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Abstract. Denote by S the class of standard Sturmian words. It is a class of
highly compressible words extensively studied in combinatorics of words, includ-
ing the well known Fibonacci words. The suffix automata for these words have a
very particular structure. This implies a simple characterization (described in the
paper by the Structural Lemma) of the periods of runs (maximal repetitions) in
Sturmian words. Using this characterization we derive an explicit formula for the
number ρ(w) of runs in words w ∈ S , with respect to their recurrences (directive
sequences). We show that ρ(w)

|w| ≤ 4
5 for each w ∈ S , and there is an infinite

sequence of strictly growing words wk ∈ S such that limk→∞
ρ(wk)
|wk| = 4

5 .
The complete understanding of the function ρ for a large class S of complicated
words is a step towards better understanding of the structure of runs in words. We
also show how to compute the number of runs in a standard Sturmian word in
linear time with respect to the size of its compressed representation (recurrences
describing the word). This is an example of a very fast computation on texts given
implicitly in terms of a special grammar-based compressed representation (usu-
ally of logarithmic size with respect to the explicit text).

1 Introduction

The runs (maximal repetitions) in strings are important in combinatorics on words and
in practical applications: data compression, computational biology, pattern-matching.
A run is a non-extendable (with the same period) periodic segment in a string in which
the period repeats at least twice. In 1999 Kolpakov and Kucherov [10] showed that
the number ρ(w) of runs in a string w is O(|w|), but the exact multiplicative constant
coefficient is unknown, recent bounds are given in [11,5]. In order to better understand
the behavior of the function ρ for general words we give exact estimations for a class S
of highly compressible words: the standard Sturmian words (standard words, in short).
The class S of standard Sturmian words is of particular interest due to their importance
in combinatorics on words, [2,3]. The standard words are a generalization of Fibonacci
words and, like Fibonacci words, are described by recurrences.

The recurrence for a standard word is related to so called directive sequence – an
integer sequence of the form

γ = (γ0, γ1, ..., γn), where γ0 ≥ 0, γi > 0 for 0 < i ≤ n.

The standard word corresponding to γ, denoted by S(γ) = xn+1, is defined by
recurrences:

x−1 = b, x0 = a, x1 = xγ0
0 x−1, x2 = xγ1

1 x0, (1)
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x3 = xγ2
2 x1, . . . , xn = x

γn−1
n−1 xn−2, xn+1 = xγn

n xn−1 (2)

For example the recurrence for the 4-th Fibonacci word is

fib−1 = b, fib0 = a, fib1 = fib1
0b, fib2 = fib1

1fib0,

f ib3 = fib1
2fib1, f ib4 = fib1

3fib2.

f ib4 = abaababa = S(γ0, γ1, γ2, γ3) where (γ0, γ1, γ2, γ3) = (1, 1, 1, 1)

We consider here standard words starting with the letter a, hence assume γ0 > 0. The
case γ0 = 0 can be considered similarly. For even n > 0 a word xn has suffix ba, and
for odd n it has suffix ab.

The number N = |xn+1| is the (real) size, while n can be thought of as the compressed
size.

Example 1. Consider more complicated example (used later to demonstrate counting
of runs), let γ = (1, 2, 1, 3, 1), we have

S(γ) = ababaabababaabababaabababaababaab

The corresponding recurrence is

x−1 = b; x0 = a, x1 = x1
0x−1, x2 = x2

1x0, x3 = x1
2x1, x4 = x3

3x2, x5 = x1
4x3.

A number i is a period of the word w iff w[j] = w[i + j] for all i with i + j ≤ |w|. The
minimal period of w will be denoted by period(w). We say that a word w is periodic
iff period(w) ≤ |w|

2 . A word w is said to be primitive iff w is not of the form zk, where
z is a finite word and k ≥ 2 is a natural number.

A run in a string w is an interval α = [i...j] such that w[i...j] is a periodic word
with the period p = period(w[i...j]) and this period is not extendable to the left or
to the right of [i...j]. In other words, [i...j] is a run iff j − i + 1 ≥ 2p, i = 1 or
w[i − 1] �= w[i − 1 + p] and j = n or w[j + 1] �= w[j + 1 − p].

