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1 Bioinformatics Department, National Institute of Research and Development for
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Abstract. We consider the absolute worst case time complexity for
Hopcroft’s minimization algorithm applied to unary languages (or a mod-
ification of this algorithm for cover automata minimization). We show
that in this setting the worst case is reached only for deterministic au-
tomata or cover automata following the structure of the de Bruijn words.
We refine a previous result by showing that the Berstel/Carton example
reported before is actually the absolute worst case time complexity in the
case of unary languages for deterministic automata. We show that the
same result is valid also when considering the setting of cover automata
and an algorithm based on the Hopcroft’s method used for minimization
of cover automata. We also show that a LIFO implementation for the
splitting list is desirable for the case of unary languages in the setting of
deterministic finite automata.

1 Introduction

This work is in part a continuation of the result reported by Berstel and Carton
in [2] regarding the number of steps required for minimizing a unary language
through Hopcroft’s minimization technique. The second part of the paper con-
siders the same problem in the setting of Cover Automata. This new type of au-
tomata was introduced by Prof. Dr. Sheng Yu and Drs. Sântean and Câmpeanu
in [6] and since then was investigated by several authors such as in [4], [8], [14],
[16], [19], etc.

In the first part of the paper we will analyze and extend the result by Bestel
and Carton from [2]. There it was shown that Hopcroft’s algorithm for mini-
mizing unary languages requires O(n log n) steps when considering the example
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of automata following the structure induced by de Bruijn words (see [3]) as in-
put and when making several “bad” implementation decisions. The setting of
the paper [2] is for languages over an unary alphabet, considering the automata
associated to the language(s) having the number of states a power of 2 and choos-
ing “in a specific way” which set to become a splitting set in the case of ties.
In this context, the previous paper showed that the algorithm needs O(n log n)
steps for the algorithm to complete, which is reaching the theoretical asymptotic
worst case time complexity for the algorithm as reported in [9,10,11,13] etc.

We were initially interested in investigating further the complexity of an al-
gorithm described by Hopcroft, specifically considering the setting of unary lan-
guages, but for a stack implementation in the algorithm. Our effort has led to
the observation that when considering the worst case for the number of steps
of the algorithm (which in this case translates to the largest number of states
appearing in the splitting sets), a LIFO implementation indeed outperforms a
FIFO strategy as suggested by experimental results on random automata as
reported in [1].

One major observation/clarification that is needed is the following: we do
not consider the asymptotic complexity of the run-time, but the actual number
of steps. For the setting of the current paper when comparing n log n steps
and n log(n − 1) or n

2 log n steps we will say that n log n is worse than both
n log(n−1) and n

2 log n, even though when considering them in the framework of
the asymptotic complexity (big-O) they have the same complexity, i.e. n log(n−
1) ∈ Θ(n log n) and n

2 log n ∈ Θ(n log n).
In Section 2 we give some definitions, notations and previous results, then in

Section 3 we give a brief description of the algorithm discussed and its features.
Section 4 describes the properties for the automaton that reaches worst possible
case in terms of steps required for the algorithm (as a function of the initial
number of states of the automaton). We then briefly consider the case of cover
automata minimization with a modified version of the Hopcroft’s algorithm in
Section 6 and conclude by giving some final remarks in the Section 7.

2 Preliminaries

We assume the reader is familiar with the basic notations of formal languages and
finite automata, see for example the excellent work by Yu [20]. In the following
we will be denoting the cardinality of a finite set T by |T |, the set of words over
a finite alphabet Σ is denoted Σ∗, and the empty word is λ. The length of a
word w ∈ Σ∗ is denoted with |w|. For l ≥ 0 we define the following sets of words:

Σl = {w ∈ Σ∗ | |w| = l}, Σ≤l =
l⋃

i=0

Σi, and for l > 0 we define Σ<l =
l−1⋃

i=0

Σi.

