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Abstract. This paper considers the problem of computing the real con-
vex hull of a finite set of n-dimensional integer vectors. The starting
point is a finite-automaton representation of the initial set of vectors.
The proposed method consists in computing a sequence of automata
representing approximations of the convex hull and using extrapolation
techniques to compute the limit of this sequence. The convex hull can
then be directly computed from this limit in the form of an automaton-
based representation of the corresponding set of real vectors. The tech-
nique is quite general and has been implemented. Also, our result fits in a
wider scheme whose objective is to improve the techniques for converting
automata-based representation of constraints to formulas.

1 Introduction

Automata-based representations for sets of integer and real vectors have been a
subject of growing interest in recent years [1,3,13,17,19]. While usually not opti-
mal for specific problems, they provide much stronger generality and canonicity
than other representations. For instance, in this context, combining real and in-
teger constraints is very simple once the right framework has been set up [4].
The benefit of using automata-based representations for arithmetic sets could
be even greater if one could, whenever appropriate, freely move between this
and other representations such as explicit constraints. Going from constraints
to automata has long been successfully studied [9,2,7], but going in the other
direction is substantially more difficult. Nevertheless, it has been shown that
it is possible [18] to construct constraint formulas from automata representing
sets of integer vectors and that, under some restrictions, this can be done quite
effectively [16].

One case that is not well handled though is that of finite sets of integer vec-
tors. Indeed, imagine that a finite set of integers is represented by constraints and
that an automaton representing this set is built from these. Since the set is finite,
this acyclic automaton lacks the structure needed to construct the corresponding
constraints. One is thus stuck with the automaton or with an enumerative repre-
sentation of the set it defines, which is far from satisfactory. The work presented
here was motivated by this problem with the idea of solving it along the follow-
ing lines. The first step is to compute, as an automaton, a minimal dense set of
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real-vectors that contains the finite set of integers. On this automaton, techniques
similar to those of [16,18] could then be applied to obtain constraints.

This paper proposes a solution for the first step in the formof a purely automata-
based technique for computing the real convex hull (i.e. the convex hull over R

n)
of a finite automaton-represented finite set of integers. Note that, beyond the mo-
tivation outlined above, this is also a worthwhile challenge of independent interest
in the area of automata-based representations. In simple terms, our approach pro-
ceeds as follows. We start with an automata-based representation of a finite set
of integer vectors. We then repeatedly apply a transformation to this automaton
that adds to the set the vectors that are mid-way between those it includes. This
yields an infinite sequence of automata-represented sets. The limit of this infinite
sequence is then computed as an automaton, using the extrapolation-based tech-
niques of [5]. This limit is not quite the convex closure since we prove that it will
only contain convex combinations of the initial vectors with coefficients that are
multiples of a negative power of 2. This limit thus needs to be “completed” in or-
der to obtain the convex hull and we show that this can be done by computing its
topological closure. Bar a technical point due to the fact that some reals have two
encodings in our framework, the computation of the topological closure is quite an
easy step. This being done, the closure is obtained.

The extrapolation-based techniques of [5], which have so far only been ap-
plied in the context of “regular model checking” [8], are semi-algorithms that
tackle the undecidable problem of computing the limit of an infinite sequence by
extrapolating finite prefixes of the sequence. For the procedure above to work
correctly, we thus depend on the result of the extrapolation being exact, which
is not guaranteed a priori. Nevertheless, this can be checked as described in
[5], but one interesting twist is that checking safety (enough is obtained) can
be done much more easily (and just as correctly) after computing the topolog-
ical closure. This is due to the fact that taking the topological closure yields
an automaton that falls within an easier to handle class. Checking preciseness
(nothing is added) with the techniques of [5] is probably not practical, but in the
present situation one can exploit the properties of the extrapolation and make
this check just as simple as the safety check.

Our approach has been implemented and the implementation has actually
served as a guide to hone our results. The implementation has been tested and
performs well, within the bounds allowed by the automata manipulations needed
for the computation of the limit of the sequence of approximations. We certainly
do not claim to outperform more traditional methods when they apply, our goal
being to establish the basis of a different approach with interesting character-
istics, performance gains not being part of our initial agenda. Also note that
complexity analysis would not yield useful information since, at the heart of our
approach, lies the extrapolation procedure which is only a semi-amgorithm.

