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Abstract. We discuss work on the modeling and analysis of systems
with probabilistic and recursive features. Recursive Markov chains ex-
tend ordinary finite state Markov chains with the ability to invoke other
Markov chains in a potentially recursive manner. The equivalent model of
Probabilistic Pushdown Automata extends ordinary pushdown automata
with probabilistic actions. Both of these are natural abstract models
for probabilistic programs with procedures, and related systems. They
generalize other classical well-studied stochastic models, e.g. Stochas-
tic Context-free Grammars and (Multi-type) Branching Processes, that
arise in a variety of areas. More generally, Recursive Markov Decision
Processes and Recursive Stochastic Games can be used to model recur-
sive systems that have both probabilistic and nonprobabilistic, control-
lable actions. In recent years there has been substantial work on the
algorithmic analysis of these models, regarding basic questions of termi-
nation, reachability, and analysis of the properties of their executions. In
this talk we will present some of the basic theory, algorithmic methods,
results, and challenges.

In recent years there has been a lot of work on the modeling and analysis of
systems that have both probabilistic and recursive features. In the talk we will
present an overview of some of this work. In this paper we will give a brief,
informal introduction to the models, on the type of questions about them that
are investigated, and pointers to the literature.

Markov chains are a useful, standard model for representing the behavior of
probabilistic systems in a broad variety of domains. Recursive Markov Chains
extend ordinary finite state Markov chains with a recursive feature [23]. They
can be viewed alternatively also as a probabilistic extension of Recursive State
Machines (RSM) [4]. Informally, a Recursive Markov Chain (RMC for short)
consists of a collection of finite-state component Markov chains that can call
each other in a potentially recursive manner, like procedures. Figure 1 shows an
example RMC A = (A1, A2), consisting of two component Markov chains A1, A2.
Each component has a set of entry nodes and a set of exit nodes where execution
starts and terminates respectively; for example A1 has one entry node en and
two exit nodes ex1, ex2. In addition, each component has a set of other nodes
and a set of boxes, where each box is mapped to some component and represents
a recursive call to that component; for example A1 has a box b1 representing a
recursive call to A2. A box has a set of call ports and return ports corresponding
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Fig. 1. A sample Recursive Markov Chain

1-1 to the entry and exit nodes of the corresponding component. A transition to a
box goes to a specific call port and invokes the corresponding component starting
at the corresponding entry node; when (and if) the call terminates at some exit
node, then the calling component resumes execution from the corresponding
return port of the box. All the transitions are labeled with probabilities as in
ordinary Markov chains, summing to 1 for each node, except for call ports and
exit nodes that have no transitions; as usual, for computational purposes the
probabilities are assumed to be rational numbers.

An RMC A is a succinct finite representation of an underlying (in general)
infinite state Markov chain MA: As an RMC A executes starting from some
initial node, at any point in time the process is at a current node of the RMC A
and there is a (possibly empty) stack of pending recursive calls (i.e., of boxes);
a transition is then selected probabilistically out of the current node, unless the
current node is a call port of a box, in which case a new recursive call is initiated,
or if the current node is an exit of a component, in which case the component
that initiated the last call resumes execution from the appropriate return port
of the corresponding box. Note that there is a potentially infinite (countable)
number of such ‘global’ states of the process, because the stack of pending calls
may be unbounded, and the stochastic process is a Markov chain MA on this
set of global states.

An RMC in which the calling relation between the components is acyclic is
called a Hierarchical Markov Chain (HMC), and can be viewed as a probabilistic
extension of Hierarchical State Machines [3]. An HMC A represents a finite, but
typically exponentially larger, Markov chain MA. The hierarchical construct is
useful to structure and represent compactly large finite Markov chains.

An expressively equivalent model to Recursive Markov Chains is the Prob-
abilistic Pushdown Automaton (pPDA) model [19], an extension of pushdown
automata with probabilities on the transitions, where the probabilities of all
the transitions for each state and top-of-stack symbol sum to 1. The RMC and
pPDA models are equivalent in the sense that from a model of one type one
can construct efficiently a model of the other type such that the two models
represent essentially the same infinite state Markov chain.
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Pushdown automata and recursive state machines (without probabilities) were
studied for the purpose of analyzing algorithmically the properties (model check-
ing) of (abstractions of) programs with procedures [6,17,4]. Similarly, a main
motivation for the introduction of RMCs and pPDAs was for the analysis of
probabilistic programs with procedures. The procedures correspond to the com-
ponents of the RMC, the arguments and return values correspond to the entry
and exit nodes. The probabilities could arise from randomizing steps or reflect
statistical assumptions on the behavior of the program, under which we want
to analyze its properties. The properties of interest can range from simple ter-
mination and reachability properties, to more complex properties expressed for
example by temporal logic or automata specifications. The simplest type of prop-
erty, and one that plays a central role also for the analysis of more complex
properties is termination: Suppose that the RMC starts execution at some node;
what is the probability that it will eventually reach a specified exit node (or any
exit node), with no pending recursive calls, and terminate? More generally, the
nodes and/or edges of a RMC can be labeled from some (finite) alphabet Σ (for
example, the letters may correspond to properties satisfied by the states of the
program). The executions of the RMC map to words over Σ. A (linear-time)
property specification can define the set of desirable (or undesirable) executions
by specifying a subset L of finite or infinite words; the question then is, what is
the probability that an execution of the RMC starting from some specified initial
node (or from some initial distribution) maps to a word in L. Branching-time
properties can be similarly specified.