A run α can be properly included as an interval in another run β, but in this case
period(α) < period(β). The value of the run α = [i...j] is val(α) = w[i...j]

When it creates no ambiguity we identify sometimes runs with their values, although
two different runs could correspond to identical subwords, if we disregard positions of
these runs. Hence runs are also called maximal positioned repetitions.

Let ρ(w) be the number of runs in a word w. The most interesting and open con-
jecture about runs is: ρ(|w|) < |w|. The first linear bound was given by Kolpakov and
Kucherov [10], the best upper bound is by [6,5] and the best lower bound is by [5,7].
The structure of runs and squares is almost completely understood for the class of Fi-
bonacci words, see [9,13,4]. We continue the work of [8], where it was shown how to
compute the number of runs for block-complete Sturmian words (not all standard Stur-
mian words have this property) in time linear with respect to the size of the whole word
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Fig. 1. The structure of runs of S(1, 2, 1, 3, 1).There are 5 runs with period |a|, 5 with period |ab|.
We have 10 short runs (period of size at most |x1| = |ab|), 8 medium (with period |x1| < p ≤
|x2| = 5, and 1 large run. Consequently ρ(1, 2, 1, 3, 1) = 19.

(while our algorithm is linear with respect to the size of compressed representation). A
similar approach as in [8] is used in this paper – a kind of a reduction sequence, however
our reductions are different than those in [8] and correspond closely to the structure of
the recurrences (directive sequences). Also our aim is different – derivation of a simple
formula for ρ(w) and asymptotic behavior of ρ(w).

Our results. We show that supw∈S
ρ(w)
|w| = 0.8 and provide an easily computable

formula for the number of runs. We give also a fast algorithm computing ρ(w) in time
linear with respect to the length of the directive sequence defining w: this gives an
algorithm efficient with respect to the compressed size of the input.

2 Morphic Representations and the Numbers Nγ(k)

Essentially we use an idea of a reduction sequence introduced in [8]. The computation
of runs in S(γ0, γ1, . . . , γn) is reduced to a computation for S(γ1, γ2, . . . , γn).
The relation between S(γ0, γ1, . . . , γn) and S(γ1, γ2, . . . , γn) is described in terms of
morphisms transforming one of them to the other.

For γ = (γ0, γ1, . . . , γn) define the sequence of morphisms:

hi(a) = aγib, hi(b) = a , for 0 ≤ i ≤ n

Lemma 1. Assume 0 ≤ i < n. We have

S(γn) = hn(a), S(γi, γi+1 . . . , γn) = hi

(
S(γi+1, γi+2 . . . , γn)

)
.
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Let |w|r denote the number of occurrences of a letter r ∈ {a, b} in the word w. Denote

Nγ(k) = |S(γk, γk+1, . . . γn)|a, Mγ(k) = |S(γk, γk+1, . . . γn)|b

The numbers Nγ(k), Mγ(k) satisfy the equation:

Nγ(k) = γk Nγ(k + 1) + Nγ(k + 2); Mγ(k) = Nγ(k + 1) (3)

Observation. In case of the directive sequence (1, 1, . . . , 1) describing the Fibonacci
word the numbers Nγ(k) are Fibonacci numbers, since the number of letters a in fibn

equals the size of fibn−1.

Example 2. For the word S(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab
from Figure 1 we have γ = (1, 2, 1, 3, 1) and:

S(1) = ab, S(3, 1) = aaaba, S(1, 3, 1) = (ab)3a ab,

Nγ(3) = |S(3, 1)|a = 4, Nγ(2) = |S(1, 3, 1)|a = 5

Lemma 2. Let A = Nγ(2), B = Nγ(3) and w = S(γ0, γ1, . . . , γn). Then

|w| =
(
(γ0 + 1) γ1 + 1

)
A + (γ0 + 1) B

Proof. We have |w| = Nγ(0) + Mγ(0) and Mγ(0) = Nγ(1).
Hence |w| = Nγ(0) + Nγ(1) and by equation (3):

|w| = γ0Nγ(1) + (γ1 + 1)Nγ(2) + Nγ(3).

Now Equation (3) directly implies the thesis.

