
A Translation from the HTML DTD into a
Regular Hedge Grammar

Takuya Nishiyama and Yasuhiko Minamide

Department of Computer Science, University of Tsukuba
{nishiyama,minamide}@score.cs.tsukuba.ac.jp

Abstract. The PHP string analyzer developed by the second author ap-
proximates the string output of a program with a context-free grammar.
By developing a procedure to decide inclusion between context-free and
regular hedge languages, Minamide and Tozawa applied this analysis to
checking the validity of dynamically generated XHTML documents. In
this paper, we consider the problem of checking the validity of dynami-
cally generated HTML documents instead of XHTML documents.

HTML is not specified by an XML schema language, but by an SGML
DTD, and we can omit several kinds of tags in HTML documents. We
formalize a subclass of SGML DTDs and develop a translation into regu-
lar hedge grammars. Thus we can validate dynamically generated HTML
documents. We have implemented this translation and incorporated it
in the PHP string analyzer. The experimental results show that the val-
idation through this translation works well in practice.

1 Introduction

The PHP string analyzer was developed by the second author to check various
properties of PHP programs [Min05]. It approximates the string output of a
program with a context-free grammar. Minamide and Tozawa applied the anal-
ysis to checking the validity of XHTML documents generated dynamically by a
server-side program [MT06]. They developed a decision procedure that checks
inclusion between a context-free and regular hedge languages. The validity is
checked by applying the procedure to the context-free and regular hedge gram-
mars obtained from a program and the XHTML DTD.

In this paper, we consider the problem of checking the validity of dynamically
generated HTML documents instead of XHTML documents. HTML is not based
on XML, but on SGML [Gol90], and its specification is given as an SGML DTD.
Unlike XML documents, we can omit several kinds of tags in HTML documents
according to the HTML DTD [Wor99]. Models of XML schema languages have
been studied based on the theory of formal languages. Murata proposed a regular
hedge grammar as a foundation of XML schemas [Mur99], and XML DTDs were
modeled as a subclass of context-free grammars called XML-grammars by Berstel
and Boasson [BB02]. However, the presence of tag omission makes it harder to
model an SGML DTD as a formal language. As far as we know, there is no
formal model of SGML DTD.

O.H. Ibarra and B. Ravikumar (Eds.): CIAA 2008, LNCS 5148, pp. 122–131, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Translation from the HTML DTD into a Regular Hedge Grammar 123

In this paper, we formalize a subclass of SGML DTDs and develop a transla-
tion from the subclass into regular hedge grammars. The subclass is expressive
enough to include the HTML DTD, making it possible to validate dynamically
generated HTML documents based on the decision procedure of Minamide and
Tozawa.

Even though it seems rather difficult to formalize general SGML DTDs and
represent them with regular hedge grammars, we found that the following two
properties hold for the HTML DTD. (a) It is possible to check whether an end tag
can be omitted or not by looking at the next element of an SGML document,
and (b) the number of direct nestings of tag omissions is bounded by a fixed
number determined by the DTD.

We can write an HTML document like the following.

<p> <p> <p> ...

It seems that p elements can be nested any number of times. However, according
to the HTML DTD, a p element cannot appear as a child of p. Thus, the string
above is interpreted as the following string by inserting </p> symbols.

<p> </p><p> </p><p> </p> ...

Thus, p elements are not nested in the string.
Based on these observations, we first formalize the language of an SGML DTD

satisfying the first condition as an image of a regular hedge language under a
transducer, omitting end tags from a valid string not including tag omissions.
Furthermore, we show that if an SGML DTD satisfies both conditions, the image
is also a regular hedge language, and we develop a translation from the subclass
of SGML DTDs into regular hedge grammars. We have implemented this trans-
lation and incorporated it in the PHP string analyzer. The experimental results
show that the validation through the translation works well in practice.

This paper is organized as follows. In Section 2, we review SGML and SGML
DTD. We formalize the subset of SGML DTDs by modeling end-tag omission
with a transducer in Section 3. Section 4 introduces a further restricted class of
SGML DTD and gives a translation from a DTD into a regular hedge grammar.
The translation is extended to support the exclusion feature of SGML DTD in
Section 5. Finally, we show our experimental results.

