
a common point. These points can be chosen iteratively since each disc Rε(X)
is 2-dimensional5, but the set of excluded points is 1-dimensional.

Draw each vertex v at p(v). For each edge vw of G, a simple polyline L(vw) =
(p(v), x1, x2, . . . , xa, y1, y2, . . . , yb, p(w)), defined by its endpoints and bends, is
a feasible representation of vw if:

(1) each bend xi is in P (Xi) for some bag Xi containing v,
(2) each bend yi is in P (Yi) for some bag Yi containing w,
(3) the bags Sv, X1, X2, . . . , Xa, Y1, Y2, . . . , Yb, Sw are distinct

(unless Sv = Sw in which case a = b = 0), and
(4) consecutive bends in L(vw) occur in adjacent bags of D.

Since D(v) and D(w) touch, there is a feasible polyline that represents vw.

5 Let Q be a nonempty set of points in the plane. Then Q is 2-dimensional if it contains
a disk of positive radius; Q is 1-dimensional if it is not 2-dimensional but contains
a finite curve; otherwise Q is 0-dimensional.
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A drawing of G is feasible if every edge of G is represented by a feasible
polyline, and no two bends coincide. Since each |P (X)| =

∑
v∈X deg(v), there is

a feasible drawing. In particular, no edge passes through a vertex and no three
edges have a common crossing point.

By properties (1)–(4), each segment in a feasible drawing is contained within
Rε(X) for some bag X of D, or within Rε(XY ) for some edge XY of D. Consider
a crossing in G between edges vw and xy. Since D is drawn without crossings,
the crossing point is contained within Rε(X) for some bag X of D, or within
Rε(XY ) for some edge XY of D. Thus some endpoint of vw, say v, and some
endpoint of xy, say x, are in a common bag X . In this case, charge the crossing
to the 5-tuple (vw, v, xy, x, X).

At most four crossings are charged to each 5-tuple (vw, v, xy, x, X), since
by property (4), each of vw and xy have at most two segments that inter-
sect Rε(X) (which might pairwise cross). We prove in [17] that in a feasi-
ble drawing that minimises the total (Euclidean) length of the edges (with
{p(v) : v ∈ V (G)} and {P (X) : X ∈ V (D)} fixed), at most two crossings
are charged to each such 5-tuple. Thus the number of crossings is at most
twice the number of 5-tuples. Therefore the number of crossings is at most

2
∑

X∈V (D)

∑

v,x∈X

degG(v) · degG(x) ≤ 2 Δ(G)2
∑

X∈V (D)

(|X|+1
2

)
. 	


Note that the bound on the crossing number in Lemma 10 is within a constant
factor of optimal for the complete graph [17]. The following converse result to
Lemma 10 is proved by replacing each crossing by a bag.

Lemma 11 ([17]). Every graph G has a planar decomposition of width 2 and
order |G| + cr(G).

5 Graphs Embedded in a Surface

Let Sγ be the orientable surface with γ ≥ 0 handles. A cycle in Sγ is a closed
curve in the surface. A cycle is contractible if it is contractible to a point in
the surface. A noncontractible cycle is separating if it separates Sγ into two
connected components.

The (orientable) genus of a graph G is the minimum γ such that G has a
2-cell embedding in Sγ . Let G be a graph embedded in Sγ . In what follows, by
a face we mean the set of vertices on the boundary of the face. Let F (G) be the
set of faces in G. A noose of G is a cycle C in Sγ that does not intersect the
interior of an edge of G. Let V (C) be the set of vertices of G intersected by C.
The length of C is |V (C)|.

Pach and Tóth [11] proved that, for some constant cγ , the crossing number
of every graph G of genus γ satisfies

cr(G) ≤ cγ

∑

v∈V (G)

deg(v)2 ≤ 2cγ Δ(G) ‖G‖ . (1)
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The constant cγ was subsequently improved by Djidjev and Vřto [7]. It is well
known [17] that ‖G‖ ≤ (

√
3γ + 3)|G| − 6. Thus

cr(G) ≤ cγ Δ(G) |G| . (2)

By Lemma 11, G has a planar decomposition of width 2 and order cγ Δ(G) |G|.
We now provide an analogous result without the dependence on Δ(G), but at
the expense of an increased bound on the width.

Theorem 12. Every graph G with genus γ has a planar decomposition of width
2γ and order 3γ |G|.

The key to the proof of Theorem 12 is the following lemma, whose proof is
inspired by similar ideas of Pach and Tóth [11].

Lemma 13. Let G be a graph with a 2-cell embedding in Sγ for some γ ≥ 1.
Then G has a decomposition of width 2, genus at most γ − 1, and order 3|G|.

Proof. Since γ ≥ 1, G has a noncontractible nonseparating noose. Let C be a
noncontractible nonseparating noose of minimum length k := |V (C)|. Orient
C and let V (C) := (v1, v2, . . . , vk) in the order around C. For each vertex vi ∈
V (C), let E�(vi) and Er(vi) respectively be the set of edges incident to vi that are
on the left-hand side and right-hand side of C (with respect to the orientation).
Cut the surface along C, and attach a disk to each side of the cut. Replace each
vertex vi ∈ V (C) by two vertices v�

i and vr
i respectively incident to the edges in

E�(vi) and Er(vi). Embed v�
i on the left-hand side of the cut, and embed vr on

the right-hand side of the cut. We obtain a graph G′ embedded in a surface of
genus at most γ − 1 (since C is nonseparating).

Let L := {v�
i : v ∈ V (C)} and R := {vr

i : v ∈ V (C)}. By Menger’s Theorem,
the maximum number of disjoint paths between L and R in G′ equals the min-
imum number of vertices that separate L from R in G′. Let Q be a minimum
set of vertices that separate L from R in G′. Then there is a noncontractible
nonseparating noose in G that only intersects vertices in Q. (It is nonseparating
in G since L and R are identified in G.) Thus |Q| ≥ k by the minimality of
|V (C)|. Hence there exist k disjoint paths P1, P2, . . . , Pk between L and R in G′,
where the endpoints of Pi are v�

i and vr
σ(i), for some permutation σ of [1, k]. In

the disc with R on its boundary, draw an edge from each vertex vr
σ(i) to vr

i such
that no three edges cross at a single point and every pair of edge cross at most
once. Add a new vertex xi,j on each crossing point between edges vr

σ(i)v
r
i and

vr
σ(j)v

r
j . Let G′′ be the graph obtained. Then G′′ is embedded in Sγ−1.

We now make G′′ a decomposition of G. Replace v�
i by {vi} and replace vr

i by
{vi}. Replace every other vertex v of G by {v}. Replace each ‘crossing’ vertex
xi,j by {vi, vj}. Now for each vertex vi ∈ V (C), add vi to each bag on the path
Pi from v�

i to vr
σ(i). Thus G′′(vi) is a (connected) path. Clearly G′′(v) and G′′(w)

touch for each edge vw of G. Hence G′′ is a decomposition of G with genus at
most γ − 1. Since the paths P1, P2, . . . , Pk are pairwise disjoint, the width of the
decomposition is 2.
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It remains to bound the order of G′′. Let n := |G|. Observe that G′′ has at
most n+k+

(
k
2

)
vertices. One of the paths Pi has at most n+k

k vertices. For ease
of counting, add a cycle to G′ around R. Consider the path in G′ that starts at
v�

i , passes through each vertex in Pi, and then takes the shortest route from vr
σ(i)

around R back to vr
i . The distance between vr

σ(i) and vr
i around R is at most k

2 .
This path in G′ forms a noncontractible nonseparating noose in G (since if two
cycles in a surface cross in exactly one point, then both are noncontractible).

The length of this noose in G is at most n+k
k − 1 + k

2 (since v�
i and vr

i both
appeared in the path). Hence n+k

k − 1 + k
2 ≥ k by the minimality of |V (C)|.

Thus k ≤
√

2n. Therefore G′′ has at most n +
√

2n +
(√2n

2

)
≤ 3n vertices. 	


Proof of Theorem 12. We proceed by induction on γ. If γ = 0 then G is planar,
and G itself is a planar decomposition of width 1 = 20 and order n = 30n.
Otherwise, by Lemma 13, G has a decomposition D of width 2, genus γ −1, and
order 3n. By induction, D has a planar decomposition of width 2γ−1 and order
3γ−1(3n) = 3γn. By Lemma 6 with p = k = 2, and � = 2γ−1, G has a planar
decomposition of width 2 · 2γ−1 = 2γ and order 3γn. 	


Theorem 12 and Lemma 10 imply that every graph G with genus γ has crossing
number cr(G) ≤ 12γ Δ(G)2 |G|, which for fixed γ, is weaker than the bound of
Pach and Tóth [11] in (2). The advantage of our approach is that it generalises
for graphs with an arbitrary excluded minor.

6 H-Minor-Free Graphs

For integers h ≥ 1 and γ ≥ 0, Robertson and Seymour [13] defined a graph G to
be h-almost embeddable in Sγ if G has a set X of at most h vertices such that
G \ X can be written as G0 ∪ G1 ∪ · · · ∪ Gh such that:

– G0 has an embedding in Sγ ,
– the graphs G1, G2, . . . , Gh (called vortices) are pairwise disjoint,
– there are faces F1, F2, . . . , Fh of the embedding of G0 in Sγ , such that each

Fi = V (G0) ∩ V (Gi),
– if Fi = (ui,1, ui,2, . . . , ui,|Fi|) in clockwise order about the face, then Gi has

a strong |Fi|-cycle decomposition Qi of width h, such that each vertex ui,j

is in the j-th bag of Qi.

The following ‘characterisation’ of H-minor-free graphs is a deep theorem by
Robertson and Seymour [13].

Theorem 14 ([13]). For every graph H there is a positive integer h = h(H),
such that every H-minor-free graph G can be obtained by (≤ h)-sums of graphs
that are h-almost embeddable in some surface in which H cannot be embedded.

Lemma 15. Every graph G that is h-almost embeddable in Sγ has a planar
decomposition of width h(2γ + 1) and order 3γ |G|.
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Proof. By Theorem 12, G0 has a planar decomposition D of width at most 2γ

and order 3γ |G0| ≤ 3γ |G|. We can assume that D is connected. For each vortex
Gi, add each vertex in the j-th bag of Qi to each bag of D that contains ui,j . The
bags of D now contain at most 2γh vertices. Now add X to every bag. The bags
of D now contain at most (2γ + 1)h vertices. For each vertex v that is not in a
vortex, D(v) is unchanged by the addition of the vortices, and is thus connected.
For each vertex v in a vortex Gi, D(v) is the subgraph of D induced by the bags
(in the decomposition of G0) that contain ui,j , where v is in the j-th bag of Qi.
Now Qi(v) is a connected subgraph of the cycle Qi, and for each vertex ui,j ,
the subgraphs G0(ui,j) and G0(ui,j+1) touch. Thus D(v) is connected. (This
argument is similar to that used in Lemma 6.) D(v) is connected for each vertex
v ∈ X since D itself is connected. 	


Lemma 16. For all integers h ≥ 1 and γ ≥ 0 there is a constant d = d(h, γ),
such that every graph G that is h-almost embeddable in Sγ is d-degenerate.

Proof. If G is h-almost embeddable in Sγ then every subgraph of G is h-almost
embeddable in Sγ . Thus it suffices to prove that if G has n vertices and m edges,
then its average degree 2m

n ≤ d. Say each Gi has mi edges. G has at most hn

edges incident to X . Thus m ≤ hn +
∑h

i=0 mi. Now m0 < (
√

3γ + 3)n. Both
endpoints of an edge of a vortex Gi is in some bag of Qi. Thus mi ≤

(
h
2

)
|Fi|.

Since G1, G2, . . . , Gh are pairwise disjoint,
∑h

i=1 mi ≤
(
h
2

)
n. Thus m < (h +√

3γ + 3 +
(
h
2

)
)n. Taking d = h(h + 1) + 2

√
3γ + 6 we are done. 	


Lemmas 8, 15 and 16 imply:

Corollary 17. For all integers h ≥ 1 and γ ≥ 0 there is a constant k =
k(h, γ) ≥ γ, such that every graph G that is h-almost embeddable in Sγ has
a planar ω-decomposition of width k and order 3γ |G|. 	


Now we bring in (≤ h)-sums.

Lemma 18. For all integers h ≥ 1 and γ ≥ 0, every graph G that can be
obtained by (≤ h)-sums of graphs that are h-almost embeddable in Sγ has a
planar ω-decomposition of width k and order max{1, 3γ(h + 1)(|G| − h)}, where
k = k(h, γ) from Corollary 17.

Proof. If |G| ≤ h then the decomposition of G with all its vertices in a single bag
satisfies the claim (since k ≥ h). Now assume that |G| ≥ h + 1. If G is h-almost
embeddable in Sγ , then by Corollary 17, G has a planar ω-decomposition of
width k and order 3γ |G| ≤ 3γ(h + 1)(|G| − h). Otherwise, G is a (≤ h)-sum of
graphs G1 and G2, each of which, by induction, has a planar ω-decomposition
of width k and order max{1, 3γ(h + 1)(|Gi| − h)}. By Lemma 9, G has a planar
ω-decomposition D of width k and order |D| = max{1, 3γ(h + 1)(|G1| − h)} +
max{1, 3γ(h + 1)(|G2| − h)}. Without loss of generality, |G1| ≤ |G2|. If |G2| ≤ h
then |D| = 2 ≤ 3γ(h + 1)(|G| − h). If |G1| ≤ h and |G2| ≥ h + 1, then |D| =
1 + 3γ(h + 1)(|G2| − h) ≤ 3γ(h + 1)(|G| − h). Otherwise, both |G1| ≥ h + 1 and
|G2| ≥ h + 1. Thus |D| ≤ 3γ(h + 1)(|G1| + |G2| − 2h) ≤ 3γ(h + 1)(|G| − h). 	
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Proof of Theorem 3. Let h = h(H) from Theorem 14. Let Sγ be the surface in
Theorem 14 in which H cannot be embedded. By Theorem 14, G can be obtained
by (≤ h)-sums of graphs that are h-almost embeddable in Sγ . By Lemma 18,
G has a planar ω-decomposition of width k and order 3γ(h + 1)|G|, where k =
k(h, γ) from Corollary 17. By Lemma 5, G has a planar ω-decomposition of
width k′ and order |G|, for some k′ only depending on k, γ and h. 	


Observe that Lemma 10 and Theorem 3 prove Theorem 1.

7 Complementary Results

A graph drawing is rectilinear (or geometric) if each edge is represented by a
straight line-segment. The rectilinear crossing number of a graph G, denoted by
cr(G), is the minimum number of crossings in a rectilinear drawing of G; see
[2, 14]. A rectilinear drawing is convex if the vertices are positioned on a circle.
The convex (or outerplanar) crossing number of a graph G, denoted by cr�(G), is
the minimum number of crossings in a convex drawing of G; see [4, 15]. Obviously
cr(G) ≤ cr(G) ≤ cr�(G) for every graph G. Linear rectilinear and linear convex
crossing numbers are defined in an analogous way to linear crossing number.

It is unknown whether an analogue of Theorem 1 holds for rectilinear crossing
number6. On the other hand, we prove such a result for K3,3-minor-free graphs.

Theorem 19 ([17]). Every K3,3-minor-free graph G has a rectilinear draw-
ing in which each edge crosses at most 2 Δ(G) other edges. Hence cr(G) ≤
Δ(G) ‖G‖ ≤ Δ(G) (3 |G| − 5).

An analogue of Theorem 1 for convex crossing number does not hold, even for
planar graphs, since Shahrokhi et al. [15] proved that the n × n planar grid Gn

(which has maximum degree 4) has convex crossing number Ω(|Gn| log |Gn|).
Now, Gn has tree-width n. In the following sense, we prove that large tree-width
necessarily forces up the convex crossing number.

Theorem 20 ([17]). Every graph G with degree at most Δ and tree-width at
most k has a convex drawing in which each edge crosses O(kΔ2) other edges.
Hence cr�(G) ≤ O(kΔ2‖G‖) ≤ O(k2Δ2|G|). Conversely, suppose that a graph G
has a convex drawing such that whenever two edges e and f cross, e or f crosses
at most � edges. Then G has tree-width at most 3� + 11.

In particular, graphs of bounded degree and bounded tree-width have linear
convex crossing number. Again, the assumption of bounded degree is necessary
since K3,n has tree-width 3 and crossing number Ω(n2).

6 The crossing number and rectilinear crossing number are not related in general. In
particular, for every integer k ≥ 4, Bienstock and Dean [2] constructed a graph Gk

with crossing number 4 and rectilinear crossing number k. It is easily seen that Gk

has no K14-minor. However, the maximum degree of Gk increases with k. Thus Gk is
not a counterexample to an analogue of Theorem 1 for rectilinear crossing number.
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Abstract. Crossing minimization is one of the most challenging algo-
rithmic problems in topological graph theory, with strong ties to graph
drawing applications. Despite a long history of intensive research, no
practical “good” algorithm for crossing minimization is known (that is
hardly surprising, since the problem itself is NP-complete). Even more
surprising is how little we know about a seemingly simple particular
problem: to minimize the number of crossings in an almost planar graph,
that is, a graph with an edge whose removal leaves a planar graph. This
problem is in turn a building block in an “edge insertion” heuristic for
crossing minimization. In this paper we prove a constant factor approxi-
mation algorithm for the crossing number of almost planar graphs with
bounded degree. On the other hand, we demonstrate nontriviality of the
crossing minimization problem on almost planar graphs by exhibiting
several examples, among them new families of crossing critical graphs
which are almost planar and projective.

Keywords: crossing number, crossing minimization, planarization,
crossing-critical graphs.
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1 Introduction

We assume that the reader is familiar with the standard notation of terminology
of graph theory, and especially with topological graphs, see [11]. In this paper
we consider finite graphs, with multiple edges allowed.

The crossing number cr(G) of a graph G is the minimum number of pairwise
edge crossings in a drawing of G in the plane (thus, a graph is planar if and only
if its crossing number is 0). A drawing of G with cr(G) crossings is (crossing-)
optimal. Crossing number problems were introduced by Turán, whose work in
a brick factory during the Second World War led him to inquire about the
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crossing number of the complete bipartite graphs Km,n. It is remarkable that this
long-standing particular question is still open. Not surprisingly, exact crossing
numbers are in general very difficult to compute.

Nowadays, computing crossing numbers has important applications in VLSI
design, and, naturally, in graph drawing. The algorithmic problem of crossing
minimization is given as follows:

Input: A (multi)graph G and an integer k.
Question: Is cr(G) ≤ k ? (Possibly: if so, find an optimal drawing.)

The problem is in NP since one could guess the optimal drawing, replace the
crossings in it with new (degree 4, subdividing) vertices, and verify planarity of
the resulting graph. It has been proved by Garey and Johnson [4] that crossing
minimization is NP-complete if k is a part of the input. The same assertion has
been proved true later by the first author [10] both for cubic graphs and for
the minor-monotone version (cf. [1]) of crossing number. An important, stub-
born open problem is to determine whether the crossing number of graphs with
bounded tree-width can be computed in polynomial time.

On the positive side, a surprising result from Grohe states that the crossing
number is an FPT parameter.

Theorem 1.1 (Grohe [6]). One can decide whether cr(G) ≤ k for an n-vertex
graph G in time O

(
f(k) · n2

)
.

Grohe’s algorithm is the only efficient algorithm (given fixed k) known so far for
computing exact crossing numbers. Unfortunately, this algorithm is not usable
in practice, not even for relatively small values of k, since f is double exponential
in k and, moreover, the “hidden constants” are very large.

Regarding approximability results, the best result known to date is a (poly-
nomial time) log3 n approximation algorithm by Even, Guha and Schieber [3].
Constant factor approximation algorithms are known only for particular families
of graphs, such as projective graphs with bounded degree [5].

Our paper brings two new main results to the theory of crossing numbers
of almost planar graphs: First, Theorem 2.2 proves that a known heuristic for
crossing minimization of an almost planar graph G+ e — take a suitable planar
embedding of G and insert e to it — is a provably good approximation on
graphs of bounded degrees. Second (on the negative side), Theorem 3.4 brings
new rich families of k-crossing-critical graphs which are both almost planar and
projective, that is, as close to planarity as one can reasonably imagine.

2 Approximating the Crossing Number of
Bounded–Degree Almost Planar Graphs

Currently, it seems that the best known general–purpose practical heuristic ap-
proach to crossing minimization on a graph G is the following: First, delete from
G some (small set of) edges F , so that G′ = G − F is planar. Then, take an
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edge f ∈ F and a suitable planar embedding of G′, and find a way of insert-
ing f back to the drawing of G′ with the smallest number of crossings (using a
shortest-path algorithm on the topological dual of G′). After that, create a new
graph G′′ from G′ + f by replacing the crossings with new vertices, and iterate
the process with G′′ and F \ {f}.

This heuristic algorithm outlines the following interesting subproblem on
almost-planar graphs (recall that a graph is almost planar if it has an edge
whose removal leaves a planar graph), hereafter called the one-edge crossing
minimization:

Input: A planar graph G and two nonadjacent vertices u, v of G.
Problem: Find an optimal drawing of G+uv (i.e. G plus the edge uv), that is,

a drawing with the minimum number of crossings.

Although we firmly believe that computing the crossing number of an almost
planar graph cannot be an NP–hard problem, all our efforts to get a polynomial
time algorithm failed (even for graphs with bounded degrees). Thus we moved
on to investigate whether such a crossing number can be approximated by a
polynomial time algorithm. Our aim in this section is to show the existence of
such an approximation algorithm, for graphs with bounded degrees.

Attempts to solve the one-edge crossing minimization problem, in turn, have
brought a closely related subproblem with the same input, hereafter called the
one-edge bridging minimization for distinction. This modification asks for a pla-
nar embedding of G such that inserting the edge uv to it yields the minimum
possible number of crossings. Let br(G, uv) denote the minimum number of cross-
ings in the bridging minimization problem.

The one-edge bridging minimization problem has been completely solved,
giving a linear-time optimal algorithm for it, by Gutwenger, Mutzel and
Weiskircher [7,8]. As they observe, that algorithm does not necessarily yield
an optimal solution to the crossing minimization problem, as the counterexam-
ple at the end of [8] (thereby attributed to G. Farr) shows. This is summarized
in the following statement.

Proposition 2.1. For each k > 2 there is a planar graph G, and vertices u, v,
such that cr(G + uv) = 2, but br(G, uv) = k.

It is interesting to mention that this was asked as an open question in the
earlier conference version [7]. We have independently found a somewhat simpler
counterexample, which is (for k = 5) illustrated in Fig. 1.

We note that both Farr’s construction and our example make essential use of
vertices of large degree (of order at least 2k). It is thus natural to ask whether
large degree vertices are an essential part of any such examples. Our following
result settles this question — large degree vertices are indeed unavoidable.

Theorem 2.2. Suppose that G is a planar graph with maximum degree Δ, and
let u, v be nonadjacent vertices of G. Then the one-edge bridging minimization
problem on G and uv has an optimal solution with br(G, uv) ≤ Δ · cr(G + uv).
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Fig. 1. A counterexample showing that a solution to one-edge bridging minimization
(left, dashed edge uv) can be arbitrarily far from the crossing number (right). The
shadow area stands for a sufficiently dense planar part.

We prove the theorem later in this section, using further Lemma 2.4. Our
statement has the following nice consequence:

Corollary 2.3. There is a polynomial time approximation algorithm for com-
puting the crossing number of an almost planar graph with bounded degrees.

Proof. Let G be an almost planar graph with maximum degree Δ. Apply any
efficient planarity algorithm to find an edge e of G such that G − e is planar.
Then apply the linear time algorithm for one-edge bridging minimization from [8]
to obtain a planar embedding of G − e such that inserting e into it yields the
minimum possible number of crossings, say k. Obviously cr(G) ≤ k, and it follows
from Theorem 2.2 that k/Δ ≤ cr(G).

If Ψ, Ψ ′ are embeddings of the same graph G, then Ψ ′ is a mirror embedding of
Ψ if there is an orientation reversing homeomorphism taking Ψ to Ψ ′.

Suppose that G has a 2–cut {x, y}, and let G1, G2 be subgraphs of G such
that G is the sum of G1 and G2 along x and y (that is, G1 and G2 are edge-
disjoint and share only x and y, and G = G1 ∪G2). A (Whitney) flipping at x, y
is a re-embedding of G such that the embedding of G2 is unchanged and the
embedding of G1 is a mirror of the original embedding. We say that G1, G2 are
the sides of the flipping. Any two (combinatorial) embeddings of a 2-connected
planar graph can be transformed to each other by a sequence of flippings. We
call a flipping prime if one of G1 or G2 has no cut-vertex separating x from y.
Obviously, every flipping can be decomposed into prime flippings.

Lemma 2.4. Suppose H is a connected plane graph (i.e. actually embedded in
the plane), and e, f are two edges not belonging to H but connecting vertices of
H, such that H + f is a planar graph. If e can be drawn in H with � crossings,
then there is a planar embedding of H + f in which e can be drawn with at most
� + 2 · �Δ(H)/2� crossings.

It is worth noting that the statement may be false if H is disconnected and e, f
join vertices from two distinct components.
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Fig. 2. An example of a planar graph in which four flippings are necessary before the
edge f (with endpoints s and t) can be embedded in without crossings

Proof. First we assume that H is 2-connected. Consider a sequence of flippings
which turn H into an embedding H ′ such that H ′+f is plane (although we talk
about a sequence, the order of the flippings actually does not matter to us). As
noted above, we may assume the flippings under consideration are prime. Note
that each of the sides of any relevant flipping contains one endpoint of f . We
naturally order by inclusion the set of all the sides (of all the relevant flippings)
containing an end s of f , say as S1 ⊂ S2 ⊂ . . . ⊂ Sm (see also Fig. 2). Let xi, yi

be the cut-vertices at which the flipping involving Si occurs.
Observe further that it is enough to consider those flippings that have exactly

one endpoint of e on each side as well. (If there is no such flipping, then e can
be drawn with the same number of crossings in plane H ′ + f as in H itself.)
Let i, 1 ≤ i ≤ m, be the smallest index such that Si contains an endpoint of e.
Thus, no endpoint of e is in Si−1 if i > 1, and exactly one endpoint u of e is
in Si. After we apply the flippings of S1, . . . , Si−1, the vertex s has to appear on
the unbounded face of Si due to planarity of H + f (note that those flippings
do not affect the drawing or number of crossings on the edge e). We look at the
“half-edge” e0 ⊂ e from the end u till reaching the unbounded face of Si (for this
moment we regard the edge e as a topological object in the drawing H + e): We
extend the curve e0 to e1 so that its loose end appears in a close neighbourhood
of the vertex s on the unbounded face of Si, which takes only at most �dH(xi)/2�
or �dH(yi)/2� additional crossings on e1 when passing by either vertex xi or yi,
respectively. (See Fig. 3.)

A symmetric argument can be simultaneously used to argue that the other
“half-edge” e′0 ⊂ e from the end v of the edge e = uv can be redrawn as e′1
such that its loose end appears in a close neighbourhood of the endpoint t of the
edge f . Then we apply the remaining flippings and embed the edge f into H ′.
Finally, we join the loose ends of e1 and e′1 together along the (uncrossed) edge
f in H ′ + f , producing no additional crossing with f since we have had above
a choice of redrawing of e1 either by xi or yi. In this way we get a drawing of e
inside the plane graph H ′ + f with at most 2 · �Δ(H)/2� additional crossings.
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Fig. 3. An illustration of the proof of Lemma 2.4

At last we have to consider connected H which is not 2-connected. Although
all deep arguments have been used already above, some boring technical details
are still necessary, and we only sketch them here for simplicity. Imagine H de-
composed into blocks. If the decomposition contains a leaf block not incident
with e, f , then we may simply delete it. If the decomposition contains a leaf
block incident with f but not with e, then we may contract this block into one
vertex without changing our problem. If the decomposition contains a leaf block
incident with e but not with f , then similarly we may contract this block into
one vertex and just make a note of the number of crossings e had with this block.

After processing the above reductions, we either arrive at a 2-connected graph,
or we get a graph with precisely two leaf blocks B1, B2, both incident with e
and f . Then we adapt the above “half-edge” argument to this situation: We
redraw the half-curve of e from B1 so that its loose end appears in a close
neighbourhood of the cut-vertex b1 of the block B1, in the unbounded face.
Symmetrically, we redraw the half-curve of e from B2 so that its loose end
appears in a close neighbourhood of the cut-vertex b2 of B2. Finally we join
the two halves of e together in the unbounded face. This again costs at most
2 · �Δ(H)/2� additional crossings.

Having the previous lemma at hand, it is easy to finish the proof of Theorem 2.2.
We actually prove a stronger statement (indeed, to see that Theorem 2.2 follows
from Lemma 2.5, it suffices to note that m ≤ cr(G + uv) − � ).

Lemma 2.5. Suppose that G is a planar graph with maximum degree Δ, and
let u, v be nonadjacent vertices of G. If there is a crossing-optimal drawing of
G + uv such that the edge uv has � crossings, and removing m edges from this
drawing of G makes it plane, then br(G, uv) ≤ � + 2�Δ/2�m.

Proof. Let F be a set of edges of G such that G′ = G−F is plane and |F | = m.
Obviously, for a crossing-optimal drawing G + uv and minimal F , the graph G′

is connected. Let F = {f1, . . . , fm}. For i = 1, 2, . . . , m, we apply Lemma 2.4
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for H = G′ + f1 . . . + fi−1 and f = fi, e = uv, and continue with the resulting
embedding of H + f in the next iteration until i = m.

Remark. One may also consider an analogous k-edge crossing minimization
problem for fixed k > 1. Although the related k-edge bridging minimization
problem [2, Problem 29] seems to have no efficient solution yet; if that is even-
tually found, then similar arguments could be used to prove it provides a good
approximation for crossing minimization in the case of bounded degrees.

3 Projective Almost Planar Graphs and
Crossing-Critical Graphs

Almost planar graphs are interesting both theoretically and practically. Although
it is trivial to construct almost planar graphs with arbitrarily large crossing
numbers (a large grid plus an edge joining vertices far apart from each other),
a strong objection to such examples is that that the graph thus obtained is, in
a way, not as close to being planar as it could be. Indeed, such a graph would
have Euler genus 0 (since it is toroidal), thus being one step further away from
planar than another large, interesting family, namely the collection of graphs
with Euler genus 1. Recall that a graph has Euler genus 1 if and only if it is
projective, that is, embeddable in the projective plane (equivalently, embeddable
in the Möbius band).

Our aim in this section is to make several remarks on the richness of projective
almost planar graphs. In our own view, this is the first step in a systematic
program to understanding almost planar graphs: as we observed above, among
almost planar graphs, projective graphs are arguably the simplest ones. We first
observe that almost planar projective graphs can have arbitrary crossing number,
and yet be strongly connected and have a small number of vertices (especially
when compared to the number of vertices in the “grid example”).

Proposition 3.1. For every k, there is a simple 4-connected graph on 2k + 4
vertices which is almost planar and projective, and whose crossing number is k.

Proof. Let Dm denote the double-wheel with the rim circuit of length m, and let
Fk be the graph obtained from D2k+2 by joining one pair of opposite vertices on

�

�

�

�

�

�

� �

Fig. 4. The graph F2 in the proof of Lemma 3.1 – a double-wheel of length 6 with an
extra chord
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the rim circuit with edge f . This graph is projective since one may use a “Möbius
twist” applied to f and k consecutive spokes of one of the wheels (between the
ends of f) to embed it.

By an easy induction on k we show cr(Fk) = k. For k = 1, Fk is a subdivision of
K5, and so this is true. Again an argument with nonplanarity of K5-subdivisions
in Fk shows that in any drawing of Fk there has to be a length-2 path between
the centers of the wheels that is crossed. Hence we remove the edges of this path
and an opposite path (saving 1 crossing), and apply the inductive assumption
for the resulting subdivision of Fk−1.

If we admit the possibility of multiple edges, analogous ideas can be used to find
even smaller graphs with similar properties.

Proposition 3.2. For every �, there is a graph with 4� + 6 edges which is both
almost planar and projective, and whose crossing number is �.

Proof. This graph (C�+2 ⊕ K�
2) is obtained from the disjoint union of C�+2 and

� parallel edges K�
2 by adding all edges between them. (Notice that this graph is

actually �-crossing-critical, but since it is not simple, this does not make a “good”
crossing-critical family.) The proof is very similar to that of Proposition 3.1.

If, moreover, we bound the maximal degree, we observe the following.

Proposition 3.3. Suppose a graph G is almost planar and projective, and the
maximum degree of G is bounded. Then the crossing number of G is bounded as
well, and so it can be computed in time O(n2).

Proof. According to [12], any projective embedding of an almost planar graph G
(more generally of an apex graph) has “face-width at most two”. That precisely
means the embedding admits a closed noncontractible curve intersecting G just
in two vertices u, v. Cutting the projective plane along this curve, one gets a
planar embedding with two copies of u and two of v on the unbounded face. It
is clearly possible to pairwise identify those two copies of u and those of v, with
an introduction of �dG(u)/2� · �dG(v)/2� crossings. Hence cr(G) is bounded if
the degrees are bounded, and we may use Theorem 1.1.

We finally show that almost planar projective graphs are rich enough to pro-
vide nontrivial examples of crossing-critical graphs. Recall that a graph G is
k-crossing-critical if cr(G) ≥ k but cr(G − e) < k for all edges e ∈ E(G).
Crossing-critical graphs are of great importance in the theory of crossing num-
bers, for them giving an insight into the structural properties that force large
crossing numbers. (Notice that, in any graph of crossing number k, by successive
deleting of suitable edges we always find a k-crossing-critical subgraph. Hence
if a graph class contains a rich subclass of crossing-critical graphs, then the
crossing-minimization problem is likely not trivial on that class.)

A rich family of almost planar simple 3-connected k-crossing critical graphs
for every k ≥ 3 has been constructed by the first author in [9]. Looking at our
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second restriction, the family of [9] is not projective, but we have succeeded in
modifying that construction to obtain the following.

Theorem 3.4. For every k ≥ 3, there is an infinite family of simple 3-connected
k-crossing critical graphs which are almost planar and projective.
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Fig. 5. An illustration of a k-belt graph, k = 6 here. The left- and right-hand sides
close together as on a cylinder.

The construction of graphs in Theorem 3.4 is illustrated in Fig. 5, and we
call them k-belt graphs. Formally for k ≥ 1, a graph G with distinguished three
vertices x, y, z is a k-belt graph if the following are satisfied:

– G is simple of minimum degree 3 if k > 2.
– B = G − {x, y} is formed as an edge-disjoint union of k cycles sharing the

vertex z. These cycles are denoted by C1, C2, . . . , Ck from top to bottom —
referring the picture in Fig. 6 left.

– The neighbourhood of z in B looks exactly as depicted in Fig. 5. The neigh-
bourhoods of other vertices of B that are not adjacent to z have all “square-
grid” structure (with a small exception at C1 and Ck).

– There are two special vertices x1, x2 ∈ V (C1) \ V (C2) adjacent both to x in
G, such that x1 is adjacent to z while the distance of x2 to z is at least 3.
Another two special vertices y1, y2 ∈ V (Ck) \ V (Ck−1) adjacent both to y in
G are defined symmetrically around z. Moreover, in the subgraph B − z, it
holds that x1 is farther to x2 than to y2, and y1 is farther to y2 than to x2.
(To better understand this condition, check that it implies the length of C1
is at least k + 6.)

– xy is an edge in G. (Notice that G − xy is a planar graph.)

We start with some straightforward statements about G (see again Fig. 5).

Lemma 3.5. If G is a k-belt graph, k ≥ 1, then
a) G is almost planar, projective, and simple 3-connected if k ≥ 3,
b) cr(G) ≥ k but cr(G − e) < k for all e ∈ E(G).
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Fig. 6. Notation in k-belt graphs: (left) the cycles C1 and Ck; (right) the cycle C′
1,

vertices z, z1, z2, and dotted path P2

To complete the proof of Theorem 3.4, it now remains to argue why a k-belt
graph cannot be drawn with less than k crossings. For further arguments, we
denote by C′1 the cycle in B obtained from C1 by deleting x1 and using instead
the edge from z to the other neighbour of x1 (Fig. 6 right). The following is easy
to see from the definition of a k-belt graph.

Lemma 3.6. Suppose G is a k-belt graph, k ≥ 3, and there is an optimal draw-
ing of G with � crossings such that the cycle C′1 is crossed. Let G′ be the subgraph
formed by the edges

(
E(G) \E(C′1)

)
∪{x2x

′
2}, where x′2 is one of the neighbours

of x2 in C′1 such that x2x
′
2 is not the only crossed edge of C′1. Then G′ is a

subdivision of a (k − 1)-belt graph, and cr(G′) ≤ � − 1.

In the opposite situation, i.e. when C′1 is not crossed, we argue similarly. Let us
denote by z1 the neighbour of z on C2 and by z2 the subsequent vertex on C2.
See in Fig. 6 right. The path starting with z, z1, z2 and continuing then along
the vertices of C2 up to the last one before returning to z is denoted by P2.

Lemma 3.7. Suppose G is a k-belt graph, k ≥ 4, and there is an optimal draw-
ing of G with � crossings such that C′1 is not crossed. Then there are at least
two distinct crossings on the path P2. Consequently, there is a drawing G′ ⊆ G
which is a subdivision of a (k − 2)-belt, and cr(G′) ≤ � − 2.

Proof. Since G − V (C′1) is a connected subgraph, all its vertices have to be
drawn in one of the faces bounded by the drawing of C′1. Hence by Jordan’s
curve theorem, the length-2 path zz1z2 has to be crossed since it separates the
common neighbour of z and x1 from the rest of the drawing. The same can be
said about the length-2 path on P2 which connects the two vertices adjacent to
x2. Those are the desired two distinct crossings on P2.

Lemma 3.8. Suppose G is a k-belt graph, k = 1 or k ≥ 3. Then cr(G) ≥ k.

Proof. We proceed by an induction on k, similarly as we have done in [9].
Notice that a 1-belt graph is actually a subdivision of K3,3, and hence the base
of induction holds. The main complication comes from the fact that the inductive
statement is false for k = 2, and we have to carefully avoid this in our arguments.

First consider k > 4, and the statement is true for all i < k, i �= 2. Take an
optimal drawing of G with � crossings. Then, depending on whether the cycle
C′1 is crossed, apply Lemma 3.6 or 3.7 straightforwardly: For a = 1 or a = 2, it
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is k − a ≤ cr(G′) ≤ � − a, and hence k ≤ �. Next consider k = 4. If Lemma 3.6
applies to G, induction proceeds in the same way. So assume C′1 is not crossed
now, and by Lemma 3.7 there are two crossings on the path P2. The same
arguments can be applied to symmetrically defined cycle C′4 and path P3 in G,
and we find additional two crossings on P3 (which is disjoint from P2); altogether
4 = k crossings.

It remains to prove the statement for k = 3. This is straightforward but
slightly too long for this restricted conference paper, and so we only sketch the
arguments. If C′1 is not crossed, then we may still consistently apply Lemma 3.7
and induction. Otherwise, considering symmetry, both cycles C′1 and (symmet-
ric) C′3 are crossed. (It may happen that C′1 crosses C′3.) Let a cycle C′2 be
obtained from C2 by replacing the two edges from C2 ∩ (C′1 ∪ C′3) with the path
through y1, z, x1. If the cycle C′2 is crossed as well, then we apply an inductive
step with removing (most of) edges of C′1 and C′2. Finally, if C′2 is not crossed
at all, then one can show that C′1 and C′3 carry at least three distinct crossings,
since in such case the vertices x, y, x2, y2 have to be drawn in the same face
bounded by the drawing of C′2.

We remark that the above k-belt construction could be generalized in a similar
way as the construction in [9] was. We however skip such a generalization here
to avoid the boring technical details of it.

4 Conclusions

In this paper we mainly wanted to attract attention and research to the seemingly
simple, but still quite deep and unexplored problem of crossing minimization on
almost planar graphs. As our first step, we have shown two new results – one on
the positive side (Theorem 2.2 and Corollary 2.3), and the other one somehow
negative (Theorem 3.4), indicating richness and nontriviality of the problem we
study.

Questions to the effect of whether crossing minimization remains hard even
if we focus our attention on restricted families of graphs can be interpreted as
partial efforts to answer an admittedly vague, but nonetheless appealing and still
wide-open, question: How much “nonplanarity” must one admit into a family of
graphs G in order to guarantee that computing the crossing number of a graph
in G is hard?

We put forward three questions, in order of apparent difficulty.

Question 4.1. Is there a polynomial-time algorithm to approximate the crossing
number of an almost planar graph?

Question 4.2. Is there a polynomial-time algorithm to compute the crossing
number of an almost planar graph?

A simplified version of this last question would consider graphs with bounded
degree, as we have done in the present paper.
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For the next question, recall than a graph G is apex if it has a vertex v such
that G − v is planar.

Question 4.3. Is it an NP–hard problem to compute the crossing number of an
apex graph?

We conjecture that all these questions have affirmative answers. We lastly remark
that Question 4.3 has been asked also by Mohar [private communication].
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Abstract. The crossing number cr(G) of a graph G is the minimum
number of crossings over all drawings of G in the plane. In 1993, Richter
and Thomassen [RT93] conjectured that there is a constant c such that
every graph G with crossing number k has an edge e such that cr(G −
e) ≥ k − c

√
k. They showed only that G always has an edge e with

cr(G − e) ≥ 2
5cr(G) − O(1). We prove that for every fixed ε > 0, there

is a constant n0 depending on ε such that if G is a graph with n > n0

vertices and m > n1+ε edges, then G has a subgraph G′ with at most
(1 − 1

24ε
)m edges such that cr(G′) ≥ ( 1

28 − o(1))cr(G).

1 Introduction

The crossing number cr(G) of a (simple) graph G is the minimum possible num-
ber of crossings in any drawing of G in the plane. A famous result of Ajtai et
al. [ACNS82] and Leighton [L84] states that if G is a graph with n vertices and
m ≥ 4n edges, then

cr(G) ≥ m3

64n2 . (1)

For graphs with n vertices and m ≥ 103
16 n edges, Pach et al. [PRTT04] improved

Inequality (1) by a constant factor to

cr(G) ≥ 1024
31827

m3

n2 . (2)

It is well known that for every positive integer k, there is a graph G and
an edge e of G such that cr(G) = k but G − e is planar. In 1993, Richter and
Thomassen [RT93] conjectured that there is a constant c such that for every
nonempty graph G with crossing number k, there is an edge e of G such that
cr(G − e) ≥ k − c

√
k. They showed only that G always has an edge e with

cr(G − e) ≥ 2
5cr(G)− O(1). Salazar [S00] proved that for every graph G with no

vertices of degree 3, there is an edge e of G such that cr(G−e) ≥ 1
2cr(G)−O(1).

Pach and G. Tóth [PT00] showed for every connected graph G with n vertices,
m ≥ 1 edges, and every edge e of G, that the decay is bounded by

cr(G − e) ≥ cr(G) − m + 1.

M. Kaufmann and D. Wagner (Eds.): GD 2006, LNCS 4372, pp. 174–183, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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This, combined with Inequality (2), is better than Richter-Thomassen’s bound
for graphs with n vertices and m ≥ 8.1n edges. By Inequality (1), it also confirms
the Richter-Thomassen conjecture for dense graphs, that is, for graphs with
Ω(n2) vertices.

In this paper, we show that from every graph G that is not too sparse, we can
delete a constant fraction of the edges such that the the crossing number of the
remaining subgraph G′ is at least a constant fraction of the crossing number of
G.

Theorem 1. For every ε > 0, there is a constant n0 depending on ε such that
if G is a graph with n > n0 vertices and m > n1+ε edges, then G has a subgraph
G′ formed by deleting at least εm/24 edges from G such that

cr(G′) ≥
(

1
28

− o(1)
)

cr(G).

To prove Theorem 1, we derive in Sections 3 and 4 new lower bounds on the
crossing number that improve on Inequality (1) for graphs with highly irregular
degree patterns.

2 Drawing Edges with the Embedding Method

We use the embedding method along the lines of Leighton [L83], Richter and
Thomassen [RT93], Shahrokhi et al. [SSSV97], and Székely [S04a]. The embed-
ding method generates a planar drawing (embedding) D(G) of a graph G based
on a drawing D(H) of a subgraph H ⊂ G. The drawing D(G) respects D(H) on
the edges of H and for every edge e = (v, w) ∈ G \ H , the drawing of e follows
“infinitesimally close” to a path between v and w in the drawing D(H). We can
distinguish two categories of crossings that involve edges of G\H in the drawing
D(G). A first category crossing arises infinitesimally close to a crossing in D(H).
A second category crossing arises infinitesimally close to a vertex in D(H).

We illustrate the embedding method with a bound on the minimum decay
of the crossing number after deleting one edge. This improves on the Richter-
Thomassen bound for graphs with m ≥ 7.66n edges.

Proposition 1. For every connected graph G with n vertices and m edges, there
is an edge e of G such that

cr(G − e) ≥ p

p + 2

(
cr(G) − m +

n

2

)
,

where p = � m
n−1 − 1�.

The proof of Proposition 1 follows immediately from Proposition 2 and Lemma
1 below. Nagamochi and Ibaraki [NI92] proved the following lemma, which is a
slight variant of Mader’s theorem, and shows that every graph with n vertices
and m edges has a pair of adjacent vertices with at least m

n−1 edge-disjoint paths
between them.
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Lemma 1 (Mader, Nagamochi and Ibaraki). If G is a graph with m edges
and n vertices, then there is an edge e = (v, w) of G such that there are at least

m
n−1 − 1 edge-disjoint paths between v and w in G − e.

Proof. Delete maximal spanning forests F1, F2, . . ., Fj one after the other until
all edges are deleted. If e = (v, w) is an edge of Fj , then there is a path between
v and w in Fi for every i, 1 ≤ i ≤ j. Hence, there are at least j − 1 edge-disjoint
paths between v and w that do not pass through e. Since each Fi is a forest, it
has at most n − 1 edges, and so we have m ≤ j(n − 1). Substituting, there are
at least m

n−1 − 1 edge-disjoint paths between v and w in G − e.

Proposition 2. Let G be a connected graph with n vertices and m edges, and
e = (v, w) be an edge of G such that there are p ≥ 1 edge-disjoint paths between
v and w in G − e. Then

cr(G) ≤
(

1 +
2
p

)
cr(G − e) + m − n

2
.

Proof. Let D be a drawing of G − e in the plane with cr(G − e) crossings. Let
P1, P2, . . ., Pp be p edge-disjoint paths between v and w. Consider the drawing
Dj of G in the plane that respects the drawing D of G−e and the edge e follows
infinitesimally close to the path Pj between v and w with all loops (and self-
crossings) deleted. Let kj be the number of first category crossings in Dj . Since
the paths P1, P2, . . ., Pp are edge-disjoint, the drawings D1, D2, . . ., Dp of G
jointly have at most two first category crossings at each crossing of D: at most
two crossings between edges of G − e and different drawings of e, as depicted in
Figure 1(a). Hence,

p∑

j=1

kj ≤ 2cr(G − e).

Therefore, there is an index j, 1 ≤ j ≤ p, such that kj ≤ 2cr(G − e)/p.

Pj

Pj′

(a) (b) (c) (d)

u
Pj

Fig. 1. Drawings of edge e along two edge-disjoint path Pj and Pj′ may give two first
category crossings at a crossing of D (a). If a path Pj traverses a vertex u (b), then
the edge e drawn along Pj can choose between two possible routes around u (c–d).

At each internal vertex u of a path Pj , the drawing of e in Dj can take two
possible routes, as depicted in Figure 1 (c–d). The two possible routes have a
total of deg(u)−1 second category crossings at u. We draw e along the route with
fewer second category crossings, and so there are at most 1

2 (deg(u)−1) crossing at
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vertex u. Hence, the total number of second category crossings is at most m− n
2 .

Therefore, in the drawing Dj of G, there are at most (1 + 2
p )cr(G − e) + m − n

2
crossings.

The following theorem establishes Theorem 1 for all graphs with n vertices of
degree d1, . . . , dn such that cr(G) ≥ 7

16

∑n
i=1 d2

i . For graphs that do not satisfy
this condition, we alter the proof in Sections 3 and 4.

Theorem 2. For every ε, 0 < ε < 1, there is a positive constant n(ε) such
that for every G with n > n(ε) vertices, with a degree sequence d1, . . . , dn, and
m > n1+ε edges, there is a subgraph G′ of G with at most (1 − ε

8 )m edges such
that

4cr(G′) ≥ cr(G) − 3
8

n∑

i=1

d2
i .

Proof. Erdős and Simonovits [ES82] proved that for every integer r > 1, there
is a constant cr such that every graph G with n vertices and m > crn

1+ 1
r edges

contains a cycle of length 2r. This implies that for 0 < ε < 1, there is a positive
integer r satisfying 1

ε < r ≤ 2
ε so that every sufficiently large graph G with

m > n1+ε edges contains a family C of edge-disjoint cycles of length 2r that
cover at least half of the edges of G. Let G′ be a subgraph of G formed by
deleting an arbitrary edge ej from each cycle Cj ∈ C. The remaining edges of
cycle Cj form a path Pj . Hence, the number of edges of G \ G′ is at least ε

8m.
Let us denote the vertices of G by vi, i = 1, 2, . . . , n, such that the degree of vi

is di in G and d′i in G′. Let hi = di − d′i, which is the number of edges incident
to vi in G \ G′.

Consider a drawing D′ of G′ in the plane with cr(G′) crossings. We generate a
drawing D of G based on D′ by applying the embedding method. In particular,
for every edge ej of cycle Cj ∈ C, we draw ej along the path Pj . Since the paths
Pj with Cj ∈ C are edge-disjoint, D has at most 4 crossings at every crossing of
D′. Therefore, the total number of crossings of D′ and first category crossings
of D is at most 4cr(G′).

Next we estimate the number of second category crossings. Each of the hi

edges incident to vi in G \ G′ is drawn, in a neighborhood of vi, close to one
of the d′i edges incident to vi in G′. The vertex vi with degree d′i in G′ is an
internal node of at most 	(d′i −hi)/2
 paths Pj . For every such path Pj , the edge
ej is drawn along one of two possible routes, as depicted in Figure 1(c-d), with
the minimum number of crossings with the edges of G incident to the vertex vi.
Every edge ej ∈ G \ G′ passing though a small neighborhood of vi has at most
	(d′i + hi − 1)/2
 second category crossings with edges of G incident to vi. Each
pair of edges passing through a small neighborhood of vi cross at most once. So
the total number of second category crossings at vi is at most

⌊
d′i − hi

2

⌋
·
⌊

d′i + hi − 1
2

⌋
+

(
	d′i − hi/2


2

)
<

3
8
d′2i ≤ 3

8
d2

i .

Summing over all vertices, we have at most
∑n

i=1
3
8d2

i second category crossings.
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Hence, we have

cr(G) ≤ 4cr(G′) +
3
8

n∑

i=1

d2
i . �

3 The Sum of Degree Squares and the Crossing Number

The bisection width, denoted by b(G), is defined for every simple graph G with
at least two vertices. b(G) is the smallest nonnegative integer such that there is
a partition of the vertex set V = V1 ∪∗ V2 with 1

3 · |V | ≤ Vi ≤ 2
3 · |V | for i = 1, 2,

and |E(V1, V2)| ≤ b(G). Extending the Lipton-Tarjan separator theorem [LT79],
Gazit and Miller [GM90] established an upper bound on the bisection width in
terms of the sum of degree squares.

Theorem 3 (Gazit and Miller). Let G be a planar graph with n vertices of
degree d1, d2, . . . , dn. Then

b2(G) ≤ 5 + 2
√

6
4

·
n∑

i=1

d2
i .

Pach, Shahrokhi, and Szegedy [PSS96] used Theorem 3 to relate the bisection
width with the crossing number.

Theorem 4 (Pach, Shahrokhi, and Szegedy). Let G be a graph with n
vertices of degree d1, d2, . . . , dn. Then

40cr(G) ≥ b2(G) − 5
2

·
n∑

i=1

d2
i (G).

Pach, Spencer and Tóth [PST00] have further exploited the connection between
the bisection width and the crossing number. They have established lower bounds
on the crossing number of graphs with some monotone graph property in terms
of the number of edges and vertices of the graph. A simplified version of their
proof method yields the following bounds.

Lemma 2. Let G(V, E) be a graph with n vertices of degree d1, d2, . . . , dn, and
m ≥ 8n7/5 log2/5 n edges. Then

cr(G) ≥ 1
24

n∑

i=1

d2
i .

This bound is better than the classical lower bound (1) due to Ajtai et al.
[ACNS82] and Leighton [L84] for graphs of irregular degree patterns and m =
O(n3/2) edges. Consider the complete bipartite graph Ka,b with n = a+b vertices
and m = ab edges, where a ≤ b. For this graph, our Lemma 2 gives cr(G) =
Ω(ab2), which is a tighter than the classical Ω(m3/n2) = Ω(a3b) bound for
(8 + o(1))b2/5 log2/5 b ≤ a ≤

√
b, where the o(1) term goes to 0 as b → ∞.

Similar bounds have also been deduced by Pach, Solymosi, and Tardos [PST06].
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Proof of Lemma 2. We decompose the graph G by the following recursive algo-
rithm into induced subgraphs such that every subgraph is either a singleton or
its squared bisection width is at least five times the sum of its degree squares.
In an induced subgraph H ⊆ G, we denote by degH(v) the degree of a vertex
v ∈ V (H).

1. Let S0 = {G} and i = 0.
2. Repeat until |V (H)| = 1 or b2(H) ≥ 5

∑
v∈H deg2

H(v) for every H ∈ Si.
Set i := i + 1 and Si+1 := ∅. For every H ∈ Si, do

• If b2(H) ≥ 5
∑

v∈H deg2
H(v) or |V (H)| ≤ (2/3)i|V |, then let Si+1 :=

Si+1 ∪ {H};
• otherwise split H into graphs H1 and H2 along an edge separator of

size b(H), and let Si+1 := Si+1 ∪ {H1, H2}.
3. Return Si.

First, we show that the algorithm is correct. In every round, every graph
H ∈ Si that does not satisfy the end condition has at most |V (H)| ≤ (2/3)i · |V |
vertices. The algorithm terminates in t ≤ log(3/2) n rounds, and it returns a set St

of induced subgraphs. By Theorem 4 and the end condition of the decomposition
algorithm, for every H ∈ St we have 40cr(H) ≥ (5/2)

∑
v∈H deg2

H(v). So

40cr(G) ≥ 40
∑

H∈St

cr(H) ≥ 5
2

·
∑

H∈St

∑

v∈H

deg2
H(v) ≥ 5

2
·
∑

v∈V

deg2
H(v,t)(v), (3)

where H(v, i) denotes the graph H ∈ Si containing vertex v ∈ V .
Next, we count the number of edges deleted during the recursive decomposi-

tion. Following an argument of [PST00], we count separately the edges deleted
in each step of the decomposition algorithm. Let S′i = {H : H ∈ Si, H �∈ Si+1},
that is, S′i consists of those subgraphs in Si that are decomposed at step i. No-
tice that |S′i| < (3

2 )i+1 since every subgraph of Si that splits has more than
(2/3)i+1|V | vertices. Let Vi = {v : v is a vertex of a graph H ∈ S′i}.

In step i, when some of the subgraphs in Si are decomposed in Si+1, the total
number of deleted edges is at most

∑

H∈S′
i

√
5

∑

v∈H

deg2
H(v).

Using the Cauchy-Schwartz inequality, we have

∑

H∈S′
i

√
5

∑

v∈H

deg2
H(v) ≤

√
5|S′

i|
√ ∑

v∈Vi

deg2
H(v,i)(v) ≤

√

5
(

3
2

)i+1√ ∑

v∈Vi

deg2
H(v,i)(v).

Since |V (H)| ≤ (2
3 )i|V | for each subgraph H ∈ S′i, we conclude that

√

5
(

3
2

)i+1√ ∑

v∈Vi

deg2
H(v,i)(v) ≤

√

5
(

3
2

)i+1√
max
v∈Vi

degH(v,i)(v) ·
∑

v∈Vi

degH(v,i)(v)

≤

√

5
(

3
2

)i+1
√(

2
3

)i

n(2m) ≤
√

15mn.



180 J. Fox and C.D. Tóth

Since the algorithm terminates in at most log n/ log(3/2) steps, the total num-
ber of edges deleted throughout the decomposition algorithm is at most

√
15

log(3/2)
√

mn log n < 7
√

mn log n.

If we increase the degree of a vertex by one, the degree square increases by at
most 2n− 1 < 2n. By putting back the deleted edges, the sum of degree squares
increases by less than 28m1/2n3/2 log n. From Inequality (2), we have

8cr(G) ≥ 8 · 1024
31827

· m3

n2 ≥ 28m1/2n3/2 log n, (4)

if m ≥ 8n7/5 log2/5 n. Summing Inequalities (3) and (4), we obtain

24cr(G) ≥
∑

v∈V

deg2
H(v,t)(v) + 88m1/2n3/2 log n ≥

n∑

i=1

d2
i .

This completes the proof of Lemma 2. �

We are now ready prove Theorem 1 for the case that m ≥ 8n7/5 log2/5 n.

Theorem 5. For every ε > 0, there is a constant n0 depending on ε such that
if G is a graph with n > n0 vertices and m > 8n7/5 log2/5 n edges, then G
has a subgraph G′ formed by deleting at least m/20 edges from G such that
cr(G′) ≥ 1

13cr(G).

Proof. Combining Theorem 2 and Lemma 2, we obtain

cr(G) ≤ 4cr(G′) +
3
8

n∑

i=1

d2
i ≤ 4cr(G′) + 9cr(G′) = 13cr(G′).

�

4 Proof of Theorem 1

Theorem 5 leaves us with the case that n1+ε ≤ m < 8n7/5 log2/5 n. Instead of
Lemma 4, we employ the following bounds.

Lemma 3. Let G be a graph with n vertices of degree d1, d2, . . . , dn, and m
edges. For any δ, 0 < δ < 1, let Δ=Δ(δ) be the integer such that

∑n
i=1 min(di, Δ)

< 2δm but
∑n

i=1 min(di, Δ + 1) ≥ 2δm. The crossing number of G is bounded
by the sum of truncated degree squares. If m ≥ 45(1 − δ)−2n log2 n, then

cr(G) ≥ 1
16

n∑

i=1

(min(di, Δ))2.
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Lemma 4. Let G be a graph with n vertices and m edges, and let d1 ≤ d2 ≤
. . . ≤ dn denote the degree sequence sorted in monotone increasing order. Let
� be the integer such that

∑�−1
i=1 di < 4m/3 but

∑�
i=1 di ≥ 4m/3. The crossing

number of G is bounded by a prefix sum of the degree squares. If m = Ω(n log2 n),
then

cr(G) ≥
(

1
64

− o(1)
) �∑

i=1

d2
i .

Proof of Lemma 3. Run the recursive decomposition algorithm described in the
previous section on graph G. We have shown that during the algorithm at most
(
√

15/ log 3
2 )√

mn log n edges are deleted. This is less than (1−δ)m if m ≥ 45(1−δ)−2n log2 n.
We are now ready to estimate

∑
v∈V deg2

H(v,t)(v). Since the number of edges
decreased by at most (1 − δ)m, the sum of degrees decreased by at most (2 −
2δ)m. The sum of degree squares decreases maximally if the highest degrees are
truncated to at most Δ, and so we have

∑

v∈V

deg2
H(v,t)(v) ≥

n∑

i=1

(min(di, Δ))2 . (5)

This completes the proof of Lemma 3. �

Proof of Lemma 4. We extend the argument of the previous proof with δ = 5
6 .

If d� ≤ Δ, then the right hand side of (5) must clearly be at least
∑�

i=1 d2
i and

our proof is complete. Let us assume that Δ < d�. Refer to Figure 2.

n

n − 1

�

d�

Δ

i

di

Fig. 2. The monotone increasing degree sequence of a graph G

Recall that
∑n

i=1 di = 2m. We have assumed that
∑n

i=�+1 di ≤ 2m
3 <

∑n
i=� di,

and for δ = 5
6 we have

∑n
i=1 min(di, Δ) < 5m

3 ≤
∑n

i=1 min(di, Δ + 1). It follows
that (n − � + 1)(Δ + 1) > m

3 . Since Δ < n and n = o(m), we conclude that
(n − �)Δ > (1 − o(1))m

3 .
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Observe that (n − �)d� ≤
∑n

i=�+1 di ≤ 2m
3 , and so m ≥ 3

2 (n − �)d�. Fur-
thermore, observe that

∑�
i=1 max(0, di − Δ) ≤

∑n
i=1 max(0, di − Δ) ≤ n +∑n

i=1 max(0, di − (Δ + 1)) ≤ n + m
3 = (1 + o(1))m

3 . Putting these simple obser-
vations together, we obtain

n∑

i=�+1

(min(di, Δ))2 = (n − �)Δ2 >

(
1
3

− o(1)
)

mΔ ≥
(

1
2

− o(1)
)

(n − �)d�Δ

≥
(

1
6

− o(1)
)

d�m ≥
(

1
2

− o(1)
)

d�

�∑

i=1

max(0, di − Δ)

≥
(

1
2

− o(1)
) �∑

i=1

(max(0, di − Δ))2.

We can now estimate the right hand side of Inequality (5).
n∑

i=1

(min(di, Δ))2 =
�∑

i=1

(min(di, Δ))2 +
n∑

i=�+1

(min(di, Δ))2

≥
�∑

i=1

(min(di, Δ))2 +
(

1
2

− o(1)
) �∑

i=1

(max(0, di − Δ))2

≥
(

1
2

− o(1)
) �∑

i=1

(min(di, Δ))2 + (max(0, di − Δ))2

≥
(

1
4

− o(1)
) �∑

i=1

d2
i .

Comparing the above inequality with Inequalities (3) and (5), we obtain cr(G) ≥
( 1
64 − o(1))

∑�
i=1 d2

i . �

We can now prove Theorem 1 in general. Order the vertices v1, v2 . . . vn of G
such that their degree sequence d1, d2, . . . , dn monotone increases. Let � be the
integer such that

∑�−1
i=1 di < 4m

3 but
∑�

i=1 di ≥ 4m
3 . Consider the graph G0

induced by the vertices v1, v2, . . . , v�. Notice that G0 has at least m
3 edges. We

choose a family C of edge-disjoint cycles of length at most 4
ε from G0 so that at

least half of the edges of G0 are covered by cycles of C. Let G′ be a subgraph
of G formed by deleting an edge ej from each cycle Cj ∈ C. We have deleted at
least 1

2 · ε
4 · m

3 = ε
24m edges. Let m′ be the number of edges of G′ and d′i be the

degree of vi in G′. We have d′i ≤ di for 1 ≤ i ≤ � and d′i = di for i > �. It follows
that

∑�−1
i=1 d′i < 4m′

3 . By Lemma 4, we have cr(G′) ≥
( 1

64 − o(1)
) ∑�

i=1 d′2i . If we
apply the embedding method to draw graph G based on the drawing of G′ with
cr(G′) crossings and drawing each ej along Pj , we obtain

cr(G) ≤ 4cr(G′) +
3
8

�∑

i=1

d′2i .

Hence, we have cr(G) ≤ 4cr(G′) + 3
8 (64 + o(1))cr(G′) = (28 + o(1))cr(G′). �



On the Decay of Crossing Numbers 183

Acknowledgments

We would like to thank Daniel J. Kleitman, János Pach, Rados Radoičić, and
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How Important Is the “Mental Map”? – An
Empirical Investigation of a Dynamic Graph

Layout Algorithm
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Abstract. While some research has been performed on the human un-
derstanding of static graph layout algorithms, dynamic graph layout al-
gorithms have only recently been developed sufficiently to enable similar
investigations. This paper presents the first empirical analysis of a dy-
namic graph layout algorithm, focusing on the assumption that maintain-
ing the “mental map” between time-slices assists with the comprehension
of the evolving graph. The results confirm this assumption with respect
to some categories of tasks.

1 Introduction

Research on algorithms for the effective layout of graphs has been active for many
years - these algorithms have typically been valued for their computational ef-
ficiency and the extent to which they conform to pre-defined layout principles.
Only recently any empirical work had been conducted to determine the effect of
conformance to these principles on user understanding [7]. While static graphs
are still applicable and very useful in a variety of situations, recent developments
in graph layout research have concentrated on the layout of dynamic graphs, rep-
resenting changing relational information over time. Examples of applications of
such dynamic processes include software engineering visualizations where graphs
depict the execution time behavior, changing Internet usage and changes in so-
cial network structures. Research on the effects of dynamic layout principles on
user understanding is therefore timely.

1.1 Dynamic Graph Layout Systems

Empirical investigation of a dynamic graph layout system requires that the sys-
tem have changeable parameters, so that comparative tests can be performed.
Several dynamic graph layout systems are domain specific. For example, Bran-
des and Corman [1] present a method for visualizing network evolution in which
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each modification is shown in a separate layer of 3D representation with edges
common to two layers represented as columns connecting the layers. Gevol is a
system that visualizes the evolution of software using a modification of a force-
directed algorithm [3]. Gevol extracts information about a Java program stored
within a CVS version control system and displays it using a temporal graph
visualization method. These systems have all been built for a specific purpose
or specific type of information visualization. Thus there is little room for the
manipulation of layout parameters and the use of different types of algorithms
or data.

GraphAEL is a more generic system for graph animation of evolving layouts
which has been designed to provide the necessary structure and flexibility for
force-directed graph drawing research [5]. The system contains several novel algo-
rithms and visualization techniques, such as force-directed methods in hyperbolic
and spherical spaces. However, the research prototype system made available did
not have an obvious way of manipulating parameters.

We therefore chose GraphAnimation [4] as the first dynamic graph layout sys-
tem for our experiments. GraphAnimation provides two layouts: one based on the
spring algorithm, and one based on a hierarchical algorithm. It provides easy
manipulation of important parameters.

1.2 The User’s “Mental Map”

Dynamic graph drawing involves laying out graphs which evolve over time by the
addition or deletion of edges and nodes at the end of each time period. In cre-
ating systems that produce dynamic graph animation, algorithm designers have
needed to take into account an additional aesthetic criterion known as “preserv-
ing the mental map” [2]. The term mental map refers to the structural cognitive
information a user creates internally by observing the layout of the graph [4].
This internal cognitive structure represents the user’s underlying understanding
of the information. It is important that this remains consistent throughout the
dynamic graph animation, otherwise confusion may result. A good preservation
of the mental map can help people to understand the application, but a display
where it is difficult for the user to maintain a consistent mental map can be
misleading.

In developing a dynamic graph layout algorithm, it is of course useful to take
advantage of existing static graph layout algorithms. Given that each time-slice
could be considered as a static graph, a static graph layout algorithm can be
applied to the graph after each update. Using animation between time-slices
to show how nodes and edges are moved to the new positions may assist in
preserving the mental map over time.

There are therefore two important criteria to consider: the readability of the
individual static layouts and the mental map preservation in the sequence of
drawings. Thus, some interaction is required between the static layout applied
at each time-slice, and the movement of nodes and edges between each time-
slice. The readability of the individual graph drawings produced by a static
layout algorithm depends on aesthetic criteria such as minimal number of bends,
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uniform edge lengths, and minimal number of crossings. Preservation of the
mental map can be achieved by ensuring that nodes that appear in consecutive
graphs in the sequence remain in the same positions, so that they can easily be
identified as the same nodes over time.

These two criteria are often contradictory. If each graph is laid out individ-
ually, without regard to other graphs in the sequence, its readability may be
optimized at the expense of mental map preservation. This may result in an
animation where nodes change position radically from time-slice to time-slice.
On the other hand, if the node positions are fixed in all graphs, mental map
preservation is optimized but the individual layouts may not conform to static
graph drawing aesthetics. This may result in an animation where the time-slices
themselves are difficult to understand because of, for example, a high number of
edge crossings, or several awkward edge bends.

The experiment reported in this paper addresses this contradiction in hi-
erarchical layout of graphs, attempting to determine whether, from a user-
understanding point of view, it is preferable to maintain the mental model,
conform to static layout aesthetics at each time-slice, or make a compromise
between the two.

2 Experimental Methodology

The experimental methodology used was based on former static graph layout
experiments [7], using an online system to present the graphs, asking the partic-
ipants to enter their answers to questions on the graphs, and collecting error and
response time data. As before, tutorial and worked example material was given
at the beginning to familiarize the participants with the experimental tasks, with
a ranking and qualitative questionnaire at the end. A within-subjects method-
ology was used to reduce any subject variability, with the inclusion of practice
tasks and randomization controlling for the learning effect. User-controlled rest
breaks were included throughout the duration of the experiment, to address any
problems of fatigue.

For the empirical analysis of dynamic graphs, additional experimental design
decisions needed to be made with regard to the timing of the presentation of
the graphs and questions. Through pre-pilot and pilots tests, we determined
appropriate animation speed, time per time-slice, the number of times to show
the complete animation, pause time before and after the animation, and an
appropriate range for the feasible number of time-slices. We also determined
when, and for how long, the question should be displayed. These pilots tests
were essential, there being no other former experiments of this kind to inform
these necessary details for our experimental design.

The experimental system used, DynaGUESS was implemented as a generic sys-
tem for information visualization experiments. It facilitates easy preparation and
customization of online experiments, enabling the experimenter to set parame-
ters regarding timing, randomization, and rest breaks. The dependent variables
are the accuracy of the question answers, and the response time.
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2.1 The GraphAnimation Hierarchical Layout Algorithm

The algorithm evaluated was the hierarchical dynamic layout provided by Graph-
Animation [4]. GraphAnimation provides a generic framework for a dynamic layout
process. It offers the possibility to trade local layout quality for dynamic stability
(preserving the user’s mental map) by adjusting a parameter delta that limits
the changes between two layouts of succeeding graphs. A large delta offers more
freedom to support the optimization of the local layout quality whereas a small
delta fortifies the preservation of the mental map.

The hierarchical dynamic layout process in GraphAnimation has many facets.
The static part of the layout algorithm used at each time-slice maintains con-
sistent vertical flow of directed edges; it attempts to produce a layout such that
all edges point downwards. This is done for each graph of the sequence. The
dynamic part of the layout algorithm tries first to keep nodes on the same hi-
erarchical level as in the previous time-slice, and secondly tries to keep nodes
in the same horizontal order. There is therefore a possible tension that could
lead to a contradiction: the static part of the hierarchical layout algorithm could
try to change the vertical level of a node to fulfill the flow constraint, while the
dynamic part of the algorithm tries to keep its level and horizontal order. It is
the choice of parameters that determines the result if there is a conflict.

GraphAnimation provides two delta parameters by which the extent to which
the mental model is maintained between time-slices can be controlled. The two
parameters affect the main phases of the hierarchical layout process – the layer
assignment and the layer sorting:

– Delta on ranks: maximal number of changes in the layer assignment
– Delta on orders: maximal number of changes in the order of the nodes within

one layer

These parameters were used to produce dynamic graph layout animations
under three conditions, these were our independent variables. The values of the
parameters were chosen after extensive visual analysis.

1. High Delta Condition (both deltas=40): priority is given to layout quality
at each time-slice rather than preserving the mental map. This value was
defined in pilot tests as the minimum value for all nodes to move freely.

2. Medium Delta Condition (both deltas=20): equal priority is given to layout
quality at each time-slice and preserving the mental map.

3. Low Delta Condition (both deltas=0): priority is given to preserving the
mental map rather than the layout quality at each time-slice. This is the
best this algorithm can do to maintain the mental model.

The details of the hierarchical dynamic layout algorithm used in Graph-
Animation are presented in [6].

2.2 Experimental Tasks

Three different evolving graphs were created, each with between 14 and 20 nodes,
between 15 and 30 edges and 4 changes per time-slice, where a change is an in-
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sertion or deletion of a node or an edge. We aimed to keep the size and changes
of these graphs as similar as possible, while keeping them distinctive. The graphs
represented the changing structure of an imaginary web site over six time pe-
riods. Each graph animation was created using GAML, an XML-format based
on GraphML which is required by GraphAnimation. Overall, each task had a
time limit of 30 seconds. Each time-slice was displayed for 3 seconds with the
animation between time-slices set at a speed of 1 second. There was a pause of
4 seconds at the beginning of each task in order to allow the user enough time
to read the question before the animation began. A warning beep was sounded
3 seconds before the end of each task to ensure that participants entered their
answer before running out of time.

For each of these graphs, three versions were created, one for each of our three
experimental conditions. Thus, we had nine graph animations in total. These are
here referred to by their graph number (1,2,3), followed by their condition (L,
M, H). For example, the high delta version of the third graph is referred to as
G3H. The appendix shows the diagrams of all the individual layouts of the three
versions of graph 2. The animations of all nine evolving graphs used for the
experiment are available at http://www.cc.gatech.edu/~goerg/GD06.

Each of these nine animations was presented four times, once for each of four
questions, resulting in 36 total tasks. The order of the presentation of tasks was
random. Before beginning the actual 36 tasks, the participants were presented
with a practice set of 8 tasks.
The questions were:

1. How many new links were added to the site over the years?
2. Which page has been changed the most over the years? (meaning the node

which has had the most changes in its incoming and outgoing edges).
3. In which year did the site reduce in size by a quarter? (meaning the year in

which the number of nodes reduced by 25%)
4. In which year did [page name] become accessible through only one other

page?

The first three questions therefore covered the addition and removal of both
nodes and edges, while the fourth one considered the structure of the graph.
Each question was multiple choice with the participants indicating one of four
possible answers their answer with a check box. The incorrect options that were
listed with the correct option were chosen randomly. The worked example and
tutorial at the start of the experiment ensured that the participants knew the
meaning of the questions.

2.3 Experimental Process

20 student participants were recruited; they were typically of a computing sci-
ence background, although there were also some zoologists, musicians and law
students. The experiments were held in 5 sessions over a period of 10 days.
Each experiment, including time spent at the beginning on the tutorial and the
worked example, and on the questionnaire at the end, took approximately 45

http://www.cc.gatech.edu/~goerg/GD06
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minutes. No problems were experienced during the experiments, and all partici-
pants appeared to engage in the task seriously. Participants were paid 5 for their
participation.

3 Results and Analysis

3.1 Analysis by Delta Condition

Our hypothesis was that the extent to which the mental model was maintained
between time-slices would affect performance. Intuitively, we felt that a low
delta value (which results in an animation that attempts to maintain the mental
model) would produce a better performance than a high delta value (which
attempts to produce a ‘good layout’ at each time-slice).

Performance Data. The average number of errors and the average response
time for the three delta conditions are shown in Figure 1.
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Fig. 1. Average Errors and Response Time according to delta. Low delta means few
visual changes between time-slices, so a high conformance to maintaining the mental
model.

To test the hypothesis, first the significance of the effects of each delta con-
dition were investigated 1. The statistical analysis used here is a standard two-
tailed ANOVA analysis, based on the critical values of the F distribution, with
α = 0.05. In all cases, conservative readings of the critical values of the F distri-
bution were used.

Errors. There are no significant differences between delta conditions in the
error data, as F = 1.366 < (F (2, 57) = 3.23).

Response Time. There are no significant differences between delta conditions
in the response time data, as F = 2.489 < (F (2, 57) = 3.23).
1 Identifying a statistical significance between results collected from different con-

ditions indicates that the difference between the results can be attributed to the
differing nature of these conditions, rather than being due to mere chance. In these
experiments, we test whether the probability of the difference being due to chance
is less than 0.05.
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3.2 Further Analysis

At first glance these results appear to disprove our hypothesis. However, further
analysis was performed to identify any possible significant differences between
delta conditions with respect to a particular question or graph. The analysis
above aggregates the data from all four questions and all three graphs: it may
be that delta conditions only affect particular questions or graphs.