Related Work. Computing convex hulls is of course a well studied problem of
independent interest. There are quite a few known techniques for computing
convex hulls of a set of vectors in a non automata-theoretic setting. Among these
a long series of algorithms specialized to the 2D and 3D case and widely used
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and studied in computational geometry. Algorithms for the general case (any
dimensions) have also been studied [12]. All those algorithms, which are generally
more efficient than an automata-based approach, require an enumeration of the
set, which we avoid here. In [14], Finkel and Leroux show that the convex hull
of a (possibly infinite) set of integer vector represented by an automaton is a
computable polyhedron. The algorithm in [14] can be applied to infinite sets and
is guaranteed to terminate. On the other hand, this algorithm, may require to
enumerate the set represented by the automaton and is restricted to work in Z

n.
Some proofs had to be omitted due to space constraints. A self-contained long

version of this paper is available at [11].

2 Automata-Theoretic Background

2.1 Automata on Infinite Words

An infinite word (or ω-word) w over an alphabet Σ is a mapping w : IN → Σ
from the natural numbers to Σ. The length-k prefix of an infinite word w, i.e.
the finite-word w(0), w(1), . . . , w(k − 1), will be denoted by pref k(w).

A Büchi automaton on infinite words is a five-tuple A = (Q, Σ, δ, q0, F ), where
Q is a finite set of states, Σ is the input alphabet, δ : Q × Σ → 2Q is a
transition function (δ : Q × Σ → Q if the automaton is deterministic), q0
is the initial state, and F is a set of accepting states. A run π of a Büchi
automaton A = (Q, Σ, δ, q0, F ) on an ω-word w is a mapping π : IN → Q
such that π(0) = q0 and for all i ≥ 0, π(i + 1) ∈ δ(π(i), w(i)) (nondeterministic
automata) or π(i + 1) = δ(π(i), w(i)) (deterministic automata). Let inf (π) be
the set of states that occur infinitely often in a run π. A run π is said to be
accepting if inf (π) ∩ F �= ∅. An ω-word w is accepted by a Büchi automaton if
that automaton has some accepting run on w. The language Lω(A) of infinite
words defined by a Büchi automaton A is the set of ω-words it accepts.

We will also use the notion of weak automata [21]. Roughly speaking, a weak
automaton is a Büchi automaton such that each of the strongly connected com-
ponents of its graph contains either only accepting or only non-accepting states.
Not all omega-regular languages can be accepted by weak deterministic Büchi
automata, nor even by weak nondeterministic automata. However, there are
algorithmic advantages to working with weak automata. Indeed, weak determin-
istic automata can be complemented simply by inverting their accepting and
non-accepting states, while the complementation operation for Büchi automata
requires intricate algorithms that not only are worst-case exponential, but are
also hard to implement and optimize [24]. There exists a simple determiniza-
tion procedure for weak automata [22], which produces Büchi automata that
are deterministic, but not necessarily weak. However, we will be working in a
context in which the obtained automata are always easily transformed into weak
auatomata [4]. A final advantage of weak deterministic Büchi automata is that
they admit a normal form, which is unique up to isomorphism [20].
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2.2 Automata-Based Representations of Sets of Integers and Reals

In this section, we briefly introduce the representation of sets of integer and real
vectors by finite automata. Details are only given for the case of real vectors,
the case of integer vectors being a simplification of the former where automata
on finite words replace automata on infinite words. A survey on this topic can
be found in [7].

In order to make a finite automaton recognize numbers, one needs to establish
a mapping between these and words. Our encoding scheme corresponds to the
usual notation for reals and relies on an arbitrary integer base r > 1. We encode
a number x in base r, most significant digit first, by words of the form wI � wF ,
where wI encodes the integer part xI of x as a finite word over {0, . . . , r − 1},
the special symbol “�” is a separator, and wF encodes the fractional part xF of
x as an infinite word over {0, . . . , r − 1}. Negative numbers are represented by
their r’s complement. The length p of |wI |, which we refer to as the integer-part
length of w, is not fixed but must be large enough for −rp−1 ≤ xI < rp−1 to
hold.

According to this scheme, each number has an infinite number of encodings,
since their integer-part length can be increased unboundedly. In addition, the
rational numbers whose denominator has only prime factors that are also factors
of r have two distinct encodings with the same integer-part length. For example,
in base 10, the number 11/2 has the encodings 005 � 5(0)ω and 005 � 4(9)ω, “ ω”
denoting infinite repetition. We call these respectively the high and low encodings
and refer collectively to them as dual encodings.

To encode a vector of real numbers, we represent each of its components by
words of identical integer-part length. This length can be chosen arbitrarily,
provided that it is sufficient for encoding the vector component with the highest
magnitude. An encoding of a vector x ∈ R

n can indifferently be viewed either as
a n-tuple of words of identical integer-part length over the alphabet {0, . . . , r −
1, �}, or as a single word w over the alphabet {0, . . . , r − 1}n ∪ {�}1.

