
Persistent Computations of Turing Machines

Harald Hempel1 and Madlen Kimmritz2,�

1 Institut für Informatik
Friedrich-Schiller-Universität Jena

07743 Jena, Germany
hempel@informatik.uni-jena.de

2 Mathematisches Seminar
Christian-Albrechts-Universität zu Kiel

24098 Kiel, Germany
mkimmritz@yahoo.de

Abstract. In this paper we formally define the notion of persistent Tur-
ing machines to model interactive computations. We compare the power
of persistent computations with their classical counterparts.

1 Introduction

In many real world applications of algorithms it is often not the case, that com-
putations start with an input and empty memory to produce some output. In
human guided search [KL02] human knowledge and computer power interact
to achieve better results than humans or computers alone could provide. In a
3-brain approach [A85] two computer programs provide alternative intermedi-
ate results with the human having the final say which one to use in the still
ongoing computation. These two approaches serve merely as successful exam-
ples [KL02, LM03, LM03a, AS03] to illustrate that human-machine-interaction
is used in practice. Classical (Turing machine) based models of computation can
hardly describe these. A promising approach to do so is the notion of persis-
tent Turing machines [GW98, Ko98]. A persistent Turing machine, or persistent
computation (of a Turing machine), receives a sequence of inputs and produces
a sequence of outputs while the computation on a single input may depend on
all computations on previous inputs. In this paper we give a sound formal def-
inition of the notion of persistent computations that until now was missing in
the literature and so will lay the ground for methodically studying the power
of persistent computations. We will also show how persistent computations re-
late to classical Turing machine computations. Since a persistent computation
is based on an underlying Turing machine and a sequence of inputs (or an input
function) we will look at various restrictions of input functions as well as Turing
machines and compare the resulting types of persistent computations with their
classical counterparts.

It has been shown that any function can be computed by a persistent compu-
tation [Ko98]. We will show that when restricting to computable input functions
� Work done in part while working at Friedrich-Schiller-Universität Jena.

O.H. Ibarra and B. Ravikumar (Eds.): CIAA 2008, LNCS 5148, pp. 171–180, 2008.
© Springer-Verlag Berlin Heidelberg 2008

172 H. Hempel and M. Kimmritz

a persistent computation can only produce computable output functions. The
power of persistent computations however is illustrated by the fact that a single
input function is sufficient to compute all total recursive functions and prim-
itive recursive input funtions suffice to compute all recursive functions (see
Theorems 3.1 and 3.2). It also turns out that persistent computations give
rise to new classes of functions that have no obvious classical counterparts (see
Theorems 3.6 and 3.7).

The paper is organized as follows. In Section 2 we will formally introduce and
define the notion of persistent computations and what it means to compute a
function with a persistent computation. Section 3 contains some of our results
and their proofs. We mention in passing that the authors have also obtained
results concerning the notions of persistent-decidability as well as persistent-
enumerability [HK].

2 Basic Concepts and Definitions

In this section we will develop our model of persistent computations.
Let Σ = {0, 1} be our alphabet. We assume the reader to be familiar with

the basic concepts and notations of recursion theory [Ro67]. Depending on the
context we will view functions as to map from N to N, from N to Σ∗ or as to
map from Σ∗ to Σ∗. Due to the tight connection (there is a polynomial-time
computable and invertible bijection) between N and Σ∗ this will not weaken
our results but simplify their presentation. Note that we will solely consider
functions of that type. Let id be a bijective function and maps from N to Σ∗

such that id(0) = ε, id(1) = 0, id(2) = 1, id(3) = 00 and so on. So, id−1 exists
and, in particular, id and id−1 are primitive recursive. Let nd be the everywhere
undefined function, i.e. nd(n) is undefined for all n ∈ N, which is partial recursive
as well. For a function f let Df and Rf denote the domain of definition and the
range of f , respectively. The sets of partial and total recursive functions will be
denoted by P and R, respectively. We will denote Pr as the set of all primitive
recursive functions. For any set of functions F , let Ftotal and Fbij denote the
sets of all total and bijective functions from F , respectively.

2.1 The Model

In the formal Turing machine model each computation of a Turing machine
starts with an input tape containing the input and worktapes that are empty.
To model interactive and persistent behavior, as it is to be found in many todays
real world scenarios, as already mentioned in the introduction, we introduce the
notion of persistent computations of Turing machines. Even though this model
has been studied in the literature before [GW98, Ko98] a clear definition has
been missing until now.