We anticipated that there would be a difference in the difficulty of the ques-
tions, and that the delta conditions may have significant effects when considered
independently with respect to the data from each of the different questions.
However, having made an effort to keep the three evolving graphs comparable
(similar size, similar number of changes per time-slice), we did not anticipate
that there would be any difference in difficulty between the graphs. The further
analysis took the form of first applying the ANOVA test to the data from the
four questions, to see if there were differences in performance between them. If
there were significant differences between the performances on the questions, we
then analyzed each question separately according to delta condition, applying
the Bonferroni correction as appropriate. A similar process was followed for the
three graphs.

Analysis with respect to Question. There are no significant differences in
the number of errors between questions (F = 0.6540 < F (3, 76) = 2.76).

However, there are significant differences in the response time data between
questions (F = 35.52 > F (3, 76)). Tukey’s pairwise analysis showed that the
average response time for Q1 was significantly greater than the response times in
Q2, Q3, and Q4. It also showed that the response time for Q2 was significantly
less than the response time in Q4, and the response time for Q2 approaches
significance when compared with Q3. There were no other pairwise differences
(see Figure 2).

As expected, the questions were of different difficulty. Separate analyzes were
performed on the effect of delta condition on the response times for each of the
four different questions.

There were no significant differences in the response time data between delta
conditions in Q1 or in Q2.

For Question 3, (“In which year did the site reduce in size by a quarter?”),
there are significant differences in the response time data between delta condi-
tions (F = 5.832 > F (2, 57)). Tukey’s pairwise analysis showed that the average
response time for low delta value was significantly greater than the response
times in both medium and high delta value conditions. There were no other
pairwise differences (see Figure 3(a)).

For Question 4 (“In which year did [page name] become accessible through
only one other page?”), there were also significant differences in the response time
between conditions (F = 6.903 > F (2, 57)). Tukey’s pairwise analysis showed
that the average response time for low delta values was significantly greater
than the response times in medium and high delta values. There were no other
significant pairwise differences (see Figure 3(b)).
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Fig. 2. Average Response Time according to Question
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(a) Question 3
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(b) Question 4

Fig. 3. Analysis by delta condition

Analysis according to Graph. Our assumption was that the three evolving
graphs themselves were of comparable difficulty (in terms of size and number of
changes per time-slice), and therefore it was appropriate to aggregate the data
from all three of them when testing our initial hypothesis. Our next step was to
test this assumption.

There were no significant differences in the number of errors between each
graph. However, for response time, there were significant differences between
the graphs (F = 15.98 > F (2, 57)). Tukey’s pairwise analysis showed that the
average response times for graphs 2 and 3 were significantly greater than the
response times in graph 1. There were no other pairwise differences (see Figure 4).

This indicated that the graphs were unexpectedly of different difficulty. Sep-
arate analyzes were therefore performed on the effect of the delta condition on
response times for each of the three different graphs. There were no significant
differences in the response time data between delta conditions in graph 1, but
there were differences between delta conditions in graphs 2 and 3.

On examining the three graphs, we could see no discernible differences between
them that would explain the better performance on graph 1, apart from the fact
that graph 1 had more levels and was narrower than the other two graphs. The
fact that there was no variation in data for graph 1 indicates that it was so easy
that a ‘floor’ effect resulted. We therefore removed graph 1 from our analysis,
and repeated the delta condition tests, for each of the four questions.
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Fig. 4. Average Response Time according to graph

The results were more encouraging. There was no significance for question 1,
probably due to a ‘ceiling effect’, as the question was particularly difficult2.
Significance was found in all three other questions:

– For question 2, low delta produced better performance than high delta for
errors (F = 3.23 > F (2, 57))(see Figure 5).

– For question 3, low and medium delta produced better performance than
high delta for errors (F = 3.23 > F (2, 57)); however, as there was also
significance in time data (low and medium delta produced worse performance
than high delta (F = 3.23 > F (2, 57)), this indicates a correlation between
time and error data, so little weight can be attached to these results(see
Figure 6).

– For question 4, low delta produced better performance than high delta for
errors (F = 3.23 > F (2, 57))(see Figure 7).

3.3 Analysis Summary

The significant results with respect to our independent variable, the mental
model (delta) condition, were:

– Question 2 errors (“which page has been changed the most over the years”),
over graphs 2 and 3: high mental model was important.

– Question 3 response time (“in which year did the site reduce in size by a
quarter”), over all graphs: high mental model was not important.

– Question 3 errors (“in which year did the site reduce in size by a quarter”),
over graphs 2 and 3: high mental model was not important.

– Question 3 response time (“in which year did the site reduce in size by a
quarter”), over graphs 2 and 3: high mental model was important.

– Question 4 response time (“in which year did [page name] become accessible
through only one other page?”), over all graphs: high mental model was not
important.

2 A floor/ceiling effect is when the task is so easy/difficult that the manipulation of
experimental condition has no effect on the data variation.
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Fig. 5. Average Errors according to Q2, for graphs 2 and 3
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Fig. 6. Average Errors and Response Times according to Q3, for graphs 2 and 3

– Question 4 errors (“in which year did [page name] become accessible through
only one other page?”), over graphs 2 and 3: high mental model was impor-
tant.

So, in summary, we cannot make any claims about the usefulness of the mental
model for question 1 (as there were no significant results), nor for question 3 (as
the significant results are contradictory, indicating a correlation between the
dependent variables). However, the data implies that when we remove graph 1
from our analysis (as it was found to be too easy), the mental model did assist
with understanding for questions 2 and 4.

– Question 2: “Which page has been changed the most over the years?” In
this case, the mental model would have kept the nodes in similar positions,
so that the participants could focus on the differing density of edges in the
diagram.

– Question 4: “In which year did [page name] become accessible through only
one other page?” The mental model would have helped with this question,
as the participants would have needed to follow a single node through all
time-slices.

Although we cannot make any concrete claims about questions 1 and 3, on
examining these questions, we suggest the following:
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Fig. 7. Average Errors according to Q4, for graphs 2 and 3

– Correctly answering question 1 (“How many new links were added to the
site over the years?”) does not rely on node movement or identification, so
the delta value is irrelevant. This was an extremely difficult question, even
when multiple choice options are given.

– Similarly, correctly answering question 3 (“In which year did the site re-
duce in size by a quarter?”) only focuses on the number of nodes, not their
identification. Thus, the delta value is irrelevant.

We therefore suggest that maintaining the mental map is important for the
comprehension of an evolving graph for tasks that require that nodes be identi-
fiable by name, but that it is less important for tasks that focus on edges rather
than nodes, or which do not require that nodes be nominally differentiated from
each other.

4 Conclusions

These conclusions are, of course, limited by our choice of graph parameters: the
dynamic algorithm used, the size and structure of the graph, the number of
changes per time-slice, and animation speed, and any conclusions can be made
only within the context of these choices. Choices that resulted in tasks being too
easy (G1) or too difficult (Q1) further constrained the conclusions.

Devising an experimental methodology for dynamic graph layout proved more
difficult than for static graph drawings. In particular, we could not rely on exper-
imental tasks based on common graph theoretic questions (for example, “What
is the shortest path between two nodes”) as such questions to do take into ac-
count the temporal, changing nature of the information. It was also very difficult,
as shown, to create three dynamic graphs of similar complexity, even when the
quantitative descriptors of these graphs were comparable. Other practical ex-
perimental issues needed to be addressed carefully, for example, when to display
the question, how many times to show the animation, how to present a worked
example with explanation of correct answers, what pauses are necessary at the
start and end. It became clear that the temporal aspect of a dynamic algorithm
makes for a more complex experimental process.
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These results are the first empirical evidence that the mental map factor
is important in the layout of dynamic graphs and are important despite the
restricted size and scope of this experiment. However, the contribution of this
paper to graph drawing research is more than merely affirming assumptions made
about the importance of maintaining the mental map in the context of two types
of tasks. As the first experiments in this area, it represents a significant step
forward in human empirical research on the efficacy of graph layout algorithms.
There is, of course, substantial future work to be performed in this area - there
are other dynamic algorithms to investigate (e.g. force directed, orthogonal),
other visualization features that can change over time (for example, node sizes,
color), other domains, different sizes and structures of graphs, and alternative
tasks. This initial research opens up this wide, rich area for investigation.

The animations of the graphs used for this experiment are available at the
following webpage http://www.cc.gatech.edu/~goerg/GD06.
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Abstract. Consider a geometric graph G, drawn with straight lines in
the plane. For every pair a, b of vertices of G, we compare the shortest-
path distance between a and b in G (with Euclidean edge lengths) to their
actual Euclidean distance in the plane. The worst-case ratio of these two
values, for all pairs of vertices, is called the vertex-to-vertex dilation of G.

We prove that computing a minimum-dilation graph that connects a
given n-point set in the plane, using not more than a given number m
of edges, is an NP-hard problem, no matter if edge crossings are allowed
or forbidden. In addition, we show that the minimum dilation tree over
a given point set may in fact contain edge crossings.

Keywords: dilation, geometric network, plane graph, spanning ratio,
stretch factor, NP-hardness.

1 Introduction

Given a set P of n points in R
2, one of the basic problems is to find a geometric

network G = (P, E) that provides good connections between the points in P , at
low cost.

Often, the quality of connections is measured as follows. For any two points,
a and b, of P , let πG(a, b) be a shortest path from a to b in G, where the length
of a path is given by the sum of the Euclidean lengths |pipi+1| of its edges
ei = {pi, pi+1}. Then

δG(a, b) :=
|πG(a, b)|

|ab|
denotes the dilation of a, b in G, and

δ(G) := max
a�=b∈P

δG(a, b)
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is the vertex-to-vertex dilation of G. This value is also known as the stretch
factor or the spanning ratio of G; it should not be confused with the geometric
dilation that takes all points of the network into account, vertices and interior
edge points. In this paper, the cost of a network G will be measured by the
number of its edges, |E|. Alternative cost measures would be the weight, i. e.,
the sum of all edge lengths, the diameter, the maximum degree, etc.

Clearly, the complete graph over P has optimal dilation 1 but its number of
edges is, in general, in Ω(n2).1 On the other hand, spanning trees realize the
minimum edge number n − 1, but they cannot offer good connections. In fact,
each tree T containing the vertex set of the regular n-gon has dilation δ(T ) > 1.57
for n = 5, while δ(T ) ∈ Ω(n) holds for larger n; see Ebbers-Baumann et al. [7]
and Aronov et al. [1].

In the framework of spanners it has been shown that one can (almost) combine
the merits of both solutions, and efficiently construct networks of dilation 1 + ε
that have only O(ε−2 · n) many edges; for surveys, see the handbook chapter by
Eppstein [8] or the forthcoming monograph by Narasimhan and Smid [13].

In this paper we are interested in the computational complexity of construct-
ing good geometric spanners. More precisely, we study the following problems.

Definition 1. Given a finite point set P in the plane, a threshold δ > 1 and a
parameter m ≥ |P | − 1,

– the decision problem DilationGraph asks, whether there exists a geometric
graph with vertex set P , that has dilation at most δ and contains at most m
edges

– the decision problem PlaneDilationGraph asks if there exists a crossing-
free geometric graph with the same properties.

In this paper we prove that both DilationGraph and PlaneDilationGraph

are NP-hard. It is interesting to observe that the number |E| of edges we need,
in order to prove NP-hardness, is only slightly larger than the minimum number
|P | − 1. This fits nicely to a recent result by Aronov et al. [1], which also states,
in a different way, that few extra edges matter a lot in constructing spanners.
They proved that with n−1+k edges, where 0 ≤ k < n, a dilation of O(n/k + 1)
can be achieved, which is optimal.

A lot of work has been done on the complexity of finding spanners of low
dilation and weight in general graphs. Closely related to our work is a result
by Brandes and Handke [2]. Building on previous work by Cai [3], they proved
the following fact for weighted graphs. For each fixed rational number δ ≥ 4,
it is an NP-complete problem to decide if a given graph H contains a planar
subgraph G, whose weight does not exceed a given bound W , such that for any
two vertices v, w of H the relation |πH(v, w)| ≤ δ · |πG(v, w)| holds, where the
length of a path is given by the sum of its edge weights.

Our paper extends this result to the (more restrictive) geometric case where
H is the complete graph over n points and edge weights are Euclidean lengths.
1 If m points are collinear we need only m − 1 edges to build a connecting chain of

dilation 1.
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It implies one of the recent results by Gudmundsson and Smid [11] that it is
NP-hard to find a δ-spanner with ≤ m edges in a given geometric graph.

Cai [3] and Cai and Corneil [4] have studied the problem of finding tree
spanners of dilation ≤ δ in weighted graphs. They proved that the decision
problem is NP-complete for any δ ≥ 4, but polynomially solvable for δ = 2,
while the case δ = 3 seems to be open. The corresponding geometric problem
appears to be rather complicated. This may be due to the surprising fact that
the minimum dilation tree over n points in the plane may contain edge crossings,
as we shall prove in Section 4, thus solving an open problem stated by Eppstein
in [8], p. 444.

While working on the revision of this paper we learned that this fact has
also been observed by Cheong et al. [6]. They can show that constructing the
minimum dilation tree is NP-hard, too. On the other hand, Eppstein and Wort-
man [9] showed how to compute, in expected time O(n log n), a star of minimum
dilation for n points.

The rest of this paper is organized as follows. In Section 2 we derive some
technical results that will be needed in the reduction; Section 3, the main part,
contains the reduction from Partition to DilationGraph; and Section 4 pro-
vides a point set whose minimum-dilation tree has a crossing. We close with
some open problems in Section 5.

2 Technical Lemmata

Throughout this section, P denotes a finite set of points in the plane.

Definition 2. (i) A geometric network G = (P, E) with dilation δ(G) ≤ δ will
be called a δ-graph for P . A δ-graph G = (P, E) with |E| ≤ m edges will be called
a (δ, m)-graph for P .
(ii) The δ-ellipse of two points a, b in the plane is the set of all points x satisfying
|ax| + |bx| ≤ δ · |ab|.

Lemma 1. Each shortest path πG(a, b) in a δ-graph G for P is contained in the
δ-ellipse of a, b.

Proof. For each vertex v on πG(a, b) the inequality

δ ≥ |πG(a, b)|
|ab| ≥ |av| + |vb|

|ab|

implies that v is contained in the δ-ellipse of a, b. ��

Now we show how to enforce that certain edges are contained in minimum-weight
(δ, m)-graphs for P , using geometric properties.

Lemma 2. Let a, b be two points in P such that all points of P that are contained
in the δ-ellipse around a, b, lie on the line L through a and b, but not between
a and b. Then the edge ab is contained in any (δ, m)-graph for P of minimum
weight.
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Proof. Assume for contradiction that there is no edge between a and b in some
minimum-weight (δ, m)-graph G for P . Let π be a shortest path from a to b in
G. By Lemma 1 and by assumption, all vertices of π lie on L, but none of them
between a and b. Let q1, . . . , qt be the sequence of these vertices, sorted by their
order on L (which is not the order in which they occur on π; for example, q1
need not be equal to a or b!). Let G′ result from G by replacing the edges of π
with the edges (qi, qi+1) for 1 ≤ i ≤ t − 1. This transformation does not increase
the G-distance of any point pair in P because for each edge of π there exists a
concatenation of collinear edges in G′. Thus, G′ is a (δ, m)-graph for P . On the
other hand, it is clearly of smaller weight than G—a contradiction. ��

3 The Reduction

We shall prove the NP-hardness of DilationGraph and PlaneDilation-

Graph by a reduction from the Partition problem:
Given a set S of n positive integers with

∑
r∈S r even, decide whether there

exists a subset T ⊆ S such that
∑

r∈T r =
∑

r∈S\T r.
Presented with an instance of Partition involving n integers, we are going

to construct a planar point set P of size 5919 · n − 4214. Roughly, this point set
P results from densely sampling a plane straight line drawing that consists of
O(n) segments, as shown in Figure 6. It takes |P |−n− 2 small edges to connect
adjacent sample points on the long segments. If a partition exists for the given
instance, we can carefully add 2n further edges, two in each of the n bubbles
depicted in Figure 6, to ensure that the resulting graph is of dilation ≤ 7.

Conversely, suppose that the class of (7, |P |+n−2)-graphs for P is not empty;
then it contains a graph of minimum weight. By Lemma 2, |P |−n−2 of its edges
are forced to form the long segments. Since the dilation is ≤ 7, the remaining 2n
edges must be placed inside the bubbles, and their positions must correspond to
a partition of the integer set S. In particular, the graph must be plane. These
properties will become evident below.

Our construction depends on n and on the size of the maximum element rmax
of S, and it uses some scaling factors that will be stated as negative powers of
10. Let λ be the smallest integer greater than or equal to 8 for which

max(105rmax, 2nr2
max) < 10λ

holds. In particular, this ensures r · 10−λ < 10−5 for all r ∈ S. Observe that
exponent λ depends linearly on the bit length of the partition instance (which
is bigger than n and the bit length of rmax).

The basic idea behind our reduction is to arrange points along two long U-
shaped paths like in Figure 1.

The vertical baselines of the two U’s will be interrupted by horizonta
gadgets—the bubbles depicted in Figure 6, one for each element r ∈ S. Each
gadget will stretch horizontally over both U’s. It can offer a short cut of ≈ r·10−λ

to either the left U, or to the right U—but not to both, since this would cause
the inner part of the gadget to have a dilation > 7.
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Fig. 1. A double U of intended dilation 7

Consequently, both U’s can receive the same total short cut, approximately

P :=
1
2

∑

r∈S

r · 10−λ,

if and only if set S admits a partition. After carefully adjusting the lengths of
the horizontal edges of the U’s, this will become equivalent to both U ′s having
a dilation ≤ 7 at their respective endpoints.

3.1 The Choice Gadget

The core part of our reduction is the choice gadget, which realizes the selection of
an element r ∈ S for the subset T from the given Partition instance. Basically,
such a gadget consists simply of two horizontal densely sampled lines, with a
larger gap in the upper row. Figure 2 shows the relative lengths and distances
of the respective parts. The three segments au, vc, and bd are sampled with a
regular spacing of 10−2, giving a total of 1703 points.

1

3 1 1 1

a

b

c

d

3

u vx y

x′ y′

Fig. 2. The choice gadget (with lengths annotated)

Assume we want to connect this point set to a tree, i.e., with |P | − 1 edges so
that the dilation is exactly 7—the same threshold as is intended on the global
scale. By Lemma 2, we know that, because the three line segments are very
densely sampled, in a minimum weight graph we must have an edge between
any pair of direct neighbors on those segments. This leaves just two more edges
for connecting the segments.

There must be at least one edge from top to bottom, so let’s assume that
there is such an edge, e, incident to a point on the line between a and u. Then
the second edge cannot touch segment au, too, because otherwise the resulting
path from c to d would be more than 10 units long. Hence, there must also be
an edge f between the upper right segment vc and the bottom segment bd.

Taking the dilation of the points u and v into consideration, too, we see that
a dilation of 7 can only be achieved if the edges e and f connect the points x, x′
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and y, y′, respectively. Shifting these links to the left or right would impair the
dilation between one of the pairs {a, b}, {c, d}, or {u, v}. Tilting e or f would
have a similar effect because slanted edges are longer than vertical ones.

However, allowing only one solution is not what we desire. For the configu-
ration to work as a choice gadget, we apply two minor modifications to leave
some very restricted room for the precise placement of the links e and f . On the
bottom line we introduce two extra points: a point x̂ exactly r · 10−λ to the left
of x′, where r is the given integer from the set S that we want to encode into
this gadget, and a point ŷ located r · 10−λ to the right of y′.2

Moreover, we shift the middle points u and v on the upper line slightly out-
wards, each by a distance of r · 10−λ−1, so that the width of the gap increases
by 2r · 10−λ−1. See Figure 3 for a close-up on the relevant parts of the modified
point set.

a

b

x

x′x̂

u v y

ŷy′

c

d

3 3

r · 10−λ r · 10−λ

1 − r · 10−λ−1 1 − r · 10−λ−1

3

Fig. 3. A non-proportional drawing of the crucial parts of the final choice gadget

What is the effect of these modifications? First of all, it is easy to see that a
dilation-7 tree on the new point set cannot deviate much from the optimum that
we have determined for the original set above. There still have to be all edges
between direct neighbors along the three segments and there have to be the two
edges e and f somewhere around x, x′, y, and y′. Increasing the distance from u
to v by 2r ·10−λ−1 does not give us enough room to fix e or f to any upper vertex
other than the designated x and y, respectively, since any shift of these edges
would immediately increase one of the relevant distances by 10−2. Moving the
upper endpoint of e some k points to the left while moving the lower endpoint
k steps to the right would not work either because it would increase the edge
length to at least

√
12 + .022 ≈ 1.0002, which yields an increase in the distance

that cannot be compensated by the comparatively small shift of u and v.
It turns out that the only freedom for placing the connections e and f lies

in choosing x′ or x̂, respectively y′ or ŷ, as their lower endpoints. What if we
connect e to x̂ but f to y′, i.e., the left connection tilts slightly to the left, while
the right one stays perfectly vertical? The resulting dilation of u and v would
then be

2 Just for the record: we have now used 1705 points per choice gadget.



202 R. Klein and M. Kutz

7 − 2r · 10−λ−1 + r · 10−λ +
√

1 + (r · 10−λ)2 − 1
1 + 2r · 10−λ−1 .

The square root, which is due to the slope of the edge e, minus 1 is smaller than
the 2r · 10−λ−1 term so that this expression is smaller than

7 + r · 10−λ

1 + 1
5r · 10−λ

= 7 · 7 + r · 10−λ

7 + 7
5r · 10−λ

< 7

for such r.
Thus we see that slanting one of the two edges e and f outward does not

create a dilation of more than 7 in the gadget. (It is obvious that the vertices u
and v form the dilation-critical pair in this configuration, all other pairs having
better dilation.)

But if we slanted both edges outward, connecting them to x̂ and ŷ, we would
get a dilation of

7 − 2r · 10−λ−1 + 2r · 10−λ + 2
√

1 + (r · 10−λ)2 − 2
1 + 2r · 10−λ−1 ,

which is lower bounded by 7, as straightforward calculation shows. Therefore it
is not possible to slant both edges outward without raising the dilation above 7.

This concludes the construction of our choice gadget. For a given integer r,
we built it in such a way that either the path from a to b or that from c to d
can be reduced by

1 + r · 10−λ −
√

1 + r2 · 10−2λ ≥ r · 10−λ − r2 · 10−2λ.

We will now insert such gadgets into the big picture of Figure 1 by connecting
their left endpoints a, b to the left U there and the right endpoints c, d to the
right U.

3.2 Linking the Choice Gadgets

For a Partition instance S of size n, we have to build n individual choice
gadgets, one for each r ∈ S. We arrange all these gadgets vertically, one below the
other, forcing their left and right endpoints to get connected by paths. Figure 4
shows two choice gadgets linked at their endpoints.

The vertical distance between two choice gadgets is three on each side, left and
right, we bridge this gap by a column of points with a regular spacing of 10−2.
The highest of these points is placed exactly 1/10 below the endpoint of the
upper gadget and symmetrically, the lowest point sits 1/10 above the endpoint
of the bottom gadget.

Since the internal spacing of such a link is by a factor of 10 smaller than the
gaps to the endpoints, Lemma 2 applies and tells us that any dilation-7 graph
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1

1

3

1
10

1
10

Fig. 4. Two choice gadgets linked at their endpoints

must connect these 281 points by the canonical 280 length-10−2 edges. The only
question that remains is, how such a vertical segment connects to the gadgets
above and below. It clearly has to establish connections there to avoid extremely
large dilation between the endpoint of the gadget and the endpoint of the vertical
link, which are only 1/10 apart.

Globally, only a connection that minimizes the length of the resulting path
along the vertical link and through the gadgets can lead to a dilation ≤ 7 of
the corresponding U . Such connections will look roughly like the one shown in
Figure 5. The further away the slanted edge is from the endpoints c and w,
the better the short cut. However, the diagonal is also restricted by the dilation
between c and w.

1
10

1
100

c

w

Fig. 5. Efficiently connecting around a corner

It is not hard to find out that an almost perfect 45◦-connection yields the
optimal tradeoff between short-cut effect and c-w dilation. One verifies that
connecting the 23th point to the right (counting c as the first) with the 15th on
the left (counting w as the first) yields the best3 short cut, giving a c-w dilation
of (

22
100

+
14
100

+

√
( 22
100

)2 +
( 14
100

+
1
10

)2
)

/
1
10

≈ 6.856 < 7.

3 One could as well connect the 25th point to the 13th point and obtain the same
values for dilation and shortcut; minimum dilation graphs need not be unique.
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On path length we save at each corner

(
22
100

+
14
100

+
1
10

−
√

( 22
100

)2 +
( 14
100

+
1
10

)2
)

=
23
50

−
√

265
50

≈ 0.134.

3.3 Putting Everything Together

We are now prepared to assemble all n choice gadgets and the two big U’s into
one big point set, as shown in Figure 6.

� �

Fig. 6. The whole reduction in one picture; n choice gadgets are marked with bubbles

Let us consider again how many edges we are going to allow for this point set,
in order to enforce a dilation very close to 7. Each of the segments in Figure 6
shall form a long path. Taken alone, every choice gadget shall form a tree, with
all its points connected but without any internal cycles. Cycles are only created
by the links between gadgets. Precisely, every pair of link paths induces exactly
one cycle. For a total number of |P | points, we thus fix the number of edges to

m = |P | − 1 + (n − 1) = |P | + n − 2,

where n again denotes the number of gadgets.
It remains to calibrate the length � of the horizontal segments of the two U’s

in such a way that only a fair split of the total “short cut potential”

P =
∑

r∈S

r · 10−λ,

can result in a dilation ≤ 7 between the endpoints of each U .
First, let us assume that a partition S = T ∪ (S \ T ) is possible such that

the sum of the elements of T equals the sum over the elements of S \ T . In the
choice gadgets associated with T the left edges are slanted, whereas in the other
gadgets the right edges are slanted. By the results of Subsections 3.1 and 3.2,
the path through the left U has total length
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≤ 2 � + n7 −
∑

r∈T

(r · 10−λ − r2 · 10−2λ) + (n − 1)
(

3 − 2(
23
50

−
√

265
50

)
)

(1)

≤ 2 � + (n − 1)
(

10 − 23 −
√

265
25

)
+ 7 − 1

2
P + nr2

max10−2λ (2)

Exactly the same upper bound applies to the length of the path through the
right U. We want the value of (2) to be at most 7 times the Euclidean distance
of the endpoints of a U, which equals n ·1+(n−1) ·3 = 4n−3, by construction.
This can be achieved by letting

� ≤ (n − 1)
(

9 +
23 −

√
265

50

)
+

1
4
P − 1

2
nr2

max10−2λ. (3)

Now let us assume that no partition of S is possible. Let L denote the set of
all gadgets whose left edges are slanted, and let R be the set of choice gadgets
with a slanted right edge. If a gadget lies in both, L and R, it causes a dilation
> 7. So assume that L and R are disjoint. For one of these sets—say: L— must∑

r∈L r < 1
2

∑
r∈S r hold. Then the total length of the path through the left U

is at least

2 � + n7 −
∑

r∈L

(r · 10−λ −
√

1 + r2 · 10−2λ) + (n − 1)
(

3 − 23 −
√

265
25

)
(4)

≥ 2 � + n7 − 1
2
P + 1 · 10−λ + (n − 1)

(
3 − 23 −

√
265

25

)
(5)

≥ 2 � + (n − 1)
(

10 − 23 −
√

265
25

)
+ 7 − 1

2
P + 10−λ. (6)

The left U will give a dilation > 7 if the value of (6) exceeds 7 times the
distance of its endpoints, that is, if

� > (n − 1)
(

9 +
23 −

√
265

50

)
+

1
4
P − 1

2
10−λ. (7)

In order to fulfill conditions (3) and (7) we use Newton’s method to approx-
imate

√
265, the only irrational number involved, by a rational number q to an

error smaller than

10−(2λ+2) <
10−(λ+2)

2n
<

10−λ − nr2
max10−2λ

100n
;

these estimates hold due to the choice of λ. This takes a number of iterations
logarithmic in λ. Then, we compute � from (3), read as an equality, after substi-
tuting the root by q.
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Observe that the coefficient of n − 1 in (3) is ≈ 9.1344, and that the additive
terms are bounded. If we split � into 913(n − 1) equal pieces, each of them has a
(rational) length close enough to 10−2 to make Lemma 2 work for the horizontal
segments of the big U. This takes 4 · 913 · (n − 1) additional points. Now the
definition of point set P is complete.

It is clear that that the description complexity of the constructed point set P
is polynomial in the size of the Partition instance S, and that all computations
can be carried out by a Turing machine. Moreover, S admits a partition if and
only if there exists a graph of dilation ≤ 7 over P with |P | + n − 2 edges; and
each such graph of minimum weight must be plane. Thus, we have shown the
following.

Theorem 1. The decision problems DilationGraph and PlaneDilation-

Graph are NP-hard.

By counting the numbers of points and edges introduced in our construction,
one verifies that even the following problem is NP-hard. Given a set of k points,
is there a plane graph of dilation ≤ 7 over these points that contains at most
5920
5919 · k − 7624

5919 many edges?

4 Crossings in the Minimum Dilation Tree

It is well-known that a (Euclidian) minimum spanning tree on a point set in the
plane cannot have any edge crossings. In [8, p. 444], Eppstein asks whether this
is also the case for minimum-dilation trees.

We give a negative answer to this question. In fact, it is not too hard to verify
that any spanning tree on the 7-point set in Figure 7 has a dilation of at least 2
and that the two trees that attain this value both contain an edge crossing.

11

1
3ε

ε
ε

a b

c dv

x

y

Fig. 7. A 7-point set whose minimum-dilation trees have a crossing

The reason for the inevitable crossing in our example lies in the overlay of two
structures on different scales, that is, of a large U on acvdb and a tiny hook on
xyv. However, we could easily draw a crossing-free tree on the points of Figure 7
if we were allowed to produce a slightly suboptimal dilation.
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5 Open Problems

Is there a constant c > 1 such that for every point set P , there exists a
crossing-free spanning tree on P whose dilation is no more than c times that
of a minimum-dilation tree? How fast can such tree be computed?

In view of the recent result by Mulzer and Rote [12] on the minimum weight
triangulation, is it also NP-hard to construct the minimum dilation triangulation
of a given point set?
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Abstract. We investigate which chordal graphs have a representation
as intersection graphs of pseudosegments. The main contribution is a
construction which shows that all chordal graphs which have a represen-
tation as intersection graph of subpaths on a tree are representable. A
family of intersection graphs of substars of a star is used to show that
not all chordal graphs are representable by pseudosegments.

1 Introduction

A set of Jordan arcs induces a graph G, the vertices of G are the Jordan arcs and
two Jordan arcs are adjacent if and only if they have non-empty intersection.
Graphs representable in this model are called string graphs. String graphs are
quite complicated, only recently it has been shown that membership in this
class is at least decidable [7,11]. All planar graphs are string graphs, this follows
e.g. from Koebe’s circle representations.

If any two Jordan arcs in a set of nontagent Jordan arcs are either disjoint or
have exactly one point of intersection, we call this as set of pseudosegments and
the resulting class of graphs as intersection graphs of pseudosegments. We denote
this class by PSI. Deciding whether a given graph is a PSI-graph is known to be
NP-complete [8]. A main open problem is whether all planar graphs belong to PSI
(see [1,2,3,4,5]). Actually, most of the cited references discuss the class of segment
intersection graphs, the problem whether all planar graphs are representable is
open with respect to this class as well.

There are some classes of graphs where PSI-representations are trivial (e.g. per-
mutation graphs) or very easy to find (e.g. interval graphs). A large superclass of
interval graphs is the class of chordal graphs. In this paper we investigate chordal
graphs in view of their representability as intersection graphs of pseudosegments.
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2 Basic Definitions and Results

Definition 1. A graph G = (VG, EG) is a VPT-graph1, if there exists a tree
T = (VT , ET ) and a set P of paths in T such that there is a mapping v → Pv ∈ P
with the property that vw ∈ EG iff Pv ∩ Pw �= ∅. Such a pair (T, P) is said to be
a VPT-representation of G .

These graphs have been introduced by Gavril [6] who gave a recognition algo-
rithm and have been studied continuously since then. Monma and Wei [10] give
some applications and many references. Our first result is:

Theorem 1. Every VPT-graph has a PSI-representation.

The proof of the theorem is given in Section 3. At this point we content ourselves
with an indication that the result is not as trivial as it may seem at first glance.
Let a VPT-representation (T, P) of a graph G be given. If we fix a plane embed-
ding of the tree we obtain an embedding of each of the paths Pv corresponding
to v ∈ VG, this embedded path Pv is a Jordan arc. The first idea for converting
a VPT-representation into a PSI-representation would be to slightly perturb Pv

into a pseudosegment sv and make sure that paths with common vertices inter-
sect exactly once and are disjoint otherwise. Figure 1 gives an example of a set
of subpaths which can’t be perturbed such that they give a PSI-representation
of the corresponding subgraph.

cba

c′
b′a′

Fig. 1. The paths P (a,a′), P (b, b′) and P (c, c′) can not locally be perturbed into a
PSI-representation

A superclass of VPT-graphs is the class of vertex intersection graphs of sub-
trees of a tree. Graphs with such a representation are exactly the chordal graphs.

Clearly, every cycle Cn, n ∈ N has a representation as intersection graph of
pseudosegments, whereas Cn is not chordal for n ≥ 4. Hence the class PSI is not
contained in the class of chordal graphs.

Theorem 2. There are chordal graphs that are not in the class PSI.

The proof of the theorem is given in Section 4. There we use geometric arguments
to show that the graph K3

n defined below is not in PSI.
1 VPT is mnemonic for vertex intersection graph of paths on a tree.
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K3
n has two groups of vertices, vertices v1, .., vn that are a clique and a vertex

vi,j,k for every triple {i, j, k} ⊂ [n]. These triple-vertices are adjacent only to
the three corresponding vertices vi, vj and vk, hence form an independent set.
The graph K3

n can be represented as intersection graph of subtrees of a star S
with

(
n
3

)
leaves. The leaves correspond to the vertices vi,j,k and these vertices

are represented by trivial trees with only one node. A vertex vi of the complete
graph is represented by the star connecting to all leaves of triples containing i.
This representation shows that K3

n is chordal.
The central node of the star S has high degree. If we take a path of

(
n
3

)
nodes

and attach a leaf-node to each node of the path we obtain a tree T of maximum
degree three such that the graph K3

n can be represented as intersection graph of
subtrees of T . Actually the tree T and its subtrees are caterpillars of maximum
degree three.

These remarks show that the positive result of Theorem 1 and the negative
of Theorem 2 only leave a small gap for questions: If the subtrees in a tree
representation of a chordal graph are paths we have a PSI-representation. If we
allow the subtrees to be stars, or caterpillars of maximum degree three, there
need not exist a PSI-representation. We don’t know the answer if the subtrees
in the representation only have a small constant number of leaves. When the
number of leaves is allowed to get as big as 741 =

(39
2

)
the graph K3

39 again
shows that the graphs are not in PSI. We think that one node of degree three
in each subtree of a tree representation is sufficient to get graphs which are not
PSI-representable. More precisely, let Sn be the chordal graph whose vertices are
represented by all substars with three leaves and all leaves on a star with n leaves.

Conjecture 1. For n large enough, Sn is not a PSI-graph.

3 Proof of Theorem 1

3.1 Preliminaries

Let P be a path in a tree T with endpoints a and b, this is denoted P = P (a, b).
If both endpoints of P are leaves of T we call P a leaf-path.

Lemma 1. Every VPT-graph has a representation (T, P) such that all paths in
P are leaf-paths and no two vertices are represented by the same leaf-path.

Proof. Let an arbitrary VPT-representation (T, P) of G with Pv = P (av, bv)
for all v ∈ VG be given. Now let T be the tree obtained from T by attaching
a new node x to every node x of T . Representing the vertex v by the path
Pv = P (av, bv) in T yields a VPT-representation of G using only leaf-paths.

The definition of VPT-graphs as intersection graphs immediately implies that
every induced subgraph of a VPT-graph is a VPT-graph as well. The lemma
together with this observation shows that Theorem 1 is implied by the following:

Theorem 3. Given a tree T we let G be the VPT-graph whose vertices are in
bijection to the set of all leaf-paths of T . The graph G has a PSI-representation
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with pseudosegments si,j corresponding to the paths Pi,j = P (li, lj) in T . In
addition there is a collection of pairwise disjoint disks, one disk Ri associated
with each leaf li of T , such that:

(a) The intersection si,j ∩ Rk �= ∅ if and only if k = i or k = j. Furthermore
the intersections si,j ∩ Ri and si,j ∩ Rj are Jordan curves.

(b) Any two pseudosegments intersecting Ri cross in the interior of this disk.

We will prove Theorem 3 by induction on the number of inner nodes of tree T .
The construction will have multiple intersections, i.e., there are points where
more than two pseudosegments intersect. By perturbing the pseudosegments
participating in a multiple intersection locally the representation can easily be
transformed into a representation without multiple intersections.

3.2 Theorem 3 Is True for Trees with One Inner Node

Let T have one inner node v and let L = {l1, .., lm} be the set of leaves of T .
The subgraph H of G induced by the set P = {P (li, lj) | li, lj ∈ L, li �= lj} of
leaf-paths is a complete graph on

(
m
2

)
vertices, this is because every path in P

contains v.
Take a circle γ and choose m points c1, .., cm on γ such that the set of straight

lines spanned by pairs of different points from c1, .., cm contains no parallel lines.
For each i choose a small disk Ri centered at ci such that these disks are disjoint
and put them in one-to-one correspondence with the leaves of T . Let si,j be the
line connecting ci and cj . If the disks Rk are small enough we clearly have :

Ri

Fig. 2. The construction for the star with five leaves
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(a) The line si,j intersects Ri and Rj but no further disk Rk.

(b) Two lines sI and sJ with I ∩ J = {i} contain corner ci, hence sI and sJ

cross in the disk Ri.

Prune the lines such that the remaining part of each si,j still contains its in-
tersection with all the other lines and all segments have there endpoints on a
circumscribing circle C. Every pair of segments stays intersecting, hence, we have
a segment intersection representation of H .

Add a diameter si,i to every disk Ri, this segment serves as representation for
the leaf-path Pi,i. Altogether we have constructed a representation of G obeying
the required properties (a) and (b), see Figure 2 for an illustration.

3.3 Theorem 3 Is True for Trees with More Than One Inner Node

Now let T be a tree with inner nodes N = {v1, .., vn} and assume the Theorem
has been proven for trees with at most n − 1 inner nodes. Let L = {l1, .., lm}
be the set of leaves of T . With Li ⊂ L we denote the set of leaves attached
to vi. We have to produce a PSI-representation of the intersection graph G of
P = {Pi,j | li, lj ∈ L}, i.e., of the set of all leaf-paths of T . Let v1 be the root of
T , h its resulting height and choose a vertex of N with distance h − 1 from the
root, say vn. We define two induced subtrees of T :

• The tree Tn is the star with inner node vn and its leaves Ln = {lk, .., lm}.

• The tree T ′ contains all nodes of T except the leaves in Ln. The set of inner
nodes of T ′ is N ′ = N\{vn}, the set of leaves is L′ = L\Ln ∪ {vn}. For
consistency we rename l0 := vn in T ′, hence L′ = {l0, l1, .., lk−1}.

l7

l8
l9

vn

Tnl8
l9

l1

l2

l3 l4
l5

l6

T ′

l0

l7

l1

l2

l3 l4
l5

l6

T

Fig. 3. A tree T and the two induced subtrees T ′ and Tn

Let Gn and G′ be the VPT-graphs induced by all leaf-paths in Tn and T ′.
Both these trees have fewer inner nodes than T . Therefore, by induction we can
assume that we have PSI-representations PSn of Gn and PS′ of G′ as claimed
in Theorem 3. We will construct a PSI-representation of G using PSn and PS′.
The idea is as follows:
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1. Replace every pseudosegment of PS′ representing a leaf-path ending in l0 by
a bundle of pseudosegments. This bundle stays within a narrow tube around
the original pseudosegment.

2. Remove all pieces of pseudosegments from the interior of the disk R0 and
patch an appropriately transformed copy of PSn into R0.

3. The crucial step is to connect the pseudosegments from the bundles through
the interior of R0 such that the induction invariants for the transformed
disks of Rr with k ≤ r ≤ m are satisfied.

The set P of leaf-paths of T can be partitioned into three parts. The subsets P ′
and Pn are leaf-paths of T ′ or Tn let the remaining subset be P∗. The paths in
P∗ connect leaves li and lr with 1 ≤ i < k ≤ r ≤ m, in other words they connect
a leaf li from T ′ through vn with a leaf in Tn. We subdivide these paths into
classes P∗1 , .., P∗k−1 such that P∗i consists of those paths from P∗ which start in
li. Each P∗i consists of |Ln| paths. In T ′ we have the pseudosegment si,0 which
leads from li to l0. Replace each such pseudosegment si,0 by a bundle of |Ln|
parallel pseudosegments routed in a narrow tube around si,0.

We come to the second step of the construction. Remove all pieces of pseu-
dosegments from the interior of R0. Recall that the representation PSn of Gn

from 3.2 has the property that all long pseudosegments have their endpoints on
a circle C. Choose two arcs Ab and At on C such that every segment spanned
by a point in Ab and a point in At intersects each pseudosegment si,j with i �= j,
this is possible by the choice of C. This partitions the circle into four arcs which
will be called Ab, Al, At, Ar in clockwise order. The choice of Ab and At im-
plies that each pseudosegment touching C has one endpoint in Al and the other
in Ar.

Map the interior of C with an homeomorphism h into a wide rectangular
box Γ such that At and Ab are mapped to the top and bottom sides of the
box, Al is the left side and Ar the right side. This makes the images of all long
pseudosegments traverse the box from left to right. We may also require that the
homomorphism maps the disks Rr to disks and arranges them in a nice left to
right order in the box, Figure 4 shows an example. The figure was generated by
sweeping the representation from Figure 2 and converting the sweep into a wiring
diagram (the diametrical segments sr,r have been re-attached horizontally).

Fig. 4. A box containing a deformed copy of the representation from Figure 2
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In the box we have a left to right order of the disks Rr, lr ∈ Ln. By possibly
relabeling the leaves of Ln we can assume that the disks are ordered from left
to right as Rk, .., Rm.

This step of the construction is completed by placing the box Γ appropriately
resized in the disk R0 such that each of the segments si,0 from the representation
of G′ traverses the box from bottom to top and the sides Al and Ar are mapped
to the boundary of R0. The boundary of R0 is thus partitioned into four arcs
which are called Al, A

′
t, Ar, A

′
b in clockwise order. We assume that the segments

si,0 touch the arc A′b in PS′ in counterclockwise order as s1,0, .., sk−1,0, this can
be achieved by renaming the leaves appropriately.

Note that by removing everything from the interior of R0 we have discon-
nected all the pseudosegments which have been inserted in bundles replacing
the original pseudosegments si,0. Let Bin

i be the half of the bundle of si,0 which
touches A′b and let Bout

i be the half which touches A′t. By the above assump-
tion the bundles Bin

1 , .., Bin
k−1 touch A′b in counterclockwise order, consequently,

Bout
1 , .., Bout

k−1 touch A′t in counterclockwise order. Within a bundle Bin
i we label

the segments as sin
i,k, .., sin

i,m, again counterclockwise. The segment in Bout
i which

was connected to sin
i,r is labeled sout

i,r The pieces sin
i,r and sout

i,r will be part of the
pseudosegment representing the path Pi,r.

To have property (b) for the pseudosegments of a bundle we twist whichever of
the bundles Bin

i or Bout
i traverses Ri within this disk Ri thus creating a multiple

intersection point. Note that they all cross si,i as did si,0.
Also due to (b) the pseudosegments of paths Pi,r for fixed r ∈ {k, .., m} have

to intersect in the disks Rr inside of the box Γ . To prepare for this we take a
narrow bundle of k − 1 parallel vertical segments reaching from top to bottom
of the box Γ and intersecting the disk Rr. This bundle is twisted in the interior
of Rr. Let ǎr

1, .., ǎ
r
k−1 be the bottom endpoints of this bundle from left to right

and let âr
1, .., â

r
k−1 be the top endpoints from right to left, due to the twist the

endpoints ǎr
j and âr

j belong to the same pseudosegment.
We are ready now to construct the pseudosegment si,r that will represent

the path Pi,r in T for 1 ≤ i < k ≤ r ≤ m. The first part of si,r is sin
i,r, this

pseudosegment is part of the bundle Bin
i and has an endpoint on A′b. Connect this

endpoint with a straight segment to ǎr
i , from this point there is the connection

up to âr
i . This point is again connected by a straight segment to the endpoint of

sout
i,r on the arc A′t. The last part of si,r is the pseudosegment sout

i,r in the bundle
Bout

i . The construction is illustrated in Figure 5.
It remains to prove that the construction indeed yields a representation of

G as intersection graph of pseudosegments and that this representation has the
properties (a) and (b) from Theorem 3. The argument is split into a series of
claims.

Claim 1. There is exactly one pseudosegment si,j for every pair li, lj of leaves
of T .

Claim 2. The pseudosegment si,j traverses Ri and Rj but stays disjoint from
every other of the disks.
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Bin
2

A′
t

A′
b

Bin
1

Bin
k−1

Bout
k−1

Bout
1

RmRk

Fig. 5. The routing of pseudosegments in the disk R0, an example

Claim 3. Any two pseudosegments intersecting the disk Ri cross in Ri.

Claim 4. Two pseudosegments si,j and si′,j′ intersect at most once, i.e., to call
them pseudosegments is justified.

Claim 5. Two pseudosegments si,j and si′,j′ intersect exactly if the correspond-
ing paths Pi,j and Pi′,j′ intersect in T .

With the verification of these claims the proof of Theorem 3 is complete. In this
extended abstract we dispense with the proof.

4 Proof of Theorem 2

Recall the definition of the graphs K3
n from the introduction: K3

n has two groups
of vertices, the set VC = {v1, .., vn} induces a clique and there is an additional
vertex vi,j,k for every triple {i, j, k} ⊂ [n]. These triple-vertices are adjacent only
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to the three corresponding vertices vi, vj and vk, hence form an independent set
denoted VI .

Assuming that there is a representation of K3
n as intersection graph of pseu-

dosegments the set of pseudosegments can be divided into PSC and PSI , i.e.,
the pseudosegments representing vertices from VC and VI .

The pseudosegments of PSC form a set of pairwise crossing pseudosegments,
we refer to the configuration of these pseudosegments as the arrangement An.
The set S = PSI of ’small’ pseudosegments has the following properties:

(i) Pseudosegments t �= t′ from S are disjoint,

(ii) Every pseudosegment t ∈ S has nonempty intersection with exactly three
pseudosegments from the arrangement An and no two pseudosegments t �= t′

intersect the same three pseudosegments from An.

The idea for the proof is to show that a set of pseudosegments with properties (i)
and (ii) only has O(n2) elements. The theorem follows, since |S| =

(
n
3

)
= Ω(n3).

4.1 Geometric Restriction

Every pseudosegment p ∈ An is cut into n pieces by the n − 1 other pseudoseg-
ments of An. Let W be the set of all the pieces obtained from pseudosegments
from An, note that |W | = n2. A triple-segment t ∈ S intersects with exactly three
pieces of three different pseudosegments of An. Hence it has a unique middle and
two outer intersections. Let S(w) be the set of triple-segments with middle in-
tersection on the piece w ∈ W . The set S is partitioned as S =

⋃̇
w∈W S(w).

Define Gp = (W, Ep) as the simple graph where two pieces w, w′ are adjacent
if and only if there exists a triple-segment t ∈ S such that t has its middle
intersection on w and an outer intersection on w′.

Lemma 2. Gp = (W, Ep) is planar.

Proof. A planar embedding of Gp is induced by An and S. Contract all pieces
from pseudosegments in An, the contracted pieces represent the vertices of Gp.

Fig. 6. A part of An with some triple-segments and the edges induced by them of Gp



Chordal Graphs as Intersection Graphs of Pseudosegments 217

The pseudosegments in S are pairwise non-crossing, this property is maintained
during contraction of pieces, see Figure 6. If t ∈ S has middle piece w and outer
pieces w′ and w′′, then t contributes the two edges (w, w′) and (w, w′′). Hence,
the multigraph obtained through these contractions is planar and its underlying
simple graph is indeed Gp.

Let N(w) be the set of neighbors of w ∈ W in Gp and let dGp(w) = |N(w)|.

Lemma 3. The size of a set S(w) of triple-segments with middle piece w is
bounded by dGp(w) − 1 for every w ∈ W .

w

Fig. 7. The planar graph NGw induced by the triple-segments with middle intersection

Proof. Define the neighborhood graph NGw = (N(w), Ew) for every w ∈ W
where two vertices u, u′ are adjacent, if and only if there is a short pseudoseg-
ment t ∈ S(w) with u and u′ as outer pieces. The number of edges of NGw equals
the number of triple-segments in S(w). The idea is to contract just the pieces cor-
responding to elements of N(w) to points. The triple-segments in S(w) together
with the vertices obtained by contraction form a planar graph, see Figure 7.
Note that the resulting graph is not a multigraph, since a multiple edge would
correspond to a pair of triple-segments intersecting the same three pieces of An.
We will show that NGw is acyclic, hence a forest. This implies the statement of
Lemma 3.

Assume there was a cycle C in NGw. Label its vertices w1, .., wk ∈ N(w)
such that wkw1 and wiwi+1 with 1 ≤ i < k are the edges of C. Let ti be the
triple-segment defining edge wiwi+1. Recall that ti intersects wi, w and wi+1. A
cycle in NGw corresponds to a simple closed curve in the PSI-representation as
follows: Denote the part of wi connecting its crossings with ti and ti−1 by ai.
As wi ∈ W is a piece and tj ∈ S(w) ⊆ S, the set of pieces and triple-segments
contributing to C as vertices or edges does not induce more crossings than the
pairs (wi, tj) with j ∈ {i − 1, i}. Ignoring the pending ends of ti, the union of
the ai and ti, i ∈ {1, .., k} corresponds to a simple closed curve Γ within the
PSI-representation. The curve Γ is the concatenation of ai and ti in the order
a1, t1, a2, .., tk−1, ak, tk, see Figure 8.
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Γ

w

ai+1

ti

ai−1

ai

ti−1

Fig. 8. A chain of segments corresponding to a cycle in NGw

Note that k ≥ 3, as NGw is not a multigraph. Choose three triple-segments
tj , ti, tl from Γ such that they intersect w in this order and no other triple-
segment of C crosses w between them. We will identify a simple closed curve γ
separating wi and wi+1. Even more, the complete pseudosegments p and p′ con-
taining wi respectively wi+1 will be separated by γ. This is a contradiction to the
fact that they both belong to the set An of pairwise intersecting pseudosegments.

Such a curve γ can be described as follows: By possibly shifting the indices
of wi along C, we can assume i < j < l. Denote the part of w between its inter-
sections with tj and tl by wj,l. Be Pj+1,l the subpath of C\wi connecting wj+1
and wl, denote the corresponding part of Γ by Γj+1,l. Connect wj,l to Γj+1,l at
tj and tl. This gives a simple closed curve γ. The curve γ consists of an arc of
Γ , the arc wj,l of w and parts of tj and tl. It follows that γ can not be crossed
by a pseudosegment from An. Recall that by definition of PSI-representations
an intersection of pseudosegments implies, that they cross. Applied to the in-
tersection of ti and wj,l ⊂ w this has the consequence that wi and wi+1 are on

wi+1

tl

wl

γ
wj+1

tj

wj,l
wi

ti

Fig. 9. Pieces wi and wi+1 are separated by γ
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different sides of γ, see Figure 9. As shown before this implies that the complete
pseudosegments p containing wi and p′ containing wi+1 have to lie on different
sides of γ, hence they can not intersect, a contradiction to the choice of An. Thus
NGw is acyclic and Ew is bounded by dGp(w) − 1.

In addition to the result of Lemma 3 we know

• |W | = n2,

•
∑

w∈W dGp(w) = 2|Ep| < 6|W |.
This implies |S| =

∑
w∈W |S(w)| ≤

∑
w∈W (dGp(w) − 1) < 6|W | = 6n2.

Since
(
n
3

)
> 6n2 for all n ≥ 39 we conclude that K3

n does not belong to PSI
for n ≥ 39. This completes the proof of Theorem 2.

5 Conclusions and Further Questions

We have investigated the containment relation between the classes of PSI-graphs
and of chordal graphs. This may stimulate investigations concerning the relation
between PSI-graphs and other classes. Of course the main open problem in the
area remains the question whether all planar graphs are PSI-graphs.
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Abstract. st-orientations (st-numberings) or bipolar orientations of
undirected graphs are central to many graph algorithms and applica-
tions. Several algorithms have been proposed in the past to compute an
st-orientation of a biconnected graph. However, as indicated in [1], the
computation of more than one st-orientation is very important for many
applications in multiple research areas, such as this of Graph Drawing.
In this paper we show how to compute such orientations with certain
(parameterized) characteristics in the final st-oriented graph, such as
the length of the longest path. Apart from Graph Drawing, this work
applies in other areas such as Network Routing and in tackling difficult
problems such as Graph Coloring and Longest Path. We present primary
approaches to the problem of computing longest path parameterized st-
orientations of graphs, an analytical presentation (together with proof
of correctness) of a new O(m log5 n) (O(m log n) for planar graphs) time
algorithm that computes such orientations (and which was used in [1])
and extensive computational results that reveal the robustness of the
algorithm.

1 Introduction

The problem of orienting an undirected graph such that it has one source, one
sink, and no cycles (st-orientation) is central to many graph algorithms and
applications, such as graph drawing [2,3,4,5,6], network routing [7,8] and graph
partitioning [9].

st-numberings were first introduced in 1967 in [10], where it is proved that
given any edge {s, t} of a biconnected undirected graph G, we can define an
st-numbering. The proof of a theorem in [10] gives a recursive algorithm that
runs in time O(nm). However, in 1976 Even and Tarjan proposed an algorithm
that computes an st-numbering of an undirected biconnected graph in O(n+m)
time [11]. Ebert [12] presented a slightly simpler algorithm for the computation
of such a numbering, which was further simplified by Tarjan [13]. The planar
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case has been extensively investigated in [14] where a linear time algorithm is
presented which may reach any st-orientation of a planar graph. Additionally,
in [15] a parallel algorithm is described (running in O(log n) time using O(m)
processors) and finally in [16] another linear time algorithm for the problem is
presented. An overview of the work concerning bipolar orientations is presented
in [17].

However, as indicated in [1], the computation of more than one st-orientation
is very important for many applications in the area of Graph Drawing. Most al-
gorithms use any algorithm that produces such an orientation, e.g., [11], without
expecting any specific properties of the oriented graph.

In this paper we approach the problem of computing st-orientations of specific
properties. We present and give proof of correctness of algorithms that are able
to control the length of the longest path of the resulting directed acyclic graph.
The algorithms run in O(m log5 n) time (O(m log n) time for planar graphs).
This provides significant flexibility to many graph algorithms and applications
[2,3,7,8,9]. We also present extensive experimental results that reveal the robust-
ness of the algorithm.

2 Preliminaries

2.1 The Very First Approach

The aim of this work has always been the computation of st-orientations of
longest path length that can be efficiently controlled by an input. Towards this
goal, we investigated the possibility of modifying the existing linear algorithms in
order to produce longest path parameterized st-orientations. These algorithms,
such as [11], proceed by choosing over a set a vertices. Thus in order to pro-
duce multiple st-orientations using these algorithms, one should try to consider
different combinations of successive vertices. Some heuristics applied for the
Tarjan-Even algorithm are described in [18], where after extensive computa-
tional results, we reached to the conclusion that exploiting the freedom of choice
of successive vertices this algorithm gives us, can only lead to st-orientations that
almost have no difference in the longest path length. After similar attempts on
other existing algorithms, it became evident that linear time was not enough
to produce both a correct st-orientation and to be able to discriminate between
different longest path length st-orientations. As a result of this, we seeked for
new algorithms that achieve this goal.

2.2 Exploiting Biconnectivity

The main idea behind the algorithm was the explosion of the biconnectivity
structure of a graph. This finally seemed to be of great importance in a way
that we could compute both a correct st-orientation of a graph and we could
efficiently influence the length of the longest path of the computed st-orientation
by using some information this structure can provide.
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Following, we introduce some terminology and preliminary results. Through-
out the paper, NG(v) denotes the set of neighbors of node v in graph G, s the
source of the graph, t the sink of the graph and l(u) the length of the longest path
of a node u from the source s of the graph. Let G = (V, E) be a one-connected
undirected graph, i.e., a graph that contains at least one vertex whose removal
causes the initial graph to disconnect. The vertices that have that property are
called separation vertices, articulation points or cutpoints. Each one-connected
graph is composed of a set of blocks (biconnected components) and cutpoints
that form a tree structure. This tree is called the block-cutpoint tree [19] of the
graph and its nodes are the blocks and cutpoints of the graph. Suppose now
that G consists of a set of blocks B and a set of cutpoints C. The respective
block-cutpoint tree T = (B ∪ C, U) has |B| + |C| nodes and |B| + |C| − 1 edges.
The edges (i, j) ∈ U of the block-cutpoint tree always connect pairs of blocks
and cutpoints such that the cutpoint of a tree edge belongs to the vertex set of
the corresponding block.

The block-cutpoint tree is a free tree, i.e., it has no distinguished root. In
order to transform this free tree into a rooted tree, we define the t-rooted block-
cutpoint tree with respect to a vertex t. Consequently, the root of the block-
cutpoint tree is the block that contains t.

Finally, we define the leaf-blocks of the t-rooted block-cutpoint tree to be
the blocks, except for the root, of the block-cutpoint tree that contain a single
cutpoint. The block-cutpoint tree can be computed in O(n + m) time with an
algorithm similar to DFS [19]. Following, we give the description of the algorithm.

3 The Algorithm

The main idea of the algorithm is based on the successive removal of nodes
and the simultaneous update of the t-rooted block-cutpoint tree. We call each
removed node a source, because at the time of its removal it is effectively chosen
to be a source of the remainder of the graph. We initially remove s, the first
source, which is the source of the desired st-orientation and orient all its incident
edges from s to all its neighbors. After this removal, there exist three possibilities:

– The graph remains biconnected
– The graph is decomposed into several biconnected components but the

number of leaf-blocks remains the same
– The graph is decomposed into several biconnected components and the

number of leaf-blocks changes

This procedure continues until all nodes of the graph but one are removed. Fi-
nally, we encounter the desired sink, t, of the final st-orientation. The updated
biconnectivity structure gives us information about the choice of our next source.
Actually, the biconnectivity maintenance allows us to remove nodes and simul-
taneously maintain a ”map” of possible vertices whose future removal may or
may not cause dramatic changes to the structure of the tree.

As it will be clarified in the next sections, at every step of the algorithm
there will be a set of potential sources to continue the execution. Our aim is to



Parameterized st-Orientations of Graphs: Algorithms and Experiments 223

establish a connection between the current source choice and the length of the
longest path of the resulting st-oriented graph.

Lemma 1. Let G = (V, E) be an undirected biconnected graph and s, t be two
of its nodes. Suppose we remove s and all its incident edges. Then there is at
least one neighbor of s lying in each leaf-block of the t-rooted block-cutpoint tree
of G − {s}. Moreover, this neighbor is not a cutpoint.

Proof. If graph G − {s} is still biconnencted, the proof is trivial, as the t-rooted
block-cutpoint tree consists of a single node (the biconnected component G −
{s}), which is both root and leaf-block of the t-rooted block-cutpoint tree. If
graph G − {s} is one-connected, suppose that there is a leaf-block � of the t-
rooted block-cutpoint tree defined by cutpoint c such that N(s)∩� = {Ø}. Then
c, if removed, still disconnects G and thus G is not biconnected, which does not
hold. The same occurs if N(s) ∩ � = {c}. Hence there is always at least one
neighbor of s lying in each leaf-block of the t-rooted block-cutpoint tree, which
is not a cutpoint. �

Let now G = (V, E) be an undirected biconnected graph and s, t two of its
nodes. We will compute an st-orientation of G. Suppose we recursively produce
the graphs Gi+1 = Gi − {vi}, where v1 = s and G1 = G for all i = 1, . . . , n − 1
(note that the subscript i of vi denotes the order with which the nodes are
removed).

During the procedure (which we call STN) we always maintain a t-rooted
block-cutpoint tree. Additionally, we maintain a structure Q that plays a major
role in the choice of the next source. Q initially contains the desired source
for the final orientation, s. Finally we maintain the leaf-blocks of the t-rooted
block-cutpoint tree. During every iteration i of the algorithm node vi is chosen
so that

– it is a non-cutpoint node that is an element of Q
– it belongs to a leaf-block of the t-rooted block-cutpoint tree

Note that for i = 1 there is a single leaf-block (the initial biconnected graph)
and the cutpoint that defines it is the desired sink of the orientation, t. When a
source vi is removed from the graph, we have to update Q in order to be able to
choose our next source. Q is then updated by removing vi and by inserting all
nodes u ∈ NGi(vi) except for t.

Each time a node vi is removed we orient all its incident edges from vi to its
neighbors. The procedure continues until Q gets empty. Let F = (V ′, E′) be the
directed graph computed by this procedure. We claim that F = (V ′, E′) is an
st-oriented graph:

Lemma 2. During STN, every node becomes a source exactly once. Addition-
ally, after exactly n−1 iterations (i.e., after all nodes but t have been processed),
Q becomes empty.

Proof. Let v �= t be a node that never becomes a source. This means that all
incident edges (u, v) have direction u → v. As the algorithm gradually removes
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sources, by simultaneously assigning direction, one u must be a cutpoint (as
v �= t will become a biconnected component of a single node). But all nodes
u are chosen to be neighbors of prior sources. By Lemma 1, u can never be a
cutpoint, hence node v �= t will certainly become a source exactly once. Finally,
Q gets empty at the end of the algorithm as each time at least one node is added
into Q and exactly one node is removed from it. �

By Lemmas 1, 2, we see that at each iteration of the algorithm there will be at
least one node to be chosen as a future source.

Corollary 3. Suppose after a vertex v is removed, r different leaf-blocks are
created. Then in each leaf-block of the t-rooted block-cutpoint tree there exists at
least one non-cutpoint node that belongs to Q. �

Lemma 4. The directed graph F = (V ′, E′) has exactly one source s and exactly
one sink t.

Proof. Node v1 = s is indeed a source, as all edges (v1, N(v1)) are assigned a
direction from v1 to its neighbors in the first step. Node t is indeed a sink as it is
never chosen to become a current source and all its incident edges are assigned
a direction from its neighbors to it during prior iterations of STN. We have to
prove that all other nodes have at least one incoming and one outgoing edge. As
all nodes v �= t become sources exactly once, there will be at least one node u
such that (v, u) ∈ E′. Sources v �= t are actually nodes that have been inserted
into Q during a prior iteration of the algorithm. Before being chosen to become
sources, all nodes v �= s �= t are inserted into Q as neighbors of prior sources
and thus there is at least one u such that (u, v) ∈ E′. Hence F has exactly one
source and one sink. �

Lemma 5. The directed graph F = (V ′, E′) has no cycles.

Proof. Suppose STN has ended and there is a directed cycle vj , vj+1, . . . , vj+l, vj

in F . This means that (vj , vj+1), (vj+1, vj+2), . . . , (vj+l, vj) ∈ E′. During STN,
after an edge (vk, vk+1) is inserted into E′, vk is deleted from the graph and
never processed again and vk+1 is inserted into Q so that it becomes a future
source. In our case after edges (vj , vj+1), (vj+1, vj+2), . . . , (vj+l−1, vj+l) will have
been oriented, nodes vj , vj+1, . . . , vj+l−1 will have been deleted from the graph.
To create a cycle, vj should be inserted into Q as a neighbor of vj+l, which does
not hold as vj /∈ NGj+l

(vj+l) (vj has already been deleted from the graph). Thus
F has no cycles. �

By Lemmas 4, 5 we have:

Theorem 6. The directed graph F = (V ′, E′) is st-oriented. �

Alg.1 is a recursive algorithm for the st-orientation computation of a biconnected
undirected graph G. During the execution of the algorithm we can also compute
an st-numbering f (line 9) of the initial graph. Actually, for each node vi that is
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Algorithm 1. STN(G, s, t)
1: Initialize F = (V ′, E′);
2: Initialize m(i) = 0 for all nodes i of the graph; (timestamp vector)
3: j = 0; {Initialize a counter}
4: Q = {s}; {Insert s into Q}
5: STREC(G, s); {Call the recursive algorithm}
6: ————————————————————-
7: function STREC(G, v)
8: j = j + 1;
9: f(v) = j;

10: V = V − {v}; {A source is removed from G}
11: V ′ = V ′ ∪ {v}; {and is added to F}
12: for all edges (v, i) ∈ E do
13: E = E − {(v, i)}
14: E′ = E′ ∪ {(v, i)}
15: end for
16: Q = Q ∪ {N(v) ∼ t} − {v}; {The set of possible next sources}
17: m(N(v)) = j;
18: if Q == {Ø} then
19: f(t) = n;
20: return;
21: else
22: T (t, B1

j , B2
j , . . . , Br

j )=UpdateBlocks(G); {Update the block-cutpoint tree; hi
j is

the cutpoint that defines the leaf-block Bi
j}

23: for all leaf-blocks (Bi
j , h

i
j) do

24: choose v� ∈ B�
j ∩ Q ∼ {h�

j}
25: STREC(G, v�);
26: end for
27: end if

removed from the graph, the subscript i is the final st-number of node vi. The
st-numbering can also be computed in linear time after the algorithm has ended,
by executing a topological sorting on the computed st-oriented graph F .

Note that in the algorithm we use a vector m(v) (line 17), where we store a
timestamp for each node v of the graph that is inserted into Q. These timestamps
are of great importance during the choice of the next candidate source and will
give us the opportunity to control the length of the longest path. Actually, they
express the last time that a node v became candidate for removal.

Note that the recursion is executed exactly n − 1 times. The running time
of each recursive call is consumed by the procedure that updates the block-
cutpoint tree, which is O(n + m) [19]. Hence it is easy to conclude that STN
runs in O(nm) time. However, it can be made to run faster by a more efficient
algorithm to maintain biconnectivity.

In fact, Holm, Lichtenberg and Thorup [20] investigated the problem of main-
taining a biconnectivity structure without computing the block-cutpoint tree
from scratch. They presented a fully dynamic algorithm that supports the inser-
tion and deletion of edges and maintains biconnectivity in O(log5 n) amortized



226 C. Papamanthou and I.G. Tollis

time per edge insertion or deletion. In our case, only deletions of edges are done.
If we use this algorithm in order to keep information about biconnectivity, we
obtain the following:

Theorem 7. Algorithm STN can be implemented to run in O(m log5 n)
time. �

Finally, for planar graphs, we can compute biconnected components in O(log n)
amortized time per edge deletion due to [21]. Hence, the algorithm can be im-
plemented to run in O(m log n) time for planar graphs 1.

Finally, the st-orientation algorithm defines an st-tree Ts (Figure 1). Its root is
the source of our graph s (p(s) = −1). It can be computed during the execution
of the algorithm. When a node v is removed, we simply set p(u) = v for every
neighbor u of v, where p(u) is a pointer to the father of each node u. The father
of a vertex can be updated many times until the algorithm terminates. This tree
is a directed tree that has two kinds of edges, the tree edges, which show the last
father-ancestor assignment between two nodes made by the algorithm and the
non-tree edges that include all the remaining edges. The non-tree edges never
produce cycles. Finally, note that the sink t is always a leaf of the st-tree Ts.
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Fig. 1. Algorithm execution on a graph (left) and the respective st-tree (right). Beside
each node of the graph the STN rank of visit is depicted.

As it happens with every st-oriented graph, there is a directed path from every
node v to t and hence the maximum depth of the st-tree will be a lower bound
for the length of the longest path, l(t):

Theorem 8. Let G be an undirected biconnected graph and s, t two of its nodes.
Suppose we run STN on it and we produce the st-oriented graph F and its st-tree
Ts. If d(Ts) denotes the maximum depth of the st-tree then l(t) ≥ d(Ts). �

Additionally, there is a strong connection between the structure of the t-rooted
block-cutpoint tree and the length of the longest path of the st-oriented graph
that STN computes:
1 We thank Philip Klein for this observation.



Parameterized st-Orientations of Graphs: Algorithms and Experiments 227

Theorem 9. Suppose STN is run on an undirected st-Hamiltonian graph2 G.
Let ki denote the number of the leaf-blocks of the t-rooted block-cutpoint tree
after the i-th removal of a node, for i = 1, 2, . . . , n − 1. Then l(t) ≤ n − 1 −∑

ki>ki−1
(ki − ki−1). �

4 Longest Path Parameterized Orientations

4.1 Maximal and Minimal Case

We have used two approaches in order to produce st-oriented graphs with long
longest path and st-oriented graphs with small longest path. As presented in
Section 3, during each iteration of the algorithm a timer j (line 8 of Algorithm
1) is incremented and each vertex x that is inserted into Q gets a timestamp
m(x) = j.

Our investigation has revealed that if vertices with high timestamp are chosen
then long sequences of vertices are formed and thus there is higher probability
to obtain a long longest path length. We call this way of choosing vertices MAX-
STN. Actually, MAX-STN resembles a DFS traversal (it searches the graph at
a maximal depth). Hence, during MAX-STN, the next source v is arbitrarily
chosen from the set {v ∈ Q′ : m(v) = max{m(i) : i ∈ Q′}}.

On the contrary, we have observed that if vertices with low timestamp are
chosen, then the final st-oriented graph has relatively small longest path length.
We call this way of choosing vertices MIN-STN, which in turn resembles a BFS
traversal. Hence, during MIN-STN, the next source v is arbitrarily chosen from
the set {v ∈ Q′ : m(v) = min{m(i) : i ∈ Q′}}. Note that the choice of the
new vertex with the minimum or maximum timestamp does not influence the
running time of the algorithm (it can be done in O(log n) time) since we can
implement Q′ as a priority queue.

4.2 Medium (Parameterized) Case

Instead of computing st-oriented graphs with either long or small length of
longest path, it would be desirable to be able to produce medium (parame-
terized) longest path st-oriented graphs. So the question that arises is: Can we
insert a parameter into our algorithm, for example a real constant p ∈ [0, 1] so
that our algorithm computes a directed acyclic graph of length of longest path
that is a function of p?

It turns out that this is feasible if we modify STN. As the algorithm is exe-
cuted exactly n times (n vertices are removed from the graph), we can execute
MAX-STN for the first pn iterations and MIN-STN for the remaining (1 − p)n
iterations. We call this method PAR-STN(p) and we say that it produces an st-
oriented graph with length of longest path from s to t equal to Δ(p). Note that
PAR-STN(0) is equivalent to MIN-STN and Δ(0) = λ(t), while PAR-STN(1)
2 We say that a graph is st-Hamiltonian when it has at least one simple path from s

to t that contains all the other nodes of the graph.
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is equivalent to MAX-STN and Δ(1) = �(t). PAR-STN has been tested and it
produces longest paths with Δ(p) ≥ p(n − 1), when applied to st-Hamiltonian
graphs. Actually, Δ(p) is very close to p(n − 1). Additionally, it has been ob-
served that if we switch the order of MAX-STN and MIN-STN execution, i.e.,
execute MIN-STN for the first pn iterations and MAX-STN for the remaining
(1 − p)n iterations, then we get longest paths with Δ(p) ≤ p(n − 1). These
observations are fully clarified in the experimental results, where it is evident
that the algorithm can compute many st-numberings within [λ(t), �(t)]. In this
way, applications that use st-numberings can use this interval to compute an
optimized solution.

4.3 Longest Path Timestamps and Weighted Graphs

If we apply a relaxation phase during STN, we can compute the longest path
length l(v) from s to every node v during the execution of STN. This can be
achieved as follows: At the beginning, we initialize the longest path vector l to
be the zero vector, hence l(v) = 0 ∀v ∈ V . Suppose that at a random iteration of
the algorithm we remove a node u and we orient all u’s incident edges (u, i) away
from u. For every oriented edge (u, i) ∈ E′ of weight wui (in case of unweighted
graphs it is wui = 1) we relax l(i) as follows:

1: for all (u, i) ∈ E′ do
2: if l(i) < l(u) + wui then
3: l(i) = l(u) + wui;
4: end if
5: end for

Instead of now using the timestamps m(u) to choose the next source of the
algorithm, we can use the online computed longest paths l(u).

This method mainly applies to the case of weighted graphs. By using the
relaxed longest path length as a timestamp, we can produce long or short st-
orientations of weighted graphs. Hence, the presented algorithm, implemented
with the longest path timestamp method can be used to compute weighted
numberings on the weighted st-oriented graph that is produced.

5 Some Applications

There are many areas where parameterized st-orientations can apply. For exam-
ple, many Graph Drawing Algorithms [2,3,4,5,6] use an st-orientation as their
first step. Actually, the length of the longest path of the used st-orientation de-
termines the area bounds of the final drawing (the area can be reduced by a
factor of n for some classes of graphs [1]). More details can be found in [1].

Additionally, MAX-STN can be used as a heuristic for the longest path prob-
lem in undirected graphs. Actually, as we will see in the experimental results
section, MAX-STN produces near optimal results for this problem.

MIN-STN can even be used to compute good colorings of graphs. By pro-
ducing a good solution for the minimum st-orientation problem we can obtain a
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good solution for the graph coloring problem, based on the polynomial reduction
between the two problems [22].:

Theorem 10. ( [22]) Let G = (V, E) be a connected graph and let G′ = (V ∪
{s, t}, {E ∪ {s, i} ∪ {t, i}∀i ∈ V }). χ is the chromatic number of G if and only
if G′ can be st-oriented with a minimum longest path length st-orientation with
l(t) = χ + 1. �
Based on the above theorem (which actually justifies the NP -hardness of the
minimum longest path length st-orientation problem3), we used PAR-STN(0) to
st-orient G′ and derive a coloring for G. We give some indicative results for the
graph coloring problem in the experimental results section.

6 Experimental Results

The first tests were conducted on st-Hamiltonian Graphs (Table 1). We used
this class of graphs as they have an a priori known upper bound for the max-
imum longest path length equal to n − 1. In this way, we could see how effec-
tive the parameter p is. In order to construct the graphs in random, we com-
pute a random permutation P of the vertices of the graph. Then we construct
a cycle by adding the undirected edges (P (1), P (2)), (P (2), P (3)), . . . , (P (n −
1), P (n)), (P (n), P (1)) and we chose at random two adjacent nodes of the cycle
to be the source s and the sink t of our graph. This guarantees the existence of
a Hamiltonian path from s to t and a possible maximum longest path length of
every st-oriented graph of length n − 1. Finally we add the remaining nd − n
edges, given that the density of the desired graph is d. We keep a list of edges
that have not been inserted and make exactly nd − n random choices on this
list, by simultaneously inserting the chosen undirected edge into the graph and
updating the list of the remaining undirected edges. During the execution of the
algorithm, ties between the timestamps of the candidate sources are broken at
random. We isolate the nodes that satisfy the current timestamp condition (i.e.,
the nodes with maximum timestamp in case of MAX-STN and the nodes with
minimum timestamp in case of MIN-STN) and afterwards we choose a node
from the isolated set at random.

The second series of experiments was conducted on low density (roughly equal
to 1.5) planar graphs (Table 2). These graphs were constructed as follows: We
build up a tree of n nodes by randomly picking up a node and setting it to be
the root of the tree. Then we connect the current tree (initially it only consists
of the root) with a node that does not belong to the current tree and which is
chosen at random. We execute the same procedure till all nodes are inserted into
the tree. Then we connect the leaves of the tree following a preorder numbering
so that all crossings are avoided.