Real vectors being encoded by infinite words, a set of vectors can be repre-
sented by an infinite-word automaton accepting the corresponding encodings.
Since a real vector has an infinite number of possible encodings, we have to
choose which of these the automata will recognize. A natural choice is to accept
all encodings. This leads to the following definition.

Definition 1. Let n > 0 and r > 1 be integers. A base-r n-dimension Real
Vector Automaton (RVA) [6] is a Büchi automaton A = (Q, Σ, δ, Q0, F ) over
the alphabet Σ = {0, . . . , r − 1}n ∪ {�}, such that (1) Every word accepted by A
is an encoding in base r of a vector in R

n, and (2) For every vector x ∈ R
n, A

accepts either all the encodings of x in base r, or none of them.

An RVA is said to represent the set of vectors encoded by the words that belong
to its accepted language. In [4], it is shown that if the set represented by the
1 In practice, one reads the bits of the vector components in a round robin way, which

avoids an exponential-size alphabet. However, for presentation purposes, it is easier
to view all same-position bits of the vector components as being read simultaneously.
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RVA can be defined in the first-order theory of linear constraints, then this RVA
can be transformed into an equivalent weak deterministic Büchi automata. If
not explicitly mentioned, we assume that the RVAs we manipulate are minimal
weak deterministic Büchi automata. Also, since our implementation works with
a base 2 representation, we will present all our results in this context, knowing
that they can be generalized to other bases.

3 Convex Hulls and Topological Concepts

We recall a few notations and definitions that are used throughout the paper.
Let Z, Q, and R be respectively the sets of integers, rational, and reals, and

let Z
n, Q

n , and R
n denote the usual n-dimensional Euclidean vector spaces.

Vectors are written in boldface, e.g. x, and scalars without emphasis, e.g. a. The
ith component of a vector x ∈ R

n is denoted by x[i]. We say that a set E ∈ R
n

is convex iff for each x1,x2 ∈ E, we have {αx1 + (1 − α)x2 | α ∈ [0, 1]} ⊆ E.
We will also use the following usual definitions.

Definition 2. Given a set E ⊆ R
n, the convex hull of E is the set Conv(E ) ⊆

R
n defined by

Conv(E ) = {x | ∃x1, . . . ,xk ∈ E ∃λ1, . . . , λk ∈ [0, 1] x =
k∑

i=1

λixi ∧
k∑

i=1

λi = 1}

The Euclidean distance between two vectors x,x′ ∈ R
n, denoted by |x − x′| is

the real number
√∑n

i=1(x[i] − x′[i])2. The open ball centered in x ∈ R
n with a

radius ε > 0 is the subset B(x,ε) = {x′ | |x − x′| < ε}. A set E ⊆ R
n is said to

be open if for any x ∈ E there exists ε > 0 such that B(x,ε) ⊆ E . A closed set
E is a subset of R

n such that R
n \ E is an open set. A compact set in R

n is a
bounded and closed set. We use the concept of topological closure of a set.

Definition 3. Given a set E ⊆ R
n, the topological closure TC (E ) of E is the

smallest closed set that contains E.

When dealing with infinite words, we will be working with the topology on words
induced by the distance defined by

d(w, w′) =
{ 1

|common(w,w′)|+1 if w �= w′

0 if w = w′,

where common(w, w′) denotes the longest common prefix of w and w′. Notice
that, among words that validly encode vectors, words that are topologically close
encode vectors that are close according to the Euclidean distance, the reverse
also being true except for the cases where dual encodings can appear.

4 Computing Convex Hulls

In this section, we describe a technique to compute the convex hull over R
n of a

finite set E = {x1,x2, . . . ,xk} defined over Z
n.



Computing Convex Hulls by Automata Iteration 117

The technique proceeds by constructing a sequence of approximations of the
convex hull by adding the vectors that are mid-way between those obtained so
far. This is quite an obvious way to proceed, but in order to exploit it, we need
to formalize its exact properties. We use the following definitions.

Definition 4. The median sequence of E is the infinite sequence E0, E1, E2, . . .
such that (1) E0 = E and (2) Ei+1 = Ei ∪ {(x1 + x2)/2 | x1,x2 ∈ Ei} for each
i ∈ N.

The limit of the median sequence of E, denoted by E∗, is defined by
⋃∞

i=0 Ei.
It is easy to see that each vector v of E∗ is also a vector of Conv(E ). However,
E∗ is not the complete convex hull, but can be characterized using the following
definition.