A deterministic finite automaton (DFA) is a quintuple A = (Σ, Q, δ, q0, F )
where Σ is a finite set of symbols, Q is a finite set of states, δ : Q × Σ −→ Q
is the transition function, q0 is the start state, and F is the set of final states.
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We can extend δ from Q × Σ to Q × Σ∗ by δ(s, λ) = s, δ(s, aw) = δ(δ(s, a), w).
We will usually denote the extension δ of δ by δ when there is no danger of
confusion.

The language recognized by the automaton A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∈
F}. In what follows we assume that δ is a total function, i.e., the deterministic
automaton is also complete.

For a DFA A = (Σ, Q, δ, q0, F ), we can always assume, without loss of gen-
erality, that Q = {0, 1, . . . , |Q| − 1} and q0 = 0. Throughout this paper we will
assume that the states are labeled with numbers from 0 to |Q| − 1. If L is finite,
L = L(A) and A is complete, there is at least one state, called the sink state or
dead state, for which δ(sink, w) /∈ F , for any w ∈ Σ∗. If L is a finite language,
we denote by l the maximum among the lengths of all words in L.

For the following definitions we assume that L is a finite language over the
alphabet Σ and l is the length of the longest word(s) in L.

Definition 1. Cover Language. A language L′ over Σ is called a cover language
for the finite language L if L′ ∩ Σ≤l = L. A deterministic finite cover automa-
ton (DFCA) for L is a deterministic finite automaton (DFA) A, such that the
language accepted by A is a cover language of L.

Definition 2. State equivalence. Let A = (Σ, Q, δ, 0, F ) be a DFA. We say that
p ≡A q (state p is equivalent to q in A) if for every w ∈ Σ∗, δ(p, w) ∈ F iff
δ(q, w) ∈ F .

Definition 3. Level. Let A = (Σ, Q, δ, 0, F ) be a DFA (or a DFCA for L). We
define, for each state q ∈ Q, level(q) = min{|w| | δ(0, w) = q}.

The right language of a state p ∈ Q and for a DFCA A = (Q, Σ, δ, q0, F ) for L
is Rp = {w | δ(p, w) ∈ F, |w| ≤ l − levelA(p)}.

Definition 4. Word similarity. Let x, y ∈ Σ∗. We define the following similar-
ity relation in the following way: x ∼L y if for all z ∈ Σ∗ such that xz, yz ∈ Σ≤l,
xz ∈ L iff yz ∈ L, and we write x 	∼L y if x ∼L y does not hold.

Definition 5. State similarity. Let A = (Σ, Q, δ, 0, F ) be a DFCA for L. We
consider two states p, q ∈ Q and m = max{level(p), level(q)}. We say that p is
similar with q in A, denoted by p ∼A q, if for every w ∈ Σ≤l−m, δ(p, w) ∈ F iff
δ(q, w) ∈ F . We say that two states are dissimilar if they are not similar (the
above does not hold).

If the automaton is understood, we may omit in the following the subscript A
when writing the similarity of two states in a DFCA A.

Lemma 1. Let A = (Σ, Q, δ, 0, F ) be a DFCA for a finite language L. Let
p, q ∈ Q, with level(p) = i, level(q) = j, and m = max{i, j}. If p ∼A q, then
Rp ∩ Σ≤l−m = Rq ∩ Σ≤l−m.

Proof. See the proof given in [6].
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Definition 6. A DFCA A for a finite language is a minimal DFCA if and only
if any two distinct states of A are dissimilar.

Once two states have been detected as similar, one can merge the higher level
one into the lower level one by redirecting transitions. We refer the interested
reader to [6] for the merging theorem and other properties of cover automata.

3 Hopcroft’s State Minimization Algorithm

In [11], an elegant algorithm for state minimization of DFAs was described.
This algorithm was proven to be of the order O(n log n) in the worst case
(asymptotic evaluation). We will study further the complexity of the algorithm
by considering the various implementation choices of the algorithm. We will show
that by implementing the list of the splitting sets as a queue, one will be able
to reach the absolute worst possible case with respect to the number of steps
required for minimizing an automaton. We will also show that by changing the
implementation strategy from a queue to a stack, we will never be able to reach
that absolute worst case in the number of steps for minimizing automata, thus,
at least from this perspective, the programmers should implement the list S from
the following algorithm as a stack (LIFO).

