
7

Improving the Exploration Ability of Ant-Based
Algorithms

Alice Ralickas Malisia

Department of Systems Design Engineering, Univeristy of Waterloo, Canada
amalisia@alumni.uwaterloo.ca

Summary. The chapter discusses the application of Opposition-Based Optimization (OBO) to
ant algorithms. Ant Colony Optimization (ACO) is a powerful optimization technique that has
been used to solve many complex problems. Despite its successes, ACO is not a perfect algorithm:
it can remain trapped in local optima, miss a portion of the solution space or, in some cases, it can
be slow to converge. Thus, we were motivated to improve the accuracy and convergence of the
current algorithm by extending it with the concept of OBO. In the case of ACO, the application
of opposition can be challenging because ACO usually optimizes using a graph representation
of problems, where the opposite of solutions and partial components of the solutions are not
clearly defined.

The chapter presents two types of opposition-based extensions to the ant algorithm. The first
type, called Opposite Pheromone per Node (OPN), involves a modification to the construction
phase of the algorithm which affects the decisions of the ants by altering the pheromone values
used in the decision. Basically, there is an opposite rate that determines the frequency at which op-
posite pheromone will be used in the construction step. The second method, Opposite Pheromone
Update (OPU), involves an extension to the update phase of the algorithm that performs additional
updates to the pheromone content of opposite decisions. The opposition-based approaches were
tested using the Travelling Salesman Problem (TSP) and the Grid World Problem (GWP).

Overall, the application of some fundamental opposition concepts led to encouraging results
in the TSP and the GWP. OPN led to some accuracy improvements and OPU demonstrated signif-
icant speed-ups. However, further work is necessary to fully evaluate the benefits of opposition.
Theoretical work involving the application of opposition to graphs is necessary, specifically in
establishing the ‘opposite graph’.

7.1 Introduction

Ant Colony Optimization (ACO) is classified under the general class of algorithms
known as Swarm Intelligence (SI). SI reflects the emergence of collective intelligence
from a swarm of simple agents. It is generally defined as a structured collection of
interacting organisms which cooperate to achieve a greater goal [1, 14]. It is possible to
have genetic cooperation, as it is the case with genetic algorithms, but in SI, it is more
of a social interaction. The framework is based on the repeated sampling of solutions
to the problem at hand, where each member of the population provides a potential
solution. In the case of ACO, the algorithm mimics the social interaction of ants, thus,

H.R. Tizhoosh, M. Ventresca (Eds.): Oppos. Concepts in Comp. Intel., SCI 155, pp. 121–142, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

122 A.R. Malisia

the population is a colony of ants. Social behaviour increases the ability of individuals to
adapt, as they can cooperate and learn from each other. The main idea of SI algorithms is
that organisms of a swarm behave in a distributed manner while exchanging information
directly or indirectly.

In addition, ACO is a population-based metaheuristic. Metaheuristics are procedures
that use heuristics to seek a near-optimal solution with reasonable computation time
[8, 9]. The general idea behind a metaheuristic is to create a balance between local
improvements and a high-level strategy. They optimize problems through guided search
of the solution space [9, 29]. In brief, metaheuristics seek optimality while attempting
to reduce computation time.

ACO is a powerful technique that has been used to solve many complex optimiza-
tion problems, such as the travelling salesman problem [6, 7, 10], quadratic assignment
problem [18], vehicle routing [2, 3, 11], and many others [9]. Given the complexity of
these problems and their real-world applications, any improvement to the ant algorithm
performance is encouraged. Specifically, an increase in accuracy and faster convergence
are strongly welcomed. Ant algorithms can become trapped in a local optimum, miss a
portion of the solution space or simply be slow to converge because the ants might take
a long time to discover and learn to use the best paths. Thus, it is interesting to study
and develop more complex behaviour for ant algorithms.

We attempt to improve the accuracy and convergence of ACO by extending the cur-
rent algorithm with the concept of opposition-based optimization (OBO), which is a
subclass opposition-based computing. This chapter provides a general overview how
OBO can be applied to ACO. We will discuss two types of opposition-based extensions
to the ant algorithm. The first type involves a modification to the construction phase of
the algorithm which affects the decisions of the ants by altering the pheromone values
used in the decision. This modification is called Opposite Pheromone per Node. The
second type is an extension to the update phase of the algorithm that performs addi-
tional updates to the pheromone content of opposite decisions. The second extension is
called Opposite Pheromone Update. The opposition-based approaches were tested on
two different problems: the Travelling Salesman Problem (TSP) and the Grid World
Problem (GWP).

The remaining of this chapter is organized as follows. Section 7.2 provides back-
ground information, including an overview of ant colony optimization and a review
of the work that has been conducted to improve the performance of ant algorithms.
Section 7.3 presents the two opposition-based approaches. Section 7.4 includes the ex-
perimental results of the opposition-based ant algorithms for the TSP and the GWP.
Conclusions and future work are discussed in Sect. 7.5.

7.2 Background Information

This section will describe ACO, followed by a discussion on some of the pitfalls of the
algorithm that we address using opposition. It also provides an overview of relevant
work that has been conducted to improve the performance of the ant algorithm.

7 Improving the Exploration Ability of Ant-Based Algorithms 123

7.2.1 Ant Colony Optimization

The ant algorithm was introduced by M. Dorigo in 1992 [5]. It was developed to solve
complex discrete combinatorial optimization problems. The first ACO algorithm was
the Ant System (AS) [6], which was designed to solve the TSP.

Since the introduction of ACO, researchers have developed multiple versions to im-
prove the performance of the AS. The extensions tend to focus more on the best so-
lutions found to attempt to guide the ants search more effectively. The Ant Colony
System (ACS) is a popular revised version of ACO [9] that achieved considerable accu-
racy improvements [7, 9]. Other extensions include the Best-Worst Ant System [4], the
Max-Min Ant System [30], Ant-Q (extends ACO with reinforcement learning), AntNet
(dynamic version of the algorithm designed for the vehicle routing problem), and the
ACS combined with local search [9].

The ACO algorithm is inspired from the natural behaviour of trail laying and fol-
lowing by ants [1, 9]. When exploring a region, ants are able to find the shortest path
between their nest and a food source. This is possible because the ants communicate
with each other indirectly via pheromone deposits they leave behind as they travel. The
pheromone deposited by one ant influences the selection of the path by the other ants. A
high pheromone concentration increases the probability that the path will be selected.
The pheromone deposits work as a form of positive feedback, reinforcing good path
choices and guiding the ants to better paths.

Ant System

When applied to an optimization problem, the ACO metaheuristic usually involves so-
lution construction on a graph. The solutions are a path along the graph. The AS algo-
rithm is summarized in Alg. 1. In line 3, the ants are distributed randomly among the
nodes. Then, they move between nodes, sequentially adding edges to their current path
until they have visited all nodes. The selection of an edge depends on the pheromone
content of the edge, represented by values in a n × n matrix where n is the number of
nodes, and the value of the heuristic function of each edge. At each step of construction,
ant k selects the next node using a probabilistic action choice rule which dictates the
probability with which the ant will choose to go from current node i to next node j (see
line 6):

pk
ij =

[τij]α[ηij]β∑
l∈Nk

i
[τil]α[ηil]β

if j ∈ Nk
i , (7.1)

where τij represents the pheromone content on the edge. Node j is included in Nk
i , the

neighbourhood for ant k given its current location i. The neighbourhood only includes
nodes that have not been visited by ant k and are connected to node i. The parameter
ηij represents the heuristic information. The heuristic value of an edge is a measure of
the cost of extending the current partial solution with that edge (typically the inverse of
the weight of the edge). The constants α and β represent the influence of pheromone
content and heuristic information respectively. The stochastic component of the algo-
rithm, namely probabilistically selecting a component, leads to exploration of a higher
number of solutions.

