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Abstract. Bit-splitting breaks the problem of monitoring traffic pay-
loads to detect the occurrence of suspicious patterns into several paral-
lel components, each of which searches for a particular bit pattern. We
analyze bit-splitting as applied to Aho-Corasick style string matching.
The problem can be viewed as the recovery of a special class of regu-
lar languages over product alphabets from a collection of homomorphic
images. We use this characterization to prove correctness and to give
space bounds. In particular we show that the NFA to DFA conversion of
the Aho-Corasick type machine used for bit-splitting incurs only linear
overhead.

1 Introduction

Increasingly, routers are asked to play a role in scanning for, logging, and even
preventing network based attacks. Signature based schemes rely on a set of
signatures to describe malicious or suspicious data. While a wide variety of
signature types are possible, depending on the exact nature of the intrusion
detection or prevention method, a signature usually consists of at least a type
of packet to search, a sequence of bytes to match, and a location where that
sequence is to be searched for.

In an ideal case a signature includes a sequence of bytes which are always
transmitted during a specific attack. The SQLSlammer worm, for example, sends
376 bytes to UDP port 1434 and can be detected in part by searching for the
invariant framing byte 0x04 [4]. It is not uncommon to have thousands of signa-
tures, each 4 to 40 bytes long. Searching through every byte of the payload of
every packet for one of a large number of signatures quickly becomes a significant
computational challenge.

One implementation concern is storage. A single state of a DFA must have
256 next-pointers each of which can address one of 10,000 states. At 448 bytes
per state, the entire rule set of the intrusion detection system Snort [5] would
require of 6 MB of on-chip storage.

To address these problems, bit-split Aho-Corasick machines have been pro-
posed to reduce the storage requirements by a factor of 10, and enable scanning
throughput on the order of 10 Gb/s (see [6]). While this work has demonstrated
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that bit-splitting works in the specific case of Aho-Corasick machines built over
the Snort rule set, correctness or efficiency in the general case has not been
shown. In this paper we analyze bit-splitting as applied to Aho-Corasick based
string matching and prove that it works correctly in general. In addition, we
prove that this approach avoids a potential combinatorial explosion observed in
the simulation of NFA by DFA.

String matching in this context can be viewed as the problem of efficiently
recognizing languages of the form

Σ∗(p1 + p2 + · · · + pm) (1)

where P = {p1, p2, . . . , pm} is a finite set of patterns (keywords). This corre-
sponds to locating the first index in the given packet (text) where a signature
(pattern) starts.

Some intrusion detection techniques make use of context free grammars to de-
fine a language of signatures, such as the LL(k) parser at the heart of STATL [3].
The majority of intrusion detection systems are far more restrictive. The set P of
patterns that Snort searches is a finite language. However, because Snort needs
to find any member of P at any offset it is essentially a recognizer for languages
of finite suffixes as in (1).

For some of the recent approaches to packet scanning techniques we refer the
reader to [2, 6, 7] and the references therein.

2 The General Case of Two Alphabets

Our starting point is bit-splitting as described in [6] where a set of binary ma-
chines that run in parallel from a given Aho-Corasick machine M are con-
structed. Each machine searches for one bit of the input at a time, and a match
occurs only when all of the machines agree. Since the split machines have exactly
two possible next states they are far easier to compact into a small amount of
memory. Also they are loosely coupled, and they can be run independently of
one another.

The alphabet of M can be thought of as being Σ = {0, 1}8. The correctness
and performance of bit-splitting has to do with languages defined over alphabets
which are Cartesian products of other alphabets, binary or otherwise.

Consider a DFA where the input alphabet is a Cartesian product of two
alphabets. Such an automaton is a finite state machine M = (Q, Σ, δ, q1, F )
where Q = {q1, q2, . . . , qm} is a set of states, q1 is the start state, and δ : Q×Σ →
Q is the transition function and F ⊆ Q is the set of final states.