Finally, the third series of experiments were conducted on weighted graphs
(Figure 2). We used the algorithm described section 4.3 and make use of
3 Note that the maximum longest path length st-orientation problem is NP -hard by

reduction from the directed Hamilton Path problem.
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Table 1. Results for density 6.5 st-Hamiltonian graphs

n p=0 p=0.3 p=0.5 p=0.7 p=1
l(t)

(n−1)
l(t)

(n−1)
l(t)

(n−1)
l(t)

(n−1)
l(t)

(n−1)

200 0.085 0.372 0.568 0.743 0.963
400 0.051 0.341 0.540 0.731 0.964
600 0.041 0.332 0.532 0.726 0.963
800 0.033 0.330 0.527 0.721 0.962
1000 0.027 0.325 0.521 0.716 0.967
1200 0.024 0.322 0.521 0.718 0.965
1400 0.024 0.318 0.515 0.714 0.964
1600 0.020 0.318 0.515 0.712 0.964
1800 0.020 0.315 0.514 0.710 0.966
2000 0.019 0.314 0.514 0.710 0.964
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Table 2. Results for low density planar graphs

n p=0 p=0.5 p=1
l(t) l(t) l(t)

250 123.10 168.90 216.90
500 229.50 297.40 399.60
750 360.10 489.40 629.10
1000 485.20 639.60 831.40
1250 592.30 818.00 1060.70
1500 651.00 991.60 1304.10
1750 842.10 1145.70 1486.30
2000 910.30 1302.80 1686.10
2250 1077.20 1448.40 1892.60
2500 1134.10 1539.80 2053.50
2750 1350.70 1700.70 2198.10
3000 1451.30 2025.80 2590.20
3250 1418.80 2156.00 2814.40
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the parameter p in the same way as in the case of undirected graphs. The
weighted graphs were constructed as follows. Firstly we construct a respective
st-Hamiltonian unweighted graph.

Then we set a value W to be an upper bound on the weights of the edges of the
graph. We set the weights of the edges that lie on a hamiltonian path from s to t
equal to W . Clearly, the maximum longest path length of an st-orientation that
corresponds to such weighted graphs is (n − 1)W . The weights of the remaining
edges are uniformly distributed in [1, W ].

From Tables 1 and 2 we can see that, by using parameter p, we can influence
the length of the longest path of the final st-oriented graph. It is remarkable that
for the class of st-Hamiltonian graphs (Table 1) the computed length of longest
path for a parameter p is approximately p(n − 1). For the class of low density
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Fig. 2. Results for weighted graphs for W = 10, 20, 30 (up to bottom)

planar graphs (Table 2), the algorithm performs very well and indeed computes
different st-orientations according to the parameter. Finally, for the class of the
weighted graphs, note that the length of the longest path of the st-orientation
is in absolute accordance with the value of the parameter p and the value W .
More resutls can be found at http://www.csd.uoc.gr/∼cpap/MSc thesis.ps.

As far as the applications of parameterized st-orientations in graph
coloring are concerned, we have tested known benchmarks available at
http://mat.gsia.cmu.edu/COLOR/instances.html (Table 3) and got good

Table 3. Some benchmark graphs for which MIN-STN has computed an optimal or
near optimal coloring

file name n m optimal coloring MIN-STN (p=0) coloring
games120.col 120 368 9 9
jean.col 80 254 10 10
huck.col 74 301 11 11
zeroin.i.1.col 211 4100 49 49
mulsol.i.3.col 184 3916 31 31
mulsol.i.1.col 197 3925 49 49
fpsol2.i.1.col 496 11654 65 65
miles250.col 128 387 8 9
anna.col 138 493 11 12
inithx.i.2.col 645 13979 31 32
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results for most of the tested graphs. Results are promising for other classes
of graphs also.

7 Conclusions and Future Work

In this paper, we show that there is a very efficient way to control the length of
the longest path of a produced st-orientation. In this way, we are able to produce
more than one st-numberings of certain quality. This work is especially important
from an applied point of view. The parameterized st-orientations can be used by
various algorithms that use an st-numbering as their first step. In this way, better
solutions to certain problems can be produced [1]. Concerning future work, some
interesting questions that come out of this work are the following:(a) Can we
prove that the presented algorithm may reach any possible st-orientation (note
that the algorithm can also choose non-cutpoint nodes that belong to some block
of the block-cutpoint tree)? and (b) Can we compute an st-orientation given a set
of edges that have a predefined orientation (constrained st-orientation problem)?
(c) Implementation of efficient data structures for the t-rooted block-cutpoint
tree.
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(Brown University), Roberto Tamassia (Brown University) and Mihalis
Yannakakis (Columbia University) for useful comments and discussions.
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Abstract. This article introduces a straight-line drawing algorithm for
quadrangulations, in the family of the face-counting algorithms. It out-
puts in linear time a drawing on a regular W ×H grid such that W +H =
n − 1 − Δ, where n is the number of vertices and Δ is an explicit com-
binatorial parameter of the quadrangulation.

1 Introduction

A plane graph G (also called planar map) is a graph embedded in the plane,
defined up to continuous deformation. A major issue in graph drawing is to
compute a straight-line drawing of G, i.e., to place vertices of G at points of
a regular W × H grid (W being called the width and H the height of the
grid), so that the drawing obtained by linking adjacent vertices by segments is a
planar drawing of G. An extensive literature is devoted to straight-line drawing
of triangulations, i.e., plane graphs with faces of degree 3, and more generally
of 3-connected plane graphs. Essentially there are two classes of linear time
algorithms: a) purely iterative algorithms based on a specific order of treatment
of vertices, the drawing being globally updated at each step [5,8,10]; b) one-
shot algorithms, where the plane graph is first endowed with a combinatorial
structure (e.g. Schnyder woods for triangulations), which is used to compute
the coordinates of vertices, usually using some face-counting operations [11,2,6].
The algorithms of the second class have the advantage that the coordinates of
vertices are computed independently, so that they are easier to implement and
to perform on a piece of paper. In addition, the grid size can be expressed in
terms of combinatorial parameters of the graph.

Surprisingly, little attention has been given to straight-line drawing algorithms
dealing specifically with quadrangulations, i.e., plane graphs with all faces of de-
gree 4 (these are also called maximal bipartite plane graphs). The only reference
we found is an article by Biedl and Brandenburg [1], where it is shown that
a quadrangulation Q can be triangulated into a triangulation T of the 4-gon
with no separating triangle, so that the algorithm of Miura et al. [10] can be
called to embed T (hence, also Q) on a (�n/2� − 1) × �n/2� grid. This algo-
rithm is linear and has small grid size, but it does not really use a combinatorial
structure specific to quadrangulations. In contrast, the algorithm we introduce
exploits a quadri-partition of the inner edges of a quadrangulation, presented
in Section 3. This combinatorial structure is also investigated in [7] using an-
other terminology (with labels) and is closely related to an edge bicoloration
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of a quadrangulation [4]. We use the quadri-partition to triangulate partially
Q into a plane graph G endowed with a so-called transversal structure, i.e., a
bicoloration and orientation of the inner edges of G with specific local condi-
tions. Transversal structures were originally only defined for triangulations of a
4-gon [6,9]. The definition is easily extended to partially triangulated quadrangu-
lations in Section 2. Then, the transversal structure is used to draw G (hence,
also Q) with face-counting operations. To do this, we extend the algorithm of [6],
which draws triangulations of the 4-gon, to partially triangulated quadrangula-
tions. The obtained drawing of Q verifies W + H = n − 1 − Δ, where n is the
number of vertices and Δ is an explicit parameter of Q, see Theorem 1. Hence,
the semi-perimeter is at most as large as in [1]. In addition, our algorithm has
the advantage of being of the one-shot type.

2 Transversal Structures

Let G be a plane graph with quadrangular outer face, the four outer vertices in
cw order being denoted by N , E, S and W (like North, East, South, West). A
transversal structure is an orientation and partition of the inner edges of G into
red and blue edges, satisfying the following conditions (see Figure 1(a)):

C1: (Inner vertices) Each inner vertex of G is incident in cw order to: a non-
empty interval of outgoing red edges, a non-empty interval of outgoing blue
edges, a non-empty interval of ingoing red edges, and a non-empty interval
of ingoing blue edges.

C2: (Border vertices) The inner edges incident to N , E, S, W are ingoing
red, ingoing blue, outgoing red, outgoing blue, respectively.

Transversal structures have been defined in [6,9] in the case where all inner faces
are triangles. However, as we will see, other plane graphs can be endowed with a

a) b) c) d)

W N

S E

W N

S E

Fig. 1. The local conditions C1 and C2 for transversal structures (Fig. (a)), a partially
triangulated quadrangulation G endowed with a transversal structure (Fig. (b)), the
associated red map and blue map (Fig. (c)), and the straight-line drawing of G using
TransversalDraw(G) (Fig. (d))
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transversal structure. Even if we do not need a precise condition of existence, let
us mention that a necessary condition is that all inner faces have degree 3 or 4.
Such a plane graph is called a partially triangulated quadrangulation. Let G be
a partially triangulated quadrangulation endowed with a transversal structure.
Then, it is easily shown (adapting the proof of [6, Prop.1]) that the red edges
of G form a bipolar orientation with source S and sink N ; and the blue edges
form a bipolar orientation with source W and sink E. (We recall that a bipolar
orientation is an acyclic orientation with a unique vertex having only outgoing
edges, called source, and a unique vertex having only ingoing edges, called sink.)
As developed in [6] for triangulated graphs, this property gives rise to a straight-
line drawing algorithm TransversalDraw(G), where the red edges are used
to give abscissas and the blue edges are used to give ordinates. The red map
(blue map) of G is the plane graph Gr (Gb) obtained by deleting all blue edges
(red edges, respectively) of G, see Figure 1(c). Given an inner vertex v of G,
the rightmost ingoing red path of v is the path PS(v) = (v0 = v, v1, . . . , vk = S)
from v to S where, for each i ∈ [0..k − 1], (vi, vi+1) is the rightmost ingoing red
edge of vi, i.e., the unique ingoing edge of vi whose ccw consecutive edge around
vi is outgoing. The leftmost outgoing red path of v is the path PN (v) = (v0 =
v, v1, . . . , vl = NP) where, for i ∈ [0..l−1], (vi, vi+1) is the leftmost outgoing red
edge of vi. The separating red path Pr(v) of v is the concatenation of PN (v) and
PS(v). Hence, Pr(v) is a path from S to N . We define similarly the separating
blue path Pb(v) of v, which goes from W to E.

TransversalDraw(G):

1. Take a regular grid of size W ×H , where W (H) is the number of inner faces
of the red map Gr (of the blue map Gb, respectively).

2. Place the outer vertices S, W , N , E at the grid corners (0, 0), (0, H), (W, H)
and (W, 0), respectively.

3. For each inner vertex v of G, let x be the number of inner faces of Gr on
the left of Pr(v) and let y be the number of inner faces of Gb on the right of
Pb(v). Place v at the grid point of coordinates (x, y).

4. Link each pair of adjacent vertices by a segment.

Proposition 1. Given a partially triangulated plane graph G endowed with a
transversal structure, TransversalDraw(G) outputs a straight-line drawing
of G in linear time. The semi-perimeter satisfies W + H = n − 1 − Δ, where n
is the number of vertices and Δ is the number of quadrangular faces of G.

Proof. The correctness proof of TransversalDraw, given in [6, Theo.3] for
the case of a triangulation of a 4-gon, adapts straightforwardly. The equality
W + H = n − 1 − Δ is an easy consequence of Euler’s relation. ��

3 Edge Partition of a Quadrangulation

Let Q be a quadrangulation, the four outer vertices in cw order denoted by
N , E, S, and W . As all faces of Q have even degree, the vertices of Q can be
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greedily bicolored in black or white so that adjacent vertices have different colors.
The bicoloration is unique up to the choice of the first vertex, hence there is a
unique bicoloration such that N and S are black. Given Q endowed with this
bicoloration, the primal map of Q is the plane graph M whose vertices are the
black vertices of Q, two black vertices being adjacent in M if they are incident to
the same face of Q. Hence, there is an edge of M for each face of Q. Conversely,
Q is called the angular map of M because each edge of Q is associated with an
angle of M . Observe also that each black vertex of Q corresponds to a vertex of
M and each white vertex of Q corresponds to a face of M , see Figure 2(b). As we
consider quadrangulations with no double edge, it is well known that the primal
map is 2-connected, i.e., the deletion of one vertex does not disconnect M . As
detailed in [4], for any edge (s, t) of M , there exists a bipolar orientation of M
with source s and sink t, and there is a simple sweeping algorithm to compute
such a bipolar orientation in linear time [3].
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a) b) c) d)

Fig. 2. A quadrangulation Q (Fig. (a)), endowed with an angular partition of the
inner edges (Fig. (b)), the associated uncomplete transversal structure (Fig. (c)), and
the straight-line drawing of Q (Fig. (d))

Given a bipolar orientation X of M with source S and sink N , an angle (e, e′)
of two edges of M around a black vertex v —with e′ following e in cw order
around v— is called an angle of type N , S, W , E if (e, e′) are (ingoing, ingoing),
(outgoing, outgoing), (ingoing, outgoing), (outgoing, ingoing), respectively. Ac-
cordingly, the inner edges of Q are partitioned into N -edges, S-edges, W -edges
and E-edges, depending on the type of their associated angle. This partition is
called the angular partition of Q associated with X , see Figure 2(b). An im-
portant property of a plane bipolar orientation is that the edges incident to an
inner vertex are partitioned into a non-empty interval of ingoing edges and a
non-empty interval of outgoing edges; and, dually, each face f of M has two par-
ticular vertices Sf and Nf such that the contour of f consists of two non-empty
oriented paths both going from Sf to Nf , called left lateral path and right lateral
path of f , respectively. Hence, each inner black vertex v of Q is incident to one
W -edge eW and one E-edge eE , which are separated by a possibly empty interval
of N -edges in the cw sector between eE and eW and a possibly empty interval
of S-edges in the cw sector between eW and eE. Dually, each white vertex of Q,
corresponding to a face f of M , is incident to one N -edge eN (connected to Nf)
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and one S-edge eS (connected to Sf ), which are separated by a possibly empty
interval of W -edges in the cw sector between eN and eS and a possibly empty
interval of E-edges in the cw sector between eS and eN . Observe also that all
inner edges of Q incident to N , E, S, and W are N -edges, E-edges, S-edges,
and W -edges respectively, see Figure 2(b).

4 The Algorithm

Let Q be a quadrangulation endowed with an angular partition of the inner edges,
associated with a bipolar orientation X of the primal map M . The uncomplete
transversal structure is the orientation and bicoloration of the inner edges of
Q where the N -edges and S-edges are colored red, the W -edges and E-edges
are colored blue, the S-edges and E-edges are oriented from their black to their
white vertex, and the N -edges and W -edges are oriented from their white to
their black vertex. Clearly, the conditions of a transversal structure are satisfied,
except that some of the four intervals of edges around an inner vertex may be
empty. Precisely, if a black vertex v of M has i ≥ 1 ingoing edges and j ≥ 1
outgoing edges, then v is incident in cw order to an outgoing blue edge (the
E-edge eE), an interval of (i − 1) ingoing red edges, an ingoing blue edge (the
W -edge eW ), and an interval of (j − 1) outgoing red edges. Dually, if a face of
M has a left lateral path of length i ≥ 1 and a right lateral path of length j ≥ 1,
then the associated white vertex of Q is incident in cw order to an outgoing red
edge (the N -edge eN ), an interval of (j − 1) outgoing blue edges, an ingoing red
edge (the S-edge eS), and an interval of (i − 1) ingoing blue edges.

We now describe an algorithm PartTriang(Q), which adds colored oriented
edges to Q so as to obtain a partially triangulated plane graph G endowed with
a transversal structure. An edge of M is said to be undeletable if it is the unique
outgoing edge of its origin or the unique ingoing edge of its extremity (or both).
An edge of M different from the edge (S, N) is said to be transitive if it connects
the two poles Nf and Sf of a face of M . Notice that an edge of M can not be
undeletable and transitive. The plane graph G = PartTriang(Q) is obtained
by adding to Q the undeletable edges of M , colored red and oriented as in X ;
and by adding the edges dual to the transitive edges, colored blue and oriented
from left to right, i.e., for each face of Q associated with a transitive edge e
of M , a blue edge is added connecting the two white vertices of the face and
oriented from the left of e to the right of e. It is easily checked that the edge
bicoloration and orientation of G is a transversal structure, see the transition
between Figure 2(b)–(c) and Figure 1(b).

Theorem 1. Let Q be a quadrangulation endowed with an angular partition of
its inner edges. The algorithm that computes G=PartTriang(Q), then calls
TransversalDraw(G), and finally deletes the edges added from Q to G, is a
straight-line drawing algorithm for quadrangulations with linear time complexity.
All horizontal and vertical lines of the grid are occupied by at least one vertex.
The semi-perimeter W + H of the grid satisfies

W + H = n − 1 − Δ,
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where n is the number of vertices and Δ is the number of alternating faces of
Q, i.e., faces whose contour consists of two red edges and two blue edges that
alternate. Alternating faces are strictly convex in the drawing.

Proof. The result follows from Proposition 1 and from the fact that the faces of
Q that are not split into two triangles are the alternating faces. These faces are
strictly convex because of the property (stated in [6] and also holding here) that
red edges of TransversalDraw(G) are geometrically directed from bottom
to top and weakly directed from left to right, while blue edges are geometrically
directed from left to right and weakly directed from top to bottom. Finally, it
is easily proved —adapting [6, Prop.12]— that a vertical (horizontal) line not
occupied by any vertex corresponds to an edge e = (v, v′) of the red map (blue
map, respectively) which is neither the rightmost ingoing edge of v′ nor the
leftmost outgoing edge of v. Clearly, such edges do not exist in Q and do not
appear during the partial triangulation of Q. ��
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Abstract. The need to visualize large and complex networks has strongly
increased in the last decade. Although networks with more than 1000
vertices seem to be prohibitive for a comprehensive layout, real-world net-
works exhibit a very inhomogenous edge density that can be harnessed to
derive an aesthetic and structured layout. Here, we will present a heuris-
tic that finds a spanning tree with a very low average spanner property
for the non-tree edges, the so-called backbone of a network. This backbone
can then be used to apply a modified tree-layout algorithm to draw the
whole graph in a way that highlights dense parts of the graph, so-called
clusters, and their inter-connections.

1 Introduction

At first glance it seems prohibitive to visualize large and complex networks. The
idea to represent these networks by suitable spanning trees and draw these trees
instead of the whole graph, is a well-known approach, found, e.g., in [3,9,5].
In most of these cases it was assumed that the spanning tree was either given
by the user or that the graph to draw was hierarchically organized and thus
a spanning tree could be easily and more or less unambiguously derived. Here
we will show that also the visualization of non-hierarchical networks is feasible
with a spanning tree approach if the networks are clustered instead. A network
is clustered if it can be decomposed into dense subgraphs that are only sparsely
interconnected. In the past, this property has been used in various approaches,
e.g., to analyse protein-protein-interaction networks or various social networks
to find semantically connected subsets of vertices [4,8,13,12], to name but a
few. We will show here, that this property can also be used to find a clear
and computationally feasible layout for clustered graphs with more than 1,000
vertices and more than 10,000 edges. Actually computing a good partition can be
computationally prohibitive, so our motivation is to decompose the graph into a
set of local edges that are likely to be within clusters and a set of global edges that
are likely to be between clusters. The decomposition into these sets has already
been proven useful for drawing power-law graphs where the decomposition is
derived by solving a network flow problem [1]. Our decomposition technique
is based on finding a spanning tree that minimizes the distances between any
two vertices connected by a non-tree edge, a so-called backbone of the graph. An
edge whose endpoints have a large distance in the tree will be considered a global
edge. We could show that finding the minimal spanning tree with this respect is
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NP-hard by a reduction from exact 3 cover1 [7]. Here, we will thus present two
heuristics that yield very good initial backbones and an optional optimization
step that can be used to improve the result.

A simple idea to draw a large graph is to take such a backbone and draw it
with a tree layout algorithm, ignoring all non-tree edges. In most cases, this does
not result in satisfying drawings. In our approach, non-tree edges will influence
the order in which the children of a tree node are sorted, depending on the length
of these edges in the backbone. This approach results in aesthetic drawings that
reveal the large scale structure of the graph.

The paper is organized as follows: In Sec. 2 the needed definitions are given,
the description of suitable backbones is given in Sec. 3. In Sec. 4 we then present
a novel approach to draw large graphs based on backbones. We finish with a
summary in Sec. 5.

2 Definitions

A graph is a pair (V, E) with V the set of vertices and E ⊆ V × V the set of
edges, with n := |V | the number of nodes, and m := |E| the number of edges. We
will assume that all graphs are free of self-loops, single-edged, undirected, and
connected. The neighborhood N(v) of a vertex v is given by N(v) := {w|(v, w) ∈
E} and its degree deg(v) by the cardinality |N(v)| of its neighborhood. A path
P (s, t) between vertices s and t is a set of edges {e1, e2, . . . , ek} ⊆ E such that
e1 = (s, v1), ek = (vk−1, t), and for all 1 < i < k: ei = (vi−1, vi) ∈ E. The path
length of a path P (s, t) in an unweighted graph is given by the number of edges
k in it. The distance d(s, t) between two vertices s, t is given by the minimal
length of any path between them if existent and ∞ otherwise. dE′(s, t) denotes
the distance of two vertices using only the edges in E′ ⊆ E. A graph is a tree if
there is exactly one path between any pair of vertices. A spanning tree T of G
is here defined as a subset of edges that constitutes a tree on V .

In the following, we will often use the term cluster. We use this term as an
abbreviation for dense subgraph. In this work we will not give a proper distinction
when a subgraph will be called a cluster and when not but rather speak of
subgraphs that are more clustered than others.

3 The Backbone of Complex Networks

To harness the clustered structure of a large graph for computing a layout,
we will use an approach that is based on finding a good spanning tree of the
graph: Let T be a spanning tree of G that defines weights ωT (e) for all edges
e = (v, w) ∈ E(G) in the following way:

ωT ((v, w)) = dT (v, w) (1)

dT (e) will also be called the tree distance of edge e. The quality Q(T ) of a
spanning tree will be measured by the sum of the weights it assigns to the edges:
1 Unpublished result by KAL and M. Kaufmann.
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Q(T ) =
∑

e∈E(G)\T
ω(e) (2)

The motivation behind this quality measure is that, given a dense cluster of the
graph, Q(T ) will in most cases be smallest, if all vertices of this cluster are in a
small and contiguous subtree of T . Otherwise, all edges between these vertices
would have high tree distance values. In other words, the lower Q(T ) is, the
more non-tree edges are ’local’ edges between vertices that are not far away in
the tree. Thus, a spanning tree with a low Q(T ) can be called a backbone of the
graph since it represents clusters in a concentrated way. Since trees are planar,
the hope is that most ’local’ edges will also span short distances if they are added
to a drawing of the backbone.

A trivial lower bound for Q(T ) is given by 2(m − n + 1). This lower bound
is for example met by a clique if the spanning tree consists of one vertex and
all incident edges. The following procedure computes a non-trivial lower bound
that depends on the structure of the given graph: For every edge e = (v, w) the
distance dE\{e}(v, w) is computed. Let Σ(G) denote the sum of the m − (n − 1)
lowest values of dE\{e}(v, w).

Lemma 1. Σ(G) is a lower bound for Q(T ) for any spanning tree T in G.

Proof. Let T ∗ denote an arbitrary spanning tree with minimal Q(T ∗). Let e be
one of the n − 1 edges in T ∗, then its weight does not contribute to Q(T ∗). If
e = (v, w) is not in T , dT ((v, w)) cannot be smaller than dE\{e}(v, w). Since we
do not know which edges will be in T ∗, we disregard the n − 1 highest values of
dE\{e}(v, w) and thus, Σ(G) is a lower bound for Q(T ∗). ��

The quality of spanning trees with respect to Q(T ) can be very different, a fact
that is shown in Fig. 1. Since finding the spanning tree with minimal Q(T )
is NP-hard as stated above we will now show greedy algorithms that compute
reasonable initial backbones that can subsequently be improved by a local opti-
mization heuristic.

3.1 Computing an Initial Backbone

To construct a backbone, the most simple idea is to choose one vertex at random
and start a breadth first search and to mark the edge by which a vertex is first
explored as tree edge. The quality Q(T ) of the resulting backbone is reasonably
good compared to the above proposed quality measure ΣG and the tree can be
computed in O(m). We will introduce two other methods that are computation-
ally more involved but yield much better backbones in practice. Both heuristics
grow a spanning tree S incrementally by first choosing the next vertex v to ap-
pend to S and then choosing the best edge to hook v into S. Both start with
one vertex chosen at random. With S the set of vertices already in the tree, let
R denote the set of vertices v ∈ G \ S directly connected to at least one node
in S. The vertex to append next is the vertex with maximal degree of R, where
ties are broken in favor of the vertex with maximal number of neighbors in S;
remaining ties are then broken at random. The intuition behind this heuristic
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Fig. 1. The thick lines denote two different spanning trees T for the given graph.
Numbers next to a (dotted) non-tree edge denote the tree distance of this edge. The
spanning tree in a) has a quality Q(T ) of 34 and the spanning tree in b) has a Q(T )
of 25.

is that vertices that are appended early to the growing backbone will influence
the backbone’s structure most. Since a vertex with a high degree will contribute
a large sum of backbone distances to Q(T ), these nodes should have a large
influence and thus be appended as early as possible. A trivial implementation
searches for the vertex to append in O(n) in every step, yielding a runtime of
O(n2) for all steps. A more sophisticated data structure that keeps vertices in
R sorted in a kind of two-dimensional array of lists, can reduce this runtime
to O(n deg∗), where deg∗ is the maximal degree in the graph. For very large
real-world networks this is in most cases a significant improvement.

In general, the chosen vertex v will have more than one neighbor in S and
its tree edge will connect it to one of them. These neighbors are the possible
hooks of v. Note that by choosing one of the edges to some hook to be v’s tree
edge, the tree distances of all the possible tree edges of v are determined. Thus,
the first variant, the minimized inner distance tree, will choose that hook that
minimizes the tree distances of all the other possible tree edges:

Minimized Inner Distance Tree. Let S(v) denote the neighbors of the chosen
vertex v in S, i.e., the hooks of v. Since only one of the edges incident to a hook
can be a tree edge without inducing a cycle in T , it is necessary to choose the
one hook h∗ that minimizes the tree distances of all the other edges to hooks.
Thus, for every hook the distance to all other hooks is summed up and the edge
to the hook with the minimal distance to all other hooks is chosen as new tree
edge (Fig. 2 a).

By holding an array D(T ) of size n2 that keeps the distance dT (s, t) for all
vertices s, t in S, this computation can be done in O((deg∗)2). After the best
hook h∗ has been chosen, this data structure has to be updated by adding the
distances dT (v, w) between the newly added vertex v and all other vertices w in
S to D(T ). Since dT (v, w) = dT (h∗, w) + 1 for all w ∈ S, this can be done in
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Fig. 2. a) Minimized Inner Distance Tree: Entering node v has three hooks h1, h2, h3.
h2 minimizes the sum of the tree distances of v’s edges to h1, h3 with a sum of 8,
and thus h2 is h∗. b) The tree distance of v’s edges to w1, w2 can be estimated by
determining the distance of the hooks to these neighbors. It follows that h3 has the
best sum of distance to all others: |P (h3, h1)| = 4, P (h3, h2)| = 3, |P (h3, w1)| = 5,
|P (h3, w2)| = 1.

O(n). Thus, the entire runtime to construct a minimized inner distance tree is
given by O(n(deg∗)2 + n2).

Lemma 2. A minimized inner distance tree for some randomly chosen root node
can be computed in O(n(deg∗)2 + n2).

While this tree only regards those (inner) edges to other vertices in S, the next
one tries to estimate the tree distance of the other edges of v as well:

Minimized Entire Distance Tree. Let again S(v) denote the neighbors of the
chosen vertex v in S, and N(v) denote the full neighborhood of v in G. For
those edges of v that do not lead directly to vertices in S, it is hard to estimate
their tree distance: It could be that they will later choose v as their hook to the
growing tree and in this case an edge will not contribute to Q(T ). Since it is
unlikely that all of them will use the edge to v as their tree edge, it would be
good to choose a hook h∗ such that all neighbors w of v have a short alternative
path P ′(h∗, w) to v: A path P ′(h, w) is considered as an alternative if it can be
split into two paths, the first using only vertices of S, the second -if necessary-
only vertices of V \S. In this way, the currently known structure of the tree is
used as much as possible and the edges that are not yet known to be in the tree
are only used for the last bit to reach w (Fig. 2). With this intuition, we will
choose the hook h∗ ∈ S(v) that minimizes the following sum:

∑

w∈N(v)

|P ′(h, w)| (3)

Note that the sum in Equ. 3 contains also the sum of the inner distances and
thus the name of the tree is justified. A summary of the attachment procedure
hookIntoTree(E, T, ES , v) is given in [10].
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This computation can be done by computing the distance of all vertices to
every hook of v which can be accomplished in O(m deg∗). It follows that a
minimized entire distance tree can be computed in O(nm deg∗).

Lemma 3. A minimized entire distance tree for some randomly chosen root can
be computed in O(n deg∗m).

Table 1 shows a comparison of all three trees for some real-world networks. It is
clearly visible that the higher computational effort for minimized inner distance
and minimized entire distance trees results in much better backbones than the
simple BFS tree and come near to the lower bound given by Σ(G). However,
even a good initial backbone can still be improved by the following optimization
heuristic.

3.2 Optimization of the Backbone

The following steps allow for a local optimization of the initially computed back-
bone T . The main idea is that any edge e that is not in T would induce a cycle if
it was added to T . By removing any other edge f of this cycle, a new spanning
tree T ′(e, f) := (T ∪e)\f results. If no ambiguity is given we will reduce T ′(e, f)
to T ′ in the following. If Q(T ′) is smaller than Q(T ), than e should replace f in
T . We will call e the entering edge and f the leaving edge. To analyze whether
Q(T ′) is smaller than Q(T ), the following definitions are helpful: Let e be any
non-tree edge, then PT (e) denotes the path in T that connects the end vertices
of e, the so-called tree path of e.

Proposition 4. For all non-tree edges i with f �∈ PT (i), dT (i) will not be
changed.

Proof. Since all edges of PT (i) are still in T , dT (i) cannot be increased. Let’s
assume that dT (i) is decreased by the insertion of e. This means that there
is a second path connecting the end vertices of i, violating the tree property
of T . ��

Let i denote some non-tree edge whose tree path contains at least one of the
edges of PT (e), and let CT (i, e) denote the set of shared edges:

CT (i, e) := PT (i) ∩ PT (e) (4)

If the leaving edge f is in this set, the tree path of i will be altered. To describe
the change, the following definitions are needed (Fig. 3 a): Let CT (e) denote all
edges in the cycle that is introduced by adding e to T . Note that CT (e) is given
by PT (e) ∪ {e}. Let CT (i, e) denote the complement of CT (i, e) in cycle CT (e).
The new tree path PT ′(i) is then given by

PT ′(i) = PT (i) ∪ CT (i, e) \ CT (i, e). (5)
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Fig. 3. a) e is the entering edge, the tree paths PT (e) and PT (i) of some other non-tree
edge i are indicated by the dotted arrows. Every non-tree edge i with CT (i, e) �= ∅ will
have to change its tree path if the leaving edge is element of CT (i, e). The new tree
path is built by removing from the old tree path all edges from CT (i, e) and adding
the complement of the circle, i.e., CT (i, e), to it.b) Again, e is the entering edge, ij
are edges that could be affected by choosing some of the possible leaving edges fi. The
boxed numbers give the difference between the new and old tree distance. It follows
that for entering edge e, f2, f3, or f4 would yield the best optimization with a value of
ΔQ(T, e, f) of −9.

Note that this new tree path is always the same for any fixed non-tree edge i,
independent of the identity of the leaving edge f as long as f ∈ CT (i, e) (s. Fig.
3 b). Thus, ΔdT (i, e) := dT ′(i) − dT (i) is given by:

ΔdT (i, e) = |CT (i, e)| − |CT (i, e)| (6)
= |CT (e)| − 2|CT (i, e)| (7)

With Ie(f) denoting the set of non-tree edges i with f ∈ CT (i, e), we can now
state the following lemma:

Lemma 5. For fixed entering edge e and leaving edge f , the difference in Q(T )
denoted by ΔQ(T, e, f) can be computed by:

ΔQ(T, e, f) =
∑

i∈Ie(f)

ΔdT (i, e, f) (8)

Δ(Q(T, e, f)) can be computed efficiently by first determining the set I(e) =
∪f∈PT (e)Ie(f) of all edges i that are depending on at least one edge of CT (e)
in their tree path. This can be done very efficiently if every tree edge f stores
Ie(f) in a bit map. A bit map allows space and time efficient set operations,
e.g., conjunctions and disjunctions. With at most n sets Ie(f), the set I(e) can
be computed in O(nm). The tree path PT (i) of every non-tree edge i is also
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stored as bits in a bit map. By simple OR−, XOR−, and AND-Operations all
required sets CT (i, e), CT (i, e), and ΔdT (i, e) can be computed in O(m) for a
single non-tree edge i and in O(m2) for all of them. The leaving edge is the edge
f with minimal ΔQ(T, e, f), which can be computed in O(nm) where ties are
broken at random. If there is no leaving edge because all resulting trees T ′ would
be worse, nothing will happen and the next entering edge e is chosen at random.
A summary of this algorithm is given in [10]. After e and f have been chosen in
this way, some updates have to be done that are also computed very efficiently
by operations on the bit maps. These updates can then be computed in O(m2).

Lemma 6. A single local optimization step can be computed in O(m2).

Table 1 shows that the optimization is able to decrease the already good Q(T )
of an minimized entire distance tree significantly towards the lower bound. The
table also gives the time spent on the optimization, showing that there is a
trade-off between the wanted quality of the backbone and the time spent on its
computation.

4 Using the Backbone for Computing a Layout

As indicated above, a good backbone will try to concentrate the vertices of any
cluster on a small, connected subtree. By doing so, the tree also indicates that
edges with a high tree distance are more likely to be inter-cluster edges. These
properties of the backbone can be used for computing a layout that co-locates
the vertices that are supposedly in a dense part of the graph and simultaneously
highlights the inter-connections between these dense parts.

To harness the backbone, our layout approach is based on a tree layout that
is adapted towards the needs of a full graph. The layout of the graph can be
computed by a variation of the balloon tree layout [3], resulting in a drawing
which we will call a backbone balloon drawing. In the original balloon drawing of
a tree, every subtree is enclosed entirely in a circle that is positioned in a wedge
whose end-point is the parent node of this subtree. The radius of each circle is
proportional to the number of vertices in the subtree.

To adapt this tree layout towards the needs of a full graph, the basic idea is
to use the backbone and compute a balloon drawing for it and re-insert all non-
tree edges as straight lines. To make this drawing a good drawing for the whole
graph, the only parameter to change is the order of the children of any vertex
in the tree. Since all direct neighbors of any vertex in the tree are positioned
in a circle, the order of these children can be determined by a variation of the
algorithm for crossing reduction in circular layouts [2]. The original algorithm
is composed of two phases: In the first phase an initial ordering is heuristically
determined. This is optimized by subsequent rounds of local sifting, where each
vertex can try to improve the number of crossings by changing its position in the
order computed so far. The application of this algorithm in a backbone balloon
drawing requires the following two modifications:
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1. Every edge between the children of a vertex in the tree can not only cross
with each other, but also with the spokes, i.e., the edges from the father to its
children. This changes the computation of the resulting number of crossings
slightly.

2. Let T (v) and T (w) denote the subtrees rooted at v and w, respectively, and
let v and w be children of the same vertex. If the number of edges between
these subtrees is large, then v and w should be close in the resulting order
which is of course not regarded in the original algorithm.

The second point can be dealt with by introducing additional edges between
any two children v, w whose subtrees are connected by edges. Additionally, all
edges will be assigned weights that present the number of edges between T (v) and
T (w). The weight of a crossing between two edges is now given by the sum of the
weights of the crossing edges, and the optimization goal is to minimize the sum
of the weights of all crossings and not to minimize the number of crossings. The
weights of all the edges between any two children can be computed in O(nm).
Every round of local sifting in a given circle with at most deg∗ vertices can be
computed in O((deg∗)2) as shown in [2]. Since there are at most n circles in the
drawing, this sums up to O(n(deg∗)2) which is the largest factor in computing
the backbone balloon drawing.

4.1 Experiments

We have applied the above presented variant of the balloon layout algorithm
on different types of networks, shown in detail in [10]. Here, we show exemplary
one network, a so-called Amazon recommendation network. To derive it, we
start at some book that is offered by the Internet bookshop www.amazon.com
and follow the links presented under the title ”customers who bought this book
also bought”. By recursively following these links, very large and complex net-
works can be created. By construction, the outdegree of every vertex in the
network is bounded by 6. The network shown here starts at [11] (Fig. 5). The
balloon tree drawing shows discernible clusters connected by long-range edges,
that are even more pronounced in the drawing that is based on an optimized
backbone with minimized entire distance. This visual impression is supported
by the fact that the force-directed drawing has the highest (normalized) total
edge length of 434813, the one based on the unoptimized backbone has a to-
tal edge length of 321292 and the one based on the optimized backbone has a
total edge length of 220857.

To show the quality of the different backbone heuristics and the optional opti-
mization step, we have conducted experiments on this Amazon recommendation
network and two other networks, shown in Table 1. For the creation of the Live
Journal network a crawl was started at some participant of www.livejournal.com,
following the links to designated friends unto depth 3. The co-authorship net-
work is described in [14]. Fig. 4 gives a showcase for the improvements of Q(T )
by the optimization heuristic. It is clearly visible that the time spent in this step
is worth the effort.
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Table 1. For every network, 10 instances of every kind of spanning tree were computed.
Displayed is the average Q(T ), its deviation, and the average time and its deviation
to compute the tree. Note that the best unoptimized spanning trees already have a
quality that is close to the lower bound given by Σ(G) that can nonetheless be further
reduced by the optimization. Furthermore, every of those 10 instances started at an-
other, randomly chosen start vertex. The low deviation in Q(T ) shows that the method
gives a stable Q(T ), independent of the choice of the start vertex. The experiments
were conducted on a Pentium 4 with 3.2 GHz and 2GB RAM.

Graph BFS Minimized Minimized Optimized Σ(G)
Inner Entire

Distance Distance
Amazon recommen- 31342 ± 316 21819 ± 57 20654 ± 24 17596 ± 28 12468
dation network 73 ± 11 [ms] 358 ± 34 [ms] 70 ± 0.3[s] 20min14s
n = 3437
m = 9671
Live Journal 29615 ± 1332 23156 ± 71 22058 ± 38 19588 ± 3 14774
n = 3763 65 ± 11[ms] 284 ± 19[ms] 100 ± 0.4[s] 22min12s
m = 11149
Co-Authorship 52896 ± 1447 52463 ± 222 49951 ± 98 34287 ± 47 14184
Network 131 ± 18 [ms] 480 ± 34[ms] 337 ± 0.6[s] 49min2s
n = 12357
m = 19448
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Fig. 4. For a smaller Amazon recommendation network with n = 852 and m = 4220,
one BFS, one minimized inner distance and one minimized entire distance tree was
computed and improved by the optimization heuristic until no further improvements
could be found, i.e., a local minimum is reached. The trees start and end with the
following Q(T )’s: 6572/4641 (BFS), 5385/4734 (Inner), and 5085/4662 (Entire), re-
spectively. Note that Σ(G) is 3822.

5 Summary

In this paper we presented a new quality measure Q(T ) for a spanning tree that
helps to visualize large and clustered networks. We have shown that spanning
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Fig. 5. a) A layout based on a force-directed approach, implemented by [15]. The nor-
malized total edge length of this drawing is 434813. b) A balloon layout drawing based
on a simple, unoptimized backbone with minimized entire distance. The normalized
total edge length of this drawing is 321292. c) A balloon layout drawing based on an
optimized backbone with minimized entire distance. The normalized total edge length
of this drawing is 220857. The time to compute this layout was on average around 20
minutes (averaged over 5 drawings).
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trees with a low Q(T ) can be computed in reasonable time and that these can be
improved further by a local optimization heuristic. These trees or backbones can
then be used to derive variations of classic layouts that are suitable for clustered
graphs. Looking at the resulting drawings, a further application is to use these
drawings as a basis for a geometric clustering method. First experimental evi-
dence shows that a new, geometric variation of the Girvan-Newman-Clustering
[8] applied to the drawings yields partition with a high modularity value [10]
while being much faster computed than in the original approach. Further work
will have to show whether backbones can also be used to adapt other drawings,
such as the hierarchical Sugiyama drawing, or maybe build the basis for new
approximation algorithms.
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3. J. Carriére and R. Kazman. Interacting with huge hierarchies: Beyond cone trees.
In Proceedings of the ACM conference on Information Visualization 1995, pages
74–81, 1995.
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Abstract. In this paper we consider the problem of creating partitioned
drawings of graphs. In a partitioned drawing each vertex is placed inside
a given partition cell of a rectangular partition of the drawing area. This
problem has several applications in practice, e.g. for UML activity dia-
grams or wiring schematics. We first formalize the problem and analyze
its complexity. Then we give a heuristic approach which is based on the
topology-shape-metrics approach and produces partitioned drawings in
time O((|V |+ c)2 log(|V |+ c)), where c denotes the number of crossings.

1 Introduction

In the area of graph drawing there are several approaches for drawing clustered
graphs [2]. In a cluster drawing all vertices of a cluster are placed inside the same
closed region (usually a rectangle). Regions could be nested, their positions are
not given as input. In this paper, we consider the problem of placing each vertex
inside a predetermined partition cell of a rectangular partitioned drawing area.
Partition cells have fixed positions and do not overlap.
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Fig. 1. Partitioned drawings: (a) shows an UML activity diagram taken from the UML
2.0 specification and (b) a wiring schematic taken from www.netgear.de

Simple partitions use only vertical or horizontal swim-lanes (stripes) to sub-
divide the drawing area. They are especially useful when we have to emphasize
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a logical flow or time flow in a drawing. In UML activity diagrams, partitions
are often used to divide a diagram into logical areas, e.g. organizational units in
a business model. Activity diagrams also offer more complex, grid like partitions
which are a combination of horizontal and vertical swim-lanes (see Figure 1(a)).
Irregular partitions (see Figure 1(b)) are often used to indicate geometric infor-
mation or positions.

The paper is organized as follows: In Section 2 we give a formal definition of
the partitioned drawing problem followed by some theoretical results. A heuris-
tic approach is presented in Section 3. We conclude the paper with a short
discussion.

2 Definitions

In the following, we assume that the reader is familiar with the concept of pla-
narity, the topology-shape-metrics approach for orthogonal graph drawings and
Sugiyama’s approach for layered graph drawings, see e.g. [2].

Let AR denote the (rectangular) drawing area. A (rectangular) partition PR

of AR is a partition of AR into a set R = r1, .., rk of non-overlapping rectangles
(=partition cells). Figure 2(a) gives an example. The corresponding partition grid
graph PG is constructed by placing a vertex on each point where a horizontal
segment touches or intersects a vertical segment. PG’s underlying structure is a
regular grid graph, which enables us to assign grid coordinates to the vertices
as shown in Figure 2(b). The largest vertical (horizontal) coordinate is denoted
by Ymax (Xmax). For each partition cell r ∈ R let rt, rb, rl and rr represent
the grid coordinate of the top, bottom, left and right border respectively (e.g.
for partition cell r4 in Figure 2 is rt

4 = 2, rb
4 = 3, rl

4 = 3 and rr
4 = 4). In our

approach those coordinates do not indicate distances. Only the topology and
shape of PG has to be preserved, the size of the partition cells is not fixed.

1

r 2

r 3 r 4

r

(a)

(3,2) (4,2)

(1,1) (2,1) (4,1)

(2,3) (3,3) (4,3)(1,3)

(2,2)

(b)

Fig. 2. A rectangular partition (a) and the corresponding partition grid graph (b)

Let G = (V, E) denote an undirected graph, PR a rectangular partition and
p: V → R a function that maps each vertex to a partition cell.

Definition 1. A drawing of G is called partitioned drawing, if each vertex
v ∈ V is drawn inside p(v). G is called p-planar if it has a partitioned drawing
without edge crossings.
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Theorem 1. A graph G is p-planar if and only if it is planar. A (polygonal)
p-planar embedding of a p-planar graph can be constructed in time O(|V |2).

Proof. A p-planar graph is planar by definition. Let us assume that each ver-
tex v ∈ V is assigned to an arbitrarily distinct location inside p(v). Pach and
Wenger [8] showed that every planar graph admits a planar embedding which
maps each vertex to an arbitrarily prescribed distinct location and each edge to
a polygonal curve with O(|V |) bends. This embedding can be found in O(|V |2)
time [8] and implies that each planar graph is p-planar. �

An example for such an embedding is given in Figure 3(b). This result has several
consequences: Since testing a graph for planarity can be done in linear time [7],
the same is true for testing p-planarity. The problem of finding a planarization
of a non-planar graph with a minimum number of crossings is NP-hard [6]. Thus
the same holds for finding a p-planarization for those graphs.

For an orthogonal partitioned drawing of a graph G = (V, E) we can state
the following: if we do not prescribe an embedding, G can always be drawn with
less or equal than one bend per edge (omitting self-loops) and thus ≤ |E| bends
at all. Note, that this bound is tight. A drawing with one bend per edge can
simply be realized by placing each vertex v ∈ V inside p(v) such that there is
no pair of vertices having the same x-coordinate (y-coordinate). Then the edges
can be routed as in Figure 3(c). This strategy produces only few bends but it
does not observe the number of crossings and thus often produce unsatisfying
results. For a fixed embedding, the orthogonalization would often produce a lot
of bends and strange edge routes.
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Fig. 3. (a) shows a planar graph and (b) the corresponding p-planar embedding us-
ing the partition of Figure 2(a). (c) shows a partitioned drawing with one bend per
edge.

In practice we need to find a compromise between minimizing the number of
crossings and minimizing the number of bends. Furthermore, we have to incor-
porate other requirements like vertices of prescribed size or edge labeling.
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3 Algorithmic Approach

In this section we present a topology-shape-metrics approach for the automatic
layout of partitioned diagrams. More precisely, we sketch the modifications nec-
essary to include partitions into its planarization and orthogonalization phase.

3.1 Planarization

Our planarization strategy is based on the following three steps:

1. Creating an initial partitioned drawing:
We use Sugiyama’s approach to create an initial partitioned drawing. It is
highly adaptable and especially suited for our purpose even if the input graph
is undirected. The modifications for its different phases are quite simple:
For the layering phase we insert Ymax dummy vertices dy

j into G which
represent the vertical grid coordinates of the partition grid graph PG. These
vertices are connected by directed edges (dy

j , dy
j+1), 1 ≤ j ≤ Ymax − 1. For

each vertex v ∈ V with p(v) = r we insert two directed edges (v, dy
rb) and

(dy
rt , v). Thus, each feasible layering has the property that a vertex v is placed

between the top and bottom border of partition cell p(v).
The crossing minimization is modified such that the vertex order inside a
layer is consistent with the fixed order of the corresponding partition cells.
For the horizontal coordinate assignment we insert Xmax dummy vertices dx

j

into the compaction graph which represent the horizontal grid coordinates
of PG. These vertices are connected by directed edges (dx

j , dx
j+1), 1 ≤ j ≤

Xmax − 1. For each vertex v with p(v) = r we insert two directed edges
(v, dx

rr ) and (dx
rl , v) into the compaction graph to guarantee that v is placed

between the left and right border of partition cell p(v).
2. Construction of a p-planar embedding:

We “materialize” the partition PR by inserting the corresponding partition
grid graph PG into the drawing constructed in the above step. Each vertex
v ∈ PG is placed on its related coordinate (dx

i , dy
j ). To create a p-planar

embedding, we detect crossings with a sweep-line algorithm and replace them
by dummy vertices. This can be done in time O(|S| log |S| + c) where c
denotes the number of crossings and S the set of segments. In our approach
the number of segments is |S| = O(|V | + |E|). Now, we determine the cyclic
order of the edges around each vertex.

3. Rerouting of edges:
The layered drawing produced by Sugiyama’s approach is too restrictive
because undirected edges can be routed non-monotonically. Thus, we per-
form a rerouting step to further reduce the number of crossings. The rerout-
ing is based on shortest-path computations in the dual graph [2]. Since the
size of the planarized graph is O(|V | + c), the runtime of the rerouting is
O((|V | + c)|E|).
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3.2 Orthogonalization

The orthogonalization phase has to preserve the shape of the partition grid graph
PG. The phase is divided into two steps:

1. First, we fix the angles between consecutive edges around each vertex of PG.
The angles have to comply with the partition structure.

2. In the second step, we calculate the shape of the edges. The fixed angles
assigned in the first step are not allowed to change. Furthermore, the edge
segments of PG are not allowed to bend. Hence, we assign high bend costs to
those segments. The shape calculation of the edges is done with the network
flow approach described in [5] applying the modifications of [1,3] that guar-
antee the conservation of prescribed angles and bends. We use a heuristic
network solver that produces satisfying results in practice and has running
time O((|V | + c)2 log(|V | + c)). There is always a valid drawing in which the
fixed angles and shapes are observed [3].

4 Discussion and Conclusion

First we discuss the running time of our new approach. We assume that the num-
ber of partition cells is O(|V |). With the efficient implementation of Sugiyama’s
algorithm described in [4], we can create the initial partitioned drawing in
time O((|V | + |E|) log |E|). The calculation of the planar embedding has time
O((|V | + |E|) log(|V | + |E|) + c) and the rerouting O((|V | + c)|E|) (c denotes
the number of crossings). Since the planarized graph has |V | + c vertices the
number of edges is |E| = O(|V | + c). The orthogonalization step takes time
O((|V | + c)2 log(|V | + c)). For the compaction we use the fast constructive al-
gorithm described in [3] with a flow-based post-processing step and quadratic
runtime. We sum up with the following theorem:

Theorem 2. Given an undirected graph G = (V, E), a rectangular partition
PR of the drawing area and a mapping p of the vertices to partition cells. Our
approach creates a partitioned drawing of G in time O((|V | + c)2 log(|V | + c))
where c denotes the number of crossings in the planarized graph.

We implemented our approach in Java using the yFiles library [10]. Two
example layouts are given in Figure 4. More examples can be found at http://
www-pr.informatik.uni-tuebingen.de/partitioned-drawings/. For diagr-
ams with about 100 vertices and 150 edges we typically need a runtime of less
than three seconds on a 3 GHz Pentium IV System with 1 GB RAM.

In this work we introduced the problem of finding a partitioned drawing of
a graph G = (V, E). We presented a heuristic approach that produces pleasing
results in time O((|V | + c)2 log(|V | + c)). The approach can easily be extended
to include edge labels or edges that should be drawn upward [9].

http://www-pr.informatik.uni-tuebingen.de/partitioned-drawings/
http://www-pr.informatik.uni-tuebingen.de/partitioned-drawings/
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Fig. 4. Examples drawn with our new approach: (a) shows our layout for the example
of Figure 3 and (b) the UML activity diagram of Figure 1(a)
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Abstract. We investigate the problem of creating simplified represen-
tations of polygonal paths. Specifically, we look at a path simplification
problem in which line segments of a simplification are required to conform
with a restricted set of directions C. An algorithm is given to compute
such simplified paths in O(|C|3n2) time, where n is the number of vertices
in the original path. This result is extended to produce an algorithm for
graphs induced by multiple intersecting paths. The algorithm is applied
to construct schematised representations of real world railway networks,
in the style of metro maps.

1 Introduction

Metro maps have been used to effectively illustrate transportation networks for
many decades. They incorporate a carefully balanced trade-off between geo-
graphical accuracy and readability of the diagram. Traditionally, these diagrams
are drawn manually, and it is a significant challenge to create computer algo-
rithms that produce high-quality metro maps. A common feature of metro maps
is the logical division of the network into a set of intersecting paths, or train
lines. One may consider the simpler problem of drawing these paths individu-
ally, instead of the entire network at once.

In the field of cartography, and particularly in geographical information sys-
tems (GIS), it is an important problem to represent detailed geographical fea-
tures on a map in a simple, easily understandable form. Consequently, efficient
algorithms for simplifying lines or paths in a geographical data set are desirable.

The problem of computing a simplification of a given polygonal path where
the vertices of the simplification are required to be a subset of the input points
has been studied extensively. Imai and Iri [19–21] formulated the problem as
a graph problem. They constructed an unweighted directed acyclic graph and
then used breadth-first search to compute a shortest path in this graph. The
same approach has been used by many algorithms devoted to this problem [3,
4, 6, 7]. A widely used heuristic for path-simplification is the Douglas-Peucker
algorithm [10]. If the path is given in the plane then it can be implemented to
run in O(n log∗ n) time [17], but it does not guarantee an optimal solution.
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Australia’s Ability initiative, in part through the Australian Research Council.

M. Kaufmann and D. Wagner (Eds.): GD 2006, LNCS 4372, pp. 258–269, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Path Simplification for Metro Map Layout 259

Numerous criteria have been proposed for simplifying polygonal paths. In [4,
8, 19, 21, 23] the so-called tolerance zone criterion was used. Other measurements
are the infinite beam criterion [7, 11, 29], the uniform measure criterion [2, 13],
distance preserving criterion [15] and the area preserving criterion [3].

In this paper we address a related problem. As input, a polygonal path P is
given, consisting of a sequence of points 〈p1, . . . , pn〉, with closed line segments
called links joining each pair of consecutive points. Also given is a finite set
of directions C. The problem we address is to produce a simplification of P ,
subject to some constraints, where every link li in the simplification is parallel
to some orientation c ∈ C. A path conforming to this restriction is called a C-
directed path. Requiring a C-directed path as output results in a “schematised”
approximation of the original path. Such an approximation can greatly improve
the readability of diagrams in which several paths must be drawn. The vertices
of the simplification are not restricted to be a subset of the input points.

In the case when the links are restricted to a given set of orientations Neyer [26]
proposed an algorithm that minimises the number of links in the output path.
This algorithm runs in time O(nk2 log n), where k is the number of links in
the output. The output is a path which remains within a given distance of the
original path, according to the Fréchet distance metric. Utilising Fréchet distance
in this respect, however, can produce undesirable “zig-zags” in some paths when
the set of allowed orientations is small.

The problem considered in this paper uses a more relaxed restriction on dis-
tance. For each point p in the input path P , consider its ε-circle E(p); that is,
the closed disc of radius ε centred at p. Our requirement is that a simplification
must intersect E(p) for every p ∈ P , subject to a restriction on the order of
intersections. This is equivalent to enforcing a maximal Haussdorf distance of
the path simplification from the set of input points. Compared to the Fréchet
metric, more freedom is given to the simplification at bends.

Guibas et al. [16] considered a version of this problem where the links are not
restricted to a certain set of directions. They presented a dynamic programming
algorithm that generates an optimal solution in O(n2 log2 n) time, and a 2-
approximation with running time O(n log n). In this paper we show that the
restricted direction path simplification problem can be solved in O(|C|3n2) time.

In addition to the simplification of individual lines, we enter into the problem
of simplifying multiple intersecting paths in a network. This is of particular in-
terest in metro map layout. Hong et al. [18] present some force-directed graph
drawing approaches to metro map layout, which are also used to produce metro
map layouts of non-geographical networks. Slower but more geographically ac-
curate optimisation-based methods are detailed by Stott and Rodgers [28], and
more recently by Nöllenburg and Wolff [27]. One of the main benefits of the ap-
proach we present in this paper is its fast running time. This gives the potential
to handle much larger instances than those solvable by slower methods. In ad-
dition, faster methods bring about the possibility of real-time interactivity. For
example, in a network design application or diagramming tool, a designer may
want to modify a network and immediately visualise the effect on the diagram.
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A second problem related to metro map layout is the schematisation of net-
works. Cabello et al. [5] give an O(n log n) time algorithm which creates a
schematised map of a given network, where intersection points remain in fixed
locations and paths between intersection points are drawn using two or three
links. This approach ensures that the topology of the network is preserved. Other
recent work investigates problems in drawing schematised layouts of trees [14].

We restrict our attention to networks induced by multiple intersecting paths,
as in metro maps. We propose an efficient method for simplifying such networks
given a restricted set of directions and an error threshold. Preservation of topol-
ogy is not guaranteed in this approach.

Section 2 formalises the path simplification problem we address, and proposes
an algorithm to solve it. The extension of the path simplification algorithm to
metro map layout is presented in Section 3, and implementation results are given
in Section 3.1. Section 4 offers some concluding remarks and acknowledgements.

Due to space constraints most details are omitted and can be found in [25].

2 C-Directed Path Simplification

The path simplification problem we address in this paper is defined as follows:

Problem 1. The C-Directed Path Simplification Problem
Input : A path P , a set of directions C and a distance threshold ε.
Output : A (C, ε)-simplification P ′ of P with the minimum possible number

of links, such that the ε-circles of all points in P are stabbed in order by P ′.

To make the problem definition clear we also need to define “order”.

Definition 1. A directed line segment � that intersects the ε-circles of a se-
quence of points S = 〈p1, . . . , pn〉 is said to follow the order of S if and only if
for every pair of points pi, pj ∈ S, i < j there exist points qi, qj on � within the
ε-circles of pi and pj respectively, for which it holds that qi is encountered before
or at the same position as qj along �.

To guarantee that a solution exists, we assume that for any direction c ∈ C, the
opposite direction c̄ is also in C.

The algorithm we propose to solve the C-directed path simplification prob-
lem is composed of two parts. First, given a path to simplify, it constructs a
boundary path (to be defined) which determines a set of minimum-link (C, ε)-
simplifications of the given path, see Fig. 1(a). In the second part, a single
minimum-link (C, ε)-simplification of the path is extracted from the boundary
path, see Fig. 1(b). We start with some necessary definitions.

Given a pair of directions (c1, c2) and a set of points S = {p1, . . . , pn} let τi

be the c1-most tangent of the ε-circle of pi with direction c2, and let αi be the
point (if any) on τi with the smallest c2-coordinate for which it holds that a line
through αi with direction c1 stabs {p1, . . . , pi} in order as shown in Fig. 2(a–
b). Let ι be the smallest value for which there is no such point αι, and let
S′ = {p1, . . . , pι−1}. For every 1 ≤ j < ι let �j be the ray with direction c1
emanating from αj .
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Fig. 1. (a) An example showing a sequence of eight ε-circles and three link boundaries
B1, B2 and B3 forming a boundary path. (b) Extracting a (C, ε)-simplification from
the boundary path.

Definition 2. The link boundary L of S with direction pair (c1, c2) is the
polyline described by the upper envelope in direction c2 of the set �1, . . . , �j. The
link boundary L has size j and is said to stab S′ (in order).

If the stabbing order is ignored, a single maximum link boundary B can easily
be computed in linear time with respect to the number of points stabbed by B.
In Section 2.2 we discuss in more detail how to do it in the ordered case.

Definition 3. A boundary path is a sequence of link boundaries that stabs a
sequence of points S. A size k maximal boundary path of S is a boundary path
containing k link boundaries that stabs the maximal start sequence of S.

2.1 A High-Level Description

In this section we give an overview of the algorithm. The idea is to construct
a boundary path B where each link boundary, denoted B1, . . . , Bk, along B
corresponds to a segment in the final path simplification P ′ of P , and then
extract a path from B. The algorithm is given as pseudocode below.

Building the boundary path. The boundary path is built by incrementally
adding a link boundary. Let βk(ci, cj) denote a maximal boundary path of size
k whose last link boundary has direction pair (ci, cj). In each iteration of the
algorithm, O(|C|2) active candidate boundary paths are maintained together
with a counter k of the number of iterations, i.e., the size of all the boundary
paths. Initially, βk(ci, cj) is the maximal single link boundary path of S with
direction pair (ci, cj), and k = 1. If any of the O(|C|2) boundary paths stabs the
entire sequence S then we are done, otherwise continue iteratively as follows.

For every triple of directions (ci, cj, c�) in C extend βk(ci, cj) with a link bound-
ary of direction pair (cj , c�), excluding cases where ci is parallel to cj or cj is
parallel to c�. Consider all the maximal boundary paths with k + 1 links whose
last link boundary has direction pair (cj , c�), and save the boundary path that
stabs the longest sequence of S in βk+1(cj , c�). Finally, increment the value of k.
The process ends when a boundary path stabs S. The first boundary path that
stabs S is denoted Δ(S) and has size k.
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Fig. 2. (a) τi is the c1-most tangent of the ε-circle of pi with direction c2. (b) The link
boundary with direction pair (c1, c2) of 〈p1, . . . , p4〉. (c) A potential problem when two
link boundaries are joined; the truncation of one of the links at the bends results in p3

not being stabbed.

Constructing a path from the boundary path. Given the boundary path
Δ(S) containing a sequence of link boundaries 〈B1, . . . , Bk〉, construct the (C, ε)-
simplification P ′ = 〈p′1, p′2, . . . , p′k+1〉 as follows. Let p′k+1 be the point within
pn’s ε-circle that is furthest along Bk in Bk’s primary direction. Let �k be the
line through the last ray of Bk. Set p′k to the intersection of �k and Bk−1, and
let �k−1 be the line through p′k in the primary direction of Bk−1. Continue this
process for every point p′i back to p′2, setting p′i to the intersection of �i and Bi−1.
Finally, let p′1 be the point within p1’s ε-circle lying on B1 that is backmost in
B1’s primary direction.

Algorithm StabbingPath

1. done:= false
2. for i = 1 to |C| do
3. for j = 1 to |C| do
4. for k = 1 to n do
5. βk(ci, cj) :=null
6. k := 0
7. while not done do
8. for i = 1 to |C| do
9. for j = 1 to |C| do
10. for � = 1 to |C| do
11. tmp:=ExpandBoundaryPath(βk(ci, cj), c�, S)
12. βk+1(cj , c�) :=SelectBestBoundaryPath(βk+1(cj , c�),tmp)
13. if βk+1(cj , c�) stabs S then
14. Δ(S) := βk+1(cj , c�)
15. done:=true
16. k := k + 1
17. endwhile;
18. Return ComputePath(Δ(S),S)

Consider each of the steps of the algorithm. Steps 1–6 of the algorithm require
O(|C|2n) time and step 18 requires O(n) time. It remains to study the body
within the three loops in steps 11–12. Step 12 can easily be performed in linear
time since one only has to decide which of the two boundary paths that stabs
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Fig. 3. (a) The boundary-restricted stabbing interval I(〈q1〉, cj , B) (shaded). (b) The
boundary-restricting stabbing interval I(〈p2, p3〉, cj , Bk) (shaded). The left bounding
ray r of this interval is the backmost ray starting on Bk that ensures all points remain
stabbed, and forms the first ray of Bk+1.

the most ε-circles. That leaves step 11, which is the step that will dominate the
running time of the algorithm.

Guibas et al. [16] showed that one can compute a line that stabs the longest
possible prefix of a sequence of unit discs in the correct order in O(n log n) time.
However, their problem has two main differences to ours. First, we only need to
consider one direction. Second, when Bk+1 is joined to the end of the boundary
path βk(ci, cj) then Bk is truncated at its point of intersection with Bk+1. Hence
we must ensure that after the truncation all points in Sk are either still stabbed
by Bk or by Bk+1. Figure 1(c) illustrates this problem.

In the next section we will discuss how step ExpandBoundaryPath can be
implemented to run in O(n2) time.

2.2 Extending a Boundary Path with a Link Boundary

Consider the algorithm described in the previous section. Let B1, . . . , Bk be
the link boundaries in βk(ci, cj), and let Sk = 〈pf(k), . . . , pl(k)〉 be the sequence
of S stabbed by Bk. Thus the sequence of S that remains to be stabbed is
S′ = 〈pf(k+1), . . . , pn〉, where f(k + 1) = l(k) + 1.

We need to be very careful when joining two link boundaries. To facilitate this
we define boundary-restricted stabbing intervals (Figs. 3(a), (b) give examples).

Definition 4. Given a sequence of points S, a direction c, and a link boundary
B, the boundary-restricted stabbing interval I(S, c, B) is the region in the plane
for which it holds that a c-directed ray starting on B lies inside the region if and
only if it stabs S in order.

Initialisation. The task of the initialisation step is to construct the first ray in
Bk+1. If the turn from ci to cj is in the same direction as the turn from cj to
c�, e.g. both are left hand turns, then we add to Bk+1 the cj directed ray that
is at ∞ according to ci. If the turns are in different directions, i.e. one is a left
hand turn and one is a right hand turn, then we need to find the cj-directed ray
that starts as far back as possible on Bk and ensures Sk remains stabbed. Note
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that this ray starts as far back along Bk as possible, while still ensuring that all
points are stabbed by either Bk or the ray itself. Hence, it forms the backmost
bound for all possible rays in Bk+1. An example of this is illustrated in Fig. 3(b).

Extending Bk+1 to Stab a New Point. Once the initialisation has been
completed, the main loop commences. At each iteration, the algorithm attempts
to extend the set of points stabbed by βk(ci, cj) and the link boundary Bk+1.

Consider the points in S not stabbed by βk(ci, cj), denoted S′ = 〈q1, q2, . . .〉.
Process the points in S′ in order, starting with q1. In a generic step assume we
are about to process qm. Compute the stabbing interval I(〈q1, . . . , qm〉, cj , Bk).
If the interval is empty then we stop since there is no cj-oriented line that can
stab q1, . . . , qm in order. If the interval is non-empty let γ be the bounding line
of the stabbing interval with the smallest c�-value. Find the intersection point x
between γ and Bk, and let γ be the ci-directed ray starting at x. Process every
point p in Sk in reverse order as follows.

If γ cut the ε-circle of p into two pieces then Bk no longer stabs p, and it must
be stabbed by Bk+1. Set γ to be the bounding line of I(〈p, . . . , qm〉, ci, Bk) with
the smallest c�-value. If the stabbing interval is empty then we are finished, as
Bk+1 cannot stab p, . . . , qm or any further points. Otherwise, continue iterating.

Once the backtracking has completed, all points in the sequence Sk and
〈q1, . . . , qm〉 are stabbed by either Bk or γ. Now consider the last ray γ′ in
Bk+1. If γ′ is positioned at ∞, remove it from Bk+1 and replace it with the ray
along γ that starts on Bk. Otherwise, let t be the cj-most c�-directed tangent
to the ε-circle of pm. Add t and γ to Bk+1, and truncate γ′, t and γ at their
pairwise intersection points. The point pm is now stabbed by Bk+1, and can be
removed from S′ and added to Sk. Iteration continues until S′ is empty or a
point is found that cannot be stabbed.

If each stabbing interval is computed from scratch, a straight-forward imple-
mentation would require O(n2) time. This follows since the order restriction has
to be checked for every pair of ε-discs in the sequence. However, since the above
approach incrementally adds new points at the end of the sequence this can be
improved as stated in Theorem 1 below (see [25] for details). The concluding
result for this section follows in Theorem 2.

Theorem 1. There is a data structure of size O(n) that answers boundary-
restricted stabbing interval queries in constant time and allows additions of points
to the end of the sequence in O(n) time.

Theorem 2. ExpandBoundaryPath(βk(ci, cj), c�, S) can be computed in
O((|Sk|+ |Sk+1|)2) time, where Sk and Sk+1 are the sets of points stabbed by Bk

and Bk+1, respectively, in the produced boundary path.

2.3 Complexity Analysis

Time Complexity. Recall from Section 2.1 that the running time of algorithm
StabbingPath is dominated by step 11, i.e. ExpandBoundarypath. Assume
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that a minimum link path contains k links, using Theorem 2 gives that the total
running time is bounded by:

C3 ·
(

|S1| +
k−1∑

i=1

(|Si| + |Si+1|)2
)

< C3 · 6
(

k−1∑

i=1

|Si|2 +
k−1∑

i=1

|Si+1|2
)

= O
(
C3n2) .

The final step of extracting a minimum-link (C, ε)-simplification from the bound-
ary path takes O(n) time, therefore the entire algorithm needs O(|C|3n2) time.

Space Complexity. At each iteration of the algorithm, O(|C|2) paths are
stored, each containing up to k boundaries. Each link boundary uses linear space
and every input point is stabbed by at most a constant number of link bound-
aries per boundary path, thus it follows that the algorithm requires O(|C|2n)
space.

2.4 Proof of Correctness

Lemma 1. Given a starting point q, a preceding link boundary Bi−1 and direc-
tions ci−1, ci and ci+1, the pair of link boundaries (Bi, Bi+1) constructed by the
algorithm stabs the furthest point of P possible.

Theorem 3. Algorithm StabbingPath(P, ε) computes a minimum link (C, ε)-
simplification of P .

Lemma 1 and Theorem 3 are proved in [25].

3 Extension to Metro Map Layout

A major motivation for this paper is the automatic visualisation of metro maps.
For this purpose, we extend the C-directed path simplification algorithm of Sec-
tion 2 to handle multiple intersecting paths.

We adopt the graph-based model of Hong et al. [18] to describe a metro
network; a metro map graph consists of a graph G and a set of paths covering
all vertices and edges of G. We assume we are given a metro map graph with a
set of initial coordinates for each vertex, representing the geographical locations
of stations in the metro network.

The first step taken by the algorithm is to sort the set of paths according
to a given measure of importance. Importance may be manually defined, or
calculated automatically by some heuristic function. For our purposes, we define
the importance of a path to be the number of vertices on the path that are also
a part of some other path in the metro map graph.

Once the paths are sorted, the most important path is taken from the set and
simplified using the algorithm of Section 2. Once the path simplification has been
computed, the points of the path must be placed on the simplification. This may
be achieved by simply projecting each original point onto the link in the path
simplification that stabs it. Alternatively, the points may be redistributed along
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the line segment such that the distance between every adjacent pair of points
is equal. This may result in a distance greater than ε between each original
point and its counterpart on the simplification. However, it is useful for reducing
clutter and making the final diagram clearer. Once placed, the points in the
simplification are fixed in their positions.

The next most important path is then taken and split into subpaths around
any sequences of fixed vertices, such that each subpath contains at most one
fixed vertex at either end. Each of these subpaths is simplified in turn, and all
of the points in the resulting simplifications are fixed.

A small modification must be made to the path simplification algorithm to
ensure that the simplified path runs exactly through any fixed points. This is
achieved by restricting the allowed interval for each fixed point to the single line
in each direction that passes exactly through that point.

The algorithm repeats the above steps, each time taking the next most im-
portant path from the set, splitting it and simplifying, until there are no paths
left to be simplified. A complete layout has then been generated.

We found that two extensions to the path simplification algorithm were useful
to improve the results: restricting the maximum turning angle at bends, and
enforcing a minimum link length.

Maximum bend angle. Allowing turns of large angles between links in a
simplification can result in undesirable sharp bends. Given an angle α, one may
want to ensure that no turn of more than α degrees is made in the simplified path.
To implement this, simply ignore any pairs of consecutive directions separated
by more than α degrees. Theorem 3 still holds in this case, i.e. the simplification
produced will have the minimum number of links of any (C, ε)-simplification
subject to the same restriction.

Minimum link length. The algorithm enforces no restriction on the length of
links in the simplification. This can cause a restriction on the maximum bend
angle to be less effective, as the extra links produced may be of zero length. We
enforce a minimum length lmin for each link when constructing a link boundary,
by trimming all boundary-restricted stabbing intervals to a distance of lmin from
the start of the previous link boundary. Problems can occur where a link needs
to be shorter than lmin in order to stab a point. To avoid this, we decrease lmin

on any iteration in which no further points are stabbed by any link boundary. If
this continues to occur for several iterations, we set lmin to zero. This approach
ensures that a solution will be computed, but the number of links in the solution
may not be the minimum.

3.1 Results

We applied the method of Section 3 to the central part of the Sydney Cityrail
railway network [9], and the London Underground network [22]. The Sydney
graph has 173 vertices and 182 edges, and London has 266 vertices and 308 edges.
We created a Java implementation as a plugin to the graph editor jjGraph [12].
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Fig. 4. (a) The original Cityrail geometry, and simplifications using (c) 4, (e) 6 and
(g) 8 directions. (b) The original London geometry, and simplifications using (d) 4, (f)
6 and (h) 8 directions.
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The input geometry for the Cityrail network was taken directly from its ge-
ographical layout, shown in Fig. 4(a). The original geography of the London
network is quite dense in the centre and sparse in the exterior, so we scaled it
using the centrality-based scaling technique of Merrick and Gudmundsson [24]
before applying our algorithm. The scaled geometry is shown in Fig. 4(b). The
scaling used betweenness centrality, with parameters α = 10, β = 50 and γ = 2,
and the scaling took 6445 ms to execute. Refer to the literature for details on
the scaling method and its associated parameters [24].

We ran our implementation on both networks with varying parameters, and
show selected results. Figs. 4(c), (e) and (g) show the Cityrail network simplified
with |C| = 4, 6 and 8 respectively. The respective running times were 154, 201
and 268 ms. Figs. 4(d), (f) and (h) show the London network simplified with
|C| = 4, 6 and 8 respectively. The running times to obtain these results were
282, 423 and 573 ms. All results were produced on a computer with a Pentium
4 3.0 GHz processor and 1GB of RAM, running Windows XP. Running times
were averaged over 10 runs. Values of ε were chosen by trial and error and varied
between the datasets; at this stage the possibility of automatically choosing an
appropriate value for ε remains as future work.

4 Concluding Remarks and Acknowledgements

Consider a k-link (C, ε)-simplification of a path P produced by the algorithm
of Section 2. It might be that there exists a k-link (C, ε′)-simplification of P
where ε′ is much smaller than ε. In [25] we present a fully polynomial-time
approximation scheme (FPTAS) to the dual of the problem, i.e. given k compute
a (C, ε)-simplification of P that minimises ε. The FPTAS produces a (1 + δ)-
approximation for any given δ > 0.

We thank Martin Nöllenburg and Alexander Wolff for the London data.
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Abstract. In this paper we consider a new problem that occurs when
drawing wiring diagrams or public transportation networks. Given an
embedded graph G = (V, E) (e.g., the streets served by a bus network)
and a set L of paths in G (e.g., the bus lines), we want to draw the
paths along the edges of G such that they cross each other as few times
as possible. For esthetic reasons we insist that the relative order of the
paths that traverse a node does not change within the area occupied by
that node.

Our main contribution is an algorithm that minimizes the number of
crossings on a single edge {u, v} ∈ E if we are given the order of the
incoming and outgoing paths. The difficulty is deciding the order of the
paths that terminate in u or v with respect to the fixed order of the
paths that do not end there. Our algorithm uses dynamic programming
and takes O(n2) time, where n is the number of terminating paths.

1 Introduction

In wiring diagrams or public transportation networks many paths must be drawn
on the same underlying graph, see Figures 1 and 2. In order to make the resulting
layout as understandable as possible it is desirable to (a) avoid crossings wherever
possible and (b) insist that the relative order of the lines that traverse a node
does not change in that node. For example, note that the subway line 5, which
passes under the main station of Cologne (Köln Hbf), crosses lines 16–19 south
of the station in the clipping of the public transport map of Cologne in Figure 2.
The crossing is not hidden under the rectangle that represents the station. This
makes it easier to follow the subway lines visually.

We model the problem as follows. We assume that we are given an undirected
connected graph G = (V, E) together with an embedding in the plane. The graph
represents the underlying structure of the wiring or the road/tracks in the case of
a transportation network. We are also given a set L of lines in G. They represent
the cables in a wiring diagram or the lines in a transportation network. A line
� ∈ L is an edge sequence e1 = {v0, v1}, e2 = {v1, v2}, . . . , ek = {vk−1, vk} ∈ E

� Supported by grant WO 758/4-2 of the German Research Foundation (DFG).
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Fig. 1. Clipping of a wiring diagram Fig. 2. Clipping of the public transport
network of Cologne

that forms a simple path in G. The stations v0 and vk are the terminal stations
for line � while v1, . . . , vk−1 are intermediate stations. Our aim is to draw all lines
in L such that the number of crossings among pairs of lines in L is minimized.