124 A.R. Malisia

Algorithm 1. Pseudocode of the Ant System
1: Initialize pheromone matrix (τ = τo)
2: while Termination condition is not satisfied do
3: Place m ants on random nodes
4: for k = 1 to m do
5: if Solution construction for ant k is NOT complete then
6: Pick next node j (see (7.1))
7: end if
8: end for
9: Update pheromone matrix (evaporation and trail update) using (7.2) and (7.3)

10: end while

When all the ants have completed their paths the pheromone content is updated (see
line 9). First, the pheromone content of the arcs, τij , is evaporated based on the evapo-
ration rate, ρ, following the relation

τnew
ij = (1 − ρ)τcurrent

ij 0 < ρ < 1. (7.2)

After the evaporation step, the solution of each ant is evaluated and pheromone is
deposited on the ant’s path relative to the quality of its solution. The ants deposit
pheromone on the arcs they visited as follows:

τnew
ij = τcurrent

ij +
m∑

k=1

Δτk
ij , (7.3)

where Δτk
ij is the amount of pheromone ant k contributes to the arc going from node i

to node j and m is the total number of ants. The additional pheromone is based on the
overall quality of the total path and is defined by

Δτk
ij =

{
1

Ck
if arc is in the path of ant k,

0 otherwise,
(7.4)

where Ck is the total cost of the solution for ant k. All arcs of one path will receive the
same amount of pheromone (i.e. each ant deposits a constant amount of pheromone per
edge).

Ant Colony System

Another commonly used version of ACO is the ACS. This version differs from the AS
algorithm in three aspects [7, 9]: 1) different selection rule for path construction, 2) trail
update only occurs for the best-so-far solution, and 3) local pheromone removal occurs
each time an ant visits a node.

The general steps of the ACS algorithm are summarized in Alg. 2. When ants con-
struct their paths in ACS, they use a selection rule that has a strong emphasis on

7 Improving the Exploration Ability of Ant-Based Algorithms 125

exploitation of previous experience. An ant k located on node i chooses the next node
j using a pseudorandom proportional rule described by

j =

⎧⎨
⎩

argmax
l∈Nk

i

{
τil[ηil]β

}
if q < qo,

J otherwise.
(7.5)

The parameter q is a uniform random number between 0 and 1 and qo is the probability
that an ant will use learned knowledge. If q < qo, the ant will select the node with the
highest product of pheromone content and heuristic function value. Otherwise, it will
use J , which is the node selected by the probabilistic action rule used in the AS (see
(7.1)). This pseudorandom rule is a greedy selection approach that will tend to favour
edges with a higher heuristic value and a high pheromone content.

The ACS has a pheromone update approach that exploits the best solutions found.
The solutions found by the ants during the iteration are compared to the best solution
found so far (best-so-far), and if one of the solutions is better, then the best-so-far solu-
tion is revised (see line 10). In line 11 the evaporation and deposit of pheromone is only
applied to the arcs contained in the current best solution. The update is implemented by

τnew
ij = (1 − ρ)τcurrent

ij + ρ(Δτ bs
ij) ∀(i, j) ∈ T bs, (7.6)

where Δτbs
ij is additional pheromone, ρ is the global evaporation rate, and T bs is the

best-so-far path. Sometimes the best-iteration path is used for smaller problems [9]. The
additional pheromone is calculated using the cost of the best-so-far path.

The ACS includes a local pheromone update to reduce emphasis on exploitation of
existing solutions (see line 7). Immediately after an ant adds an arc to its current path
the amount of pheromone on the arc is decreased as follows:

τnew
ij = (1 − ξ)τcurrent

ij + ξτo 0 < ξ < 1, (7.7)

where τo is the initial amount of pheromone. The parameter ξ is the local evaporation
rate, which controls the amount of pheromone that is removed. In the case of the TSP,
research indicates that for the ACS, this value should be set to 1

nCnn
, where n represents

the number of cities and Cnn is cost of the nearest neighbour solution [9]. This local
update works to counterbalance the greedy construction rule by reducing the pheromone
on the selected edge, thus making it less desirable to the next ant.

7.2.2 Challenges and Drawbacks

Despite being a powerful algorithm, ACO can benefit from performance improvements.
Like other optimization techniques, ACO can remain trapped in a local optimum, miss
a portion of the solution space or, in some cases, it can be slow to converge. ACO has
many applications and deals with complex optimization problems, such as the travelling
salesman problem [6, 7, 10], the quadratic assignment problem [18], vehicle routing
[2, 3, 11] and many more [9]. Thus, any increase in speed of convergence and accuracy
is beneficial.

126 A.R. Malisia

Algorithm 2. Ant Colony System
1: Initialize pheromone matrix (τ = τo)
2: while Termination condition is not satisfied do
3: Place m ants on random nodes
4: for k = 1 to m do
5: if Solution construction for ant k is NOT complete then
6: Pick next node j (see (7.5))
7: Apply local pheromone update using (7.7)
8: end if
9: end for

10: If necessary, revise the overall best (best-so-far) solution
11: Update pheromone matrix (trail update) according to (7.6)
12: end while

Given the fundamental structure of ACO, which involves reinforcement of good solu-
tions, the algorithm can sometimes remain trapped in local optima resulting in reduced
accuracy. This situation can occur when a certain component is very desirable on its
own, but leads to a sub-optimal solution when combined with other components. Con-
sequently, modifications that can help the algorithm move away from a local optimum
will likely lead to an increase in accuracy, are also welcome. Moreover, by moving away
from a local optimum, one will increase exploration, which may also lead to improved
solution quality.

Another interesting aspect of ACO is that it generates new solutions in every iteration
using pheromone information. It is the progress and quality of the pheromone informa-
tion that will affect the quality of the solutions. ACO can be slow to converge because
sometimes it will take quite a number of iterations before the pheromone content of
edges start having a strong impact on the ants decisions. Thus, one may improve the ant
algorithm by making additional pheromone updates, which will help achieve accurate
pheromone information faster.

7.2.3 Related Works

Since the introduction of ACO, researchers have developed multiple versions to im-
prove the performance of the algorithm. The Ant Colony System (ACS) is a popular
extension of the original ant algorithm that was developed to improve upon the per-
formance of the AS [9]. The ACS has a greedy selection rule, but provides regular
pheromone reduction as a measure to decrease desirability of edges once they are vis-
ited [7]. This attempts to prevent all the ants in the colony from generating the same
solution. Another successful version of the ant algorithm is the Max-Min Ant System
(MMAS) [9, 30]. The MMAS strongly exploits the best tours found, but also limits the
range of pheromone content values and initializes the pheromone contents at the upper
limit. These modifications led to performance improvements.

In addition, work has been conducted to establish more complex pheromone mech-
anisms, such as multiple pheromone matrices, and complex pheromone updates. These
modifications were implemented so ant algorithms could solve more complex problems
and to improve the performance of the ACS. For instance, one particular variant of the

7 Improving the Exploration Ability of Ant-Based Algorithms 127

ant algorithm, known as the Best-Worst Ant System (BWAS) [4], substracts pheromone
content based on the results of the worst ant of the colony. The BWAS also uses a form
of pheromone mutation based on concepts from evolutionary computation. To solve
bi-criterion optimization problems, Iredi et al. proposed a version of the ACS where
two different pheromone trail matrices and two heuristic functions are considered si-
multaneously [13]. Randall and Montgomery proposed the Accumulated Experience
Ant Colony as a method to determine the effect of each component on the overall solu-
tion quality [24]. In their approach, the pheromone and heuristic values of an edge are
weighted.