Definition 5. The 2-chopped convex hull of a finite subset E={x1,x2, . . . ,xk}of
Z

n is the maximal subset Conv2∗(E ) of Conv(E ), where for each v∈Conv2∗(E ),
v =

∑k
i=1 λixi with λi ∈ [0, 1],

∑k
i=1 λi = 1, and λi = ki

2mi
for ki, mi ∈ N and

i ∈ [1, . . . , k].

Theorem 1. For any finite subset E = {x1,x2, . . . ,xk} of Z
n, the limit of its

median sequence and its 2-chopped convex hull coincide, i.e E∗ = Conv2∗(E ).

Even though the 2-chopped convex hull of a set E is not quite its real convex
hull, it contains vectors that are arbitrarily close to any element of the full convex
closure. In fact, the convex hull of E is included in the topological closure of its
2-chopped hull. The following theorem states that these two sets coincide.

Theorem 2. For any finite subset E = {x1,x2, . . . ,xk} of Z
n, we have that

TC (Conv2∗(E )) = Conv(E ).

Computing the real convex hull of a finite set of integer vectors can thus be
reduced to compute the topological closure of the limit of its median sequence.
We now investigate how to compute Conv2∗(E ) and TC (E ) for a set E described
by an RVA.

5 Algorithmic Issues

We consider a finite subset E = {x1,x2, . . . ,xk} of Z
n that is represented by a

(weak deterministic) RVA AE . Our goal is to compute an RVA that represents
the convex hull over R

n of E. According to the results in Section 4, this can
be done by computing an RVA AE∗ representing the limit E∗ of the median
sequence of E, and then computing an RVA representing the topological closure
of E∗. We now show how these two problems can be tackled by automata-based
semi-algorithms.

5.1 Computing an RVA for the 2-Chopped Hull

Computing the elements of the median sequence. We notice that since
E is finite and represented by a weak deterministic RVA, each element in its
median sequence can also be represented in the same way (see [11] for details).
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Computing the limit of the median sequence. Computing AE∗ amounts
to computing the limit of an infinite sequence of weak deterministic automata.
To finitely compute this limit, we obviously need some form of “speed-up” tech-
nique. We will use the extrapolation-based technique proposed in [5]. A rough
description of the technique is as follows. The technique proceeds by comparing
successive automata in a prefix of the sequence, trying to identify the difference
between these in the form of an “increment”, and extrapolating the repetition
of this increment by adding loops to the last automaton of the prefix. If the
extrapolation is correct, then the limit is computed, else, one has to lengthen
the prefix and restart the extrapolation process. Checking correctness of the ex-
trapolation is a non trivial procedure whose description is, for technical reasons,
postponed to Section 5.3. The technique has been implemented in a tool called
T(O)RMC [23]. The tool relies on the LASH package [15] for automata manipu-
lation procedures, but implements the specific algorithms given in [5]. There is
no guarantee that T(O)RMC will produce a result since the general problem of
computing the limit of a sequence of automata is undecidable.

It is worth mentioning that the automata produced by T(O)RMC are weak,
but not necessarily deterministic [5]. Furthermore, if one tries to determinize
these automata, one might end up combining accepting and non accepting con-
nected components, which leads to an automaton that is not weak. This situa-
tion actually occurred systematically in our experiment, which is not surprising
since the 2-chopped convex hull of a set of integer vectors is not definable in
〈R, +, ≤, Z〉 and thus falls outside the guaranteed reach of weak deterministic
automata given in [4].

5.2 Computing the Topological Closure of an RVA-Represented Set

In this section, we explicitely consider RVAs that may not be weak deterministic.
Consider a set E ⊆ R

n represented by an RVA AE . Our goal is to compute an
RVA ATC (E) that represents the topological closure of E. The intuition behind
the computation is that we need to add to the language accepted by AE , all words
that are arbitrarily close to words of this language. This is fairly straightforward
to do since we only need to add words that have arbitrarily long common prefixes
with accepted words. A simple step to do this is to make accepting all states of
the fractional part of the automaton. Of course, this will compute the topological
closure within the topology on infinite words, but this also almost computes the
vector Euclidean topological closure as it is shown by the following result.

Theorem 3. Let AE be a RVA representing a vector set E. Let AE be AE with
all states of its fractional part made accepting, and let W (v,n) be the set of all
the encodings of a vector v ∈ R

n. For each vector v ∈ R
n, W (v,n)∩L(AE) �= ∅

if and only if v ∈ TC (E ).