2 SGML and SGML DTD

SGML is a predecessor of XML, and a markup language for structured docu-
ments such as XML. One of the essential differences between SGML and XML
is that we can omit tags in SGML documents. In SGML, a document type is
specified with the schema language DTD. Although it is quite similar to the
DTD for XML, it has more features to specify the type of documents: tag omis-
sion, inclusion, and exclusion are the features used in the HTML DTD that are
specific to SGML DTD.

124 T. Nishiyama and Y. Minamide

Let us consider the following SGML DTD.
<!DOCTYPE friends [
<!ELEMENT friends O O (person)* >
<!ELEMENT person - O (name, phone?) >
<!ELEMENT name - O (#PCDATA) >
<!ELEMENT phone - O (#PCDATA) >

] >

This declaration specifies content-models of five elements. For example, inside
the friends element any sequence of person elements can appear, as specified
by the regular expression (person)*.

This declaration also specifies tag omission for each element, namely whether
or not the start and end tags of the element are optional, by two characters
between the element name and the content-model. If the first character is “O”,
then the start tag of the element can be omitted. Otherwise, it is mandatory.
The second character indicates the same for the end tag of the element. For the
DTD above, only the start tag of the element friends and the end tags of the
elements friends, person, name, and phone can be omitted. We call elements
with optional end tags end-tag omittable elements.

However, tags cannot be omitted everywhere even if it is specified so in a
DTD. A tag in a document can only be omitted if the structure of the document
can be uniquely determined without the tag. Warmer and van Egmond clarified
the condition in the specification as follows [WvE89]. An end tag can be omitted
only if it is followed by the end tag of another open element, or by the start tag
of another element or an SGML character that is not allowed in the element’s
content-model.

Let us clarify the condition with the following example.
<!DOCTYPE a [
<!ELEMENT a - - (b|c|d)* >
<!ELEMENT b - O (c,d)+ >
<!ELEMENT c - - (#PCDATA) >
<!ELEMENT d - - (#PCDATA) >

] >

The end tag is specified to be omittable in this DTD and the following
document is valid.

<a><c>A</c><d>B</d><c>C</c>

It is interpreted as the following by inserting before the second <c>. This
is because c,d,c is not allowed in the content model (c,d)+ of the element b.

<a><c>A</c><d>B</d><c>C</c>

On the other hand, in the following document cannot be omitted because
c,d,c,d is allowed in b.

<a><c>A</c><d>B</d><c>C</c><d>D</d>

As this example shows, to decide whether an end tag can be omitted, it is
necessary to look ahead to an unbounded number of elements in general.

A Translation from the HTML DTD into a Regular Hedge Grammar 125

3 Formalization of SGML DTD

As stated above, an SGML specific feature that is often used in HTML docu-
ments is the omission of end tags. Although start tags of several elements in-
cluding HTML, HEAD, and BODY are specified as optional in the HTML DTD, it is
rather rare to omit them (at least in a server-side program). Thus, in this paper,
we formalize a subset of SGML DTDs that allow omission only of end tags. Fur-
thermore, to simplify our formalization, we introduce a subclass of SGML DTDs
that makes it possible to check whether an end tag can be omitted or not by
looking only at the next element of an SGML document. The class is expressive
enough to deal with the HTML DTD as we discussed in the introduction.

To formalize SGML documents and DTDs, we consider SGML documents as
strings over a paired alphabet. Let Σ be a base alphabet corresponding to the
set of element names. We introduce a paired alphabet consisting of two sets Σ́
and Σ̀:

Σ́ = {á | a ∈ Σ} Σ̀ = {à | a ∈ Σ}

where Σ́ and Σ̀ correspond to the set of start tags and the set of end tags,
respectively. For example, the following document is described as áb́ćc̀b̀b́b̀à.

<a><c></c>

If we omit the end tag of c, we obtain an unbalanced string, áb́ćb̀b́b̀à. We discuss
the validity of SGML documents based on this representation, and thus ignore
the attributes and the text parts of a document.

Definition 1. We formalize SGML DTD as a 4-tuple D = (Σe, Σm, M, r).

– Σe is the finite set of symbols corresponding to element names.
– Σm(⊆ Σe) is the set of symbols with omittable end tags.
– M is a function from Σe to regular languages over Σe. The regular language

M(a) corresponds to the content-model of a.
– r ∈ Σe is the root element.