Suppose Σ = A × B for A = {α1, α2, . . . , αr} and B = {β1, β2, . . . , βs}. We
further assume that r, s ≥ 2.

Let L = L(M) denote the language accepted by M . Each w ∈ L is of the form
w = a1b1 a2b2 · · · anbn for some n ≥ 0 and ai ∈ A, bi ∈ B for i = 1, 2, . . . , n.

M can be “bit-split” to construct two nondeterministic finite state machines
MA and MB. This is done by changing the alphabet and the transition function
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of M , but not the set of states, the initial state, or the set of final states, in the
following manner.

Definition 1. Given a DFA M = (Q, Σ, δ, q1, F ) where Σ = A × B with A =
{α1, α2, . . . , αr} and B = {β1, β2, . . . , βs}, define

MA = (Q, A, δA, q1, F ) where ∀a ∈ A, q ∈ Q, δA(q, a) =
s⋃

j=1

δ(q, aβj) ,

MB = (Q, B, δB, q1, F ) where ∀b ∈ A, q ∈ Q, δB(q, b) =
r⋃

i=1

δ(q, αib) .

MA and MB are called bit-split automata or projection automata obtained from
M . LA = L(MA) and LB = L(MB) denote the languages accepted by MA and
MB, respectively.

MA and MB can be described in a number of ways. Probably the easiest visu-
alization is as follows: To construct the transition diagram of MA, make a copy
of M and erase the second letter in every transition in the transition diagram of
M . MB is constructed similarly. Since r, s ≥ 2, MA and MB are both nondeter-
ministic. The final step in bit-splitting is to take MA and MB and construct an
equivalent DFA DMA to MA and an equivalent DFA DMA to MB. This final
step is very important from an implementation standpoint, both because DFA
are the only models that can be implemented on real machines and at the same
time, the construction from NFA to DFA in general has the potential to increase
the number of states exponentially.

The languages LA and LB are easily seen to be homomorphic images of L. For
example, if we define the homomorphism hA : Σ → A by setting hA(αiβj) = αi

for every letter αiβj ∈ Σ for i = 1, 2, . . . , r, j = 1, 2, . . . , s, then LA = hA(L). In
particular, given a regular expression R denoting L, a regular expression for LA

is obtained from R by replacing each occurrence of the letter αiβj by αi, and
a regular expression for LB is obtained from R by replacing each occurrence of
αiβj by βj.

Example: When Σ = A × B with A = {0, 1} and B = {a, b}, the language L
over Σ denoted by the regular expression (0a + 0b + 1a + 1b)∗0b results in the
languages LA over A and LB over B denoted by the regular expressions (0+1)∗0
and (a + b)∗b, respectively. The transition diagrams of M , MA and MB are as
shown in Figure 1.

Definition 2. Given LA over A and LB over B, the language Alt(LA, LB) over
A × B is defined by

Alt(LA, LB) = {a1b1 a2b2 · · ·anbn | n ≥ 0, a1a2 · · · an ∈ LA, b1b2 · · · bn ∈ LB}.

The problems that we formalize in this paper come down to the recovery of L
from LA and LB, and the state complexity of the conversion of MA to DMA

and MB to DMB for Aho-Corasick machines.
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Fig. 1. MA and MB from M : Σ = A × B with A = {0, 1}, B = {a, b}

Lemma 1. Suppose w = a1b1 a2b2 · · · anbn ∈ L, where L = L(M) for a DFA
M over the alphabet A × B, as in Definition 1. Then a1a2 · · ·an ∈ LA and
b1b2 · · · bn ∈ LB . In other words

L ⊆ Alt(LA, LB). (2)