Before we give formal definitions we recall the intuitive description. In contrast
to classical Turing machine computations their persistent counterparts do not
start out from an empty worktape. More precisely, the contents of the worktape

Persistent Computations of Turing Machines 173

at the start of the computation on an input x is identical to the content of the
worktape at the end of the computation on the input preceeding x. So in fact, we
view our machines as to receive sequences of inputs where the starting configura-
tion for each input depends on the end configuration of the machine on previous
inputs. That is what gave the model the name “persistent” computations. We
now turn to formally define our model.

Definition 2.1. Let M be a Turing machine with one input tape, one worktape
and one output tape, input alphabet Σ and worktape alphabet Γ . Without loss of
generality assume Σ ⊆ Γ . Let f : N → Σ∗ be a total function.

1. The functions workM : Σ∗×Γ ∗ → Γ ∗ and outM : Σ∗×Γ ∗ → Γ ∗ are defined
as follows:
For all x ∈ Σ∗ and all y ∈ Γ ∗, workM (x, y) and outM (x, y) are the contents
of the worktape and output tape, respectively, of M in the end configuration
if the computation of M on input x and initial worktape content y halts.
Otherwise workM (x, y) and outM (x, y) are undefined.

The computation compM (x, y) of M on input x with initial worktape
content y is the sequence of configurations that M on input x with initial
worktape content y passes through, if that computation reaches a halting
state. Otherwise compM (x, y) is undefined.

2. The mapping histM,f : N → Γ ∗ is recursively defined as:

histM,f(0) = ε and for all i ∈ N
+

histM,f(i + 1) =

{
workM (f(i), histM,f(i)), if histM,f(i) �= n.d.,
n.d., if histM,f(i) = n.d..

3. The output function gM,f : N → Γ ∗ is, for all i ∈ N, defined via

gM,f(i) = outM,f(f(i), histM,f(i)).

Thus a persistent computation receives a sequence of inputs, modelled as the
function f in the above definition, and produces a sequence of outputs, named
gM,f above. Persistence, the survival of information from previous computations,
is modelled by the function histM,f . In other words, a persistent computation
is a sequence of computations of a classical Turing machine M on inputs f(0),
f(1), . . . where the contents of the worktape from the previous computation is
the initial content of the worktape for the current computation.

The function f in the above definition will be called input function and we
denote the set of all total functions mapping from N to Σ∗ by In.

Such persistent computations can produce an infinite or finite sequence of
output values depending on whether all “local” computations of M halt or not
(see also Figure 1).

In analogy to classical (Turing machine) computations we define the concept
of a persistent computation via the notion of a configuration in the obvious way.

174 H. Hempel and M. Kimmritz

M M M

hist (3)

f(2)

hist (2)

f(0) f(1)

hist (1) M, f M, fM, f

ε

g (0)
M, f M, f

g (1)
M, f

g (2)

Fig. 1. Schematic illustration of a persistent computation of a Turing machine M on
input sequence f(0), f(1), f(2), . . . if all values of histM,f are defined

Definition 2.2. Let M be a Turing machine with one input tape, one worktape
and one output tape, input alphabet Σ and worktape alphabet Γ . Without loss
of generality assume Σ ⊆ Γ . Let f ∈ In. The persistent computation of M on
input f , i.e., on the input sequence f(0), f(1), f(2), . . . is denoted by M(f) and
defined as

M(f) =df (compM (f(i), histM,f(i)))i∈N
,

if compM (f(i), histM,f(i)) is defined for all i ∈ N. If compM (f(i), histM,f(i)) is
not defined for all i ∈ N we define

M(f) =df (compM (f(0), histM,f(0)), . . . , compM (f(i0), histM,f(i0)))

where i0 is the smallest i ∈ N such that compM (f(i), histM,f(i)) is undefined.

Note that all definitions of this section can easily be modified to deal with
Turing machines having more than one worktape. Also, the general concept of
persistence can be generalized to other models of computation, such as RAM-
programs, MARKOV-algorithms and others, where all inner program variables
persist between the end of a computation and the start of a new computation.

2.2 Persistent Computations of Functions

Note that the mapping from f(i) to gM,f(i) in Definition 2.2 is in general not a
function, since we might have f(i) = f(j) and yet gM,f(i) �= gM,f(j) for some
i �= j. This observation leads to the following definition.