We restrict the content-models for end-tag omittable elements: to the regular
languages of the form (a1|a2| · · · |an)∗ or (a1|a2| · · · |an)+ where ai are symbols.
This makes it possible to decide whether or not an end tag can be omitted by
looking one symbol ahead. We say that an SGML DTD is simple if it satisfies
this condition.

Let us consider the following simple DTD.

<!DOCTYPE a [
<!ELEMENT a - - (x, b?)* >
<!ELEMENT x - O (b)* >
<!ELEMENT b - - (x)+ >

] >

This DTD is represented as D = ({a, x, b}, {x}, M, a) where M(a) = (xb?)∗,
M(x) = b∗, M(b) = x+. The string áx́x̀b́x́b̀à is valid with respect to D. On the

126 T. Nishiyama and Y. Minamide

other hand, áx́x̀b́b̀à is not valid, because this string does not have the x element
that should appear inside the b element.

For simple DTDs, we formalize the language of a DTD D as follows.

1. Construct the regular hedge grammar G0(D) that generates all the valid
balanced strings, in turn the valid strings without any tag omission.

2. Construct the finite transducer T (D) that outputs all the valid strings ob-
tained by omitting tags from a valid balanced string.

The language of D is the image of G0(D) under T (D).
Regular hedge grammars (RHGs) were introduced by Murata as a model of

XML schemas [Mur99]. Let us introduce a string version of RHGs.

Definition 2. An RHG is a 5-tuple (Σ2, Σ1, N, P, S) where Σ2, Σ1, and N are
a base of a paired alphabet, the set of local symbols, and the set of nonterminals
respectively. Each production rule in P has the following form:

X → áRà

where X ∈ N and R is a regular language over N∪Σ1. S ∈ N is a start symbol 1.

An RHG defines a language over Σ́2 ∪ Σ̀2 ∪ Σ1. We denote elements of Σ2 and
Σ1 by a, b, c and x, y, z, respectively. In this paper, without loss of generality we
assume that each nonterminal of an RHG has exactly one production rule.

For the construction of the RHG G0(D), we consider that all element names
are base symbols and introduce a nonterminal Xa for each element name a ∈ Σe.
Then, G0(D) is defined as (Σe, ∅, N, P, Xr) where N = {Xa | a ∈ Σe} and P
has the following rule for each a ∈ Σe.

Xa → áM(a)à

This is basically the same as the interpretation used for XML DTDs by Berstel
and Boasson [BB02].

Example 1. Let us consider the DTD D1 below.

<!DOCTYPE a [
<!ELEMENT a - - (x, b) >
<!ELEMENT b - - (b)* >
<!ELEMENT x - O (y | a)* >
<!ELEMENT y - O (b)* >

] >

G0(D1) = ({a, b, x, y}, ∅, {Xa, Xb, Xx, Xy}, P, Xa) where P has the following
production rules.

Xa → áXxXbà Xb → b́X∗
b b̀ Xx → x́(Xy|Xa)∗x̀ Xy → ýX∗

b ỳ

This RHG generates all valid balanced strings of the DTD.
1 The original definition of RHGs allows us to use a regular expression instead of a

single nonterminal to describe starting points of derivation.

A Translation from the HTML DTD into a Regular Hedge Grammar 127

To formalize end-tag omission, we introduce the finite transducer T (D) that
takes the valid balanced strings of the DTD D. The transducer produces all
possible strings that can be obtained by omitting end tags according to D.

Let us first review a subclass of finite transducers called a generalized sequen-
tial machine (GSM). We adopt in this paper the definition of GSMs without
final states.

Definition 3. A GSM T is a 5-tuple (Q, Σ, Δ, σ, q0) where Q is the finite set
of states, Σ is the input alphabet, Δ is the output alphabet, σ is the transition-
and-output function from Q × Σ to 2Q×Δ∗

, and q0 ∈ Q is the initial state.

For a simple DTD, the end tag of a ∈ Σm can be omitted if the next symbol is
an end tag b̀ such that b �= a, or a start tag b́ such that b does not appear in
M(a). Although the condition related to start tag differs from the original one
in Section 2, they coincide for a simple DTD, because M(a)’s form is restricted
to enable this.