Probability and recursion are fundamental constructs that arise in a variety
of contexts, and accordingly several such models have been studied and used in
various fields over the years. We discuss next a number of such models.

Branching processes (BP) are an important class of stochastic processes, with
applications in various areas such as population genetics, biology and others (see
e.g., [34,36,38]). They were introduced first in the single type case by Galton and
Watson in the 19th century to study population dynamics, and extended later
by Kolmogorov and Sevastyanov to the multi-type case [39]. A branching process
models the stochastic evolution of a population of entities of a given (finite) set
T of types. For each type i ∈ T , there is a set of probabilistic rules concerning the
set of offsprings (their number and types) that an entity of type i produces in the
next generation. Starting from an initial population, a branching process evolves
from one generation to the next, where in each generation every entity is replaced
(independently) by a set of offspring entities chosen probabilistically according
to the rules of the type of the entity. There is a well developed mathematical
theory of branching processes, see [35] for a comprehensive treatment. Basic
quantities of interest in a BP are the extinction probabilities: if the process starts
with one entity of type i, what is the probability that it will become extinct,
i.e. there will be eventually no descendants (these can be used to compute the
extinction probability for any initial population). There is a close connection
between branching processes and a subclass of RMCs, specifically the class of
1-exit RMCs where all the components have only 1 exit (denoted 1-RMC): From
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a given finite branching process (i.e., with a finite set of types and rules) we
can construct efficiently a 1-RMC such that the extinction probabilities of the
types in the BP are equal to termination probabilities of nodes in the 1-RMC
[23]. There seems to be a distinct difference in expressiveness and complexity
between 1-exit RMCs and multiexit RMCs. The one exit restriction means that
when a component terminates, it does not return any information about the
call beyond the fact that it terminated. Also, as we’ll mention later on, some
problems can be solved efficiently for 1-exit RMCs, but we do not know how to
solve them with multiple exits (and they may well be intractable.) The 1-exit
restriction for RMCs corresponds to a 1-state restriction for pPDAs.

Another intimately connected well-studied model is Stochastic Context-Free
Grammars (SCFG). These have been studied since the 1970’s especially in Nat-
ural Language Processing (see e.g. [42]), and have been applied also in other
areas such as biological sequence analysis [15,49]. A SCFG is a CFG where ev-
ery production has an associated probability such that the probabilities of the
productions for each nonterminal sum to 1. The SCFG models a stochastic pro-
cess for generating strings, for example, by a leftmost derivation rule, and gives
a probability to each string in the language. From a given SCFG G we can con-
struct efficiently an 1-exit RMC A that is ‘equivalent’ to G in the sense that the
two models represent essentially the same infinite state Markov chain. In partic-
ular, the probability of the language of G (i.e., the sum of the probabilities of all
the strings in the language, which can be less than 1) is equal to the termination
probability of a certain ‘initial’ node in the 1-RMC A, and the 1-RMC (suit-
ably labeled) and the SCFG induce the same probabilities on the strings of the
language. Conversely, it is possible to translate efficiently a given 1-exit RMC
to an ‘equivalent’ branching process or to a SCFG, such that the termination
probabilities of the nodes of the RMC are equal to extinction probabilities of
the types of the BP or to the probabilities of the languages generated by the
nonterminals of the SCFG [23].

Another related model, called Random walk with back button, was introduced
and studied in [31] as a probabilistic model for web-surfing. It is an extension
of a Markov chain with a ‘back button’ (as in a web browser) that enables the
process to trace back its steps. This model corresponds to a proper subclass of
1-RMCs and SCFGs [23].

