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Preface

The 13th International Conference on Implementation and Application of Au-
tomata (CIAA 2008) was held at San Francisco State University, San Francisco,
July 21–24, 2008.

This volume of Lecture Notes in Computer Science contains the papers that
were presented at CIAA 2008, as well as the abstracts of the poster papers
that were displayed during the conference. The volume also includes the pa-
per/extended abstract of the four invited talks presented by Markus Holzer, Kai
Salomaa, Mihalis Yannakakis, and Hsu-Chun Yen.

The 24 regular papers were selected from 40 submissions covering various
topics in the theory, implementation, and applications of automata and related
structures. Each submitted paper was reviewed by at least three Program Com-
mittee members, with the assistance of external referees. The authors of the
papers and posters presented in this volume come from the following coun-
tries: Australia, Belgium, Canada, China, Columbia, Czech Republic, France,
Germany, Hungary, Italy, Japan, The Netherlands, Poland, Portugal, Romania,
Russia, Spain, Sweden, Taiwan, United Arab Emerates, and USA.

We wish to thank all who made this conference possible: the authors for sub-
mitting papers, the Program Committee members and external referees (listed in
the proceedings) for their excellent work, and the four invited speakers. Finally,
we wish to express our sincere appreciation to the sponsors, local organizers,
and the editors of the Lecture Notes in Computer Science series and Springer, in
particular Alfred Hofmann, for their help in publishing this volume in a timely
manner.

July 2008 Oscar H. Ibarra
Bala Ravikumar
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Nondeterministic Finite Automata—Recent

Results on the Descriptional and Computational
Complexity

Markus Holzer1 and Martin Kutrib2

1 Institut für Informatik, Technische Universität München,
Boltzmannstr. 3, 85748 Garching bei München, Germany

holzer@in.tum.de
2 Institut für Informatik, Universität Giessen,

Arndtstr. 2, 35392 Giessen, Germany
kutrib@informatik.uni-giessen.de

Abstract. Nondeterministic finite automata (NFAs) were introduced
in [67], where their equivalence to deterministic finite automata was
shown. Over the last 50 years, a vast literature documenting the im-
portance of finite automata as an enormously valuable concept has been
developed. In the present paper, we tour a fragment of this literature.
Mostly, we discuss recent developments relevant to NFAs related prob-
lems like, for example, (i) simulation of and by several types of finite
automata, (ii) minimization and approximation, (iii) size estimation of
minimal NFAs, and (iv) state complexity of language operations. We
thus come across descriptional and computational complexity issues of
nondeterministic finite automata. We do not prove these results but we
merely draw attention to the big picture and some of the main ideas
involved.

1 Introduction

Nondeterministic finite automata (NFAs) are probably best known for being
equivalent to right-linear context-free grammars and, thus, for capturing the
lowest level of the Chomsky-hierarchy, the family of regular languages. It is
well known that NFAs can offer exponential saving in space compared with
deterministic finite automata (DFAs), that is, given some n-state NFA one can
always construct a language equivalent DFA with at most 2n states [67]. This
so-called powerset construction turned out to be optimal, in general. That is, the
bound on the number of states is tight in the sense that for an arbitrary n there
is always some n-state NFA which cannot be simulated by any DFA with less
than 2n states [63,64]. These two milestones from the early days of automata
theory form part of an extensive list of equally striking problems of NFA related
problems, and are the basis of descriptional complexity. Moreover, it initiated
the study of the power of resources and features given to finite automata, see,
e.g., [21] for a survey on limited resources for finite automata.

O.H. Ibarra and B. Ravikumar (Eds.): CIAA 2008, LNCS 5148, pp. 1–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 M. Holzer and M. Kutrib

Our tour on the subjects listed in the abstract of NFAs related problems cover
some (recent) results in the field of descriptional and computational complexity.
It obviously lacks completeness, as NFAs fall short of exhausting the large selec-
tion of finite automata related problems considered in the literature. We give our
view of what constitute the most recent interesting links to the considered prob-
lem areas. Our nomenclature of finite automata is as follows: A nondeterministic
finite automaton (NFA) is a quintuple A = (Q,Σ, δ, q0, F ), where Q is the finite
set of states, Σ is the finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q
is the set of accepting states, and δ : Q ×Σ → 2Q is the transition function. A
finite automaton is deterministic (DFA) if and only if |δ(q, a)| = 1, for all states
q ∈ Q and letters a ∈ Σ. The language accepted by the finite automaton A is
defined as L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅ }, where the transition function
is recursively extended to δ : Q×Σ∗ → 2Q. For further details we refer to [36].

2 Determinization and Simulations of NFAs

Since regular languages have many representations in the world of finite au-
tomata, it is natural to investigate the succinctness of their representation by
different types of automata in order to optimize the space requirements. Here
we measure the costs of representations in terms of the states of a minimal au-
tomaton accepting a language. More precisely, the simulation problem is defined
as follows:

– Given two classes of finite automata C1 and C2.
– How many states are sufficient and necessary in the worst case to simulate

n-state automata from C1 by automata from C2?

Probably the most famous simulation problem in the world of finite automata
is the simulation of NFAs by DFAs, which is widely known as determinization.

Theorem 1 (NFA Determinization). Let A be an n-state nondeterministic
finite automaton. Then 2n states are sufficient and necessary in the worst case
for a deterministic finite automaton to accept L(A).

For the particular case of finite and unary regular languages the situation is
significantly different. The determinization problem for finite languages over a
k-letter alphabet was solved in [70] with a tight bound of Θ(k

n
1+log2 k ). Thus,

for finite languages over a two-letter alphabet only Θ(2
n
2 ) states are sufficient

and necessary in the worst case for a DFA to accept a language specified by
an n-state NFA. The situation is similar when we turn to the second important
special case, the unary languages, that is discussed in more detail a bit later.
Unary NFAs can be much more concise than DFAs, but yet not as much as for
the general case. For languages that are unary and finite this is not the case,
since in [60] it was proven that nondeterminism does not help in this case. Unary
DFAs are up to one additional state are as large as equivalent minimal NFAs.

In the following, we concentrate on simulations between finite automata that
may or may not have the features nondeterminism and two-way head motion.
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Table 1. State complexities for simulations on general and unary regular languages.
Depicted are the bounds for simulating the device of the first column by a device of
the second line. A question mark indicates that the precise bounds are not known, in
particular it is not known whether the upper bound is exponential.

General Regular Languages Unary Regular Languages
DFA NFA 2DFA DFA NFA 2DFA

NFA 2n − ? eΘ(
√

n·ln n) − Θ(n2)

2DFA n(nn − (n − 1)n)
( 2n

n+1

)
− eΘ(

√
n·ln n) eΘ(

√
n·ln n) −

2NFA
∑n−1

i=0

∑n−1
j=0

(
n
i

)(
n
j

)
(2i − 1)j

( 2n
n+1

)
Ω( n2

log n
) eΘ(

√
n·ln n) eΘ(

√
n·ln n) ?

So, we are concerned with the four devices DFA, NFA, 2DFA, and 2NFA, the
latter denoting automata that may move their head to the right as well as to
the left. We first sketch the development of results for general regular languages.
Then we turn to unary languages, again.

Concerning the simulation of 2DFA by DFA an Θ(nn) asymptotically tight
bound was shown in [72]. Moreover, the proof implied that any n-state 2NFA
can be simulated by an NFA with at most n2n2

states. The well-known proof of
the equivalence of two-way and one-way finite automata via crossing sequences
reveals a bound of O(22n log n) states [36]. Recently in [53] it was noted that a
straightforward elaboration on [72] shows that the cost can be brought down to
even n(n + 1)n. However, this bound still wastes exponentially many states, as
proven in [8] via an argument based on length-preserving homomorphisms that
8n + 2 states suffice. Recently, the problem was solved in [53] by establishing a
tight bound of

(
2n

n+1

)
. Furthermore, tight bounds in the exact number of states

for the DFA and NFA simulations of 2DFAs and 2NFAs, respectively, which
are depicted in Table 1, were presented. The bounds reveal that two-way head
motion is a very powerful resource with respect to the number of states. Inter-
estingly, when simulating two-way devices by NFAs, it does not matter whether
the two-way device is nondeterministic or not. From this point of view, two-way
head motion can compensate for nondeterminism.

Nevertheless, challenging problems are still open. The question of how many
states are sufficient or necessary to simulate (two-way) NFAs by 2DFAs is unan-
swered for decades. The problem was raised by Sakoda and Sipser in [68]. They
conjectured that the upper bound is exponential. The best lower bound currently
known is Ω(n2/ logn). It was proved in [4], where also an interesting connection
with the open problem whether L equals NL is given. In particular, if L = NL,
then for some polynomial p, all integers m, and all n-state 2NFAs A, there ex-
ists a p(mk)-state 2DFA accepting a subset of L(A) including all words whose
lengths do not exceed m. However, not only are the exact bounds of that problem
unknown, but we cannot even confirm the conjecture that they are exponential.

The problem of evaluating the costs of unary automata simulations has been
raised in [73]. It turned out that the unary case is essentially different from
the general one. For state complexity issues of unary NFAs Landau’s function



4 M. Holzer and M. Kutrib

F (n) = max{ lcm(x1, . . . , xk) | x1, . . . , xk ≥ 1 and x1 + · · · + xk = n }, which
gives the maximal order of the cyclic subgroups of the symmetric group on n
elements, plays a crucial role. Here, lcm denotes the least common multiple.
Since F depends on the irregular distribution of the prime numbers we cannot
expect to express F (n) explicitly by n. In [55,56] the asymptotic growth rate
limn→∞(lnF (n)/

√
n · lnn) = 1 was determined, which for our purposes implies

the (sufficient) rough estimate F (n) ∈ eΘ(
√

n·lnn). An asymptotic tight bound
of Θ(F (n)) on the unary NFAs simulation by DFAs was presented in [12,13].
Furthermore, in the same papers it is shown that the costs of the unary two-
way to DFA simulation reduces to the same bound eΘ(

√
n·lnn). Furthermore, the

Sakoda-Sipser problem for NFAs has been solved for the unary case. The tight
bound in the order of magnitude is Θ(n2). The picture was complemented by the
sophisticated studies in [62] which revealed tight bounds in the order of magni-
tude also for the 2NFA simulations by DFAs and NFAs. Table 1 also summarizes
the bounds known for the simulations between unary finite automata. It is also
worth mentioning that in [12] also a normal-form for unary NFAs was intro-
duced. Each n-state unary NFA can be replaced by an equivalent O(n2)-state
NFA consisting of an initial deterministic tail and some disjoint deterministic
loops, where the automaton makes only a single nondeterministic decision after
passing through the initial tail, which chooses one of the loops—nowadays the
normal-form is referred to as the Chrobak normal-form for unary NFAs.

It turned out that nondeterministic as well as two-way automata are hard to
simulate for DFAs even if they accept unary languages. Since the bounds are
the same, it seems that two-way motion is equally powerful as nondeterminism,
but both together cannot increase the descriptional capacity. This observation
is confirmed by the bounds for simulations by NFAs, where similarly as in the
general case it does not matter whether the two-way device is nondeterministic or
not. Nevertheless, from this point of view, two-way head motion can compensate
for nondeterminism. Finally, since unary 2DFAs can simulate NFAs increasing
the number of states only polynomially, which is not possible the other way
around, two-way motion turned out to be more powerful than nondeterminism.

In the remainder of this section we come back to the determinization problem
for NFAs. Although a lot is known for the problem, still some important issues
were open up to recently. For instance, in [10] the determinization problem was
studied for some subregular language families like, for example, combinational
languages, definite languages and variants thereof, star-free languages, ordered
languages, prefix-, suffix-, and infix-closed languages. Relations between several
of these subregular language families are studied in [32]. These subfamilies are
well motivated by their representations as finite automata or regular expressions.
In all non-trivial cases tight exponential bounds that range from 2n−1 to 2n−1+1
and 2n were shown.

As already mention above, there are cases, where nondeterminism does not
help in succinctly representing a language compared to DFAs. Coming back to
the roots of the subset construction, in [42] the question was raised whether there
always exists a minimal n-state NFA whose equivalent minimal DFA has α states,
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for all n and α satisfying n ≤ α ≤ 2n. A number α not satisfying this condition
is called a magic number. For NFAs over a two-letter alphabet some non-magic
numbers were identified in [42,43]. Recently, in [47] it was shown that there are
no magic numbers for languages over a four-letter alphabet. This improved a
result from [18] for small growing alphabets to the constant case. Before it was
known that for exponential growing alphabets there are no magic numbers at
all [48]. Up to our knowledge the case of binary and ternary alphabets is still
open. Magic numbers for unary NFAs by revising the Chrobak normal-form for
unary NFAs were recently studied in [19], where also a brief historical summary
of the magic number problem can be found.

3 Minimization of NFAs

The study of the minimization problem of finite automata dates back to the early
beginnings of automata theory. Here we focus mainly on some recent develop-
ments related to this fundamental problem—for further reading we refer to [45]
and references therein. The minimization problem is also of practical relevance,
because regular languages are used in many applications, and one may like to
represent the languages succinctly.

It is well known that for a given n-state DFAs one can efficiently compute
an equivalent minimal automaton in O(n logn) time [35]. This is contrary to
the nondeterministic case since the NFAs minimization problem is known to be
computationally hard. The decision version of the minimization problem, for
short the NFA-to-NFA minimization problem, is defined as follows:

– Given a nondeterministic finite automaton A and a natural number k in
binary, that is, an encoding 〈A, k〉.

– Is there an equivalent k-state nondeterministic finite automaton?

This notation naturally generalizes to other types of finite automata, for exam-
ple, the DFA-to-NFA minimization problem. The following result on the NFA-
to-NFA minimization problem is due to [45].

Theorem 2 (NFA Minimization Problem). The NFA-to-NFA minimiza-
tion problem is PSPACE-complete, even if the input is given as a deterministic
finite automaton.

In order to better understand the very nature of nondeterminism one may ask
for minimization problems for restricted types of finite automata. Already in [45]
it was shown that for the restricted class of unambiguous finite automata (UFA)
some minimization problems remain intractable. To be more precise, the UFA-
to-UFA and the DFA-to-UFA minimization problems are NP-complete. Later
in [59] these results were improved in the sense that the minimization of finite
automata equipped with a very small amount of nondeterminism is already com-
putationally hard. In particular, the minimization problems for multiple initial
state deterministic finite automata with a fixed number of initial states (MDFA)
as well as for nondeterministic finite automata with fixed finite branching has
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been shown to be NP-complete. Prior to this, the MDFA-to-DFA minimization
problem in general was proven to be PSPACE-complete in [33]. Recently, the pic-
ture was completed in [9] by getting much closer to the tractability frontier for
nondeterministic finite automata minimization. There a class of NFAs is iden-
tified, the so called δ-nondeterministic finite automata (δNFA), such that the
minimization problem for any class of finite automata that contains δNFAs is
NP-hard, even if the input is given as a DFA. Here the class of δNFAs contains all
NFAs with the following properties: (i) The automaton is unambiguous, (ii) the
maximal product of the degrees of nondeterminism over the states in a possible
computation is at most 2, and (iii) there is at most on state q and a letter a such
that the degree of nondeterminism of q and a is 2. It is worth mentioning that
for every n-state δNFA there is an equivalent DFA with at most O(n2) states.

The situation for the minimization problem in general is, in fact, even worse.
Recent work [24] shows that the DFA-to-NFA problem cannot be approximated
within

√
n/polylogn for state minimization and n/polylogn for transition mini-

mization, provided some cryptographic assumption holds. Moreover, the NFA-
to-NFA minimization problem was classified to be inapproximable within o(n),
unless P = PSPACE, if the input is given as an NFA with n states [24]. That
is, no polynomial-time algorithm can determine an approximate solution of size
o(n) times the optimum size. Even the DFA-to-NFA minimization problem re-
mains inapproximable within a factor of at least n1/3−ε, for all ε > 0, unless
P = NP [28], for alphabets of size O(n), and not approximable within n1/5−ε for
a binary alphabet, for all ε > 0. Under the same assumption, it was shown that
the transition minimization problem for binary input alphabets is not approx-
imable within n1/5−ε, for all ε > 0. The results in [28] proved approximation
hardness results under weaker (and more familiar) assumptions than [24]. Fur-
ther results on the approximability of the minimization problem when the input
is specified as regular expression or a truth table can be found in [24,28].

For finite languages, NFA-to-NFA minimization can be done by the following
algorithm: A nondeterministic Turing machine with an nfa equivalence oracle
for finite languages can guess an nfa with at most k states, and ask the oracle
whether the guessed automaton is equivalent to the input automaton, and accept
if and only if the oracle answer is yes. Since equivalence for finite languages spec-
ified by NFA is coNP-complete [74], the minimization problem belongs to ΣP

2 ,
regardless of whether a deterministic or nondeterministic finite state device is
given. Recently, the NFA-to-NFA minimization problem for finite languages was
shown to be DP-hard, even if the input is a DFA accepting a finite language.
This improved the previously known NP-hardness result, which follows from [3].
The complexity class DP includes both NP and coNP, and is a subset of ΣP

2 . This
nicely contrasts with a recent result on the NP-completeness of minimization for
finite languages given by truth tables [27]. Hence, the DFA-to-NFA minimization
problem for finite languages is more complicated than that with truth tables as
input, unless NP = coNP. Whether this lower bound can be substantially raised
to, for example ΣP

2 -hardness, is open.
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The unary NFA-to-NFA minimization problem is coNP-hard [74], and simi-
larly as in the case of finite languages contained in ΣP

2 . The number of states
of a minimal NFA equivalent to a given unary cyclic DFA cannot be computed
in polynomial time, unless NP ⊆ DTIME(nO(log n)) [44]. Note that in the latter
case the corresponding decision version belongs to NP. Inapproximability results
for the problem in question have been found during the last years, if the input
is a unary NFA: The problem cannot be approximated within

√
n

ln n [22], and if
one requires in addition the explicit construction of an equivalent NFA, the in-
approximability ratio can be raised to n1−ε, for every ε > 0, unless P = NP [24].
On the other hand, if a unary cyclic DFA with n states is given, the nonde-
terministic state complexity of the considered language can be approximated
within a factor of O(log n). The picture on the unary NFA-to-NFA minimization
problem was completed in [27]. Some of the aforementioned (in)approximability
results, which only hold for the cyclic case, generalize to unary languages in
general. In particular, it was shown that for a given an n-state NFA accepting
a unary language, it is impossible to approximate the nondeterministic state
complexity within o(n), unless P = NP. Observe that this bound is tight. In
contrast, it is proven that the NFA-to-NFA minimization problem can be con-
structively approximated within O(

√
n), where n is the number of states of the

given DFA. Here by constructively approximated we mean that we can build the
nondeterministic finite automaton, instead of only approximately determining
the number of states needed. This solves an open problem stated in [45] on the
complexity of converting a DFA to an approximately optimal NFA in the case
of unary languages.

4 Lower Bound Techniques

To estimate the necessary number of states of a minimal NFA accepting a given
regular language is stated as an open problem in [2] and [38]. Several authors have
introduced communication complexity methods for proving such lower bounds,
see, for example, [5,20,37]. The results of [37] have been generalized by the advent
of so-called multi-party nondeterministic message complexity [1].

Here we briefly recall a lower bound technique that is widely used, for example,
in proofs dealing with the language operation problem on regular languages
specified by NFAs, namely the so-called fooling set techniques—the fooling set
technique [20] and the extended fooling set method [5].

Theorem 3 (Fooling Set Technique). Let L ⊆ Σ∗ be a regular language
and suppose there exists a set of pairs S = { (xi, yi) | 1 ≤ i ≤ n } such that
(1) xiyi ∈ L for 1 ≤ i ≤ n, and (2) xiyj �∈ L, for 1 ≤ i, j ≤ n with i �= j, then
any nondeterministic finite automaton accepting L has at least n states. Here S
is called a fooling set for L.

The statement of the theorem remains valid if property (2) is changed to (2’) i �=
j implies xiyj �∈ L or xjyi �∈ L, for 1 ≤ i, j ≤ n. Properties (1) and (2’) form
the extended fooling set technique introduced in [5] (here the set S is called
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an extended fooling set). The two techniques are essentially different, although
the difference in both theorems looks quite harmless. Obviously, every fooling
set is also an extended fooling set, but not the other way around. Moreover,
although these techniques are widely used, paradoxically the obtained lower
bounds are not always tight, and in fact can be arbitrarily worse compared
to the nondeterministic state complexity, see, for example, [26]. This issue was
also discussed in [20], where an even unary language was given such that any
(extended) fooling set has constant size only, while the nondeterministic state
complexity is at least n. An analogous result holds when comparing extended
fooling sets versus fooling sets.

It was shown recently in [26] that obtaining the best attainable lower bound for
the technique under consideration does not require conscious thought and clever
guessing. In fact, it can be solved algorithmically. To this end, a unified view
on these techniques was develop in terms of bipartite graphs—the (extended)
fooling set forms a subset of the edges of a bipartite graph GL, the so called
dependency graph of a language L, where the left (right) vertices are formed by
the equivalence classes of the Myhill-Nerode relation for the language L, (LR),
and the edges are induced by membership in L. Then, a fooling set corresponds
to an induced matching in GL, and an extended fooling set to a cross-free match-
ing in GL, and vice versa. Based on the graph terminology another lower bound
technique, the so called biclique edge cover technique, which is a modern formu-
lation of the grid cover approach of [52] used in the minimization algorithm for
NFAs, was introduced in [26]. It is worth mentioning that it is also a reformula-
tion of the nondeterministic message complexity method [37] in terms of graphs.
Although the fooling set methods cannot provide any guaranteed relative error,
the biclique edge cover technique gives an estimate at least as good as the triv-
ial lower bound that is induced by the exponential blow-up from the NFA to
DFA conversion. In turn, a result of [39,49] on the gap between nondeterministic
message complexity and nondeterministic state complexity was improved in [26].

What concerns the computational complexity of these lower bound techniques,
an almost complete answer was given in [26]. It turned out that deciding whether
a certain lower bound with respect to one of the investigated techniques can be
achieved is in all cases computationally hard, that is, NP-hard or even PSPACE-
complete. To be more precise, the fooling set problem

– given a deterministic finite automaton A and a natural number k in binary,
that is, an encoding 〈A, k〉,

– is there a fooling set S for the language L(A) of size at least k?,

is classified to be NP-hard and contained in PSPACE, while both, the extended
fooling set method and the biclique edge cover method lead to PSPACE-complete
problems. That means that this task is already computationally hard as mini-
mizing NFAs [45]. Whether these problems get even harder when the input is
given as an NFA instead of a DFA was left open. This would be a surprising
phenomenon, since the corresponding minimization problem remains PSPACE-
complete.
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In the remainder of this section we briefly recall what is known if we draw
our attention to the number of transitions as an estimate on the size of a min-
imal NFA for a regular language. The understanding of transition complexity
for NFAs is at its beginning. Lower bound techniques for nondeterministic tran-
sition complexity similar to that for nondeterministic state complexity are not
known yet. In [29] and independently in [54] it was shown by a counting argu-
ment that the nondeterministic transition complexity can be almost quadratic
in terms of nondeterministic state complexity, namely in Ω(n2/ logn), even for
binary alphabets. Recently, explicit languages over a constant size alphabet that
need Ω(n ·

√
n) transitions while having nondeterministic state complexity n

were constructed in [14]. This somehow improved a result from [40] for growing
alphabets to the constant case. The lower bound proof in [14] relies on nontrivial
combinatorial properties of finite projective planes. Time will tell whether some
of the developed methods can be generalized to a lower bound technique for
transitions in the spirit of the above mentioned methods for state complexity.

What else is known for nondeterministic transition complexity? During the
last few years, a growing body of research centered around the areas of algo-
rithms for constructing nondeterministic finite automata with a small number of
transitions [30,40,41,58,71], computational complexity aspects thereof [23,24,28],
and descriptional complexity aspects of nondeterministic transition complex-
ity [14,15,25,29,75]. Finally, let us comment on an interesting phenomenon that
state and transition minimization cannot be carried out simultaneously: There
are languages for which all n-state NFAs require Ω(n2) transitions, but for
which allowing a single additional state results in a number of O(n) transitions
necessary—the result even holds for finite languages. This was first discovered
in [25] and is a special case of a more general result shown in [14].

5 Language Operation Problem for NFAs

Let ◦ be fixed operation on languages that preserves regularity. Then the ◦-
language operation problem for NFAs is defined as follows:

– Given an n-state and an m-state nondeterministic finite automata.
– How many states are sufficient and necessary in the worst case (in terms of n

and m) to accept the language L(A1) ◦ L(A2) by an nondeterministic finite
automaton?

Obviously, this problem generalizes to DFAs as well as to unary language op-
erations like, for example, complementation. These problems are closely related
to complexity issues discussed so far. For example, converting a given NFA to
an equivalent DFA gives an upper bound for the NFA state complexity of com-
plementation. State complexity results of operations with regard to DFAs are
surveyed in [77,78], where also operations on unary regular languages are dis-
cussed. Estimations of the average state complexity are shown in [29,65]. A
systematic study of language operations in connection with NFAs is [34]. There
the following results on Boolean operations were shown:
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Theorem 4 (Language Operation Problem). For any integers m,n ≥ 1
let A be a (unary, respectively) m-state and B be a (unary, respectively) n-state
nondeterministic finite automaton.

1. Then m + n + 1 states are sufficient and necessary in the worst case for an
nondeterministic finite automaton to accept the language L(A) ∪ L(B) (if
neither m is a multiple of n nor n is a multiple of m, respectively).

2. Then m · n states are sufficient and necessary in the worst case for an non-
deterministic finite automaton to accept the language L(A)∩L(B) (if m and
n are relatively prime, respectively).

3. Then 2n (eΘ(
√

n·ln n), respectively) states are sufficient and necessary in the
worst case for an nondeterministic finite automaton to accept the comple-
ment of L(A).

We want to comment on some of these results and further operation problems,
which are summarized and compared with the deterministic case in Table 2.
The tightness of the bounds in the general case are reached even by two-letter
alphabets. The upper bound for the union is based on the idea to construct an
NFA that starts with a new initial state and guesses which of the given automata
is to simulate. For the intersection both given automata have to be simulated in
parallel, where in the unary case the lower bound for the intersection additionally
requires that m and n are relatively prime. In [66] unary languages are studied
whose deterministic state complexities are not relatively prime.

In connection with nondeterminism the complementation often plays a crucial
role. In fact, compared with DFAs, the complementation of NFAs is an expen-
sive task at any rate. Since the complementation operation on DFAs neither
increases nor decreases the number of states (simply exchange accepting and
rejecting states), we obtain the upper bounds for the state complexity of the
complementation on NFAs by determinization. Unfortunately, these expensive

Table 2. NFA and DFA state complexities for operations on infinite languages. The
tight lower bounds for union, intersection, and concatenation of unary DFAs require m
and n to be relatively prime.

Infinite Languages

NFA DFA
general unary general unary

∪ m + n + 1 m + n + 1 mn mn

∼ 2n eΘ(
√

n·ln n) n n

∩ mn mn mn mn

R n + 1 n 2n n

· m + n m + n − 1 ≤ · ≤ m + n (2m − 1)2n−1 mn

∗ n + 1 n + 1 2n−1 + 2n−2 (n − 1)2 + 1

+ n n
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upper bounds are tight. A sketch of the story about the state complexity of NFA
complementation reads as follows: Sakoda and Sipser [68] gave an example of
languages over a growing alphabet size reaching the upper bound 2n. In [6] the
result for a three-letter alphabet was claimed. Later in [7] this was corrected to a
four-letter alphabet. Moreover, O(n)-state binary witness languages were found
in [17]. In [34] the lower bound 2n−2 is achieved for a two-letter alphabet and
finally by a fooling set technique the bound 2n on the complementation of NFAs
was proven to be tight for a two-letter alphabet [50].

More detailed results on the relation between the sizes of NFAs accepting
a unary language and its complement are obtained in [61]. In particular, if a
unary language L has a succinct NFA, then nondeterminism is useless in order to
recognize its complement, namely, the smallest NFA accepting the complement
of L has as many states as the minimal DFA accepting it. The same property does
not hold in the case of automata and languages defined over larger alphabets.

Now we turn to the concatenation, iteration, and λ-free iteration in more
detail. First, for concatenation a tight bound m + n in order to accept the con-
catenation in the general case was obtained. The lower bound is achieved for
a two-letter alphabet. In the unary case, for any integers m,n > 1, the lower
bound m+n−1 of the concatenation misses the upper bound m+n by one state.
It is currently an open question how to close the gap by more sophisticated con-
structions or witness languages. Next, consider iterations. The trivial difference
between iteration and λ-free iteration concerns the empty word only. Moreover,
the difference does not appear for languages containing the empty word. Never-
theless, in the worst case the difference costs one state. In particular, the tight
bounds n + 1 and n for the iteration and λ-free iteration for general and unary
languages were shown in [34]. So, roughly speaking concatenation operations are
efficient for NFAs. Again, this is essentially different when DFAs come to play.
For example, in [79] a bound of (2m − 1) · 2n−1 states has been shown for the
concatenation problem for DFAs, and in [76] a bound of 2n−1 + 2n−2 states for
the iteration.

Consider the remaining reversal operation. The bounds for unary NFAs are
trivial. For general DFAs one may expect that the state complexity is linear,
but it is not! A tight bound of 2n states for the reversal has been shown in [57].
The efficient bound n + 1 for NFAs shows once more that nondeterminism is a
powerful concept. The bound is tight even for a two-letter alphabet, and was
achieved in [34,50].

Recently, two particular regularity preserving operations were investigated,
namely cyclic shift and power of a language. The cyclic shift of a language L
is defined as shift(L) = { vu | uv ∈ L }. It is an operation known to pre-
serve context-freeness, too. Its nondeterministic state complexity was investi-
gated in [51], where a tight bound of 2n2 + 1 states is established. The second
operation concerns k-powers of languages. Let A be an n-state NFA and k ≥ 2
be a constant. Then n ·k states are sufficient to accept the language L(A)k by an
NFA. The bound is tight for a two-letter alphabet [16]. For both operations the
deterministic state complexity is worse compared to the nondeterministic case.
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Table 3. NFA and DFA state complexities for operations on finite languages (k is the
size of the input alphabet, t is the number of accepting states of the “left” automa-
ton). The tight lower bounds for union, intersection, and concatenation of unary DFAs
require m and n to be relatively prime. More sophisticated bounds on the union and
intersection of general finite DFAs are shown in [31].

Finite Languages

NFA DFA
general unary general unary

∪ m + n − 2 max{m, n} O(mn) max{m, n}
∼ Θ(k

n
1+log2 k ) n + 1 n n

∩ O(mn) min{m, n} O(mn) min{m, n}
R n n O(k

n
1+log2 k ) n

· m + n − 1 m + n − 1 O(mnt−1 + nt) m + n − 2

∗ n − 1 n − 1 2n−3 + 2n−4 n2 − 7n + 13

+ n n

In the remainder of this section we consider the important special case of finite
languages. When we are concerned with finite languages we may assume without
loss of generality that minimal NFAs not accepting the empty word have only one
accepting state. If the finite language contains the empty word, then in addition
the initial state is a second accepting one. In Table 3 the bounds on the language
operation problem are summarized and compared with the deterministic case.
Again, we want to comment on these results.

It turned out, that the state complexity of the union can be reduced by three
states compared with the general case. In case of concatenation one state can be
saved with respect to general regular languages. Both lower bounds are achieved
by languages over a two-letter alphabet. The state complexity for the iterations
in the finite language case is as for infinite languages if the iteration is λ-free. If
not, the costs are reduced by two states for both unary and arbitrary languages.
The tight bounds for union, intersection, and concatenation for finite unary
languages are found as follows: In [60] it was shown that unary DFAs up to one
additional state are as large as equivalent minimal NFAs and that they obey
a chain structure. An immediate consequence is that we have only to consider
the longest words in the languages in order to obtain the state complexity of
operations that preserve finiteness.

The situation for the complementation of finite languages boils down to the
NFAs determinization problem, and the tight Θ(k

n
1+log2 k ) bound for languages

over a k letter alphabet proven in [70], which was mentioned earlier. Since the
complementation applied to finite languages yields infinite languages, for the
lower bounds of unary languages we cannot argue with the simple chain structure
as before, but obtain a tight bound of n + 1 [34]. Essentially the exponentially
bound for complementation mentioned above is also an upper bound for the
reversal operation of finite languages in the deterministic case [11]. From the
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efficient bounds of n states for NFAs it follows once more that nondeterminism
is a powerful concept. Moreover, the fact that NFAs for finite languages do not
have any cycles leads again to the possibility of saving one state compared with
the infinite case. The bound for the reversal of finite NFA languages is in some
sense strong. It is sufficient and reached for all finite languages.
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Abstract. We consider the decomposability of languages and the no-
tion of primality with respect to catenation, as well as, more general
operations. We survey recent results and discuss open problems.

1 Introduction

Questions dealing with decompositions of regular languages were studied in
depth already by Conway in 1971 [3]: “How can we express a given regular event
E in the form f(F1, F2, . . .), wherein f is a regular function and Fi are regular
events? [ . . . ] This problem might arise in the construction of large machines
from smaller ones – given transducers for the Fi, how can we build a transducer
for E?” On the other hand, the notion of primality, or indecomposability, of
languages was introduced and investigated originally by Mateescu, A. Salomaa
and Yu [16,21].

Already from the original work of Conway it follows that for a regular lan-
guage L it is decidable whether or not L is decomposable and in the positive
case the factors can be chosen to be regular. (Our terminology follows [11,16],
while Conway used “factor” in a slightly different meaning.) Decomposability
questions become more difficult when we consider operations other than catena-
tion. Shuffle along trajectories [15] provides a unified formalism to define most
of the commonly used language operations.

2 Prime Decompositions

A non-empty language L is said to have a non-trivial decomposition if we can
write L = A·B where A, B are not the singleton language consisting of the empty
word. In the following, by a decomposition of a language we always mean a non-
trivial decomposition. A non-empty language L �= {ε} is said to be prime if L has
no decompositions. A prime decomposition of L is a factorization L = L1 · · ·Lm

where each of the languages Li, 1 ≤ i ≤ m, is prime.
Primality is decidable for regular languages, however, there is no known ef-

ficient algorithm to test for primality and also no known hardness result for
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the complexity of this problem. The complexity of deciding primality, at least
potentially, depends on whether the language is given by a deterministic or a
nondeterministic finite automaton.

Problem 2.1. What is the complexity of deciding primality of a language recog-
nized by a DFA (respectively, by an NFA)?

A finite language always has a prime decomposition but it need not be unique
[16,21] even if we disregard the order of factors. It is known that regular lan-
guages that satisfy certain types of code properties have unique prime decom-
positions [4,11]. A regular language has a prime decomposition if and only if it
has a prime decomposition where the components are regular [16].

Arbitrary regular languages can have very different (prime) decompositions
and, in general, it seems not easy to determine whether a given infinite regular
language has a prime decomposition. For example, consider the unary language
L = ε + a2a∗. The language L is equal to L · L and it has also the prime
decomposition

L = (ε + a2)(ε + a3)(ε + ∪∞i=1(a
2)2i−1).

There exist languages, even unary languages, that provably do not have any
prime decomposition [11,19], however, all languages known to have this property
are non-regular.

Problem 2.2. Does every regular language have a prime decomposition?

A language L is said to be strongly prime decomposable, roughly speaking, if any
way of iteratively decomposing L has to end in a finite number of steps. Han et
al. [11] give a decidable characterization of strongly prime decomposable regular
languages and using this solve the following special case of Problem 2.2.

Theorem 2.1. Every regular language over a unary alphabet has a prime de-
composition.

Different types of prime factorizations, including infinitary factorizations, have
recently been investigated in [20]. Length codes, or numerically decipherable
codes [22], provide a useful tool for this work.

Questions of primality become more involved when we consider non-ambiguous
(or orthogonal) catenation. We say thatL is a non-ambiguous product of languages
L1 and L2, denoted

L = L1 �⊥ L2, (1)

if every word w ∈ L can be written in a unique way as the catenation of w1 ∈ L1

and w2 ∈ L2. A related, but essentially different, operation of unique catenation
has been investigated in [18].

We say that L is ⊥-prime if (1) does not hold for any languages Li �= {ε},
i = 1, 2.

Using power series tools Anselmo and Restivo [1] establish the following strong
result concerning one-variable equations.
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Theorem 2.2. [1] For given regular languages L and L1 it is decidable whether
or not the equation L = L1 �⊥ X has a solution for X. A solution, if it exists,
is unique and effectively regular.

Solutions for corresponding one-variable equations with ordinary catenation ob-
viously need not be unique. Deciding whether L is ⊥-prime involves determin-
ing the existence of solutions for a two-variable equation with non-ambiguous
catenation for L. We know [5] that ⊥-primality is undecidable for context-free
languages.

Problem 2.3. Is ⊥-primality decidable for regular languages?

It is noted in [1] that a regular language can be the non-ambiguous catenation
of two non-regular languages. For example,

a∗ = Π∞
i=0(ε + a22i

)�⊥ Π∞
i=0(ε + a22i+1

).

The unary language a∗ has different non-ambiguous decompositions into regular
components, however, if the components are regular then one of the components
has to be finite.

Problem 2.4. Is it possible that, for a regular language L, there exist non-regular
L1, L2 �= {ε} such that L = L1 �⊥ L2 but L cannot be expressed as a non-
ambiguous catenation of any regular languages distinct from {ε}?

In light of the above, we can consider two variants of ⊥-primality for regular
languages depending on whether the factors can be arbitrary languages or the
factors are restricted to be regular. Also, the decidability question of Problem 2.3
has, strictly speaking, two variants.

3 Shuffle Along Trajectories

Shuffle along trajectories has been introduced by Mateescu et al. [15] as a model
of controlled parallel composition of languages. Extensions of the model have
been investigated, for example, in [6,8]. Below we consider decomposability of
languages only with respect to the “standard” trajectory-based operations as
introduced in [15]. An important tool for finding solutions to language equations
involving shuffle along trajectories is an inverse operation called deletion along
trajectories [7,14].

A trajectory is a word over the binary alphabet {0, 1}. Consider a trajectory
t = 0j11k1 · · · 0jn1kn , ji, ki ≥ 0, 1 ≤ i ≤ n. Consider words x, y ∈ Σ∗ where
|x| = |t|0, |y| = |t|1. The shuffle of x and y on t is defined as

x t y = { Πn
i=1xiyi | x = Πn

i=1xi, y = Πn
i=1yi,

where |xi| = ji, |yi| = ki, 1 ≤ i ≤ n }.
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If |x| �= |t|0 or |y| �= |t|1, x t y is undefined. The operation is extended in the
natural way for a set of trajectories T , and if L1, L2 ⊆ Σ∗ are languages we
define

L1 T L2 =
⋃

x∈L1,y∈L2

x T y.

As an example, note that if T = 0∗1∗, then T is the language catenation
operation and T = {0, 1}∗ defines the unrestricted shuffle of languages. Many
commonly used language operations can be expressed as trajectory based oper-
ations [15].

Let T be a set of trajectories. A T -shuffle decomposition of a language L is
a pair of languages (L1, L2) such that L = L1 T L2. We state the following
general open problem.

Problem 3.1. Given a regular set of trajectories T and a regular language L, is
it decidable whether or not L has a T -shuffle decomposition?

In the following special case we have a positive decidability result. Recall that
a set of trajectories T is said to be letter-bounded if T ⊆ a∗1 · · ·a∗n, a1, . . . , an ∈
{0, 1}.

Theorem 3.1. [9] Let T be a letter-bounded regular set of trajectories. Then
given a regular language L, we can decide whether or not L has a T -shuffle
decomposition. If a decomposition exists, the components can be chosen to be
regular.

Since catenation is expressed by the set of trajectories 0∗1∗, the result extends
the known decidability of primality for regular languages, as well as, covers
decomposability with respect to operations such as insertion and bi-catenation.
However, the proof of Theorem 3.1 does not extend, for example, to bounded
sets of trajectories (that are not letter-bounded).

Several, apparently innocent looking, special cases of Problem 3.1 remain
open, in particular, the (unrestricted) shuffle decomposition problem considered
by Câmpeanu et al. [2] and Ito [13].

Problem 3.2. Is it decidable whether a given regular language has a non-trivial
{0, 1}∗-shuffle decomposition.

Recall that a language L ⊆ Σ∗ is k-thin [17] if |L ∩Σn| ≤ k for all n ≥ 1.

Problem 3.3. Given k ≥ 1, a k-thin regular set of trajectories T and a regular
language L, can we decide whether or not L has a T -shuffle decomposition?

Problem 3.3 is known to be decidable when k = 1 [10]. To our knowledge it is
still open even in the special case k = 2.

It is known that there exists a fixed context-free set of trajectories T0 such
that for given regular languages L1, L2 and L3 we cannot effectively decide
whether or not L1 = L2 T0 L3 [10]. This gives an undecidability result for
regular languages, in the spirit of the Dassow-Hinz result [12]. The result can be
extended to one-variable equations.
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Theorem 3.2. [10] There exists a fixed context-free set of trajectories T0 such
that, for given regular languages L1 and L2, it is undecidable whether or not the
equation

L1 = L2 T0 X

has a solution for X.

However, a similar result for two-variable equations is not known.

Problem 3.4. Is it possible to construct a fixed context-free set of trajectories T
such that for a given regular language L it is undecidable whether or not L has
a T -shuffle decomposition?

As was done in Section 2 for decompositions with respect to catenation, we
can define primality and consider prime decompositions with respect to shuffle
along a set of trajectories. However, so far we seem lack the proper tools to
handle the generalized questions, even when the set of trajectories is regular.
Since Problem 3.1 remains unsolved, we do not even have a decision algorithm
to determine primality of a regular language in this set-up.
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Abstract. We discuss work on the modeling and analysis of systems
with probabilistic and recursive features. Recursive Markov chains ex-
tend ordinary finite state Markov chains with the ability to invoke other
Markov chains in a potentially recursive manner. The equivalent model of
Probabilistic Pushdown Automata extends ordinary pushdown automata
with probabilistic actions. Both of these are natural abstract models
for probabilistic programs with procedures, and related systems. They
generalize other classical well-studied stochastic models, e.g. Stochas-
tic Context-free Grammars and (Multi-type) Branching Processes, that
arise in a variety of areas. More generally, Recursive Markov Decision
Processes and Recursive Stochastic Games can be used to model recur-
sive systems that have both probabilistic and nonprobabilistic, control-
lable actions. In recent years there has been substantial work on the
algorithmic analysis of these models, regarding basic questions of termi-
nation, reachability, and analysis of the properties of their executions. In
this talk we will present some of the basic theory, algorithmic methods,
results, and challenges.

In recent years there has been a lot of work on the modeling and analysis of
systems that have both probabilistic and recursive features. In the talk we will
present an overview of some of this work. In this paper we will give a brief,
informal introduction to the models, on the type of questions about them that
are investigated, and pointers to the literature.

Markov chains are a useful, standard model for representing the behavior of
probabilistic systems in a broad variety of domains. Recursive Markov Chains
extend ordinary finite state Markov chains with a recursive feature [23]. They
can be viewed alternatively also as a probabilistic extension of Recursive State
Machines (RSM) [4]. Informally, a Recursive Markov Chain (RMC for short)
consists of a collection of finite-state component Markov chains that can call
each other in a potentially recursive manner, like procedures. Figure 1 shows an
example RMC A = (A1, A2), consisting of two component Markov chains A1, A2.
Each component has a set of entry nodes and a set of exit nodes where execution
starts and terminates respectively; for example A1 has one entry node en and
two exit nodes ex1, ex2. In addition, each component has a set of other nodes
and a set of boxes, where each box is mapped to some component and represents
a recursive call to that component; for example A1 has a box b1 representing a
recursive call to A2. A box has a set of call ports and return ports corresponding
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Fig. 1. A sample Recursive Markov Chain

1-1 to the entry and exit nodes of the corresponding component. A transition to a
box goes to a specific call port and invokes the corresponding component starting
at the corresponding entry node; when (and if) the call terminates at some exit
node, then the calling component resumes execution from the corresponding
return port of the box. All the transitions are labeled with probabilities as in
ordinary Markov chains, summing to 1 for each node, except for call ports and
exit nodes that have no transitions; as usual, for computational purposes the
probabilities are assumed to be rational numbers.

An RMC A is a succinct finite representation of an underlying (in general)
infinite state Markov chain MA: As an RMC A executes starting from some
initial node, at any point in time the process is at a current node of the RMC A
and there is a (possibly empty) stack of pending recursive calls (i.e., of boxes);
a transition is then selected probabilistically out of the current node, unless the
current node is a call port of a box, in which case a new recursive call is initiated,
or if the current node is an exit of a component, in which case the component
that initiated the last call resumes execution from the appropriate return port
of the corresponding box. Note that there is a potentially infinite (countable)
number of such ‘global’ states of the process, because the stack of pending calls
may be unbounded, and the stochastic process is a Markov chain MA on this
set of global states.

An RMC in which the calling relation between the components is acyclic is
called a Hierarchical Markov Chain (HMC), and can be viewed as a probabilistic
extension of Hierarchical State Machines [3]. An HMC A represents a finite, but
typically exponentially larger, Markov chain MA. The hierarchical construct is
useful to structure and represent compactly large finite Markov chains.

An expressively equivalent model to Recursive Markov Chains is the Prob-
abilistic Pushdown Automaton (pPDA) model [19], an extension of pushdown
automata with probabilities on the transitions, where the probabilities of all
the transitions for each state and top-of-stack symbol sum to 1. The RMC and
pPDA models are equivalent in the sense that from a model of one type one
can construct efficiently a model of the other type such that the two models
represent essentially the same infinite state Markov chain.
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Pushdown automata and recursive state machines (without probabilities) were
studied for the purpose of analyzing algorithmically the properties (model check-
ing) of (abstractions of) programs with procedures [6,17,4]. Similarly, a main
motivation for the introduction of RMCs and pPDAs was for the analysis of
probabilistic programs with procedures. The procedures correspond to the com-
ponents of the RMC, the arguments and return values correspond to the entry
and exit nodes. The probabilities could arise from randomizing steps or reflect
statistical assumptions on the behavior of the program, under which we want
to analyze its properties. The properties of interest can range from simple ter-
mination and reachability properties, to more complex properties expressed for
example by temporal logic or automata specifications. The simplest type of prop-
erty, and one that plays a central role also for the analysis of more complex
properties is termination: Suppose that the RMC starts execution at some node;
what is the probability that it will eventually reach a specified exit node (or any
exit node), with no pending recursive calls, and terminate? More generally, the
nodes and/or edges of a RMC can be labeled from some (finite) alphabet Σ (for
example, the letters may correspond to properties satisfied by the states of the
program). The executions of the RMC map to words over Σ. A (linear-time)
property specification can define the set of desirable (or undesirable) executions
by specifying a subset L of finite or infinite words; the question then is, what is
the probability that an execution of the RMC starting from some specified initial
node (or from some initial distribution) maps to a word in L. Branching-time
properties can be similarly specified.

Probability and recursion are fundamental constructs that arise in a variety
of contexts, and accordingly several such models have been studied and used in
various fields over the years. We discuss next a number of such models.

Branching processes (BP) are an important class of stochastic processes, with
applications in various areas such as population genetics, biology and others (see
e.g., [34,36,38]). They were introduced first in the single type case by Galton and
Watson in the 19th century to study population dynamics, and extended later
by Kolmogorov and Sevastyanov to the multi-type case [39]. A branching process
models the stochastic evolution of a population of entities of a given (finite) set
T of types. For each type i ∈ T , there is a set of probabilistic rules concerning the
set of offsprings (their number and types) that an entity of type i produces in the
next generation. Starting from an initial population, a branching process evolves
from one generation to the next, where in each generation every entity is replaced
(independently) by a set of offspring entities chosen probabilistically according
to the rules of the type of the entity. There is a well developed mathematical
theory of branching processes, see [35] for a comprehensive treatment. Basic
quantities of interest in a BP are the extinction probabilities: if the process starts
with one entity of type i, what is the probability that it will become extinct,
i.e. there will be eventually no descendants (these can be used to compute the
extinction probability for any initial population). There is a close connection
between branching processes and a subclass of RMCs, specifically the class of
1-exit RMCs where all the components have only 1 exit (denoted 1-RMC): From
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a given finite branching process (i.e., with a finite set of types and rules) we
can construct efficiently a 1-RMC such that the extinction probabilities of the
types in the BP are equal to termination probabilities of nodes in the 1-RMC
[23]. There seems to be a distinct difference in expressiveness and complexity
between 1-exit RMCs and multiexit RMCs. The one exit restriction means that
when a component terminates, it does not return any information about the
call beyond the fact that it terminated. Also, as we’ll mention later on, some
problems can be solved efficiently for 1-exit RMCs, but we do not know how to
solve them with multiple exits (and they may well be intractable.) The 1-exit
restriction for RMCs corresponds to a 1-state restriction for pPDAs.

Another intimately connected well-studied model is Stochastic Context-Free
Grammars (SCFG). These have been studied since the 1970’s especially in Nat-
ural Language Processing (see e.g. [42]), and have been applied also in other
areas such as biological sequence analysis [15,49]. A SCFG is a CFG where ev-
ery production has an associated probability such that the probabilities of the
productions for each nonterminal sum to 1. The SCFG models a stochastic pro-
cess for generating strings, for example, by a leftmost derivation rule, and gives
a probability to each string in the language. From a given SCFG G we can con-
struct efficiently an 1-exit RMC A that is ‘equivalent’ to G in the sense that the
two models represent essentially the same infinite state Markov chain. In partic-
ular, the probability of the language of G (i.e., the sum of the probabilities of all
the strings in the language, which can be less than 1) is equal to the termination
probability of a certain ‘initial’ node in the 1-RMC A, and the 1-RMC (suit-
ably labeled) and the SCFG induce the same probabilities on the strings of the
language. Conversely, it is possible to translate efficiently a given 1-exit RMC
to an ‘equivalent’ branching process or to a SCFG, such that the termination
probabilities of the nodes of the RMC are equal to extinction probabilities of
the types of the BP or to the probabilities of the languages generated by the
nonterminals of the SCFG [23].

Another related model, called Random walk with back button, was introduced
and studied in [31] as a probabilistic model for web-surfing. It is an extension
of a Markov chain with a ‘back button’ (as in a web browser) that enables the
process to trace back its steps. This model corresponds to a proper subclass of
1-RMCs and SCFGs [23].

A class of models, called Quasi-Birth-Death Processes (QBD), have been stud-
ied for performance analysis in the queuing theory and structured Markov chain
community [5,41,45]. A (discrete-time) QBD process is a (countably) infinite
state Markov chain whose transition matrix has a certain repeating block struc-
ture specified by a constant number of finite matrix blocks. Generalizations of
QBDs, called tree-structured QBDs and tree-like QBDs (which are equivalent to
each other [53]), have been also studied; they are an extension of QBDs with an
additional tree structure on the states. As shown in [22], (discrete) quasi-birth-
death processes are expressively equivalent to probabilistic 1-counter automata,
i.e., pPDA where the stack alphabet has only one symbol; tree-structured and
tree-like QBDs are equivalent to (unrestricted) pPDA and RMCs.
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In all the models we discussed above (RMC, pPDA and their subclasses con-
sidered in various fields), all the steps are probabilistic. More generally, some
steps of a system/program may be probabilistic while others are not probabilis-
tic but rather are controlled by the system or the environment. Markov Decision
Processes (MDP) and Stochastic Games (SG) are standard models for systems
that have both probabilistic and nonprobabilistic/controllable aspects (see e.g.
[47,32,44]); they have been used in various areas, including in particular in verifi-
cation as models for probabilistic concurrent systems and for open systems that
interact with their environment. Extending these models with a recursive fea-
ture gives rise to Recursive Markov Decision Processes (RMDP) and Recursive
Stochastic Games (RSG) [25,28]. A RMDP or RSG is like a RMC except that
some of the nodes are probabilistic as in an RMC, i.e., have probabilistic transi-
tions, and some nodes are nonprobabilistic, i.e., their transitions are controlled
by the player(s). In an RMDP (like in a MDP) there is only one player that con-
trols all the nonprobabilistic nodes, with the goal of maximizing or minimizing
some objective, such as the probability of an event, (for example, termination of
the process, or more generally, generation of an execution that satisfies a given
property); or there can be a reward (payoff or cost) specified for the individual
nodes and/or edges of the RMDP, and the player wants to maximize or minimize
the reward (cost) accumulated during the execution. In a game there are two
opposing players, one trying to maximize the objective, the other to minimize
it. In the general form of a stochastic game (sometimes called concurrent game)
at each (nonprobabilistic) node, each player has a finite set of possible actions
that it can choose from; the players select an action simultaneously and the com-
bination of selected actions determines the transition taken out of the current
node. In a simpler form, called simple or turn-based games, only one player can
choose an action (has a ‘turn’) at each node, i.e. the (nonprobabilistic) nodes
are partitioned among the players who control the transitions out of them.

We will touch briefly now on some of the issues, methods, and results on
the recursive models. The recursive feature introduces several difficulties that
are not present in the nonrecursive case. One difficulty is that the probabilities
that we want to compute are typically irrational. Recall that we assumed as
usual that the given transitions probabilities of the models are rational. In the
case of ordinary Markov chains this implies that the probabilities we want to
compute of the usual types of events (including probabilities of general prop-
erties expressed for example by automata or temporal logic) are also rational,
have polynomially bounded size (number of bits), and they can be computed in
polynomial time. This is no more true, even for 1-exit RMCs (and SCFGs and
branching processes); for example, the probabilities of termination are typically
irrational. Thus the probabilities cannot be computed exactly, and can be only
bounded or approximated. We distinguish between qualitative and quantitative
questions regarding the desired probabilities. In the qualitative problem we want
to determine whether a certain probability is 0, 1, or strictly between 0 and
1. For example, does a given a SCFG generate a terminal string with proba-
bility 1? Does an execution of a given RMC satisfy a given temporal property
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almost surely? In a quantitative decision problem we want to determine how a
certain probability compares with a given rational bound r, i.e. is it <,= or
> r? In a quantitative approximation problem we want to approximate a desired
probability to a specified precision.

The termination probabilities play a central role in the analysis of RMC and
pPDA: For each node u of an RMC and each exit node v of the same component
as u, let q(u, v) be the probability that the RMC started at u will eventually
reach the exit v (with no pending recursive calls) and terminate (the correspond-
ing quantities for pPDA are the probabilities q(s, Y, t) that the pPDA starting
from state s with Y on the stack will eventually pop Y and end in state t). The
vector q of termination probabilities satisfies a set of equations x = P (x) (one
equation for each termination probability) where P is a vector of polynomials
with positive rational coefficients. The system may have many solutions; however
the vector P defines a monotone mapping from the nonnegative orthant to itself,
and has a least fixed point (LFP), i.e., a componentwise least nonnegative solu-
tion. The LFP is precisely the vector q of termination probabilities [19,23]. From
the equations x = F (x), we can construct a system of polynomial equations and
inequalities and use a procedure for the existential theory of the reals [10,48] to
solve the qualitative and quantitative termination problems in PSPACE.

For several important subclasses of RMCs more efficient algorithms can be
obtained using different methods. For example, the qualitative termination prob-
lem can be solved in polynomial time for 1-RMCs (and SCFGs and BPs), as well
as for hierarchical Markov chains, using algebraic and combinatorial methods;
for RMCs with linear recursion, the probabilities are rational and can be com-
puted exactly in P-time [23]. For back-button processes the probabilities can
be approximated in polynomial time using Semidefinite Programming [31]. It
is an open question whether the qualitative and quantitative problems can be
solved in polynomial time in general; however, this seems unlikely, and there are
results indicating that it would require solving at least some hard longstanding
open problems. The quantitative decision problem for 1-RMCs and hierarchical
Markov chains subsumes the square root sum problem (a 30-year old simple
intriguing problem that arises often in geometric computations [33,52]), and a
more general problem (called posSLP) that characterizes P-time computability
in a RAM model with unit cost rational arithmetic operations [1]; these problems
are in PSPACE but are not even known to be in NP. For RMCs with 2 exits,
even the qualitative problem (does the RMC terminate with probability 1?) is
at least as hard as these problems, and the same holds for the approximation of
the termination probabilities with any nontrivial constant error [29,23].

The procedures for the existential theory of reals are impractical. One ap-
proach to approximate the LFP of the system x = P (x) is to start with the 0
vector and apply repeatedly P to it; the vector P k(0) converges to the LFP q
as k →∞, however the convergence is exponentially slow. A faster method that
accelerates convergence is to use a decomposed version of Newton’s method [23]:
after a preprocessing ‘cleaning’ step, the system is decomposed into strongly
connected components (SCC) and Newton is applied bottom up on the DAG of
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the SCCs; if we start from the 0 vector, then Newton is well defined (no sin-
gularity is encountered) and it converges monotonically to the LFP. This is a
more practical approach; experiments with this method are reported in [43,55].
A similar Newton method can be applied more generally to monotone systems of
polynomial equations, i.e. systems x = P (x) where P is a vector of polynomials
with positive rational coefficients; such a system may not have a fixed point,
but if it does then it has a LFP and (decomposed) Newton starting at the 0
vector converges to it [23]. The rate of convergence of the method is investigated
in [37,18]. They show that for strongly connected fixed point systems, Newton
gains (at least) one bit of precision per iteration after some initial period, and
some upper bounds are given for this initial period. In general however (for non-
strongly connected systems) there are bad examples that require an exponential
number of iterations to achieve a desired precision.

The analysis of more general properties of RMCs and pPDA is studied in
[9,19,24,26]. Algorithms and lower bounds are given for linear time properties
specified either by automata or by LTL (Linear Temporal Logic) formulas, and
for branching time properties. The methods build on the termination analysis of
the models as well as on methods for model checking of ordinary (nonrecursive)
Markov chains. Results are given both for the general class of RMCs and pPDA,
as well as for important subclasses (e.g., 1-RMCs and SCFGs, linear RMCs etc).
Quantitative aspects of the executions of pPDA with a reward (cost) structure
and checking of properties that involve these quantities are studied in [8,20];
these can be used for example to estimate expected termination time, stack
length etc.

Recursive Markov Decision Processes and Stochastic Games are studied in
[7,21,25,27,28]. For general multiexit RMDP’s and RSGs, the qualitative (and
quantitative) termination problems are undecidable, i.e., we cannot determine if
a termination probability under optimal play is 1, and we cannot even approx-
imate it [25]. For 1-exit RMDPs and games however, the termination problems
(both qualitative and quantitative) are decidable and can be solved in PSPACE
(same as for RMCs). These correspond to controlled and game versions of SCFGs
and branching processes, for example, optimal control of a branching process
to maximize or minimize the probability of extinction. In fact the qualitative
problems for 1-RMDPs can be solved in polynomial time [27], and we can also
compute the optimal and pessimal expected times to termination [21]. For sim-
ple 1-RSGs these problems are in NP∩co-NP and subsume the well-known open
problem of Condon [11] of computing the value of simple stochastic games.

Many of the algorithms on probabilistic recursive models have been imple-
mented in a tool called PReMo by Wojtczak and Etessami [55].

We gave in this paper a flavor of some of the recent work on probabilistic
recursive models and their analysis. We only mentioned few of the techniques
and the results; we refer to the papers for the detailed results. A comprehensive
survey paper is being planned with Kousha Etessami [30], and we will defer to
that for a thorough exposition.
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19. Esparza, J., Kučera, A., Mayr, R.: Model checking probabilistic pushdown au-
tomata. In: Proc. of 19th IEEE LICS 2004 (2004); Full version in Logical Methods
in Computer Science 2(1) (2006)



Automata, Probability, and Recursion 31
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Petri nets represent one of the most popular formalisms for specifying, modeling,
and analyzing concurrent systems. In spite of their popularity, many interesting
problems concerning Petri nets are either undecidable or of very high complexity.
Lipton [7] and Rackoff [10] showed exponential space lower and upper bounds,
respectively, for the boundedness problem. As for the containment and the equiv-
alence problems, Rabin [1] and Hack [5], respectively, showed these two problems
to be undecidable. The reachability problem is known to be decidable [8] and
exponential-space-hard [7].

Studying Petri nets from the aspect of formal language has long been recog-
nized as an important branch of research in Petri net theory. It has been shown
that all Petri net languages are context-sensitive, assuming that a transition’s
label cannot be λ. Also, Petri net languages and context-free languages are in-
comparable, i.e., there are Petri net languages that are not context-free and vice
versa. See [9,11]. It was shown in [4] that Petri net languages are exactly those
that can be expressed by concurrent regular expressions, i.e., regular expressions
augmented with interleaving, interleaving closure, synchronization and renam-
ing operations. As interleaving (denoted by ‖) is also known as shuffle in formal
languages, it is of interest to take a closer look at various shuffle-related issues
in the framework of Petri net languages.

A Petri net (PN, for short) is a 3-tuple (P, T, ϕ), where P is a finite set of
places, T is a finite set of transitions, and ϕ is a flow function ϕ : (P × T )
∪ (T × P ) → N . A marking is a mapping μ : P → N , specifying a PN’s
configuration. The computational power of PNs stems from the ability for their
transitions to compete for resources as well as to synchronize and to execute
concurrently in the course of a computation. Generally speaking, there are two
sources of ”resource sharing” in the computation of a PN. For x ∈ P ∪ T , we
define •x = {y | ϕ(y, x) > 0} and x• = {y | ϕ(x, y) > 0}.

- Place sharing: t1, t2 ∈ T and •t1 ∩ •t2 �= ∅.
Transitions t1 and t2 ”share” a common input place p in •t1 ∩ •t2, in the
sense that they compete for resources (tokens) kept in p.
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- Transition sharing: p1, p2 ∈ P and p1
• ∩ p2

• �= ∅.
Places p1 and p2 ”share” a common output transition t in p1

• ∩ p2
•, in the

sense that they synchronize with each other using transition t.

In this talk, we first survey some of the analytical techniques and results
known for various restricted classes of PNs lacking the capabilities of synchro-
nization and/or resource sharing. PNs without transition sharing are called
communication-free1 PNs. For PNs free from place sharing, a hierarchy of
“conflict-free” PNs has been defined in the literature (see e.g., [2]). It is known
that the reachability sets of communication-free PNs as well as various “conflict-
free” PNs are effectively semilinear. (See [14] for a survey of complexity results
concerning various restricted classes of PNs.)

To study PN languages, we consider labeled PNs of the form (P , Σ, η), where
P is a PN, Σ is a finite set of transition labels, and η is a mapping η : T → Σ. The
sequential language (or simply language) Lseq(Γ, μ0) = {η(σ) | μ0

σ→, σ ∈ T ∗}, a
language over alphabet Σ, consists of the set of sequences of labels corresponding
to transition sequences executable from the initial marking μ0. We investigate
the issue of separability in the theory of PN languages. Intuitively speaking, a
PN is said to be k-separable if starting from a marking μ which is divisible
by k > 1 (called k-marking), any computation sequence σ of the PN can be
distributed to k sequences σ1, ..., σk executing on k identical copies of the PN,
each begins with μ

k as its initial marking, such that (1) ∀1 ≤ i ≤ k, μ
k

σi→, and
(2) #σ =

∑
1≤i≤k #σi , where #σ (resp., #σi) denotes the transition count of

σ (resp., σi). If the initial marking μ0 is a k-marking, and μ0
σ→ implies σ is

separable, then the PN (w.r.t. the initial marking μ0) is called k-separable. It
was shown in [2] that marked graphs are always k-separable. We are able to
strengthen the result of [2] by showing the property of k-separability to hold for
a wider class of PNs using a simpler technique. We also relate k-separability to
the issue of shuffle decomposability, which is central to a number of intriguing
problems in formal languages (see, e.g., [3,6]). A PN Γ being k-separable only

guarantees that

k
︷ ︸︸ ︷
Lseq(Γ,

μ

k
) ‖ · · · ‖ Lseq(Γ,

μ

k
) ⊆ Lseq(Γ, μ). It requires a stronger

version of k-separability to capture the notion of ”shuffle decomposability” in
the framework of PN languages. We also present some open problems along this
line.

Another issue addressed in this talk is with respect to PN languages under
the concurrent semantics, as opposed to the traditional interleaving semantics.
In this setting, each step μ

X⇒ of a PN involves a set X of executable transitions
that are concurrently enabled in marking μ. With respect to initial marking
μ0, the concurrent language of Γ is Lconc(Γ, μ0) = {η(δ) | μ0

δ⇒, δ ∈ (2T )∗} (a
language over alphabet 2Σ). Concurrent PN languages have only been scarcely
studied in the literature in the past (e.g., [12], [13]). We present some known

1 More precisely, PN P=(P,T, ϕ) is communication-free if ∀t ∈ T, p ∈ P, |•t| ≤ 1 and
ϕ(p, t) ≤ 1.
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results concerning concurrent PN languages, and also point out some problems
remain to be answered.
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Abstract. Analysis of infinitary safety properties with automated com-
positional reasoning through learning is discussed. We consider the class
of intuitionistically closed regular languages and show that it forms a
Heyting algebra and is finitely approximatable. Consequently, composi-
tional proof rules can be verified automatically and learning algorithms
for finitary regular languages suffice for generating the needed contex-
tual assumptions. We also provide a semantic justification of an axiom to
deduce circular compositional proof rules for such infinitary languages.

1 Introduction

Compositional reasoning is probably the best way to harness complexity in for-
mal verification [7]. It reduces complexity by decomposing systems into compo-
nents according to compositional proof rules. In the assume-guarantee paradigm,
each component is verified separately with auxiliary contextual assumptions.
With an adequate degree of automation, compositional reasoning is also seen
by many as an effective technique to alleviate the state explosion problem in
model checking. One approach to full automation based on learning has been
proposed in [6,5]. In the approach, system behaviors and properties are restricted
to regular languages and the needed contextual assumptions are generated by a
learning algorithm. It is possible in theory to extend automated compositional
reasoning based on learning to ω-regular languages [8]. However, it is not clear
how this extension can be made practically usable. The learning algorithm in [8]
generates ω-automata by posing membership and equivalence queries, the latter
of which are computationally expensive for ω-regular languages.

A natural question to ask is whether automated compositional reasoning can
be generalized to some subclass of ω-regular languages while maintaining prac-
tical feasibility. In particular, one may consider the class of closed ω-regular
languages, which corresponds to the class of safety properties and is of fundamen-
tal importance in formal specification. Unfortunately, this subclass of ω-regular
languages does not form a Boolean algebra [14]. Developing compositional proof
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rules for the subclass is more involved. Moreover, weakest contextual assump-
tions may not be generated by learning algorithms because they may not belong
to the subclass. Automated compositional reasoning therefore may not work
even if compositional proof rules are available [6].

In this paper, we extend automated compositional reasoning to the class of
intuitionistically closed regular languages. An intuitionistically closed regular
language contains all (finite) prefixes of ω-strings in its corresponding closed
ω-regular language. Finite approximations in an intuitionistically closed regu-
lar language allow to characterize its ω-strings. Learning algorithms for regular
languages suffice to generate contextual assumptions for the class efficiently. Fur-
thermore, we are able to show the class of intuitionistically closed regular lan-
guages forms a Heyting algebra. Compositional proof rules can thus be deduced
automatically [1,18]. Automated compositional reasoning is therefore generalized
to the class of intuitionistically closed regular languages without any penalty.

The intuitionistic interpretation additionally admits circular compositional
proof rules. Circularity in compositional reasoning has been observed in various
models of reactive systems (see, for example, [3]). For intuitionistically closed
regular languages, we are able to establish the same circular compositional proof
rule in [1,18]. More circular compositional proof rules can be established syntac-
tically. The combination of automata and proof theory hence relieves users from
making tedious inductive proofs for circular reasoning.

It is practically impossible to enumerate all works related to compositional
reasoning. Readers are referred to [7] for a thorough introduction. The learning
algorithm L∗ for regular languages was introduced in [4]. It generates the mini-
mal finite state automaton for an unknown regular language with a polynomial
number of membership and equivalence queries. Applying the L∗ algorithm to
compositional reasoning was first proposed in [6].

Introductions to infinitary languages can be found in [15,14]. Closed ω-regular
languages were characterized by Landweber [10,17,14]. The learning algorithm
Lω for ω-regular languages in the intersection of Borel classes Fσ and Gδ was
introduced in [12]. However, the algorithm Lω requires asymptotically more
queries than L∗. In [8], a learning algorithm for general ω-regular languages
is introduced. It may make an exponential number of queries, though.

In [1], a finitary intuitionistic interpretation was proposed to derive proof rules
in compositional reasoning. An effective version of the interpretation had been
developed and applied in automated compositional reasoning [18]. An infinitary
intuitionistic interpretation for linear temporal logic was introduced in [11]. None
generalizes automated compositional reasoning to infinitary languages.

The paper is organized as follows. After the introduction, some backgrounds
are given in Section 2. The following section presents the negative result for
closed ω-regular languages. Infinitary regular languages under intuitionistic in-
terpretation are introduced in Section 4. The correspondence between Landwe-
ber automata and intuitionistically closed regular languages is given in Section 5.
Section 6 shows that the class of intuitionistically closed regular languages forms
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a Heyting algebra. Applications to automated compositional reasoning are pre-
sented in Section 7. We conclude this paper in Section 8.

2 Preliminaries

A partially ordered set (P,≤) consists of a set P and a reflexive, anti-symmetric,
and transitive binary relation ≤ ⊆ P ×P [9]. A lattice (L,≤,�,�) is a partially
ordered set where the least upper bound a� b and the greatest lower bound a� b
with respect to ≤ exist for any pair of elements a, b in L. A Boolean algebra (B,
≤, �, �, −, 0, 1) is a lattice such that (1) 0 ≤ a and a ≤ 1 for all a ∈ B; (2)
a � −a = 1, a � −a = 0 for all a ∈ B; and (3) a � (b � c) = (a � b) � (a � c) and
a�(b�c) = (a�b)�(a�c) for all a, b, c ∈ B. The Boolean domain B = {false, true}
forms the Boolean algebra (B, ⇒, ∨, ∧, •, false, true).

A Heyting algebra (H,≤,�,�,⇒, 0, 1) is a lattice where (1) 0 ≤ a and a ≤ 1
for all a ∈ H ; and (2) for all a, b ∈ H , the pseudo-complement of a relative to b,
a⇒ b, satisfies

for all c ∈ H, c ≤ (a⇒ b) if and only if c � a ≤ b.

Let Σ be an alphabet consisting of a finite set of symbols. A string α is a finite
sequence of symbols. We say α is a string of length n (denoted by |α| = n) if
α = α(1)α(2) · · ·α(n). The empty string λ is the string of length zero. The set
of all strings is denoted by Σ∗. An ω-string ξ = ξ(1)ξ(2) · · · ξ(i) · · · is an infinite
sequence of symbols with length |ξ| = ω by convention. We denote the set of all
ω-strings by Σω and define Σ∞ = Σ∗ ∪ Σω. A language is a subset of Σ∗; an
ω-language is a subset of Σω; and an intuitionistic language is a subset of Σ∞.

Let σ, τ ∈ Σ∞. We say σ is a prefix of τ (written σ � τ) if τ = σν for some
ν ∈ Σ∞, or σ = τ . For any σ ∈ Σ∞, define A(σ) = {τ ∈ Σ∞ : τ � σ}. It is
routine to generalize the definition over any intuitionistic language X by taking
A(X) = {τ ∈ Σ∞ : τ � σ for some σ ∈ X}. An intuitionistic language X ⊆ Σ∞

is prefix-closed if A(X) ⊆ X .
Given an intuitionistic language X ⊆ Σ∞, define its classical closure clω(X)

to be {ξ ∈ Σω : A(ξ) ∩ Σ∗ ⊆ A(X)}. For any ω-language L, we say it is
classically closed if clω(L) = L. The class of classically closed ω-languages is de-
noted by Fω. It is known that classically closed ω-languages correspond to safety
properties [2]. Similarly, define the intuitionistic closure cl∞(X) = {σ ∈ Σ∞ :
A(σ) ∩ Σ∗ ⊆ A(X)} for any intuitionistic language X ⊆ Σ∞. An intuitionistic
language X is intuitionistically closed if cl∞(X) = X . We write F∞ for the class
of intuitionistically closed languages. Note that X ⊆ cl∞(X) for X ∈ Σ∞ and
L ⊆ clω(L) for L ∈ Σω. Moreover, clω(X) ⊆ X if X ∈ F∞.

An intuitionistic language may not be intuitionistically closed even if its ω-
strings form a classically closed ω-language. Consider X = (01)∗ ⊆ Σ∞ where
Σ = {0, 1}. X ∩ Σω = ∅ is classically closed. But the completion of its strings
(01)ω is not in X . Hence X is not intuitionistically closed.

An automaton M = (Σ,Q, q0, δ, F ) consists of an alphabet Σ, a finite set of
states Q, an initial state q0 ∈ Q, a transition relation δ ⊆ Q×Σ×Q, and a set of
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accepting states F ⊆ Q. For clarity, we write q
a−→ q′ if (q, a, q′) ∈ δ. Moreover,

we say the automaton M is deterministic if its transition relation is in fact a
function from Q×Σ to Q. Given σ ∈ Σ∞ and an automaton M , a run of M on

σ is a sequence of states q0q1 · · · qi · · · such that q0
σ(1)−→ q1 · · · qi

σ(i+1)−→ qi+1 · · · .
The set RunM (σ) contains runs of M on σ; it is a singleton if M is deterministic.

Let M = (Σ,Q, q0, δ, F ) be an automaton and α ∈ Σ∗ with |α| = n. A run
r = q0q1 · · · qn ∈ RunM (α) satisfies the finite acceptance condition if qn ∈ F .
The automaton M accepts α if r satisfies the finite acceptance condition for
some r ∈ RunM (α). The set of strings accepted by M with finite acceptance
condition forms a language L∗(M). A language L in Σ∗ is regular if L = L∗(M)
for some automaton M . The class of regular languages is denoted by R∗.

Let M = (Σ,Q, q0, δ, F ) be an automaton, ξ ∈ Σω, and r ∈ RunM (ξ).
Define Inf M (r) = {q : q occurs infinitely often in r}. We say r satisfies the
Büchi acceptance condition if Inf M (r) ∩ F �= ∅. Similarly, define RngM (r) =
{q : q occurs in r}. We say r satisfies the Landweber acceptance condition if
RngM (r) ⊆ F . A Büchi automaton is an automaton B = (Σ,Q, q0, δ, F ) with
the Büchi acceptance condition. It accepts the ω-language Lω(B) = {ξ ∈ Σω :
Inf B(r) ∩ F �= ∅ for some r ∈ RunB(ξ)}. The class of ω-languages accepted by
Büchi automata are denoted by Rω . A Landweber automaton is a determinis-
tic automaton R = (Σ,Q, q0, δ, F ) with the Landweber acceptance condition. It
accepts the ω-language Lω(R) = {ξ ∈ Σω : RngR(r) ⊆ F for the r ∈ RunR(ξ)}.

Theorem 1. [10,14] Let L ⊆ Σω. L ∈ Rω ∩ Fω if and only if L = Lω(R) for
some Landweber automaton R.

Let M and P be automata. The language containment problem is to decide
whether L•(M) ⊆ L•(P ). In the automata-theoretic approach to formal verifica-
tion, system behaviors and requirements are specified by the languages accepted
by automata M and P respectively. Hence the conformance of the system M
with respect to the requirement P is reduced to the language containment prob-
lem [16]. Oftentimes, a system is specified by the composition of its components;
its behaviors are defined as the intersection of those of its components [6,18].
The number of states therefore grows exponentially in compositions. An effective
solution to the state explosion problem is compositional reasoning.

In compositional reasoning, compositional proof rules are used to deduce the
correctness of a system by parts. A compositional proof rule is of the form

Γ0, Γ1, . . . , Γn
� C

Δ

where � is its label, C is a side condition, Γ0, Γ1, . . . , Γn, and Δ are instances of the
language containment problem. The instances Γ0, Γ1, . . . , Γn are the premises of
the compositional proof rule; Δ is the conclusion. A compositional proof rule is
sound if its conclusion follows from its premises; it is invertible if all its premises
are satisfiable provided its conclusion holds.
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3 Compositional Reasoning of Classically Closed
Languages

In the assume-guarantee paradigm of compositional reasoning, users are allowed
to specify contextual assumptions in premises of compositional proof rules. If
the compositional proof rule is sound and invertible, users are guaranteed to
find proper assumptions to verify the system. Finding proper assumptions nev-
ertheless is tedious and often requires clairvoyance. Automated compositional
reasoning applies machine learning to generate assumptions for users automat-
ically. Consider the following compositional proof rule, where system behaviors
and property are formalized as regular languages J,K, and L respectively [5]:

J ∩A ⊆ L K ⊆ A
R0

J ∩K ⊆ L

Since regular languages are closed under Boolean operations, learning algorithms
gradually converge to the weakest assumption L ∪ J through a series of mem-
bership and equivalence queries. These queries are reduced to membership and
language containment problems and then resolved automatically.

Extending the automated methodology to ω-regular languages does not look
promising. The only learning algorithm for general ω-regular languages may
make an exponential number of queries [8]. Moreover, the language containment
problem for ω-regular languages is computationally harder than for regular lan-
guages. Even if one considers the subclass with efficient learning algorithms [12],
resolving equivalence queries for ω-regular languages is still less efficient.

The outlook does not improve for the most important class of classically closed
ω-regular languages. Consider again the compositional proof rule R0. Suppose
now J,K,L are classically closed ω-regular languages. The weakest assumption
J ∪ L is not necessarily classically closed since the class of classically closed ω-
regular languages is not closed under complementation. It is too restrictive to
consider only the class of classically closed ω-regular languages. One wonders
whether the weakest assumption is defined too liberally. If only assumptions in
the class of classically closed ω-regular languages are considered, could the weak-
est assumption exist? Algebraically, the weakest assumption is but the pseudo-
complement of J relative to L. It is however not hard to see that the weakest
assumption does not always exist.

Proposition 1. For some K,L ∈ Rω ∩Fω, there is no C ∈ Rω ∩Fω such that
for all J ∈ Rω ∩ Fω, J ∩K ⊆ L if and only if J ⊆ C.

Proposition 1 suggests that automated compositional reasoning cannot be ap-
plied to classically closed ω-regular languages näıvely. In the following, we pro-
pose a new class of infinitary languages suitable for the automated technique.

4 Intuitionistic Regular Languages

To motivate the intuitionistic interpretation, consider the ω-languages K =
(01)ω and L = ∅. We would like to find the maximal classically closed ω-language
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J such that J ∩ K ⊆ L. Observe that the ω-language Ji = (01)i0ω satisfies
Ji ∩K ⊆ ∅ for i ∈ N. Hence Ji ⊆ J for i ∈ N. But one would have (01)ω ∈ J
and J ∩K �= ∅ for J is classically closed.

One way to circumvent the problem is to disallow Ji’s. Notice that A(Ji) ∩
A(K) �= ∅ though Ji∩K = ∅ for each i. Indeed, ∪i∈NA(Ji) and the closure prop-
erty imply (01)ω ∈ J . If prefixes of ω-languages were taken into consideration,
the embarrassing dilemma would disappear.

The idea is best illustrated automata-theoretically. Recall that automata for
finitary and infinitary languages are indistinguishable structurally; only their
acceptance conditions differ. We therefore generalize the language accepted by
an automaton to the new interpretation.

Definition 1. Let B be a Büchi automaton. Define

L∞(B) = {σ ∈ Σ∞ : B accepts σ by finite or Büchi acceptance condition}
R∞ = {X ⊆ Σ∞ : X = L∞(B) for some Büchi automaton B}.

Unlike classical ω-regular languages, intuitionistic regular languages do not form
a Boolean algebra. To apply automated compositional reasoning, one could try
to form a Heyting algebra over intuitionistic regular languages [18].

5 Landweber Automata and Intuitionistically Closed
Regular Languages

Recall that the class of ω-languages accepted by Landweber automata coincides
with the class of classically closed ω-regular languages (Theorem 1). We consider
strings accepted by finite acceptance condition as well.