We simplify presentation of T (D) by describing it as taking a reversed string
and outputting all the reversed valid strings obtained by end-tag omission. The
transducer memorizes the last outputted symbol as its state and decides whether
an end tag can be omitted or not. The reversed string of a valid string α1α2 · · ·αn

is α̌n · · · α̌2α̌1 where ˇ́a = à and ˇ̀a = á. The GSM T (D) is formalized as follows.

Definition 4. Let D = (Σe, Σm, M, r) be a simple SGML DTD. We define the
GSM T (D) as (Q, ΣT , ΣT , σT , q0) where ΣT = Σ́e ∪ Σ̀e and Q = {q0} ∪ {qα |
α ∈ ΣT }. The GSM has the following transitions and outputs.

(qα, α) ∈ σT (q, α) if α ∈ ΣT and q ∈ Q.
(q0, ε) ∈ σT (q0, x́) if x ∈ Σm.
(qá, ε) ∈ σT (qá, x́) if x ∈ Σm, a ∈ Σe, and a �= x.
(qà, ε) ∈ σT (qà, x́) if x ∈ Σm, a ∈ Σe, and a does not appear in M(x).

Then, The language of a simple DTD D is formalized as (T (D)(L(G0(D))R))R.
It should be noted that the language cannot be represented by a regular hedge

language in general. Let us consider the following DTD 2.

<!DOCTYPE a [
<!ELEMENT a - O (a)? >

] >

The language of this DTD is {ámàn | 0 < m ∧ 0 ≤ n ≤ m} and cannot be
represented as an RHG.

4 A Translation from a DTD into an RHG

We consider a subclass of simple DTDs where the number of direct nestings of
omittable elements is bounded and translate a DTD in this class into an RHG
2 Although this DTD is not simple, the language can be formalized by slightly extend-

ing the definition of T (D).

128 T. Nishiyama and Y. Minamide

by considering tags of omittable elements as local symbols. This class includes
the HTML DTD and thus enables validation of dynamically generated HTML
documents with the decision algorithm of Minamide and Tozawa [MT06].

Let us consider the graph {(x, y) ∈ Σm × Σm | y appears in M(x)} where
Σm is the set of end-tag omittable elements. We say that a DTD is acyclic if
its graph is acyclic. This requirement corresponds to requiring that the number
of direct nestings of omittable elements is bounded. For an acyclic simple DTD,
we develop a translation into an RHG. It consists of the three steps.

First, we construct the RHG G′
0(D) that generates the same language as

G0(D) by taking advantage of the acyclicity of DTDs. It is done by recursively
expanding all nonterminals Xa for a ∈ Σm.

Example 2. For the DTD D1, we obtain G′
0(D1) = (Σ′

e, Σ́m ∪ Σ̀m, {Xc | c ∈
Σ′

e}, P ′, Xa) where Σ′
e = Σe \ Σm and P ′ has the following production rules.

Xa → áx́(ýX∗
b ỳ|Xa)∗x̀Xbà Xb → b́X∗

b b̀

Hereafter in this section, we consider that the symbols in Σ́m ∪ Σ̀m are local:
Σ2 = Σe \ Σm and Σ1 = Σ́m ∪ Σ̀m.

Second, we lift the GSM T (D) over Σ́e ∪ Σ̀e to Ta(D) over {Xb | b ∈ Σe \
Σm} ∪ Σ́m ∪ Σ̀m for each a ∈ Σe \ Σm. Namely, we lift the GSM operating on
the terminal symbols to Σ1 ∪N . This lifting is possible if a GSM is surface local.
A surface local GSM, as we define it, is a GSM that operate essentially on the
surface of balanced string.

Definition 5. Let Σ = Σ́2 ∪ Σ̀2 ∪ Σ1 and T = (Q, Σ, Σ, σ, s) be a GSM. We
say that T is surface local if the following conditions hold.

1. For each a ∈ Σ2, there exist states qá and qà such that σ(q, á) = {(qá, á)}
and σ(q, à) = {(qà, à)} for all q ∈ Q.

2. For all b ∈ Σ1, (q′, w) ∈ σ(q, b) implies w ∈ Σ∗
1 .

It is clear from the definition that the GSM T (D) for a simple SGML DTD D
is surface local. A surface local GSM can be lifted as follows.