Proof. Suppose a1b1 a2b2 · · ·anbn ∈ L. Then there are states qi1 , qi2 , . . . , qin+1

in Q with q1 = qi1 and qin+1 ∈ F with δ(qij , ajbj) = qij+1 for j = 1, 2, . . . , n.
By the definition of δA, qij+1 ∈ δA(qij , aj) for j = 1, 2, . . . , n. Furthermore
qin+1 is also a final state of MA. Thus a1a2 · · · an ∈ LA. Similarly b1b2 · · · bn ∈
LB. Therefore every a1b1 a2b2 · · · anbn ∈ L belongs to Alt(LA, LB) and (2)
follows. �

Remark: Equality in (2) does not necessarily hold. For example when Σ =
{0, 1} × {a, b} and L over Σ is the language denoted by the (0a + 0b + 1a +
1b)∗(0b + 1a), LA and LB are the languages denoted by the regular expressions
(0 + 1)∗(0 + 1) and (a + b)∗(a + b), respectively. Thus a1 = 0 and b1 = a are in
LA and LB , respectively. Therefore a1b1 = 0a ∈ Alt(LA, LB), but 0a �∈ L.

Definition 3. Suppose L = L(M) where M is a DFA over Σ = A × B. L
satisfies the alternation property if for every n ≥ 0, ai, xi ∈ A, bi, yi ∈ B for
i = 1, 2, . . . , n,

a1y1 a2y2 · · · anyn, x1b1 x2b2 · · · xnbn ∈ L implies a1b1 a2b2 · · ·anbn ∈ L . (3)

This property suffices to prove equality in (2).

Proposition 1. Suppose L = L(M) over the alphabet Σ = A × B, LA and LB

defined as in Definition 1. If L has the alternation property, then

L = Alt(LA, LB) .
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Proof. By Lemma 1, we have L ⊆ Alt(LA, LB). To show Alt(LA, LB) ⊆ L,
assume a1b1 a2b2 · · · anbn ∈ Alt(LA, LB) for some n ≥ 0. By definition of
Alt(LA, LB), a1a2 · · · an ∈ LA and b1b2 · · · bn ∈ LB . First we show that a1a2 · · ·
an ∈ LA implies that there exist y1, y2, . . . , yn ∈ B with a1y1 a2y2 · · · anyn ∈ L.
Consider a sequence of states qi1 , qi2 , . . . , qin+1 in Q with q1 = qi1 and qin+1 ∈ F
with

qij+1 ∈ δA(qij , aj)

for j = 1, 2, . . . , n. By definition of δA,

qij+1 = δ(qij , ajβkj )

for some βkj ∈ B and we can take yj = βkj for j = 1, 2, . . . , n. Similarly,
b1b2 · · · bn ∈ LB implies that there exist x1, x2, . . . , xn ∈ A with x1b1x2b2 · · ·xnbn

∈ L. Since L satisfies the alternation property, we have a1b1 a2b2 · · · anbn ∈ L.
Thus Alt(LA, LB) ⊆ L. �

Lemma 2. The language L = L(M) accepted by a Aho-Corasick machine M
with a single keyword satisfies the alternation property.

Proof. L is of the form Σ∗p where Σ = A×B and p is the keyword. With the
notation of Definition 3,

a1y1 a2y2 · · ·anyn, x1b1 x2b2 · · · xnbn ∈ L

implies that for some k,

a1y1 a2y2 · · ·anyn = a1y1 a2y2 · · ·akyk p ,

x1b1 x2b2 · · · xnbn = x1b1 x2b2 · · ·xkbk p .

Therefore a1b1 a2b2 · · · anbn = a1b1 a2b2 · · · akbk p ∈ L . �

The language L we are interested in is a finite union of languages of the form
Σ∗p, where the union is over the keywords p. However L in this generality need
not satisfy the alternation property of Proposition 1.