Definition 2. Let R be a Landweber automaton. Define L∞(R) = {σ ∈ Σ∞ :
RngR(r) ⊆ F for the r ∈ RunR(σ)}.
The following lemma states the intuitionistic language accepted by a Landweber
automaton is indeed intuitionistically regular.

Lemma 1. Let R be a Landweber automaton. L∞(R) ∈ R∞.

To show L∞(R) is intuitionistically closed for any Landweber automaton R,
consider the infinite run for any ω-string in cl∞(L∞(R)). It only visits accepting
states since all prefixes of the ω-string belong to L∞(R). Hence only accepting
states can occur in the infinite run. The ω-string belongs to L∞(R) as well.

Lemma 2. Let R be a Landweber automaton. L∞(R) is intuitionistically closed.

Recall that intuitionistic regular languages are defined by (non-deterministic)
Büchi automata but intuitionistically closed regular languages are by (determin-
istic) Landweber automata. To show that any intuitionistically closed regular
language is accepted by a Landweber automaton, one must close the gap be-
tween deterministic and non-deterministic computation. Since there is no gap in
classically closed ω-regular languages (Theorem 1), one would not expect differ-
ently in our intuitionistic interpretation.
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Lemma 3. Let X ∈ R∞. If X is intuitionistically closed, X = L∞(B) for some
deterministic Büchi automaton B.

It is not hard to translate deterministic Büchi automata to Landweber automata.
The correspondence between intuitionistically closed regular languages and in-
tuitionistic languages accepted by Landweber automata is obtained.

Theorem 2. For any X ⊆ Σ∞, X ∈ R∞ ∩ F∞ if and only if X = L∞(R) for
some Landweber automaton R.

6 Intuitionistically Closed Regular Languages as Heyting
Algebra

We first characterize pseudo-complements. Given X,Y ∈ Σ∞, the language X →
Y consists of strings whose every prefixe, if in X , also belongs to Y .

Definition 3. [11] Let X,Y ∈ Σ∞. X → Y = {σ ∈ Σ∞ : A(σ) ∩X ⊆ Y }.

We now show that X → Y is intuitionistically closed regular if both X and
Y are. Since X and Y are intuitionistically closed regular languages, they are
accepted by Landweber automata R and S respectively. We define a Landweber
automaton R→ S such that L∞(R→ S) = L∞(R)→ L∞(S) = X → Y .

Definition 4. Let R = (Σ,P, p0, φR, FR) and S = (Σ, Q, q0, φS , FS) be
Landweber automata. Define the Landweber automaton R → S = (P × Q ×
B, (p0, q0, b0), φ, F ) as follows.

– b0 = true if and only if p0 ∈ FR implies q0 ∈ FS

– (p′, q′, b′) = φ((p, q, b), a) if
• p′ = φR(p, a), q′ = φS(q, a), and
• b′ = true if and only if b = true, and p′ ∈ FR implies q′ ∈ FS .

– F = {(p, q, true) : p ∈ P, q ∈ Q}.

By construction, the language L∞(R→ S) is prefix-closed. Moreover, a string is
in L∞(R → S) if all its finite prefixes belong to L∞(R → S) since L∞(R → S)
is intuitionistically closed. We can now show L∞(R→ S) = L∞(R)→ L∞(S).

Proposition 2. Let R and S be Landweber automata. L∞(R→ S) = L∞(R)→
L∞(S).

To summarize, we have shown the language K → L is intuitionistically closed
regular if both K and L are intuitionistically closed regular.

Corollary 1. If X,Y ∈ R∞ ∩ F∞, X → Y ∈ R∞ ∩ F∞.

It is easy to verify ∅ and Σ∞ are both intuitionistically closed regular. Moreover,
X ∪ Y , X ∩ Y , and X → Y are intuitionistically closed regular if both X and Y
are. Hence the class R∞ ∩ F∞ forms a Heyting algebra.
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Theorem 3. (R∞ ∩ F∞,⊆,∪,∩,→, ∅, Σ∞) is a Heyting algebra.

A simple application of elementary proof theory allows to establish sound and
invertible compositional proof rules [1,18].

Corollary 2. If a compositional proof rule is provable by the system LJ , it is
sound and invertible for intuitionistically closed regular languages.

Particularly, the rule given in Section 3 is sound and invertible for R∞ ∩ F∞.
Moreover, the weakest assumption J → L is in fact an intuitionistically closed
regular language by Theorem 3. A learning algorithm for intuitionistically closed
regular languages can generate a Landweber automaton accepting J → L. The
termination of automated compositional reasoning is thus ensured.

Circularity in compositional proof rules is always intriguing because it con-
tradicts our intuition. Consider the following rule where C is a side condition [3].

J0 ∩K1 ⊆ K0 K0 ∩ J1 ⊆ K1 C
J0 ∩ J1 ⊆ K0 ∩K1

Circular reasoning arises because the premise J0 ∩K1 ⊆ K0 assumes K1 to es-
tablish K0 and the other assumes K0 to establish K1. Circular reasoning is not
sound for Heyting algebra in general. But the class R∞ ∩F∞ admits such circu-
larity conditionally. The following definition is needed to describe the condition.

Definition 5. Let X ⊆ Σ∞ and Ξ ⊆ Σ. X is said to constrain Ξ (write X�Ξ)
if αa ∈ X for any α ∈ X ∩Σ∗ and a �∈ Ξ.

Definition 5 intuitively says that a language X is not interfered by the symbols
not in Ξ if X �Ξ. If two languages are not interfering with each other, one can
apply the following lemma to have circular compositional proof rules.

Lemma 4. Let X,Y ∈ F∞ with X,Y �= ∅, and ΞX , ΞY ⊆ Σ. If X�ΞX, Y �ΞY ,
and ΞX ∩ ΞY = ∅, then (X → Y ) ∩ (Y → X) ⊆ X.

Note that Lemma 4 is only applicable to non-empty intuitionistically closed lan-
guages. It is necessary since the pseudo-complement of the empty language is
Σ∞. Fortunately, the class of non-empty intuitionistically closed regular lan-
guages still forms a Heyting algebra with the minimal element {λ}. The circular
compositional proof rule described above can thus be established by the system
LJ and Lemma 4 (see also [1,18]).

7 Applications

An advantageous feature of intuitionistically closed regular languages is that
they contain finite approximations and their completions. If one could infer more
information from finite approximations, algorithms for automata with finite ac-
ceptance condition would suffice to solve problems for intuitionistically closed
regular languages. In this section, we carry out the plan and obtain efficient au-
tomated compositional reasoning for intuitionistically closed regular languages.
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Firstly, it is not hard to show the language containment problem for intuition-
istically closed regular languages is equivalent to those for regular languages.
Intuitively, if all finite approximations of an intuitionistically closed regular lan-
guage are contained in another intuitionistically closed regular language, their
completions belong to the latter as well.

Lemma 5. Let R and S be Landweber automata. L∗(R) ⊆ L∗(S) if and only if
L∞(R) ⊆ L∞(S).

Next, we show that it is possible to deduce information about intuitionistically
closed regular languages from their finite approximations.

Theorem 4. Let R,S, and T be Landweber automata. Then L∗(R)� L∗(S) ⊆
L∗(T ) if and only if L∞(R)� L∞(S) ⊆ L∞(T ), where � ∈ {∪,∩,→}.
Consider the compositional proof rules R0 in Section 3, both premises are equiv-
alent to the regular language containment problem by Theorem 4. That is, for
any Landweber automata M0, M1, and P , we have

L∗(M0) ∩ L∗(A) ⊆ L∗(P ) L∗(M1) ⊆ L∗(A)
R0’

L∞(M0) ∩ L∞(M1) ⊆ L∞(P )

Since the premises L∗(M0) ∩ L∗(A) ⊆ L∗(P ) and L∗(M1) ⊆ L∗(A) are in-
stances of the regular language containment problem, learning algorithms for
regular languages suffice to generate the weakest assumption in the new rule.
The most efficient learning algorithm for regular languages requires O(kmn2)
and n−1 membership and equivalence queries respectively, where k is the size of
alphabet, n is the number of states, and m is the length of the longest counterex-
ample [13]. In comparison, the most efficient learning algorithm for any subclass
of ω-regular languages requires O(n4) and O(n2) membership and equivalence
queries respectively [12]. Since it is harder to resolve the containment problem for
ω-regular languages, the compositional proof rule (R0’) is definitely preferred.

8 Conclusion

The class of intuitionistically closed regular languages was introduced. We
showed that the class forms a Heyting algebra and is finitely approximatable.
It moreover admits circular compositional proof rules. Our results extend au-
tomated compositional reasoning to the class of intuitionistically closed regular
languages most satisfactorily. Not only can compositional proof rules for the
new class be deduced automatically, but also finding assumptions be done as ef-
ficiently as for regular languages. Given the negative result on classically closed
ω-regular languages (Section 3), the present work is perhaps the best that one
can hope for the compositional analysis of safety properties.

Our interpretation for intuitionistic languages differs from those in [11]. It
would be interesting to investigate more properties about intuitionistic regular
languages in our interpretation. Moreover, a correspondence between intuitionis-
tic languages and automata in the interpretation of [11] could be useful to solve
the model checking problem of intuitionistic linear temporal logic.
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Abstract. Antimirov and Mosses proposed a rewrite system for decid-
ing the equivalence of two (extended) regular expressions. In this paper
we present a functional approach to that method, prove its correctness,
and give some experimental comparative results. Besides an improved
version of Antimirov and Mosses’s algorithm, we present a version using
partial derivatives. Our preliminary results lead to the conclusion that,
indeed, these methods are feasible and, generally, faster than the classical
methods.
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1 Introduction

Although, because of their efficiency, finite automata are normally used for reg-
ular language manipulation, regular expressions (re) provide a particularly good
notation for their representation. The problem of deciding whether two re are
equivalent is PSPACE-complete [SM73]. This is normally solved by transforming
each re into an equivalent NFA, convert those automata to equivalent determin-
istic ones, and finally minimize both DFAs, and decide if the resulting automata
are isomorphic. The worst case complexity of the automata determinization pro-
cess is exponential in the number of states.

Antimirov and Mosses [AM94] presented a rewrite system for deciding the
equivalence of extended re based on a new complete axiomatization of the ex-
tended algebra of regular sets. This axiomatization, or any other classical com-
plete axiomatization of the algebra of regular sets, can be used to construct an
algorithm for deciding the equivalence of two re. Normally, however, these de-
duction systems are quite inefficient. This rewrite system is a refutation method
that normalizes regular expressions in such a way that testing their equivalence
corresponds to an iterated process of testing the equivalence of their derivatives.
Termination is ensured because the set of derivatives to be considered is finite,
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and possible cycles are detected using memoization. Antimirov and Mosses sug-
gested that their method could lead to a better average-case algorithm than
those based on the comparison of the equivalent minimal DFAs. In this pa-
per we present a functional approach to that method, prove its correctness,
and give some experimental comparative results. Besides an improved version
of Antimirov and Mosses’s algorithm, we present a new version using partial
derivatives. Our preliminary results lead to the conclusion that indeed these
methods are feasible and, quite often, faster than the classical methods.

The paper is organized as follows. Section 2 contains several basic definitions
and facts concerning regular languages and re. In Section 3 we present our
variant of Antimirov and Mosses’s method for testing the equivalence of two re.
An improved version using partial derivatives is also presented. Section 4 gives
some experimental comparative results between classical methods and the one
presented in Section 3. Finally, in Section 5 we discuss some open problems, as
ongoing and future work.

2 Regular Expressions and Automata

Here we recall some definitions and facts concerning regular languages, regular
expressions and finite automata. For further details we refer the reader to the
works of Hopcroft et al. [HMU00], Kozen [Koz97] and Kuich and Salomaa [KS86].

Let Σ be an alphabet and Σ� be the set of all words over Σ. The empty
word is denoted by ε and the length of a word w is denoted by |w|. A language
is a subset of Σ�, and if L1 and L2 are two languages, then L1 · L2 = {xy |
x ∈ L1 and y ∈ L2}. A re α over Σ represents a (regular) language L(α) ⊆ Σ�

and is inductively defined by: ∅ is a re and L(∅) = ∅; ε is a re and L(ε) = {ε};
a ∈ Σ is a re and L(a) = {a}; if α and β are re, (α + β), (α · β) and (α)� are
re, respectively with L((α + β)) = L(α) ∪ L(β), L((α · β)) = (L(α) · L(β)) and
L((α)�) = L(α)�. The operator · is often omitted. We adopt the usual convention
that � has precedence over ·, and · has higher priority than +. Let RE be the
set of re over Σ. The size of α is denoted by |α| and represents the number
of symbols, operators, and parentheses in α. We denote by |α|Σ the number of
symbols in α. We define the constant part of α as ε(α) = ε if ε ∈ L(α), and
ε(α) = ∅ otherwise. Two re α and β are equivalent, and we write α ∼ β, if
L(α) = L(β). The algebraic structure (RE,+, ·, ∅, ε), constitutes an idempotent
semi-ring, and, with the unary operator �, a Kleene algebra. There are several
well-known complete axiomatizations of Kleene algebras [Sal66, Koz94], but we
will essentially consider Salomaa’s axiom system F1 which, besides the usual
axioms for an idempotent semi-ring, contains the following two axioms for the
� operator:

α� ∼ ε + αα�; α� ∼ (ε + α)�.

As for rules of inference, system F1 has the usual rule of substitution and the
following rule of solution of equations :

α ∼ βα + γ, ε(β) = ∅
α ∼ β�γ

(Rse)
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A nondeterministic finite automaton (NFA) A is a tuple (Q,Σ, δ, q0, F ) where
Q is the finite set of states, Σ is the alphabet, δ ⊆ Q×Σ∪{ε}×Q the transition
relation, q0 the initial state and F ⊆ Q the set of final states. A NFA without
ε-transitions is deterministic (DFA) if, for each pair (q, a) ∈ Q×Σ there exists
at most one q′ such that (q, a, q′) ∈ δ. Two NFA are equivalent if they accept
the same language. A DFA is called minimal if there is no equivalent DFA with
fewer states. Minimal DFAs are unique up to isomorphism. DFAs, NFAs, and re
represent the same set of languages, i.e., regular languages.

2.1 Succinct Regular Expressions

Equivalent re do not need to have the same size. Irreducible re as defined by
Ellul et.al [ESW02] have no redundant occurrences of ∅, ε, �, and parentheses.
A re α is uncollapsible if none of the following conditions hold:

– α contains the proper sub-expression ∅, and |α| > 1;
– α contains a sub-expression of the form βγ or γβ where L(β) = {ε};
– α contains a sub-expression of the form β+γ where L(β) = {ε} and ε ∈ L(γ).

A re α is irreducible if it is uncollapsible and both two conditions are true:

– α does not contain superfluous parentheses (we adopt the usual operator
precedence conventions and omit outer parentheses);

– α does not contain a sub-expression of the form β��

.

The previous reductions rely on considering re modulo some algebraic properties
of re: identity elements of + and ., annihilator element for ·, and idempotence
of �. We also consider ∅� = ε and ε� = ε.

Let ACI be the set of axioms that includes the associativity, commutativity
and idempotence of disjunction and let ACIA be the set ACI plus the associa-
tivity of concatenation. In this work, besides where otherwise stated, we consider
irreducible regular expressions modulo ACIA (and denote them by RE). This
allows a more succinct representation of re, and is essential for ensuring the
termination of the algorithms described in the next section.

Our implementation of re follows the object-oriented model. We use a different
class for each operator which assures that the re are kept irreducible modulo
ACIA, while trying to make the overhead of these transformations negligible.
ACI properties are ensured by representing disjunctions as sets, that are coded
using hash tables. This allows for a very efficient way of ensuring idempotence (as
repeated elements result in a hash value clash), prohibiting ∅ as an argument,
and rending the use of parentheses needless. In a similar way, concatenations
are implemented with ordered lists, and the idempotence of the Kleene star is
assured by not allowing double stared re in the constructor.

2.2 Linear Regular Expressions

A re α is linear if it is of the form a1α1 + · · · + anαn for ai ∈ Σ and αi ∈ RE.
The set of all the linear re is denoted by RElin, and can be defined by the
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following (abstract syntax) context-free grammar, where A is the initial symbol,
L(B) = RE − {ε, ∅} and L(C) = Σ:

A→ C | C · B | A + A. (G1)

We say that an expression aβ has head a ∈ Σ and tail β. We denote by head(α)
and tail(α), respectively, the multiset of all heads and the multiset of all tails
in a linear re α. A linear regular expression α is deterministic if no element of
head(α) occurs more than once. We denote the set of all deterministic linear
re by REdet. Every re α can be written as a disjunction of its constant part
and a (deterministic) linear re [Sal66]. A re is said to pre-linear if it belongs to
the language generated by the following context-free grammar (abstract syntax)
with initial symbol A′, and A and B are as in G1:

A′ → ∅ | D
D → A | D · B | (D + D).

(G2)

The set of all pre-linear re is denoted by REplin.

2.3 Derivatives

The derivative [Brz64] of a re α with respect to a symbol a ∈ Σ, denoted a−1(α),
is defined recursively on the structure of α as follows:

a−1(∅) = ∅; a−1(α + β) = a−1(α) + a−1(β);

a−1(ε) = ∅; a−1(αβ) = a−1(α)β + ε(α)a−1(β);

a−1(b) =

{
ε, if b = a;

∅, otherwise;
a−1(α�) = a−1(α)α�.

If α is a deterministic linear re, we have:

a−1(α) =

⎧
⎪⎨

⎪⎩

β, if a · β is a sub-expression of α;

ε, if α = a;

∅, otherwise.

The derivative of a re α with respect to the word w ∈ Σ�, denoted w−1(α), is
defined recursively on the structure of w:

ε−1(α) = α; (ua)−1(α)a−1(u−1(α)), for any u ∈ Σ�.

Considering re modulo the ACI axioms, Brzozowski [Brz64] proved that, for
every re α, the set of its derivatives with respect to any word w is finite.

3 Regular Expression Equivalence

The classical approach to the problem of comparing two re α and β, i.e., deciding
if L(α) = L(β), typically consists of transforming each re into an equivalent NFA,
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convert those automata to equivalent deterministic ones, and minimize both
DFAs. Because, for a given regular language, the minimal DFA is unique up to
isomorphism, these can be compared using a canonical representation [RMA05],
and thus checked if L(α) = L(β). In this section, we present two methods to ver-
ify the equivalence of two re. The first method is a variant of the rewrite system
presented by Antimirov and Mosses [AM94], which provides an algebraic calcu-
lus for testing the equivalence of two re without the construction of the canonical
minimal automata. It is a functional approach on which we always consider the
re to be irreducible and not extended (with intersection). The use of irreducible
re allows us to avoid the simplification step of Antimirov and Mosses’s system
with little overhead. The second method improves this first one by using the
notion of partial derivative.

3.1 Regular Expression’s Linearization

Let a ∈ Σ, and α, β, γ be arbitrary re. We define the functions lin = lin2 ◦ lin1,
and det as follows:

lin1 : RE → REplin lin2 : REplin → RElin ∪ {∅}
lin1(∅) = ∅; lin2(α + β) = lin2(α) + lin2(β);

lin1(ε) = ∅; lin2((α + β)γ) = lin2(αγ) + lin2(βγ);

lin1(a) = a; lin2(α) = α. (Otherwise)

lin1(α + β) = lin1(α) + lin1(β);

lin1(α
�) = lin1(α)α�; det : RElin ∪ {∅} → REdet ∪ {∅}

lin1(aα) = aα; det(aα + aβ + γ) = det(a(α + β) + γ);

lin1((α + β)γ) = lin1(αγ) + lin1(βγ); det(aα + aβ) = a(α + β);

lin1(α
�β) = lin1(α)α�β + lin1(β). det(aα + a) = a(α + ε);

det(α) = α. (Otherwise)

The functions lin and lf linearize regular expressions. Function lin1 corresponds
to the function f of the original rewrite system which, contrary to what is claimed
by Antimirov and Mosses, returns a pre-linear re, and not a linear one. We use
the function lin for efficiency reasons because in a single pass returns a re in
a form such that the derivative w.r.t. any symbol of the alphabet is readily
available. To show that lin(α) returns either the linear part of α or ∅, it is
enough to observe the following facts, which have straightforward proofs that
can be found, along with all the missing proofs, in an extended version of the
present paper.

– The function lin1 is well defined.
– For α ∈ RE, lin1(α) ∈ L(G2).
– For α ∈ REplin, α ∼ lin2(α).
– For α ∈ RE, lin(α) ∈ L(G1) ∪ {∅}.
– For α ∈ RElin ∪ {∅}, det(α) ∈ REdet and α ∼ det(α).

– For α ∈ RE, L(lin(α)) =

{
L(α), if ε /∈ L(α);
L(α)− {ε}, if ε ∈ L(α).
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Thus we have:

Theorem 1. For any re α, α ∼ ε(α) + lin(α), and α ∼ ε(α) + det(lin(α)).

Considering the definition of derivative (Subsection 2.3), we also have:

Theorem 2. Let a ∈ Σ and α ∈ RE, then a−1(α) = a−1(det(lin(α))).

3.2 Regular Expression Equivalence

We now present the main functions of the comparison processes. The first one,
the function derivatives, computes the set of the derivatives of a pair of determin-
istic linear re (α, β), with respect to each symbol of the alphabet. It is enough
to consider only the symbols in head(α)∪head(β), and we do that for efficiency
reasons. The function is, then, defined as follows:

derivatives : (REdet ∪ {∅}) × (REdet ∪ {∅}) → P(RE × RE)

derivatives(α, β) = { (a−1(α), a−1(β)) | a ∈ head(α) ∪ head(β) }.

The equiv function, applied to two re α and β, returns True if and only if α ∼ β.
It is defined in the following way:

equiv : P(RE2) × P(RE2) → {True,False}
equiv(∅, H) = True;

equiv({(α, β)} ∪ S, H) =

{
False, if ε(α) �= ε(β);

equiv(S ∪ S′, H ′), otherwise;

where

α′ = det(lin(α));
β′ = det(lin(β));

S′ = { p | p ∈ derivatives(α′, β′), p /∈ H ′ };
H ′ = { (α, β) } ∪ H.

In each step the function equiv proceeds by rewriting a pair of re into a set S
of pairs of derivatives. When either a disagreement pair is found, i.e., a pair of
derivatives such that their constant parts are different, or the set S is empty,
the function returns. If α ∼ β the call equiv({(α, β)}) returns the value True,
otherwise returns False. Comparing with the Antimirov and Mosses’s rewrite
system TR, we note that in each call to equiv(S,H), the set S contains only pairs
of re which are not in H , thus rendering the rule (IND) of TR unnecessary. On
the other hand, our data structures avoid the need of the rule (SIM) by assuring
that the re are always irreducible.

Theorem 3. The function equiv is terminating.

Lemma 1. Given α, β ∈ REdet ∪ {∅}, ∀(α′, β′) ∈ derivatives(α, β), α ∼ β ⇒
α′ ∼ β′.

Theorem 4. The call equiv({(α, β)}, ∅) returns True if and only if α ∼ β.
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3.3 Improved Equivalence Method Using Partial Derivatives

Antimirov [Ant96] introduced the notion of the partial derivatives set of a reg-
ular expression α and proved that its cardinality is bounded by the number of
alphabetic symbols that occurs in α. He showed that this set can be obtained
directly from a new linearization process of α. This new process can be easily
implemented in our approach, as a variant of lin function, as we already consider
disjunctions as sets. We now briefly review this notions and show how they can
be used to improve the equiv algorithm.

Linear Forms. Let Σ ×RE be the set of monomials over an alphabet Σ.
Let Pfin(A) be the set of all finite parts of A. A linear re a1 · α1 + · · · + an ·
αn can be represented by a finite set of monomials l ∈ Pfin(Σ ×RE), named
linear form, and such that l = {(a1, α1), . . . , (an, αn)}. We define a function∑

: Pfin(Σ ×RE) → RElin by
∑

(l) = a1 · α1 + · · · + an · αn. Concatenation
of a linear form l with a re β is defined by l · β = {(a1, α1 · β), . . . , (an, αn · β)}.
We can now define the linearization of a re α into a linear form as follows:

lf : RE → Pfin(Σ × RE)

lf(∅) = ∅; lf(α�) = lf(α) · α�;

lf(ε) = ∅; lf(a · α) = {(a, α)};
lf(a) = {(a, ε)}; lf((α + β) · γ) = lf(α · γ) ∪ lf(β · γ);

lf(α + β) = lf(α) ∪ lf(β); lf(α� · β) = lf(α) · α� · β ∪ lf(β).

The following theorem relates the method of linearization presented in the
Section 2.2 with linear forms.

Theorem 5. For any re α, lin(α) =
∑

(lf(α)).

Partial Derivatives. Given a re α and a symbol a ∈ Σ, a partial derivative
of α w.r.t. a is a re ρ such that (a, ρ) ∈ lf(α). The set of partial derivatives
of α w.r.t. a is denoted by ∂a(α). The notion of partial derivative of α can be
extended to words w ∈ Σ�, sets of re R ⊆ RE, and sets of words W ⊆ Σ�, as
follows:

∂ε(α) = {α}; ∂w(R) =
⋃

α∈R

∂w(α);

∂ua(α) = ∂a(∂u(α)), for any u ∈ Σ�; ∂W (α) =
⋃

w∈W

∂w(α).

There is a strong connection between the sets of partial derivatives and the
derivatives of a re. Trivially extending the notion of language represented by a re
to sets of re, we have that L(∂w(α)) = L(w−1(α)), for any w ∈ Σ�, α ∈ RE. One
of the advantages of using partial derivatives is that for any α ∈ RE, |PD(α) =
∂Σ�(α)| ≤ |α|Σ , where PD(α) stands for the set of all the syntactically different
partial derivatives.
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Improving equiv by Using Partial Derivatives. Let us now consider a de-
terminization process for linear forms. We say that a linear form is deterministic
if, for each symbol a ∈ Σ, there is at most one element of the form (a, α). Let
lfX be an extended version of the linearization function lf, defined as follows:

lfX(α) = {(a,
∑

(a,α′)∈lf(α)

α′) | a ∈ Σ}.

We can replace the function composition det · lin with the deterministic linear
form obtained with lfX. This new extended linear form allows us to use the
previously defined equiv function with only two slight modifications. We redefine
the derivatives function as follows:

derivatives : Pdet
fin(Σ ×RE)× Pdet

fin(Σ ×RE)→ P(RE ×RE)

derivatives(α, β) = {(α′, β′) | (a, α′) ∈ α, (a, β′) ∈ β}.

In the definition of equiv, we change α′ = lfX(α) and β′ = lfX(β). The new
function will be called equivP in the next section.

4 Experimental Results

We will now present some experimental results. These are the running times
for the two methods for checking the equivalence of regular expressions. One
uses the equivalent minimal DFA, the other is the direct re comparison method,
as described on the Section 3. All tests were performed on batches of 10, 000
pairs of uniformly random generated re, and the running times do not include
the time necessary to parse each re. Each batch contains re of size 10, 50 or
100, with either 2, 5 or 10 symbols. For the uniform generation of random re
we implemented the method described by Mairson [Mai94] for the generation of
context-free languages. We used a grammar for almost irreducible re presented
by Shallit [Sha04]. As the data sets were obtained with a uniform random
generator, the size of each sample is sufficient to ensure a 95% confidence level
within a 1% error margin. It is calculated with the formula n = ( z

2ε )
2, where z

is obtained from the normal distribution table such that P (−z < Z < z)) = γ,
ε is the error margin, and γ is the desired confidence level.

We tested the equivalence of each pair of re using both the classical approach
and the direct comparison method. We used Glushkov’s algorithm to obtain the
NFAs from the re, and the well-known subset construction to make each NFA
deterministic. As for the DFA minimization process, we applied two different
algorithms: Hopcroft and Brzozowski’s. On one hand, Hopcroft’s algorithm has
the best known worst-case running time complexity analysis, O(kn log n). On the
other, it is pointed out by Almeida et. al [AMR07] that when minimizing NFAs,
Brzozowski’s algorithm has a better practical performance. As for the direct
comparison method, we compared both the original rewriting system (AM) and
our variant of the algorithm both with (equivP) and without partial derivatives
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Fig. 1. Running times of three different methods for checking the equivalence of re.
a) 10.000 pairs of random re; b) 10.000 pairs of syntactically equal random re. The
missing column corresponds to a larger than reasonable observed runtime.

(equiv). Because the direct comparison methods try to compute a refutation,
we performed a set of tests for the worst case scenario of these algorithms: the
equivalence of two syntactically equal regular expressions.

As shown in Figure 1 (a), when comparing randomly generated re, any of the
direct methods is always the fastest. Note also that Hopcroft’s algorithm never
achieves shorter running times than Brzozowski’s. Figure 1 (b) shows the results
of the application of each algorithm to pairs of syntactically equal random re.
Except for the samples of re with size 50 or 100, over an alphabet of 2 sym-
bols, the direct re comparison methods are still the fastest. Again, Brzozowki’s
algorithm always presents better running times than Hopcroft’s. Among the di-
rect comparison methods, equivP always performs better, with a speedup of
20%− 30%. It is important to state that, asymptotically, when using the min-
imal DFA approach, the minimization algorithm is the bottleneck of the entire
process. It always takes over 50% of the total amount of time when the size of
the re and/or the alphabet grows . To ensure the fairness of the comparison for
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the method using NFAs, we tried several algorithms for computing (small) NFAs
from re (c.f Ilie and Yu [IY03]), but the size of the NFAs seems not to affect
significantly the overall performance.

5 Conclusion

We presented a variant method based on a rewrite system for testing the equiva-
lence of two re, that attempts to refute its equivalence by finding a pair of deriva-
tives that disagree in their constant parts. While a good behaviour was expected
for some non-equivalent re, experimental results point to a good average-case
performance for this method, even when feeded with equivalent re. Some im-
provement was also achieved by using partial derivatives. Given the spread of
multi-cores and grid computer systems, a parallel execution of the better be-
havioured classic method and our direct comparison method can lead to an op-
timized framework for testing re equivalence. A better theoretical understanding
of relationships between the two approaches would be helpful towards the char-
acterization of their average-case complexity. In particular, it will be interesting
to compare our method with the one by Hopcroft and Karp [HK71].
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Abstract. We propose new antichain-based algorithms for checking universality
and inclusion of nondeterministic tree automata (NTA). We have implemented
these algorithms in a prototype tool and our experiments show that they provide
a significant improvement over the traditional determinisation-based approaches.
We use our antichain-based inclusion checking algorithm to build an abstract
regular tree model checking framework based entirely on NTA. We show the sig-
nificantly improved efficiency of this framework through a series of experiments
with verifying various programs over dynamic linked tree-shaped data structures.

1 Introduction

Tree automata are useful in numerous different areas, including, e.g., the implementa-
tion of decision procedures for various logics, XML manipulation, linguistics or formal
verification of systems, such as parameterised networks of processes, cryptographic
protocols, or programs with dynamic linked data structures. A classical implementation
of many of the operations, such as minimisation or inclusion checking, used for dealing
with tree automata in the different application areas often assumes that the automata
are deterministic. However, as our own practical experience discussed later in the paper
shows, the determinisation step may yield automata being too large to be handled al-
though the original nondeterministic automata are quite small. It may even be the case
that the corresponding minimal deterministic automata are small, but they cannot be
computed as the intermediary automata resulting from determinisation are too big.

As the situation is similar for other kinds of automata, recently, a lot of research
has been done to implement efficiently operations like minimisation (or at least reduc-
tion) and universality or inclusion checking on nondeterministic word, Büchi, or tree
automata. We follow this line of work and propose and experimentally evaluate new ef-
ficient algorithms for universality and inclusion checking on nondeterministic (bottom-
up) tree automata. Instead of the classical subset construction, we use antichains of sets
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of states of the considered automata and extend some of the antichain-based algorithms
recently proposed for universality and inclusion checking over finite word automata
[12] to tree automata (while also showing that the others are not practical for them).

To evaluate the proposed algorithms, we have implemented them in a prototype tool
over the Timbuk tree automata library [9] and tested them in a series of experiments
showing that they provide a significant advantage over the traditional determinisation-
based approaches. The experiments were done on randomly generated automata with
different densities of transitions and final states like in [12] as well as within an impor-
tant complex application of tree automata. Indeed, our antichain-based inclusion check-
ing algorithm for tree automata fills an important hole in the tree automata technology
enabling us to implement an abstract regular tree model checking (ARTMC) frame-
work based entirely on nondeterministic tree automata. ARTMC is a generic technique
for automated formal verification of various kinds of infinite-state and parameterised
systems. In particular, we consider its use for verification of programs manipulating dy-
namic tree-shaped data structures, and we show that the use of nondeterministic instead
of deterministic tree automata improves significantly the efficiency of the technique.

Related Work. In [12], antichains were used for dual forward and backward algorithms
for universality and inclusion testing over finite word automata. In [8], antichains were
applied for Büchi automata. Here, we show how the forward algorithms from [12] can
be extended to finite (bottom-up) tree automata (using algorithms computing upwards).
We also show that the backward computation from word automata is not practical for
tree automata (where it corresponds to a downward computation). The regular tree
model checking framework was studied in, e.g., [11,6,2], and its abstract version in
[4,5]—in all cases using deterministic tree automata. When implementing a framework
for abstract regular tree model checking based on nondeterministic tree automata, we
exploit the recent results [1] on simulation-based reduction of tree automata.

2 Preliminaries

An alphabet Σ is ranked if it is endowed with a mapping rank : Σ → N. For k ≥ 0,
Σk = {f ∈ Σ | rank(f) = k} is the set of symbols of rank k. The set TΣ of terms over
Σ is defined inductively: if k ≥ 0, f ∈ Σk, and t1, . . . , tk ∈ TΣ , then f(t1, . . . , tk)
is in TΣ . We abbreviate the so-called leaf terms of the form a(), a ∈ Σ0, by simply a.
A (nondeterministic, bottom-up) tree automaton (NTA) is a tuple A = (Q,Σ, F, δ)
where Q is a finite set of states, Σ is a ranked alphabet, F ⊆ Q is a set of final states,
and δ is a set of rules of the form f(q1, . . . , qn

)
→ q where n ≥ 0, f ∈ Σn, and

q1, . . . , qn, q ∈ Q. We abbreviate the leaf rules of the form a() → q, a ∈ Σ0, as
a→ q. Let t be a term over Σ. A bottom-up run of A on t is obtained as follows: first,
we assign a state to each leaf according to the leaf rules in δ, then for each internal
node, we collect the states assigned to all its children and associate a state to the node
itself according to the non-leaf δ rules. Formally, if during the state assignment process
subterms t1, . . . , tn are labelled with states q1, . . . , qn, and if a rule f(q1, . . . , qn)→ q
is in δ, which we will denote by f(q1, . . . , qn)→δ q, then the term f(t1, . . . , tn) can be
labelled with q. A term t is accepted if A reaches its root in a final state. The language
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accepted by the automaton A is the set of terms that it accepts: L(A) = {t ∈ TΣ |
t

∗→δ q(t) and q ∈ F}.
A tree automaton is complete if for all n ≥ 0, f ∈ Σn, q1, ..., qn ∈ Q, there is

at least one q ∈ Q such that f(q1, ..., qn) →δ q. A tree automaton may in general
be nondeterministic—we call it deterministic if there is at most one q ∈ Q such that
f(q1, ..., qn)→δ q for any n ≥ 0, f ∈ Σn, q1, ..., qn ∈ Q.

3 Universality Checking

Lattices and Antichains. The following definitions are similar to the corresponding ones
in [12]. Let Q be a finite set. An antichain over Q is a set S ⊆ 2Q s.t.∀s, s′ ∈ S : s �⊂ s′,
i.e., a set of pairwise incomparable subsets of Q. We denote by L the set of antichains.
A set s ∈ S ⊆ 2Q is minimal in S iff ∀s′ ∈ S : s′ �⊂ s. Given a set S ⊆ 2Q,
�S� denotes the set of minimal elements of S. We define a partial order on antichains:
for two antichains S, S′ ∈ L, let S � S′ iff ∀s′ ∈ S′ ∃s ∈ S : s ⊆ s′. Given
two antichains S, S′ ∈ L, the �-lub (least upper bound) is the antichain S � S′ =
�{s ∪ s′|s ∈ S ∧ s′ ∈ S′}� and the �-glb (greatest lower bound) is the antichain
S � S′ = �{s|s ∈ S ∨ s ∈ S′}�. We extend these definitions to lub and glb of arbitrary
subsets of L in the obvious way, giving the operators

⊔
and

�
. Then, we get a complete

lattice (L,�,
⊔
,
�
, {∅}, ∅), where {∅} is the minimal element and ∅ the maximal one.

Upward Universality Checking Using Antichains. To check universality of a tree au-
tomaton, the standard approach is to make it complete, determinise it, complement it,
and check for emptiness. As determinisation is expensive, we propose here an algorithm
for checking universality without determinisation. The main idea is to try to find at least
one term not accepted by the automaton. For this, we perform a kind of symbolic sim-
ulation of the automaton to cover all runs necessarily leading to non-accepting states.

In the following, q, q1, q2, ... denote states of NTA, s, s1, s2, ... denote sets of such
states, and S, S1, S2, ... denote antichains of sets of states. We assume dealing with com-
plete automata and first give some definitions. For f ∈ Σn, n ≥ 0, Postδf (s1, ..., sn) =
{q | ∃qi ∈ si, 1 ≤ i ≤ n : f(q1, ..., qn)→δ q}. We omit δ if no confusion arises. Note
that, for a ∈ Σ0, Posta(∅) = {q | a →δ q} is the set of states that may be assigned to
the leaf a, and Postf (∅) = ∅ for f ∈ Σn, n ≥ 1. Let Post(S) = �{Postf (s1, ..., sn) |
n ≥ 0, s1, ..., sn ∈ S, f ∈ Σn}�. Clearly, Post is monotonic wrt. �.

Let Post0(S) = S and for all i > 0, Posti(S) = Post(Posti−1(S)) � S. Intu-
itively, Posti(S) contains the�-smallest sets s ⊆ Q of states into which the automaton
can nondeterministically get after processing a term of height up to i starting from the
states in the elements of S. Using only the minimal sets is enough as we just need to
know if there is a term on which the given automaton runs exclusively into non-final
states. This makes universality checking easier than determinisation using the general
subset construction.

Clearly, Post1(S) = Post(Post0(S)) � S � S = Post0(S). Moreover, for i > 0,
if Posti(S) � Posti−1(S), then due to the monotonicity of Post, Post(Posti(S)) �
Post(Posti−1(S)), Post(Posti(S)) � S � Post(Posti−1(S)) � S, and therefore
Posti+1(S) � Posti(S). Altogether, we get (1) ∀S ∈ L ∀i ≥ 0 : Posti+1(S) �
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Posti(S). Since we work on a finite lattice, this implies that for all S there exists jS

such that PostjS (S) = PostjS+1(S). We let Post∗(S) = PostjS (S).

Lemma 1. Let A = (Q,Σ, F, δ) be a tree automaton and t a term over Σ. Let s =
{q | t ∗→δ q}, then Post∗(∅) � {s}.

Proof. We proceed by structural induction on t. For the basic case, let t = a ∈ Σ0.
Then, s = {q | a →δ q} = Posta(∅), and thus there is s′ ∈ Post(∅) s.t. s′ ⊆ s since
Post is obtained by taking the minimal elements. Furthermore, because of (1), there
is also s′′ ⊆ s′ such that s′′ ∈ Post∗(∅). For the induction step, let t = f(t1, ..., tn).
Let si = {q ∈ Q | ti ∗→δ q} for i ∈ {1, ..., n}. Let s = {q | t ∗→δ q}. Then,
s = {q | ∃q1 ∈ s1, ..., qn ∈ sn : f(q1, ..., qn)→δ q}. By induction, there exists s′i ⊆ si

s.t. s′i ∈ Post∗(∅). Let s′ = Postf (s′1, ..., s
′
n). Then, by definition of Postf , we have

s′ ⊆ s, and by definition of Post∗, there exists s′′ ⊆ s′ with s′′ ∈ Post∗(∅). ��

Lemma 2. Let A = (Q,Σ, F, δ) be an automaton and let s ∈ Post∗(∅). Then there
exists a term t over Σ such that s = {q | t ∗→δ q}.

Proof. Let i ≥ 1 be the smallest index s.t. s ∈ Posti(∅). We proceed by induction on i.
For the basic case, i = 1. Then, there is a ∈ Σ0 s.t. s = Posta(∅) = {q | a ∗→δ q}, t =
a. For the induction step, let i > 1. There exists f ∈ Σn and s1, ..., sn ∈ Posti−1(∅)
with s = Postf (s1, ..., sn). By induction, there exists t1, ..., tn s.t. for j ∈ {1, ..., n},
sj = {q | tj ∗→δ q}. Let t = f(t1, ...tn). By definition of Postf , s = {q |t ∗→δ q}. ��

We can now give a theorem allowing to decide universality without determinisation.

Theorem 1. A tree automatonA=(Q,Σ, F, δ) is not universal iff ∃s∈Post∗(∅).s⊆F .

Proof. LetA be not universal. Let t be a term not accepted byA and s = {q | t ∗→δ q}.
As t is not accepted by the automaton, s ⊆ F . By Lemma 1, there is s′ ∈ Post∗(∅)
s.t. s′ ⊆ s ⊆ F . Suppose now that there exists s ∈ Post∗(∅) s.t. s ⊆ F . By Lemma 2,
there exists a term t with s = {q | t ∗→δ q}. Since s ⊆ F , t is not accepted by A. ��

Experiments with Upward Universality Checking Using Antichains. We have imple-
mented the above approach for testing universality of tree automata in a prototype based
on the Timbuk tree automata library [9]. We give the results of our experiments run on
an Intel Xeon processor at with 2.7GHz and 16GB of memory in Fig. 1. We ran our
tests on randomly generated automata and on automata obtained from abstract regular
tree model checking applied in verification of several pointer-manipulating programs.

In the random tests, we first used automata with 20 states and varied the density of
their transitions (the average number of different right-hand side states for a given left-
hand side of a transition rule, i.e., |δ|/|{f(q1, ..., qn) | ∃q ∈ Q : f(q1, ..., qn) →δ q}|)
and the density of their final states (i.e., |F |/|Q|). Fig. 1(a) shows the probability of such
automata being universal, and Fig. 1(b) the average times needed for checking their uni-
versality using our antichain-based approach. The difficult instances are naturally those
where the probability of being universal is about one half. In Fig. 1(c), we show how
the running times change for some selected instances of the problem (in terms of some
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Fig. 1. Experiments with universality checking on tree automata

chosen densities of transitions and final states, including those for which the problem
is the most difficult) when the number of states of the automata grows. We also show
the time needed when universality is checked using determinisation, complement, and
emptiness checking. We see that the antichain-based approach behaves in a significantly
better way. The same conclusion can also be drawn from the results of Fig. 1(d) obtained
on automata from experimenting with abstract regular tree model checking applied for
verifying various procedures manipulating trees presented in Section 5.

Downward Universality Checking with Antichains. The upward universality checking
introduced above for tree automata conceptually corresponds to the forward universality
checking of finite word automata of [12]. In [12], a dual backward universality checking
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is also introduced. It is based on computing the controllable predecessors of the set of
non-final states. Controllable predecessors are the predecessors that can be forced by an
input symbol to continue into a given set of states. Then, the automaton is non-universal
iff the controllable predecessors of the non-final states cover the set of initial states.

Downward universality checking for tree automata as a dual approach to upward
universality checking is problematic since the controllable predecessors of a set of states
s ⊆ Q of an NTA A = (Q,Σ, F, δ) do not form a set of states, but a set of tuples of
states, i.e., CPre(s) = {(q1, ..., qn) | n ∈ N ∧ ∃f ∈ Σ ∀q ∈ Q : f(q1, ..., qn) →δ

q ⇒ q ∈ s}. Note that if we flatten the set CPre(s) to the set FCPre(s) of states
that appear in some of the tuples of CPre(s) and check that starting from leaf rules
the computation can be forced into some subset of FCPre(s), then this does not imply
that the computation can be forced into some state from s. That is because for any rule
f(q1, ..., qn) →δ q, q ∈ s, not all of the states q1, ..., qn may be reached. Moreover,
it is too strong to require that starting from leaf rules, it must be possible to force the
computation into all states of FCPref (s). Clearly, it is enough if the computation
starting from leaf rules can be forced into s via some of the vectors in CPre(s), not
necessarily all of them. Also, if we keep CPre(s) for s ⊆ Q as a set of vectors, we also
have to define the notion of controllable predecessors for sets of vectors of states, which
is a set of vectors of vectors of states, etc. Clearly, such an approach is not practical.

4 Inclusion Checking

Let A = (Q,Σ, F, δ) and B = (Q′, Σ, F ′, δ′) be two tree automata. We want to check
if L(A) ⊆ L(B). The traditional approach computes the complement of B and checks if
it has an empty intersection withA. This is costly as computing the complement neces-
sitates determinisation. Here we show how to check inclusion without determinisation.

As before, the idea is to find at least one term accepted by A and not by B. For that,
we simultaneously simulate the runs of the two automata using pairs (p, s) with p ∈ Q
and s ⊆ Q′ where p memorises the run of A and s all the possible runs of B. If t is
a term accepted by A and not by B, the simultaneous run of the two automata on t
reaches the root of t at a pair of the form (p, s) with p ∈ F and s ⊆ F ′. Notice that s
must represent all the possible runs of B on t to make sure that no run of B can accept
the term t. Therefore, s must be a set of states.

Formally, an antichain over Q × 2Q′
is a set S ⊆ Q × 2Q′

such that for every
(p, s), (p′, s′) ∈ S, if p = p′, then s �⊂ s′. We denote by LI the set of all antichains over
Q×2Q′

. Given a set S ∈ Q×2Q′
, an element (p, s) ∈ S is minimal if for every s′ ⊂ s,

(p, s′) /∈ S. We denote by �S� the set of minimal elements of S. Given two antichains
S and S′, we define the order �I , the least upper bound �I , and the greatest lower
bound �I as follows: S �I S′ iff for every (p, s′) ∈ S′, there is (p, s) ∈ S s.t. s ⊆ s′;
S �I S′ = �{(p, s∪ s′) | (p, s) ∈ S ∧ (p, s′) ∈ S′}�; and S �I S′ = �{(p, s) | (p, s) ∈
S ∨ (p, s) ∈ S′}�. These definitions can be extended to arbitrary sets in the usual way
leading to the operators

⊔
I and

�
I , yielding a complete lattice as in Section 3.

Given f ∈ Σn, n ≥ 0, we define IPostf

(
(p1, s1), ..., (pn, sn)

)
= {(p, s) |f(p1, ...,

pn) →δ p ∧ s = Postδ
′

f (s1, ..., sn)}. Let S be an antichain over Q × 2Q′
. Then,

let IPost(S) = �{IPostf

(
(p1, s1), . . . , (pn, sn)

)
| n ≥ 0, (p1, s1), ..., (pn, sn) ∈
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S, f ∈ Σn}�. Let IPost0(S) = S and IPost i(S) = IPost
(
IPost i−1(S)

)
�I S.

As before, we can show that ∀S ∈ LI ∀i ≥ 0 : IPost i+1(S) �I IPost i(S), and
that for every antichain S, there exists a J such that IPostJ+1(S) = IPostJ(S).
Let IPost∗(S) = IPostJ (S). Note that, like in the case of Posta(∅) in Section 3,
IPosta(∅) = {(q, Postδ

′

a (∅)) | a →δ q} for a ∈ Σ0, and IPostf (∅) = ∅ for f ∈ Σn,
n ≥ 1. Then, we get the following lemma. The proof is similar to the one of Lemma 1.

Lemma 3. Let A = (Q,Σ, F, δ) and B = (Q′, Σ, F ′, δ′) be two tree automata, and
let t be a term over Σ. Let p ∈ Q such that t

∗→δ p, and s = {q ∈ Q′ | t ∗→δ′ q}. Then,
IPost∗(∅) �I {(p, s)}.

We can also show the following lemma. Its proof is similar to the one of Lemma 2.

Lemma 4. Let A = (Q,Σ, F, δ) and B = (Q′, Σ, F ′, δ′) be two tree automata, and
let (p, s) ∈ IPost∗(∅). Then there is a term t over Σ s.t. t

∗→δ p and s = {q | t ∗→δ′ q}.

Then, we can decide inclusion without determinising the automata as follows:

Theorem 2. Let A = (Q,Σ, F, δ) and B = (Q′, Σ, F ′, δ′) be two tree automata.
Then, L(A) ⊆ L(B) iff for every (p, s) ∈ IPost∗(∅), p ∈ F ⇒ s �⊆ F ′.

Proof. Suppose that (p, s) ∈ IPost∗(∅) with p ∈ F and s ⊆ F ′. Using Lemma 4 there
is a term t with t

∗→δ p and s = {q | t ∗→δ′ q}. As p ∈ F and s ⊆ F ′, t is accepted byA
and not by B, i.e., L(A) �⊆ L(B). Suppose nowL(A) �⊆ L(B). Let t be a term accepted
by A and not by B. Let p ∈ F such that t

∗→δ p, and let s = {q | t ∗→δ′ q}. Then,
s ⊆ F ′. Lemma 3 implies that IPost∗(∅) contains a pair (p, s′) s.t. s′ ⊆ s ⊆ F ′. ��

Experiments with Checking Inclusion Via Antichains. We have implemented the pro-
posed antichain-based approach for inclusion checking on tree automata again on top
of the Timbuk library and performed similar tests as with universality checking in
Section 3 (see [3] for details). The results show that the antichain-based approach is
again significantly faster than the usual approach of checking L(A1) ⊆ L(A2) as
L(A1) ∩ L(A2) = ∅, requiring determinisation of A2. This holds both for randomly
generated automata and for those encountered in the experiments with abstract regular
tree model checking (ARTMC) described below. In fact, the antichain-based inclusion
checking allowed us to implement an ARTMC framework entirely based on NTA which
is significantly more efficient than the framework based on deterministic automata.

5 Regular Tree Model Checking

Regular tree model checking (RTMC) [11,6,2,4] is a general and uniform framework
for verifying infinite-state systems. In RTMC, configurations of a system being verified
are encoded by trees, sets of the configurations by tree automata, and transitions of the
verified system by a term rewriting system (usually given as a tree transducer or a set of
tree transducers). Then, verification problems based on performing reachability anal-
ysis correspond to computing closures of regular languages under rewriting systems,
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i.e., given a rewriting system τ and a regular tree language I , one needs to compute
τ∗(I), where τ∗ is the reflexive-transitive closure of τ . This computation is impossible
in general. Therefore, the main issue in RTMC is to find accurate and powerful fixpoint
acceleration techniques helping the convergence of computing language closures.

Abstract regular tree model checking (ARTMC) [4] is an efficient acceleration tech-
nique for RTMC. It is based on interleaving the application of τ when computing τ∗(I)
via the union

⋃
i≥0 τ i(I) with an application of an abstraction function α on the tree

automata encoding the so-far computed sets of reachable configurations. If α is finitary
(i.e., its domain is finite), the abstract reachability computation reaches a fixpoint in
a finite number of steps. Moreover, if α is overapproximating (i.e., if L(A) ⊆ L(α(A))
for each tree automaton A), the computation stops with an automaton A such that
τ∗(I) ⊆ L(A). If A does not intersect the bad configurations, the system is proved
safe. Otherwise, a (concrete) backward reachability computation based on τ−1 checks
if the system is really erroneous, or if a spurious error was reached due to a too coarse
abstraction. In the latter case, the abstraction is refined and the computation repeats.

In [4], two automata abstractions based on automata state equivalences are given.
The finite height equivalence relates states accepting equal languages of trees up to
some finite height, and the predicate equivalence relates states whose languages have
non-empty intersections with the same “predicate” tree languages out of a given set
of such languages. When abstracting an automaton, its states are split into equivalence
classes, and all states of each class are collapsed into one. Hence, both of the mentioned
abstractions are overapproximating. They are automatically refined by refining the state
equivalence classes (for details see [4]).

Nondeterministic Abstract Regular Tree Model Checking. Originally, ARTMC was de-
fined for and tested on minimal deterministic tree automata (DTA). However, the vari-
ous experiments done showed that the determinisation step is a significant bottleneck.
To avoid it and to implement ARTMC using NTA, we need the following operations
over NTA: (1) application of the transition relation τ , (2) union, (3) abstraction and
its refinement, (4) intersection with the set of bad configurations, (5) emptiness, and
(6) inclusion checking (needed for testing if the abstract reachability computation has
reached a fixpoint). Finally, (7) a method to reduce the size of the computed NTA is
also desirable. An implementation of Points (1), (2), (4), and (5) is easy. Moreover,
concerning Point (3), the abstraction mechanisms of [4] can be lifted to work on NTA
in a straightforward way while preserving their guarantees to be finitary, overapprox-
imating, and the ability to exclude spurious counterexamples. Furthermore, the recent
work [1] gives efficient algorithms for reducing NTA based on computing suitable sim-
ulation equivalences on their states, which covers Point (7). Hence, the last obstacle for
implementing nondeterministic ARTMC was Point (6), i.e., efficient inclusion check-
ing on NTA. The approach of Section 4 solves this problem, allowing us to implement
a prototype nondeterministic ARTMC framework and test it on suitable examples. We
now give the first very encouraging results that we achieved.

Experiments with Nondeterministic ARTMC. We have implemented the nondetermin-
istic ARTMC framework using the Timbuk tree library [9] and compared it with an
ARTMC implementation based on the same library, but using DTA. In particular, the
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Table 1. Running times (in sec.) of det. and nondet. ARTMC applied for verification of various
tree manipulating programs (× denotes a too long run or a failure due to a lack of memory).

DFT
RB-delete

(null,undef)
RB-insert

(null,undef)
det. nondet. det. nondet. det. nondet.

full abstr. 5.2 2.7 × × 33 15
restricted abstr. 40 3.5 × 60 145 5.4

RB-delete
(RB preservation)

RB-insert
(RB preservation)

RB-insert
(gen., test.)

det. nondet. det. nondet. det. nondet.
full abstr. × × × × × ×

restricted abstr. × 57 × 89 × 978

deterministic ARTMC framework uses determinisation and minimisation after comput-
ing the effect of each forward or backward step to try to keep the automata as small
as possible and to allow for easy fixpoint checking, which is not based on inclusion
but identity checking on the obtained automata (due to the fact that the computed sets
are only growing and minimal DTA are canonical). For NTA, the size reduction from
[1], which we use, does not yield canonical automata, and antichain-based inclusion
checking is really needed.

We have applied the framework to verify several procedures manipulating dynamic
tree-shaped data structures linked by pointers. The trees being manipulated are encoded
directly as the trees handled in ARTMC, each node is labelled by the data stored in it
and the pointer variables currently pointing to it. All program statements are encoded as
(possibly non-structure preserving) tree transducers. The encoding is fully automated.
The only allowed destructive pointer updates (i.e., pointer manipulating statements
changing the shape of the tree) are tree rotations [7] and addition of new leaf nodes.

We have in particular considered verification of the depth-first tree traversal and the
standard procedures for rebalancing red-black trees after insertion or deletion of a leaf
node [7]. We verified that the programs do not manipulate undefined and null pointers
in a faulty way. For the procedures on red-black trees, we also verified that their result
is a red-black tree (not taking into account the non-regular balancedness condition). In
general, the set of possible input trees for the verified procedures as well as the set of
correct output trees were given as tree automata. In the case of rebalancing red-black
trees after insertion, we also used a generator program preceding the tested procedure
which generates random red-black trees and a tester program which tests the output
trees being correct. Here, the set of input trees contained just an empty tree, and the
verification was reduced to checking that a predefined error location is unreachable. The
size of the programs ranges from 10 to about 100 lines of pure pointer manipulations.

The results of our experiments on an Intel Xeon processor at 2.7GHz with 16GB of
available memory (as in Section 3) are summarised in Table 1. The predicate abstraction
proved to give much better results (hence we do not consider the finite-height abstrac-
tion here). The abstraction was either applied after firing each statement of the program
(“full abstr.”) or just when reaching a loop point in the program (“restricted abstr.”).
Our results are very encouraging and show a significant improvement in the efficiency
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of ARTMC based on NTA. Indeed, the ARTMC framework based on DTA has either
been significantly slower (up to 25-times) or has completely failed (a too long running
time or a lack of memory)—the latter case being quite frequent.

6 Conclusion

We have proposed new antichain-based algorithms for universality and inclusion check-
ing on (nondeterministic) tree automata. The algorithms have been thoroughly tested
both on randomly generated automata and on automata obtained from various verifica-
tion runs of the ARTMC framework. The new algorithms are significantly more efficient
than the classical determinisation-based approaches to universality and inclusion check-
ing. Moreover, using the proposed inclusion checking algorithm together with some
other recently published results, we have implemented a complete ARTMC framework
based on NTA and tested it on verification of several real-life pointer-intensive pro-
cedures. The results show a very encouraging improvement in the capabilities of the
framework. In the future, we would like to implement the antichain-based universal-
ity and inclusion checking algorithms (as well as other recently proposed algorithms
for dealing with NTA, such as the simulation-based reduction algorithms) on automata
symbolically encoded as in the MONA tree automata library [10]. We hope that this
will yield another significant improvement in the tree automata technology allowing for
a new generation of tools using tree automata (including, e.g., the ARTMC framework).
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Abstract. Our aim is to present an efficient algorithm that checks whether a
binary and prolongeable regular language is geometrical or not, based on spe-
cific properties of its minimal deterministic automaton. Geometrical languages
have been introduced in the framework of off-line temporal validation of real-
time softwares. Actually, validation can be achieved through both a model based
on regular languages and a model based on discrete geometry. Geometrical lan-
guages are intended to develop a link between these two models. The regular case
is of practical interest regarding to implementation features, which motivates the
design of an efficient geometricity test addressing the family of regular languages.

Keywords: Finite automata, regular languages, minimal automaton, geometrical
language, geometricity test, temporal validation.

1 Introduction

Geometrical languages have been first introduced in [1,2]. The main motivation was
the modelization of real-time task systems in the framework of off-line temporal val-
idation. Computing the feasibility of a real-time software [9,3] consists in checking
whether there exists a scheduling sequence that leads all tasks to reach their deadlines.
This can be achieved through a model based on regular languages [5]. Thanks to specific
properties of the languages involved in temporal validation, a model based on discrete
geometry [7,8] can also be designed, which drastically reduces the computing time.
Geometrical languages are intended to develop a link between these two models. The
challenge is the following: if we are able to interpret in terms of languages those prop-
erties that make the geometrical objects be so efficient, then we can expect to design
new automata-based algorithms with improved complexities.

We start from a natural definition for a geometrical figure in a d-dimension space
associated with an alphabet Σ = {a1, . . . , ad}: a geometrical figure is a set of points of
Nd including the origin of the reference and such that, for any point in the figure, there
exists a trajectory (from the origin) to this point. A geometrical figure can be seen as a
(non necessarily finite) automaton: each point of the figure is a state, the origin of the
reference is the initial state, every state is final and there is an implicit transition with
label ai from P = (xj)1≤j≤d to P ′ = (x′

j)1≤j≤d as soon as ∀j �= i, x′
j = xj and
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x′
i = xi + 1. Hence we can define the language of a geometrical figure and also the

geometrical figure of a language. Finally, a language is said to be geometrical if and
only if the language of its prefixes is equal to the language of its geometrical figure.
Studying the properties of the (non necessarily regular) geometrical languages turn to
be of both theoretical and practical interest as reported in [1,2].

In this paper, we focus on the family of geometrical regular languages. A method
checking whether a given regular language L is geometrical or not is described in [2].
Unfortunately, it was shown that it only works for a restricted family of regular lan-
guages. Moreover it involves numerous conversions of an automaton into an equivalent
expression and thus it has an exponential worst case time complexity. In this paper we
present an original approach, directly based on the minimal automaton of the language
Pref(L), which yields a polynomial complexity.

The two following sections recall fundamental notions concerning languages, au-
tomata and geometrical languages. In Section 4, geometrical properties are stated in
terms of automata. The last two sections are devoted to the two-dimension case. A
polynomial algorithm for checking the geometricty of a prolongeable regular language
is presented in Section 5 and the general case is sketched in Section 6.

2 Preliminaries

Let us first review basic notions concerning finite automata. For a comprehensive treat-
ment of this domain, references [4,13] can be consulted.

Let Σ be a non-empty finite set of symbols, called the alphabet. A word over Σ is a
finite sequence of symbols, usually written x1x2...xn. The length of a word u, denoted
by |u|, is the number of symbols in u. The empty word, denoted by ε, has a length
equal to zero. We also denote by |u|a the number of occurrences of the symbol a in
the word u. If u = x1...xn and v = y1...ym are two words over the alphabet Σ, their
concatenation u · v, usually written uv, is the word x1...xny1...ym. Let Σ∗ be the set
of words over Σ. We say that u in Σ∗ is a prefix of w in Σ∗ (u ∈ Pref(w)) if there
exists v in Σ∗ such that uv = w. A language L over Σ is a subset of Σ∗. We denote by
Pref(L) the set of prefixes of the words of the language L. We denote by w−1L and we
call left residual of L w.r.t. w the set {u ∈ Σ∗ | wu ∈ L}. The set of regular languages
is the set containing the empty set and the single element sets of the symbols, and that
is closed under finite concatenation, finite union and star. Any regular language can be
denoted by a regular expression formed by the atoms ∅, a ∈ Σ, and the operations of
finite concatenation (·), finite union (+) and star (∗).

An automaton is a 5-tuple A = (Q,Σ, δ, I, T ) where Q is the set of states, δ is
a subset of Q × Σ × Q whose elements are called transitions and where I and T
are subsets of Q, whose elements are respectively called initial states and final states.
An automaton A is said to be finite if Q is finite. It is said to be complete if for any
q ∈ Q and any a ∈ Σ, |δ(q, a)| ≥ 1. An automaton can be made complete if necessary
by adding a sink state. An automaton A is said to be deterministic if it has a unique
initial state and if for any q ∈ Q and any a ∈ Σ, |δ(q, a)| ≤ 1. If the automaton is
deterministic, the notation p.a can be used instead of δ(p, a). A path of length n in A is
a sequence of n transitions: (q0,a1,q1),(q1,a2,q2),...,(qn−1,an,qn). The word a1a2...an



70 J.-M. Champarnaud, J.-Ph. Dubernard, and H. Jeanne

is called the label of this path. A path is said to be successful if q0 ∈ I and qn ∈ T . The
language recognized by A is the set L(A) of words that are labels of successful paths.
Kleene’s theorem [6] states that a language is recognized by a finite automaton if and
only if it is regular. We will say DFA for a deterministic finite automaton and NFA for
a non-deterministic finite automaton.

The left language of a state q is the set of words w such that there exists a path in A
whose first state is initial, whose last state is q, and whose label is w. The right language
of a state q is the set of words w such that there exists a path in A whose first state is
q, whose last state is final, and whose label is w. We denote by

←−
LA

q the left language

of q in A, and by
−→
LA

q its right language. A DFA A is said to be minimal if and only
if any two distinct states of A have distinct right languages. The theorem of Myhill-
Nerode [10,11] states that any regular language has a unique minimal DFA up to an
isomorphism.

Let us recall the notion of prefix tree of a DFA. Let Σ be an alphabet of size d. In
order to define the d-ary prefix tree of a DFA, we assume that Σ and Σ∗ are equipped
with a total order. From now on we will consider that Σ∗ is equipped with the graded
lexicographic order (denoted by ≺), that corresponds to a breadth-first construction
of the prefix tree and fits with our purpose. Let A = (Q,Σ, δ, p0, T ) be a DFA. We
consider the mapping ϕ : Q → Σ∗ such that ϕ(q) = min≺{u ∈ Σ∗ | p0.u = q}, i.e.
ϕ(q) is the smallest label of a path from p0 to q. The set ϕ(Q) is a prefix set of Σ∗. The
labeled tree TA = (V, U,Σ) with V = ϕ(Q) and U = {(ϕ(p), a, ϕ(q)) | (p, a, q) ∈ δ}
is called the prefix tree ofA. The mapping ϕ is a one-to-one mapping from Q to the set
V of vertices of TA; it is called the canonical labeling of the automatonA.

3 Geometrical Languages

Let us now review basic definitions and properties of geometrical languages, as intro-
duced in [1,2]. Let d be a positive integer. Let 1 � k � d. We denote by uk the
coordinate vector (0, 0, ..., 1, ...0) of dimension d, where 1 is in the k-th position. We
denote byO the point with coordinate (0, 0, ..., 0). In what follows, we will write P in-

stead of
−−→OP , for instance P = (3, 2). Let F be a set of points with coordinates in Nd. A

trajectory t of length n in F is a sequence (Pi)0�i�n of points of F , such that P0 = O
and for all i, 0 � i � n− 1, there exists k, 1 � k � d such that Pi+1 = Pi + uk. The
set of trajectories of F is denoted by Traj(F ).

Definition 1. A geometrical figure F of dimension d is either the empty set or a set of
points in Nd where every point belongs to some trajectory of F .

For instance, F1 = {(0, 0), (0, 1), (1, 0), (1, 1)} is a 2-dimension geometrical figure
(Figure 1).

Let Σ = {a1, a2, ..., ad} be a finite alphabet where the symbol ai corresponds to
the dimension i. Then, the word w = w1w2 · · ·wn associated with a trajectory t =
(Pi)0�i�n of a figure F is defined by: ∀i, 0 � i � n − 1, wi+1 = ak, where Pi+1 =
Pi + uk. The word associated with a trajectory t is denoted by word(t). Reciprocally
the (set of points in the) trajectory associated with a word w is denoted by traj(w).
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Fig. 1. F1 = {(0, 0), (0, 1), (1, 0), (1, 1)}

We denote by c : Σ∗ −→ Nd the Parikh mapping [12] that maps a word w to
its coordinate vector (|w|a1 , |w|a2 , ..., |w|ad

). The geometrical figure F(L) associated
with a language L ⊆ Σ∗ is defined by F(L) =

⋃
w∈Pref(L) traj(w). Reciprocally, the

language L(F ) associated with a geometrical figure F ⊆ Nd is defined by L(F ) =
{word(t) | t ∈ Traj(F )}. Finally, a language is said to be geometrical if the set of its
prefixes is equal to the set of words having a trajectory in the associated figure.

Definition 2. The languageL is said to be geometrical if and only if Pref(L)=L(F(L)).

For every language L, Pref(L) ⊆ L(F(L)). But some languages are such thatL(F(L))
� Pref(L). It is the case of {a, ba} that is not geometrical, whereas {ab, ba} is geomet-
rical. Notice that these two languages have the same geometrical figure, the figure F1

of Figure 1.

Definition 3. A language L is semi-geometrical if and only if ∀u, v ∈ Pref(L) such
that c(u) = c(v), we have u−1Pref(L) = v−1Pref(L).

Proposition 1. [2] If a language is geometrical then it is semi-geometrical.

Proposition 2. [2] Let Σ = {a1, a2, ..., ad} and L ⊆ Σ∗. The two following condi-
tions are equivalent:

(1) L is geometrical.
(2) ∀u, v ∈ Pref(L), ∃k, 1 ≤ k ≤ d, c(u) + uk = c(v)

︸ ︷︷ ︸
(∗)

⇒ u · ak ∈ Pref(L)

Let us take the example of the language L = {a, ba, bb} over the alphabet Σ = {a, b}.
Then the words u = a and v = ba are such that c(u) + (0, 1) = c(v) (condition (∗)).
Proposition 2 tells that, if L was geometrical, then ab would be in Pref(L). We conclude
that L is not geometrical.

4 Characterization of Geometrical Regular Languages in Terms
of Automata (Arbitrary Dimension)

Geometrical properties (Definition 2, Definition 3 and Proposition 2) are defined in
terms of languages. We now state them in terms of automata. In the following, L is a
regular language and F = F(L) is the geometrical figure of L.
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Definition 4. Let D = (Q,Σ, δ, p0, T ) be a DFA such that L(D) = Pref(L) and s be
the sink state of A (if it exists). For all P ∈ N2, we set StatesQ(P ) = {p ∈ Q | ∃u ∈
Σ∗ such that p = p0.u and c(u) = P} if P is in F and StatesQ(P ) = {s} otherwise.

Definition 5. Let P = (x1, . . . , xd) be a point of Nd. We set Parents(P ) = {P−c(ai) |
ai ∈ Σ} ∩ Nd. We also set level(P ) = x1 + . . . + xd.

Definition 6. Two points P and P ′ of a geometrical figure G are said to be adjacent if
there exists a point P ′′ such that {P, P ′} ⊂ Parents(P ′′).

Definition 7. Let D = (Q,Σ, δ, p0, T ) be a DFA such that L(D) = Pref(L) and ϕ be
the canonical labeling of D. The geometrical figure FQ = {c(v) | v ∈ ϕ(Q)} is the set
of points associated with the states of Q.

Proposition 3. Let D = (Q,Σ, δ, p0, T ) be a DFA such that L(D) = Pref(L). The
three following conditions are equivalent:

(1) The language L is semi-geometrical.
(2) ∀P ∈ F , ∀u ∈ Σ∗ | c(u) = P , u−1Pref(L) is uniquely defined.

(3) ∀P ∈ F , ∀p ∈ StatesQ(P ),
−→
LD

p is uniquely defined.

Corollary 1. Let A = (Q,Σ, δ, p0, T ) be the minimal DFA of Pref(L). The two fol-
lowing conditions are equivalent:

(1) The language L is semi-geometrical.
(2) ∀P ∈ F , |StatesQ(P )| = 1.

From now on we will consider the minimal automatonA = (Q,Σ, δ, p0, T ) of Pref(L).
For all P in F , the unique element of StatesQ(P ) will be denoted by state(P ).

Corollary 2. Let A = (Q,Σ, δ, p0, T ) be the minimal DFA of Pref(L) and ϕ be
the canonical labeling of A. A necessary condition for the language L to be semi-
geometrical is that the Parikh mapping be injective from ϕ(Q) to FQ.

Proposition 4. Let A = (Q,Σ, δ, p0, T ) be the minimal DFA of Pref(L). The three
following conditions are equivalent:

(1) The language L is geometrical.
(2) ∀P ∈ Nd, ∀ai ∈ Σ | P − c(ai) ∈ F , we have:
– either ∀u | c(u) = P − c(ai), uai ∈ Pref(L),
– or ∀u | c(u) = P − c(ai), uai �∈ Pref(L).
(3) ∀P ∈ Nd, ∀ai ∈ Σ | P − c(ai) ∈ F , state(P − c(ai)).ai = state(P ).

5 Case of Prolongeable Regular Languages (Case d = 2)

The languageL is not necessarily finite, neither is the figureF(L). Therefore a stepwise
procedure straightforwardly deduced from Proposition 4 and based on a development
of the figure level by level does not yield an algorithm for checking the geometricity of
the language L.
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The trick is that geometricity only depends on a simple property, based on classical
geometrical arguments, that must be satisfied by each state of the minimal automa-
ton A = (Q,Σ, δ, p0, T ) of Pref(L). This can be illustrated as follows (for d = 2).
We assume that there exists a conflict involving the point P at level k in F and its
two parents P2 = P − c(a) and P1 = P − c(b) that belong to F and are such that:
state(P1).b �= state(P2).a. Let us examine level k − 2. A particularly simple case is
when there exists a point P ′ in F such that P ′ ∈ Parents(P1) ∩ Parents(P2). Let us
set p′ = state(P ′). The conflict comes from the fact that p′.ba �= p′.ab and thus it only
depends on the state p′. Let P ′′ be the point in FQ whose associated state is p′. The
conflict can be detected as soon as the figure is developed from P ′′.

This section is devoted to the study of this state property in a restricted frame. First,
since geometrical arguments are used we will only investigate the two-dimension prob-
lem. Second we will focus on the case where the language L is prolongeable, that is
∀u ∈ L, ∃a ∈ Σ | u.a ∈ L. The general case will be sketched in the last section.

5.1 A Necessary and Sufficient Condition of Geometricity

Let L be a prolongeable language over Σ = {a, b} and F = F(L) be the geometrical
figure of L. We consider the minimal automatonA = (Q,Σ, δ, p0, T ) of Pref(L). Since
L is prolongeable, then eitherA has no sink state or it holds: ∀p ∈ Q, p.a �= s∨p.b �= s,
where s is the sink state ofA. The automatonA is said to be essential. We first introduce
some notation that fits with the case d = 2. For two points P = (x, y) and P ′ = (x′, y′)
at the same level of a geometrical figureG we say that (P, P ′) is a pair of adjacent points
(we write P < P ′) if and only if x′ = x− 1 and y′ = y + 1.

Definition 8. Let P and P ′ be two points of a geometrical figure G. We say that there
is a conflict (P, P ′) if P < P ′ and state(P ).b �= state(P ′).a.

By Proposition 4, a regular language is geometrical if and only if there exists no conflict
in its geometrical figure. In the following, given a word u ∈ Σω, we will denote by ûk

the prefix of length k of u.

Definition 9. Let A = (Q,Σ, δ, p0, T ) be the minimal DFA of Pref(L). Let P ∈ F
and p = state(P ).
(1) We consider the word u = u1 . . . uk . . . defined by uk+1 = b if p.(ûkb) �= s and
uk+1 = a otherwise. The trajectory traj(u) is said to be the rightmost trajectory from
the point P .
(2) We consider the word v = v1 . . . vk . . . defined by vk+1 = a if p.(v̂ka) �= s and
vk+1 = b otherwise. The trajectory traj(v) is said to be the leftmost trajectory from the
point P .

Since L is prolongeable, the trajectories traj(u) and traj(v) are well defined and have
an infinite length. They can intersect or not and this feature will be studied later.

Definition 10. Let A = (Q,Σ, δ, p0, T ) be the minimal DFA of Pref(L). Let P ∈
FQ and p = state(P ). Assume that the points P + c(a) and P + c(b) are in F . Let
traj(u) be the rightmost trajectory of P + c(a) and traj(v) be the leftmost trajectory of
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P + c(b). The hole of the state p is the region of N2 delimited by the trajectories traj(u)
and traj(v).

For any p ∈ Q, there exists no point of F in the hole of p. Let hp = min{k ≥ 0 |
P + c(aûk) = P + c(bv̂k)}. We say that hp is the depth of the hole of p. The depth of a
hole is infinite if the trajectories traj(u) and traj(v) do not intersect. We now define the
"hole property" for a state in Q.

Definition 11. Let A = (Q,Σ, δ, p0, T ) be the minimal DFA of Pref(L). Let P ∈ FQ

and p = state(P ). The state p is said to satisfy the hole property if and only if either
(P + c(a) �∈ F ∨ P + c(b) �∈ F ) or for all k | 0 ≤ k < hp, the pair of points
(P + c(aûk), P + c(bv̂k)) is not a conflict.

Definition 12. (1) The reverse rightmost trajectory from a point P is a finite sequence
(Pi)1≤i≤m such that: P1 = P , Pm = O, and for all 1 ≤ i < m, Pi+1 = Pi − c(a) if
Pi − c(a) ∈ F and Pi+1 = Pi − c(b) otherwise.
(2) The reverse leftmost trajectory from a point P is a finite sequence (Pi)1≤i≤m such
that: P1 = P and Pm = O and for all 1 ≤ i < m, Pi+1 = Pi − c(b) if Pi − c(b) ∈ F
and Pi+1 = Pi − c(a) otherwise.

Lemma 1. Assume that P is in F and that its two parents P −c(a) and P −c(b) are in
F . Then the reverse rightmost trajectory of P − c(b) and the reverse leftmost trajectory
of P − c(a) necessarily intersect.

The minimal automaton A of Pref(L)
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Fig. 2. Checking the hole condition for the states of A
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Notice that the rightmost and leftmost trajectories are defined from the transitions in
the automaton, while the reverse versions are defined from the implicit transitions in
the figure.

Proposition 5. Let L be a prolongeable language and A = (Q,Σ, δ, p0, T ) be the
minimal DFA of Pref(L). The two following conditions are equivalent:

(1) The language L is geometrical.
(2) For all state in Q the hole property is satisfied.

Let us comment the Figure 2. The geometrical figure FQ (i.e. the set of points associated
with the state labels 0, 1, . . . , 8) can be drawn while computing the canonical labeling
of the automaton A. The hole of the state 0 is delimited by the rightmost trajectory
from the point (1, 0), that is the sequence ((1, 0),(2, 0),(2, 1),(2, 2),(2, 3)), and by the
leftmost trajectory from the point (0, 1), that is ((0, 1),(0, 2),(1, 2),(2, 2),(3, 2)), that
intersect in (2, 2).

Since state(1, 0).b = state(0, 1).a = s and state(2, 1).b = state(1, 2).a = 8, the
state 0 satisfies the hole property The states 3 and 4 also satisfy the hole property and
their holes are infinite.

5.2 A Polynomial Algorithm for Checking Geometricity

We show that the hole property for a state can be checked in polynomial time.

Lemma 2. Let A = (Q,Σ, δ, p0, T ) be the minimal DFA of Pref(L). Let n = |Q| and
u be the word associated with the rightmost trajectory from P + c(a). There exist two
words u′ and u′′ such that u = u′u′′ω, with |u′|+ |u′′| < n.

Similarly the word v associated with the leftmost trajectory from P + c(b) is such that
there exist two words v′ and v′′ that satisfy v = v′v′′ω, with |v′|+ |v′′| < n.

We consider the points A0 = P + c(a), A1 = P + c(au′) and A2 = P + c(au′u′′).
As a corollary of Lemma 2, the rightmost trajectory from P + c(a) is made of an initial
piece from A0 to A1, followed by an infinite repetition of the piece going from A1 to A2.
Let D be the line connecting A1 to A2. The slope of D is α = |u′′|b/|u′′|a if |u′′|a �= 0
and∞ otherwise. Similarly, we consider the points B0 = P + c(b), B1 = P + c(bv′)
and B2 = P + c(bv′v′′). Let E be the line connecting B1 to B2. The slope of E is
β = |v′′|b/|v′′|a if |v′′|a �= 0 and∞ otherwise.

Without loss of generality we will assume that |u′| = |v′|. which implies that level
(A1) = level(B1). Let A1 = (xa, ya) and B1 = (xb, yb). We say that there is a gap
δ = xa − xb between A1 and B1. We will also only consider finite slopes.

We examine the number of conflict tests that should be performed in order to check
the hole property of a state, according to the relative values of the slopes α and β and
to the value of the gap δ between A1 and B1.

Proposition 6. Let L be a prolongeable language and A = (Q,Σ, δ, p0, T ) be its
minimal automaton. Whether a state p ∈ Q satisfies the hole property or not can be
checked in O(n3) time.

Corollary 3. Whether a prolongeable regular language L is geometrical or not can be
checked in O(n4) time on the minimal automaton of Pref(L).
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6 Case of an Arbitrary Transition Function

We now sketch the general case, when the regular language L is not necessarily pro-
longeable. Let A = (Q,Σ, δ, p0, T ) be the minimal automaton of Pref(L). If A has a
sink state s we denote by s′ the unique state (if it exists) such that s′.a = s′.b = s.

Let P ∈ FQ and p = state(P ). Assume that the points P + c(a) and P + c(b)
are in F . Consider the word u as defined in Definition 9. In the general case, u is
either an infinite word u = u′u′′ω or a finite word u = u1u2 . . . um with m < n
and p.(au1u2 . . . um−1) = s′. In the latter case the trajectory from A0 = P + c(a) is
made of a piece A0A1, with A1 = P + c(au) and state(A1) = s′. Let A1 = (x, y).
Let A2 = (x′, y′) be the leftmost son of A1 that is x′ = x + i, y′ = y − i + 1 with
i = max{j | 2 ≤ j ≤ x + y + 2 ∧ (x + j, y − j + 1) ∈ F} (we assume that outside
(x,−1) points are added to the figure so that their rightmost trajectory is parallel to the
a-axis). Now we can compute the rightmost trajectory from A2, and once again it can
be either infinite or a piece A2A3.