Definition 6. Let Σ be Σ́2 ∪ Σ̀2 ∪ Σ1, T = (Q, Σ, Σ, σ, s) be a surface local
GSM, and G = (Σ2, Σ1, N, P, S) be an RHG.

We introduce a lifted GSM Ta = (Q, Σ1 ∪ N, Σ1 ∪ N, σ′, qà) for each a ∈ Σ2.
The transition-output function σ′ is defined as follows:

σ′(q, x) = σ(q, x) (q ∈ Q and x ∈ Σ1)
σ′(q, X) = {(qb́, X)} (q ∈ Q and G has a rule of the form X → b́Rb̀).

Finally, we construct the RHG G(D) that represents the language of D, by
composing Ta(D) and each production rule of G′

0(D).

Theorem 1. Let G and T be an RHG and a surface local GSM. We construct
an RHG G′ as follows:

X → áTa(R)à

for a production rule X → áRà. Then, T (L(G)) = L(G′).

A Translation from the HTML DTD into a Regular Hedge Grammar 129

In the previous section, we have defined the language of an SGML DTD as
(T (D)(L(G0(D))R))R. Let G′ be an RHG constructed as in the theorem for
G′

0(D)R and T (D). Then we have G′ = T (D)(L(G0(D))R). Thus, the language
of D can be described by the RHG G′R.

Example 3. The grammar that generates the language of D1 can be described
as follows:

Xa → áx́(ýX∗
b ỳ?|Xa)∗x̀Xbà | áx́((ýX∗

b ỳ?|Xa)∗(ýX∗
b ỳ|Xa))?Xbà

Xb → b́X∗
b b̀

where Xa is the start symbol. The production rule for Xa can be read as follows.
If x̀ is omitted then the last ỳ cannot be omitted, and vice versa.

5 Exclusion and Inclusion in SGML DTD

In contrast to XML DTD, SGML DTD can specify non-local constraints on
elements with inclusion and exclusion. They are used to allow or disallow some
elements appearing as a descendant of an element.

We have extended our translation from an SGML DTD to an RHG to support
the exclusions appearing in the HTML DTD. To simplify translation, the support
of exclusion is restricted so that exclusion is specified only for non-omittable
elements. The HTML DTD satisfies this restriction.

Let us consider the following DTD to explain the extended translation.

<!DOCTYPE a [
<!ELEMENT a - - (b|c)* >
<!ELEMENT b - - (a,c) -(b)>
<!ELEMENT c - - (a)? -(c)>

] >

The parts -(b) and -(c) are the specifications of exclusion. The former means
b cannot appear as a descendant of b, even if it is specified as being allowed to
do so. The latter indicates the same for c in c.

This DTD is translated into an RHG by introducing a nonterminal XS
a for

each element name a and the set of excluded elements S as follows:

X∅
a → á(X∅

b |X∅
c)∗à X

{b}
a → á(X{b}

c)∗à X
{b,c}
a → áà

X∅
b → b́X

{b}
a X

{b}
c b̀ X

{b}
b → b́X

{b}
a X

{b}
c b̀

X∅
c → ćX

{c}
a c̀ X

{b}
c → ćX

{b,c}
a c̀

where X
{b,c}
b is not included because it generates no terminal strings.

The transducer T (D) for the DTD D can be constructed in the exactly same
manner under the condition that exclusion is specified only for non-omittable
elements.

One problem with this translation is that it may increase the size of the grammar
exponentially. In our experiments, we could obtain an RHG for the HTML DTD
even if we enabled exclusion. However, we failed to minimize the RHG and to use
it directly for HTML validation.

130 T. Nishiyama and Y. Minamide

6 Experimental Results

We have implemented a parser for SGML DTD and the translation from DTDs
into RHGs given above. We conducted our experiments on the HTML 4.01 Tran-
sitional DTD, which contains declarations for 109 elements. To simulate unsup-
ported features of DTDs appearing in the HTML DTD, we modified the DTD
as follows.

– The TABLE element is defined as follows. The start and end tags of TBODY
can be omitted and they usually are omitted.

<!ELEMENT TABLE - -
(CAPTION?, (COL*|COLGROUP*), THEAD?, TFOOT?, (TBODY)+)>

<!ELEMENT TBODY O O (TR)+ -- table body -->

To support the omission, we have replaced the (TBODY)+ part of the content-
model of the TABLE with (TBODY|TR)+ and conducted our experiments.