It is possible to have an exponential blow-up in the number of states of a DFA
for a language L and the minimum state DFA for its homomorphic image h(L),
even if the homomorphism just identifies a pair of letters of the alphabet, e.g. a
homomorphism such as

h : {a, b, c} → {a, b}∗, where h(a) = a, h(b) = b, h(c) = b. (4)

Example: Let Σ = {a, b, c}. Given an integer k > 0, consider the DFA M on
k + 2 states shown in Figure 2. M accepts the language L denoted by (a +
b)∗c(a + b)k−1. The homomorphic image of L under the homomorphism (4) is
given by (a + b)∗b(a + b)k−1. It is well-known that the minimum state DFA for
this latter language requires Ω(2k) states.
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Fig. 2. DFA for a language whose homomorphic image requires Ω(2k) DFA states

2.1 NFA to DFA Conversion in Bit-Splitting

We can show that for any Aho-Corasick pattern matching machine, the projec-
tion automata MA and MB in our construction do not blow up in size when
converted to the equivalent DFA DMA and DMB.

Recall that the Aho-Corasick algorithm [1] constructs a special state machine
which is essentially a trie with back/cross edges, that can be constructed and
stored in linear time and space with respect to the total complexity of all the
keywords. The preprocessing for the construction is in two stages. The first
stage builds up a tree of all keyword strings. The tree has a branching factor
equal to the number of symbols in the language, and is thus a trie. The root
represents the state where no strings have been even partially matched. To match
a string, we start at the root node and traverse down the edges according to
the input characters observed. The second half of the preprocessing is inserting
failure edges. When a string match is not found, it is possible for the suffix of
one keyword to match a prefix of another. To handle this case, transitions are
inserted which shortcut from a partial match of one string to a partial match of
another. In the Aho-Corasick automaton, there is a one-to-one correspondence
between accepting states and strings, where each accepting state indicates the
match to a unique keyword.

Proposition 2. Suppose M is a Aho-Corasick automaton on n states over the
alphabet Σ = A × B and MA, MB are the two NFA obtained from M using
bit-splitting. Then the equivalent DFA DMA and DMB each have at most n
states.

Proof. M is built on a trie for a set of keywords P = {p1, p2, . . . , pm} with a
number of back and cross edges defined by the longest proper suffix that is also
a prefix of some keyword, as described above and in detail in [1].

It suffices to show that the trie part of MA (and MB) has no more than n
states, as the back and cross edges for DMA and DMB are constructed by the
longest proper suffix condition for the patterns obtained from P after collapsing
the alphabets to A and B, and this process does not change the number of states.

Note that we can obtain MA from M in stages, where in each stage a pair of
letters of the current alphabet are identified and the alphabet is reduced in size by
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one. For example starting with A×B = {0, 1}×{a, b, c} = {0a, 0b, 0c, 1a, 1b, 1c},
we can identify 1c and 1b, and then 1b with 1a obtaining the intermediate al-
phabet {0a, 0b, 0c, 1a}. Then we can identify 0c and 0b, and then 0b with 0a
obtaining {0a, 1a}, which is a copy of A. Thus it suffices to show that when only
two letters are identified, the resulting machine has a deterministic counterpart
with no more than n states.

Suppose we are given a trie T of an Aho-Corasick machine M on some al-
phabet Σ (which need not be a product of two alphabets), and we identify two
letters b, c ∈ Σ. In T , we first replace each occurrence of c by b. The resulting
structure is a nondeterministic trie, in the sense that a node can have more than
one child labeled by the letter b. As the second step, we identify nodes of the trie
top down, level by level, and at each level, from left to right. At the root of the
trie, we identify the children of the root indexed by the letter b. At other nodes,
we may also need to identify children of a node labeled by the same letter for
letters other than b, because identifications at the previous level may produce
more than one child in an identified node that is labeled by a letter other than
b. In addition, if any one of the identified nodes is a final state of the original
machine, then the node obtained by the identification is made into a final state
of the resulting machine. Since a sequence of identifications can only decrease
the number of nodes of the trie, the result follows. �

a b c

T1 T2 T3

a b

T1 T2 T3

Fig. 3. Identification of b and c: at the root of the trie

Note that the identifications can produce multiple back edges or cross edges if we
keep these edges in addition to the trie structure when we execute the two steps
in the proof above. The final step in creating the Aho-Corasick machine requires
the elimination of multiple edges of this type which may have been created by
the identification nodes. In other words, we need not recompute the back and
cross edges anew for each the new set of keywords obtained by identifying a pair
of letters. Figure 3 and Figure 4 show the operation of identification on root and
non-root nodes of the trie.
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a a b