Finally we have two possible cases. The first case is when the successive pieces
A2qA2q+1 have a finite length. Since the number of states ofA is finite, there exist two
integers m and t such that 0 ≤ m < t < n and state(A2t) = state(A2m). Hence we
may consider an infinite rightmost trajectory from A0 made of an initial sequence of
pieces A2qA2q+1, for 0 ≤ q ≤ m−1, followed by an infinite repetition of the sequence
of pieces A2qA2q+1, for m ≤ q ≤ t−1. The second case is when there exists 0 ≤ q < n
such that the piece from A2q is infinite.

The definition of the hole of a state p extends to the general case as well as the hole
property. Our claim is that it is possible to design a polynomial algorithm addressing the
case of regular languages in the same way we did for prolongeable languages. However
this part is quite technical and it will not be developed here.

7 Conclusion

We have presented an O(n4) algorithm for checking whether a prolongeable regular
language L is geometrical or not, on the minimal automaton of Pref(L), as well as
tools for studying the general case of a regular language. These results address the two-
dimension case. First investigations of higher dimensions are encouraging.

References

1. Blanpain, B.: Automates, Langages et Géométrie, Mémoire de DEA, Université de Rouen
(2006)

2. Blanpain, B., Champarnaud, J.-M., Dubernard, J.-P., Geniet, D.: Geometrical Languages. In:
LATA 2007, Proceedings, Report 35/07, GRLMC Universitat Rovira I Virgili, pp. 127–138
(2007)

3. Baruah, S.K., Rosier, L.E., Howell, R.R.: Algorithms and Complexity Concerning the Pre-
emptive Scheduling of Periodic, Real-Time Tasks on one Processor. Real-Time Systems,
vol. 2, pp. 301–324. Kluwer Academic Press, Dordrecht (1990)

4. Eilenberg, S.: Automata, Languages and Machines, Vol. A & B. Academic Press, London
(1976)



Testing Geometricity of a Binary and Regular Language L 77

5. Geniet, D., Largeteau, G.: WCET free time analysis of hard real-time systems on multipro-
cessors: A regular language-based model. Theor. Comput. Sci. 388(1-3), 26–52 (2007)

6. Kleene, S.C.: Representation of events in nerve nets and finite automata, Automata Studies,
pp. 2–42. Princeton Univ. Press, Princeton (1956)

7. Largeteau, G., Geniet, D., Andres, E.: Discrete Geometry Applied in Hard Real-Time Sys-
tems Validation. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS,
vol. 3429, pp. 23–33. Springer, Heidelberg (2005)

8. Largeteau, G., Geniet, D.: Quantification du taux d’invalidité d’applications temps-réel à
contraintes strictes, Techniques et Sciences Informatiques (to appear)

9. Liu, C.L., Layland, J.W.: Scheduling Algorithms for multiprogramming in real-time envi-
ronment. Journal of the ACM, 46–61 (1973)

10. Myhill, J.: Finite automata and the representation of events, Wright Patterson Air Force Base,
Ohio, USA, WADC TR-57-624 (1957)

11. Nerode, A.: Linear automata transformations. Proceedings of American Mathematical Soci-
ety 9, 541–544 (1958)

12. Parikh, R.J.: On context-free languages. Journal of the Association for Computing Ma-
chine 13(4), 570–581 (1966)

13. Sakarovitch, J.: Eléments de théorie des automates. Vuibert Informatique (2003)



Hopcroft’s Minimization Technique:

Queues or Stacks?

Andrei Păun1,2,3, Mihaela Păun4, and Alfonso Rodŕıguez-Patón3
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Abstract. We consider the absolute worst case time complexity for
Hopcroft’s minimization algorithm applied to unary languages (or a mod-
ification of this algorithm for cover automata minimization). We show
that in this setting the worst case is reached only for deterministic au-
tomata or cover automata following the structure of the de Bruijn words.
We refine a previous result by showing that the Berstel/Carton example
reported before is actually the absolute worst case time complexity in the
case of unary languages for deterministic automata. We show that the
same result is valid also when considering the setting of cover automata
and an algorithm based on the Hopcroft’s method used for minimization
of cover automata. We also show that a LIFO implementation for the
splitting list is desirable for the case of unary languages in the setting of
deterministic finite automata.

1 Introduction

This work is in part a continuation of the result reported by Berstel and Carton
in [2] regarding the number of steps required for minimizing a unary language
through Hopcroft’s minimization technique. The second part of the paper con-
siders the same problem in the setting of Cover Automata. This new type of au-
tomata was introduced by Prof. Dr. Sheng Yu and Drs. Sântean and Câmpeanu
in [6] and since then was investigated by several authors such as in [4], [8], [14],
[16], [19], etc.

In the first part of the paper we will analyze and extend the result by Bestel
and Carton from [2]. There it was shown that Hopcroft’s algorithm for mini-
mizing unary languages requires O(n log n) steps when considering the example
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of automata following the structure induced by de Bruijn words (see [3]) as in-
put and when making several “bad” implementation decisions. The setting of
the paper [2] is for languages over an unary alphabet, considering the automata
associated to the language(s) having the number of states a power of 2 and choos-
ing “in a specific way” which set to become a splitting set in the case of ties.
In this context, the previous paper showed that the algorithm needs O(n log n)
steps for the algorithm to complete, which is reaching the theoretical asymptotic
worst case time complexity for the algorithm as reported in [9,10,11,13] etc.

We were initially interested in investigating further the complexity of an al-
gorithm described by Hopcroft, specifically considering the setting of unary lan-
guages, but for a stack implementation in the algorithm. Our effort has led to
the observation that when considering the worst case for the number of steps
of the algorithm (which in this case translates to the largest number of states
appearing in the splitting sets), a LIFO implementation indeed outperforms a
FIFO strategy as suggested by experimental results on random automata as
reported in [1].

One major observation/clarification that is needed is the following: we do
not consider the asymptotic complexity of the run-time, but the actual number
of steps. For the setting of the current paper when comparing n log n steps
and n log(n − 1) or n

2 log n steps we will say that n log n is worse than both
n log(n−1) and n

2 log n, even though when considering them in the framework of
the asymptotic complexity (big-O) they have the same complexity, i.e. n log(n−
1) ∈ Θ(n log n) and n

2 log n ∈ Θ(n log n).
In Section 2 we give some definitions, notations and previous results, then in

Section 3 we give a brief description of the algorithm discussed and its features.
Section 4 describes the properties for the automaton that reaches worst possible
case in terms of steps required for the algorithm (as a function of the initial
number of states of the automaton). We then briefly consider the case of cover
automata minimization with a modified version of the Hopcroft’s algorithm in
Section 6 and conclude by giving some final remarks in the Section 7.

2 Preliminaries

We assume the reader is familiar with the basic notations of formal languages and
finite automata, see for example the excellent work by Yu [20]. In the following
we will be denoting the cardinality of a finite set T by |T |, the set of words over
a finite alphabet Σ is denoted Σ∗, and the empty word is λ. The length of a
word w ∈ Σ∗ is denoted with |w|. For l ≥ 0 we define the following sets of words:

Σl = {w ∈ Σ∗ | |w| = l}, Σ≤l =
l⋃

i=0

Σi, and for l > 0 we define Σ<l =
l−1⋃

i=0

Σi.

A deterministic finite automaton (DFA) is a quintuple A = (Σ,Q, δ, q0, F )
where Σ is a finite set of symbols, Q is a finite set of states, δ : Q × Σ −→ Q
is the transition function, q0 is the start state, and F is the set of final states.
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We can extend δ from Q×Σ to Q×Σ∗ by δ(s, λ) = s, δ(s, aw) = δ(δ(s, a), w).
We will usually denote the extension δ of δ by δ when there is no danger of
confusion.

The language recognized by the automaton A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∈
F}. In what follows we assume that δ is a total function, i.e., the deterministic
automaton is also complete.

For a DFA A = (Σ,Q, δ, q0, F ), we can always assume, without loss of gen-
erality, that Q = {0, 1, . . . , |Q| − 1} and q0 = 0. Throughout this paper we will
assume that the states are labeled with numbers from 0 to |Q| − 1. If L is finite,
L = L(A) and A is complete, there is at least one state, called the sink state or
dead state, for which δ(sink, w) /∈ F , for any w ∈ Σ∗. If L is a finite language,
we denote by l the maximum among the lengths of all words in L.

For the following definitions we assume that L is a finite language over the
alphabet Σ and l is the length of the longest word(s) in L.

Definition 1. Cover Language. A language L′ over Σ is called a cover language
for the finite language L if L′ ∩ Σ≤l = L. A deterministic finite cover automa-
ton (DFCA) for L is a deterministic finite automaton (DFA) A, such that the
language accepted by A is a cover language of L.

Definition 2. State equivalence. Let A = (Σ,Q, δ, 0, F ) be a DFA. We say that
p ≡A q (state p is equivalent to q in A) if for every w ∈ Σ∗, δ(p, w) ∈ F iff
δ(q, w) ∈ F .

Definition 3. Level. Let A = (Σ,Q, δ, 0, F ) be a DFA (or a DFCA for L). We
define, for each state q ∈ Q, level(q) = min{|w| | δ(0, w) = q}.

The right language of a state p ∈ Q and for a DFCA A = (Q,Σ, δ, q0, F ) for L
is Rp = {w | δ(p, w) ∈ F, |w| ≤ l − levelA(p)}.

Definition 4. Word similarity. Let x, y ∈ Σ∗. We define the following similar-
ity relation in the following way: x ∼L y if for all z ∈ Σ∗ such that xz, yz ∈ Σ≤l,
xz ∈ L iff yz ∈ L, and we write x �∼L y if x ∼L y does not hold.

Definition 5. State similarity. Let A = (Σ,Q, δ, 0, F ) be a DFCA for L. We
consider two states p, q ∈ Q and m = max{level(p), level(q)}. We say that p is
similar with q in A, denoted by p ∼A q, if for every w ∈ Σ≤l−m, δ(p, w) ∈ F iff
δ(q, w) ∈ F . We say that two states are dissimilar if they are not similar (the
above does not hold).

If the automaton is understood, we may omit in the following the subscript A
when writing the similarity of two states in a DFCA A.

Lemma 1. Let A = (Σ,Q, δ, 0, F ) be a DFCA for a finite language L. Let
p, q ∈ Q, with level(p) = i, level(q) = j, and m = max{i, j}. If p ∼A q, then
Rp ∩Σ≤l−m = Rq ∩Σ≤l−m.

Proof. See the proof given in [6].
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Definition 6. A DFCA A for a finite language is a minimal DFCA if and only
if any two distinct states of A are dissimilar.

Once two states have been detected as similar, one can merge the higher level
one into the lower level one by redirecting transitions. We refer the interested
reader to [6] for the merging theorem and other properties of cover automata.

3 Hopcroft’s State Minimization Algorithm

In [11], an elegant algorithm for state minimization of DFAs was described.
This algorithm was proven to be of the order O(n log n) in the worst case
(asymptotic evaluation). We will study further the complexity of the algorithm
by considering the various implementation choices of the algorithm. We will show
that by implementing the list of the splitting sets as a queue, one will be able
to reach the absolute worst possible case with respect to the number of steps
required for minimizing an automaton. We will also show that by changing the
implementation strategy from a queue to a stack, we will never be able to reach
that absolute worst case in the number of steps for minimizing automata, thus,
at least from this perspective, the programmers should implement the list S from
the following algorithm as a stack (LIFO).

The algorithm uses a special data structure that makes the set operations
of the algorithm fast. We will give in the following the description of the mini-
mization algorithm working on the automaton (Σ,Q, δ, q0, F ) that has an arbi-
trary alphabet Σ and later we will restrict the discussion to the case of unary
languages.

1: P = {F, Q− F}
2: for all a ∈ Σ do
3: Add((min(F, Q− F ), a), S) (min w.r.t. the number of states)
4: while S �= ∅ do
5: get (C, a) from S (we extract (C, a) according to the

strategy associated with the list S: FIFO/LIFO/...)
6: for each B ∈ P that is split by (C, a) do
7: B′, B′′ are the sets resulting from splitting of B w.r.t. (C, a)
8: Replace B in P with both B′ and B′′

9: for all b ∈ Σ do
10: if (B, b) ∈ S then
11: Replace (B, b) by (B′, b) and (B′′, b) in S
12: else
13: Add((min(B′, B′′), b), S)

where the splitting of a set B by the pair (C, a) (the line 6) means that δ(B, a)∩
C �= ∅ and δ(B, a) ∩ (Q − C) �= ∅. We have denoted above by δ(B, a) the set
{q | q = δ(p, a), p ∈ B}. The B′ and B′′ from line 7 are defined as the following
two subsets of B: B′ = {b ∈ B | δ(b, a) ∈ C} and B′′ = B −B′.



82 A. Păun, M. Păun, and A. Rodŕıguez-Patón

It is useful to explain briefly the working of the algorithm: we start with the
partition P = {F,Q−F} and one of these two sets is then added to the splitting
sequence S. The algorithm proceeds by breaking the partition into smaller sets
according to the current splitting set retrieved from S. With each splitting of
a set in P the number of sets stored in S grows (either through instruction
11 or instruction 13). When all the splitting sets from S are processed, and S
becomes empty, then the partition P shows the state equivalences in the input
automaton: all the states contained in a same set B in P are equivalent. Knowing
all equivalences, one can easily minimize the automaton by merging all the states
found in the same set in the final partition P at the end of the algorithm.

We note that there are three levels of “nondeterminism” in the implementation
of the algorithm. All these three choices influence the algorithm by changing the
number of steps performed for a specific input automaton. We describe first the
three implementation choices, and later we show the worst case scenario for each
of them.

The “most visible” implementation choice is the choice of the strategy for
processing the list stored in S: as a queue, as a stack, etc. The second and third
such choices in implementation of the algorithm appear when a set B is split
into B′ and B′′. If B is not present in S, then the algorithm is choosing which
set B′ or B′′ to be added to S, choice that is based on the minimal number of
states in these two sets (line 13). In the case when both B′ and B′′ have the same
number of states, then we have the second implementation choice (the choosing
of the set that will be added to S). The third such choice appears when the split
set (B, a) is in the list S; then the algorithm mentions the replacement of (B, a)
by (B′, a) and (B′′, a) (line 11). This is actually implemented in the following
way: (B′′, a) is replacing (B, a) and (B′, a) is added to the list S (or vice-versa).
Since we saw that the processing strategy of S matters, then also the choice of
which B′ or B′′ is added to S and which one replaces the previous location of
(B, a) matters in the actual run-time of the algorithm.

In the original paper [11] and later in [9], and [13], when describing the com-
plexity of the minimization method, the authors showed that the algorithm is
influenced by the number of states that appear in the sets processed in S. Intu-
itively, that is why the smaller of the (add) B′ and B′′ is inserted in S in line
13; and this is what makes the algorithm sub-quadratic. In the following we will
focus on exactly this issue of the number of states appearing in sets processed
in S.

4 Worst Case Scenario for Unary Languages

Let us start the discussion by making several observations and preliminary clar-
ifications: we are discussing about languages over an unary alphabet. To make
the proof easier, we restrict our discussion to the automata having the number of
states a power of 2. The three levels of implementation choices are clarified/set
in the following way: we assume that the processing of S is based on a FIFO
approach, we also assume that there is a strategy of choosing between two sets
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that have been just splitted. These two sets have the same number of elements
in such a way that the one that is added to the queue S makes the third im-
plementation nondeterminism irrelevant. In other words, no splitting of a set
already in S will take place (line 11 will not be executed).

Let us assume that such an automaton with 2n states is given as input for the
minimization algorithm described in the previous section. We note that since
we have only one letter in the alphabet, the states (C, a) from the list S can
be written without any problems as C, thus the list S (for the particular case
of unary languages) becomes a list of sets of states. So let us assume that the
automaton A = ({a}, Q, δ, q0, F ) is given as the input of the algorithm, where
|Q| = 2n. The algorithm proceeds by choosing the first splitter set to be added to
S. The first such set will be chosen between F and Q−F based on their number
of states. Since we are interested in the worst case scenario for the algorithm,
and the algorithm run-time is influenced by the total number of states that will
appear in the list S throughout the running of the algorithm (as shown in [11],
[9], [13] and mentioned in [2]), it is clear that we want to maximize the sizes of
the sets that are added to S. It is time to give a Lemma that will be useful in
the following.

Lemma 2. For deterministic automata over unary languages, if a set R with
|R| = m is the current splitter set, then R cannot add to the list S sets containing
all together more than m states (line 13).

Proof. We can rephrase the Lemma as: for all the sets Bi from the current
partition P such that δ(Bi, a)∩R �= ∅ and δ(Bi, a)∩(Q−R) �= ∅. Then

∑

∀ i

|B′
i| ≤

m, where B′
i is the smaller of the two sets that result from the splitting of the

set Bi ∈ P with respect to R.
We have only one letter in the alphabet, thus the number of states q such

that δ(q, a) ∈ R is at most m. Each B′
i is chosen as the set with the smaller

number of states when splitting Bi thus |B′
i| ≤ |δ(Bi, a) ∩ R| which implies

that
∑

∀ i

|B′
i| ≤

∑

∀ i

|δ(Bi, a) ∩ R| = |(
⋃

∀ i

δ(Bi, a)) ∩ R| ≤ |R| (because all Bi are

disjoint).
Thus we proved that if we start splitting according to a set R, then the new

sets added to S contain at most |R| states. ��

Coming back to our previous setting, we will start with the automaton A =
({a}, Q, δ, q0, F ) (where |Q| = 2n) given as input to the algorithm and we have
to find the smaller set between F and Q − F . In the worst case (according to
Lemma 2) we have that |F | = |Q−F |, as otherwise, fewer than 2n−1 states will
be contained in the set added to S and thus less states will be contained in the
sets added to S in the second stage of the algorithm, and so on. So in the worst
case we have that the number of final states and the number of non-final states
is the same. To simplify the discussion we will give some notations. We denote
by Sw, w ∈ {0, 1}∗ the set of states p ∈ Q such that δ(p, ai−1) ∈ F iff wi = 1 for
i = 1..|w|, where δ(p, a0) denotes p. As an example, S1 = F , S110 contains all the
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final states that are followed by a final state and then by a non-final state and
S00000 denotes the states that are non-final and are followed in the automaton
by four more non-final states.

With these notations we have that at this initial step of the algorithm, either
F = S1 or Q − F = S0 can be added to S as they have the same number of
states. Either one that is added to the queue S will split the partition P in
the worst case scenario in the following four possible sets S00, S01, S10, S11, each
with 2n−2 states. This is true as by splitting the sets F and Q− F in sets with
sizes other than 2n−2, then according to Lemma 2 we will not reach the worst
possible number of states in the queue S and also splitting only F or only Q−F
will add to S only one set of 2n−2 states not two of them.

All this means that half of the non-final states go to a final state (|S01| =
2n−2) and the other half go to a non final state (S00). Similarly, for the final
states we have that 2n−2 of them go to a final state (S11) and the other half
go to a non-final state. The current partition at this step 1 of the algorithm is
P = {S00, S01, S10, S11} and the splitting sets are one of the S00, S01 and one of
the S10, S11. Let us assume that it is possible to chose the splitting sets to be
added to the queue S in such a way so that no splitting of another set in S will
happen, (chose in this case for example S10 and S00). We want to avoid splitting
of other sets in S since if that happens, then smaller sets will be added to the
queue S by the splitted set in S (see such a choice of splitters described also
in [2]).

We have arrived at step 2 of the algorithm. Since the first two sets from S are
now processed, in the worst case they will be able to add to the queue S at most
2n−2 states each by each splitting two of the four current sets in the partition P .
Of course, to reach the worst case, we need them to split different sets, thus we
obtain eight sets in the partition P corresponding to all the possibilities of words
of length 3 on a binary alphabet: P={S000, S001, S010, S011, S100, S101, S110, S111}
having 2n−3 states each. Thus four of these sets will be added to the queue S.
And we could continue our reasoning up until the i-th step of the algorithm:

We now have 2i−1 sets in the queue S, each having 2n−i states, and the
partition P contains 2i sets Sw corresponding to all the words w of the length
i. Each of the sets in the splitting queue is of the form Sx1x2...xi , then a set
Sx1x2x3...xi can only split at most two other sets S0x1x2x3...xi−1 and S1x1x2x3...xi−1

from the partition P . To reach the worst case for the algorithm, no set (of level
i) from the splitting queue should be splitting a set already in the queue, and
also, it should split 2 distinct sets in the partition P , making the partition at
step i+1 the set P = {Sw | |w| = i+1}. Furthermore, each such Sw should have
exactly 2n−i−1 states. In this way the process continues until we arrive at the
n-th step. If the process would terminate before the step n, of course we would
not reach the worst possible number of states passing through S.

We will now describe the properties/restrictions of an automaton that would
obey a processing through the Hopcroft’s algorithm as described above (for the
worst case scenario). We started with 2n states, out of which we have 2n−1

final and also 2n−1 non-final. Out of the final states, we have 2n−2 that precede
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another final state (S11), and also 2n−2 non-final states that precede other non-
final states for S00, etc. The strongest restrictions are found in the final partition
sets Sw, with |w| = n, each have exactly one element, which means that all the
words of length n over the binary alphabet can be found in this automaton by
following the transitions between states and having 1 for a final state and 0 for a
non-final state. It is clear that the automaton needs to be circular and following
the pattern of de Bruijn words, [3]. Such an automaton for n = 3 was depicted
in [2] as in the following Figure 1.

Fig. 1. A cyclic automaton of size 8 for the de Bruijn word 11101000, containing all
words of size 3 over the binary alphabet {0, 1}

It is easy to see now that a stack implementation for the list S will not be
able to reach the maximum as smaller sets will be processed before considering
larger sets. This fact will lead to splitting of sets already in the list S. Once this
happens for a set with j states, then the number of states that will appear in
S is decreased by at least j because the splitted sets will not be able to add as
many states as a FIFO implementation was able to do. We conjecture that in
such a setting the LIFO strategy could prove the algorithm linear with respect
to the size of the input. We reference [15] for previous work in this direction. If
the aforementioned third level of implementation choice is set to add the smaller
set of B′, B′′ to the stack and B to be replaced by the larger one. We proved
the following result:

Theorem 1. The absolute worst case run-time complexity for the Hopcroft’s
minimization algorithm for unary languages is reached when the splitter list S
in the algorithm is following a FIFO strategy and only for automata having a
structure induced by de Bruijn words of size n. In that setting the algorithm will
pass through the queue S exactly n2n−1 states for the input automaton of size
2n. Thus for m states of the input automaton we have exactly m

2 log2m states
passing through S.
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Proof. Due to the previous discussion we now know that the absolute maximum
for the complexity of the Hopcroft’s algorithm is reached in the case of the
FIFO strategy for the splitter list S. The maximum is reached when the input
automaton is following the structure of the de Bruijn words for a binary alphabet.

What remains to be proven is the actual number of states that pass through
the queue S: in the first stage exactly half of all states are added to S through
one of the sets S0 or S1, in the second stage half of the states are again added to
S through two of the four sets S00, S01, S10, S11. At the third stage half of states
are added to S because four of the following eight sets S000, S001, S010, S011, S100,
S101, S110, S111 are added to S, each having exactly 2n−3 states. We continue this
process until the last stage of the algorithm, stage n: when still 2n−1 states are
added to S through the fact that exactly 2n−1 sets, each containing exactly
one state, are added to the splitting queue. Of course, at this stage we have the
partitioning into {Sw | |w| = n} and half of these sets will be added to S through
the instruction at line 13. It should be now clear that we have exactly n stages
in this execution of the algorithm, each with 2n−1 states added to S, hence the
result.

5 Stacks

In this section we will consider the case of the LIFO implementation for the
splitting sequence S used in the algorithm. Let us assume that we start with a
minimal automaton having 2n states.

Following the steps of the procedure and lemma 2 one can easily see that in
the list S we can have in the worst case scenario the following number of states:
2n−1 | 2n−2, 2n−2 | 2n−3, 2n−3, 2n−2 | 2n−4, 2n−4, 2n−3, 2n−2 | . . . and finally
2, 2, 22, 23, 24, . . . , 2n−4, 2n−3, 2n−2

In this way one reaches in n steps a set in S that contains exactly one state. At
this moment this single state will be partitioning all the states that lead to this
single state in the automaton, thus if the state is on the loop of the automaton
in exactly another n steps all the states will be in their own partitions and the
algorithm finishes. The worst case scenario is when this first partitioned state is
actually the start state and this state does not have any incoming transitions,
thus it does not split any other state. This case is still not reaching the O(n2n)
states in S because at the next step another single state will be in its own
partition set in P . To be in the worst case, this state has to be very near of
the start state of the automaton (otherwise all the states that precede it will be
split and added to the partition P ). We will have an increasing number of states
that are partitioned by much smaller states which is bringing down the number
of the states that pass through S. Another observation is the following: the first
n − 1 sets that appear in S are actually coming from specific splittings; if one
considers that the first single state in a set in S is Sx1x2x3...xn then it comes from
the splitting of Sx1x2...xn−1 through Sx2x3...xn−1Y . Through a careful analysis we
notice that the restrictions on words do not allow an “explosion” of the number
of states that can be added to the list S, so in linear time we obtain the most
refined partition P .



Hopcroft’s Minimization Technique: Queues or Stacks? 87

When considering the start automaton (still unary) non-minimal, the pro-
cedure is changed a little as the actual discussion is delayed by at most log2a
where a is the period of the loop. The main observation is that even though
the procedure will choose the set by the smallest number of states in the set,
that set could actually contain more “minimal states” than the set that was not
added to S, thus the “lag” in the algorithm amounts to log2a with a being the
maximal number of states that are in an equivalence class in the automaton.
The discussion proceeds in a similar fashion, still in at most n + log2a steps we
reach the first state in the minimal automaton, and after that stage the stack
implementation makes the order of consideration of the splitting of partition in
such a way that it is linear.

Following this discussion we showed in a sketched way that the Hopcroft’s
algorithm with stack implementation applied for unary automata has a linear
time requirement for completion.

6 Cover Automata

In this section we discuss briefly about an extension to Hopcroft’s algorithm to
cover automata. Körner reported at CIAA’02 and also in [14] a modification of
the Hopcroft’s algorithm so that the resulting sets in the partition P will give
the similarities between states with respect to the input finite language L.

To achieve this, the algorithm is modified as follows: each state will have its
level computed at the start of the algorithm; each element added to the list S
will have three components: the set of states, the alphabet letter and the current
length considered. We start with (F, a, 0) for example. Also the splitting of a
set B by (C, a, l1) is defined as before with the extra condition that we ignore
during the splitting the states that have their level+l1 greater than l (l being
the longest word in the finite language L). Formally we can define the sets X =
{p | δ(p, a) ∈ C, level(p) + l1 ≤ l} and Y = {p | δ(p, a) �∈ C, level(p) + l1 ≤ l}.
Then a set B will be split only if B ∩X �= ∅ and B ∩ Y �= ∅.

The actual splitting of B ignores the states that have levels higher than or
equal to l − l1. This also adds a degree of implementation nondeterminism to
the algorithm when such states appear because the programmer can choose to
add these sets in either of the two splitted sets obtained from B. The worst
implementation choice would be to put the states with level higher than l − l1
in such a way that they balance the number of states in both B′ and B′′ (where
B′ = X ∪ Z ′ and B′′ = Y ∪ Z ′′ and Z ′ ∩ Z ′′ = ∅, and Z ′ ∪ Z ′′ = B − (X ∪ Y )
are all the states of level higher than or equal to l− l1). We note that this is an
obviously “bad” implementation choice, thus we assume that the programmer
would avoid it. We will make in this case the choice to have the states split as
in the case of DFA, according to whether δ(p, a) ∈ C, then p ∈ X , otherwise,
p ∈ Y . This choice will make the Lemma 2 valid also for the Cover automata
case, with the modifications to the algorithm mentioned above.

The algorithm proceeds as before to add the smaller of the newly splitted sets
to the list S together with the value l1 + 1.
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Let us now consider the same problem as in [2], but in this case for the case of
DFCA minimization through the algorithm described in [14]. We will consider
the same example as before, the automata based on de Bruijn words as the input
to the algorithm (we note that the modified algorithm can start directly with a
DFCA for a specific language, thus we can have as input even cyclic automata).
We need to specify the actual length of the finite language that is considered and
also the starting state of the de Bruijn automaton (since the algorithm needs
to compute the levels of the states). We can choose the length of the longest
word in L as l = 2n and the start state as S111...1. For example, the automaton
in figure 1 would be a cover automaton for the language L = {0, 1, 2, 4, 8} with
l = 8 and the start state q0 = 1. Following the same reasoning as in [2] but for
the case of the new algorithm with respect to the modifications, we can show
that also for the case of DFCA a queue implementation (as specifically given
in [14]) is a worse choice than a stack implementation for S. We note that the
discussion is not a straight-forward extension of the work reported by Berstel in
[2] as the new dimension added to the sets in S, the length and also the levels of
states need to be discussed in detail. We will give the details of the construction
and the step-by-step discussion of this fact in the following:

We start as before with an automaton with 2n states working on a unary
language given as: A = ({a}, Q, δ, q0, F ) where |Q| = 2n. Let us take a look at
the possible levels of the states in deterministic automata over unary languages:
Such an automaton is formed by a line followed by a loop. The line or the loop
can be possibly empty: if the loop is empty (or containing only non-final states),
then the automaton accepts only a finite set of numbers, if the loop contains at
least one state that is final, it accepts an infinite set. In either case the levels of
the states is 0, 1, 2, 3, ..., n − 2, n − 1. One can see that the highest level in
such a unary DFA is at most n− 1.

Following the variant of Lemma 2 for DFCA it is clear that the worst possible
case is when |F | = |Q−F |. Let us consider that S starts with the pair (F, 0) or
(Q − F, 0), in either case at the second stage of the algorithm the partition P
will be split in the following four possible sets (similarly as in the case of DFA):
S00, S01, S10, S11. To continue with the worst possible case, each of these sets
need to contain exactly 2n−2 states (otherwise, according to Lemma 2 for the
DFCA case, a set with less states is added to S and also in the next steps less
states will be added to S). Also in this case it is necessary to make a “bad”
choice of the sets that will be added next to S (one from the S00, S01 and one
from S10, S11). We will use the same choosing strategy as before. The difference
is that these sets will be added to S and with the length 1: for example, at the
next step S will contain (S00, 1) and (S10, 1). At the next stage of the algorithm
we will observe a difference from the DFA case: one of the states at the next stage
will not be splitted from the set because of its high level. Considering that we
have a state of level l−1, at this step this high-level state will not be considered
for splitting, thus can be added to either one or the other of the halves of the
state containing it. For the final automaton, considering that the state S11..1 is
the start state, the high level state is S011..1.
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We continue the process in a similar fashion until the i-th stage of the algo-
rithm by carefully choosing the splitting sets, and by having at each stage yet
another state that would not be considered in the splitting due to its high level.
But because the forth implementation choice, the number of states in each set
remains the same. At this moment we will have 2i−1 pairs in the queue S, each
formed between a set containing 2n−i states and the value i − 1. Thus we will
compute the splitter sets X and Y as given before in the case of DFA with the
extra condition that the sets p satisfying the condition also satisfy the fact that
level(p) + i− 1 ≤ l.

At this moment the partition P has exactly 2i components that are in the
worst case exactly the sets Sw for all w ∈ {0, 1}i. In the worst case all the level
i states from the splitting queue S will not break a set already in the queue S,
but at the same time will split two other sets in the partition P . This is achieved
by the careful choosing of the order in which these sets arrive in the queue (one
of these “worst” additions to S strategies was described in [2]). In this way, at
the end of the stage i in the algorithm we will have the partition P containing
all the sets Sw with w ∈ {0, 1}i+1 and each of them having 2n−i−1 states. In the
queue S there will be 2i pairs of states with the number i. These splitting pairs
will be used in the next stage of the algorithm.

This process will continue until the n−1-th stage as before (otherwise we will
not be in the worst possible case) and at the n-th stage exactly n−2 sets will not
be added to the queue S (as opposed to the DFA case), thus only 2n−1 − n + 2
singleton sets will be added.

This makes the absolute worst case for the run-time of the minimization of
DFCA based on Hopcroft’s method have exactly n2n−1−n+2 states pass through
S. The input automaton still follows the structure induced by de Bruijn words;
and when considering the start state as S11...1, the states that will be similar
with other states are the n−2 states of highest levels: S011...1, S001..1, ..., S00...011.
In fact we will have several similarities between these high level states and other
states in the automaton, more precisely, for an automaton with 2n states (fol-
lowing the structure of de Bruijn words containing all the subwords of size n)
we have the following pattern of similarities: the state S011...1 will have exactly
2n−2 − 1 similarities with other states in the automaton (because the level of
this state is 2n − 1, thus only the pattern 01 is making the difference to other
states), for S001...1 we will have 2n−3 − 1 similarities (as for its level 2n − 2 the
pattern making the difference is 001), and so on, until S000...01 will actually have
2n−(n−1)−1 = 2−1 = 1 similarities (since its level is 2n−n+2 and the pattern
making the difference is 000...01). These values are obtained from considering
the fact that the structure of the automaton will have all the sub-words of size
n, thus we can compute how many times a particular pattern appears in the
automaton.

This shows that a result similar to Theorem 1 holds also for the case of DFCA
with the only difference in the counting of states passing through S: n2n−1−n+2
rather than n2n−1. It should be clear now that a stack implementation for the list
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S is more efficient, at least for the case of unary languages and when considering
the absolute worst possible run-time of the algorithm.

7 Final Remarks

We showed that at least in the case of unary languages, a stack implementation
is more desirable than a queue for keeping track of the splitting sets in Hopcroft’s
algorithm. This is the first instance when it was shown that the stack is out-
performing the queue. Thus at least for the special case of unary languages we
know that it is better to have the implementation of S in the algorithm as a
stack rather than the intuitive implementation as a queue.

It remains open whether these results can be extended to languages containing
more than one letter in the alphabet.

For the case of cover automata one should settle the extra implementation
choice (the forth implementation choice as mentioned in the text) as follows:
rather than balancing the number of states in the two splitted sets, actually try
to un-balance them by adding all the high level states to the bigger set. These
remarks should achieve a reasonable speed-up for the algorithm.
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5. Câmpeanu, C., Salomaa, K., Yu, S.: Tight Lower Bound for the State Complexity
of Shuffle of Regular Languages. Journal of Automata, Languages and Combina-
torics 7(3), 303–310 (2002)
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Abstract. A new general method for inference of regular languages us-
ing nondeterministic automata as output has recently been developed
and proved to converge. The aim of this paper is to describe and analyze
the behavior of two implementations of that method and to compare it
with two well known algorithms for the same task. A complete set of
experiments has been carried out and the results of the new algorithms
improve the existing ones both in recognition rates as in sizes of the
output automata.

1 Introduction

The first ideas in the field of regular languages inference focused the description
of the target languages using deterministic finite automata (DFAs). Many of
the algorithms and heuristics proposed in this field use the technique of merging
supposedly-equivalent states as a way to generalize the input. The starting point
is the prefix tree acceptor (PTA), which is a tree-shaped automaton that recog-
nizes the sample. The first of these algorithms (1973) is due to Trakhtembrot
and Barzdin [12]. It is described as a contraction procedure in a finite tree that
represents the words up to a certain length of a regular language. If the given
data contains a certain characteristic set of the target language, it finds out the
smallest DFA that recognizes the language.

The RPNI algorithm [10] starts from the PTA of the sample also. The merges
are done in canonical order (two levels of ordering: length and alphabetical)
controlled by the negative samples. The main ideas to improve the performance
of RPNI have dealt with the order in which the states are merged. The algorithm
EDSM [9] led to a control strategy called blue-fringe in which one of the states to
merge is in the root of a tree. This algorithm, known as RedBlue is considered the
state of art of DFAs inference by means of state merging. In [1] a new measure
to order the merges called shared evidence is proposed. Using the concept of
inclusion between the residuals of states, an extension of RPNI that enlarges
the training set while learning has been proposed in [6].

These methods, which output DFAs, do not behave well sometimes when
the target language has been obtained using randomly generated automata or
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regular expressions. This reason led to researchers to develop algorithms that
output NFAs. Note that NFAs are generally smaller descriptions for a regular
language than its equivalent DFAs. One of those is the DeLeTe2 algorithm [5],
which output an special type of NFA called Residual Finite State Automaton
(RFSA). A RFSA is an automaton with its states being residuals of the language
it accepts.

A subclass of the class of NFAs called unambiguous finite automata (UFA)
has been defined and inferred in [4]. One of the properties of UFA is that the
same target language will be achieved independently of the order in which states
are merged. Some algorithms that use the same strategy that RPNI but output
NFAs have been proposed [2]. The first attempt to use the maximal automata
of the positive sample instead of the PTA is done in [13], where every positive
sample is considered independently.

Finally, in [7] a general inference method based in states merging has been
developed and proved to converge. It has been named OIL (order independent
learning). It starts building the maximal automaton that recognizes the positive
samples and one of its main features is that the convergence is achieved inde-
pendently from the order in which states are merged. The convergence is proved
using the concept of Universal Automaton of a language.

This latter fact about order-independent merging convergence opens up new
possibilities of learning algorithms. In this paper two new algorithms based on
the previous method are proposed. They will be referred to as MOIL (minimal
order independent learning) and VOIL (voting order...). Both have in common
that they canonically order the positive samples, and in an incremental way, build
the maximal automata of the sample and merge the states in a random order
to obtain an irreducible automata, controlled by the negative samples. Running
the algorithm several times with different orders, different automata may be
obtained. The difference between MOIL and VOIL is that the former outputs
the smallest of the obtained automata, whereas the later keeps all of them and
classifies the test samples by a majority vote. The proposed algorithms also use
some evidence measure: as sometimes a state in the current automaton could be
merged to several previous states, it chooses the merge that makes the resulting
automaton to accept more positive samples.

2 Definitions and Notation

2.1 Languages and Automata

A language L is any subset of A∗, the free monoid generated by a finite alphabet
A. The elements x ∈ A∗ are called words and the neutral element is denoted λ.
The complement of L is denoted L. The residual of L with respect to the word
x is x−1L = {y ∈ A∗ : xy ∈ L}.

A (non deterministic) finite automaton (NFA) is a 5-tuple A = (Q,A, δ, I, F ),
where Q is a finite set of states, A is an alphabet, I, F ⊆ Q are respectively the
set of initial and final states and δ : Q×A→ 2Q is the transition function, also
be denoted as δ ⊆ Q×A×Q and is extended to Q×A∗ as usual. The language
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accepted by A is L(A) = {x ∈ A∗ : δ(I, x)∩F �= ∅}. The left language of a state
q with respect to A is Lq = {x ∈ A∗ : q ∈ δ(I, x)}.

A sub-automaton of a NFA A = (Q,A, δ, I, F ) is any finite automaton A′ =
(Q′, A, δ′, I ′, F ′) where Q′ ⊆ Q, I ′ ⊆ I∩Q′, F ′ ⊆ F ∩Q′ and δ′ ⊆ δ∩Q′×A×Q′.
If A′ is a sub-automaton of A then L(A′) ⊆ L(A).

Let D ⊂ A∗ finite. The maximal automaton for D is the NFA MA(D)=
(Q,A, δ, I, F ) where Q = ∪x∈D{(u, v) ∈ A∗×A∗ : uv = x}, I = {(λ, x) : x ∈ D},
F = {(x, λ) : x ∈ D} and for (u, av) ∈ Q, δ((u, av), a) = (ua, v). So defined
L(MA(D)) = D.

Let A = (Q,A, δ, I, F ) be an automaton and let π be a partition of Q. Let
B(q, π) be the class of π that contains q. The quotient automaton of π in A
is A/π = (Q′, A, δ′, I ′, F ′), where Q′ = Q/π = {B(q, π) : q ∈ Q}, I ′ = {B ∈
Q′ : B ∩ I �= ∅}, F ′ = {B ∈ Q′ : B ∩ F �= ∅} and the transition function is
B′ ∈ δ′(B, a) if and only if ∃q ∈ B, ∃q′ ∈ B′ with q′ ∈ δ(q, a).

The merge of states p and q in a finite automaton A, denoted merge(A, p, q)
is a particular quotient in which one of the blocks of the partition is the set
{p, q} and the rest are singletons.

An automaton A is irreducible in L if and only if L(A) ⊆ L and for any non
trivial partition π of the states of A, L(A/π) − L �= ∅. A is irreducible if it is
irreducible in L(A).

Given a regular language L, let U be the finite set of all the possible in-
tersections of residuals of L with respect to the words of A∗, that is, U =
{u−1

1 L ∩ ... ∩ u−1
k L : k ≥ 0, u1, ..., uk ∈ A∗}. The universal automaton (UA)

[3,11] for L is U = (U, A, δ, I, F ) where I = {q ∈ U : q ⊆ L}, F = {q ∈ U : λ ∈ q}
and the transition function is such that q ∈ δ(p, a) iff q ⊆ a−1p.

The UA for a language L does not have any mergible states. A theorem [3]
states that every automata that recognizes a subset of a language L can be
projected into the UA for L by a homomorphism.

2.2 Grammatical Inference

Regular language learning is the process of learning an unknown regular language
from a finite set of labeled examples. A positive (resp. negative) sample of L is
any finite set D+ ⊆ L (resp. D− ⊆ L). If it contains positive and negative
words it will be denoted as (D+, D−) and called a complete sample. A complete
presentation of L ⊆ Σ∗ is a sequence of all the words of A∗ labelled according
to their membership to L.

An inference algorithm is an algorithm that on input of any sample outputs a
representation of a language called hypothesis. The algorithm is consistent if the
output contains D+ and is disjoint with D−. For the family of regular languages,
the set of hypotheses, H, can be the set of NFAs.

The type of convergence that we will use in our algorithms was defined by
Gold [8] and is called identification in the limit. It is a framework proposed in
order to analyze the behavior of different learning tasks in a computational way.
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An algorithm IA identifies a class of languages L by means of hypotheses in
H in the limit if and only if for any L ∈ L, and any presentation of L, the infinite
sequence of hypotheses output by IA converges to h ∈ H such that L(h) = L,
that is, there exists t0 such that (t ≥ t0 ⇒ ht = ht0 ∧ L(ht0) = L), where ht

denotes the hypothesis output by IA after processing t examples.
Most of the regular language inference algorithms output DFAs but recently,

an algorithm called DeLeTe2 was proposed in [5]. It converges to an RFSA of
size in between the sizes of the canonical RFSA and of the minimal DFA of the
target language. It has the inconvenience that it generally outputs non consistent
hypotheses. To overcome this difficulty, a program, also called DeLeTe2, has been
proposed which obtains the best recognition rates -so far- when the languages
to infer are obtained from random NFAs or regular expressions.

The generalizing process of the learning algorithms we propose in this paper
is based in merging the states of the the maximal automaton of the positive
samples in a random order, under the control of the negative samples. They are
instances of the general method called OIL, which has been proposed in [7] by
the same authors of the current paper.

3 Two Algorithms of the OIL Scheme

A general method was described in [7] which, on input of a set of blocks of positive
and negative samples for a target regular language L, obtains an automaton
that recognizes L in the limit. The method is called OIL (Order Independent
Learning) and is described in Algorithm 1.

The method starts building the maximal automata for the first set of positive
words D

(1)
+ and obtains a partition of the set of states such that the quotient

automaton is irreducible in D
(1)
− .

For every new block which is not consistent with the previous automaton (oth-
erwise this new block is just deleted), it has to consider the following possibilities:

1. If the new set of negative samples is consistent with the current automaton,

– It deletes the positive words accepted by the current hypothesis.
– It builds the maximal automata MA(D(i)

+ ) for the new set of positive
words and adds to the set of negative ones the new block, obtaining D−.

– It finds a partition of the states of the disjoint union of the previous au-
tomaton with MA(D(i)

+ ) such that the quotient automaton is irreducible
in D−.

2. Otherwise it steps back and runs the algorithm starting with the first set of
words, but considering the whole set of negative samples presented so far.

The convergence of the method was proved in [7] using the concepts of ir-
reducible automaton in a language and of universal sample. To keep this paper
self-contained, we recall these definitions and give a brief description of the proof
of the convergence of the method.
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Algorithm 1. OIL

Require: A sequence of blocks〈(D(1)
+ , D

(1)
− ), (D

(2)
+ , D

(2)
− ), ..., (D

(n)
+ , D

(n)
− )〉.

Ensure: An irreducible automaton consistent with the sample (recognizes the target
language in the limit).

1: STEP 1:
2: Build MA(D

(1)
+ );

3: D− = D
(1)
− ;

4: Find a partition π of the states of MA(D
(1)
+ ) such that MA(D

(1)
+ )/π

is irreducible in D−.
5: STEP i + 1:
6: Let A = (Q, A, δ, I, F ) be the output of the algorithm after processing the first i

blocks, for i ≥ 1.
7: D− = D− ∪ D

(i+1)
− .

8: if A is consistent with (D
(i+1)
+ , D

(i+1)
− ) then

9: Go to Step i + 2.
10: end if
11: if A is consistent with D

(i+1)
− then

12: D
(i+1)′

+ = D
(i+1)
+ − L(A);

13: Build MA(D
(i+1)′

+ ); //MA(D
(i+1)′

+ ) = (Q′, A, δ′, I ′, F ′)//
14: A′ = (Q ∪ Q′, A, δ ∪ δ′, I ∪ I ′, F ∪ F ′);
15: Find a partition π of Q ∪ Q′ such that A′/π is irreducible in D−.
16: A = A′/π; Go to Step i + 2.
17: end if
18: if A is not consistent with D

(i+1)
− then

19: Run OIL with input 〈(D(1)
+ , D−), (D

(2)
+ , D−), . . . , (D

(i+1)
+ , D−)〉

20: Go to Step i + 2.
21: end if
22: Return A

A universal sample for L is a finite set D+ ⊆ L such that if π is any parti-
tion of the states of MA(D+), such that MA(D+)/π is irreducible in L, then
L(MA(D+)/π) = L. The proof of its existence (and its finiteness) can be seen
in [7].

The following facts are also proved in [7]:

1. If D+ ⊆ L is finite and π is a partition of the states of MA(D+) such that
MA(D+)/π is irreducible in L, then MA(D+)/π is isomorphic to a sub-
automaton of U (the universal automaton of L). If D+ is a universal sample,
then MA(D+)/π accepts L.

2. If D+ is a universal sample, there exists a finite set D− ⊆ L such that if π is a
partition that makes MA(D+)/π to be irreducible in D−, then MA(D+)/π
is irreducible in L and accepts L.

Based in those facts, the convergence of algorithm OIL is proved straight
forward. In fact, if (D(1)

+ , D
(1)
− ), (D(2)

+ , D
(2)
− ), ... is a complete presentation of a
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regular language L, there exists a value of n such that D+ =
⋃n

i=1 D
(i)
+ is uni-

versal for L. In this case,

– If
⋃n

i=1 D
(i)
− is enough to guarantee a correct partition of the set of states,

OIL will return a correct hypothesis that will not change (line 9).
– Otherwise, there will exist m > n such that D− =

⋃m
i=1 D

(i)
− will avoid any

erroneous merging when the first n blocks of positive samples are processed
considering always D− as the control set.

In both cases OIL will converge to a correct hypothesis.

3.1 The Algorithms MOIL and VOIL

Based on the previous method we propose two algorithms. They are particular
instances of the OIL scheme in which the way to obtain an irreducible automaton
(lines 4 and 15 of the method) is specified. So those lines have to be changed
by the function described in Algorithm 2. The function Run (Common Part
OIL) of line 3 of both algorithms means to run the OIL scheme with the specific
way of obtaining the partition established by Algorithm 2.

Both algorithms have in common that:

– they canonically order the set of positive samples and consider that every
block contains just a single word, so D+ = {x1, x1, . . . , xn} with xi # xj if
i < j and consider every block of positive samples as having one word, that
is, D(i)

+ = {xi}.
– they consider the whole set of negative samples from the beginning, so D

(1)
− =

D− and D
(i)
− = ∅ if i > 1.

– if the current state has several candidates to be merged with, it chooses the
state that makes the resulting automaton to accept more positive samples.

– they run the method k times (this can be done since the merges are done
randomly and thus, several automata can be obtained).

They differ in how the output is considered. The first algorithm, called MOIL
(Minimal OIL) outputs the smallest of the k hypotheses, that is, the automaton
having smallest number of states. It is described in Algorithm 3.

The second, called VOIL (Voting OIL), keeps the k hypotheses and classifies
the test sample voting among those hypotheses. It is described in Algorithm 4.

This way of obtaining the partition does not affect to the convergence of the
process, so both algorithms converge and they run in time O(n2m), where n is
the sum of the lengths of the positive samples and m the sum of the lengths of
the negative ones.

4 Experimental Results

We present the results -both in recognition rates and in size of the inferred
automata- of the algorithms MOIL and VOIL and compare them with the results
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Algorithm 2. FindPartition(A, x,D+, D−)
Require: A sequence of words (D+, D−), x ∈ D+ and an automaton A with states

randomly ordered.
Ensure: An irreducible automaton A consistent with the current sample ({xi : xi �

x}).
1: Build MA(x); //states of MA(x) randomly ordered after those of A//
2: A = A ∪ MA(x); //disjoint union//
3: for every state qi of MA(x) in order do
4: A = merge (A, qi, qk) where qk is any previous state such that:
5: (1) merge (A, qk, qi) is consistent with D−
6: (2) merge (A, qk, qi) recognizes more words of D+ than any other merge (A, q, qi)
7: end for
8: Return (A)

Algorithm 3. MOIL
1: size = ∞; output = ∅;
2: for i = 1 to k do
3: A = Run (Common Part OIL);
4: if size(A) < size then
5: size = size(A); output = A;
6: end if
7: end for
8: Return (output)

Algorithm 4. VOIL
1: output = ∅;
2: for i = 1 to k do
3: A = Run (Common Part OIL);
4: output = Append(output,A);
5: end for
6: Return (output)

obtained by the algorithms RedBlue [9] and DeLeTe2 [5] for the same task. These
algorithms constitute the state of art in regular languages inference. The former
behaves better when the source comes from random DFAs whereas the latter
works better when the source comes from NFAs or from regular expressions.

4.1 Corpora

The regular languages we use in the experiments come from the corpora used
to run the algorithms DeLeTe2 [5] and UFA [4]. The target languages in them
are randomly generated from three different sources: regular expressions (RE),
deterministic (DFA) and nondeterministic (NFA) automata. Once we eliminate
repetitions we keep 102 RE, 120 NFAs and 119 DFAs.

We generate 500 different training samples and divide them in five incremental
sets of size 100, 200, 300, 400 and 500. We also generate 1000 test samples,
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different from the training ones. The length of the samples randomly varies from
zero to 18. The samples are labeled by every automaton, obtaining 15 different
sets (5 for each of RE, DFA and NFA). The percentage of positive and negative
samples in each of the training sets is not controlled.

4.2 Experiments

We have done two basic experiments to compare the behavior of the new algo-
rithms with the previous DeLeTe2 and RedBlue:

1. We run five times the basic method and thus we obtain five (may be) different
automata for which we measure:
(a) The average size and recognition rate of the five automata.
(b) The size and recognition rate of the smallest automata (MOIL).
(c) We label the test set according to the majority vote between the five

automata measuring this way the recognition rate (VOIL).
2. We fix the training corpus (we use the sets re 100 and nfa 100) and run k

times the method, being k an odd number varying from 3 to 15 and proceed
as in (1)(c).

The results obtained by the algorithms are summarize in Table 1. We can see
that both strategies -choosing the smallest hypothesis and voting among the five
output hypotheses- present better recognition rates than those obtained by the
algorithm DeLeTe2 and Red Blue when the source comes from random regular
expressions or from NFAs. Note that those better recognition rates are obtained
with hypotheses which are much smaller than those obtained by the algorithm
DeLeTe2.

The size of the output is not reported when the labels come from voting, as
in this case several hypotheses participate in the decision and the size can not
be compared to the other outputs.

On the other hand the recognition rates of MOIL and VOIL algorithms when
the source comes from random DFAs are as poor as they are when one uses
the algorithm DeLeTe2 and they are far away of the rates obtained by Red
Blue. For the case of DeLeTe2, this fact has been explained saying that the
inference methods based on the detection of inclusion relations do not behave
well when the target automata do not have those inclusion relations between
states. Denis et al. [5] have experimentally shown that this was the case for
randomly generated DFAs.

For the case of the algorithms we present, we conjecture that the reason of
this behavior is that the size of minimal NFAs (hypotheses) which are equivalent
to relatively small DFAs (targets) may be very similar to the size of the DFAs, so
the algorithms that narrow the search space to DFAs tend to behave better. On
the other hand, relatively small NFAs may have substantially greater equivalent
DFAs.

The second experiment is done over the sets of samples er 100 and nfa 100 and
the value of k indicating the number of automata output by the algorithm varies
from 3 to 15, following the odd numbers. Of course it was expected that the size
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Table 1. Recognition rates and average size of the smallest hypothesis and recognition
rates voting for k = 5 compared to those of DeLeTe2 and RedBlue algoritms

Smallest A. Vote DeLeTe2 RedBlue
Id. Rate Size Rate Rate Size Rate Size

er 100 93.79 8.27 93.32 91.65 30.23 87.94 10
er 200 97.83 7.80 97.27 96.96 24.48 94.81 9.97
er 300 98.77 7.68 98.68 97.80 31.41 96.46 11.05
er 400 99.20 7.55 99.10 98.49 27.40 97.74 10.43
er 500 99.66 6.82 99.53 98.75 29.85 98.54 10.47

nfa 100 75.00 21.46 76.42 73.95 98.80 68.15 18.83
nfa 200 78.05 35.23 79.94 77.79 220.93 72.08 28.80
nfa 300 81.27 45.81 82.94 80.86 322.13 74.55 36.45
nfa 400 83.87 52.40 85.58 82.66 421.30 77.53 42.58
nfa 500 85.64 58.81 87.06 84.29 512.55 80.88 47.54

dfa 100 60.17 28.01 60.34 62.94 156.89 69.12 18.59
dfa 200 63.05 49.63 63.54 64.88 432.88 77.18 25.83
dfa 300 66.01 65.17 67.41 66.37 706.64 88.53 25.10
dfa 400 69.12 78.66 70.53 69.07 903.32 94.42 21.36
dfa 500 72.29 88.30 73.66 72.41 1027.42 97.88 18.75

Table 2. Recognition rates for different values of k over the set of samples er 100 and
nfa 100

er 100 nfa 100

Smallest H. Vote Smallest H. Vote

k Rec. Size Rec. Rec. Size Rec.

3 92.15 9.79 92.17 74.23 22.77 75.41
5 93.79 8.27 93.32 75.00 21.46 76.42
7 94.90 7.51 93.59 75.32 20.30 77.46
9 94.63 7.42 93.83 75.67 19.90 77.65
11 94.82 7.49 93.82 75.85 19.67 77.83
13 95.01 7.18 93.95 76.32 19.51 77.78
15 95.14 7.10 94.32 76.23 19.10 78.00

of the smallest automaton becomes smaller as k gets larger, so this experiment
wanted to measure how the variation of k affects to the recognition rates both
average and of the smallest output.

The results are summarized in Table 2. Note that the recognition rates increase
as k gets bigger, which would indicate that for this algorithm, the smallest
hypothesis output tends to be the best.

5 Conclusions

The general scheme proposed in [7] opens up new possibilities of inference algo-
rithms. Two implementations of this method have been proposed and measured
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its performance, both in recognition rates as in size of the output. The results
are very promising as they beat -both in recognition rates as in size of output-
the algorithm DeLeTe2, which is considered the state of art when samples are
taken from random NFAs or regular expressions. In the case of samples taken
from random DFAs, the proposed algorithms and DeLeTe2 are far away of the
results obtained by the RedBlue.
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Abstract. An extension of macro tree transducers is introduced with the capa-
bility of states to return multiple trees at the same time. Under call-by-value se-
mantics, the new model is strictly more expressive than call-by-value macro tree
transducers, and moreover, it has better closure properties under composition.

1 Introduction

Macro tree transducers (mtts) [1,2] are a finite-state machine model for tree translation.
They are motivated by compilers and syntax-directed semantics and more recently have
been applied to XML transformations and query languages [3,4]. An mtt processes the
input tree top-down, starting in its initial state at the root node. Depending on its state
and the label of the current input node, it produces an output subtree which possibly
contains recursive state calls to children of the current node. State calls may appear at
internal nodes of the output and can thus be nested. Technically speaking, this means
that a (state, current label)-rule is parameterized by a sequence of arbitrary output trees.
The number of such “accumulating parameters” is fixed for each state of the trans-
ducer. The initial state has zero parameters, because we are interested in tree-to-tree,
not (tuple of trees)-to-tree translations. If every state has zero parameters, then we ob-
tain an ordinary top-down tree transducer [5,6], in which all state calls appear at leaves
of output rule trees. It is well-known that accumulating parameters add power: mtts re-
alize strictly more translations than top-down tree transducers (for instance, top-down
tree transducers have at most exponential size increase while mtts can have double-
exponential increase). However, mtts have the asymmetry that, while each state can
propagate multiple output trees in a top-down manner in its accumulating parameters,
it cannot do it in a bottom-up manner because it is still restricted to return only a single
output tree and such a tree cannot be decomposed once created.

This paper introduces an extension of mtts called multi-return macro tree transducer
(mr-mtt) that addresses this asymmetry. In an mr-mtt, states may return multiple trees
(but a fixed number for each state, with the initial state returning exactly one tree). As
an example, consider a nondeterministic translation twist that takes as input monadic
trees of the form s(s(. . .s(z) . . . )) and produces output trees of the form root(t1, t2)
where t1 is a monadic tree over a’s and b’s (and a leaf e), and t2 is a monadic tree
over A’s and B’s such that t2 is the reverse of t1, and both have the same size as the
input. For instance, root(a(a(b(e))), B(A(A(E)))) is a possible output tree for the input

O.H. Ibarra and B. Ravikumar (Eds.): CIAA 2008, LNCS 5148, pp. 102–111, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Multi-Return Macro Tree Transducers 103

���� ����� � ���� ��

�

�

�

�

�

� �

�

〈q0, s(x)〉() → let (z1, z2) = 〈q1, x〉(A(E)) in root(a(z1), z2)

〈q0, s(x)〉() → let (z1, z2) = 〈q1, x〉(B(E)) in root(b(z1), z2)

〈q0, z〉() → root(e, E)

〈q1, s(x)〉(y1) → let (z1, z2) = 〈q1, x〉(A(y1)) in (a(z1), z2)

〈q1, s(x)〉(y1) → let (z1, z2) = 〈q1, x〉(B(y1)) in (b(z1), z2)

〈q1, z〉(y1) → (e, y1)

Fig. 1. Rules of the multi-return mtt realizing twist

s(s(s(z))). Such a translation can be realized by an mr-mtt with the rules of Fig. 1. The
state q1 is “multi-return”; it generates pairs of trees. The first component is generated
in a top-down manner: at each input s-node, an a-labeled output node is generated
which has below it the first component (z1) of the recursive q1-call at the child of the
current input node. This is the left branch of the whole output tree. The right branch is
obtained by the second component and is generated in a bottom-up manner through the
accumulating parameter of q1. As we will show, the above translation twist, cannot be
realized by any conventional mtt. The proof of inexpressibility is technically involved
and uses special normal forms of twist in order to derive a contradiction. In general it
is very difficult to prove that a given translation cannot be realized by a tree transducer
class, because hardly any tools exist for showing inexpressibility. Note that multi-return
mtts have the same size increase as mtts.

In the case of deterministic and total deterministic transducers, mr-mtts are equally
powerful as mtts. For the total deterministic case this already follows from the fact that
tree generating top-down tree-to-graph transducers (trgen-tg) realize the same transla-
tions as total deterministic mtts [7]. Mr-mtts can be seen as particular trgen-tgs; e.g.,
the forth rule of twist is depicted as trgen-tgs rule in the left of Fig. 1.

Besides an increase in expressive power, mr-mtts have better closure properties than
mtts: they are closed under left and right composition with total deterministic top-down
tree transducers (DtTs). This is rather surprising, because ordinary call-by-value mtts
are not closed under composition with DtTs. The latter was already shown in [1] for the
case of left-composition. The case of right-composition is proved in this paper (using
twist). In fact, our proof can even be “twisted” to the call-by-name semantics of mtts
to show that call-by-name mtts are also not closed under right-composition with DtT.
Thus, the two main classes of mtts, call-by-value and call-by-name are both not closed
under right-composition with DtT, while call-by-value multi-return mtts are closed.

2 Definitions

A set Σ with a mapping rank : Σ → N is called a ranked set. We often write σ(k)

to indicate that rank(σ) = k. The product of a ranked set A and a set B is the ranked
set A × B = {〈a, b〉(k) | a(k) ∈ A, b ∈ B}. The set TΣ of trees t over a ranked set
Σ is defined by the BNF t ::=σ(t1, . . . , tk) for σ(k) ∈ Σ. We often omit parentheses
for rank-0 and rank-1 symbols and write them as strings. For example, we write abcd
instead of a(b(c(d()))).
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When x
(0)
1 , . . . , x

(0)
m ∈ Σ and t, t1, . . . , tm ∈ TΣ , (simultaneous) substitution of

t1, . . . , tm for x1, . . . , xm in t is written t[x1/t1, . . . , xm/tm] (or sometimes t[�x/�t] for
brevity) and defined to be a tree where every occurrence of xi (i = 1, . . . ,m) in t is
replaced by the corresponding ti. For a ranked set Σ and rank-0 symbol � /∈ Σ, a tree
C ∈ TΣ∪{�} that contains exactly one occurrence of � is called a one-hole Σ-context.
We write C[t] as a shorthand for C[�/t].

Macro Tree Transducers. Throughout the paper, we fix the sets of input variables
X = {x1, x2, . . . } and accumulating parameters Y = {y1, y2, . . . } which are all of
rank 0 and assume any other ranked set to be disjoint with X and Y . The set Xi is
defined as {x1, . . . , xi}, and Yi is defined similarly.

A macro tree transducer (mtt) is specified as M = (Q, q0, Σ,Δ,R), where Q, Σ,
and Δ are finite ranked sets. We call Q the set of states, q0 ∈ Q the initial state of
rank 0, Σ the input alphabet, Δ the output alphabet, and R the finite set of translation
rules of the form 〈q(m), σ(k)(x1, . . . , xk)〉(y1, . . . , ym) → r where the right-hand side
r is a tree from TΔ∪(Q×Xk)∪Ym

. Rules of this form are called 〈q, σ〉-rules. An mtt is
deterministic (total, respectively) if there exists at most (at least) one 〈q, σ〉-rule for
every 〈q, σ〉 ∈ Q × Σ. Also, an mtt is linear if the right-hand side of every rule in
R contains at most one occurrence of xi for each xi ∈ X . We define the ranked set
ΛM = Δ ∪ (Q× TΣ) and call trees in TΛM the sentential forms of M . The translation
realized by M is defined in terms of the rewrite relation ⇒M over sentential forms.
The “one-step derivation” relation that we use, is the call-by-value (also known as IO-
mode) derivation relation. Let u, u′ ∈ TΛM . Then u ⇒M u′ if there is a 〈q, σ〉-rule in
R with right-hand side r, a one-hole ΛM -context C, input trees s1, . . . , sk ∈ TΣ , and
output trees t1, . . . , tm ∈ TΔ, such that u = C[〈q, σ(�s)〉(�t)] and u′ = C[r[�x/�s, �y/�t]].
We define u↓M = {t ∈ TΔ | u ⇒∗

M t} and the translation τ(M) realized by M as
{〈s, t〉 ∈ TΣ×TΔ | t ∈ 〈q0, s〉↓M}. The class of translations realized by mtts is denoted
by MT. The restricted class of translations realized by deterministic (total, or linear)
transducers is denoted by prefix D (t, or L, respectively). An mtt with all its states
of rank-0 (i.e., without accumulation parameters) is called top-down tree transducer
and abbreviated as tt; the corresponding class of translations is denoted by T . As a
special case, a linear total deterministic tt with one state only is also called linear tree
homomorphism and the corresponding class of translations is denoted by LHOM.

The operator ; denotes sequential composition. That is, τ1 ; τ2 = {(s, t) | ∃w.(s, w)
∈ τ1, (w, t) ∈ τ2} for two translations τ1 and τ2, and A1 ;A2 = {τ1 ; τ2 | τ1 ∈ A1, τ2 ∈
A2} for two classes of translations A1 and A2.

Multi-return Macro Tree Transducers. The multi-return macro tree transducer ex-
tends mtt by construction and deconstruction (via let expressions) of tuples of return
values. Each state now has a “dimension” which is the number of trees it returns. In
addition to X and Y , we fix the set Z = {z1, z2, . . . } of let-variables, of rank 0, and
assume it to be disjoint with any other ranked set.

Definition 1. A multi-return macro tree transducer (mr-mtt) of dimension d ≥ 1 is
a tuple (Q, q0, Σ,Δ,R,D), where Q, q0, Σ, and Δ are as for mtts, D is a map-
ping from Q to {1, . . . , d} such that D(q0) = 1, and R is a set of rules of the form
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〈q(m), σ(k)(x1, . . . , xk)〉(y1, . . . , ym) → r where r ∈ rhsD(q) and, for e ≥ 1 the set
rhse is defined as:

r ::= l1 . . . ln (u1, . . . , ue) (n ≥ 0)

l ::= let (zj+1, . . . , zj+D(q′)) = 〈q′(k), xi〉(u1, . . . , uk) in (xi ∈ Xk)

with u1, u2, . . . ∈ TΔ∪Ym∪Z . We usually omit parentheses around tuples of size one,
i.e., write like let zj = · · · in u1. We require any rule to be well-formed, that is, the left-
most occurrence of any variable zi must appear at a “binding” position (between ‘let’
and ‘=’), and the next occurrence (if any) must appear after the ‘in’ corresponding to
the binding occurence. Total, deterministic, and linear mr-mtts are defined as for mtts.

As for mtts, the call-by-value semantics of mr-mtts is defined in terms of rewriting over
sentential forms. Note that the target of rewriting is always the state call in the very first
let expression of a given sentential form (this expression cannot have let-variables). Let
M = (Q, q0, Σ,Δ,R,D) be an mr-mtt. The set KM of sentential forms κ of M is
defined by the following BNF

κ ::= l1 . . . ln u1

l ::= let (zj+1, . . . , zj+D(q)) = 〈q(k), s〉(u1, . . . , uk) in

where s ∈ TΣ and u1, u2, . . . ∈ TΔ∪Z . Again, we require the sentential forms to be
well-formed in the same sense as for the right-hand sides of rules. Let κ1, κ2 ∈ KM .
Then κ1 ⇒M κ2 if κ1 has the form let (zj+1, . . . , zj+D(q)) = 〈q(m), σ(k)(s1, . . . , sk)〉
(t1, . . . , tm) in κ where si ∈ TΣ and ti ∈ TΔ, and there is a 〈q,σ〉-rule in R with the
right-hand side l1 . . . ln (u1, . . . , uD(q)) and κ2 has the form l′1 . . . l′nκ′ where

l′i = li[x1/s1, . . . , xk/sk, y1/t1, . . . , ym/tm] (i = 1, . . . , n)
u′

k = uk[y1/t1, . . . , ym/tm] (k = 1, . . . , D(q))
κ′ = κ[zj+1/u

′
1, . . . , zj+D(q)/u

′
D(q)].

Here, we adopt the standard convention that substitution automatically avoids inappro-
priate variable capture by silently renaming let-variables.

We define κ↓M = {t ∈ TΔ | κ ⇒∗
M t}. The translation τ(M) realized by M is

defined as {(s, t) ∈ TΣ × TΔ | t ∈ (let z = 〈q0, s〉 in z)↓M}. The class of translations
realized by mr-mtts is denoted by MM. By d-MM with d ≥ 1, we denote the class of
translations realized by mr-mtts of dimension d. The prefixes D, t, and L are used in
the same way as for mtts. Note that MT ⊆ 1-MM (by replacing each nested state call of
the mtt by a let-binding), with determinism and totality being preserved.

For technical convenience, we sometimes regard rhsd as a subset of TΔ∪(Q×Xk)∪Ym

∪Z∪Ld
mr

where Ld
mr = {let(4)1 , . . . , let(3+d)

d , tup(1)
1 , . . . , tup(d)

d }, which should be un-
derstood as the abstract syntax tree of its textual representation.

3 Simulation of Multi-Return MTTs by MTTs

This section shows that any mr-mtt can be decomposed into a three-fold composition of
simpler transducers, namely, a pre-processor for dealing with let-bindings, an mtt doing
the essential translation, and a post-processor for dealing with tuples.
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Tuple Return Values. Following the well-known (Mezei-Wright-like [8]) tupling-
selection technique, we use special symbols to represent tuples and selection. For n≥2,
define Ln

tup = {τ (2)
2 , . . . , τ

(n)
n , π

(1)
1 , . . . , π

(1)
n }. Intuitively, τi means “construct a tuple

of i elements” and πi means “select the i-th element of”. We define the transducer
tupsn

Δ whose purpose is to recursively convert subtrees of the form πi(τk(t1, . . . , tk))
into ti. The tupling-and-selection transducer tupsn

Δ is the linear deterministic total top-
down tree transducer with input alphabet Δ ∪ Ln

tup, output alphabet Δ, set of states
{q1, . . . , qn}, initial state q1, and the following rules for each qi:

〈qi, πk(x1)〉 → 〈qk, x1〉
〈qi, τk(x1, . . . , xk)〉 → 〈q1, xi〉 if 1 ≤ i ≤ k

→ 〈q1, x1〉 otherwise

〈qi, δ(x1, . . . , xm)〉 → δ(〈q1, x1〉, . . . , 〈q1, xm〉) for δ(m) ∈ Δ,m ≥ 0.

Lemma 2. MM ⊆ 1-MM ; LDtT. Totality, determinism, and numbers of rules and pa-
rameters are preserved.

Proof. Let M = (Q,Σ,Δ, q0, R,D) be an mr-mtt of dimension d. We define another
mr-mtt M ′ = (Q,Σ,Δ ∪ Ld

tup, q0, R
′, D′), where D′(q) = 1 for all q ∈ Q and

R′ = {〈q, σ(�x)〉(�y) → et(r) | 〈q, σ(�x)〉(�y) → r ∈ R}. The explicit-tupling function
et is inductively defined as follows:

et(u1) = u1

et((u1, . . . , ue)) = τe(u1, . . . , ue) if e > 1
et(let z1 = 〈q, x〉(�u) in r′) = let z1 = 〈q, x〉(�u) in et(r′)

et(let (z1, . . . , zm) = 〈q, x〉(�u) in r′) =
let z1 = 〈q, x〉(�u) in et(r′[z1/π1(z1), . . . , zm/πm(z1)])) if m > 1.

We also apply et to sentential forms in KM , and tupsd
Δ to sentential forms in KM ′ . Then

for all κ1, κ2 ∈ KM and κ′
1, κ

′
2 ∈ KM ′ such that et(κ1) = τ(tupsd

Δ)(κ′
1), κ1 ⇒M κ2,

and κ′
1 ⇒M ′ κ′

2 assuming that the two derivations are done by corresponding rules,
we have et(κ2) = τ(tupsd

Δ)(κ′
2). By induction on the number of derivation steps, we

have that t′ ∈ τ(M ′)(s) if and only if τ(tupsd
Δ)(t′) ∈ τ(M)(s). Thus, τ(M) =

τ(M ′) ; τ(tupsd
Δ) which proves the lemma. ��

Let-Bindings. Even without multiple return values, let-bindings still provide some ad-
ditional power with respect to ordinary mtts. For example, the right-hand side of an
mr-mtt rule let z = 〈q, x〉 in δ(z, z) is not necessarily equivalent to the mtt one δ(〈q, x〉,
〈q, x〉). In the former rule, the two children of δ must be the same tree that is returned
by a single state call 〈q, x〉. On the other hand, in the latter rule, two state calls 〈q, x〉
may return different trees due to nondeterminism. Thus, for simulating let-bindings we
must first fully evaluate state calls to an output tree and then copy them if required. Ba-
sically, such order of evaluation can be simulated using accumulating parameters and
state calls, since we adopt call-by-value semantics. For instance, the above example of
mr-mtt rule is equivalent to the mtt rule 〈p, x〉(〈q, x〉) using an auxiliary state p and a
set of auxiliary rules 〈p, σ(�x)〉(y)→ δ(y, y) for every σ ∈ Σ.
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However, this approach does not work for nested let-bindings. The problem is that
the calls of auxiliary states to simulate copying must be applied to some child of the
current node. Consider the following rule:

〈q, σ(x1, . . . , xn)〉 → let z1 = 〈q1, x1〉 in

let z2 = 〈q2, x2〉(z1) in
...

let zn = 〈qn, xn〉(z1, . . . , zn−1) in δ(z1, . . . , zn).

To simulate the first let-binding, we need an auxiliary state call like 〈p, xi〉(〈q1, x1〉),
and we do the rest of the work in the 〈p, σ〉-rules. But this time, we have to generate
other state calls such as 〈q2, x2〉(z1) in the auxiliary rule, which is impossible since in
〈p, xi〉 we are only able to apply states to the children of xi, while x2 is a sibling of xi.

One possible solution is to insert auxiliary nodes of rank 1 above each node of the
input tree, similar as done for the removal of stay moves in [9]. We can then run the
auxiliary states on the inserted nodes in order to simulate the let-bindings. For instance,
the first two lets of the above rule can be simulated by

〈q, σ̄1(x1)〉 → 〈p, x1〉(〈〈q1, 1〉, x1〉, α)
〈p, σ̄2(x1)〉(y1, y2)→ 〈p, x1〉(y1, 〈〈q2, 2〉, x1〉(y1)),

where α is an arbitrary output symbol of rank 0. The new auxiliary state 〈q′, i〉 “skips”
the next barred nodes and calls q′ at the i-th child of the next σ-node. For n ∈ N, we
define monn

Σ (“monadic insertion”) as the linear tree homomorphism which, for each
σ(k)∈Σ, has the rule 〈q, σ(x1, . . . , xk)〉→ σ̄1(σ̄2(· · · σ̄n(σ(〈q, x1〉, . . . , 〈q, xk〉))· · · )).

Lemma 3. 1-MM ⊆ LHOM ; MT. Totality and determinism are preserved. If the mr-
mtt has n states of rank ≤ k, r rules, ≤l let-bindings per rule, and m input symbols of
rank≤b, then the mtt has at most n+r+nb states, k+l parameters, and (r+nb)(l+1)
(or (r + nb)(m + l + 1) in the case of totality) rules.

Proof. Let the mr-mtt be (Q,Σ,Δ, q0, R,D). The state set of the simulating mtt is

Q ∪ {p(k+m)
r | r ∈ R,m = number of let-bindings in r, k = rank of the state of r} ∪

(Q × {1, . . . , b}). Suppose the mr-mtt has a rule r ∈ R of the form (where q(k) ∈ Q)
〈q, σ(�x)〉(y1, . . . , yk) → let z1 = 〈q1, xi1〉(�u1) in . . . let zm = 〈qm, xim〉(�um) in u.
Let ζ be the substitution [z1/yk+1, . . . , zm/yk+m]. The simulating mtt has the follow-
ing rules each corresponding to one let-binding:

〈q, σ̄1(x1)〉(y1, . . . , yk)→ 〈pr, x〉(y1, . . . , yk, 〈〈q1, i1〉, x1〉(�u1), α, . . . , α)
〈pr, σ̄2(x1)〉(y1, . . . , yk+m)→ 〈pr, x〉(y1, . . . , yk+1, 〈〈q2, i2〉, x1〉(�u2ζ), α, . . . , α)

...
〈pr, σ̄m(x1)〉(y1, . . . , yk+m)→ 〈pr, x〉(y1, . . . , yk+m−1, 〈〈qm, im〉, x1〉(�umζ))

〈pr, σ̄m+1(x1)〉(y1, . . . , yk+m)→ 〈pr, x〉(y1, . . . , yk+m)
...

〈pr, σ̄l(x1)〉(y1, . . . , yk+m)→ 〈pr, x〉(y1, . . . , yk+m)
〈pr, σ(�x)〉(y1, . . . , yk+m)→ uζ
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where α is an arbitrary rank-0 output symbol. These dummy arguments are passed just
for supplying exactly m arguments and will never appear in output trees.

The states 〈q, j〉 ∈ Q× {1, . . . , b} are used to remember the correct child number j
where to apply q. The rules for 〈q, j〉 are:

〈〈q, j〉, σ̄i(x1)〉(�y)→ 〈〈q, j〉, x1〉(�y) for each σ ∈ Σ and 1 ≤ i ≤ l

〈〈q, j〉, σ(�x)〉(�y)→ 〈q, xj〉(�y) for each σ ∈ Σ of rank ≥ j.

It should be clear that this mtt preceded by mon l
Σ realizes the same translation as the

original mr-mtt. Let us take a look at totality and determinism. The original state q
remains total (or deterministic, respectively) for a symbol σ̄1 if and only if it is total
(deterministic) for σ in the original rule set. Newly added states pr are deterministic if
the original state q was. Newly added states 〈q, j〉 are deterministic. For the remaining
undefined part (q-rules for σ̄2, . . . , σ̄l and σ and 〈q, j〉-rules for σ with rank < j), we
add dummy rules to regain totality if the original mr-mtt was total. ��

By combining Lemmas 2 and 3, we obtain the main result of this section.

Lemma 4. MM ⊆ LHOM ; MT ; LDtT.

Since, by Theorem 7.6 of [1], DMT and DtMT are both closed under left- and- right-
composition with DtT, we obtain the following corollary.

Corollary 5. DMM = DMT and DtMM = DtMT.

The right part of Corollary 5 follows also from the result of [7], that total deterministic
tree generating top-down tree-to-graph transducers (trgen-tg) are equivalent to DtMT,
because as mentioned in the Introduction, mr-mtts are a special case of trgen-tgs.

4 Simulation of MTTs by Multi-Return MTTs

We now show that MM is closed under right-composition with DtT. The idea is to
construct the simulating mr-mtt by running the tt on the right-hand side of each rule
of the original mr-mtt. Let {p1, . . . , pn} be the set of states of the tt. We construct the
rules so that if a state q returns a tuple (t1, . . . , td), then the corresponding state q′ of
the simulating mr-mtt returns (〈p1, t1〉↓, . . . , 〈p1, td〉↓, . . . , 〈pn, t1〉↓, . . . , 〈pn, td〉↓).

Lemma 6. MM ; DtT ⊆ MM. Totality and determinism are preserved. The number of
parameters and the dimension of the resulting mr-mtt are n times larger the original
ones, where n is the number of states of the tt. The number of states increases by 1, and
the number of rules is at most twice as that of the original one.

Proof. Let M = (Q,Σ,Δ, q0, RM , D) be an mr-mtt and N = (P,Δ, Γ, p1, RN ) be a
DtT with P = {p1, . . . , pn}. We define the mr-mtt M ′ = (Q′, Σ, Γ, q̂, R′, D′), where
Q′ = {q′(kn) | q(k) ∈ Q} ∪ {q̂(0)}, D′(q′) = n ·D(q), D′(q̂) = 1, and

R′ = {〈q′, σ(�x)〉(y1, . . . , ykn)→ runN(r) | 〈q, σ(�x)〉(y1, . . . , yk)→ r ∈ RM}
∪ {〈q̂, σ(�x)〉 → runN0(r) | 〈q0, σ(�x)〉 → r ∈ RM}
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where runN and runN0 are defined inductively as follows. Recall from the Definitions
the “tree view” of the right-hand side of our mr-mtt (with tup and let node).

runN0(tup1(u1)) = tup1(〈p1, u1〉↓N ′)
runN0(lete(zs+1,. . ., zs+e, 〈q, x〉(u1,. . ., uk), κ) = leten(zs,e, 〈q, x〉(puk), runN0(κ))

runN(tupe(u1, . . . , ue)) = tupen(pue)
runN(lete(zs+1,. . ., zs+e, 〈q, x〉(u1,. . ., uk), κ) = leten(zs,e, 〈q, x〉(puk), runN(κ))

where zs,e = zsn+1, . . . , zsn+en, pum = 〈p1, u1〉↓N ′ , . . . , 〈p1, um〉↓N ′ , . . . , 〈pn, u1〉
↓N ′ , . . . , 〈pn, um〉↓N ′ and N ′ is N extended by the rules 〈pj , yi〉 → y(i−1)n+j and
〈pj , zi〉→z(i−1)n+j for 1 ≤ i ≤ μ, 1 ≤ j ≤ n, where μ is the maximum of the number
of parameters and the number of let-bindings appearing in RM . Then, by induction on
the number of derivation steps, we can show that 〈pj , 〈q, t〉(�u)↓M 〉↓N ′ is equal to the
corresponding subtuples of 〈q′, t〉(puk)↓M ′ , which proves the lemma. ��

Note that the proof of Lemma 6 relies on the totality of N. It simulates all pi-translations,
some of which may not contribute to the final output. If N is not total, this try-and-
discard strategy does not work. Undefined calls that are to be discarded will stop the
whole translation, since we are considering call-by-value evaluation. The proof relies
also on the determinism of N. If pj is nondeterministic, multiple calls of pj(yi) may gen-
erate different outputs and thus replacing them by the same single variable y(i−1)n+j

yields incorrect results.
Next, we investigate the case of left-composition. The idea is, again, to simulate the

composition DtT ; MT by constructing an mr-mtt by running the mtt on the rules of tt.
Note that we crucially use let-bindings here for simulating parameter copying of the
original mtt. Suppose we have a tt rule 〈q, e(x1)〉 → a(b, 〈q, x1〉) and mtt rules:

〈p, a(x1, x2)〉(y1)→ 〈p, x1〉(〈p, x2〉(y1))
〈p, b〉(y1)→ d(y1, y1).

