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For free inquiry and coexistence of opposites



Preface

“The opposite of a correct statement is a false statement. But the opposite
of a profound truth may well be another profound truth.”

– Niels Bohr

This volume is motivated in part by the observation that opposites permeate
everything around us, in some form or another. Its study has attracted the
attention of countless minds for at least 2500 years. However, due to the lack
of an accepted mathematical formalism for opposition it has not been explicitly
studied to any great length in fields outside of philosophy and logic. This, despite
the fact that we observe opposition everywhere in nature, our minds seem to
divide the world into entities and opposite entities; indeed we use opposition
everyday. We have become so accustomed to opposition that its existence is
accepted, not usually questioned and its importance is constantly overlooked.

On one hand, this volume is a fist attempt to bring together researchers
who are inquiring into the complementary nature of systems and processes and,
on the other hand, provide some elementary components for a framework to
establish a formalism for opposition-based computing. From a computational
intelligence perspective, many successful opposition-based concepts have been
in existence for a long time. It is not our intention to recast these existing
methods, rather to elucidate that, while diverse, they all share the commonality
of opposition - in one form or another, either implicitly or explicitly. To this
end, we have attempted to provide rough guidelines to understand what makes
concepts “oppositional”.

The editors are convinced that in spite of the excellence of contributors, this
volume cannot claim completeness simply due to the difficulties that each and
every new scientific endeavor experiences. However, we profoundly believe that
since the future of scientific research cannot ignore opposition, we can embrace
the inescapable imperfections and are grateful to all colleagues who have con-
tributed to this work.

Waterloo, ON, Canada Hamid R. Tizhoosh
May 1, 2008 Mario Ventresca
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Introduction

H.R. Tizhoosh and Mario Ventresca

Department of Systems Design Engineering, University of Waterloo, Canada
{tizhoosh,mventres}@pami.uwaterloo.ca

1.1 Introduction

Due to the omnipresence of opposition in the real world, regardless in what intensity
and form we may encounter its diverse presence, the nature of entities and their opposite
entities might be understood in different ways. A look at a whole set of words describing
oppositeness is an indicator of this diversity: antipodal, antithetical, contradictory, con-
trary, diametrical, polar, antipodean, adverse, disparate, negative, hostile, antagonistic,
unalike, antipathetic, counter, converse, inverse, reverse, dissimilar, divergent. All these
words describe some notion of opposition and can be employed in different contexts to
portray different relationships.

Recent theories based on our perceptions of the apparent contrary/opposite nature of
the real world have begun to provide a formal framework within the neurological and
behavioral sciences [18, 19, 20]. More specifically, these theories are concerned with
how cognition and behavior arise from dynamical self-organization processes within
the brain. Oppositional structures in linguistic information processing and communica-
tion play a pivotal role and any attempt to imitate human information processing with-
out a framework for oppositional thinking would be futile. Furthermore, since much of
computational intelligence is inspired from theories of how the brain works it seems
reasonable to also examine the usefulness of opposition within the computational intel-
ligence context.

The next section will provide a discussion regarding the understanding of opposition
a long with some real world examples. Then, the following section provides a brief
overview of attempts to formalize and explicitly utilize the concept of opposition. We
conclude this introduction with a description of the relationship each chapter has with
oppostional concepts.

1.2 What Is Opposition?

Opposition is concerned with the relationship between entities, objects or their abstrac-
tions of the same nature which are completely different in some manner. For instance,
cold and hot both describe a certain temperature perception (are of the same kind),

H.R. Tizhoosh, M. Ventresca (Eds.): Oppos. Concepts in Comp. Intel., SCI 155, pp. 1–8, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



2 H.R. Tizhoosh and M. Ventresca

however, they are completely different since they are located at opposite spots of tem-
perature scale. Moreover, these types of perceptions are relative to some observer or
system implying that in many situations it may be very difficult to define a universally
acceptable definition of opposite.

In general, the transition from one entity to its opposite can understandably establish
rapid and fundamental changes. Social revolutions, for instance, mainly aim at attaining
opposite circumstances, i.e. dictatorship vs. democracy. The goal is to alter the state or
environment to one that is percieved to be more desirable. In the following we provide
a short overview of some oppositional concepts from varying fields.

1.2.1 Oppositional Thinking

Many examples of opposition exist in philosophy. For example, ancient Egyptians based
much of their lives around the notion of harmonizing opposites. These ideas likely
influenced Pythagoras of Greece who through Aristotle gave us the Table of Opposites
[17] which is presented in Table 1.1.