T1 T2 T3

b

T4

a b

T1 T2 T3 T4

Fig. 4. Identification of b and c: at an arbitrary node of the trie

Example: The trie in Figure 5 is built on the patterns P = {abbc, abcc, bab,
bba, ca,cba,cc} over Σ = {a, b, c}. Identification of c and b results in the trie in
Figure 6 built on the set of patterns {abbb, bab, bba, ba, bb} over Σ = {a, b}.

2.2 Recovering L

If there is a single pattern p, then the language LM is the form Σ∗p. Since
this language has the alternation property of Definition 3, L can be recovered
completely from the knowledge of LA and LB. Thus by Proposition 1 the input
a1b1 a2b2 · · · anbn ∈ L iff a1a2 · · ·an ∈ LA and b1b2 · · · bn ∈ LB. But this works
because both MA and MB have a single final state, i.e. the unique final state of M
that corresponds to the keyword p. When there is more than one keyword, L no
longer satisfies the alternation property, and therefore equality of the languages
in Proposition 1 does not hold. However we can recover L from MA and MB by
considering a type of diagonal acceptance as follows

Proposition 3. Suppose L = L(M) over the alphabet Σ = A × B for some
Aho-Corasick machine M . Define MA(f) and MB(f) as in Definition 1, except
a fixed f ∈ F is made the final state. For a1a2 · · · an ∈ LA and b1b2 · · · bn ∈ LB,
a1b1 a2b2 · · ·anbn ∈ L iff a1a2 · · ·an ∈ L(MA(f)) and b1b2 · · · bn ∈ L(MB(f))
for some f ∈ F .

Proof. An Aho-Corasick machine M accepts languages of the form (1). The
condition of the proposition forces MA and MB to accept by the same final
state. Thus for each final state, the language accepted is of the form Σ∗pi, and
therefore satisfies the alternation property and Lemma 2 is applicable. �

Remark: Note that we are not able to recover L from an arbitrary description
of the languages LA and LB for more than one pattern. However for the packet
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Fig. 5. Trie portion of the Aho-Corasick machine for the keywords {abbc, abcc, bab,
bba, ca, cba, cc} over Σ = {a, b, c}

Fig. 6. After identifying c and b, the resulting trie of the Aho-Corasick machine for
the keywords {abbb, bab, bba, ba, bb} over Σ = {a, b}
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scanning application, this presents no problems. We make sure that the MA and
MB accept on the same final state. Otherwise the input is rejected.

Remark: If we use the deterministic versions of MA and MB obtained by the
algorithm described in the proof of Proposition 2 and keep the names of the
identified final as an equivalence class, then we can still recover L by acceptance
by the “same” final state, meaning that there is a common final state in the two
equivalence classes of names after identifications in the resulting DFA.

Remark: The results given above for the Cartesian product of two alphabets
readily generalize to Σ = A1 ×A2 ×· · ·×Am. We omit the details of the general
case. In particular, Σ = {0, 1}8, results in the 8 binary machines M0, M1, . . . , M7
of the bit-split Aho-Corasick.

3 Conclusions

We proved that bit-splitting Aho-Corasick machines is functionally correct, and
provided strict space bounds for this approach. The formal description of how
and why bit-splitting works opens the door to new potential applications for
other classes of languages in similar problem domains. Future work could address
a formal framework for bit-splitting to search for patterns embedded with single
character wildcards.
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