Schoonderwoerd and his colleagues were one of the first to elude to the concept of
an ‘anti-pheromone’, where ants would decrease pheromone contents rather than rein-
force them [26]. Montgomery and Randall developed three methods based on the con-
cept of anti-pheromone as an attempt to capture complex pheromone behaviour [19].
In the first method, the pheromone content of the elements composing the worst solu-
tions is reduced. Their second alternative combines a pheromone content for the best
solution and pheromone content for the worst solution. The ants select edges based on
a weighted combination of pheromone and anti-pheromone and the heuristic. Finally,
their third approach involves the use of a small number of explorer-ants that have a
reversed preference for the pheromone. On average, their methods produced better so-
lutions on the smaller TSP problems (less than 200 cities).

Given these existing extensions, their results, and the potential for performance im-
provement, there was motivation to investigate the application of oppositional concepts
to ant colony optimization. Moreover, opposition-based computing has already been
successfully applied to reinforcement learning [27, 28, 31], evolutionary algorithms
[20, 21, 22, 23] and neural networks [33, 34]. Opposition can potentially lead to a new
way of developing more complex pheromone and path selection behaviour for ACO.
The use of opposition is very interesting because it provides a structured way to inves-
tigate how to modify the ant algorithm.

7.3 Opposition and Ant Colony Optimization

The main idea of opposition-based optimization (OBO) is that by considering “op-
posites” one can increase the coverage of the solution space leading to increased
accuracy and/or faster convergence [17, 20, 21, 22, 23, 31] (see also Chapter 2). OBO
provides a general strategy that can be tailored to the technique of interest. Increasing
the speed of convergence of the ant algorithm can be seen as a type-I opposition problem
(Definitions 1 and 2 on page 14 in Chapter 2), because we can attempt to reach a better
solution faster by using opposite guesses. It could also be addressed as a type-II opposi-
tion problem (Definitions 5 and 6 on page 17 in Chapter 2), because we can attempt to
look for solutions that have opposite fitness, which would guarantee that we are mov-
ing to a better location. However, it is not obvious how to determine the solution that
has the opposite fitness. Thus, we can use the type-I opposition as an approximation
of type-II. An increase in accuracy can be achieved by using opposition to move away
from a local optimum. Remaining trapped in a local optimum can be characterized as
a type-I opposition problem since picking a guess that is opposite to the current guess

128 A.R. Malisia

will likely lead to a new area of the solution space. The following sections will dicuss
the different ways that opposition can be applied to ACO and it will introduce two main
opposition-based extensions to the ant algorithm: Opposition per Node and Opposite
Pheromone Update.

7.3.1 Motivating Principles

In the case of ACO, the application of opposition is not as straightforward as mapping
between an estimate and its opposite. Due to the graph structure of the problems, the
opposite of a solution or of the partial components of the solutions are not clearly de-
fined. Given the combinatorial aspect of solutions on a graph, even if only one element
of a solution is changed, it leads to a whole set of new solutions. Moreover, simply
taking the opposite of every component of the solution might not necessarily lead to a
plausible solution because it might not lead to a connected path. It is not clear how one
can generate an opposite solution, mainly because of the combinatorial aspect of the
applications associated with ACO. To fit in the OBO scheme, the term opposite must
be related to ant algorithms.

The concept of opposition serves as a starting point for the proposed extensions. The
main idea is to think of opposition as a way of increasing the coverage of the solution
space, which may lead to greater accuracy and faster convergence.

Ant algorithms do not work by modifying the existing solutions at each iteration;
instead, new solutions are created based on the pheromone matrix. It is the pheromone
matrix that changes as the algorithm progresses. In algorithms that work with complete
solutions, such as genetic algorithms, one can generate an opposite candidate solution
and replace the current candidate solution. Then, the algorithm proceeds with the op-
posite candidate solution. In contrast, in the ant algorithm, even if the opposite solution
is generated, one needs to find a way to alter the pheromone content since that is what
affects solution creation. To move in the solution space, the algorithm has to move in
the pheromone space. Thus, instead of looking at a solution candidate and its opposite,
the concept of opposition has to involve the pheromone matrix.

However, it is not easy to define an opposite pheromone matrix because a pheromone
matrix is not a point in the solution space. The pheromone matrix is indirectly related
to the final solutions. Given the probabilistic nature of the path selection in ACO, a
particular pheromone matrix can lead to an array of solutions. This leads to an array of
paths and, hence, there is no one-to-one relationship between a particular matrix and a
single path. Thus, instead of focusing on an opposite pheromone matrix, another idea
is to find a way to use opposition to move in the pheromone matrix solution space.

Consequently, it was determined that opposition could be applied to directly or indi-
rectly affect the pheromone matrix. There are many different ways in which this can be
achieved. For example, instead of initializing the pheromone content of all the edges to
the same value, one could use opposition to determine a better initial value. However,
while there can be many different places where opposition can be applied, we decided to
concentrate on two main parts of the ACO algorithm: 1) the construction phase and/or
2) the update phase. These two phases were selected because, unlike initialization, they
were present in every iteration of the algorithm. Thus, modifications and extensions to
these phases will likely have a greater impact on the performance of the algorithm.

7 Improving the Exploration Ability of Ant-Based Algorithms 129

The construction phase can be modified by affecting the ant’s decision. This can be
done by altering the parameters used by the decision, namely the pheromone content.
The modification to the update phase involves changing the way the pheromone is up-
dated. It can be done by making additional updates using other ants. A form of this
idea was implemented in the Best-Worst Ant System [4], which uses the worst-ant to
remove pheromone. However, there are other ways to affect the update phase. One way
is to use opposite components of the current solutions without necessarily creating an
opposite solution, which can be seen as identifying the opposite actions of the ants.

With these oppositional modifications, the algorithm is able to move to a new re-
gion of pheromone space. By changing the decision rule of the ants or changing
the pheromone content used in the decision, one simulates the creation of another
pheromone matrix without directly changing the current matrix, which is useful to help
the algorithm escape a local optimum. Moreover, this leads to exploration of a higher
number of solutions because components with lower pheromone content can be se-
lected. In contrast, in the case of opposition-based pheromone updates, the algorithm
is actually moving to a new pheromone matrix, which may eventually lead to an area
closer to the optimal solution.

The discussed modifications provide a general framework as to how opposition can
extend ACO. The ideas were used to design specific opposition-based algorithms which
were tested with travelling salesman and the grid world problems. The next section
will describe two successful extensions to the ant algorithm: Opposite Pheromone per
Node and Opposite Pheromone Update. Detailed descriptions of these extensions, and
of other less successful implementations can be found in [16].

7.3.2 Opposite Pheromone Per Node

The Opposite Pheromone per Node (OPN) is a direct modification of the pheromone
value used by the ants to make their selection. It was designed to help the ants try
different paths, and addresses the problem where the ant algorithm remains trapped in
a local optimum. OPN attempts to move the ants out of their current paths by altering
the pheromone they use in their decisions.

Algorithm 3 describes the OPN extension to ACS. The local pheromone update in
line 12 and the best-trail update (line 16 are identical to the ones of the normal ACS
algorithm. During the construction phase from line 4 to 14, the ants will move from
node to node creating a solution until they have visited all nodes, achieved a specific
number of steps or reached a goal.