– The inclusion feature of the SGML DTD is used in the definition of the
header of HTML documents. We have simulated it by expanding the element
declarations with included elements. Although the inclusion feature is also
used for the INS and DEL elements, we ignored them because the programs
we considered do not use the INS and DEL elements.

In the implementation, we represent an RHG as a grammar with production
rules of the forms X → áY àZ or X → bY or X → ε, where a ∈ Σ2 and b ∈ Σ1.
A grammar in this form can be considered as a tree automaton and algorithms
such as determinization and minimization for tree automata can be applied to
it. An RHG can be converted into a grammar in this form, and vice versa. In our
implementation, a minimized RHG is converted into an algebra called a binoid
to decide CFL-RHL inclusion [PQ68].

When we ignored exclusions we obtained the RHG that has 187 nonterminals
and 7471 production rules. After minimizing it, the grammar has 56 nonter-
minals and 6758 production rules and the binoid converted from the RHG has
2381 elements. The RHG obtained with exclusion enabled translation has 3213
nonterminals and 115647 production rules. As we noted earlier, the translation
to support exclusion may increase the size of the RHG exponentially. Although
the RHG is only one order of magnitude larger, the determinization and mini-
mization of the RHG and the generation of the binoid failed because the RHG
is too large.

The implementation was incorporated into the PHP string analyzer de-
veloped by Minamide [Min05]. The analyzer generates a CFG that conser-
vatively approximates the string output of a PHP program. It is available
from http://www.score.cs.tsukuba.ac.jp/~minamide/phpsa/. In our exper-
iments, we checked the validity of Web pages generated by a PHP program
against the HTML DTD. To reduce the size of the binoid obtained by the trans-
lation, we first extract the set of element names appearing in a CFG obtained
by the analyzer and delete the elements from the DTD that do not appear in
the set.

A Translation from the HTML DTD into a Regular Hedge Grammar 131

Table 1. HTML validation

Element RHG (minimized) Execution
Programs names Nonterminals Productions Binoid Bugs time (s)
webchess 20 20 439 375 1 3.37
faqforge 19 16 315 106 16 1.19
phpwims 18 16 268 39 3 1.65

Table 1 shows the results of our experiments. The column ‘elements’ shows
the number of element names that may appear in generated HTML documents.
The columns ‘RHG’ and ‘binoid’ show their sizes. We found several bugs through
our experiments and corrected them. The numbers of bugs found are also shown.
The column ‘time’ shows the execution time spent to generate binoids from the
DTD and check the CFL-RHL inclusion. These times do not include the time
spent to generate a CFG from a PHP program by the analyzer.

References

[BB02] Berstel, J., Boasson, L.: Formal properties of XML grammars and lan-
guages. Acta Informatica 38(9), 649–671 (2002)

[Gol90] Goldfarb, C.F.: The SGML Handbook. Oxford University Press, Oxford
(1990)

[Min05] Minamide, Y.: Static approximation of dynamically generated Web pages.
In: Proceedings of the 14th International World Wide Web Conference, pp.
432–441. ACM Press, New York (2005)

[MT06] Minamide, Y., Tozawa, A.: XML validation for context-free grammars. In:
Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 357–373. Springer,
Heidelberg (2006)

[Mur99] Murata, M.: Hedge automata: a formal model for XML schemata (1999),
http://www.xml.gr.jp/relax/hedge nice.html

[PQ68] Pair, C., Quere, A.: Définition et étude des bilangages réguliers. Informa-
tion and Control 13(6), 565–593 (1968)

[Wor99] World Wide Web Consortium. HTML 4.01 Transitional DTD (1999),
http://www.w3.org/TR/html401/loose.dtd

[WvE89] Warmer, J., van Egmond, S.: The implementation of the Amsterdam SGML
Parser. Electronic Publishing 2(2), 65–90 (1989)

http://www.xml.gr.jp/relax/hedge_nice.html
http://www.w3.org/TR/html401/loose.dtd

	A Translation from the HTML DTD into a Regular Hedge Grammar
	Introduction
	SGML and SGML DTD
	Formalization of SGML DTD
	A Translation from a DTD into an RHG
	Exclusion and Inclusion in SGML DTD
	Experimental Results
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