Table 1.1. Pythagoras’s Table of Opposites, delivered through Aristotle

finite ⇐⇒ infinite
odd ⇐⇒ even
one ⇐⇒ many

right ⇐⇒ left
rest ⇐⇒ motion

straight ⇐⇒ crooked
light ⇐⇒ darkness
good ⇐⇒ evil

square ⇐⇒ oblong
male ⇐⇒ female

The more widely recognize concept of the Yin and Yang originates in ancient Chinese
philosophy and metaphysics [16], which describes two primal opposing but comple-
mentary forces found in all things in the universe. Similiar ideas can also be found in
Indian philosophy where the Gods Shiv and Shakti represent the two inseparable forces
which are responsible for all forms of life in the universe [22] and Zoroastrianism which
has the opposing spirits of Spenta Mainyu and Angra Mainyu representing life and de-
struction, respectively [22]. In fact, the main aspect of Zoroastrianism was believing
in Ahura Mazda (God) who is permanently opposed by Ahriman (Satan), which may
very well be the first time that a monotheistic religion introduced the duality in its
philosophy.

The triad thesis, antithesis, and synthesis describe the Hegelian dialectic [15] to
explain historical events. The thesis is a proposition, and the antithesis is its nega-
tion (opposite). The synthesis solves the conflict between the thesis and antithesis by
reconciling their common truths, and forming a new proposition.
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Immanuel Kant defines in The Critique of Pure Reason [14] the term antithetic:

“Thetic is the term applied to every collection of dogmatical propositions.
By antithetic I do not understand dogmatical assertions of the opposite, but the
self-contradiction of seemingly dogmatical cognitions (thesis cum antithesis),
in none of which we can discover any decided superiority. Antithetic is not,
therefore, occupied with one-sided statements, but is engaged in considering
the contradictory nature of the general cognitions of reason and its causes.”

In natural language, opposition can be detected at different levels: Directional
opposition (north-south, up-down, left-right), adjectival opposition (ugly-handsome,
long-short, high-low), and prefix opposition (thesis vs. anti-thesis, revolution vs.
counter-revolution, direction vs. opposite direction) [13]. Further, one can distinguish
complements (mutually exclusive properties:dead-alive, true-false), antonyms (two cor-
responding points or ranges of a scale: long-short, hot-cold), directional converses (two
directions along an axis: east-west, north-south), and relational converses (the relative
positions of two entities on opposite sides: above-below, teacher-pupil) [13]. Human
communication without utilizing linguistic opposition is unimaginable. It seems as
though opposites are needed to understand and describe the state of a system, other-
wise the system would likely not warrant explanation.

In psychology, reinforcement is a crucial learning mechanism for both humans and
animals [12]. Rewards vs. punishments, and positive vs. negative reinforcements have
been intensively investigated [12]. Every reinforcement signal has its own distinct influ-
ence, which may not be easily achieved with the opposite reinforcement signal. Learn-
ing, at its heart, requires opposite types of feedback for the development of useful
behavior [12].

In physics, antiparticles are subatomic particles having the same mass as one of the
elementary particles of ordinary matter but with opposite electric charge and magnetic
moment [11]. The positron (positive electron), hence, is the antiparticle of the electron.
As another physical example, electric polarization is defined as a slight relative shift
of positive and negative electric charge in opposite directions within an insulator or
dielectric, induced by an external electric field. Polarization occurs when an electric
field distorts the negative cloud of electrons around positive atomic nuclei in a direction
opposite the field [1]. Opposition seems to be an inherent characteristic of the physical
universe.

In mathematics we have concepts close to opposition, but tending to focus on its
implicit interpretation and practical usefulness. For instance, the bisection method for
solving equations makes use of ± sign change in order to shrink the search inter-
val [7]. In probability theory, the probability of the contrary situation is calculated by
1−p if the initial event occurs with probability p. Similarily, opposite numbers between
[−∞,∞] are represented by the pair (x,−x). In Monte Carlo simulation, antithetic ran-
dom numbers are used to reduce variance [9, 8] (this concept is possibly the only sub-
ject in mathematics that is an explicit implementation of what we will introduce in this
volume as opposition-based computing). And of course, we have the concept of proof
by contradiction which begins with an untrue statement and shows it must be false,
therefore the opposite of the original statement is true.
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These examples show that opposition plays a central role in our lives. It seems to
be required for reasoning, learning, describing things and is prevalent in many fields
ranging from theology to linguistics to physics. In spite of all these examples, however,
it should be mentioned that understanding and defining opposition may not be trivial in
most cases.

1.2.2 Formalizing and Understanding Opposition

Numerous proposals for understanding and formalizing opposition can be seen through-
out history and are continuously fine-tuned to incorporate new knowledge or views.
There is no particular accepted “theory of opposition”, rather different opinions, some
more specific to certain domains than others. Most of this work is based in the area of
logic.

An early classification of opposites in nature is given by the Pythagorean Table of
Opposites (delivered through Aristotle) seen in Table 1.1. Where the question of one vs.
many has been of particular interest for the last two millennia.