Every time an ant k has to select the next node, the pheromone content used for
its decision will depend on the value of a random number λ and the opposite-rate, λ̆.
The opposite-rate, λ̆o, determines the rate at which opposite pheromone will be used in
the construction step of the algorithm. If λ < λ̆ (line 6), then the algorithm calculates
the opposite pheromone content for the edges in line 7 and the ant will use the opposite
pheromone content, τ̆ , to pick its next city (line 8). Otherwise, the ant will simply select
the next city in line 10 using the original pheromone content.

The opposite pheromone content, τ̆ij , for the edge connecting the current node i to
an available node j is calculated as follows:

τ̆ij = τmin + τmax − τij . (7.8)

130 A.R. Malisia

Algorithm 3. Opposite Pheromone per Node Algorithm
1: Initialize pheromone matrix (τ = τo)
2: while Termination condition is NOT satisfied do
3: Place m ants on random nodes
4: for k = 1 to m do
5: if Solution construction for ant k is NOT complete then
6: if λ < λ̆ then
7: Calculate opposite pheromone values, τ̆ = τmin + τmax − τ
8: Pick next node j using pseudorandom rule (see (7.5)) with τ̆
9: else

10: Pick next node j using pseudorandom rule (see (7.5)) with τ
11: end if
12: Apply local pheromone update using (7.7)
13: end if
14: end for
15: If necessary, revise the overall best (best-so-far) solution
16: Update pheromone matrix (trail update) according to (7.6)
17: end while

The parameters τmin and τmax represent the minimum and maximum available
pheromone contents, respectively. In the case of the ACS algorithm, τmin can be the ini-
tial pheromone deposit and τmax can be the inverse of the length of the best-so-far path,
Lbs. These values can be used to determine the opposite pheromone content because,
given the pheromone update equations of ACS (see (7.6) and (7.7)), the pheromone
content is bounded by the initial pheromone deposit and the global optimal value [9].
With the AS, the maximum and minimum pheromone contents are not bounded. Thus,
the opposite can be calculated using the maximum and minimum pheromone contents
of the available edges or of the entire pheromone matrix.

7.3.3 Opposite Pheromone Update

The Opposite Pheromone Update (OPU) extends the pheromone update phase of the
ant algorithm. This extension focuses more on the convergence issues existing in the ant
algorithm. By adding or removing pheromone from opposite edges, the algorithm will
modify the pheromone content faster than the ants normally would, which will speed up
their learning. OPU performs additional updates using opposition information. When an
ant completes its path, pheromone is added to every decision along the path, or in the
case of ACS the edges of the best-so-far path. With the OPU extension, pheromone can
also be added or removed from opposite edges.

OPU has a standard framework, where opposite edges receive additional updates.
However, the specific way to define an opposite edge and how to update the pheromone
varies depeding on 1) the version of the ant algorithm that is used, and 2) the problem
that is being solved. In the case of the ACS, where pheromone is only added to the
best-so-far path, the pheromone levels will not be very high on the other edges. Thus,
OPU might work better if pheromone is added to the opposite edges. In constrast, in

7 Improving the Exploration Ability of Ant-Based Algorithms 131

Algorithm 4. Opposite Pheromone Update Algorithm
1: Initialize pheromone matrix (τ = τo)
2: while Termination condition is NOT satisfied do
3: Place m ants on random nodes
4: for k = 1 to m do
5: if Solution construction for ant k is NOT complete then
6: Pick next node j using pseudorandom rule (see (7.5)) with τ
7: end if
8: end for
9: Update pheromone matrix (trail update) according to (7.3)

10: if λ̆ < λ̆o then
11: Calculate opposition-rating ŏ for all edges using (7.9)
12: Apply opposite pheromone update (see 7.10)
13: end if
14: end while

the case of the AS, it is probably best to remove pheromone because the AS algorithm
deposits pheromone on all generated paths.

Algorithm 4 describes the OPU extension to the AS. The initialization, the termi-
nation conditions, and the pheromone trails update (line 9) are identical to the ones of
the normal AS algorithm. Also, like in the AS framework, the ants will construct their
solutions (line 4 to 8) until they have a complete solution (i.e. visited all nodes, visited
a specific number of nodes or found a goal). The selection of the next nodes in line 6
also follows the AS framework.

After the pheromone trails update (line 9), the OPU algorithm will potentially per-
form an opposite update. The rate at which the opposite update occurs depends on the
value of a random number λ and the opposite-rate, λ̆. If λ < λ̆ (line 10), the opposition-
rating is calculated in line 11 and the OPU algorithm performs the opposite update in
line 12. If λ̆ = 1, the opposite update is done in every iteration.

The opposition-rating in line 11 of the OPU algorithm is a way to evaluate the degree
of opposition of other edges in the graph relative to the current solution. In the case of
AS, there are multiple current solutions: the solution found by each ant. In the case of
ACS, the current solution is the best-so-far solution. For a given current solution, at
every node of that solution, one outgoing edge will receive the trail pheromone update.
Then, the opposition-rating, ŏ, is calculated for all the other outgoing edges relative to
the winning edge. This rating is used to determine the amount of pheromone to add to
the other edges.

There are different ways to evaluate the degree of opposition of an edge. For exam-
ple, ŏ can be calculated using the heuristic function values:

ŏij =

∣∣ηij − ηbs
i

∣∣
ηmax − ηmin , (7.9)

where ηij represents the heuristic function value for the edge going from node i to node
j, and ηbs

i is the value for the edge outgoing from node i included present in the best
path. The values ηmax and ηmin are the maximum and minimum heuristic values of the

132 A.R. Malisia

graph. They are used to normalize the opposition-rating of the edges. This calculation
method was used in OPU experiments for the TSP which can be found in [16].

In problems where each edge has a clearly defined opposite, the opposition-rating is
straightforward: ŏ = 1 for the opposite edge and ŏ = 0 for the other outgoing edges. For
example, in a path finding problem where the ants must pick a direction to take at every
node, the selected direction (or edge) and opposite-direction pairs are clear. If, at node
i, the ant chooses to move “up”, then for that particular node, the “down” direction is
the opposite edge. Thus, the “down” direction will have an opposition-rating of 1, and
the “left” and “right” directions will have a rating of 0.

Once the opposition-rating is determined in line 11, the pheromone content of the
“opposite-rated” edges is updated in line 12. The additional pheromone can be added
or removed depending on the type of ant algorithm. The opposite update is based on
the equation used in the regular pheromone trail update. In the case of AS, the opposite
update equation involves pheromone removal:

τnew
ij = τcurrent

ij −
m∑

k=1

ŏijΔτk, (7.10)

where ŏij is the opposition-rating for the edge, τcurrent
ij is the current pheromone level

on the edge going from node i to node j, Δτk is the pheromone added to the path found
by ant k (see 7.4). This equation can be modified depending on the ant algorithm used
and the application. In some cases, the opposite pheromone value can be divided by a
weight to reduce its impact and, instead of a removal, the opposite pheromone can be
added. In OPU experiments for the TSP [16], the opposite pheromone was added and it
was divided by a weight.

Finally, in the OPU implementation for the AS, where the opposite update involves
a removal of pheromone, the opposite update can replace evaporation. Evaporation is
used as a way to “forget” bad decisions and thus, removing pheromone from opposite
edges is achieving the same goal as evaporation. Keeping both the evaporation and the
opposite pheromone update is not necessary, especially if the amount of pheromone
being removed is as high as Δτk (the pheromone added to edges of the path of ant k).
In summary, OPU provides an additional opposite update that can be interpreted as an
intelligent evaporation.