The algorithm uses a special data structure that makes the set operations
of the algorithm fast. We will give in the following the description of the mini-
mization algorithm working on the automaton (Σ, Q, δ, q0, F ) that has an arbi-
trary alphabet Σ and later we will restrict the discussion to the case of unary
languages.

1: P = {F, Q − F}
2: for all a ∈ Σ do
3: Add((min(F, Q − F ), a), S) (min w.r.t. the number of states)
4: while S 	= ∅ do
5: get (C, a) from S (we extract (C, a) according to the

strategy associated with the list S: FIFO/LIFO/...)
6: for each B ∈ P that is split by (C, a) do
7: B′, B′′ are the sets resulting from splitting of B w.r.t. (C, a)
8: Replace B in P with both B′ and B′′

9: for all b ∈ Σ do
10: if (B, b) ∈ S then
11: Replace (B, b) by (B′, b) and (B′′, b) in S
12: else
13: Add((min(B′, B′′), b), S)

where the splitting of a set B by the pair (C, a) (the line 6) means that δ(B, a)∩
C 	= ∅ and δ(B, a) ∩ (Q − C) 	= ∅. We have denoted above by δ(B, a) the set
{q | q = δ(p, a), p ∈ B}. The B′ and B′′ from line 7 are defined as the following
two subsets of B: B′ = {b ∈ B | δ(b, a) ∈ C} and B′′ = B − B′.
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It is useful to explain briefly the working of the algorithm: we start with the
partition P = {F, Q−F} and one of these two sets is then added to the splitting
sequence S. The algorithm proceeds by breaking the partition into smaller sets
according to the current splitting set retrieved from S. With each splitting of
a set in P the number of sets stored in S grows (either through instruction
11 or instruction 13). When all the splitting sets from S are processed, and S
becomes empty, then the partition P shows the state equivalences in the input
automaton: all the states contained in a same set B in P are equivalent. Knowing
all equivalences, one can easily minimize the automaton by merging all the states
found in the same set in the final partition P at the end of the algorithm.

We note that there are three levels of “nondeterminism” in the implementation
of the algorithm. All these three choices influence the algorithm by changing the
number of steps performed for a specific input automaton. We describe first the
three implementation choices, and later we show the worst case scenario for each
of them.

The “most visible” implementation choice is the choice of the strategy for
processing the list stored in S: as a queue, as a stack, etc. The second and third
such choices in implementation of the algorithm appear when a set B is split
into B′ and B′′. If B is not present in S, then the algorithm is choosing which
set B′ or B′′ to be added to S, choice that is based on the minimal number of
states in these two sets (line 13). In the case when both B′ and B′′ have the same
number of states, then we have the second implementation choice (the choosing
of the set that will be added to S). The third such choice appears when the split
set (B, a) is in the list S; then the algorithm mentions the replacement of (B, a)
by (B′, a) and (B′′, a) (line 11). This is actually implemented in the following
way: (B′′, a) is replacing (B, a) and (B′, a) is added to the list S (or vice-versa).
Since we saw that the processing strategy of S matters, then also the choice of
which B′ or B′′ is added to S and which one replaces the previous location of
(B, a) matters in the actual run-time of the algorithm.

In the original paper [11] and later in [9], and [13], when describing the com-
plexity of the minimization method, the authors showed that the algorithm is
influenced by the number of states that appear in the sets processed in S. Intu-
itively, that is why the smaller of the (add) B′ and B′′ is inserted in S in line
13; and this is what makes the algorithm sub-quadratic. In the following we will
focus on exactly this issue of the number of states appearing in sets processed
in S.