To get a flavor of the problem observe that the structure of G enforces certain
crossings, see Figure 3(a): lines �1 and �2 use exactly the path 〈u, w1, w2, v〉
together. The graph structure (indicated by the first and last line segments of
each line) enforces that �1 enters station u above �2 while it leaves v below �2,
thus �1 and �2 have to cross somewhere between u and v. However, fixing the
location of the crossing of �1 and �2 determines crossings with other lines that
have a terminal stop in w1 or w2. If there is a line � that enters u between �1
and �2 and terminates at w2 (see Figure 3(b)), the crossing between �1 and �2
should be placed between w2 and v. Now suppose there is another line �′ that
enters v between �2 and �1 from the right and terminates at w2, see Figure 3(c).
Then at least one of the lines � and �′ intersects one of the lines �1 or �2, no
matter where the crossing between �1 and �2 is placed.

We can abstract from geometry as follows. Given an edge {u, v} in G and
the orders of the lines in u and v that traverse u and v, respectively, we ask

u v
w1 w2

u v
w1 w2

u v
w1 w2

�1 �1�1

�2 �2�2

�� �′

(a) (b) (c)

Fig. 3. Different placements of the necessary intersection between lines �1 and �2 on
the path u, w1, w2, v. In (c) at least one of the lines � and �′ has to intersect one of the
lines �1 or �2.
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for the order of all lines that enter {u, v} in u and for the order in which all
lines leave {u, v} in v. Then the number of crossings on {u, v} is the number
of transpositions needed to convert one order into the other. The difficulty is
deciding the order of the lines that terminate in u or v with respect to the fixed
order of the lines that traverse both u and v. This is the one-edge layout problem
that we study in Section 2.

In contrast to the well-known NP-hard problem of minimizing crossings in a
two-layer bipartite graph [3] the one-edge layout problem is polynomially solv-
able. The main reason is that there is an optimal layout of the lines that pass
through edge {u, v} such that no two lines that terminate in u intersect and no
two lines that terminate in v intersect. This observation allows us to split the
problem and to apply dynamic programming. It is then rather easy to come up
with an O(n5)-time solution and with some effort we could reduce the running
time to O(n2), where n is the number of lines that do not terminate in u or v.

A solution of the general line layout problem, i.e., a simultaneous crossing-
minimal solution for all edges of a graph, would be of interest as a second (and
mostly independent) step for drawing bus or metro maps, a topic that has re-
ceived some attention lately, see the work of Nöllenburg and Wolff [4] and the
references therein. However, in that direction of research the focus has so far
been exclusively on drawing the underlying graph nicely, and not on how to em-
bed the bus or metro lines along the network. We give some hints in Section 3
why already the two-edge layout problem seems to be substantially harder than
the one-edge layout.

A vaguely similar problem has been considered by Cortese et al. [1]. Given the
drawing of a planar graph G they widen the edges and vertices of the drawing
and ask if a given combinatorial cycle in G has a plane embedding in the widened
drawing.

2 A Dynamic Program for One-Edge Layout

In this section we consider the following special case of the problem.

Problem 1. One-edge layout
We are given a graph G = (V, E) and an edge e = {u, v} ∈ E. Let Le be the set
of lines that use e. We split Le into three subgroups: Luv is the set of lines that
pass through u and v, i.e., neither u or v is a terminal station. Lu is the set of
lines that pass through u and for which v is a terminal station and Lv is the set of
lines that pass through v and for which u is a terminal station. We assume that
there are no lines that exclusively use the edge {u, v} as they could be placed
top- or bottommost without causing any intersections. Furthermore we assume
that the lines for which u is an intermediate station, i.e., Luv ∪ Lu, enter u in
a predefined order Su. Analogously, we assume that the lines for which v is an
intermediate station, i.e., Luv ∪Lv, enter v in a predefined order Sv. The task is
to find a layout of the lines in Le such that the number of pairs of intersecting
lines is minimized.
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u v

�v�u

Fig. 4. The lines in Luv are drawn
solid. In an optimal solution �u ∈
Lu and �v ∈ Lv intersect.

Note that the number of crossings is de-
termined by inserting the lines in Lu into the
order Sv and by inserting the lines in Lv into
Su. The task is to find insertion orders that
minimize the number of crossings. Observe
that the orders Su and Sv themselves already
determine the number of crossings between
pairs of lines in Luv and that the insertion
orders of Lu in Sv and of Lv in Su do not
change this number. Thus, we will not take
crossings between lines in Luv into account anymore. On the other hand, fixing
an insertion order affects the number of crossings between lines in Lu ∪ Lv and
Luv and the number of crossings between lines in Lu and Lv in a non-trivial way.
Figure 4 shows that a line �u ∈ Lu can indeed cross a line �v ∈ Lv in the unique
optimal solution. Throughout the paper lines in Luv are drawn solid, lines in Lu

dotted and lines in Lv dashed. We will now show that no two lines in Lu (and
analogously in Lv) cross in an optimal solution. This nice property is the key for
solving the one-edge layout in polynomial time.

Lemma 1. In any optimal solution for the one-edge layout problem no pair of
lines in Lu and no pair of lines in Lv intersects.

Proof. Assume to the contrary that there is an optimal solution σ with a pair of
lines in Lu that intersects. Among all such pairs in σ let {�, �′} be the one whose
intersection point p is rightmost. W.l.o.g. � is above �′ in u. Let �p and �′p be the
parts of � and �′ to the right of p, see Figure 5(a). Since σ is crossing minimal,
the courses of �p and �′p intersect the minimum number of lines in Luv ∪ Lv

in order to get from p to v. In particular, the number of crossings between �p

and lines of Luv ∪ Lv and between �′p and lines of Luv ∪ Lv must be the same
otherwise we could place �p parallel to �′p (or vice versa) which would reduce the
number of crossings. However, since the number of crossings to the right is the
same we can easily get rid of the crossing between � and �′ by replacing �p by
a copy of �′p infinitesimally close above �′p, see Figure 5(b). The proof for Lv is
analogous. ��

From now on we assume that no two lines of Lu are consecutive in Su and anal-
ogously no two lines of Lv are consecutive in Sv. The reason for this assumption
is that a set of consecutive lines can simply be drawn parallelly in an optimal
layout. Thus a single line suffices to determine the optimal course for the whole
bundle. Technically, we can deal with this case by merging a bundle of k consec-
utive lines of Lu or Lv to one line and assigning a weight of k to it. The dynamic
program will then run in a weighted fashion that counts k · k′ crossings for a
crossing of two lines with weights k and k′. For simplification we only explain
the unweighted version of the problem in detail.
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u v

�

�′
p

�p

�′p

(a)
u v

�

�′
p

�′p

(b)

Fig. 5. Two lines of Lu do not intersect in an optimal solution

Let n, nu and nv be the number of lines in Luv, Lu and Lv, respectively. Note
that by the above assumption nu, nv ≤ n + 1 holds.

Recall that by assumption the lines in Luv ∪ Lu enter u in a predefined order
and the lines in Luv ∪ Lv leave v in a predefined order. Let Su = (su

1 < · · · <
su

n+nu
) be the bottom-up order of lines in Luv ∪ Lu in u and Sv = (sv

1 < · · · <
sv

n+nv
) be the bottom-up order of lines in Luv ∪ Lv in v. A line � in Lv can

terminate below su
1 , between two neighboring lines su

i , su
i+1, or above su

n+nu
. We

denote the position of � by the index of the lower line and by 0 if it is below
su
1 . Let Sv|Lv = (sv

π(1) < . . . < sv
π(nv)) denote the order on Lv induced by Sv

and let Su|Lu = (su
μ(1) < . . . < su

μ(nu)) denote the order on Lu induced by Su.
Here, π and μ are injective functions that filter the lines Lv out of all ordered
lines Luv ∪ Lv in Sv and the lines Lu out of all ordered lines Luv ∪ Lu in Su, see
Figure 6.

Preprocessing. The orders Su and Sv already determine the number of necessary
crossings between pairs of lines in Luv. Let cruv denote this number. Since cruv

is fixed there is no need to consider the corresponding crossings in the minimiza-
tion. We will now fix the course of a line in Lv. This line, say � = sv

π(j), has
index π(j) in Sv, and we fix the course of � by choosing its terminal position i
in the order Su. We denote the number of crossings between � and all lines in
Luv by crv(i, j). This number is determined as follows. The line � crosses a line
�′ ∈ Luv with left index i′ and right index j′ if and only if either it holds that
i′ ≤ i and j′ > π(j) or it holds that i′ > i and j′ < π(j). The table crv for all
lines in Lv has (n + nu + 1) × nv = O(n2) entries. For fixed i we can compute
the row crv(i, ·) as follows. We start with j = 1 and compute the number of
lines in Luv that intersect line � with indices i and π(j). Then, we increment j
and obtain crv(i, j +1) by crv(i, j) minus the number of lines in Luv that are no
longer intersected plus the lines that are newly intersected. As any of the n lines
in Luv receives this status ’no longer’ or ’newly’ at most once and this status
can easily be checked by looking at Sv, this takes O(n) time per row. Thus, in
total we can compute the matrix crv in O(n2) time.

We define cru(i, j) analogously to be the number of crossings of the lines in
Luv with a line in Lu that has index μ(i) in Su and position j in Sv. Computing
cru is analogous to crv.
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u

1

3

5
6

μ(1) = 2

μ(2) = 4

v

Fig. 6. The order Su and the induced
suborder Su|Lu = (su

2 < su
4 )

u v

sv
π(j)

su
i

i

Fig. 7. Configuration corresponding to F (i, j):
line sv

π(j) terminates at position i in u

Dynamic Program. Assume that we fix the destination of sv
π(j) to some i ∈

{0, . . . , n + nu}. Then we define F (i, j) as the minimum number of crossings of
(a) the lines in {su

1 , . . . , su
i } ∩ Lu with the lines in Luv ∪ Lv and (b) the lines

in {sv
1, . . . , s

v
π(j)} ∩ Lv with the lines in Luv ∪ Lu. This situation is depicted in

Figure 7, where only the crossings indicated by gray disks are counted in F (i, j).
Then the values F (i, j) define an (n + nu + 1) × nv-matrix F .

Once the last column F (·, nv) of the matrix F is computed, i.e., all lines in
Lv are placed, we can determine the optimal solution for Le as

F ∗ := min{F (i, nv) + C(i, n + nu, nv + 1) | i = 0, . . . , n},

where C(i, n + nu, nv + 1) is the remaining number of crossings of lines in Lu ∩
{su

i+1, . . . , s
u
n+nu

} with Luv ∪ Lv, which are not yet counted in F (i, nv).
Before turning to the recursive computation of F (i, j) we introduce another

notation. Let us assume that sv
π(j−1) terminates at position k and sv

π(j) termi-
nates at position i, where 0 ≤ k ≤ i ≤ n + nu and j ∈ {1, . . . , nv}. Then
let C(k, i, j) denote the minimum number of crossings that the lines Lu

k,i :=
{su

k+1, . . . , s
u
i } ∩ Lu cause with Luv ∪ Lv. In other words C(k, i, j) counts the

minimal number of crossings of all lines of Lu in the interval defined by the
endpoints of the two lines sv

π(j−1) and sv
π(j). This situation is illustrated in Fig-

ure 8, where those crossings that are marked with gray disks are counted in the
term C(k, i, j). The following theorem gives the recursion for F and shows its
correctness.

Theorem 1. The values F (i, j), i = 0, . . . , n + nu, j = 1, . . . , nv, can be com-
puted recursively by

F (i, j) =

⎧
⎨

⎩

mink≤i{F (k, j − 1) + C(k, i, j) + crv(i, j)} if i ≥ 1, j ≥ 2∑j
l=1 crv(0, l) if i = 0, j ≥ 1

C(0, i, 1) + crv(i, 1) if i ≥ 1, j = 1.

(1)

Proof. The base cases of Equation (1) consist of two parts. In the first row, an
entry F (0, j) means that all lines sv

π(1), . . . , s
v
π(j) terminate at position 0 in u and
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hence the required number of crossings is just the number of crossings of these
lines with Luv, which equals the sum given in Equation (1). In the first column,
an entry F (i, 1) reflects the situation that line sv

π(1) terminates at position i.
The required number of crossings in this case is simply crv(i, 1), the number of
crossings of sv

π(1) with Luv, plus C(0, i, 1), the number of crossings of Lu
0,i with

Luv ∪ Lv.
The general case of Equation (1) means that the value F (i, j) can be composed

of the optimal placement F (k, j − 1) of the lines below and including sv
π(j−1)

(which itself terminates at some position k below i), the number C(k, i, j) of
crossings of lines in Lu in the interval between k and i, and the number of
crossings crv(i, j) of sv

π(j) at position i.
Due to Lemma 1 we know that sv

π(j) cannot terminate below sv
π(j−1) in an op-

timal solution. Hence, for sv
π(j) terminating at position i, we know that sv

π(j−1)
terminates at some position k ≤ i. For each k we know by the induction hy-
pothesis that F (k, j − 1) is the correct minimum number of crossings as defined
above. In order to extend the configuration corresponding to F (k, j − 1) with
the next line sv

π(j) in Lv we need to add two terms: (a) the number of crossings
of Lu

k,i with Luv ∪Lv, which is exactly C(k, i, j), and (b) the number crv(i, j) of
crossings that the line sv

π(j) (terminating at position i) has with Luv. Note that
potential crossings of sv

π(j) with lines in Lu
k,i are already considered in the term

C(k, i, j). Figure 8 illustrates this recursion: sv
π(j) is placed at position i in the

order Su, and sv
π(j−1) terminates at position k. The crossings of the configuration

corresponding to F (i, j) that are not counted in F (k, j − 1), are the C(k, i, j)
crossings of the marked, dotted lines of Lu (indicated by gray disks) and the
crv(i, j) encircled ones of sv

π(j) with Luv.
Finally, we have to show that taking the minimum value of the sum in Equa-

tion (1) for all possible terminal positions k of line sv
π(j−1) yields an optimal

solution for F (i, j). Assume to the contrary that there is a better solution
F ′(i, j). This solution induces a solution F ′(k, j − 1), where k is the position
of sv

π(j−1) in Su. Lemma 1 restricts k ≤ i and hence sv
π(j−1) runs completely

below sv
π(j). Therefore we have F ′(k, j − 1) ≤ F ′(i, j) − C(k, i, j) − crv(i, j) <

F (i, j) − C(k, i, j) − crv(i, j) ≤ F (k, j − 1). This contradicts the minimality of
F (k, j − 1). ��

If we store in each cell F (i, j) a pointer to the corresponding predecessor cell
F (k, j − 1) that minimizes Equation (1) we can reconstruct the optimal edge
layout: starting at the cell F (i, nv) that minimizes F ∗, we can reconstruct the
genesis of the optimal solution using backtracking. Obviously, using the com-
binatorial solution to place all endpoints of Le in the correct order and then
connecting them with straight-line segments results in a layout that has exactly
F ∗ crossings in addition to cruv, the invariable number of crossings of Luv.

Now, we can give a first, naive approach: As mentioned earlier the tables cru

and crv can be computed in O(n2) time. For the computation of one cell entry
C(k, i, j) we only have to look at the at most n lines Lu

k,i and their possible n+1
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u v

sv
π(j−1)

{
crv(i, j)

C(k, i, j)
su

i

sv
π(j)

su
k

i

k

Fig. 8. The recursion for F (i, j): lines sv
π(j−1) and sv

π(j) terminate at pos. k and i, resp.
C(k, i, j) = min. # crossings of the marked dotted lines Lu

k,i with Luv ∪ Lv =here 4
crv(i, j) = number of crossings of sv

π(j) with Luv =here 2

terminal positions in v. Once we have fixed a terminal position of a line � ∈ Lu
k,i,

we have to compute the number of crossings that � has with Luv ∪ Lv. For the
crossings with Luv we simply have to look at the corresponding value of cru. For
the crossings with Lv it is sufficient to look at the index of the terminal position
because we know that position k is the terminal position of sv

π(j−1) and position
i is the terminal position of sv

π(j). Thus, computing one of the O(n3) cells of the
table C requires O(n2) time, so in total we need O(n5) time for filling C. This
dominates the computation of the table F . In the remainder of this section we
show how to speed up the computation of F and C.

Improving the Running Time. Let us—for the moment—assume that the values
C(k, i, j) and crv(i, j) are available in constant time. Then the computation of
the (n + nu + 1) × nv matrix F still needs O(n3) time because the minimum
in Equation (1) is over a set of O(n) elements. The following series of lemmas
shows how we could bring the running time down to O(n2). First we show a
relation for the entries of the matrix C.

Lemma 2. C(k, i, j) is additive in the sense that C(k, i, j) = C(k, l, j)+C(l, i, j)
for k ≤ l ≤ i.

Proof. Since C(k, i, j) denotes the number of crossings of the lines in Lu ∩
{su

k+1, . . . , s
u
i } and no two of these lines intersect each other (recall Lemma 1)

we can split the layout corresponding to C(k, i, j) at any position l, k ≤ l ≤ i
and get two (possibly non-optimal) configurations for the induced subproblems.
This implies C(k, i, j) ≥ C(k, l, j) + C(l, i, j).

Conversely, we can get a configuration for C(k, i, j) by putting together the
optimal solutions of the subproblems. W.l.o.g. this introduces no additional
crossings (they could be removed as in the proof of Lemma 1). Hence we have
C(k, i, j) ≤ C(k, l, j) + C(l, i, j). ��

Now we show that we do not need to compute all entries of C.
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Lemma 3. Given the matrix C, the matrix F can be computed in O(n2) time.

Proof. Having computed entry F (i − 1, j) we can compute F (i, j) in constant
time as follows:

F (i, j) = min
{

F (i − 1, j) + C(i − 1, i, j) − crv(i − 1, j) + crv(i, j),
F (i, j − 1) + crv(i, j). (2)

The correctness follows from Equation (1), Lemma 2, and the fact that C(i, i, j)
vanishes:

F (i, j)
(1)
= min

{
min
k<i

{F (k, j − 1) + C(k, i, j) + crv(i, j)},

F (i, j − 1) + C(i, i, j) + crv(i, j)

L. 2= min

{
min

k≤i−1
{F (k, j − 1) + C(k, i − 1, j) + C(i − 1, i, j) + crv(i, j)},

F (i, j − 1) + crv(i, j)
(1)
= min

{
F (i − 1, j) − crv(i − 1, j) + C(i − 1, i, j) + crv(i, j),
F (i, j − 1) + crv(i, j)

In the first column, we can reformulate the recursion for i ≥ 1 as follows:

F (i, 1)
(1)
= C(0, i, 1) + crv(i, 1)

Lemma 2= C(0, i − 1, 1) + C(i − 1, i, 1) + crv(i, 1)
(1)
= F (i − 1, 1) − crv(i − 1, 1) + C(i − 1, i, 1) + crv(i, 1)

Hence the whole matrix F can be computed in O([n+nu] ·nv) = O(n2) time. ��

Observe that due to the reformulation in Lemma 3 we only need the values
C(i − 1, i, j) explicitly in order to compute F . Now we will show that we can
compute these relevant values in O(n2) time. For simplification we introduce the
following notation: C′(i, j) := C(i − 1, i, j).

Lemma 4. The values C′(i, j) (i = 1, . . . , n + nu, j = 1, . . . , nv) can be com-
puted in O(n2) time.

Proof. We compute C′(i, j) row-wise, i.e., we fix i and increase j. Recall that
C(k, i, j) was defined as the minimal number of crossings of the lines in Lu

k,i =
{su

k+1, . . . , s
u
i } ∩ Lu with the lines in Luv ∪ Lv under the condition that sv

π(j−1)
ends at position k and sv

π(j) ends at position i. For C′(i, j) = C(i − 1, i, j) this
means we have to consider crossings of the set Lu

i−1,i = {su
i } ∩ Lu. Hence, we

distinguish two cases: either su
i is a line in Luv and then Lu

i−1,i is empty or
su

i ∈ Lu and we have to place the line su
i optimally. Clearly, in the first case we

have C′(i, j) = 0 for all j as there is no line to place in Lu
i−1,i.

Now we consider the case that su
i ∈ Lu. For each j we split the set of can-

didate terminal positions for su
i into the intervals [0, π(j − 1)), [π(j − 1), π(j)),

and [π(j), n + nv]. Let LM(i, j), MM(i, j), and UM(i, j) denote the minimum
number of crossings of su

i with Luv ∪ Lv for terminal positions in [0, π(j −
1)), [π(j − 1), π(j)), and [π(j), n + nv], respectively. Now we have C′(i, j) =
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u
v

su
i+1 ∈ Luv

[
π(j), n + nv

]

[
0, π(j − 1)

)

[
π(j − 1), π(j)

)su
i ∈ Lu

sv
π(j−1) ∈ Lv

sv
π(j) ∈ Lvsu

i+1 ∈ Luv

−→ LM(i, j)

−→ UM(i, j)

−→ MM(i, j)

Fig. 9. Splitting the candidate terminal positions for su
i into three intervals w.r.t.

π(j − 1) and π(j)

min{LM(i, j), MM(i, j), UM(i, j)} as the minimum of the three distinct cases.
The situation is illustrated in Figure 9.

Next, we have to show how to compute MM, LM, and UM. First, we consider
MM. Recall that cru(i, j) was defined as the number of crossings of the lines in
Luv with the line su

μ(i) that terminates at position j in v. It follows that

MM(i, j) = min{cru(μ−1(i), k) | π(j − 1) ≤ k < π(j)}, (3)

where π(0) is defined as 0. Because of Lemma 1 there are no lines of Lv inter-
secting the tunnel between sv

π(j−1) and sv
π(j). Hence, if the line su

i terminates at
position k ∈ [π(j − 1), π(j)) it does not cross any line of Lv and Equation (3) is
correct. We can calculate MM(i, j) by a straight-forward minimum computation
through j = 1, . . . , nv which takes O(n + nv) = O(n) time for each value of i.

Secondly, we consider LM. Initially, in the case that j = 1 there is no line
sv

π(j−1) and the corresponding interval is empty. Hence we set LM(i, 1) = ∞.
Then we recursively compute

LM(i, j + 1) = min{LM(i, j) + 1, MM(i, j) + 1}. (4)

Observe that for LM(i, j + 1) we merge the previous intervals corresponding
to LM(i, j) and MM(i, j). Moreover the line sv

π(j), which previously ended at
position i, now terminates at position i−1. Hence, in order to reach its terminal
position in the interval [0, π(j)), the line su

i has to cross sv
π(j) in addition to the

crossings counted before by MM(i, j) and LM(i, j). This explains the recursion
in Equation (4). The computation again requires O(n) time for each value of i.

Finally, we initialize UM(i, nv) = 1+min{cru(μ−1(i), k) | π(nv) ≤ k ≤ n+nv}
as for j = nv the line su

i crosses the line sv
π(nv) but no other line of Lv. In

decreasing order we compute

UM(i, j − 1) = min{UM(i, j) + 1, MM(i, j) + 1} (5)

analogously to LM, which again requires O(n) time. As the whole procedure
needs linear time for each i = 1, . . . , n + nu the total running time is O(n2). ��
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Putting the intermediate results in Lemmas 3 and 4 together, we conclude:

Theorem 2. The one-edge layout problem can be solved in O(n2) time.

So far, the algorithm requires O(n2) space to store the tables F, C′, crv, and cru.
If we are only interested in the minimum number of crossings this can easily be
reduced to O(n) space as all tables can be computed row-wise: in F we need only
two consecutive rows at a time and we can discard previous rows; in the other
tables the rows are independent and can be computed on demand. This does not
affect the time complexity. However, to restore the optimal placement we need
the pointers in F to do backtracking and hence we cannot easily discard rows of
the matrix. But we can still reduce the required space to O(n) with a method
similar to a divide-and-conquer version of the Needleman-Wunsch algorithm for
biological sequence alignment [2] adding a factor of 2 to the time complexity.
Basically, the idea is to keep only the pointers in one column of the matrix to
reconstruct the optimal position of the corresponding line. This line cuts the
problem into two smaller subproblems which are solved recursively.

3 Generalization to a Path

Surely it is desirable to draw lines on a more general fraction of the graph than
only on a single edge. However, the problem seems to become significantly harder
even for two edges. Let us first define the problem on a path.

Problem 2. Path layout
Given a graph G = (V, E) and a simple path P = 〈u, w1, . . . , wm, v〉 in G. Let
LP be the set of lines that use at least one edge in P . We split LP into three sub-
groups: LP

uv is the set of lines that have no terminal station in {u, w1, . . . , wm, v},
LP

u is the set of lines for which u is an intermediate station and that have a ter-
minal station in {w1, . . . , wm, v}, and LP

v is the set of lines for which v is an
intermediate station and that have a terminal station in {u, w1, . . . , wm}. We
assume that there are no lines having both terminal stations in {u, w1, . . . , v}
as these could be placed top- or bottommost causing the minimum number of
crossings with lines in LP

uv. We also assume that any two lines �1, �2 that use
exactly the subpath x, . . . , y ⊆ P together and for which neither x nor y is a
terminal station enter P in x in a predefined order and leave P in y in a prede-
fined order. The task is to find a layout of the lines in LP such that the number
of pairs of intersecting lines is minimized.

We tried to apply the same dynamic-programming approach as for the one-edge
case. However, the dilemma is that the generalized version of Lemma 1 does
not hold, namely that no two lines in LP

v intersect. Thus, the problem instance
cannot be separated into two independent subproblems, which seems to forbid
dynamic programming. In Figure 10(a) we give an instance where two lines of
LP

v cross in the optimal solution. Here, the lines in LP
uv are drawn solid. Recall

that we do not have to take the intersections of lines in LP
uv into account as
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u vw1

�v

�′v

{
{L′′

L′′′

{L′
�u, �′u

(a) Optimal solution (7 crossings).

u vw1

�v

�′v

{
{L′′

L′′′

{L′

�u, �′u

(b) Manipulating �v (8 crossings).

Fig. 10. The two lines �v,�′
v ∈ LP

v cross in the optimal solution

these are again given by the orders in Su and Sv. The two lines �u and �′u ⊆ LP
u

are only needed to force the bundle crossings between the bundles L′ ⊂ LP
uv and

L′′′ ⊂ LP
uv to be on the edge {w1, v}. In the optimal solution the lines �v, �

′
v ∈ LP

v

intersect causing a total number of 7 crossings between lines in LP
v with lines

in LP
v ∪ LP

uv. We have to argue that any solution in which �v and �′v do not
cross produces more than 7 crossings. We look at the optimal solution and argue
that getting rid of the crossing between �v and �′v by manipulating the course
of either �v or �′v produces at least 8 crossings. First, we consider manipulating
the course of �v, see Figure 10(b). However then, as �v has to be above �′v, it has
to cross the 4 lines in the bundle L′′′ resulting in a total number of 8 crossings.
Similarly, manipulating the course of �′v would also result in at least 8 crossings.

4 Concluding Remarks

Clearly our work is only a first step in exploring the layout of lines in graphs.
What is the complexity of the problem if two edges of the underlying graph are
considered, what about longer paths, trees and finally, general plane graphs? A
variant of the problem where lines must terminate bottom- or topmost in their
terminal stations is also interesting. This requirement prevents gaps in the course
of continuing lines.
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Abstract. We consider graph drawing algorithms for learning spaces, a type of
st-oriented partial cube derived from antimatroids and used to model states of
knowledge of students. We show how to draw any st-planar learning space so all
internal faces are convex quadrilaterals with the bottom side horizontal and the
left side vertical, with one minimal and one maximal vertex. Conversely, every
such drawing represents an st-planar learning space. We also describe connec-
tions between these graphs and arrangements of translates of a quadrant.

1 Introduction

A partial cube is a graph that can be given the geometric structure of a hypercube, by
assigning the vertices bitvector labels in such a way that the graph distance between any
pair of vertices equals the Hamming distance of their labels. Partial cubes can be used
to describe benzenoid systems in chemistry [12], weak or partial orderings modeling
voter preferences in multi-candidate elections [11], integer partitions in number theory
[8], and the hyperplane arrangements familiar to computational geometers [6, 14]. In
previous work we found algorithms for drawing arbitrary partial cubes, as well as partial
cubes that have drawings as planar graphs with symmetric faces [5].

Here we consider graph drawing algorithms for learning spaces (also called knowl-
edge spaces), a type of partial cube derived used to model states of knowledge of stu-
dents [4]. These graphs can be large; Doignon and Falmagne [4] write “the number of
knowledge states obtained for a domain containing 50 questions in high school mathe-
matics ranged from about 900 to a few thousand.” Thus, it is important to have efficient
drawing techniques that can take advantage of the special properties of these graphs.

Our goal in graph drawing algorithms for special graph families is to combine the
standard graph drawing aesthetic criteria of vertex separation, area, etc., with a drawing
style from which the specific graph structure we are interested in is visible. Ideally, the
drawing should be of a type that exists only for the graph family we are concerned with,
so that membership in that family may be verified by visual inspection of the drawing.
For instance, in our previous work [5], the existence of a planar drawing in which all
faces are symmetric implies that the graph of the drawing is a partial cube, although not
all partial cubes have such drawings. Another result of this type is our proof [9] that the
graphs having delta-confluent drawings are exactly the distance-hereditary graphs.

The learning spaces considered in this paper are directed acyclic graphs with a single
source and a single sink. It is natural, then, to consider st-planar learning spaces, those
for which there exists a planar embedding with the source and sink on the same face. As
we show, such graphs can be characterized by drawings of a very specific type: Every
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st-planar learning space has a dominance drawing in which all internal faces are convex
quadrilaterals with the bottom side horizontal and the left side vertical. We call such a
drawing an upright-quad drawing, and we describe linear time algorithms for finding an
upright-quad drawing of any st-planar learning space. Conversely, every upright-quad
drawing comes from an st-planar learning space in this way.

2 Learning Spaces

Doignon and Falmagne [4] consider sets of concepts that a student of an academic
discipline might learn, and define a learning space to be a family F of sets modeling
the possible states of knowledge that a student could have. Some concepts may be
learnable only after certain prerequisites have been learned, so F may not be a power
set. However, there may be more than one way of learning a concept, and therefore more
than one set of prerequisites the knowledge of which allows a concept to be learned. We
formalize these intuitive concepts mathematically with the following axioms:

[L1] If S ∈ F and S �= /0, then there exists x ∈ S such that S\{x} ∈ F . That is, any state
of knowledge can be reached by learning one concept at a time.

[L2] If S, S ∪{x}, and S ∪{y} belong to F , then S ∪{x,y} ∈ F . That is, learning one
concept cannot interfere with the ability to learn a different concept.

These axioms characterize families F that form antimatroids [13, Lemma III.1.2].
We define a learning space to be a graph having one vertex for each set in an antimatroid
F , and with a directed edge from each set S ∈ F to each set S ∪{x} ∈ F . If U =

⋃
F ,

we say that it is a learning space over U . Antimatroids also arise in other contexts than
learning; e.g., the family of intersections of a point set in R

d with complements of
convex bodies forms an antimatroid. In the remainder of this section we outline some
standard antimatroid theory needed for the rest of our results.

Lemma 1. If F satisfies axioms L1 and L2, and K ⊂ L are two sets in F , with |L\K| =
n, then there is a chain of sets K0 = K ⊂ K1 ⊂ ·· · ⊂ Kn = L, all belonging to F , such
that Ki = Ki−1 ∪{qi} for some qi.

Proof. We use induction on |K| + |L|. If K is empty, let x be given by axiom L1 for
S = L, and combine qn = x with the chain formed by induction for K and L \ {x}.
Otherwise, let x be as given by axiom L1 for S = K, and form by induction a chain from
K \ {x} to L. By repeatedly applying axiom L2 we may add x to each member of this
chain not already containing it, forming a chain with one fewer step from K to L. ��

Similar repetitive applications of axiom L2 to the chain resulting from Lemma 1 proves
the following:

Lemma 2. If F satisfies axioms L1 and L2, and K ⊂ L are two sets in F , with K∪{q}∈
F and q /∈ L, then L∪{q} ∈ F .

Lemma 3 (Cosyn and Usun [1]). Let F satisfy the conclusions of Lemmas 1 and 2.
Then the union of any two members of F also belongs to F , and F is well-graded;
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Fig. 1. Left: An upright quadrilateral. Right: An upright-quad drawing.

that is, that any two sets in F can be connected by a sequence of sets, such that any
two consecutive sets in the sequence differ by a single element and the length of the
sequence equals the size of the symmetric difference of the two sets.

As their edges are oriented from smaller sets to larger ones, learning spaces are di-
rected acyclic graphs. Lemma 3 implies that any learning space G is a partial cube
when viewed as an undirected graph. Axiom 1 implies that the empty set belongs to
F , and that any other set has an incoming edge; that is, the empty set forms the unique
source in G. Closure under unions implies that

⋃
F is the unique sink in G. Thus, G is

st-oriented (or has a bipolar orientation): it is a DAG with a single source and a single
sink. In this paper we are particularly concerned with learning spaces for which this
orientation is compatible with a planar drawing of the graph, in that the source and sink
can both be placed on the outer face of a planar drawing. A graph admitting such a
drawing is an st-planar learning space.

3 Upright-Quad Drawings

In any point set in the plane, we say that (x,y) is minimal if no point (x′,y′) in the set
has x′ < x or y′ < y, and maximal if no point (x′,y′) in the set has x′ > x or y′ > y.

We define an upright quadrilateral to be a convex quadrilateral with a unique min-
imal vertex and a unique maximal vertex, such that the edges incident to the mini-
mal vertex are horizontal and vertical. That is, it is the convex hull of four vertices
{(xi,yi) | 0 ≤ i < 4} where x0 = x1 < x2 ≤ x3 and y0 = y2 < y1 ≤ y3 (Figure 1(left)).
We define the bottom edge of an upright quadrilateral to be the horizontal edge incident
to the minimal vertex, the left edge to be the vertical edge incident to the minimal ver-
tex, and the top edge and right edge to be the edges opposite the bottom and left edges
respectively.

We define an upright-quad drawing of a graph G to be a placement of the vertices of
the graph in the plane, with the following properties:

[U1] The placement forms a planar straight line drawing. That is, any two vertices
are assigned distinct coordinates, and if the edges of G are drawn as straight line
segments then no two edges intersect except at their endpoints.
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[U2] There is a unique vertex of G that is the minimal point among the locations of
its neighbors in G, and a unique vertex of G that is the maximal point among the
locations of its neighbors in G.

[U3] Every interior face of the drawing is an upright quadrilateral, the sides of which
are edges of the drawing.

In an upright-quad drawing, all edges connect a pair of points (x,y) and (x′,y′) with
x′ ≤ x and y′ ≤ y; if we orient each such edge from (x′,y′) to (x,y) then the resulting
graph is directed acyclic with a unique source and sink. As we now show, with this
orientation the drawing is a dominance drawing: that is, the dominance relation in the
plane and the reachability relation in the graph coincide.

Lemma 4. For any two vertices (x′,y′) and (x,y) in an upright-quad drawing, (x′ ≤
x)∧ (y′ ≤ y) if and only if there exists a directed path in the orientation specified above
from (x′,y′) to (x,y).

Proof. In one direction, if there exists a directed path from (x′,y′) to (x,y), then each
edge in the path steps from a vertex to another vertex that dominates it, and the result
holds by transitivity of dominance.

In the other direction, suppose that (x,y) dominates (x′,y′); we must show the exis-
tence of a directed path from (x′,y′) to (x,y). To do so, we show that we can find an
outgoing edge to another vertex dominated by (x,y); the result follows by induction
on the number of vertices. First consider the case that (x′,y′) is the minimal corner of
some upright quadrilateral of the drawing; then there exist both horizontal and vertical
outgoing edges from (x′,y′). (x,y) cannot belong to the bounding rectangle of these two
edges, for if it did we could not use them as part of an empty upright quadrilateral, so
at least one of the two edges leads to another vertex that is also dominated by (x,y).

In the second case, suppose (x′,y′) belongs to the bottom side of some upright quadri-
lateral of the drawing but is not the minimal vertex of that face. The sequence of faces
of the drawing on a vertical line through x′, above (x′,y′), must project to a sequence of
nested intervals on the y axis, for each consecutive pair of faces shares an edge which
has the same projection onto the y axis as the lower of the two faces. Therefore, (x,y)
cannot project to a point interior to the projection of the face above (x′,y′), so the hori-
zontal outgoing edge from (x′,y′) leads to a vertex that is also dominated by (x,y). The
case that (x′,y′) belongs to the left side of an upright quadrilateral but is not its minimal
vertex is symmetric to this one.

Finally, suppose that (x′,y′) is not on the bottom or left side of any upright quadri-
lateral. Then there can only be a single edge outgoing from (x′,y′), and there can be
no interior faces of the drawing directly above or to the right of this edge. Thus, again,
(x,y) cannot project into the interior of the projection of this edge in either coordinate
axis, so this edge leads to a vertex that is also dominated by (x,y). ��

As is well known to the graph drawing community [2,3], a dominance drawing exists
for any st-oriented plane graph in which the source s and sink t of the orientation
belong to the outer face of the plane embedding; such a graph is known as an st-
planar graph. However, due to property U3, not every st-planar dominance drawing
is an upright-quad drawing.
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Fig. 2. Left: an arrangement of quadrants. Right: the region graph of the arrangement, drawn with
each vertex (except the top right one) at the maximal point of its region.

4 Arrangements of Quadrants

Consider a collection of convex wedges in the plane, all translates of each other. Re-
call [5, 10] that a weak pseudoline arrangement is a collection of curves in the plane,
each topologically equivalent to a line and extending to infinity at both ends, such that
any two non-disjoint curves meet in a single crossing point. If no two wedges have
boundaries on the same line, the boundary curves of the wedges form such an arrange-
ment, for any two translates of the same wedge can only meet in a single crossing point.

By an appropriate linear transformation, we may transform our wedges to any desired
orientation and convex angle, without changing the combinatorics of their arrangement.
For later convenience, we choose a standard form for such arrangements in which each
wedge is a translate of the negative quadrant {(x,y) | x,y ≤ 0} (Figure 2(left)). For
such wedges, the condition that no two quadrants share a boundary line is equivalent
to all translation vectors having distinct x and y coordinates. We call an arrangement of
translated negative quadrants satisfying this distinctness condition an arrangement of
quadrants. We refer to the curves of the arrangement, and to the wedges they form the
boundaries of, interchangeably.

As with any arrangement of curves, we may define a region graph that is the planar
dual of the arrangement: it has one vertex per region of the arrangement, with two
vertices adjacent whenever the corresponding regions are adjacent across a nonzero
length of curve of the arrangement. For our arrangements of quadrants, it is convenient
to draw the region graph with each region’s vertex in the unique maximal point of
its region, except for the upper right region which has no maximal point. We draw the
vertex for the upper region at any point with x and y coordinates strictly larger than those
of any curve in our arrangement. The resulting drawing is shown in Figure 2(right).

Theorem 1. The placement of vertices above produces an upright-quad drawing for
the region graph of any arrangement of quadrants.

Proof. The drawing’s edges consist of all finite segments of the arrangement curves,
together with diagonal segments connecting corners of arrangement curves within a
region to the region’s maximal point; therefore it is planar. Each finite region of the
arrangement is bounded above and to the right by a quadrant, either a single curve
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of the arrangement or the boundary of the intersection of two of the wedges of the
arrangement. Each finite region is also bounded below and to the left by a staircase
formed by a union of wedges of the arrangement; the drawing’s edges subdivide this
region into upright quadrilaterals by diagonals connecting the concave corners of the
region to its maximal point. A similar sequence of upright quadrilaterals connects the
staircase formed by the union of all arrangement wedges to the point representing the
upper right region, which is the unique maximal vertex of the drawing. The unique
minimal vertex of the drawing represents the region formed by the intersection of all
arrangement wedges. Thus, all requirements of an upright-quad drawing are met. ��

Theorem 2. The region graph of any arrangement of quadrants can be oriented to
represent an st-planar learning space.

Proof. We associate with each vertex of the region graph the set of wedges that do not
contain any point of the region corresponding to the vertex. Each region other than the
one formed by intersecting all wedges of the arrangement (associated with the empty
set) has at least one arrangement curve on its lower left boundary; crossing that bound-
ary leads to an adjacent region associated with a set of wedges omitting the one whose
boundary was crossed; therefore axiom L1 of a learning space is satisfied.

If a region of the arrangement, associated with set S, has a single arrangement curve
c as its upper right boundary, then all supersets of S associated with other regions are
also supersets of S ∪{c}. Thus, in this case, there can be no two distinct sets S ∪{x}
and S ∪{y} in the family of sets associated with the region graph, and axiom L2 of a
learning space is satisfied vacuously.

On the other hand, if a region r of the arrangement, associated with set S, has curve x
as its upper boundary and curve y as its right boundary, then the only sets in the family
formed by adding a single element to S can be S ∪ {x} and S ∪ {y}. In this case, the
region diagonally opposite r across the vertex where x and y meet is associated with the
set S ∪{x,y} and again axiom L2 of a learning space is met. ��

Not all upright-quad drawings are formed from arrangements of quadrants as described
here. For instance, a single square is itself an upright-quad drawing, but not one formed
in this way. Nevertheless, as we describe in the rest of the paper, Theorems 1 and 2
have converses, in that any st-planar learning space can be given an upright-quad draw-
ing and any upright-quad drawing is combinatorially equivalent to the region graph of
an arrangement of quadrants. Thus, these three seemingly different concepts, st-planar
learning spaces, upright-quad drawings, and region graphs of arrangements of quad-
rants, are shown to be three faces of the same underlying mathematical objects.

5 Drawing st-Planar Learning Spaces

As we have seen, learning spaces are st-oriented. Thus, when considering drawing al-
gorithms for these graphs, it is natural to consider the special case in which the st-
orientation is consistent with a planar embedding; that is, when the graph is st-planar.
As we show in this section, every st-planar learning space has an upright-quad drawing.
An example of an st-planar learning space is shown in Figure 3; in the left view, the ver-
tices of a dominance drawing of the graph are labeled by the corresponding sets in the
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Fig. 3. An st-planar learning space

Fig. 4. A learning space that is planar but not st-planar (the power set on three elements)

family F , while on the right view, each edge is labeled by the single element by which
the sets at the two ends of the edge differ. However, not all planar learning spaces are
st-planar; Figure 4 shows an example of a learning space that is planar but not st-planar.

Lemma 5. Let G be an st-planar learning space. Then every interior face of G is a
quadrilateral, with equal labels on opposite pairs of edges.

Proof. Let b be the bottom vertex of any interior face f , with outgoing edges to b∪{x}
and b ∪{y}. Then by axiom L2 of learning spaces, G must contain a vertex b ∪{x,y}.
This vertex must be the top vertex of f , for otherwise the edges from b∪{x} to b∪{x,y}
and from b∪{y} to b∪{x,y} would have to pass above the top vertex, implying a subset
relationship from the top vertex to b ∪{x,y}, which is absurd. ��

Define a zone of a label x in an st-planar learning space G to be the set of interior faces
containing edges labeled by x. By Lemma 5, zones consist of chains of faces linked
by opposite pairs of edges. We may form a curve arrangement A(G) from an st-planar
graph G by drawing a curve through each face of each zone, crossing only edges of
G with the label of the zone. Within each face, there are two curves, which we may
draw in such a way that they cross once; they may also be extended to infinity past the
exterior edges of the drawing without any crossings in the exterior face (Figure 5(left)).
A(G) can be viewed as a form of planar dual to G, in that it has one vertex within each
face of G, one face containing each vertex of G, and one arrangement segment crossing
each edge of G; however it lacks a vertex dual to the outer face of G.
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Fig. 5. Left: The curve arrangement A(G) dual to an st-planar learning space. Right: Two cross-
ings between the same two curves lead to a contradiction, so A must be a weak pseudoline
arrangement (Lemma 6).

Fig. 6. Left: coordinates for conversion of st-planar learning space to upright-quad drawing.
Right: the same drawing with compacted coordinates.

Lemma 6. If G is an st-planar learning space, then A(G) is a weak pseudoline ar-
rangement.

Proof. The curves in A(G) are topologically equivalent to lines and meet only at cross-
ings. Suppose for a contradiction that two curves labeled x and y in A(G) cross more
than once. Then (Figure 5(right)) two different regions between these curves would
contain vertices corresponding to sets containing x and not containing y or vice versa.
But then every path from one such set to another would cross one or the other of the
two curves, contradicting the assumption that G is a partial cube and has shortest paths
labeled only by the elements of the symmetric difference of the two path endpoints. ��

We are now ready to define the vertex coordinates for our upright-quad drawing algo-
rithm. Consider the sequence of labels x0,x1, . . .x�−1 occurring on the right path from
the bottom to the top vertex of the external face of the drawing. For any vertex v of
our given st-planar learning space, let X(v) = min{i | xi /∈ v}. If v is the topmost ver-
tex of the drawing, define instead X(v) = �. Similarly, consider the sequence of labels
y0,y1, . . .y�−1 occurring on the left path from the bottom to the top vertex of the ex-
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ternal face of the drawing. For any vertex v of our given st-planar learning space, let
Y (v) = min{i | yi /∈ v}. If v is the topmost vertex of the drawing, define instead Y (v) = �.

Lemma 7. Let G be an st-planar learning space, with yi as above, let i < j < k, and
suppose that the curves labeled yi and yk both cross the curve labeled y j in the arrange-
ment A(G). Then the crossing with yk occurs to the left of the crossing with yi.

Proof. Otherwise, the arrangement would contain a set containing yi but not y j in the
region left of the crossing between yi and y j, and a set containing yk but not y j in the
region right of the crossing between y j and yk. However, as yi and yk could only cross
above yk, there could be no sets containing both yi and yk but not y j, violating the closure
of a learning space’s sets under union (Lemma 3). ��

Lemma 8. If we place each vertex v of an st-planar learning space G at the coordinates
(X(v),Y (v)), the result is an upright-quad drawing of G.

Proof. It is clear from the definitions that each edge of G connects vertices with mono-
tonically nondecreasing coordinates. We show that each internal face is an upright
quadrilateral. Consider any such face f , with bottom vertex b, top vertex t, bottom and
top edges labeled xi, and left and right edges labeled y j. Then, for any edge label yk with
k < j, yk ∈ b; for otherwise, the curve for yk would cross the curve for y j to the right
of f , and curves xi, y j, and yk would violate Lemma 7. Thus, the vertices b and b ∪{x}
of f are placed at y-coordinate value j, and the other two vertices have y-coordinates
larger than j. Symmetrically, the vertices b and b∪{y} of f have x-coordinate i, and the
other two vertices have x-coordinates larger than i.

This shows that all edges that are bottom or left edges of an interior face of the
drawing are horizontal or vertical. If e is not such an edge, then it belongs to the left or
right exterior path of the drawing. If on the left path, it connects a vertex {y′

i | i′ < i} to
{y′

i | i′ ≤ ii} and thus has strictly increasing y coordinates; symmetrically, if on the right
path, it has strictly increasing y coordinates. Thus all such edges also have the correct
dominance order for their vertices.

As all edges are oriented correctly, the drawing must have a unique minimal vertex
and a unique maximal vertex, the source and sink of G respectively. Together with each
face being an upright quadrilateral, this property shows that the drawing is an upright-
quad drawing. ��

A drawing produced by the technique of Lemma 8 is shown in Figure 6(left). As in
standard st-planar dominance drawing algorithms [2], we may compact the drawing by
merging coordinate values X(v) = i and X(v) = i + 1 whenever the merge would pre-
serve the dominance ordering of the vertices; a compacted version of the same drawing
is shown on the right of Figure 6.

Theorem 3. Every st-planar learning space G over a set U, having n vertices, has an
upright-quad drawing in an integer grid of area (|U |+ 1)2 that may be found in time
O(n).

Proof. We construct an st-planar embedding for G, form from it the dual curve arrange-
ment A(G), and use the indices of the curves to assign coordinates to vertices as above.
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Fig. 7. The family of sets formed by the union of a prefix and a suffix of some ordered universe
forms an st-planar learning space with 1+(|U |+1)|U |/2 states

The coordinates of the vertices in a face f may be assigned by referring only to the
labels of edges in f , in time O(| f |); therefore, all coordinates of G may be assigned in
linear time. The area bound follows easily. ��

Corollary 1. Any st-planar learning space over a set U has at most 1+(|U |+1)|U |/2
states.

Proof. Our drawing technique assigns each vertex (other than the topmost one) a pair
of coordinates associated with a pair of elements {xi,y j} ⊂ U (possibly with xi = y j),
and each pair of elements can supply the coordinates for only one vertex. Thus, there
can only be one more vertex than subsets of one or two members of U . ��

The bound of Corollary 1 is tight, as the family of sets F that are the unions of a prefix
and a suffix of a totally ordered set U (Figure 7) forms an st-planar learning space with
exactly 1 +(|U |+ 1)|U |/2 states.

6 From Drawings to Quadrant Arrangements

Define a zone of an upright-quad drawing to be a maximal sequence of interior faces
adjacent on opposite sides of each quadrilateral (Figure 8(left)). A zone consists of a
vertical sequence of quadrilaterals sharing horizontal sides and a horizontal sequence
of quadrilaterals sharing vertical sides, connected across a diagonal edge; either or both
sequence may be empty. We consider any bridge of the graph to form a zone of its own.

Theorem 4. Each upright-quad drawing is the region graph for an arrangement of
quadrants.

Proof. For each zone zi, we choose a coordinate value xi, larger than the x-coordinate of
the left endpoint of the bottom edge of the zone and (if the bottom edge is non-vertical)
smaller than the x-coordinate of the right endpoint of the edge. We similarly choose a
coordinate value yi, larger than the y-coordinate of the bottom endpoint of the left edge



292 D. Eppstein

Fig. 8. Left: A zone in an upright-quad drawing. Right: an arrangement of quadrants through each
zone.

of the zone and (if the left edge is non-horizontal) smaller than the y-coordinate of the
top endpoint of the edge. We choose these coordinates in such a way that, if zone i
meets the right exterior path of the drawing prior to zone j, then xi < x j, and, if zone i
meets the left exterior path of the drawing prior to zone j, then yi < y j. We then draw
a curve for zone zi by combining a horizontal ray left from (xi,yi) with a vertical ray
down from (xi,yi) (Figure 8(right)). This curve is easily seen to cross all faces of zone
zi, and no other interior faces of the drawing; thus, the arrangement A of these curves
forms a planar dual to the drawing (except, as before, that it does not have a vertex
representing the external face). ��

Corollary 2. Each upright-quad drawing represents an st-planar learning space.

Proof. This follows from Theorem 2 and Theorem 4. ��

As different sets of translation vectors for quadrants form combinatorially equivalent
arrangements if and only if the sorted orders of their y-coordinates form the same per-
mutations with respect to the sorted order of their x-coordinates, a bound on the number
of st-planar learning spaces follows.

Corollary 3. There are at most n! combinatorially distinct st-planar learning spaces
over a set of n unlabeled items.

More precisely, with high probability any permutation corresponds to a learning
space with only two combinatorially distinct upright-quad drawings (one formed by
flipping the other diagonally), so the number of distinct st-planar learning spaces is
1
2 n!(1 − o(1)).

7 Conclusions

We have characterized st-planar learning spaces, both in terms of the existence of an
upright-quad drawing and as the region graphs of quadrant arrangements. Our tech-
nique for drawing these graphs provides good vertex separation and small area, and it
is straightforward to verify from its drawing that a graph is an st-planar learning space.
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Our results can be viewed as showing that the convex dimension of an antimatroid
is two if and only if its order dimension is two. It is known that the order dimension is
always upper bounded by the convex dimension [13, Corollary III.6.10]. However, these
two quantities are not always equal. For instance, the antimatroid over {0,1,2,3,4}
formed by the subsets that either don’t contain 0 or do contain three or more items
has order dimension at most five, while it has convex dimension six. We note that the
convex dimension is computable in polynomial time as the width of a related poset [13,
Theorem III.6.9], and are hopeful that this result may also lead to interesting methods
of graph drawing, analogously to how our minimum-dimensional lattice embedding
technique [7] led to drawing algorithms for arbitrary nonplanar partial cubes [5].

Alternatively, when confronted with the task of drawing large nonplanar learning
spaces, it may be helpful to find large st-planar subgraphs and apply the techniques
described here to those subgraphs. Additionally, it would be of interest to extend our
st-planar drawing techniques to broader classes of partial cubes.
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Abstract. Graph drawing research traditionally focuses on producing
geometric embeddings of graphs satisfying various aesthetic constraints.
After the geometric embedding is specified, there is an additional step
that is often overlooked or ignored: assigning display colors to the graph’s
vertices. We study the additional aesthetic criterion of assigning distinct
colors to vertices of a geometric graph so that the colors assigned to adja-
cent vertices are as different from one another as possible. We formulate
this as a problem involving perceptual metrics in color space and we
develop algorithms for solving this problem by embedding the graph in
color space. We also present an application of this work to a distributed
load-balancing visualization problem.

Keywords: graph drawing, graph coloring, color space, color perception.

1 Introduction

Graphs are frequently visualized by embedding them in geometric spaces. That
is, geometric representations are natural tools for visualizations; hence, we embed
graphs in geometric spaces in order to display them. For instance, producing
geometric embeddings of combinatorial graphs so as to satisfy various aesthetic
constraints is a major component of graph drawing (e.g., see [5,9,10,13]).

Once a graph has been embedded in a geometric space, such as R2, we refer
to it as a geometric graph. That is, a geometric graph is a graph G = (V, E) such
that the vertices are geometric objects in Rd and the edges are geometric objects
connecting pairs of vertices. Note that this definition is more general than the
definition of “geometric graph” popularized by Alon and Erdös [1], in that they
define a geometric graph to be a graph G = (V, E) such that the vertices are
distinct points in R2 and edges are straight line segments. For example, we allow
a geometric graph to be a planar map, where the vertices are regions and the
edges are defined by regions that share a common border.

Intuitively, a geometric graph G is a graph that is “almost drawn,” because
displaying G requires assigning colors to its vertices. One obvious method of
doing this—a very common one—is to ignore the issue and color all the ver-
tices black. In this paper, we examine the color-choosing step more carefully.
In particular, are interested in methods for choosing colors for the vertices of
a geometric graph so as to make distinctions between vertices as apparent as
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possible. We are also interested in the related map coloring problem, where we
color the faces of a map so as to make the distinctions between adjacent faces
as strong as possible. Part of the challenge is choosing a good set of colors, but
we also want to assign colors to vertices in a way that makes the colors assigned
to adjacent vertices as different as possible. That is, we are interested in a bi-
criterion color assignment problem, where all the colors are different from one
another and adjacent colors are really different.

1.1 Previous Related Work

Graph coloring is a classic problem in algorithmic graph theory (e.g., see [3]).
Given a graph G, the traditional version of this problem is to color the vertices
of G with as few colors as possible so that adjacent vertices always have different
colors. The traditional graph coloring problem is posed as a “coloring” problem
purely for abstraction’s sake, however: no paint or pixels are involved. Even so,
there has been some prior work on algorithms for coloring geometric graphs
(in the traditional sense). For example, there has been some prior research on
coloring quadtrees [2], intersection graphs [6], and arrangements [7]. In addition,
there has been a host of prior work on the traditional version of graph coloring
for purely combinatorial graphs (e.g., see [3]).

Also of interest is work that has been published in the information visualiza-
tion literature on methods for choosing colors effectively for data presentation.
Healey [8] presents a heuristic for choosing a well-separated set of colors for
visualizing segmentation data in images. Likewise, Levkowitz and Herman [12],
Robertson [17], and Ware [23] discuss various ways for effectively building color
maps that correspond to data values in an image or data visualization (e.g., a
bar chart histogram). Rheingans and Tebbs [16] describe an interactive approach
that constructs a color scale by tracing a path through color space. Brewer [4]
describes several guidelines for choosing colors for data visualization, focusing
primarily on ways of representing linear numerical scales. There are also several
good books on the subject of color use for data visualization (e.g., see [20,21,22]).
In spite of this wealth of previous work on color selection for data visualization,
we are unfamiliar with any prior work that uses adjacency information to select
dissimilar colors for visualization purposes.

1.2 Our Results

In this paper, we investigate the following problem for geometric graph coloring:

Maximizing minimum color difference. Given a geometric graph G and
a color space C, assign visibly distinct colors from C to the vertices of
G so to maximize the minimum color difference across the endpoints of
edges in G.

We investigate this problem in terms of embeddings of G in the human-perceptible
subset of the color space C. This embedding of G in C is purely to find good colors
to assign to the vertices of G, however. The actual coordinates for G’s vertices
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and equations for G’s edges will still use G’s geometric embedding in Rd (e.g., as
produced by an existing graph-drawing algorithm). Nevertheless, the placement
of vertices and edges in our embedding of G in C implies a “goodness” score on the
degree to which adjacent vertices are well-separated and non-adjacent vertices are
fairly-separated (which corresponds to a similar degree of separation for the vertex
colors when we display G using its original geometry). We design a force-directed
algorithm to produce such embeddings.

By planar duality, our algorithms are also applicable to the map coloring
problem, where we are given a planar map and asked to color the regions with
distinct colors so that the color difference between bordering regions is as large
as possible. We give an application of this map coloring problem to an interesting
data visualization problem for load-balancing distributed numerical algorithms.

2 Color Space

Since we wish to assign colors to the vertices of a geometric graph so that colors
assigned to adjacent vertices look as different as possible, it is useful to have a
precise, mathematical notion of color and color difference.

Pure colors can be defined in terms of wavelengths of light, with the visible
spectrum of colors going roughly from 400 nm (violet) to 800 nm (red). Humans
perceive color, however, as a combination of intensity signals from three types
of cone cells in our eyes:

– S cone cells: These cells respond to short wavelengths and typically have
their peak transmission around 440 nm (violet). (For historical reasons, these
cells are often referred to as “blue” cone cells.)

– M cone cells: These cells respond to medium wavelengths and typically
have their peak transmission around 550 nm (yellow-green). (For historical
reasons, these cells are often referred to as “green” cone cells.)

– L cone cells: These cells respond to long wavelengths and typically have
their peak transmission around 570 nm (yellow). (For historical reasons,
these cells are often referred to as “red” cone cells.)

This physiology forms the basis of all color displays, from old-fashioned color
TVs to modern-day color LCD panels and plasma displays, for these displays
create what we perceive as colors by an additive combination of three color
intensities, such as red, green, and blue (RGB, as exemplified by the sRGB
space [19] used by many digital cameras and color displays). This physiology also
forms the basis of most color printing, as well, where printers create what we
perceive as colors by the subtractive combination of three color intensities, such
as cyan, magenta, and yellow (CMY). Thus, colors can be viewed as belonging
to a three-dimensional color space. Moreover, RGB color spaces, which define
three-dimensional cubes of color values, correspond to the way most modern
devices display colors.

Ironically, even though RGB spaces are the most popular for display devices,
humans are very poor at interpreting the perceived color that results from the
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addition of intensity values in red, green, and blue. Moreover, perceived color
differences do not define a uniform metric in RGB spaces. Our brains instead
use the following notions:

– Hue: the actual color, e.g., “blue,” “yellow,” “orange,” etc., as defined by a
radial value around a color wheel.

– Saturation: the vividness or dullness of the color.
– Luminosity: the lightness or darkness of the color.

Thus, human perceived color defines a three-dimensional color space, called HSL,
which corresponds to two cylindrical cones joined at their base, as shown in
Figure 1. The two apexes of these cones correspond to opposite corners in RGB
space. As with RGB, however, perceived color differences do not define a uniform
metric in the HSL color space. Moreover, the geometry of the HSL space makes
choosing colors inside its double-cone of visible colors more challenging.

CIE L*a*b* (or “Lab,” for short) is an absolute color space that defines each
color uniquely as a combination of Luminosity (L), a value, a*, which is a signed
number that indicates the degree of magenta (positive) or green (negative) in
a color, and a value, b*, which is a signed number that indicates the degree of
yellow (positive) or blue (negative) in a color. Geometrically, Lab is a slightly
distorted version of the HSL double-cone, with color points addressed using
Cartesian coordinates. Thus, defining the subset of visible colors in Lab space is
admittedly more challenging. Offsetting this drawback, however, is the fact that
empirical evidence supports the claim that Euclidean distance in this color space
corresponds to perceptual color difference [18]. There is a related, CIE L*u*v*
color space, which also is designed to provide a uniform color-difference metric,

Fig. 1. The Hue-Saturation-Luminosity (HSL) color space
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but the Lab color space seems to be more uniform. Thus, the Lab color space is
the more popular of the two.

There is a tradeoff between the two most popular color spaces, then. RGB
corresponds better to display hardware and it defines a simple cube geometry for
the space of visible colors. But perceived color difference is not a uniform metric
in RGB. Lab space, on the other hand, has a more complex geometry and requires
a translation to RGB for display purposes, but it supports a uniform color-
difference metric. In this paper, therefore, we explore color choosing algorithms
for both of these spaces.

3 Application

A specific application motivating this research is a problem in distributed pro-
gramming. The Navigational Programming (NavP) methodology [14] for con-
verting a sequential program into a parallel distributed program using migrating
threads consists of the following three steps:

1. Data Distribution: The data used by the program is distributed over the
network. The guiding heuristic principle is minimizing communication cost
while balancing the load on each processing element (PE).

2. Computation Distribution: Navigational commands (“hop” statements)
are inserted into the sequential code. This step produces a distributed sequen-
tial program, a single thread that “follows” the data through the network.

3. Pipelining: The single migrating thread produced in step 2 is broken into
multiple threads, which are then formed into a pipeline by adding appropri-
ate synchronization commands.

The methodology incorporates a feedback loop: information obtained in step 3
can be used to improve the data distribution in a subsequent application of the
three steps.

The data distribution step is based on constructing a Navigational Trace
Graph (NTG), which relates communication costs to data placement, and then
applying a graph partitioning heuristic. In the NTG, the vertices are the data
elements, and edge weights between vertices reflect the cost of placing the corre-
sponding data elements on different machines [15]. Among the factors influencing
the edge weights between two data items are (1) whether one of them is used
directly in the computation of the other; (2) whether they are physically allo-
cated close together in the sequential program; (3) whether they are referenced
in temporally consecutive statements in the sequential program. The first fac-
tor is a source of communication overhead if the data elements are assigned to
different PE’s, while the second and the third factors capture locality informa-
tion that is implicit in the sequential code and may affect performance (e.g., by
increasing cache reuse). Additional factors affect the partitioning: these include
balancing the computational load and amount of data on each PE, and intro-
ducing constraints that certain data elements must be on different PE’s (so as
not to preemptively exclude parallelism that might be introduced in step 3).
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(a) (b)

Fig. 2. The Navigational Programming application: (a) an example partition of an
array of data into 18 regions for a NavP application, colored by our algorithm; and (b)
the corresponding graph of adjacent regions

Since the interaction of these constraints can be complex, it is important to be
able to visualize the resulting data partitions. One ingredient of a good visualiza-
tion tool is effective use of color. Because the individual sets in the data partition
are not necessarily connected, the color-assignment scheme should follow two ba-
sic principles: (1) The colors assigned to regions in the partition should be highly
dissimilar, to make it easy to see the boundaries between regions. (2) All colors
used should be somewhat dissimilar from each other, so that it is apparent which
disconnected regions belong to the same set in the partition.

An example of a partition produced by this system is shown in Figure 2. The
underlying sequential code for which this partition was constructed, adapted
from Lee and Kedem [11], can be conceptualized as a sequence of scans over a
square matrix, where the scans alternate between row-major and column-major
order and also alternate directions. In each scan, the value of each element A[i, j]
is computed as a function of its neighbors and also the neighbors of its transposed
element A[j, i]. As can be seen, the partition is somewhat irregular. Because of
the strong data affinity between each element and its transpose, the sets are
symmetric about the diagonal of the matrix, and some of them are not connected.
Thus, because of the irregularity of the partitioning and the potential complexity
of the partitions, it is useful to have a high-quality assignment of colors to regions
in order to visualize the regions and their interactions.

4 What Is a Good Coloring?

Formally, our problem can be stated as follows. We are given as input an undi-
rected graph G, the vertices of which have been partitioned into regions ri. We
would like to display this region structure, overlaid on a conventional drawing of
the graph, by assigning distinct colors to vertices in different regions. Our task
is to choose a color for each region, satisfying the following constraints:
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– Each region must have a different color, and the colors assigned to regions
must be visually distinct.

– If two regions ri and rj are adjacent in G (that is, if some vertex in ri and
some vertex in rj are adjacent), then it is especially important that regions ri

and rj be given dissimilar colors. We desire that the colors of such adjacent
regions be as dissimilar as possible, subject to the first constraint that all
region colors be visually distinct.

To solve this problem, we construct a region graph R (as in Figure 2(b)). We
form one vertex in R per region ri, with regions ri and rj connected by an edge
in R if and only if they are adjacent. We view the problem of assigning colors
to the regions as one of embedding R geometrically, into a three-dimensional
space representing the gamut of colors available on the display device. Ideally,
distances in this space should represent the visual dissimilarity of a pair of colors.
As mentioned above, color spaces such as Lab have been designed so that this
dissimilarity can be approximated by a Euclidean distance in that space.

Thus, we have a geometric graph embedding problem: assign color coordi-
nates in a color space C to each vertex of the region graph R, according to the
dissimilarity criteria identified above. However, unlike the embedding problems
coming from traditional graph drawing problems, we want to place vertices so
that edges are long rather than short.

In order to formalize the problem, we define a coloring to be any mapping χ
from the vertices of R to the color space of interest. Let di,j denote the distance
between χ(ri) and χ(rj), as measured by an appropriate distance function cor-
responding to visual dissimilarity. Let D be the dimension of the color space; in
most instances we will have D = 3. Let n be the number of vertices in the region
graph. For any region ri, let Ni denote the set of adjacent regions in R. Finally,
let Δ denote the diameter of the color space into which we are embedding our
region graph. We define a quality measure q(χ) by the following equation:

q(χ) =
∑

ri

(
∑

rj∈R\{ri}

1
dD+1

i,j

+
n1+1/D

ΔD

∑

rj∈Ni

1
di,j |Ni|

).

One of our goals in defining a function of this form is that, by making the quality
a sum of relatively simple terms, we may find its gradient easily, simplifying the
application of standard numerical optimization techniques. There are two terms
per region in this sum, both normalized to be of roughly equal significance.

The first term has the form
∑

rj
d
−(D+1)
i,j . We expect, in a good embedding of

the region graph, that the regions will be roughly uniformly distributed around
the region graph. The exponent D + 1 in this term is chosen with this assump-
tion in mind: for infinitely many uniformly spaced regions with a spacing of δ,∑

d
−(D+1)
i,j will converge to Θ(δ−(D+1)), being influenced most strongly by the

regions nearest ri. On the other hand, a similar sum with an exponent of D or less
would diverge, and thus lowering the exponent in this term would cause our qual-
ity measure to be dominated more by global than local concerns. For n vertices
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in a D-dimensional region of diameter Δ, we expect spacing δ = Θ(Δn−1/D),
and thus we expect

∑

rj∈R\Ri

1
dD+1

i,j

= Θ(δ−(D+1)) = Θ(
n1+1/D

ΔD+1 ).

The second term has the form
∑

rj∈Ni
1/(di,j |Ni|). We hope, especially in the

case of relatively sparse region graphs, to have di,j roughly proportional to Δ
for all edges between adjacent regions ri and rj . If these edges are all sufficiently
long, the normalization by |Ni| will leave this term roughly proportional to 1/Δ.
The low exponent on the distance is acceptable as we wish this part of the quality
measure to act long-range, causing adjacent regions to be placed far apart. The
normalization factor n1+1/DΔ−D prior to the second term in our definition of q
is chosen to make the two terms of the sum roughly proportional.

5 Finding a Good Coloring

The problem of finding a good coloring can be approached with a standard
gradient descent or hill climbing heuristic: choose initial vertex locations in color
space, and then gradually move the locations in a direction that causes the most
local improvement in our quality measure. This requires calculating the gradient
of our quality measure, which is most easily done when our color space forms a
normed vector space, preferably Euclidean. Lab color is ideal for this task, as it
has been designed so that Euclidean distances in Lab color closely approximate
visual dissimilarity. The same approach can also be applied directly to RGB-
based color spaces such as sRGB, with some degradation in the goodness of fit
between our quality measure and the visual dissimilarity of the resulting colors.

As our quality measure is linear, we may compute the gradient separately for
the term of it applying to each region ri. The gradient at ri is a vector-valued
quantity, formed by summing for each rj a vector directed away from rj . If ri

and rj are not adjacent, this vector has length (D + 1)/dD+2
i,j . If ri and rj are

adjacent, we add another vector in the same direction with length

n1+1/D

|Ni|ΔD
d−2

i,j .

Gradient descent with these vectors will cause the locations of regions in color
space to spread apart rapidly. But we do not allow this to continue unconstrained,
as we must confine the colors of each region to the gamut of displayable colors on
the intended output device. We considered several options for this confinement:

– We could add an additional term in the quality measure penalizing colors
outside the allowable gamut. However, we do not wish to penalize colors near
the boundaries of the gamut, because those boundaries provide saturated
colors that are easy to visually distinguish. Nor do we wish to allow colors
to drift very far beyond the gamut. So the penalty term would have to have
a very steep derivative, making the numerical optimization more difficult.
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– We considered clipping any color outside the gamut to the nearest color
within the gamut. Like the penalty term, this method would affect only the
colors that reach the boundaries of the allowable gamut, and the numerical
optimization procedure would have difficulty propagating the effects of this
clipping to the interior of the gamut. More significantly, this truncation could
distort points near boundaries of the color space where the tangent plane
is not perpendicular to the line from the point to the center of the gamut.
Effectively, the truncation and the outward repulsive forces of the gradient
descent would push these points along the boundary away from the center.

– We experimented with a procedure that, after each step of gradient descent,
rescales the entire color space, so that all vertices again lie within the gamut
of allowable colors. This seems to work acceptably well for symmetric color
spaces such as the sRGB gamut. However, when we tried it with Lab colors,
for which the color space is more stretched out in some directions than
others, we found that this method tended to accentuated this stretching,
causing the gamut to be compressed in the other directions. In particular,
this led to significant desaturation of the resulting Lab colors.

– We finally settled on the following procedure: after each step of gradient de-
scent, rescale (rather than truncating) the out-of-gamut points, while leaving
the other points in place. In our experiments this method performed better
than the other ones above, allowing the gradient descent to improve the color
placement without distorting the gamut.

Our implementation chooses initial vertex locations at random within the
color gamut. Then in each iteration it attempts to move the locations of the
vertices in color space, one vertex at a time by three types of moves: random
jumps, swaps with other vertices, and moving by a fixed step size in the gradient
direction. For each of these three move types our algorithm accepts the move
only when it improves the overall quality of the coloring. If an iteration fails
to find any quality improvement, we reduce the step size and terminate the
algorithm when this step size falls below a preset threshold.

6 Results of Our Implementation

As a proof of concept, we implemented our algorithm both for the sRGB and
Lab color spaces, and compared the results with those from an algorithm that
chooses colors randomly. As the color spaces we use form eight-vertex convex
polyhedra, our algorithm will tend to choose colors at those vertices for graphs
with eight or fewer regions. For this reason, we chose for our experiments a larger
region graph in the form of an eighteen-vertex triangulation.

We believe that, ultimately, the most appropriate way to evaluate our results is
human usability testing, but such experiments are beyond the scope of this paper.
Our numerical quality measure is not suitable for comparing different algorithms,
first because it is specific to a color space and would not allow easy comparison
of colorings in different spaces, and second, because any such comparison would
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Fig. 3. Results of implementation: random assignment of colors to vertices. Left: ran-
dom sRGB colors; right: random Lab colors.

not test how well our quality measure itself models the ease of understanding
of drawings using our colorings. Thus, we only attempted a limited subjective
analysis, based due to space limitations only on the results of a single run of each
algorithm. Once each of our algorithms was working correctly, we ran it only once
in order to avoid biasing our results by choosing subjectively among multiple
runs; we note that an automated choice among multiple runs based on our quality
measure would be possible, but would not differ in principle from a single run of
a more sophisticated optimization procedure than our randomized hill climbing
algorithm. The random nature of our algorithms means that the precise colors
generated in our evaluation are not repeatable, and more systematic usability
testing is needed to verify our results.

In the first implementation (Figure 3(left)), we chose random colors inde-
pendently for all vertices, uniformly among the 224 possible sRGB values. As
expected, this did not work very well. The random assignment did not prevent
several very similar colors from being chosen, often for adjacent regions. We per-
formed a similar experiment with colors chosen uniformly at random in Lab color
space, within the convex hull of the eight extreme sRGB colors (Figure 3(right));
the resulting colors seemed less heavily dominated by greens than the random
sRGB results, but still included several very similar adjacent pairs of colors.

In the second implementation (Figure 4(left)) we applied our gradient descent
optimization algorithm directly to the sRGB color space, using the quality mea-
sure we defined earlier via the Euclidean distance in this space despite the fact
that this distance is known to fit human vision poorly. The algorithm chose a
diverse selection of well saturated colors, and all pairs of adjacent regions have
easily distinguishable colors. However, there are several nonadjacent colors that
are difficult to distinguish: two yellows (254,254,0 and 255,255,145), two cyans
(0,255,246 and 140,255,255), three blues (1,129,255, 0,0,245, and 130,0,255), two
reds (255,112,99 and 255,0,1), and two pinks (255,4,255 and 255,171,255). We
believe these faults are due to the poor match between Euclidean distance in
sRGB color space and human visual dissimilarity.
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Fig. 4. Results of implementation: gradient descent in sRGB color space (left) and in
Lab color space (right)

Finally, we applied our gradient descent algorithm for coordinates in the Lab
color space (Figure 4(right)). The gamut of representable colors in Lab space
is significantly larger than that for sRGB, so in order to ensure that our al-
gorithm generated colors that could be displayed, we restricted all colors to a
gamut formed geometrically as the convex hull in Lab space of the eight col-
ors black, white, red, green, blue, cyan, magenta, and yellow forming the most
extreme values of the sRGB color space. When our gradient descent algorithm
caused vertices to be assigned colors outside this convex hull, as described above,
we returned them to the gamut by a rescaling operation centered at the neu-
tral gray color with Lab coordinates 50, 0, 0. As with the sRGB output, the
result of this algorithm was a collection of diverse well saturated colors, with all
pairs of adjacent regions having easily distinguishable colors. Compared to the
sRGB results, there were fewer sets of difficult to distinguish nonadjacent colors:
primarily the two darker pinks (58,91,-62 and 75,56,-36). It is also somewhat
difficult to distinguish the dark green (21,-19,19) from the black (3,8,-13). On
the whole, it seems that using Lab color has led to a better selection of colors,
and equally good assignment of the chosen colors to the vertices of the region
graph.

7 Conclusion

We have given what we believe is the first color assignment algorithm that uses
adjacency information in the input geometric graph to choose colors that are
very different for adjacent vertices. For possible future work, one could consider
a weighted version of the problem, where edges of the input geometric graph are
weighted (e.g., by length) and we wish to assign colors so that the colors assigned
to vertices of low-weight edges are more dissimilar than those on high-weight
edges. Another interesting adaptation would be to perform our color assignment
algorithm for color spaces corresponding to color-blind people (of which there
are six types that collectively make up roughly 8% of the male population).
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Morphing Planar Graphs in Spherical Space�

Stephen G. Kobourov and Matthew Landis

Department of Computer Science
University of Arizona

{kobourov,mlandis}@cs.arizona.edu

Abstract. We consider the problem of intersection-free planar graph
morphing, and in particular, a generalization from Euclidean space to
spherical space. We show that there exists a continuous and intersection-
free morph between two sphere drawings of a maximally planar graph,
provided that both sphere drawings have convex inscribed polytopes,
where sphere drawings are the spherical equivalent of plane drawings:
intersection-free geodesic-arc drawings. In addition, we describe a mor-
phing algorithm along with its implementation. Movies of sample morphs
can be found at http://www.cs.arizona.edu/∼mlandis/smorph.