7.4 Experimental Evidence

This section will outline some of the experimental results of applying opposition to
ACO. The OPN algorithm was tested with the Travelling Salesman Problem (TSP) and
the OPU algorithm was tested using the Grid World Problem (GWP). The Wilcoxon
rank sum (or Mann-Whitney) test was used to compare the results [12]. If the result
of the test comparing the two samples is significant (p < 0.05), one can accept the
alternative hypothesis that there is a difference between the median of the two samples.
Other experimental investigations can be found in [16].

7 Improving the Exploration Ability of Ant-Based Algorithms 133

7.4.1 OPN Experiment

The OPN algorithm was compared to the ACS algorithm on 9 symmetric TSP instances,
namely att48, eil51, eil76, kroA100, pr124, ch150, d198, lin318 and pcb442 [25].
Table 7.1 provides more details about each instance.

Table 7.1. Overview of the TSP Instances

Instance #Cities Optimal Tour
att48 48 10628
eil51 51 426
eil76 76 538
kroA100 100 21282
pr124 124 59030
ch150 150 6528
d198 198 15780
lin318 318 42029
pcb442 442 50778

The TSP is an optimization problem based on the problem faced by a travelling sales-
man who, given a starting city, wants to take the shortest trip through a set of customer
cities, visiting each city only once before returning to the starting point. Mathemati-
cally, the TSP involves finding the minimum cost path in a weighted graph, which is an
NP-hard problem [15]. A particular TSP instance has a specific number of cities (nodes)
and arc weights (typically the distance between the cities).

Experimental setup

The parameters of the ant algorithms were all set to the same values, namely β = 2,
ρ = 0.1, ξ = 0.1, m = 10, and qo = 0.9. These values were selected based on other
research done using ACS and TSP [7, 19]. The algorithms completed 100 trials and
each trial was terminated after 5000 iterations or if the optimal solution was found. For
the OPN algorithm, the opposite-rate, λ̆o, was set to a fixed rate of 0.0005, 0.001, 0.05,
and 0.1.

Experimental results

The accuracy of each algorithm was evaluated in terms of the median final path length,
the median accuracy difference with the ACS, the mean and standard deviation of the
final path length and the number of times the optimal solution was found. The Wilcoxon
rank sum (or Mann-Whitney) test was used to compare the medians of the results [12].

The median accuracy difference between ACS and the OBO algorithms was quanti-
fied as follows:

Ādiff (%) =
(

ĀOPN

ĀACS
− 1

)
× 100%. (7.11)

134 A.R. Malisia

where ĀOPN and ĀACS are the median accuracies of the best path found for the OPN
and ACS algorithms. The accuracy of final path found by each algorithm is determined
by

A = 2 − (
Lbs

Lopt
) × 100%. (7.12)

where Lbs is the length of the best path found by the algorithm and Lopt is the length
of the optimal solution. The accuracy results are reported in Table 7.2.

The results show that the opposite-rate, λ̆o, is an important factor in the success
of the OPN strategy. In the smaller instances, λ̆o = 0.1 provided the best results, but
as the number of cities increased the opposite-rate had to decrease to achieve good
results. A high opposite-rate becomes detrimental to a problem with higher number
of cities because the use of opposite pheromone becomes too frequent during the path
construction. OPN is meant to be a strategy to affect a small number of the decisions in
the hopes of helping the ants move from a local optimum. The frequent use of opposite
pheromone does not let the ants benefit from their learning.

OPN performed very well in instances with 150 cities and less. Given the appropriate
λ̆o, OPN achieved statistically significant results in all the smaller instances. Moreover,
for the instances where optimal solutions were found, the OPN was able to achieve a
higher number of optimal solutions. The statistically significant improvements in accu-
racy ranged from 0.187% to 0.757%. Even if these improvements are below 1%, they
are important because the accuracy achieved by the different algorithms is already very
high. On problems d198 and lin318, OPN achieved a lower median path length than
ACS, but the difference was not statistically significant. In general, the standard devia-
tion from the mean final path length was lower for the OPN algorithm. OPN produced
worse results than the ACS for the pcb442 problem. It can be seen that OPN helps im-
prove the accuracy of the ACS, which suggests it is addressing the local optimum trap
issue faced by the ant algorithm.

To evaluate the convergence rate of the algorithms, a desired accuracy of 85% was
set for the two larger instances (lin318, pcb442) and 95% level of accuracy was set for
the other instances. The number of iterations needed to reach the accuracy was used
as the convergence measure. The total computational time in seconds is also reported.
A speed-up factor, S, was also defined to compare the median number of iterations of
ACS relative to the median number of iterations of the OBO algorithm:

S =
(

1 − n̄OBL
I

n̄ACS
I

)
× 100% (7.13)

Table 7.3 summarizes the convergence results for OPN algorithms. Like the accuracy
results, the convergence results support the idea that the performance of OPN depends
on the opposite-rate. The OPN algorithm was able to achieve an increase in conver-
gence rate in the instances with less than 200 cities. The increases ranged from 4.6%
to 22.7%. In three of the problem instances, namely kroA100, pr125 and ch150 with
speed-up factors of 22.1%, 22.7% and 19.3% respectively, the difference was statis-
tically significant. The standard deviations of the means for the OPN algorithm were
generally lower than for the ACS. Typically, the OPN that achieved the best conver-
gence results had the lower standard deviations. OPN did not perform as well for the

7 Improving the Exploration Ability of Ant-Based Algorithms 135

Table 7.2. Median (Ā), Mean (μA), and Standard Deviation (σA) of the Accuracy, Accuracy
Difference (Ādiff (%)) and Number of Optimal Solutions Found Comparing the AS and OPN for
the TSP

Instance Algorithm Median Ādiff (%) μA ± σA #Opt
att48 ACS 10653 – 10682 ± 46 6

OPN 0.005 10653 0 10687 ± 54 7
OPN 0.01 10653 0 10674 ± 45 9
OPN 0.05 10653 0 10670 ± 42 11
OPN 0.1 10653 0 10663 ± 36 15

eil51 ACS 428 – 429.3 ± 2.9 7
OPN 0.005 429.5 -0.354 430.3 ± 3.4 11
OPN 0.01 428 0 429.6 ± 3.3 9
OPN 0.05 428 0 428.5 ± 3.5 10
OPN 0.1 427 † 0.236 428.2 ± 2.3 16

eil76 ACS 548 – 547.7 ± 5.2 1
OPN 0.005 547 0.189 547.4 ± 5.0 2
OPN 0.01 548 0 547.2 ± 5.2 5
OPN 0.05 545 † 0.568 545.4 ± 4.9 8
OPN 0.1 544 † 0.757 545.0 ± 5.1 11

kroA100 ACS 21423 – 21530 ± 238 3
OPN 0.005 21460 -0.177 21542 ± 242 2
OPN 0.01 21389 † 0.161 21471 ± 235 14
OPN 0.05 21383 † 0.187 21435 ± 179 12
OPN 0.1 21393 † 0.142 21474 ± 219 6

pr124 ACS 59385 – 59475 ± 439 4
OPN 0.005 59185 0.342 59401 ± 425 5
OPN 0.01 59242 0.243 59512 ± 494 6
OPN 0.05 59087 † 0.508 59352 ± 425 12
OPN 0.1 59159 0.385 59431 ± 431 9

ch150 ACS 6641 – 6654 ± 67.8 0
OPN 0.005 6643 -0.031 6656 ± 74 0
OPN 0.01 6621 † 0.32 6636 ± 59.7 0
OPN 0.05 6601 † 0.631 6612 ± 49.7 0
OPN 0.1 6623 0.281 6638 ± 64.1 0

d198 ACS 16093 – 16113 ± 116.9 0
OPN 0.005 16076 0.11 16109 ± 155 0
OPN 0.01 16105 -0.08 16109 ± 103 0
OPN 0.05 16275 † -1.18 16275 ± 142 0
OPN 0.1 16690 † -3.86 16695 ± 180 0

lin318 ACS 44426 – 44372 ± 495.3 0
OPN 0.005 44230 0.496 44353 ± 519 0
OPN 0.01 44305 0.305 44318 ± 519 0
OPN 0.05 46296 † -4.72 46402 ± 891 0
OPN 0.1 49274 † -12.2 49233 ± 1012 0

pcb442 ACS 55684 – 55610 ± 982 0
OPN 0.005 55955 † -0.59 56100 ± 1233 0
OPN 0.01 57519 † -0.305 57656 ± 1467 0
OPN 0.05 63253 † -4.72 63301 ± 1249 0
OPN 0.1 64833 † -12.2 64848 ± 965 0

Bold values indicate the best results.
† Difference with the ACS median is significant (p < 0.05).