4 Worst Case Scenario for Unary Languages

Let us start the discussion by making several observations and preliminary clar-
ifications: we are discussing about languages over an unary alphabet. To make
the proof easier, we restrict our discussion to the automata having the number of
states a power of 2. The three levels of implementation choices are clarified/set
in the following way: we assume that the processing of S is based on a FIFO
approach, we also assume that there is a strategy of choosing between two sets
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that have been just splitted. These two sets have the same number of elements
in such a way that the one that is added to the queue S makes the third im-
plementation nondeterminism irrelevant. In other words, no splitting of a set
already in S will take place (line 11 will not be executed).

Let us assume that such an automaton with 2n states is given as input for the
minimization algorithm described in the previous section. We note that since
we have only one letter in the alphabet, the states (C, a) from the list S can
be written without any problems as C, thus the list S (for the particular case
of unary languages) becomes a list of sets of states. So let us assume that the
automaton A = ({a}, Q, δ, q0, F ) is given as the input of the algorithm, where
|Q| = 2n. The algorithm proceeds by choosing the first splitter set to be added to
S. The first such set will be chosen between F and Q−F based on their number
of states. Since we are interested in the worst case scenario for the algorithm,
and the algorithm run-time is influenced by the total number of states that will
appear in the list S throughout the running of the algorithm (as shown in [11],
[9], [13] and mentioned in [2]), it is clear that we want to maximize the sizes of
the sets that are added to S. It is time to give a Lemma that will be useful in
the following.

Lemma 2. For deterministic automata over unary languages, if a set R with
|R| = m is the current splitter set, then R cannot add to the list S sets containing
all together more than m states (line 13).

Proof. We can rephrase the Lemma as: for all the sets Bi from the current
partition P such that δ(Bi, a)∩R 	= ∅ and δ(Bi, a)∩(Q−R) 	= ∅. Then

∑

∀ i

|B′
i| ≤

m, where B′
i is the smaller of the two sets that result from the splitting of the

set Bi ∈ P with respect to R.
We have only one letter in the alphabet, thus the number of states q such

that δ(q, a) ∈ R is at most m. Each B′
i is chosen as the set with the smaller

number of states when splitting Bi thus |B′
i| ≤ |δ(Bi, a) ∩ R| which implies

that
∑

∀ i

|B′
i| ≤

∑

∀ i

|δ(Bi, a) ∩ R| = |(
⋃

∀ i

δ(Bi, a)) ∩ R| ≤ |R| (because all Bi are

disjoint).
Thus we proved that if we start splitting according to a set R, then the new

sets added to S contain at most |R| states. ��

Coming back to our previous setting, we will start with the automaton A =
({a}, Q, δ, q0, F ) (where |Q| = 2n) given as input to the algorithm and we have
to find the smaller set between F and Q − F . In the worst case (according to
Lemma 2) we have that |F | = |Q − F |, as otherwise, fewer than 2n−1 states will
be contained in the set added to S and thus less states will be contained in the
sets added to S in the second stage of the algorithm, and so on. So in the worst
case we have that the number of final states and the number of non-final states
is the same. To simplify the discussion we will give some notations. We denote
by Sw, w ∈ {0, 1}∗ the set of states p ∈ Q such that δ(p, ai−1) ∈ F iff wi = 1 for
i = 1..|w|, where δ(p, a0) denotes p. As an example, S1 = F , S110 contains all the
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final states that are followed by a final state and then by a non-final state and
S00000 denotes the states that are non-final and are followed in the automaton
by four more non-final states.

With these notations we have that at this initial step of the algorithm, either
F = S1 or Q − F = S0 can be added to S as they have the same number of
states. Either one that is added to the queue S will split the partition P in
the worst case scenario in the following four possible sets S00, S01, S10, S11, each
with 2n−2 states. This is true as by splitting the sets F and Q − F in sets with
sizes other than 2n−2, then according to Lemma 2 we will not reach the worst
possible number of states in the queue S and also splitting only F or only Q−F
will add to S only one set of 2n−2 states not two of them.