1 Introduction

Morphing refers to the process of transforming one shape (the source) into an-
other (the target). Morphing is widely used in computer graphics, animation,
and modeling; see a survey by Gomes et al. [8]. In planar graph morphing we
would like to transform a given source graph to another pre-specified target
graph. A smooth transformation of one graph into another can be useful when
dealing with dynamic graphs and graphs that change through time where it is
crucial to preserve the mental map of the user. The mental map preservation is
often accomplished by minimizing the changes to the drawing and by creating
smooth transitions between consecutive drawings.

In this paper we consider the problem of morphing between two drawings,
Ds and Dt, of the same maximally planar graph G = (V, E) on the sphere,
where maximally planar graphs (or fully-triangulated graphs) are planar graphs
in which every face is a triangle. The source drawing Ds and the target drawing
Dt are sphere drawings (generalizations of Euclidean plane drawings to spherical
space). The main objective is to find a continuous and intersection-free morph
from Ds to Dt. Note that the restriction to maximally planar graphs is not a
loss of generality, as planar graphs are easily augmented to maximally planar.

1.1 Previous Work

Morphing has been extensively studied in graphics, animation, modeling and
computational geometry, e.g., morphing 2D images [10], polygons and poly-
lines [14], 3D objects [11] and free form curves [13].
� This work is supported in part by NSF grants CCF-0545743 and ACR-0222920.
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Graph morphing, refers to the process of transforming a given graph G1 into
another graph G2. Early work on this problem includes a result by Cairns in
1944 [4] who shows that if G1 and G2 are maximally planar graphs with the same
embedding, then there exists a non-intersecting morph between them. Later,
Thomassen [16] showed that if G1 and G2 are isomorphic convex planar graphs
with the same outer face, then there exists a non-intersecting morph between
them that preserves convexity. Erten et al. show how to morph between drawings
with straight-line segments, bends, and curves [6]. This algorithm makes use
of compatible triangulations [2] and the convex representation of a graph via
barycentric coordinates [7,17].

While Thomassen [16] proved that an intersection-free morph exists, his ap-
proach neither provides a polynomial bound on the number of steps needed, nor
yields a practical morphing algorithm. Floater and Gotsman [7] and Gotsman
and Surazhsky [10,15] describe practical morphing techniques, although these
approaches neither compute explicit vertex trajectories, nor guarantee a polyno-
mial bound on the complexity of these trajectories. Recently, Lubiw et al. [12]
developed the first algorithm for intersection-free morphing with well-behaved
complexity for a special case of graphs drawings, namely, orthogonal graph draw-
ings. This work follows an earlier result by Biedl et al. [3] where each edge has
the same bends in the same direction in the source and target drawings.

As the sphere and the plane are topologically the same, it is natural to at-
tempt to generalize the non-intersecting morph algorithm from Euclidean space
to spherical space. Alfeld et al. [1] and Gotsman et al. [9] define analogues of
barycentric coordinates on the sphere, for spherical Bernstein-Bézieri polynomi-
als and for spherical mesh parameterization, respectively. However, barycentric
coordinates are problematic in spherical space. One problem is that unlike on
the Euclidean plane, three points on a sphere define two finite regions. A sys-
tem of barycentric coordinates must distinguish between these two regions. A
second problem arises from the non-linearity introduced by the sphere. The sys-
tem of equations used to determine the drawing at any stage of the morph has
non-unique solutions, and it is not easy to guarantee smoothness of the morph.

1.2 Our Results

Our approach to morphing spherical drawings focuses on affine transformations
of the inscribed polytopes of the given spherical drawings. The inscribed poly-
tope of a spherical drawing is obtained by replacing the geodesic edges by
straight-line segments. We apply rotations, translations, scaling and shearing
to the inscribed polytope, while projecting its endpoints onto the surface of
the sphere throughout the transformations. At an intermediate stage, we use
the intersection-free morphing algorithm for plane drawings together with a
gnomonic projection to/from the sphere. Our approach yields a continuous and
intersection-free morph for sphere drawings of maximally planar graphs, pro-
vided that the source and target drawings have convex inscribed polytopes.
Note that in general, the inscribed polytope of a sphere drawing is star-shaped,
though not necessarily convex. Therefore, while we do not resolve the general
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problem of morphing spherical drawings, we describe an approach which works
for a subclass of spherical drawings and which hopefully can be used to resolve
the general problem.

2 Background

We begin with some mathematical background about sphere drawings and spher-
ical projections. The concept of a straight line in Euclidean space generalizes to
that of a geodesic in Riemannian spaces, where the geodesic between two points is
defined as a continuously differentiable curve of minimal length between them.
Thus, geodesics in Euclidean geometry are straight lines, and in spherical ge-
ometry they are arcs of great circles. The generalization of an intersection-free
straight-line drawing of a planar graph in spherical space uses geodesics instead
of straight-lines.

Definition 1. A sphere embedding of a graph is a clockwise order of the neigh-
bors for each vertex in the graph. A drawing is a drawing of an embedding if
neighbors of nodes in the drawing match the order in the embedding. Note that
3-connected planar graphs in general, and maximally graphs in particular, have
a unique sphere embedding, up to reflection.

Definition 2. A geodesic-arc sphere drawing of a graph is the sphere analogue
of a straight-line drawing of a graph. The drawing is determined entirely by a
mapping of the vertices of the graph onto the sphere. An edge between two nodes
is drawn as the geodesic arc between them. We assume that no two nodes are
antipodal, as there is no unique geodesic arc between two antipodal points.

Definition 3. An intersection-free, geodesic-arc sphere drawing of a graph is a
sphere drawing of the graph in which no two edges intersect, except at a node
on which they are both incident. We refer to such drawings as sphere drawings
for short. Note that sphere drawings are a generalization of straight-line plane
drawings from Euclidean space to spherical space.

Definition 4. Given a sphere drawing D of a planar graph G, the inscribed
polytope P of D is obtained by replacing the (geodesic) edges in the spherical
drawing by straight-line segments. The inscribed polytope P is by definition
simple and star-shaped, though not necessarily convex.

Definition 5. The gnomonic projection is a non-conformal map projection ob-
tained by projecting a point on the surface of the sphere from the sphere’s center
to the point in a plane that is tangent to the south pole. Since this projection
sends antipodal points to the same point on the plane, it can only be used
to project one hemisphere at a time. In a gnomonic projection, geodesics are
mapped to straight lines and vice versa [5].

Note that a stereographic projection from the sphere to the plane, with the
north pole as the focus of the projection, unambiguously maps each point from
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Fig. 1. Screenshots from our implementation, illustrating the morphing sequence:
Ds → D′

s → D′′
s → D′′

t → D′
t → Dt

the sphere to a point on the plane. In this case, however, a sphere drawing
is mapped to an intersection-free drawing of the graph in the plane but that
drawing is not a straight-line one. As the graph morphing algorithm for plane
drawings assumes edges are straight-line segments, we use a gnomonic projection.

3 Morphing Between Sphere Drawings

The algorithm for morphing between two sphere drawings Ds and Dt of the
same underlying graph G can be broken into several stages:

1. Choose an outer face f0 of the underlying graph;
2. Morph the source sphere drawing Ds of G into D′s, where D′s is a sphere

drawing of G such that the north pole is inside f0 and the entire drawing is
below the equator;

3. Morph the target sphere drawing Dt of G into D′t, where D′t is a sphere
drawing of G such that the north pole is inside f0 and the entire drawing is
below the equator;

4. Project D′s and D′t using a gnomonic projection onto the plane tangent to
the south pole to the drawings D′′s and D′′t ;

5. Morph D′′s into D′′t using the morphing algorithm for plane drawings [6].

In practice, step 3 of the above algorithm is used in the reverse direction and
altogether, the morphing sequence is: Ds → D′s → D′′s → D′′t → D′t → Dt; see
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(a) (b)

Fig. 2. (a) Projecting from a polytope that contains the origin to the surface of the
sphere; (b) Gnomonic projection to and from the sphere

Fig. 1. By the definition of a gnomonic projection, since D′s and D′t are both
strictly in the lower hemisphere, their projections D′′s and D′′t onto the plane
tangent to the south pole are plane drawings. This implies the correctness of
steps 4 and 5 and so, to argue the correctness of the overall approach, we must
show that steps 2 and 3 of the algorithm above can be accomplished without
introducing crossings in the morph.

3.1 Maintaining a Smooth and Intersection-Free Morph

Our approach to morphing sphere drawings uses a series of affine transformations
to the inscribed polytope of the underlying graph (steps 2 and 3). We also rely
on the barycentric morphing approach for plane drawings (steps 4 and 5). Thus,
throughout the morph of our sphere drawing, we often track two positions for
each vertex: the actual position of the vertex on the sphere in the sphere drawing,
and the other, in some other construct, such as a 3D polytope, as in Fig. 2(a),
or a plane drawing, as in Fig. 2(b). When transformations to the construct are
applied, the positions of the vertices on the sphere change appropriately. A useful
visualization for this approach is to imagine a spoke for each vertex, going from
the origin of the sphere through both positions associated with that node. As
one position changes, so does the other. For simplicity, assume the sphere is
centered at (0, 0, 0) with radius 1 and that the projection plane is z = −1.

Our first results deal with projecting a polytope on the surface of a sphere
and the effect of affine transformations on the polytope to its projection.

Theorem 1. A strictly convex polytope containing the center of a sphere yields
a sphere drawing of that polytope’s skeletal graph when its vertices are normalized
to lie on the sphere.
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Proof Sketch: First, note that the geodesic arc between two vertices on the sphere
is the same as the projection of the straight line between those two vertices of
the polytope. Suppose that the projection of the polytope onto the sphere has
a crossing. Consider the point p on the sphere where two edges intersect. This
point must be the projection of two different polytope edges onto the sphere.
This implies that there exists a ray that starts at the center and intersects two
separate edges of the polytope. Let p1 and p2 be the two points obtained from
the intersection of each of these edges with the ray through the origin. Without
loss of generality, let p1 be the point that is further from the center. Then there
exists a line segment from the center of the sphere to p1 that passes through p2.
This contradicts the assumption that the polytope is strictly convex. Hence, the
resulting sphere drawing must be intersection-free. ��
Affine transformations of a convex polytope result in a convex polytope [5]. This
observation, together with Theorem 1 yields the following Theorem:

Theorem 2. Affine transformations to a convex polytope P that contains the
center of a sphere, result in sphere drawings of that polytope’s skeletal graph
when its vertices are normalized to lie on the sphere, if the origin remains inside
P throughout the transformation.

As we are not assuming that the inscribed polytope obtained from a sphere
drawing contains the origin, and we propose to deal with sphere drawings strictly
contained in the lower hemisphere, we need an analogous theorem dealing with
polytopes not containing the origin.

Theorem 3. A strictly convex polytope P not containing the center of a sphere
yields a sphere drawing of that polytope’s skeletal graph when its vertices are
normalized to lie on the sphere if, for some face f1, the ray from the origin to
any point on the polytope intersects f1 before any other part of the polytope, and
none of the faces of P lie in planes containing the origin.

Proof Sketch: The face f1 acts as a shield for rays emanating from the origin.
Given a point p of the polytope we can determine its projection p′ on the surface
of the sphere by taking the intersection of the ray from (0, 0, 0) through p with
the sphere. As in Theorem 1, we may have a crossing in the spherical drawing
if the ray passes through more than one edge of P . Since P is convex, the ray
intersects P ’s faces in at most two places. If the ray hits fewer than two faces,
then clearly it is not going to intersect two edges.

Consider the cases where the ray enters P through face f1 (by assumption, it
must) and exits through some other point. If the ray does not intersect an edge
of f1 at its entry point, then the only place at which it can intersect an edge of
P is its exit point. There can thus be at most one intersection, and we cannot
have a crossing from this. If the ray hits an edge of f1 at its entry point then,
since f1 shields all other faces from the origin, for the ray to hit another edge
at its exit point, there would have to be a face adjacent to f1 lying in a plane
containing the origin (such that the ray would pass through the edge of f1 and
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(a) (b)

Fig. 3. Linear scaling of the vertices to the southern hemisphere may introduce cross-
ings: (a) the endpoints of the long edge are below those of the short edge; (b) linear
scaling could bring all the vertices to the southern hemisphere but at some intermediate
stage the two edges intersect

remain in the adjacent face until it exits P through another of that face’s edges).
This case is disallowed by another of the theorem’s assumptions. ��

3.2 Sliding Sphere Drawings to the Equator

The obvious method of “sliding” a sphere drawing down to the lower hemi-
sphere is to do a simple linear scale of the drawing, either by z-coordinates in
Euclidean coordinates, or by φ in spherical coordinates. This approach, how-
ever, does not always work. It is easy to construct an example with two non-
intersecting geodesics in the upper hemisphere that must cross on their way to
the lower hemisphere if linear scaling is used; see Fig. 3. Therefore, we consider
the approach where we manipulate the inscribed polytope.

Theorem 4. There exists a continuous and intersection-free morph that moves
a sphere drawing D, of a maximally planar graph G, to a drawing of G such
that the vertices of a chosen face f0 are on the equator and all others are strictly
below the equator, provided that the inscribed polytope P of D is convex.

Proof Sketch: Consider the inscribed convex polytope P corresponding to the
sphere drawing D. We have two cases: either P contains the origin or it does
not.

Case 1 (P contains the origin): First rotate P so that the outward normal
to f0 is parallel to (0, 0, 1). Let v0 be the average of the points of f0. Since
P is convex, the segment between the origin and v0 lies entirely within P . We
can thus apply to P a translation along the vector −v0 and be assured that
P contains the origin throughout the transformation, hence Theorem 1 applies.
Now f0 lies within the xy-plane, so when we project its points onto the sphere,
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they lie on the equator. Since P is convex, we know all other points of P are on
one side of f0. Since the outward normal of f0 is pointing up, the other points
are then below f0, and hence below the equator.

Case 2 (P does not contain the origin): Here we rely on Theorem 3, instead.
First we need to show that its preconditions are true: that there exists some face
f1 that acts as an shield that eclipses the rest of the polytope from the origin,
and no faces lie in planes containing the origin.

Since P does not contain the origin, there exists some plane that passes
through the origin such that P lies entirely on one side of that plane. Thus
D has one face, which we conveniently call f1, which encompasses a half-sphere.
The face f1 must eclipse the rest of P from the origin. The edges in D that make
up f1 match the edge of the spherical region eclipsed by f1 in P . Since f1 is the
outermost face, there can be no nodes outside of this region.

The second condition is straightforward: the only way three points on a sphere
can lie on a plane containing the origin is if they all lie on a great circle (a circle
whose center is the same as the sphere’s). A face made by three such points
is either defined by a great circle, in which case the face itself, and hence P ,
contains the origin (so we would have already dealt with it by case 1), or the
three points all lie within a half-circle, in which case the arc between the two
most distant completely overlaps the arcs between the other two pairs, in which
case we did not have a valid sphere drawing to begin with.

We have shown Theorem 3 applies, and can thus apply any affine transfor-
mations to P that maintains f1’s eclipse of the rest of the polytope. We use
shearing, as it is an affine transformation and straight lines remain straight.
If the application of a transformation were to negate f1’s “eclipse” property,
then it would have to introduce a clear path from the origin to some edge in P
not on f1.

Shearing and rotation do not affect the origin, so we can apply these transfor-
mations (around the origin, anyway) while maintaining a valid sphere drawing
in the projection. Let v0 be the centroid of f1. We rotate P so that v0 lies in the
xy-plane on the line y = x. Now v0 lies at (a, a, 0), for some a. Simultaneously
shear P in x and y with the factor −1, so that v0 ends up at the origin. We
now have a convex polyhedron that contains the origin, and we have reduced
the problem to case 1. ��

3.3 Sliding Sphere Drawings to the Lower Hemisphere

From Theorem 4 we know that we can transform D into a drawing such that
the vertices of a face f0 are on the equator and all the rest are strictly below
the equator. At this stage it is easy to argue that there exists an ε > 0 such
that we can translate the polytope by an additional ε vertically down, so that
all the points on the sphere (including those that form f0) are strictly below the
equator.

In practice, however, the valid values of ε can be arbitrarily small, making
this simple approach unattractive for morphing. The value of ε depends on the
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placement of the vertices of f0 around the equator. If two vertices of f0 are near-
antipodal, then the edge between them can pass arbitrarily close to the south
pole when we translate P strictly below the equator. This would make it diffi-
cult to prevent crossings in the spherical drawing. Instead, we use scaling and
shearing (both affine transformations) of the polytope P to make f0 an equilat-
eral triangle. We consider f0 by itself in the plane, calculate the transformations
necessary to make it equilateral (shear around its centroid until it is isosceles,
and then scale to make it equilateral), and apply them to P as a whole.

Our goal is to move all vertices outside of f0 low enough on the sphere so that
we can guarantee f0 blocks their view of the origin. As we show below, it suffices
to move the rest of the points below the Antarctic circle (66oS, z ≈ −0.9135)
to ensure that they are eclipsed by an f0 whose vertices lie on the Tropic of
Capricorn (23.5oS, z ≈ −0.3987). These two values also provide a bound on
the area of the straight-line plane drawing obtained as the gnomonic projection
of the sphere drawing. With the next theorem we derive the general relation
that must exist between these two latitudes in order to guarantee we obtain an
intersection-free sphere drawing, as per Theorem 3, and it is straight-forward to
verify that that these two values satisfy the relation.

Theorem 5. There exists a continuous and intersection-free morph that moves
a sphere drawing D, of a maximally planar graph G, to a drawing of G such that
all the vertices are strictly below the equator, provided that the inscribed polytope
P of D is convex.

Proof Sketch: Here is the outline of the proof. We begin with f0 as a triangle
in the xy-plane. We apply scaling and shearing to P to transform f0 into an
equilateral triangle. We choose a value z1 that we want to translate f0 down
to, and calculate a scaling factor s as a function of z1 and z3, the highest z-
coordinate of any point outside f0. We scale P in x and y by a factor of 1

s ,
and project it back onto the sphere. Note that this leaves f0 in the xy-plane.
The scaling factor was computed so that when we translate P down by z1 the
face f0 eclipses the rest of P , yielding a valid sphere drawing at each stage by
Theorem 3. Since f0 is now strictly below the equator, and all other nodes are
below f0, the entire drawing is below the equator. Next we provide some of the
details about this argument.

We begin where Theorem 4 left off. The inscribed polytope P has the desig-
nated face f0 on the equator and all other vertices in the southern hemisphere.
We skip the details about scaling and shearing to P to transform f0 into an equi-
lateral triangle, and focus on calculating the scaling factor s needed to ensure
that when we translate P below the equator, the spherical drawing contains no
crossings.

Since we have transformed f0 into an equilateral triangle, we know exactly
where its arcs lie, and can calculate the lowest point on the sphere covered by f0.
We would like to translate P down so that f0 lies in the plane z = z1 (say, the
Tropic of Capricorn). Rotate P so that one of f0’s vertices lies on the y-axis. Then
the coordinates of that point are (0,

√
1 − z2

1 , z1). Since f0 is equilateral, we can
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easily find that its other two points are at (
√

3y1
2 , −y1

2 , z1) and (−
√

3y1
2 , −y1

2 , z1).
Since these two are symmetric around the y-axis, we can use the arc between
these to find the lowest point of f0 on the sphere. The midpoint of the spherical
arc is the projection of the midpoint of the Euclidean line between these two
points, given by the average of the two points:

m = (0,
−y1

2
, z1) = (0,

−
√

1 − z2
1

2
, z1)

We need its magnitude to project it onto the sphere:

||m|| =

√
−

√
(1 − z2

1)
2

2

+ z2
1 =

√
1 − z2

1

4
+ z2

1 =

√
1
4

+
3
4
z2
1 =

1
2

√
3z2

1 + 1

The midpoint m had a z-coordinate of z1 and so, when projected onto the sphere,
it has a z-coordinate of z1

||m|| . Thus, the lowest point z2 of f0 on the sphere
would be

z2 =
z1

||m|| =
2z1√

3z2
1 + 1

.

If we move all points of D not in f0 below z2, then we can translate P down
and guarantee that f0 still eclipses P from the origin, and thus maintain a
valid sphere drawing throughout. Using the Tropic of Capricorn for z1 yields a
value for z2 that is above the Arctic Circle, so using the two familiar latitudes
guarantees valid sphere drawings throughout. To make sure all vertices outside
f0 are below z2, we scale P down around the z-axis by some constant factor s.
This scaling has the effect of moving all the vertices not in f0 towards the south
pole. We can calculate the scale-factor s necessary to move all nodes below z2
as follows.

Let z3 be the maximum z-coordinate of any node in D not in f0. We would
like to scale the point (x, y, z3) to (x

s , y
s , z3), such that when it is projected back

onto the sphere, its z-coordinate is below z2. To project (x
s , y

s , z3) onto the sphere
we first find its magnitude. Since the original point lies on the sphere, we have
x2 + y2 = 1 − z2

3 and the magnitude is given by:
√

x2

s2 +
y2

s2 + z2
3 =

√
x2 + y2

s2 + z2
3 =

√
1 − z2

3

s2 + z2
3 .

As our goal is to have the scaled, projected point lie below z2, so we need to find

a value for s such that: z3√
1−z2

3
s2 +z2

3

< z2. Solving for s gives us: s >

√
1−z2

3
z2
2

z2
3
−z2

3

.

Using the scaling factor guarantees all points outside f0 fall below f0’s arcs on
the sphere when projected, and thus f0 eclipses P throughout the translation,
and we can move f0 on the sphere down to the plane z = z1 with the translation
(0, 0, −z). ��
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z3
z2

z1

f0

f0

(a) (b)

Fig. 4. The polytope P has a face f0 on the equatorial plane. The highest z-coordinate
of a vertex not on f0 is given by z3. We would like to translate the polytope straight
down so that f0 is on the Tropic of Capricorn plane, given by z = z1. We ensure that
all vertices other than those in f0 are below the Antarctic circle, given by plane z = z2.

3.4 The Complete Morph

We have shown that we can morph a sphere drawing to another sphere drawing
that is entirely in one hemisphere. Then, starting with the source drawing Ds we
can morph it to a drawing D′s that is strictly below the equator. We can do the
same with the target sphere drawing Dt and morph it to a sphere drawing D′t
that is strictly below the equator. We then obtain the gnomonic projections D′′s
and D′′t of the two drawings onto the plane tangent to the south pole. We then
apply the planar morph algorithm to morph between these two plane drawings.
Throughout the planar morph, the sphere drawing is the inverse gnomonic pro-
jection of the current state of the plane drawing. Finally, we invert the Dt → D′t
morph to arrive at the target drawing.

In order to perform the planar morph, we must ensure that the outer face in
D′′s and D′′t is the same. We must match the upper faces in D′s and D′t. Theorem 4
allows us to use whichever face we wish, therefore matching is not a problem.

4 Conclusions and Open Problems

We have shown that under certain conditions we can morph between spherical
drawings such that the morph is continuous and intersection-free. More images
and movies are available at http://www.cs.arizona.edu/∼mlandis/smorph.
Several important open problems remain:

1. Does there exist a continuous and intersection-free morph between any pair
of sphere drawings of an underlying 3-connected graph?

http://www.cs.arizona.edu/~mlandis/smorph
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2. In the planar morph stage, what is actually computed is not the trajectories
of the vertices, but their locations at any stage in the morph. Is there a
morph with trajectories of polynomial complexity?

3. Is there a more direct way to use spherical barycentric coordinates with
interpolating between convex representations of graph to obtain a spherical
morph, that does not involve reducing the problem to a planar morph?
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Abstract. This paper addresses the problem of designing drawing al-
gorithms that receive as input a planar graph G, a partitioning of the
vertices of G into k different semantic categories V0, · · · , Vk−1, and k
disjoint sets S0, · · · , Sk−1 of points in the plane with |Vi| = |Si| (i ∈
{0, · · · , k − 1}). The desired output is a planar drawing such that the
vertices of Vi are mapped onto the points of Si and such that the curve
complexity of the edges (i.e. the number of bends along each edge) is kept
small. Particular attention is devoted to outerplanar graphs, for which
lower and upper bounds on the number of bends in the drawings are
established.

1 Introduction

Semantic constraints for the vertices of a graph G define the placement that these
vertices must have in a readable visualization of G [3,9,12]. For example, in the
context of data base design some particularly relevant entities of an ER schema
may be required to be represented in the center and/or along the boundary of
the diagram (see, e.g., [13]). A possible way of modeling semantic constraints
for a (sub)set {v1, v2, · · · , vh} of the vertices of a graph G is to specify a set
{p1, p2, · · · , ph} of locations for their placement. Often, it is sufficient for the
application that every vertex vi (i = 1, · · · , h) is placed to any location pj

(1 ≤ j ≤ h), that is the mapping of each vertex to a specific location is not
part of the input. A key reference in this scenario is the work by Kaufmann and
Wiese [10]. Given a planar graph G with n vertices and a set S of n distinct
points in the plane, they show how to compute a planar drawing of G such that
each vertex is mapped to any point of S and every edge bends at most twice,
which is proved to be worst case optimal. It is also known that for specific classes
� Research partially supported by MIUR under Project “ALGO-NEXT(Algorithms for

the Next Generation Internet and Web: Methodologies, Design and Experiments)”,
and NSERC. Omitted or sketched proofs can be found in [4].
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of graphs, such as outerplanar graphs and trees, the number of bends per edge
can be reduced to zero (see, e.g., [1,2,7]). The work by Kaufmann and Wiese,
however, does not seem to be immediately scalable to applications where the
vertices of G are grouped based on their relevance or meaning and for each of
these groups a different semantic constraint should be applied (for example a
subset of the vertices on the boundary, some others in a central position, and so
on). A solution in this case could be to fix in advance the location of each vertex in
each semantic category and then route the edges. Halton [8] and, independently,
Pach and Wenger [11], showed that a planar graph G always admits a planar
drawing such that the location of each vertex is part of the input; however,
fixing the vertex positions in advance may give rise to drawings with high visual
complexity. Pach and Wenger [11] show that a linear number of bends per edge
is asymptotically optimal in the worst case even for graphs as simple as paths.

This paper studies the above mentioned problem without imposing that the
position of the vertices is part of the input. The input is a planar graph G, a
partitioning of the vertices of G into k different semantic categories V0, · · · , Vk−1,
and k disjoint sets S0, · · · , Sk−1 of points in the plane with |Vi| = |Si| (i ∈
{0, · · · , k − 1}). The required output is a planar drawing such that the vertices
of Vi are mapped to the points of Si; for each vertex v ∈ Vi the drawing algorithm
can choose which point of Si represents v. We study the visual complexity of
these types of drawings, expressed in terms of number of bends per edge. The
intuition is that if the number of categories is constant, then a constant number
of bends per edge may be sufficient, at least for simple classes of planar graphs.
This type of investigation was started in [5,6], where the apparently simple case
of k = 2 is studied. In [6] and in [5] a constant number of bends per edge is
proved to be sufficient for constructing planar poly-line drawings of subclasses
of outerplanar graphs, including paths, cycles, caterpillars, and wreaths. In [5] it
is also shown that there exists a 2-outerplanar graph G with a vertex partition
V0, V1 and two disjoint sets S0, S1 of points such that any planar drawing of G
that maps a vertex v ∈ Vi to a distinct point of Si (i = 0, 1) has at least one edge
with a linear number of bends. The 2-outerplanarity of the counterexample on
one hand, and the outerplanarity of the families of graphs for which a constant
number of bends per edge is possible, motivated us to further investigate how
many bends are required for general outerplanar graphs and then extend the
research to cases where k > 2.

In this paper, each integer i ∈ {0, · · · , k − 1} identifying a partition set of the
vertices of G is called a color, G is called a k-colored graph, and the set of points
S = S0 ∪ · · · ∪ Sk−1 such that |Vi| = |Si| (for each each color i ∈ {0, · · · , k − 1})
is called a k-colored set compatible with G. A planar drawing of G such that each
v ∈ Vi is drawn as a distinct point p ∈ Si is a point-set embedding of G on S.
Graph G is k-colored point-set embeddable if it admits a point-set embedding on
every k-colored set compatible with G. Our main results are as follows.

– Every outerplanar 2-colored graph is 2-colored point-set embeddable with
at most 5 bends per edge. Also, a 2-colored embedding of this type can be
computed in O(n log n) time. (See Section 3).
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– For every positive integer h > 0, there exists an outerplanar 3-colored graph
G, whose number of vertices depends on h, and a set of points S compatible
with G such that every point-set embedding of G on S has an edge with
more than h bends. (See Section 4).

– For k colors in which one restricts all the points of the point set with the
same color to vertical regions separated by vertical lines, at most 4k + 1
bends per edge are required for outerplanar graphs. The drawings can be
computed in O(n log n + kn) time. (See Section 5).

2 Preliminaries

Let G = (V, E) be a graph. A k-coloring of G is a partition {V0, V1, . . . , Vk−1}
of V where the integers 0, 1, . . . , k − 1 are called colors. For each vertex v ∈ Vi

(0 ≤ i ≤ k − 1) we denote by col(v) the color i of v. For any subset of vertices
U ⊆ Vi (0 ≤ i ≤ k − 1) we denote by col(U) the color i of all the elements of U .
A k-coloring of G is proper if for every edge (u, v) ∈ E we have col(u) �= col(v).
A graph G with a (proper) k-coloring is called a (proper) k-colored graph. Let
S be a set of distinct points in the plane. For any point p ∈ S we denote by
x(p) and y(p) the x- and y-coordinates of p, respectively. A k-coloring of S
is a partition {S0, S1, . . . , Sk−1} of S. A set of points S with a k-coloring is
called a k-colored set. For each point p ∈ Si (0 ≤ i ≤ k − 1), col(p) denotes
the color i of p, and for any subset R ⊆ Si (0 ≤ i ≤ k − 1), col(R) denotes
the color i of all the elements of R. A k-colored set S is compatible with a
k-colored graph G if |Vi| = |Si| for every 0 ≤ i ≤ k − 1; if G is planar we
say that G has a point-set embedding on S if there exists a planar drawing
of G such that: (i) every vertex v is mapped to a distinct point p of S with
col(p) = col(v), (ii) each edge e of G is drawn as a polyline λ; a point shared by
any two consecutive segments of λ is called a bend of e. A k-colored sequence σ is
a sequence of (possibly repeated) colors c0, c1, . . . , cn−1 such that 0 ≤ cj ≤ k−1
(0 ≤ j ≤ n−1). We say that σ is compatible with a k-colored graph G if, for every
0 ≤ i ≤ k−1, color i occurs |Vi| times in σ. Let S be a k-colored set. Throughout
the paper we always assume that the points of S have different x-coordinates
(if not we can rotate the plane so to achieve this condition). Let p0, p1, . . . , pn−1
be the points of S with x(p0) < x(p1) < . . . < x(pn−1). The k-colored sequence
col(p0), col(p1), . . . col(pn−1) is called the k-colored sequence induced by S, and
is denoted as seq(S).

A graph G is Hamiltonian if it has a simple cycle that contains all its vertices;
such a cycle is called a Hamiltonian cycle of G. If G is a k-colored graph and σ =
c0, . . . , cn−1 is a k-colored sequence compatible with G, a k-colored Hamiltonian
cycle of G consistent with σ is a Hamiltonian cycle v0, v1, . . . , vn−1 such that
col(vi) = ci (0 ≤ i ≤ n − 1). If such a cycle exists, G is said to be k-colored
Hamiltonian consistent with σ. Let G be a planar k-colored graph and let σ be a
k-colored sequence compatible with G. It is always possible to augment G with
dummy edges so that the resulting (not necessarily planar) graph has a k-colored
Hamiltonian cycle H consistent with σ and including all dummy edges. Let Ψ
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be a planar embedding of G and suppose that Γ is a drawing of G ∪ H such
that: (i) The drawing of G in Γ preserves Ψ ; (ii) no two dummy edges of H
cross; (iii) each edge e of G crosses at most d times the dummy edges of H. Each
crossing between an edge e of G and a dummy edge of H is replaced in Γ with
a dummy vertex, which we call a division vertex for e, and we say that H is an
augmenting k-colored Hamiltonian cycle of G consistent with σ with at most d
division vertices per edge. We also say that H (with at most d division vertices
per edge) is constructed on Ψ .

Lemma 1. Let G be a planar k-colored graph and let σ be a k-colored sequence
compatible with G. If G admits a point-set embedding with at most b ∈ �

+

bends per edge on every k-colored set S such that seq(S) = σ, then G admits
an augmenting k-colored Hamiltonian cycle consistent with σ and with at most
b − 1 division vertices per edge constructed on some planar embedding of G.

Sketch of Proof: Let S be a set of points p0, p1, . . . , pn−1 that lie on the x-axis
such that x(pj) < x(pj+1) for 0 ≤ j < n − 1 and seq(S) = σ. By hypothesis G
admits a point-set embedding on S with at most b bends per edge. Assume vertex
vi of G is placed at point pi for all i. For all 0 ≤ i < n − 1 we add straight line
edges (vi, vi+1) if they are not adjacent in G. If vn−1 and v0 are not adjacent in G
we connect them with a polyline as follows: from vn−1 we draw a horizontal line
segment sufficiently far to the right, from v0 we draw a horizontal line segment
sufficiently far to the left, and we complete the polyline by connecting the two
line segments to a point sufficiently high above the drawing of G. It can be shown
that if an edge of G is intersected more than b−1 times, then this edge is drawn
with at least b + 1 bends. ��

Lemma 2. Let G be a planar k-colored graph and let σ be a k-colored sequence
compatible with G. If G has a planar embedding on which an augmenting k-
colored Hamiltonian cycle consistent with σ and with at most b ∈ �+ division
vertices per edge can be constructed, then G admits a point-set embedding with
at most 2b + 1 bends per edge on every k-colored set S such that seq(S) = σ.

Sketch of Proof: The proof is similar to a technique used in [10]. Let S be a
k-colored set such that seq(S) = σ. By hypothesis it is possible to find an
augmenting k-colored Hamiltonian cycle H of G consistent with σ such that
each edge has at most b division vertices. We add all division vertices to G and
color these vertices with color k. Let G′ denote the new graph, H′ the new
Hamiltonian cycle and n′ the number of vertices of G′. Add n′ − n elements to
S to create S′. We can do this in such a way that H′ is consistent with S′. We
first draw H′ on S′ from left to right, and the final edge from the last point of
S′ to the first point of S′ is connected to a point drawn sufficiently high. Only
the last edge of H′ has a bend. The remaining edges of G′ are either inside or
outside H′. The inside edges are drawn above S′, the others are drawn below S′.
As is shown in [10], we can add these edges in a planar fashion by placing the
bends sufficiently far up or down. This results in a drawing with at most one
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Fig. 1. (a) A planar 2-colored graph G. An augmenting 2-colored Hamiltonian cycle H
of G with at most one division vertex per edge is highlighted in bold. Dummy edges are
dashed lines and dummy vertices are squares. The interior of H is shown as a shaded
area. (b) A point-set embedding with at most 3 bends per edge. Edge (3, 5) has 3 bends
(one in correspondence of the dummy vertex).

bend per edge of G′, which implies that there is a drawing of G with at most
2b + 1 bends per edge. For an illustration, see Figure 1. ��

A graph is outerplanar if it admits a planar embedding such that all vertices are
on the external face. A graph is 2-outerplanar if it admits a planar embedding
such that removing all vertices on the external face, results in all the remaining
vertices being on the external face. The following result is proved in [5].

Theorem 1. [5] For every n ≥ 4 there exists a 2-outerplanar 2-colored graph G
with 2n vertices and a 2-colored set compatible with G such that the maximum
number of bends per edge of every point-set embedding of G on S is Ω(n).

3 Outerplanar 2-Colored Graphs

Motivated by Theorem 1, in this section we prove that every outerplanar 2-
colored graph G admits a point-set embedding with at most 5 bends per edge
on any 2-colored set S compatible with G.

Let Ψ be a planar embedding of G with all vertices on the external face. We
prove that G admits an augmenting 2-colored Hamiltonian cycle constructed
on Ψ , consistent with σ = seq(S), and with at most 2 division vertices per
edge. The result then follows from Lemma 2. Since every outerplanar graph can
be made biconnected by adding edges while maintaining the outerplanarity, we
can assume, without loss of generality, that G is biconnected. In this case the
boundary of the external face of G is a simple cycle C containing all vertices of G.
The edges of G that are not in C are called chords. We start by proving that every
simple cycle C admits an augmenting 2-colored Hamiltonian cycle H consistent
with σ and with at most 1 division vertex per edge. To this aim we describe an
algorithm that computes H. We then shall describe how it is possible to obtain
from H an augmenting 2-colored Hamiltonian cycle of G consistent with σ and
with at most two division vertices per edge. The idea is illustrated in Figure 2.

Let σ = c0, . . . , cn−1. We order the vertices of C counterclockwise starting
from an arbitrary vertex whose color is c0. More formally, let v0 be a vertex
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Fig. 2. (a) An outerplanar 2-colored graph G. (b) An augmenting 2-colored Hamilto-
nian cycle of the external boundary of G, with at most 1 division vertex per edge. (c)
An augmenting 2-colored Hamiltonian cycle of G with at most 2 division vertices per
edge.

of C such that col(v0) = c0; we walk counterclockwise along C starting from v0
and write u < v if u is encountered before v. Also, given a subset of vertices
U ⊆ V (C) we write first(U) to denote the first vertex of U according to < and
with last(U) the last vertex of U according to <. Given a vertex v ∈ U , next(v)
denotes the vertex of U that is immediately after v according to <.

The construction of H begins with v0 and adds one vertex of C per step (plus
possibly one division vertex). The vertex of C added at Step i will be denoted
as vi. Also, we denote as Hi the set of vertices added to H up to Step i and
as Gi the augmented graph constructed up to Step i, i.e. the graph consisting
of C plus all dummy edges and division vertices possibly added during Steps
0, 1, . . . , i. Also we define the following sets:

– NBi = {v | v ∈ V (C), v �∈ Hi, first(Hi) < v < last(Hi)}
– F c

i = {v | v ∈ V (C), last(Hi) < v, col(v) = c}, where c = 0, 1 (notice that
F c

i ∩ Hi = ∅)

Sets NBi and F c
i partition the set of vertices of C that must be still added

to H at the end of Step i. Intuitively, the vertices in NBi have been already
encountered moving counterclockwise on C, while the vertices in F c

i have yet to
be encountered. At the end of Step i, the following invariants are maintained:

Invariant 1. All vertices of NBi have the same color.
Invariant 2. All vertices of NBi are on the external face of Gi.
Invariant 3. Vertex vi is on the external face of Gi.
Invariant 4. If vi �= last(Hi), then for each vertex u such that vi < u < last(Hi),
we have u ∈ Hi.

At Step i + 1 the algorithm chooses the vertex vi+1 of C to be added to H;
the addition of vi+1 may require us to add to H some dummy edges and one
division vertex. We say that a dummy edge is added inside C if it is inserted on
the left-hand side when walking counterclockwise around C. In order to choose
and add vi+1, the algorithm distinguishes between the following cases:
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Case 1: NBi �=∅ and col(NBi)=ci+1. The algorithm chooses vi+1 =last(NBi).
If vi and vi+1 are not adjacent in C, a dummy edge (vi, vi+1) is added on the
external face of Gi (see, e.g., the addition of vertices v4 and v5 in Figure 2(b)).

Case 2: NBi =∅ or col(NBi) �=ci+1. The algorithm chooses vi+1 =first(F ci+1
i ).

Vertices vi and vi+1 are connected in H according to the following sub-cases:
Case 2.a: vi = last(Hi). If vi+1 = next(last(Hi)), then vi and vi+1 are ad-

jacent in C and therefore no dummy edge needs to be added (see, e.g.,
the addition of vertex v7 in Figure 2(b)). If vi+1 �= next(last(Hi)), a
dummy edge (vi, vi+1) is added inside C (see, e.g., the addition of vertex
v8 in Figure 2(b)).

Case 2.b: vi �=last(Hi) and vi+1=next(last(Hi)). A dummy edge (vi,vi+1)
is added on the external face of Gi (see, e.g., the addition of vertex v6
in Figure 2(b)).

Case 2.c: vi �= last(Hi) and vi+1 �= next(last(Hi)). The algorithm splits
edge (last(Hi), next(last(Hi))) by means of a division vertex d, which
is added to H between vi and vi+1. A dummy edge (vi, d) is added on
the external face of Gi and a dummy edge (d, vi+1) is added inside C. For
example, in Figure 2(b), the addition of vertex v10 is done by inserting a
division vertex d that splits (v8, v11), and the two dummy edges (v9, d),
(d, v10).

Lemma 3. Let C be a 2-colored simple cycle and let σ be a 2-colored sequence
compatible with C. Then C admits an augmenting 2-colored Hamiltonian cycle
consistent with σ and with at most 1 division vertex per edge.

Lemma 4. Let G be an outerplanar 2-colored graph and let Ψ be a planar em-
bedding of G having all vertices on the external face. Let σ be a 2-colored sequence
compatible with G. Then G admits an augmenting 2-colored Hamiltonian cycle
constructed on Ψ , consistent with σ, and with at most 2 division vertices per
edge.

Proof. Since every outerplanar graph can be made biconnected by adding edges
while maintaining outerplanarity, we assume that G is biconnected. Let C be
the boundary of the external face of G in Ψ . We remove all the chords from G
and compute an augmenting 2-colored Hamiltonian cycle of C consistent with σ
and with at most one division vertex per edge, by using the algorithm described
above. If we add back the chords of G to the graph Gn−1, i.e. the augmented
graph constructed at the end of the algorithm, these edges will cross the edges
of H that are inside C. For each crossing between an edge eH of H and a chord
ech of G we add a division vertex d that splits both eH and ech. Thus we ob-
tain an augmenting 2-colored Hamiltonian cycle of G. To complete the proof we
must show that every chord ech is split by at most two division vertices. To this
aim observe that an edge eH = (u, w) of H must cross ech only if an endvertex
v of ech is such that u < v < w. We show that for each vertex v there can
be at most one edge eH = (u, w) of H such that u < v < w. Since edge eH is
inside the cycle C, it is a dummy edge added at some Step i (0 ≤ i ≤ n−1) when
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Cases 2.a or 2.c apply. After the addition of this edge, vertex v and all the other
vertices between v and w become vertices of NBi. According to the algorithm
the vertices of NBi are added to H by means of edges that are either edges of C
or dummy edges on the external face of Gi (Case 1). This implies that any other
dummy edge incident on a vertex between v and w is not inside C and therefore
edge eH = (u, w) is the only edge of H such that u < v < w. Since each chord
ech has two endvertices, there is at most one division vertex on ech for each of
them and therefore at most two division vertices for each chord. ��

Theorem 2. Every outerplanar 2-colored graph G admits a point-set embedding
with at most 5 bends per edge on any 2-colored set compatible with G. Such a
point-set embedding can be computed in O(n log n) time, where n is the number
of vertices of G.

4 Outerplanar 3-Colored Graphs

Since, by Theorem 2, outerplanar 2-colored graphs are 2-colored point-set em-
beddable with O(1) bends per edge, one may wonder whether the number of
bends per edge remains constant for values of k larger than 2. Unfortunately,
this may not be the case even for 3 colors.

In this section we describe an infinite family of outerplanar 3-colored graphs
such that for any integer h ≥ 0 there exists a graph in the family and a set
of points S such that any point-set embedding of the graph on S contains an
edge having more than h bends. Our family of outerplanar 3-colored graphs is
parametric with n; every member of this family, denoted as Gn, has 3n vertices
and is defined as follows. Gn consists of a simple cycle formed by n vertices of
color 0, followed (in the counterclockwise order) by n vertices of color 1, followed
by n vertices of color 2 (notice that Gn actually has 3n vertices). The vertex of
color 1 adjacent in the cycle to a vertex of color 0 is denoted as v1; the vertex
of color 2 adjacent in the cycle to a vertex of color 1 is denoted as v2; the vertex
of color 0 adjacent in the cycle to a vertex of color 2 is denoted as v0. Also, in Gn

every vertex colored i is adjacent to vi (i = 0, 1, 2) and vertices v0, v1, v2 form a
3-cycle. Figure 3(a) is an example of Gn for n = 12.

To prove our lower bound, we consider all possible planar embeddings of Gn;
for each planar embedding Ψ of Gn we will prove that every augmenting k-colored
Hamiltonian cycle constructed on Ψ and consistent with seq(S) has more than
h division vertices for some edge of Gn.

For a planar embedding Ψ of Gn and a cycle C ∈ Gn we say that C separates
a subset V ′ from a subset V ′′ of the vertices of Gn if all vertices of V ′ lie in the
interior of the region bounded by C and all vertices of V ′′ are in the exterior of
this region.

Lemma 5. Let h > 0 be a positive integer and let Gn be such that n =
(h + 1)(25h2 + 2) + 25h2. Let Ψ be a planar embedding of Gn and let C be
the cycle v0, v1, v2. If C does not separate any two vertices, then at least one of
the following conditions holds for Ψ :
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Fig. 3. (a)Graph G12. (b) An illustration for the proof of Lemma 5. Cycle C′ is high-
lighted in bold.

C.1 There exists a face f in Ψ having at least 25h2 vertices of each color and
containing vertices v0, v1, and v2.

C.2 There exists a cycle C′ containing vertices v0, v1, and v2 and such that: (i)
C′ has at most 25h2 + 2 edges, (ii) at least (h + 1)(25h2 + 2) vertices of a
color i (i = 0, 1, 2) are inside C′, (iii) every vertex of V − {v0, v1, v2} with
color different from i is outside C′.

Sketch of Proof: We first observe that in every planar embedding of Gn there
are exactly two faces whose boundary contains vertices of the three colors. If C
does not separate any two vertices, one of these two faces has C as its boundary.
Let f be the face of Ψ containing vertices of the three colors whose boundary
is not C. For each color i in Gn, exactly two vertices of color i are adjacent to
vertices of different color and each vertex of color i except vi has degree three
and is adjacent to two vertices of the same color; this implies that all vertices of
f having color i are consecutive along the boundary of f (i = 0, 1, 2).

If Condition C.1 does not hold, then the number of vertices of at least one
color, say 0, along the boundary of f is k < 25h2. Let v′0 be the vertex of f
having color 0 and adjacent to v0; if v0 is the only vertex of f having color 0,
let v′0 = v1. Refer to Figure 3(b). Consider the cycle C′ = v0, v

′
0, π(v′0, v1), v1, v2,

where π(v′0, v1) is the path along the boundary of f that goes from v′0 to v1.
Cycle C′ has at most 25h2+2 vertices (and hence edges). By using the argument
that C does not separate any two vertices, it follows that C′ separates at least
n − 25h2 = (h + 1)(25h2 + 2) vertices of color 0 from all vertices of color 1 and
2 distinct from v1 and v2. ��

Theorem 3. For every h > 0, there exists an outerplanar 3-colored graph G
with 3 · ((h + 1)(25h2 + 2) + 25h2) vertices and a set of points S compatible with
G, such that every point-set embedding of G on S has an edge with more than h
bends.

Sketch of Proof: Let n be ((h + 1)(25h2 + 2) + 25h2) and let S be any set of
points compatible with Gn such that seq(S) is an alternating sequence of the 3
colors (i.e., σ = 0, 1, 2, 0, 1, 2, . . . , 0, 1, 2). We denote seq(S) as σ.
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We prove that the statement is true for Gn and S. To this aim, based on
Lemma 1, it suffices to show that, for each planar embedding Ψ of Gn, every
augmenting 3-colored Hamiltonian cycle constructed on Ψ and consistent with
σ has more than h division vertices for some edge of Gn. Let H be one such
augmenting 3-colored Hamiltonian cycle and let C be the cycle v0, v1, v2. Note
that in any planar embedding of Gn all vertices having a same color are either
inside or outside the region bounded by C; hence if C separates any two vertices
u, v, it separates all vertices with the same color as u from all vertices with the
same color as v (except v0, v1, and v2). We consider two cases.

Case 1. Ψ is such that C separates all vertices of a color i, except vi, from all
vertices of a different color j, except vj .

Case 2. Ψ is such that C does not separate any two vertices of Gn. Without
loss of generality, assume that all vertices of Gn are on or outside C.

In Case 1, since H is consistent with σ, each vertex of color i is adjacent in
H to a vertex of color j. Therefore there are n − 1 edges of H that cross C in Ψ ;
it follows that one edge of C has at least n−1

3 > h division vertices.
In Case 2, either Condition C.1 or Condition C.2 of Lemma 5 holds for Ψ . We

sketch here the proof when Condition C.2 holds. The proof for the remaining
case is omitted for reasons of space. If Condition C.2 holds, denote by Ui the
set of vertices of color i inside the cycle C′ in the statement of Lemma 5. Since
H is consistent with σ then each vertex of Ui is adjacent to vertices with color
different from i. Thus at least (h + 1)(25h2 + 2) edges cross cycle C′. Since C′

has at most 25h2+2 edges, then at least one edge of C′ has more than h division
vertices. ��

5 Outerplanar k-Colored Graphs

In contrast with the result of Theorem 3, we prove that given any outerplanar
k-colored graph G (for any constant k > 2), there exist infinite k-colored sets
compatible with G for which a point-set embedding of G with a constant number
of bends per edge is possible.

Let S be a k-colored set such that no two points have the same x-coordinate;
assume that the points are ordered by increasing x-values. S is an ordered k-
colored set if, for every color i (0 ≤ i ≤ k − 1), all points of color i appear
consecutively in the ordering (that is, the colors never alternate in the ordering).
The sequence of colors induced by an ordered k-colored set is called an ordered
k-colored sequence.

We first describe an algorithm that, given a k-colored simple cycle C and
a k-colored sequence σ compatible with C, computes an augmenting k-colored
Hamiltonian cycle H of C consistent with σ and with at most k division vertices.
We then use this algorithm to obtain an augmenting k-colored Hamiltonian
cycle of an outerplanar k-colored graph G consistent with σ and with at most
2k division vertices. Also in this case, the augmenting k-colored Hamiltonian
cycle of G is constructed on a planar embedding of G having all vertices on the
external face.
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Let C be a k-colored simple cycle and let σ = c0, . . . , cn−1 be an ordered
k-colored sequence consistent with C. The algorithm computes H by perform-
ing at most k rounds. At each round, it walks along the cycle C either in the
counterclockwise direction or in the clockwise direction. At each round we refer
to the direction followed in that round as the walking direction of the round.
We order the vertices of C from a starting vertex and according to the walking
direction. For each walking direction, we use the relation < and the notation
first(U), last(U), and next(v) defined in Section 3.

At Step 0, the algorithm adds to H any vertex v0 of color c0. At each Step
i (i = 1, . . . , n − 1), a new vertex vi of color ci is added to H; adding vi may
imply adding some division vertices. Denote by Hi the set of vertices added to
H up to Step i and as Gi the augmented graph constructed up to Step i, i.e.
the graph consisting of C plus all edges and division vertices added during Steps
0, 1, . . . , i. For each Step i we define the following two sets:

– F c
i = {v | v ∈ V (C), v �∈ Hi, last(Hi) < v, col(v) = c}, where c = 0, . . . , k − 1

– Ni(u, w) = {v | v ∈ V (C), v �∈ Hi, u < v < w}, where u < w.

At the end of Step i, the following invariants are maintained:
Invariant 1. Any vertex v �∈ Hi is on the external face of Gi.

Invariant 2. Vertex vi is on the external face of Gi.
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Fig. 4. An illustration of different cases of the algorithm to compute H for a k-colored
cycle. (a) Case 1 with vi = v4 and vi+1 = v5. Edge (v4, v5) is added on the external
face because N4(v4, v5) = ∅. (b) Case 2 with vi = v5 and vi+1 = v6. Sub-sequences σ0,
σ1, and σ2 are highlighted; dummy vertices are drawn as small squares.

At Step i + 1 the algorithm chooses a vertex vi+1 of C to be added to H. The
addition of vi+1 to H may require the addition to H of some dummy edges and
some division vertices. We say that a dummy edge is added inside C if it is added
on the left-hand side when walking counterclockwise around C. If F

ci+1
i �= ∅ we

choose vi+1 = first(F ci+1
i ), else invert the walking direction (which starts a new

round) and repeat the test. Vertices vi and vi+1 can be connected in H according
to different cases:
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Case 1: Ni(vi, vi+1) = ∅. Refer to Figure 4(a). If vi and vi+1 are not adjacent
in C, a dummy edge (vi, vi+1) is added on the external face of Gi.

Case 2: Ni(vi, vi+1) �= ∅. Refer to Figure 4(b). The vertices of Ni(vi, vi+1) may
not form a consecutive sequence along C, because there can be vertices of Hi

intermixed with them. Let σ0, σ1, . . . , σl−1 be the maximal sub-sequences
of consecutive vertices of Ni(vi, vi+1). For each sub-sequence σj , let sj =
first(σj) and tj = last(σj). Also, let s′j be the vertex (either a “real” vertex
of C or a division vertex) that is immediately before sj and let t′j be the vertex
(either a “real” vertex of C or a division vertex) that is immediately after tj .
Edges (s′j , sj) and (tj , t′j) are split by means of the division vertices aj and
bj , respectively. The algorithm connects vi to vi+1 in H by means of the path
vi, a0, b0, a1, b1, . . . , al−1, bl−1, vi+1. Edges (vi, a0), (bj , aj+1) (0 ≤ j ≤ l − 1)
and (bl−1, vi+1) are added on the external face of Gi, while edges (aj , bj)
(0 ≤ j ≤ l − 1) are added inside C.

Theorem 4. Let G be an outerplanar k-colored graph and let S be an ordered
k-colored set compatible with G. Then G admits a point-set embedding with at
most 4k + 1 bends per edge on S. Such a point-set embedding can be computed
in O(n log n + kn) time, where n is the number of vertices of G.
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Abstract. Bar k-visibility graphs are graphs admitting a representation
in which the vertices correspond to horizontal line segments, called bars,
and the edges correspond to vertical lines of sight which can traverse up
to k bars. These graphs were introduced by Dean et al. [3] who conjec-
tured that bar 1-visibility graphs have thickness at most 2. We construct
a bar 1-visibility graph having thickness 3, disproving their conjecture.
For a special case of bar 1-visibility graphs we present an algorithm par-
titioning the edges into two plane graphs, showing that for this class the
thickness is indeed bounded by 2.

1 Introduction

Visibility is a major topic in discrete geometry where a wide range of classes of
visibility graphs has been studied, see e.g. [1], [2], [5], [9], [10]. Among the best
studied variants are the traditional bar visibility graphs, they admit a complete
characterization which has been obtained independently by Wismath [14] and
Tamassia and Tollis [13]. On the previous Graph Drawing Symposium, Dean,
Evans, Gethner, Laison, Safari and Trotter [3], [4] introduced the class of bar k-
visibility graphs (BkVs) which ‘interpolates’ between two classes of graphs with a
representation by a family of intervals, namely between bar visibility graphs and
interval graphs. Dean et al. are mainly interested in measurements of closeness
to planarity of bar k-visibility graphs. They prove a bound of 4 for the thickness
of bar 1-visibility graphs and conjecture that they actually have thickness at
most 2. In Sect. 2 we disprove this conjecture by showing that there are bar
1-visibility graphs with thickness 3. In Sect. 3 we attack the problem from the
other side. We consider bars which extend from the y-axis to the right, such bars
are called semi bars. The class of semi bar 1-visibility graphs (SB1Vs) is shown
to have thickness 2, the proof is based on an algorithm that partitions the edges
of a given SB1V into two planar graphs. In the remainder of this introduction
we make the terminology more precise.

1.1 Thickness

Thickness is a parameter that measures how far a graph is from being planar:
The (graph-theoretic) thickness of a graph G, denoted by θ(G), is defined as the
minimum number of planar subgraphs whose union is G.

M. Kaufmann and D. Wagner (Eds.): GD 2006, LNCS 4372, pp. 330–342, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Determining the thickness of a graph is NP-hard (see [11]). Exact values
are only known for very few classes of graphs. For a survey on theoretical and
practical aspects see [12].

Note that in the definition of thickness, the planar embeddings of the sub-
graphs do not have to coincide. The geometric thickness of G asks for the min-
imum number of subgraphs/colors in the following setting: Choose a straight-
line embedding of G and a coloring of the edges such that crossing edges have
different colors, the edges of each color then form a plane graph. Geometric
thickness was introduced by Dillencourt, Eppstein and Hirschberg in [6]. In [7],
Eppstein showed that graph-theoretic thickness and geometric thickness are not
even asymptotically equivalent.

1.2 Bar k-Visibility Graphs

Let a collection of pairwise disjoint horizontal line segments (called bars) in the
Euclidean plane be given. Construct a graph based on these bars as follows: Take
a set of vertices representing the bars. Two vertices are joint by an edge iff there
is a line of sight between the two corresponding bars (we then say that the bars
see each other). A line of sight is a vertical line segment connecting two bars
and intersecting at most k other bars. A graph is a bar k-visibility graph (BkV)
if it admits such a bar representation.

We call the lines of sight that don’t intersect any bar direct, all others are
indirect lines of sight; we also use these adjectives for the corresponding edges.

1

12

2

3

34

4

5

56

6

7

7

Fig. 1. Example of a bar 1-visibility graph

Note that bar visibility graphs can be regarded as bar 0-visibility graphs, and
interval graphs as bar ∞-visibility graphs. Given a bar representation, we can
consider the induced BkV for any k. In the following, we will – unless otherwise
mentioned – only deal with the case k = 1. Figure 1 shows an example of a B1V
where lines of sight are indicated by dashed lines.

Throughout this paper, we assume that all bars are located at different
heights. This can easily be obtained by slightly altering the y-coordinates of
some bars. We also assume all endpoints of bars to have pairwise different x-
coordinates by slightly permutating the x-coordinates of the endpoints in a given
bar representation. (This might result in additional edges, but since we consider
problems that only get harder when the number of edges increases, our results
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extend to general BkVs.) Note that with this assumption, lines of sight can be
thougth of as pillars of positive width.

A semi bar k-visibility graph (SBkV) is a bar k-visibility graph admitting a
representation in which all left endpoints of the bars are at x = 0.

Note that for k = 0, these graphs have been investigated in [2] where they are
identified as the graphs of representation index 1 + 1/2.

For the class of SBkVs the assumption that all endpoints of bars have differ-
ent x-coordinates only refers to the right endpoints. For convenience, we rotate
semi bar representations of SBkVs counterclockwise as shown in Fig. 2; in the
following we will always think of semi bar representations in this way.

r1

r1r2

r2

r3

r3
r4r4

r5r5

r6

r6

Fig. 2. Example of a semi bar 1-visibility graph

Label the bars of a semi bar representation r1, r2, . . . , rn by decreasing y-
coordinate of the upper endpoint, i.e., by decreasing height. Reading these labels
from left to right we obtain a permutation of [n] which completely determines the
graph. The SB1V from the figure is encoded by the permutation (2, 4, 6, 3, 5, 1).

2 A Bar 1-Visibility Graph with Thickness 3

In [3], Dean et al. used the Four Color Theorem to show that the thickness of
B1Vs is bounded by 4. They conjectured that the correct bound is 2. In this
section we construct a B1V with thickness 3. We will often talk about a 2-
coloring of a graph G = (V, E), meaning a 2-coloring of the edges such that each
color class is the edge set of a planar graph on V . Given a 2-coloring (with blue
and red) we define Gblue and Gred as the graphs on V with all blue and all red
edges, respectively.

Here is a brief outline of the construction: First we analyze a quite simple
type of graph which has thickness 2 but with the property that every 2-coloring
has uniform substructures, so called lampions. Assuming that the original graph
is large enough we can assume arbitrarily large lampions. In a second step we
introduce a series of slight perturbations into the original graph. It is shown
that most of these perturbations have to be incorporated into lampions and the
number of perturbations in one lampion is proportional to its size. However a
lampion can only absorb a constant number of the perturbations. This yields a
contradiction to the assumption that a 2-coloring exists.
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We start with an Autobahn where we have heaped up the median strip: Con-
sider the bar representation of the graph An shown in Fig. 3. This graph has
four outer vertices A, B, C, D and a set Vinner of n inner vertices.

AA
BB

CC
DD

...
...

Vinner

v1
v2
v3
v4

vn

vi

vi−1

An Bn

Fig. 3. The Autobahn-graph An and its modified counterpart Bn

Since An contains a K4,n as subgraph we know that An is non-planar (assum-
ing n ≥ 3), hence, θ(An) ≥ 2. To show that θ(An) = 2 we let Gblue consist of all
direct edges and Gred consist of all indirect edges. Figure 4 shows the partition.

A ABB

C
CD D

Gblue Gred

· · ·· · ·· · ·v1 v1 v2v2 v3 v3 v4v5 v6vn

Fig. 4. A partition of An into two planar graphs

Let Vinner = {v1, v2, . . . , vn}, such that the indices represent the order of the
right endpoints of the bars from left to right. The inner neighbors of vi are
vi−2, vi−1, vi+1 and vi+2. The graph G[Vinner] induced by the inner vertices is
maximal outerplanar with an interior zig-zag.

A lampion in a 2-coloring of An consists of a set W = {vi, vi+1, . . . vj} of
consecutive inner vertices and a partition {S1, S2}, {S3, S4} of the four outer
vertices such that Gblue consists of all zig-zag edges of G[W ] and all edges con-
necting vertices from W with S1 and S2, while Gred consist of the two outer

· · · · · ·

G[W ]

vi

vi−1

vi−2

vi−3

vi−4 vi+2

vi+3vi+1

Fig. 5. A lampion coloring of G[W ]
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paths of G[W ] and all edges connecting vertices from W with S3 and S4 (of
course exchanging red and blue again yields a lampion). The set W is the core
of the lampion. Thus, Fig. 4 shows a lampion with core Vinner together with the
additional edges between the four outer vertices.

Lemma 1. For every k ∈ IN there is an n ∈ IN such that in every 2-coloring of
An there is a W ⊂ Vinner with |W | ≥ k such that W is the core of a lampion.

Proof. Each inner vertex has four outer neighbors. Let’s call an edge connecting
an inner and an outer vertex a transversal edge. Consider the blue transversal
edges; at each vertex there can be 0, 1, 2, 3 or 4 of them. But Gblue is planar and
therefore does not contain a K3,3. Thus, at most two inner vertices can have
the same three outer neighbors in Gblue. There are

(4
3

)
= 4 different triples of

outer neighbors in Gblue, so there can be at most eight inner vertices with more
than two outer neighbors in Gblue. We might find another eight in Gred. These
irregular vertices break the sequence v1, v2, v3, . . . , vn of inner vertices of An into
at most 17 pieces. By pigeon-holing, there must be at least one piece with size
n′ ≥ (n− 16)/17 such that in the induced 2-coloring of An′ all inner vertices are
incident to exactly two blue and two red transversal edges.

Considering only the blue transversal edges of An′ , the resulting subgraph
G′blue is a subgraph of a blown-up K4 as illustrated in Fig. 6. This subgraph
is not arbitrary but has the property that every inner vertex has exactly two
incident edges.

A

BC

D

Fig. 6. Blown-up K4

Now it remains to planarly embed the inner edges of An′ , i.e. those of G[V ′inner].
To our disposition we have the ≤ 4 ‘large faces’ of the blown-up K4, which makes
eight faces in total for the two planar graphs. In each of these faces we can embed
at most three inner edges. There are other cases with fewer large faces which
have in turn more inner vertices at the boundary. In all cases it is impossible to
embed more than 12 edges between inner vertices with different outer neighbors
in G′blue, the red subgraph may contain another 12 irregular edges. These at
most 24 irregularities break the sequence of inner vertices of An′ into at most
25 pieces, we remain with a 2-coloring of An′′ with n′′ ≥ (n′ − 24)/25 such that
all inner vertices are incident to the same two outer vertices in G′blue and to the
other two outer vertices in G′red.
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We now have K2,n′′ as a subgraph in both G′′blue and in G′′red. The good
thing about this is that K2,n′′ has an (essentially) unique planar embedding.
Consequences for the inner edges of An′ are exploited in the following facts.
Fact 1. Every inner vertex of An′′ has at most two incident inner edges of each
color.

It follows that the 2-coloring of An′′ induces a 2-coloring of G[V ′′inner] such that
each color consists of a set of paths and cycles.
Fact 2. The set of blue inner edges of An′′ contains at most one cycle. The
same holds for the red inner edges. If there is a monochromatic cycle, then it is
a spanning cycle of V ′′inner.

There is not much freedom for a 2-coloring of the inner edges of An′′ with these
properties: We almost have a lampion coloring on G[V ′′inner]. The exception is
that there can be a single Z-structure (see Fig. 7) in one color.

· · ·· · ·

G[Vinner]

Fig. 7. One Z-structure and no monochromatic cycle force all other edge-colors

Removing the Z-structure leaves two consecutive pieces of the sequence of
inner vertices. These pieces of V ′′inner have a lampion coloring. The size of the
larger piece can be estimated as n′′′ ≥ (n′′ − 4)/2. This proves the lemma. �
Well-prepared we can now look at the variant Bn of An in which we have slightly
perturbed some of the inner bars (see Fig. 3). To get Bn, we have elongated every
(say) tenth inner bar by pulling its left endpoint to the left, such that it is further
left than the left endpoint of the bar directly above. With this modification we
introduce an additional edge between the elongated bar vi and vi−3, but in turn
we lose the edge between the bar vi−1 and the lowest outer bar D. Let’s call the
vertices corresponding to the elongated bars modified vertices.

Theorem 1. The graph Bn is a bar 1-visibility graph with thickness 3, for n
large enough.

Proof. We will show that Bn has no 2-coloring. It follows that its thickness is at
least 3, and since we can easily use a 2-coloring of An and embed the independent
additional edges in a third graph, B3 has thickness exactly 3.

Assume that Bn admits a 2-coloring. We first show that any 2-coloring of Bn

would have to be very much alike a 2-coloring of An.
The vertices corresponding to a bar directly above a modified one – let’s call

them reduced – have only three outer neighbors. To avoid a K3,3 in one color
there can be at most 16 inner vertices incident to more than two transversal
edges. In particular, most reduced vertices have to divide their three incident
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transversal edges into two of one color and one of the other. As in the proof
of the lemma we consider a continuous piece in the sequence of inner vertices
such that all inner vertices have at most two transversal edges of each color. The
graph induced by the largest of these pieces and the outer vertices is Bn′ .

The blue subgraph G′blue of Bn′ is a subgraph of a blown-up K4 where at
least 9/10 of the inner vertices have degree 2 and the remaining reduced vertices
have degree 1. As in the proof of the lemma it can be argued that there is only a
constant number c of edges in G′blue which join two inner vertices such that there
are at least three different outer neighbours of these two vertices, i.e., which join
two inner vertices which not belonging to the same blown-up edge of K4. The
constant can be bounded as c ≤ 24. The red graph may contribute another set
of c irregular edges. Removing the irregularities will break the sequence of inner
vertices into at most 2c + 1 pieces. The graph induced by the largest of these
pieces and the special vertices is Bn′′ . Assuming that the edges between inner
vertices and D are blue in the 2-coloring of Bn′′ the transversal edges of G′′blue
and G′′red are shown in Figure 8.

· · · · · ·· · · · · · · · ·

D

vv

Fig. 8. Embedding of a reduced vertex v in G′′
blue and G′′

red

Let v = vi−1 be a reduced vertex, the neighbors vi and vi−3 of v both have
inner degree 5. In G′′red they have degree (at most) 2, hence, they must have
degree 3 in G′′blue. This is only possible if vi, vi−1 and vi−3 form a blue triangle.
Since vi−1 can have no further blue inner neighbors it follows that the edges
vi−1vi−2 and vi−1vi+1 must be red.

Consider the edge vi−2vi−3. Suppose this edge is colored blue. To avoid closing
a blue cycle, the edge vi−2vi must be red. Then to avoid a red cycle the edge
vivi+1 must be blue. Continuing that way the colors of all edges to the right of
the blue triangle in Fig. 9 are uniquely determined. To the other side consider
the parity of blue and red edges at vi−2, this forces vi−2vi−4 to be blue, while
the parity at vi−3 forces two red edges. To avoid a red cycle vi−4vi−5 must be
blue, whence, parity forces vi−4vi−6 to be red. That way the color of edges left
of the blue triangle is determined. The complete picture is shown in Fig. 9: We
have found a blue Z-structure.
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· · · · · ·

vi

vi−1

vi−2

vi−3

vi−4

vi−5

vi−6

vi+1

G[Vinner]

Fig. 9. The blue edge vi−3vi−2 implies a blue Z

The other case where vi−3vi−2 is red leads, by similar arguments, to a red
Z-structure.

We have seen that, given a modified vertex in Bn′′ , the parity condition and
the cycle-freeness of the colored graphs induced by the inner vertices of Bn′′

enforce a Z-structure. The zig-zag emanating from such a Z-structure in one
direction has to run into the Z-structure of a second modified vertex. The outer
paths of the other color make a turn at a modified vertex – and close a cycle
at a second one. This is a contradiction since the blue triangles of the modified
vertices are the only monochromatic cycles in G[V ′′inner]. The contradiction shows
that (for n > 25000) there is no 2-coloring of Bn, hence, the thickness of the
graph is 3. �

3 Thickness of Semi Bar 1-Visibility Graphs

Let G = (V, E) be an SB1V given by a bar representation, see e.g. Fig. 2. In this
section we present an algorithm which 2-colors the edges of G such that each color
class forms a plane graph in an embedding induced by the bar representation.
Consequently the thickness of an SB1V is at most 2.

Between the full class of B1V graphs and the subclass SB1V there is the class
of bar 1-visibility graphs admitting a representation by a set of bars such that
there is a vertical line stabbing all bars of the representation. Note that the proof
of the previous section implies that already in this intermediate class there are
graphs of thickness 3.

3.1 One-Bend Drawing

A one-bend drawing of a graph is a drawing in the plane in which each edge
is a polyline with at most one bend. Here we introduce a one-bend drawing of
semi bar 1-visibility graphs. This drawing is not planar in general, but it will be
helpful for the construction and the analysis of the 2-coloring.

Enlarge the bars of each vertex v to a rectangle B(v) with a uniform width.
Recall that we assume that the heights of all bars are different and that B(r1),
B(r2), . . . , B(rn) lists the bars by decreasing height. Assign the stripe between
the horizontal line touching the top of bar B(ri) and the horizontal line touching
the top of bar B(ri−1) to B(ri); the dotted lines in Fig. 10 separate the stripes.
Embed each vertex v at the midpoint of the upper boundary of B(v). We think
of the edges as being directed from the longer bar (its starting bar) to the shorter
bar (its ending bar).
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Fig. 10. The one-bend drawing of an SB1V

Now draw each edge e = rirj composed of two segments; the first segment
is contained in B(ri), it connects ri with the inflection point xe, the second
segment connects xe with rj within the stripe of rj . A good choice for xe which
bewares from crossings between edges emanating from ri is to place xe on the
vertical boundary of B(ri) which is closer to rj with a height which is inside the
stripe of rj . We call the segment (ri, xe) the vertical part, the segment (xe, rj) the
horizontal part of the edge. Note that the stripe associated with B(v) contains
the horizontal parts of the incoming edges of v. Other edges might cross this
stripe, but only with their vertical parts.

3.2 2-Coloring Algorithm

Now we present the algorithm 2PLANAR that provides a 2-coloring, i.e., a par-
tition of the edges into two planar graphs (both on the vertex set V ), using the
given embedding. Thus, the algorithm produces planar embeddings of the two
graphs such that each edge has only one bend. We think of the partition of the
edges as a coloring with blue and red.

The idea of the algorithm is the following: Given the one-bend drawing, start
with r1, color all outgoing edges, move on to r2, and so on. The algorithm uses
an auxiliary coloring of the bars to determine the color of the edges.

Fig. 11. A coloring produced by the algorithm
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Algorithm 2PLANAR

1. Start with r1. Color B(r1) and all outgoing edges of r1 blue. Whenever such
an edge traverses another bar, color that bar red.

2. For i = 2, . . . , n − 1
If B(ri) is uncolored, then color this bar blue.
For each uncolored edge e = rirj

(a) If e is a direct edge, it obtains the color of its starting bar B(ri).
(b) If e is an indirect edge, check if the traversed bar has a color. If so, e

obtains the other color. Otherwise, it receives the color of its starting
bar B(ri), and the traversed bar gets the opposite color.

Note that 2(b) implies the following:

Invariant. Whenever an edge traverses a bar the colors of the edge and the
color of the bar are different.

Theorem 2. 2PLANAR produces a partition of E into two plane edge sets.

Proof. We have to show that in the 2-coloring computed by 2PLANAR, any two
crossing edges have different colors.

The one-bend drawing implies that crossings between edges only appear be-
tween the vertical part of one edge and the horizontal part of another edge.
Consider a crossing pair e, f of edges, assume that the crossing is on the vertical
part of e and the horizontal part of f . Hence, the crossing point is inside of
the starting-bar of e, and the edge f is an indirect edge traversing this bar (see
Fig. 12).

e1

e1

e2

e2

f1

f2

f2e

e

f f

et = f1

et

Fig. 12. Two crossing edges e and f , shown in two possible configurations. Note that
there can be many shorter bars between the bars depicted here.

Let the start-vertex of e be e1 and its end-vertex e2. Similarly, let f lead from
f1 to f2. Suppose that the color of f is red, then the invariant implies that B(e1)
is blue.

If e is a direct edge it obtains the color of its starting bar, in this case blue.
Thus, assume that e is an indirect edge. Then its color depends on the color



340 S. Felsner and M. Massow

of the traversed bar, let B(et) be this bar. (Note that et = f1 or et = f2 are
possible.)

The key for concluding the proof lies in the following lemma:

Lemma 2. If B(v) is an arbitrary bar, then at most one longer bar can be the
starting bar of indirect edges traversing B(v).

Proof. Assume that x = x1x2 is an edge traversing B(v) with B(x1) longer than
B(v), such that B(x2) is the shortest ending bar among all such edges. Then
we know that between B(x1) and B(v) in the left-to-right-order there can be no
bar longer than B(x2), else it would block the line of sight corresponding to x.

Suppose there is another edge y = y1y2 starting from a bar B(y1) which is
longer than B(v). The choice of x implies that the horizontal part of y is above
the horizontal part of x. Since y can traverse only one bar it must connect to
a bar B(yi) which is between B(v) and B(x1) in the left-to-right-order. Since y
is above x the bar B(yi) is longer than B(x2). This is in contradiction to the
conclusion of the previous paragraph. �

Now let’s first assume that B(et) is shorter than B(e1). Then by the lemma we
know that B(e1) is the only longer bar sending an edge (e.g. the edge e) through
B(et). Therefore B(et) is still uncolored when the algorithm considers B(e1),
therefore, e is colored with the color of B(e1), which is blue. This shows that
the edges e and f have different colors in this case.

If B(et) is longer than B(e1), then we can deduce et = f1. For if a bar longer
than B(et) would be located strictly between B(f1) and B(f2) in the left-to-
right-order, the line of sight corresponding to f would have to traverse two bars
(B(e1) and this longer bar), which is a contradiction. In addition, we know that
B(f2) is shorter than B(e1), else e and f would not cross. Thus, we have et = f1,
and B(f1) is longer than B(e1). In this case the lemma tells us that B(f1) is
the only longer bar sending an edge through B(e1). It follows that B(e1) was
still uncolored when algorithm considered B(f1). Therefore, the red color of f
was chosen equal to the color of the bar B(f1). The invariant implies that the
edge e, traversing the red bar B(f1), is blue. Hence, again e and f have different
colors. �
The algorithm shows that SB1Vs have graph-theoretical thickness not more
than 2, and it provides a partition of the edges into two planar graphs, providing
two plane embeddings. Since the edges are not straight lines, this does not show
that the geometric thickness is bounded by 2. We think that any SB1V has a
straight-line embedding such that the edges can be partitioned into two plane
graphs. For emphasis we state this as:

Conjecture 1. Semi bar 1-visibility graphs have geometric thickness at most 2.