For our example word A = 5, B = 4, γ0 = 1, γ1 = 2. The formula gives the number
(4 + 1) 5 + 8 = 33, which is the correct length of S(1, 2, 1, 3, 1).

3 Counting Runs and Repetition Ratios in Standard Words

We introduce a zero-one function unary testing if the number equals 1,

if x = 1 then unary(x) = 1 else unary(x) = 0.

Similarly define zero-one functions even(k) and odd(k) with the value equal 1 iff k is
even (odd respectively).

We use the following notation in this section:

A = Nγ(2) = |S(γ2, γ3 . . . , γn)|a, B = Nγ(3) = |S(γ3, γ4 . . . , γn)|a

Δ(γ) = n − 1 − (γ1 + . . . + γn) − unary(γn).
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The following theorem will be proven later.

Theorem 1. [Formula for the number of runs]
Let n ≥ 3 and γ = (γ0, . . . , γn). Then the number of runs in S(γ) equals

ρ(γ) =

⎧
⎪⎪⎨

⎪⎪⎩

2 A + 2 B + Δ(γ) − 1 if γ0 = γ1 = 1
(γ1 + 2) A + B + Δ(γ) − odd(n) if γ0 = 1; γ1 > 1
2A + 3B + Δ(γ) − even(n) if γ0 > 1; γ1 = 1
(2 γ1 + 1) A + 2 B + Δ(γ) Otherwise

,

Example 3. We now show how to compute ρ(1, 2, 1, 3, 1), using our formula, for the
word shown in Figure 1. In this case

γ = (γ0, γ1γ2, γ3, γ4) = (1, 2, 1, 3, 1) and n = 4

A = Nγ(2) = 5, B = Nγ(3) = 4, Δ = (4 − 1) − 8 = −5, odd(4) = 0

Theorem 1 implies correctly (see Figure 1):

ρ(γ) = (γ1 + 2)A + B + Δ − odd(4) = 4A + B − 5 = 4 · 5 + 4 − 5 = 19.

Example 4. As the next example derive the formula for the number of runs in Fibonacci
word fibn = S(1, 1, . . . , 1) (n ones) for n ≥ 3. Let Fn be the n-th Fibonacci number.
In this case Nγ(k) = Fn−k−1. According to formula from Theorem 1 we have

ρ(fibn) = 2Nγ(2) + 2Nγ(3) + n − 1 − n − 1 − 1

= 2 Fn−3 + 2 Fn−4 − 3 = 2 Fn−2 − 3.

Theorem 2. ρ(w) ≤ 4
5 |w| for each w ∈ S

Proof. The easy when n ≤ 2 can be considered separately, we omit a simple proof for
this case. Assume now that n ≥ 3 and consider 4 cases.

Let w = S(γ0, ..., γn). Observe that Δ(γ) ≤ 0.

Case 1: γ0 = γ1 = 1. We have, due to Lemma 2: |w| = 3A + 2B.
According to Theorem 1 we have ρ(γ) ≤ 2 A + 2 B. Then

ρ(w)
|w| ≤ 2A + 2B

3A + 2B
≤ 4

5

due to inequalities A ≥ B ≥ 1. This completes the proof in this case.

Case 2: γ0 = 1; γ1 > 1. We have, due to Lemma 2:

|w| = (2 γ1 + 1) A + 2B

We have also, due to Theorem 1, that ρ(w) ≤ (γ1 + 2) A + B. Consequently:

ρ(w)
|w| ≤ (γ1 + 2) A + B

(2 γ1 + 1) A + 2B
≤ 4

5

because γ1 ≥ 2 and γ1+2
2 γ1+1 ≤ 4

5 .
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Case 3: γ0 > 1; γ1 = 1. In this case we have ρ(w) ≤ 2A + 3B, due to Theorem 1,
and , due to Lemma 2,

|w| = (γ0 + 2) A + (γ0 + 1) B ≥ 4A + 3B

Consequently we have

ρ(w)
|w| ≤ 2A + 3B

4A + 3B
≤ 3A + 2B

4A + 3B
≤ 3

4

Case 4: γ0 > 1; γ1 > 1. In this case, due to Theorem 1 and Lemma 2, we have

ρ(w) ≤ (2 γ1 + 1) A + 2 B,

|w| =
(
(γ0 + 1) γ1 + 1

)
A + (γ0 + 1) B.