All this means that half of the non-final states go to a final state (|S01| =
2n−2) and the other half go to a non final state (S00). Similarly, for the final
states we have that 2n−2 of them go to a final state (S11) and the other half
go to a non-final state. The current partition at this step 1 of the algorithm is
P = {S00, S01, S10, S11} and the splitting sets are one of the S00, S01 and one of
the S10, S11. Let us assume that it is possible to chose the splitting sets to be
added to the queue S in such a way so that no splitting of another set in S will
happen, (chose in this case for example S10 and S00). We want to avoid splitting
of other sets in S since if that happens, then smaller sets will be added to the
queue S by the splitted set in S (see such a choice of splitters described also
in [2]).

We have arrived at step 2 of the algorithm. Since the first two sets from S are
now processed, in the worst case they will be able to add to the queue S at most
2n−2 states each by each splitting two of the four current sets in the partition P .
Of course, to reach the worst case, we need them to split different sets, thus we
obtain eight sets in the partition P corresponding to all the possibilities of words
of length 3 on a binary alphabet: P={S000, S001, S010, S011, S100, S101, S110, S111}
having 2n−3 states each. Thus four of these sets will be added to the queue S.
And we could continue our reasoning up until the i-th step of the algorithm:

We now have 2i−1 sets in the queue S, each having 2n−i states, and the
partition P contains 2i sets Sw corresponding to all the words w of the length
i. Each of the sets in the splitting queue is of the form Sx1x2...xi , then a set
Sx1x2x3...xi can only split at most two other sets S0x1x2x3...xi−1 and S1x1x2x3...xi−1

from the partition P . To reach the worst case for the algorithm, no set (of level
i) from the splitting queue should be splitting a set already in the queue, and
also, it should split 2 distinct sets in the partition P , making the partition at
step i+1 the set P = {Sw | |w| = i+1}. Furthermore, each such Sw should have
exactly 2n−i−1 states. In this way the process continues until we arrive at the
n-th step. If the process would terminate before the step n, of course we would
not reach the worst possible number of states passing through S.

We will now describe the properties/restrictions of an automaton that would
obey a processing through the Hopcroft’s algorithm as described above (for the
worst case scenario). We started with 2n states, out of which we have 2n−1

final and also 2n−1 non-final. Out of the final states, we have 2n−2 that precede
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another final state (S11), and also 2n−2 non-final states that precede other non-
final states for S00, etc. The strongest restrictions are found in the final partition
sets Sw, with |w| = n, each have exactly one element, which means that all the
words of length n over the binary alphabet can be found in this automaton by
following the transitions between states and having 1 for a final state and 0 for a
non-final state. It is clear that the automaton needs to be circular and following
the pattern of de Bruijn words, [3]. Such an automaton for n = 3 was depicted
in [2] as in the following Figure 1.

Fig. 1. A cyclic automaton of size 8 for the de Bruijn word 11101000, containing all
words of size 3 over the binary alphabet {0, 1}

It is easy to see now that a stack implementation for the list S will not be
able to reach the maximum as smaller sets will be processed before considering
larger sets. This fact will lead to splitting of sets already in the list S. Once this
happens for a set with j states, then the number of states that will appear in
S is decreased by at least j because the splitted sets will not be able to add as
many states as a FIFO implementation was able to do. We conjecture that in
such a setting the LIFO strategy could prove the algorithm linear with respect
to the size of the input. We reference [15] for previous work in this direction. If
the aforementioned third level of implementation choice is set to add the smaller
set of B′, B′′ to the stack and B to be replaced by the larger one. We proved
the following result:

Theorem 1. The absolute worst case run-time complexity for the Hopcroft’s
minimization algorithm for unary languages is reached when the splitter list S
in the algorithm is following a FIFO strategy and only for automata having a
structure induced by de Bruijn words of size n. In that setting the algorithm will
pass through the queue S exactly n2n−1 states for the input automaton of size
2n. Thus for m states of the input automaton we have exactly m

2 log2m states
passing through S.
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Proof. Due to the previous discussion we now know that the absolute maximum
for the complexity of the Hopcroft’s algorithm is reached in the case of the
FIFO strategy for the splitter list S. The maximum is reached when the input
automaton is following the structure of the de Bruijn words for a binary alphabet.