Using a let-binding, we construct a rule of the simulating transducer 〈〈p, q〉, e(x1)〉(y1)
→ let z = 〈〈p, q〉, x1〉(y1) in d(z, z) which correctly preserves the original semantics
that the left and right child of the d node are equal. Note that without let-bindings, we
cannot avoid duplicating a state call; at best we will have the rule 〈〈p, q〉, e(x1)〉(y1)→
d(〈〈p, q〉, x1〉(y1), 〈〈p, q〉, x1〉(y1)), which is incorrect because the duplicated state calls
may nondeterministically yield different outputs, which is not originally intended.

Lemma 7. DtT ; MT ⊆ 1-MM. Totality and determinism are preserved. The number
of states is n times larger, where n is the number of states of the DtT. The number
of parameters remains the same. The number of rules may be double exponential with
respect to the depth of right-hand sides of the DtT.

Proof. Let M1 = (Q,Σ, Γ, q0, R1) be a DtT and M2 = (P, Γ,Δ, p0, R2) an mtt.
Define M× = (P × Q,Σ,Δ, 〈p0, q0〉, R,D) with R = {〈〈p, q〉, σ(�x)〉(�y) → κ | κ ∈
fz(〈p, r〉(�y), z), r is the right-hand side of the unique 〈q, σ〉-rule of R1}. Intuitively, a
state 〈p, q〉 denotes the translation by q followed by p. The relation fz is very similar
to the derivation relation of M2 (thus, fz(〈p, r〉(�y), z) should be intuitively read as
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〈p, r〉(�y)↓M2). However, to “factor out” let-bindings for avoiding incorrect duplication
of state calls, we define it slightly differently. For the sake of simplicity, we define fz

as a nondeterministic function as follows:

fz(y, u) = u[z/y] y ∈ Y ∪ Z

fz(δ(t1, . . . , tk), u) = fz1(t1, . . . fzk
(tk, u[z/δ(z1, . . . , zk)]) · · · ) δ ∈ Δ

fz(〈p, 〈q, xi〉〉(t1, . . . , tk), u) = fz1(t1, . . . fzk
(tk,

let z = 〈〈p, q〉, xi〉(z1, . . . , zk) in u) . . . )
fz(〈p, γ(�s)〉(t1, . . . , tk), u) = fz1(t1, . . . fzk

(tk, fz(κ[�x/�s, �y/�z], u) · · · )
for every right-hand side κ of any 〈p, γ〉-rule, γ ∈ Γ.

The last argument u of fz denotes a context where the translated right-hand side of the
rule should be placed. By induction on the structure of the input tree s, we can prove
〈p, 〈q, s〉↓M1〉(�t)↓M2 = 〈〈p, q〉, s〉(�t)↓M× for p ∈ P , q(k) ∈ Q, �t ∈ T k

Δ, and s ∈ TΣ ,
which proves the lemma. ��
We can now generalize the lemma in two directions: the second translation from MT to
MM, and the first translation from total to partial.

Lemma 8. DtT ; MM ⊆ MM. Totality and determinism are preserved.

Proof. By Lemma 4, DtT ; MM ⊆ DtT ; LHOM ; MT ; LDtT. By Lemma 6.9 of [6],
which says that DtT is closed under composition, the latter is in DtT ; MT ; LDtT. By
Lemma 7 this is included in MM ; LDtT, which is in MM by Lemma 6. ��
Lemma 9. DT ; MM ⊆ MM.

Proof. We have DT ⊆ DT-FTA ; DtT (Lemma 5.22 of [1]) where DT-FTA is the class
of partial identity translations recognized by deterministic top-down tree automata,
Lemma 8, and DT-FTA ; MM ⊆ MM (can be proved by the same construction as for
Lemma 5.21 of [1]; for every rule of the initial state, we add one let-binding that carries
out the run of the automaton). These three lemmas prove DT ; MM ⊆ MM. ��
Using the lemmas proved up to here, we obtain the two main theorems: the characteri-
zation of mr-mtts in terms of mtts and its closure properties.

Theorem 10. MM = LHOM ; MT ; LDtT. Determinism and totality are preserved.

Theorem 11. DT ; MM ⊆ MM and MM ; DtT ⊆ MM.

5 Expressiveness

First we show that mr-mtts of dimension 1 are already more powerful than normal mtts
even without tuple-returning capability. On page 123 of [1], a counterexample to show
MT � LHOM ; MT is given without proof. (The difficult part of their counterexample
to be realized in MT is the generation of two identical pairs of a nondeterministic rela-
beling of the input, which is similar to our twist translation that generates mutually re-
verse pair of nondeterministic relabelings.) By this example and Lemma 7, we have the
following proposition, which shows that binding intermediate trees by let-expressions
itself adds expressiveness.
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Proposition 12. MT � 1-MM.

Moreover, mr-mtts that return pairs of trees are strictly more powerful than single return
ones. Here we only give a sketch of the proof. For more detail, see [10] (which proves
the unrealizability in MT, but it also works for 1-MM and call-by-name mtts).

Theorem 13. 1-MM � 2-MM.

Proof (Sketch). A translation realized in 2-MM, namely, the twist translation of the
Introduction is shown not to be realizable by any mr-mtt with dimension 1. The proof is
by contradiction. Note that the number of outputs of twist is exponential with respect
to the size of the input, that is, |twist(snz)| = 2n. We first assume an mr-mtt M of
dimension 1 to realize twist , and then by giving two normal forms of sentential forms
(a weak normal form that contains no let-variables under output symbols, and a strong
normal form that is the weak normal form with at most one let-binding), we can show
that |τ(M)(snz)| = O(n2), which is a contradiction. ��

Note that the composition MT ; DtT can realize twist . We can construct an mtt (both
in call-by-value and call-by-name semantics) that nondeterministically translates the
input snz into all monadic trees of the form (a|b)n(A|B)nE such that the lower-part is
the reverse of the upper-part. Then we split such monadic trees to lower- and upper-
parts by a DtT transducer, so that the composition of these two translations realizes
twist . Thus, together with the proof of Theorem 13, we have the following theorem.

Theorem 14. MT ; DtT �⊆ MT and MTOI ; DtT �⊆ MTOI , where MTOI denotes the
class of translations realized by call-by-name mtts.

Acknowledgements. We like to thank Joost Engelfriet for his comment that mr-mtts
can be simulated by simpler transducers, which led us to the results in Sections 3 and
4. This work was partly supported by Japan Society for the Promotion of Science.
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Abstract. This paper considers the problem of computing the real con-
vex hull of a finite set of n-dimensional integer vectors. The starting
point is a finite-automaton representation of the initial set of vectors.
The proposed method consists in computing a sequence of automata
representing approximations of the convex hull and using extrapolation
techniques to compute the limit of this sequence. The convex hull can
then be directly computed from this limit in the form of an automaton-
based representation of the corresponding set of real vectors. The tech-
nique is quite general and has been implemented. Also, our result fits in a
wider scheme whose objective is to improve the techniques for converting
automata-based representation of constraints to formulas.

1 Introduction

Automata-based representations for sets of integer and real vectors have been a
subject of growing interest in recent years [1,3,13,17,19]. While usually not opti-
mal for specific problems, they provide much stronger generality and canonicity
than other representations. For instance, in this context, combining real and in-
teger constraints is very simple once the right framework has been set up [4].
The benefit of using automata-based representations for arithmetic sets could
be even greater if one could, whenever appropriate, freely move between this
and other representations such as explicit constraints. Going from constraints
to automata has long been successfully studied [9,2,7], but going in the other
direction is substantially more difficult. Nevertheless, it has been shown that
it is possible [18] to construct constraint formulas from automata representing
sets of integer vectors and that, under some restrictions, this can be done quite
effectively [16].

One case that is not well handled though is that of finite sets of integer vec-
tors. Indeed, imagine that a finite set of integers is represented by constraints and
that an automaton representing this set is built from these. Since the set is finite,
this acyclic automaton lacks the structure needed to construct the corresponding
constraints. One is thus stuck with the automaton or with an enumerative repre-
sentation of the set it defines, which is far from satisfactory. The work presented
here was motivated by this problem with the idea of solving it along the follow-
ing lines. The first step is to compute, as an automaton, a minimal dense set of
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real-vectors that contains the finite set of integers. On this automaton, techniques
similar to those of [16,18] could then be applied to obtain constraints.

This paper proposes a solution for the first step in the form of a purely automata-
based technique for computing the real convex hull (i.e. the convex hull over Rn)
of a finite automaton-represented finite set of integers. Note that, beyond the mo-
tivation outlined above, this is also a worthwhile challenge of independent interest
in the area of automata-based representations. In simple terms, our approach pro-
ceeds as follows. We start with an automata-based representation of a finite set
of integer vectors. We then repeatedly apply a transformation to this automaton
that adds to the set the vectors that are mid-way between those it includes. This
yields an infinite sequence of automata-represented sets. The limit of this infinite
sequence is then computed as an automaton, using the extrapolation-based tech-
niques of [5]. This limit is not quite the convex closure since we prove that it will
only contain convex combinations of the initial vectors with coefficients that are
multiples of a negative power of 2. This limit thus needs to be “completed” in or-
der to obtain the convex hull and we show that this can be done by computing its
topological closure. Bar a technical point due to the fact that some reals have two
encodings in our framework, the computation of the topological closure is quite an
easy step. This being done, the closure is obtained.

The extrapolation-based techniques of [5], which have so far only been ap-
plied in the context of “regular model checking” [8], are semi-algorithms that
tackle the undecidable problem of computing the limit of an infinite sequence by
extrapolating finite prefixes of the sequence. For the procedure above to work
correctly, we thus depend on the result of the extrapolation being exact, which
is not guaranteed a priori. Nevertheless, this can be checked as described in
[5], but one interesting twist is that checking safety (enough is obtained) can
be done much more easily (and just as correctly) after computing the topolog-
ical closure. This is due to the fact that taking the topological closure yields
an automaton that falls within an easier to handle class. Checking preciseness
(nothing is added) with the techniques of [5] is probably not practical, but in the
present situation one can exploit the properties of the extrapolation and make
this check just as simple as the safety check.

Our approach has been implemented and the implementation has actually
served as a guide to hone our results. The implementation has been tested and
performs well, within the bounds allowed by the automata manipulations needed
for the computation of the limit of the sequence of approximations. We certainly
do not claim to outperform more traditional methods when they apply, our goal
being to establish the basis of a different approach with interesting character-
istics, performance gains not being part of our initial agenda. Also note that
complexity analysis would not yield useful information since, at the heart of our
approach, lies the extrapolation procedure which is only a semi-amgorithm.

Related Work. Computing convex hulls is of course a well studied problem of
independent interest. There are quite a few known techniques for computing
convex hulls of a set of vectors in a non automata-theoretic setting. Among these
a long series of algorithms specialized to the 2D and 3D case and widely used
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and studied in computational geometry. Algorithms for the general case (any
dimensions) have also been studied [12]. All those algorithms, which are generally
more efficient than an automata-based approach, require an enumeration of the
set, which we avoid here. In [14], Finkel and Leroux show that the convex hull
of a (possibly infinite) set of integer vector represented by an automaton is a
computable polyhedron. The algorithm in [14] can be applied to infinite sets and
is guaranteed to terminate. On the other hand, this algorithm, may require to
enumerate the set represented by the automaton and is restricted to work in Zn.

Some proofs had to be omitted due to space constraints. A self-contained long
version of this paper is available at [11].

2 Automata-Theoretic Background

2.1 Automata on Infinite Words

An infinite word (or ω-word) w over an alphabet Σ is a mapping w : IN → Σ
from the natural numbers to Σ. The length-k prefix of an infinite word w, i.e.
the finite-word w(0), w(1), . . . , w(k − 1), will be denoted by pref k(w).

A Büchi automaton on infinite words is a five-tuple A = (Q,Σ, δ, q0, F ), where
Q is a finite set of states, Σ is the input alphabet, δ : Q × Σ → 2Q is a
transition function (δ : Q × Σ → Q if the automaton is deterministic), q0

is the initial state, and F is a set of accepting states. A run π of a Büchi
automaton A = (Q,Σ, δ, q0, F ) on an ω-word w is a mapping π : IN → Q
such that π(0) = q0 and for all i ≥ 0, π(i + 1) ∈ δ(π(i), w(i)) (nondeterministic
automata) or π(i + 1) = δ(π(i), w(i)) (deterministic automata). Let inf (π) be
the set of states that occur infinitely often in a run π. A run π is said to be
accepting if inf (π) ∩ F �= ∅. An ω-word w is accepted by a Büchi automaton if
that automaton has some accepting run on w. The language Lω(A) of infinite
words defined by a Büchi automaton A is the set of ω-words it accepts.

We will also use the notion of weak automata [21]. Roughly speaking, a weak
automaton is a Büchi automaton such that each of the strongly connected com-
ponents of its graph contains either only accepting or only non-accepting states.
Not all omega-regular languages can be accepted by weak deterministic Büchi
automata, nor even by weak nondeterministic automata. However, there are
algorithmic advantages to working with weak automata. Indeed, weak determin-
istic automata can be complemented simply by inverting their accepting and
non-accepting states, while the complementation operation for Büchi automata
requires intricate algorithms that not only are worst-case exponential, but are
also hard to implement and optimize [24]. There exists a simple determiniza-
tion procedure for weak automata [22], which produces Büchi automata that
are deterministic, but not necessarily weak. However, we will be working in a
context in which the obtained automata are always easily transformed into weak
auatomata [4]. A final advantage of weak deterministic Büchi automata is that
they admit a normal form, which is unique up to isomorphism [20].
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2.2 Automata-Based Representations of Sets of Integers and Reals

In this section, we briefly introduce the representation of sets of integer and real
vectors by finite automata. Details are only given for the case of real vectors,
the case of integer vectors being a simplification of the former where automata
on finite words replace automata on infinite words. A survey on this topic can
be found in [7].

In order to make a finite automaton recognize numbers, one needs to establish
a mapping between these and words. Our encoding scheme corresponds to the
usual notation for reals and relies on an arbitrary integer base r > 1. We encode
a number x in base r, most significant digit first, by words of the form wI � wF ,
where wI encodes the integer part xI of x as a finite word over {0, . . . , r − 1},
the special symbol “�” is a separator, and wF encodes the fractional part xF of
x as an infinite word over {0, . . . , r − 1}. Negative numbers are represented by
their r’s complement. The length p of |wI |, which we refer to as the integer-part
length of w, is not fixed but must be large enough for −rp−1 ≤ xI < rp−1 to
hold.

According to this scheme, each number has an infinite number of encodings,
since their integer-part length can be increased unboundedly. In addition, the
rational numbers whose denominator has only prime factors that are also factors
of r have two distinct encodings with the same integer-part length. For example,
in base 10, the number 11/2 has the encodings 005 � 5(0)ω and 005 � 4(9)ω, “ ω”
denoting infinite repetition. We call these respectively the high and low encodings
and refer collectively to them as dual encodings.

To encode a vector of real numbers, we represent each of its components by
words of identical integer-part length. This length can be chosen arbitrarily,
provided that it is sufficient for encoding the vector component with the highest
magnitude. An encoding of a vector x ∈ Rn can indifferently be viewed either as
a n-tuple of words of identical integer-part length over the alphabet {0, . . . , r −
1, �}, or as a single word w over the alphabet {0, . . . , r − 1}n ∪ {�}1.

Real vectors being encoded by infinite words, a set of vectors can be repre-
sented by an infinite-word automaton accepting the corresponding encodings.
Since a real vector has an infinite number of possible encodings, we have to
choose which of these the automata will recognize. A natural choice is to accept
all encodings. This leads to the following definition.

Definition 1. Let n > 0 and r > 1 be integers. A base-r n-dimension Real
Vector Automaton (RVA) [6] is a Büchi automaton A = (Q,Σ, δ,Q0, F ) over
the alphabet Σ = {0, . . . , r− 1}n ∪ {�}, such that (1) Every word accepted by A
is an encoding in base r of a vector in Rn, and (2) For every vector x ∈ Rn, A
accepts either all the encodings of x in base r, or none of them.

An RVA is said to represent the set of vectors encoded by the words that belong
to its accepted language. In [4], it is shown that if the set represented by the
1 In practice, one reads the bits of the vector components in a round robin way, which

avoids an exponential-size alphabet. However, for presentation purposes, it is easier
to view all same-position bits of the vector components as being read simultaneously.
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RVA can be defined in the first-order theory of linear constraints, then this RVA
can be transformed into an equivalent weak deterministic Büchi automata. If
not explicitly mentioned, we assume that the RVAs we manipulate are minimal
weak deterministic Büchi automata. Also, since our implementation works with
a base 2 representation, we will present all our results in this context, knowing
that they can be generalized to other bases.

3 Convex Hulls and Topological Concepts

We recall a few notations and definitions that are used throughout the paper.
Let Z, Q, and R be respectively the sets of integers, rational, and reals, and

let Zn, Qn , and Rn denote the usual n-dimensional Euclidean vector spaces.
Vectors are written in boldface, e.g. x, and scalars without emphasis, e.g. a. The
ith component of a vector x ∈ Rn is denoted by x[i]. We say that a set E ∈ Rn

is convex iff for each x1,x2 ∈ E, we have {αx1 + (1 − α)x2 | α ∈ [0, 1]} ⊆ E.
We will also use the following usual definitions.

Definition 2. Given a set E ⊆ Rn, the convex hull of E is the set Conv(E ) ⊆
Rn defined by

Conv(E ) = {x | ∃x1, . . . ,xk ∈ E ∃λ1, . . . , λk ∈ [0, 1] x =
k∑

i=1

λixi ∧
k∑

i=1

λi = 1}

The Euclidean distance between two vectors x,x′ ∈ Rn, denoted by |x − x′| is
the real number

√∑n
i=1(x[i]− x′[i])2. The open ball centered in x ∈ Rn with a

radius ε > 0 is the subset B(x,ε) = {x′ | |x − x′| < ε}. A set E ⊆ Rn is said to
be open if for any x ∈ E there exists ε > 0 such that B(x,ε) ⊆ E . A closed set
E is a subset of Rn such that Rn \ E is an open set. A compact set in Rn is a
bounded and closed set. We use the concept of topological closure of a set.

Definition 3. Given a set E ⊆ Rn, the topological closure TC (E ) of E is the
smallest closed set that contains E.

When dealing with infinite words, we will be working with the topology on words
induced by the distance defined by

d(w,w′) =
{ 1

|common(w,w′)|+1 if w �= w′

0 if w = w′,

where common(w,w′) denotes the longest common prefix of w and w′. Notice
that, among words that validly encode vectors, words that are topologically close
encode vectors that are close according to the Euclidean distance, the reverse
also being true except for the cases where dual encodings can appear.

4 Computing Convex Hulls

In this section, we describe a technique to compute the convex hull over Rn of a
finite set E = {x1,x2, . . . ,xk} defined over Zn.
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The technique proceeds by constructing a sequence of approximations of the
convex hull by adding the vectors that are mid-way between those obtained so
far. This is quite an obvious way to proceed, but in order to exploit it, we need
to formalize its exact properties. We use the following definitions.

Definition 4. The median sequence of E is the infinite sequence E0, E1, E2, . . .
such that (1) E0 = E and (2) Ei+1 = Ei ∪ {(x1 + x2)/2 | x1,x2 ∈ Ei} for each
i ∈ N.

The limit of the median sequence of E, denoted by E∗, is defined by
⋃∞

i=0 Ei.
It is easy to see that each vector v of E∗ is also a vector of Conv(E ). However,
E∗ is not the complete convex hull, but can be characterized using the following
definition.

Definition 5. The 2-chopped convex hull of a finite subset E={x1,x2, . . . ,xk}of
Zn is the maximal subset Conv2∗(E ) of Conv(E ), where for each v∈Conv2∗(E ),
v =

∑k
i=1 λixi with λi ∈ [0, 1],

∑k
i=1 λi = 1, and λi = ki

2mi
for ki,mi ∈ N and

i ∈ [1, . . . , k].

Theorem 1. For any finite subset E = {x1,x2, . . . ,xk} of Zn, the limit of its
median sequence and its 2-chopped convex hull coincide, i.e E∗ = Conv2∗(E ).

Even though the 2-chopped convex hull of a set E is not quite its real convex
hull, it contains vectors that are arbitrarily close to any element of the full convex
closure. In fact, the convex hull of E is included in the topological closure of its
2-chopped hull. The following theorem states that these two sets coincide.

Theorem 2. For any finite subset E = {x1,x2, . . . ,xk} of Zn, we have that
TC (Conv2∗(E )) = Conv(E ).

Computing the real convex hull of a finite set of integer vectors can thus be
reduced to compute the topological closure of the limit of its median sequence.
We now investigate how to compute Conv2∗(E ) and TC (E ) for a set E described
by an RVA.

5 Algorithmic Issues

We consider a finite subset E = {x1,x2, . . . ,xk} of Zn that is represented by a
(weak deterministic) RVA AE . Our goal is to compute an RVA that represents
the convex hull over Rn of E. According to the results in Section 4, this can
be done by computing an RVA AE∗ representing the limit E∗ of the median
sequence of E, and then computing an RVA representing the topological closure
of E∗. We now show how these two problems can be tackled by automata-based
semi-algorithms.

5.1 Computing an RVA for the 2-Chopped Hull

Computing the elements of the median sequence. We notice that since
E is finite and represented by a weak deterministic RVA, each element in its
median sequence can also be represented in the same way (see [11] for details).
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Computing the limit of the median sequence. Computing AE∗ amounts
to computing the limit of an infinite sequence of weak deterministic automata.
To finitely compute this limit, we obviously need some form of “speed-up” tech-
nique. We will use the extrapolation-based technique proposed in [5]. A rough
description of the technique is as follows. The technique proceeds by comparing
successive automata in a prefix of the sequence, trying to identify the difference
between these in the form of an “increment”, and extrapolating the repetition
of this increment by adding loops to the last automaton of the prefix. If the
extrapolation is correct, then the limit is computed, else, one has to lengthen
the prefix and restart the extrapolation process. Checking correctness of the ex-
trapolation is a non trivial procedure whose description is, for technical reasons,
postponed to Section 5.3. The technique has been implemented in a tool called
T(O)RMC [23]. The tool relies on the LASH package [15] for automata manipu-
lation procedures, but implements the specific algorithms given in [5]. There is
no guarantee that T(O)RMC will produce a result since the general problem of
computing the limit of a sequence of automata is undecidable.

It is worth mentioning that the automata produced by T(O)RMC are weak,
but not necessarily deterministic [5]. Furthermore, if one tries to determinize
these automata, one might end up combining accepting and non accepting con-
nected components, which leads to an automaton that is not weak. This situa-
tion actually occurred systematically in our experiment, which is not surprising
since the 2-chopped convex hull of a set of integer vectors is not definable in
〈R,+,≤, Z〉 and thus falls outside the guaranteed reach of weak deterministic
automata given in [4].

5.2 Computing the Topological Closure of an RVA-Represented Set

In this section, we explicitely consider RVAs that may not be weak deterministic.
Consider a set E ⊆ Rn represented by an RVA AE . Our goal is to compute an
RVA ATC (E) that represents the topological closure of E. The intuition behind
the computation is that we need to add to the language accepted by AE , all words
that are arbitrarily close to words of this language. This is fairly straightforward
to do since we only need to add words that have arbitrarily long common prefixes
with accepted words. A simple step to do this is to make accepting all states of
the fractional part of the automaton. Of course, this will compute the topological
closure within the topology on infinite words, but this also almost computes the
vector Euclidean topological closure as it is shown by the following result.

Theorem 3. Let AE be a RVA representing a vector set E. Let AE be AE with
all states of its fractional part made accepting, and let W (v,n) be the set of all
the encodings of a vector v ∈ Rn. For each vector v ∈ Rn, W (v,n)∩L(AE) �= ∅
if and only if v ∈ TC (E ).

Theorem 3 guarantees that AE contains at least one encoding for each vector in
TC (E ). However the automaton AE is not necessarily ATC (E). Indeed, there is
no guarantee that AE will contain all the encodings of each vector included in the
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topological closure. We thus need an extra step that adds all missing encodings.
To do this, we use the fact that an automaton that recognizes words that are
dual encodings of the same numbers can be built with simple automata-based
operations (see [10] for the detailed algorithm).

5.3 Correctness Criterion

After having constructed the extrapolation A∗
E of a finite sequence Ai1

E , Ai2
E , . . . ,

Ail

E of automata representing elements in the median sequence of a set E, it re-
mains to check whether it accurately corresponds to what we really intend to com-
pute, i.e., AE∗ . This is done by first checking that the extrapolation is safe, in the
sense that it captures all words accepted by AE∗ (L(AE∗) ⊆ L(A∗

E)), and then
checking that it is precise, i.e. that it accepts no more words than AE∗ (L(A∗

E) ⊆
L(AE∗)). To lighten the presentation, we will often use the notations and opera-
tions defined for sets of vectors directly on the automata that represent them.

Safety. We first investigate how to check whether A∗
E is safe. The idea is simply

to perform one more mid-point adding step on A∗
E and to check that this does

not change the accepted language. Given a set E, let C2(E) be the set {y | y =
(x1 + x2)/2 | x1,x2 ∈ E}. We have the following theorem.

Theorem 4. Let A∗
E and AE∗ be respectively the extrapolation of a median au-

tomata sequence for a set E and a representation of the actual limit of this
sequence. We have that, if L(C2(A∗

E)) ⊆ L(A∗
E), then L(AE∗) ⊆ L(A∗

E).

The required computation step is thus to check that L(C2(A∗
E)) ⊆ L(A∗

E). This
is simple except for the fact that, the result of the extrapolation is representable
by an automaton which is weak but not necessarily deterministic (see Section
5.1), and hence testing inclusion requires to complement a Büchi automaton.
The problem can be solved by first applying the topological closure step to A∗

E

and then performing the safety check given by Lemma 4.
It is easy to see that doing this has no impact on the result of the test. How-

ever it has an impact on its efficiency since the strongly connected component
added by T(O)RM are made uniformly accepting status by the procedure that
computes the topological closure. This ensures that we only need to complement
weak deterministic automata.

Preciseness. Checking preciseness could be performed with the techniques pro-
posed in [5]. However, this solution (which involves counter automata) is com-
putationally demanding and not really practical. In the present situation, one
can however propose a much more efficient scheme that exploits the properties
of the extrapolation. Due to space limitation, we only sketch the procedure here,
details can be found in [11].

Definition 6. Let E ∈ R be a convex set. The set of extreme points of E,
denoted S(E), is defined as {x ∈ E | (¬∃(x1,x2) ∈ E)(x1 �= x2 ∧ x = (x1 +
x2)/2)}.
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By extension we will also use the notation S(A) on automata representing vec-
tor sets. We now present our preciseness check. Instead of checking whether
L(A∗

E) ⊆ L(AE∗), we check L(TC (A∗
E )) ⊆ L(Conv(AE )). This is enough to

ensure that we do not compute an overapproximation of the hull.

Theorem 5. Let A∗
E be an RVA that represents a safe extrapolation of the limit

of the median sequence of a finite set of integer vectors represented by the RVA
AE. If L(S(TC (A∗

E ))) ⊆ L(AE), then L(TC (A∗
E )) ⊆ L(Conv(AE )).

In summary, to check the preciseness of an RVA A∗
E that represents a safe ex-

trapolation of the limit of the median sequence of a finite set E ⊆ Zn, we
first compute an RVA TC (A∗

E ) for the topological closure of the set represented
by A∗

E . We then compute an automaton for S(TC (A∗
E )), which is easily done

by computing the difference between TC (A∗
E ) and C2(TC (A∗

E )). Finally, one
checks whether the language of the resulting automaton is included in that of
AE . Again, all complementation operations are only applied to weak determin-
istic Büchi automata.

Infinite Sets. It is worth mentioning that our results do not extend as such
to the computation of the real convex hull of an infinite set of integer vectors.
Indeed, by relying on the computation of a topological closure, our methodology
produces convex hulls which are closed sets. However there are infinite sets of
integer vectors whose convex hull is not closed.

6 A Brief Note on the Experimental Results

The approach presented in this paper has been tested on several examples using
a prototype implementation that relies on T(O)RMC. We computed the convex
hull over Rn of finite convex sets in Zn, of the difference/union of finite con-
vex sets in Zn, and of arbitrary finite sets of points in Zn. Some experiments
that validate the fact that our approach performs well for sets for which the
representation by automata remains manageable are reported in [11].

References

1. Bartzis, C., Bultan, T.: Construction of efficient bdds for bounded arithmetic con-
straints. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp.
394–408. Springer, Heidelberg (2003)

2. Boigelot, B.: Symbolic Methods for Exploring Infinite State Spaces. Collection des
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Abstract. The PHP string analyzer developed by the second author ap-
proximates the string output of a program with a context-free grammar.
By developing a procedure to decide inclusion between context-free and
regular hedge languages, Minamide and Tozawa applied this analysis to
checking the validity of dynamically generated XHTML documents. In
this paper, we consider the problem of checking the validity of dynami-
cally generated HTML documents instead of XHTML documents.

HTML is not specified by an XML schema language, but by an SGML
DTD, and we can omit several kinds of tags in HTML documents. We
formalize a subclass of SGML DTDs and develop a translation into regu-
lar hedge grammars. Thus we can validate dynamically generated HTML
documents. We have implemented this translation and incorporated it
in the PHP string analyzer. The experimental results show that the val-
idation through this translation works well in practice.

1 Introduction

The PHP string analyzer was developed by the second author to check various
properties of PHP programs [Min05]. It approximates the string output of a
program with a context-free grammar. Minamide and Tozawa applied the anal-
ysis to checking the validity of XHTML documents generated dynamically by a
server-side program [MT06]. They developed a decision procedure that checks
inclusion between a context-free and regular hedge languages. The validity is
checked by applying the procedure to the context-free and regular hedge gram-
mars obtained from a program and the XHTML DTD.

In this paper, we consider the problem of checking the validity of dynamically
generated HTML documents instead of XHTML documents. HTML is not based
on XML, but on SGML [Gol90], and its specification is given as an SGML DTD.
Unlike XML documents, we can omit several kinds of tags in HTML documents
according to the HTML DTD [Wor99]. Models of XML schema languages have
been studied based on the theory of formal languages. Murata proposed a regular
hedge grammar as a foundation of XML schemas [Mur99], and XML DTDs were
modeled as a subclass of context-free grammars called XML-grammars by Berstel
and Boasson [BB02]. However, the presence of tag omission makes it harder to
model an SGML DTD as a formal language. As far as we know, there is no
formal model of SGML DTD.
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In this paper, we formalize a subclass of SGML DTDs and develop a transla-
tion from the subclass into regular hedge grammars. The subclass is expressive
enough to include the HTML DTD, making it possible to validate dynamically
generated HTML documents based on the decision procedure of Minamide and
Tozawa.

Even though it seems rather difficult to formalize general SGML DTDs and
represent them with regular hedge grammars, we found that the following two
properties hold for the HTML DTD. (a) It is possible to check whether an end tag
can be omitted or not by looking at the next element of an SGML document,
and (b) the number of direct nestings of tag omissions is bounded by a fixed
number determined by the DTD.

We can write an HTML document like the following.

<p> <p> <p> ...

It seems that p elements can be nested any number of times. However, according
to the HTML DTD, a p element cannot appear as a child of p. Thus, the string
above is interpreted as the following string by inserting </p> symbols.

<p> </p><p> </p><p> </p> ...

Thus, p elements are not nested in the string.
Based on these observations, we first formalize the language of an SGML DTD

satisfying the first condition as an image of a regular hedge language under a
transducer, omitting end tags from a valid string not including tag omissions.
Furthermore, we show that if an SGML DTD satisfies both conditions, the image
is also a regular hedge language, and we develop a translation from the subclass
of SGML DTDs into regular hedge grammars. We have implemented this trans-
lation and incorporated it in the PHP string analyzer. The experimental results
show that the validation through the translation works well in practice.

This paper is organized as follows. In Section 2, we review SGML and SGML
DTD. We formalize the subset of SGML DTDs by modeling end-tag omission
with a transducer in Section 3. Section 4 introduces a further restricted class of
SGML DTD and gives a translation from a DTD into a regular hedge grammar.
The translation is extended to support the exclusion feature of SGML DTD in
Section 5. Finally, we show our experimental results.

2 SGML and SGML DTD

SGML is a predecessor of XML, and a markup language for structured docu-
ments such as XML. One of the essential differences between SGML and XML
is that we can omit tags in SGML documents. In SGML, a document type is
specified with the schema language DTD. Although it is quite similar to the
DTD for XML, it has more features to specify the type of documents: tag omis-
sion, inclusion, and exclusion are the features used in the HTML DTD that are
specific to SGML DTD.
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Let us consider the following SGML DTD.
<!DOCTYPE friends [
<!ELEMENT friends O O (person)* >
<!ELEMENT person - O (name, phone?) >
<!ELEMENT name - O (#PCDATA) >
<!ELEMENT phone - O (#PCDATA) >

] >

This declaration specifies content-models of five elements. For example, inside
the friends element any sequence of person elements can appear, as specified
by the regular expression (person)*.

This declaration also specifies tag omission for each element, namely whether
or not the start and end tags of the element are optional, by two characters
between the element name and the content-model. If the first character is “O”,
then the start tag of the element can be omitted. Otherwise, it is mandatory.
The second character indicates the same for the end tag of the element. For the
DTD above, only the start tag of the element friends and the end tags of the
elements friends, person, name, and phone can be omitted. We call elements
with optional end tags end-tag omittable elements.

However, tags cannot be omitted everywhere even if it is specified so in a
DTD. A tag in a document can only be omitted if the structure of the document
can be uniquely determined without the tag. Warmer and van Egmond clarified
the condition in the specification as follows [WvE89]. An end tag can be omitted
only if it is followed by the end tag of another open element, or by the start tag
of another element or an SGML character that is not allowed in the element’s
content-model.

Let us clarify the condition with the following example.
<!DOCTYPE a [
<!ELEMENT a - - (b|c|d)* >
<!ELEMENT b - O (c,d)+ >
<!ELEMENT c - - (#PCDATA) >
<!ELEMENT d - - (#PCDATA) >

] >

The end tag </b> is specified to be omittable in this DTD and the following
document is valid.

<a><b><c>A</c><d>B</d><c>C</c></a>

It is interpreted as the following by inserting </b> before the second <c>. This
is because c,d,c is not allowed in the content model (c,d)+ of the element b.

<a><b><c>A</c><d>B</d></b><c>C</c></a>

On the other hand, </b> in the following document cannot be omitted because
c,d,c,d is allowed in b.

<a><b><c>A</c><d>B</d></b><c>C</c><d>D</d></a>

As this example shows, to decide whether an end tag can be omitted, it is
necessary to look ahead to an unbounded number of elements in general.
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3 Formalization of SGML DTD

As stated above, an SGML specific feature that is often used in HTML docu-
ments is the omission of end tags. Although start tags of several elements in-
cluding HTML, HEAD, and BODY are specified as optional in the HTML DTD, it is
rather rare to omit them (at least in a server-side program). Thus, in this paper,
we formalize a subset of SGML DTDs that allow omission only of end tags. Fur-
thermore, to simplify our formalization, we introduce a subclass of SGML DTDs
that makes it possible to check whether an end tag can be omitted or not by
looking only at the next element of an SGML document. The class is expressive
enough to deal with the HTML DTD as we discussed in the introduction.

To formalize SGML documents and DTDs, we consider SGML documents as
strings over a paired alphabet. Let Σ be a base alphabet corresponding to the
set of element names. We introduce a paired alphabet consisting of two sets Σ́
and Σ̀:

Σ́ = {á | a ∈ Σ} Σ̀ = {à | a ∈ Σ}

where Σ́ and Σ̀ correspond to the set of start tags and the set of end tags,
respectively. For example, the following document is described as áb́ćc̀b̀b́b̀à.

<a><b><c></c></b><b></b></a>

If we omit the end tag of c, we obtain an unbalanced string, áb́ćb̀b́b̀à. We discuss
the validity of SGML documents based on this representation, and thus ignore
the attributes and the text parts of a document.

Definition 1. We formalize SGML DTD as a 4-tuple D = (Σe, Σm,M, r).

– Σe is the finite set of symbols corresponding to element names.
– Σm(⊆ Σe) is the set of symbols with omittable end tags.
– M is a function from Σe to regular languages over Σe. The regular language

M(a) corresponds to the content-model of a.
– r ∈ Σe is the root element.

We restrict the content-models for end-tag omittable elements: to the regular
languages of the form (a1|a2| · · · |an)∗ or (a1|a2| · · · |an)+ where ai are symbols.
This makes it possible to decide whether or not an end tag can be omitted by
looking one symbol ahead. We say that an SGML DTD is simple if it satisfies
this condition.

Let us consider the following simple DTD.

<!DOCTYPE a [
<!ELEMENT a - - (x, b?)* >
<!ELEMENT x - O (b)* >
<!ELEMENT b - - (x)+ >

] >

This DTD is represented as D = ({a, x, b}, {x},M, a) where M(a) = (xb?)∗,
M(x) = b∗,M(b) = x+. The string áx́x̀b́x́b̀à is valid with respect to D. On the
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other hand, áx́x̀b́b̀à is not valid, because this string does not have the x element
that should appear inside the b element.

For simple DTDs, we formalize the language of a DTD D as follows.

1. Construct the regular hedge grammar G0(D) that generates all the valid
balanced strings, in turn the valid strings without any tag omission.

2. Construct the finite transducer T (D) that outputs all the valid strings ob-
tained by omitting tags from a valid balanced string.

The language of D is the image of G0(D) under T (D).
Regular hedge grammars (RHGs) were introduced by Murata as a model of

XML schemas [Mur99]. Let us introduce a string version of RHGs.

Definition 2. An RHG is a 5-tuple (Σ2, Σ1, N, P, S) where Σ2, Σ1, and N are
a base of a paired alphabet, the set of local symbols, and the set of nonterminals
respectively. Each production rule in P has the following form:

X → áRà

where X ∈ N and R is a regular language over N∪Σ1. S ∈ N is a start symbol 1.

An RHG defines a language over Σ́2 ∪ Σ̀2 ∪ Σ1. We denote elements of Σ2 and
Σ1 by a, b, c and x, y, z, respectively. In this paper, without loss of generality we
assume that each nonterminal of an RHG has exactly one production rule.

For the construction of the RHG G0(D), we consider that all element names
are base symbols and introduce a nonterminal Xa for each element name a ∈ Σe.
Then, G0(D) is defined as (Σe, ∅, N, P,Xr) where N = {Xa | a ∈ Σe} and P
has the following rule for each a ∈ Σe.

Xa → áM(a)à

This is basically the same as the interpretation used for XML DTDs by Berstel
and Boasson [BB02].

Example 1. Let us consider the DTD D1 below.

<!DOCTYPE a [
<!ELEMENT a - - (x, b) >
<!ELEMENT b - - (b)* >
<!ELEMENT x - O (y | a)* >
<!ELEMENT y - O (b)* >

] >

G0(D1) = ({a, b, x, y}, ∅, {Xa, Xb, Xx, Xy}, P,Xa) where P has the following
production rules.

Xa → áXxXbà Xb → b́X∗
b b̀ Xx → x́(Xy|Xa)∗x̀ Xy → ýX∗

b ỳ

This RHG generates all valid balanced strings of the DTD.
1 The original definition of RHGs allows us to use a regular expression instead of a

single nonterminal to describe starting points of derivation.
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To formalize end-tag omission, we introduce the finite transducer T (D) that
takes the valid balanced strings of the DTD D. The transducer produces all
possible strings that can be obtained by omitting end tags according to D.

Let us first review a subclass of finite transducers called a generalized sequen-
tial machine (GSM). We adopt in this paper the definition of GSMs without
final states.

Definition 3. A GSM T is a 5-tuple (Q,Σ,Δ, σ, q0) where Q is the finite set
of states, Σ is the input alphabet, Δ is the output alphabet, σ is the transition-
and-output function from Q×Σ to 2Q×Δ∗

, and q0 ∈ Q is the initial state.

For a simple DTD, the end tag of a ∈ Σm can be omitted if the next symbol is
an end tag b̀ such that b �= a, or a start tag b́ such that b does not appear in
M(a). Although the condition related to start tag differs from the original one
in Section 2, they coincide for a simple DTD, because M(a)’s form is restricted
to enable this.

We simplify presentation of T (D) by describing it as taking a reversed string
and outputting all the reversed valid strings obtained by end-tag omission. The
transducer memorizes the last outputted symbol as its state and decides whether
an end tag can be omitted or not. The reversed string of a valid string α1α2 · · ·αn

is α̌n · · · α̌2α̌1 where ˇ́a = à and ˇ̀a = á. The GSM T (D) is formalized as follows.

Definition 4. Let D = (Σe, Σm,M, r) be a simple SGML DTD. We define the
GSM T (D) as (Q,ΣT , ΣT , σT , q0) where ΣT = Σ́e ∪ Σ̀e and Q = {q0} ∪ {qα |
α ∈ ΣT }. The GSM has the following transitions and outputs.

(qα, α) ∈ σT (q, α) if α ∈ ΣT and q ∈ Q.
(q0, ε) ∈ σT (q0, x́) if x ∈ Σm.
(qá, ε) ∈ σT (qá, x́) if x ∈ Σm, a ∈ Σe, and a �= x.
(qà, ε) ∈ σT (qà, x́) if x ∈ Σm, a ∈ Σe, and a does not appear in M(x).

Then, The language of a simple DTD D is formalized as (T (D)(L(G0(D))R))R.
It should be noted that the language cannot be represented by a regular hedge

language in general. Let us consider the following DTD 2.

<!DOCTYPE a [
<!ELEMENT a - O (a)? >

] >

The language of this DTD is {ámàn | 0 < m ∧ 0 ≤ n ≤ m} and cannot be
represented as an RHG.

4 A Translation from a DTD into an RHG

We consider a subclass of simple DTDs where the number of direct nestings of
omittable elements is bounded and translate a DTD in this class into an RHG
2 Although this DTD is not simple, the language can be formalized by slightly extend-

ing the definition of T (D).
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by considering tags of omittable elements as local symbols. This class includes
the HTML DTD and thus enables validation of dynamically generated HTML
documents with the decision algorithm of Minamide and Tozawa [MT06].

Let us consider the graph {(x, y) ∈ Σm × Σm | y appears in M(x)} where
Σm is the set of end-tag omittable elements. We say that a DTD is acyclic if
its graph is acyclic. This requirement corresponds to requiring that the number
of direct nestings of omittable elements is bounded. For an acyclic simple DTD,
we develop a translation into an RHG. It consists of the three steps.

First, we construct the RHG G′
0(D) that generates the same language as

G0(D) by taking advantage of the acyclicity of DTDs. It is done by recursively
expanding all nonterminals Xa for a ∈ Σm.

Example 2. For the DTD D1, we obtain G′
0(D1) = (Σ′

e, Σ́m ∪ Σ̀m, {Xc | c ∈
Σ′

e}, P ′, Xa) where Σ′
e = Σe \Σm and P ′ has the following production rules.

Xa → áx́(ýX∗
b ỳ|Xa)∗x̀Xbà Xb → b́X∗

b b̀

Hereafter in this section, we consider that the symbols in Σ́m ∪ Σ̀m are local:
Σ2 = Σe \Σm and Σ1 = Σ́m ∪ Σ̀m.

Second, we lift the GSM T (D) over Σ́e ∪ Σ̀e to Ta(D) over {Xb | b ∈ Σe \
Σm} ∪ Σ́m ∪ Σ̀m for each a ∈ Σe \ Σm. Namely, we lift the GSM operating on
the terminal symbols to Σ1∪N . This lifting is possible if a GSM is surface local.
A surface local GSM, as we define it, is a GSM that operate essentially on the
surface of balanced string.

Definition 5. Let Σ = Σ́2 ∪ Σ̀2 ∪ Σ1 and T = (Q,Σ,Σ, σ, s) be a GSM. We
say that T is surface local if the following conditions hold.

1. For each a ∈ Σ2, there exist states qá and qà such that σ(q, á) = {(qá, á)}
and σ(q, à) = {(qà, à)} for all q ∈ Q.

2. For all b ∈ Σ1, (q′, w) ∈ σ(q, b) implies w ∈ Σ∗
1 .

It is clear from the definition that the GSM T (D) for a simple SGML DTD D
is surface local. A surface local GSM can be lifted as follows.

Definition 6. Let Σ be Σ́2 ∪ Σ̀2 ∪ Σ1, T = (Q,Σ,Σ, σ, s) be a surface local
GSM, and G = (Σ2, Σ1, N, P, S) be an RHG.

We introduce a lifted GSM Ta = (Q,Σ1 ∪N,Σ1 ∪N, σ′, qà) for each a ∈ Σ2.
The transition-output function σ′ is defined as follows:

σ′(q, x) = σ(q, x) (q ∈ Q and x ∈ Σ1)
σ′(q,X) = {(qb́, X)} (q ∈ Q and G has a rule of the form X → b́Rb̀).

Finally, we construct the RHG G(D) that represents the language of D, by
composing Ta(D) and each production rule of G′

0(D).

Theorem 1. Let G and T be an RHG and a surface local GSM. We construct
an RHG G′ as follows:

X → áTa(R)à

for a production rule X → áRà. Then, T (L(G)) = L(G′).
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In the previous section, we have defined the language of an SGML DTD as
(T (D)(L(G0(D))R))R. Let G′ be an RHG constructed as in the theorem for
G′

0(D)R and T (D). Then we have G′ = T (D)(L(G0(D))R). Thus, the language
of D can be described by the RHG G′R.

Example 3. The grammar that generates the language of D1 can be described
as follows:

Xa → áx́(ýX∗
b ỳ?|Xa)∗x̀Xbà | áx́((ýX∗

b ỳ?|Xa)∗(ýX∗
b ỳ|Xa))?Xbà

Xb → b́X∗
b b̀

where Xa is the start symbol. The production rule for Xa can be read as follows.
If x̀ is omitted then the last ỳ cannot be omitted, and vice versa.

5 Exclusion and Inclusion in SGML DTD

In contrast to XML DTD, SGML DTD can specify non-local constraints on
elements with inclusion and exclusion. They are used to allow or disallow some
elements appearing as a descendant of an element.

We have extended our translation from an SGML DTD to an RHG to support
the exclusions appearing in the HTML DTD. To simplify translation, the support
of exclusion is restricted so that exclusion is specified only for non-omittable
elements. The HTML DTD satisfies this restriction.

Let us consider the following DTD to explain the extended translation.

<!DOCTYPE a [
<!ELEMENT a - - (b|c)* >
<!ELEMENT b - - (a,c) -(b)>
<!ELEMENT c - - (a)? -(c)>

] >

The parts -(b) and -(c) are the specifications of exclusion. The former means
b cannot appear as a descendant of b, even if it is specified as being allowed to
do so. The latter indicates the same for c in c.

This DTD is translated into an RHG by introducing a nonterminal XS
a for

each element name a and the set of excluded elements S as follows:

X∅
a → á(X∅

b |X∅
c )∗à X

{b}
a → á(X{b}

c )∗à X
{b,c}
a → áà

X∅
b → b́X

{b}
a X

{b}
c b̀ X

{b}
b → b́X

{b}
a X

{b}
c b̀

X∅
c → ćX

{c}
a c̀ X

{b}
c → ćX

{b,c}
a c̀

where X
{b,c}
b is not included because it generates no terminal strings.

The transducer T (D) for the DTD D can be constructed in the exactly same
manner under the condition that exclusion is specified only for non-omittable
elements.

One problem with this translation is that it may increase the size of the grammar
exponentially. In our experiments, we could obtain an RHG for the HTML DTD
even if we enabled exclusion. However, we failed to minimize the RHG and to use
it directly for HTML validation.
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6 Experimental Results

We have implemented a parser for SGML DTD and the translation from DTDs
into RHGs given above. We conducted our experiments on the HTML 4.01 Tran-
sitional DTD, which contains declarations for 109 elements. To simulate unsup-
ported features of DTDs appearing in the HTML DTD, we modified the DTD
as follows.

– The TABLE element is defined as follows. The start and end tags of TBODY
can be omitted and they usually are omitted.

<!ELEMENT TABLE - -
(CAPTION?, (COL*|COLGROUP*), THEAD?, TFOOT?, (TBODY)+)>

<!ELEMENT TBODY O O (TR)+ -- table body -->

To support the omission, we have replaced the (TBODY)+ part of the content-
model of the TABLE with (TBODY|TR)+ and conducted our experiments.

– The inclusion feature of the SGML DTD is used in the definition of the
header of HTML documents. We have simulated it by expanding the element
declarations with included elements. Although the inclusion feature is also
used for the INS and DEL elements, we ignored them because the programs
we considered do not use the INS and DEL elements.

In the implementation, we represent an RHG as a grammar with production
rules of the forms X → áY àZ or X → bY or X → ε, where a ∈ Σ2 and b ∈ Σ1.
A grammar in this form can be considered as a tree automaton and algorithms
such as determinization and minimization for tree automata can be applied to
it. An RHG can be converted into a grammar in this form, and vice versa. In our
implementation, a minimized RHG is converted into an algebra called a binoid
to decide CFL-RHL inclusion [PQ68].

When we ignored exclusions we obtained the RHG that has 187 nonterminals
and 7471 production rules. After minimizing it, the grammar has 56 nonter-
minals and 6758 production rules and the binoid converted from the RHG has
2381 elements. The RHG obtained with exclusion enabled translation has 3213
nonterminals and 115647 production rules. As we noted earlier, the translation
to support exclusion may increase the size of the RHG exponentially. Although
the RHG is only one order of magnitude larger, the determinization and mini-
mization of the RHG and the generation of the binoid failed because the RHG
is too large.

The implementation was incorporated into the PHP string analyzer de-
veloped by Minamide [Min05]. The analyzer generates a CFG that conser-
vatively approximates the string output of a PHP program. It is available
from http://www.score.cs.tsukuba.ac.jp/~minamide/phpsa/. In our exper-
iments, we checked the validity of Web pages generated by a PHP program
against the HTML DTD. To reduce the size of the binoid obtained by the trans-
lation, we first extract the set of element names appearing in a CFG obtained
by the analyzer and delete the elements from the DTD that do not appear in
the set.
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Table 1. HTML validation

Element RHG (minimized) Execution
Programs names Nonterminals Productions Binoid Bugs time (s)

webchess 20 20 439 375 1 3.37
faqforge 19 16 315 106 16 1.19
phpwims 18 16 268 39 3 1.65

Table 1 shows the results of our experiments. The column ‘elements’ shows
the number of element names that may appear in generated HTML documents.
The columns ‘RHG’ and ‘binoid’ show their sizes. We found several bugs through
our experiments and corrected them. The numbers of bugs found are also shown.
The column ‘time’ shows the execution time spent to generate binoids from the
DTD and check the CFL-RHL inclusion. These times do not include the time
spent to generate a CFG from a PHP program by the analyzer.
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Abstract. We investigate the tree-series-to-tree-series (ts-ts) transfor-
mation computed by tree series transducers. Unless the used semiring is
complete, this transformation is, in general, not well-defined. In practice,
many used semirings are not complete (like the probability semiring). We
establish a syntactical condition that guarantees well-definedness of the
ts-ts transformation in arbitrary commutative semirings. For positive
(i. e., zero-sum and zero-divisor free) semirings the condition actually
characterizes the well-definedness, so that well-definedness is decidable
in this scenario.

1 Introduction

Tree series transducers [1,2] are a generalization of tree transducers [3,4,5,6,7].
The framework Tiburon [8] implements a generalization of top-down tree series
transducers [2] using various weight structures such as the Boolean semiring
({0, 1},∨,∧) and the probability semiring (R,+, ·). Such tree series transducers
compute both a tree-to-tree-series (t-ts) and a tree-series-to-tree-series (ts-ts)
transformation, where a tree series is a mapping assigning a weight to each tree.
The t-ts transformation is always well-defined, but the ts-ts transformation is
well-defined only for complete semirings [9,10] such as the Boolean semiring.
However, for the probability semiring the ts-ts transformation need not be well-
defined because infinite sums might occur. Of course, some incomplete semirings
(e. g., positive semirings) can be extended by a new element ∞, which is the
result of all nontrivial infinite sums. However, such a definition is clearly not
practical and does not work for the probability semiring.

A standard application of the ts-ts transformation is the computation of the
image of a recognizable tree series [11,12,13,14]. This is, for example, used to
translate a language model (parses of an input sentence) to a language model
(resp., parses of output sentences) in another language. For some tree series
transducers the image is again a recognizable tree series [15,16]. In fact, the image
operation is implemented in Tiburon for the Boolean semiring. However, in
the probability semiring, the image operation is only meaningful if the ts-ts
transformation is well-defined.
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In this contribution we investigate for which tree series transducers the ts-
ts transformation is well-defined following the approach of [17,18] for weighted
finite-state transducers. To this end, we develop a general notion of convergence
that can serve as a baseline for all semirings. More refined notions for partic-
ular semirings can be derived in the same manner. Thereafter we present a
syntactical condition, which in general, guarantees that the ts-ts transformation
is well-defined (using the baseline notion of convergence mentioned). In fact,
the condition is such that we obtain a characterization for certain tree series
transducers over positive (i. e., zero-sum and zero-divisor free) semirings. This
yields that well-definedness of the ts-ts transformation is decidable for certain
tree series transducers over positive semirings. This also applies to tree series
transducers over the Boolean semiring (i. e., tree transducers).

2 Preliminaries

The nonnegative integers are denoted by N and N+ = N \ {0}. We use [k, n]
for {i | k � i � n} where the i are either integers or reals depending on the
context. In the former case, we abbreviate [1, n] to [n]. An alphabet is a finite
set of symbols. A ranked alphabet is an alphabet Σ together with a mapping
rk : Σ → N, which assigns to each symbol a rank. The set of symbols of rank k
is denoted by Σk. For convenience we assume fixed sets X = {xi | i ∈ N+}
and Z = {zi | i ∈ N+} of variables. For k ∈ N we use Xk = {xi | i ∈ [k]} and
Zk = {zi | i ∈ [k]}. Given V ⊆ X ∪ Z, the set TΣ(V ) of Σ-trees indexed by V is
the smallest set T such that V ⊆ T and for every σ ∈ Σk and t1, . . . , tk ∈ T
also σ(t1, . . . , tk) ∈ T . We generally assume that X ∪ Z is disjoint with any con-
sidered ranked alphabet, so we usually write α instead of α() whenever α ∈ Σ0.
Moreover, we also use TΣ for TΣ(∅). Let t, t1, . . . , tk ∈ TΣ(Z). We denote by
t[t1, . . . , tk] the tree obtained from t by replacing for every i ∈ [k] every zi-leaf
in t by the tree ti. The tree t is nondeleting (resp., linear) in V ⊆ Z, if each
v ∈ V occurs at least (resp., at most) once in t. The set of variables occurring
in t is var(t) and the size of t (i. e., the number of nodes in t) is size(t). Finally,
the height of a tree is inductively defined by height(v) = 1 for every v ∈ V
and height(σ(t1, . . . , tk)) = 1 + max{height(ti) | i ∈ [k]} for every σ ∈ Σk and
t1, . . . , tk ∈ TΣ(V ).

An algebraic structure (A,+) is a monoid if + is an associative (binary) op-
eration on A that permits a neutral element. A (commutative) semiring (A,+, ·)
consists of two commutative monoids (A,+) and (A, ·) such that · distributes
over + and the neutral element 0 of (A,+) is absorbing with respect to · (i. e.,
a · 0 = 0 = 0 · a for every a ∈ A). The neutral element of an additive operation
is usually denoted by 0 and that of multiplicative operation by 1. We also use
the summation

∑
i∈I ai for an index set I and a family (ai | i ∈ I) of semiring

elements. Such a summation is well-defined if ai = 0 for almost all i ∈ I. The ac-
tual sum is then defined in the obvious way. A semiring A = (A,+, ·) is zero-sum
free, whenever a + b = 0 implies that a = 0 for every a, b ∈ A, and zero-divisor
free, whenever a · b = 0 implies that 0 ∈ {a, b}. A zero-sum and zero-divisor free
semiring is positive.
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Let A=(A,+, ·) be a semiring. Every mapping ϕ : T → A for some T ⊆ TΣ(V )
is a tree series. We denote the set of those by A〈〈T 〉〉. We usually write the
coefficient ϕ(t) of t in ϕ as (ϕ, t). Moreover, we write ϕ as the formal sum∑

t∈T (ϕ, t) t. We extend both operations of A componentwise to tree series,
i. e., (ϕ + ψ, t) = (ϕ, t) + (ψ, t) for every ϕ, ψ ∈ A〈〈T 〉〉 and t ∈ T . The support
of ϕ is supp(ϕ) = {t | (ϕ, t) �= 0}. The set of tree series with finite support is
denoted by A〈T 〉. For every a ∈ A, the tree series ã is such that (ã, t) = a
for every t ∈ T . The tree series ϕ is nondeleting (resp., linear) in V , if every
t ∈ supp(ϕ) is nondeleting (resp., linear) in V . We use var(ϕ) as a shorthand for⋃

t∈supp(ϕ) var(t).
Let ϕ ∈ A〈TΔ(Z)〉 and ψ1, . . . , ψk ∈ A〈TΔ(Z)〉. The pure substitution [19,2] of

(ψ1, . . . , ψk) into ϕ is defined by

ϕ←(ψ1, . . . , ψk) =
∑

t,t1,...,tk∈TΔ(Z)

(ϕ, t)(ψ1, t1) · · · (ψk, tk) t[t1, . . . , tk] .

Let A be a semiring, Σ and Δ be ranked alphabets, and Q a finite
set. A (polynomial) representation [2] is a family μ = (μk | k ∈ N) of
μk : Σk → A〈TΔ(Z)〉Q×(Q×Xk)∗

such that for every σ ∈ Σk and q ∈ Q

(i) μk(σ)q,w ∈ A〈TΔ(Z|w|)〉 for every w ∈ (Q×Xk)∗ and
(ii) μk(σ)q,w = 0̃ for almost all w ∈ (Q×Xk)∗.

A (polynomial) tree series transducer [1,2] is a tuple (Q,Σ,Δ,A, I, μ) such that
μ is a representation and I ⊆ Q. It is top-down (resp., bottom-up) [2] if μk(σ)q,w

is nondeleting and linear in Z|w| [resp., if there exist q1, . . . , qk ∈ Q such that
w = (q1, x1) · · · (qk, xk)] for every σ ∈ Σk, q ∈ Q, and w ∈ (Q × Xk)∗ such
that μk(σ)q,w �= 0̃. Let hμ : TΣ → A〈〈TΔ〉〉Q be defined for every σ ∈ Σk,
t1, . . . , tk ∈ TΣ, and q ∈ Q by

hμ

(
σ(t1, . . . , tk)

)
q

=
∑

w∈(Q×Xk)∗,
w=(q1,xi1)···(qn,xin )

μk(σ)q,w←
(
hμ(ti1 )q1 , . . . , hμ(tin)qn

)
.

The transducer M computes the tree-to-tree-series transformation (t-ts trans-
formation) τM : TΣ → A〈〈TΔ〉〉 defined by τM (t) =

∑
q∈I hμ(t)q for every t ∈ TΣ.

Both hμ and the t-ts transformation τM are well-defined. Finally, the tree-
series-to-tree-series transformation (ts-ts transformation) computed by M is
τM (ϕ) =

∑
t∈TΣ

(ϕ, t) · τM (t) for every ϕ ∈ A〈〈TΣ〉〉, whenever this sum is well-
defined. We say that τM is well-defined whenever τM (ϕ) is well-defined for every
ϕ ∈ A〈〈TΣ〉〉.

3 Convergence

In this section, we will explore when the ts-ts transformation of a tree series
transducer M = (Q,Σ,Δ,A, I, μ) is well-defined. Roughly speaking, it is well-
defined if every output tree u ∈ TΔ can be generated [i. e., u ∈ supp(τM (t))] by
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only finitely many input trees t ∈ TΣ. Note that our definition of well-definedness
works in any semiring; for particular semirings like (R,+, ·, 0, 1) other notions of
well-definedness (or equivalently, convergence) might be more realistic. However,
those more refined notions typically include our notion of well-definedness (i. e.,
any sum that is well-defined according to our definition is also well-defined in
the refined setting and the sums coincide), so that our approach can be seen as
a general baseline. We first show that τM is well-defined if and only if τM (1̃) is
well-defined. Thus, subsequent investigations need not consider the actual input
tree series.

Proposition 1. The ts-ts transformation τM is well-defined if and only if τM (1̃)
is well-defined.

Proof. Let ϕ ∈ A〈〈TΣ〉〉 and u ∈ TΔ. One direction is trivial. In the other di-
rection, the sum τM (1̃) is well-defined by assumption. Hence, (τM (t), u) = 0 for
almost all t ∈ TΣ. Thus, τM (ϕ) is well-defined. ��

Let us take a closer look at τM (1̃). By definition, it is
∑

t∈TΣ
τM (t). This is well-

defined if it is not possible to transform large (with respect to the size) input
trees to small output trees. Let us introduce the notion of convergence [18] that
we will use. For every ϕ ∈ A〈〈TΔ(Z)〉〉 let ‖ϕ‖ = maxt∈supp(ϕ) size(t)−1. We call
‖ϕ‖ the norm of ϕ. Intuitively, the norm of ϕ is the inverse of the size of a
smallest tree in the support of ϕ. Thus, the norm of 0̃ is 0.

Proposition 2. For every ϕ, ψ ∈ A〈〈TΔ(Z)〉〉

(i) ‖ϕ‖ = 0 if and only if ϕ = 0̃.
(ii) ‖ϕ + ψ‖ � ‖ϕ‖+ ‖ψ‖.

Actually, it can be shown that ‖·‖ is a monoid-homomorphism from
(A〈〈TΔ(Z)〉〉,+) to ([0, 1],max) if A is zero-sum free. We derive the dis-
tance d‖·‖ on A〈〈TΔ(Z)〉〉, which is given by d‖·‖(ϕ, ψ) = | ‖ϕ‖ − ‖ψ‖ | for every
ϕ, ψ ∈ A〈〈TΔ(Z)〉〉.

Proposition 3. The distance d‖·‖ defines a pseudometric on A〈〈TΔ(Z)〉〉.

With the help of this pseudometric, we can now introduce the usual notion of
Cauchy-convergence for sequences of tree series.

Definition 4. Let Ψ = (ψi | i ∈ N) be a family of ψi ∈ A〈〈TΔ(Z)〉〉. It converges
(using the pseudometric d‖·‖) if

(∃ψ ∈ A〈〈TΔ(Z)〉〉)(∀ε > 0)(∃jε ∈ N)(∀j � jε) : d‖·‖(ψj , ψ) < ε .

If Ψ converges, then ψ in the above display is a limit of Ψ and we say that Ψ
converges to ψ or symbolically Ψ → ψ.

Convergence to 0̃ will play a central role. In fact, Ψ converges to 0̃ if

(∀n ∈ N)(∃jn ∈ N)(∀j � jn) : min
t∈supp(ψj)

size(t) > n .
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Let T = (ti | i ∈ N) be a family of ti ∈ TΣ. It is an enumeration of TΣ if for
every t ∈ TΣ there exists exactly one i ∈ N such that ti = t, and it is size-
compliant if size(ti) � size(tj) for all i � j. We write τM (T ) for the family
(τM (ti) | i ∈ N). Next we characterize when τM (1̃) is well-defined in terms of
size-compliant enumerations.

Theorem 5. The following are equivalent:

(i) τM is well-defined.
(ii) τM (T )→ 0̃ for every size-compliant enumeration T of TΣ.
(iii) τM (T )→ 0̃ for some size-compliant enumeration T of TΣ.

Proof. The existence of at least one size-compliant enumeration of TΣ is self-
evident, so (ii) clearly implies (iii). Let us assume that there exists a size-
compliant enumeration T = (ti | i ∈ N) such that τM (T ) converges to 0̃. We
know that for every n ∈ N there exists a jn ∈ N such that for all j � jn we
have that minu∈supp(τM(tj)) size(u) > n, or equivalently, u /∈ supp(τM (tj)) for all
u ∈ TΔ with size(u) � n. In particular, for every u ∈ TΔ there exists nu ∈ N
such that u /∈ supp(τM (tn)) for all n � nu. Thus, τM (1̃) and by Proposition 1
also τM are well-defined.

Conversely, suppose that τM and hence τM (1̃) are well-defined (see Propo-
sition 1). There exists a finite subset Su ⊆ TΣ for every tree u ∈ TΔ such
that u /∈ supp(τM (t)) for every t /∈ Su. Let n ∈ N and T = (ti | i ∈ N)
be a size-compliant enumeration of TΣ. Let Un = {u ∈ TΔ | size(u) � n}
and Sn =

⋃
u∈Un

Su. Clearly, Un and thus also Sn are finite. Finally, let mn

= maxt∈Sn size(t) + 1 and jn be an index such that size(tjn) � mn. It re-
mains to prove that minu∈supp(τM(tj)) size(u) > n for every j � jn. Suppose
that u ∈ supp(τM (tj)) and size(u) � n. Thus u ∈ Un. By this, we obtain that
tj ∈ Su and tj ∈ Sn. It follows that mn � size(tj) + 1. By the size-compliance
condition, size(tj) � size(tjn) � mn. With the previous inequality, we obtain
size(tj) � size(tj) + 1. Thus, there exists no u ∈ supp(τM (tj)) with size(u) � n,
which proves that τM (T )→ 0̃. ��

The previous theorem is clear if A is zero-sum free, but in other cases one might
be tempted to assume that the theorem only holds because of our peculiar (or
even deficient) definition of well-defined sums. Let us show on an example that
this is indeed not the case. Let Σ = Δ = {γ(1), α(0)} and A = Z. Moreover, let
τM (t) = (−1)|t|γ α. Now one might argue that τM (1̃) is well-defined and equal to
0̃ because τM (γn(α))+τM (γn+1(α)) = 0̃ for every even n. However, the last prop-
erty also holds for each odd n, which yields τM (1̃) = τM (α) +

∑
t∈TΣ\{α} τM (t)

= τM (α). Thus, we argued for two different results of the sum, which shows that
it is not well-defined.

4 Towards a Syntactical Property

Next, we present a syntactic condition that guarantees that the ts-ts
transformation computed by a tree series transducer is well-defined. Let
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M = (Q,Σ,Δ,A, I, μ) be a tree series transducer. Note that we could reduce the
problem to unweighted tree transducers, but we avoid this for two reasons: (i)
It is rather unintuitive that

∨
i∈N

1 is not well-defined in the Boolean semiring
({0, 1},∨,∧) and (ii) we lack the space to introduce them (using the standard
set notation). We generally follow the approach of [17,18] by the analysis is
slightly more complicated by the tree structure. First we introduce some impor-
tant notions like the dependency relations P,R ⊆ Q×Q. For every p, q ∈ Q, let
(p, q) ∈ P (resp., (p, q) ∈ R) if zi ∈ supp(μk(σ)p,w (resp., supp(μk(σ)p,w) �= ∅)
for some σ ∈ Σk and w ∈ (Q×Xk)∗ such that wj = (q, xi) for some 1 � j � |w|.
Let � and � (resp., ≺ and %) be the transitive and reflexive, transitive closure
of P (resp., of R), respectively. Note that in general � and % are not par-
tial orders. Then the following definitions are natural (note that our reading is
top-down).

Definition 6. Let q ∈ Q.

– If q � q (resp., q ≺ q), then q is circular (resp., self-replicating).
– If there exists p ∈ I such that p % q, then q is accessible.
– If there exist p ∈ Q and α ∈ Σ0 such that μ0(α)p,ε �= 0̃ and q % p, then q is

co-accessible.

The tree series transducer M is reduced if every state is accessible and co-
accessible. Finally, M is non-circular if no state q ∈ Q is circular.

Note that τM is trivially well-defined if M has no self-replicating state (the latter
can easily be checked). In the sequel, we assume that M has at least one self-
replicating state. It is also obvious that we can construct a reduced tree series
transducer M ′ that is equivalent to M . We simply remove all states that are not
accessible or not co-accessible. It should be clear that this procedure does not
change the computed tree series.

Proposition 7. There exists a reduced tree series transducer M ′ such that
τM = τM ′ .

Next, we introduce an essential notion: deletion points. A deletion point is a pair
(p, q) of states such that one of the transitions into p deletes a subtree potentially
processed in q.

Definition 8. We say that (p, q) ∈ Q2 is a deletion point if there exist σ ∈ Σk,
w ∈ (Q×Xk)∗, u ∈ supp(μk(σ)p,w), and i ∈ [k] such that

– there does not exist 1 � j � |w| and r ∈ Q such that wj = (r, xi), or
– zj /∈ var(u) for some 1 � j � |w| such that wj = (q, xi).

The conditions could be called input- and output-deleting, respectively.

Note that top-down and bottom-up tree series transducers have a deletion point
if and only if they are deleting [2]. Note that if a top-down tree transducer has
the deletion point (p, q), then it also has the deletion point (p, r) for every r ∈ Q.
Let us illustrate the notion on a small example.

Example 9. Let M = ({�,⊥}, Σ,Σ,N, {�}, μ) be the tree series transducer with
Σ = {σ(2), α(0)} and
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μ0(α)p,ε = 1 α μ2(σ)⊥,(⊥,x1)(⊥,x2) = 1 σ(z1, z2)
μ2(σ)�,(�,x1)(⊥,x2) = 1 σ(z1, α) μ2(σ)�,(⊥,x1)(�,x2) = 1 σ(α, z2)

for every p, q ∈ {�,⊥}. Then only (�,⊥) is a deletion point.

Definition 10 (see, e. g., [18]). The tree series transducer M is regulated if
it is non-circular and there exists no deletion point (p, q) such that q % r for
some self-replicating r ∈ Q.

Note that it is clearly decidable whether a tree series transducer is regulated. A
regulated top-down tree series transducer is nondeleting [2]. This is due to the
fact that a deleting top-down tree series transducer has a deletion point (p, q)
and thus also the deletion point (p, r) where r is a self-replicating state.

Theorem 11. Let M be a regulated tree series transducer. Then τM is well-
defined.

Proof. Let M = (Q,Σ,Δ,A, I, μ). By Theorem 5, it is sufficient to show that
for an arbitrary size-compliant enumeration T = (ti | i ∈ N) the family τM (T )
converges to 0̃. Let mx = max{k | Σk �= ∅} and n = card(Q). We will prove
that �height(t)/n� − n � height(u) for every t ∈ TΣ and u ∈ supp(τM (t)). Con-
sider a maximal path in t (which defines the height). Since M is non-circular,
it may erase at most n − 1 input symbols along this path before it produces
output. It might also decide to delete the translation incurred along a suffix of
the path. However, the length of such a suffix is limited by n because other-
wise M has a deletion point that leads to a self-replicating state. Note that if
M is a top-down tree series transducer, then it may not delete (because reg-
ulated implies nondeletion). Thus, in this case the bound could be improved
to �height(t)/n� � height(u). The formal proof of both bounds is straightforward
and hence omitted. With the given lower bound, it is clear that τM (T ) converges
to 0̃ because height(u) � size(u) for every u ∈ TΔ and size(t) � mxheight(t) for
every t ∈ TΣ. Thus, τM is well-defined. ��
We will show the converse only for positive semirings. The main benefit of this
approach is that the problem can essentially be reduced to unweighted transduc-
ers. We need an additional notion. The tree series transducer M is input-linear
if for every q ∈ Q, σ ∈ Σk, and w ∈ (Q × Xk)∗ such that μk(σ)q,w �= 0̃ there
exists at most one 1 � j � |w| such that wj = (p, x) for every x ∈ Xk. Note
that bottom-up implies input-linear. The following lemma shows that every tree
series transducer can be turned into an input-nondeleting one (see Definition 8).
In fact, we will only need it for input-linear tree series transducers.

Lemma 12 (see [20, Lemma 1(1)]). If M is input-linear, then there exists
a bottom-up tree series transducer M ′ such that τM ′ = τM .

Proof. It follows directly by reconsidering the proof of [20, Lemma 1(1)]. The
top-down tree series transducer constructed in this proof will be the identity if
M is input-linear (as already noted before [20, Theorem 4]). Finally, note that
the completeness-assumption is not necessary in our case because our tree series
transducers are always polynomial [20]. ��
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Consequently, we will only deal with bottom-up tree series transducers. For
those there exists a decomposition result [2, Lemma 5.6], which states that every
bottom-up tree series transducer can be decomposed into a relabeling tree series
transducer and a {0, 1}-weighted homomorphism tree series transducer (see [2]
for the definitions of those notions). Roughly speaking, the relabeling tree series
transducer annotates each node of the input tree by an applicable entry of μ. Such
relabeled input trees are called runs. The homomorphism then simply evaluates
the run thereby creating the output tree. We use this decomposition in the
following informal argument.

Lemma 13. Let M be a reduced bottom-up tree series transducer over a positive
semiring. If τM is well-defined, then M is regulated.

Proof. Suppose that M = (Q,Σ,Δ,A, I, μ) is not regulated. Since A is posi-
tive, we restrict ourselves to the unweighted (i. e., Boolean-semiring weighted)
bottom-up tree transducer M ′ obtained by replacing every nonzero semiring co-
efficient in μ by 1. By a minor extension of [21, Corollary 3] we have supp(τM ′ (t))
= supp(τM (t)) for every t ∈ TΣ . We will identify M and M ′ in the following
discussion. If M has a deletion point (p, q), then there exists a subtree u of a run,
which is deleted by the evaluation homomorphism, because p is accessible and
co-accessible. Note that we can replace u by any run that arrives in the state p
at the root. If there exists a self-replicating state r such that p % r, then it is
immediately clear that there exist infinitely many such runs, and consequently,
infinitely many suitable input trees. Since the subrun is deleted all those input
trees can be transformed to the same output tree. On the other hand, if M is
circular, then we can transform infinitely many input trees into the same output
tree by using the circle any number of times. The formal proof is again straight-
forward and omitted. ��

Theorem 14. Let M be a reduced input-linear tree series transducer over a
positive semiring. Then τM is well-defined if and only if M is regulated.

Proof. It follows from Theorem 11 and Lemmata 12 and 13. ��
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Abstract. Bit-splitting breaks the problem of monitoring traffic pay-
loads to detect the occurrence of suspicious patterns into several paral-
lel components, each of which searches for a particular bit pattern. We
analyze bit-splitting as applied to Aho-Corasick style string matching.
The problem can be viewed as the recovery of a special class of regu-
lar languages over product alphabets from a collection of homomorphic
images. We use this characterization to prove correctness and to give
space bounds. In particular we show that the NFA to DFA conversion of
the Aho-Corasick type machine used for bit-splitting incurs only linear
overhead.

1 Introduction

Increasingly, routers are asked to play a role in scanning for, logging, and even
preventing network based attacks. Signature based schemes rely on a set of
signatures to describe malicious or suspicious data. While a wide variety of
signature types are possible, depending on the exact nature of the intrusion
detection or prevention method, a signature usually consists of at least a type
of packet to search, a sequence of bytes to match, and a location where that
sequence is to be searched for.

In an ideal case a signature includes a sequence of bytes which are always
transmitted during a specific attack. The SQLSlammer worm, for example, sends
376 bytes to UDP port 1434 and can be detected in part by searching for the
invariant framing byte 0x04 [4]. It is not uncommon to have thousands of signa-
tures, each 4 to 40 bytes long. Searching through every byte of the payload of
every packet for one of a large number of signatures quickly becomes a significant
computational challenge.

One implementation concern is storage. A single state of a DFA must have
256 next-pointers each of which can address one of 10,000 states. At 448 bytes
per state, the entire rule set of the intrusion detection system Snort [5] would
require of 6 MB of on-chip storage.

To address these problems, bit-split Aho-Corasick machines have been pro-
posed to reduce the storage requirements by a factor of 10, and enable scanning
throughput on the order of 10 Gb/s (see [6]). While this work has demonstrated
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that bit-splitting works in the specific case of Aho-Corasick machines built over
the Snort rule set, correctness or efficiency in the general case has not been
shown. In this paper we analyze bit-splitting as applied to Aho-Corasick based
string matching and prove that it works correctly in general. In addition, we
prove that this approach avoids a potential combinatorial explosion observed in
the simulation of NFA by DFA.

String matching in this context can be viewed as the problem of efficiently
recognizing languages of the form

Σ∗(p1 + p2 + · · ·+ pm) (1)

where P = {p1, p2, . . . , pm} is a finite set of patterns (keywords). This corre-
sponds to locating the first index in the given packet (text) where a signature
(pattern) starts.

Some intrusion detection techniques make use of context free grammars to de-
fine a language of signatures, such as the LL(k) parser at the heart of STATL [3].
The majority of intrusion detection systems are far more restrictive. The set P of
patterns that Snort searches is a finite language. However, because Snort needs
to find any member of P at any offset it is essentially a recognizer for languages
of finite suffixes as in (1).

For some of the recent approaches to packet scanning techniques we refer the
reader to [2, 6, 7] and the references therein.

2 The General Case of Two Alphabets

Our starting point is bit-splitting as described in [6] where a set of binary ma-
chines that run in parallel from a given Aho-Corasick machine M are con-
structed. Each machine searches for one bit of the input at a time, and a match
occurs only when all of the machines agree. Since the split machines have exactly
two possible next states they are far easier to compact into a small amount of
memory. Also they are loosely coupled, and they can be run independently of
one another.

The alphabet of M can be thought of as being Σ = {0, 1}8. The correctness
and performance of bit-splitting has to do with languages defined over alphabets
which are Cartesian products of other alphabets, binary or otherwise.

Consider a DFA where the input alphabet is a Cartesian product of two
alphabets. Such an automaton is a finite state machine M = (Q,Σ, δ, q1, F )
where Q = {q1, q2, . . . , qm} is a set of states, q1 is the start state, and δ : Q×Σ →
Q is the transition function and F ⊆ Q is the set of final states.

Suppose Σ = A × B for A = {α1, α2, . . . , αr} and B = {β1, β2, . . . , βs}. We
further assume that r, s ≥ 2.

Let L = L(M) denote the language accepted by M . Each w ∈ L is of the form
w = a1b1 a2b2 · · · anbn for some n ≥ 0 and ai ∈ A, bi ∈ B for i = 1, 2, . . . , n.

M can be “bit-split” to construct two nondeterministic finite state machines
MA and MB. This is done by changing the alphabet and the transition function
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of M , but not the set of states, the initial state, or the set of final states, in the
following manner.