Definition 2.3 ([Ko98]). Let M be a Turing machine and f ∈ In.

1. The persistent computation M(f) is called consistent if and only if for all
i, j ∈ N the following condition holds for all i, j ∈ N:

f(i) = f(j) → gM,f(i) = gM,f(j).

Persistent Computations of Turing Machines 175

2. A function h : Σ∗ → Σ∗ is said to be persistent computable (p-computable)
if and only if there exists a Turing machine M and a function f ∈ In such
that
(a) M(f) is consistent,
(b) Dh ⊆ Rf and
(c) for all i ∈ N, gf,M (i) = h(f(i)).
In that case we say that M on input f p-computes the function h.

3. A function h : N → N is said to be p-computable if and only if the mapping
ĥ : Σ∗ → Σ∗ being defined via h(n) = id−1(ĥ(id(n))) for all n ∈ N is
p-computable.

4. The set of all p-computable functions h : N → N is denoted by pF.

Note that the requirement Dh ⊆ Rf (instead of Dh = Rf) in Part 2b of Defi-
nition 2.3 gives more flexibility when it comes to p-computing partial functions.
In particular there are two ways to realize h(x) = n.d. for some x during a
p-computation M(f) of h, either x never shows up as an input, x /∈ Rf , or
even though x ∈ Rf , some prior runs of M do not terminate during the p-
computation.

An interesting result concerning the persistent computation of functions was
first observed in [Ko98].

Theorem 2.4 (Kosub). [Ko98] Every function h : N → N is p-computable.

The idea of the proof is to construct a (piecewise constant) input function f ,
such that the length of a constant part of the input function encodes the function
value of the function h to be computed, on the input that will be provided by f
when it changes its value the next time. The underlying Turing machine simply
counts, how often the input value does not change and outputs that number when
the input value changes. Note that since there are no restrictions on the input
functions for persistent computations the encoding of otherwise uncomputable
functions into the input leads to the above statement.

So in order to be fair, the power of p-computability should be studied when
all input functions are required to be computable. In the process we will not only
study restrictions to the input functions but also restrictions to the underlying
machine model.

Definition 2.5. Let Φ ⊆ In, and M be a collection of programs or machines.

1. The set of p-Φ-computable functions is defined as

pF(Φ) =df {h ∈ F |(∃TM M)(∃f ∈ Φ)[M on input f p-computes h]}.

2. The set of p-(Φ, M)-computable functions is defined as

pF(Φ, M) =df {h ∈ F |(∃TM M ∈ M)(∃f ∈ Φ)[M on input f p-computes h]}.

Note that the Turing machine used in the above proof sketch of Theorem 2.4 does
not do much more then counting. So any set Ψ of machines which are flexible
enough to count will be able to p-(In, Ψ)-compute all functions. Hence, the focus
in the upcoming section will be on restricting the set of input functions.

176 H. Hempel and M. Kimmritz

3 The Power of Persistent Computations

As already mentioned above the true power of persistent computations can only
be judged if the set of input functions is restricted to computable functions. It
turns out that with this restriction, persistent computations can only compute
recursive functions and, even stronger, primitive recursive input functions suffice
to p-compute all recursive functions.

Theorem 3.1. P = pF(R) = pF(Pr).

Proof. Since we clearly have pF(Pr) ⊆ pF(R) it suffices to prove pF(R) ⊆ P and
P ⊆ pF(Pr).

We first show pF(R) ⊆ P. Let h ∈ pF(R). Hence, there exist a Turing machine
M and an input function f ∈ R such that M(f) p-computes h. In particular, for
every n ∈ Dh there is an i ∈ N such that id(n) = f(i) and h(n) = id−1(gM,f(i)).
It is not hard to see that gM,f is a recursive function, since f itself is total and
recursive and in order to compute gM,f(i) for some i ∈ N we simply have to
run the machine M i + 1 times on the inputs f(0), f(1),. . . , f(i) (in that order)
while preserving the content of the worktapes between consecutive runs of M .
More formally, the following recursive scheme clearly holds:

histM,f(0) = ε
gM,f(0) = outM (f(0), histM,f(0))
histM,f(i + 1) = workM (f(i), histM,f(i)) for all i ≥ 0
gM,f(i + 1) = outM (f(i), histM,f(i)), for all i ≥ 0.