4 Conclusion and Open Problems

In this paper, we disproved the conjecture of Dean et al. [3] that the tight upper
bound on the thickness of bar 1-visibility graphs is 2. We found a B1V with
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thickness 3, Dean et al. used the Four Color Theorem to show an upper bound
of 4 – which still leaves a gap waiting to be closed. Considering that our quite
sophisticated structure only yields some independent edges in the third planar
layer, we make the following

Conjecture 2. The thickness of bar 1-visibility graphs is at most 3.

On the way of getting a better understanding of bar k-visibility graphs we
considered semi bar k-visibility graphs which have a strong combinatorial struc-
ture. Here, we proved a tight upper bound on the thickness for the case k = 1.
We can also use their structure to get tight bounds on the maximum number of
edges, the chromatic number and the connectivity of SBkVs. Note for example
that the shortest bar in a bar representation of an SBkV always corresponds
to a vertex with degree at most 2(k + 1), which provides a point of attack for
inductions on the number of vertices.

These remarks are intended to give an idea of how semi bar k-visibility graphs
promise to provide more approaches to attack problems about general bar k-
visibility graphs. The following open questions may serve as a starting point for
further research.

1. In [3], it is shown that the thickness of BkVs can be bounded by a function
in k (proven is a quadratic one). What is the smallest such function?

2. What is the largest thickness or geometric thickness of SBkVs?
3. What is the largest chromatic number of BkVs? Dean et al. show an upper

bound of 6k + 6.
4. Hartke, Vandenbussche and Wenger [8] found some forbidden induced sub-

graphs of BkVs. They ask for further characterization of BkVs by forbidden
subgraphs.

5. Hartke et al. also examined regular BkVs. Are there d-regular BkVs for
d ≥ 2k + 3?

6. What is the largest crossing number of BkVs?
7. What is the largest genus of BkVs?
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Abstract. The Kandinsky model has been introduced by Fößmeier and
Kaufmann in order to deal with planar orthogonal drawings of planar
graphs with maximal vertex degree higher than four [7]. No polynomial-
time algorithm is known for computing a (region preserving) bend mini-
mal Kandinsky drawing. In this paper we suggest a new 2-approximation
algorithm for this problem. Our extensive computational experiments
[13] show that the quality of the computed solutions is better than those
of its predecessors [6]. E.g., for all instances in the Rome graph bench-
mark library [4] it computed the optimal solution, and for randomly
generated triangulated graphs with up to 800 vertices, the absolute error
was less than 2 on average.

1 Introduction

Given a planar graph G = (V, E, F ) with a fixed embedding F , we consider
the problem of finding a region-preserving planar orthogonal drawing with the
minimum number of bends. For graphs with maximal degree 4 this problem
can be solved in polynomial time [12] if no parallel edge segments leaving a
vertex at the same side are allowed. The idea is to set up a network in which
each flow corresponds to an orthogonal drawing and vice versa. A bend-minimal
orthogonal drawing can thus be obtained from a flow of minimum cost in this
network [12], which can be solved in polynomial time [2,10].

Several extensions have been suggested in order to deal with graphs of higher
vertex degree. The Kandinsky model has been suggested by Fössmeier and Kauf-
mann [7]. In this model the vertices are represented by squares of equal size
placed on a coarse vertex grid on the plane. The edges consist of continuous
sequences of horizontal and vertical line segments routed on a finer edge grid.
Thus more than one edge can leave a vertex from the same side, forming a
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so called 0◦-angle. Moreover, faces are not allowed to be represented by empty
regions (empty faces)1. This model has the great advantage that vertices may
have prescribed sizes and do not grow arbitrarily as it is the case, e.g., in the
GIOTTO model [3], or with respect to the number of edges leaving on one side
as in [9].

So far no polynomial time algorithm for computing a bend-minimal drawing
in the Kandinsky model, which we refer to as the KMCF-problem, is known2.
Fössmeier and Kaufmann have suggested the Kandinsky network, which can
be seen as an extension of the Tamassia network. Unfortunately, a minimum-
cost flow in the Kandinsky network must satisfy additional constraints in order
to correspond to a bend-minimal Kandinsky drawing of the underlying graph.
While there does not exist a polynomial time algorithm to find such a flow,
the network can be used for setting up an integer linear program (ILP) for the
KMCF-problem.

Bertolazzi et al. [5] have suggested a restriction of the Kandinsky model,
the simple-podevsnef model, which can be solved in polynomial time. For the
KMCF-problem, Eiglsperger [6] has presented a polynomial time algorithm that
guarantees to compute a solution with at most twice as many bends as the
optimal solution. The algorithm is based on the idea to first compute a minimum-
cost flow in the Kandinsky network ignoring the additional constraints, and then
to ‘repair’ the obtained infeasible solution.

In this paper we present the Cyclic Shift Algorithm (CS), an alternative 2-
approximation algorithm for the KMCF-problem. The idea of our new algorithm
is to first solve the LP-relaxation of the corresponding integer linear program
(i.e., to ignore the integer constraints), and then to ‘repair’ the obtained in-
feasible solution with augmenting cycles. We also consider a variation of the
CS algorithm, the Successive Cyclic Shift Algorithm (CSS), which performs the
cycle augmentations in successive iterations. Extensive computational experi-
ments (see also [13]) have shown that the quality of the computed solutions is
better than those of the approximation algorithm in [6]. Moreover, our CS al-
gorithm finds optimal solutions for all instances of the Rome graph benchmark
library.

The remainder of this work is organized as follows: In section 2 we briefly refer
to the Kandinsky network, which is slightly modified compared to the network
described in [7]. In section 3 we describe both variants of the new Cyclic Shift
Algorithm (CS and CSS). In section 4 we show that our algorithms guarantee
to find a 2-approximate solution to the KMCF-problem. Finally, in section 5
we present experimental results with our new algorithms, two versions of the
algorithm suggested in [6], and an exact ILP approach. The tests were performed
on the Rome graph benchmark library and on a large set of randomly generated
graphs (belonging to different graph classes).

1 In [7] the Kandinsky model is referred to as podevsnef, which originates from ”Planar
Orthogonal Drawings with Equal Vertex Size and Non-Empty Faces”.

2 The approach suggested in [7] turned out to be not correct, see also Eiglsperger [6].
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(a) (b) (c)

Fig. 1. (a) Invalid and (b) valid drawings (c) vertex-bend forced by a 0◦-angle

2 The Kandinsky Model

Allowing 0◦-angles at the vertices leads to several complications which have to be
taken into account: Firstly an edge segment may traverse a vertex, secondly an
empty face may be generated (Fig. 1a). For preventing this, a bend for each 0◦-
angle will be forced; such a bend is called vertex-bend (see Fig. 1(c)). All other
(ordinary) bends are called edge-bends. It can be shown [7] that one distinct
vertex-bend for each 0◦-angle suffices to prevent invalid constructions shown in
Fig. 1(a) and to enforce valid Kandinsky drawings (see Fig. 1(b)).

2.1 Variables and Constraints for Orthogonal Drawing

We introduce variables xvf ∈ {0, 1, 2, 3, 4} associated with the angle at vertex v
between two adjacent edges enclosing the face f . One variable unit corresponds
to a 90◦ angle. The sum of all angles at v has to be 360◦, i.e.

∑

f∈F (v)

xvf = 4 ∀v ∈ V (1)

where F (v) denotes all faces adjacent to v.
The variables xef and xeg provide the number of edge-bends on the edge

e ∈ E dividing the two adjacent faces f and g, where xef represents the convex
edge-bends in face f (which at the same time are concave edge-bends in face g)
and xeg the convex edge-bends in face g.

Consider a vertex-bend on an edge e incident to vertex v and separating the
faces f and g. With the 0/1-variable xegv we associate a vertex-bend forced by
a 0◦-angle in face f and thus forming a convex bend in g (Fig. 1c). As stated
before we have to assure that one of the two edges d and e forming a 0◦-angle
has a vertex-bend, i.e.

xvf + xegv + xdkv ≥ 1 ∀v ∈ V, f ∈ F (v) . (2)

Obviously, an edge e is not allowed to have a vertex-bend from the left and the
right side in opposite directions. This is forced by the constraint:

xefv + xegv ≤ 1 ∀v ∈ V, e ∈ E(v) (3)

where E(v) denotes the set of edges incident with v.



346 W. Barth, P. Mutzel, and C. Yıldız

To make sure that each face has the correct shape of a rectilinear polygon,
it has to be guaranteed that the difference between the number of convex and
concave angles is equal to 4 within each inner face and equal to -4 within the
outer face. Here angles at vertices (vertex-angles) and angles formed by bends
(bend-angles) must be included in the calculation. This leads to constraints

∑

e=(v,w)∈E(f)

(xef − xeg + xefv − xegv + xefw − xegw) −
∑

v∈V (f)

(xvf − 2) = ∓4

(4)
for all faces f ∈ F , where g is the face on the other side of the edge (v, w) and
E(f) (resp. V (f)) denotes the set of edges (resp. vertices) on the boundary of f .
It can be shown that each valid set of variables satisfying (1)-(4) defines a valid
Kandinsky shape of the underlying graph [7].

2.2 The Corresponding Kandinsky Network

With each graph G = (V, E, F ) we associate a network N = (N, A) with addi-
tional constraints, such that the cost of a flow x in N is equal to the number
of bends in the corresponding Kandinsky shape of G. The network is a directed
graph with the node set N = NV ∪ NF ∪ NH , where

− NV : contains a node for each vertex v ∈ V ,
− NF : contains a node for each face f ∈ F ,
− NH : contains a wreath of artificial nodes around each vertex v ∈ V ,

and the edge set A = AV H ∪AHF ∪AFH ∪AFF , where an edge in one of these
four subsets has the following capacity constraints on the flow and cost:

− AV H : [0 : 4] 0 represents a vertex-angle,
− AHF : [1 : 4] 0 lower bound forces a vertex-bend,
− AFH : [0 : 1] 1 represents a vertex-bend,
− AFF : [0 : ∞] 1 represents an edge-bend.

The flow variables in the network correspond to the variables introduced in sec-
tion 2.1. Before we provide the details for the flow variables in the Kandinsky
network, we consider the classical Tamassia network. There, the nodes consist of
NV ∪NF only, and the edges of AV F ∪AFF , where each edge in AV F represents
a vertex-angle and has lower bound 1. Fig. 2(a) shows a part of the Tamassia
network, which corresponds to the neighbourhood of a vertex with three adja-
cent edges (dotted lines are edges of the corresponding graph and not of the
network). The variables in the figure correspond to flows on the network-edges.
The flow has to satisfy the constraints (1) and (4) of section 2.1, hence each
vertex-node is a source with a supply of 4 and each face-node a target with a
demand of 4 − 2|f | (resp. 4 + 2|f | if f is the outer face). In [12] it is shown that
each minimum-cost flow in this network corresponds to an orthogonal drawing
with the minimum number of bends and vice versa.
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Fig. 2. Part of the Tamassia network (a) and the Kandinsky network (b)

In the Kandinsky model 0◦-angles (i.e., 0-flow on vf -edges) are allowed and
we have to guarantee that there is a distinct vertex-bend for each one of them.
In the network this can be achieved by introducing an artificial structure as
shown in Fig. 2(b). Here each vf -edge in the Tamassia network is split into
two parts by introducing an artificial node h, where the new vh-edge represents
the vertex-angle (formerly represented by the vf -edge). Note that Equation (1)
changes in this case to

∑
h∈H(v) xvh = 4, where H(v) is the wreath of artificial

nodes around v. A similar change takes place in Equation (4).
Furthermore, new fh-edges are introduced, representing the vertex-bends.

The new hf -edge has a lower bound of 1. So in case of a 0◦-angle (xvh = 0) one
of the two fh-edges ending in node h has to carry a flow of 1 unit in order to
satisfy the capacity constraint on the hf -edge. In this way a wreath of artificial
nodes and fh-edges is formed around each vertex v such that inequality (2) is
always satisfied by a valid flow.

We call a pair of fh-edges, each one corresponding to a vertex-bend on the
same edge but in opposite directions (pair of intersecting dashed lines in Fig. 2b),
bundles. At most one of the two edges of a bundle is allowed to carry positive
flow. This cannot be achieved by means of network flow techniques. Therefore
the flow has to satisfy the additional Constraint (3).

It can be shown that each valid minimum-cost flow satisfying (1), (3), (4)
and the capacity constraints in the Kandinsky network corresponds to a bend
minimal Kandinsky drawing of the underlying graph G [7,6,13].

2.3 The Integer Linear Program

The following ILP is equivalent to the KMCF-problem.



348 W. Barth, P. Mutzel, and C. Yıldız

min z =
∑

e=(v,w)∈E

(xef + xeg + xefv + xegv + xefw + xegw) (a)

subject to
∑

h∈H(v)
xvh = 4 ∀v ∈ V, h ∈ H(v) (b)

∑

e=(v,w)∈E(f)
(xef − xeg + xefv − xegv + xefw − xegw) −

∑

v∈V (f)
(xvh − 2) = ∓4

∀f ∈ F (c)

xefv + xegv ≤ 1 ∀e = (u, v) ∈ E (d)

0 ≤ xvh ≤ 4, 1 ≤ xhf ≤ 4 ∀v ∈ V h ∈ H(v)
0 ≤ xef ≤ ∞, 0 ≤ xefv ≤ 1 ∀e ∈ E, f ∈ F (e), v ∈ V (e) (e)

All variables integer (f)

Fig. 3. The integer linear program (ILP) of the KMCF-problem

3 The Cyclic Shift (CS) Algorithm

The ILP-formulations of the KMCF-problem and the classical minimum-cost
flow (MFC) problem differ only by the bundle capacity constraints (Fig. 3.(d)).
In section 3.1 we first describe the basic variant of our Cyclic Shift Algorithm
(CS), and section 3.2 then describes the successive variant (CSS).

3.1 The Basic Cyclic Shift (CS) Algorithm

CS1: We drop the integer constraint and solve the resulting LP-relaxation. In
general the optimum value zCS1 of this relaxed problem is smaller than the
optimum zopt of the ILP and its solution may contain non-integral values. In
particular there may exist bundles, both of whose edges have fractional flows.
We call such bundles critical, whereas bundles with at least one edge having
a zero flow value are called non-critical. If the solution is integral, the optimal
solution of the ILP is found (zCS1 = zopt) and the algorithm terminates.
CS2: All critical bundles in the solution obtained in step CS1 will be transformed
into non-critical ones by augmenting the flow along correcting cycles. Note that
the constraints (b),(c) and (d) are not violated by these augmentations and
additional costs arise only while traversing edges in AFH and AFF . We use three
different types of cycle-corrections. For details we refer to [13]. In the following
we denote with x(e) the flow in an edge e of the Kandinsky network.

Type 1 (Fig. 4): If the left hand neighbour of a critical bundle A = (aL, aR)
is a non-critical one B = (bL, bR) with x(bL) = 0, then we augment the flow
along the correcting cycle (−aL, fk, aR, −vh, vh′) by x(aL), so that A becomes
non-critical. Note that the capacities of fk and aR will not be exceeded by this
transformation, since fk has infinite capacity and we have x(aL) + x(aR) ≤ 1.
Furthermore, the lower bound 1 of edge hf ensures that the flow over vh before
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Fig. 4. Cycle-correction of Type 1

our transformation is at least x(aL), since we have x(vh) ≥ 1 − x(aR) ≥ x(aL).
The additional cost of this correction is x(aL).

Now we can apply the same cycle-correction to the right-hand neighbour of
bundle A in case that it is critical, too. We continue with these procedure until
we reach a non-critical bundle. Thus we transform a chain I of critical bundles
between two non-critical ones, into non-critical bundles. The total additional
cost is

∑
A∈I x(aL).

We can also perform these transformations in the same way but in the opposite
direction beginning with the rightmost bundle of the chain, if its right-hand
neighbour is a bundle B with x(bR) = 0. The total cost would be

∑
A∈I x(aR).

Type 2 (Fig. 5): If x(bR) = 0, a similar left to right correction can be ap-
plied. We first augment the flow along the cycle (−aR, kf, −hf) (Fig. 5a) by
min(x(aR), x(hf) − 1). Note that this can be done with 0 cost. After this either
aR has zero flow (then A is already non-critical) or hf has flow 1. In the latter
case bL and aR have a total flow of no more than 1 and we can augment the
flow along the correcting cycle (−aR, kf, fg, bL) (Fig. 5b) to obtain 0 flow on aR

without violating the capacity constraint of bL.

Fig. 5. Cycle-correction of Type 2
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The bundle A becomes non-critical and we can continue applying the same
cycle-corrections on the remaining bundles of the chain I. The additional cost is
bounded by 2x(aR) for a single bundle and thus by

∑
A∈I 2x(aR) for the entire

chain. If x(bL) = 0 holds for the right neighbour of the chain the correction may
be performed beginning with the rightmost bundle. In this case, the additional
cost is bounded by

∑
A∈I 2x(aL).

It follows that all chains of contiguous critical bundles enclosed by two non-
critical bundles can be transformed into non-critical ones by applying cycle-
corrections either from right to left or from left to right. In the CS algorithm we
always choose the direction with cheaper cost.

Type 3: If all bundles in the wreath of bundles around a vertex v are critical,
we begin with two adjacent bundles A and B (Fig. 6a) and apply the same cycle-
corrections as described in Type 2, so that A becomes non-critical. B not only
remains critical, but may even exceed its bundle capacity (Fig. 3.(d)). But the
edge capacities are not violated. If we continue applying counter clockwise the
same cycle-correction on B and C, B becomes non-critical, C eventually exceeds
its bundle capacity and so forth. After the cycle-correction is applied on the last
critical bundle and A (Fig. 6b), all bundles have become non-critical and A does
not exceed its capacity. The total additional cost is bounded by

∑
A∈I 2x(aR). If

we process the bundles in the opposite (clockwise) direction the cost is bounded
by

∑
A∈I 2x(aL). We choose the cheaper direction.

We will denote the set of all critical bundles of the network by Ic and the cost
for correcting all of them by cost(Ic). Then we have zCS2 := zCS1 + cost(Ic).
CS3: From each bundle we choose an edge with a zero flow value and set its
upper bound to zero, i.e. we lock the bundle. After that at most one edge of each
bundle can carry flow, thus the bundle capacity constraint is redundant and the
KMCF-problem is reduced to a MCF problem.
CS4: We solve the MCF problem obtained in step CS3. Since capacities and
cost are integer, this problem has always an integer optimal solution that can

Fig. 6. Cycle-correction of Type 3
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be found in polynomial time with a standard MCF algorithm. For the obtained
objective value zCS the following holds: zopt ≤ zCS ≤ zCS2. If zCS < zCS1 + 1,
the solution found by CS is optimal.

3.2 The Successive Cyclic Shift (CSS) Algorithm

Altough the basic variant yields very good practical results, we also experimented
with the following version. Here, we lock only the bundles around one certain
vertex v in each iteration instead of locking all bundles at once, and solve the
LP again. Thus the remaining bundles can adapt their values to this restriction.
Bundles once locked, remain locked in following iterations. Each iteration of this
algorithm consists of the following steps:

CSS1: We solve the LP-relaxation as in CS1. Note that all bundles locked in
previous iterations still stay locked.
CSS2: Same as CS2. Additionally, we determine for each vertex v ∈ V the cost
c(v) caused by correcting the critical bundles around this vertex.
CSS3: We compute a feasible solution by solving the MCF-problem obtained by
locking all bundles. If this solution zCSS is better than the ones of the previous
iterations, we take it. If zCSS < zCSS(1) + 1, where zCSS(1) is the solution of
the LP-relaxation in the first iteration, the optimal solution is found and CSS
terminates.
CSS4: We only lock the bundles around the vertex v with the highest cost c(v)
and go to CSS1.

We can go on with the iterations until the solution in step CSS1 is integer.
This will happen at the latest when all bundles are locked. But consider that in
the third step of each iteration a feasible solution is computed, so we can stop
iterating at some point and take the best solution found so far as the final one.
In our experiments, we restricted the number of iterations to 5.

4 Worst Case Analysis for Quality and Runtime

The objective value of the LP-relaxation in step CS1 is in general smaller than
the objective value zopt of the ILP: zCS1 ≤ zopt.

In step CS2 the additional costs cost(I) which arise during the correction of
a chain I of critical bundles is, if the correction is performed from left to right

∑

A∈I

x(aL) in case of Type 1 and
∑

A∈I

2x(aR) in case of Type 2;

if performed from right to left
∑

A∈I

x(aR) in case of Type 1 and
∑

A∈I

2x(aL) in case of Type 2.

Since we choose the cheaper direction, provably the following holds:

cost(I) ≤
∑

A∈I

(x(aL) + x(aR)) (5)
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Thus for the cost caused by the correction of all the chains we obtain:

zCS2 ≤ zCS1 +
∑

I∈IC

∑

A∈I

(x(aL) + x(aR)) ≤ 2zCS1 ≤ 2zopt (6)

In the following two steps we lock bundle-edges which are not used anyway
and reoptimize, thus the new objective value zCS can not be greater than zCS2:

zCS ≤ zCS2 ≤ 2zopt (7)

The basic variant CS has therefore the approximation factor 2. Since the same
solution is obtained in the first iteration of CSS and will be replaced in later
iterations only by better ones, CSS does not give worse results.

The running time of step CS2 is linear in |E| as there are two bundles for
each edge e ∈ E, and each critical bundle is processed only once with constant
expense. Thus the total running time is O(LP ) + O(|E|) + O(MCF ), hence
polynomial. With its constant number of iterations (five in our case) CSS has
also a polynomial running time.

5 Experimental Results

We have compared the solutions of our algorithms CS and CSS with two versions
TE and TES of the algorithm by Eiglsperger [6], and the optimal solutions
obtained by the ILP. A short description of TE and TES is as follows3:

TE1: Solve the KMCF-problem without the bundle capacity constraint
TE2: Correct overfilled bundles
TE3: Lock each bundle and solve the resulting MCF-problem.
TES1,TES2: same as TE1 and TE2
TES3: Lock each bundle and solve the resulting MCF-problem; keep the

solution, if it is better than the previous.
TES4 Lock only those bundles, which have flow value 1 before TES2 and

zero flow afterwards. Go to TES1.

Besides the Rome graphs [4] (11,529 graphs with up to 100 nodes) we used a
randomly generated data set consisting of about 14,000 planar graphs of several
classes with up to 800 nodes. The non-planar Rome graphs were planarised with
the Subgraph Planarizer of the AGD-Library [1]. The test runs were performed
on an Intel Pentium IV 2.8GHz with 2GB RAM using ILOG CPLEX 8.1 [11].
We used the Mixed Integer Optimizer for the ILP, the Network Optimizer for the
minimum-cost flow problems (CS4,CSS3,TE), and the standard settings for the
LP (CS1/CSS1).

All instances of the Rome graphs have been solved to optimality by our basic
CS algorithm. The optimality has been proven for 99.9% of them by the algo-
rithm itself, i.e., zCS < zCS1 + 1; only for 10 graphs we needed to calculate the
3 For a detailed description we refer to [6]. We have slightly modified TE and TES

to be conform with the implementations of CS and CSS, improving their results by
doing so. For details, see [13].
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Table 1. Experimental results for (random) maximal planar graphs

row |V | 100 200 300 400 500 600 700 800

1 zTE − zopt 17.83 36.97 56.81 93.27 112.61 138.37 160.26 182.75

2 zTES − zopt 7.54 16.08 24.35 30.68 39.40 45.61 52.82 62.61

3 zCS − zopt 0.30 1.24 1.36 2.02 3.19 3.67 4.84 5.41

4 zCSS − zopt 0.03 0.23 0.36 0.42 0.83 0.86 1.62 1.62

5 zopt 234.52 474.61 715.66 956.08 1196.06 1437.62 1678.63 1918.34

6 zCS1 − zopt −0.01 −0.01 −0.03 0 −0.03 −0.01 −0.04 −0.06

7 zTE1 − zopt −0.02 −0.03 −0.07 −0.03 −0.07 −0.2 −0.2 −0.23

8 #(zopt = zCS) 80 44 35 19 13 6 4 3

9 #(zopt = zCSS) 97 82 76 68 47 49 30 26

10 tTE 0.05 0.11 0.19 0.30 0.42 0.57 0.73 0.93

11 tCS 0.09 0.32 0.55 0.89 1.36 1.89 2.57 3.30

12 tCSS 0.1 0.41 0.77 1.32 2.19 3.23 4.61 5.91

13 tTES 0.73 2.21 4.37 7.52 11.68 16.45 22.07 28.70

14 tILP 0.24 1.57 3.95 8.02 13.38 23.24 41.35 49.91

optimal ILP-value for confirmation. In [6], Eiglsperger has described his exper-
imental results with the successive variant of his algorithm which was able to
solve most of the Rome graphs to optimality. However, on 392 instances it has
produced 1 additional bend, and on 13 instances 2 additional bends.

Table 1 shows our experimental results for the maximal planar graphs that
turned out to be the most difficult instances in our randomly generated test
set (see [13]). Rows 1-5 show the average absolute errors of the four algorithms
and the average number of bends in the optimal solution, each averaged over
100 instances of the same size. Expectedly the successive variants perform much
better. Note that the average relative error of our CSS algorithm does not exceed
0.10%, while it is between 3.15% and 3.40% for TES. Moreover, the average
absolute error of CSS is less than 2 for all tested instances. Thus the question
arises if it is worth the effort of solving the ILP for getting the exact optimum.
Though the ILP has a tolerable running time for small instances, it becomes
unacceptable for larger ones because of its exponential increase (row 14).

The objective values obtained by the infeasible solutions of the first steps CS1
and TE1, resp., provide the starting values for the cycle correction steps of the
approximation algorithms. Therefore, we were interested in the underestimation
for the number of bends obtained by CS1 and TE1 (see rows 6 and 7). It can
be observed that the objective value zCS1 is very close to the optimal value
zopt, and always closer than zTE1. The latter observation is always true, since
for computing zCS1 we only omit the integer constraints whereas for comput-
ing zTE1, the bundle constraints are omitted and with them automatically the
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integer constraints. Rows 8 and 9 show how often our algorithms CS and CSS
have found the optimal solutions (out of 100 instances per size), and rows 10-14
give the running times of the four algorithms and the ILP approach.
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Abstract. This paper studies how to compute radial drawings of graphs
by taking into account additional geometric constraints which correspond
to typical aesthetic and semantic requirements for the visualization. The
following requirements are considered: vertex centrality, edge crossings,
curve complexity, and vertex radial distribution. Trade-offs among these
requirements and efficient drawing algorithms are presented.

1 Introduction

The readability of a drawing of a graph describes its effectiveness in conveying
the information associated with the graph itself. The set of geometric require-
ments related to the readability of a drawing are called aesthetic requirements
and those related to the semantics are called semantic requirements (see, e.g.,
[6,11,18]). While aesthetic requirements are usually expressed as geometric op-
timization goals for a graph drawing algorithm, semantic requirements express
constraints that must be satisfied in the output visualization and are provided
to the algorithm as an additional input. Taking into account more than one
aesthetic requirement typically translates into a multi-objective optimization
problem, which is inherently characterized by trade-offs. Many such trade-offs
have received attention in the literature, including area vs. angular resolution,
area vs. aspect ratio, edge crossings vs. number of bends (see also [6,17]).

This paper is devoted to the study of aesthetic and semantic requirements
which occur when computing radial drawings of graphs. A radial drawing of a
graph is such that every vertex is drawn on one of k concentric circles and the
edges are polygonal chains. Radial drawings arise in all those applications where
it is important to display a graph with the constraint that some vertices are
drawn “more central” than others. Examples of such applications include social
networks analysis (visualization of policy networks and co-citation graphs), cy-
bergeography (visualization of Web maps and communities), and bioinformatics
(visualization of protein-protein interaction diagrams). See, e.g., [9,10].

In spite of their importance in practice, the study of visualization algorithms
and systems that compute radial drawings of graphs by taking into account
different aesthetic and semantic requirements has not yet received enough at-
tention. Namely, there exist visualization systems that compute radial drawings
� Research partially supported by MIUR under Project “ALGO-NEXT”.

M. Kaufmann and D. Wagner (Eds.): GD 2006, LNCS 4372, pp. 355–366, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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that satisfy the semantic requirement of placing each vertex on a given circle cor-
responding to its centrality [3,4]; however, these systems often disregard some
basic aesthetic requirements, for example they give rise to drawings with several
edge crossings. On the other hand, the problem of computing radial drawings
of planar graphs with no edge intersections and no bends along the edges has
been studied in [7]; however, the drawing algorithm does not take into account
any semantic requirements. The problem of testing whether a graph admits a
crossing-free radial drawing that satisfies the assigned centrality of the vertices
and where the edges are monotone Jordan curves has been studied by Bachmaier
et al. [1,2]; however, only a planar embedding (not a drawing) is returned and
furthermore the number of bends along the edges is not considered.

We describe different algorithms that compute radial drawings of graphs and
present trade-offs among typical aesthetic and semantic requirements. We con-
sider the following requirements: vertex centrality (each vertex should be placed
on the circular level corresponding to its centrality), edge crossings (the number
of edge crossings should be small), curve complexity (the number of bends along
each edge should be small), radial distribution of the vertices (the vertices should
be uniformly distributed in a radial fashion on a polar grid [16]). An outline of
the main results in this paper is as follows.

– We show that in general it is not possible to compute radial drawings of pla-
nar graphs where no two edges cross, the number of bends is zero, the radial
distribution of the vertices is uniform and the vertex centrality is satisfied.
Since vertex centrality is a semantic requirement and hence it must be sat-
isfied and since reducing the number of crossings is recognized as one of the
most important aesthetics in graph drawing applications (see, e.g., [14,15]),
we give precedence to these two requirements over the others.

– A consequence of a result by Pach and Wenger [13] is that radial drawings
of planar graphs having zero edge crossings, uniform radial distribution, and
respecting vertex centrality can be computed at the price of a high curve
complexity (there can be a linear number of bends per edge). We show how
to achieve low curve complexity by describing a linear-time algorithm that
computes radial drawings of planar graphs with no edge crossings, uniform
radial distribution, and at most three bends per edge.

– Trade-offs between the number of bends per edge and the uniform radial dis-
tribution are studied. We describe linear-time algorithms that can further
reduce the number of bends at the expenses of a non-uniform radial dis-
tribution. We show that every planar graph with assigned vertex centrality
admits a radial leveled planar drawing with at most one bend per edge if
the radii of the circles are not given as part of the input and with at most
two bends per edge if the radii are fixed in advance.

The results in this paper are based on a combination of geometric and graph
theoretic techniques. Three bends per edge and uniform radial distribution are
achieved by exploiting properties of star-shaped polygons and Hamiltonian aug-
mentation. Radial drawings with at most two bends per edge and with at most
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one bend per edge are computed by using canonical ordering [5] and curve em-
bedding [8], respectively. Figure 1 shows different radial drawings of the same
graph with assigned centrality for the vertices: the white vertices are assigned to
the external circle, the black ones to the inner circles, and the grey vertices to the
mid circle. The drawing of Figure 1(a) has curve complexity zero but has a high
number of crossings and poor radial distribution of the vertices. The drawing of
Figure 1(b) is optimal in terms of crossings and radial distribution of the vertices
and has a small number of bends per edge. The number of bends per edge is
reduced in Figure 1(c) at the expenses of a sub-optimal radial distribution.

(a) (b) (c)

Fig. 1. Three radial drawings of the same graph with assigned centrality for the ver-
tices. The three drawings present different trade-offs among aesthetic requirements.

2 Preliminaries

We assume familiarity with basic concepts of graph drawing [6]. Let G be a planar
graph and let Γ be a drawing of G. If the edges of G are represented in Γ as a
polygonal chain we say that Γ is a polyline drawing. The intersection between
two consecutive straight-line segments in the polygonal chain representing an
edge e is called a bend of e. If a drawing Γ is such that each edge is represented
with a polygonal chain with at most b bends we say that Γ is a b-bend drawing
of G. A 0-bend drawing is also called a straight-line drawing. A radial drawing
of a graph G is a polyline drawing of G such that each vertex is drawn as a
point of one among a set C of concentric circles. We assume that the center of
the circles of C is the origin o of the Euclidean plane. A ray is a half-line with
origin the point o. Given a ray � we denote by ∠� the counterclockwise angle
required to bring the positive x-axis into correspondence with �. Given two rays
�a and �b, we define ∠�a�b = ∠�b −∠�a, where angles are measured modulo 2π.
A star-shaped polygon P is a polygon in which there exists an interior point p
such that all the boundary points of P are visible from p. The set of all points
p satisfying this property is called the kernel of P .

3 Semantic and Aesthetic Requirements

As anticipated in the introduction, the semantic requirement that we take into
account is vertex centrality, that associates the vertices in the input graph
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G(V, E) to radial levels. For each vertex v ∈ V , its centrality (radial level)
is specified as part of the input and the algorithm computes a drawing such
that v is drawn on a circle corresponding to the given centrality. More formally,
a leveled graph G = (V, E, φ), consists of a set of vertices V , a set of edges E
and a function φ : V → {0, 1, . . . , k − 1} that maps each vertex to an integer
between 0 and k − 1, which represents its centrality. A radial leveled drawing of
G = (V, E, φ) is a radial drawing of G = (V, E, φ) on a set of k concentric circles
C = {C0, . . . , Ck−1} (with the radius of Ci greater than the radius of Ci+1) such
that each vertex v ∈ V is drawn as a point of circle Cφ(v). The value k will be
also called the level number of G, and will be denoted as λ(G). Since in this
paper we only study radial leveled drawings of leveled graphs, from now on we
will often call them simply “radial drawings”, omitting the term “leveled”.

Concerning the visual appeal of radial drawings, we focus on the following
aesthetic requirements:

– crossings. A crossing between two edges occurs if the two edges share a
point different from their end-vertices. A drawing should have as few cross-
ings as possible, ideally 0 if the graph is planar.

– curve complexity. The curve complexity is the maximum number of bends
per edge. A readable drawing typically has low curve complexity (see, e.g., [6]).

– radial distribution. In a radial drawing it is desirable that the vertices are
uniformly distributed on a polar grid (see, e.g., [16]). Namely, the difference
between the radii of any two consecutive circles should be constant and
equal to the radius of the smallest circle; also, the angular distance between
any two consecutive vertices encountered with a radial sweep of the drawing
should be constant. More formally, we shall measure the radial distribution
of the vertices in terms of:

• Radial Distance Ratio (rdr). Denote by ri the radius of Ci (i =
0, . . . , k − 1) and set rk = 0. Define Δri = ri − ri+1 (i = 0, . . . , k − 1),
Δrmin = mini{Δri}, and Δrmax = maxi{Δri}. The Radial Distance
Ratio is defined as rdr=Δrmax

Δrmin
.

• Angular Distance Ratio (adr). Let v be a vertex of G and let �v be
the ray passing through v. Let ρ0, ρ1, . . . , ρh−1 (h ≥ 1) be the distinct ele-
ments of the set {�v | v ∈ V }, ordered so that ∠ρ0 < ∠ρ1 < · · · < ∠ρh−1.
If h > 1, define αi = (∠ρi+1 − ∠ρi) (the indices are taken modulo
h and the angles are measured modulo 2π), αmin = mini{αi} and
αmax = maxi{αi}. If h = 1 we define αmin = 0 and αmax = 2π. The An-
gular Distance Ratio is defined as adr= αmax

αmin
. Notice that, when h = 1

we have adr = +∞.

We say that a radial drawing is optimal in terms of crossings if it is a
planar drawing; it is optimal in terms of curve complexity if it is a straight-
line drawing; it is optimal in terms of radial distribution if both rdr = 1
and adr = 1. Ideally, one would like to produce radial drawings that satisfy the
semantic requirements and are optimal in terms of all the aesthetic requirements
described above. Unfortunately, this is not always possible, as showed by the
next result.
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Lemma 1. There exists a planar leveled graph that does not have a radial
leveled drawing optimal in terms of crossings and curve complexity and
radial distribution.

Proof. Let G = (V, E, φ) be the planar leveled graph defined as follows (refer to
Figure 2). V = {u0, u1, . . . , uh−1}∪{v0, v1, . . . , vh−1}∪{w0, w1, . . . , wh−1}, E =
{(ui, ui+1), (vi, ui), (vi, ui+1), (wi, ui), (wi, ui+1), (wi, vi) | 0 ≤ i ≤ h−1} (indices
are taken modulo h), φ(ui) = 0, φ(vi) = 0, and φ(wi) = 1 (i = 0, . . . , h − 1).
Consider the cycle induced by vertices {u0, u1, . . . , uh−1}; since the drawing must
be optimal in terms of crossings, each edge (ui, ui+1) must be drawn as a chord
of C0. Vertices vi (i = 0, . . . , h − 1) must also be drawn on C0 and outside the
polygon representing the cycle. The counterclockwise order of the vertices along
C0 must be u0, v0, u1, v1, u2, . . . , uh−2, vh−2, uh−1, vh−1 or the opposite one. Let
�ui be the ray passing through ui (i = 0, . . . , h−1) and let αi = (∠�ui+1 −∠�ui).
The angle αmin = mini{αi} is at most 2π

h (if we want an optimal adr all αi

must be equal to 2π
h ). Each vertex wi (i = 0, . . . , h−1) must be drawn inside the

triangle representing the cycle ui, ui+1, vi in order to have a planar drawing, and
on C1 in order to satisfy the vertex centrality requirement. This implies that the
C1 must cross every segment uiui+1, i.e. the radius r1 must be greater than the
minimum distance dmin of any of these segments from the center of the circles.
The value of dmin is equal to r0 cos(π/h). Thus we have r1 > r0 cos(π/h), i.e.
r1
r0

> cos(π/h). In order to have rdr = 1 it must be r0 = 2r1, i.e. 1
2 > cos(π/h).

This inequality is never satisfied for h ≥ 3, and therefore, for any h ≥ 3 it is not
possible to obtain rdr = 1.

v0 v7

w0
u0

w7

u7 v6
w6

u6

w5
u5 v5

w4
u4

v4

w3

v3

u3
w2

v2

u2

w1
u1v1

Fig. 2. A planar leveled graph that does not admit a radial leveled drawing optimal in
terms of crossings and curve complexity and radial distribution. White vertices
have centrality 0; black vertices have centrality 1.

Lemma 1 naturally raises the question about whether one can relax one of the
requirements in order to have drawings that are optimal for the other two. We
consider the cases in which either curve complexity or radial distribution

are relaxed. For example, it is not difficult to see that the graph used for the
proof of Lemma 1 can be drawn on two circles that are sufficiently close with each
other and therefore the aesthetic requirement radial distribution is relaxed.
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However, the simultaneous optimality of crossings and curve complexity

cannot always be achieved. The proofs of the next two lemmas are omitted for
reasons of space.

Lemma 2. There exists a planar leveled graph that does not have a planar radial
leveled drawing optimal in terms of both crossings and curve complexity.

Lemma 3. Every planar leveled graph with n vertices has a radial leveled draw-
ing optimal in terms of both crossings and radial distribution, and such
that curve complexity is O(n).

Motivated by Lemma 3, we study in the next section whether one can re-
duce the number of bends in a planar radial drawing while maintaining op-
timality for radial distribution. We will then consider trade-offs between
radial distribution and curve complexity, showing how the latter can be
reduced at the expenses of the former.

4 Radial Drawings with No Crossings, Optimal Radial
Distribution and Curve Complexity 3

We describe a drawing algorithm that computes a radial drawing of a planar
leveled graph G with at most three bends per edge while maintaining optimal
radial distribution and no crossings. An outline of our drawing technique is as
follows: (i) If G is not Hamiltonian, dummy edges and vertices are added so
that the augmented graph is Hamiltonian and planar. (ii) The vertices of the
Hamiltonian circuit are drawn as a star-shaped polygon whose vertices have the
wanted centrality and have a uniform radial distribution on a polar grid. (iii)
Every edge e not belonging to the Hamiltonian circuit is either drawn inside or
outside the polygon; if e is drawn inside it has at most one bend, if it is drawn
outside it has at most two bends. (iv) The dummy vertices and edges are finally
removed; the construction is such that every edge can have at most three bends.
Similar techniques have been previously used (see, e.g., [12,13]).

Before giving a more detailed description of the algorithm and analyzing its
properties, we recall some useful definitions and results about Hamiltonian aug-
mentation. A graph G is Hamiltonian if it has a simple cycle that contains all
its vertices; such a cycle is called a Hamiltonian cycle of G. Suppose that G is
planar and that G is not Hamiltonian. One can augment G to a (not necessarily
planar) graph G′, by adding to G a minimal set of dummy edges such that G′

contains a Hamiltonian cycle H′ including all the dummy edges. If G′ is not
planar, we can apply on G′ a planarization algorithm (see, e.g., [6]) with the
constraint that only crossings between dummy edges and edges of G − H′ are
allowed. The planarization algorithm constructs an embedded planar graph G′′

where each edge crossing is replaced with a dummy vertex. Graph G′′ is called
the augmented Hamiltonian form of G. If G′ is planar, the augmented Hamilto-
nian form of G is G′ itself along with a given planar embedding. The vertices
of the augmented Hamiltonian form that are not dummy vertices are called real



Radial Drawings of Graphs: Geometric Constraints and Trade-Offs 361

vertices. The Hamiltonian cycle H of the augmented Hamiltonian form of G is
called an augmenting dividing Hamiltonian cycle of G; note that H is a subdivi-
sion of H′ obtained by possibly splitting some edges of H′ with dummy vertices.
If every edge e of G′ is crossed at most c times, H is said to be an augmenting
dividing Hamiltonian cycle of G with at most c dummy vertices per edge. Several
different techniques have been presented in the literature to compute an aug-
menting dividing Hamiltonian cycle of a planar graph. The following result has
been proved in [8].

Lemma 4. [8] Every planar graph G with n vertices admits an augmenting
dividing Hamiltonian cycle H with at most one dummy vertex per edge. An
augmented Hamiltonian form of G including H can be computed in O(n) time.

4.1 Drawing Algorithm

Let G = (V, E, φ) be a planar leveled graph with n vertices and let C be a set of
concentric circles such that |C| = λ(G) = k and the radius of Ci is ri = (k−i)·Δ,
i = 0, 1, . . . , k − 1 and Δ > 0. This choice of the circles guarantees rdr = 1.

Let G′′ be an augmented Hamiltonian form of G computed with the algorithm
of Lemma 4 and let H be the Hamiltonian cycle of G′′. Let u0 be a vertex of
G′′ that is also a vertex of G; visit H counterclockwise starting at u0 and let
u0, u1, . . . , un′′−1 be the vertices of G′′ in the order they are encountered during
the visit. We distinguish the real vertices of G ∩ G′′ from the dummy ones by
introducing a second notation for the real vertices. Vertex u0 is also denoted v0,
vertex vi is the real vertex uj of G ∩ G′′ that is encountered after vi−1 when
visiting H counterclockwise.

In order to compute a drawing where adr = 1 and the semantic requirement
of vertex centrality is satisfied, we proceed as follows. Let ρi (i = 0, . . . , n − 1)
be the ray that forms an angle of 2π·i

n with the positive x-axis. Each vertex vi is
drawn at the intersection point ρi ∩ Cφ(vi) (i = 0, . . . , n − 1).

The dummy vertices of G′′ are drawn as follows. Let vi and vi+1 (0 ≤ i ≤ n−1)
be two vertices of G such that vi = uj and vi+1 = uj+h (h > 1), i.e. two “real”
vertices such that there are h−1 dummy vertices between them in H. We choose
h−1 arbitrary rays �1, �2, . . . , �h−1 such that ∠ρi < ∠�1 < ∠�2 < · · · < ∠�h−1 <
∠ρi+1 (for example one can choose h−1 equi-spaced rays). Vertex uj+l is drawn
at point vivi+1 ∩ �l (1 ≤ l ≤ h − 1). Note that there is no semantic requirement
on the dummy vertices and they do not need to be drawn on a circle of C. The
edges of H are drawn as straight-line segments between their endvertices. The
chosen position of the vertices implies that the drawing of H is a star-shaped
polygon, whose kernel contains the center. In the following we denote with P0
the polygon representing H. See for example Figure 3(a).

Each edge e of G′′ not belonging to H is either inside or outside H in the
planar embedding of G′′. If e is inside H, it is drawn inside P0 as a polyline
with one bend, else it is drawn outside P0 as a polyline with two bends. The
edges that do not belong to H are suitably ordered and are inserted in the
drawing one at a time in increasing order. The ordering is defined as follows.
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Let e = (ui, uj) (0 ≤ i < j ≤ n′′ − 1) be an edge that is not in H and let �ui

and �uj be the rays through ui and uj , respectively. We call span of e the angle
αe = min{∠�ui�uj , ∠�uj �ui}. Notice that, for each edge e we have 0 < αe ≤ π.
We order the edges inside H by increasing span; similarly, the edges outside H
are ordered by increasing span. Ties are broken arbitrarily.
Drawing the edges inside H: Let e0, e2, . . . , eh−1 be the edges that are inside
H ordered according to their span. The edges are drawn inside P0 so that no
edge goes trough point o. The drawing of edge e0 partitions polygon P0 into two
sub-polygons, one of which contains o and is denoted as P1. Edge el is drawn
inside Pl (l = 1, . . . , h − 1) and partitions it into two sub-polygons one of which
contains o and is denoted as Pl+1. Given one of the polygons Pl (l = 0, . . . , h−1),
let Vl be the set of vertices (real or dummy) that are the endvertices of at least
one edge eg with g > l, i.e. an edge that is not yet drawn in the drawing that
defines Pl. We say that Pl is weakly star-shaped, if all the vertices of Vl are visible
from an internal point of Pl. The set of points of Pl from which all the vertices of
Vl are visible is called the weak kernel of Pl and will be denoted as WKer(Pl).
When inserting edge el inside polygon Pl the algorithm maintains the following
invariants.
Invariant 1. All vertices of Vl are on the boundary of Pl.
Invariant 2. Pl is weakly star-shaped and the weak kernel of Pl contains a closed
disk centered at o.

We now give details about how to draw edge el so that it has at most one
bend and it does not go through o. Let Cl be the boundary of the closed disk
contained in WKer(Pl) and let el = (ui, uj) (0 ≤ i < j ≤ n′′ − 1). Let �ui and
�uj be the rays through ui and uj , respectively and let αel

be the span of el.
We have that either ∠�ui�uj = αel

or that ∠�uj �ui = αel
. Assume the first case

holds (the other case is analogous). If both ui and uj are real vertices, el is drawn
as a polyline with ui and uj as endpoints and one bend at point bl = � ∩ Cl,
where � that is the bisector of the angle ∠�ui�uj . See, for example, Figure 3(b).
Suppose that one of the endvertices of el –say ui– is a dummy vertex (in this
case uj is real by Lemma 4), we draw the bend at point bl = �ui ∩ Cl. See, for
example, Figure 3(c).
Drawing the edges outside H: Let e0, e2, . . . , eh−1 be the edges that are
outside H ordered according to their span. The edges are drawn outside P0
as follows. Let �u0 , �u1 , . . . , �un′′−1

be the rays passing through the points rep-
resenting u0, u1, . . . , un′′−1, respectively and let θmin = mini{∠�ui�ui+1}. For
every ray �ui we define two rays �+

ui
and �−ui

; refer to Figure 3(d). If ui is a real
vertex �+

ui
is a ray such that ∠�+

ui
= ∠�ui + θmin/3 and �−ui

is a ray such that
∠�−ui

= ∠�ui − θmin/3. If ui is a dummy vertex, �+
ui

= �−ui
= �ui .

Let el = (ui, uj) be the current edge to be drawn (l = 0, . . . , h−1). Let αel
be

the span of el; we have that either ∠�ui�uj = αel
or ∠�uj �ui = αel

. Assume the
first case holds (the other case is analogous). Let dmax be the maximum distance
from the center o of the circles to any point in the drawing computed before the
addition of el, and let C∗ be a circle centered at o and having radius r > dmax.
Let � be the bisector of the angle ∠�ui�uj and let �max be the straight-line
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(a)

ui

b1

ρ
uj

C1

C0

(b)

b1
C0

C1ui

uj

(c)

�max

ui

dmax

uj

θmin

�b1 b2 �+
ui

�−
uj

(d)

Fig. 3. Illustration of the drawing algorithm. (a) The star-shaped polygon P0 repre-
senting H. How to draw an edge inside H: when both endvertices are real (b) and when
an endvertex is dummy (c). (d) How to draw an edge outside H.

orthogonal to � passing through the point � ∩ C∗. The two bends of el will be
drawn at points b1 = �max ∩ �+

ui
and b2 = �max ∩ �−uj

. The following theorem
describes the performance of the drawing algorithm both in terms of aesthetic
requirements and in terms of computational complexity. The proof is omitted
due to space limitation.

Theorem 1. Every planar leveled graph has a radial leveled drawing whose
curve complexity is 3 and that is optimal in terms of both crossings and
radial distribution. Also, this drawing can be computed in O(n) time, where
n is the number of vertices of the graph.

5 Curve Complexity and Radial Distribution: Trade-Offs

In this section we show how to improve the quality of the drawing in terms
of number of bends per edge at the expenses of a lower quality in terms of
radial distribution. In Subsection 5.1 we show that at most two bends per edge
can be achieved with an optimal rdr but at the price of a suboptimal adr;
Subsection 5.2 shows how to compute radial drawings with at most one bend
per edge by also loosing the optimality of rdr. We recall that Lemma 2 implies
that one bend per edge may be necessary if the drawing is required to be planar.

5.1 Radial Drawings with No Crossings, Optimal Radial Distance
Ratio, and Curve Complexity 2

We describe an algorithm to compute a planar radial drawing with rdr = 1 and
curve complexity 2. The algorithm computes the drawing by adding at each
step a vertex and all its incident edges according to an ordering introduced by
de Fraysseix, Pach and Pollack and known as a canonical ordering [5].

Let G be a maximal embedded planar graph with external boundary u, v,
w. A canonical ordering of G with respect to u, v is an ordering of the vertices
v1 = u, v2 = v, v3, . . . , vn = w of G with the following properties for every integer
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k such that 4 ≤ k ≤ n: (i) The subgraph Gk−1 ⊆ G induced by v1, v2, . . . , vk−1
is biconnected and the external boundary Bk−1 of Gk−1 contains edge (u, v); (ii)
vk is in the external face of Gk−1, and its neighbors in Gk−1 form a subpath of
the path Bk−1 − (u, v).

Let G = (V, E, φ) be a planar leveled graph with n vertices and let C be a set of
concentric circles such that |C| = λ(G) = k and the radius of Ci is ri = (k−i)·Δ,
i = 0, 1, . . . , k − 1 and Δ > 0. This choice of the circles guarantees rdr = 1.
Given a point p in the plane x(p) and y(p) denote the x- and y-coordinate of p,
respectively. Also, we denote by �p the straight line {(x(p), y) | y ∈ R} and by
�+
p the half-line {(x(p), y) | y ≥ y(p), y ∈ R}.

The first step of the algorithm draws vertex v1 at the point of coordinates
(−rφ(v1), 0). At the second step, v2 is drawn at the point of coordinates (rφ(v2), 0)
and edge (v1, v2) is drawn as a polyline with one bend of coordinates (0, −y),
where 0 ≤ y ≤ rk−1. At Step 3, vertex v3 is drawn as the point of coordinates
(0, rφ(v3)) and edges (v1, v3) and (v2, v3) are drawn as polylines each having one
bend. The bend of (v1, v3) has coordinates (−x, y), where 0 ≤ x, y ≤ rk−1, while
the bend of (v2, v3) has coordinates (x, y), where 0 ≤ x, y ≤ rk−1. At the generic
Step i (i = 4, . . . , n) the algorithm adds vertex vi to the drawing Γi−1 of the
graph Gi−1 induced by vertices v1, v2, . . . , vi−1. Let Bi be the external boundary
of Gi and let Πi be the path obtained by removing edge (v1, v2) from Bi. The
following invariants are maintained (see also Figure 4(a)):

Invariant A. Path Πi is drawn as an x-monotone polygonal chain in Γi.

Invariant B. Every edge e = (w0, w1) of Πi is drawn in the half-plane y > 0 and
as a polyline with at least one bend. Let w0 be encountered before w1 when visiting
Πi from v1 to v2. Let b be the leftmost bend of e. The half-line �+

b intersects all
circles of C and does not share any point with Γi, except b.

v1 v2

Gi

b

w0

w1

�+
b

(a)

w2w0
p0 p′1p′0

b
q2q1

p1
w1

v4p

p′′1�1�+
b

�0

(b)

Fig. 4. Illustrations for the drawing algorithm that computes radial drawings with no
crossing, optimal radial distance ratio, and curve complexity 2. (a) An example of
Invariant B. (b) An example of Step i of the drawing algorithm.

The addition of vi to Γi−1 at Step i is computed as follows. Refer to Fig-
ure 4(b). Let w0, w1, . . . , wh−1 be the vertices on Πi−1 that are adjacent to vi

and assume that they are encountered in this order when visiting Πi−1 from v1
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to v2. Let b be the leftmost bend of (w0, w1). Draw vertex vi at point �+
b ∩Cφ(vi),

denote by p0 the point bw0∩Ck−1, by p1 the point bw1∩Ck−1, and by p the point
�+
b ∩Ck−1. Let �0 be any vertical straight line that intersects segment p0p and let

p′0 = �0 ∩ (w0, w1). Edge (w0, vi) is drawn as a polyline with one bend located at
point (x(p′0), y), with y(p′0) < y < y(�0 ∩ Ck−1). Let �1 be any vertical straight
line that intersects segment pp1, let p′1 = �1∩(w0, w1) and p′′1 = �1∩Ck−1. Choose
h − 1 points, q1, q2, . . . , qh−1, on segment p′1p

′′
1 with y(qj) < y(qj+1). Each edge

(vi, wj) (j = 1, . . . , h − 1) is drawn as a polyline with two bends; the first bend
is at point qj . Let σ be the maximum value such that there exists a segment of
Πk−1 with slope either σ or −σ. Choose h− 1 positive values σj (1 ≤ j ≤ h− 1)
such that σh−1 > σh−2 > · · · > σ1 > σ. The second bend of (vi, wj) is placed
at the intersection point between the straight line with slope σj passing trough
qj and the straight line with slope −σj passing trough wj (1 ≤ j ≤ h − 1). The
proof of the following theorem is omitted for reasons of space.

Theorem 2. Every planar leveled graph with n vertices has a radial leveled
drawing whose curve complexity is 2 and that is optimal in terms of rdr

and crossings. Also, this drawing can be computed in O(n) time.

5.2 Radial Drawings with No Crossings and Curve Complexity 1

It has been proved that every planar graph admits a planar drawing such that all
the vertices are drawn on a semi-circle and the curve complexity is 1 [8]. We
call a drawing with these properties a circle drawing. Let Γ be a circle drawing
and let p1q1 and p2q2 be two segments of Γ that are chords of the semi-circle C
hosting the vertices of Γ and such that points p1, p2, q2, and q1 are encountered
in this order moving clockwise on C. We say that segments p2q2 is nested inside
segment p1q1. Segments p1q1 and p2q2 are consecutive nested segments if p2q2
is nested inside segment p1q1 and there is no other segment p3q3 such that p2q2
is nested inside p3q3 and p3q3 is nested inside p1q1. Let p1q1 and p2q2 be two
consecutive nested segments, let da be the distance from p2 to p1q1 and let db be
the distance from q2 to p1q1; the distance between p1q1 and p2q2 is the minimum
value between da and db.

To compute a planar radial drawing of a planar leveled graph G = (V, E, φ)
with curve complexity 1, we first construct a circle drawing Γ by using the
algorithm in [8]. Let r be the radius of the semi-circle C used in Γ , and let d
be the minimum distance between two consecutive nested segments. We choose
a set of k = λ(G) circles C0, C1, . . . , Ck−1 that are concentric with C and such
that the radius of circle Ci is ri = r − (i + 1) δ

k , where δ < d. Starting from Γ ,
we move each vertex v ∈ V to the point �v ∩ Cφ(v), where �v is the ray passing
through v, and we leave the bends at the same locations they have in Γ . The
proof of the following theorem is omitted due to space limitation.

Theorem 3. Every planar leveled graph with n vertices has a radial leveled
drawing whose curve complexity is 1 and that is optimal in terms of
crossings. Also, this drawing can be computed in O(n) time.
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6 Open Problems

We list three open problems related to the subject of this paper: (i) Based on the
negative result of Lemma 1, it would be interesting to characterize the family of
graphs that admit a radial leveled drawing that is optimal in terms of crossings

and curve complexity and radial distribution. (ii) Can one compute a
radial drawing that satisfies vertex centrality, is optimal in terms of crossings

and of radial distribution, and has curve complexity less than 3? (iii)
We focused on three aesthetic requirements for radial drawings. Studying other
aesthetic requirements and trade-offs can be a promising research direction.
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Abstract. Consider a graph G drawn in the plane so that each vertex
lies on a distinct horizontal line �j = {(x, j) | x ∈ R}. The bijection φ
that maps the set of n vertices V to a set of distinct horizontal lines
�j forms a labeling of the vertices. Such a graph G with the labeling
φ is called an n-level graph and is said to be n-level planar if it can
be drawn with straight-line edges and no crossings while keeping each
vertex on its own level. In this paper, we consider the class of trees that
are n-level planar regardless of their labeling. We call such trees unlabeled
level planar (ULP). Our contributions are three-fold. First, we provide a
complete characterization of ULP trees in terms of a pair of forbidden
subtrees. Second, we show how to draw ULP trees in linear time. Third,
we provide a linear time recognition algorithm for ULP trees.

1 Introduction

When drawing an n-vertex planar graph G(V, E) in the xy-plane, a more re-
strictive form of planarity can be obtained by insisting on a predetermined y-
coordinate for each vertex. In particular, suppose we have a set of k equidistant
horizontal lines or levels, namely �j = {(x, j) | x ∈ R} for j ∈ {1, 2, . . . , k} and
each vertex is assigned to one of these k levels. Call this level assignment φ. The
tuple G(V, E, φ) forms a k-level graph, and if φ is bijective so that each vertex
is constrained to its own level, i.e., k = n, then G(V, E, φ) is an n-level graph.
Further, suppose that when drawing G, each edge is a straight-line segment (or
a continuous y-monotone polyline). If a planar drawing of G can be obtained in
spite of these restrictions, then G is said to be level planar for level assignment
φ. If G is an n-level graph that is level planar, then we say G is n-level planar.

Some level assignments of G do not allow for a level planar drawing. In fact,
if k < n, then it is NP-hard [9] to determine whether there even exists a k-level
assignment of G in which G is level planar. If k = n, in which G is an n-level
graph, such a level assignment gives a labeling of V since each vertex in V is
uniquely numbered. A labeling of V whose level assignment preserves the pla-
narity of G can be easily obtained from a plane drawing of G and a perturbation
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of the vertices to ensure unique x-coordinates [2]. We call a n-level tree that is
n-level planar for all possible labelings of its vertices an Unlabeled Level Planar
(ULP) tree1. We characterize ULP trees in terms of a pair of forbidden subtrees
and provide linear time recognition and drawing algorithms.

1.1 Background and Related Work

Visualizing hierarchical relationships has historically been a strong motivating
factor in the study of the planarity of level graphs, i.e., graphs with a predeter-
mined level assignment. Geometric simultaneous embedding has recently led to
a new application of n-level graphs [2]. Determining which sets of graphs have
geometric simultaneous embeddings has proven difficult. For instance, it is un-
known whether a path and a tree can aways be simultaneously embedded. When
simultaneously embedding an n-vertex path P with another n-vertex graph G,
one can relabel the vertices of P sequentially 1 to n from one endpoint to the
other. The corresponding relabeling of the vertices of G gives a natural level
assignment φ for G. Eades et al. [4] have provided an O(|V |) time algorithm
for drawing any level planar graph with straight-line segments. Thus, if G is
n-level planar for φ, it can easily be simultaneously embedded with P since the
path merely zig-zags in a y-monotone fashion from one level to the next. The
ability to characterize n-level graphs gives additional insight into open problems
in simultaneous embedding.

Jünger et al. [11] provide a linear time recognition algorithm for level pla-
nar graphs. This is based on the level planarity test given by Heath and Pem-
maraju [7,8], which in turn extends the more restricted PQ-tree level planarity
testing algorithm of hierarchies—level graphs of DAGs in which all edges are
between adjacent levels and all the source vertices are on the uppermost level—
given by Di Battista and Nardelli [3]. Hierarchies are characterized in terms of
level non-planar (LNP) patterns in [3] as well. Jünger and Leipert [10] further
provide a linear time level planar embedding algorithm that outputs a set of lin-
ear orderings in the x-direction for the vertices on each level. However, to obtain
a straight-line planar drawing one needs to subsequently run a O(|V |) algorithm
given by Eades et al. [4] who demonstrate that every level planar embedding has
a straight-line drawing. Healy et al. [6] use LNP patterns to provide a set of min-
imum level non-planar subgraph patterns that characterize level planar graphs.
These subgraph patterns are somewhat analogous to Kuratowski’s result that
any minimal non-planar graph is either a subdivided K5 or K3,3 [12]. It should
be noted that these patterns are specific to a given level assignment and are not
based solely on the underlying graph.

1.2 Our Contribution

Our contributions are three-fold. First, we provide a forbidden subdivision char-
acterization for unlabeled level planar (ULP) trees in terms of two minimal ULP
trees, T1 and T2; see Fig. 1.
1 A more appropriate name for these types of trees might be “unlabeled n-level planar

trees” but for simplicity we call them unlabeled level planar or ULP trees.
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Trees only containing
subdivisions of T2

Trees only containing
subdivisions of T1

Radius-2
stars

Degree-3
spiders

T1

T2

Trees containing
subdivisions of T1 and T2

Caterpillars

Fig. 1. A Venn diagram for the universe of trees characterized by the two forbidden
subtrees T1 and T2. Graphs that do not contain either a subdivision of T1 or T2 are
caterpillars, radius-2 stars, and degree-3 spiders.

Second, we characterize any tree without a subdivision of either T1 or T2 as
either (i) a caterpillar, a tree in which the removal of all degree-1 vertices yields
a path, or (ii) a radius-2 star, a K1,k in which every edge is subdivided at most
once, or (iii) a degree-3 spider, an arbitrary subdivision of K1,3. We show that
these three classes are n-level planar by virtue of an O(|V |) time algorithm for
constructing straight-line n-level planar drawings of ULP trees.

Third, if a tree is not a caterpillar, then it must contain a lobster (a graph
in which the removal of all degree-1 vertices yields a caterpillar). Using minimal
lobsters we show that trees that are not radius-2 stars or degree-3 spiders must
contain subdivisions of T1 or T2, which completes the characterization. We also
provide a O(|V |) time algorithm for testing whether a tree falls into one of these
three categories, thus yielding a linear time recognition algorithm for ULP trees.

2 Preliminaries

In this paper we try to use the established notation for level graphs whenever
possible. The following definitions for levels graphs are predominantly taken
from [1,3,6]. A k-level graph G(V, E, φ) on n vertices is a DAG with a level as-
signment φ : V → [1..k] such that the induced partial order is strict: φ(u) < φ(v)
for every (u, v) ∈ E. A k-level graph is a k-partite graph in which φ partitions V
into k independent sets V1, V2, . . . , Vk, which form the k levels of G. A level-j
vertex v is on the jth level Vj of G if φ(v) = j where Vj = φ−1(j).

If φ is an injection, each level contains at most one vertex, i.e., |Vi| ≤ 1 for
i ∈ [1..k], hence, k ≥ n. W.l.o.g., we can assume in such instances that k = n
in which case φ is a bijection that forms a topological sort of the DAG G(V, E).
Unless noted otherwise, an n-level graph G(V, E, φ) is assumed to have a bijective
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level assignment φ, i.e., φ : V
1:1−→
onto

[1..n]. Such a bijective level assignment is
equivalent to a labeling of the vertices from 1 to n.

A level graph G has a level drawing if there exists a drawing such that every
vertex in Vj is placed along the horizontal line �j = {(x, j) | x ∈ R} and the
edges are drawn as strictly y-monotone polylines. The order that the vertices
of Vj are placed along each �j in a level drawing induces a family of linear
orders (≤j)1≤j≤k along the x-direction, which form a linear embedding of G.
A level drawing, and consequently its level embedding, is level planar if it can
be drawn without edge crossings. A level graph G is level planar if it admits a
level planar embedding. The more restrictive definition of level drawings allowing
only straight-line segments for edges is equivalent, as shown by Eades et al. [4].
A planar graph H is realized if it can be drawn with straight-line edges without
crossings. Such a plane graph is a realization of H . A n-level graph G(V, E, φ) is
n-level realized if it is realized such that each vertex v lies on its level φ(v).

A chain of a k-level graph G(V, E, φ) is a nonrepeating sequence of vertices
v1, v2, . . . , vt of V such that t > 1 and either (vi, vi+1) ∈ E or (vi+1, vi) ∈ E for
every i ∈ {1, 2, . . . , t−1}, i.e., a path in the underlying undirected graph of G. If
C is a chain, let lower(C) and upper(C) denote the lowermost and uppermost
vertices, respectively, with respect to φ. Also let min(C) = φ

(
lower(C)

)
and

max(C) = φ
(
upper(C)

)
be the minimum and maximum levels of C, thus,

min(C) ≤ φ(v) ≤ max(C) for every v of C.
For an n-level graph G(V, E, φ), let <Y denote the strict linear ordering given

by the level assignment φ, i.e., for every u, v ∈ V , we have u <Y v iff φ(u) < φ(v).
Let <X (and ≤X ) denote the strict (and weak) linear ordering induced by the
x-coordinate of the placement of a level-i vertex u and a level-j vertex v along
their respective horizontal lines �i and �j in the particular level drawing under
consideration. Finally, for vertex subsets U, W ⊆ V , let U <X W (and U <Y W )
iff u <X w (and u <Y w) for every u ∈ U and w ∈ W . Often we will represent
an edge (u, v) ∈ E as u−v and a chain of vertices, v1, v2, . . . , vt for some t > 1
as v1−v2− · · · −vt.

Finally, we recall a few standard graph theory definitions. In a graph G(V, E),
subdividing an edge (u, v) ∈ E is the operation of replacing (u, v) with the pair
of edges (u, w) and (w, v) in E by adding w to V . A subdivision of G is a graph
obtained by performing a series of successive edge subdivisions of G.

3 Characterization of Unlabeled Level Planar Trees

First, we introduce the forbidden subdivisions T1 and T2 together with explicit
level assignments in which the resulting graphs are level non-planar. Then we
show how to compute a n-level realization for each of the three remaining types
of trees—caterpillars, radius-2 stars and degree-3 spiders—in linear time given
a labeling of the vertices. Next, we show that if a tree does not contain a sub-
division of T1 or T2, then it must fall into at least one of the three categories of
unlabeled level planar trees. Finally, we give a simple O(|V |) time recognition
algorithm for ULP trees. Full details are included in the technical report [5].
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Fig. 2. Labelings that prevent T1 and T2 from being ULP

3.1 Forbidden Trees

Lemma 1. There exist labelings that prevent T1 and T2 from being level planar.

Proof. Fig. 2(a) gives one of 8 distinct labelings that satisfies the y-partial order
{c, g} >Y d>Y f >Y a >Y b >Y {e, h} (or its dual in which the ordering is re-
versed). Each labeling gives a bijective n-level assignment in which T1 does not
have a n-level realization. This can be seen as follows: To prevent paths a−b−c
and a−d−e from crossing, one path must go to the left and the other to the
right. Assume w.l.o.g. c−b <X d−e. This forces c <X f <X d so that a−f does
not cross b−c, or a−f−g does not cross a−d−e. However, then f−h will cross
either a−d or a−b−c. This concludes the argument for T1.

Next, consider T2. Fig. 2(b) gives one of 8 distinct labelings that satisfies the
y-partial order {c, h} >Y d>Y f >Y a >Y b >Y g >Y {e, i} (or its dual in which
the ordering is reversed). Each labeling gives a bijective n-level assignment in
which T2 does not have a n-level realization. This can be seen as follows: To
prevent paths a−b−c and a−d−e from crossing, one path must go to the left
and the other to the right. Assume again w.l.o.g. c−b <X d−e. Then a−i must
be drawn below and to the right of a−b and to the left of d−e, otherwise it will
cross b−c or d−e. To prevent the edge a−f from crossing a−b−c or a−d−e, f
must with be drawn (i) so that a <X f <X e in which case f−g−h will then cross
a−i or d−e, or (ii) so that c <X f <X d in which case f−g will cross a−b−c, a−d,
or a−i. This completes the argument about T2 and the overall claim. ��

Corollary 2. If a tree T (V, E) contains a subdivision of T1 or T2, then it cannot
be unlabeled level planar.

Proof. Assume that the tree T contains a subdivision of T1 (or T2). Let T ′(V ′, E′)
be a subtree of T that is a subdivision of T1 (or T2). Label the 8 (or 9) vertices
of V ′ in the same order as shown in Fig. 2. Note that the values of the labels
need to be adjusted in order to accommodate any intermediate vertices along a
subdivided edge of T1 (or T2). Any extra vertex w along a subdivided edge (u, v)
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Fig. 3. A n-level realization of a 30-level caterpillar on a 8 × 30 grid

can be assigned to a unique level that preserves the y-ordering u <Y w <Y v.
This works since level planarity is defined in terms of y-monotone polylines. An
edge drawn from level φ(u) to level φ(v) is allowed any number of bends so long
as the edge proceeds in a y-monotone fashion. In particular, it can bend at w on
level φ(w), which is equivalent to subdividing the edge u−v into u−w−v.

This gives a labeling of the vertices of T ′ using the labels {1, 2, . . . , |V ′|} such
that the 8 (or 9) vertices corresponding to T1 (or T2) satisfy one of the y-partial
orders from Lemma 1. Hence, the arguments used in Lemma 1 can be directly
applied to this y-ordering. Thus, T ′ is not n-level planar, and as a consequence,
neither is T , regardless of the labels for the remaining vertices. ��

3.2 ULP Trees—Caterpillars, Radius-2 Stars, and Degree-3 Spiders

The following three lemmas explicitly show all the trees that are unlabeled level
planar and how to n-level realize them in linear time.

Lemma 3. (Brass et al. [2]) An n-vertex caterpillar T (V, E) with an m-vertex
spine can be n-level realized in O(n) time on a 2m×n grid for any vertex labeling
φ : V

1:1−→
onto

{1, 2, . . . , n}.

Proof. The following proof of the claim is a shorter version and is an improve-
ment over the original proof in [3] that spans 3 pages. Note that the original
claim had the slightly weaker result of using a 2n × n grid.

Let T (V, E, φ) be an n-level caterpillar with spine S(V ′, E′) such that S is
isomorphic to P|V ′|. In particular, let the vertices of V ′ be labeled according
to their relative distance from the end point v1, and the edges E′ =

{
(v1, v2),

(v2, v3), . . . , (v|V ′|−1, v|V ′|)
}
. Let the degree-1 leaves of v be denoted by N(v) ={

u | (u, v) ∈ E and (u, v) /∈ E′
}

for each v ∈ V ′. Then for each i ∈ {1, 2, . . . , n}
place vi ∈ V ′ at the coordinate

(
2i − 1, φ(vi)

)
and place each u ∈ N(vi) at

the coordinate
(
2i, φ(u)

)
unless u would lie on the straight-line edge segment
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r

Au

Ad Lu

Ld

Fig. 4. A n-level realization of an 29-level radius-2 star on a 61 × 29 grid. The small
gray circles are the intersection points of slope-1 rays emanating from each vertex in
Ad and Au to the imagined 0-level and imagined (n + 1)-level, respectively.

vi−vi+1 in which case place u directly under vi at the coordinate
(
2i − 1, φ(u)

)

instead. All this can be done in O(n) time. This drawing is an n-level planar
since S is drawn in a strictly left to right fashion and each incident edge to the
spine is either drawn either directly above or below the spine or immediately
to its right. Clearly, this drawing uses only straight-line edge segments in which
there are no crossings forming a n-level realization. ��

Lemma 4. An n-vertex radius-2 star T (V, E) can be n-level realized in O(n)
time on a (2n + 3) × n grid for any vertex labeling φ : V

1:1−→
onto

{1, 2, . . . , n}.

Proof. Let r be the root of an n-level radius-2 star T (V, E, φ) located at the
coordinate

(
n+2, φ(r)

)
. For every leaf � that is at a distance of 1 from r, place it

at the coordinate
(
n+1, φ(�)

)
, which is one x-coordinate to the left of r. For each

remaining leaf �, let adj(�) denote its adjacent vertex, and let L ⊆ V denote this
set of leaves at a distance 2 from r. Then Ld =

{
� | � ∈ L and φ(adj(�)) > φ(�)

}

and Lu =
{
� | � ∈ L and φ(adj(�)) < φ(�)

}
partition L according to whether the

adjacent vertex of the leaf is to be drawn above or below it, i.e., whether the
incident edge goes down or up. Let Ad =

{
adj(�) | � ∈ Ld

}
and Au =

{
adj(�) | � ∈

Lu

}
be the adjacent vertices of degree 2 to the leaf vertices of T .

Place each u ∈ Ad at the coordinate
(
n+1, φ(u)

)
immediately to the left of r,

and each u ∈ Au at the coordinate
(
n + 3, φ(u)

)
, immediately to the right of r.

For each � ∈ Ld, place it at the grid point that corresponds to the intersection of
the φ(�)-level and the line segment connecting the points

(
n + 1, φ(adj(�)

)
, the

coordinate of its adjacent vertex, and
(
n − φ(adj(�)) + 1, 0

)
, the point that an

emanating ray from adj(�) with a slope of 1 in the negative x-direction intersects
an imagined 0-level; see Fig. 4. Since the ray has slope 1, this intersection will
always be an integer grid point. In a similar fashion, place each � ∈ Lu at the grid
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point that corresponds to the intersection of the φ(�)-level and the line segment
connecting the points

(
n + 3, φ(adj(�)

)
, the coordinate of its adjacent vertex,

and
(
n−φ(adj(�))+1, n+1

)
, the point that an emanating ray from adj(�) with

a slope of 1 in the positive x-direction intersects an imagined (n + 1)-level. All
this can be done in linear time since O(1) time is spent locating each vertex.

This produces a n-level realization since every vertex that is adjacent to r is
either placed immediately to its right or left, and every other leaf is placed so
that its incident edge has a slope of 1, which prevents any edge from crossing. ��

Lemma 5. An n-vertex degree-3 spider T (V, E) can be n-level realized in O(n)
time for any vertex labeling φ : V

1:1−→
onto

{1, 2, . . . , n}.

Proof. The proof is in three parts. First, we show how to reduce an arbitrary
degree-3 spider to one in which all the legs zig-zag between successively lower
and higher levels. Second, we skip ahead and show how to place the vertices of
the original spider when processing an edge of the reduced spider. Finally, we
show an O(n) time algorithm for greedily drawing the reduced degree-3 spider.

Part 1: Let r be the root vertex of an n-level degree-3 spider T (V, E, φ).
Let X , Y , and Z be the three subtrees of r, each of which forms a chain. Call
T ′(V ′, E′, φ′) a strictly expanding degree-3 spider if the level assignment φ′ on the
vertices r, v2, . . . , v|C| of each chain C of T ′ obeys the following two properties:

φ(vi−1) < φ(vi) > φ(vi+1) or φ(vi−1) > φ(vi) < φ(vi+1), (1)
and [

φ(vi−1) < φ(vi) ⇒ φ(vi−1) > φ(vi+1)
]

and
[
φ(vi−1) > φ(vi) ⇒ φ(vi−1) < φ(vi+1)

]
(2)

for 1 < i < |C|. We call a chain that satisfies property (1) a zig-zagging chain
since it cannot have any monotonically increasing or decreasing sequences of

(c)(a) (b)

C C ′

u4

u8

u3

u5

u7

vj

u6

vk

u2

u3

u2

r r

v2

Fig. 5. An example of a chain C of (a) in which the strictly expanding zig-zagging
subchain C′ of white vertices is extracted to give (b). Then (c) shows an example
n-level realization of the intermediate edges and vertices for the second edge of (b).
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A1 A2 A3 A4 A5 A6

Fig. 6. Six iterations of the greedy strategy to n-level realize a degree-3 spider

vertices. A zig-zagging chain that also satisfies property (2) is strictly expanding
as the next level reached by the chain is either greater than any previous level
or less than any previous level.