A class of models, called Quasi-Birth-Death Processes (QBD), have been stud-
ied for performance analysis in the queuing theory and structured Markov chain
community [5,41,45]. A (discrete-time) QBD process is a (countably) infinite
state Markov chain whose transition matrix has a certain repeating block struc-
ture specified by a constant number of finite matrix blocks. Generalizations of
QBDs, called tree-structured QBDs and tree-like QBDs (which are equivalent to
each other [53]), have been also studied; they are an extension of QBDs with an
additional tree structure on the states. As shown in [22], (discrete) quasi-birth-
death processes are expressively equivalent to probabilistic 1-counter automata,
i.e., pPDA where the stack alphabet has only one symbol; tree-structured and
tree-like QBDs are equivalent to (unrestricted) pPDA and RMCs.
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In all the models we discussed above (RMC, pPDA and their subclasses con-
sidered in various fields), all the steps are probabilistic. More generally, some
steps of a system/program may be probabilistic while others are not probabilis-
tic but rather are controlled by the system or the environment. Markov Decision
Processes (MDP) and Stochastic Games (SG) are standard models for systems
that have both probabilistic and nonprobabilistic/controllable aspects (see e.g.
[47,32,44]); they have been used in various areas, including in particular in verifi-
cation as models for probabilistic concurrent systems and for open systems that
interact with their environment. Extending these models with a recursive fea-
ture gives rise to Recursive Markov Decision Processes (RMDP) and Recursive
Stochastic Games (RSG) [25,28]. A RMDP or RSG is like a RMC except that
some of the nodes are probabilistic as in an RMC, i.e., have probabilistic transi-
tions, and some nodes are nonprobabilistic, i.e., their transitions are controlled
by the player(s). In an RMDP (like in a MDP) there is only one player that con-
trols all the nonprobabilistic nodes, with the goal of maximizing or minimizing
some objective, such as the probability of an event, (for example, termination of
the process, or more generally, generation of an execution that satisfies a given
property); or there can be a reward (payoff or cost) specified for the individual
nodes and/or edges of the RMDP, and the player wants to maximize or minimize
the reward (cost) accumulated during the execution. In a game there are two
opposing players, one trying to maximize the objective, the other to minimize
it. In the general form of a stochastic game (sometimes called concurrent game)
at each (nonprobabilistic) node, each player has a finite set of possible actions
that it can choose from; the players select an action simultaneously and the com-
bination of selected actions determines the transition taken out of the current
node. In a simpler form, called simple or turn-based games, only one player can
choose an action (has a ‘turn’) at each node, i.e. the (nonprobabilistic) nodes
are partitioned among the players who control the transitions out of them.

We will touch briefly now on some of the issues, methods, and results on
the recursive models. The recursive feature introduces several difficulties that
are not present in the nonrecursive case. One difficulty is that the probabilities
that we want to compute are typically irrational. Recall that we assumed as
usual that the given transitions probabilities of the models are rational. In the
case of ordinary Markov chains this implies that the probabilities we want to
compute of the usual types of events (including probabilities of general prop-
erties expressed for example by automata or temporal logic) are also rational,
have polynomially bounded size (number of bits), and they can be computed in
polynomial time. This is no more true, even for 1-exit RMCs (and SCFGs and
branching processes); for example, the probabilities of termination are typically
irrational. Thus the probabilities cannot be computed exactly, and can be only
bounded or approximated. We distinguish between qualitative and quantitative
questions regarding the desired probabilities. In the qualitative problem we want
to determine whether a certain probability is 0, 1, or strictly between 0 and
1. For example, does a given a SCFG generate a terminal string with proba-
bility 1? Does an execution of a given RMC satisfy a given temporal property
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almost surely? In a quantitative decision problem we want to determine how a
certain probability compares with a given rational bound r, i.e. is it <, = or
> r? In a quantitative approximation problem we want to approximate a desired
probability to a specified precision.

The termination probabilities play a central role in the analysis of RMC and
pPDA: For each node u of an RMC and each exit node v of the same component
as u, let q(u, v) be the probability that the RMC started at u will eventually
reach the exit v (with no pending recursive calls) and terminate (the correspond-
ing quantities for pPDA are the probabilities q(s, Y, t) that the pPDA starting
from state s with Y on the stack will eventually pop Y and end in state t). The
vector q of termination probabilities satisfies a set of equations x = P (x) (one
equation for each termination probability) where P is a vector of polynomials
with positive rational coefficients. The system may have many solutions; however
the vector P defines a monotone mapping from the nonnegative orthant to itself,
and has a least fixed point (LFP), i.e., a componentwise least nonnegative solu-
tion. The LFP is precisely the vector q of termination probabilities [19,23]. From
the equations x = F (x), we can construct a system of polynomial equations and
inequalities and use a procedure for the existential theory of the reals [10,48] to
solve the qualitative and quantitative termination problems in PSPACE.