Since outM , workM , and f are recursive functions and histM,f and gM,f are
defined via a simultaneous recursion, based on outM , workM , and f , we conclude
that also histM,f and gM,f are recursive. Furthermore, for all n ∈ N we have
h(n) = id−1(gM,f (min{i ∈ N : f(i) = id(n)})). Since id, id−1, f and gM,f are
recursive functions and the class of recursive functions is closed with respect to
the μ-operator it follows that h is recursive.

The inclusion P ⊆ pF(Pr) can be shown as follows. Let h ∈ P. It is well known
that for all g1 ∈ P there exists a function g2 ∈ Pr with Dg1 = Rg2 . So let f ∈ Pr
be a function such that Dh = Rf . Let M be the Turing machine that computes
the function h such that in each halting configuration the worktape is empty.
Then, M on input f clearly p-computes h and thus h ∈ pF(Pr). �	

Further restricting the input functions to total and surjective recursive functions
(Rsurj) or to the single function id (recall that id : N → Σ∗ is bijective), we obtain
the following results.

Theorem 3.2. 1. pF(Rsurj) = R ∪ {f ∈ P | |Df | < ∞}.
2. pF({id}) = R ∪ {f ∈ P |(∃n ∈ N)[Df = {0, 1, 2, . . . , n}]}.
3. pFtotal({id}) = R.

The proof is omitted due to space restrictions. Note that the classes R, R∪{f ∈
P |(∃n ∈ N)[Df = {0, 1, 2, . . . , n}]}, R ∪ {f ∈ P | |Df | < ∞}, and P form a chain
of strict inclusions and thus we have an inclusion structure as shown in Figure 2.

Persistent Computations of Turing Machines 177

pF({id}) = R ∪ {f ∈ P | Df = {0, . . . , n}, n ∈ N}

R = pFtotal({id})

P = pF(R) = pF(Pr)

pF(Rsurj) = R ∪ {f ∈ P | |Df | < ∞}

Fig. 2. Classes between R and P

We will now turn to characterize the function class Pr in terms of persistent
computations. Since we have pFtotal({id}) = R, a restriction of the set of input
functions alone will not be sufficient to reduce the power of persistent compu-
tations to characterize Pr. We additionally will have to restrict the underlying
Turing machine model. Let T MPr denote the set of all Turing machines that
compute functions that are primitive recursive and that have a primitive recur-
sive work funtions.

Theorem 3.3. Pr = pF({id}, T MPr).

Proof. The inclusion Pr ⊆ pF({id}, T MPr) is obvious. So it is sufficient to prove
pF({id}, T MPr) ⊆ Pr.

Let h ∈ pF({id}, T MPr) be a function and let M be a Turing machine from
T MPr such that M on input id p-computes h. Applying an argument similar
to the one in the proof of pF(R) ⊆ P (see Theorem 3.1) while obeying that all
involved functions are primitive recursive and Pr is closed under simultaneous
recursion as well as the bounded μ-operator it is not hard to see that h is
primitive recursive. �	

Next we will show that we can even allow more input functions than just id and
still get a characterization of Pr. Let Pr−1 denote the set of all functions f ∈ Pr
such that the inverse f−1 is a function and also in Pr, i.e. Pr−1 = {f ∈ Pr |f−1

∈ Pr}.

Theorem 3.4. Pr = pF(Pr−1, T MPr).

Proof. Since clearly id, id−1 ∈ Pr we have pF({id}, T MPr) ⊆ pF(Pr−1, T MPr)
and thus Pr ⊆ pF(Pr−1, T MPr) by Theorem 3.3. So it remains to show that
pF(Pr−1, T MPr) ⊆ Pr.

So let h ∈ pF(Pr−1, T MPr). Hence, there exist a function f ∈ Pr−1 and a
Turing machine M ∈ T MPr such that M on input f p-computes h. Without
loss of generality let workM be primitive recursive. Similar to the argument in

178 H. Hempel and M. Kimmritz

the proof sketch of Theorem 3.3 one can show that gM,f is primitive recursive
since it can be described via simultaneous recursion and the functions outM ,
workM , and f . Since for all n ∈ N, h(n) = gM,f (min{i ∈ N : i = f−1(n)}),
using the fact that f−1 is primitive recursive and Pr is closed with respect to
the application of the bounded μ-operator we obtain h ∈ Pr. �	

One might be tempted to conjecture that even pF(Pr, T MPr) = Pr holds. This
is not the case, as we will show in the following. Recall that Prbij denotes the
set of all functions in Pr that are bijective. Clearly, Pr−1 ⊆ Prbij. We will now
argue that Pr−1 ⊂ Prbij.