A zig-zagging chain C can be made strictly expanding by keeping track of
the minimum and maximum levels encountered by the chain so far. Assume
w.l.o.g. that φ(r) < φ(v2), i.e., the chain C begins by going upwards. We extract
from C, the strictly expanding subchain C′, which we will label its vertices as
r−u2−u3− · · · −uC′ , by first prepending r to C′. Then we set minC = φ(r)
and find the first vertex vj along C such that φ(vj) < minC . Next we append
u2 = upper(r−v2−v3− · · · −vj−1) to C′, and set maxC = φ(u2). Then we
look for the next vertex vk along C such that φ(vk) > maxC . Afterward, we
append u3 = lower(vj−vj+1− · · · −vk−1) to C′, and set minC = φ(u3), and
repeat this process until all the vertices of C are exhausted. If the last vertex
encountered is not greater than minC or less than maxC , then we add an extra
vertex to the end of C′ satisfying this condition; see Fig. 5 for an illustration.

Part 2: For each vertex ui in C′, we keep a linked list of the subpath
P = ui−wi1−wi2− · · · −wi|P |−2−ui+1 of C that was replaced by the edge
ui−ui+1 where min(P ) = φ(ui) and max(P ) = φ(ui+1) (or max(P ) = φ(ui)
and min(P ) = φ(ui+1)). This linked list will be used to place edges of T as we
process edges from T ′. Fig. 5(c) visually illustrates how this might be done. Here,
any particular subpath P of C for a given edge of C′ can be drawn arbitrary
close to C. We omit the details of this particular point, noting only that the
intuitive idea of compressing the zig-zagging chain allows us to greedily draw
the edges of T without crossings for each edge of T ′ that is processed. We finish
this section of the proof by observing that both the extraction of C′ from C and
the ability to draw the edges of T once we have processed the edges of T ′ can
be done in linear time.

Part 3: Now that we have our degree-3 spider in the proper form, we can
apply a simple greedy algorithm that can be used to give a n-level realization
of T ′. We complete the proof of the lemma by giving the details regarding this
linear time algorithm.

Let the vertices of chain X be denoted by x0−x1− · · · −x|X|−1 in which x0 = r
and (xi, xi+1) ∈ E for 0 ≤ i < |X | − 2. Similarly, let the vertices of Y and Z be
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y0−y1− · · · −y|Y |−1 and z0−z1− · · · −z|Z|−1. Finally, let A1 = {x1, y1, z1} be
the first vertices along each chain immediately following r.

There exist two possibilities for the strictly expanding degree-3 spider T ′:
Either (i) A1 >Y r (or A1 <Y r) or (ii) min(A1)<Y r <Y max(A1). We show
how to draw T for case (i) assuming that A1 >Y r. The other case is similar. We
start the first iteration by drawing A1 so that the vertex of maximum index with
respect to φ′ lies between the other two vertices of A1 along the x-coordinate.

At any one point in this greedy strategy, we maintain the invariant that the
last vertex along a chain that we placed either lies above or below any of the
other vertices that have been drawn so far. Property (2) allows us to do this.
If we encounter the end of a chain in which this invariant does not hold for its
last vertex, then we can easily draw the remaining two chains without crossings.
We do this by drawing one of the two chains monotonically to the right until we
reach its end, and do the same for the other chain monotonically to the left.

For iteration i > 1, we arbitrarily pick one of the chains whose most recently
placed vertex is neither the maximum nor the minimum vertex drawn so far.
We greedily extend the chain either to the right or left until we reach a vertex
whose level assignment is either above or below all the ones drawn so far. This
enlarges the set of processed vertices from Ai−1 to Ai. Note that we can always
extend a chain C to the right or left. This follows from the fact that during the
previous iteration, before the vertices of some other chain C′ were processed, the
last vertex v of C was either minimum or maximum; see Fig. 6 for an example.

Since we can always greedily place a vertex without introducing a crossing, this
strategy succeeds in producing a n-level realization of T in O(n) time (constant
time per vertex), which shows that T is indeed ULP. Simple geometry can be
used to construct such an drawing using only straight-line edge segments for T ′,
which can be used to produce a plane drawing of T as detailed above. ��

Now that we have shown which trees are ULP, we need to show that our char-
acterization is complete. First, we show that T1 and T2 are minimal unlabeled
level non-planar trees with the following lemma.

Lemma 6. Removing any edge from T1 or T2 yields a forest of ULP trees.

Proof. If removing an edge from T1 decreases the degree of one of the two
degree-3 vertices, call them x and y, then the resulting graph is a forest consist-
ing of a degree-3 spider and a possible lone edge; see Fig. 7(a). Removing the
edge x−y yields two paths. The only possibility (up to isomorphism) in removing
an edge without affecting the degree of x and y, yields a caterpillar with a spine
of length 5. Moving onto T2, if its vertex z of degree 4 maintains its degree after
the edge removal, then the resulting graph must be a forest consisting of either a
caterpillar, if the removed edge was incident to a leaf vertex at a distance 2 from
z, or a radius-2 star and a possible lone edge, otherwise. On the other hand, if
the degree of z decreases to 3, then the resulting graph is a degree-3 spider and,
possibly, a path; see Fig. 7(c). ��

The next theorem completes the characterization of ULP trees.
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Fig. 7. Finding copies of T1 and T2

Theorem 7. Every tree either contains a subdivision of T1 or T2 in which case
it is not ULP, or it is a caterpillar, a radius-2 star, or a degree-3 spider in which
case it is ULP. Hence, T1 and T2 give a minimal forbidden subtree characteriza-
tion of ULP trees.

Proof. First, we argue that neither T1 nor T2 is a caterpillar, a radius-2 star, or
a degree-3 spider to show that if a tree T contains a subdivision of T1 or T2,
it cannot be one of those three. Clearly, both T1 and T2 are lobsters and not
caterpillars. The two vertices of degree 3 prevent T1 being a radius-2 star or a
degree-3 spider. Since T2 has radius 3 and a vertex of degree 4, it cannot be a
radius-2 star or a degree-3 spider either.

Now we show that caterpillars, radius-2 stars, and degree-3 spiders are the
only types of ULP trees. We do this by showing that any tree that does not fit
into at least one of these categories must contain either a subdivision of T1 or T2.
Then by Corollary 2 any tree T that contains a subdivision of T1 or T2 cannot
be ULP. By Lemma 6, T1 and T2 are minimal.

Assume that T (V, E) is a tree that is not a caterpillar, radius-2 star, or
degree-3 spider. Since T is not a caterpillar, it must contain a minimal lob-
ster L, i.e., the unique tree that cannot have any more edges removed without
becoming a caterpillar (and possibly a lone edge); see Fig. 7(b). It has one vertex
r of degree 3 and three leaf vertices a, b, c at a distance 2 from r, which is the
minimal requirement for a tree to be a lobster. Any other lobster can have its
edges trimmed away until L is all that remains, which is what makes L minimal.

Since T is not a degree-3 spider, there are two cases to consider: either (i) T
has two vertices s and t of degree at least 3 or (ii) T has one vertex of degree k
greater than 3.

Assuming case (i) holds, we show how to find a subdivision of T1 in T . Let
x and y be the two vertices of degree 3 in T1 where x is the one without an
adjacent leaf vertex; see Fig. 7(a). At least one of the two vertices s and t of
degree at least 3 in T must correspond to the root vertex r in the subtree L that
forms the minimal lobster in T . Assume w.l.o.g. this vertex is s. Then we map s
in T to vertex x in T1, and the other vertex of degree at least 3, t in T to vertex
y in T1. Since t has degree at least 3, there exists two neighbors of t not along
the path from s to t, which we can map to the two corresponding leaf vertices
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in T1 that are adjacent to y. Only one of the three leaf vertices a, b, c of L in T
can be contained in the subtree of s containing t. Suppose w.l.o.g. it is a. Then
the other two vertices b and c in T can be mapped to the two remaining leaf
vertices in T1. This completes the mapping of vertices of T1.

Next we consider case (ii) in which we show how to find the subtree T2 in T .
The one vertex of degree k greater than 3 must be the corresponding vertex r of
L in T ; see Fig. 7(c). Otherwise, if there were separate vertices of degree greater
than 3, case (i) would apply. Let r be mapped to the degree-4 vertex z of T2.
Since T is not a radius-2 star, there exists a vertex w at a distance 3 from r,
which can be mapped to the leaf vertex in T2 at a distance 3 from z. Only one
of the three vertices a, b, c of L in T can be along the path from r to w. Suppose
w.l.o.g. it is a. The other two vertices b and c in T can be mapped to the other
two leaf vertices in T2. The remaining leaf vertex of T2 that is directly adjacent
to z can be mapped to the endpoint of the fourth edge incident to r in T since
it has degree greater than 3. This completes the mapping of vertices of T2. ��

3.3 Linear Time Recognition of ULP Trees

First, we need a few simple observations regarding the degree sequences of cater-
pillars, radius-2 stars, and degree-3 spiders, which we state as lemmas whose
proofs we omit in this abstract.

Lemma 8. If a tree T has a degree sequence of the form 2, . . . , 2, 1, 1 or 1, 1, i.e.,
a path, after the removal of all degree-1 vertices, then T must be a caterpillar.

Lemma 9. If a tree T has a degree sequence of the form k, 2, . . . , 2, 1, 1, . . .1 for
some k > 2, i.e., T is an arbitrarily subdivided K1,k, and after the removal of
all degree-1 vertices, the degree sequence then becomes �, 1, . . . , 1 for some � ≤ k,
i.e., T becomes a K1,�, then T must be a radius-2 star.

Lemma 10. If a tree T has a degree sequence of the form 3, 2, . . . , 2, 1, 1, . . .1,
i.e., T has maximum degree of 3 with only one vertex of degree 3, then T must
be a degree-3 spider.

Theorem 7 together with the above Lemmas, lead to a simple linear time recog-
nition algorithm for ULP trees summarized in the following corollary:

Corollary 11. The class of ULP trees can be recognized in linear time. That is,
given an arbitrary n-vertex tree T , one can decide in O(n) time whether or not
it is always possible to n-level realize T for any possible labeling.

4 Conclusion and Future Work

We described a complete characterization of unlabeled level planar trees. We
provided a linear time algorithm to n-level realize the three classes of ULP trees
which can also be used for simultaneously embedding a ULP tree T with any
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path P . Finally, we provided a linear time recognition algorithm for ULP trees.
What is missing from the recognition algorithm is a certificate of unlabeled level
non-planarity, i.e., the 8 (or 9) vertices corresponding T1 (or T2) if they exist.

Another future task is to provide a forbidden subgraph characterization for
general unlabeled level planar graphs as we have done for ULP trees.
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Abstract. Let G be a bipartite graph, and let λe, λi be two parallel
convex curves; we study the question about whether G admits a planar
straight line drawing such that the vertices of one partite set of G lie on
λe and the vertices of the other partite set lie on λi. A characterization is
presented that gives rise to linear time testing and drawing algorithms.

1 Introduction

Common requirements for drawing a bipartite graph are that the bipartition
is highlighted in the visualization by representing the vertices on two distinct
layers, the edges have as few bends as possible, and the number of edge cross-
ings is minimized. A bipartite graph is a biplanar graph if it has a straight line
crossing-free drawing where the vertices of the same partite set all lie along one
of the horizontal layer [5]. Biplanar graphs have been independently character-
ized in [4,6,8]. Also, the problem of computing straight-line drawings of bipartite
graphs with the vertices on two horizontal layers and minimum number of cross-
ings has been well studied; see, e.g. [2,7] for some basic references on this topic.

This paper studies planar drawings of bipartite graphs where vertices are
constrained to be on two parallel convex curves, which generalizes the case of
horizontal layers. Let G be a bipartite graph, and let λe, λi be two parallel
convex curves; we want to answer the question about whether G admits a planar
straight line drawing such that the vertices of one partite set of G lie on λe and
the vertices of the other partite set lie on λi.

Our interest in this question is in part motivated by the observation that
the class of bipartite graphs that admit a planar straight line drawing on two
horizontal lines is quite restricted and that one may hopefully enlarge this class
by allowing some curvature on the two layers. Indeed, there is already some
evidence in the literature that if the vertices in a drawing are not constrained to
be collinear but instead can lie on curves, the family of representable graphs for
specific drawing conventions can increase significantly; see, e.g. [3] for drawings
of planar graphs with at most one bend per edge and vertices constrained to be
on a given curve.

The problem addressed in this paper is also related to the study of radial
planarity testing initiated by Bachmaier, Brandenburg and Forster [1]. In [1] the
� Research partially supported by MIUR under Project “ALGO-NEXT”.
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input is a k-partite graph G and k-concentric circles; the question is whether G
has a crossing-free drawing where the vertices of the same partite set are points
of the same radial level (circle) and the edges are simple Jordan curves in the
outward direction. Here, we study radial planarity testing for bipartite graphs
with the additional constraint that the edges are straight-line segments (indeed,
two concentric circles are a special case of two parallel convex curves).

Our contribution is as follows. The family of bipartite graphs which admit a
planar straight-line drawing with the vertices constrained to be on two parallel
convex curves and with no two vertices of the same partite set on different curves
is characterized. The characterization gives rise to a linear time testing algorithm.
The proof of sufficiency uses a linear time (real RAM) drawing algorithm.

2 Preliminaries

A graph G = (V, E) is bipartite if there exists a partition V = V0 ∪ V1 of the
vertices of G such that E ⊆ V0 × V1. The two sets V0 and V1 are called partite
sets of G. A bipartite graph with a given planar embedding is maximal if every
internal face of G consists of four edges.

A simple curve λ in the Euclidean plane is a closed curve if it partitions the
plane into two topologically connected regions; λ is an open curve otherwise.
Curve λ is convex if any straight line intersects λ in at most two points. Note
that a circle is a special case of closed convex curve.

Let p, q be two distinct points of λ. If λ is an open curve we say that p precedes
q on λ if p is encountered before q when traversing λ in the clockwise direction.
If λ is a closed curve, let p and q be two distinct points of λ such that the portion
of λ traversed when going from p to q in the clockwise direction is shorter than
the portion of λ traversed when going from q to p; we say that p precedes q and
that q follows p on λ.

Two convex curves are parallel if every normal to one curve is also a normal to
the other curve and the distance between the points where the normals intersect
the two curves is a constant. In the rest of this paper we denote with λe, λi two
parallel convex curves such that the curvature of λe is less than the curvature of
λi; λe is the external curve, λi is the internal curve (in the special case of two
concentric circles, λe is the circle with larger radius). Curves λe, λi are paired
if there exist two points p ∈ λe and q ∈ λi such that the straight-line segment
pq intersects λi twice. A straight-line segment with the property of pq is said to
cross curve λi. Observe that two concentric circles are paired. Two curves will
be called non-paired if they are parallel, convex, but are not paired.

Let λe, λi be two parallel convex curves. A bipartite graph G is curve biplanar
on λe, λi if it admits a curve biplanar drawing, i.e. a planar straight-line drawing
such that all vertices of a bipartite set of G are represented as points on λe and
the vertices of the other bipartite set are represented as points on λi. As the next
theorem shows, if λe, λi are not paired, the family of curve biplanar graphs on
two non-paired curves coincides with the family of biplanar graphs characterized
in [4,6,8]. The proof is an easy adaptation of the arguments in [4,6,8] and it has
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been omitted for space reasons. A graph is a caterpillar if deleting all vertices of
degree one produces a (possibly empty) path.

Theorem 1. A bipartite graph admits a curve biplanar drawing on two non-
paired curves if and only if it is a forest of caterpillars.

Motivated by Theorem 1, we will investigate the family of bipartite graphs that
admit a curve biplanar drawing on two paired curves. We first show how to draw
a specific family of graphs, namely bipartite fans, and then present a complete
characterization of curve biplanar graphs on two paired curves.

3 How to Draw a Bipartite Fan

Let G be a biconnected bipartite graph with a given planar embedding. G is
a bipartite fan if it has a vertex u, called apex, that is shared by all its faces
(including the external one). The edges incident on u are the radial edges of the
fan. Let u, v0, v1, . . . , vn−2 be the vertices of a fan G in the clockwise order they
have on the external face. Edges (u, v0) and (u, vn−2) are called first edge and last
edge of the fan, respectively. Any three vertices v2j , v2j+1, v2j+2 (0 ≤ j ≤ n−4

2 )
form a fan triplet of G. Notice that v2j+1 belongs to the same partite set as u.

We show how to compute a curve biplanar drawing of a bipartite fan on two
paired curves such that the drawing is contained in a suitable region of the plane
called a wedge and defined as follows. Let λe, λi be two paired curves, let p, q, r
be three points such that: (i) p, r ∈ λe and p precedes r on λe, (ii) q ∈ λi, (iii)
segment pq does not cross curve λi, (iv) segment qr crosses λi. Let λpr be the
portion of λe consisting of all points x ∈ λe such that x follows p and precedes
r. The closed bounded region delimited by pq, qr and λpr is a wedge of λe, λi

and is denoted as W (p, q, r).

Lemma 1. Let G be a bipartite fan with n vertices and apex u. Let λe, λi be
two paired curves and let W (p, q, r) be a wedge of λe, λi. Fan G admits a curve
biplanar drawing on λe, λi contained inside W (p, q, r) such that: (i) The first
and the last edge of G are represented by segments pq and qr, respectively; (ii)
For every fan triplet v2j , v2j+1, v2j+2 of G (0 ≤ j ≤ n−2

2 ), the three points
representing the triplet define a wedge of λe, λi.

Sketch of Proof: We assume that G is maximal, i.e. that every internal face
consists of four edges; if not, we can split each internal face f having more than
four edges by connecting u to all vertices of f that are not adjacent to u and do
not belong to the same partite set of u (it is immediate to see that the resulting
augmented graph is still a bipartite fan). Let u, v0, v1, . . . , vn−2 be the vertices
of fan G in the clockwise order they have on its external face.

In what follows refer to Figure 1 for an illustration. The apex of the fan u is
drawn at point q; vertices v0 and vn−2 are drawn at points p and r, respectively.
Thus, the first edge of G is represented by segment pq and the last edge of G
is represented by segment qr. Let x be the point where segment qr crosses λi.
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u = q

vn−3 = q′′

t
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vn−2 = rvn−4 = r′
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q′

v0 = p

�

t′

Fig. 1. An illustration of the drawing technique for a bipartite fan

For the convexity of λi, the straight line through r and tangent to λi intersects
λi at a point t such that t follows q and precedes x on λi; since pq does not
cross λi, then t is inside wedge W (p, q, r). If n = 4, i.e. G is a 4-cycle, choose a
point q′ that follows q and precedes t on λi and such that segment pq′ does not
cross λi. Draw v1 at point q′. Since q′ precedes t, segment q′r crosses λi, while
segment pq′ does not cross λi and therefore points p, q′, and r, which represent
the vertices of the fan triplet v0, v1, v2, define a wedge W (p, q′, r).

If n > 4 choose a point q′ that follows q and precedes t on λi and let � be
the straight line through q and q′. Draw vertex vn−4 at point r′ = � ∩ λe. Draw
vertex vn−3 at any point q′′ of λi such that q′′ follows q′ and precedes t on λi.
Segment q′′r crosses λi because q′′ precedes t on λi and λi is convex. Let t′

be the point where the tangent to λi through r′ intersects λi; t′ follows q and
precedes q′ on λi. It follows that t′ precedes q′′ and hence segment r′q′′ does not
cross λi. Therefore points r′, q′′, r, which represent the vertices of the fan triplet
vn−4, vn−3, vn−2, define a wedge W (r′, q′′, r). In order to complete the drawing
of G, we observe that segment qr′ crosses λi, and therefore points p, q, and r′

define a wedge W (p, q, r′). We recursively draw the fan obtained from G after
removing vertices vn−3 and vn−2 inside wedge W (p, q, r′). ��

4 Curve Biplanar Graphs

We start with a sufficient condition whose proof uses the following definition.
Let G = (V, E) be a connected graph. A subset of vertices S ⊂ V is a cut-set if
the removal of S disconnects G. Let G0, . . . , Gk−1 be the connected components
of G − S (possibly isolated vertices). The S-components of G are the subgraphs
of G induced by sets V (Gj) ∪ S (0 ≤ j ≤ k − 1).

Lemma 2. Let G be a biconnected bipartite graph with a given planar embedding
such that all vertices in one partite set belong to the external face. Then G is
curve biplanar on two paired curves.

Sketch of Proof: We describe now how to compute an embedding preserving curve
biplanar drawing of G. To this aim, we decompose it into subgraphs that are
bipartite fans and draw each fan by using the technique described in Lemma 1.

Let V0 and V1 be the two partite sets of G and assume that all vertices of V0
belong to the external face of G in the given embedding. Since G is bipartite,
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there exists a vertex u ∈ V1 such that u belongs to the external face of G. Let
Fu be the subgraph of G induced by all vertices that share an internal face with
u (Fu exists because G is biconnected). Note that Fu is a bipartite fan, which
we call the fan of u. Let λe and λi be two paired curves, let W (p, q, r) be an
arbitrarily chosen wedge of λe, λi (such a wedge always exists because λe and λi

are paired). By Lemma 1, Fu can be drawn inside W (p, q, r) so that its first and
last edge are represented by segments pq and qr, respectively.

Let u, v0, v1, . . . , vn−2 be the vertices of Fu in the clockwise order they have
on the external face of Fu. Since u ∈ V1, vertices v2j (j = 0, 1, . . . , n−2

2 ) belong
to V0 and are on the external face of G. This implies that every fan triplet
τ = {v2j , v2j+1, v2j+2} is a cut-set for G unless v2j+1 is on the external face.
Indeed, since G is biconnected, the boundary of its external face is a cycle C,
and if v2j+1 ∈ τ is not on the external face, then the vertices of τ induce a path
that splits C in two paths C′ and C′′; since no edge of G can connect a vertex
of C′ to a vertex of C′′ (otherwise G would not be planar), then τ is a cut-set
also for G. The τ -component of G that does not contain u is a planar bipartite
graph that satisfies the condition expressed by the statement and, by Lemma 1,
points p′, q′, r′ representing the vertices of τ in the drawing of Fu define a wedge
W (p′, q′, r′). The τ -component of G that does not contain u can be recursively
drawn inside W (p′, q′, r′). ��
Theorem 2. A bipartite graph G is curve biplanar on two paired curves if and
only if it admits a planar embedding such that all vertices in one partite set
belong to the external face. Also, if G is curve biplanar on two paired curves, a
curve biplanar drawing of G on two paired curves can be computed in O(n) time
in the real RAM model of computation, where n is the number of vertices of G.

Sketch of Proof: Sufficiency. Let V0 be a partition set of G such that all vertices
of V0 belong to the external face of a planar embedding of G. If G is biconnected,
the sufficiency follows from Lemma 2. Otherwise, G can be augmented by adding
dummy vertices and edges such that the augmented graph G′ is biconnected and
bipartite, one of its partition sets is V0, and has a planar embedding with the
vertices of V0 on the external face (for reasons of space we do not describe in more
detail this augmentation technique). It follows that G′ has a biplanar drawing
on two paired curves by Lemma 2 and hence G is curve biplanar on two paired
curves.

Necessity. Let Γ be a curve biplanar drawing of a graph G on two paired
curves λe and λi. All vertices drawn as points of λe are on the external face of Γ
because the curves are convex and the drawing is straight-line. Since all vertices
on the same curve are in the same partite set, G admits a planar embedding
such that all vertices in one of the partite set belong to the external face.

Time complexity. The augmentation technique can be performed in time pro-
portional to the number of biconnected components of G. The fan Fu of u can
be computed in time proportional to the number nu of vertices in Fu. It can be
proved that the drawing of Fu can be computed in O(nu) time with the tech-
nique of Lemma 1 if the real RAM model of computation is adopted. Since each
vertex belongs to at most three fans, the time complexity is O(n). ��
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Theorem 3. Let G be a bipartite planar graph with n vertices. The curve bi-
planarity of G on two paired curves can be tested in O(n) time.

Sketch of Proof: A curve biplanarity test can be performed by executing at most
two planarity tests with the additional constraint that all vertices in one of the
partition sets of G belong to the external face. ��

A k-partite graph G = (V0, . . . , Vk−1, E) is radial k-level planar if it admits a
planar drawing on k concentric circles C0, . . . , Ck−1, with the vertices of partite
set Vj drawn on circle Cj (0 ≤ j ≤ k − 1) and the edges drawn as strictly
monotone curves from inner to outer circles. A linear time algorithm for radial
planarity testing and embedding is presented in [1]. Theorems 2 and 3 make it
possible to specialize radial 2-level planarity testing to the case that the edges
are straight-line segments.

Corollary 1. A bipartite graph G is radial 2-level planar with straight-line edges
if and only if it admits an embedding such that all vertices in one partite set
belong to the external face. Also, there exists an O(n)-time algorithm that tests
whether a bipartite graph G is radial 2-level planar with straight-line edges.

5 Open Problems

– Extend the study to k-partite graphs and k parallel curves with k > 2.
In particular, it would be interesting to study radial planarity testing with
straight-line edges and more than two concentric circles.

– Study the complexity of the following problem: Let G be a planar bipartite
graph and let c be a positive integer. Does G have a curve biplanar subgraph
(not necessarily induced) with at least c edges?

– Study the complexity of the edge crossing minimization problem for straight-
line drawings of bipartite graphs on two parallel convex curves.
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Abstract. Circular graph layout is a drawing scheme where all nodes are placed
on the perimeter of a circle. An inherent issue with circular layouts is that the
rigid restriction on node placement often gives rise to long edges and an overall
dense drawing. We suggest here three independent, complementary techniques
for lowering the density and improving the readability of circular layouts. First, a
new algorithm is given for placing the nodes on the circle such that edge lengths
are reduced. Second, we enhance the circular drawing style by allowing some of
the edges to be routed around the exterior of the circle. This is accomplished with
an algorithm for optimally selecting such a set of externally routed edges. The
third technique reduces density by coupling groups of edges as bundled splines
that share part of their route. Together, these techniques are able to reduce clutter,
density and crossings compared with existing methods.

1 Introduction

Circular layouts are among the most prominent and oldest conventions used to draw
graphs. In such layouts, nodes are drawn on a circle, while the edges connecting these
nodes are line segments passing within the circle, e.g., Figure 1(a). This drawing con-
vention is often used for the layout of networks and systems management diagrams,
where it naturally captures the essence of ring and star topologies. It can be also used
for other kinds of graphs, such as social networks and WWW graphs. In particular,
a circular layout is appropriate for applications that emphasize the clustering decom-
position of a graph, where each cluster is drawn on a separate circle. Much work
[1,4,12,13,17,18,20] has been done on these layouts, most of it addressing both the lay-
out of a single circle as well as positioning multiple circles together in order to show the
various clusters composing the full graph. Here we concentrate on the former. Circular
layouts are highly regularized – nodes placed on a circle – achieving a very clear de-
piction of each individual node. A node cannot be occluded by another node or by an
edge. Moreover, since it is impossible to have three collinear nodes, the problem of two
edges obscuring each other is avoided. In general, these layouts can provide a compact
presentation, focusing on individual nodes and edges. Additionally, well-designed cir-
cular layouts sometimes reveal global properties of the graph such as symmetries and
patterns of collective behavior. On the other hand, this strong regularity can obscure
other information. For example, these drawings can be very dense, and following paths
on them can be difficult.

In this work we suggest methods for improving the clarity of circular layouts through
better node placement and edge routing. This is achieved using three contributions. The

M. Kaufmann and D. Wagner (Eds.): GD 2006, LNCS 4372, pp. 386–398, 2007.
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(a) (b) (c)

(d) (e)

Fig. 1. Variations on circular layouts of a random graph (|V | = 80,|E| = 241): (a) random order;
(b) edge-length minimizing order; (c) bundling edges to save ink and to improve area utilization
(colors used to enhance readability); (d) exterior routing lessens crossings and alleviates density;
(e) combining exterior routing with edge bundling

first shows how to adapt traditional energy based node placement considerations in
order to shorten edges in circular layouts. This is different from most previous work
which concentrated on reducing edge crossings. Experiments show that our method is
competitive in terms of edge crossing minimization, while being constantly better in
terms of overall edge length. Such a shortening of edge lengths allows the use of less
“ink” for drawing the graph, thereby improving clarity. This ink saving paradigm brings
us to the second contribution of the paper. We suggest a novel edge routing technique,
which uses less ink compared with the common convention of drawing edges as straight
lines. This is performed by carefully bundling together line segments between a few
edges in a way that frees up drawing area without compromising structural clarity. Con-
sidering non-straight line edges opens up even more possibilities for better clarity. Ac-
cordingly, our third contribution suggests routing some of the edges through the exter-
nal face. The externally routed edges are optimally selected in order to minimize certain
criteria. In particular, external routing can be very effective in reducing edge crossings.
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When used together, one normally performs node placement, followed by exterior
routing, then edge bundling. Sections 2-4 consider these techniques in that order. Ex-
perimental studies for the techniques are given in Section 5.

2 Node Placement

We are looking for the “best placement” of the n nodes of a graph G(V ={1, . . . , n},E).
By convention, we assume nodes are equally spaced on the circle, which reduces the
problem to finding a circular ordering of the nodes. This requirement imposes a cer-
tain regularity on the resulting layouts, while having no effect on the number of edge
crossings, since only the ordering affects edge crossings.

Some related computational problems are known to be NP-hard. One example is
the Minimum Circular Arrangement problem, where nodes are arranged on a circle
(with equal gaps) in order to minimize the total angular edge lengths. This problem
is reducible from the extensively studied NP-complete problem of Minimum Linear
Arrangement [9]. Additional related circular arrangement problems and applications
are mentioned in [6,14]. Another NP-hard problem is Circular Crossing Minimization
[15], where the goal is to minimize the number of edge crossings in the layout. Given the
NP-hardness of the relevant problems, our approach is based on heuristics that cannot
guarantee finding an optimal solution.

2.1 Mean- and Median-Iterations

While previous work [1,4,12,17] explicitly addressed edge crossings, we prefer to deal
with the simpler node-node interactions governing edge lengths. That way we can use
ideas developed in other areas of graph drawing, which seek to minimize edge length.
The rationale here is that long edges are hard to follow, prone to crossings, and cause
unnecessary clutter and density. One such class of methods consists of force-directed
algorithms, which define the layout by minimizing a cost function. The methods of Tutte
[21] and Hall [10] are probably closest to the one used here. In addition, our technique
is closely related to the mean-iteration and the median-iteration heuristics widely used
within the crossing minimization phase of Sugiyama-based digraph drawing algorithms
[19].

We denote the coordinates of a node i ∈ V by (xi, yi) ∈ R
2. Assume that the nodes

are arranged on the unit circle centered at the origin. We would like to minimize the
total squared edge lengths, resulting in the following optimization problem:

min
x,y

∑

〈i,j〉∈E

(xi − xj)2 + (yi − yj)2

subject to : x2
i + y2

i = 1, i = 1, . . . , n

(1)

Tutte [21] and Hall [10] dealt with strategies to minimize the same function, but here
we also need to account for the unit circle constraints. Such equality constraints are
usually addressed by Lagrange multipliers. Therefore, for each node i, we introduce a
Lagrange multiplier λi, and define the function:
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f(x, y, λ) =
∑

〈i,j〉∈E

(xi − xj)2 + (yi − yj)2 +
n∑

i=1

λi(x2
i + y2

i − 1) (2)

Any minimum of (1) must be a zero for all partial derivatives of (2). In other words,
we require ∂f/∂x = 0, ∂f/∂y = 0, ∂f/∂λ = 0. Notice that ∂f/∂λ = 0 means that
all constraints are satisfied. The other equalities, ∂f/∂x = ∂f/∂y = 0, imply that for
each node i:

(xi, yi) =
1

1 − λi

∑
j∈N(i)(xj , yj)

‖N(i)‖

where N(i) = {j | 〈i, j〉 ∈ E} is the set of neighbors of i. Notice that the 1
1−λi

multi-
plier provides the degree of freedom necessary for satisfying the unit circle constraint.
In plain words, these equations state that each node on the unit circle should lie on the
line connecting the origin and the barycenter of its neighbors. Equivalently, the angular
coordinate of each node is the mean of the angular coordinates of its neighbors, while
the radial coordinate is always 1.

To solve this problem, we fix the positions of all the nodes but one, giving rise to
an iterative optimization process, which we naturally name the mean iteration. At each
iteration, we sequentially move each single node to the barycenter of its neighbors, and
then project it back to the circle:

(1) (xi, yi) ←
∑

j∈N(i)(xj , yj)

‖N(i)‖ (2) (xi, yi) ← (xi, yi)
‖(xi, yi)‖

A known problem with the mean iteration is that the global minimum of (1) is attained
when all nodes are positioned at the same location. Since we are looking for more use-
ful local minima, we avoid such a collapse of the layout by interfering with the process
after each few tens of iterations and making the gaps between consecutive nodes uni-
form. That is, we preserve the current angular order of the nodes, but impose a uniform
distribution along the circle. Additionally (or, alternatively), we adopt the anchoring
mechanism suggested by Tutte, fixing the positions of three nodes, which prevents the
collapse of the layout. During the process we change the anchors to avoid bias toward
specific nodes.

While the mean iteration addresses squared edge lengths, a similar median iteration
addresses non-squared edge lengths. The only difference is the use of the median instead
of the mean. Therefore, in this algorithm, the coordinates of a node are iteratively de-
termined by the component-wise median of its neighbors’ coordinates, projected back
onto the circle. We experienced slightly better results using median iteration over mean
iteration in terms of crossing minimization.

The complexity of a single iteration is O(n+ |E|). The number of required iterations
is less clear. We regularly use O(n) iterations.

2.2 Local Refinement Through Dynamic Programming

The median (or mean) iteration is a continuous approximation to the circular ordering
problem. We derive the circular order by sorting the nodes according to their angular
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coordinates. The resulting circular order can be refined by utilizing an algorithm that
explicitly considers the discrete nature of the problem. At this stage, we hope that the
median iteration already gave us an adequate global positioning of the nodes. Therefore,
we opt for using a localized refinement procedure. This refinement procedure considers
every sequence of k nodes, and reorders the sequence in a way that minimizes the total
edge length.

More formally, assume that the circle contains n equally spaced points named 0,
1, . . . , n − 1, where point i is located at (cos 2πi

n , sin 2πi
n ). In addition, each of the n

nodes is uniquely associated with one of the n circle points via the bijection p(i) : V →
{0, 1, . . . , n − 1}. The (angular) distance between two nodes i and j is defined as:

dij = min (p(i) − p(j) mod n, p(j) − p(i) mod n)

Given k nodes V = {v1, v2, . . . , vk}, located consecutively at p(v1), p(v1) + 1, . . . ,
p(v1) + k − 1, we would like to reorder V to minimize l(V), the total length of the
edges adjacent to V , which is defined as:

l(V) =
∑

〈i,j〉∈E,i∈V
dij

Minimization of l(V) is done by a dynamic programming algorithm which rear-
ranges increasingly larger subsets of V . The pseudocode is given in Figure 2. The com-
plexity of the algorithm is O(2k + |E(V)|), where E(V) is the set of edges connected
to V . Typical values of k are between 5 and 10 (our default is 6). We iteratively run it
on each of the n (overlapping) subsequences of length k, so the running time of a full
sweep optimizing each subsequence is O(n(2k + |E|)). We run a few sweeps until the
total edge length cannot be further reduced. Typically, a very low number of sweeps (10
or less) is required for convergence.

Figure 1(b) illustrates the application of these techniques to the initial layout of
Figure 1(a).

3 Exterior Routing

Node ordering, using the method described in Section 2 (or one of the methods de-
scribed in the literature [1,4,12,17]), improves the readability of the layout by removing
edge crossings and shortening edges. At this stage, further readability improvement can
be achieved without altering the node positions. This is accomplished by taking a subset
of the edges from the interior of the circle, and routing them around the exterior of the
circle, as depicted in Figure 1(d). Importantly, this can be done in an optimal way which
maximizes the number of extracted edges or minimizes the number of crossings.

Since exterior routing of an edge is inherently longer than interior routing, we should
utilize the exterior routing carefully, and make sure that edges routed externally are
readable. Therefore, we do not allow any edge crossing within the external face. Notice
that two edges cross in the external face if and only if they cross internally.

We associate weights with the edges (as explained below), and strive to maximize
the total weight of the extracted edges. This is carried out using a dynamic program-
ming algorithm. Before describing the algorithm, we make an observation about “edge



Improved Circular Layouts 391

Function MinCA DP (G(V, E), p, V = {v1, v2, . . . , vk} ⊂ V , ordering)

% Given a graph (G), circular node positioning (p), and a subset of consecutive nodes (V)

% ordered from v1 (leftmost) to vk (rightmost)

% compute an ordering of V (ordering) that minimizes total edge length

% Data structure: A table T whose entries are indexed by subsets of V

% The function Cut(i, S) returns the number of edges between i and S ⊂ V.

for each i ∈ V compute

left(i) = {〈i, j〉 ∈ E | d(j, v1) < d(j, vk), j /∈ V}
right(i) = {〈i, j〉 ∈ E | d(j, vk) < d(j, v1), j /∈ V}

end for

% Initialize table:

for every S ⊆ V do

table[S].cost ← ∞
end for

table[∅].cost ← 0
table[∅].cut ←=

∑
i∈V |left(i)|

% Fill table:

for i = 1 to k do

for every S ⊂ V, |S| = i − 1 do

cutS ← table[S].cut
new cost ← table[S].cost + cutS % total edge length is a sum of cuts

for every j ∈ V − S do

if table[S ∪ {j}].cost > new cost then

table[S ∪ {j}].cost ← new cost
table[S ∪ {j}].right vtx ← j
table[S ∪ {j}].cut ← cutS − |left(j)| + |right(j)| − Cut(j, S) + Cut(j,V − S)

end if

end for

end for

end for

% Retrieve optimal ordering:

S ← V
for i = k to 1 do

v ← table[S].right vtx
ordering[i] ← v
S ← S − {v}

end for

end

Fig. 2. A dynamic programming algorithm for reordering a sequence of nodes in order to mini-
mize total edge length

flipping”. Each exterior edge 〈i, j〉 can be drawn in two ways: either along the short arc
connecting i and j, or along the complementary long arc connecting i and j. Therefore,
we assume that all exterior edges are flipped so that no edge is passing over the length-1
arc connecting point n − 1 with point 0 on the circle. Note that this flipping will not
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introduce any crossing into a crossing-free layout. As a consequence, we can cut the
circle between point n − 1 and 0, where no edge passes, and solve an equivalent prob-
lem on a line starting at 0 and ending at n − 1. By solving the problem on a line, we
determine which edges should be extracted. Then, each of these edges will be drawn on
the exterior of the circle along the shorter of the two possible arcs.

The intuition behind the algorithm for solving the problem on the line is based on
likening each edge to parentheses, where the left endpoint of the edge opens the paren-
thesis, and the right endpoint closes it. Accordingly, a non-crossing set of edges is
equivalent to a valid sequence of nested parentheses. This induces the following re-
currence relation, where pij is the maximal weighted sum of edges that can be legally
routed between i and j:

pi,i+1 = wi,i+1 i = 0, . . . , n − 2
pi,j = wi,j + maxi<k<j{pik + pkj} i = 0, . . . , n − 3, i + 1 < j < n

(3)

Here, wij is the weight of 〈p−1(i), p−1(j)〉 ∈ E. Also, wij = 0 if 〈p−1(i), p−1(j)〉 /∈
E. The target value, p0,n−1, is computed in time O(n2) by dynamic programming.
This value indicates the maximal weighted sum of edges that can be extracted. The
edges themselves are easily recovered using an auxiliary data structure which enables
tracking the computation of p0,n−1.

The choice of edge weights (wij) allows flexibility in the optimization goal. Our de-
fault is to pick the weights in a way that ensures minimizing the number of edge cross-
ings. To this end, we set wij to the number of crossings involving 〈p−1(i), p−1(j)〉. In
this way, the maximized value p0,n−1 is exactly the number of saved edge crossings.
Note that there is no problem of double counting, since two extracted edges cannot
cross each other.

Our experience shows that exterior routing is a very effective technique, which can
remove a significant portion of the edge crossings. The effect is shown in Figure 1(d)
and studied in Section 5.

An additional pleasing outcome of exterior routing is that it tends to extract many
of the short edges, such as edges of length 2. These edges are often hard to read when
drawn as straight lines, as they are almost collinear with the adjacent length-1 edges.
Furthermore, collinearity issue of specific edges can be explicitly addressed by increas-
ing their weights, thus encouraging the algorithm to pick them for exterior routing.

4 Edge Bundling

After node places are computed and possibly some edges are extracted to be drawn
outside the circle, we can further improve the clarity of the drawing by using edge
bundling. The essence of this technique is a controlled deformation of the edges, such
that groups of edges share long common segments, thereby improving the utilization of
the drawing area by saving ink. Put differently, while the most economical way to draw
a single edge is by using a straight line, when displaying of group of edges, there might
be more efficient ways. For illustration, consider Figure 1(c,e).

The idea of bundling edges is related to the work on confluent drawing [3], where
edge crossings are eliminated by grouping edges in tracks. Newbery [16] applied bund-
ling to Sugiyama-style layouts to reduce clutter. Additionally, we were inspired by a
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recent work by Holten and van Wijk [11] that suggested bundling edges based on hi-
erarchical structure associated with the nodes. Our approach is based on a different
technique for bundling edges. In the following, we split the description of the technique
into two parts. First, we describe how to bundle together a given set of edges in a way
that maximizes area utilization and readability. Second, we describe the algorithm for
computing the sets of edges that will be bundled.

Consider the case where we are given a set of m lines (“edges”), Q = {e1 =
(v1, u1), e2 = (v2, u2), . . . , ek = (vm, um)}, where vi, ui ∈ R

2. In the accompa-
nying example, given in Figure 3, this set includes the 4 edges (A, E), (B, F ), (C, G)
and (D, H). Our first step is to divide the 2m endpoints of the edges into two equally
sized sets – S (“sources”) and T (“targets”) – such that for each (vi, ui) ∈ Q, either
vi ∈ S, ui ∈ T , or ui ∈ S, vi ∈ T . The intention here is to produce two compact sets,
minimizing Euclidean distances between nodes belonging to the same set. We achieve
this by a variant of the K-means algorithm, where we iteratively assign each point to
the set with the closer mean while continually updating the means. Accordingly, in the
given example we would choose S = {A, B, C, D}, T = {E, F, G, H}.
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Fig. 3. Non-crossing edges are bundled together thereby freeing up drawing area

The next step is to compute the centroids of S and T , denoted as S̄ and T̄ , respec-
tively. We denote by L the line containing S̄ and T̄ . The prospective bundling should
pass along this line. More specifically, we compute two points – M1 and M2 – on L
such that the bundling is carried out by replacing the original line segments by the fol-
lowing line segments: First, a line from each node of S to M1, the meeting point of the
“sources”. Then, a line from M1 to M2. Finally, a line from each node of T to M2, the
meeting point of the “targets”. See Step 3 in Figure 3. Since we want to reduce the use
of ink, the exact positions of M1 and M2 minimize the total line length:

(M1, M2) = argmin
M1,M2

∑

p∈S

‖M1 − p‖ + ‖M1 − M2‖ +
∑

p∈T

‖M2 − p‖

We solve this using a numerical method.
At this stage, we can infer if bundling the lines of Q is profitable, as the ink poten-

tially saved is exactly the difference:

∑

(vj ,uj)∈Q

‖vj − uj‖ −

⎛

⎝
∑

p∈S

‖M1 − p‖ + ‖M1 − M2‖ +
∑

p∈T

‖M2 − p‖

⎞

⎠

If this difference is positive, we know that we gain area by bundling.
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If bundling is Q worthwhile, we recommend depicting each line (vi, ui) using a
Bézier spline with M1 and M2 as control points. See Step 4 in Figure 3, and Fig-
ure 1(c,e). Our experience is that by incorporating Bézier splines, the drawing is
smoother and more readable. Also, the readability of edge bundles is improved when
each of them is uniquely colored, as can be seen in Figure 1(c,e).

A possible problem when bundling edges is that we might lose the information about
which “source” is connected to which “target”. For example, in the final picture of
Figure 3, it is unclear whether A is connected to E or maybe to F , G, or H . We adopt a
simple rule to address this problem: crossing edges can never be bundled together. The
edges exit the bundle at the same order they entered it, thus avoiding any ambiguity
when each source is connected to a unique target.

Now, we turn to the problem of identifying the sets of edges to be bundled. We
pick the sets of edges such that, by bundling them, we minimize the amount of ink
used. Our choice is to use a bottom-up, agglomerative approach. The process starts
with multiple sets, each of which contains a single edge. Then, sets are merged as long
as the corresponding bundling improves drawing area utilization; see pseudocode is
given in Figure 4.

Function BundlingGain (Q1, Q2 ⊂ E)
% Return the ink gain by bundling two edge sets (negative value means no gain)
% The function Ink(S) returns total ink needed for most efficient drawing of S ⊂ E

if EdgeCrossing(Q1,Q2) then
return -1

else
return Ink(Q1) + Ink(Q2) − Ink(Q1 ∪ Q2)

end if
end

Function AgglomerativeBundling (E = {e1, e2, . . . , em})
% Iteratively, grow edge bundles that improve drawing area utilization

sets ← {{e1}, {e2}, . . . , {em}}
while profitable bundling is possible do

% Pick two sets generating most gain:
(Q1, Q2) ← argmaxQ1,Q2∈sets BundlingGain(Q1, Q2)
sets ← sets ∪ {Q1 ∪ Q2} − {Q1, Q2}

end
return sets

end

Fig. 4. Agglomerative edge bundling algorithm

Concerning computational complexity, this algorithm is essentially a hierarchical
clustering algorithm performed on the edges, and therefore it has O(|E|2) time and
space complexity (counting “bundlingGain” calculations), according to Eppstein [5].
The practical situation, however, is better here. First, only a tiny fraction of edge pairs
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are mergeable since, for most pairs, there is no gain from bundling or the edges cross.
Therefore, O(|E|2) space is unnecessary in practice, and we use a sparse data structure
holding only profitable edge pairs. Moreover, when bundling two sets Q1 and Q2, we
would consider for potential bundling with Q1∪Q2 only sets that could be bundled with
Q1 or Q2. Finally, the O(|E|2) time complexity needed for evaluating the bundling
gain of all possible edge pairs can be significantly alleviated if we initially consider
only bundles involving two nearby edges; other bundles can be considered later by
transitivity. Here, two edges e1, e2 are considered “nearby” if one of e1’s endpoints is
sufficiently close to one of e2’s endpoints in the given circular ordering.

5 Experiments

We evaluated the performance of our methods on the known benchmark set of Rome
graphs [2], which contains 11,534 real-life, sparse graphs with 10–109 nodes. In addi-
tion, we tested our algorithms on a set of pseudo-random graphs characterized by their
average degrees; all these graphs contain 100 nodes.

As a reference, we picked the CIRCULAR algorithm by Six and Tollis [17]. This
algorithm finds a circular ordering in two steps. The first step creates an initial ordering
based on the largest outerplanar subgraph. Then, the second step iteratively reduces
the number of crossings by carefully moving nodes. We used the publicly available
implementation circo, which is part of the Graphviz package [8].

Another circular ordering algorithm is that of Baur and Brandes [1]. They also ex-
plicitly address edge crossings using a two phase process. The reported numbers of
crossings are better – by up to 20% – compared with the aforementioned CIRCULAR

Table 1. Comparing number of crossings across different circular ordering options, with and
without exterior edge routing

No exterior routing Exterior routing
Name #graphs C M MC C M MC
Rome, 10–19 nodes 1407 2.61 3.19 2.11 0.16 0.15 0.09
Rome, 20–29 nodes 839 7.18 8.01 5.51 0.83 0.68 0.46
Rome, 30–39 nodes 2037 21.42 22.17 16.42 4.29 3.33 2.48
Rome, 40–49 nodes 1802 41.49 41.06 31.68 11 8.77 6.66
Rome, 50–59 nodes 1045 66.46 65.16 51.16 20.66 16.67 12.8
Rome, 60–69 nodes 1172 92.76 91.3 72.51 32.4 26.93 21.33
Rome, 70–79 nodes 1008 123.47 120.94 96.23 47.43 39.46 31.04
Rome, 80–89 nodes 788 167.29 161.84 130.41 69.84 58.53 46.73
Rome, 90–99 nodes 1296 209.12 205.64 165.4 92.64 80.24 64.28
Rome, 100–109 nodes 140 230.1 229.52 183.83 103.45 92.74 72.97

Random, avg. deg. 3 100 383.23 357.68 302.29 195.22 166.18 139.12
Random, avg. deg. 4 100 1337.68 1186.50 1048.19 838.42 714.08 627.06
Random, avg. deg. 5 100 2709.35 2489.69 2230.24 1858.20 1678.77 1487.14
Random, avg. deg. 6 100 4437.51 4252.31 3843.23 3192.80 3043.01 2719.80
Random, avg. deg. 7 100 6979.42 6843.71 6210.86 5216.34 5126.31 4594.56
Random, avg. deg. 8 100 9931.27 9808.96 8992.90 7646.76 7545.26 6865.73
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Table 2. Comparing total used ink (total length of edges) across different circular ordering op-
tions, with and without edge bundling

No edge bundling Edge bundling
Name #graphs C M MC C M MC
Rome, 10–19 nodes 1407 12.94 12.34 12.33 10.33 10.11 10.11
Rome, 20–29 nodes 839 17.16 15.49 15.50 13.23 12.52 12.54
Rome, 30–39 nodes 2037 23.12 20.38 20.34 17.46 16.26 16.25
Rome, 40–49 nodes 1802 29.08 25.26 25.19 22.26 19.73 19.68
Rome, 50–59 nodes 1045 34.51 29.59 29.34 24.59 22.71 22.57
Rome, 60–69 nodes 1172 39.04 33.53 33.19 27.39 25.38 25.10
Rome, 70–79 nodes 1008 43.57 37.28 36.58 30.30 27.98 27.56
Rome, 80–89 nodes 788 49.39 42.16 41.33 33.62 31.02 30.58
Rome, 90–99 nodes 1296 53.99 46.21 45.14 36.31 33.63 33.03
Rome, 100–109 nodes 140 56.19 48.68 47.11 37.51 35.08 34.31

Random, avg. deg. 3 100 72.44 62.72 61.99 46.07 43.56 42.59
Random, avg. deg. 4 100 124.08 109.29 107.96 72.04 68.20 66.77
Random, avg. deg. 5 100 171.85 156.19 153.97 93.73 90.08 88.52
Random, avg. deg. 6 100 220.81 206.14 202.87 114.39 111.47 109.45
Random, avg. deg. 7 100 273.35 260.37 254.79 207.10 198.32 194.59
Random, avg. deg. 8 100 325.10 312.25 306.18 243.18 234.58 230.81

algorithm. We did not have an implementation of this algorithm, so no direct compari-
son was performed.

The quality of the drawings was assessed using two aesthetic criteria: number of
crossings and total used ink.1 The results are given in Tables 1 and 2.

The evaluated algorithms are coded in the tables as follows: C=CIRCULAR; M =
Median iteration followed by fine-tuning, as described in Section 2; MC = Median
iteration followed by fine-tuning and then by the second step of CIRCULAR.

We begin with observations about the circular orderings. In terms of crossings mini-
mization, there is no marked difference between our method (M) and CIRCULAR (C)
for the Rome graphs, while M could produce fewer edge crossings than C for the ran-
dom graphs. As for the edge lengths (Table 2), M consistently achieves better results,
which is not surprising as CIRCULAR does not address edge lengths but crossings.
Since M does not directly deal with edge crossings, we tried to make it more “crossings
aware”, by integrating it with the second step of CIRCULAR, obtaining the method
coded by MC. As the table shows, MC is consistently the best performer in terms of
crossing minimization, outperforming both C and M.

So far, we have compared plain circular orderings. Interestingly, all differences, in
terms of number of crossings, are dwarfed by the effect of exterior routing (Section 3).
As can be seen in the right columns of Table 1, exterior routing is capable of eliminating
a significant portion of the edge crossings. Also, when exterior routing is activated, our
method (M) produces fewer crossings than CIRCULAR (C) even for the Rome graphs,
whereas the combined method – MC – is still superior. Apparently, our method can

1 We prefer the term “total used ink” over the more common “total edge length”, since when
edge bundling is activated they are no longer equivalent.
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better benefit from exterior routing because, by producing shorter edges, it allows more
non-crossing edges to be routed externally. In fact, for the Rome graphs, M allows an
external routing of 23% of the edges (on average, surprisingly uniform for all graph
sizes), while C allows external routing of 18% of the edges and MC routes 19% of the
edges externally.

We see that M has an advantage in reducing the total used ink. When allowing edge
bundling (Section 4), a further significant improvement in drawing area utilization is
achieved, as shown in the right columns of Table 2. Our experience shows that this
ink saving is helpful in conveying a clearer layout. Notice that a further reduction of
drawing density could be obtained by exterior routing, but it was not considered in
Table 2, as our intention is to isolate the effect of circular ordering and bundling on ink
usage.

Finally, as to running time, the average measured running time on the 100-node
graphs is around 1 second on a Pentium 4 machine. This is comparable with the run-
ning time of the CIRCULAR algorithm. Almost all running time is dedicated to the
computation of the circular ordering. The time needed for computing the edge bundling
is 50–200ms (depending on the number of edges), whereas the time for computing the
external edges is insignificant.

6 Summary

Circular layouts are a rather restrictive layout scheme, offering a simple and highly
regularized picture of the graph where nodes cannot be occluded. The limiting nature
of circular layouts makes it very important to capitalize on all available degrees of
freedom. In this work, we explored new ways for positioning nodes and routing edges in
order to maximize the readability of the layouts. In particular, the density of the drawing
is alleviated by shortening edge lengths, moving part of the edges to the exterior of the
circle, and bundling some edges together. In addition, shortening edges and exterior
routing significantly reduce the number of edge crossings.
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Abstract. Node-link diagrams are widely used in information visualization to
show relationships among data. However, when the size of data becomes very
large, node-link diagrams will become cluttered and visually confusing for users.
In this paper, we propose a novel controllable edge clustering method based
on Delaunay triangulation to reduce visual clutter for node-link diagrams. Our
method uses curves instead of straight lines to represent links and these curves can
be grouped together according to their relative positions and directions. We fur-
ther introduce progressive edge clustering to achieve continuous level-of-details
for large networks.

1 Introduction

Many visualization problems can be modeled using node-link diagrams or networks,
where nodes represent data elements and links their relationships. For example, hyper-
links among Internet webpages, citations in scientific papers, traffics between telecom-
munication switches, and airline routes can all be represented by node-link diagrams.
As the amount of data from real world keeps increasing, visual clutter becomes a very
serious problem for large networks and greatly affects the effectiveness of networks for
conveying information.

Visual clutter is usually caused by an excessive number of nodes and links. Visual
clutter for edges caused by too many edge crossings is also called edge congestion [1]
[2]. Too many crossings of links will obscure some nodes and links in the graph. Various
filtering and clustering methods [3] can be used to effectively reduce the number of
nodes and thus the number of links. However, simply reducing the number of nodes
is not a practical solution for some applications. For example, in typical airline routes,
removing a node will cause the lost of route information for an airport. Clustering of
nodes may not be a good solution either. Users may have problems to relate the links
coming in or out of virtual clustered nodes to real links.

Edge congestion is a challenging problem and many approaches have been proposed.
Edge crossings can be reduced by rearranging the nodes and edges. Various force-based
or energy-based node layout algorithms for graphs [4] can generate good layouts for
small-size graphs according to some aesthetic criteria including minimum edge cross-
ings. However, for large graphs, edge crossings usually cannot be reduced to a satis-
fying level. Some researchers try to totally avoid edge crossings by making the graph
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planar [5]. However, large graphs usually cannot be drawn in a planar way. For some ap-
plications such as communication and transportation networks, the semantic meanings
of the node positions limit the room of adjustment for nodes.

Edge congestion can be alleviated by merging edges and drawing edges as curves.
Phan et al. [6] proposed a flow map layout to reduce visual clutter by merging edges.
The flow map layout is generated by hierarchical clustering. The node positions are dis-
torted but relative positions are maintained in their algorithm. Their method is mainly
designed for single-source node-link diagrams although the authors mentioned that their
methods can be extended for multiple-source networks by overlapping multiple flow
maps. Carpendale and Rong described an interesting technique to examine edge con-
gestion around node areas by adjusting the edge position if the edge passing through the
node [1]. They used an edge-displacement algorithm to curve away all edges from the
region of interest. Wong et al. [2] introduced EdgeLens to manage edge congestion in
graphs. They pointed out that the relation between vertices might be displayed ambigu-
ously if their edges overlap. Their solution is to introduce a lens which displaces edges
in a local area with dense edge overlapping and reveals hidden information in that area
and clarifies graph structures. While the EdgeLens is quite effective to make the edges
in a small area more discernable, the visual clutter of the overall graphs is not reduced
and the large-scale patterns cannot be effectively revealed by this method. Wong and
Carpendale further introduced Edge Plucking [7], an interesting interactive technique
which allows users to temporarily pluck edges apart to clarify node-edge relationships.

In this paper, we describe a controllable and progressive edge clustering method to
address edge congestion for large network visualization. Our research follows the same
direction of some previous work [1, 6]. Our method first connects the nodes by De-
launay triangulation and then sets some control points on the Delaunay edges of these
triangles. After that, we convert all links into a series of paths consisting of these control
points. By adjusting the number and positions of these control points, different levels of
edge clustering can be achieved. By setting a minimum distance between these control
points and the original nodes, the ambiguity cases in the traditional node-link diagrams
can be avoided. By grouping links together, the high level linkage patterns related to
the whole node-link diagram can be revealed. Compared with node-clustering methods,
our method can reveal the linkage information for real nodes instead of clustered virtual
nodes. Compared with force-based or energy-based approaches, our method is geome-
try based and all computations (e.g., Delaunay triangulation, ray/triangle intersection,
and K-Means clustering) can be done very efficiently and can be accelerated by graph-
ics hardware. Our method is easy to implement and the generated layouts are visually
appealing. In addition, our approach gives users great flexibility for layout generation.
Users can easily and dynamically change the size of “protected” areas around nodes
and the levels of clustering for links. We further introduce progressive edge clustering
to achieve continuous level-of-details for large networks.

2 Controllable Edge Clustering

In this section, we introduce our method for edge clustering given a set of nodes
and links. We assume that the positions of nodes have been computed by some other
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methods such as force-based models [4] and a relatively good initial layout has been
obtained. We do not further distort node positions. Therefore, their original layout is
preserved. Actually, for certain applications, node positions encode geographic infor-
mation and any adjustment of node positions may cause confusion for users.

(a) (b) (c)

(d) (e) (f)

Three Control
Points

(g)

One Control
Point

(h)

Fig. 1. Framework of our method: (a) Original node-link diagram; (b) Delaunay triangulation of
the original nodes; (c) The intersection points of all links and Delaunay edges indicated by the
red dots; (d) The control points computed by clustering the intersection points; (e) All links are
forced to pass through the control points; (f) Protected areas for nodes; (g) Three control points
on a Delaunay edge; (h) One control point on a Delaunay edge

Figure 1 shows the framework of our method. Figure 1 (a) shows the original node-
link diagram. We first compute a Delaunay triangulation of the points given by the
positions of the vertices (See Fig. 1 (b)). Then, for each link, we compute the intersec-
tion points of this link with the Delaunay edges (See Fig. 1 (c)). For each Delaunay
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edge, we cache all the links passing through this Delaunay edge and their intersection
points with this edge. Then we assign one or more control points on each Delaunay
edge and use these control points to cluster links (See Fig. 1 (d)). The control points
can be clustered using the K-Means algorithm. Later, the number and positions of these
control points can be adjusted by users to achieve different levels of clustering. After
that, we force all the links to pass through these control points and compute a path con-
sisting of these control points for each link (See Fig. 1 (e)). Some overlapping paths
will be then grouped together by the system or by users. In this paper, all the paths are
drawn as Nurbs curves.

By forcing all links to pass through control points on the Delaunay edges, we can
easily solve the ambiguity cases for node-link diagrams. We can set up a “protected
area” for each node by forcing the control points to be at lease certain distance away
from the node. If only one control point is used on each Delaunay edge, the protected
area for each node can be as large as half of the minimum distance from this node to its
neighboring nodes. If two or more control points are used, then we can easily control
the size of the protected areas for nodes. In practice, we can compute this size based on
the importance of the nodes if any criterion for importance is given by users. The size
of protected areas can also be adjusted by users during the visualization process. Figure
1f shows the protected areas for two nodes.

Because all links have to pass through the control points on Delaunay edges, then
some link segments will be automatically clustered and some flow-map-style effect can
be achieved. In practice, we can start from the coarse level and gradually refine edge
clustering. First, we assign only one control point on each Delaunay edge and then
we compute the shortest paths consisting of these control points for all links. Then we
examine all incoming and outgoing links for each node. For all paths passing through
the same set of control points, we group that parts of links together. After finding all
the overlapping path segments for all links, we put more control points on the Delaunay
edges so the directions of links will be closer to their original directions.

The level of clustering can be controlled by users. We provide an interface which
allows users to dynamically change these parameters so the node-link diagrams can
be examined at different level-of-details. There are two major parameters users can
adjust: the number of control points on Delaunay edges and their positions. We use the
following principles to position control points: For short or unimportant Delaunay edges
(i.e., edges with only a few or even zero link passing through), there are fewer control
points; The positions of control points will be close to the real intersection points of
the links and the Delaunay edges. Figure 1 (g) and (h) show different levels of edge
clustering by adjusting the number and positions of control points on a Delaunay edge.
From the figure we can see that our layout is visually appealing and our method gives
users great flexibility to control the final layout.

3 Progressive Edge Clustering

If there are too many nodes and links, even clustering all links on all Delaunay edges
cannot solve the visual clutter problem. Inspired by progressive mesh simplification [8],
we propose progress edge clustering by collapsing Delaunay edges. As illustrated in
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Figure 2, if we collapse one Delaunay edge (or two nodes), then the total number of
Delaunay edges will be reduced and the links will become smoother and more space
will be available for positioning nodes and links. Progressive edge clustering is based
on collapsing Delaunay edges one by one so that at each step only one Delaunay edge
disappears. There are two major issues for progressive edge clustering: the order of
collapsing for Delaunay edges and the new position of the node(s) after collapsing one
Delaunay edge. We use the following criteria to determine the order in which vertices
collapse: The length of the Delaunay edges; The number of links passing through the
Delaunay edges; After the collapsing, the maximum distance of the newly positioned
paths to the original links and the curvatures of these paths. The short Delaunay edges
with less links passing through will be clustered first.

Collapse

(a)

Collapse

(b) (c)

Fig. 2. Progressive edge clustering: (a) Traditional node-link diagram; (b) Collapse one Delaunay
edge; (c) Collapse another Delaunay edge

For the new position of the collapsed nodes, we consider two choices. First, the
nodes are still at their original positions. Only the “road” becomes unavailable so all
links passing through this Delaunay edge have to go through the neighboring control
points. Second, these two nodes overlap and share one position. For example, these
two nodes can assume the position of one of the original nodes or are moved into a new
position such as the middle point of the Delaunay edge. We provide an interface to allow
users to decide the new position(s) of the nodes associated with the collapsed Delaunay
edge. Please notice that our focus is not to cluster nodes, as there are many excellent
papers on this topic. Therefore, these nodes only overlap in 2D space and links are still
associated to their original nodes instead of one abstract virtual node. We want to group
more links together by progressive edge collapsing so that different level-of-details for
large networks can be achieved and the visual clutter problem can be alleviated. Figure
2 illustrates progressive edge clustering.



404 H. Qu, H. Zhou, and Y. Wu

4 Conclusions and Future Work

In this paper, we proposed a geometry-based edge clustering method for traditional
node-link diagrams. Our method is easy to implement and can generate visually ap-
pealing layouts for large networks in real time. By setting control points on Delaunay
edges to control the flow of links we can easily obtain different levels of edge cluster-
ing. The classic ambiguity cases for node-link diagrams can be easily solved by setting
a protected area for each node. We also proposed progressive edge clustering so that
continuous level-of-details can be generated for large graphs.

In the future, we plan to further analyze the intersection points cached on Delau-
nay edges and automatically generate some road-map style layout for large graphs. Our
method can be further improved if combined with some node layout adjustment algo-
rithm to make edge merging more effective. We plan to use polylines with very small
round corners to display clustered links. More sophisticated progressive edge clustering
techniques which take the graph’s topology into consideration will also be developed.
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Abstract. Confluent drawing is a technique that allows some non-planar
graphs to be visualized in a planar way. This approach merges edges to-
gether, drawing groups of them as single tracks, similar to train tracks. In
the general case, producing confluent drawings automatically has proven
quite difficult. We introduce the biclique edge cover graph that repre-
sents a graph G as an interconnected set of cliques and bicliques. We
do this in such a way as to permit a straightforward transformation to
a confluent drawing of G. Our result is a new sufficient condition for
confluent planarity and an additional algorithmic approach for generat-
ing confluent drawings. We give some experimental results gauging the
performance of existing confluent drawing heuristics.

1 Introduction

In 2003, Dickerson, Eppstein, Goodrich, and Meng introduced confluent drawing,
and with it a heuristic able to generate confluent drawings for some graphs [1].
These drawings present a novel way of visualizing non-planar graphs in a planar
way, however, producing a planar confluent drawing for an arbitrary graph has
proven to be quite difficult. Devine speculates that merely deciding whether
such a drawing exists is NP-hard for an arbitrary graph [1]. Hui, Schaefer, and
Stefankovic also speculate that this problem is NP-complete [2]. In this paper we
explore alternate methods of automatically generating confluent drawings. We
experimentally evaluate Dickerson et al.’s confluent drawing heuristic, as well as
our own heuristics based on the biclique edge cover graph.

Francis Newbery proposed a method of merging together edges called edge
concentration in a 1989 paper [3]. Dickerson et al. first introduced confluent
drawings in [3]; they have been subsequently studied in [2,4,1,5].

This paper is organized as follows. Section 2 provides a brief background, Sect.
3 defines the biclique edge cover graph, and Sect. 4 gives a method to transform
such a graph into a confluent drawing. Finally, Sect. 5 covers confluent drawing
algorithm implementations and their experimental performance.

2 Background

We define the relevant concepts in confluent drawing: A curve is a continuous
map into the plane. A curve is smooth if it is continuously differentiable along
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its length (there are no sharp bends) [6,2]. A drawing D is a confluent drawing
of an undirected graph G if:

– There is a one to one mapping between vertices of G and D.
– There exists a smooth curve between vertices u and w in D if and only if

there exists an edge (u, w) in E.

Consistent with [4] and [1], we have omitted the planarity constraint found
in Dickerson et al.’s definition [6]. We say that a confluent drawing is planar if no
smooth curve(s) intersect at a single point (they may share overlapping portions).
A confluent drawing is non-planar if any curve(s) intersect at a single point.

Lastly, we define a switch, and traffic circle, two basic confluent elements. A
switch is the point where curves converge. A switch s is defined to have degree
three [2,1], but we generalize it to have arbitrary degree. A traffic circle is a
particular confluent representation of a clique such that all smooth curves merge
with a central circular track. Figure 1 depicts a switch (left) and a traffic circle
(right).

s

Fig. 1. A switch of degree four (left), and a confluent drawing of K5 called a traffic
circle (right)

3 Biclique Edge Cover Graph

Let G = (V, E) be a graph. A clique c is a subset of V such that the subgraph
induced by c is a complete graph. We say that edge e is in clique c if it is in the
subgraph induced by the vertices in c.

A biclique (bi, bj) is an unordered pair of disjoint subsets bi and bj of V , such
that for all u ∈ bi and w ∈ bj , (u, w) ∈ E. We call each subset bi and bj a b-part.
We say that edge e is in biclique (bi, bj) if it is incident to a vertex in each b-part.

Let C be a set of cliques, and let B be a set of bicliques such that each edge
of G is in a clique of C or in a biclique of B. We say that such sets B and C
together edge cover G. Given a set of bicliques B, Bp is the set of b-parts such
that for each (bi, bj) ∈ B, bi, bj ∈ Bp.

Let G be a graph. Let B be a set of bicliques and let C = {c0, c1, . . . , cm−1}
be a set of cliques that together edge cover G. Let b-parts b0, b1, . . . , bl−1 denote
the elements of Bp. Let π0, π1, . . . , π2l+m−1 denote the elements in the power set
of Bp ∪ C. We define the biclique edge cover graph Gb = (Vb, Eb) as follows:
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– Vertex vb = πi is in Vb if and only if there exists a vertex v ∈ V such that v
is in every b-part and clique in πi and no others.

– Edge eb = (ub, wb) is in Eb if and only if ub �= wb, and ub ∩ wb ∩ C �= ∅, or
there exists a bi ∈ ub and bj ∈ wb such that (bi, bj) ∈ B.

We say that v and vb are associated if a vertex v ∈ V is in every b-part
and clique in vb = πj ∈ Vb and no others. Hereafter, u, v, w and v0, v1, . . . , vn−1
denote the elements of V . Similarly, ub, vb, wb and vb0 , vb1 , . . . , vbn−1 denote the
elements of Vb.

3.1 Example

The following example illustrates the derivation of a biclique edge cover graph
Gb from graph G (Fig. 2). Given a graph G, first determine a set of bicliques
B, and cliques C. Note that any sets will suffice, provided that B and C to-
gether edge cover G. We choose B = {({v0, v1}, {v2, v3, v4})} and C = {c0} =
{v2, v3, v4, v5, v6}. Thus Bp = {b0, b1} = {{v0, v1}, {v2, v3, v4}}.

v3

v2

v5

v6

v0

v1

v4

Fig. 2. Graph G

We construct the vertex set Vb: The vertex v0 ∈ b0, v0 /∈ b1 ∩ c0. By our
definition, v0 establishes {b0} ∈ Vb, and v0 and {b0} are associated. Vertex v1
also establishes {b0} ∈ Vb. Vertices v2, v3, v4 each establish {b1, c0} ∈ Vb. Vertices
v5 and v6 establish {c0} ∈ Vb. Thus Vb = {vb0 , vb1 , vb2} = {{b0}, {b1, c0}, {c0}}.
The edge set Eb = {(vb1 , vb2), (vb0 , vb1)}. Figure 3 depicts biclique edge cover
graph Gb. We use a solid vertex to depict any vb ∩C �= ∅, and an unfilled vertex
to depict any vb ∩ C = ∅.

vb0 vb1 vb2

Fig. 3. Derived biclique edge cover graph Gb
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Lemma 1. Let G be a graph. Let B be a set of bicliques and let C be a set of
cliques that together edge cover G. Let Gb be the resulting biclique edge cover
graph. The following properties hold:

1. The magnitude |Vb| ≤ |V |.
2. Vertices v0, v1, . . . , vr−1 ∈ V associated with a vertex vb ∈ Vb define an

independent set in G where vb ∩C = ∅; otherwise, they define a clique in G.

Proof. Property (1) follows from our definition of a biclique edge cover graph:
Each vertex v ∈ V may only be associated with a single vertex vb ∈ Vb. Each
vertex vb ∈ Vb is associated with at least one vertex v ∈ V . It follows that
|Vb| ≤ |V |.

We prove Property (2) by contradiction. Let u and w be adjacent vertices in
V , such that u and w are associated with vb ∈ Vb and vb ∩ C = ∅. By definition,
edge e = (u, w) is in a biclique in B or a clique in C. If e is in a clique c ∈ C, then
c must be an element of vb. This is contrary to vb ∩ C = ∅. If e is in a biclique
(bi, bj) ∈ B, it follows that u must be an element of bi and w an element of bj .
Recall that b-parts bi and bj are disjoint. Vertices u and w cannot therefore both
be associated with vb. Where vb ∩ C �= ∅, Property (2) follows directly from the
definition. �	

4 Generating Confluent Drawings

In this section we show how to construct a drawing D of G from a drawing of
its biclique edge cover graph Gb. Let G be a graph. Let B be a set of bicliques
and let C be a set of cliques that together edge cover G. Let Gb be the resulting
biclique edge cover graph. Let Db be a drawing of Gb. Note that drawing Db

could be a traditional drawing or a confluent drawing of Gb. Replace each vertex
vbi ∈ Db by vertices of G as follows:

We will compose a confluent structure. Begin with a single circular track. Join
each vertex in V associated with vbi to the circular track:

– If vbi ∩C �= ∅: Join each vertex in V associated with vbi to the circular track
by means of two smooth curves such that one curve may be followed onto,
and around the adjoined circular track in the clockwise direction, and the
other in the counterclockwise direction. We call this construction a traffic
circle.

– If vbi ∩C = ∅: Join each vertex in V associated with vbi to the circular track
by means of a smooth curve such that the curve may be followed onto, and
around the adjoined circular track in the counterclockwise direction. We call
this construction a counterclockwise traffic circle.

Remove vertex vbi from drawing Db, and put the composed confluent structure
in its place. Merge all (confluent) edges previously incident to vbi with the cir-
cular track such that each edge may be followed onto, and around the adjoined
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circular track in the clockwise direction. Figure 4 illustrates our replacement
method for a vertex vbi ∈ Db with two incident edges, and three associated
vertices in V .

(c)

u

vw

u

vw

(b)(a)

vbi

Fig. 4. (a) Vertex vbi in drawing Db (b) Replacement of vbi in drawing D where
vbi ∩ C �= ∅ (c) Replacement of vbi in drawing D where vbi ∩ C = ∅

4.1 Example

We continue with the example of Sect. 3.1. We generate a confluent drawing of
G from a drawing of Gb (Fig. 3). Each vertex of Gb is replaced by all associated
vertices of G. The result is drawing D, Fig. 5.

v1

v0

v3 v4 v6

v5
v2

Fig. 5. Confluent drawing D generated from a drawing of Gb

Lemma 2. Let D be a drawing generated from a drawing of Gb by the method
of this section. Drawing D is a confluent drawing of G.

Proof. We first show that a one to one mapping exists between vertices of G and
D. We then show that there exists a smooth curve between vertices u and w in
D if and only if there exists an edge (u, w) in E. We present this argument in
two cases.

Our method replaces each vertex vb ∈ Vb by all associated vertices in V .
Because each vertex in V is associated with a single vertex in Vb, the vertex set
of D is precisely that of G.

Case I. We will show that there exists a smooth curve between vertices u and
w in D if there exists an edge (u, w) in E. Vertices u and w are either associated
with the same vertex, or two different vertices in Vb. If they are associated with
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the same vertex vbi ∈ Vb and vbi ∩C �= ∅, then our method sees that u and w are
in the same constructed traffic circle. A smooth curve therefore exists between
u and w in D. Otherwise (if vbi ∩ C = ∅) Lemma 1 precludes (u, w) from being
an edge in E.

We now show that a smooth curve exists between u and w if they are associ-
ated with different vertices in Vb: u with ub and w with wb. By definition, edge
(u, w) is in a biclique in B or a clique in C. If (u, w) is in a clique c ∈ C, then
clique c is an element of both ub and wb. Vertices ub, wb are therefore adjacent. If
(u, w) is in a biclique (bi, bj) ∈ B, then bi is an element of ub and bj an element of
wb. Vertices ub, wb are again adjacent. Our method ensures that the (confluent)
edge between ub and wb is merged with the circular track that replaces ub and
the circular track that replaces wb. This merged edge completes a smooth curve
between u and w in D.