For several important subclasses of RMCs more efficient algorithms can be
obtained using different methods. For example, the qualitative termination prob-
lem can be solved in polynomial time for 1-RMCs (and SCFGs and BPs), as well
as for hierarchical Markov chains, using algebraic and combinatorial methods;
for RMCs with linear recursion, the probabilities are rational and can be com-
puted exactly in P-time [23]. For back-button processes the probabilities can
be approximated in polynomial time using Semidefinite Programming [31]. It
is an open question whether the qualitative and quantitative problems can be
solved in polynomial time in general; however, this seems unlikely, and there are
results indicating that it would require solving at least some hard longstanding
open problems. The quantitative decision problem for 1-RMCs and hierarchical
Markov chains subsumes the square root sum problem (a 30-year old simple
intriguing problem that arises often in geometric computations [33,52]), and a
more general problem (called posSLP) that characterizes P-time computability
in a RAM model with unit cost rational arithmetic operations [1]; these problems
are in PSPACE but are not even known to be in NP. For RMCs with 2 exits,
even the qualitative problem (does the RMC terminate with probability 1?) is
at least as hard as these problems, and the same holds for the approximation of
the termination probabilities with any nontrivial constant error [29,23].

The procedures for the existential theory of reals are impractical. One ap-
proach to approximate the LFP of the system x = P (x) is to start with the 0
vector and apply repeatedly P to it; the vector P k(0) converges to the LFP q
as k → ∞, however the convergence is exponentially slow. A faster method that
accelerates convergence is to use a decomposed version of Newton’s method [23]:
after a preprocessing ‘cleaning’ step, the system is decomposed into strongly
connected components (SCC) and Newton is applied bottom up on the DAG of
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the SCCs; if we start from the 0 vector, then Newton is well defined (no sin-
gularity is encountered) and it converges monotonically to the LFP. This is a
more practical approach; experiments with this method are reported in [43,55].
A similar Newton method can be applied more generally to monotone systems of
polynomial equations, i.e. systems x = P (x) where P is a vector of polynomials
with positive rational coefficients; such a system may not have a fixed point,
but if it does then it has a LFP and (decomposed) Newton starting at the 0
vector converges to it [23]. The rate of convergence of the method is investigated
in [37,18]. They show that for strongly connected fixed point systems, Newton
gains (at least) one bit of precision per iteration after some initial period, and
some upper bounds are given for this initial period. In general however (for non-
strongly connected systems) there are bad examples that require an exponential
number of iterations to achieve a desired precision.

The analysis of more general properties of RMCs and pPDA is studied in
[9,19,24,26]. Algorithms and lower bounds are given for linear time properties
specified either by automata or by LTL (Linear Temporal Logic) formulas, and
for branching time properties. The methods build on the termination analysis of
the models as well as on methods for model checking of ordinary (nonrecursive)
Markov chains. Results are given both for the general class of RMCs and pPDA,
as well as for important subclasses (e.g., 1-RMCs and SCFGs, linear RMCs etc).
Quantitative aspects of the executions of pPDA with a reward (cost) structure
and checking of properties that involve these quantities are studied in [8,20];
these can be used for example to estimate expected termination time, stack
length etc.

Recursive Markov Decision Processes and Stochastic Games are studied in
[7,21,25,27,28]. For general multiexit RMDP’s and RSGs, the qualitative (and
quantitative) termination problems are undecidable, i.e., we cannot determine if
a termination probability under optimal play is 1, and we cannot even approx-
imate it [25]. For 1-exit RMDPs and games however, the termination problems
(both qualitative and quantitative) are decidable and can be solved in PSPACE
(same as for RMCs). These correspond to controlled and game versions of SCFGs
and branching processes, for example, optimal control of a branching process
to maximize or minimize the probability of extinction. In fact the qualitative
problems for 1-RMDPs can be solved in polynomial time [27], and we can also
compute the optimal and pessimal expected times to termination [21]. For sim-
ple 1-RSGs these problems are in NP∩co-NP and subsume the well-known open
problem of Condon [11] of computing the value of simple stochastic games.

Many of the algorithms on probabilistic recursive models have been imple-
mented in a tool called PReMo by Wojtczak and Etessami [55].

We gave in this paper a flavor of some of the recent work on probabilistic
recursive models and their analysis. We only mentioned few of the techniques
and the results; we refer to the papers for the detailed results. A comprehensive
survey paper is being planned with Kousha Etessami [30], and we will defer to
that for a thorough exposition.
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