136 A.R. Malisia

Table 7.3. Median (Ī), Mean (μI), and Standard Deviation (σI) of the Number of Iterations,
Speed-up Factor (S), and Median Time (t(s)) to Reach Desired Accuracy Comparing the AS and
OPN for the TSP

Instance Algorithm Ī S(%) μI ± σI t(s)
att48 ACS 40.5 – 51.6 ± 45.4 0.031
A=95% OPN 0.005 44.5 -9.88 56.4 ± 40 0.031

OPN 0.01 40.0 1.23 49.9 ± 33.0 0.031
OPN 0.05 32.5 19.8 42.0 ± 34.5 0.031
OPN 0.1 32.0 21 39.5 ± 29.5 0.031

eil51 ACS 76.0 – 109.2 ± 103 0.054
A=95% OPN 0.005 72.0 5.26 123.1 ± 150.5 0.047

OPN 0.01 66.0 13.2 91.3 ± 81.6 0.047
OPN 0.05 68.5 9.87 80 ± 52.9 0.062
OPN 0.1 74.5 1.97 99.1 ± 95 0.078

eil76 ACS 173 – 310 ± 390 0.203
A=95% OPN 0.005 204 -17.63 305 ± 369 0.235

OPN 0.01 169 2.60 270 ± 492 0.204
OPN 0.05 165 4.62 219 ± 199 0.265
OPN 0.1 186 -7.51 266 ± 222 0.360

kroA100 ACS 238 – 453 ± 707 0.422
A=95% OPN 0.005 231 2.94 363 ± 583 0.438

OPN 0.01 186 † 22.1 324 ± 614 0.360
OPN 0.05 200 16 304 ± 371 0.492
OPN 0.1 284 -19.3 394 ± 380 0.891

pr124 ACS 64.0 – 74.4 ± 46.1 0.172
A=95% OPN 0.005 66.0 -3.13 80.6 ± 62.3 0.187

OPN 0.01 62.5 2.34 86.2 ± 81.1 0.180
OPN 0.05 49.5 † 22.7 61.7 ± 46 0.188
OPN 0.1 55.5 13.3 76.5 ± 65.9 0.266

ch150 ACS 468 – 791 ± 915 1.66
A=95% OPN 0.005 471 -0.749 709 ± 872 1.77

OPN 0.01 378 † 19.3 490 ± 484 1.48
OPN 0.05 379 19.0 542 ± 443 1.95
OPN 0.1 705 † -50.7 960 ± 840 4.69

d198 ACS 979 – 1129 ± 725 5.42
A=95% OPN 0.005 916 6.44 1095 ± 796 5.36

OPN 0.01 1050 -7.25 1137 ± 599 6.45
OPN 0.05 1925 † -96.6 2145 ± 1011 15.8
OPN 0.1 5000 † -410.7 4650 ± 799 54.3

lin318 ACS 672 – 706 ± 331 9.34
A=85% OPN 0.005 700 -4.09 721 ± 329 10.3

OPN 0.01 752 -11.9 802 ± 303 11.6
OPN 0.05 2107 † -213.5 2297 ± 1044 44.2
OPN 0.1 5000 † -644 4770 ± 720 140.1

pcb442 ACS 2399 – 2406 ± 762 67.9
A=85% OPN 0.005 2946 † -22.8 2883 ± 971 88.5

OPN 0.01 4081 † -70.1 3977 ± 945 128.6
OPN 0.05 – † – – –
OPN 0.1 – † – – –

Bold values indicate the best result.
† Difference with the ACS median is significant (p < 0.05).

7 Improving the Exploration Ability of Ant-Based Algorithms 137

two larger instances. It is also important to note that the computational time (in seconds)
for OPN are comparable to AS, and even below ACS in most of the smaller instances.
This indicates that the speed-ups achieved do not have a high computational cost. Over-
all, the results indicate that fixed rate OPN has a faster convergence rate than the normal
ACS.

7.4.2 OPU Experiment

The OPU algorithm was compared to the Ant System (AS) using the Grid World Prob-
lem (GWP) on three different grid sizes, namely 20 × 20, 50 × 50 and 100 × 100.
The GWP involves a n × n grid where one square is randomly selected as the goal.
This means that a direction is assigned to each square of the grid so that when an agent
moves using this grid, it will reach the goal in the smallest number of steps. The GWP
was selected because it has been previously used as a benchmark problem for studies
involving opposition-based Reinforcement Learning (RL) [27, 28, 31].

We adapted the AS algorithm to solve the GWP. In our implementation, the location
of the goal is unknown to the ants until they reach it. The ants start in a random square in
the grid and travel until they reach the goal, which means that in one iteration they may
not travel on every square of the grid. Each square is associated with four pheromone
contents, one for each available direction. Also, since ants do not visit every square
in every iteration, the evaporation was only applied to the squares visited by the ants.
Complete details of the actual implementation can be found in [16].

Experimental Setup

The algorithms were terminated after 10000 iterations. Each algorithm completed 100
trials on each grid set. The parameters of the ant algorithms were set to the following
values: α = 1, ρ = 0.001, τo = 1, and m = 10. These parameters were selected based
on some general experimentation. The initial pheromone value (τo) was set to the high
value of 1 to encourage more exploration in the early stages of the algorithm, so that
the ants do not focus too fast on a single direction.

In the case of the OPU extension the removal of pheromone was done on every
iteration (λ̆o = 1). Also, since the GWP has clearly defined opposites, the edges that
are true opposites have an opposition-rating of 1 and the other have a rating of 0. For
example, if, at square (node) i, the ant chose to move up, then for that particular square
(node) the up direction is part of the current solution, the down direction will have an
opposition-rating of 1, and the left and right directions will have a rating of 0.

Experimental Results

The perfomance of each algorithm was evaluated based on the accuracy of the final
policy and the convergence rate of the algorithm. The Wilcoxon rank sum (or Mann-
Whitney) test was used to compare the medians of the results [12]. The accuracy or
quality of the policies is determined by comparing them to an optimal policy. This

138 A.R. Malisia

Table 7.4. Median (Ā), Mean (μA), and Standard Deviation (σA) of the Accuracy Comparing
the AS and OPU for the GWP

Instance Algorithm Ā μA ± σA

20 × 20 AS 98.00 98.05 ± 0.818
OPU 98.25 † 98.26 ± 0.801

50 × 50 AS 97.10 97.23 ± 0.612
OPU 97.84 † 97.87 ± 0.487

100 × 100 AS 93.21 93.4 ± 0.7235
OPU 96.67 † 96.74 ± 0.465

† Difference with the AS median is significant (p < 0.05).