We have

ρ(w)
|w| ≤ (2 γ1 + 1) A + 2 B

(
(γ0 + 1) γ1 + 1

)
A + (γ0 + 1) B

≤ (2 γ1 + 1) A + 2 B

(3 γ1 + 1) A + 3 B
≤ 4

5

because
2 γ1 + 1
3 γ1 + 1

≤ 4
5

This completes the proof.

Theorem 3
For the class S of standard words we have

sup { ρ(w)
|w| : w ∈ S } = 0.8.

Proof. Let

wk = S(1, 2, k, k) =
(
(ababa)k ab

)k
ababa,

see the figure 2 for the case k = 3. We have |wk| = 5k2 + 2k + 5.
Theorem 1 implies that |ρ(1, 2, k, k)| = 4k2 − k + 3. Consequently

lim
k→∞

ρ(wk)
|wk| = lim

k→∞
4k2 − k + 3
5k2 + 2k + 5

= 0.8

Theorem 4
We can count number of runs in standard word S(γ0, . . . , γn) in time O(n).

Proof. We need only to compute in O(n) time the numbers Nγ(k) for k = 1, 2, 3. We
can compute it iterating Equation 2.

Algorithm Compute Nγ(k);
x := 1; y := 0;
for i := n downto k do

(x, y) := (γi · x + y, x)
return x;
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Fig. 2. The structure of runs of S(1, 2, k, k) for k = 3, there are 4k2 − k + 3 = 36 runs

4 The Proof of Theorem 1

We assume now that xi are as given by recurrences described in Equations 1,2. The
structure of subword graphs for standard Sturmian words is very special [14,13], in
particular it implies the following fact.

Lemma 3. [Structural Lemma]
The period of each run of S(γ0, γ1, . . . , γn) is of the form xj

i xi−1, where 0 ≤ j < γi.

We say that a run is short if the length of its period does not exceed |x1|, large if the pe-
riod exceeds |x2|, and medium otherwise. Denote by ρshort(γ), ρmed(γ), ρlarge(γ)
the number of short, medium and large runs in S(γ), respectively. For example we have
10 short, 8 medium and 1 large run in Figure 1.

Lemma 4. [Short Runs] The number of short runs in S(γ) is

ρshort(γ) =

⎧
⎪⎪⎨

⎪⎪⎩

Nγ(2) + Nγ(3) − 1 if γ0 = γ1 = 1
2 Nγ(2) − odd(n) if γ0 = 1; γ1 > 1
Nγ(1) + Nγ(3) − even(n) if γ0 > 1; γ1 = 1
Nγ(1) + Nγ(2) otherwise

Proof. We estimate separately numbers of runs with periods x0 and x1

Claim. Let γ = (γ0, . . . , γn) be directive sequence. There are:

(a) Nγ(1) runs with period x0 if γ0 > 1,
(b) Mγ(1) runs with period x0 if γ0 = 1,
(c) Nγ(2) runs with period x1 if γ1 > 1,
(d) Mγ(2) runs with period x1 if γ1 = 1.

Point (a). Let us define morphism h(a) = aγ0b and h(b) = a. Every run with period
x0 in S(γ) is equal to aγ0 or aγ0+1. Every such run is separated by the letter b and
corresponds to the letter a in h−1(S(γ0, . . . , γn)) = S(γ1, . . . , γn).

Point (b). The proof of this point is similar to (a).
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Points (c,d). A run with the period x1 in S(γ) corresponds to a run with the period x0 in
h−1(S(γ)) and now validity of this case follows from points (a) and (b). This completes
the proof of the claim and the lemma.

Lemma 5. [Medium Runs, n ≥ 3] If n ≥ 3 then

ρmed(γ) = Nγ(1) − Nγ(2) − γ1 + 1

Proof. The thesis follows directly from the following stronger claim (the proof is omit-
ted in this version)

Claim. Let γ = (γ0, . . . , γn). There are:

(a) Nγ(2) − 1 runs with period xi
1x0 for each 0 < i < γ1.