Definition 1. Given a DFA M = (Q,Σ, δ, q1, F ) where Σ = A × B with A =
{α1, α2, . . . , αr} and B = {β1, β2, . . . , βs}, define

MA = (Q,A, δA, q1, F ) where ∀a ∈ A, q ∈ Q, δA(q, a) =
s⋃

j=1

δ(q, aβj) ,

MB = (Q,B, δB, q1, F ) where ∀b ∈ A, q ∈ Q, δB(q, b) =
r⋃

i=1

δ(q, αib) .

MA and MB are called bit-split automata or projection automata obtained from
M . LA = L(MA) and LB = L(MB) denote the languages accepted by MA and
MB, respectively.

MA and MB can be described in a number of ways. Probably the easiest visu-
alization is as follows: To construct the transition diagram of MA, make a copy
of M and erase the second letter in every transition in the transition diagram of
M . MB is constructed similarly. Since r, s ≥ 2, MA and MB are both nondeter-
ministic. The final step in bit-splitting is to take MA and MB and construct an
equivalent DFA DMA to MA and an equivalent DFA DMA to MB. This final
step is very important from an implementation standpoint, both because DFA
are the only models that can be implemented on real machines and at the same
time, the construction from NFA to DFA in general has the potential to increase
the number of states exponentially.

The languages LA and LB are easily seen to be homomorphic images of L. For
example, if we define the homomorphism hA : Σ → A by setting hA(αiβj) = αi

for every letter αiβj ∈ Σ for i = 1, 2, . . . , r, j = 1, 2, . . . , s, then LA = hA(L). In
particular, given a regular expression R denoting L, a regular expression for LA

is obtained from R by replacing each occurrence of the letter αiβj by αi, and
a regular expression for LB is obtained from R by replacing each occurrence of
αiβj by βj.

Example: When Σ = A × B with A = {0, 1} and B = {a, b}, the language L
over Σ denoted by the regular expression (0a + 0b + 1a + 1b)∗0b results in the
languages LA over A and LB over B denoted by the regular expressions (0+1)∗0
and (a + b)∗b, respectively. The transition diagrams of M , MA and MB are as
shown in Figure 1.

Definition 2. Given LA over A and LB over B, the language Alt(LA,LB) over
A×B is defined by

Alt(LA,LB) = {a1b1 a2b2 · · ·anbn | n ≥ 0, a1a2 · · · an ∈ LA, b1b2 · · · bn ∈ LB}.

The problems that we formalize in this paper come down to the recovery of L
from LA and LB, and the state complexity of the conversion of MA to DMA

and MB to DMB for Aho-Corasick machines.
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Fig. 1. MA and MB from M : Σ = A × B with A = {0, 1}, B = {a, b}

Lemma 1. Suppose w = a1b1 a2b2 · · · anbn ∈ L, where L = L(M) for a DFA
M over the alphabet A × B, as in Definition 1. Then a1a2 · · ·an ∈ LA and
b1b2 · · · bn ∈ LB . In other words

L ⊆ Alt(LA,LB). (2)

Proof. Suppose a1b1 a2b2 · · ·anbn ∈ L. Then there are states qi1 , qi2 , . . . , qin+1

in Q with q1 = qi1 and qin+1 ∈ F with δ(qij , ajbj) = qij+1 for j = 1, 2, . . . , n.
By the definition of δA, qij+1 ∈ δA(qij , aj) for j = 1, 2, . . . , n. Furthermore
qin+1 is also a final state of MA. Thus a1a2 · · · an ∈ LA. Similarly b1b2 · · · bn ∈
LB. Therefore every a1b1 a2b2 · · · anbn ∈ L belongs to Alt(LA,LB) and (2)
follows. �

Remark: Equality in (2) does not necessarily hold. For example when Σ =
{0, 1} × {a, b} and L over Σ is the language denoted by the (0a + 0b + 1a +
1b)∗(0b + 1a), LA and LB are the languages denoted by the regular expressions
(0 + 1)∗(0 + 1) and (a + b)∗(a + b), respectively. Thus a1 = 0 and b1 = a are in
LA and LB , respectively. Therefore a1b1 = 0a ∈ Alt(LA,LB), but 0a �∈ L.

Definition 3. Suppose L = L(M) where M is a DFA over Σ = A × B. L
satisfies the alternation property if for every n ≥ 0, ai, xi ∈ A, bi, yi ∈ B for
i = 1, 2, . . . , n,

a1y1 a2y2 · · · anyn, x1b1 x2b2 · · ·xnbn ∈ L implies a1b1 a2b2 · · ·anbn ∈ L . (3)

This property suffices to prove equality in (2).

Proposition 1. Suppose L = L(M) over the alphabet Σ = A×B, LA and LB

defined as in Definition 1. If L has the alternation property, then

L = Alt(LA,LB) .
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Proof. By Lemma 1, we have L ⊆ Alt(LA,LB). To show Alt(LA,LB) ⊆ L,
assume a1b1 a2b2 · · · anbn ∈ Alt(LA,LB) for some n ≥ 0. By definition of
Alt(LA,LB), a1a2 · · · an ∈ LA and b1b2 · · · bn ∈ LB . First we show that a1a2 · · ·
an ∈ LA implies that there exist y1, y2, . . . , yn ∈ B with a1y1 a2y2 · · · anyn ∈ L.
Consider a sequence of states qi1 , qi2 , . . . , qin+1 in Q with q1 = qi1 and qin+1 ∈ F
with

qij+1 ∈ δA(qij , aj)

for j = 1, 2, . . . , n. By definition of δA,

qij+1 = δ(qij , ajβkj )

for some βkj ∈ B and we can take yj = βkj for j = 1, 2, . . . , n. Similarly,
b1b2 · · · bn ∈ LB implies that there exist x1, x2, . . . , xn ∈ A with x1b1x2b2 · · ·xnbn

∈ L. Since L satisfies the alternation property, we have a1b1 a2b2 · · · anbn ∈ L.
Thus Alt(LA,LB) ⊆ L. �

Lemma 2. The language L = L(M) accepted by a Aho-Corasick machine M
with a single keyword satisfies the alternation property.

Proof. L is of the form Σ∗p where Σ = A×B and p is the keyword. With the
notation of Definition 3,

a1y1 a2y2 · · ·anyn, x1b1 x2b2 · · ·xnbn ∈ L

implies that for some k,

a1y1 a2y2 · · ·anyn = a1y1 a2y2 · · ·akyk p ,

x1b1 x2b2 · · ·xnbn = x1b1 x2b2 · · ·xkbk p .

Therefore a1b1 a2b2 · · · anbn = a1b1 a2b2 · · · akbk p ∈ L . �

The language L we are interested in is a finite union of languages of the form
Σ∗p, where the union is over the keywords p. However L in this generality need
not satisfy the alternation property of Proposition 1.

It is possible to have an exponential blow-up in the number of states of a DFA
for a language L and the minimum state DFA for its homomorphic image h(L),
even if the homomorphism just identifies a pair of letters of the alphabet, e.g. a
homomorphism such as

h : {a, b, c} → {a, b}∗, where h(a) = a, h(b) = b, h(c) = b. (4)

Example: Let Σ = {a, b, c}. Given an integer k > 0, consider the DFA M on
k + 2 states shown in Figure 2. M accepts the language L denoted by (a +
b)∗c(a + b)k−1. The homomorphic image of L under the homomorphism (4) is
given by (a + b)∗b(a + b)k−1. It is well-known that the minimum state DFA for
this latter language requires Ω(2k) states.
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Fig. 2. DFA for a language whose homomorphic image requires Ω(2k) DFA states

2.1 NFA to DFA Conversion in Bit-Splitting

We can show that for any Aho-Corasick pattern matching machine, the projec-
tion automata MA and MB in our construction do not blow up in size when
converted to the equivalent DFA DMA and DMB.

Recall that the Aho-Corasick algorithm [1] constructs a special state machine
which is essentially a trie with back/cross edges, that can be constructed and
stored in linear time and space with respect to the total complexity of all the
keywords. The preprocessing for the construction is in two stages. The first
stage builds up a tree of all keyword strings. The tree has a branching factor
equal to the number of symbols in the language, and is thus a trie. The root
represents the state where no strings have been even partially matched. To match
a string, we start at the root node and traverse down the edges according to
the input characters observed. The second half of the preprocessing is inserting
failure edges. When a string match is not found, it is possible for the suffix of
one keyword to match a prefix of another. To handle this case, transitions are
inserted which shortcut from a partial match of one string to a partial match of
another. In the Aho-Corasick automaton, there is a one-to-one correspondence
between accepting states and strings, where each accepting state indicates the
match to a unique keyword.

Proposition 2. Suppose M is a Aho-Corasick automaton on n states over the
alphabet Σ = A × B and MA,MB are the two NFA obtained from M using
bit-splitting. Then the equivalent DFA DMA and DMB each have at most n
states.

Proof. M is built on a trie for a set of keywords P = {p1, p2, . . . , pm} with a
number of back and cross edges defined by the longest proper suffix that is also
a prefix of some keyword, as described above and in detail in [1].

It suffices to show that the trie part of MA (and MB) has no more than n
states, as the back and cross edges for DMA and DMB are constructed by the
longest proper suffix condition for the patterns obtained from P after collapsing
the alphabets to A and B, and this process does not change the number of states.

Note that we can obtain MA from M in stages, where in each stage a pair of
letters of the current alphabet are identified and the alphabet is reduced in size by
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one. For example starting with A×B = {0, 1}×{a, b, c} = {0a, 0b, 0c, 1a, 1b, 1c},
we can identify 1c and 1b, and then 1b with 1a obtaining the intermediate al-
phabet {0a, 0b, 0c, 1a}. Then we can identify 0c and 0b, and then 0b with 0a
obtaining {0a, 1a}, which is a copy of A. Thus it suffices to show that when only
two letters are identified, the resulting machine has a deterministic counterpart
with no more than n states.

Suppose we are given a trie T of an Aho-Corasick machine M on some al-
phabet Σ (which need not be a product of two alphabets), and we identify two
letters b, c ∈ Σ. In T , we first replace each occurrence of c by b. The resulting
structure is a nondeterministic trie, in the sense that a node can have more than
one child labeled by the letter b. As the second step, we identify nodes of the trie
top down, level by level, and at each level, from left to right. At the root of the
trie, we identify the children of the root indexed by the letter b. At other nodes,
we may also need to identify children of a node labeled by the same letter for
letters other than b, because identifications at the previous level may produce
more than one child in an identified node that is labeled by a letter other than
b. In addition, if any one of the identified nodes is a final state of the original
machine, then the node obtained by the identification is made into a final state
of the resulting machine. Since a sequence of identifications can only decrease
the number of nodes of the trie, the result follows. �

a b c

T1 T2 T3

a b

T1 T2 T3

Fig. 3. Identification of b and c: at the root of the trie

Note that the identifications can produce multiple back edges or cross edges if we
keep these edges in addition to the trie structure when we execute the two steps
in the proof above. The final step in creating the Aho-Corasick machine requires
the elimination of multiple edges of this type which may have been created by
the identification nodes. In other words, we need not recompute the back and
cross edges anew for each the new set of keywords obtained by identifying a pair
of letters. Figure 3 and Figure 4 show the operation of identification on root and
non-root nodes of the trie.
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a a b

T1 T2 T3

b

T4

a b

T1 T2 T3 T4

Fig. 4. Identification of b and c: at an arbitrary node of the trie

Example: The trie in Figure 5 is built on the patterns P = {abbc, abcc, bab,
bba, ca,cba,cc} over Σ = {a, b, c}. Identification of c and b results in the trie in
Figure 6 built on the set of patterns {abbb, bab, bba, ba, bb} over Σ = {a, b}.

2.2 Recovering L

If there is a single pattern p, then the language LM is the form Σ∗p. Since
this language has the alternation property of Definition 3, L can be recovered
completely from the knowledge of LA and LB. Thus by Proposition 1 the input
a1b1 a2b2 · · · anbn ∈ L iff a1a2 · · ·an ∈ LA and b1b2 · · · bn ∈ LB. But this works
because both MA and MB have a single final state, i.e. the unique final state of M
that corresponds to the keyword p. When there is more than one keyword, L no
longer satisfies the alternation property, and therefore equality of the languages
in Proposition 1 does not hold. However we can recover L from MA and MB by
considering a type of diagonal acceptance as follows

Proposition 3. Suppose L = L(M) over the alphabet Σ = A × B for some
Aho-Corasick machine M . Define MA(f) and MB(f) as in Definition 1, except
a fixed f ∈ F is made the final state. For a1a2 · · · an ∈ LA and b1b2 · · · bn ∈ LB,
a1b1 a2b2 · · ·anbn ∈ L iff a1a2 · · ·an ∈ L(MA(f)) and b1b2 · · · bn ∈ L(MB(f))
for some f ∈ F .

Proof. An Aho-Corasick machine M accepts languages of the form (1). The
condition of the proposition forces MA and MB to accept by the same final
state. Thus for each final state, the language accepted is of the form Σ∗pi, and
therefore satisfies the alternation property and Lemma 2 is applicable. �

Remark: Note that we are not able to recover L from an arbitrary description
of the languages LA and LB for more than one pattern. However for the packet
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Fig. 5. Trie portion of the Aho-Corasick machine for the keywords {abbc, abcc, bab,
bba, ca, cba, cc} over Σ = {a, b, c}

Fig. 6. After identifying c and b, the resulting trie of the Aho-Corasick machine for
the keywords {abbb, bab, bba, ba, bb} over Σ = {a, b}
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scanning application, this presents no problems. We make sure that the MA and
MB accept on the same final state. Otherwise the input is rejected.

Remark: If we use the deterministic versions of MA and MB obtained by the
algorithm described in the proof of Proposition 2 and keep the names of the
identified final as an equivalence class, then we can still recover L by acceptance
by the “same” final state, meaning that there is a common final state in the two
equivalence classes of names after identifications in the resulting DFA.

Remark: The results given above for the Cartesian product of two alphabets
readily generalize to Σ = A1×A2×· · ·×Am. We omit the details of the general
case. In particular, Σ = {0, 1}8, results in the 8 binary machines M0,M1, . . . ,M7

of the bit-split Aho-Corasick.

3 Conclusions

We proved that bit-splitting Aho-Corasick machines is functionally correct, and
provided strict space bounds for this approach. The formal description of how
and why bit-splitting works opens the door to new potential applications for
other classes of languages in similar problem domains. Future work could address
a formal framework for bit-splitting to search for patterns embedded with single
character wildcards.
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Abstract. A new algorithm searching all occurrences of a regular expres-
sion pattern in a text is presented. It uses only the text that has been
compressed by the text compression using antidictionaries without its de-
compression. The proposed algorithm runs in O(2m ·||AD||2+nc+r) worst
case time, where m is the length of the pattern, AD is the antidictionary,
nC is the length of the coded text and r is the number of found matches.

1 Introduction

We present a new algorithm for searching strings from a set of strings described
by a regular expression in a text coded by the Data Compression with Anti-
dictionaries (DCA) compression method (text compression using antidictionar-
ies [1]). The proposed algorithm and its variants run in linear time with respect
to the length of the compressed text, not counting the preprocessing costs.

The paper is organized as follows: After resumption of several basic notions
at the beginning of Section 2, we continue with a short overview of the DCA
compression method itself in Section 2.1 and the KMP based searching in the
DCA compressed text in Section 2.3. Section 3 discusses proposed basic (3.1),
and enhanced algorithms (using almost antiwords in 3.2 and incremental con-
struction in 3.3). We conclude in Section 5. The experimental evaluation of our
algorithms is described in the appendix.

2 Basic Notions and Previous Work

Let A be a finite alphabet and its elements be called symbols. The set of all
strings over A is denoted by A∗ and A� is the set of all strings of length �. The
empty string is denoted by ε. A power set of set S is denoted by P(S). Language
L is any subset of A∗, L ⊆ A∗. Let P ∈ Am and T ∈ An be a pattern and a
text, respectively, m ≤ n. An exact occurrence of P in T is an index i, such
that P [1, . . . ,m] = T [i−m + 1, . . . , i], i ≤ n. Dictionary (antidictionary) AD is
a set of words over A, AD = {w1, w2, . . . , w|AD|}, |AD| denotes the number of
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strings in AD. By ||AD|| we denote the sum of lengths of all words in AD. A
finite automaton (FA) is a quintuple (Q,A, δ, I, F ). Q is a finite set of states, A
is a finite input alphabet, F ⊆ Q is a set of final states. If FA is nondeterministic
(NFA), then δ is a mapping Q × (A ∪ {ε}) &→ P(Q) and I ⊆ Q is a set of
initial states. A deterministic FA (DFA) is (Q,A, δ, q0, F ), where δ is a (partial)
function Q×A &→ Q; q0 ∈ Q is the only initial state. A finite transducer (FT) is
(Q,A, Γ, δ, q0, F ), where δ is a mapping Q×(A∪{ε}) &→ Q×(Γ ∪{ε}). A regular
expression (RE) over finite alphabet A is defined as follows: ∅, ε, and a are REs,
∀a ∈ A. Let x, y be REs, then x + y, x · y, x∗, and (x) are REs, priority of
operators is: + (the lowest), ·, ∗ (the highest). Priority of evaluation of a RE can
be modified using the parentheses. The length of the regular expression is defined
as the count of all symbols in the regular expression except for parentheses and
concatenation operator (·) [2].

2.1 DCA Compression Method

The DCA compression method has been proposed by Crochemore et al. [1] in
1999. The antidictionary is a dictionary of antiwords – words that do not appear
in the text to be coded. Let T ∈ {0, 1}∗ be the text to be coded. The text is
being read from left to right. When a symbol (a bit) is read from the input text
and if the suffix of the text read so far is the longest proper prefix of an antiword,
nothing is put to the output. Otherwise, the current symbol is output. The text
can be decoded since the missing symbol can be inferred from the antiwords.

The coding process is based on finite transducer E (AD) = (QE , {0, 1}, {0, 1},
δE , qE0, ∅). The encoding algorithm is shown in Algorithm 1. An example of the
encoding finite transducer is given in Figure 1 a).

The decoding process is also based on finite transducer B(AD) = (QB, {0, 1},
{0, 1}, δB, qB0, ∅). The decoding transducer is created from the encoding trans-
ducer by swapping input and output labels on all transitions. Note that an
additional information about the text length is required to decode the original
text properly. The decoding algorithm is shown in Algorithm 2. An example of
the decoding finite transducer is given in Figure 1b).

For the construction of the encoding transducer itself, please refer to [1].

Algorithm 1. Text compression using the DCA compression method
Input: Encoding transducer E (AD) = (QE, {0, 1}, {0, 1}, δE, qE0, ∅).

q = qE0

while not the end of the input do
let a be the next input symbol
(q′, u) = δE(q, a)
if u �= ε then

print a to the output
end if
q = q′

end while



Pattern Matching in DCA Coded Text 153

Algorithm 2. Text decompression using the DCA compression method
Input: Decoding transducer B(AD) = (QB, {0, 1}, {0, 1}, δB , qB0, ∅), the length of the

original text n.
q = qB0

i = 0
while not the end of the input do

let a be the next input symbol
(q′, u) = δB(q, a)
print u to the output, q = q′, i = i + 1
while i ≤ n and δB(q, ε) is defined do

(q′, u) = δB(q, ε)
print u to the output, q = q′, i = i + 1

end while
end while

1/1

0/0

1/1

1/ε0/0 0/0

1/1

0/0

1/1

ε/1

a) b)

Fig. 1. a) Encoding and b) decoding transducer for AD = {110}

2.2 Regular Expression Pattern Matching

Regular expressions are commonly used for a specification of a full text search.
The search can be implemented by means of finite automata. Generally, both
nondeterministic (using NFA simulation [3]) and deterministic finite automata
can be used for pattern matching. In this paper, however, we will focus only on
a pattern matching using deterministic finite automata.

The pattern matching using finite automata is a two phase process. In the
first (preprocessing) phase, the searching deterministic finite automaton is con-
structed for the given pattern (e.g. regular expression). In the second phase,
the input text is processed by the automaton, and each time it enters a final
state, an occurrence of the pattern is reported. This algorithm is outlined in
Algorithm 3.

For regular expression of length m, the corresponding nondeterministic finite
automaton has m + 1 states. The corresponding deterministic finite automaton
has therefore O(2m) states at most.

Please note that although the exponential growth of the number of states
occurs for certain regular expressions (e.g. a(a+ b)m−1), the number of states of
the deterministic finite automaton is much smaller in many practical situations,
e.g. O(m) for exact pattern matching [3].
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Algorithm 3. Pattern matching using deterministic finite automaton
Input: Deterministic finite automaton M = (Q,A, δ, q0, F ).

q = q0

i = 1
while not the end of the input do

if q ∈ F then
mark occurrence of the pattern at index i

end if
let a be the next input symbol
q = δ(q, a)
i = i + 1

end while
if q ∈ F then

mark occurrence of the pattern at index i
end if

2.3 KMP-Based Pattern Matching in DCA Coded Text

Shibata et al. [4] presented a KMP based approach for pattern matching in the
DCA compressed text. As a part of this method, the decoding transducer with ε-
transitions is converted to a generalized transducer G(AD) = (QG, {0, 1}, {0, 1},
δG, qG0, ∅) without ε-transitions. The main concept of the conversion is to con-
catenate sequences of transitions, consisting of a non-ε-transition and at least
one ε-transition, into a single transition, see Figure 2.

ε/11/1 0/0 0/0ε/1

1/11

1/1

a) b)

Fig. 2. Generalized decoding transducer construction: a) original decoding transducer,
b) generalized decoding transducer

The original decoding transducer may contain infinite sequences of ε-transit-
ions, which are represented by loops of ε-transitions in the decoding transducer,
as shown in Figure 3. Note that the infinite ε-transitions sequence can occur
only when the very last character of the coded text is being processed. As the
uncoded text is of finite length, the sequence of ε-transitions will not be infinite
in fact, it is called semi-infinite [4].

The infinite ε-transitions sequence handling is as follows. A special state ⊥ ∈
QG is defined, and transitions sequences leading into a loop of ε-transitions in
the original transducer are redirected into this state. The text decoded by this
infinite transitions sequence is always in form of uv∗ (where u, v ∈ {0, 1}∗, u is
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ε/1

ε/1

1/1 ε/0

⊥

ε/1

ε/1

1/1 ε/0

1/1(01)∗

a) b)

Fig. 3. Infinite ε-transitions sequence

the prefix decoded before entering the infinite loop, v is the text decoded by the
infinite loop), as shown in Figure 3.

3 Main Result

We propose the algorithm for pattern matching in DCA coded text in this sec-
tion. Two extensions to the algorithm are also proposed. The first extension
allows to search text coded by the “almost antiwords” extension to the DCA
algorithm (Crochemore and Navarro [5]). The second extension allows to dis-
solve the preprocessing cost into the searching phase, which may lead into faster
searches. This assumption has been verified successfully by our experiments, see
Section 4.

The proposed algorithm is based on the algorithm by Shibata et al. [4] and
our method described in [6] and [7].

3.1 Basic Algorithm

The pattern matching in the DCA coded text is based on finite automata.
Automaton MC , MC = (QC , {0, 1}, δC, qC0, ∅), for pattern matching in DCA
coded text is constructed from the decoding transducer and deterministic pat-
tern matching automaton M , M = (Q, {0, 1}, δ, q0, F ), for the given pattern P .
Automaton MC is constructed by “replacing” states from the pattern match-
ing automaton M with copies of the generalized decoding transducer G(AD),
G(AD) = (QG, {0, 1}, {0, 1}, δG, qB0, ∅). The states of automaton MC are there-
fore pairs [q, qG], q ∈ Q, qG ∈ QG. The transitions of automaton MC are then
defined as: δC([q, qG], a) = [δ∗(q, outputG(qG, a)), δG(qG, a)].

While reading one symbol of the coded text, more than one transition in the
original pattern matching automaton M may be performed. Consequently, per-
forming one transition in the automaton MC may lead into more than one found
match. Ordinary final states are not enough to describe this behavior, so we are
proposing two auxiliary functions: N and I. Function N maps each transition
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of MC to all matches found by this transition, N : QC×{0, 1} → P(N). Function
I maps each transition to the number of symbols that would be decoded by the
equivalent transition in the original decoding transducer, I : QC × {0, 1} → N.
These two functions allow to report exact match occurrences on exact positions.

The construction of the automaton for pattern matching in DCA coded text
and of functions N and I is described in Algorithm 4. An example is given in
the appendix.

Algorithm 4. Construction of automaton for pattern matching in DCA coded
text
Input: Pattern matching automaton M = (Q, {0, 1}, δ, q0, F ), decoding transducer

G(AD) = (QG, {0, 1}, {0, 1}, δG, qB0, ∅).
Output: Automaton MC = (QC , {0, 1}, δC , qC0, ∅) for pattern matching in DCA

coded text, auxiliary functions N , I .
QC = Q × QG

qC0 = (q0, qG0)
for all qC ∈ QC (qC = (q, qG)) and a ∈ {0, 1} do

(q′
G, u) = δG(qG, a) (where u is the output text)

if q′
G �= ⊥ then

δC(qC , a) = [δ∗(q, u), q′
G]

N(qC , a) = {i; δ∗(q, u[1 : i + 1]) ∈ F}
I(qC , a) = |u|

else
δC(qC , a) = ⊥

end if
end for

Theorem 1. For pattern P of length m, and the antidictionary AD of length
||AD||, worst case time complexity of Algorithm 4 is O(2m · ||AD||2), and it uses
O(2m · ||AD||2) memory in the worst case.

Proof. The main loop of the algorithm is performed |Q|·|QG| times. The maximal
number of states of Q is 2m where m is the length of the pattern (regular
expression). The maximal number of states of QG is the size of the antidictionary,
i.e. ||AD||.

In each pass through the main loop, it either enters the semi-infinite loop, in
which case one pass consumes O(1) time; or it uses a finite string u, in which
case the pass uses O(|u|) time. As the maximal length of u is ||AD||, the maximal
time to be spent in one pass through the main loop is O(||AD||).

The total worst case time of the algorithm is therefore O(2m · ||AD||2). ��

The algorithm for pattern matching in the DCA coded text using the automaton
MC is described in Algorithm 5.

For the following theorem, let us assume the semi-infinite string at the end of
the text is shorter than the coded text.
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Algorithm 5. Pattern matching in DCA coded text
Input: Automaton MC = (QC , {0, 1}, δC , qC0, ∅) for pattern matching in DCA coded

text, auxiliary functions N , I , the length of original text |T |.
Output: List of all occurrences of the given pattern in the given text.

q = qC0

i = 1
while not the end of the input do

a = next symbol from the input
if δC(q, a) = ⊥ then

process the remaining text using transducer B(AD) and pattern matching au-
tomaton M

else
for all n ∈ N(q, a), n + i ≤ |T | do

report found match at index i + n in the original (uncoded) text
end for
i = i + I(q, a)
q = δC(q, a)

end if
end while

Theorem 2. For DCA coded text TC of length nC Algorithm 5 runs in O(nC+r)
worst case time, where r is the number of found matches of the given pattern in
the original text.

Proof. The main loop of the algorithm is performed nC times. The reporting
of matches by the inner for-cycle is performed at most r times for the whole
input text. The semi-infinite string handling is (according to the assumptions)
O(nC). The rest of the inner loop runs in O(1). The total time complexity of
this algorithm is therefore O(nC + r). ��

3.2 Almost Antiwords

Algorithm 5 can be extended to handle the extended scheme of compression
using almost antiwords [5]. Certain factors of the input text would improve the
compression ratio significantly if they would be considered the antiwords. The
almost antiwords extension to the DCA compression method uses these factors
as antiwords. Exceptions are encoded into a separate list.

Theorem 3. Algorithm 6 runs in O(nC + r) worst case time for DCA coded
text TC of length nC , r denotes the number of found matches of the given pattern
in the original text.

Proof. As in Crochemore and Navarro [5], let us assume the exceptions are rare
and the semi-infinite string at the end of the text is shorter than the coded text.
Then the proof is similar to the proof of Theorem 2, except for the exceptions
handling. In line with the assumption, the number of exceptions in the coded
text is small, hence the impact on the overall time complexity is negligible. ��
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Algorithm 6. Pattern matching in text coded by DCA with almost antiwords
Input: Automaton MC = (QC , {0, 1}, δC , qC0, ∅) for pattern matching in DCA coded

text, auxiliary functions N , I , and the sorted list of exceptions.
Output: List of all occurrences of the given pattern in the given text.

q = qC0

i = 1
while not the end of the input do

a = next symbol from the input
if δC(q, a) = ⊥ then

process the remaining text using transducer B(AD) and pattern matching au-
tomaton M

else
i′ = i + I(q, a)
if there is an exception in between i and i′ then

use original decoding automaton and pattern matching automaton
else

for all n ∈ N(q, a), n + i ≤ |T | do
report found match at index i + n in the original (uncoded) text

end for
i = i′

q = δC(q, a)
end if

end if
end while

3.3 An Incremental Algorithm

In the previous algorithms, the automaton MC is completely constructed dur-
ing the preprocessing phase, although parts of the MC automaton may not be
used by the pattern matching algorithm. As a possible solution, we propose to
construct the automaton MC “on the fly” during the pattern matching phase.

The incremental algorithm is embeds the preprocessing phase (described in
Algorithm 4) into the searching phase (described in Algorithm 6) constructing
on-the-fly only the needed parts of the automaton.

This algorithm will construct the whole automaton MC in the worst case.
The worst-case time complexity characteristics are the same as in the case of
the previous algorithms 5 and 6. Depending on the pattern and coded text, parts
of the automaton MC may not be created, leading into improved performance.
The time complexity of this algorithm may be as low as Ω(nC + r).

An important decision is how to address states in set QC using its components
(states from Q and QG). In Algorithm 4, addressing the state is O(1), as it is a
simple addressing in a two-dimensional array. During the incremental construc-
tion, creating the two-dimensional array has to be avoided. Instead, we propose
to use a hash table with a compound key. First, each state from Q is assigned a
unique integer number, in sequence. We do the same for states in QG. For state
q ∈ Q and qG ∈ QG and their unique number i and iG (respectively), the key for
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the hash table is determined as i · |QG|+ iG. Given the key itself is a reasonable
hash function, addressing values in this hash table is O(1) on average.

Algorithm 7. An incremental pattern matching in text coded by DCA with
almost antiwords
Input: Pattern matching automaton M = (Q, {0, 1}, δ, q0, F ), decoding transducer

G(AD) = (QG, {0, 1}, {0, 1}, δG, qG0, ∅).
Output: List of all occurrences of the given pattern in the given text.

create qC0 = (q0, qG0)
q = qC0

i = 1
while not the end of the input do

a = next symbol from the input
if δC(q, a) not defined then

(q′
G, u) = δG(qG, a) (where u is the output text)

if q′
G �= ⊥ then

δC(qC , a) = [δ∗(q, u), q′
G]

N(qC , a) = {i; δ∗(q, u[0 : i]) ∈ F}
I(qC , a) = |u|

else
δC(qC , a) = ⊥

end if
end if
if δC(q, a) = ⊥ then

process the remaining text using transducer B(AD) and pattern matching au-
tomaton M

else
i′ = i + I(q, a)
if there is an exception in between i and i′ then

use original decoding automaton and pattern matching automaton
else

for all n ∈ N(q, a), n + i ≤ |T | do
report found match at index i + n in the original (uncoded) text

end for
i = i′

q = δC(q, a)
end if

end if
end while

4 Experimental Results

We have implemented three algorithms: the basic algorithm described in Sec-
tion 3.1, the incremental algorithm described in Section 3.3, without almost an-
tiwords extension, and the “decompress and search” algorithm1. We have then
1 The decoded symbols are passed from the decoder directly into the pattern matching

automaton.
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compared the performance of these three algorithms on the Canterbury corpus
using different lengths of regular expressions.

We have performed our measurements on a PC with Intel Core 2 Duo down-
scaled to 1GHz and 2GB of main memory. Unsuprisingly, the preprocessing
costs of the basic algorithm were prohibiting. The incremental algorithm, how-
ever, greatly outperformed the decompress and search algorithm. The average
running time of the incremental algorithm over the entire corpus was between
50% and 52% of the running time of the “decompress and search” algorithm,
depending on the length of the regular expression.

5 Conclusion

We introduced the first algorithm for searching strings from a set of strings
described by regular expression in a text coded by the DCA compression method.

Besides a basic variant of this algorithm, there were proposed two enhance-
ments in this paper. The algorithm of incremental pattern matching improves
performance of our algorithm in practice and our implementation outperforms
the decompress-and-search algorithm significantly.

Asymptotical time complexity of our algorithm and its variants is linear with
respect to the length of the compressed text, not counting the preprocessing
costs.
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Abstract. Determinisation of nondeterministic finite automata is a well-studied
problem that plays an important role in compiler theory and system verification.
In the latter field, one often encounters automata consisting of millions or even
billions of states. On such input, the memory usage of analysis tools becomes the
major bottleneck. In this paper we present several determinisation algorithms, all
variants of the well-known subset construction, that aim to reduce memory usage
and produce smaller output automata. One of them produces automata that are
already minimal. We apply our algorithms to determinise automata that describe
the possible sequences appearing after a fixed-length run of cellular automaton
110, and obtain a significant improvement in both memory and time efficiency.

1 Introduction

Finite state automata (or finite state machines) are an established and well-studied
model of computation. From a theoretical point of view, they are an interesting object
of study because they are expressive yet conceptually easy to understand and intuitive.
They find applications in compilers, natural language processing, system verification
and testing, but also in fields outside of (theoretical) computer science like switching
circuits and chip design. Over the years, many flavours and variants of finite state ma-
chines have been defined and studied for a large variety of purposes.

One of the most classic and elementary type of finite state machine is the nondeter-
ministic finite automaton (NFA). Typical applications of finite state automata involve
checking whether some sequence of symbols meets some syntactic criterion, such as
displaying a prescribed pattern or being correct input for a given program, a problem
that can often be recast as checking whether that sequence is accepted by a given NFA.

A more restrictive type of automaton is the deterministic finite automaton (DFA).
DFAs are as expressive as NFAs, in the sense that for every NFA there exists a DFA
that is language equivalent (i.e. accepts the same input sequences). Contrary to NFAs,
for any DFA there is a trivial linear time, constant space, online algorithm to check
whether an input sequence is accepted or not. Consequently, lexical-analyser generators
like LEX work on DFAs, and so do many implementations of GREP. For this reason, in
many applications it pays to convert NFAs into DFAs, even though the worst-case time
and space complexities of this conversion are exponential in the size of the input NFA.
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Once a language equivalent DFA of an NFA has been found, it is usually minimised
to obtain the smallest such DFA. This minimal DFA is unique and the problem of find-
ing it for a given NFA is called the canonisation problem.

Another application of NFAs is in the realm of process theory and system verification
where they are used to model the behaviour of distributed systems. Typically, both
a specification and an implementation of a system are represented as NFAs, and the
question arises whether the execution sequences of one NFA are a subset of those of
another. This is the trace inclusion problem. Although PSPACE-hard in general, this
problem is decidable in PTIME once the NFAs are converted into equivalent DFAs.

As we see, in both the canonisation problem and the trace inclusion problem, de-
terminisation plays an essential role. The standard determinisation algorithm is called
subset construction (see e.g. [11]). Although the determinisation problem is EXPTIME-
hard, this algorithm is renowned for its good performance in practice. For minimisation
of DFAs a lot of algorithms have been proposed, of which Watson presents a taxon-
omy and performance analyses [16]. The algorithm with the best time complexity is by
Hopcroft [10]: O(n log n) where n is the number of states in the input DFA.

Another algorithm for canonisation is by Brzozowski [2]. It generates the minimal
DFA directly from an input NFA by repeating the process of “reversing” and determin-
ising the automaton twice. Tabakov and Vardi compare both approaches to canonisation
experimentally by running them on randomly generated automata [15].

On some NFAs, the exponential blow-up by subset construction is unavoidable.
However, we have encountered NFAs for which subset construction consumes a lot
of memory and generates a DFA that is much larger than the minimal DFA. Therefore,
our main goal is to find algorithms that are more memory efficient and produce smaller
DFAs than subset construction.

In this paper we present five determinisation algorithms based on subset construction.
For all of them we prove correctness. One algorithm generates the minimal DFA directly
and hence is a canonisation algorithm. However, it calculates language inclusion as a
subroutine; as deciding language inclusion is PSPACE-complete, it is unattractive to use
in an implementation. The other four produce a DFA that is not necessarily minimal but
is usually smaller than the DFA produced by subset construction.

We have implemented subset construction and these four new algorithms. We have
benchmarked these implementations by running them on NFAs that describe patterns
on the lines of a cellular automaton’s evolution. We compare the implementations on
the time and memory needed for the complete canonisation process (i.e. including min-
imisation) and the size of the DFA after determinisation.

2 Preliminaries

Finite automata. A nondeterministic finite automaton (NFA) N is a tuple (SN , ΣN ,
δN , iN , FN ) where SN is a finite set of states, ΣN is a finite input alphabet, δN ⊆
SN×ΣN×SN is a transition relation, iN ∈ SN is the initial state and FN ⊆ SN is a set
of final (or accepting) states. A deterministic finite automaton (DFA) is an NFA D such
that for all p∈SD and a∈ΣD there is precisely one q∈SD such that (p, a, q) ∈ δD.

In graphical representations of DFAs we also allow states that have at most one out-
going a-transition for each alphabet symbol a. Formally speaking, these abbreviate the
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DFA obtained by adding a non-accepting sink state as the target of all missing transi-
tions. Note that adding such a state preserves language equivalence (defined below).

For any alphabet Σ, Σ∗ denotes the set of all finite strings over Σ and ε ∈ Σ∗

denotes the empty string. Any subset of Σ∗ is called a language over Σ. For any states
p, q ∈ SN of an NFA N and string σ ∈ Σ∗

N with σ = σ1 · · ·σn and σ1, . . . , σn ∈ ΣN
for some n ≥ 0, we write p

σ−→N q to denote the fact that:

∃p0, . . . , pn ∈ SN . p0 = p ∧ pn = q ∧ (p0, σ1, p1), . . . , (pn−1, σn, pn) ∈ δN .

Language semantics. The language of a state p ∈ SN of an NFA N is defined as:
LN (p) = {σ ∈ Σ∗

N | ∃q ∈ FN . p
σ−→N q}. The language of an NFA N is defined

as: L(N ) = LN (iN ). For any NFAs N andM and states p ∈ SN and q ∈ SM, p is
language included in q, denoted p �L q, iff LN (p) ⊆ LM(q). Moreover, p and q are
language equivalent, denoted p≡Lq, iff p�Lq∧q�Lp. An NFAN is language included
in an NFAM iff iN �L iM and N andM are language equivalent iff iN ≡L iM.

Simulation semantics. Given NFAsN andM, a relation R ⊆ SN×SM is a simulation
iff for any p ∈ SN and q ∈ SM, p R q implies:

• p ∈ FN ⇒ q ∈ FM and

• ∀a ∈ ΣN . ∀p′ ∈ SN . p
a−→N p′ ⇒ ∃q′ ∈ SM . q

a−→M q′ ∧ p′ R q′.

Given NFAs N andM, for any p ∈ SN and q ∈ SM:

• p is simulated by q, denoted p ⊂→ q, iff there exists a simulation R such that p R q;

• p and q are simulation equivalent, denoted p →← q, iff p ⊂→ q ∧ q ⊂→ p;

Clearly p ⊂→ q implies p�L q.

Subset construction. The subset construction (or powerset construction) is the standard
way of determinising a given NFA. For reasons that will become apparent in the next
sections, we slightly generalise the normal algorithm by augmenting it with a function f
on sets of states, which is applied to every generated set. The algorithm is Algorithm 1
and shall be referred to as SUBSET(f). It takes an NFA N and generates a DFA D.
Of course, it should be the case that N ≡L D, which depends strongly on the function
f . For normal subset construction, SUBSET(I), where I is the identity function, it is
known that the language of N is indeed preserved. In the sequel, whenever we use the
term “subset construction” we mean the normal algorithm, i.e. SUBSET(I).

It is known that in the worst case, determinisation yields a DFA that is exponentially
larger than the input NFA. An example of an NFA that gives rise to such an exponen-
tial blow-up is the NFA that accepts the language specified by the regular expression
Σ∗xΣn for some alphabet Σ, x ∈ Σ and n ≥ 0. Figure 1(a) shows the NFA for
Σ = {a, b} and x = a. This NFA has n+ 2 states, whereas the corresponding DFA has
2n+1 states and is already minimal.

An interesting thing to note is that if the initial state were accepting (Figure 1(b)), the
minimal DFA would consist of only one state with an a, b-loop: the accepted language
has become Σ∗. However, subset construction still produces the exponentially larger
DFA first, which should then be reduced to obtain the single-state, minimal DFA.
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Algorithm 1. The SUBSET(f) determinisation algorithm
Pre: N = (SN , ΣN , δN , iN , FN ) is an NFA
Post: D = (SD, ΣD, δD, iD, FD) is a DFA
1: ΣD := ΣN ; δD := ∅; iD := f({iN }); FD := ∅;
2: SD := {iD}; todo := {iD}; done := ∅;
3: while todo �= ∅ do
4: pick a P ∈ todo;
5: for all a ∈ ΣN do
6: P ′ := f({p′ ∈ SN | ∃p ∈ P . p

a−→N p′});
7: SD := SD ∪ {P ′};
8: δD := δD ∪ {(P, a, P ′)};
9: todo := todo ∪ ({P ′} \ done);

10: end for
11: if ∃p ∈ P . p ∈ FN then
12: FD := FD ∪ {P};
13: end if
14: todo := todo \ {P};
15: done := done ∪ {P};
16: end while

3 Determinisation Using Transition Sets

In this section we show that subset construction can just as well be done on sets of
transitions as on sets of states. We observe that the contribution of an NFA state p to the
behaviour of a DFA state P consists entirely of p’s outgoing transitions. We no longer
think of a DFA state as being a set of NFA states, but rather a set of NFA transitions.

Definition 1. Given an NFA N , a transition tuple is a pair (T, b) where T ∈ P(ΣN ×
SN ) is a set of transitions and b ∈ B is a boolean.

p0 p1 · · · pn pn+1

a, b

a a, b a, b a, b

(a)

q0 q1 · · · qn qn+1

a, b

a a, b a, b a, b

(b)

Fig. 1. Two NFAs of size O(n) for which subset construction produces a DFA of size O(2n).
Here initial states are marked by unlabelled incoming arrows, and final states by double circles.
In case (a) this DFA is already minimal; in case (b) the minimal DFA has size 1.
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Algorithm 2. The TRANSSET(f) determinisation algorithm
Pre: N = (SN , ΣN , δN , iN , FN ) is an NFA
Post: D = (SD, ΣD, δD, iD, FD) is a DFA
1: ΣD := ΣN ; δD := ∅; iD := f(tuple(iN )); FD := ∅;
2: SD := {iD}; todo := {iD}; done := ∅;
3: while todo �= ∅ do
4: pick a P ∈ todo;
5: for all a ∈ Σ do
6: P ′ := f(

⋃
(a,p)∈set(P ) trans(p), ∃(a, p) ∈ set(P ) . p ∈ FN );

7: SD := SD ∪ {P ′};
8: δD := δD ∪ {(P, a, P ′)};
9: todo := todo ∪ ({P ′} \ done);

10: end for
11: if fin(P ) then
12: FD := FD ∪ {P};
13: end if
14: todo := todo \ {P};
15: done := done ∪ {P};
16: end while

For every transition tuple (T, b) we define the projection functions set and fin as:
set(T, b) = T and fin(T, b) = b. For every state p ∈ SN of NFA N , trans(p) is the
set of outgoing transitions of p and tuple(p) is the transition tuple belonging to p:

trans(p) = {(a, q) ∈ ΣN × SN | p
a−→N q}

tuple(p) = (trans(p), p ∈ FN ).

The DFA state P ⊆ SN now corresponds to the transition tuple (T, b) where T =⋃
p∈P trans(p) and b ≡ ∃p ∈ P . p ∈ FN . We need the boolean b to indicate whether

the DFA state is final as this can no longer be determined from the elements of the set.
Only the labels and target states of the transitions are stored because the source states
are irrelevant and would only make the sets unnecessarily large.

Given NFA N , the language of a transition (a, p) ∈ ΣN × SN is defined as:
LN (a, p) = {aσ∈Σ∗

N | σ∈LN (p)}. The language of a set of transitions T is defined
as LN (T ) =

⋃
t∈T LN (t) and the language of a transition tuple (T, b) is defined as:

LN (T, b) = LN (T ) ∪
{
{ε} if b
∅ if ¬b.

Language inclusion and equivalence for transitions and transition tuples can now be
defined in the usual way by means of set inclusion and equality.

The determinisation algorithm that uses transition tuples is Algorithm 2. We shall
refer to it as TRANSSET(f) where f is a function on transition tuples. Again, language
preservation depends on the specific function f being used. For f = I this is indeed
the case, which we prove in [7], the full version of this paper. Using TRANSSET(I) for
determinisation can give a smaller DFA than SUBSET(I) as is shown by the example
in Figure 2. Here, TRANSSET(I) happens to produce the minimal DFA directly. This is
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p0

p2p1 p3

p4

a
b

b

a, b
a

b

(a)

q0

q2q1

q3

a b

a, b a, b

(b)

r0

r1

r2

a, b

a, b

(c)

Fig. 2. NFA (a) for which the DFA produced by SUBSET(I) (b) is larger than the (minimal) DFA
produced by TRANSSET(I) (c)

generally not the case: on the NFA of Figure 1(b), TRANSSET(I) generates a DFA of
size 2n+1, while the minimal DFA has size 1.

4 Determinisation Using Closures

We introduce a closure operation that can be used in the SUBSET algorithm instead of
the identity function I. It aims to add NFA states to a given DFA state (i.e. a set of
NFA states) without affecting its language. This results in an algorithm that generates
smaller DFAs. In particular, we show that if the criterion to add a state is chosen suitably,
SUBSET with closure is an algorithm that produces the minimal DFA directly.

Definition 2. For any set of states P ⊆ SN of an NFA N and relation � ⊆ SN ×
P(SN ), the closure of P under�, close�(P ), is defined as:

close�(P ) = {p ∈ SN | p � P}.

The language preorder �L can be lifted to operate on states and sets of states in the
following way. Define the language of a set of states P of an NFA N as: LN (P ) =⋃

p∈P LN (p). Language equivalence and inclusion can now be defined on any combi-
nation of states and sets of states, in terms of set equivalence and inclusion. For instance,
for a state p ∈ SN and a set of states P ⊆ SN , p�L P holds if LN (p) ⊆ LN (P ).

Applying this, the algorithm SUBSET(close�L) generates the minimal DFA that is
language equivalent to the input NFA. This statement is proven in [7].

5 Simulation Preorder

Although it ensures that the output DFA of SUBSET(close�L) is minimal, language
inclusion is an unattractive preorder to use. Deciding language inclusion is PSPACE-
complete [13] which implies that known algorithms have an exponential time complex-
ity. Moreover, most algorithms involve a determinisation step which would render our
optimisation useless.

The simulation preorder ⊂→ [12] is finer than language inclusion on NFAs, meaning
it relates fewer NFAs. However, considering its PTIME complexity (see e.g. [1,9]), it is
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p0

p2

p1

p3 p4

p1,1

p1,2

p1,3 · · ·

pn,1

pn,2

pn,3 p5 p6

a, b

a, b

a

a

b

a

a, b

a, b

a

b

a, b

a, b

a

b

a, b a, b

Fig. 3. NFA of size O(n) for which SUBSET(close⊂→
) generates a DFA of size O(2n) for any

n ≥ 1. The minimal DFA has 1 state.

an attractive way to “approximate” language inclusion (see also [4]). Hence, as a more
practical alternative to SUBSET(close�L) we define the algorithm SUBSET(close⊂→). The
required lifting of⊂→ to states and sets of states is as follows. For any state p ∈ SN and
set of states P ⊆ SN of an NFA N , we have p ⊂→ P iff:

• p ∈ FN ⇒∃q ∈ P . q ∈ FN and

• there exists a simulation R ⊆ SN × SN such that:

∀a ∈ΣN . ∀p′ ∈ SN . p
a−→N p′ ⇒ ∃q, q′ ∈ SN . q ∈ P ∧ q

a−→N q′ ∧ p′ R q′.

The correctness of SUBSET(close⊂→) is established in [7]. The example in Figure 3
shows not only that the resulting DFA is no longer minimal, but moreover that it can
be exponentially larger than the minimal DFA. This NFA contains a pattern that repeats
itself n times for any n ≥ 1. It is based on the NFA of Figure 1(b) interwoven with a
pattern that prevents SUBSET(close⊂→) from merging states that will later turn out to be
equivalent. The NFA accepts the language given by the regular expression (a | b)∗.

6 Determinisation Using Compressions

Algorithm SUBSET(close⊂→) adds all simulated states to a generated set of states. An-
other option would be to remove all redundant states from such a set. More specifically,
we remove every state that is simulated by another state in the set. For this operation to
be well-defined, it is essential that no two different states in the set are simulation equiv-
alent. This can be achieved by minimising the input NFA using simulation equivalence
prior to determinisation. In turn, this amounts to computing the simulation preorder that
was already necessary in the first place.

Definition 3. Given a set P such that ¬∃p, q ∈ P . p �= q∧p →← q. Then compress⊂→(P )
denotes the compression of P under⊂→ and is defined as:

compress⊂→(P ) = {p ∈ P | ∀q ∈ P . p �= q⇒ p �⊂→ q}.

The function compress⊂→ can be used not only for sets of states but also for transition
tuples. For that, we first define ⊂→ on the transitions of an NFA N as follows. For any
(a, p), (b, q) ∈ ΣN ×SN , we have (a, p) ⊂→ (b, q) iff a = b and p ⊂→ q. By Definition 3
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compress⊂→ is now properly defined on sets of transitions and it can be extended to
transition tuples in a straightforward manner: compress⊂→(T, b) = (compress⊂→(T ),b).

This way, we obtain two more determinisation algorithms: SUBSET(compress⊂→) and
TRANSSET(compress⊂→). Their correctness proofs can be found in [7].

7 Lattice of Algorithms

Figure 4 orders the algorithms described in the previous sections in a lattice: we draw
an arrow from algorithm A to algorithm B iff for every input NFA, A produces a DFA
that is at most as large as the one produced by B. The algorithms SUBSET(close⊂→) and
TRANSSET(compress⊂→) are in the same class of the lattice, because they always yield
isomorphic DFAs. The relations of Figure 4 are substantiated in [7]; Figures 1(b), 2
and 3 provide counterexamples against further inclusions.

SUBSET(I)

TRANSSET(I)SUBSET(compress⊂→)

SUBSET(close⊂→), TRANSSET(compress⊂→)

SUBSET(close�L
)

Fig. 4. The lattice of algorithms presented in the previous sections

8 Implementation and Benchmarks

We have implemented the algorithms SUBSET(I), TRANSSET(I), SUBSET(close⊂→),
SUBSET(compress⊂→) and TRANSSET(compress⊂→) in the C++ programming language.
A set of states or transitions is stored as a tree with the elements in the leaves. All
subtrees are shared among the sets to improve memory efficiency. A hash table provides
fast and efficient lookup of existing subtrees.

The benchmarks are performed on a 32-bits architecture computer having two Intel
Xeon 3.06 GHz CPUs and 4 GB of RAM. It runs Fedora Core 8 Linux, kernel 2.6.23.
The code is compiled using the GNU C++ compiler (version 4.1.2).

Every benchmark starts off by minimising the NFA using simulation equivalence.
For this we have implemented our partitioning algorithm [6] which is based on [5]
and also computes the simulation preorder on the states of the resulting NFA. Every
determinisation algorithm is applied to this minimised NFA, after which the resulting
DFA is minimised by the tool ltsmin of the µCRL toolset [3,8] (version 2.18.1).

For the benchmarks we consider a one-dimensional cellular automaton (CA) (see
e.g. [18]), which is represented by a function ρ : Σw → Σ called the rule where Σ is
an alphabet and w is the width of the automaton. Given an infinite sequence σ ∈ Σ∞, a
step of a CA is an application of ρ to every w-length subsequence of σ, which produces
a new sequence. The possible finite sequences appearing as a continuous subsequence
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Table 1. Benchmark results for canonising NFAs of steps 4 and 5 of CA 110. Legend: D =
Determinisation, M = Minimisation, T = Time (sec), S = Space (peak memory use, MB), |SD| =
Size of DFA after determinisation.

STEP 4 STEP 5
DT MT DS MS |SD| DT MT DS MS |SD|

SUBSET(I) 0.6 0.4 5.4 2.0 58 370 212.5 76.7 688.2 267.2 7 663 165
TRANSSET(I) 1.0 0.4 9.0 2.0 58 094 257.3 79.1 1 146.9 263.0 7 541 248
SUBSET(close⊂→

) 1.6 < 0.1 2.1 0.2 4 720 2 739.7 1.61 123.2 6.3 176 008

SUBSET(compress⊂→
) < 0.1 < 0.1 0.6 0.2 4 745 4.3 1.4 16.7 6.4 179 146

TRANSSET(compress⊂→
) < 0.1 < 0.1 0.7 0.2 4 720 4.1 1.6 22.9 6.3 176 008

of the infinite sequence obtained after n steps of a given CA (starting from a random
input sequence) constitute a language that can be described by a DFA [17]. It is known
that for some CA rules, the size of these DFAs increases exponentially in n (cf. [14]).

For Σ = {0, 1} and w = 3, the CA with number 110 has the following rule:

ρ = { 000 &→ 0, 001 &→ 1, 010 &→ 1, 011 &→ 1,
100 &→ 0, 101 &→ 1, 110 &→ 1, 111 &→ 0 }.

It is known to be computationally universal and to exhibit the exponential blow-up
phenomenon described above. We have generated the minimal DFAs for steps 1 through
5 of this CA using the various algorithms presented here. The most interesting results
are those for steps 4 and 5, which are shown in Table 1. The input NFA has 228 states for
step 4 and 1 421 for step 5; the minimal DFAs have sizes 1 357 and 18 824 respectively.
The algorithms that use compress⊂→ clearly outperform the others, in both memory and
time efficiency. Every algorithm that uses a function other than I, generates a DFA that
is an order of magnitude smaller than that of its I-counterpart.

9 Conclusions

We have presented a schematic generalisation of the well-known subset construction
algorithm that allows for a function to be applied to every generated set of states. We
have given a similar scheme for a variant of subset construction that operates on sets
of transitions rather than states. Next, we instantiated these schemes with several set-
expanding or -reducing functions to obtain various determinisation algorithms. One of
these algorithms even produces the minimal DFA directly, but its use of the PSPACE-
hard language preorder renders it impractical. As our aim is to reduce the average-case
workload in practice, we instead use the PTIME-decidable simulation preorder in the
other algorithms. We have classified all presented algorithms in a lattice, based on the
sizes of the DFAs they produce. This is a natural criterion, as the worst-case complexi-
ties are the same for all algorithms. To assess their performance, we have implemented
and benchmarked them. The case study comprised NFAs describing patterns in the el-
ementary cellular automaton with rule number 110. On these examples, the algorithms
that use a function to reduce the computed sets, convincingly outperformed the others.
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Based on our algorithm schemes, many more algorithms can be constructed by sub-
stituting various functions, depending on the specific needs and applications. Moreover,
the functions we defined here could be equipped with any suitable preorder or partial
order, e.g. from the linear time – branching time spectrum. We also remark that our
optimisations to subset construction are particularly beneficial in cases where normal
subset construction leaves a large gap between the generated DFA and the minimal one.

Acknowledgements. We would like to thank Jan Friso Groote, Tim Willemse and Se-
bastian Maneth for valuable ideas, discussions and/or comments.
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Abstract. In this paper we formally define the notion of persistent Tur-
ing machines to model interactive computations. We compare the power
of persistent computations with their classical counterparts.

1 Introduction

In many real world applications of algorithms it is often not the case, that com-
putations start with an input and empty memory to produce some output. In
human guided search [KL02] human knowledge and computer power interact
to achieve better results than humans or computers alone could provide. In a
3-brain approach [A85] two computer programs provide alternative intermedi-
ate results with the human having the final say which one to use in the still
ongoing computation. These two approaches serve merely as successful exam-
ples [KL02, LM03, LM03a, AS03] to illustrate that human-machine-interaction
is used in practice. Classical (Turing machine) based models of computation can
hardly describe these. A promising approach to do so is the notion of persis-
tent Turing machines [GW98, Ko98]. A persistent Turing machine, or persistent
computation (of a Turing machine), receives a sequence of inputs and produces
a sequence of outputs while the computation on a single input may depend on
all computations on previous inputs. In this paper we give a sound formal def-
inition of the notion of persistent computations that until now was missing in
the literature and so will lay the ground for methodically studying the power
of persistent computations. We will also show how persistent computations re-
late to classical Turing machine computations. Since a persistent computation
is based on an underlying Turing machine and a sequence of inputs (or an input
function) we will look at various restrictions of input functions as well as Turing
machines and compare the resulting types of persistent computations with their
classical counterparts.

It has been shown that any function can be computed by a persistent compu-
tation [Ko98]. We will show that when restricting to computable input functions
� Work done in part while working at Friedrich-Schiller-Universität Jena.
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a persistent computation can only produce computable output functions. The
power of persistent computations however is illustrated by the fact that a single
input function is sufficient to compute all total recursive functions and prim-
itive recursive input funtions suffice to compute all recursive functions (see
Theorems 3.1 and 3.2). It also turns out that persistent computations give
rise to new classes of functions that have no obvious classical counterparts (see
Theorems 3.6 and 3.7).

The paper is organized as follows. In Section 2 we will formally introduce and
define the notion of persistent computations and what it means to compute a
function with a persistent computation. Section 3 contains some of our results
and their proofs. We mention in passing that the authors have also obtained
results concerning the notions of persistent-decidability as well as persistent-
enumerability [HK].

2 Basic Concepts and Definitions

In this section we will develop our model of persistent computations.
Let Σ = {0, 1} be our alphabet. We assume the reader to be familiar with

the basic concepts and notations of recursion theory [Ro67]. Depending on the
context we will view functions as to map from N to N, from N to Σ∗ or as to
map from Σ∗ to Σ∗. Due to the tight connection (there is a polynomial-time
computable and invertible bijection) between N and Σ∗ this will not weaken
our results but simplify their presentation. Note that we will solely consider
functions of that type. Let id be a bijective function and maps from N to Σ∗

such that id(0) = ε, id(1) = 0, id(2) = 1, id(3) = 00 and so on. So, id−1 exists
and, in particular, id and id−1 are primitive recursive. Let nd be the everywhere
undefined function, i.e. nd(n) is undefined for all n ∈ N, which is partial recursive
as well. For a function f let Df and Rf denote the domain of definition and the
range of f , respectively. The sets of partial and total recursive functions will be
denoted by P and R, respectively. We will denote Pr as the set of all primitive
recursive functions. For any set of functions F , let Ftotal and Fbij denote the
sets of all total and bijective functions from F , respectively.

2.1 The Model

In the formal Turing machine model each computation of a Turing machine
starts with an input tape containing the input and worktapes that are empty.
To model interactive and persistent behavior, as it is to be found in many todays
real world scenarios, as already mentioned in the introduction, we introduce the
notion of persistent computations of Turing machines. Even though this model
has been studied in the literature before [GW98, Ko98] a clear definition has
been missing until now.

Before we give formal definitions we recall the intuitive description. In contrast
to classical Turing machine computations their persistent counterparts do not
start out from an empty worktape. More precisely, the contents of the worktape
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at the start of the computation on an input x is identical to the content of the
worktape at the end of the computation on the input preceeding x. So in fact, we
view our machines as to receive sequences of inputs where the starting configura-
tion for each input depends on the end configuration of the machine on previous
inputs. That is what gave the model the name “persistent” computations. We
now turn to formally define our model.

Definition 2.1. Let M be a Turing machine with one input tape, one worktape
and one output tape, input alphabet Σ and worktape alphabet Γ . Without loss of
generality assume Σ ⊆ Γ . Let f : N→ Σ∗ be a total function.

1. The functions workM : Σ∗×Γ ∗ → Γ ∗ and outM : Σ∗×Γ ∗ → Γ ∗ are defined
as follows:
For all x ∈ Σ∗ and all y ∈ Γ ∗, workM (x, y) and outM (x, y) are the contents
of the worktape and output tape, respectively, of M in the end configuration
if the computation of M on input x and initial worktape content y halts.
Otherwise workM (x, y) and outM (x, y) are undefined.

The computation compM (x, y) of M on input x with initial worktape
content y is the sequence of configurations that M on input x with initial
worktape content y passes through, if that computation reaches a halting
state. Otherwise compM (x, y) is undefined.

2. The mapping histM,f : N→ Γ ∗ is recursively defined as:

histM,f(0) = ε and for all i ∈ N+

histM,f(i + 1) =

{
workM (f(i), histM,f(i)), if histM,f(i) �= n.d.,
n.d., if histM,f(i) = n.d..

3. The output function gM,f : N→ Γ ∗ is, for all i ∈ N, defined via

gM,f(i) = outM,f(f(i), histM,f(i)).

Thus a persistent computation receives a sequence of inputs, modelled as the
function f in the above definition, and produces a sequence of outputs, named
gM,f above. Persistence, the survival of information from previous computations,
is modelled by the function histM,f . In other words, a persistent computation
is a sequence of computations of a classical Turing machine M on inputs f(0),
f(1), . . . where the contents of the worktape from the previous computation is
the initial content of the worktape for the current computation.

The function f in the above definition will be called input function and we
denote the set of all total functions mapping from N to Σ∗ by In.

Such persistent computations can produce an infinite or finite sequence of
output values depending on whether all “local” computations of M halt or not
(see also Figure 1).

In analogy to classical (Turing machine) computations we define the concept
of a persistent computation via the notion of a configuration in the obvious way.
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M M M

hist       (3)

f(2)

hist       (2)

f(0) f(1)

hist       (1) M, f M, fM, f

ε

g      (0)
M, f M, f

g      (1)
M, f

g      (2)

Fig. 1. Schematic illustration of a persistent computation of a Turing machine M on
input sequence f(0), f(1), f(2), . . . if all values of histM,f are defined

Definition 2.2. Let M be a Turing machine with one input tape, one worktape
and one output tape, input alphabet Σ and worktape alphabet Γ . Without loss
of generality assume Σ ⊆ Γ . Let f ∈ In. The persistent computation of M on
input f , i.e., on the input sequence f(0), f(1), f(2), . . . is denoted by M(f) and
defined as

M(f) =df (compM (f(i), histM,f(i)))i∈N
,

if compM (f(i), histM,f(i)) is defined for all i ∈ N. If compM (f(i), histM,f(i)) is
not defined for all i ∈ N we define

M(f) =df (compM (f(0), histM,f(0)), . . . , compM (f(i0), histM,f(i0)))

where i0 is the smallest i ∈ N such that compM (f(i), histM,f(i)) is undefined.

Note that all definitions of this section can easily be modified to deal with
Turing machines having more than one worktape. Also, the general concept of
persistence can be generalized to other models of computation, such as RAM-
programs, MARKOV-algorithms and others, where all inner program variables
persist between the end of a computation and the start of a new computation.

2.2 Persistent Computations of Functions

Note that the mapping from f(i) to gM,f(i) in Definition 2.2 is in general not a
function, since we might have f(i) = f(j) and yet gM,f(i) �= gM,f(j) for some
i �= j. This observation leads to the following definition.

Definition 2.3 ([Ko98]). Let M be a Turing machine and f ∈ In.

1. The persistent computation M(f) is called consistent if and only if for all
i, j ∈ N the following condition holds for all i, j ∈ N:

f(i) = f(j)→ gM,f(i) = gM,f(j).
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2. A function h : Σ∗ → Σ∗ is said to be persistent computable (p-computable)
if and only if there exists a Turing machine M and a function f ∈ In such
that
(a) M(f) is consistent,
(b) Dh ⊆ Rf and
(c) for all i ∈ N, gf,M (i) = h(f(i)).
In that case we say that M on input f p-computes the function h.

3. A function h : N → N is said to be p-computable if and only if the mapping
ĥ : Σ∗ → Σ∗ being defined via h(n) = id−1(ĥ(id(n))) for all n ∈ N is
p-computable.

4. The set of all p-computable functions h : N→ N is denoted by pF.

Note that the requirement Dh ⊆ Rf (instead of Dh = Rf ) in Part 2b of Defi-
nition 2.3 gives more flexibility when it comes to p-computing partial functions.
In particular there are two ways to realize h(x) = n.d. for some x during a
p-computation M(f) of h, either x never shows up as an input, x /∈ Rf , or
even though x ∈ Rf , some prior runs of M do not terminate during the p-
computation.

An interesting result concerning the persistent computation of functions was
first observed in [Ko98].

Theorem 2.4 (Kosub). [Ko98] Every function h : N→ N is p-computable.

The idea of the proof is to construct a (piecewise constant) input function f ,
such that the length of a constant part of the input function encodes the function
value of the function h to be computed, on the input that will be provided by f
when it changes its value the next time. The underlying Turing machine simply
counts, how often the input value does not change and outputs that number when
the input value changes. Note that since there are no restrictions on the input
functions for persistent computations the encoding of otherwise uncomputable
functions into the input leads to the above statement.

So in order to be fair, the power of p-computability should be studied when
all input functions are required to be computable. In the process we will not only
study restrictions to the input functions but also restrictions to the underlying
machine model.

Definition 2.5. Let Φ ⊆ In, and M be a collection of programs or machines.

1. The set of p-Φ-computable functions is defined as

pF(Φ) =df {h ∈ F |(∃TM M)(∃f ∈ Φ)[M on input f p-computes h]}.

2. The set of p-(Φ,M)-computable functions is defined as

pF(Φ,M) =df {h ∈ F |(∃TM M ∈M)(∃f ∈ Φ)[M on input f p-computes h]}.

Note that the Turing machine used in the above proof sketch of Theorem 2.4 does
not do much more then counting. So any set Ψ of machines which are flexible
enough to count will be able to p-(In, Ψ)-compute all functions. Hence, the focus
in the upcoming section will be on restricting the set of input functions.
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3 The Power of Persistent Computations

As already mentioned above the true power of persistent computations can only
be judged if the set of input functions is restricted to computable functions. It
turns out that with this restriction, persistent computations can only compute
recursive functions and, even stronger, primitive recursive input functions suffice
to p-compute all recursive functions.

Theorem 3.1. P = pF(R) = pF(Pr).

Proof. Since we clearly have pF(Pr) ⊆ pF(R) it suffices to prove pF(R) ⊆ P and
P ⊆ pF(Pr).

We first show pF(R) ⊆ P. Let h ∈ pF(R). Hence, there exist a Turing machine
M and an input function f ∈ R such that M(f) p-computes h. In particular, for
every n ∈ Dh there is an i ∈ N such that id(n) = f(i) and h(n) = id−1(gM,f(i)).
It is not hard to see that gM,f is a recursive function, since f itself is total and
recursive and in order to compute gM,f(i) for some i ∈ N we simply have to
run the machine M i+ 1 times on the inputs f(0), f(1),. . . , f(i) (in that order)
while preserving the content of the worktapes between consecutive runs of M .
More formally, the following recursive scheme clearly holds:

histM,f(0) = ε
gM,f(0) = outM (f(0), histM,f(0))
histM,f(i + 1) = workM (f(i), histM,f(i)) for all i ≥ 0
gM,f(i + 1) = outM (f(i), histM,f(i)), for all i ≥ 0.

Since outM , workM , and f are recursive functions and histM,f and gM,f are
defined via a simultaneous recursion, based on outM , workM , and f , we conclude
that also histM,f and gM,f are recursive. Furthermore, for all n ∈ N we have
h(n) = id−1(gM,f (min{i ∈ N : f(i) = id(n)})). Since id, id−1, f and gM,f are
recursive functions and the class of recursive functions is closed with respect to
the μ-operator it follows that h is recursive.

The inclusion P ⊆ pF(Pr) can be shown as follows. Let h ∈ P. It is well known
that for all g1 ∈ P there exists a function g2 ∈ Pr with Dg1 = Rg2 . So let f ∈ Pr
be a function such that Dh = Rf . Let M be the Turing machine that computes
the function h such that in each halting configuration the worktape is empty.
Then, M on input f clearly p-computes h and thus h ∈ pF(Pr). ��

Further restricting the input functions to total and surjective recursive functions
(Rsurj) or to the single function id (recall that id : N→ Σ∗ is bijective), we obtain
the following results.

Theorem 3.2. 1. pF(Rsurj) = R ∪ {f ∈ P | |Df | <∞}.
2. pF({id}) = R ∪ {f ∈ P |(∃n ∈ N)[Df = {0, 1, 2, . . . , n}]}.
3. pFtotal({id}) = R.

The proof is omitted due to space restrictions. Note that the classes R, R∪{f ∈
P |(∃n ∈ N)[Df = {0, 1, 2, . . . , n}]}, R ∪ {f ∈ P | |Df | <∞}, and P form a chain
of strict inclusions and thus we have an inclusion structure as shown in Figure 2.
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pF({id}) = R ∪ {f ∈ P |Df = {0, . . . , n}, n ∈ N}

R = pFtotal({id})

P = pF(R) = pF(Pr)

pF(Rsurj) = R ∪ {f ∈ P | |Df | <∞}

Fig. 2. Classes between R and P

We will now turn to characterize the function class Pr in terms of persistent
computations. Since we have pFtotal({id}) = R, a restriction of the set of input
functions alone will not be sufficient to reduce the power of persistent compu-
tations to characterize Pr. We additionally will have to restrict the underlying
Turing machine model. Let TMPr denote the set of all Turing machines that
compute functions that are primitive recursive and that have a primitive recur-
sive work funtions.

Theorem 3.3. Pr = pF({id}, TMPr).

Proof. The inclusion Pr ⊆ pF({id}, TMPr) is obvious. So it is sufficient to prove
pF({id}, TMPr) ⊆ Pr.

Let h ∈ pF({id}, TMPr) be a function and let M be a Turing machine from
TMPr such that M on input id p-computes h. Applying an argument similar
to the one in the proof of pF(R) ⊆ P (see Theorem 3.1) while obeying that all
involved functions are primitive recursive and Pr is closed under simultaneous
recursion as well as the bounded μ-operator it is not hard to see that h is
primitive recursive. ��

Next we will show that we can even allow more input functions than just id and
still get a characterization of Pr. Let Pr−1 denote the set of all functions f ∈ Pr
such that the inverse f−1 is a function and also in Pr, i.e. Pr−1 = {f ∈ Pr |f−1

∈ Pr}.

Theorem 3.4. Pr = pF(Pr−1, TMPr).

Proof. Since clearly id, id−1 ∈ Pr we have pF({id}, TMPr) ⊆ pF(Pr−1, TMPr)
and thus Pr ⊆ pF(Pr−1, T MPr) by Theorem 3.3. So it remains to show that
pF(Pr−1, T MPr) ⊆ Pr.

So let h ∈ pF(Pr−1, TMPr). Hence, there exist a function f ∈ Pr−1 and a
Turing machine M ∈ TMPr such that M on input f p-computes h. Without
loss of generality let workM be primitive recursive. Similar to the argument in
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the proof sketch of Theorem 3.3 one can show that gM,f is primitive recursive
since it can be described via simultaneous recursion and the functions outM ,
workM , and f . Since for all n ∈ N, h(n) = gM,f (min{i ∈ N : i = f−1(n)}),
using the fact that f−1 is primitive recursive and Pr is closed with respect to
the application of the bounded μ-operator we obtain h ∈ Pr. ��

One might be tempted to conjecture that even pF(Pr, T MPr) = Pr holds. This
is not the case, as we will show in the following. Recall that Prbij denotes the
set of all functions in Pr that are bijective. Clearly, Pr−1 ⊆ Prbij. We will now
argue that Pr−1 ⊂ Prbij.

Lemma 1. Prbij is not closed with respect to inversion.

Proof. By a result of Robinson ([Ro50]) we know that

R = ΓADD,SUB,INV({succ, x
.
− �
√
x�2})

where succ denotes the successor function and for all sets of functions A, the
term ΓADD,SUB,INV(A) denotes the closure of A with respect to addition (ADD),
subtraction (SUB) and a limited form of inversion (INV) where inversion can
only be applied to bijective functions.

Recall that {succ, x
.
− �√x�2}) ⊆ Pr, Pr is closed with respect to ADD and

SUB, and R \ Pr �= ∅. Let h ∈ R \ Pr. The function h can be described by
a finite sequence of successive applications of ADD, SUB, and INV on either
succ or x

.
− �√x�2. Since during the process of these successive applications of

ADD, SUB, and INV, the functions we start from are in Pr and the function we
end with is element of R \ Pr, there exist (intermediate) functions f ∈ Pr and
g ∈ R \ Pr such that:

1. f ∈ ΓADD,SUB,INV({succ, x
.
− �
√
x�2}),

2. f ∈ Prbij,
3. g ∈ ΓADD,SUB,INV({succ, x

.
− �
√
x�2}),

4. g = f−1.

Since Prbij ⊆ Pr and g ∈ ΓINV(Prbij) we obtain ΓINV(Prbij) �= Prbij and hence
Prbij is not closed under inversion. ��

Since Pr−1 is clearly closed under inversion we have the following corollary.

Corollary 3.5. Pr−1 ⊂ Prbij.

Moreover we can show, that the class pF(Prbij, T MPr) is located between Pr
and R.

Theorem 3.6. Pr ⊂ pF(Prbij, TMPr) ⊂ R.

Proof. We will first show Pr ⊂ pF(Prbij, T MPr).
Since Pr = pF(Pr−1, T MPr) due to Theorem 3.4 and Pr−1 ⊆ Prbij we have

Pr ⊆ pF(Prbij, TMPr). It remains to show that there exists a function h ∈
pF(Prbij, T MPr) that is not primitive recursive.
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Let f be a function in Prbij \ Pr−1 and M be a Turing machine from TMPr

such that gM,f ′ = id for any input function f ′. Clearly M(f) is a consistent
p-computation since f is bijective. Let h denote the function computed by the
p-computation M(f). Hence h ∈ pF(Prbij, TMPr). However, we have h(f(i)) =
gM,f(i) = i for all i ∈ N and thus h = f−1. It follows that h is not primitive
recursive.

We now proof pF(Prbij, T MPr) ⊂ R. The inclusion pF(Prbij, TMPr) ⊆ R can
be seen as follows. On the one hand it follows immediately from Theorem 3.1
that pF(Prbij, TMPr) ⊆ P and on the other hand a p-computation M(f) for a
Turing machine M from TMPr and a function f ∈ Prbij always yields a total
function.

To show the strictness of that inclusion we use the Ackermann function p (also
known as Peter function) [Ro67]. It is known that p ∈ R \ Pr. Let the function
q be defined as q(n) = p(n, n) for all n ∈ N. Assume that q is an element of
pF(Prbij, T MPr). Hence there exist a function f ∈ Prbij and a Turing machine
M ∈ TMPr such that M(f) is a p-computation of q. Without loss of generality
let workM be primitive recursive. It follows that gM,f is primitive recursive as
well since it can be described via a simultaneous recursion based on outM and
workM (see the proof of Theorem 3.1). Since (q ◦ f)(n) = q(f(n)) = gM,f(n)
for all n ∈ N we have q ◦ f ∈ Pr. It is a well-known fact that the Peter function
grows faster then any primitive recursive function, i.e.,

(∀h ∈ Pr)(∃m ∈ N)(∀n ∈ N)[h(n) < p(m,n)].

Hence, there exists an m ∈ N such that for all n ∈ N, q(f(n)) < p(m,n). Since
f is surjective there exists n0 ∈ N such that f(n0) = m. It follows that

q(f(n0)) = q(m) < p(m,m)

which contradicts the definition q(n) = p(n, n) for all n ∈ N. Hence our assump-
tion q ∈ pF(Prbij, TMPr) was false. ��

Next we will classify the set pF(Pr, TMPr) which turns out to be not equal to
Pr as the above Theorem 3.6 implies. On the one hand pF(Pr, TMPr) is a strict
superset of pF(Prbij, TMPr) since input functions from Pr are more flexible than
input functions from Prbij. On the other hand pF(Pr, TMPr) remains a subset
of P as the following proposition shows.

Theorem 3.7. pF(Prbij, TMPr) ⊂ pF(Pr, TMPr) ⊂ P \ {nd}.

Proof. The first inclusion, pF(Prbij, TMPr) ⊂ pF(Pr, TMPr) is easy to see. Note
that Prbij ⊂ Pr and hence pF(Prbij, T MPr) ⊆ pF(Pr, TMPr), yet the function
h : N→ N that, for all n ∈ N, is defined as

h(n) =

{
n, if n ≡ 0 mod 2,
n.d., if n ≡ 1 mod 2,

is an element of pF(Pr, T MPr) \ pF(Prbij, TMPr).
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To show the other inclusion, pF(Pr, T MPr) ⊂ P \ {nd}, first observe that the
function nd is not in pF(Pr, TMPr) since gM,f(0) is defined for any M ∈ TMPr

and any input function f . Second, recall that we have pF(Pr) = P by Theorem 3.1
and thus pF(Pr, TMPr) ⊆ P \ {nd}. And third, note that the strictness of that
inclusion follows from the proof of Theorem 3.6. In particular, in that proof a
function q was defined and it was shown that q is in R \ pF(Prbij, TMPr). Using
the same argument one can also show that q ∈ P \ pF(Pr, TMPr). ��

Acknowledgments. The authors would like to thank the anonymous referees
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Abstract. We consider two-dimensional languages, called here 2d trans-
ducer languages, generated by iterative applications of transducers (finite
state automata with output). To each transducer a two-dimensional lan-
guage consisting of blocks of symbols is associated: the bottom row of
a block is an input string accepted by the transducer and, by iterative
application of the transducer, each row of the block is an output of the
transducer on the preceding row. We observe that this class of languages
is a proper subclass of recognizable picture languages containing the class
of all factorial local 2d languages. By taking the average growth rate of
the number of blocks in the language as a measure of its complexity, also
known as the entropy of the language, we show that every entropy value
of a one-dimensional regular language can be obtained as an entropy
value of a 2d transducer language.

Keywords: Transducers, Finite State Automata with Output, Entropy,
Picture Languages, Local Languages.

1 Introduction and Background

Two-dimensional languages, representing sets of rectangular blocks of symbols
are a natural extension of one-dimensional languages, sets of words, or strings of
symbols. Although there are fairly well developed classifications and theories to
study one-dimensional languages, in particular regular languages, the case of two
dimensional languages remains elusive. Two-dimensional recognizable languages,
so called class REC, are morphic images of two-dimensional local languages, and
were originally defined by A. Restivo and D. Giammarresi [5,6]. They showed
that the emptiness problem for these languages is undecidable which implies
that many other questions that are easily solved in one-dimensional case become
undecidable in two-dimensional case. Recent work by several authors attempts
to better understand the class REC through various approaches such as: design
of variants of finite state automata that recognize these languages [1,2,12,13],
characterization of determinism of two-dimensional recognizable languages [3],
or study of the factor languages of two-dimensional shift spaces [9,10].

On the other side there is a natural representation of prolongable local two-
dimensional languages with Wang tiles which have been studied extensively for

O.H. Ibarra and B. Ravikumar (Eds.): CIAA 2008, LNCS 5148, pp. 181–190, 2008.
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couple of decades. Recently, a physical representation of Wang tiles with DNA
molecules has been demonstrated [21,22]. This provides another motivation for
studying two-dimensional languages. It is well known that by iteration of gener-
alized sequential machines (finite state machines mapping symbols into strings)
all computable functions can be simulated (see for ex. [19,20]). The full compu-
tational power depends on the possibility for iterations of a finite state machine.
As there is a natural simulation of the process of iteration of transducers and
recursive (computable) functions with Wang tiles [8], this idea has been devel-
oped further in [4] where a successful experimental simulation of a programmable
transducer (finite state machine mapping symbols into symbols) with DNA Wang
tiles having iteration capabilities is reported. This experimental development
provides means for generating patterns and variety of two-dimensional arrays at
the nano level.