What remains to be proven is the actual number of states that pass through
the queue S: in the first stage exactly half of all states are added to S through
one of the sets S0 or S1, in the second stage half of the states are again added to
S through two of the four sets S00, S01, S10, S11. At the third stage half of states
are added to S because four of the following eight sets S000, S001, S010, S011, S100,
S101, S110, S111 are added to S, each having exactly 2n−3 states. We continue this
process until the last stage of the algorithm, stage n: when still 2n−1 states are
added to S through the fact that exactly 2n−1 sets, each containing exactly
one state, are added to the splitting queue. Of course, at this stage we have the
partitioning into {Sw | |w| = n} and half of these sets will be added to S through
the instruction at line 13. It should be now clear that we have exactly n stages
in this execution of the algorithm, each with 2n−1 states added to S, hence the
result.

5 Stacks

In this section we will consider the case of the LIFO implementation for the
splitting sequence S used in the algorithm. Let us assume that we start with a
minimal automaton having 2n states.

Following the steps of the procedure and lemma 2 one can easily see that in
the list S we can have in the worst case scenario the following number of states:
2n−1 | 2n−2, 2n−2 | 2n−3, 2n−3, 2n−2 | 2n−4, 2n−4, 2n−3, 2n−2 | . . . and finally
2, 2, 22, 23, 24, . . . , 2n−4, 2n−3, 2n−2

In this way one reaches in n steps a set in S that contains exactly one state. At
this moment this single state will be partitioning all the states that lead to this
single state in the automaton, thus if the state is on the loop of the automaton
in exactly another n steps all the states will be in their own partitions and the
algorithm finishes. The worst case scenario is when this first partitioned state is
actually the start state and this state does not have any incoming transitions,
thus it does not split any other state. This case is still not reaching the O(n2n)
states in S because at the next step another single state will be in its own
partition set in P . To be in the worst case, this state has to be very near of
the start state of the automaton (otherwise all the states that precede it will be
split and added to the partition P ). We will have an increasing number of states
that are partitioned by much smaller states which is bringing down the number
of the states that pass through S. Another observation is the following: the first
n − 1 sets that appear in S are actually coming from specific splittings; if one
considers that the first single state in a set in S is Sx1x2x3...xn then it comes from
the splitting of Sx1x2...xn−1 through Sx2x3...xn−1Y . Through a careful analysis we
notice that the restrictions on words do not allow an “explosion” of the number
of states that can be added to the list S, so in linear time we obtain the most
refined partition P .
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When considering the start automaton (still unary) non-minimal, the pro-
cedure is changed a little as the actual discussion is delayed by at most log2a
where a is the period of the loop. The main observation is that even though
the procedure will choose the set by the smallest number of states in the set,
that set could actually contain more “minimal states” than the set that was not
added to S, thus the “lag” in the algorithm amounts to log2a with a being the
maximal number of states that are in an equivalence class in the automaton.
The discussion proceeds in a similar fashion, still in at most n + log2a steps we
reach the first state in the minimal automaton, and after that stage the stack
implementation makes the order of consideration of the splitting of partition in
such a way that it is linear.

Following this discussion we showed in a sketched way that the Hopcroft’s
algorithm with stack implementation applied for unary automata has a linear
time requirement for completion.

6 Cover Automata

In this section we discuss briefly about an extension to Hopcroft’s algorithm to
cover automata. Körner reported at CIAA’02 and also in [14] a modification of
the Hopcroft’s algorithm so that the resulting sets in the partition P will give
the similarities between states with respect to the input finite language L.

To achieve this, the algorithm is modified as follows: each state will have its
level computed at the start of the algorithm; each element added to the list S
will have three components: the set of states, the alphabet letter and the current
length considered. We start with (F, a, 0) for example. Also the splitting of a
set B by (C, a, l1) is defined as before with the extra condition that we ignore
during the splitting the states that have their level+l1 greater than l (l being
the longest word in the finite language L). Formally we can define the sets X =
{p | δ(p, a) ∈ C, level(p) + l1 ≤ l} and Y = {p | δ(p, a) 	∈ C, level(p) + l1 ≤ l}.
Then a set B will be split only if B ∩ X 	= ∅ and B ∩ Y 	= ∅.