Table 7.5. Median (Ī), Mean (μI), and Standard Deviation (σI) of the Number of Iterations,
Speed-up Factor (S), and Median Time (t(s)) to Reach a 90% Accuracy Comparing the AS and
OPU for the GWP

Instance Algorithm Ī S(%) μI ± σI t(s)
20 × 20 AS 321 – 343.6 ± 113.9 0.312

OPU 108.5 † 66.2 114.8 ± 25.4 0.109
50 × 50 AS 1885.5 – 1885.1 ± 212.1 10.45

OPU 755.5 † 59.9 752.4 ± 62.7 4.28
100 × 100 AS 6155 – 6018.2 ± 563.4 135.3

OPU 3048.5 † 50.5 2995.4 ± 197.3 72.1

† Difference with the AS median is significant (p < 0.05).

accuracy calculation, which was used in other work with GWP experiments [31], is
defined as follows:

Aπ∗ =
‖(π∗ ∩ π1) ∪ (π∗ ∩ π2)‖

n × n
, (7.14)

where π∗ is the policy being evaluated and π1 and π2 represent the two optimal pos-
sibilities for each square given a goal. Table 7.4 reports the overall accuracy results
including the median, mean and standard deviation of the accuracy.

The OPU extension performed very well. OPU improved the accuracy for all grid
sizes. The difference of the medians is statistically significant for the smaller size (p <
0.05) and very significant (p < 0.01) for the 50×50 and 100×100 grids. In the 100×100
grid case, the median accuracy was improved by 3.7%, which is good considering that
the base accuracy is already above 90%. Moreover, comparing to the AS, the OPU mean
accuracies are all higher and their standard deviations are all lower.

In order to evaluate the convergence rate of the algorithms, a desired accuracy of
90% was set. The median, mean and standard deviation of the number of iterations to
reach the desired accuracy were used as comparative measures. The Wilcoxon test was
used to statistically compare the median number of iterations. The speed-up factor (see
(7.13)) and the computational time to reach the accuracy are also reported. Table 7.5
summarizes the convergence results for the AS and OPU algorithms.

7 Improving the Exploration Ability of Ant-Based Algorithms 139

The OPU algorithm was significantly faster than the AS. It achieved a speed-up
factor of 66%, 60% and 50% for the 20×20, 50×50, and 100×100 grids, respectively.
The mean number of iterations and their standard deviation were also lower. The lower
standard deviations indicate that the OPU will reliably reach the 90% accuracy with
fewer number of iterations that the AS. It is also important to note that the computational
time (in seconds) for the OPU are also below the AS, which shows that the speed-up
achieved does not have a high computational cost.

7.4.3 Discussion

While the application of opposition to ACO can be challenging, in general, results indi-
cate that the use of opposition can be beneficial. Specifically, the OPN approach, using
opposite pheromone for some decisions was beneficial for improving the accuracy for
the TSP. The OPU extension, which involved performing additional updates during the
best trail update phase, led to excellent results for the GWP. The OPU method applied
to the GWP led to accuracy improvements in all grid sizes and convergence speed-ups
reaching 66%. It was interesting to see that the performance improvements were rela-
tively similar for all grid sizes.

One fundamental difference between the TSP and the GWP is that, in the GWP, the
“opposite” is clearly defined. For each square in a grid, there are two sets of opposite
pairs: up/down and left/right. Each direction has a unique opposite. In the TSP, a choice
made by the ant at a certain node does not have a clearly defined opposite. Also, a
straight mathematical opposite might not even be defined. Simply defining opposites
with respect to the length of the edge might not make sense because, in some solutions,
you need to take a longer edge to get an overall shorter path. In the GWP, the partial
components of the solution are all the perfect components, which may be a reason why
OPU, by removing pheromone in rejected directions, is very advantageous for the GWP.
In the TSP, the algorithm makes local sacrifices for global success, which may explain
why OPN is helpful for the TSP.

Moreover, in the GWP, the path travelled by the ants from their starting point to the
goal is unidirectional. Thus, it is possible to define an “opposite” path that makes sense.
This opposite path would include all the decisions that would bring the ants away from
the goal. In the TSP, the solutions are bidirectional: going in the opposite direction
of the path makes no difference in the final solution. Therefore, defining the “opposite”
path is not as straightforward and so problem-type dependent. The combinatorial aspect
of the TSP complicates the definition of an opposite path. Changing a single component
in the solution brings a new array of possibilities. The partial components of a solution
are all dependent.

The speed-ups achieved with the use of opposite pheromone updates can be ex-
plained by the fact that the algorithm is rapidly moving toward the final optimal
pheromone matrix. With usual pheromone updates, the algorithm takes very small steps
moving towards the final pheromone matrix. In contrast, the opposite pheromone up-
dates allow the algorithm to take very large guided jumps toward the optimal solution
by removing or adding more pheromone in the appropriate regions.

140 A.R. Malisia

7.5 Conclusions and Future Work

The work of investigating the application of opposition to ACO is just beginning. The
use of some fundamental opposition concepts, such as the use of opposite pheromone
and performing opposite updates, led to encouraging results in the TSP and the GWP.
Thus, opposition is a way that can provide benefits to ant algorithms, but more work is
needed to fully develop the OBO framework for ACO.

While the OPN extension proved successful for the smaller TSP instances, more
work is required to determine all the benefits of this extension. The results show that
opposite-rate, λ̆o, is a key element in the success of the OPN algorithm. Thus, selecting
the rate wisely can lead to a better accuracy at a faster rate. Additional investigations in
new ways to vary the pheromone rate are necessary.

Further work is needed to explore the application of opposition to different versions
of the ant algorithm, namely the Max-Min Ant System and the Best-Worst Ant System.
Continuing the investigation with the ACS and the AS is also necessary so that perfor-
mance differences can be clearly understood. It is also possible that applying opposition
to ant algorithms will eventually generate a new form of the algorithm, which will be
separate from the existing ACO frameworks. There should also be some experiments
with the concept of opposition in combination with local search. It would be impor-
tant to determine if the benefits of opposition complement those achieved through local
search.

While it is true that the GWP is not a typical ACO problem, it helped reinforce some
of the good results achieved with the TSP. Some of the differences might be attributed
to the implementations, the use of different ACO versions and different opposition al-
gorithms. However, the problem is what defines the algorithm that is used. Thus, future
work should include more applications of ACO.

Another potential issue is that, in the TSP, pheromone matrices lead to an array of
possible solutions. There is no one-to-one relation between the pheromone matrix and a
solution. Therefore, it might be important to establish rules on how to generate an actual
opposite solution in a graph, so that there can be an exact fitness value. Additionally,
it is important to establish how to compute the opposite pheromone matrix. The GWP
is a little different from the TSP, in that the pheromone matrix was directly related to a
solution, which may be one reason why OPU performed well with the GWP. This work
explored opposite pheromone values and opposite updates; however, it did not create a
direct relation between two pheromone matrices.

The most important work that needs to be developed is fundamental theoretical work
with opposition and graph theory. While the GWP was an application that worked well
with opposition, the true nature of ant algorithms are graphs like in the TSP. Thus, it
is crucial to establish a strong theoretical base regarding opposition and graphs. As it
has already been mentioned, opposition is not clearly defined in TSP, which springs
from that fact that opposition is not clearly defined in graphs. Research has established
opposite actions [27, 28, 31], opposite estimates [20, 21, 22], and opposite transfers
functions [33, 34]. Perhaps, the next step is to establish the “opposite graph”.