Motivated by this recent experimental development, in this note we concen-
trate on the class of two-dimensional languages generated by iteration of trans-
ducers. It is not difficult to see that such languages belong to the REC class
(see Proposition 1), however, they do not necessarily belong to the class of local
two-dimensional languages (Example 2). Therefore, this is another sub-class of
REC languages whose analysis may provide a way to understand some prop-
erties of the the whole class of REC. In Section 4 we make some observations
about the average growth rate of the number of blocks in a picture language rel-
ative their size as a measure of complexity. This measure is known in symbolic
dynamics as the entropy of the language and it is well understood in the case
of one dimensional regular languages. It is known that in one-dimensional case,
the set of entropies of the regular languages coincides with the set of logarithms
of Perron numbers (see [18]). However, there is no general theory that describes
a way to obtain the entropy of a two-dimensional local, or even less a language
belonging to the larger class of recognizable languages. It is known that even
languages with so called strong transitivity, i.e., mixing properties, have zero
entropy [15,16]. In this note we observe that the value given by a log of a Perron
number can be obtained as an entropy value of a transducer generated two-
dimensional language. This also shows that the two-dimensional arrays that can
be obtained by self-assembly of DNA tiles simulating iterations of transducers
have rich complexity.

2 Notation and Definitions

We use A to indicate an alphabet, a finite set of symbols. The cardinality of A
is denoted with #A. A finite sequence of symbols is called a word, or a one-
dimensional block. The set of all words over alphabet A is denoted with A∗. We
also consider A∗ as a free monoid with the operation of concatenation of words.
The length of a word w = a1 · . . . · ak is k and is denoted with |w|. The empty
word is denoted with ε. The set of all words of length k is denoted with Ak, and
set of all words of length less or equal to k is denoted with A≤k.
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A one-dimensional language is a subset of A∗. For a language L, we extend
the notation to Lk = Ak∩L and L≤k = A≤k∩L. A word u such that w = x1ux2

for some words x1, x2 ∈ A∗ is called a factor of w. The set of all factors of w is
denoted with F (w), and the set of all factors of length k of w is denoted with
Fk(w). We extend this notation such that the set of factors of all words in a
language L denoted by F (L) and the set of factors of all words in L of length k
is denoted by Fk(L).

Definition 1. A nondeterministic transducer (also known as alphabetic trans-
ducer) is a five-tuple

τ = (A,Q, δ, q0, T ),

where A is a finite alphabet, Q is a finite set of states, q0 is an initial state
(q0 ∈ Q), T is a set of final (terminal) states (T ⊆ Q), δ ⊆ Q× A × A × Q is
the set of transitions. A transducer is called deterministic if its set of transitions
defines a function (which is also denoted with δ) δ : Q×A→ A×Q.

To a transducer we associate a directed labeled graph in a standard way: the
set of vertices is the set of states Q and the directed edges are transitions in δ,
such that an edge e = (q, a, a′, q′) starts at q and terminates at q′. To each edge
we associate labels I : δ → A and O : δ → A being the input and the output
labels, i.e., for e = (q, a, a′, q′) we have I(e) = a and O(e) = a′. The input and
the output labels are extended to paths in the transducer.

We say that a word w is accepted by a transducer τ = (A,Q, δ, q0, T ) if there
is a path p = e1 · · · ek which starts at q0, terminates with a state in T and
I(p) = I(e1) · · · I(ek) = w. The path p in this case is called an accepting path
for w. The language which consists of all words that are accepted by τ is called
the input language of τ and is denoted I(τ). A word v is said to be an output of
τ if there is w ∈ I(τ) and an accepting path p for w such that O(p) = v. In this
case we also write v ∈ O(w). The language which consist of all outputs of τ is
the output language for τ denoted with O(τ).

Definition 2. If S = {1, . . . , n}×{1, . . . ,m}, then a map B : S &→ A is a block
of size n×m or an n×m-block. We say that n is the number of columns in B
and m is the number of rows in B. The empty block is of size m × n where at
least one of m,n equals 0 and is denoted by ε.

The blocks are represented as arrays of symbols: the first row of the block is the
bottom row, and every successive row is placed on top of the previous row.

Definition 3. If B is a block of size n×m, and n′,m′, x, and y are nonnegative
integers, such that 1 ≤ x + n′ ≤ n and 1 ≤ y + m′ ≤ m, then a sub-block of B

of size n′ ×m′ at position (x, y), denoted B|n
′,m′

(x,y) is the n′ ×m′-block such that

B|n
′,m′

(x,y) (i, j) = B(x+ i−1, y+ j−1) for 1 ≤ i ≤ n′ and 1 ≤ j ≤ m′. We say that

a block B′ is a sub-block of B if there are x, y, n′,m′ such that B′ = B|n
′,m′

(x,y) .

The set A∗∗ denotes the set of all blocks over alphabet A. A subset L of A∗∗ is
called a picture language. The set of all k × k-blocks is denoted with Ak×k. A
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subset of Ak×k is denoted with Qk,k. The set of all k × � sub-blocks of a block
B is denoted by Fk,�(B). The set of all sub-blocks of B is denoted with F (B).
We extend this notation naturally to F (L) for all sub-blocks of blocks in L and
Fk,�(L) for the set of all sub-blocks of size k × � of blocks in L.

Now we concentrate on picture languages generated by transducers. If τ is a
transducer (deterministic or nondeterministic), we define inductively: τ0(w) =
{w} if w ∈ I(τ) and τr(w) = {u | there is v ∈ τr−1(w) ∩ I(τ), u ∈ O(v)}.

Definition 4. An n×m-block B is generated by transducer τ if B|n,1
(1,1) ∈ I(τ)

and B|n,1
(1,i+1) ∈ τ(B|n,1

(1,i)) for all 1 ≤ i ≤ m− 1.

Note that the empty block ε is generated by a transducer τ if the initial state is
also a terminal state. A n× 1-block is generated by a transducer τ if it belongs
to I(τ). Every transducer with non-empty input language generates blocks of
size n× i for i = 1, 2.

Definition 5. A picture language which consists of all blocks that are generated
by a deterministic (nondeterministic) transducer τ is called a picture language
generated by transducer τ and is denoted with Lτ . A picture language L is said
to be transducer generated if there is a transducer τ such that L = Lτ .

The class of transducer generated picture languages is denoted with TG.

3 Local Picture Languages and TG

We recall the definition for local languages in one dimensional case. For a lan-
guage L ⊆ A∗ we say that L is a local language of order k if there is P ⊆ Ak

such that for all w ∈ A≥k, we have w ∈ L if and only if Fk(w) ⊆ P . The set
P is called the set of allowed words. This definition naturally extends to two
dimensions.

Definition 6. For a picture language L ⊆ A∗∗ we say that L is a local picture
language of order k if there is a set Qk,k such that for all n × m-blocks B
(n,m ≥ k) we have B ∈ L if and only if Fk,k(B) ⊆ Qk,k. The set Qk,k is called
the set of the allowed blocks.

We note that in the definition of local languages given in [5,6] each block in
the language is surrounded by a special symbol indicating the boundary of the
block. This requirement may be important in determining certain properties of
picture languages, such as the “ambiguity” defined in [3,2]. The boundary may
also prevent certain sizes of blocks to appear. For example the boundaries allow
a construction of a local language which consists of square block sizes only [3].
However, by Definition 6, local picture languages contain every sub-block of a
block in the language. Therefore Definition 6 is a definition of “factorial local
picture languages” compared to the definition in [5].

Let Qk,k ⊂ Ak×k and K be the local picture language defined by Qk,k. Con-
sider ϕ : Qk,k → A. Let A denote the set of all m × n-blocks from K with
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m,n ≥ k. A projection map defined by ϕ is a map Φ : A → A∗∗ such that
Φ(B)(i, j) = ϕ(B|k,k

(i,j)) for an m× n-block B and 1 ≤ i ≤ n− k, 1 ≤ j ≤ m− k.
We say that a picture language L is in class REC if and only if there is a local
picture language K and a projection map Φ such that L = Φ(K). As in the case
of local languages, the definition for recognizable languages is somewhat different
than the one in [5], i.e., here we consider “factorial recognizable languages”.

Proposition 1. Transducer generated languages are in REC.

Proof. (sketch) Given Wang prototiles T , a Wang language defined by T is a
set or all rectangles obtained by tilings with Wang tiles from T . It is well known
that (with the appropriate coding) the class of Wang languages is identical to the
class of local picture languages (see for ex. [15,16]). To every transducer τ one can
associate a set of Wang prototiles W (Tτ ) [8]. A representation of a transducer
transition with a Wang tile is depicted in Fig. 1. To prove the proposition, it
is sufficient to observe that for every transducer τ there is a natural projection
map from W (Tτ ) to the language Lτ which maps each prototile [q, a, a′, q′] to a′

(the top color). This map (with a small modification to take care of the border
colors) generates all of the blocks from Lτ .

As noted with the following example there are picture languages in REC that
are not in TG.

Fig. 1. A computational tile for a transducer

Example 1. Consider the picture language over alphabet {a, b} which consists of
all blocks containing at most one appearance of b (all other symbols are a). This
picture language is in REC [14]. If there were a transducer that generates this
language, this transducer would have a transition with an input symbol a and
output b, and a transition with input symbol b and output a. But then, there
are n, s such that asban−s−1 ∈ τ(an), i.e., on an input an the transducer may
output a word containing a symbol b. Hence blocks with more than three rows
that are generated by the transducer can have more than one appearance of b.

Although the class of transducer generated languages TG is a subset of REC, it
turns out that there is a TG language which is not a local picture language. In
fact even for a deterministic transducer τ with input language I(τ) being local,
the picture language generated by τ , Lτ , may not be.

Example 2. Consider the transducer over alphabet {a, b} as depicted in Fig. 2.
This transducer is deterministic and all of its states are terminal except the
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“junk state” indicated by a shaded circle. The initial state is indicated with an
arrow. The output symbols for all transitions starting at the same state are the
same, so the output symbols are indicated inside the circles denoting the states.
The input language of the transducer τ is local of order 3 (the allowed words of
length 3 are all but “bbb”).

a

a a

aa a a

b

a

a

a

a

b b

b

b

b
b

a

a

a

ba

b

a
b

Fig. 2. A deterministic transducer τ such that I(τ ) is a local language, but Lτ is not

Suppose that Lτ is a local picture language and, there is a set Qk,k of allowed
blocks of size k × k such that every k × k sub-block of a block in Lτ is in Qk,k.
Let B,B′ be n×m-blocks where m,n > k and C be (n + 1)×m-block defined
as follows:

B =

a a a . . . a a a
. . .

a a a . . . a a a
a b a . . . a a b

B′ =

a a a . . . a a a
. . .

a a a . . . a a b
b a a . . . a b a

C =

a a a . . . a a a
. . .

a a a . . . a a b
a b a . . . a b a

One can think of C as obtained from B by adding the last column of B′ as a
last column of C. In this case, B = C|n,m

(1,1) and B′ = C|n,m
(2,1) , i.e., B,B′ ∈ F (C).

Quick check of the transducer shows that blocks B and B′ are in Lτ . Moreover,
Fk,k(C) = Fk,k({B,B′}) ⊆ Qk,k. If Lτ is local, then it must be that C ∈ Lτ ,
but direct check shows that it, in fact, is not (note that the only way to output
symbol b is when the input word starts with b, and this is not the case with the
first row of C).

Recall that by enlarging the alphabet accordingly (similarly as going to the
higher block system in [18]) one can encode every local language in an “equiv-
alent” local language defined through a 2 × 2 size blocks. In the following we
assume that every local language is determined by a set of blocks Q2,2. The
relationship between local picture languages as defined by Definition 6 and the
transducer generated languages is obtained by the following proposition. We
state the following observation without a proof.

Proposition 2. For every local picture language L there is a transducer τ such
that Lτ = L.
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4 Entropy of Lτ

One measure of complexity of a given language is the average growth rate of the
number of blocks that appear in the language relative their size. In one dimen-
sional case, this measure is also called the entropy of the language and is derived
from the notion of topological entropy of (compact) symbolic dynamical systems
(see [7]). The Perron-Frobenious theory provides a straight-forward way of com-
puting the entropy for a one-dimensional regular language. It is the logarithm
of the maximal eigen value (also known as Perron numbers) of the adjacency
matrix of the minimal deterministic automaton of the language [18]. However,
obtaining a general method for computing the entropy of a two-dimensional
recognizable language shows to be very difficult, and consequently, there is no
general knowledge about what numbers can be realized as the entropy values in
two-dimensions. In the following we show that logarithm of every Perron number
can be obtained as an entropy value for a transducer generated picture language.
In other words, all entropy values realized by one-dimensional regular languages
can also be realized by transducer generated picture languages.

Recall that for L ⊆ A∗ the entropy of L is h(L) = lim sup
n→∞

1
n

log(#Fn(L)).

This definition extends to an equivalent definition in two-dimensions.

Definition 7. For L ⊆ A∗∗ the entropy of the picture language L is

h(L) = lim sup
n→∞

1
n2

log(#Fn,n(L)).

Note. Since the entropy formula “counts” the sub-blocks of a certain size, the
value of the entropy of Lτ and I(τ) does not change if we consider these languages
to be factorial, hence we can assume that all transducers in this sections have
all their states initial and terminal. In this case, F (Lτ ) = Lτ , and F (L) = L.

Note that the entropy of L is always bounded by log #A. The entropy of Lτ is
zero for any deterministic transducer τ , since for each n it contains at most #An

blocks of size n× n (each word w can generate at most one block of height n).
However, if Lτ is a two dimensional language generated by a nondeterministic
transducer, its entropy may no longer be zero. For example, the transducer
τ = (A, {q}, δ, {q}, q) with δ = {(q, a, b, q)|a, b ∈ A}, which consists of one state
with transitions having all possible labels generates Lτ = A∗∗ and for each n,
#Fn,n(Lτ ) = #(An×n) = #An2

. Thus h(Lτ ) = h(A∗∗) = log #A.
For a given transducer τ and w in I(τ) define deg(w) = #τ(w), i.e., deg(w)

is the number of distinct words that τ can output on input w. We extend this
notation to finite sets of words by setting deg(S) = maxw∈S{deg(w)}.

Observe that the number of distinct blocks of height n with the bottom row
w contained in Lτ is bounded above by

n−1∏

i=0

deg(τ i(w)).
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Suppose deg(w) ≤ nk for all w in I(τ) with |w| = n. Then we observe that

h(Lτ ) = lim sup
n→∞

1
n2

log(Fn,n(Lτ ))

≤ lim sup
n→∞

1
n2

log

⎛

⎜
⎜
⎝

∑

|w|=n
w∈I(τ)

(
n−1∏

i=0

(deg(τ i(w))

)
⎞

⎟
⎟
⎠

≤ lim sup
n→∞

1
n2

log
(
#An · nnk

)
= lim sup

n→∞

[
1
n

log #A +
k

n
logn

]
= 0.

Thus if there is some positive integer k, such that for any w in I(τ), #τ(w) ≤
|w|k, the entropy of Lτ is zero. This proves:

Proposition 3. Let τ be a transducer. If there is a polynomial p such that
#τ(w) ≤ p(|w|) for every w ∈ I(w), then the entropy of Lτ is 0.

Proposition 4. For any regular language L there is a nondeterministic trans-
ducer τ such that I(τ) = L and h(Lτ ) = h(L).

Proof. Let M be a finite state automaton accepting language L. Denote the set
of transitions of M by ϕ, and construct a transducer τ from M as follows. The
set of states remains the same and the set of transitions in τ is {(q1, a, b, q2) |
(q1, a, q2) ∈ ϕ and b ∈ A}. Observe that I(τ) = L.

Now consider Lτ . Note that for an n× n-block B ∈ Lτ , every row of B must
be in I(τ), except maybe the last, nth row which may not belong to I(τ). Let
Bp,k denote the set of all n× p-blocks B ∈ Lτ with B|n,1

(1,p) (the pth row of block
B) in I(τ). Thus we conclude that #Fn,n(Lτ ) ≤ #Bn,n−1#An ≤ #Bn,n#An.
Hence

h(Lτ ) = lim sup
n→∞

1
n2

log #Fn,n(Lτ )

≤ lim sup
n→∞

1
n2

log(#Bn,n ·#An)

= lim sup
n→∞

1
n2

log #Bn,n

Since #Bn,n ≤ #Fn,n(Lτ ), we have that

h(Lτ ) = lim sup
n→∞

1
n2

log #Bn,n

Since the transducer can output every word of length n on any given input
of length n, the number of n× n-blocks in Lτ having each of its rows in I(τ) is
exactly [#Fn(I(τ))]n, i.e., #Bn,n = [#Fn(I(τ))]n. Thus

h(Lτ ) = lim sup
n→∞

1
n

log #Fn(I(τ)) = h(L)

Corollary 1. Let L be a regular language. Then the entropy of L is an upper
bound for the entropy of Lτ for any nondeterministic transducer τ with I(τ) = L.
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Proof. Let L be a regular language and let τ = (A,Q, δ, q0, F ) be such that
I(τ) = L. Then consider τ

′
= (A,Q, δ

′
, q0, F ), with δ

′
= {(q, a, b, p) | (q, a, s, p)

∈ δ and b ∈ A}. Hence δ ⊆ δ
′

and h(Lτ ) ≤ h(Lτ ′ ). By the proof of the
Proposition 4, h(Lτ ′ ) = h(I(τ)) = h(L).

5 Concluding Remarks

In this paper we introduced a new class of two-dimensional languages which is
a sub-class of REC and contains all factorial local picture languages. This class
comes naturally as a class generated by iterative applications of transducers,
and if entropy is taken as a measure of complexity, this class shows to have rich
pattern generation capabilities. Characterization of patterns that can be gener-
ated by iteration of transducers may be of interest in applications, in particular,
in algorithmic self-assembly of two-dimensional arrays with DNA tiles. Also, it
may be of interest to investigate some decidability questions for these languages
as well: for example, given a language in TG, is there an m × n-block in the
language for every m,n? The relationship of the class TG with the class of un-
ambiguous (or non-deterministic) picture languages as well as transitivity and
mixing properties of these languages remain to be investigated as well.
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ductions. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450,
pp. 286–295. Springer, Heidelberg (1998)

18. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press, Cambridge (1995)
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Z. Ésik1,� and Sz. Iván2

1 GRLMC, Rovira i Virgili University, Tarragona, Spain
2 Dept. of Computer Science, University of Szeged, Hungary

Abstract. We associate a temporal logic XTL(L) with each class L
of (regular) tree languages and provide both an algebraic and a game-
theoretic characterization of the expressive power of the logic XTL(L).

1 Introduction

The characterization of the expressive power of first-order logic on trees (with
both the successor relations and the partial order relation derived from the
successor relations) has been a long standing open problem, cf. [12,14,19].1 With
a few exceptions, there is no decidable characterization known for temporal logics
on (finite and/or infinite) trees. Most notably, the decidable characterization of
the logic CTL [5] is open.

In this paper we consider only finite trees. In [6], a logic FTL(L) was associated
with each class L of regular tree languages. Under the assumption that the next
modalities are expressible (and an additional technical condition), we obtained
a characterization of the languages definable in FTL(L) using pseudovarieties
of finite tree automata and cascade products. We argued that by selecting par-
ticular (finite) language classes L, most of the familiar temporal logics can be
covered. In [8], we removed the extra condition on the next modalities by making
use of a modified version of the cascade product, called the Moore-product. The
logics FTL(L) contain “built in” atomic formulas describing the root of a tree.
This has the disadvantage that several natural classes of tree languages do not
possess a characterization in terms of the logics FTL(L).

In this paper, we introduce a generalization of the logics FTL(L). We as-
sociate yet another logic, called XTL(L), with each class L of tree languages.
In the first part of the paper we show that, when L ranges over subclasses of
regular tree languages (and satisfies a technical condition), then the classes of
languages definable in XTL(L) are in a one-to-one correspondence with those
pseudovarieties of finite tree automata which are closed under a variant of the
Moore-product.

In the second part of the paper we provide a game-theoretic characterization
of the logics XTL(L). With each class L of tree languages, we associate an
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Ehrenfeucht-Fräıssé-type game, called the XTL(L)-game, between “Spoiler” and
“Duplicator”. We obtain that two trees s, t can be separated by an XTL(L)-
formula of “depth n” iff Spoiler has a winning strategy in the n-round XTL(L)-
game on (s, t). We also discuss a modification of the game that characterizes the
logics FTL(L).

The paper is ended by a few examples derived from the main theorems provid-
ing game-theoretic characterizations of some familiar logics, including a version
of CTL for finite trees, and some of its fragments. All proofs are omitted.

2 Preliminaries

A rank type is a nonempty finite set of nonnegative integers containing 0. A
ranked alphabet Σ (of rank type R) is a union

⋃

n∈R

Σn of pairwise disjoint, finite

nonempty sets of symbols. Elements of Σ0 are also called constant symbols. We
assume that each ranked alphabet Σ comes with a fixed lexicographic ordering
denoted <Σ, or just < when Σ is understood.

For the whole paper we now fix an arbitrary rank type R.
Given a ranked alphabet Σ, the set TΣ of Σ-trees is the least set such that

whenever σ ∈ Σk, k ∈ R is a symbol and t1, . . . , tk are Σ-trees, then σ(t1, . . . , tk)
is also a Σ-tree. When σ is a constant symbol, we often write σ for the tree σ().
A (Σ-)tree language L is any subset of TΣ.

We can also view a Σ-tree as a map from a tree domain to Σ. In this setting,
the domain dom(t) of a tree t is defined inductively as follows. When t = σ ∈ Σ0,
dom(t) = {ε}, the singleton set whose unique element is the empty word. Suppose

that t = σ(t1, . . . , tn), where n > 0. Then dom(t) = {ε}∪
n⋃

i=1

{i ·v : v ∈ dom(ti)}.

Elements of dom(t) are also called nodes of t. Then, a Σ-tree t = σ(t1, . . . , tn) can
be viewed as a mapping t : dom(t)→ Σ defined inductively as follows: t(ε) = σ,
and for any node i · v ∈ dom(t), t(i · v) = ti(v). We define Root(t) = t(ε). When
t(v) ∈ Σn, we also say that v is a node of rank n. When t is a Σ-tree and s is a
Δ-tree such that dom(t) = dom(s), s is called a Δ-relabeling of t.

When t is a Σ-tree and v ∈ dom(t) is a node of t, the subtree of t rooted at v is
defined as the tree t|v with dom(t|v) = {w : v ·w ∈ dom(t)} and t|v(w) = t(v ·w).
We extend the above notions to tuples of trees as follows: when t = (t1, . . . , tn)

is an n-tuple of trees, let dom(t) =
n⋃

i=1

{i · v : v ∈ dom(ti)} and t(i · v) = ti(v).

Suppose Σ and Δ are ranked alphabets and h is a rank-preserving mapping
Σ → Δ. Then h determines a literal tree homomorphism TΣ → TΔ, also denoted
h, defined as follows: for any tree t ∈ TΣ, let dom(h(t)) = dom(t), and for any
node v ∈ dom(t), let h(t)(v) = h(t(v)).

When Σ is a ranked alphabet, let Σ(•) denote its enrichment by a new con-
stant symbol •. A Σ-context is a tree ζ ∈ TΣ(•) in which • occurs exactly once.
When ζ is a Σ-context and t is a Σ-tree, ζ(t) denotes the Σ-tree resulting from
ζ by substituting t in place of the “hole” •. When L ⊆ TΣ is a tree language
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and ζ is a Σ-context, the quotient of L with respect to ζ is the tree language
ζ−1(L) = {t : ζ(t) ∈ L}.

Suppose Σ is a ranked alphabet. A Σ-algebra A = (A,Σ) consists of a
nonempty set A of states and for each symbol σ ∈ Σn an associated elementary
operation σA : An → A. Subalgebras, homomorphisms, quotients etc. are defined
as usual, cf. [11]. A Σ-tree automaton is a Σ-algebra which contains no proper
subalgebra. A tree automaton A = (A,Σ) is called finite if A is finite.

In any Σ-algebra A, any tree t ∈ TΣ evaluates to a state tA ∈ A defined as
usual. The connected part of a Σ-algebra A is the tree automaton which is the
subalgebra of A determined by the states tA, where t ranges over TΣ .

Suppose that A is a Σ-tree automaton. When also a set A′ ⊆ A is given, A
recognizes the tree language LA,A′ = {t : tA ∈ A′} with the set A′ of final states.
A tree language L is recognizable by the tree automaton A if L = LA,A′ for some
set A′ ⊆ A of final states. A tree language is called regular if it is recognizable
by some finite tree automaton.

We say that the tree automaton B = (B,Δ) is a renaming of the tree automa-
ton A = (A,Σ) if B ⊆ A and each elementary operation of B is a restriction of
an elementary operation of A.

When A = (A,Σ) and B = (B,Σ) are tree automata, their direct product
A × B is the connected part of the Σ-algebra C = (A × B,Σ), where for each
σ ∈ Σn and states a1, . . . , an ∈ A, b1, . . . , bn ∈ B,

σC((a1, b1), . . . , (an, bn)) = (σA(a1, . . . , an), σB(b1, . . . , bn)).

We call a nonempty class V of finite tree automata a pseudovariety of finite
tree automata if it is closed under renamings, direct products and quotients.

A closely related notion is that of literal varieties of tree languages: a nonempty
class V of regular tree languages is a literal variety of tree languages if it is closed
under the Boolean operations, quotients and inverse literal homomorphisms.

There exists an Eilenberg correspondence between the lattice of pseudovari-
eties of finite tree automata and the lattice of literal varieties of tree languages:
the mapping

K &→ VK = {L : L is recognizable by some member of K},

restricted to pseudovarieties, establishes an order isomorphism between the two
lattices. For more information on (literal) varieties of tree languages the reader
is referred to [15,16,17,6].

3 The Logic XTL(L)

In this section we introduce an extension of the logics FTL(L) defined in [6] and
further investigated in [8,9].

Let L be a class of tree languages and Σ a ranked alphabet. The set of
XTL(L)-formulas over Σ is the least set satisfying the following conditions:
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1. The symbol ↓, and for any ranked alphabet Δ, rank-preserving mapping
π : Σ → Δ and Δ-tree language L ∈ L, (L, π) is an (atomic) XTL(L)-
formula (of depth 0).

2. When ϕ is an XTL(L)-formula (of depth d), then (¬ϕ) is also an XTL(L)-
formula (of depth d).

3. When ϕ and ψ are XTL(L)-formulas (of maximal depth d), then (ϕ ∨ ψ) is
also an XTL(L)-formula (of depth d).

4. When Δ is a ranked alphabet, L ∈ L is a Δ-tree language and for each
δ ∈ Δ, ϕδ is an XTL(L)-formula (of maximal depth d), then L(δ &→ ϕδ)δ∈Δ

is an XTL(L)-formula (of depth d + 1).

We now turn to the definition of the semantics. We need to define what it
means that a Σ-tree T satisfies an XTL(L)-formula ϕ over Σ, in notation t |= ϕ.
Since boolean connectives and the falsity symbol ↓ are handled as usual, we only
concentrate on two types of formulas.

1. If ϕ = (L, π) for some rank-preserving mapping π : Σ → Δ and Δ-tree
language L, then t |= ϕ iff π(t) is contained in L;

2. If ϕ = L(δ &→ ϕδ)δ∈Δ then t |= ϕ iff the characteristic tree t̂ of t determined
by the family (ϕδ)δ∈Δ is contained in L.
Here t̂ is a Δ-relabeling of t, defined as follows: for every node v ∈ dom(t)
with t(v) ∈ Σn, t̂(v) = δ, where δ is either the first symbol in Δn with
t|v |= ϕδ; or there is no such symbol and δ is the last element of Δn.

An XTL(L)-formula over the ranked alphabet Σ defines the tree language
Lϕ = {t ∈ TΣ : t |= ϕ}. XTL(L) denotes the class of tree languages definable
by some XTL(L)-formula.

The logic FTL(L) [6] differs from the logic XTL(L) in that the atomic formulas
over Σ are ↓ and the the formulas pσ, where σ ∈ Σ, defining the language of
all Σ-trees whose root is labeled σ. We let FTL(L) denote the class of tree
languages definable by the formulas of the logic FTL(L). Let Bool denote the
ranked alphabet which contains exactly two symbols, ↑n and ↓n for each n ∈ R.
As a shorthand, let UP = {↑n: n ∈ R} and DOWN = {↓n: n ∈ R}.

Example 1. Let R = {0, 2}, Σ2 = {f}, Σ0 = {a, b}. Consider the rank preserving
mapping π : Σ → Bool given by π(f) =↓2, π(a) =↑0 and π(b) =↓0. Let Leven be
the set of all trees in TBool with an even number of nodes labeled in UP. Then
the formula ψ = ¬(Leven, π) defines the set of all Σ-trees having an odd number
of leaves labeled a. Let ϕ↑2 be the formula ψ defined above, and let ϕδ =↓ for
all δ ∈ Bool, δ �=↑2. Then the formula Leven(δ &→ ϕδ)δ∈Bool defines the set of
all Σ-trees with an even number of non-leaf subtrees having an odd number of
leaves labeled a.

Example 2. In this example let R = {0, 1}. When Σ is a ranked alphabet (of
rank type R), then any Σ-tree determines a word over Σ1 which is the sequence
of node labels from the root to the leaf of the tree not including the leaf label. By
extension, each tree language over Σ determines a word language over Σ1. Let
L′

even be the set of all trees in TBool with an even number of nodes labeled ↑1,
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and let L = {L′
even}. Then a tree language K ⊆ TΣ is definable in XTL(L) iff the

word language determined by K is a (regular) group language whose syntactic
group is a p-group for p = 2, see [18]. There is no language class L′ such that
FTL(L′) would define the same language class.

The operators FTL and XTL are related by Proposition 1 below. Let us define
the Bool-tree language L↑ = {t ∈ TBool : Root(t) ∈ UP}.

Proposition 1. For any class L of tree languages, FTL(L) = XTL(L∪{L↑}).

The logics XTL(L) behave in the same way as the logics FTL(L), cf. [6].

Theorem 1. 1. The operator XTL is a closure operator: for any classes L,L′
of tree languages, it holds that L ⊆ XTL(L), XTL(XTL(L)) ⊆ XTL(L),
moreover, if L ⊆ L′, then XTL(L) ⊆ XTL(L′).

2. When L is a class of regular tree languages, then so is XTL(L).
3. For any class L of tree languages, XTL(L) is closed under the Boolean

operations and inverse literal homomorphisms, and is closed under quotients
iff each quotient of any language in L is in XTL(L).

4 Definability and Membership

In this section we recall from [8] the notion of the strict Moore-product of tree
automata and that of strict Moore pseudovarieties, and relate the operator XTL
to strict Moore pseudovarieties.

Suppose A = (A,Σ) and B = (B,Δ) are tree automata and α : A × R → Δ
is a rank-preserving mapping, i.e. for any n ∈ R and a ∈ A, α(a, n) is contained
in Δn. Then the strict Moore-product of A and B determined by α is the tree
automaton A×α B which is the connected part of the algebra C = (A× B,Σ),
where for each σ ∈ Σn and a1, . . . , an ∈ A, b1, . . . , bn ∈ B,

σC((a1, b1), . . . , (an, bn)) = (σA(a1, . . . , an), δB(b1, . . . , bn))

with δ = α(σA(a1, . . . , an), n).
A pseudovariety V of finite tree automata is called a strict Moore pseudova-

riety if it is also closed under the strict Moore-product. It is clear that for any
class K of finite tree automata there exists a least strict Moore pseudovariety
〈K〉s containing K.

Proposition 2. Suppose A = (A,Σ) is a tree automaton and L is a class of
tree languages such that each tree language recognizable by A is in XTL(L).
Then any tree language recognizable by a renaming or quotient of A is also in
XTL(L).

Proposition 3. Suppose A = (A,Σ) and B = (B,Σ) are finite tree automata
and L is a class of tree languages such that each tree language recognizable by
either A or B is in XTL(L). Then each tree language recognizable by the direct
product A× B is also in XTL(L).
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Proposition 4. Suppose A = (A,Σ) and B = (B,Δ) are finite tree automata,
A ×α B is a strict Moore-product and L is a class of tree languages such that
each tree language recognizable by either A or B is in XTL(L). Then each tree
language recognizable by A×α B is also in XTL(L).

Using Propositions 2, 3 and 4 we get:

Theorem 2. For any class K of finite tree automata, V〈K〉s
= XTL(VK).

Corollary 1. The mapping K &→ VK establishes an order isomorphism between
the lattice of strict Moore pseudovarieties of finite tree automata and the lattice
of literal varieties of tree languages V satisfying XTL(V) = V.

5 Ehrenfeucht-Fräıssé-Type Games

In this section we give a game-theoretic characterization of the logics XTL(L).
Let L be a class of tree languages, n ≥ 0 an integer, and let s, t be Σ-trees for

some ranked alphabet Σ. The n-round XTL(L)-game on the pair (s, t) of trees
is played between two competing players, Spoiler and Duplicator according to
the following rules:

1. If for some tree language L ∈ L over some ranked alphabet Δ and a rank-
preserving mapping π : Σ → Δ, exactly one of the trees π(s) and π(t) is
contained in L, Spoiler wins. Otherwise, Step 2 follows.

2. If n = 0, Duplicator wins. Otherwise, Step 3 follows.
3. Spoiler chooses a tree language L ∈ L, over some ranked alphabet Δ, and

Δ-relabelings ŝ and t̂ of s and t, respectively, such that exactly one of ŝ and
t̂ is contained in L. If he cannot do so, Duplicator wins; otherwise, Step 4
follows.

4. Duplicator chooses two nodes of the pair (s, t), x and y, of the same rank,
such that (ŝ, t̂)(x) �= (ŝ, t̂)(y). If he cannot do so, Spoiler wins. Otherwise,
an (n − 1)-round XTL(L)-game is played on the pair ((s, t)|x, (s, t)|y). The
player winning the subgame also wins the whole game.

Clearly, for any class L of tree languages, integer n ≥ 0 and pair (s, t) of Σ-trees,
one of the players has a winning strategy in the n-round XTL(L)-game played
on (s, t). Let s ∼n

L t denote that Duplicator has a winning strategy in the the
n-round XTL(L)-game on the pair (s, t). Also, when s and t are Σ-trees for some
ranked alphabet Σ, L is a class of tree languages and n ≥ 0 is an integer, let
s ≡n

L t denote that s and t satisfy the same set of XTL(L)-formulas (over Σ)
having depth at most n.

Theorem 3. For any class L of tree languages and integer n ≥ 0, the relations
∼n

L and ≡n
L coincide.

Corollary 2. For any finite class L of tree languages and any tree language L,
L ∈ XTL(L) iff there exists an integer n ≥ 0 such that for all s ∈ L and t /∈ L,
Spoiler has a winning strategy in the n-round XTL(L)-game on (s, t).
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6 Modified Games

We have argued that the logics FTL(L) may be seen as special cases of the logics
XTL(L). We may thus modify the game introduced in the previous section to
obtain a game-theoretic characterization of the logics FTL(L). In this section, we
introduce for each n ≥ 0 and class L of tree languages the n-round FTL(L)-game
characterizing the expressive power of FTL(L). Second, we introduce a modified
n-round XTL(L)-game, applicable to certain classes L of tree languages. This
game resembles the original Ehrenfeucht-Fräıssé game more than the n-round
XTL(L)-game of the previous section. A combination of the two modifications
is also introduced. By selecting special language classes L, in the last section we
derive games for some familiar temporal logics on finite trees related to CTL, cf.
[1,20].

Let L be a class of tree languages, n ≥ 0, and let s, t be Σ-trees. The n-
round FTL(L)-game on the pair (s, t) is played between Spoiler and Duplicator
according to the same rules as the n-round XTL(L)-game, except for the first
step which gets replaced by:

1’. If Root(s) �= Root(t), Spoiler wins. Otherwise, Step 2 follows.

(We may also modify step 4 by dropping the requirement that x and y have the
same rank.) The following characterization theorem holds:

Theorem 4. For any class L of tree languages, integer n ≥ 0 and trees s, t ∈
TΣ, Duplicator has a winning strategy in the n-round FTL(L)-game if and only
if s and t satisfy the same set of FTL(L)-formulas of depth at most n. Conse-
quently, if L is finite, then for any tree language L, L ∈ FTL(L) iff there exists
an n ≥ 0 such that Spoiler has a winning strategy in the n-round FTL(L)-game
on any pair (s, t) of trees with s ∈ L and t /∈ L.

Now we turn to the modified n-round XTL(L)-game. We define the following
partial order %Σ on Σ-trees: when s, t ∈ TΣ , let s %Σ t if and only if dom(s) =
dom(t) and for any node v ∈ dom(s), either s(v) = t(v) or t(v) is the last element
of the corresponding Σn with respect to <Σ . If in addition s �= t holds, then we
write s ≺Σ t.

Let L be a class of tree languages, let n ≥ 0, and let s, t be Σ-trees. The
modified n-round XTL(L)-game on the pair (s, t) is played between Spoiler and
Duplicator according to the following rules:

1-2. These steps are the same as in the n-round XTL(L)-game.
3. Spoiler chooses one of the two trees, say s, some Δ-tree language L ∈ L and

a relabeling ŝ of s such that ŝ ∈ L and for any s′ ∈ TΔ, if ŝ ≺Δ s′ then
s′ /∈ L. (That is, ŝ is a maximal relabeling of s in L). If he cannot do so,
Duplicator wins, otherwise Step 4 follows.

4. Duplicator chooses a maximal relabeling t̂ of t in the language L. If he cannot
do so (i.e., t has no relabeling in L), then Spoiler wins, otherwise Step 5
follows.

5. Spoiler chooses a node y of t such that δ = t̂(y) is not the last element of the
respective Δn. If he cannot do so, Duplicator wins, otherwise Step 6 follows.
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6. Duplicator chooses a node x of s with ŝ(x) = δ. If he cannot do so, Spoiler
wins. Otherwise, a modified (n − 1)-round XTL(L)-game is played on the
pair (s|x, t|y). The player winning the subgame also wins the whole game.

We say that a tree language L ⊆ TΣ is downwards closed if whenever s %Σ t
are Σ-trees with t ∈ L, then also s ∈ L. The following characterization holds:

Theorem 5. Suppose L is a class of downwards closed tree languages. Then for
any n ≥ 0 and trees s, t ∈ TΣ, Duplicator has a winning strategy on (s, t) in
the modified n-round XTL(L)-game if and only if s and t satisfy the same set of
XTL(L)-formulas of depth at most n. Consequently, if L is finite, then for any
tree language L, L ∈ XTL(L) iff there exists some n ≥ 0 such that Spoiler has
a winning strategy in the modified n-round XTL(L)-game on any pair (s, t) of
trees with s ∈ L and t /∈ L.

It is possible to combine the FTL(L)-game and the modified XTL(L)-game. We
call the resulting game the modified n-round FTL(L)-game. A characterization
theorem similar to the previous ones again holds:

Theorem 6. Suppose L is a class of downwards closed tree languages. Then for
any n ≥ 0 and trees s, t ∈ TΣ, Duplicator has a winning strategy on (s, t) in
the modified n-round FTL(L)-game if and only if s and t satisfy the same set of
FTL(L)-formulas of depth at most n. Consequently, if L is finite, then for any
tree language L, L ∈ FTL(L) iff there exists some n ≥ 0 such that Spoiler has
a winning strategy in the modified n-round FTL(L)-game on any pair (s, t) of
trees with s ∈ L and t /∈ L.

7 Examples

Example 3. Let LEF+ and LEF∗ denote the Bool-tree languages of those trees
having a non-root node labeled in UP, and any node labeled in UP, respectively.
Then the logics FTL({LEF+}) and FTL({LEF∗}) are related to the fragments of
CTL2 determined by the strict and non-strict existential future modalities. The
modified n-round FTL(EF+)-game and FTL(EF∗)-game have the same rules
as the corresponding games described in [20]. (Observe that LEF+ and LEF∗

are downwards closed.) It is shown in the papers [4,9,20] (using in part different
arguments), that it is decidable for a regular tree language whether it is definable
in these logics. For fragments of CTL involving the next modality and the strict
or non-strict existential future modality, we refer to [4,7].

Example 4. Recall from Example 1 the definition of Leven. This language is not
downwards closed. Let L = {Leven}. The n-round FTL(L)-game characterizes
the modular temporal logic FTL(L). The rules of this game on the pair (s, t) of
trees are formulated as follows:

1. If Root(s) �= Root(t), Spoiler wins. Otherwise Step 2 follows.
2. If n = 0, Duplicator wins. Otherwise Step 3 follows.
2 CTL was originally introduced in [5] as a logic on Kripke structures, or infinite

(unranked) trees. Regarding the definition of CTL on finite trees as used here, cf. [6].
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3. Spoiler and marks an even number of nodes of one tree, and an odd number
of nodes of the other tree. After that, Step 4 follows.

4. Duplicator chooses a marked node x and an unmarked node y, either in the
same tree or in different trees, and an (n − 1)-round game is played on the
subtrees rooted in x and y. If he cannot do so, Spoiler wins. The player
winning the subgame also wins the game.

The question whether FTL(L) is decidable when the rank type R contains an
integer greater than 1 is open. For the classical case R = {0, 1}, see [2,18].

Example 5. Consider the following n-round game on the pair of trees (s, t):

1. If Root(s) �= Root(t), Spoiler wins. Otherwise Step 2 follows.
2. If n = 0, Duplicator wins. Otherwise Step 3 follows.
3. Spoiler chooses either to make an EX-move, in which case Step 4 follows,

or an EU -move, in which case Step 5 follows.
4. (EX-move.) Spoiler chooses one of the trees, say s, and a node x of s of depth

one. If he cannot do so, Duplicator wins. Otherwise, Duplicator chooses a
node y of t of depth one (if he cannot, he immediately loses), and an (n−1)-
round game is played on the trees (s|x, t|y). The player winning the subgame
also wins the whole game.

5. (EU -move.) Spoiler chooses one of the trees, say s, and a node x of s. After
that, Duplicator chooses a node y of t. Then, Spoiler again can make a
decision to continue the game either with the pair of trees (s|x, t|y), or with
(s|x′ , t|y′), where x′ is a strict ancestor of x and y′ is a strict ancestor of y.

6. In the first case, an (n−1)-round game is played on (s|x, t|y) and the winner
of the subgame wins the game.

7. In the second case, Spoiler chooses a strict ancestor y′ of y, after which
Duplicator chooses a strict ancestor x′ of x. (If someone cannot choose such
a node, the other player wins.) Then, an (n − 1)-round game is played on
(s|x′ , t|y′). The winner of the subgame also wins the whole game.

This game (resulting from Theorem 6) characterizes the temporal logic CTL: a
tree language L is definable in CTL if and only if there exists an integer n ≥ 0
such that Spoiler wins the n-round game on any pair (s, t) of trees with s ∈ L
and t /∈ L.

When R = {0, 1}, our game is similar to the one described in [10] for words.
(See also [13] for a similar game for Mazurkiewicz traces). It is also closely related
to the game developed for full CTL (over Kripke structures) in [1].
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Abstract. We present a run-time efficient implementation of automata
for compressed pattern matching (CPM), where a text is given as a
truncation-free collage system 〈D, S〉 such that variable sequence S is
encoded by any prefix code. We experimentally show that a combina-
tion of recursive-pairing compression and byte-oriented Huffman coding
allows both a high compression ratio and a high speed CPM.

1 Introduction

Let c be a given compression function that maps strings A to their compressed
representations c(A). Given a pattern string P and a compressed text string
c(T ), the compressed pattern matching (CPM) problem is to find all occur-
rences of P in T without decompressing T . The problem was first defined in
the work of Amir and Benson [1], and many studies have been made over dif-
ferent compression formats. A CPM algorithm is said to be optimal if it runs
in O(|P | + |c(T )| + occ) time, where occ denotes the number of pattern occur-
rences [1]. The time/space complexity of the CPM problem can be regarded as
a new criterion of compression schemes in addition to the traditional ones: the
compression ratio and the time/space complexity of compression/decompression.

Kida et al. [4] introduced a useful CPM-oriented abstraction of compression
formats, named collage systems, where a text is represented as a pair of a dic-
tionary D and a sequence S of variables defined in D. Algorithms designed for
collage systems can be implemented for many different compression formats. By
generalizing the work of Amir et al. [2] for the LZW compression, they defined
in [4] the CPM automaton (CPMA in short) which runs over S, based on the
Knuth-Morris-Pratt (KMP) automaton, and showed that it can be built from
P and D in O(|D|+ |P |2) time and space so that it runs over S in O(|S|+ occ)
time for a subclass of collage systems, called truncation-free, which covers a
wide-range of existing compression schemes, where |D| and h(D), respectively,
denote the number and the maximum dependence of variables defined in D, and
|S| is the number of variables in S. Since |c(T )| = |D| + |S|, the algorithm is
optimal under a reasonable assumption that |P |2 = O(|D| + |S|).

From a practical viewpoint, we have two goals. One is to perform the CPM
task in less time compared with a decompression followed by an ordinary search
(Goal 1), and the other is to perform it in less time compared with an ordi-
nary search over uncompressed text (Goal 2) [7]. An optimal CPM algorithm

O.H. Ibarra and B. Ravikumar (Eds.): CIAA 2008, LNCS 5148, pp. 201–211, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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theoretically achieves the two goals if |c(T )| = o(|T |), but we often observe
|c(T )| = Θ(|T |) in practice. Hence reducing the constant factors hidden behind
the O-notation of time complexity of CPM algorithms play a crucial role in
achieving the two goals, especially for Goal 2. There are two conditions for prac-
tical speed-up. One is a run-time efficient implementation of the state-transition
function Jump of CPMA. Although the algorithm of [4] implements Jump using
only O(|D| + |P |2) space so that it responds in constant time, the constant is
not very small. A naive two-dimensional array implementation using O(|D||P |)
space is preferable if D is relatively small. The other is a quick decoding of D and
S that are usually represented as bit-strings using some encoding techniques.

The byte-pair encoding (BPE) [3] satisfies these two conditions, which is a
variant of the recursive-pairing [6] such that the dictionary size |D| is limited to
at most 256 and each variable of S is encoded as a byte. The limitation on |D|
allows us to use the naive two-dimensional array implementation of Jump, and
the use of byte code avoids slow bitwise operations in decoding. In fact, Shibata
et al. [12] reported that CPMA over BPE compressed text runs faster than KMP
automaton over original text, and the speed-up ratio is almost the same as the
compression ratio. However, the compression ratio of BPE is very poor due to
the limitation on |D|. In this paper, we extend BPE to get a higher compression
ratio by easing the limitation and using the byte-oriented Huffman coding.

Main contributions. We present a run-time efficient implementation of CPMA
for any truncation-free collage system 〈D,S〉 such that S is encoded using any
prefix code: We first build CPMA directly from P and D in O(|D||P |) time
and space, and then convert it into the decoder-embedded CPMA (DECPMA in
short). We note that the bound O(|D||P |) improves the bound O(|D||P |+ |P |2)
achieved by a straightforward application of [4]. We experimentally show that
a combination of the recursive-pairing compression and the byte-oriented Huff-
man coding shows a good compression ratio compared to existing Goal 2-oriented
compressors. We note that the dictionary size |D| can be tuned by a parameter
n such that the corresponding 256-ary Huffman tree has n internal nodes and
|D| = 255n+1 leaves, and BPE is a special case of the compression scheme where
n = 1. Although the memory requirement grows linearly proportional to n, the
compression ratio and the search speed basically get better as n grows (and
therefore DECPMA with n > 1 runs faster than CPMA over BPE compressed
text [12]). Moreover we show that in the case of short patterns, DECPMA with
a large n (say n ≥ 10) runs faster than the algorithm of Rautio et al. [11], which
is recognized as one of the fastest Goal 2-oriented CPM methods.

Related work. There are two lines of research work in CPM studies addressing
Goal 2. One is to put a restriction on compression scheme so that every pattern
occurrence can be identified simply as a substring of encoded text that is iden-
tical to encoded pattern. The advantage is that any favored pattern matching
algorithm can be used to search encoded text for encoded pattern. The works of
Manber [7] and Rautio et al. [11] are along this line. The drawback is that the
restriction considerably sacrifices the compression ratio (e.g. 60–70% for typical
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English texts). The work of Moura et al. [9] uses a word-based Huffman encod-
ing with a byte-oriented code, and shows a high compression ratio. However it is
limited to word-based search. The other line is to develop CPM algorithms for
coping with compression scheme in which some occurrences of encoded pattern
can be false matches, and/or pattern possibly occurs in several different forms
within encoded text. The work of Miyazaki et al. [8], the works of Shibata et
al. [12,13] for BPE, and the present paper are along this line. While all of the
works [7,11,8,12,13] mentioned here achieve Goal 2, the compression ratios are
poor: BPE is the best among them.

2 Preliminaries

Let Σ be a finite alphabet. An element of Σ∗ is called string. Strings x, y, and z
are said to be a prefix, factor, and suffix of the string s = xyz, respectively. The
length of a string s is denoted by |s|. The ith symbol of a string s is denoted
by s[i] for 1 ≤ i ≤ |s|, and the factor of s that begins at position i and ends
at position j is denoted by s[i..j] for 1 ≤ i ≤ j ≤ |s|. Denote by [i]s (resp.
s[i]) the string obtained from s by removing the length i prefix (resp. suffix)
for 0 ≤ i ≤ |s|. The concatenation of i copies of the same string s is denoted
by si. For strings x, y, and z, let Occx(y) =

{
|v|

∣
∣ ∃u, ∃v : y = uxv

}
and

Occ�
x(y, z) =

{
d
∣
∣ d ∈ Occx(yz) ∧ |x|+ d > |z| > d

}
.

A collage system is a pair 〈D,S〉 defined as follows. D is a sequence of assign-
ments X1 = expr1; X2 = expr2; · · · ;Xn = exprn, where Xk is a variable and
exprk is any of the form:

a for a ∈ Σ ∪ {ε}, (primitive assignment)
XiXj for i, j < k, (concatenation)
[j]Xi for i < k and a positive integer j, (j length prefix truncation)
X

[j]
i for i < k and a positive integer j, (j length suffix truncation)

(Xi)j for i < k and a positive integer j, (j times repetition)

for each k = 1, . . . , n, and S is a sequence Xi1 · · ·Xi�
of variables defined in D.

The size of D is the number n of assignments and denoted by |D|. The height
of D is the maximum dependence of variables defined in D and denoted by
h(D). The length of S is the number � of variables of S and denoted by |S|. The
variables Xk represent the strings Xk obtained by evaluating their expressions. A
collage system 〈D,S〉 represents the string obtained by concatenating the strings
Xi1 , . . . , Xi�

represented by variables Xi1 , . . . , Xi�
of S.

A collage system is said to be truncation-free if D contains no truncation oper-
ation, and regular if D contains neither repetition nor truncation operation. For
example, the collage systems for the run-length encoding is truncation-free, and
those for the recursive-pairing [6], SEQUITUR [10], BPE [3], and the grammar-
transform based compression [5] are regular. In the Lempel-Ziv family, the col-
lage systems for LZ78/LZW are regular, while those for LZ77/LZSS are not
truncation-free.
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a b a c a
0 1 2 3 4 5

b, c, d

δ(q, s)
a b c d

0 1 0 0 0
1 1 2 0 0
2 3 0 0 0
3 1 2 4 0
4 5 0 0 0
5 1 2 0 0

D
X1 = a
X2 = b
X3 = c
X4 = d
X5 = X2X1
X6 = X3X1
X7 = X6X1
X8 = X1X5
X9 = X5X6
X10 = X6X9

Jump(q, Xi)/Output(q, Xi)
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

0 1/∅ 0/∅ 0/∅ 0/∅ 1/∅ 1/∅ 1/∅ 3/∅ 1/∅ 5/{0}
1 1/∅ 2/∅ 0/∅ 0/∅ 3/∅ 1/∅ 1/∅ 3/∅ 5/{0} 5/{0}
2 3/∅ 0/∅ 0/∅ 0/∅ 1/∅ 1/∅ 1/∅ 3/∅ 1/∅ 5/{0}
3 1/∅ 2/∅ 4/∅ 0/∅ 3/∅ 5/{0} 1/{1} 3/∅ 5/{0} 5/{4, 0}
4 5/{0} 0/∅ 0/∅ 0/∅ 1/∅ 1/∅ 1/∅ 3/{2} 1/∅ 5/{0}
5 1/∅ 2/∅ 0/∅ 0/∅ 3/∅ 1/∅ 1/∅ 3/∅ 5/{0} 5/{0}

Fig. 1. KMP automaton for P = abaca is shown on the upper-left, where the state-
transition function δ is represented by the goto and the failure functions (depicted by
the solid and the broken arrows, respectively), and the deterministic version of δ is
displayed on the upper-right. The functions Jump and Output built from the KMP
automaton for the dictionary D shown on the lower-left, are shown on the lower-right.

a b a c a b a b a c a b a c a

X8 X3 X8 X5 X10

{2} {4, 0}

S :

Original text :

 :

Output :
Jump :

Fig. 2. Move of CPMA of Fig. 1 over S = X8X3X8X5X10 is demonstrated

Let δ : Q × Σ → Q be the state-transition function of the KMP automaton
for a pattern P , where Q = {0, . . . , |P |} is the state set with an initial state 0
and a unique final state |P |. We extend δ to Q×Σ∗ in a natural way. CPMA is
a Mealy-type finite-state machine, consisting of two functions Jump and Output
defined as follows: For any state q in Q and any variable X defined in D, let

Jump(q,X) = δ(q,X),

Output(q,X) =
{
|X| − |w|

∣
∣
∣
∣
w is a non-empty prefix of X
such that δ(q, w) is the final state.

}
.

An example of CPMA and its move are displayed in Fig. 1 and 2, respectively.

Theorem 1 (Kida et al. [4]). CPMA can be built in O(|D|h(D) + |P |2) time
using O(|D| + |P |2) space, so that the values of Jump and Output, respectively,
are returned in constant time and in O(h(D) + �) time, where � is the answer
size. The factor h(D) disappears if D is truncation-free.



A Run-Time Efficient Implementation of CPM Automata 205

Code Φ

variable codeword variable codeword

X1 B X6 AC
X2 C X7 AAA
X3 D X8 AD
X4 AAD X9 AAB
X5 AB X10 AAC

X7

X9

X10

X4

X5

X6

X8

X1

X2

X3

A

B

C

D

A

B

C

D
A

B

C

D

Fig. 3. A prefix code Φ that maps the variables X1, . . . , X10 to strings over Γ =
{A, B, C, D} is shown on the left, and its code tree is displayed on the right

3 Decoder-Embedded CPMA

3.1 Truncation-Free Collage Systems with S Encoded by Prefix
Code

We encode the variables of S by a prefix code Φ that maps the variables defined
in D to strings over an alphabet Γ . We illustrate our method using an example
with Σ = {a, b, c, d} and Γ = {A,B,C,D}.

Fig. 3 shows a prefix code Φ that maps variables X1, . . . , X10 to strings over
Γ = {A,B,C,D} and its code tree. Using this code, the variable sequence S =
X8X3X8X5X10 of Fig. 2 is encoded as AD D AD AB AAC. Input to our CPM
problem is thus a string over Γ representing S.

The code tree TΦ of a prefix code Φ that maps the variables defined in D
to strings over a coding alphabet Γ is a trie representing the set of codewords
of Φ such that (1) the leaves are one-to-one associated with variables defined
in D, and (2) the path from the root to the leaf associated with Xi spells out
the codeword Φ(Xi). In the sequel we assume code trees are full, that is, every
internal node has exactly |Γ | children. Then any code tree with n internal nodes
has exactly (|Γ | − 1)n + 1 leaves, and hence |D| = (|Γ | − 1)n + 1.

We shall mention encoded sizes of D and Φ. A code tree TΦ with n internal
nodes can be represented by the bit-string obtained during a preorder traversal
over it such that every internal node is represented by ‘0’ and every leaf is rep-
resented by ‘1’ followed by a (log2 |D|)-bit integer indicating the corresponding
variable, and thus stored in |D|((log2 |D|)+ 1) + n bits. A dictionary D can be
represented as a list of the right-hand-sides of assignments of D. Suppose that
c distinct symbols occurs in the original text, the first c assignments are primi-
tive and the rest are concatenation or repetition. The primitive assignments are
stored in (c+ 1) log2 |Σ| bits. Each concatenation assignment Xk → XiXj takes
2(log2 k) bits and each repetition assignment Xk → (Xi)j takes (log2 k)+ � bits,
where � is the maximum value of (log2 j).

3.2 Embedding Decoder into CPMA

Given a pattern P , a dictionary D, a prefix code Φ, and an encoded variable
sequence Φ(S), one naive solution to the CPM problem would be to build CPMA
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1 2 49

3 5 315

5 5 01
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C / D /
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 /
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C / D /

3 0 08

1 1 314

1 5 01
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C / D /
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 /
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C / D /

1 0 06

1 1 312

1 5 01

A
 /
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A
 /
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C / D /

1 2 07

3 1 313

5 5 01

A
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C / D /

A
 /
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5 0 010

1 1 316

1 5 01
A

 /
B  /
C / D /

A
 /
B  /
C / D /

1 2 011

3 1 317

5 5 01

A
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C / D /

A
 /
B  /
C / D /

A
 /
B  /
C / D /

A
 /
B  /
C / D /

A
 /
B  /
C / D /

A
 /
B  /
C / D /

0 1 2 3 4 5

Fig. 4. DECPMA is displayed, where the numbers in circles represent the states, and
the numbers not in circles imply the states with the same numbers. The path consist-
ing of the edges (3, 9), (9, 15), and (15, 5) which are labeled A/∅, A/∅, and C/{4, 0},
respectively, implies that Jump(3, X10) = 5 and Output(3, X10) = {4, 0}. The number
of states of DECPMA is 18, which is 3 times larger than the original CPMA of Fig. 1
as the number of internal nodes of the code tree of Fig. 3 is 3.

a b a c a b a b a c a b a c aoriginal text :

Δ:
A D D A D A B A A Ccompressed text :
X8 X3 X8 X5 X10S :

{2} {4, 0}Λ:

 :

Fig. 5. Move of DECPMA of Fig. 4 over ADDADABAAC is demonstrated

from P and D, decode S from Φ(S) by using the code tree TΦ as a decoder and
make the CPMA run over the decoded variables on the fly. However, it is slow
as shown in Section 5.

Our solution is to embed the decoder into the CPMA. That is, we replace
every transition by Xi from state s to state t of CPMA with a consecutive
transitions from s to t that spells out the codeword Φ(Xi). The decoder-embedded
CPMA (DECPMA for short) is thus a Mealy-type finite-state machine with
state-transition function Δ and output function Λ. In the running example, the
transition Jump(3, X10) = 5 of CPMA is replaced with the transitions Δ(3, A) =
9, Δ(9, A) = 15, and Δ(15, C) = 5, where 9 and 15 are newly introduced states.
All but last transitions have no outputs, that is, Λ(3, A) = Λ(9, A) = ∅, and
Λ(15, C) = Output(3, X10). The DECPMA for the running example and its
move over input ADDADABAAC are shown in Fig. 4 and Fig. 5, respectively.

Let I be the set of internal nodes of the code tree TΦ. Let Q̃ = Q× I, which
is the set of states of DECPMA. The state transition function Δ and the output
function Λ of DECPMA are defined on Q̃× Γ . Let ((j, t), γ) be any element in
Q̃× Γ . Let t′ be the child of t such that the edge (t, t′) is labeled γ ∈ Γ in TΦ.
The functions Δ and Λ are defined as follows.

– If t′ is a leaf of TΦ associated with variable Xi, then Δ((j, t), γ) = Jump(j,Xi)
and Λ((j, t), γ) = Output(j,Xi).

– If t′ is an internal node of TΦ, then Δ((j, t), γ) = (j, t′) and Λ((j, t), γ) = ∅.

A two-dimensional table J storing the values of Jump is of size |Q| × |D| =
(|P |+1)((|Γ |−1)n+1) and a two-dimensional table storing Δ is of size |Q̃|×|Γ | =
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(|P | + 1)n|Γ |. The fraction is |Γ |n
(|Γ |−1)n+1 ≤

|Γ |
|Γ |−1 . Thus, the size of the table

storing Δ is almost the same as the table J when |Γ | = 256.

4 Efficient Implementation of DECPMA

In this section, we present an algorithm that builds DECPMA from a pattern
P and a truncation-free collage system 〈D,S〉 and a code Φ. The algorithm first
builds CPMA consisting of Jump and Output, and then convert it into DECPMA
according to Φ. If we have built a table J of size (|P | + 1)× |D| storing Jump,
we can construct a table of size |Q̃| × |Γ | storing Δ in O(|Q̃||Γ |) time and space
in a straightforward manner. Similarly, if we have built a data structure storing
Output, then we can construct a data structure for Λ in O(|Q̃||Γ |) time and space.
The conversion thus takes O(|D||P |) time and space as |Q̃||Γ | = Θ(|D||P |).

Theorem 2. DECPMA can be built in O(|D||P |) time and space, so that the
values of the functions Δ and Λ, respectively, are returned in constant time and
in time linear in the answer size, if D is truncation-free.

The above theorem follows from Lemmas 1, 2, and 3 (presented below), the
proofs of which are based on the Periodicity Lemma, and omitted here due to
the page limit.

Direct construction of two-dimensional array storing Jump. Consider
building a two-dimensional array J that stores the values of Jump, namely,
J [q,X ] = Jump(q,X) for any q ∈ Q = {0, . . . , |P |} and any variable X defined in
D. A straightforward application of the algorithm of [4] requires O(|D||P |+ |P |2)
time and space, where the O(|P |2) factor is needed for solving a subproblem
named “factor concatenation problem” [4]. Since we use the two-dimensional
array J , we can avoid this problem and take a more direct way.

Lemma 1. A two-dimensional array J which stores the function Jump can be
built in O(|D||P |) time and space, if D is truncation-free.

We remark that throughout the construction of J , the extra space needed is a
one-dimensional array of size |D| storing |X| for all variables X defined in D.

Construction of Output. Consider building a data structure which takes
q ∈ Q and variable X in D as input and returns the set Output(q,X) in linear
time w.r.t. its size. A straightforward application of the algorithm of [4] again
requires O(|D||P |+ |P |2) time and space. We reduce this to O(|D||P |): We have
Output(q,X) = Occ�

P (P [1..q], X) ∪ OccP (X), where the union is disjoint, and
we can prove the following lemmas.

Lemma 2. A two-dimensional table which stores the sets Occ�
P (P [1..q], X) can

be built in O(|D||P |) time and space, if D is truncation-free.

Lemma 3. A data structure can be built in O(|D||P |) time and space which
enumerates OccP (X) in time linear in its size, if D is truncation-free.
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5 Experimental Results

We experimentally evaluated the performance of the following three implementa-
tionsofCPMA: (1) the compact implementation [4] (compact-CPMA), (2) thenaive
two-dimensional array implementation (CPMA), and (3) the two-dimensional ar-
ray implementation of DECPMA proposed in this paper (DECPMA). The pro-
gramswerewritten inC-language, andall the experimentswere carried out on aPC
with a 2.66GHz IntelCore 2Duoprocessor and8.0GBRAM runningLinux (kernel
2.6.18). The text files we used are as follows. Medline: a clinically-oriented subset
of Medline (60.3 MB); Genbank: the file consisting only of accession numbers and
nucleotide sequences taken from a data set in Genbank (17.1 MB); DBLP: XML
records of DBLP (52.4 MB). We transformed these texts into collage systems by
using the recursive-pairing [6] with restriction |D| ≤ 255n+1 forn = 1, . . . , 30.We
then encoded the obtained collage systems with the byte-orientedHuffman coding.
The patterns searched for are substrings of the original texts.

Table 1. Compression ratios (%) are compared

standard compressors Goal 2-oriented compressors

compress gzip bzip2 SE BPE
RBH

n = 2 n = 10 n = 20 n = 30

medline 42.35 33.29 24.13 66.51 56.41 52.33 43.88 39.01 36.21

genbank 26.81 21.98 22.71 51.54 31.37 29.34 28.74 28.36 28.18

dblp 22.97 17.23 11.17 70.39 37.85 31.52 25.39 22.59 21.17

Table 1 compares the compression ratios of the recursive-pairing with byte-
oriented Huffman coding (RBH in short) to those of other compressors. Although
the performance of RBH is poor compared to the standard compressors gzip and
bzip2, it outperforms the Goal 2-oriented compressors SE and BPE, where SE
denotes the stopper encoding with 4-bit base symbols [11]. We note that BPE
is identical to RBH with n = 1. Basically the compression ratio of RBH gets
better as n grows 1.

We measured the construction times and the running times of compact-CPMA,
CPMA, and DECPMA for |P | = 2 to 10. We averaged the values over 10 different
patterns with a same length. For a comparison, we also tested KMP automaton
for uncompressed text (uncompressed-KMP), and the Boyer-Moore algorithm
over SE compressed text (BM-SE) [11], which is recognized as one of the fastest
Goal 2-oriented CPM methods. We note that the compressed text data resided
in main memory for measurements in order to exclude the disk I/O time.

The graph displayed on the upper-left of Fig. 6 compares the automaton con-
struction times of compact-CPMA, CPMA(naive), CPMA(direct), and DECPMA
with n varied from 1 to 30, where CPMA(naive) and CPMA(direct) are, respec-
tively, a straightforward application of [4] which uses O(|D||P | + |P |2) time,
1 This is not true for texts T of small size (e.g. 100 KB) for which the encoded size of

D and Φ for a large n is relatively large compared to |T |.
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and the O(|D||P |)-time direct construction described in the previous section.
We showed the results only for |P | = 10. We see that CPMA(direct) is indeed
faster than CPMA(naive) as expected. The construction times of uncompressed-
KMP and Decoder (decoder for S encoded by the byte-Huffman coding) are also
shown, which are very small. We see that compact-CPMA is the fastest among
the four in the construction time comparison. We note that the difference be-
tween the construction time of DECPMA and that of CPMA(direct) is exactly
the time for converting CPMA into DECPMA. Although the construction time
of DECPMA is very large compared to other methods, but it is much smaller
than the automaton running time for texts of moderate size (e.g. 50–60 MB).
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Fig. 6. The graph on the upper-left compares the automaton construction times of
three implementations with n varied from 1 to 30 for |P | = 10. Construction times
of uncompressed-KMP and Decoder are also shown, which are very small. The three
graphs on the upper-right show the automaton running times of the five methods for
Medline, Genbank and DBLP, respectively. The three graphs on the lower show the
total processing time of DECPMA with n = 10, 20, 30 for |P | = 2 to 10 against Medline,
Genbank and DBLP, together with those of BM-SE.

The three graphs displayed on the upper-right of Fig. 6 show the automaton
running times for Medline, Genbank and DBLP, respectively. The methods com-
pared are decode&compact-CPMA, decode&CPMA, DECPMA, and uncompressed-
KMP, where decode&compact-CPMA (resp. decode&CPMA) is to decode S and
make compact-CPMA (resp. CPMA) run over S on the fly. The running times
of the first three get better as n grows and DECPMA is the fastest. We see no
substantial improvement of the compression ratio and the automaton running
time when n grows for Genbank. DECPMA with n = 30 runs 1.43, 1.04 and 1.70
times faster than DECPMA with n = 1 (i.e. KMP algorithm over BPE com-
pressed texts [12]) for Medline, Genbank and DBLP, respectively. The running
time of DECPMA is linear in the number of state transitions made, and we re-
mark that the encoded lengths of S with n = 1 for Medline, Genbank and DBLP
are, respectively, 1.56, 1.12 and 1.79 times longer than those with n = 30.
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The three graphs on the lower of Fig. 6 show the total processing time (the
construction time plus the running time) of DECPMA with n = 10, 20, 30 for
|P | = 2 to 10 against Medline, Genbank and DBLP. The performance gets
worse as |P | grows, mainly due to the increase of construction time. It gets
better as n grows for Medline and DBLP, but does not so for Genbank, for
which the growth of n makes little improvement on the compression ratio and
|T | is relatively small. Compared to BM-SE, we see that DECPMA runs faster in
the case of short patterns.

6 Conclusion

We presented a run-time implementation of CPM automata that deals with any
truncation-free collage system encoded with any prefix code. We experimentally
proved that the combination of recursive-pairing and byte-oriented Huffman cod-
ing allows both a good compression ratio and a fast search. There is a trade-off
between the memory requirement and the performance of compression and com-
pressed search, and we can tune it with a parameter n. The compressed search
of Rautio et al. [11] is faster than ours in long pattern case, but the compression
ratio of [11] is much worse than ours.

Recursive-pairing used in our experiments produces regular collage systems,
rather than truncation-free. To develop a new compression scheme producing
truncation-free collage systems of smaller size is one interesting future work.
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Abstract. We address the problem of reducing the size of (nondeterministic,
bottom-up) tree automata using suitable, language-preserving equivalences on the
states of the automata. In particular, we propose the so-called composed bisimula-
tion as a new language preserving equivalence. Composed bisimulation is defined
in terms of two different relations, namely upward and downward bisimulation.
Moreover, we provide simple and efficient algorithms for computing composed
bisimulation based on a reduction to the problem of computing bisimulations on
transition systems. The proposal of composed bisimulation is motivated by an
attempt to obtain an equivalence that can provide better reductions than what
currently known bisimulation-based approaches can offer, but which is not sig-
nificantly more difficult to compute (and hence stays below the computational re-
quirements of simulation-based reductions). The experimental results we present
in the paper show that our composed bisimulation meets such requirements, and
hence provides users of tree automata with a finer way to resolve the trade-off
between the available degree of reduction and its cost.

1 Introduction

Tree automata are widely used in many areas of computer science such as XML manip-
ulation, natural language processing, or formal verification. For instance, in formal veri-
fication, tree automata are—among other uses—at the heart of the so-called regular tree
model checking framework developed for a fully automated verification of infinite-state
or parameterised systems such as parameterised networks of processes with a tree-like
topology or programs with dynamic linked data-structures [9,5,7,8]. In the regular tree
model checking framework, tree automata are, in particular, used to finitely represent
and manipulate infinite sets of reachable configurations.

In many applications of tree automata, such as in the above mentioned regular tree
model checking framework, it is highly desirable to deal with automata which are as
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small as possible, in order to save memory as well as time. In theory, one can always de-
terminise and minimise any given (bottom-up) tree automaton. However, the determini-
sation step may lead to an exponential blow-up in the size of the automaton. Therefore,
even if the minimal deterministic tree automaton can be small, it might not be feasible
to compute it in practice because of the expensive determinisation step.

To avoid determinisation, a tree automaton can be reduced by identifying and col-
lapsing states that are equal wrt a suitable equivalence relation that preserves the lan-
guage of the automaton. One such an equivalence is downward bisimulation (also called
backward bisimulation) considered in [11]. The downward bisimulation equivalence
can be computed efficiently in time O(r̂2 m logn) where r̂ is the maximal rank of the
input symbols, m the size of the transition table, and n the number of states. Unfortu-
nately, the reduction obtained by using the downward bisimulation equivalence might
be limited.

To get a better reduction, some simulation equivalence (as, e.g., the downward sim-
ulation equivalence or the composed simulation [2]) can be used. Simulation is weaker
than bisimulation and hence it can really offer a better reduction. On the other hand, it is
considerably harder to compute—in particular, the time complexity of computing it is
in O(mn). Hence, despite the recent advances in efficient heuristics for computing sim-
ulation relations on tree automata [2], the choice between bisimulation and simulation
is a trade-off between the time consumption of the reduction and the achieved degree
of reduction.

In this paper, we propose a new composed bisimulation relation, which is a compo-
sition of downward bisimulation and its dual upward bisimulation (also proposed in the
paper). The proposal is motivated by an attempt to obtain a relation which is still easy
to compute and, on the other hand, can give a better reduction than downward bisim-
ulation, and hence give users of tree automata a finer choice in the above mentioned
trade-off.

As another part of our contribution, we then discuss how composed bisimulation can
be computed in an efficient way. Inspired by the approach of [2], we show how the com-
putation of upward and downward bisimulation (from which composed bisimulation is
subsequently built) can be reduced to computing bisimulations on transition systems
derived from the automata at hand. This transformation allows us to re-use the results
proposed for an efficient computation of bisimulation relations on transition systems
(or, equivalently, Kripke structures or finite word automata).

We have implemented a prototype tool in which we have performed thorough exper-
iments with a use of the proposed composed bisimulation framework for reducing tree
automata. Our experimental results show that composed bisimulation indeed reduces
the size of tree automata much more than downward bisimulation and more than down-
ward simulation, but, as expected, less than composed simulation. Computationally,
composed bisimulation is, of course, more difficult to compute than downward bisimu-
lation, but it is still much easier to compute than all relations based on simulation.

Related work. Several algorithms for reducing the size of non-deterministic tree au-
tomata while preserving their language have been proposed in the literature. The first at-
tempt was done in [3] where an algorithm inspired by the partition refinement algorithm
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by Paige and Tarjan [13] was presented. In [11], two different types of bisimulation—
backward and forward bisimulation—were presented. The concept of backward bisim-
ulation corresponds to downward bisimulation used in this paper. Forward bisimulation
is even cheaper to compute than backward bisimulation and turns out to be especially
suited for reducing deterministic tree automata. The experimental results presented in
this paper show that, by running backward bisimulation followed by forward bisimula-
tion, one can get a better reduction than using any of the methods alone.

Efficient algorithms for computing simulation equivalences over tree automata have
then been discussed in [2]. Our method for computing bisimulations is inspired by the
approach of [2], which we here extend to cope with bisimulation relations.

Outline. The rest of the paper is organised as follows. In the next section, we give
some preliminaries on tree automata and transition systems. In Section 3, as a basis for
composed bisimulation, we present upward and downward bisimulation. In Section 4
we describe the way in which the relations can be computed. Subsequently, in Section 5,
composed bisimulation is described. In Section 6, we present our experimental results
obtained from a prototype implemented in Java. Finally, in Section 7, we give some
concluding remarks and directions for future work.

2 Preliminaries

In this section, we introduce some preliminaries on trees, tree automata, and transition
systems (TS).

For an equivalence relation ≡ defined on a set Q, we call each equivalence class of
≡ a block, and use Q/≡ to denote the set of blocks in ≡.

Trees. A ranked alphabet Σ is a set of symbols together with a function Rank : Σ→N.
For f ∈ Σ, the value Rank( f ) is called the rank of f . For any n ≥ 0, we denote by Σn

the set of all symbols of rank n from Σ. Let ε denote the empty sequence. A tree t over
an alphabet Σ is a partial mapping t : N∗ → Σ that satisfies the following conditions:

– dom(t) is a finite, prefix-closed subset of N∗, and
– for each p ∈ dom(t), if Rank(t(p)) = n≥ 0, then {i | pi ∈ dom(t)}= {1, . . . ,n}.

Each sequence p ∈ dom(t) is called a node of t. For a node p, we define the ith child
of p to be the node pi, and we define the ith subtree of p to be the tree t ′ such that
t ′(p′) = t(pip′) for all p′ ∈N∗. A leaf of t is a node p which does not have any children,
i.e., there is no i ∈ N with pi ∈ dom(t). We denote by T (Σ) the set of all trees over the
alphabet Σ.

Tree Automata. A (finite, non-deterministic, bottom-up) tree automaton (TA) is a 4-
tuple A = (Q,Σ,Δ,F) where Q is a finite set of states, F ⊆ Q is a set of final states, Σ
is a ranked alphabet, and Δ is a set of transition rules. Each transition rule is a triple of
the form ((q1, . . . ,qn), f ,q) where q1, . . . ,qn,q ∈ Q, f ∈ Σ, and Rank( f ) = n. We use

(q1, . . . ,qn)
f−→ q to denote that ((q1, . . . ,qn), f ,q) ∈ Δ. In the special case where n = 0,

we speak about the so-called leaf rules, which we sometimes abbreviate as
f−→ q. We
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use Lhs(A) to denote the set of left-hand sides of rules, i.e., the set of tuples of the form

(q1, . . . ,qn) where (q1, . . . ,qn)
f−→ q for some f and q. Finally, we denote by Rank(A)

the smallest n ∈ N such that n ≥ m for each m ∈ N where (q1, . . . ,qm) ∈ Lhs(A) for
some qi ∈ Q, 1≤ i≤ m.

A run of A over a tree t ∈ T (Σ) is a mapping π : dom(t)→ Q such that for each
node p ∈ dom(t) where q = π(p), we have that if qi = π(pi) for 1 ≤ i ≤ n, then Δ has

a rule (q1, . . . ,qn)
t(p)−→ q. We write t

π=⇒ q to denote that π is a run of A over t such
that π(ε) = q. We use t =⇒ q to denote that t

π=⇒ q for some run π. The language
of a state q is defined by L(q) = {t|t =⇒ q}, while the language of A is defined by
L(A) =

⋃
q∈F L(q).

An environment is a tuple of the form ((q1, . . . ,qi−1,�,qi+1, . . . ,qn), f ,q) obtained
by removing a state qi, 1 ≤ i ≤ n, from the ith position of the left hand side of a rule
((q1, . . . ,qi−1,qi,qi+1, . . . ,qn), f ,q), and by replacing it by a special symbol � �∈ Q

(called a hole below). Like for transition rules, we write (q1, . . . ,�, . . . ,qn)
f−→ q pro-

vided ((q1, . . . ,qi−1,qi,qi+1, . . . ,qn), f ,q) ∈ Δ for some qi ∈ Q. Sometimes, we also

write the environment as (q1, . . . ,�i, . . . ,qn)
f−→ q to emphasise that the hole is at po-

sition i. We denote the set of all environments of A by Env(A).

Transition Systems. A (finite) transition system (TS) is a pair T = (S,→) where S is
a finite set of states, and→⊆ S×S is a transition relation. Given a TS T = (S,→), and
two states q,r ∈ S, we denote by q−→ r the fact that (q,r) ∈→.

3 Downward and Upward Bisimulation

In this section, we present two different equivalence relations for tree automata: down-
ward bisimulation and upward bisimulation

Downward Bisimulation. For a tree automaton A = (Q,Σ,Δ,F), a downward bisimu-
lation R is an equivalence relation on Q such that if (q,r) ∈ R, then there are q1, . . . ,qn

such that (q1, . . . ,qn)
f−→ q if and only if there are r1, . . . ,rn such that (r1, . . . ,rn)

f−→ r
and (qi,ri) ∈ R for each i : 1≤ i≤ n.

For a given tree automaton, there is a unique maximal downward bisimulation (re-
ferred to as backward bisimulation in [11]) that we hereby denote as ,.

Upward Bisimulation. Given a tree automaton A = (Q,Σ,Δ,F) and a downward
bisimulation ,, an upward bisimulation R wrt , is an equivalence relation on Q such
that if (q,r) ∈ R, then

(i) there are q1, . . . ,qn,q′ such that (q1, . . . ,qn)
f−→ q′ with qi = q if and only if there

are r1, . . . ,rn,r′ such that (r1, . . . ,rn)
f−→ r′ where ri = r, (q′,r′) ∈ R, and q j , r j

for each j : 1≤ j �= i≤ n; and
(ii) q ∈ F iff r ∈ F .
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Theorem 1. For any downward bisimulation ,, there is a unique maximal upward
bisimulation R wrt ,. Furthermore, R is an equivalence relation.

In the sequel, we will use
•, to denote the (unique) maximal upward bisimulation wrt,.

4 Computing Downward and Upward Bisimulation

In this section, we describe how the bisimulation relations described in the previous
section are computed.

4.1 Computing Downward Bisimulation

In [2], an approach for computing downward simulation on tree automata via their trans-
lation to certain specialised transition systems is proposed. Downward simulation is then
computed on the generated TS using standard simulation algorithms such as [10,14].
Since downward bisimulation is a bisimulation counterpart of downward simulation,
the TS generated for computing downward simulation can also be exploited for com-
puting the downward bisimulation equivalence using standard algorithms for computing
bisimulation such as [13]. This method gives us an algorithm which is easy to implement
and runs in time O(r̂3 m logn) where m is the number of transitions, n is the number of
states, and r̂ is the maximal rank of the alphabet. We give the details in [1].

An alternative approach for computing downward bisimulation is to use the spe-
cialised algorithm proposed in [11]. This algorithm works in time O(r̂2 m logn).