Lemma 1. Prbij is not closed with respect to inversion.

Proof. By a result of Robinson ([Ro50]) we know that

R = ΓADD,SUB,INV({succ, x
.
−

√
x�2})

where succ denotes the successor function and for all sets of functions A, the
term ΓADD,SUB,INV(A) denotes the closure of A with respect to addition (ADD),
subtraction (SUB) and a limited form of inversion (INV) where inversion can
only be applied to bijective functions.

Recall that {succ, x
.
− √x�2}) ⊆ Pr, Pr is closed with respect to ADD and

SUB, and R \ Pr �= ∅. Let h ∈ R \ Pr. The function h can be described by
a finite sequence of successive applications of ADD, SUB, and INV on either
succ or x

.
− √x�2. Since during the process of these successive applications of

ADD, SUB, and INV, the functions we start from are in Pr and the function we
end with is element of R \ Pr, there exist (intermediate) functions f ∈ Pr and
g ∈ R \ Pr such that:

1. f ∈ ΓADD,SUB,INV({succ, x
.
−

√
x�2}),

2. f ∈ Prbij,
3. g ∈ ΓADD,SUB,INV({succ, x

.
−

√
x�2}),

4. g = f−1.

Since Prbij ⊆ Pr and g ∈ ΓINV(Prbij) we obtain ΓINV(Prbij) �= Prbij and hence
Prbij is not closed under inversion. �	

Since Pr−1 is clearly closed under inversion we have the following corollary.

Corollary 3.5. Pr−1 ⊂ Prbij.

Moreover we can show, that the class pF(Prbij, T MPr) is located between Pr
and R.

Theorem 3.6. Pr ⊂ pF(Prbij, T MPr) ⊂ R.

Proof. We will first show Pr ⊂ pF(Prbij, T MPr).
Since Pr = pF(Pr−1, T MPr) due to Theorem 3.4 and Pr−1 ⊆ Prbij we have

Pr ⊆ pF(Prbij, T MPr). It remains to show that there exists a function h ∈
pF(Prbij, T MPr) that is not primitive recursive.

Persistent Computations of Turing Machines 179

Let f be a function in Prbij \ Pr−1 and M be a Turing machine from T MPr
such that gM,f ′ = id for any input function f ′. Clearly M(f) is a consistent
p-computation since f is bijective. Let h denote the function computed by the
p-computation M(f). Hence h ∈ pF(Prbij, T MPr). However, we have h(f(i)) =
gM,f(i) = i for all i ∈ N and thus h = f−1. It follows that h is not primitive
recursive.

We now proof pF(Prbij, T MPr) ⊂ R. The inclusion pF(Prbij, T MPr) ⊆ R can
be seen as follows. On the one hand it follows immediately from Theorem 3.1
that pF(Prbij, T MPr) ⊆ P and on the other hand a p-computation M(f) for a
Turing machine M from T MPr and a function f ∈ Prbij always yields a total
function.

To show the strictness of that inclusion we use the Ackermann function p (also
known as Peter function) [Ro67]. It is known that p ∈ R \ Pr. Let the function
q be defined as q(n) = p(n, n) for all n ∈ N. Assume that q is an element of
pF(Prbij, T MPr). Hence there exist a function f ∈ Prbij and a Turing machine
M ∈ T MPr such that M(f) is a p-computation of q. Without loss of generality
let workM be primitive recursive. It follows that gM,f is primitive recursive as
well since it can be described via a simultaneous recursion based on outM and
workM (see the proof of Theorem 3.1). Since (q ◦ f)(n) = q(f(n)) = gM,f(n)
for all n ∈ N we have q ◦ f ∈ Pr. It is a well-known fact that the Peter function
grows faster then any primitive recursive function, i.e.,

(∀h ∈ Pr)(∃m ∈ N)(∀n ∈ N)[h(n) < p(m, n)].

Hence, there exists an m ∈ N such that for all n ∈ N, q(f(n)) < p(m, n). Since
f is surjective there exists n0 ∈ N such that f(n0) = m. It follows that

q(f(n0)) = q(m) < p(m, m)

which contradicts the definition q(n) = p(n, n) for all n ∈ N. Hence our assump-
tion q ∈ pF(Prbij, T MPr) was false. �	

Next we will classify the set pF(Pr, T MPr) which turns out to be not equal to
Pr as the above Theorem 3.6 implies. On the one hand pF(Pr, T MPr) is a strict
superset of pF(Prbij, T MPr) since input functions from Pr are more flexible than
input functions from Prbij. On the other hand pF(Pr, T MPr) remains a subset
of P as the following proposition shows.