(b) Nγ(3) runs with period x2.

The claim of the lemma follows by summing formulas from the points (a) and (b). We
have (

Nγ(2) − 1
)

(γ1 − 1) + Nγ(3) =
(
γ1Nγ(2) + Nγ(3)

)
− Nγ(2) − γ1 + 1 = Nγ(1) − Nγ(2) − γ1 + 1

This completes the proof of the lemma.

Lemma 6. [Medium Runs, n=2] If n = 2 then

ρmed(γ) = Nγ(1) − Nγ(2) − γ1 + 1 − unary(γn)

Proof. The proof for the case γn > 1 is similar to the one for Lemma 5. In the case
γn = 1 there are no intermediate runs, and we have to subtract unary(γn) = 1 in this
case.

We reduce the problem of counting large runs to the one for counting medium runs,
using the morphic representation of S(γ). Let h be a morphism and let y = a1a2 . . . at

be a word of length t.
The morphism partitions x = h(y) into segments h(a1), h(a2), . . . , h(at). These

segments are called here h-blocks.

We say that a subword w of x is synchronized with h in x iff each occurrence of w in
x starts at the beginning of some h-block and ends at the end of some h-block. Figure 3
shows examples of synchronized and non-synchronized subwords with the morphism
h0 : S(2, 1, 3, 1) → S(1, 2, 1, 3, 1) related to the morphic structure of S(1, 2, 1, 3, 1).
Recall that h0(a) = aγ0b, h0(b) = a.

Lemma 7. [Synchronization Lemma]
The large run-periods are synchronized with h0 in S(γ0, . . . , γn)

Proof. We omit the proof of the following syntactical fact.

Claim

(a) If i ≥ 2 then xixi−1 ends with aγ0b or with (aγ0b)γ1+1a
(b) aγ1+2 is not a sub-word in S(γ1, . . . , γn)
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a  ba  b a  b a a  b a  b a  b a a  b a  b a  b a a  b a  b a  b a a  b a  b a

a a a a a a a a a a a a a ab b bb b

h0

aba ababa ababaab

Fig. 3. The medium run-periods x1x0 = aba and x2 = ababa do not synchronize with h0 on the
string from Figure 1, while the large run-period x3 = ababaab is synchronized with h0

In the inverse morphism h−1
0 the block aγ0b goes to a and the block a goes to b. If the

word starts and ends with aγ0b then it is obviously synchronized with the morphism.
The word xixi−1, for i ≥ 2, starts with aγ0b. The only problem is when it ends with
a and this occurrence of a is followed by aγ0−1b. However, due to the point (a) of
the claim, we have an occurrence of the sequence (aγ0b)γ1+2 in S(γ1, . . . , γn). After
applying the inverse of h0 this sequence goes to aγ1+2 in S(γ1, . . . , γn). However this
is impossible due to point (b) of the claim. This completes the proof.

The following fact is implied by synchronization lemma.

Lemma 8. [Recurrence Lemma]

ρlarge(γ0, γ1, . . . , γn) = ρlarge(γ1, γ2, . . . , γn) + ρmed(γ1, γ2, . . . , γn).

4.1 Completing the Proof of Theorem 1

The claim of the next lemma follows from Lemma 5 and the recurrence from Lemma 8.

Lemma 9. [Large Runs]

ρlarge + ρmed = Nγ(1) + n − 1 − (γ1 + ... + γn) − unary(γn)

Proof. According to Lemma 5 we have

ρlarge + ρmed =
(
Nγ(1) − Nγ(2) − γ1 + 1

)
+

(
Nγ(2)− Nγ(3)− γ2 + 1

)
+ . . . +

(
Nγ(n − 1)− Nγ(n)− γn−1 + 1 − unary(γn)

)

= Nγ(1) + n − 1 − (γ1 + ... + γn) − unary(γn),

since Nγ(n) = γn. This completes the proof.

Now the formula in Theorem 1 results by combining the formulas for ρshort and for the
sum ρlarge + ρmed using the equalities

ρ(γ) = ρshort(γ) + ρmed(γ) + ρlarge(γ), and Nγ(1) = γ1Nγ(2) + Nγ(3).
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