The actual splitting of B ignores the states that have levels higher than or
equal to l − l1. This also adds a degree of implementation nondeterminism to
the algorithm when such states appear because the programmer can choose to
add these sets in either of the two splitted sets obtained from B. The worst
implementation choice would be to put the states with level higher than l − l1
in such a way that they balance the number of states in both B′ and B′′ (where
B′ = X ∪ Z ′ and B′′ = Y ∪ Z ′′ and Z ′ ∩ Z ′′ = ∅, and Z ′ ∪ Z ′′ = B − (X ∪ Y )
are all the states of level higher than or equal to l − l1). We note that this is an
obviously “bad” implementation choice, thus we assume that the programmer
would avoid it. We will make in this case the choice to have the states split as
in the case of DFA, according to whether δ(p, a) ∈ C, then p ∈ X , otherwise,
p ∈ Y . This choice will make the Lemma 2 valid also for the Cover automata
case, with the modifications to the algorithm mentioned above.

The algorithm proceeds as before to add the smaller of the newly splitted sets
to the list S together with the value l1 + 1.
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Let us now consider the same problem as in [2], but in this case for the case of
DFCA minimization through the algorithm described in [14]. We will consider
the same example as before, the automata based on de Bruijn words as the input
to the algorithm (we note that the modified algorithm can start directly with a
DFCA for a specific language, thus we can have as input even cyclic automata).
We need to specify the actual length of the finite language that is considered and
also the starting state of the de Bruijn automaton (since the algorithm needs
to compute the levels of the states). We can choose the length of the longest
word in L as l = 2n and the start state as S111...1. For example, the automaton
in figure 1 would be a cover automaton for the language L = {0, 1, 2, 4, 8} with
l = 8 and the start state q0 = 1. Following the same reasoning as in [2] but for
the case of the new algorithm with respect to the modifications, we can show
that also for the case of DFCA a queue implementation (as specifically given
in [14]) is a worse choice than a stack implementation for S. We note that the
discussion is not a straight-forward extension of the work reported by Berstel in
[2] as the new dimension added to the sets in S, the length and also the levels of
states need to be discussed in detail. We will give the details of the construction
and the step-by-step discussion of this fact in the following:

We start as before with an automaton with 2n states working on a unary
language given as: A = ({a}, Q, δ, q0, F ) where |Q| = 2n. Let us take a look at
the possible levels of the states in deterministic automata over unary languages:
Such an automaton is formed by a line followed by a loop. The line or the loop
can be possibly empty: if the loop is empty (or containing only non-final states),
then the automaton accepts only a finite set of numbers, if the loop contains at
least one state that is final, it accepts an infinite set. In either case the levels of
the states is 0, 1, 2, 3, ..., n − 2, n − 1. One can see that the highest level in
such a unary DFA is at most n − 1.

Following the variant of Lemma 2 for DFCA it is clear that the worst possible
case is when |F | = |Q − F |. Let us consider that S starts with the pair (F, 0) or
(Q − F, 0), in either case at the second stage of the algorithm the partition P
will be split in the following four possible sets (similarly as in the case of DFA):
S00, S01, S10, S11. To continue with the worst possible case, each of these sets
need to contain exactly 2n−2 states (otherwise, according to Lemma 2 for the
DFCA case, a set with less states is added to S and also in the next steps less
states will be added to S). Also in this case it is necessary to make a “bad”
choice of the sets that will be added next to S (one from the S00, S01 and one
from S10, S11). We will use the same choosing strategy as before. The difference
is that these sets will be added to S and with the length 1: for example, at the
next step S will contain (S00, 1) and (S10, 1). At the next stage of the algorithm
we will observe a difference from the DFA case: one of the states at the next stage
will not be splitted from the set because of its high level. Considering that we
have a state of level l −1, at this step this high-level state will not be considered
for splitting, thus can be added to either one or the other of the halves of the
state containing it. For the final automaton, considering that the state S11..1 is
the start state, the high level state is S011..1.
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We continue the process in a similar fashion until the i-th stage of the algo-
rithm by carefully choosing the splitting sets, and by having at each stage yet
another state that would not be considered in the splitting due to its high level.
But because the forth implementation choice, the number of states in each set
remains the same. At this moment we will have 2i−1 pairs in the queue S, each
formed between a set containing 2n−i states and the value i − 1. Thus we will
compute the splitter sets X and Y as given before in the case of DFA with the
extra condition that the sets p satisfying the condition also satisfy the fact that
level(p) + i − 1 ≤ l.