4.2 Computing Upward Bisimulation

Consider a TS (Q,Δ). Let I be a partitioning of Q, called the initial partitioning.
A bisimulation consistent with I is an equivalence relation R ⊆ I on Q such that if
(q,r) ∈ R, then q

a−→ q′ for some q′ if and only if r
a−→ r′ for some r′ such that

(q′,r′) ∈ R. We use ∼=I to denote the largest bisimulation which is consistent with I.
We translate the upward bisimulation problem on tree automata into the bisimulation

problem on TS. Consider a tree automaton A = (Q,Σ,Δ,F) and the downward bisimula-

tion
•, induced by a relation,. We derive a TS A• = (Q•,Δ•) and an initial partitioning

I on the set Q• as follows:

– The set Q• contains a state q• for each state q ∈ Q, and an state e• for each envi-
ronment e.

– The set Δ• is the smallest set such that if (q1, . . . ,qn)
f−→ q, where 1 ≤ i ≤ n,

then the set Δ• contains both q•i −→ e•i and e•i −→ q•, where ei is of the form

(q1, . . . ,�i, . . . ,qn)
f−→ q.

Furthermore, we define the initial partitioning I to be the smallest relation containing
the following elements:

– (q•1,q
•
2) ∈ I for all states q1,q2 ∈ Q such that q1 ∈ F ⇐⇒ q2 ∈ F .
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– (e•1,e
•
2) ∈ I if environments e1 and e2 are of the forms (q1, . . . ,�i, . . . ,qn)

f−→ q

and (r1, . . . ,�i, . . . ,rn)
f−→ r, respectively, q j , r j for each j : 1 ≤ j �= i ≤ n, and

q ∈ F iff r ∈ F . In other words, the two environments share the same label, and,
moreover, the respective states in the left hand sides are equivalent wrt , at all
positions except position i. Furthermore, the states in the right hand sides agree on
membership in F .

The following theorem shows the correctness of the translation.

Theorem 2. For all q,r ∈ Q, we have q
•, r iff q• ∼=I r•.

4.3 Complexity of Computing Upward Bisimulation

We analyse the complexity of computing upward bisimulation using the translation
scheme presented above. Let m = |Δ|, n = |Q|, r̂ = Rank(A), and p = |Σ|.

Given the relation ,, we can compute the initial partitioning I in time O(r̂m). Fur-
thermore, we observe that |Q•| = O(n + r̂m) = O(r̂m) and |Δ•| = O(r̂m). From the
Paige-Tarjan algorithm [13], we know that we can compute∼=I in time O(|Δ•| log |Q•|).
Therefore, the time complexity of using our method for computing upward bisimulation
amounts to O(r̂m log(r̂m)) ≤ O

(
r̂m log

(
r̂nr̂ p

))
= O

(
r̂m log r̂ + r̂2 m logn + r̂m log p

)
.

This means that, for a given Σ, we have time complexity O(m logmax(n, p)).

5 Composed Bisimulation

Consider a tree automaton A = (Q,Σ,Δ,F). We will reduce A with respect to an equiva-

lence relation
◦,, which we call a composed bisimulation. Like downward bisimulation,

composed bisimulation preserves language equivalence, but it may be much coarser
than downward bisimulation (note that upward bisimulation does not preserve the lan-
guage of tree automata).

For a state r ∈Q and a set B⊆Q of states, we write r, B to denote that, for all states
q ∈ B, it holds that q, r. We define r

•, B and r
◦, B analogously. We define

◦, to be an

equivalence relation such that , ⊆ ◦, ⊆
(
,∗ •,

)
. Here, ∗ denotes the composition of

the two relations.
To compute

◦,, the two relations
•, and, are composed, and all states in the relation

violating transitivity are removed, while all elements from the, are maintained. In such

a manner, we obtain a new relation R. We define
◦, to be R∩R−1. Notice that depending

on how the transitive fragment is computed, there may be several relations satisfying

the condition of
◦,.

Language Preservation. Consider a tree automaton A = (Q,Σ,Δ,F) and an equiva-
lence relation ≡ on Q. The abstract tree automaton derived from A and ≡ is A/≡ =
(Q/≡,Σ,Δ/≡,F/≡) where:

– Q/≡ is the set of blocks in ≡. In other words, we collapse all states which belong
to the same block into one abstract state.
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– (B1, . . . ,Bn)
f−→ B iff (q1, . . . ,qn)

f−→ q for some q1 ∈ B1, . . . ,qn ∈ Bn,q ∈ B. This
is, there is a transition in the abstract automaton iff there is a transition between
states in the corresponding blocks.

– F/≡ contains a block B iff B∩F �= /0. Intuitively, a block is accepting if it contains
a state which is accepting.

We will now consider the abstract automaton A/
◦,where the states of A are collapsed

according to
◦,. We will relate the languages of A and A/

◦,.
To do that, we first define the notion of a context. Intuitively, a context is a tree

with “holes” instead of leaves. Formally, we consider a special symbol © �∈ Σ with
rank 0. A context over Σ is a tree c over Σ∪ {©} such that for all leaves p ∈ c, we
have c(p) =©. For a context c with leaves p1, . . . , pn, and trees t1, . . . ,tn, we define
c[t1, . . . ,tn] to be the tree t, where

– dom(t) = dom(c)
⋃{p1 · p′| p′ ∈ dom(ti)}

⋃ · · ·⋃{pn · p′| p′ ∈ dom(tn)},
– for each p = pi · p′, we have t(p) = ti(p′), and
– for each p ∈ dom(c)\ {p1, . . . , pn}, we have t(p) = c(p).

In other words, c[t1, . . . ,tn] is the result of appending the trees t1, . . . ,tk to the holes of c.
We extend the notion of runs to contexts. Let c be a context with leaves p1, . . . , pn. A run
π of A on c from (q1, . . . ,qn) is defined in a similar manner to a run on a tree except
that for a leaf pi, we have π(pi) = qi, 1≤ i≤ n. In other words, each leaf labelled with
© is annotated by one qi. We use c [q1, . . . ,qn]

π=⇒ q to denote that π is a run of A on
c from (q1, . . . ,qn) such that π(ε) = q. The notation c [q1, . . . ,qn] =⇒ q is explained in
a similar manner to runs on trees.

Using the notion of a context, we can relate runs of A with those of the abstract

automaton A/
◦,. More precisely, we can show that for blocks B1, . . . ,Bn, B ∈ Q/

◦,
and a context c, if c[B1, . . . ,Bn] =⇒ B, then there exist states r1, . . . ,rn,r ∈ Q such that

r1 , B1, . . . ,rn , Bn,r
•, B, and c[r1, . . . ,rn] =⇒ r.

In other words, each run in A/
◦, can be simulated by a run in A which starts from

a state that is equivalent with respect to downward bisimulation and ends up in a state
that is equivalent with respect to upward bisimulation. This leads to the following
lemma.

Lemma 1. If t =⇒ B, then t =⇒ w for some w with (B,w) ∈ Q/
•,. Moreover, if B ∈

F/
◦,, then also w ∈ F.

In other words, each tree t which leads to a block B in A/
◦, will also lead to a state in A

which is in the block B with respect to the upward bisimulation relation. Moreover, if t

can be accepted at B in A/
◦, (meaning that B contains a final state of A, i.e., B∩F �= /0),

then it can be accepted at w in A (i.e., w ∈ F) too. This leads to the following theorem.

Theorem 3. L(A/
◦,) = L(A) for each tree automaton A.

6 Experiments

We have implemented our algorithms in a prototype tool written in Java. We have used
the tool on a number of automata from the framework of tree regular model checking.
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Table 1. Reduction of the number of states and rules using downward bisimulation, downward
simulation, composed bisimulation, and composed simulation

Original , ∼ ◦, ◦∼

states rules states rules time states rules time states rules time states rules time
33 876 27 756 0.6 21 418 3.6 16 144 0.8 10 90 5.2
41 1707 28 1698 1.4 24 682 7.8 19 417 3.4 14 148 13.7
41 313 33 285 0.3 33 285 4.2 18 189 0.4 12 158 7.3
50 152 32 88 0.2 32 88 3.7 28 83 0.3 26 78 7.1

109 1248 81 1156 3.1 80 1145 19.8 35 390 4.2 18 231 36.1
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Fig. 1. Reduction of the size of tree automata in percent using downward bisimulation, downward
simulation, and composed bisimulation

Tree regular model checking is the name of a family of techniques for analysing
infinite-state systems in which configurations of the systems being analysed are rep-
resented by trees, sets of the configurations by tree automata, and transitions of the
analysed systems by tree transducers.

Most of the algorithms in the framework rely crucially on efficient reduction meth-
ods since the size of the generated automata often explodes, making a further compu-
tation with the automata infeasible without a reduction. The tree automata that we have
considered arose during verification of the Arbiter protocol and the Leader election
protocol [6].

Our experimental evaluation was carried out on an AMD Athlon 64 X2 2.19GHz
PC with 2.0 GB RAM. We have compared the size of the considered tree automata
after reducing them using composed bisimulation, composed simulation, downward
bisimulation, and downward simulation equivalence. It is well known that simulation
can give a better reduction but it is harder to compute than bisimulation. Definitions
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Fig. 2. The time for reducing tree automata using downward bisimulation, downward simulation,
composed bisimulation, and composed simulation

and algorithms for computing downward simulation and composed simulation on tree
automata can be found in [2].

In Table 1, we show the computation time and the reduction for composed bisimula-

tion
◦,, composed simulation

◦∼, downward bisimulation ,, and downward simulation
equivalence ∼. As can be seen from the results, composed simulation gives the best
reduction in all cases, but, on the other hand, it has a much higher computation time
than all the other relations. Composed bisimulation gives a better reduction than both
downward simulation and downward bisimulation. The time for computing composed
simulation is lower than all simulation relations.1

Figure 1 shows the amount of reduction in percent for the four different relations. In
all the test cases, composed bisimulation gives a much better reduction than downward
bisimulation. The computation time is marginally higher, but not comparable with the
computation time for downward simulation and composed simulation.

As suggested in [11], running backward bisimulation followed by forward bisimu-
lation gives a better reduction than running backward bisimulation by itself. In all our
test cases, backward bisimulation followed by forward bisimulation behaves in a very
similar way to composed bisimulation.

Figure 2 shows the computation time when reducing tree automata using the different
relations (we point out that no attempt to optimise the implementation of any of the
relations was done, and therefore the computation times could probably be lower with
an optimised implementation for all of them).

1 From the theoretical point of view, relations
◦, and

◦∼ are incomparable as well as relations
◦, and ∼, i.e., for each of the pairs, there exists an automaton for which the relations are
incomparable. For any tree automaton, we also have that , ⊆ ∼ ⊆ ◦∼. We investigate these
questions in [4].
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7 Conclusions and Future Work

We have presented a new equivalence, called composed bisimulation, for reducing tree
automata while preserving their language. Composed bisimulation is defined in terms
of a composition of two relations, namely downward bisimulation proposed earlier in
the literature and upward bisimulation proposed in this paper. Our experimental results
show that composed bisimulation produces a much better reduction than downward
bisimulation and downward simulation (also studied in the literature). Computationally,
composed bisimulation is slightly more expensive than downward bisimulation, but
significantly faster than downward simulation and composed simulation. These results
offer designers of tools based on tree automata a finer choice of the technique to be used
for reducing tree automata in terms of the trade-off between reduction capabilities and
the cost of the reduction.

There are several interesting directions for future work. First, it is interesting to ex-
tend the results to the domain of symbolically encoded tree automata like in the MONA
tree automata library [12], allowing one to deal with significantly larger automata. An-
other interesting direction (considered in the follow-up work [4]) is the possibility of
composing not only upward and downward bisimulations, but defining a parametric
(bi-)simulation framework allowing one to mix simulations and bisimulations and thus
further tune the desired degree of the trade-off between reductions and their costs. Fi-
nally, it can be interesting to extend the algorithms presented in this paper to work for
other kinds of tree automata such as guided tree automata, weighted tree automata, or
unranked tree automata.

References

1. Abdulla, P., Bouajjani, A., Holı́k, L., Kaati, L., Vojnar, T.: Composed Bisimulation for Tree
Automata. Technical Report FIT-TR-2008-04, FIT, Brno Uni. of Technology, Czech Repub-
lic (2008)

2. Abdulla, P., Bouajjani, A., Holik, L., Kaati, L., Vojnar, T.: Computing Simulations over Tree
Automata: Efficient Techniques for Reducing Tree Automata. In: Proc. of TACAS 2008.
LNCS. Springer, Heidelberg (2008)
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Abstract. Two formal languages are f-equivalent if their symmetric dif-
ference L1 � L2 is a finite set — that is, if they differ on only finitely
many words. The study of f-equivalent languages, and particularly the
DFAs that accept them, was recently introduced [1]. First, we restate
the fundamental results in this new area of research. Second, our main
result is a faster algorithm for the natural minimization problem: given
a starting DFA D, find the smallest (by number of states) DFA D′ such
that L(D) and L(D′) are f-equivalent. Finally, we present a technique
that combines this hyper-minimization with the well-studied notion of a
deterministic finite cover automaton [2–4], or DFCA, thereby extending
the application of DFCAs from finite to infinite regular languages.

1 Introduction, Notation, and Prior Results

We use the standard definition of a DFA as a 5-tuple (Q, Σ, δ, q0, A) where Q is
the state-set, Σ is the alphabet, δ is the extended transition function, q0 is the
starting state, and A is the accepting subset of Q. For more on DFAs, see any
standard reference [5, 6]. In all algorithm analyses, “n” implicitly refers to the
number of states of the DFA in question. Where it is unspecified, Lx is assumed
to be a language, Dx a DFA, and qx a state. Finally, subscripted components
such as Q1, δ1 etc. should be assumed to be part of a DFA D1.

Thenow-classical notions ofDFA equivalence andminimization arewell-studied
[5, 6]. Two DFAs D1 and D2 are equivalent if the languages they induce (L(D1) and
L(D2)) are equal. We write this as D1 ≡ D2. In the recently-introduced study of f-
equivalence [1] 0, this condition is loosened: instead of requiring that the languages
be equal, one allows them to differ by finitely many words.

Definition 1 (f-equivalence). Two languages L1 and L2 are said to be f-
equivalent if L1 . L2, their symmetric difference, is a finite set. We write
L1 ∼ L2. This relation is extended to DFAs in the obvious way: if L(D) is the lan-
guage recognized by a DFA D, then we write D1 ∼ D2 whenever L(D1) ∼ L(D2).
Finally, f-equivalence can also be considered on DFA states. States q1 and q2

1 There, f-equivalence is called either “almost equivalence” or “finite difference”. We
use the new term here because it is shorter, and cannot be misunderstood as exclud-
ing total equivalence.

O.H. Ibarra and B. Ravikumar (Eds.): CIAA 2008, LNCS 5148, pp. 223–231, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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are f-equivalent (q1 ∼ q2) if their induced languages (sometimes called right-
languages) are f-equivalent (L(q1) ∼ L(q2)). States q1 and q2 need not be in the
same DFA.

Many interesting features of the f-equivalence relation have been discovered. In
this section, we restate and explain the most important of these to the reader
(since these ideas are still new). One should, however, refer to the original paper
for analyses.

Like classical equivalence, f-equivalence can be seen as an equivalence rela-
tion on either the languages themselves (we write L1 ∼ L2) or the DFAs rec-
ognizing them (D1 ∼ D2). DFA f-equivalence (like classical-equivalence) is an
equivalence-relation, so it partitions the set of all DFAs into equivalence-classes.
Since two classically-equivalent DFAs are also trivially f-equivalent, the classical-
equivalence partition is a refinement of the f-equivalence partition.

We begin with two trivial but very useful results:

Proposition 1. Let q1 be a state from DFA D1, and q2 be a state from D2. If
q1 ∼ q2, then for any input c: δ(q1, c) ∼ δ(q2, c).

Note the analogous statement about classical equivalence.

Corollary 1. If D1 ∼ D2, then (∀q1 ∈ Q1, ∃q2 ∈ Q2, : q1 ∼ q2).

Again, this is directly analagous to a statement for classical equivalence: if two
DFAs are equivalent, their states occupy the same set of Myhill-Nerode equiva-
lence classes.

Next, we define a partition of every DFA’s state set which turns out to be
critical to the study of f-equivalence:

Definition 2 (Preamble and Kernel). For any DFA D = (Q, Σ, δ, q0, A), Q
is partitioned into the preamble and kernel parts: P (D) and K(D). A state q is
the preamble P (D) if its left-language is finite — that is, if there are only finitely
many strings w such that δ(q0, w) = q — and in the kernel otherwise. In short,
the states are divided according to whether they are reachable from q0 by only
finitely many or by infinitely many strings.

Finally, we go through the f-equivalence isomorphism and minimality results.
Once again, we emphasize that the interested reader should refer to the original
for proofs [1]. The results are presented here primarily as background, and also
to give these ideas wider exposure.

Definition 3 (Kernel Isomorphism). Given DFAs D1 = (Q1, Σ, δ1, q0,1, A1)
and D2 = (Q2, Σ, δ2, q0,2, A2), we say that D1 andD2 have isomorphic kernels (and
write D1

∼=K D2) when there exists a bijection f : K(D1) → K(D2) such that

1. ∀q1 ∈ K(D1) : q ∈ A1 ⇔ f(q) ∈ A2 and
2. ∀q1 ∈ K(D1), ∀c ∈ Σ : f(δ1(q1, c)) = δ2(f(q1), c).

Theorem 1 (Kernel Isomorphism). If D1 ∼ D2 and both are classically
minimized, then D1

∼=K D2
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Definition 4 (Hyper-minimality). A DFA D1 = (Q1, Σ, δ1, q0,1, A1) is called
hyper-minimized if for any DFA D2 = (Q2, Σ, δ2, q0,2, A2), it holds that (D1 ∼
D2) ⇒ (|Q1| <= |Q2|).

Theorem 2 (Characterizing Hyper-minimality). A DFA D=(Q, Σ, δ, q0, A)
is hyper-minimal if and only if:

1. D is classically minimized, and
2. ∀q1 ∈ Q, ∀q2 ∈ (Q− {q}) : (q1 ∼ q2) ⇒ (q1 ∈ K(D) ∨ q2 ∈ K(D)).

Definition 5 (Preamble Isomorphism). GivenDFAsD1=(Q1, Σ, δ1, q0,1,A1)
and D2 = (Q2, Σ, δ2, q0,2, A2), we say that D1 and D2 have isomorphic preambles
(and write D1

∼=P D2) when there exists a bijection f : P (D1) → P (D2) such that:
∀qa ∈ P (D1), ∀qb ∈ P (D1), ∀c ∈ Σ : δ1(qa, c) = qb → δ2(f(qa), c) = f(qb).

The definition of preamble isomorphism is weaker than kernel isomorphism be-
cause f does not preserve acceptance (membership in A).

Theorem 3 (Preamble Isomorphism). If D1 ∼ D2 and both are hyper-
minimized, then D1

∼=P D2

Notice that Theorem 5 requires that the automata are hyper-minimized while
Theorem 1 only requires them to be classically minimized. To conclude this
section, we briefly note that these two isomorphism theorems are optimal in the
sense that any aspect of the DFA that they do not preserve can indeed vary
between f-equivalent and hyper-minimized automata. These are the start state
q0, acceptance in the preamble (P (D) ∩ A), and transitions leading from the
preamble to the kernel.

2 Hyper-Minimization Algorithm

2.1 Algorithm Overview

The problem of hyper-minimization is a fundamental part of the study of f-
equivalence, and perhaps the most strongly motivated. Given a starting DFA
D, we seek the smallest D′ (by number of states) such that D ∼ D′. Here, we
present a new hyper-minimization algorithm, which is the fastest yet known. The
original algorithm ran in O(n3)-time; this one runs in O(n2). Furthermore, this
algorithm is more direct, involving no iterative partition refinement, and uses
the perhaps surprising technique of constructing the cross-product of a DFA
with itself.

We begin with a top-down sketch of hyper-minimization, then explain the com-
ponents from the bottom up. Both the new and the original hyper-minimization
algorithms share the following highest-level structure:

Algorithm 4 (hyper-minimize)
Input: a starting DFA D = (Q, Σ, δ, q0, A)
Output: a hyper-minimized version of D
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1. Let D′ = minimize(D), where ‘minimize’ is classical DFA minimization
2. Let E = f equivalence classes(D′) be the partition of Q′ into f-equivalence

classes, for example via Algorithm 6 (Main Result) below
3. Let P, K = preamble and kernel(D′) be the preamble and kernel subsets of

Q′, for example via Algorithm 7 below
4. f merge states(D′, E, P, K), for example via Algorithm 8 below. This is the

operation of merging states within each f-equivalence class.
5. Return D′

Because the new and original algorithms share this outline, we refer to the orig-
inal for proof that it is valid [1]. As with classical minimization, the meat of the
problem is in finding the state equivalence classes, which is the only step that
here differs from the original paper.

We claim that the four steps of Algorithm 4 can be executed in quadratic time.
Step 1, famously, can be accomplished in O(n ∗ log(n)) time [6] and requires no
further explanation. Step 2 is explained in more detail as Algorithm 6. We prove
below that it can be accomplished in time O(n2). For full explanations and
analyses of Steps 3 and 4, the reader is referred to the original paper [1], though
we do offer an overview below.

Implementations of all the algorithms in this paper are available in the Python
programming language at http://ianab.com/hyper/

2.2 Algorithm Details

The above hyper-minimization outline is roughly analagous to one for classical
DFA minimization:

1. Remove all unreachable states
2. Partition the states into Myhill-Nerode equivalence-classes
3. Collapse each equivalence class into a representative state

Almost all DFA minimization algorithms fit into this framework [7]. As in hyper-
minimization, the meat of the problem is in partitioning the states into equiv-
alence classes, with the other steps being quite straightforward in comparison.
(One difference is that the collapsing of classes is more complicated under hyper-
minimization, requiring the computation of the kernel and preamble.)

We will now work up towards Step 2 of Algorithm 4, presenting and analyzing
the new method by which a partition into f-equivalence classes can be accom-
plished in time O(n2). This is our main result. Afterwards, we will discuss Steps
3 and 4 of Algorithm 4.

Our algorithm will use the following version of the standard cross-product
DFA construction [6].

Definition 6 (xor cross product). Given DFAs D1 = (Q1, Σ, δ1, q0,1, A1)
and D2 = (Q2, Σ, δ2, q0,2, A2), define xor cross product(D1, D2) = D⊗ = (Q⊗,
Σ, δ⊗, q⊗0 , A⊗) as follows:
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1. Let Q⊗ = {(q1, q2) : q1 ∈ Q1 ∧ q2 ∈ Q2}
2. ∀q1 ∈ Q1, ∀q2 ∈ Q2, ∀c ∈ Σ : Let δ⊗((q1, q2), c) = (δ1(q1, c), δ2(q2, c))
3. Let q⊗0 = (q01 , q02)
4. Let A⊗ = {(q1, q2) : (q1 ∈ A1)⊗ (q2 ∈ A2)} where ⊗ is the xor operation

Note that the three DFAs share the same alphabet Σ.

Algorithm 5 (right finite states)
Input: a DFA D = (Q, Σ, δ, q0, A), and the set S of all states in Q that induce
the empty language (that is, S = {q ∈ Q : ∀w ∈ Σ∗ : δ(q, w) /∈ A}).
Output: the subset F ⊂ Q of all states that induce a finite language
Running-time: O(n)

1. Let S′ be the complement of S
2. For each state q let Incomingq and Outgoingq be new empty sets
3. For each q ∈ S′: for each c ∈ Σ:

(a) Let q′ = δ(q, c)
(b) Add (q, c) to the set Incomingq′

(c) Add (q′, c) to the set Outgoingq

4. Let F be a new empty list
5. Let to process be a new list equal to S
6. While to process is nonempty:

(a) Let q = pop(to process)
(b) Add q to F
(c) For each (q′, c) ∈ Incomingq:

i. Remove (q, c) from Outgoingq′

ii. If Outgoingq′ is now empty, add q′ to to process.
7. Return F

Proof (Algorithm 5). We seek to prove first that the algorithm is correct, and
second that it runs in linear time with respect to Q.

Correctness. When a state is added to F in the processing loop, we call it
“removed” from the DFA. This algorithm removes every state in the “sink-set”
S, then (while any such state exists) removes all states such that all the state’s
outgoing transitions lead to removed states. It remains to prove that a state is
removed if and only if it induces a finite language.

First, we prove that if a state is removed, then it induces a finite language.
Note that there are no transitions from S to a state in S′. Otherwise, the state
in S′ would also induce an empty language, so by assumption it would be in S.
Next, assign to each removed state q a distance d(q) from S, equal to the length
of the longest path from q to a state in S. We obtain the result by induction
on d. If d(q) = 0, then q ∈ S and |L(q)| = 0 by definition. The size of L(q) for
any state q in a DFA is bounded above by 1 + Σq′∈Outgoingq L(q′). Therefore, if
all removed states with d <= n induce finite languages, it follows that all states
with d = n + 1 also induce a finite language, completing this direction.
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Second, we prove that if a state q induces a finite language, it is removed by
the algorithm. Again we use a simple inductive proof. Let l(q) be the length of
some longest word w in L(q). If l(q) = 0 then q is in S, so it is removed by the
algorithm. If l = n, then for every state q′ ∈ Outgoingq, l(q′) < l(q). Therefore,
if every state with l <= n is removed by the algorithm, then every state with
l = n + 1 is also removed, because all states it transitions to are removed.

Speed. Building the Incoming and Outgoing sets takes linear time because
it takes a constant amount of time for each transition and the number of tran-
sitions is linear with the number of states. Removing any state takes constant
time (for popping it from to process and adding it to F , plus some amount of
work for each incoming transition). Again, there are only O(n) transitions, so the
latter part adds up to work linear in the number of states. These steps compose
the algorithm. �

Algorithm 6 (f-equivalence-classes (Main Result))
Input: a minimized DFA D = (Q, Σ, δ, q0, A)
Output: a partition of Q (the state-set of D) into the equivalence-classes deter-
mined by the f-equivalence relation (the “f-equivalence classes”)
Running-time: O(n2)

1. Let D⊗ = xor cross product(D, D)
2. Let S = {(q, q) : q ∈ Q} be the set of all self-pair states in D⊗.
3. Let F = right finite states(D⊗, S) be the set of all states (q, r) such that

(q, r) induces a finite language in D⊗. (Algorithm 5)
4. Use the state-pairs in F to construct a partition P of Q:

(a) Let P be a new Union-Find data structure [8]
(b) For each state q ∈ Q: make a new set {q} in U
(c) For each (q, r) in F :

i. Let Pq = P.find(q)
ii. Let Pr = P.find(r)
iii. If Pr �= Pq, then P.union(Pq, Pr)

5. Return P

Proof (Algorithm 6)

Correctness. For every word w ∈ Σ∗ and state (q, r) ∈ Q⊗ we have w ∈
L((q, r)) ⇔ δ⊗((q, r), w) ∈ A⊗ ⇔ (δ(q, w) ∈ A) ⊗ (δ(r, w) ∈ A) by definition. In
other words, the language L((q, r)) of every state in the D⊗ context equals the
language L(q). L(r) in the D context. The first consequence of this is that S
is exactly the set of states in D⊗ that induce the empty language, because the
given DFA D is minimized (so no two distinct states induce the same language).
This proves that the input to right finite states is correct, and the result F is
as desired. Thus, as a second consequence of the above, we see that L((q, r)) is
finite if and only if q ∼ r. Therefore, F is the f-equivalence relation on the states
in D. Step 4 turns this relation, represented as a set of pairs, into a partition.
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Speed. The DFA cross-product construction in Step 1 clearly takes O(n2) time.
Constructing S in Step 2 clearly takes O(n) time. In Step 3, we construct F using
right finite states (Algorithm 5), which was proven to take time linear in the
number of states. Since the input DFA has n2 states, Step 3 takes time O(n2).
In Step 4, we iterate through O(n2) pairs and do an equivalent number of Find
operations. Since there are only n states, at most n−1 Union operations are per-
formed. Therefore, by using a Union-Find data-structure that has constant-time
Find and linear-time Union [8], this step also takes O(n2) time. �

This concludes the main result of the paper. We now continue with Steps 3 and 4
from Algorithm 4. Once again, since these are exactly the same as in the original
paper[1], the reader is directed there for additional analysis.

Algorithm 7 (preamble and kernel)
Input: a DFA D = (Q, Σ, δ, q0, A)
Output: a pair of sets, the first containing the preamble states of D, and the
second containing the kernel states of D
Running-time: O(n2)

1. Let K be an empty set
2. For each q ∈ Q: let Rq be the set of states nontrivially reachable from q
3. For each q ∈ Q: if q ∈ Rq: Let K = K ∪Rq

4. Return (Q−K, K)

Algorithm 8 (f merge states)
Input: a minimized DFA D = (Q, Σ, δ, q0, A), the partition E of its states into
f-equivalence classes, and the partition (P, K) of its states into the preamble and
kernel
Output: D is hyper-minimized
Running-time: O(n)

1. For each set S in E:
(a) Let PS = S ∩ P
(b) Let KS = S ∩K
(c) If KS is non-empty: Let R = pop(KS)
(d) Else: Let R = pop(PS)
(e) For each state q in PS : merge q into R

The “merge” in the final step above refers to a procedure that is familiar from
classical minimization: all transitions to the first state are redirected to the
second state, and the first state is deleted from the automaton.

3 Finite-Factoring with the DFCA

In some sense, hyper-minimization pares down a regular language to its core.
Outlier words are added or removed to make the DFA as small as possible. How-
ever, in some circumstances, one may want to keep track of exactly which words
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were changed in the course of hyper-minimization. Such a list is not difficult
to obtain: if D is the original DFA and D′ is the hyper-minimized version, the
xor cross product of D and D′ recognizes precisely the finite difference that was
changed. (A more complicated algorithm could keep track of which words change
during the minimization process.)

The DFCA, or deterministic finite cover automaton, is a fairly well-studied
[2–4] variation on the classical DFA. A DFCA can save space in recognizing finite
languages, in proportion to their redundancy, essentially by removing the need
of the DFA to “count” the length of the string. A DFCA C can be understood
as a pair C = (D, l) where D is a DFA and l is a non-negative integer. Now
C accepts a word w if |w| < l and D accepts w (where |w| is the length of
w). Minimization algorithms have been given [3] that, given a starting DFA D1

and maximum desired length l, can quickly reduce the DFA to minimal DFCA
C = (D2, l) that agrees with D1 on all words of length less than l.

An obvious weakness of the DFCA is that its ability to remove the redundant
computation necessitated by counting can only be applied to finite languages.
By combining hyper-minimization with the DFCA, this weakness can for the
first time be overcome.

Definition 7 (Finite-Factored Automaton). A finite-factored automaton
is a pair (D, C) where the first item is a DFA and the second is a DFCA. A
finite-factored automaton accepts a word w if and only if exactly one of D and
C accepts w.

Algorithm 9 (finite-factor)
Input: a DFA D
Output: a finite-factored automaton pair (D′, C), where D′ is a DFA and C a
DFCA, such that for all words w, D accepts w if and only if (D′, C) accepts w.
Running-time: O(n2 ∗ log(n))

1. Let D′ = hyper minimize(D)
2. Let Df = xor cross product(D, D′)
3. Let l = max(|w| : w ∈ L(Df ))
4. Minimize the DFCA (Df , l) [3]
5. Return (D′, (Df , l))

It is clear from a simple example that finite-factoring can greatly reduce the
number of states required to recognize a regular language. Consider a language
over Σ = {0, 1, a, b, c, d, e} that accepts a word w if w contains only numbers
and is up to nine characters long, or if w contains only letters (of any length).
This language L requires eleven states to represent with a minimized DFA, and
a DFCA cannot be used directly because L is infinite. However, finite-factoring
results in two states for the DFA, and two states for the DFCA, for a total
reduction of seven states.

This reduction seems to have been possible because L contains a finite-sized
subset of words that are amenable to reduction with a DFCA, and hyper-
minimization can be used to isolate this component. Analysis of this technique
is left for future research.
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4 Conclusion and Open Problems

The question we address in this paper — in short, “What can be said about
finitely-different automata?” — is a quite natural one. However, it has (until
recently) gone unaddressed in the now half-century-long study of DFAs. In this
paper, we reviewed the fundamental results in this new area, then provided a
significantly improved algorithm for the central problem of hyper-minimization.
We conclude with a few open problems:

1. DFA minimization is famously solvable in time O(n ∗ logn). DFCA mini-
mization, too, was quickly reduced from O(n4) in the original paper [2] to
an O(n ∗ logn) algorithm [3]. Can hyper-minimization also be achieved in
O(n ∗ logn)?

2. There are numerous open problems surrounding finite-factored automata.
For example: does the method presented here always result in the smallest
total number of states? If not, are some hyper-minimized automata in the
same equivalence class better than others?

3. Starting with a minimized DFA, first change the acceptance values of selected
preamble states, then minimize the DFA again. It is clear that for some
automata, this process can produce a hyper-minimized result. For exactly
which automata is this true?
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Abstract. The simulation of deterministic pushdown automata defined
over a one letter alphabet by finite state automata is investigated from a
descriptional complexity point of view. We show that each unary deter-
ministic pushdown automaton of size s can be simulated by a determin-
istic finite automaton with a number of states which is exponential in s.
We prove that this simulation is tight. Furthermore, its cost cannot be
reduced even if it is performed by a two-way nondeterministic automa-
ton. We also prove that there are unary languages for which deterministic
pushdown automata cannot be exponentially more succinct than finite
automata. In order to state this result, we investigate the conversion of
deterministic pushdown automata into context-free grammars. We prove
that in the unary case the number of variables in the resulting gram-
mar is strictly lower than the number of variables needed in the case of
nonunary alphabets.

1 Introduction

Deterministic context-free languages and their corresponding devices, determin-
istic pushdown automata (dpda’s), have been extensively studied in the literature
(e.g., [5,10,15,16,17]). They are interesting not only from a theoretical point of
view, but even, and perhaps mainly, for their relevance in connection with the
implementation of efficient parsers. It is well-known that the class of determinis-
tic context-free languages is a proper subclass of that of context-free languages,
characterized by (nondeterministic) pushdown automata (pda’s). In the case of
languages defined over a one-letter alphabet, called unary or tally languages,
these classes collapse: in fact, as proved in [6], each unary context-free language
is regular. This implies that unary pda’s and unary dpda’s can be simulated by
finite automata.

In this paper we study the simulation of unary dpda’s by finite automata,
from a descriptional complexity point of view. As a main result, we get the cost,
in terms of the sizes of the descriptions, of the optimal simulation between these
kinds of devices.

The problem of the simulation of dpda’s by finite automata was already stud-
ied in the literature in the case of general alphabets: in [16] it was proved
that each dpda of size s accepting a regular language can be simulated by a
finite automaton with a number of states bounded by a function which is triple
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exponential in s. That bound was reduced to a double exponential in [17]. It
cannot be further reduced because there is a matching lower bound [13].

We show that in the unary case the situation is different. In fact, we are
able to prove that each unary dpda of size s can be simulated by a one-way
deterministic automaton (1dfa) with a number of states exponential in s. We
prove that this simulation is tight, by showing a family of languages exhibiting
an exponential gap between the size of dpda’s accepting them, and the number
of states of equivalent 1dfa’s.

As proved in [12], each n-state unary two-way nondeterministic finite automa-
ton (2nfa) can be simulated by a 1dfa with 2O(

√
n log n) states. This suggests

the possibility of a smaller gap between the descriptional complexities of unary
dpda’s and 2nfa’s. However, we show that even in this case the gap can be
exponential.

We further deepen the investigation in this subject, in order to discover
whether or not for each unary regular language there exists an exponential gap
between the sizes of deterministic pushdown automata and of finite automata.
We give a negative answer to this question, by showing a family of languages for
which unary dpda’s cannot be exponentially more succinct than finite automata.

In order to prove this last result, we study the problem of converting unary
dpda’s into equivalent context-free grammars. In general, given a pda with n
states and m input symbols, the standard conversion technique produces an
equivalent grammar with n2m+1 variables. As proved in [7], this number cannot
be reduced, even if given pda is deterministic. Here, we show that in the case of
a unary alphabet, a reduction to 2mn is possible.

We briefly mention that the cost of the simulation of unary (nondeterministic)
pda’s by finite automata was studied in [14], where the authors proved that each
unary pda with n states and m stack symbols, such that each push adds exactly
one symbol, can be simulated by a 1dfa with 2O(n4m2) states. Our main result
reduces this bound to 2nm, when the given pda is deterministic.

Due to space limits, many of the proofs are omitted in this version of the paper.

2 Preliminaries

Given a set S, we denote by #S its cardinality, and by 2S the family of all its
subsets.

A language L is said to be unary if it is defined over a one letter alphabet.
In this case, we let L ⊆ a∗. In a similar way, an automaton is unary if its input
alphabet contains only one letter. It is easy to prove the following:

Theorem 1. Let L be a unary language. Then L is regular if and only if there
exist two integers μ ≥ 0, λ ≥ 1 such that for each integer n ≥ μ, an ∈ L if and
only if an+λ ∈ L.

If the constant μ in Theorem 1 is 0, then L is said to be cyclic or even
λ-cyclic. Furthermore, in this case, L is said to be properly λ-cyclic, when it is not
λ′-cyclic for any λ′ < λ. It is immediate to see that the minimum 1dfa accepting
a properly λ-cyclic language consists of a cycle of λ states.
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A pushdown automaton [9] M = (Q,Σ, Γ, δ, q0, Z0, F ) is said to be determin-
istic [5] if and only if for each q ∈ Q, Z ∈ Γ the following hold:

1. if δ(q, ε, Z) �= ∅ then δ(q, a, Z) = ∅, for each a ∈ Σ, and
2. for each σ ∈ Σ ∪ {ε}, δ(q, σ, Z) contains at most one element.

A configuration of M is a triple (q, w, γ) where q is the current state, w the
unread part of the input, and γ the current content of the pushdown store. The
leftmost symbol of γ is the topmost stack symbol. As usual, we denote by 0 the
relation between configurations such that for two configurations α and β, α 0 β

if and only if β is reached from α in one move. We also write α 0t β if and only
if β can be reached from α in t ≥ 0 moves, and α 0� β if and only if α 0t β for
some t ≥ 0.

While in the nondeterministic case the acceptance by final states is equiva-
lent to the acceptance by empty stack, for dpda’s the second condition is strictly
weaker (dpda’s accepting with empty stack characterize the class of determin-
istic context-free languages having the prefix property). Hence, the acceptance
condition we will consider in the paper is that by final states. In particular,
given a pda M , we will denote by L(M) the language accepted by it under such
a condition, i.e., L(M) = {w ∈ Σ∗ | ∃q ∈ F, γ ∈ Γ ∗ : (q0, w, Z0) 0� (q, ε, γ)}.

In order to simplify the exposition and the proofs of our results, in this paper
it is useful to consider pda’s in a certain normal form [14].

1. At the start of the computation the pushdown store contains only the start
symbol Z0; this symbol is never pushed or popped on the stack;

2. the input is accepted if and only if the automaton reaches a final state, and
all the input has been scanned;

3. if the automaton moves the input head, then no operations are performed
on the stack;

4. every push adds exactly one symbol on the stack.

The transition function δ of a pda M then can be written as

δ : Q× (Σ ∪ {ε})× Γ → 2Q×({read,pop}∪{push(A)|A∈Γ}).

In particular, for q, p ∈ Q,A,B ∈ Γ, σ ∈ Σ ∪ {ε}, (p, read) ∈ δ(q, σ,A) means
that the pda M , in the state q, with A at the top of the stack, by consuming
the input σ ∈ Σ or not consuming any input symbol if σ = ε, can reach the
state p without changing the stack contents. (p, pop) ∈ δ(q, ε, A) ((p, push(B)) ∈
δ(q, ε, A), resp.), means that M , in the state q, with A at the top of the stack,
without reading any input symbol, can reach the state p by popping off the
stack the symbol A on the top (by pushing the symbol B on the top of the
stack, respectively).

It can be easily observed that each pda can be converted into an equivalent pda
satisfying these conditions. Furthermore, if the given pda is deterministic, then
the resulting pda is deterministic too. Hence, in the following we will consider
dpda’s in the above form. According to the discussion in [8], the size of a pda
should be defined by considering the total number of symbols needed to write
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down its description. It can be easily shown that the transformation of a pda of
size s into normal form produces an equivalent pda of size O(s). Furthermore,
the size of a pda in normal form is linear in the number of rules of its transition
function. This permit us of using, as a measure for the size of a dpda in normal
form, the product of the number of its states and of the number its stack symbols.
In the paper, we will denote the size of a pda M as size(M). The size of a finite
automaton is defined to be the number of its states.

A mode of a pda M is a pair belonging to Q × Γ . In the paper, the mode
defined by a state q and a symbol Z will be denoted as [qZ]. The mode of
the configuration (q, x, Zα) is [qZ]. Note that in a unary dpda, the mode of a
configuration defines the only possible move.

A dpda M is loop-free if and only if for each w ∈ Σ∗ there are q ∈ Q, γ ∈ Γ ∗,
Z ∈ Γ such that (q0, w, Z0) 0� (q, ε, Zγ) and δ(q, ε, Z) = ∅, i.e., for each input
string the computation cannot enter in an infinite loop of ε-moves. It is known
that each dpda can be converted into an equivalent loop-free dpda [5]. In the
unary case such a conversion can be done without increasing the size of the given
dpda. In fact, we can write a procedure that given a mode [qA] simulates the ε-
moves of M in order to make a list of the modes reachable from the configuration
(q, ε, A). If a mode is visited twice, then the computation enters a loop. In this
case, the transition function of M can be modified by setting δ(p, ε, B) = ∅ for
each mode visited in the simulation. Note that the procedure ends before size(M)
steps. Hence, in the following, without loss of generality, we will suppose that
each unary dpda we consider is loop-free.

3 Simulation of Unary dpda’s by Finite Automata

In this section we prove our main result: in fact we show that each unary dpda
M can be simulated by a 1dfa whose number of states is exponential in the size
of M . We will also show that this simulation is tight.

Let us consider a given unary dpda M . We start by introducing some useful
notions and lemmas:

Definition 1. Given two modes [qA] and [pB], we define [qA] ≤ [pB] if and
only if there are integers k, h ≥ 0 and strings α, β ∈ Γ ∗, such that:

– (q0, a
k, Z0) 0� (q, ε, Aα), (q, ah, A) 0� (p, ε, Bβ), and

– if (q0, a
k′
, Z0) 0� (p, ε, Bβ′) for some k′ < k, β′ ∈ Γ ∗, then there is an integer

k′′ with k′ + k′′ < k and a state p′ ∈ Q, such that (p, ak′′
, B) 0� (p′, ε, ε).

Intuitively, [qA] ≤ [pB] means that M from the initial configuration can reach
a configuration with mode [qA] by a computation (q0, a

k, Z0) 0� (q, ε, Aα) and,
after that, it can reach a configuration with mode [pB], by a computation which
does not use the portion of the stack below A, i.e., the portion containing α.
Furthermore, if during the computation (q0, ak, Z0) 0� (q, ε, Aα) a configuration
with mode [pB] and stack height h is reached, then in some subsequent step
of the same computation the stack height must decrease below height h. In
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other word, for all integers k′ and k′′ with k′ + k′′ = k, it is not possible that
(q0, a

k′
, Z0) 0� (p, ε, Bβ′) and (p, ak′′

, B) 0� (q, ε, Aα′), for some α′, β′ ∈ Γ ∗.

Lemma 1. The relation ≤ defines a partial order on the set of the modes.

A configuration completely describes the status of a pda in a given instant and
gives enough information to simulate the remaining steps of a computation.
However, in order to study the properties of dpda’s computations, it is useful
to have a richer description, which also takes into account the states reached in
some previous computation steps. To this aim we now introduce the notion of
history. Before doing that, we observe that the next move from a configuration
of a unary dpda depends only on the current mode. If such a move requires
the reading of an input symbol and all the input has been consumed, then the
computation stops. Hence, given a unary dpda M , for each integer t there exists
at most one configuration that can be reached after t computation steps. Such
a configuration will be reached if the input is long enough.

Definition 2. For each integer t ≥ 0, the history ht of M at the time t is a
sequence of modes [qmZm][qm−1Zm−1] . . . [q1Z1] such that:

– ZmZm−1 . . . Z1 is the content of the pushdown store after the execution of t
transitions from the initial configuration,

– for each integer i, 1 ≤ i ≤ m, [qiZi] was the mode of the last configuration
having stack height i, in the computation (q0, x, Z0) 0t (qm, ε, ZmZm−1 . . . Z1),
for a suitable x ∈ a∗.

The mode at the time t, denoted as mt, is the leftmost symbol in ht, i.e., the
pair representing the state and the stack top of M after t transitions.

In the following we will denote by H the set of all histories of M , i.e., H = {ht |
t ≥ 0}.

Lemma 2. Let ht = [qmZm][qm−1Zm−1] . . . [q1Z1] be the history at the time t.
Then:

1. For i = 1, . . . ,m−1, there is an integer ti s.t. hti = [qiZi][qi−1Zi−1] . . . [q1Z1],
(qi, x, Zi) 0� (qi+1, ε, Zi+1Zi), for some x ∈ a∗, and hti is a suffix of each hj,
for each integer j such that ti < j ≤ m. Furthermore 0 ≤ t1 < t2 < . . . <
tm−1 < t.

2. If all the modes in ht are different then [q1Z1] ≤ . . . ≤ [qmZm].
3. If hμ = hμ+λ for some μ ≥ 0, λ ≥ 1, then hμ+i = hμ+λ+i, for each i ≥ 0.

Lemma 3. The set H contains infinitely many histories if and only if there
exist two integers μ ≥ 0, λ ≥ 1, and λ nonempty sequences of modes h̃1, . . . , h̃λ,
such that:

hμ+1 = h̃1hμ, hμ+2 = h̃2hμ, . . . , hμ+kλ+i = h̃i(h̃λ)khμ,

for all integers k ≥ 0, 0 ≤ i < λ.
Furthermore, if such μ and λ exist then their sum does not exceed 2#Q·#Γ ,

while if H is finite then its cardinality is less than 2#Q·#Γ .
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Lemma 4. The sequence (mt)t≥0 is ultimately periodic. More precisely, there
are integers μ ≥ 0, λ ≥ 1 such that μ + λ ≤ 2#Q#Γ and mt = mt+λ, for each
t ≥ μ.

Now, we are ready to prove our main result:

Theorem 2. Let L ⊆ a∗ be accepted by a dpda M in normal form with n states
and m stack symbols. Then L is accepted by a 1dfa with at most 2mn states.

Proof. The acceptance or rejection of a word depends only on the states that are
reached by consuming it (and possibly performing some ε-moves). By Lemma 4
the sequence of the modes that can be reached in computation steps is ultimately
periodic. This implies that also the sequence of the reached states, which gives
the acceptance or the rejection, is ultimately periodic. Hence, it is possible to
build a 1dfa accepting the language. The upper bound on the number of the
states derives from Lemma 4. ��

We now prove that the simulation presented in Theorem 2 is optimal. In partic-
ular, we show that for each integer s there exists a language which is accepted
by a dpda of size O(s) such that any equivalent 1dfa needs 2s states.

More precisely, for each integer s, we consider the set of the multiples of 2s,
written in unary notation, namely the language Ls = {a2s}∗.

Given s > 0, we can build a dpda accepting Ls that, from the initial config-
uration, reaches a configuration with the state q0 and the pushdown containing
only Z0, every time it consumes an input factor of length 2s, i.e., (q0, a

2s

, Z0) 0�
(q0, ε, Z0). The state q0 is the only final state and it cannot be reached in the other
steps of the computation. The computation from (q0, a

2s

, Z0) to (q0, ε, Z0) uses a
procedure that, given an integer i, consumes 2i input symbols. For i > 0 the pro-
cedure makes two recursive calls, each one of them consuming 2i−1 symbols. In
the implementation, two stack symbols Ai−1 and Bi−1 are used, respectively, to
keep track of the first and of the second recursive call of the procedure. For exam-
ple, for s = 3, a configuration with the pushdown store containing B0A1B2Z0

will be reached after consuming 22 + 20 input symbols and performing some
ε-moves. The formal definition is below:

– Q = {q0, q1, q2, q3}
– Γ = {Z0, A0, A1, . . . , As−1, B0, B1, . . . , Bs−1}
– δ(q0, ε, Z0) = {(q1, push(As−1))}

δ(q1, a, A0) = {(q3, read)}
δ(q1, a, B0) = {(q3, read)}
δ(q1, ε, Ai) = δ(q1, ε, Bi) = {(q1, push(Ai−1))}, for i = 1, . . . , s− 1
δ(q2, ε, Ai) = δ(q2, ε, Bi) = {(q1, push(Bi−1))}, for i = 1, . . . , s− 1
δ(q3, ε, Ai) = {(q2, pop)}, for i = 0, . . . , s− 1
δ(q3, ε, Bi) = {(q3, pop)}, for i = 0, . . . , s− 1
δ(q2, ε, Z0) = {(q1, push(Bs−1)}
δ(q3, ε, Z0) = {(q0, Z0)}

– F = {q0}.
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By induction we can show that (q1, a
2i

, Ai)0�(q2, ε, ε) and (q1, a
2i

, Bi) 0� (q3, ε, ε),
for i = 1, . . . , s− 1, easily concluding that the dpda so described accepts Ls.

Theorem 3. For each integer s > 0, the language Ls is accepted by a dpda of
size 8s + 4 but the minumum 1dfa accepting it contains exactly 2s states.

Using Theorem 9 of [11], it is possible to prove that also any 2nfa accepting the
language Ls must have at least 2s states. Hence we get the following:

Corollary 1. Unary determistic pushdown automata can be exponentially more
succinct than two-way nondeterministic finite automata.

4 Unary dpda’s and Context-Free Grammars

In this section we study the conversion of unary dpda’s into context-free gram-
mars. Given a pda with n states and m stack symbols, the standard conversion
produces a context-free grammar with n2m+1 variables. In [7] it has been proved
that such a number cannot be reduced, even if the given pda is deterministic.
As we prove in this section, in the unary case the situation is different. In fact,
we show how to get a grammar with 2nm variables. This transformation will be
useful in the last part of the paper to prove the existence of languages for which
dpda’s cannot be exponentially more succinct than 1dfa’s.

Let M = (Q, {a}, Γ, δ, q0, Z0, F ) be a unary dpda in normal form.
First of all, we observe that for each mode [qA] there exists at most one

state p such that (q, x,A) 0� (p, ε, ε) for some x ∈ a∗. We denote such a state
by exit[qA] and we call the sequence of moves from (q, x,A) to (p, ε, ε), the
segment of computation from [qA]. Note that given two modes [qA] and [q′A], if
(q, x,A) 0� (q′, ε, A), for some x ∈ a∗, then exit[qA] = exit[q′A].

We now define a grammar G = (V, {a}, P, S) and we will show that it is
equivalent to M . The set of variables is V = Q× Γ × {0, 1}. The elements of V
will be denoted as [qA]b, where [qA] is a mode and b ∈ {0, 1}. The start symbol
of the grammar is S = [q0Z0]1.

The productions of G are defined in order to derive from each variable [qA]0
the string x consumed in the segment of computation from [qA], and from each
variable [qA]1 all the strings x such that M , from a configuration with mode [qA]
can reach a final configuration, consuming x, before completing the segment from
[qA]. They are listed below, by considering the possible moves of M :

– Push moves: For δ(q, ε, A) = {(p, push(B))}, there is the production
(a) [qA]1 → [pB]1

Furthermore, if exit[pB] is defined, with exit[pB] = q′, then there are the
productions

(b) [qA]0 → [pB]0[q′A]0
(c) [qA]1 → [pB]0[q′A]1

– Pop moves: For δ(q, ε, A) = {(p, pop)}, there is the production
(d) [qA]0 → ε



Deterministic Pushdown Automata and Unary Languages 239

– Read moves: For δ(q, σ,A) = {(p, read)}, with σ ∈ {ε, a}, and for each
b ∈ {0, 1}, there is the production

(e) [qA]b → σ[pA]b
– Acceptance: For each final state q ∈ F , there is the production

(f) [qA]1 → ε

The productions from a variable [qA]0 are similar to those used in the stan-
dard conversion from pda’s (accepting by empty stack) to context-free gram-
mars.1 The productions from modes [qA]1 are used to guess that in some place
the computation will stop in a final state. For example, for the push move
(p, push(B)) ∈ δ(q, ε, A), we can guess that the acceptance will be reached in
the segment of computation which starts from the mode [pB] (hence, ending the
computation before reaching the same stack level as in the starting mode [qA],
see production (a)), or after that segment is completed (production (c)).

In order to show that the grammar G is equivalent to M , it is useful to prove
the following lemma:

Lemma 5. For each mode [qA], x ∈ a∗, it holds that:

1. [qA]0
�⇒ x if and only if (q, x,A) 0� (exit[qA], ε, ε).

2. [qA]1
�⇒ x if and only if (q, x,A) 0� (q′, ε, γ), for some q′ ∈ F , γ ∈ Γ+.

As a consequence of Lemma 5, it turns out that, for each x ∈ a∗, [q0Z0]1
�⇒ x if

and only if x is accepted by M . Hence, we get the following result:

Theorem 4. For any unary deterministic pushdown automaton M there exists
an equivalent context-free grammar with at most 2size(M) variables, such that
the right hand side of each production contains at most two symbols.

Finally, we can observe that from the grammar G above defined, it is easy to get
a grammar in Chomsky normal formal, accepting L(M)− {ε}. This can require
one more variable.

5 Languages with Complex dpda’s

In Section 3, we proved that dpda’s can be exponentially more succinct than
finite automata. In this section we show the existence of languages for which
this dramatic reduction of the descriptional complexity cannot be achieved. More
precisely, we prove that for each integer m there exists a unary 2m-cyclic language
Lm such that the size of each dpda accepting it is exponential in m.

Let us start by introducing the definition of the language Lm. To this aim,
we first recall that a de Bruijn word [3] of order m on {0, 1} is a word wm of
length 2m +m− 1 such that each string of length m is a factor of wm occurring
1 In that case, variables of the form [qAp] are used, where p represents one possible

“exit” from the segment from [qA]. In the case under consideration, there is at most
one possible exit, namely exit[qA].
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in wm exactly one time. Furthermore, the suffix and the prefix of length m− 1
of wm coincide.

We consider the following language:2

Lm = {ak | the (k mod ′2m)th letter of wm is 1},

where xmod ′y =
{

xmod y if xmod y > 0
y otherwise.

For example, w3 = 0001011100 and L3 = {a0, a4, a6, a7}{a8}∗.
By definition and by the above mentioned properties of de Bruijn words, Lm

is a properly 2m-cyclic unary language. Hence, the minimal 1dfa accepting it
has exactly 2m states (actually, by Theorem 9 in [11], this number of states is
required even by each 2nfa accepting Lm). We show that even the size of each
dpda accepting Lm must be exponential in m. More precisely:

Theorem 5. There is a constant d, such that for each m > 0 the size of any
dpda accepting Lm is at least d 2m

m2 .

Proof. Let us consider a dpda M of size s accepting Lm. We will show that
from M it is possible to build a grammar with O(sm) variables generating the
language which consists only of the word wm. Hence, the result will follow from
a lower bound presented in [4], related to the generation of wm.

First of all, from M it is possible to get an equivalent dpda M ′ of size 2s+ 1,
such that M ′ is able to accept or reject each string ak immediately after reading
the kth letter of the input.

We also consider a 1dfa A accepting the language L which consists of all strings
x on the alphabet {0, 1}, such that x = yw, where w is the suffix of length m
of wm, and w is not a proper factor of x, i.e., x = x′w, and x = x′′ww′ implies
w′ = ε. Note that A can be implemented with m + 1 states. The automaton A
will be used in the following to modify the control of M ′, in order to force it to
accept only the string a2m+m−1.

To this aim, we describe a new dpda M ′′. Each state of M ′′ simulates one
state of M ′ and one state of A. The initial state of M ′′ is the pair of the initial
states of M ′ and A. M ′′ simulates M ′ moves step by step. When a transition
which reads an input symbol is simulated, then M ′′ simulates also one move of
A on input σ ∈ {0, 1}, where σ = 1 if the transition of M ′ leads to an accepting
state, 0 otherwise. In this way, the automaton A will finally receive as input the
word wm. When the simulation reaches the accepting state of A, namely the end
of wm has been reached, M ′′ stops and accepts. Thus, the only string accepted
by M ′′ is a2m+m−1.

Using the construction presented in Section 4, we can build a context-free
grammar G equivalent to M ′′. We modify the productions of G that correspond
to operations which consume input symbols: each production [qA]b → a[pA]b
is replaced by [qA]b → 1[pA]b if p corresponds to a final state of M ′, and by
[qA]b → 0[pA]b otherwise. It is easy to observe that the grammar G′ so obtained

2 The same language was considered in [2] for a different problem.
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generates the language {wm}. Furthermore, the size of G′ is bounded by ksm, for
some constant k. By a result presented in [4] (based on a lower bound from [1]),
the number of variables of G′ must be at least c 2m

m for some constant c. Hence,
from ksm ≥ c 2m

m , we finally get that the size of the original dpda M must be at
least d 2m

m2 for some constant d. ��
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1. Althöfer, I.: Tight lower bounds for the length of word chains. Information Pro-
cessing Letters 34, 275–276 (1990)

2. Berstel, J., Carton, O.: On the complexity of Hopcroft’s State Minimization Al-
gorithm. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004.
LNCS, vol. 3317, pp. 35–44. Springer, Heidelberg (2005)

3. de Bruijn, N.: A combinatorial problem. Proc. Kon. Nederl. Akad. Wetensch 49,
758–764 (1946)

4. Domaratzki, M., Pighizzini, G., Shallit, J.: Simulating finite automata with
context-free grammars. Information Processing Letters 84, 339–344 (2002)

5. Ginsburg, S., Greibach, S.: Deterministic context-free languages. Information and
Control 9, 563–582 (1966)

6. Ginsburg, S., Rice, H.: Two families of languages related to ALGOL. Journal of
the ACM 9, 350–371 (1962)

7. Goldstine, J., Price, J., Wotschke, D.: A pushdown automaton or a context-free
grammar – Which is more economical? Theoretical Computer Science 18, 33–40
(1982)

8. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Read-
ing (1978)

9. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading (1979)

10. Knuth, D.: On the translation of languages from left to right. Information and
Control 8, 607–639 (1965)

11. Mereghetti, C., Pighizzini, G.: Two-way automata simulations and unary lan-
guages. J. Aut.Lang.Combin. 5, 287–300 (2000)

12. Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata.
SIAM J. Comput. 30, 1976–1992 (2001)

13. Meyer, A., Fischer, M.: Economy of description by automata, grammars, and for-
mal systems. In: Proc.12th Ann. IEEE Symp.on Switching and Automata Theory,
pp. 188–191 (1971)

14. Pighizzini, G., Shallit, J., Wang, M.-W.: Unary context-free grammars and push-
down automata, descriptional complexity and auxiliary space lower bounds. Jour-
nal of Computer and System Sciences 65, 393–414 (2002)

15. Sénizergues, G.: The equivalence problem for deterministic pushdown automata
is decidable. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP
1997. LNCS, vol. 1256, pp. 671–682. Springer, Heidelberg (1997)

16. Stearns, R.: A regularity test for pushdown machines. Information and Control 11,
323–340 (1967)

17. Valiant, L.: Regularity and related problems for deterministic pushdown automata.
Journal of the ACM 22, 1–10 (1975)



Finite Eilenberg Machines
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Abstract. Eilenberg machines define a general computational model.
They are well suited to the simulation of problems specified using finite
state formalisms such as formal languages and automata theory. This
paper introduces a subclass of them called finite Eilenberg machines.
We give a formal description of complete and efficient algorithms which
permit the simulation of such machines. We show that our finiteness con-
dition ensures a correct behavior of the simulation. Interpretations of this
condition are studied for the cases of non-deterministic finite automata
(NFA) and transducers, leading to applications to computational linguis-
tics. The given implementation provides a generic simulation procedure
for any problem encoded as a composition of finite Eilenberg machines.

Introduction

Samuel Eilenberg introduced in chapter 10 of his book [4], published in 1974,
a notion of Machine which he claimed to be a very efficient tool for studying
formal languages of the Chomsky hierarchy. They are sometimes referred to as
X-machines. Many variants have appeared in the last twenty years [8] in several
scientific domains different from formal languages.

Eilenberg machines define a general computational model. Assumed given an
abstract data set X (it motivates X-machine terminology), a machine is defined
as an automaton labelled with binary relations on X . Two generalizations result
from this. Firstly, the set X abstracts the traditional tape used by automata
on words, transducers etc. Secondly, compared to functions, binary relations
give a built-in notion of non-determinism. Many translations of other machines
into Eilenberg’s machines were also given [4]: automata, transducers, real-time
transducers, two-way automata, push-down automata and Turing machines.

The remainder of this paper recalls the definitions of Eilenberg machines in
Section 1. It also introduces a new subclass of them called finite Eilenberg ma-
chines. The Section 2 discusses the adaptation to the models of non-deterministic
finite automata (NFA) and transducers which motivate their use for computa-
tional linguistics. The next two sections provide algorithms simulating finite
Eilenberg machines. Since relations are central to Eilenberg machines, Section 3
proposes an encoding of them using streams. The Section 4 gives a formal de-
scription of algorithms which permit the simulation of finite Eilenberg machines
in the spirit of the reactive engine introduced by Huet [5].

O.H. Ibarra and B. Ravikumar (Eds.): CIAA 2008, LNCS 5148, pp. 242–251, 2008.
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1 Finite Eilenberg Machines

We consider a monoid with carrier M , · an associative product on M and 1 its
unit element. A finite monoid automaton A over M , also called a M -automaton,
is a tuple (Q, δ, I, T ) with Q a finite set of elements called states, δ a function
from Q to finite subsets of (M ×Q) called the transition function, I a subset of
Q of initial states and T a subset of Q of terminal states.
A path p is a sequence p = q0

m1−→ q1
m2−→ · · · mn−→ qn with n ∈ N and ∀i ≤ n qi ∈

Q, ∀i < n mi+1 ∈M and ∀i < n (mi+1, qi+1) ∈ δ(qi). The path p is successful
when q0 ∈ I and qn ∈ T ; its length is n. The label of p written p̄ is 1 if n = 0 or
m1 · ... ·mn otherwise. Finally, the behavior of the M -automaton A, written |A|,
is defined as the set of all labels of successful paths of A. We introduce the type
of A, written ΦA, as the finite subset of M of elements appearing in the image
of δ: ΦA = { m ∈M | ∃ q q′ ∈ Q, (m, q′) ∈ δ(q) } .

Let us now precise some notations for relations which are central to the
remainder of this paper. A relation ρ from some set D to a set D′ written
ρ : D → D′ is a set of pairs from ℘(D ×D′). The functional notation of its type
is justified by the isomorphism between ℘(D×D′) and D → ℘(D′). The converse
of a relation ρ : D → D′ is written ρ−1 : D′ → D. Let us use ρ(d) as notation for
{ d′ | d′ ∈ D′, (d, d′) ∈ ρ}. The identity relation is written idD = {(d, d)|d ∈ D}.

Let us recall Eilenberg’s definition of machines. Let D be an arbitrary set
called the data (it replaces the original notation X). We consider the set RD of
binary relations from D to D. We consider here the relations monoid RD with
the relation composition ◦ as associative product and the identity relation id
as unit element. A D-machine M is a RD-automaton (Q, δ, I, T ). With respect

to the previous definitions the label of a path p = q0
φ1−→ q1

φ2−→ · · · φn−→ qn

is the composition of relations p̄ = φ1 ◦ · · · ◦ φn. The behavior of M as an
automaton, |M|, is the set of relations of all labels of successful paths. The
distinction between an automaton and a machine lies in the use of the union
operation available on relations. The machine M defines a particular relation,
written ||M||, as the relation union extended over all relations in |M|:

||M|| =
⋃

ρ∈ |M|
ρ .

We call the relation ||M|| the characteristic relation of the machineM. We have
given until now what we call the kernel of an Eilenberg machine which refers
only to the automaton part.

The complete description of an Eilenberg machine requires what we call its
interface. That is, consider D− and D+ be two sets called respectively the input
and output sets, an input relation φ− : D− → D and an output relation φ+ : D →
D+. Intuitively, the relation φ− feeds the kernel with inputs and φ+ interprets
kernel results as outputs. A machine kernel with its interface defines a relation
ρ : D− → D+ as ρ = φ− ◦ ||M|| ◦φ+. The usefulness of kernel and interfaces will
be clear with examples provided in section 2.
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Remark 1 (on modularity of Eilenberg machines). Any Eilenberg machineM of
type ΦM defines a characteristic relation ||M|| that may belong to a type ΦM′

of another Eilenberg machine M′. This gives an idea that Eilenberg machines
describe a modular computational model.

We are now going to introduce a new subclass of Eilenberg machines. For this
purpose let us first define useful notions specific to machines rather than au-
tomata. Let us consider a D-machine M = (Q, δ, I, T ). We call cell a pair

c = (d, q) of D×Q. An edge is a triple ((d, q), φ, (d′, q′)), written (d, q)
φ−→ (d′, q′)

and satisfying the following two conditions (φ, q′) ∈ δ(q) and d′ ∈ φ(d). A trace

is a sequence of consecutive edges t = c0
φ1−→ c1 · · ·

φn−→ cn. The integer n is the
length of the trace. The cell c0 is called its beginning and cn its end. For each
data d and state q, the cell (d, q) defines a null trace with itself as beginning
and end. A cell (d, q) is said to be terminal whenever q is terminal. A trace t
is said to be terminal when its end is terminal. Remark that each trace can be
projected as the corresponding path when data are forgotten.

Definition 1

1. Let D1 and D2 be two sets, we say that a relation ρ : D1 → D2 is locally
finite iff for all data d in D1 the set ρ(d) is finite.

2. We say that a machine M is locally finite iff every relation φ in ΦM is
locally finite.

3. The machine M is globally finite iff its characteristic relation ||M|| is
locally finite.

4. The machine M is nœtherian iff there is no infinite trace
c0

φ1−→ c1 · · ·
φn−→ cn · · · .

5. The machine M is called finite iff it is locally finite and nœtherian.

Remark 2. A locally finite machine may or may not be globally finite and con-
versely a globally finite machine may or may not be locally finite.

Proposition 1. If the machine M is finite then it is globally finite.

Proof. Using König’s lemma; the locally finite condition corresponds to the finite
branching condition and the nœtherian condition to the non existence of infinite
traces. ��
Corollary 1. Let φ− and φ+ be two partial functions. If the machine M is
finite with interface φ− and φ+ then the relation φ− ◦ ||M|| ◦φ+ is locally finite.

Let us now discuss the nœtherian condition. This definition with both the control
and data may be arbitrarily complex. Of course an easy subcase is when there
is no cycle in the automaton part ofM. Also it is easy to formulate a sufficient
condition for a machine to be nœtherian:

Definition 2. The machineM is of nœtherian type iff the relation
⋃

ρ∈ |ΦM| ρ
is nœtherian.

Proposition 2. If the machine M is of nœtherian type then it satisfies the
nœtherian condition.
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2 Examples and Applications

We consider a finite set Σ of letters called the alphabet. We consider the free
monoid Σ∗ of words over Σ with the word concatenation as monoid product
and the empty word ε as unit element. Formal languages are sets of words. Four
basic operations on words are to be considered for defining Eilenberg machines
for the next examples. For each letter σ of Σ:

– Lσ = { (w, σw) | w ∈ Σ∗ }, L−1
σ = { (σw, w) | w ∈ Σ∗ },

– Rσ = { (w, wσ) | w ∈ Σ∗ }, R−1
σ = { (wσ, w) | w ∈ Σ∗ }.

The L and R denotations indicate operations respectively on the left or the right
of a word. The last two relations are respectively the converse relations of the
first ones. The identity relation on Σ∗ is written idΣ∗ .

Remark 3. Relations Lσ, Rσ, L−1
σ , R−1

σ and idΣ∗ described above are in fact
partial functions, thus they are locally finite relations.

Examples from Eilenberg show that his machine model implements many other
computational paradigms. They use a notion of “relabelling” formally presented
by Sakarovitch [11]. We use them in the two following examples.

Example 1 (NFA). We consider here an alphabet Σ and words as elements of Σ∗.
An NFA on alphabet Σ is a Σ∗-automaton A such that ΦA ⊆ Σ∗ (ε-transitions
are allowed). The set of words |A|, the behavior of A, is a formal language that
belongs to the class of rational languages.

Let us define a relabelling procedure translating any NFA into an Eilenberg
machine solving its word problem. Let A = (Q, δ, I, T ) be an NFA. We choose a
data set D = Σ∗. Since ΦA ⊆ Σ∗, we recall the relabelling morphism α defined
on Σ as α(σ) = L−1

σ and then extended on Σ∗. Thus the machineM relabelled
from A by α has the following characteristic relation: ||M|| = { (w w′, w′) | w ∈
|A|, w′ ∈ Σ∗ }. That is, a given input w·w′ is truncated by the word w recognized
by the automaton A. The encoding is completed with the following interface:
D− = Σ∗, the input relation φ− = idΣ∗ , D+ = B the Boolean set composed of
the two values 1 and ⊥ and the output function φ+ : Σ∗ → B defined by φ+(w)
being 1 when w = ε and⊥ otherwise. Now we have (φ−◦||M||◦φ+)−1(1) = |A| .
It shows that the relabelling is correct.

Let us now discuss the case when M is a finite Eilenberg machine. M is
locally finite (Remark 3) and it satisfies the nœtherian condition whenever there
is no ε-cycle in it. By ε-cycle we mean cycle labelled with idΣ∗ . Also M is of
nœtherian type iff there is no ε-transition at all in it. It is true because for every

edge (u, q)
L−1

w−→ (v, q′) we have |w| > 1 and then |v| < |u|, this shows that the
length of traces is bounded by the length of their beginning word in their initial
cell and thus there may not be infinite traces.

Example 2 (Transducers). Let Σ and Γ be two finite alphabets. The empty
word ε will denote both empty words for Σ∗ and for Γ ∗. We consider here the
monoid Σ∗ × Γ ∗ with its traditional concatenation as associative product and
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the pair (ε, ε) as unit element. A rational transducer from Σ∗ to Γ ∗ is a monoid
automaton A over Σ∗ × Γ ∗ such that ΦA ⊆ (Σ × ε) ∪ (ε× Γ ) . The subset of
pairs of words from |A|, the behavior of A, defines a relation which belongs to
the subclass of rational relations. Three problematics arise naturally:

– Recognition Given a couple of words (w, w′) of Σ∗ × Γ ∗, does (w, w′) belong
to |A|.
– Synthesis Given a word w in Σ∗ compute the set |A|(w) of words from Γ ∗.
– Analysis Given a word w in Γ ∗ compute the set |A|−1(w) of words from Σ∗.

For a given transducer these three problems may be encoded with the same
automaton but using different relabellings and interfaces. The relabelling for the
synthesis problem is defined as a morphism α on ΦA such that α(σ, ε) = L−1

σ ×
idΓ ∗ and α(ε, γ) = idΣ∗ × Rγ . This encoding is completed with the following
interface: D− = Σ∗, D+ = Γ ∗, the input relation φ− = { (w, (w, ε)) | w ∈
Σ∗ } and the output relation φ+ = { ((ε, w′), w′) | w′ ∈ Γ ∗ }. Then we obtain
(φ−◦||M||◦φ+) = |A|.M is locally finite (Remark 3) and satisfies the nœtherian
condition whenever there is no cycle labelled with relation of idΣ∗ × Rγ . M
is of nœtherian type whenever there is no transition labelled with a relation
of idΣ∗ × Rγ at all. As for NFA, this property is true with the same kind of
argument concerning the length of the input tape.

Automata, transducers and more generally finite state machines are a popular
technology for solving many computational linguistics problems [10]. We believe
that the Eilenberg machines model is promising for this purpose. In fact, our
restriction of finite Eilenberg machines is the formalism underlying the works con-
cerning general morphological and phonetical modelings [5,6] which have been ap-
plied to the Sanskrit language. Furthermore this application needs the modularity
of such Eilenberg machine as sketched in the Remark 1. In the following we provide
algorithms that simulate in a complete fashion any finite Eilenberg machine.

3 Streams Representing Relations

We consider now that the data setD is representable as an abstract ML datatype.
We recall that unit is the singleton ML datatype containing the unique value
denoted (). In our implementation we will use streams which are objects for
enumerating on demand. In ML notation stream values are encoded with the
following type parametrized with D:

type stream D = | EOS
| Stream of D × ( de lay D )

and delay D = unit → stream D ;

A stream value is either the empty stream EOS (“End of Stream”) for encod-
ing the empty enumeration or else a value Stream d del that provides the new
element d of the enumeration and a value del as a delayed computation of the
rest of the enumeration. Since ML computes with the restriction of λ-calculus
to weak reduction, a value of type delay D such as del is delayed because it is
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a functional value. This well known technique permits computation on demand.
Note that this technique would not apply in a programming language evaluating
inside a function body (strong reduction in λ-calculus terminology).

ML being a Turing-complete programming language, not all ML functions
terminate and since our streams contain function values we shall restrict their
computational power:

Definition 3

1. The ML function f : unit → α is said to be total iff the evaluation of f ()
terminates (yielding a value of type α ).

2. The ML stream str : stream D is said to be progressive iff
– either str is EOS
– or else str is of the form Stream d f with f total, and f () is progressive.

We define the head function hd from non-empty streams to data defined as
follows: hd(Stream d del) = d. We define also the tail function tl from streams
to streams as tl(EOS) = EOS and tl(Stream d del) = del(). Let n be an integer,
we introduce the function tln that iterates the tl function n times:

{
tl0(str) = str
tln+1(str) = tln(tl(str)) (1)

We introduce the predicate InStream(d, str) that checks whether a data d ap-
pears in the stream str:

Definition 4. InStream(d, str) is true iff there exists an integer n such that
(tln(str)) is non-empty and hd(tln(str)) = d.

Definition 5. A progressive stream str is finite iff there exists an integer n such
that tln(str) = EOS.

The length of a finite stream str, written |str|, is defined inductively as follows:
{
|EOS| = 0
|Stream d del| = 1 + |del()| (2)

All finite streams of positive length end with a value of type delay D that as-
sociates to the unit element () the EOS stream announcing the end of the enu-
meration, typically:

value de l ay eo s ( ) = EOS;

We consider now relations of RD representable as ML functions of the following
type:

type r e l a t i o n D = D → stream D ;

That is, if a relation rel of type relation D corresponds to a relation ρ of RD then:

∀d d′ ∈ D, d′ ∈ ρ(d) ⇔ InStream(d′, rel d).

In the following we will use this technique only for representing locally finite
relations. That is, relations are encoded using finite streams which are progressive
by definition 5. From now on, we shall assume that our Eilenberg machines are
effective in the sense that their data domain D are implemented as an ML
datatype and that every relation used in their labeling is progressive.
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4 A Reactive Engine for Finite Eilenberg Machines

We provide an implementation for the simulation of finite Eilenberg machines
using higher-order recursive definitions. Algorithms are presented using ML no-
tations which are directly executable in the OCaml programming language [7].
An essential feature of our formal notations is to possibly compose parametrized
modules called functors. Algorithms are variants of the reactive engine [5]. They
are presented completely using only a dozen of elegant definitions.

Let M = (Q, δ, I, T ) be a D-machine. We specify M as a module with the
following signature:

module type Kernel = s ig
type D ;
type s t a t e ;
value t r a n s i t i o n : s t a t e → l i s t ( r e l a t i o n D × s t a t e ) ;
value i n i t i a l : l i s t s t a t e ;
value t e rmina l : s t a t e → bool ;

end ;

The type parameter state encodes the set Q, the function transition encodes the
function δ, the value initial encodes the initial states I as a list and the function
terminal encodes the set of terminal states T as its characteristic predicate.

We aim at providing the algorithms implementing the characteristic relation
of M. For this purpose we use a functor that is a module parametrized by a
Kernel machine. We call Engine this functor declared as the following:

module Engine (M: Kernel ) = struct
open M;
. . . (∗ body ∗) . . .

end ;

Firstly, the body of the functor contains type declarations:

type cho i ce = l i s t ( r e l a t i o n D × s t a t e ) ;
type backtrack =

| Advance of D × s t a t e
| Choose of D × s t a t e × cho i ce × ( de lay D ) × s t a t e
;

type resumption = l i s t backtrack ;

The type choice is an abbreviation for the list of transitions of the machine as
used in the machine M. Eilenberg machines are possibly non-deterministic and
need thus a backtracking mechanism for their implementation. Values of type
backtrack allow to save the multiple choices due to the non-deterministic nature
of the machine. The enumerating procedure will stack such backtrack values in
a resumption of type resumption.

Secondly, the engine contains four functions. Three of them are internal
and mutually recursive: react, choose and continue. They perform the non-
deterministic search enriching the resumption as the computation goes on. The
computation is performed in a depth-first search manner stacking the transition
choices and streams within backtrack values in the resumption:
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(∗ reac t : D → s t a t e → resumption → stream D ∗)
value rec r e a c t d q r e s =

l et ch = t r an s i t i o n q in
i f t e rmina l q then (∗ So lu t i on found ∗)

Stream d ( fun ( ) → choose d q ch r e s )
e l se choose d q ch r e s

(∗ choose : D → s t a t e → cho i ce → resumption → stream D ∗)
and choose d q ch r e s =

match ch with
| [ ] → cont inue r e s
| ( r e l , q ’ ) : : r e s t →

match ( r e l d) with
| EOS → choose d q r e s t r e s
| Stream d ’ de l →

r e a c t d ’ q ’ ( Choose (d , q , r e s t , del , q ’ ) : : r e s )

(∗ cont inue : resumption → stream D ∗)
and cont inue r e s =

match r e s with
| [ ] → EOS
| (Advance (d , q ) : : r e s t ) → r e a c t d q r e s t
| ( Choose (d , q , ch , del , q ’ ) : : r e s t ) →

match ( de l ( ) ) with
| EOS → choose d q ch r e s t
| Stream d ’ del ’ →

r e a c t d ’ q ’ ( Choose (d , q , ch , del ’ , q ’ ) : : r e s t )
;

The function react checks whether the state is terminal and then provides an
element of the stream delaying the rest of the exploration calling to the function
choose. This function choose performs the non-deterministic search over transi-
tions, choosing them in the natural order induced by the list data structure. The
function continue manages the backtracking mechanism and the enumeration of
finite streams of relations, it always chooses to backtrack on the last pushed
value in the resumption. Remark that these three mutually recursive functions
do not use any side effect and are written in a pure functional style completely
tail-recursive using the resumption as a continuation mechanism.

The machine M implemented as a module M has its characteristic relation
||M|| simulated by the following function:

(∗ c h a r a c t e r i s t i c r e l a t i o n : r e l a t i o n D ∗)
value c h a r a c t e r i s t i c r e l a t i o n d =

l et rec i n i t r e s l acc =
match l with
| [ ] → acc
| (q : : r e s t ) → i n i t r e s r e s t (Advance (d , q ) : : acc )

in cont inue ( i n i t r e s i n i t i a l [ ] ) ;



250 B. Razet

The function characteristic relation first initializes the resumptionwithAdvance
backtrack values for each initial state and then call the function continue on
it. We summarize the presented algorithms as follows: the machine M im-
plemented as a module M has its characteristic relation ||M|| simulated by
Engine(M). characteristic relation , the function given by the instantiation of
functor Engine with module M. We now provide the formalization with all ar-
guments ensuring the correctness of our so-called reactive engine.

The formalization is inspired by the original one for the reactive engine [5].
We formalize the fact that data d and d′ are in relation by the characteristic
relation ofM using the predicate Solution(d, d′) which is true iff there exists an
initial state q and a terminal trace t beginning with cell (d, q) and ending with
data d′. Now we give the correctness theorem of the reactive engine including
its termination, its soundness and its completeness.

Theorem 1. If the machineM is finite then characteristic relation is a finite
progressive relation (termination) and for all data d and d′

InStream(d′, characteristic relation d) ⇔ Solution(d, d′).