Case II. We will show that there exists an edge (u, w) in E if there exists
a smooth curve between vertices u and w in D. Our method generates smooth
curves in D in two ways. First, constructed traffic circles consist of smooth curves
between vertices of V . Two vertices u and w ∈ V are in the same traffic circle
only if they are associated with the same vertex in Vb. It follows from Lemma 1
that edge (u, w) ∈ E.

Additionally, smooth curves connect traffic circles/circular tracks that have
replaced adjacent vertices in Vb. Because (confluent) edges are always merged
with these confluent structures in the same direction, a smooth curve never
connects two structures that have replaced non-adjacent vertices in Vb. Smooth
curves in D therefore connect vertices u and w that are associated with adjacent
vertices in Vb. If vertices ub, wb ∈ Vb are adjacent, then there exists a clique
c ∈ ub ∩ wb or there exist b-parts bi ∈ ub and bj ∈ wb such that (bi, bj) ∈ B. If
c ∈ ub ∩wb, then any vertex associated with either ub or wb is in c. Otherwise, if
bi ∈ ub and bj ∈ wb, then u is an element of bi and w an element of bj. In either
case, it follows that edge (u, w) ∈ E. �	

4.2 Planarity

Lemma 3. Let D be a drawing generated from a drawing of Gb by the method of
this section. If the drawing of Gb is confluent planar then D is confluent planar.

Proof. Our method replaces vertices in the drawing of Gb by confluent planar
structures to produce D. No edge crossings exist in the drawing of Gb, and none
are introduced by our replacement scheme. Drawing D is therefore a confluent
planar drawing of G. �	
Corollary 1. If the drawing of Gb is planar then D is confluent planar.

Proof. A planar graph satisfies the definition of confluent planarity. �	

4.3 Prickly Clique

A prickly clique consists of a clique and one additional vertex adjacent to each
vertex in the clique. More formally, a prickly clique is a graph G on 2n vertices
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un−1

w0

w1

w5

u3

u1

u0

u4

w4

w3

u5

w2

u2u6w6

wn−1

Fig. 6. Prickly clique G for n = 8

with n ≥ 2 such that V = {u0, u1, . . . un−1, w0, w1, . . . , wn−1}, and E = E0 ∪ E1
where (ui, wi) ∈ E0 for 0 ≤ i < n and (ui, uj) ∈ E1 for 0 ≤ i < j < n. The
prickly clique for n ≥ 5 is an example of a confluent planar graph that does not
have a resulting planar biclique edge cover graph.

Lemma 4. Let G be a prickly clique. Let B be a set of bicliques and let C be
a set of cliques that together edge cover G. Let Gb be the resulting biclique edge
cover graph. Graph G is isomorphic to Gb.

Proof. We construct the vertex set Vb. Each edge (ui, wi) ∈ E0 is either a clique
in C or a biclique in B, while each edge (ui, uj) ∈ E1 is in at least one biclique
in b or clique in C. Thus, each vertex wi ∈ G establishes a vertex wbi ∈ Vb,
while each vertex ui ∈ G establishes a vertex ubi ∈ Vb. This defines a bijection
ui → ubi , wi → wbi , from V to Vb.

We construct the edge set Eb. Edge (ubi , wbi) ∈ Eb for 0 ≤ i < n (if {ui, wi} ∈
C then ubi ∩ wbi ∩ {ui, wi} �= ∅; otherwise if {{ui}, {wi}} ∈ B then {ui} ∈ ubi

and {wi} ∈ wbi). Moreover, edge (ubi , ubj ) ∈ Eb for 0 ≤ i < j < n (if (ui, uj)
is in a clique c ∈ C then ubi ∩ ubj ∩ c �= ∅; otherwise if (ui, uj) is in a biclique
b = (bi, bj) ∈ B then bi ∈ ubi and bj ∈ ubj ). �	

5 Implementation and Results

In this section we examine two algorithmic approaches for generating confluent
drawings. We will examine the experimental performance of each implemented
algorithm, and conclude with some sample outputs.
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5.1 ConfluentDickerson(G)

Algorithm 1 is based on the only previously published confluent drawing al-
gorithm for undirected graphs. Presented by Matthew Dickerson at the 11th
International Symposium on Graph Drawing, the heuristic iteratively identifies
and replaces large cliques and bicliques (complete and bipartite subgraphs) with
equivalent confluent structures [6].

Our implementation uses an O(nmμ) solution (where μ is the number of max-
imal independent sets of a graph) to the maximal independent sets problem by
Tsukiyama et al. [7] to enumerate all maximal cliques and bicliques. This solu-
tion yields all maximal cliques when applied to a graph’s complement, and all
maximal bicliques when applied to its double cover [8]. Note that Dickerson et
al. [6] specified an algorithm by Chiba and Nishizeki [9] for identifying cliques
and a second algorithm by Eppstein [10] for identifying bicliques.

Algorithm 1: ConfluentDickerson(G)
Input: A connected graph G = (V, E)
Output: A confluent drawing of G

done ← false;
while !done and G is non-planar do

C ← all maximal cliques of G;
foreach clique c ∈ C in order of decreasing size do

if there exists an edge in E between each pair of vertices in c then
Remove all edges from E between pairs of vertices in c;
Add a vertex u to V ; denote it as a traffic circle; Add an edge to
E between u and each vertex in c;
done ← false;

B ← all maximal bicliques of G;
foreach biclique (bi, bj) ∈ B in order of decreasing size do

if there exists an edge in E between each pair of vertices (v, w),
where v ∈ bi, w ∈ bj then

Remove each edge (v, w) from E where v ∈ bi, w ∈ bj ;
Add vertices v and w to V ; denote each as a switch;
Add an edge (v, w) to E;
Add an edge to E between v and each vertex in bi;
Add an edge to E between w and each vertex in bj ;
done ← false;

Draw G;

5.2 ConfluentHirsch(G)

Algorithm 2 is an implementation of the algorithm presented in Secs. 3 and
4. The algorithm first randomly computes a set of cliques and bicliques that
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together edge cover G. It then determines the vertex set of the biclique edge
cover graph. Each of these vertices is inserted into G, joined to all associated
vertices, and denoted as a traffic circle or counterclockwise traffic circle.

RecursiveHirsch(G, i). Beginning with G, this variation of ConfluentHirsch
(G) iteratively computes i successive biclique edge cover graphs. A confluent
drawing of G is recursively constructed using the algorithm in Sec 4. See [11] for
details.

DiscardHirsch(G). This second variation discards cliques |c| ≤ 3 from C and
bicliques |bi|, |bj | ≤ 1 from B. Intuitively, including these degenerate cases can
only hamper the performance of our algorithm. Any vertices that are no longer
in a clique or biclique after the discard are effectively ignored by the algorithm.

Algorithm 2: ConfluentHirsch(G)
Input: A connected graph G = (V, E)
Output: A confluent drawing of G

Let V be an array of vertices of G and let Vb be an array of collections;
Let C be a collection of cliques, and let B be a collection of bicliques;
Let Bp be a collection b-parts such that for all (bi, bj) ∈ B, bi, bj ∈ Bp;
*A collection is a single object that contains multiple elements.

foreach edge e ∈ E do
if edge e is not yet covered by a clique ∈ C or a biclique ∈ B then

Randomly expand e into a maximal clique or biclique and
accordingly add it to C or B;

Remove all edges from E;
foreach set s ∈ C ∪ Bp do

foreach vertex v ∈ s do
Add set s to Vb[V.indexOf(v)];

foreach unique collection ub ∈ Vb do
if ub ∩ C �= ∅ then

Add a vertex ub to V ; denote it as a traffic circle;
else if ub ∩ C = ∅ then

Add a vertex ub to V ; denote it as counterclockwise traffic circle;
Add an edge to E between vertex ub and each vertex v where
Vb[V.indexOf(v)] = ub;

Add an edge to E between any two vertices u and w where u ∩ w ∩ C �= ∅;
Add an edge to E between any two vertices u and w where u ∈ bi and
w ∈ bj such that (bi, bj) ∈ B;
Draw G;
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5.3 Experimental Results

We have applied our drawing algorithm implementations to two sets of graphs in
order to measure their performance1. Table 1 summarizes results for the Rome
graphs [12], and Table 2 for the ATT graphs (http://www.graphdrawing.org).

Because ConfluentHirsch(G) and DiscardHirsch(G) are non-deterministic,
they were allowed multiple attempts per input to produce a confluent planar out-
put. For a given case, a single confluent planar output was recorded if at least one
attempt produced a confluent planar output. Note that RecursiveHirsch(G, i) is
also non-deterministic, however, multiple recursive iterations ensure that its out-
put is not determined by one random set of cliques and bicliques.

Table 1. Performance of confluent drawing algorithms on the Rome set

Algorithm applied Non-planar
inputs

Attempts
per input

Confluent
planar
outputs

Confluent planar out-
puts not found by
ConfluentDickerson(G)

ConfluentDickerson(G) 8253 1 210 -
ConfluentHirsch(G) 8253 10 9 1
ConfluentHirsch(G) 8253 100 10 1
RecursiveHirsch(G,10) 8253 1 10 1
RecursiveHirsch(G,100) 8253 1 10 1
DiscardHirsch(G) 8253 10 115 22

Table 2. Performance of confluent drawing algorithms on the ATT set

Algorithm applied Non-planar
inputs

Attempts
per input

Confluent
planar
outputs

Confluent planar out-
puts not found by
ConfluentDickerson(G)

ConfluentDickerson(G) 423 1 166 -
ConfluentHirsch(G) 423 10 48 0
ConfluentHirsch(G) 423 100 53 0
RecursiveHirsch(G,10) 423 1 57 1
RecursiveHirsch(G,100) 423 1 61 2
DiscardHirsch(G) 423 10 129 5

Figures 7 and 8 were output by our implementation.2 Switches are denoted
S, with an arrowhead marking the incident edge along which the other incident
edges converge. Traffic circles are denoted C:

1 Planarity was determined using the Lempel-Even-Cederbaum planarity test
implementation included as part of GTL, the Graph Template Library
(http://www. infosun.fmi.uni-passau.de/GTL).

2 Our implementation uses the Graphviz [13] package to produce layouts and drawings,
as well as the Grappa [14] package for working with graphs in Java.
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(a) DiscardHirsch(G) (b) ConfluentDickerson(G)
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Fig. 7. Confluent drawings of an example given by Dickerson et al. in [6]. Spring
embedder layout computed using Graphviz [13].
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Fig. 8. The smallest known confluent non-planar graph is the Peterson graph with one
vertex and adjacent edges removed [12]. Above, a confluent planar drawing of its com-
plement generated by ConfluentDickerson(G). Layout computed using the dominance-
polyline method for general undirected planar graphs in [15].

6 Conclusion

The performance of the algorithms varied, with ConfluentDickerson(G) produc-
ing the greatest number of confluent planar drawings for both sets of graphs.
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Each variation of ConfluentHirsch(G) was however able to produce confluent
planar results for some inputs where ConfluentDickerson(G) was not. Our results
seem to confirm that confluent drawings offer a valid means for drawing non-
planar graphs in a planar way for some inputs. Confluent drawings can however
be more difficult to read than traditional drawings. This holds true even for cases
where a confluent drawing is planar and the original graph is not.
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Abstract. In this paper we study connections between Schnyder woods
and orthogonal surfaces. Schnyder woods and the face counting approach
have important applications in graph drawing and dimension theory.
Orthogonal surfaces explain the connections between these seemingly
unrelated notions. We use these connections for an intuitive proof of
the Brightwell-Trotter Theorem which says that the face lattice of a 3-
polytope minus one face has dimension three. Our proof yields a compan-
ion linear time algorithm for the construction of the three linear orders
that realize the face lattice.

Coplanar orthogonal surfaces are in correspondance with a large class
of convex straight line drawings of 3-connected planar graphs. We show
that Schnyder’s face counting approach with weighted faces can be used
to construct all coplanar orthogonal surfaces and hence the corresponding
drawings. Appropriate weights are computable in linear time.

1 Introduction

In two fundamental papers [15,16] Schnyder developed a theory of Schnyder la-
belings and Schnyder woods for planar triangulations. The second paper deals
with grid drawings of planar graphs and contains the first of numerous applica-
tions of Schnyder woods in the area of graph drawing. For example, the results
in [1], [2], [5], [13] use Schnyder woods, and more references can be found in [6].

In [15], Schnyder presented a characterization of planar graphs in terms of
order dimension. We briefly introduce the terminology needed for the statement
of this result: With a graph G = (V, E), associate an order PG of height two on
the set V ∪ E. The order relation is defined by setting x < e in PG if x ∈ V ,
e ∈ E and x ∈ e. The order PG is called the incidence order of G.

The dimension of an order P is the least k such that P admits an order pre-
serving embedding in Rk equipped with the dominance order. In the dominance
order we have that u ≤ v if and only if ui ≤ vi holds for each component i. For
more on order dimension see [17], [3] or [7].

Theorem 1 (Schnyder’s Theorem). A graph is planar if and only if the
dimension of its incidence order is at most three.

In the same paper Schnyder also shows that the incidence poset of vertices, edges
and faces of a planar triangulation has dimension four, but the dimension drops
to three upon removal of a face. Brightwell and Trotter [4] extended Schnyder’s
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Theorem to the general case of embedded planar multigraphs. The main building
block for the proof is the case of 3-connected planar graphs.

Theorem 2 (Brightwell-Trotter Theorem). The incidence order of the ver-
tices, edges and faces of a 3-connected planar graph G has dimension four. More-
over, if F is a face of G, then the incidence order of the vertices, edges and all
faces of G except F has dimension three.

Note that, by Steinitz’s Theorem, the incidence poset of vertices, edges and
faces of a 3-connected planar graph is just the face lattice of the corresponding
3-polytope with 0 and 1 removed.

The original proof of Theorem 2 in [3] was long and technical, and Felsner
gave a simpler one in [7]. Consecutively, Felsner [8] showed that every Schnyder
wood of a 3-connected planar graph is supported by a rigid orthogonal surface
(Theorem 5). An orthogonal surface is called rigid if it supports a unique graph,
see Figures 3 and 4. By a result of Miller [14], Felsner’s result implies Theorem 2.
In Section 3 we present an intuitive proof of Theorem 5, that leads to a simple
linear time algorithm for the computation of the rigid surface. The reduction to
topological sorting it uses is simpler and more efficient than the constructions
that are implicit in the other proofs. The idea is to start with the orthogonal
surface S obtained from a Schnyder wood S by face counting. If this surface is
non-rigid it is possible to make some local adjustments at a non-rigid edge by
moving some of the flats up or down in the direction of their normal vector, see
Figure 4. The nontrivial point is to show that these adjustments can be combined
in such a way that the whole surface becomes rigid.

The rest of the paper is organized as follows. In Section 2 we give definitions
and a brief introduction into the structural properties of Schnyder woods and
orthogonal surfaces which are required for the discussion in the later parts of
this paper. For a more detailed introduction we refer the reader to [9].

As mentioned above, Section 3 deals with rigid orthogonal surfaces. Section 4
is concerned with coplanar surfaces, that is orthogonal surfaces with the property
that all generating minima lie on some plane. The interest in this class originates
from their close connection to planar straight line drawings. Connecting the min-
ima of a coplanar surface by straight line segments yields a plane and convex
straight line drawing of the graph. Similar approaches for non-coplanar surfaces
fail as the drawings need not be crossing-free. We show that all coplanar sur-
faces supporting S can be obtained using Schnyder’s original construction with
appropriately weighted faces. At the end of the section, we give an example of
a Schnyder wood that has no supporting orthogonal surface which is simultane-
ously rigid and coplanar. We conclude with a related open problem.

Some proofs are omitted in this paper, others are considerably shortened.
Complete proofs can be found in the full version [10].

2 Basics on Schnyder Woods and Orthogonal Surfaces

All the proofs omitted in the this section can be found in [9], [8] or [7]. A planar
map M is a simple planar graph G together with a fixed planar embedding of
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G. Let a1, a2, a3 be three vertices occurring in clockwise order on the outer face
of M . A suspension Mσ is obtained by attaching a half-edge that reaches into
the outer face to each of these special vertices.

Let Mσ be a suspended 3-connected planar map. A Schnyder wood rooted at
a1, a2, a3 is an orientation and coloring of the edges of Mσ with the colors 1, 2,
3 (alternatively: red, green, blue) satisfying the following rules1.

(W1) Every edge e is oriented in one directin or in two opposite directions. The
directions of edges are colored such that if e is bidirected the two directions
have distinct colors.

(W2) The half-edge at ai is directed outwards and colored i.

(W3) Every vertex v has outdegree one in each color. The edges e1, e2, e3 leav-
ing v in colors 1, 2, 3 occur in clockwise order. Each edge entering v in color i
enters v in the clockwise sector from ei+1 to ei−1.

(W4) There is no interior face the boundary of which is a directed monochro-
matic cycle.

We will sometimes refer to the Schnyder wood of a planar map, without
choosing a suspension explicitly. Let M be a planar map with a Schnyder wood.
Let Ti denote the digraph induced by the directed edges of color i. Every inner
vertex has outdegree one in Ti. Therefore, every v is the starting vertex of a
unique i-path Pi(v) in Ti. The next lemma implies that each of the digraphs Ti

is acyclic, and hence the Pi(v) are simple paths.

Lemma 1. Let M be a planar map with a Schnyder wood (T1, T2, T3). Let T−1
i

be obtained by reversing all edges from Ti. The digraph Di = Ti ∪ T−1
i−1 ∪ T−1

i+1 is
acyclic for i = 1, 2, 3.

By the rule of vertices (W3) every vertex has out-degree one in Ti. Disregarding
the half-edge at ai, this makes ai the unique sink of Ti. Since Ti is acyclic and
has n − 1 edges we obtain:

Corollary 1. Ti is a directed tree rooted at ai, for i = 1, 2, 3.

The i-path Pi(v) of a vertex v is the unique path in Ti from v to the root ai.
Lemma 1 implies that for i �= j the paths Pi(v) and Pj(v) have v as the only
common vertex. Therefore, P1(v), P2(v), P3(v) divide M into three regions R1(v),
R2(v), and R3(v), where Ri(v) denotes the region bounded by and including the
two paths Pi−1(v) and Pi+1(v), see Figure 1.

Lemma 2. If u and v are vertices with u ∈ Ri(v), then Ri(u) ⊆ Ri(v). The
inclusion is proper if u ∈ Ri(v) \ (Pi−1(v) ∪ Pi+1(v)).

Lemma 3. If the directed edge e = (u, v) is colored i, then Ri(u) ⊂ Ri(v),
Ri−1(u) ⊇ Ri−1(v) and Ri+1(u) ⊇ Ri+1(v). At least one of the latter two inclu-
sions is proper.
1 We assume a cyclic structure on the colors so that i+1 and i−1 are always defined.
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Fig. 1. An orthogonal surface, the induced Schnyder wood and the regions of a vertex
v in this Schnyder wood. The small numbers correspond to edge colors.

These lemmas are crucial for the applications of the face-count vector (v1, v2, v3)
of a vertex v with respect to a Schnyder wood which is defined by

vi = the number of faces of M contained in region Ri(v).

Later we will use this vector to construct orthogonal surfaces supporting a given
Schnyder wood. In that context {(v1, v2, v3) | v ∈ V } will be the generating set
for the surface.

Another tool needed from the theory of Schnyder woods is the edge split. The
following lemma from [2] describes the generic face in a Schnyder wood.

Lemma 4. Given a Schnyder wood S let F be an interior face. The edges on the
boundary of F can be partitioned into six sets occurring in clockwise order around
F . The sets are defined as follows (in case of bidirected edges the clockwise color
is noted first): One edge from the set {red-cw, blue-ccw, red-blue}, any number
(possibly 0) of edges green-blue, one edge from the set {green-cw, red-ccw, green-
red}, any number of edges blue-red, one edge from the set {blue-cw, green-ccw,
blue-green}, any number of edges red-green. The three edges from the first, third,
and fifth set are the special edges of the face.

Given a Schnyder wood S let e be a bidirected edge such that one of its directions
is colored j and F be the incident face to which e is not special. Choose a vertex
w of F such that the angle of w in F is labeled j. To split e towards w is to
divide the bidirected edge e into two uni-directed copies and to move the head
of the j colored copy to connect to w. Figure 2 illustrates the operation.

Lemma 5. Let S be a Schnyder wood and e a bidirected edge of S. Then, split-
ting e yields a Schnyder wood on the resulting graph.

We now introduce orthogonal surfaces and review some facts that we will need
in the sequel. Consider R3 equipped with the dominance order. We write u∨v
and u∧v to denote the join (component-wise maximum) and meet (component-
wise minimum) of u, v ∈ R3. Let V ⊂ R3 be an antichain, i.e., a set of pairwise
incomparable elements. The filter generated by V in R3 is the set

〈V〉 = {α ∈ R3 | α ≥ v for some v ∈ V}.
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Fig. 2. The two possible types of splits of a non-special bidirected red-green edge uv
in F . The numbers in the figure correspond to the edge colors.

The boundary SV of 〈V〉 is the orthogonal surface generated by V , see Figure 1.
If u, v ∈ V ⊂ SV and u∨v ∈ SV , then SV contains the union of the two line

segments joining u and v to u∨v; we refer to such arcs as elbow geodesics in SV .
The orthogonal arc of v ∈ V in direction of the standard basis vector ei is the
piece of the ray v+λei, λ ≥ 0, which follows a crease of SV . Clearly every vector
v ∈ V has exactly three orthogonal arcs, one parallel to each coordinate axis.
Some orthogonal arcs are unbounded while others are bounded. Observe that
u∨v shares two coordinates with at least one (and perhaps both) of u and v, so
every elbow geodesic contains at least one bounded orthogonal arc.

Let M be a planar map. A drawing M ↪→ SV is a geodesic embedding of M
into SV , if the following axioms are satisfied:

(G1) Vertex axiom. There is a bijection between the vertices of M and V .

(G2) Elbow geodesic axiom. Every edge of M is an elbow geodesic in SV , and
every bounded orthogonal arc in SV is part of an edge of M .

(G3) There are no crossing edges in the embedding of M on SV .

An orthogonal surface SV ⊂ R3 is called axial if contains exactly three un-
bounded orthogonal arcs. Figure 1 shows an axial orthogonal surface. These
definitions have been proposed by Miller [14] who, essentially, also observed the
following theorem.

Theorem 3. Let V be axial and M ↪→ SV be a geodesic embedding, then the
embedding induces a Schnyder wood of Mσ, which is suspended at the unbounded
orthogonal rays. Conversely, every Schnyder wood of a suspended map Mσ in-
duces an axial geodesic embedding of Mσ.

An embedding of a Schnyder wood into an orthogonal surface is shown in Fig-
ure 1. A proof of the theorem can be found in [9].

Since every orthogonal arc leaving a vertex is occupied by an edge, every
angle is completely contained in a flat. Basically, flats are the connected regions
of constant gray-value in our drawings of orthogonal surfaces. To make this
precise, let H be the plane xi = h and F̃1, . . . , F̃�, the connected components of
the interior of H ∩ S. The topological closures F1, . . . , F� of these components
are i-flats of height h. The i-flat of v ∈ V is denoted by Fi(v).

Given Theorem 3, it is natural to ask questions about existence and uniqueness
of geodesic embeddings. A surface with three orthogonal arcs meeting in a single
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b.a.

wv
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Fig. 3. a. A degenerate pattern. b. A non-rigid edge (u, v).

point does not support a Schnyder wood, see Figure 3.a. We call surfaces with
a such a pattern degenerate. All other orthogonal surfaces support a Schnyder
wood. In Figure 3.b. the edge (u, v) can be replaced by the edge (u, w). Hence
the surface supports two different graphs and also two different Schnyder woods.
The existence of such a choice for an edge is caused by a non-rigidity in the sense
of the following definition. An elbow geodesic connecting vertices u and v is rigid,
if u and v are the only vertices in V dominated by u ∨ v. An orthogonal surface
SV is a rigid surface if all its elbow geodesics are rigid. For an example, see the
left part Figure 4, where the inner blue edge is not rigid.

3 Rigid Orthogonal Surfaces Via Flat Shifting

We set Theorem 5 into context before we give a new proof. Miller [14] observed
that a rigid orthogonal surface supports exactly one Schnyder wood and proved:

Theorem 4. Every suspended 3-connected planar map Mσ has a geodesic em-
bedding Mσ ↪→ S on some rigid orthogonal surface S.

Together with the following proposition from [14] (see also [8]) this implies the
Brightwell-Trotter Theorem (Theorem 2).

Proposition 1. Let SV be a rigid orthogonal surface. Let Mσ ↪→ SV be a
geodesic embedding and F a bounded region of M . If αF is the join of the vertices
of F , then w ∈ F ⇔ w ≤ αF .

We give a new proof of the following result by Felsner [8], who answered a
question by Miller with this extension of Theorem 4.

Theorem 5. If S is a Schnyder wood of a map Mσ, then there is a rigid axial
orthogonal surface S and a geodesic embedding Mσ ↪→ S. In particular S is the
unique Schnyder wood supported by S.

We will now give a sketch of the proof. Lemmas 6 and 7 are part of this sketch.
Let S be a Schnyder wood on a 3-connected planar map M = (V, E) and let
S be the orthogonal surface obtained from S via face counting. Let Fi be the
set of i-flats of S. On the set Fi we define a relation Γi by three rules, Figure 4
shows an example.
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Fig. 4. A Schnyder wood S on a non-rigid surface, the corresponding relation Γ1, and
S on a rigid surface. For Γ1 a-relations correspond to red arrows, p-relations to cyan
arrows, and the only r-relation to a magenta arrow.

(a) If (u, v) is an edge of color i, then Fi(u) < Fi(v) in Γi.

(p) If (v, u) is unidirected in color i − 1 or i + 1, then Fi(u) < Fi(v) in Γi.

(r) If (v, u) is unidirected in color j �= i and there is a vertex w ∈ V such that
Fj(w) = Fj(u) and wi > ui, then Fi(v) < Fi(w) in Γi.
The pairs in Γi are classified as a-relations (arc), p-relations (preserve) and r-
relations (repel). Lemma 6 is the heart of the proof of Theorem 5 as it justifies
why the flat shifts (i.e. r-relations) can be combined to obtain a rigid surface.

Lemma 6. The relation Γi defined on Fi is acyclic, for i = 1, 2, 3.

Proof. By symmetry it is enough to prove the case i = 1.
We identify the a- and p-relations with edges of the Schnyder wood S. The

set of vertices lying on a common 1-flat is strongly connected in S via bidirected
green-blue edges. We define a surjective map from the set of red edges in S to
the set of a-relations by mapping an edge (u, v) to the relation F (u) < F (v).
Similarly, there is a surjective map from the blue and green unidirected edges in
S to the p-relations (if (v, u) is such an edge, then F (u) < F (v) is in Γ1).

In order to deal with the r-relations we construct a Schnyder wood S′ from
S using edge splits (see page 420). Let e = (v, u) ∈ S be a unidirected blue edge
and F (u) < F (v) the corresponding p-relation. Let F (uk) > . . . > F (u1) be the
set of flats that have an r-relation F (v) < F (uj) related to e, the order on this
set coming from the a-relations. The edges {u, u1} and {uj−1, uj} are bidirected
in red and green in S. Construct S′ by splitting the edges {u, u1}, {u1, u2}, . . .,
{uk−1, uk} towards v. This is legal since the angle of v in the face in question
has label 2 (green), see Lemma 5.

Repeat this operation for other r-relations in Γ1 which come from unidirected
blue edges. A symmetric operation is used to introduce edges for all r-relations
in Γ1 which come from unidirected green edges in the Schnyder wood S.

In the Schnyder wood S′ we associate an edge with every relation in Γ1.
The a-relations and p-relations are mapped as above while with an r-relation
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F (u) < F (v) we associate the blue or green edge (v, u) which was introduced
into S′ by a split.

The idea is to show that a cycle C in Γ1 would induce a cycle C′ in T1 ∪T−1
2 ∪

T−1
3 using the inverse of the mapping from edges to relations described above.

Here the Ti, i ∈ {1, 2, 3}, are the respective trees of S′ and the existence of C′

yields a contradiction to Lemma 1. Note that consecutive relations F (u) < F (v)
and F (u′) < F (v′) in C, i.e., F (v) = F (u′), may correspond to different vertices
v �= u′ from the flat F (v). This does not yield gaps in the intended cycle C′

because vertices on the same flat are connected by a path of green-blue bidirected
edges. The contradiction shows that Γi is acyclic. ��
Let S be the orthogonal surface supporting S which is generated by the face
counting vectors (c.f. Theorem 3). Let Γ ∗i be the transitive closure of Γi which is
an order on Fi by Lemma 6. Let Li be a linear extension of Γ ∗i . An i-flat Fi of S is
mapped to its position on Li, more formally to αFi = |{F ′i ∈ Fi : F ′i < Fi in Li}|.
With V we associate a set of points Vα = {(αF1(v), αF2(v), αF3(v)) | v ∈ V } ⊂ R3.
We will outline the rest of the proof of Theorem 5, the first step is to prove the
following lemma.

Lemma 7. If Ri(u) = Ri(v), then u′i = v′i and if Ri(u) ⊂ Ri(v), then u′i < v′i.

Lemma 7 is the key to proving the following four statements, which complete
the proof of Theorem 5: Vα is an antichain in R3, SVα is non-degenerate, SVα

supports the Schnyder wood S, and SVα is rigid. This completes the proof sketch
for Theorem 5.

Next, we present a simple algorithm which, given a Schnyder wood S, com-
putes a rigid orthogonal surface S inducing S.

Proposition 2. There is an O(n) algorithm computing a rigid orthogonal sur-
face for a given Schnyder wood S.

Proof. We assume that S is given in the form of adjacency lists ordered clockwise
around each vertex. With each edge in the adjacency list of a vertex v, the infor-
mation about the coloring and orientation of that edge is stored. By symmetry
it is sufficient to show how to obtain the first coordinate for all vertices of S in
linear time. Produce a copy of the vertex set. On this copy build a digraph Dr:
For every red edge there is an edge pointing in the same direction in Dr and for
all blue and green unidirected edges there is an edge pointing in the opposite
direction. Check at each original vertex if its red outgoing edge is green in the
reverse direction and if it has a unidirected blue incoming edge. If so, there is
an edge from the start of the blue edge to the end of the red outgoing edge.
This single repel-edge is sufficient as other repel relations associated to the same
unidirected blue edge will be implied by transitivity. Treat repel relations as-
sociated to green unidirected edges analogously. Finally, contract all blue-green
edges from S in Dr. Then, compute a topological sorting of Dr and assign each
vertex the topsort-number of its flat as first coordinate. All this can be done in
O(n) time. Three runs of this procedure, one for each coordinate are required.
The correctness of the algorithm is implied by Theorem 5. ��
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Theorem 6. Let P be a 3-polytope with n vertices. Then, a Brightwell-Trotter
realizer for P can be computed in O(n) time.

Proof. As Fusy et al. [11] show, a Schnyder wood S for the edge graph of P
can be computed in O(n) time. Alternatively this can be done with the help of
Kant’s algorithm [12] as well. From S construct a rigid orthogonal surface S,
in time O(n) using Proposition 2. Then, S induces a Brightwell-Trotter realizer
of P by Proposition 1. ��

4 Coplanar Surfaces

An orthogonal surface is called coplanar, if there exists a constant c ∈ R such
that every minimum v on the surface fulfills v1 + v2 + v3 = c. Schnyders classic
approach of drawing graphs using the face-count vectors {(v1, v2, v3)|v ∈ V }
yields a subclass of all coplanar surfaces, see Figure 1. We now generalize the
classic approach of counting every bounded face with weight one by allowing
more general face weights. We then use coordinate vectors recording the sum of
weights in the regions of a vertex. We show that this construction, essentially,
yields all coplanar surfaces supporting a given Schnyder wood, and thus all non-
degenerate coplanar surfaces can be obtained from some Schnyder wood this way.
Geodesic embeddings on coplanar surfaces have the pleasant property that the
positions of the vertices in the plane yield a crossing-free and convex straight-line
drawing of the underlying graph. Similar approaches for non-coplanar surfaces
fail as the drawings need not be crossing-free.

Theorem 7. Let S be a coplanar orthogonal surface supporting a Schnyder
wood S. Then there is a unique weight function w : F (S) → R on the set of
bounded faces of S and a unique translation t ∈ R3 such that for all v ∈ V (S)
and i ∈ {1, 2, 3}

vi = ti +
∑

F∈Ri(v)

w(F ).

Remark. A Schnyder wood S and a weight function w define an orthogonal
surface SS,w. This surface, however, need not support the initial Schnyder wood.
From the proof of Theorem 3 it follows that a necessary and sufficient condition
for an embedding S ↪→ SS,w is that

Ri(u) ⊆ Ri(v) =⇒
∑

F∈Ri(u)

w(F ) ≤
∑

F∈Ri(v)

w(F )

with strict inequality whenever Ri(u) ⊂ Ri(v).

Proof sketch for Theorem 7. Let S be a coplanar orthogonal surface and S a
Schnyder wood induced by S. Let where {i, j, k} = {1, 2, 3}. We define ti =
(aj)i = (ak)i, which is possible since Fi(aj) = Fi(ak) for the suspension vertices
a1, a2, a3 of S. First, shift the surface by (t1, t2, t3), such that the suspension
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vertices now have coordinates (c, 0, 0), (0, c, 0), (0, 0, c) and v1 + v2 + v3 = c for
all v.

Let f be the number of faces of S. With the region Ri(v) of a vertex v we
associate a row vector ri(v) of length f − 1 with a component for each bounded
face of F . The vector ri(v) is defined by

ri(v)F = 1 if F ∈ Ri(v) and ri(v)F = 0 otherwise.

The existence of a weight assignment to the faces realizing the normalized surface
S is equivalent to finding a vector w ∈ Rf−1 such that

∀v ∈ V, ∀i ∈ {1, 2, 3} : ri(v) · w = vi (∗)

Claim 1. The rank of the linear system (∗) is at most f − 1. Proof omitted. �

Claim 2. Let eF be the (f − 1)-dimensional row vector with a single one at the
position corresponding to the face F . Then, eF is in the span of the region-face
incidence vectors {ri(v) | i ∈ {1, 2, 3}, v ∈ V }.

Proof sketch. For the proof we distinguish several cases: the boundary of F is
a directed cycle, two special edges of the same color are unidirected in opposite
directions, two special edges of different colors are unidirected in opposite direc-
tions. There are several subcases to be distinguished. We present details for only
one case here, the other proofs are similar.

If the boundary of F is not a directed cycle, we may assume that the three
special edges e1, e2, e3 have endvertices v1, w1, v2, w2, v3, w3 clockwise in this
order on the boundary of F (possibly wi−1 = vi). Say e1 = (v1, w1), e2 =
(w2, v2), are two unidirected of the same color in opposite directions.

We treat the case that w1 = v2 and e3 is directed as (w3, v3), (this includes the
case where e3 is bidirected) explicitly. The left of Figure 5 shows the situation
with i = 1.

v1

v2w1

R1(v1)

R2(v1)
R3(v3) v1 w2

w1 v2

v3

R1(w2)

R3(w2)

R2(w3)w2

v3
w3

w3

Fig. 5. Faces without directed cycle and w1 = v2

As illustrated in the figure R1(v1), R2(v1) and R3(v3) partition B \ F , hence

1 − (ri(v1) + ri+1(v1) + ri−1(v3)) = eF .

The case that e3 is directed as (v3, w3) is shown in the right part of Figure 5.�
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Fig. 6. Part a shows the projection of the explored part of an orthogonal surface on
the sweep plane. The dashed arrows represent the new edges added with v, the other
colored arrows are the sweep front. The dotted line segments and vertices are the part
of the surface that has already been explored. Part b illustrates Proposition 3, it shows
a rigid but not coplanar surface.

Claims 1 and 2 together imply that the linear system (∗) has rank f − 1 and
hence a unique solution. ��

Next we show how to obtain an efficient algorithm that computes the represen-
tation of Theorem 7 for a given orthogonal surface S.

Theorem 8. Let a non-degenerate, axial, coplanar orthogonal surface S be
given, which is generated by n minima. A Schnyder wood S for S can be com-
puted in O(n log n) time. Given S, the translation vector and the face weights
can be computed in O(n) time.

Proof. We first sketch how to extract the Schnyder wood S from S. The al-
gorithm scans S from bottom to top with a sweep plane P orthogonal to the
x1-axis. Having seen a subset W ⊂ V of the generators of S the algorithm knows
all colored and directed edges of S which are induced by W . Figure 6.a shows
a snapshot of the intersection of P with S. The order in which the sweep con-
siders the generators is the lexicographic order on (x1, x2). When a minimum v
is added, its blue outgoing edge and incoming red edges are added as well. The
green outgoing edge is added only if it is not a green-blue bidirected edge, in this
case it is added when the next minimum is treated. This procedure builds the
Schnyder wood step by step, and needs O(n log n) time when the sweep front is
implemented as a dynamic search tree.

The second part of the algorithm is the computation of the face weights. After
normalizing all coordinate vectors the faces are now considered one by one. When
considering a face F , we first determine the type of F . Based on the proof of
Theorem 7 we distinguish twenty such types.

The weight of F can be computed from certain region weights of boundary
vertices of F . The required region weights are the coordinates of these vertices.
If for example we are in the case shown in Figure 5 then the weight of F is
c−(w2)1−(w3)2−(w2)3 where c is the constant obtained through normalization.
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When scanning a face F we touch each edge only once and every edge lies in
at most two inner faces. This implies a runtime of O(n). ��
Face counting produces coplanar surfaces supporting a given Schnyder wood
S. In Section 3 we have seen how to construct a rigid surface supporting S.
Coplanarity and rigidity are useful properties for an orthogonal surface. It is
natural to ask whether every Schnyder wood has a supporting surface with both
properties. The answer to this question is negative, the proof of Proposition 3
can be found in [10].

Proposition 3. The Schnyder wood shown in Figure 6.b cannot be embedded
on a rigid and simultaneously coplanar surface.

5 Conclusions

We conclude our investigations of the connections between Schnyder woods and
orthogonal surfaces with an open problem of a flavor similar to Theorem 7. Let
S be a Schnyder wood induced by an orthogonal surface S. From Proposition 1
it follows that the bounded faces of S are in bijection with the maxima of S.
We refer to the set of minima and maxima as V ∪ F . For p ∈ S we define its
height as h(p) = p1 + p2 + p3.

Problem. Given S, do the Schnyder Wood S and the vector h = (h(v))v∈V∪F
of heights uniquely determine S?

We can prove this in the case where the underlying graph is a stacked triangu-
lation. With computer’s help we have verified that the answer is affirmative for
small triangulations with up to twelve vertices.
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1. I. Bárány and G. Rote, Strictly convex drawings of planar graphs, 2005.
arXiv:cs.CG/0507030.

2. N. Bonichon, S. Felsner, and M. Mosbah, Convex drawings of 3-connected
planar graphs, in Graph Drawing (Proc. GD ’04), vol. 3383 of Lecture Notes in
Comput. Sci., 2004, pp. 60–70.

3. G. Brightwell and W. T. Trotter, The order dimension of convex polytopes,
SIAM J. Discrete Math., 6 (1993), pp. 230–245.

4. G. Brightwell and W. T. Trotter, The order dimension of planar maps,
SIAM J. Discrete Math., 10 (1997), pp. 515–528.

5. G. Di Battista, R. Tamassia, and L. Vismara, Output-sensitive reporting of
disjoint paths, Algorithmica, 23 (1999), pp. 302–340.

6. S. Felsner. http://www.math.tu-berlin.de/∼felsner/Schnyder.bib.

http://www.math.tu-berlin.de/~felsner/Schnyder.bib


Schnyder Woods and Orthogonal Surfaces 429

7. S. Felsner, Convex drawings of planar graphs and the order dimension of 3-
polytopes, Order, 18 (2001), pp. 19–37.

8. S. Felsner, Geodesic embeddings and planar graphs, Order, 20 (2003), pp.
135–150.

9. S. Felsner, Geometric Graphs and Arrangements, Vieweg Verlag, 2004.
10. S. Felsner and F. Zickfeld, Schnyder woods and orthogonal surfaces, 2006.

http://www.math.tu-berlin.de/∼felsner/swaos.pdf.
11. E. Fusy, D. Poulalhon, and G.Schaeffer, Dissection and trees, with appli-

cations to optimal mesh encoding and random sampling, in Proc. 16. ACM-SIAM
Sympos. Discrete Algorithms, 2005, pp. 690–699.

12. G. Kant, Drawing planar graphs using the lmc-ordering, in Proc. 33rd IEEE Sym-
pos. on Found. of Comp. Sci., 1992, pp. 101–110.

13. C. Lin, H. Lu, and I.-F. Sun, Improved compact visibility representation of planar
graphs via Schnyder’s realizer, SIAM J. Discrete Math., 18 (2004), pp. 19–29.

14. E. Miller, Planar graphs as minimal resolutions of trivariate monomial ideals,
Documenta Math., 7 (2002), pp. 43–90.

15. W. Schnyder, Planar graphs and poset dimension, Order, 5 (1989), pp. 323–343.
16. W. Schnyder, Embedding planar graphs on the grid, in Proc. 1st ACM-SIAM

Sympos. Discrete Algorithms, 1990, pp. 138–148.
17. W. T. Trotter, Combinatorics and Partially Ordered Sets: Dimension Theory,

The Johns Hopkins University Press, 1992.

http://www.math.tu-berlin.de/~felsner/swaos.pdf


Partitions of Graphs into Trees

Therese Biedl and Franz J. Brandenburg

1 School of Computer Science, University of Waterloo, N2L3G1, Canada
biedl@uwaterloo.ca

2 Lehrstuhl für Informatik, Universität Passau, 94030 Passau, Germany
brandenb@informatik.uni-passau.de

Abstract. In this paper, we study the k-tree partition problem which
is a partition of the set of edges of a graph into k edge-disjoint trees.
This problem occurs at several places with applications e.g. in network
reliability and graph theory. In graph drawing there is the still unbeaten
(n − 2) × (n − 2) area planar straight line drawing of maximal planar
graphs using Schnyder’s realizers [15], which are a 3-tree partition of the
inner edges. Maximal planar bipartite graphs have a 2-tree partition,
as shown by Ringel [14]. Here we give a different proof of this result
with a linear time algorithm. The algorithm makes use of a new ordering
which is of interest of its own. Then we establish the NP-hardness of the
k-tree partition problem for general graphs and k ≥ 2. This parallels NP-
hard partition problems for the vertices [3], but it contrasts the efficient
computation of partitions into forests (also known as arboricity) by ma-
troid techniques [7].

1 Introduction

A k-tree partition of a graph G = (V, E) is the partition of the set of edges E
into k disjoint subsets which each induce a tree. Alternatively, the edges of G are
colored by k colors and each color induces a tree. The trees are not necessarily
spanning trees. The k-tree partition problem for a graph G and an integer k is
whether or not G has a k-tree partition.

A relaxed version without connectivity is the arboricity a(G) of a graph G,
which is a partition of the edges of G into at most a(G) forests. A well-known
theorem by Nash-Williams states that a graph has arboricity c if and only if
every non-trivial subgraph H has at most c(|V (H)| − 1) edges [11,12]. In par-
ticular, this implies that every planar graph has arboricity at most 3, and every
planar bipartite graph has arboricity 2. In fact, the two forests of the arboricity-
decomposition must be “almost” trees: either one is a spanning tree and the
other has n − 3 edges, or both have n − 2 edges. Ringel [14] proved that in fact,
any maximal planar bipartite graph can be split into two trees, both with n − 2
edges.

In this paper, we study algorithmic aspects of splitting a maximal planar
bipartite graph into two trees. The proof by Ringel [14] is algorithmic in nature,
but not particularly fast; it can be implemented in quadratic time. We give
a different proof to show that every maximal planar bipartite graph can be
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split into two trees; the resulting algorithm is quite simple and can easily be
implemented in linear time. As a side-effect, we develop a special vertex ordering
for maximal planar bipartite graphs, which may be of interest of its own.

For general graphs with n vertices and m edges the arboricity can efficiently
be computed by matroid techniques [7]. Here the relaxation to forests is crucial.
We show the NP-hardness of the k-tree partition problem for every k ≥ 2. For
k = 2 this is proved by a reduction from the Not-All-Equal-3SAT problem, and
for k ≥ 3 there is a reduction from the k-coloring problem. These NP-hardness
results complement common and extended versions of partition and coloring
problems [2,3,8], which however are defined for the vertices.

Partitioning graphs into trees is also used in graph drawing. For example, the
Schnyder realizers [15] are a partition of the inner edges of a maximal planar
graph into three trees. They still yield the best known area bounds for straight-
line grid drawings of maximal planar graphs.

In this paper, first we study maximal planar bipartite graphs and how they
split into two trees, and then we show the NP-hardness results for the general
case.

2 Maximal Planar Bipartite Graphs

Let G = (V, E) be a maximal planar bipartite (mpb) graph. Thus, G has a
vertex partition V = W ∪ B into white vertices W and black vertices B such
that each edge connects a white vertex with a black vertex. Furthermore, G can
be drawn in the plane without crossings such that every face has exactly four
incident edges. It is well-known that G has 2n − 4 edges (where n = |V |) and is
bi-connected (i. e., cannot be disconnected by removing one vertex.)

2.1 A Vertex Ordering for mpb Graphs

In this section, we present a vertex ordering for maximal planar bipartite graphs,
which we will then use in the next section to obtain a split of an mpb graph into
two trees.

Theorem 1. Let G be a maximal planar bipartite graph with a fixed planar
embedding and a fixed outer-face. Then there exists a vertex ordering v1, . . . , vn

of G such that

– v1 and vn are the two black vertices on the outer-face.
– For all i > 1, vertex vi is on the outer-face of the graph induced by v1, . . . , vi.
– Every white vertex vi has exactly one predecessor, i. e., neighbor with a

smaller number.
– Every black vertex vi, i > 1 has at least two predecessors.

We will call such a vertex ordering an mpb-ordering. See Figure 1. To prove
Theorem 1, we need an auxiliary graph. Let EB be the black diagonals, i. e.,
for every face f in G (which has exactly two black vertices since G is maximal
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Fig. 1. An mpb-ordering of G, and the graph GB (solid) with a bipolar orientation

planar bipartite), add an edge between the two black vertices on f to EB. Let
GB be (B, EB), i. e., take the black vertices and black diagonals only. See also
Figure 1.

One can show that GB is bi-connected [4]. Therefore, we can compute an st-
numbering of GB, i. e., an ordering b1, . . . , bl of the black vertices such that for
any 1 < j < l, vertex bj has at least one predecessor and at least one successor,
i. e., neighbor with a larger index [10]. Moreover, we can choose which vertices
should be b1 and bl, and we can compute this order in linear time [6]. We choose
here b1 and bl to be the two black vertices on the outer-face of G.

From this st-numbering, we can obtain a bipolar orientation, i. e., an acyclic
orientation of the edges of GB such that there is only one source (vertex without
incoming edge) and only one sink (vertex without outgoing edge), simply by
directing every edge from the lower-indexed to the higher-indexed vertex.

Let G+ = (V, E ∪ EB) be the graph resulting from G by adding the black
diagonals. We now extend the bipolar orientation of GB into one of G+ as follows.
For every white vertex w, let bi be the neighbor of w (in G) that has the smallest
index among the neighbors of w. Orient the edge (bi, w) from bi to w, and all
other edges incident to w away from w. Clearly this orientation is bipolar: every
white vertex must have degree at least 2 (by maximality), and has exactly one
incoming edge by definition, and hence at least one outgoing edge. Furthermore,
the orientation is acyclic since any directed path encounters increasingly larger
indices in its black vertices.

From this bipolar orientation, we can recover a vertex ordering of all vertices of
G, simply by computing a topological order in the acyclic graph. Let v1, . . . , vn

be the resulting order; one can easily verify that it satisfies all conditions of
Theorem 1.

Note that all steps of computing the mpb-ordering can easily be implemented
in linear time.

The mbp-ordering is not a canonical ordering [5,9]: The black vertices act
similar to the vertices of a canonical ordering, but white vertices have only one
predecessor and violate the 2-connectivity property of a canonical ordering. E.g.
the mbp-ordering of the graph in Figure 1 is not a canonical ordering.
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2.2 Splitting into Two Trees

Now assume that we are given an mpb-ordering v1, . . . , vn. We now show how
to obtain a decomposition into two trees from it. We have two simple rules (see
also Figure 2):

– For any white vertex, label the (unique) incoming edge with 1.
– For any black vertex vi �= v1, label the leftmost incoming edge with 1 and

the rightmost incoming edge with 2. Here, “leftmost” and “rightmost” are
taken with respect to the planar embedding; recall that vi is in the outer-face
of the graph induced by v1, . . . , vi−1, hence we can sort its incoming edges
by the order in which these neighbors appear on the outer-face.
All other (if any) incoming edges of vi are called “middle incoming” and
labeled with 2 as well. However, we will reverse the orientation of these
edges, to make it easier to argue why the resulting structures must be trees.

2 2
1

1 2

predecessor predecessors 1

2

5

4

7

11

9

6 8

3

10

12

Fig. 2. Splitting the graph into two trees

From now on, let the 1-edges be the edges labeled 1, and the 2-edges be the
edges labeled 2. We also use 1-path, 1-cycle and so on to mean a path/cycle of
1-edges. It is very easy to see that the 1-edges form a tree.

Lemma 1. The 1-edges form a spanning tree.

Proof. Since every vertex except v1 has exactly one incoming 1-edge, there are
n − 1 1-edges. v1 has outgoing 1-edges, so the 1-edges span all vertices of the
graph. No 1-edge had its orientation reversed, so the 1-edges form a directed
acyclic graph. It is well-known that such a graph is a spanning tree.

Now we come to the significantly harder part of proving that the 2-edges form
a tree. We first need observations about the order of edges around each vertex;
see also Figure 3.

Claim. v1 has only outgoing 1-edges. For any other black vertex, the incident
edges are clockwise in the planar embedding as follows:

– One incoming 1-edge.
– Some number (possibly none) of outgoing 1-edges.
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– One incoming 2-edge.
– Some number (possibly none) of outgoing 2-edges.

Proof. This follows directly from the way labels and directions were assigned to
vertices, plus the fact that every successor of a black vertex is a white vertex
and hence contributes an outgoing 1-edge.

Claim. Let w1, w2 be the white vertices on the outer-face. For every white vertex,
the incident edges are ordered clockwise in the planar embedding as follows:

– One incoming 1-edge.
– Some number (possibly none) of outgoing 2-edges.
– One incoming 2-edge (except for w1 and w2).
– Some number (possibly none) of outgoing 1-edges.

Proof. Clearly each white vertex w has an incoming 1-edge. Now consider any
successor b of w, which is a black vertex. The label of the edge (w, b) depends
on whether w is a left, middle or right predecessor of b. If w is a right (left)
predecessor, then (w, b) is labeled 2 (1), and its orientation is maintained. If w is
a middle predecessor of b, then (w, b) is labeled 2 and turned around. Clearly the
clockwise order of edges around w corresponds to whether w is a right, middle,
left predecessor, so all that remains to argue is that if w �= w1, w2, then it indeed
must be the middle predecessor exactly once.

Consider the moment when we add the vertex b that makes w disappear
from the outer-face. Then b must be black (white vertices have indegree 1), and
adjacent to w by maximality, so w is a middle predecessor of b. It cannot be
middle predecessor of anyone else, since it can disappear from the outer-face
only once.

Lemma 2. The 2-edges form a tree.

Proof. Let v1, w1, vn, w2 be the outer-face in clockwise order. By the claims,
every vertex except v1, w1, w2 has exactly one incoming 2-edge, so there are
n − 3 2-edges. w2 has an outgoing 2-edge (to vertex vn), so the graph spanned
by 2-edges has n − 3 edges and n − 2 vertices. To show that this graph is a tree
it therefore suffices to show that it has no cycles.
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Fig. 3. Labeled edges around each vertex, and why no directed 2-cycle can exist
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Assume we had a cycle of 2-edges C. Since every vertex has at most one
incoming 2-edge, such a cycle must necessarily be directed. Assume that the
cycle is directed counter-clockwise in the fixed planar embedding; the case of a
clockwise directed cycle is very similar. By the first Claim, no black vertex on
C can have 1-edges between the incoming 2-edge and the outgoing 2-edge of C.
Hence, a black vertex on C has no incident 1-edges on the inside of C. Similarly
by the second Claim a white vertex has no incident 1-edges on the outside of the
cycle. See also Figure 3.

We know that the 1-edges form a rooted tree, and its root v1 has no incident
2-edges and hence is not part of C. Now where is v1 located? Assume that it
is outside cycle C. Let w be a white vertex on C, and let b be its predecessor
on the (unique) 1-path from v1 to w. Vertex b is inside C by the above, hence
there exists a directed 1-path from the outside of C to the inside of C. However,
the order of edges around each vertex of C makes this impossible: any directed
1-path can reach C from the outside only at a black vertex, and is immediately
directed back to the outside from there. Hence v1 must be inside C. But now we
can repeat the argument with a black vertex b on C; no directed 1-path can go
from inside C to the neighbor of the incoming 1-edge of b (which is outside C).
So we obtain a contradiction and no directed 2-cycle can exist.

Theorem 2. Every maximal planar bipartite graph has a 2-tree partition. Fur-
thermore, such a partition can be found in linear time.

Not only gave we a split into two trees, we also obtained that the edges around
each vertex are ordered in a special way when considering the incoming/outgoing
edges of each tree. Note that this is similar to the edge-orderings obtained when
splitting a triangulated planar graph into three trees [15]. An �n/2� × �n/2 − 1�
grid drawing of planar bipartite graphs has been obtained in [1] using different
techniques.

3 Tree Partitions of General Graphs

In this section we address the complexity of the tree partition problem. Recall
that a k-tree partition of a graph is equivalent with a k-edge coloring such
that each color induces a tree. Our problem is complementary to common and
generalized partition and coloring problems of graphs which however address the
vertices. Such problems have been studied in many versions, see, e.g., [2,3,8].

Clearly, a graph has a 1-tree partition if and only if it is a tree. This can be
checked easily. All other cases are NP-hard. It turns out that connectivity is the
crucial factor for the NP-hardness, since the partition into forests can be solved
in polynomial time.

Theorem 3. It is NP-hard to test whether a graph G has a 2-tree partition.

Proof. We reduce from the Not-All-Equal-3SAT problem [8]. The construction
extends the reduction to the 3-coloring problem in [13].
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Fig. 4. Switch and Double-Switch

Let α = c1, . . . , cm be an expression with clauses c1, . . . , cm and variables
x1, . . . , xn and such that there is a clause (x, x, x̄) for every variable x. The
assignment must be such that there is a true and a false literal in each clause.
Let m > 1. Construct a graph G(α) which has a 2-tree partition into a blue
and a red tree if and only if α has a Not-All-Equal assignment. G(α) has a
distinguished root r. The reduction is based on two gadgets, a switch and a
double-switch between two vertices u and v, as shown in Figure 4. In a double-
switch there is a direct edge to the root. In both gadgets, only u and v (and r
for the double-switches) may have edges incident to other vertices.

We immediately observe:

Claim. In a 2-tree partition,

– the edges of a triangle cannot belong to a single tree and must be colored
with different colors,

– the edges at the endpoints u and v of a switch are colored by different colors,
and

– the edges at the endpoints u and v of a double-switch are colored by the
same color, which is different from the color of the edges at m.

We can now give the reduction.
For every variable x construct a switch S(x) with the vertices x and x̄, and

directly connect these vertices to the root with an edge. For every clause ci

construct a triangle with vertices ci(1), ci(2), ci(3) which are identified with the
literals. Connect each variable x in S(x) with its occurrences in the clauses by
paths of length two. Each such path pj has a middle vertex mj and two edges
ej = (x, mj) and fj = (mj , xj), where xj is the j-th occurrence of x in some
clause. Finally, connect any two such vertices mi and mj by a double-switch.

Hence each variable x has a gadget H(x) consisting of the switch S(x) and the
triangle for the clause (x, x, x̄) with the vertices x′, x′′ and x̄′. There are paths
between x and x′, x and x′′ and x̄ and x̄′, and there is a double-switch between
the first two paths, see Figure 5.

Claim. α has a Not-All-Equal truth assignment if and only if G(α) has a 2-tree
partition.

Proof. First, suppose there is a Not-All-Equal truth assignment. Then color the
edges from the root to each vertex representing a true literal blue, and the edges
towards the false literals red, and for the edges between the root and the double-
switches take the opposite color of the edges at the endpoints. Complete the



Partitions of Graphs into Trees 437

x x
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Fig. 5. The gadget of a variable x

coloring of the remaining edges of the switches and the double-switches. They
separate edges with the same color at the endpoints. Finally, color the edges
in the triangles of the clauses such that there are no monochrome cycles. The
latter is doable, since there is a Not-All-Equal assignment with a true and a false
literal for each clause. Thus there is a blue and a red path from the root to each
triangle. Now all edges are properly colored, and each color induces a tree.

Conversely, if there is a 2-tree partition, then there is a Not-All-Equal assign-
ment of the variables by the color of the edges on the monochrome paths in
the gadgets H(x), and there is a recoloring of the edges such that blue edges
correspond to true and red edges to false.

Claim. For every gadget H(x) the path from x̄ to x̄′ is monochrome, say blue,
and there is blue path between x̄ and the root. There is a monochrome red path
between x and x′ or x and x′′ and a red path between x and the root.

Proof. By the first claim both colors are present in the triangles for the clause.
Suppose the path between x̄ and x̄′ is not monochrome. Then it is a dead end
and does not connect the edges in the triangle of the clause to the root. Now
both colors in the triangle for the clause must come through x. Then there must
be a blue path and a red path from x to x′ and to x′′. This is impossible by the
double-switch, whose ends have the same color. Thus the path from x̄ to x̄′ is
monochrome, and there must be a monochrome path of the other color to x′ or
x′′ through x. All red (blue) edges must be connected by monochrome paths,
and this connection can only be established through to root.

For every variable we color the vertex x in S(x) by the color of the monochrome
path to x′ or x′′ and accordingly for x̄, and we assign x the value true if x is
blue, and false if x is red. By the previous claim this is consistent for a pair x, x̄.

Finally, to achieve a coloring which agrees with an assignment we may recolor
some edges.

First, for every x all paths between x in S(x) and x in the triangles of the
clauses can be colored with the color of x.



438 T. Biedl and F.J. Brandenburg

Therefore, observe that by the double-switches two such paths cannot be
monochrome and with different colors. Suppose that x is blue and let p = (e, f)
be a path from x with different colors for e and f . Then e cannot be red by the
connectivity of the tree. If f is red, then it is a dead end. The two vertices of
the triangle which are not incident with f are attached to a blue and a red edge,
and these edges have monochromatic paths to the root. Now the edge f can be
recolored blue. Subsequently, the edge in the triangle between the two vertices
with an attached blue edge must be colored red, and one of the other edges in
the triangle must be red.

Finally, suppose x is blue and the edge from x to the root is red. Then recolor
this edge blue. This may induce blue cycles from the root to x, via a blue path
to a triangle and back to the root. We break each such cycle in the triangle by
recoloring the edge between the two attached blue edges and let another edge in
the triangle be red. This is consistent with the 2-tree partition.

Now all edges incident with a vertex x of a literal are single-colored, and every
clause has a red and a blue edge. Hence, there is a consistent Not-All-Equal truth
assignment.

For k ≥ 3 we reduce from the k-coloring problem. Let G be an instance of k-
coloring. Add a new root r to G and connect all vertices of G with the root.
Replace each edge (u, v) of G by a switch as shown in Figure 4. Then the coloring
of G one-to-one corresponds to the tree partition of the constructed graph. In
any k-tree partition of the resulting graph if the edge from the root to a vertex
v is in the i-th tree, then v is assigned the i-th color. By the switches, adjacent
vertices are colored differently. Conversely, color the edges from a vertex v to the
root according to the given color of v, color the remaining edges in the switches
appropriately.

We summarize:

Theorem 4. For every k ≥ 2 is NP-hard whether a graph G has a k-tree
partition.
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Abstract. Graph drawing software are now commonly used. However,
the choice of a well-adapted program may be hard for an inexperienced
user.Thisposterpresentsawebsite(http://www.polytech.univ-nantes.
fr/GVSR/) built to help users choose a program adapted to their problems.
So far, this site uniformely presents fifty programs and aims at helping
users both in their choices and in comparing the programs.

The current profusion of available graph drawing programs lets the non-specialist
user often confused. Some programs have been developed in close partnership
with the scientific community (e.g. Pajek for social networks). But generally
speaking, the choice of a program well-adapted to both the data and the method-
ology remains difficult for a user expert in his field but not in graph drawing.
Recent books can be used as guides [1,2], and several websites present lists of
general or specialized programs [3,4,5] or synthetic views of different types of
layouts [6]. However, either the information is too complex for a non-specialist
or it is presented incompletely or in a heterogeneous form uneasy to explore.
Consequently much effort is required to compare the various programs.

Those restrictions led us to develop a website called “Graph Visualization Soft-
ware References” (http://www.polytech.univ-nantes.fr/GVSR/). Built as a
directory, it presents the programs with a uniform text-based description along
with a screenshot. This site keeps evolving and so far contains about fifty vari-
ous software descriptions classified into five types: libraries, visualization tools,
knowledge representation, 3D only tools, and specific tools. Our objectives are
to facilitate the users’ choices and to compare programs with common criteria.

Each program has its own description card (Fig. 1) made of a screenshot,
general information (e.g. author(s)’ name, website, . . . ), specific information on
the visualization (e.g. possible uses, graph type(s), . . . ), technical information
(e.g. operating system(s), license(s), . . . ) and references (e.g. publication(s), web-
site(s)). Each card is described by an XML file. The files are managed with the
native XML database “Exist ”. Some of the existing functionalities are an auto-
matic indexing of the data and an organization of the XML files in collections
like in a computer hard-disk. The communication with the user’s web browser is
done with the Apache Tomcat servlet container via “JavaServer Pages (JSP)”.
This technology allows to easily create websites with a dynamic content indepen-
dent from the server and client architectures. In addition, the site allows users
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to propose new programs by simply completing an enclosed form. Finally, the
site has an XQUERY-based search engine.

Fig. 1. Example of a software description card

The content of the site keeps evolving by the addition of new programs and
new functionalities. We are currently working on a benchmark for comparing
different programs on the same graph base. However, as the graph description
format is different for each program, we are working on a format converter via
the Graph Exchange Language (GXL) [7].
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We demonstrate a collection of techniques that seek to make the transition be-
tween drawings based on two topologically distinct spanning trees of the same
graph as clear as possible.

As Herman, Melançon, and Marshall note [HMM00], one way to draw a large
graph is to extract a spanning tree from it, use a tree layout algorithm [CK95,
Ead92, RT81, II90, TM02, GADM04, LY05] to draw the spanning tree, and then
add back the graph edges not included in the spanning tree. The problem with
this approach is that the drawings tend to favor the edges that are part of the
spanning tree, even though they may be no more important in the underlying
structure than non-spanning tree edges. One way of dealing with this problem
is to facilitate exploration of multiple spanning trees.

Yee et al. [YFDH01] describe a system that produces layouts based on Eades’
radial layout algorithm [Ead92] and lets users interactively select a new node
as root. When this happens, the system first calculates a breadth-first spanning
tree rooted at the selected node, and then smoothly transitions to a topologi-
cally distinct spanning tree. Although Yee et al.’s static layouts are free of edge
crossings, transitions between trees can be hard to follow because there edge
crossings do occur.

A number of tree-based graph visualizations, such as RINGS [TM02], RDT
[JP98], and others [LRP95, Mun97, Wil99] also allow users to reconfigure views
of a given tree, and some even allow users to change the root node. They do
not, however, let the user select and smoothly transition to a different spanning
tree built from a different collection of edges. To our knowledge only Yee et al.’s
system [YFDH01] and one mentioned by Melançon and Herman [MH98] support
smooth transitions between different spanning trees of the same graph.

We have built a system to use as a test bed for improving the sort of tran-
sitions between topologically distinct graphs that Yee et al. and Melançon and
Herman use. Here we present some preliminary results. Like Yee et al. we only
use breadth-first search trees. These often share common subtrees, especially
when the roots of the trees are closely related. A major thrust of our research
concerns layouts that make it easier for users to perceive the migration of these
common subtrees as they disconnect from their old parents, and then reconnect
at their new parents’ locations.

As illustrated in our poster, our static layouts, use a variant of what Lin and
Yen call “a balloon drawing subtree with non-uniform size” [LY05] (flattened-
out cone drawings [CK95, JP98]) rather than the radial layout of Eades [Ead92]
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and Yee et al. Our variant balloon drawing method places children not around
the entire balloon, but rather on the centrifugal semi-circle of the balloon that
lies outside the parent’s balloon. This allows us to guarantee that the distance
from a nonroot node to the root monotonically increases with the depth of the
node, even though balloon layouts forego the stronger invariant that all nodes
of a given depth are equidistant from the parent. It also allows us to replace
node and link diagrams with solid-looking structures with highly idiosyncratic
silhouettes, and with sub-structures that can be gracefully detached and moved,
to striking visual effect, from the parent in an old spanning tree to the new
parent in the new spanning tree.

Thus, rather than adopt the classical balloon tree convention of drawing each
node as a point lying on the perimeter of its balloon, we draw it as a hemi-
sphere covering the node’s balloon. Building on Biederman’s [Bie87] and Irani
and Ware’s [IW03] research on the human visual system’s pre-attentive capacity
to construct shape representations from shading and silhouette, we also shade
the hemispheres to emphasize the idiosyncratic form of each structure. (Em-
pirical work will be required to determine whether a visualization this strange
is useful, but the work of Irani and Ware suggests that such idiosyncratically
shaped three-dimensional forms enhance memory and perception, especially by
novices, of underlying graph relationships.)

Our animation algorithm is, to our knowledge, novel. Given a graph drawn
according to a breadth-first spanning tree (hereafter known as the “old drawing”)
and a node chosen to be the new root, the algorithm:

1. Calculates a breadth-first spanning tree rooted at the chosen node.
2. Calculates a new drawing based on the new spanning tree. Stores the angle

and distance from each nonroot node to its new parent in the new layout (in
effect, each such node’s parent becomes the origin of the coordinate system
that holds the node’s position) we call this distance and angle the new relative
coordinates of the node.

3. Calculates for each nonroot node the angle and distance in the old drawing
from its new parent. We call these the old relative coordinates.

Then the algorithm generates each frame of the animation by interpolating
between the old and new relative coordinates and calculating the absolute posi-
tion of each node by recursively calculating the absolute position of its parent.
More details are in [PHS06].
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1 Introduction

Our recent paper [1] details an algorithm for removing overlap between rect-
angles, while attempting to displace the rectangles by as little as possible. The
algorithm is primarily motivated by the node-overlap removal problem in graph
drawing. The algorithm treats x- and y-dimensions separately, each as an in-
stance of the variable placement with separation constraints (VPSC) problem:

Given n variables vi ∈ V , a weight wi ≥ 0 and a desired value di for
each variable and a set of separation constraints C over these variables
find an assignment to the variables which minimizes

∑n
i=1 wi × (vi −di)2

subject to C.

Each separation constraint c ∈ C has form u+g ≤ v where g ≥ 0 is the minimum
separation between variables u and v.

In [1] we gave a procedure, satisfy VPSC, that was intended to find a feasible
but possibly non-optimal solution to the VPSC. Unfortunately, the algorithm we
gave for satisfy VPSC contained an error which means that in rarely occurring
cases it may return an infeasible solution.

The basic approach of the algorithm satisfy VPSC was to merge variables
into larger and larger “blocks” of variables connected by active constraints. The
algorithm processed the variables from smallest to greatest based on some total
order given by the relation �C where u �C v iff there is a constraint c ∈ C of
form u + g ≤ v.

Naive implementation of this algorithm has worst-case complexity of O(|V | ·
|C|). In order to improve efficiency, the algorithm given in [1] used a priority
queue for each block b to store the block’s “in” constraints, i.e. those constraints
of form u + g ≤ v where v is in block b, ordered by their violation. When two
blocks were merged so were their priority queues. Implementing the priority
queues as pairing heaps [2] improved the amortized worst case complexity of the
algorithm to O((|V | + |C|) log |C|).

Unfortunately, we have subsequently realized that in rare cases merging of
priority queues meant that the algorithm given in [1] could return a infeasible
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solution. The problem is that when a block b is moved the violation of its “in”
constraints changes value. It was claimed in [1], that the relative ordering of the
constraints in the priority queue will not be changed as the result of a block’s
movement since all variables in the block will be moved by the same amount
and so the violation of the constraints will be changed by the same amount for
all non-internal constraints. This is true for the constraints in the priority queue
of the current active block b but may not be true for constraints in a priority
queue of a non-active block b′ whose constraints refer to variables that are in
b. This may mean that the priority queue of b′ becomes invalid and, if at some
future time b′ becomes merged with the active block, can lead to an error.

It is relatively straightforward to fix the problem. We keep a time stamp for
each block b, which is the time it last moved, and a time stamp for each constraint
c in a priority queue implemented as a pairing heap, which is the time it was
placed in the priority queue. When a constraint c is encountered in the priority
queue of the currently active block b (as the result of coming to the “top” of the
heap during a remove operation) we check that the other block b′ that it refers
to has not been moved since c was placed in the priority queue. If this is not
true, the relative placement of the constraint in the queue could be wrong, so a
down heap operation is performed on the constraint. A down heap is required
since c’s violation relative to the other constraints in the priority queue can only
have decreased as block b′ must have moved to the left. Since c’s violation has
decreased it is quite safe to lazily correct the problem.

The worst case complexity of the the corrected satisfy VPSC is now O((|V | ·
|C|) log |C|) since we might perform a down-heap operation repeatedly on the
same constraint. However, if a depth-first traversal is used to construct the total
ordering from the partial order, it is quite rare for this scenario to arise and in
this case we believe that the expected amortized time complexity is O((|V | +
|C|) log |C|). The revised algorithm is described in more detail in [3].
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Abstract. This report describes the Thirteenth Annual Graph Drawing
Contest, held in conjunction with the 2006 Graph Drawing Symposium
in Karlsruhe, Germany. The purpose of the contest is to monitor and
challenge the current state of the graph-drawing technology.

1 Introduction

This year’s graph drawing contest had five distinct categories: the graph drawing
challenge, the free-style contest, and three special graph categories. The graph
drawing challenge, which took place during the conference, focused on area min-
imization of straight-line planar drawings. The free-style competition provided
participants with the opportunity to present their best graph visualizations, with
a focus on both aesthetic beauty as well as relevance to the graph drawing com-
munity. The first special category was a mystery theory graph of 101 nodes and
190 edges, with the judging of a graph based on both its visual and informa-
tional merit. The second special category focused on visualizing the History of
the FIFA World CupTM. This category had the requirement that the submission
be an animation showing the evolution of the match results of the world cup
over its long history. The third special category was more practically oriented.
The task was to provide an informative visualization of the Java compile-time
dependency graph with nodes representing Java classes and directed edges rep-
resenting compile-time dependencies between two classes. Unfortunately, this
task proved too challenging this year, and there were no submissions for this
category. However, there were 20 submissions among the other categories. The
remaining sections go into more details about each category and the winning
submissions. Since many of the winning submissions were animations, interested
viewers should visit the Contest’s website1 to download and view the winning
animations along with their descriptions.

1 http://gd2006.org/contest
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2 Graph Drawing Challenge

This year’s challenge dealt with minimizing the area of straight-line drawings of
planar graphs. At the start of the one-hour on-site competition, the contestants
were given six planar graphs ranging in size from 16 nodes to 400 nodes. The
first four graphs were small enough to be manually created, and the last two
were automatically generated. Vertices were assigned random grid positions in
all of the graphs.

We allowed teams to participate in one of two categories, automated and man-
ual. Manual teams came and solved the problems using ILOG’s Simple Graph
Editing Tool provided by the committee. The automated teams were allowed
and highly encouraged to use additional software tools to help solve the prob-
lems. Interestingly, for two of the six graphs people manually obtained better
solutions than the automated software.

Six teams entered the manual category and the winner was the team of
Fabrizio Frati and Markus Geyer from Universitá Roma Tre and Universität
Tübingen. Figure 1(a) shows their winning submission for Graph 2. Four teams
entered the automated category and the winner was the team from Universität
Tübingen led by Andreas Gerasch. Figure 1(b) shows their winning submission
for Graph 4.

(a) (b)

Fig. 1. The winning submissions for (a) Graph 2 by Frati and Geyer and (b) Graph 4
by the Tübingen team

3 Free-Style Contest

This year only two teams submitted entries to the free-style category. As there
was no clear winner between the two, two honorable mentions were awarded.

Figure 2 shows the submission by the team of Emden Gansner and Yehuda
Koren from AT&T Research Labs, which is an example of the improved circular
layout algorithm presented at this year’s symposium [1]. The graph represents
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Fig. 2. An example drawing of the improved circular layout algorithm of Gansner and
Koren

behind-the-scenes data sharing related to various popular websites. The graph
has 2226 nodes and 4710 edges. The node with the highest degree (169) is
ad.doubleclick.net, an advertising server. The external edges connected to this
node are merged together, making the drawing cleaner. Otherwise, these external
edges would dominate the drawing.

Figure 3 shows the submission by the team of Florian Böhl, Robert Görke,
and Steffen Mecke from Universität Karlsruhe regarding their Flow Commander
program.2 The program provides an algorithm animation of the Push-Relabel
network flow algorithm of Goldberg and Tarjan but is designed to support other
graph algorithms. The application uses the Java3d library for a system indepen-
dent means of interactively visualizing the animation in 3D-space.

4 Theory Graph Contest

There were five submissions in the theory-graph category with each contestant
giving a different interpretation. The graph used was the graph G10 described
in [2] formed by the union of two trees T1 = (V, E1) and T2 = (V, E2) where
each tree has a common root v0 and 10 common children, v1, . . . , v10. The root r
has 90 grand-children labeled vij such that, for 1 ≤ i, j ≤ 10 and i �= j, we have
(vi, vij) ∈ E1 and (vj , vij) ∈ E2. Several contestants observed that this graph is
also identical to a modification of K11 where every edge, except those adjacent
to vertex v0, is duplicated and then subdivided.

The committee awarded two first prizes to two equally interesting visualiza-
tions of the graph. Both winning submissions included animated visualizations
of the graph. Figure 4 shows a snapshot of the winning submission by Michael

2 See: http://i11www.iti.uni-karlsruhe.de/adw/jawsGD/GTVisualizer3D.jnlp

http://i11www.iti.uni-karlsruhe.de/adw/jawsGD/GTVisualizer3D.jnlp
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Fig. 3. The Flow Commander application for visualizing Network Flow algorithms

Fig. 4. A snapshot of McGuffin’s winning animation of the theory graph

McGuffin of the Ontario Cancer Institute and the University of Toronto. Fig-
ure 5(a) shows a snapshot of the winning submission by Adel Admed, Seok-Hee
Hong, Quan Nguyen, and Donald Taylor of the University of Sydney and Na-
tional ICT Australia.

5 History of the World Cup Contest

There were three submissions for the History of the World Cup category. The
data given was a collection of every match played in the final rounds of the
FIFA World Cup including the country names and final scores. The broad goal
was to provide a creative and informative animated visualization of the data as
an evolving graph. There were many interesting submissions in this category,
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(a) (b)

Fig. 5. A snapshot of the Sydney team’s winning animations of (a) the theory graph
and (b) the World Cup graph

and Figure 5(b) shows a snapshot of the winning animation of Adel Admed,
Xiaoyan Fu, Seok-Hee Hong, Quan Nguyen, and Kai Xu from the University of
Sydney and National ICT Australia. Their focus was to highlight strong countries
and the performance of teams over time. In their approach, the team analyzed
the graphs from three perspectives: clustering analysis, centrality analysis, and
centrality-based thickness. They also visualized the graphs in three ways: radial
view layout, centralily-based 2.5D drawings, and an evolutionary drawing based
on team performance.
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