At this moment the partition P has exactly 2i components that are in the
worst case exactly the sets Sw for all w ∈ {0, 1}i. In the worst case all the level
i states from the splitting queue S will not break a set already in the queue S,
but at the same time will split two other sets in the partition P . This is achieved
by the careful choosing of the order in which these sets arrive in the queue (one
of these “worst” additions to S strategies was described in [2]). In this way, at
the end of the stage i in the algorithm we will have the partition P containing
all the sets Sw with w ∈ {0, 1}i+1 and each of them having 2n−i−1 states. In the
queue S there will be 2i pairs of states with the number i. These splitting pairs
will be used in the next stage of the algorithm.

This process will continue until the n−1-th stage as before (otherwise we will
not be in the worst possible case) and at the n-th stage exactly n−2 sets will not
be added to the queue S (as opposed to the DFA case), thus only 2n−1 − n + 2
singleton sets will be added.

This makes the absolute worst case for the run-time of the minimization of
DFCA based on Hopcroft’s method have exactly n2n−1−n+2 states pass through
S. The input automaton still follows the structure induced by de Bruijn words;
and when considering the start state as S11...1, the states that will be similar
with other states are the n−2 states of highest levels: S011...1, S001..1, ..., S00...011.
In fact we will have several similarities between these high level states and other
states in the automaton, more precisely, for an automaton with 2n states (fol-
lowing the structure of de Bruijn words containing all the subwords of size n)
we have the following pattern of similarities: the state S011...1 will have exactly
2n−2 − 1 similarities with other states in the automaton (because the level of
this state is 2n − 1, thus only the pattern 01 is making the difference to other
states), for S001...1 we will have 2n−3 − 1 similarities (as for its level 2n − 2 the
pattern making the difference is 001), and so on, until S000...01 will actually have
2n−(n−1) −1 = 2−1 = 1 similarities (since its level is 2n −n+2 and the pattern
making the difference is 000...01). These values are obtained from considering
the fact that the structure of the automaton will have all the sub-words of size
n, thus we can compute how many times a particular pattern appears in the
automaton.

This shows that a result similar to Theorem 1 holds also for the case of DFCA
with the only difference in the counting of states passing through S: n2n−1−n+2
rather than n2n−1. It should be clear now that a stack implementation for the list
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S is more efficient, at least for the case of unary languages and when considering
the absolute worst possible run-time of the algorithm.

7 Final Remarks

We showed that at least in the case of unary languages, a stack implementation
is more desirable than a queue for keeping track of the splitting sets in Hopcroft’s
algorithm. This is the first instance when it was shown that the stack is out-
performing the queue. Thus at least for the special case of unary languages we
know that it is better to have the implementation of S in the algorithm as a
stack rather than the intuitive implementation as a queue.

It remains open whether these results can be extended to languages containing
more than one letter in the alphabet.

For the case of cover automata one should settle the extra implementation
choice (the forth implementation choice as mentioned in the text) as follows:
rather than balancing the number of states in the two splitted sets, actually try
to un-balance them by adding all the high level states to the bigger set. These
remarks should achieve a reasonable speed-up for the algorithm.
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16. Păun, A., Santean, N., Yu, S.: An O(n2) Algorithm for Constructing Minimal
Cover Automata for Finite Languages. In: Yu, S., Păun, A. (eds.) CIAA 2000.
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