Proof. The proof has been completely formalized and verified mechanically using
the Coq proof assistant in the companion paper [9]. It uses the well-founded
multiset ordering technique as presented by Dershowitz and Manna [3] to prove
termination. It also gives us a nœtherian induction principle needed for the proofs
of soundness and completeness (the two directions of the equivalence). ��

Theorem 1 is a constructive version of Proposition 1. The reactive engine pre-
sented here computes on demand the solutions of a machine. This feature is
important for combining in a modular fashion finite Eilenberg machines and
keeping under control their evaluation.

5 Conclusion

Eilenberg machines provide a powerful and elegant framework for simulating
specifications presented as finite automata variants. Eilenberg gave easy encod-
ings into machines of formalisms at various levels of the Chomsky hierarchy. We
have introduced a subclass of them called finite Eilenberg machines which are
still general. They are a priori non-deterministic machines and we have shown
that they behave as relations that associate to an input a finite number of com-
puted outputs. Our machines are not restricted to treatments for the rational
level of the Chomsky hierarchy. This particular point makes us believe that fi-
nite Eilenberg machines have applications to computational linguistics. In fact
they are already efficient for explaining recognition or transduction problems
that manipulate two levels of finite state formalisms for the modeling of the
Sanskrit language [6]. This multi-level ability is the modularity feature of Eilen-
berg machines. For this purpose implementations need to be lazy. We anticipate
future works in this spirit providing lazy algorithms. Our small but efficient re-
active engine computes lazily the simulation of any finite Eilenberg machines.
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Our methodology using higher-order recursive definitions of functional program-
ming language leads to formal proofs amenable to a complete formalization using
higher-order logic. Such a formal development is available in the companion pa-
per [9] using the Coq proof assistant [1]. Remark that this methodology leads
to the same programs as shown here, by Coq’s extraction mechanism from the
formal development.

The enumeration of solutions implemented by the above algorithms uses a
relatively naive lexicographic ordering. It is easy to refine these algorithms with
more complex strategies, yielding weighted automata and stochastic methods
such as hidden Markov chains. Such experiments will guide the design of the
specification language for Eilenberg machines using regular expressions and com-
pilation techniques such as presented by Allauzen and Mohri [2].
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The Number of Runs in Sturmian Words
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Abstract. Denote by S the class of standard Sturmian words. It is a class of
highly compressible words extensively studied in combinatorics of words, includ-
ing the well known Fibonacci words. The suffix automata for these words have a
very particular structure. This implies a simple characterization (described in the
paper by the Structural Lemma) of the periods of runs (maximal repetitions) in
Sturmian words. Using this characterization we derive an explicit formula for the
number ρ(w) of runs in words w ∈ S , with respect to their recurrences (directive
sequences). We show that ρ(w)

|w| ≤ 4
5 for each w ∈ S , and there is an infinite

sequence of strictly growing words wk ∈ S such that limk→∞
ρ(wk)
|wk| = 4

5 .
The complete understanding of the function ρ for a large class S of complicated
words is a step towards better understanding of the structure of runs in words. We
also show how to compute the number of runs in a standard Sturmian word in
linear time with respect to the size of its compressed representation (recurrences
describing the word). This is an example of a very fast computation on texts given
implicitly in terms of a special grammar-based compressed representation (usu-
ally of logarithmic size with respect to the explicit text).

1 Introduction

The runs (maximal repetitions) in strings are important in combinatorics on words and
in practical applications: data compression, computational biology, pattern-matching.
A run is a non-extendable (with the same period) periodic segment in a string in which
the period repeats at least twice. In 1999 Kolpakov and Kucherov [10] showed that
the number ρ(w) of runs in a string w is O(|w|), but the exact multiplicative constant
coefficient is unknown, recent bounds are given in [11,5]. In order to better understand
the behavior of the function ρ for general words we give exact estimations for a class S
of highly compressible words: the standard Sturmian words (standard words, in short).
The class S of standard Sturmian words is of particular interest due to their importance
in combinatorics on words, [2,3]. The standard words are a generalization of Fibonacci
words and, like Fibonacci words, are described by recurrences.

The recurrence for a standard word is related to so called directive sequence – an
integer sequence of the form

γ = (γ0, γ1, ..., γn), where γ0 ≥ 0, γi > 0 for 0 < i ≤ n.

The standard word corresponding to γ, denoted by S(γ) = xn+1, is defined by
recurrences:

x−1 = b, x0 = a, x1 = xγ0
0 x−1, x2 = xγ1

1 x0, (1)
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x3 = xγ2
2 x1, . . . , xn = x

γn−1
n−1 xn−2, xn+1 = xγn

n xn−1 (2)

For example the recurrence for the 4-th Fibonacci word is

fib−1 = b, fib0 = a, fib1 = fib10b, fib2 = fib11fib0,

f ib3 = fib12fib1, f ib4 = fib13fib2.

f ib4 = abaababa = S(γ0, γ1, γ2, γ3) where (γ0, γ1, γ2, γ3) = (1, 1, 1, 1)

We consider here standard words starting with the letter a, hence assume γ0 > 0. The
case γ0 = 0 can be considered similarly. For even n > 0 a word xn has suffix ba, and
for odd n it has suffix ab.

The number N = |xn+1| is the (real) size, while n can be thought of as the compressed
size.

Example 1. Consider more complicated example (used later to demonstrate counting
of runs), let γ = (1, 2, 1, 3, 1), we have

S(γ) = ababaabababaabababaabababaababaab

The corresponding recurrence is

x−1 = b; x0 = a, x1 = x1
0x−1, x2 = x2

1x0, x3 = x1
2x1, x4 = x3

3x2, x5 = x1
4x3.

A number i is a period of the word w iff w[j] = w[i + j] for all i with i+ j ≤ |w|. The
minimal period of w will be denoted by period(w). We say that a word w is periodic
iff period(w) ≤ |w|

2 . A word w is said to be primitive iff w is not of the form zk, where
z is a finite word and k ≥ 2 is a natural number.

A run in a string w is an interval α = [i...j] such that w[i...j] is a periodic word
with the period p = period(w[i...j]) and this period is not extendable to the left or
to the right of [i...j]. In other words, [i...j] is a run iff j − i + 1 ≥ 2p, i = 1 or
w[i− 1] �= w[i− 1 + p] and j = n or w[j + 1] �= w[j + 1− p].

A run α can be properly included as an interval in another run β, but in this case
period(α) < period(β). The value of the run α = [i...j] is val(α) = w[i...j]

When it creates no ambiguity we identify sometimes runs with their values, although
two different runs could correspond to identical subwords, if we disregard positions of
these runs. Hence runs are also called maximal positioned repetitions.

Let ρ(w) be the number of runs in a word w. The most interesting and open con-
jecture about runs is: ρ(|w|) < |w|. The first linear bound was given by Kolpakov and
Kucherov [10], the best upper bound is by [6,5] and the best lower bound is by [5,7].
The structure of runs and squares is almost completely understood for the class of Fi-
bonacci words, see [9,13,4]. We continue the work of [8], where it was shown how to
compute the number of runs for block-complete Sturmian words (not all standard Stur-
mian words have this property) in time linear with respect to the size of the whole word
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Fig. 1. The structure of runs of S(1, 2, 1, 3, 1).There are 5 runs with period |a|, 5 with period |ab|.
We have 10 short runs (period of size at most |x1| = |ab|), 8 medium (with period |x1| < p ≤
|x2| = 5, and 1 large run. Consequently ρ(1, 2, 1, 3, 1) = 19.

(while our algorithm is linear with respect to the size of compressed representation). A
similar approach as in [8] is used in this paper – a kind of a reduction sequence, however
our reductions are different than those in [8] and correspond closely to the structure of
the recurrences (directive sequences). Also our aim is different – derivation of a simple
formula for ρ(w) and asymptotic behavior of ρ(w).

Our results. We show that supw∈S
ρ(w)
|w| = 0.8 and provide an easily computable

formula for the number of runs. We give also a fast algorithm computing ρ(w) in time
linear with respect to the length of the directive sequence defining w: this gives an
algorithm efficient with respect to the compressed size of the input.

2 Morphic Representations and the Numbers Nγ(k)

Essentially we use an idea of a reduction sequence introduced in [8]. The computation
of runs in S(γ0, γ1, . . . , γn) is reduced to a computation for S(γ1, γ2, . . . , γn).
The relation between S(γ0, γ1, . . . , γn) and S(γ1, γ2, . . . , γn) is described in terms of
morphisms transforming one of them to the other.

For γ = (γ0, γ1, . . . , γn) define the sequence of morphisms:

hi(a) = aγib, hi(b) = a , for 0 ≤ i ≤ n

Lemma 1. Assume 0 ≤ i < n. We have

S(γn) = hn(a), S(γi, γi+1 . . . , γn) = hi

(
S(γi+1, γi+2 . . . , γn)

)
.
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Let |w|r denote the number of occurrences of a letter r ∈ {a, b} in the word w. Denote

Nγ(k) = |S(γk, γk+1, . . . γn)|a, Mγ(k) = |S(γk, γk+1, . . . γn)|b

The numbers Nγ(k), Mγ(k) satisfy the equation:

Nγ(k) = γk Nγ(k + 1) + Nγ(k + 2); Mγ(k) = Nγ(k + 1) (3)

Observation. In case of the directive sequence (1, 1, . . . , 1) describing the Fibonacci
word the numbers Nγ(k) are Fibonacci numbers, since the number of letters a in fibn

equals the size of fibn−1.

Example 2. For the word S(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab
from Figure 1 we have γ = (1, 2, 1, 3, 1) and:

S(1) = ab, S(3, 1) = aaaba, S(1, 3, 1) = (ab)3a ab,

Nγ(3) = |S(3, 1)|a = 4, Nγ(2) = |S(1, 3, 1)|a = 5

Lemma 2. Let A = Nγ(2), B = Nγ(3) and w = S(γ0, γ1, . . . , γn). Then

|w| =
(
(γ0 + 1) γ1 + 1

)
A + (γ0 + 1) B

Proof. We have |w| = Nγ(0) + Mγ(0) and Mγ(0) = Nγ(1).
Hence |w| = Nγ(0) + Nγ(1) and by equation (3):

|w| = γ0Nγ(1) + (γ1 + 1)Nγ(2) + Nγ(3).

Now Equation (3) directly implies the thesis.

For our example word A = 5, B = 4, γ0 = 1, γ1 = 2. The formula gives the number
(4 + 1) 5 + 8 = 33, which is the correct length of S(1, 2, 1, 3, 1).

3 Counting Runs and Repetition Ratios in Standard Words

We introduce a zero-one function unary testing if the number equals 1,

if x = 1 then unary(x) = 1 else unary(x) = 0.

Similarly define zero-one functions even(k) and odd(k) with the value equal 1 iff k is
even (odd respectively).

We use the following notation in this section:

A = Nγ(2) = |S(γ2, γ3 . . . , γn)|a, B = Nγ(3) = |S(γ3, γ4 . . . , γn)|a

Δ(γ) = n− 1− (γ1 + . . . + γn)− unary(γn).
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The following theorem will be proven later.

Theorem 1. [Formula for the number of runs]
Let n ≥ 3 and γ = (γ0, . . . , γn). Then the number of runs in S(γ) equals

ρ(γ) =

⎧
⎪⎪⎨

⎪⎪⎩

2 A + 2 B + Δ(γ)− 1 if γ0 = γ1 = 1
(γ1 + 2) A + B + Δ(γ)− odd(n) if γ0 = 1; γ1 > 1
2A + 3B + Δ(γ)− even(n) if γ0 > 1; γ1 = 1
(2 γ1 + 1) A + 2 B + Δ(γ) Otherwise

,

Example 3. We now show how to compute ρ(1, 2, 1, 3, 1), using our formula, for the
word shown in Figure 1. In this case

γ = (γ0, γ1γ2, γ3, γ4) = (1, 2, 1, 3, 1) and n = 4

A = Nγ(2) = 5, B = Nγ(3) = 4, Δ = (4− 1)− 8 = −5, odd(4) = 0

Theorem 1 implies correctly (see Figure 1):

ρ(γ) = (γ1 + 2)A + B + Δ− odd(4) = 4A + B − 5 = 4 · 5 + 4− 5 = 19.

Example 4. As the next example derive the formula for the number of runs in Fibonacci
word fibn = S(1, 1, . . . , 1) (n ones) for n ≥ 3. Let Fn be the n-th Fibonacci number.
In this case Nγ(k) = Fn−k−1. According to formula from Theorem 1 we have

ρ(fibn) = 2Nγ(2) + 2Nγ(3) + n− 1− n− 1− 1

= 2 Fn−3 + 2 Fn−4 − 3 = 2 Fn−2 − 3.

Theorem 2. ρ(w) ≤ 4
5 |w| for each w ∈ S

Proof. The easy when n ≤ 2 can be considered separately, we omit a simple proof for
this case. Assume now that n ≥ 3 and consider 4 cases.

Let w = S(γ0, ..., γn). Observe that Δ(γ) ≤ 0.

Case 1: γ0 = γ1 = 1. We have, due to Lemma 2: |w| = 3A + 2B.
According to Theorem 1 we have ρ(γ) ≤ 2 A + 2 B. Then

ρ(w)
|w| ≤

2A + 2B
3A + 2B

≤ 4
5

due to inequalities A ≥ B ≥ 1. This completes the proof in this case.

Case 2: γ0 = 1; γ1 > 1. We have, due to Lemma 2:

|w| = (2 γ1 + 1) A + 2B

We have also, due to Theorem 1, that ρ(w) ≤ (γ1 + 2) A + B. Consequently:

ρ(w)
|w| ≤

(γ1 + 2) A + B

(2 γ1 + 1) A + 2B
≤ 4

5

because γ1 ≥ 2 and γ1+2
2 γ1+1 ≤

4
5 .
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Case 3: γ0 > 1; γ1 = 1. In this case we have ρ(w) ≤ 2A + 3B, due to Theorem 1,
and , due to Lemma 2,

|w| = (γ0 + 2) A + (γ0 + 1) B ≥ 4A + 3B

Consequently we have

ρ(w)
|w| ≤

2A + 3B
4A + 3B

≤ 3A + 2B
4A + 3B

≤ 3
4

Case 4: γ0 > 1; γ1 > 1. In this case, due to Theorem 1 and Lemma 2, we have

ρ(w) ≤ (2 γ1 + 1) A + 2 B,

|w| =
(
(γ0 + 1) γ1 + 1

)
A + (γ0 + 1) B.

We have

ρ(w)
|w| ≤

(2 γ1 + 1) A + 2 B
(
(γ0 + 1) γ1 + 1

)
A + (γ0 + 1) B

≤ (2 γ1 + 1) A + 2 B

(3 γ1 + 1) A + 3 B
≤ 4

5

because
2 γ1 + 1
3 γ1 + 1

≤ 4
5

This completes the proof.

Theorem 3
For the class S of standard words we have

sup { ρ(w)
|w| : w ∈ S } = 0.8.

Proof. Let

wk = S(1, 2, k, k) =
(
(ababa)k ab

)k
ababa,

see the figure 2 for the case k = 3. We have |wk| = 5k2 + 2k + 5.
Theorem 1 implies that |ρ(1, 2, k, k)| = 4k2 − k + 3. Consequently

lim
k→∞

ρ(wk)
|wk|

= lim
k→∞

4k2 − k + 3
5k2 + 2k + 5

= 0.8

Theorem 4
We can count number of runs in standard word S(γ0, . . . , γn) in time O(n).

Proof. We need only to compute in O(n) time the numbers Nγ(k) for k = 1, 2, 3. We
can compute it iterating Equation 2.

Algorithm Compute Nγ(k);
x := 1; y := 0;
for i := n downto k do

(x, y) := (γi · x + y, x)
return x;
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Fig. 2. The structure of runs of S(1, 2, k, k) for k = 3, there are 4k2 − k + 3 = 36 runs

4 The Proof of Theorem 1

We assume now that xi are as given by recurrences described in Equations 1,2. The
structure of subword graphs for standard Sturmian words is very special [14,13], in
particular it implies the following fact.

Lemma 3. [Structural Lemma]
The period of each run of S(γ0, γ1, . . . , γn) is of the form xj

ixi−1, where 0 ≤ j < γi.

We say that a run is short if the length of its period does not exceed |x1|, large if the pe-
riod exceeds |x2|, and medium otherwise. Denote by ρshort(γ), ρmed(γ), ρlarge(γ)
the number of short, medium and large runs in S(γ), respectively. For example we have
10 short, 8 medium and 1 large run in Figure 1.

Lemma 4. [Short Runs] The number of short runs in S(γ) is

ρshort(γ) =

⎧
⎪⎪⎨

⎪⎪⎩

Nγ(2) + Nγ(3)− 1 if γ0 = γ1 = 1
2 Nγ(2)− odd(n) if γ0 = 1; γ1 > 1
Nγ(1) + Nγ(3)− even(n) if γ0 > 1; γ1 = 1
Nγ(1) + Nγ(2) otherwise

Proof. We estimate separately numbers of runs with periods x0 and x1

Claim. Let γ = (γ0, . . . , γn) be directive sequence. There are:

(a) Nγ(1) runs with period x0 if γ0 > 1,
(b) Mγ(1) runs with period x0 if γ0 = 1,
(c) Nγ(2) runs with period x1 if γ1 > 1,
(d) Mγ(2) runs with period x1 if γ1 = 1.

Point (a). Let us define morphism h(a) = aγ0b and h(b) = a. Every run with period
x0 in S(γ) is equal to aγ0 or aγ0+1. Every such run is separated by the letter b and
corresponds to the letter a in h−1(S(γ0, . . . , γn)) = S(γ1, . . . , γn).

Point (b). The proof of this point is similar to (a).
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Points (c,d). A run with the period x1 in S(γ) corresponds to a run with the period x0 in
h−1(S(γ)) and now validity of this case follows from points (a) and (b). This completes
the proof of the claim and the lemma.

Lemma 5. [Medium Runs, n ≥ 3] If n ≥ 3 then

ρmed(γ) = Nγ(1)−Nγ(2)− γ1 + 1

Proof. The thesis follows directly from the following stronger claim (the proof is omit-
ted in this version)

Claim. Let γ = (γ0, . . . , γn). There are:

(a) Nγ(2)− 1 runs with period xi
1x0 for each 0 < i < γ1.

(b) Nγ(3) runs with period x2.

The claim of the lemma follows by summing formulas from the points (a) and (b). We
have (

Nγ(2)− 1
)

(γ1 − 1) + Nγ(3) =
(
γ1Nγ(2) + Nγ(3)

)
− Nγ(2)− γ1 + 1 = Nγ(1)−Nγ(2)− γ1 + 1

This completes the proof of the lemma.

Lemma 6. [Medium Runs, n=2] If n = 2 then

ρmed(γ) = Nγ(1)−Nγ(2)− γ1 + 1− unary(γn)

Proof. The proof for the case γn > 1 is similar to the one for Lemma 5. In the case
γn = 1 there are no intermediate runs, and we have to subtract unary(γn) = 1 in this
case.

We reduce the problem of counting large runs to the one for counting medium runs,
using the morphic representation of S(γ). Let h be a morphism and let y = a1a2 . . . at

be a word of length t.
The morphism partitions x = h(y) into segments h(a1), h(a2), . . . , h(at). These

segments are called here h-blocks.

We say that a subword w of x is synchronized with h in x iff each occurrence of w in
x starts at the beginning of some h-block and ends at the end of some h-block. Figure 3
shows examples of synchronized and non-synchronized subwords with the morphism
h0 : S(2, 1, 3, 1)→ S(1, 2, 1, 3, 1) related to the morphic structure of S(1, 2, 1, 3, 1).
Recall that h0(a) = aγ0b, h0(b) = a.

Lemma 7. [Synchronization Lemma]
The large run-periods are synchronized with h0 in S(γ0, . . . , γn)

Proof. We omit the proof of the following syntactical fact.

Claim

(a) If i ≥ 2 then xixi−1 ends with aγ0b or with (aγ0b)γ1+1a
(b) aγ1+2 is not a sub-word in S(γ1, . . . , γn)
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a  ba  b a  b a a  b a  b a  b a a  b a  b a  b a a  b a  b a  b a a  b a  b a

a a a a a a a a a a a a a ab b bb b

h0

aba ababa ababaab

Fig. 3. The medium run-periods x1x0 = aba and x2 = ababa do not synchronize with h0 on the
string from Figure 1, while the large run-period x3 = ababaab is synchronized with h0

In the inverse morphism h−1
0 the block aγ0b goes to a and the block a goes to b. If the

word starts and ends with aγ0b then it is obviously synchronized with the morphism.
The word xixi−1, for i ≥ 2, starts with aγ0b. The only problem is when it ends with
a and this occurrence of a is followed by aγ0−1b. However, due to the point (a) of
the claim, we have an occurrence of the sequence (aγ0b)γ1+2 in S(γ1, . . . , γn). After
applying the inverse of h0 this sequence goes to aγ1+2 in S(γ1, . . . , γn). However this
is impossible due to point (b) of the claim. This completes the proof.

The following fact is implied by synchronization lemma.

Lemma 8. [Recurrence Lemma]

ρlarge(γ0, γ1, . . . , γn) = ρlarge(γ1, γ2, . . . , γn) + ρmed(γ1, γ2, . . . , γn).

4.1 Completing the Proof of Theorem 1

The claim of the next lemma follows from Lemma 5 and the recurrence from Lemma 8.

Lemma 9. [Large Runs]

ρlarge + ρmed = Nγ(1) + n− 1 − (γ1 + ... + γn) − unary(γn)

Proof. According to Lemma 5 we have

ρlarge + ρmed =
(
Nγ(1)−Nγ(2)− γ1 + 1

)
+

(
Nγ(2)−Nγ(3)− γ2 + 1

)
+ . . .+

(
Nγ(n− 1)−Nγ(n)− γn−1 + 1− unary(γn)

)

= Nγ(1) + n− 1 − (γ1 + ... + γn) − unary(γn),

since Nγ(n) = γn. This completes the proof.

Now the formula in Theorem 1 results by combining the formulas for ρshort and for the
sum ρlarge + ρmed using the equalities

ρ(γ) = ρshort(γ) + ρmed(γ) + ρlarge(γ), and Nγ(1) = γ1Nγ(2) + Nγ(3).
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Abstract. Composition of weighted transducers is a fundamental al-
gorithm used in many applications, including for computing complex
edit-distances between automata, or string kernels in machine learning,
or to combine different components of a speech recognition, speech syn-
thesis, or information extraction system. We present a generalization of
the composition of weighted transducers, 3-way composition, which is
dramatically faster in practice than the standard composition algorithm
when combining more than two transducers. The worst-case complex-
ity of our algorithm for composing three transducers T1, T2, and T3

resulting in T , is O(|T |Q min(d(T1)d(T3), d(T2)) + |T |E), where | · |Q
denotes the number of states, | · |E the number of transitions, and d(·)
the maximum out-degree. As in regular composition, the use of perfect
hashing requires a pre-processing step with linear-time expected com-
plexity in the size of the input transducers. In many cases, this approach
significantly improves on the complexity of standard composition. Our
algorithm also leads to a dramatically faster composition in practice. Fur-
thermore, standard composition can be obtained as a special case of our
algorithm. We report the results of several experiments demonstrating
this improvement. These theoretical and empirical improvements signif-
icantly enhance performance in the applications already mentioned.

1 Introduction

Weighted finite-state transducers are widely used in text, speech, and image
processing applications and other related areas such as information extraction
[8,10,12,11,4]. They are finite automata in which each transition is augmented
with an output label and some weight, in addition to the familiar (input) label
[14,5,7]. The weights may represent probabilities, log-likelihoods, or they may be
some other costs used to rank alternatives. They are, more generally, elements
of a semiring [7].

Weighted transducers are used to represent models derived from large data
sets using various statistical learning techniques such as pronunciation dictio-
naries, statistical grammars, string kernels, or complex edit-distance models
� This author’s current address is: Google Research, 76 Ninth Avenue, New York, NY

10011.
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[11,6,2,3]. These models can be combined to create complex systems such as a
speech recognition or information extraction system using a fundamental trans-
ducer algorithm, composition of weighted transducers [12,11]. Weighted compo-
sition is a generalization of the composition algorithm for unweighted finite-state
transducers which consists of matching the output label of the transitions of one
transducer with the input label of the transitions of another transducer. The
weighted case is however more complex and requires the introduction of an ε-
filter to avoid the creation of redundant ε-paths and preserve the correct path
multiplicity [12,11]. The result is a new weighted transducer representing the
relational composition of the two transducers.

Composition is widely used in computational biology, text and speech, and
machine learning applications. In many of these applications, the transducers
used are quite large, they may have as many as several hundred million states or
transitions. A critical problem is thus to devise efficient algorithms for combining
them. This paper presents a generalization of the composition of weighted trans-
ducer, 3-way composition, that is dramatically faster than the standard compo-
sition algorithm when combining more than two transducers. The complexity of
composing three transducer T1, T2, and T3, with the standard composition algo-
rithm is O(|T1||T2||T3|) [12,11]. Using perfect hashing, the worst-case complexity
of computing T = (T1 ◦ T2) ◦ T3 using standard composition is

O(|T |Q min(d(T3), d(T1 ◦ T2)) + |T |E + |T1 ◦ T2|Q min(d(T1), d(T2)) + |T1 ◦ T2|E), (1)

which may be prohibitive in some cases even when the resulting transducer T
is not large but the intermediate transducer T1 ◦ T2 is.1 Instead, the worst-case
complexity of our algorithm is

O(|T |Q min(d(T1)d(T3), d(T2)) + |T |E). (2)

In both cases, the use of perfect hashing requires a pre-processing step with
linear-time expected complexity in the size of the input transducers.

Our algorithm also leads to a dramatically faster computation of the result
of composition in practice. We report the results of several experiments demon-
strating this improvement. These theoretical and empirical improvements sig-
nificantly enhance performance in a series of applications: string kernel-based
algorithms in machine learning, the computation of complex edit-distances be-
tween automata, speech recognition and speech synthesis, and information ex-
traction. Furthermore, as we shall see later, standard composition can be
obtained as a special case of 3-way composition.

The main technical difficulty in the design of our algorithm is the definition
of a filter to deal with a path multiplicity problem that arises in the presence
of the empty string ε in the composition of three transducers. This problem,
which we shall describe in detail, leads to a word combinatorial problem [13].
We will present two solutions for this problem: one requiring two ε-filters and a
generalization of the ε-filters used for standard composition [12,11]; and another
1 Moreover both T1 ◦ T2 and T2 ◦ T3 may be very large compared to T , hence both

(T1 ◦ T2) ◦ T3 and T1 ◦ (T2 ◦ T3) may be prohibitive.
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0                          a:b/.1

1

a:b/.2

2/1
a:b/.4

3/.8

b:a/.6

b:a/.3

b:a/.5

0                        a/.1

1

a/.2

2/1
a/.4

3/.8

b/.6

b/.3

b/.5

(a) (b)

Fig. 1. (a) Example of a weighted transducer T . (b) Example of a weighted automaton
A. [[T ]](aab, bba) = [[A]](aab) = .1× .2× .6× .8+ .2× .4× .5× .8. A bold circle indicates
an initial state and a double-circle a final state. The final weight ρ[q] of a final state q
is indicated after the slash symbol representing q.

direct and symmetric solution where a single filter is needed. Remarkably, this
3-way filter can be encoded as a finite automaton and painlessly integrated in
our 3-way composition.

The remainder of the paper is structured as follows. Some preliminary defini-
tions and terminology are introduced in the next section (Section 2). Section 3
describes our 3-way algorithm in the ε-free case. The word combinatorial prob-
lem of ε-path multiplicity and our solutions are presented in detail Section 4.
Section 5 reports the results of experiments using the 3-way algorithm and com-
pares them with the standard composition.

2 Preliminaries

This section gives the standard definition and specifies the notation used for
weighted transducers.

Finite-state transducers are finite automata in which each transition is aug-
mented with an output label in addition to the familiar input label [1,5]. Output
labels are concatenated along a path to form an output sequence and sim-
ilarly with input labels. Weighted transducers are finite-state transducers in
which each transition carries some weight in addition to the input and out-
put labels [14,7]. The weights are elements of a semiring, that is a ring that
may lack negation [7]. Some familiar semirings are the tropical semiring (R+ ∪
{∞}, min, +,∞, 0) related to classical shortest-paths algorithms, and the proba-
bility semiring (R, +, ·, 0, 1). A semiring is idempotent if for all a ∈ K, a⊕ a = a.
It is commutative when ⊗ is commutative. We will assume in this paper that the
semiring used is commutative, which is a necessary condition for composition to
be an efficient algorithm [10]. The following gives a formal definition of weighted
transducers.

Definition 1. A weighted finite-state transducer T over (K,⊕, ·, 0, 1) is an 8-
tuple T = (Σ, Δ, Q, I, F, E, λ, ρ) where Σ is the finite input alphabet of the trans-
ducer, Δ is the finite output alphabet, Q is a finite set of states, I ⊆ Q the set of
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0 1a:b/0.1
a:b/0.2

2b:b/0.3
3/0.7b:b/0.4

a:b/0.5
a:a/0.6

0 1b:b/0.1
b:a/0.2 2a:b/0.3

3/0.6a:b/0.4

b:a/0.5
(0, 0) (1, 1)a:b/0.2

(0, 1)a:a/0.4

(2, 1)b:a/0.5 (3, 1)

b:a/0.6

a:a/0.3

a:a/0.7

(3, 2)a:b/0.9

(3, 3)/1.3

a:b/1

(a) (b) (c)

Fig. 2. Example of transducer composition. (a) Weighted transducer T1 and (b)
Weighted transducer T2 over the probability semiring (R, +, ·, 0, 1). (c) Result of the
composition of T1 and T2.

initial states, F ⊆ Q the set of final states, E ⊆ Q×(Σ∪{ε})×(Δ∪{ε})×K×Q
a finite set of transitions, λ : I → K the initial weight function, and ρ : F → K
the final weight function mapping F to K.

The weight of a path π is obtained by multiplying the weights of its constituent
transitions using the multiplication rule of the semiring and is denoted by w[π].
The weight of a pair of input and output strings (x, y) is obtained by ⊕-summing
the weights of the paths labeled with (x, y) from an initial state to a final state.

For a path π, we denote by p[π] its origin state and by n[π] its destination
state. We also denote by P (I, x, y, F ) the set of paths from the initial states I to
the final states F labeled with input string x and output string y. A transducer
T is regulated if the output weight associated by T to any pair of strings (x, y):

T (x, y) =
⊕

π∈P (I,x,y,F )

λ(p[π]) · w[π] · ρ[n[π]] (3)

is well-defined and in K. T (x, y) = 0 when P (I, x, y, F ) = ∅. If for all q ∈ Q⊕
π∈P (q,ε,ε,q) w[π] ∈ K, then T is regulated. In particular, when T does not admit

any ε-cycle, it is regulated. The weighted transducers we will be considering in
this paper will be regulated. Figure 1(a) shows an example.

The composition of two weighted transducers T1 and T2 with matching input
and output alphabets Σ, is a weighted transducer denoted by T1 ◦ T2 when the
sum:

(T1 ◦ T2)(x, y) =
⊕

z∈Σ∗
T1(x, z) ⊗ T2(z, y) (4)

is well-defined and in K for all x, y ∈ Σ∗ [14,7]. Weighted automata can be
defined as weighted transducers A with identical input and output labels, for
any transition. Thus, only pairs of the form (x, x) can have a non-zero weight
by A, which is why the weight associated by A to (x, x) is abusively denoted by
A(x) and identified with the weight associated by A to x. Similarly, in the graph
representation of weighted automata, the output (or input) label is omitted.

3 Epsilon-Free Composition

3.1 Standard Composition

Let us start with a brief description of the standard composition algorithm for
weighted transducers [12,11]. States in the composition T1 ◦ T2 of two weighted
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transducers T1 and T2 are identified with pairs of a state of T1 and a state of T2.
Leaving aside transitions with ε inputs or outputs, the following rule specifies
how to compute a transition of T1 ◦ T2 from appropriate transitions of T1 and
T2: (q1, a, b, w1, q2) and (q′1, b, c, w2, q

′
2) =⇒ ((q1, q

′
1), a, c, w1 ⊗ w2, (q2, q

′
2)).

Figure 2 illustrates the algorithm. In the worst case, all transitions of T1

leaving a state q1 match all those of T2 leaving state q′1, thus the space and
time complexity of composition is quadratic: O(|T1||T2|). However, using perfect
hashing on the input transducer with the highest out-degree leads to a worst-case
complexity of O(|T1 ◦ T2|Q min(d(T1), d(T2)) + |T1 ◦ T2|E). The pre-processing
step required for hashing the transitions of the transducer with the highest out-
degree has an expected complexity in O(|T1|E) if d(T1) > d(T2) and O(|T2|E)
otherwise.

The main problem with the standard composition algorithm is the follow-
ing. Assume that one wishes to compute T1 ◦ T2 ◦ T3, say for example by pro-
ceeding left to right. Thus, first T1 and T2 are composed to compute T1 ◦ T2

and then the result is composed with T3. The worst-case complexity of that
computation is:

O(|T1 ◦ T2 ◦ T3|Q min(d(T1 ◦ T2), d(T3)) + |T1 ◦ T2 ◦ T3|E+

|T1 ◦ T2|Q min(d(T1), d(T2)) + |T1 ◦ T2|E). (5)

But, in many cases, computing T1 ◦ T2 creates a very large number of transi-
tions that may never match any transition of T3. For example, T2 may represent a
complex edit-distance transducer, allowing all possible insertions, deletions, sub-
stitutions and perhaps other operations such as transpositions or more complex
edits in T1 all with different costs. Even when T1 is a simple non-deterministic
finite automaton with ε-transitions, which is often the case in the applications
already mentioned, T1 ◦ T2 will then have a very large number of paths, most of
which will not match those of the non-deterministic automaton T3. Both T1 ◦T2

and T2 ◦ T3 would be much larger than T in this example. In other applications
in speech recognition, or for the computation of kernels in machine learning, the
central transducer T2 could be far more complex and the set of transitions or
paths of T1 ◦ T2 not matching those of T3 could be even larger.

3.2 3-Way Composition

The key idea behind our algorithm is precisely to avoid creating these unnec-
essary transitions by directly constructing T1 ◦ T2 ◦ T3, which we refer to as a
3-way composition. Thus, our algorithm does not include the intermediate step
of creating T1 ◦T2 or T2 ◦T3. To do so, we can proceed following a lateral or side-
ways strategy: for each transition e1 in T1 and e3 in T3, we search for matching
transitions in T2.

The pseudocode of the algorithm in the ε-free case is given below. The algo-
rithm computes T , the result of the composition T1 ◦ T2 ◦ T3. It uses a queue
S containing the set of pairs of states yet to be examined. The queue discipline
of S can be arbitrarily chosen and does not affect the termination of the algo-
rithm. Using a FIFO or LIFO discipline, the queue operations can be performed
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in constant time. We can pre-process the transducer T2 in expected linear time
O(|T2|E) by using perfect hashing so that the transitions G (line 13) can be found
in worst-case linear time O(|G|). Thus, the worst-case running time complexity
of the 3-way composition algorithm is in O(|T |Qd(T1)d(T3) + |T |E), where T is
transducer returned by the algorithm.

Alternatively, depending on the size of the three transducers, it may be ad-
vantageous to direct the 3-way composition from the center, i.e., ask for each
transition e2 in T2 if there are matching transitions e1 in T1 and e3 in T3.
We refer to this as the central strategy for our 3-way composition algorithm.
Pre-processing the transducers T1 and T3 and creating hash tables for the tran-
sitions leaving each state (the expected complexity of this pre-processing being
O(|T1|E + |T3|E)), this strategy leads to a worst-case running time complex-
ity of O(|T |Qd(T2) + |T |E). The lateral and central strategies can be combined
by using, at a state (q1, q2, q3), the lateral strategy if |E[q1]| · |E[q3]| ≤ |E[q2]
and the central strategy otherwise. The algorithm leads to a natural lazy or
on-demand implementation in which the transitions of the resulting transducer
T are generated only as needed by other operations on T . The standard compo-
sition coincides with the 3-way algorithm when using the central strategy with
either T1 or T2 equal to the identity transducer.

3-Way-Composition(T1, T2, T3)

1 Q ← I1 × I2 × I3

2 S ← I1 × I2 × I3

3 while S �= ∅ do
4 (q1, q2, q3) ← Head(S)
5 Dequeue(S)
6 if (q1, q2, q3) ∈ I1 × I2 × I3 then
7 I ← I ∪ {(q1, q2, q3)}
8 λ(q1, q2, q3) ← λ1(q1) ⊗ λ2(q2) ⊗ λ3(q3)
9 if (q1, q2, q3) ∈ F1 × F2 × F3 then

10 F ← F ∪ {(q1, q2, q3)}
11 ρ(q1, q2, q3) ← ρ1(q1) ⊗ ρ2(q2) ⊗ ρ3(q3)
12 for each (e1, e3) ∈ E[q1] × E[q3] do
13 G ← {e ∈ E[q2] : i[e] = o[e1] ∧ o[e] = i[e3]}
14 for each e2 ∈ G do
15 if (n[e1], n[e2], n[e3]) �∈ Q then
16 Q ← Q ∪ {(n[e1], n[e2], n[e3])}
17 Enqueue(S, (n[e1], n[e2], n[e3]))
18 E ← E ∪ {((q1, q2, q3), i[e1], o[e3], w[e1] ⊗ w[e2] ⊗ w[e3], (n[e1], n[e2], n[e3]))}
19 return T

4 Epsilon Filtering

The algorithm described thus far cannot be readily used in most cases found in
practice. In general, a transducer T1 may have transitions with output label ε and
T2 transitions with input ε. A straightforward generalization of the ε-free case
would generate redundant ε-paths and, in the case of non-idempotent semirings,
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Fig. 3. (a) Redundant ε-paths. A straightforward generalization of the ε-free case could
generate all the paths from (0, 0) to (2, 2) for example, even when composing just two
simple transducers. (b) Filter transducer M allowing a unique ε-path.

would lead to an incorrect result, even just for composing two transducers. The
weight of two matching ε-paths of the original transducers would be counted as
many times as the number of redundant ε-paths generated in the result, instead
of one. Thus, a crucial component of our algorithm consists of coping with this
problem.

Figure 3(a) illustrates the problem just mentioned in the simpler case of two
transducers. To match ε-paths leaving q1 and those leaving q2, a generalization
of the ε-free composition can make the following moves: (1) first move forward
on a transition of q1 with output ε, or even a path with output ε, and stay at
the same state q2 in T2, with the hope of later finding a transition whose output
label is some label a �= ε matching a transition of q2 with the same input label;
(2) proceed similarly by following a transition or path leaving q2 with input label
ε while staying at the same state q1 in T1; or, (3) match a transition of q1 with
output label ε with a transition of q2 with input label ε.

Let us rename existing output ε-labels of T1 as ε2, and existing input ε-labels
of T2 ε1, and let us augment T1 with a self-loop labeled with ε1 at all states and
similarly, augment T2 with a self-loop labeled with ε2 at all states, as illustrated
by Figures 5(a) and (c). These self-loops correspond to staying at the same state
in that machine while consuming an ε-label of the other transition. The three
moves just described now correspond to the matches (1) (ε2 :ε2), (2) (ε1 :ε1),
and (3) (ε2:ε1). The grid of Figure 3(a) shows all the possible ε-paths between
composition states. We will denote by T̃1 and T̃2 the transducers obtained after
application of these changes.

For the result of composition to be correct, between any two of these states,
all but one path must be disallowed. There are many possible ways of select-
ing that path. One natural way is to select the shortest path with the diagonal
transitions (ε-matching transitions) taken first. Figure 3(a) illustrates in bold-
face the path just described from state (0, 0) to state (1, 2). Remarkably, this
filtering mechanism itself can be encoded as a finite-state transducer such as the
transducer M of Figure 3(b). We denote by (p, q) % (r, s) to indicate that (r, s)
can be reached from (p, q) in the grid.
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Fig. 4. (a) Finite automaton A representing the set of disallowed sequences. (b) Au-
tomaton B, result of the determinization of A. Subsets are indicated at each state. (c)
Automaton C obtained from B by complementation, state 3 is not coaccessible.

Proposition 1. Let M be the transducer of Figure 3(b). M allows a unique
path between any two states (p, q) and (r, s), with (p, q) % (r, s).

Proof. Let a denote (ε1:ε1), b denote (ε2:ε2), c denote (ε2:ε1), and let x stand for
any (x:x), with x ∈ Σ. The following sequences must be disallowed by a shortest-
path filter with matching transitions first: ab, ba, ac, bc. This is because, from any
state, instead of the moves ab or ba, the matching or diagonal transition c can
be taken. Similarly, instead of ac or bc, ca and cb can be taken for an earlier
match. Conversely, it is clear from the grid or an immediate recursion that a
filter disallowing these sequences accepts a unique path between two connected
states of the grid.

Let L be the set of sequences over σ = {a, b, c, x} that contain one of the
disallowed sequence just mentioned as a substring that is L = σ∗(ab + ba + ac +
bc)σ∗. Then L represents exactly the set of paths allowed by that filter and is
thus a regular language. Let A be an automaton representing L (Figure 4(a)).
An automaton representing L can be constructed from A by determinization and
complementation (Figures 4(a)-(c)). The resulting automaton C is equivalent to
the transducer M after removal of the state 3, which does not admit a path to
a final state. ��

Thus, to compose two transducers T1 and T2 with ε-transitions, it suffices to
compute T̃1 ◦M ◦ T̃2, using the rules of composition in the ε-free case.

The problem of avoiding the creation of redundant ε-paths is more complex
in 3-way composition since the ε-transitions of all three transducers must be
taken into account. We describe two solutions for this problem, one based on
two filters, another based on a single filter.

4.1 2-Way ε-Filters

One way to deal with this problem is to use the 2-way filter M , by first dealing
with matching ε-paths in U = (T1 ◦ T2), and then U ◦ T3. However, in 3-way
composition, it is possible to remain at the same state of T1 and the same state of
T2, and move on an ε-transition of T3, which previously was not an option. This
corresponds to staying at the same state of U , while moving on a transition of T3

with input ε. To account for this move, we introduce a new symbol ε0 matching
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Fig. 5. Marking of transducers and 2-way filters. (a) T̃1. Self-loop labeled with ε1 added
at all states of T1, regular output εs renamed to ε2. (b) T̃2. Self-loops with labels (ε0:ε1)
and (ε2:ε0) added at all states of T2. Input εs are replaced by ε1, output εs by ε2. (c)
T̃3. Self-loop labeled with ε2 added at all states of T3, regular input εs renamed to ε1.
(d) Left-to-right filter M1. (e) Left-to-right filter M2.

ε1 in T3. But, we must also ensure the existence of a self-loop with output label
ε0 at all states of U . To do so, we augment the filter M with self-loops (ε1:ε0) and
the transducer T2 with self-loops (ε0:ε1) (see Figure 5(b)). Figure 5(d) shows the
resulting filter transducer M1. From Figures 5(a)-(c), it is clear that T̃1 ◦M1 ◦ T̃2

will have precisely a self-loop labeled with (ε1:ε1) at all states.
In the same way, we must allow for moving forward on a transition of T1 with

output ε, that is consuming ε2, while remaining at the same states of T2 and
T3. To do so, we introduce again a new symbol ε0 this time only relevant for
matching T2 with T3, add self-loops (ε2:ε0) to T2, and augment the filter M by
adding a transition labeled with (ε0 :ε2) (resp. (ε0 :ε1)) wherever there used to
be one labeled with (ε2:ε2) (resp. (ε2:ε1)). Figure 5(e) shows the resulting filter
transducer M2.

Thus, the composition T̃1◦M1◦T̃2◦M2◦T̃3 ensures the uniqueness of matching
ε-paths. In practice, the modifications of the transducers T1, T2, and T3 to gen-
erate T̃1, T̃2, and T̃3, as well as the filters M1 and M2 can be directly simulated
or encoded in the 3-way composition algorithm for greater efficiency. The states
in T become quintuples (q1, q2, q3, f1, f2) with f1 and f2 are states of the filters
M1 and M2. The introduction of self-loops and marking of εs can be simulated
(line 12-13) and the filter states f1 and f2 taken into account to compute the
set G of the transition matches allowed (line 13).

Note that while 3-way composition is symmetric, the analysis of ε-paths just
presented is left-to-right and the filters M1 and M2 are not symmetric. In fact, we
could similarly define right-to-left filters M ′

1 and M ′
2. The advantage of the filters

presented in this section is however that they can help modify easily an existing
implementation of composition into 3-way composition. The filters needed for
the 3-way case are also straightforward generalizations of the ε-filter used in
standard composition.

4.2 3-Way ε-Filter

There exists however a direct and symmetric method for dealing with ε-paths in
3-way composition. Remarkably, this can be done using a single filter automaton
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Fig. 6. 3-way matching ε-filter W

whose labels are 3-dimensional vectors. Figure 6 shows a filter W that can be
used for that purpose. Each transition is labeled with a triplet. The ith element
of the triplet corresponding to the move on the ith transducer. 0 indicates staying
at the same state or not moving, 1 that a move is made reading an ε-transition,
and x a move along a matching transition with a non-empty symbol (i.e., non-ε
output in T1, non-ε input or output in T2 and non-ε input in T3).

Matching ε-paths now correspond to a three-dimensional grid, which leads to
a more complex word combinatorics problem. As in the two-dimensional case,
(p, q, r) % (s, t, u) indicates that (s, t, u) can be reached from (p, q, r) in the grid.
Several filters are possible, here we will again favor the matching of ε-transitions
(i.e. the diagonals on the grid).

Proposition 2. The filter automaton W allows a unique path between any two
states (p, q, r) and (s, t, u) of a three-dimensional grid, with (p, q, r) % (s, t, u).

Proof. Due to lack of space, we give a sketch of the proof, which is similar to that of
Proposition 1. As in that proof, we can enumerate disallowed sequences of triplets.
The triplet (0, 0, 0) is always forbidden since it corresponds to remaining at the
same state in all three transducers. Observe that in two consecutive triplets, for
i ∈ [1, 3], 0 in the ith machine of the first triplet cannot be followed by 1 in the
second. Indeed, as in the 2-way case, if we stay at a state, then we must remain
at that state until a match with a non-empty symbol is made. Also, two 0s in ad-
jacent transducers (T1 and T2, or T2 and T3), cannot become both xs unless all
components become xs. For example, the sequence (0, 0, 1)(x, x, 1) is disallowed
since instead (x, x, 1)(0, 0, 1) with an earlier match can be followed. Similarly, the
sequence (0, 0, 1)(x, x, 0) is disallowed since instead the single and shorter move
(x, x, 1) can be taken. Conversely, it is not hard to see that a filter disallowing
these sequences accepts a unique path between two connected states of the grid.

Thus, a filter can be obtained by taking the complement of the automaton
accepting the sequences admitting such forbidden substrings. The resulting de-
terministic and minimal automaton is exactly the filter W shown in Figure 6. ��
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Table 1. Comparison of 3-way composition with standard composition. The computa-
tion times are reported in seconds, the size of T2 in number of transitions. These exper-
iments were performed on a dual-core AMD Opteron 2.2GHz with 16GB of memory,
using the same software library and basic infrastructure.

n-gram Kernel Edit distance
≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7 standard +transpositions

Standard 65.3 68.3 71.0 73.5 76.3 78.3 586.1 913.5
3-way 8.0 8.1 8.2 8.2 8.2 8.2 3.8 5.9

Size of T2 70K 100K 130K 160K 190K 220K 25M 75M

The filter W is used as follows. A triplet state (q1, q2, q3) in 3-way composition
is augmented with a state r of the filter automaton W , starting with state 0 of
W . The transitions of the filter W at each state r determine the matches or
moves allowed for that state (q1, q2, q3, r) of the composed machine.

5 Experiments

This section reports the results of experiments carried out in two different ap-
plications: the computation of a complex edit-distance between two automata,
as motivated by applications in text and speech processing [9], and the compu-
tation of kernels between automata needed in spoken-dialog classification and
other machine learning tasks.

In the edit-distance case, the standard transducer T2 used was one based on all
insertions, deletions, and substitutions with different costs [9]. A more realistic
transducer T2 was one augmented with all transpositions, e.g., ab → ba, with
different costs. In the kernel case, n-gram kernels with varying n-gram order
were used [3].

Table 1 shows the results of these experiments. The finite automata T1 and T3

used were extracted from real text and speech processing tasks. The results show
that in all cases, 3-way composition is orders of magnitude faster than standard
composition.

6 Conclusion

We presented a general algorithm for the composition of weighted finite-state
transducers. In many instances, 3-way composition benefits from a significantly
better time and space complexity. Our experiments with both complex edit-
distance computations arising in a number of applications in text and speech
processing, and with kernel computations, crucial to many machine learning al-
gorithms applied to sequence prediction, show that our algorithm is also substan-
tially faster than standard composition in practice. We expect 3-way composition
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to further improve efficiency in a variety of other areas and applications in which
weighted composition of transducers is used.2
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Abstract. The equation solving problem is to derive the behavior of the 
unknown component X knowing the joint behavior of the other components (or 
the context) C and the specification of the overall system S. The component X 
can be derived by solving the Finite State Machine (FSM) equation C ◊ X ∼ S, 
where ◊ is the parallel composition operator and ∼ is the trace equivalence or 
the trace reduction relation. A solution X to an FSM equation is called 
progressive if for every external input sequence the composition C ◊ X does not 
fall into a livelock without an exit. In this paper, we formally define the notion 
of a progressive solution to a parallel FSM equation and present an algorithm 
that derives a largest progressive solution (if a progressive solution exists). In 
addition, we generalize the work to a system of FSM equations. Application 
examples are provided. 

1   Introduction 

The equation solving problem can be formulated as solving an equation C ◊ X ∼ S, 
where ◊ is a composition operator and ∼ is a conformance relation. Usually the 
behavior of X, S, and A, is represented using finite state models such as finite state 
automata, I/O automata, Labeled Transition Systems (LTSs), and Finite Sate 
Machines (FSMs) [for references, see, for example, 1, 2]. The conformance relation ∼ 
often is the trace equivalence relation, denoted ≅, or the trace containment (or 
reduction) relation, denoted ≤, and the composition operator is either the synchronous 
• or the parallel ◊ composition operator. The applications of the equation solving 
problem were considered in the context of the design of communication protocols and 
protocol converters, selection of test cases, and the design of controllers for discrete 
event systems. 

If an equation has a solution, then it is known to have a largest solution that 
includes all other solutions [3].  However, not every solution of a largest solution is of 
a practical use. Usually, we are interested in so-called progressive solutions [3, 4] 
where for every external input sequence the composition C ◊ X does not fall into a 
livelock without an exit. If an automata equation has a progressive solution then the 
equation is known to have a largest progressive solution [1] that contains all 
progressive solutions. However, not each solution of a largest progressive solution is 
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progressive. The problem of deriving and characterizing progressive solutions has 
been studied for I/O automata, finite automata, and for FSMs over the synchronous 
composition operator.  

In the first part of this paper, we first, define the notion of a progressive solution 
for the FSM equation C ◊ X ≅ S and for the FSM inequality C ◊ X ≤ S [2, 3]. Given, 
possibly non-deterministic, FSMs context C and specification S, we present an 
algorithm that provides a largest complete progressive FSM solution to the equation C 
◊ X ≅ S (inequality C ◊ X ≤ S) if the equation (the inequality) has a progressive 
solution. A largest progressive solution is derived by trimming a proper largest 
solution. We note that the results [2] obtained for deriving a progressive solution in 
the area of finite automata cannot be directly applied for deriving a progressive 
solution over FSMs, since, by definition, a progressive solution to an FSM equation 
can block output actions allowed by the specification. Moreover, in this paper, we 
propose a simpler algorithm for deriving a largest progressive solution than that for 
automata equations [1]. In addition, the results obtained for deriving a progressive 
solution of an FSM equation over the synchronous composition operator [4] cannot be 
directly applied for deriving a progressive solution over the parallel composition 
operator, since the notions of the parallel and synchronous composition operators are 
different; the parallel composition operator allows to produce an external output not 
directly after external input but, possibly after a sequence of internal actions.  

In some application areas, given a finite set of k > 1 contexts Ci  and service 
specifications S i , one is interested in finding a solution (the unknown component) X 
that combined with Ci meets the specification Si, for i = 1, ..., k. The problem of 
finding such a solution X is the problem of solving a system of equations. A largest 
solution to a system of FSM equations can be derived as given in [5]. In the second 
part of this paper, we deal with a progressive solution to a system of FSM equations. 
A largest progressive solution to the system of equations is derived by intersecting 
largest progressive solutions of every equation and then by deriving the largest 
submachine of this intersection that is progressive for every equation.  

2   Preliminaries 

Finite State Machine (FSMs). A FSM, or machine hereafter, is a quintuple 
A = 〈S, I, O,TA, s0〉, where S is a finite nonempty set of states with the initial state s0, I 
and O are input and output alphabets, and TA ⊆ S ×I ×O× S is a transition relation. In 
this paper, we consider only observable FSMs, i.e. for each triple (s,i,o)∈S×I×O there 
exists at most one state n∈S such that (s,i,n,o)∈T. An FSM A is called complete, if 
∀s ∈ S and ∀i ∈ I ∃o∈O and ∃s '∈ S, such that (s, i,o, s ')∈TA. If A is not complete, 
then it is called partial. An FSM A is called deterministic, if ∀ s ∈ S and ∀ i∈I there 
exist at most one pair of output o and state s ', such that (s, i,o, s ')∈TA. An FSM 
B = (Q ,I ,O ,TB,q 0)  is a sub-machine of A if Q ⊆  S  and TB ⊆  TA. The largest 
complete submachine of FSM A can be obtained by iterative deleting states where the 
behavior of the FSM is not defined at least for a single input. Each complete sub-
machine of A is a submachine of the largest complete sub-machine of A (if it exists). 
As usual, the transition relation TA of FSM A = 〈S, I, O,TA, s0〉 can be extended to 
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sequences over the alphabet I. In this paper, we consider only initially connected 
FSMs, i.e., each state of an FSM is reachable from the initial state. 

Given an FSM A, the set of all I/O sequences generated at state s of A is called the 
language of A generated at state s, or simply the set of I/O sequences at s, written 
Ls(A). The language, generated by the FSM A at the initial state is called the language 
of the FSM A and is denoted by L(A), for short. The FSM 〈{t 0}, I, O, T, t 0〉, denoted 
MAX(I,O), where T = {t0}×I×O×{t 0}, is called maximum over the input alphabet I and 
the output alphabet O. The maximum machine MAX(I,O) accepts the language (IO)*. 
An FSM B = 〈Q, I, O, TB, q0〉 is a reduction of FSM A = 〈S, I, O, TA , s0〉, written 
A ≤ B, if LB ⊆ LA. If LB = LA then FSMs A and B are equivalent. For complete 
deterministic FSMs the reduction and the equivalence relations coincide.  

The common behavior of two FSMs can be described by the intersection of these 
machines. The intersection A ∩ B of FSMs A=〈S, I, O, TA, s0〉 and B=〈Q, I, O, TB, q0〉 
is the largest connected sub-machine of the FSM 〈S × Q, I, O, TA ∩B, s0q0〉. Formally, 
TA ∩B  = {(sq, i, o, s'q') | (s, i, o, s ') ∈ TA ∧ (q, i, o, q ') ∈ TB}. The language of A ∩ B 
is the intersection L(A) ∩ L(B). The intersection of two observable FSMs is an 
observable FSM; however, the intersection of complete FSMs can be partial. FSM 
languages are regular, and thus, the underlying model for an FSM is a finite 
automaton. When solving a parallel equation an FSM is represented by an automaton 
by unfolding each transition of the FSM [2 - 4]. 

Automata and FSMs. A finite automaton, is a quintuple S = 〈S, V, δ S, s0, FS〉, where 
S is a finite nonempty set of states with the initial state s0 and a subset FS of final (or 
accepting) states, V is an alphabet of actions, and δ S ⊆ S ×V × S is a transition 
relation. An automaton 〈S', V, δ 'S, s'0, F'S〉 is a submachine of the automaton S if S' ⊆ 
S, δ 'S ⊆ δ S, and F'S ⊆ FS. The automaton S is deterministic, if ∀ s ∈ S and ∀ v∈V, ∃ 
at most one state s ', such that (s, v, s ') ∈ δ S. The language L(S) generated or 
accepted by S is known to be regular. Given a sequence α ∈V * and an alphabet W, a 
W-restriction of α, written α ↓W, is obtained by deleting from α all symbols that 
belong to the set V \ W. Given a sequence α ∈V * and an alphabet W, a W-expansion of 
α, written α ↑W, is a set that contains each sequence over alphabet (V ∪ W) with the 
V–projection α.  

Well-known results state that regular languages are closed under the union, 
intersection, complementation, restriction and expansion and the constructions for 
deriving corresponding automata could be found, for example, in [1, 3, 6]. Let 
P = 〈P, V, δ P, p 0, FP〉 be an automaton which accepts the language L. Restriction (↓): 
Given a non-empty subset U of V, the automaton P↓U  that accepts the language L↓U  
over U is obtained by replacing each edge (s,a,s′) in P by the edge (s,ε,s′).1 Expansion 
(↑): Given alphabet U, the automaton P↑U  that accepts the language L↑U  over U ∪ V is 
obtained by adding (s,a,s) ∀a ∈ U\V for each state s of P. 

We note that not each automaton has an FSM language. However, it is known that 
given an automaton B over alphabet I ∪ O, I ∩ O = ∅, there exists a largest subset of 
the language of the automaton B that is the language of an FSM, denoted BFSM, which 

                                                           
1 Apply the closure procedure to obtain an equivalent deterministic automaton without ε-moves 

[6]. 
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can be constructed by intersecting B with (IO)* and deleting all non-accepting states 
from the resulting automaton, which have an incoming transition labeled with an 
output action o. The language of an FSM C over input I and output O is a subset of 
the language of an automaton B if and only if C is a reduction of BFSM [3]. 

Parallel Composition of FSMs. Consider a system of two complete communicating 
FSMs  A = 〈A, I1∪V, O1∪U, TA, s0〉 and B = 〈T, I2∪U, O2∪V, TB, t0〉 [1 - 3]. As usual, 
for the sake of simplicity, we assume that alphabets I1, V, O1, U, I2, O2 are pair-wise 
disjoint. The alphabet Extin = I1 ∪ I2 represents the external inputs of the composition, 
while the alphabet Extout ⊆ O1 ∪ O2 represents the external outputs of the 
composition; Ext = Extin ∪ Extout,  Int = U∪V. The two FSMs communicate under a 
single message in transit, i.e., the next external input is submitted to the system only 
after it produced an external output to the previous input. The collective behavior of 
the two communicating FSMs can be described by an FSM. The parallel composition 
of FSMs A and B, denoted C ◊Ext B or simply C ◊ B, can be obtained as follows [2, 3]: 
First, for FSMS A and B, the corresponding automata Aut(A) and Aut(B) are derived. 

Then, the intersection 
2 2 1 1

( ( ) ( ) )
I O I O Ext

Aut A Aut B↑ ∪ ↑ ∪ ↓∩  ∩ Aut(MAX(I,O)) is 

converted into an FSM. It is known that the parallel composition of two complete 
FSMs can be partial, since the communicating FSMs can fall into an infinite dialogue 
(live-lock) without producing an external output. In this case, the projection of 

2 2 1 1
( ( ) ( ) )

I O I O Ext
Aut A Aut B↑ ∪ ↑ ∪ ↓∩  onto I does not coincide with I*. Formally, the 

composition falls into live-lock if 
2 2 1 1

( ) ( ) ( ( , )
I O I O Int

Aut A Aut B Aut MAX I O↑ ∪ ↑ ∪ ↑∩ ∩  has a 

state where the generated language is empty. 

FSM Equations. Let C = (C ,  I1∪V, O1∪U, TC,  c 0)  and 

S = (S ,  Extin,  Extout,  TS,  s0)  be two complete FSMs. An expression "C ◊Ext X ≅ S" 

("C ◊Ext X ≤ S") is called an FSM equation (an FSM inequality) w.r.t. the unknown X 
that represents an FSM over the input alphabet I2 ∪ U, I2 = Extin\I1, and the output 
alphabet O2 ∪ V, O2 = Extout\O1. The FSM C is usually called the context, and the 
FSM S is usually called the specification. As usual, an FSM equation can have no 
solution while an FSM inequality is always solvable, as the trivial FSM with the 
language that contains only the empty sequence always is a solution to an FSM 
inequality. If an FSM inequality and a solvable FSM equation have a complete 
solution then they are known to have a largest complete solution [2, 3]. A largest 
complete solution M to the equation C ◊Ext X ≅ S can be obtained as the largest 
complete submachine of the FSM over input alphabet I2∪U and output alphabet 
O2∪V which corresponds to the automaton Λ(C,S,MAX) = 

2 2 2 2
( ( ) ( ) )U VI O I O U V
Aut C Aut S ↑ ∪↑ ∪ ↓ ∪ ∪ ∪

∩ ∩ Aut(MAX(I2∪U,O2∪V)), if such a complete 

submachine exists. We note that in this paper, we do not merge equivalent states (for 
the reasons shown later) of the automaton Λ(C,S,MAX) when applying the closure 
procedure for deriving an equivalent deterministic automaton without ε-moves after 
the restriction operator. If such a machine M does not exist the equation and the 
inequality have no complete solutions. If the machine M exists then M is a largest 
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complete solution to the inequality C ◊Ext X ≤ S. Moreover, each reduction of M also is 
a solution to the inequality. If the composition C ◊Ext M is equivalent to S [2] then M 
is a largest complete solution to the equation. If the composition C ◊Ext M is not 
equivalent to S, then the equation has no complete solution. However, not each 
complete reduction of M is a solution to the equation. 

As an example of a largest complete solution of an FSM equation, consider the 
specification FSM S1 with transitions (1,x,o3,1)(1,i,o1,1) (1,x,o2,1) and the context C 
shown in Fig. 1. The context C is defined over external inputs I1 = {i}, external outputs 
O1 = {o1, o2, o3}, internal inputs V = {v1, v2, v3} and internal outputs U = {u1, u2}. 
Specification S1 is defined over external inputs Extin = {i, x} and external outputs Extout 
= {o1, o2, o3}. A solution to an FSM equation C ◊Ext X ≅  S1 is defined over the external 
input alphabet I2 = {x}, the internal input alphabet U = {u1, u2} and the internal output 
alphabet V = {v1, v2, v3}. A largest complete solution to the equation is shown in Fig. 2. 

 

 

 

 

 

            Fig. 1. Context FSM C                  Fig. 2. A largest complete solution to C ◊Ext X ≅  S1 

3   Progressive Solutions to FSM Equations 

Consider an FSM equation C ◊ X ≅ S, where C and S are FSMs over input 
alphabets I1∪V and I1∪I2 and over output alphabets O1∪U and O1∪O2 
correspondingly, while X is the unknown FSM over input alphabet I2∪U and output 
alphabet O2∪V. A solution Prog to an FSM equation C ◊ X ≅ S (or inequality) is 
progressive if the system C ◊ Prog cannot fall into a live-lock under any external 
input sequence, i.e., for each external input action of an input sequence the 
composition eventually produces an external output. Formally, a solution Prog to an 
FSM equation C ◊ X ≅ S (or to inequality C ◊ X ≤ S) is progressive if Prog is a 
complete FSM and the intersection Aut(C)↑(I2∪O2)∩Aut(Prog)↑(I1∪O1)∩ 
Aut(MAX(I,O))↑U∪V has no states where the empty language is generated. The 
definition of a progressive solution requires that the above intersection has no cycles 
over internal actions without an exit from the cycle with an external output. If we 
consider a deterministic context FSM then each complete deterministic solution to the 
equation is progressive.  
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Fig. 3. The intersection Aut(C)↑(I2∪O2)∩Aut(Largest)↑(I1∪O1)∩Aut(MAX(I,O))↑U∪V 

As an example of a non-progressive solution, consider a largest complete FSM 
solution Largest, shown in Fig. 2. At the initial states 1 of context C (Fig. 1) and H of 
Largest, if the external input i is applied to the context, FSM C produces the internal 
output u1. In response to the input u1, the FSM Largest may produce the output v3, and 
then the system C ◊ Largest falls into a livelock. This is due to the fact that states 
(9,L,B) and (10,M,B) of the intersection shown in Fig. 3 are non-progressive. The O-
restriction of the language generated at these states is empty. 

In the following, we identify a property of a solution Sol to an FSM equation such 
that a largest progressive reduction of Sol can be derived as an appropriate 
submachine of Sol. In particular, the largest complete submachine of an FSM 
corresponding to the automaton Λ(C,S,MAX) (without merging equivalent states) 
possesses this property. 

A solution P = (P ,  I2∪U, O2∪V, TP,   p0) to an FSM inequality C ◊Ext X ≤ S is 
called perfect in the context C (or simply perfect) if for each state (c,p,t0) of the 
intersection Aut(C)↑(I2∪O2)∩Aut(P)↑(I1∪O1)∩ Aut(MAX(I,O))↑U∪V that has an incoming 
transition labeled with an action a ∈ O2∪V, the (I2∪O2∪U∪V)-projection of the 
language accepted at state (c,p,t0) equals to the set of I/O sequences which take the 
FSM P from the initial state to state p.  

Given a solution F to the inequality, an equivalent perfect solution can be obtained 
by splitting states of F [4]. However, if we do not merge equivalent states when 
deriving the automaton Λ(C,S,MAX) then the largest complete submachine M of an 
FSM corresponding to the automaton (if it exists) is perfect w.r.t. the context C. 
However, if the obtained FSM M is not reduced then the reduced form of M does not 
generally possess the property.  

Theorem 1. Given an FSM equation C ◊ X ≅ S (inequality C ◊ X ≤  S), the largest 
complete submachine M of an FSM corresponding to the automaton Λ(C,S,MAX) 
(without merging equivalent states) is a perfect solution (w.r.t. the context C) to the  
inequality C ◊Ext X ≤ S. 

Theorem 2. Let P be a perfect solution (w.r.t. the context C) to the inequality C ◊ X  
≤  S. 1. Every complete submachine Psub of P is perfect. 2. A complete intersection of 
P and some FSM is perfect.  

Algorithm 1. Deriving a largest complete progressive solution to an FSM 
equation (inequality) 

Input: Observable FSMs C and S .  
Output: A largest progressive solution to C ◊ X ≅ S (if it exists). 
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Step-1. Derive the largest complete submachine M of the FSM corresponding to 
the automaton Λ(C,S,MAX). If M does not exist or M is not a solution to the equation, 
then the equation has no complete solution. End Algorithm 1. Otherwise, construct 
the intersection Aut(C)↑I2∪O2 ∩ Aut(M)↑I1∪O1 ∩  Aut(MAX(I,O))↑Int  and Go-to Step-2. 

Step-2. If there is no triplet in the intersection where the language generated at the 
triplet is empty and there is no accepting triplet (c,m,t) where at least one transition 
under an external input is undefined, then Go-to Step-4. Otherwise; Go-to Step-3. 

Step-3. Iteratively delete from the intersection every triplet (c,m,t) where the 
external restriction of language generated at the triplet is empty and each accepting 
triplet (c,m,t) where at least one transition under an external input is undefined.  

1. If the initial state of the intersection is deleted then there is no progressive 
solution. End Algorithm 1. Otherwise,  

2. For each deleted triplet (c,m,t), delete state m from the FSM M and iteratively 
delete from M states where at least one input is undefined.  

   If the initial state of M is deleted then there is no progressive solution. End 
Algorithm 1. When a state m is deleted from the FSM M each triplet (c,m,t) is 
deleted from the intersection. If the initial state of the intersection is deleted then 
there is no progressive complete solution. End Algorithm 1. Otherwise, Go-to 
Step-2. 

Step-4. If C ◊ M ≅ S then M is a largest progressive solution. End Algorithm 1. If 

C ◊ M ≇ S then there is no progressive solution. End Algorithm 1. 

Theorem 3. If the equation C ◊ X ≅ S has a progressive solution then Algorithm 1 
returns a largest progressive solution.  

As an example, consider a largest solution M shown in Fig. 2. In order to derive a 
largest progressive solution to the equation, at Step-2, derive the intersection in Fig. 3. 
Let Aut(F) denote the obtained intersection. State (10,M,B) of Aut(F) is non-
progressive, i.e., delete this state from Aut(F) and correspondingly delete state M from 
Aut(M). Furthermore, state (9,L,B) is also non-progressive, i.e., delete this state from 
the automaton and correspondingly delete state L from Aut(M). The remaining states of 
the obtained automaton are all progressive. End Algorithm 1. The FSM corresponding 
to the resulting automaton Aut(M) is a submachine of the FSM in Fig. 2 without state 
L, and this FSM is a largest complete progressive solution to the equation. 

4   A System of FSM Equations 

Given an integer k>1, complete context FSMs Ci = (Ci ,  I1∪V, O1∪U, TCi,  c i 0) ,  
specifications Si  = (Si ,  Extin,  Extout,  TSi ,  s i 0) , k > 1, and a system of equations Ci 

◊Ext  X ≅ Si, i = 1, ..., k. An FSM X over the input alphabet Extin\I1 ∪ U and over the 
output alphabet Extout\O1 ∪ V is a solution to the system if it is a solution to each 
equation, i.e., Ci ◊Ext  X ≅ Si, i = 1, ..., k. 

If a system of FSM equations has a complete solution then the system has a largest 
complete solution. A complete solution to the system Ci ◊Ext  X ≅ Si, i = 1, ..., k, is 
called a largest complete solution if it includes all complete solutions as reductions. A 
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largest complete solution M to a system of equations Ci ◊Ext  X ≅ Si can be obtained 
similar to that in [5]. Given a system of equations Ci ◊Ext  X ≅ Si, i = 1, ..., k, a solution 
B to the system is called progressive if it is a progressive solution to every equation of 
the system. In general, the intersection of two largest progressive solutions to two 
equations not necessary is a progressive solution to the system of two equations.  

Algorithm 2. Deriving a largest progressive solution to a system of FSM 
equations 

Input: Observable FSMs Ci and Si ,  i = 1, ..., k. 
Output: A largest progressive solution over the input alphabet I2∪U and output 

alphabet O2∪V to the system Ci ◊Ext  X ≅ Si, i = 1, ...,k (if  a progressive solution 
exists). 

Step-1: For i = 1, …, k, call Algorithm 1 and obtain a largest progressive solution 
Mi to the equation Ci ◊Ext  X ≅ Si. If for some i = 1, ..., k, there is no progressive 
solution to the equation Ci ◊Ext  X ≅ Si, then there is no progressive solution to the 
system of equations, End Algorithm 2. Else; Go-to Step-2. 

Step-2: Derive the largest complete submachine F of the intersection ∩ Mi. If the 
intersection has no complete submachine, then there is no progressive solution to the 
system of equations, End Algorithm 2. Else, Go-to Step-3.1. 

Step-3.1) If F is a progressive solution to each equation, then F is a largest 
progressive solution to the system of equations. End Algorithm 2. Else, Go-to Step-3.2. 

Step-3.2) For every j ∈ 1, ..., k such that F is not a progressive solution to an 
equation Cj ◊Ext X  ≅ Sj, assign M = F, construct the intersection 
Aut(Cj)↑I2∪O2 ∩ Aut(M)↑I1∪O1 ∩  Aut(MAX(I,O))↑Int and call Steps 2 and 3 of 
Algorithm 1 in order to derive a largest complete submachine Fj of F that is a 
progressive solution to the equation. If at least for one equation there is no such 
submachine then the system of equations has no progressive solution; END Algorithm 
2. Else, assign Mj: = Fj and Go-to Step-2.  

Theorem 4. If a system of equations Ci ◊Ext  X ≅ Si, i = 1, ..., k, has a progressive 
solution then Algorithm 2 returns a largest progressive solution.   

As an example, consider the specification S1 [with (1,x,o3,1)(1,i,o1,1) (1,x,o2,1)] and the 
context C1 which is that of Fig. 1 where the output label o3 of the transition (9,v1,o3,1) is 
changed to o1. Moreover, consider the specification S2 with a single state 1 and transitions 
(1,x,o3,1)(1,i,o1,1) (1,x,o3,1). Consider also, the context C2 shown in Fig. 4 and the system 
of two equations C1 ◊Ext  X  ≅ S1 and C2 ◊Ext  X ≅ S2. For each of these equations, at Step-1 
of Algorithm 2, apply Algorithm 1 and obtain the largest complete progressive solutions 
LP1 and LP2. The intersection of these solutions is shown in Fig. 5. The corresponding 
FSM F is not a progressive solution to the equation C1 ◊Ext X  ≅ S1, since states (9,LS,B), 
(10,MW,B), and (9,LT,B) of the intersection in Fig. 6 are non-progressive. 
Correspondingly, in Step-3.2, in order to derive a largest complete submachine of F that is 
a progressive solution to the equation C1 ◊Ext  X  ≅ S1, derive the intersection in Fig. 6 and 
apply Steps 2 and 3 of Algorithm 1. States (9,LS,B), (10,MW,B) and (9,LT,B) of the 
intersection are non-progressive, thus, delete states LS, MW, and LT from Aut(F). The 
obtained automaton Aut(F) is that of Fig. 5 without deleted states LS, MW, and LT and its 
corresponding FSM is a complete progressive solution to the system of two equations.  
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              Fig. 4. Context C2                                                         Fig. 5. The intersection Aut(F) 

 
Fig. 6. The intersection Aut(C1)↑(I2∪O2)  ∩ Aut(F)↑(I1∪O1) ∩ Aut(MAX(I,O))↑Int=U∪V 
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In this paper we will study the use of context-free grammars (CFGs) for the
verification of tree structures. Because of the long history of the study of CFGs,
parsing techniques for CFGs are well-established. The aim of this paper is to
make use of those parsing techniques for the verification of tree structures.

CFGs are known as a formalism for strings. However, a CFG can define a set
of unranked trees because every tree can be encoded into a string as follows:

Definition 1. Let Σ be an alphabet. Let ‘<’, ‘>’ and ‘/’ be symbols not in-
cluded in Σ. Let us denote the set of unranked trees over Σ as TΣ . The function
tag : TΣ → (Σ ∪ {<,>, /})∗ is defined inductively as follows:

– For t = a ∈ Σ, tag(t) = <a></a>.
– For t = a(t1, . . . , tn), tag(t) = <a> · tag(t1) · · · · · tag(tn) · </a>.

The tag-encoding of a tree t ∈ TΣ is the string tag(t).

The author’s motivation is to obtain a suitable verification method of structural
analysis of mathematical formulae for a mathematical OCR system. As shown
in Fig. 1, an OCR system offers a tree representation of a mathematical formula
from a scanned image. A tree representation is usually formed as a MathML
document. We want to check whether or not a result from an OCR system, a
MathML document, represents a well-formed mathematical formula.

As a formalism for well-formed mathematical formula, we think of a context-
free hedge automaton (CFHA), that is, a hedge automata [1] whose horizontal
languages are context-free languages. We could show that the verification of an
unranked tree by a CFHA can be reduced to the verification by a CFG.

Definition 2. A context-free hedge automaton (CFHA) over Σ is a four-tuple
M = (Q,Σ,Qf , Δ) where Q is a finite set of states, Σ is an alphabet, Qf ⊆ Q is
a set of final states, and Δ is a finite set of transition rules of the form: a(L)→ q
where a ∈ Σ, q ∈ Q, and L ⊆ Q∗ is a context-free language over Q.

Theorem 1. For any CFHA M over Σ, we can construct a CFG G over (Σ ∪
{<,>, /}) such that, for any t ∈ TΣ, t is accepted by A if and only if tag(t) is
generated by G.

O.H. Ibarra and B. Ravikumar (Eds.): CIAA 2008, LNCS 5148, pp. 283–285, 2008.
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Fig. 1. A result of structural analysis of a mathematical formula

CFGs are not perfect. Let Σ be the ranked alphabet consisting of the binary
symbols a, b and the zeroary symbols c, d, e. Think of the following ranked trees:

{a(b(e, c), d), a(a(b(b(e, c), c), d), d), a(a(a(b(b(b(e, c), c), c), d), d), d), · · · }.

The string language of tag-encodings of the ranked trees is the following non-
context-free language:

{(<a>)n(<b>)n<e></e>(<c></c></b>)n(<d></d></a>)n | n ≥ 1}.

A linear pushdown tree automaton (L-PDTA) [2] can recognize the above-
mentioned ranked trees. For another formalism to define well-formed mathemat-
ical formula, we will also look at L-PDTAs.

The recognition capability of the following subclasses of L-PDTAs will be
compared with regard to tree languages and yield languages:

• All L-PDTAs • Real-time L-PDTAs
• Deterministic L-PDTAs • Real-time deterministic L-PDTAs

Let RtDet, Det, Rt and ALL represent the classes of tree languages recog-
nized by real-time deterministic L-PDTAs, deterministic L-PDTAs, real-time
L-PDTAs and any L-PDTAs, respectively.

Theorem 2. RtDet � Det � Rt = ALL.

Let yRtDet, yDet, yRt and yALL represent the classes of yield languages
corresponding to RtDet, Det, Rt and ALL, respectively.

Theorem 3. yRtDet = yDet = yRt = yALL.
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Abstract. We present a new algorithm deciding for strings t and w
whether w is an approximate generator of t with Levenshtein distance
at most k. The algorithm is based on finite state transducers.

1 Introduction

A generator of a string is one of basic notions of regularities searching. In this
paper, we deal with approximate generators with Levenshtein distance. We show
a new transducer-based algorithm deciding for strings w and t whether w is a k-
approximate generator of t.

A string w is a k-approximate generator of t with respect to a distance measure
D if and only if t is composed of disjoint blocks of factors similar to the string
w. The last block may be similar to some prefix of w instead of w itself. More
formally, t has to be composed of factors t = w1w2 . . . wlu and D (wi, w) ≤ k for
all i ∈ {1, 2 . . . , l}. D (u,w′) ≤ k for some w′ ∈ Pref (w), |w′| ≤ |w|.

In this paper, the Levenshtein distance is used as a measure of string similarity,
even though we offer a more general scheme that can be used for other distance
measures.

2 A Transducer Based Algorithm

A basic notion of our algorithm is a distance resolver for sets of strings. Given
a set of strings W , a distance measure D, an input string v and a distance bound
k, distance resolver RW,D,k is a finite state transducer such that a set of output
symbols after reading the last symbol of v is a set of of distance bounds k′: k′ ≤ k
and D (v, w′) ≤ k′ for some w′ ∈ W .

In analogy with solution of approximate string matching problems, we define
L(RW,D,k) to be the language of all input strings w′ such that the minimum of
the outputs of RW,D,k after reading w′ is lower than or equal to k. Then, we

� This research has been partially supported by the Ministry of Education, Youth,
and Sport of the Czech Republic under research program MSM6840770014 and by
the Czech Science Foundation as project No. 201/06/1039.
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check whether tested string w is in the language L(R{w},D,k)+L(RPref(w),D,k),
where Pref (w) is a set of prefixes of a string w.

We show the modification of a well-known automaton used in pattern match-
ing (see [1]) to meet the requirements of the distance resolver definition.

3 Implementation

As an implementation method for the transducer-based computation, we have
chosen simulation using dynamic programming.

Considering Levenshtein distance, a distance bound k and lengths of strings
n = |t| and m = |w|, our algorithm reads n symbols and for each of them handles
2(m+1) groups of states. Thus, time complexity is O(nm). The space complexity
is O(m).

Sim, Iliopoulos, Park and Smyth ([2]) have shown an algorithm for the op-
timisation version of the same problem with Levenshtein distance. The time
complexity for the algorithm is O(nm), the space complexity is O(n2). The
computed distance matrices of Sims algorithm can be reused when checking
longer generators. Our solution is intended to become a base for deriving au-
tomata based algorithms solving evolutive periods and evolutive tandem repeat
problems.

4 Conclusion

In this paper, a new transducer based algorithm is presented. The algorithm
decides for given strings w and t whether w is an approximate generator of t.
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