7 Improving the Exploration Ability of Ant-Based Algorithms 141

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press, New York (1999)

2. Bullnheimer, B., Hartl, R.F., Strauss, C.: Applying the Ant System to the Vehicle Rout-
ing Problem. In: Osman, I.H., Voβ, S., Martello, S., Roucairol, C. (eds.) Meta-Heuristics:
Advances and Trends in Local Search Paradigms for Optimization, pp. 109–120. Kluwer
Academic Publishers, Dordrecht (1998)

3. Bullnheimer, B., Hartl, R.F., Strauss, C.: An Improved Ant System Algorithm for the Vehicle
Routing Problem. Ann. Oper. Res. 89, 319–328 (1999)

4. Cordón, O., de Viana, I.F., Herrera, F., Moreno, L.: A New ACO Model Integrating Evolu-
tionary Computation Concepts: The Best-Worst Ant System. In: Proc. of the 2nd Int. Work-
shop on Ant Algorithms (ANTS 2000), Brussels, Belgium, pp. 22–29 (2000)

5. Dorigo, M.: Optimization, Learning and Natural Algorithms (in Italian). PhD dissertation,
Dipartimento di Elettronica, Politecnico di Milano, Italy (1992)

6. Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a Colony of Co-
operating Agents. SMC 26, 29–41 (1996)

7. Dorigo, M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning Approach
to the Traveling Salesman Problem. IEEE Transactions On Evolutionary Computation 1(1),
53–66 (1997)

8. Dorigo, M., Stützle, T.: The Ant Colony Optimization Metaheuristic: Algorithm, Applica-
tions, and Advances. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics,
pp. 55–82. Kluwer Academic Publishers, Boston (2003)

9. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
10. Gambardella, L.M., Dorigo, M.: Solving Symmetric and Asymmetric TSPs by Ant Colonies.

In: Proc. IEEE Int. Conf. on Evolutionary Computation (ICEC 1996), Nagoya, Japan, pp.
622–627 (1996)

11. Gambardella, L.M., Taillard, E., Agazzi, G.: MACS-VRPTW: A multiple Ant Colony Sys-
tem for Vehicle Routing Problems with Time Windows. In: Corne, D., Dorigo, M., Glover,
F. (eds.) New Ideas in Optimization, pp. 63–76. McGraw-Hill, New York (1999)

12. Hollander, M., Wolfe, D.A.: Nonparametric Statistical Methods. Wiley, Chichester (1973)
13. Iredi, S., Merkle, D., Midderndorf, M.: Bi-Criterion Optimization with Multi Colony Ant

Algorithms. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.)
EMO 2001. LNCS, vol. 1993, pp. 359–372. Springer, Heidelberg (2001)

14. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann, San Mateo
(2001)

15. Lawler, E.L., Lenstra, J.K., Rinnooy-Kan, A.H.G., Shmoys, D.B.: The Travelling Salesman
Problem. Wiley, New York (1985)

16. Malisia, A.R.: Investigating the Application of Opposition-Based Ideas to Ant Algorithm.
MASc. thesis, University of Waterloo, ON, Canada (2007),
http://hdl.handle.net/10012/3233

17. Malisia, A.R., Tizhoosh, H.R.: Applying Opposition-Based Ideas to the Ant Colony System.
In: Proc. of IEEE Swarm Intelligence Symposium, Honolulu, HI, April 1-5, pp. 182–189
(2007)

18. Maniezzo, V., Colorni, A.: The Ant System Applied to the Quadratic Assignment Problem.
IEEE Trans. Knowl. Data Eng. 11(5), 769–778 (1999)

19. Montgomery, J., Randall, M.: Anti-Pheromone as a Tool for Better Exploration of Search
Spaces. In: Proc. 3rd Int. Workshop on Ant Algorithms (ANTS 2002), Brussels, Belgium,
pp. 100–110 (September 2002)

http://hdl.handle.net/10012/3233

142 A.R. Malisia

20. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.: Opposition-Based Differential Evolution
Algorithms. In: Proc. IEEE Congress on Evolutionary Computation, Vancouver, July 16-21,
pp. 7363–7370 (2006)

21. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.: A Novel Population Initialization Method
for Accelerating Evolutionary Algorithms. Computers and Mathematics with Applica-
tions 53(10), 1605–1614 (2007)

22. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.: Opposition-Based Differential Evolution
(ODE) With Variable Jumping Rate. In: Proc. of IEEE Symposium on Foundations of Com-
putational Intelligence (FOCI 2007), Hawaii, April 1-5, pp. 81–88 (2007)

23. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolu-
tion. IEEE Transactions of Evolutionary Computation (in press, 2008)

24. Randall, M., Montgomery, J.: The Accumulated Experience Ant Colony for the Travelling
Salesman Problem. In: Proc. of Inaugural Workshop on Artificial Life, Adelaide, Australia,
pp. 79–87 (2001)

25. Reinelt, G.: TSPLIB - A traveling salesman problem library. ORSA J. Comput. 3, 376–384
(1991)

26. Schoonderwoerd, R., Holland, O.E., Bruten, J.L., Rothkrantz, L.J.M.: Ant-Based Load Bal-
ancing in Telecommunications Networks. Adaptive Behavior 2, 169–207 (1996)

27. Shokri, M., Tizhoosh, H.R., Kamel, M.S.: Opposition-Based Q(λ) Algorithm. In: Proc. IEEE
International Joint Conf. on Neural Networks (IJCNN), Vancouver, July 16-21, pp. 646–653
(2006)

28. Shokri, M., Tizhoosh, H.R., Kamel, M.S.: Opposition-Based Q(λ) with Non-Markovian Up-
date. In: Proc. IEEE Symposium on Approximate Dynamic Programming and Reinforce-
ment Learning (ADPRL 2007), Hawaii, April 1-5, pp. 288–295 (2007)

29. Song, Y., Irving, M.R.: Optimisation techniques for electrical power systems. II. Heuristic
optimisation methods. Power Engineering Journal 15(1), 151–160 (2001)

30. Stützle, T., Hoos, H.H.: MAX-MIN Ant System. Future Generation Computer Sys-
tems 16(8), 889–914 (2000)

31. Tizhoosh, H.R.: Opposition-Based Learning: A New Scheme for Machine Intelligence. In:
Proc. Int. Conf. on Computational Intelligence for Modelling Control and Automation -
CIMCA 2005, Vienna, Austria, vol. I, pp. 695–701 (2005)

32. Tizhoosh, H.R.: Opposition-Based Reinforcement Learning. Journal of Advanced Computa-
tional Intelligence and Intelligence Informatics 10(4), 578–585 (2006)

33. Ventresca, M., Tizhoosh, H.R.: Improving the Convergence of Backpropagation by Opposite
Transfer Functions. In: Proc. IEEE International Joint Conf. on Neural Networks (IJCNN),
Vancouver, July 16-21, pp. 9527–9534 (2006)

34. Ventresca, M., Tizhoosh, H.R.: Opposite Transfer Functions and Backpropagation Through
Time. In: Proc. IEEE Symposium on Foundations of Computational Intelligence (FOCI
2007), Hawaii, April 1-5, pp. 570–577 (2007)

	Improving the Exploration Ability of Ant-Based Algorithms
	Introduction
	Background Information
	Ant Colony Optimization
	Challenges and Drawbacks
	Related Works

	Opposition and Ant Colony Optimization
	Motivating Principles
	Opposite Pheromone Per Node
	Opposite Pheromone Update

	Experimental Evidence
	OPN Experiment
	OPU Experiment
	Discussion

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