Theorem 3 guarantees that AE contains at least one encoding for each vector in
TC (E ). However the automaton AE is not necessarily ATC (E). Indeed, there is
no guarantee that AE will contain all the encodings of each vector included in the
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topological closure. We thus need an extra step that adds all missing encodings.
To do this, we use the fact that an automaton that recognizes words that are
dual encodings of the same numbers can be built with simple automata-based
operations (see [10] for the detailed algorithm).

5.3 Correctness Criterion

After having constructed the extrapolation A∗
E of a finite sequence Ai1

E , Ai2
E , . . . ,

Ail

E of automata representing elements in the median sequence of a set E, it re-
mains to check whether it accurately corresponds to what we really intend to com-
pute, i.e., AE∗ . This is done by first checking that the extrapolation is safe, in the
sense that it captures all words accepted by AE∗ (L(AE∗) ⊆ L(A∗

E)), and then
checking that it is precise, i.e. that it accepts no more words than AE∗ (L(A∗

E) ⊆
L(AE∗)). To lighten the presentation, we will often use the notations and opera-
tions defined for sets of vectors directly on the automata that represent them.

Safety. We first investigate how to check whether A∗
E is safe. The idea is simply

to perform one more mid-point adding step on A∗
E and to check that this does

not change the accepted language. Given a set E, let C2(E) be the set {y | y =
(x1 + x2)/2 | x1,x2 ∈ E}. We have the following theorem.

Theorem 4. Let A∗
E and AE∗ be respectively the extrapolation of a median au-

tomata sequence for a set E and a representation of the actual limit of this
sequence. We have that, if L(C2(A∗

E)) ⊆ L(A∗
E), then L(AE∗) ⊆ L(A∗

E).

The required computation step is thus to check that L(C2(A∗
E)) ⊆ L(A∗

E). This
is simple except for the fact that, the result of the extrapolation is representable
by an automaton which is weak but not necessarily deterministic (see Section
5.1), and hence testing inclusion requires to complement a Büchi automaton.
The problem can be solved by first applying the topological closure step to A∗

E

and then performing the safety check given by Lemma 4.
It is easy to see that doing this has no impact on the result of the test. How-

ever it has an impact on its efficiency since the strongly connected component
added by T(O)RM are made uniformly accepting status by the procedure that
computes the topological closure. This ensures that we only need to complement
weak deterministic automata.

Preciseness. Checking preciseness could be performed with the techniques pro-
posed in [5]. However, this solution (which involves counter automata) is com-
putationally demanding and not really practical. In the present situation, one
can however propose a much more efficient scheme that exploits the properties
of the extrapolation. Due to space limitation, we only sketch the procedure here,
details can be found in [11].

Definition 6. Let E ∈ R be a convex set. The set of extreme points of E,
denoted S(E), is defined as {x ∈ E | (¬∃(x1,x2) ∈ E)(x1 �= x2 ∧ x = (x1 +
x2)/2)}.
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By extension we will also use the notation S(A) on automata representing vec-
tor sets. We now present our preciseness check. Instead of checking whether
L(A∗

E) ⊆ L(AE∗), we check L(TC (A∗
E )) ⊆ L(Conv(AE )). This is enough to

ensure that we do not compute an overapproximation of the hull.

Theorem 5. Let A∗
E be an RVA that represents a safe extrapolation of the limit

of the median sequence of a finite set of integer vectors represented by the RVA
AE. If L(S(TC (A∗

E ))) ⊆ L(AE), then L(TC (A∗
E )) ⊆ L(Conv(AE )).

In summary, to check the preciseness of an RVA A∗
E that represents a safe ex-

trapolation of the limit of the median sequence of a finite set E ⊆ Z
n, we

first compute an RVA TC (A∗
E ) for the topological closure of the set represented

by A∗
E . We then compute an automaton for S(TC (A∗

E )), which is easily done
by computing the difference between TC (A∗

E ) and C2(TC (A∗
E )). Finally, one

checks whether the language of the resulting automaton is included in that of
AE . Again, all complementation operations are only applied to weak determin-
istic Büchi automata.

Infinite Sets. It is worth mentioning that our results do not extend as such
to the computation of the real convex hull of an infinite set of integer vectors.
Indeed, by relying on the computation of a topological closure, our methodology
produces convex hulls which are closed sets. However there are infinite sets of
integer vectors whose convex hull is not closed.

6 A Brief Note on the Experimental Results

The approach presented in this paper has been tested on several examples using
a prototype implementation that relies on T(O)RMC. We computed the convex
hull over R

n of finite convex sets in Z
n, of the difference/union of finite con-

vex sets in Z
n, and of arbitrary finite sets of points in Z

n. Some experiments
that validate the fact that our approach performs well for sets for which the
representation by automata remains manageable are reported in [11].
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