Theorem 3.7. pF(Prbij, T MPr) ⊂ pF(Pr, T MPr) ⊂ P \ {nd}.

Proof. The first inclusion, pF(Prbij, T MPr) ⊂ pF(Pr, T MPr) is easy to see. Note
that Prbij ⊂ Pr and hence pF(Prbij, T MPr) ⊆ pF(Pr, T MPr), yet the function
h : N → N that, for all n ∈ N, is defined as

h(n) =

{
n, if n ≡ 0 mod 2,

n.d., if n ≡ 1 mod 2,

is an element of pF(Pr, T MPr) \ pF(Prbij, T MPr).

180 H. Hempel and M. Kimmritz

To show the other inclusion, pF(Pr, T MPr) ⊂ P \ {nd}, first observe that the
function nd is not in pF(Pr, T MPr) since gM,f(0) is defined for any M ∈ T MPr
and any input function f . Second, recall that we have pF(Pr) = P by Theorem 3.1
and thus pF(Pr, T MPr) ⊆ P \ {nd}. And third, note that the strictness of that
inclusion follows from the proof of Theorem 3.6. In particular, in that proof a
function q was defined and it was shown that q is in R \ pF(Prbij, T MPr). Using
the same argument one can also show that q ∈ P \ pF(Pr, T MPr). �	

Acknowledgments. The authors would like to thank the anonymous referees
for their very helpful comments.

References

[A85] Althöfer, I.: Das Dreihirn—Entscheidungsteilung im Schach. Computerschach
& Spiele, 20–22 (December 1985)

[AS03] Althöfer, I., Snatzke, R.G.: Playing Games with Multiple Choice Systems. In:
Schaeffer, J., Müller, M., Björnsson, Y. (eds.) CG 2002. LNCS, vol. 2883, pp.
142–153. Springer, Heidelberg (2003)

[BF04] Brand, M., Frisken, S., Lesh, N., Marks, J., Nikovski, D., Perry, R., Yedidia,
J.: Theory and Applied Computing: Observations and Anecdotes. In: Fiala, J.,
Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 106–118.
Springer, Heidelberg (2004)

[GW98] Goldin, D., Wegner, P.: Persistence as a form of interaction, Technical Report
CS-98-07, Brown University, Department of Computer Science (1998)

[HK] Hempel, H., Kimmritz, M.: Aspects of Persistent Computations (unpublished)
[Ko98] Kosub, S.: Persistent Computations, Technical Report No. 217, Julius-

Maximilians-Universität Würzburg, Institut für Informatik (1998)
[KL02] Klau, G., Lesh, N., Marks, J., Mitzenmacher, M.: Human-guided tabu search.

In: Proceedings of the Eighteenth National Conference on Artificial Intelli-
gence, Fourteenth Conference on Innovative Applications of Artificial Intelli-
gence 2002, pp. 41–47. AAAI Press, Menlo Park (2002)

[LM03] Lesh, N., Mitzenmacher, M., Whitesides, S.: A complete and effective move
set for simplified protein folding. In: Proceedings of the Seventh Annual In-
ternational Conference on Research in Computational Molecular Biology, pp.
188–195 (2003)

[LM03a] Lesh, N., Marks, J., McMahon, A., Mitzenmacher, M.: New exhaustive,
heuristic, and interactive approaches to 2D rectengular strip packing, TR2003-
05. Mitsubishi Electric Research Laboratories, Cambridge (May 2003)

[Ro50] Robinson, R.: General recursive functions. Proceedings of the American Math-
ematical Society 1, JO 3-718 (1950)

[Ro67] Rogers, H.: The Theory of Recursive Functions and Effective Computability,
2nd edn. (1987). MIT Press, Cambridge (1967)

[Sch92] Schöning, U.: Theoretische Informatik kurz gefasst, Mannheim; Leipzig; Wien;
Zürich: BI-Wissenschaftsverlag (1992)

	Persistent Computations of Turing Machines
	Introduction
	Basic Concepts and Definitions
	The Model
	Persistent Computations of Functions

	The Power of Persistent Computations
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