Aristotle later provided his Square of Opposites (Figure 1.1) which aimed to describe
the ways in which propositions of a system are logically related. The terms A (universal
affirmative), E (universal negative), I (particular affirmative) and O (particular negative)
are connected by relationships which show the type of opposition that relates them; con-
trary statements cannot both be true at the same time, subcontrary statements can both
be true but not both false, and subalternate statements which concern the implied na-
ture between a particular and a universal statement. The underlying assumption behind
this concept is that every affirmative statement has a single contradictory statement, of
which one must always be true.

By allowing for non-existent entities, Boole [6] alleviated the need for contrary, sub-
contrary and subalternate terms from Aristotles Square of Opposites. What remains is
simply those propositions which are contradictory.

De Morgan reasoned that all kinds of opposition are formally equivalent, “Every pair
of opposite relations is indistinguishable from every other pair, in the instruments of
operation which are required” [5]. Thus, a mathematical ± could be used in an attempt
to find an algebraic algorithm for reasoning involving any kind of opposition. Along

contrary

subcontrary

su
b

al
te

rn
at

e

su
b

altern
ate

not all

noneall

some

A E

I O

contradictory

Fig. 1.1. Aristotle’s Square of Opposition [21]
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this line of thinking Leibniz, De Morgan and Sommers’ natural language has a logic
that makes use of two kinds of expressions, the signs of opposition [4].

More recently, the Square of Opposites has been generalized through n-Opposition
Theory which is based on the relations between modal logic and geometry [3]. The
generalized form expands to shapes of higher dimensions, which seem to be hinting
towards a deep, complex underlying theory of oppositional logic.

Abstract mathematics has also attempted to formalize the concept of opposition. An
example is dual or opposite category of the branch of mathematics known as category
theory [2]. Given some grouping of entities according to a relationship, the dual cat-
egory is formed by considering the opposite relationship. For example, reversing the
direction of inequalities in a partial ordering.

There are too many alternative logics and mathematical dualities and interpretations
thereof to include a comprehensive overview here, but the reader should realize that the
problem of understanding opposition is still an active area. Furthermore, these logics
and dualities form or have the potential to form the basis of a vast number of application
areas, computational and otherwise.

1.3 About This Book

This volume attempts to provide a collection of different perspectives on opposition
in computational intelligence. The lack of a unifying umbrella is certainly the driving
motivation for this book, even though such an umbrella still needs time to be built.
The authors of this volume may have a different understanding of opposition. However,
they all employ oppositional thinking in diverse ways whose relationship may not be
apparent at first sight.

We have divided this book into four parts. The first, Motivations and Theory
(Chapters 2–4), focuses on motivating principles or theoretical findings related to oppo-
sitional concepts. The next three parts examine the topics of (a) Search and Reasoning
(Chapters 5–6) (b) Optimization (Chapters 7–9) and (c) Learning (Chapters 10–12),
although in many cases these may overlap. The final part of the volume keys in on
real-world applications using oppositional algorithms (Chapters 13–14).

1.3.1 Motivations and Theory

In “Opposition-Based Computing” H.R. Tizhoosh, M. Ventresca and S. Rahnamayan
attempt to provide a framework for the classification and study of techniques which
employ oppositional principles. Initial definitions, basic theorems and experimental ev-
idence for specific uses of opposition are provided as proof-of-concept evidence.

The use of antithetic variates is presented by D.L. McLeish in “Antithetic and Nega-
tively Associated Random Variables and Function Maximization”. The idea behind an-
tithetic variates is that extreme values found during simulation algorithms can be made
less harmful by counteracting them with other, negatively correlated, extreme values.
This approach aims to provide a wider sampling of the space in order to minimize the
covariance between the two samples to reduce the variance of the sampling procedure.

F.G. Asenjo describes a different view of opposition from a logical perspective in
“Opposition and Circularity”. The roots of this work extend back to 1902 and the
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discovery of sets which are not members of themselves. This has eventually led to a
redefining of some basic logical assumptions and aspects of our thought process and
reasoning can be described using these antinomic logics.

1.3.2 Search and Reasoning

In “Collaborative vs. Conflicting Learning, Evolution and Argumentation”, Pereira and
Pinto provide a logic-based approach for reconciling opposite arguments. It is often
the case that arguments are deemed incompatible. Nevertheless, it may be possible to
find common ground for a resolution between these opposite arguments. The overall
goal of this work is to combine antagonistic and collaborative argumentation in order
to produce a common ground alternative.

Game trees, which are inherently oppositional, are examined in “Proof-Number
Search and Its Variants” by H. Japp van den Herik and M.H.M. Winnands. Specifi-
cally, they deal with Proof-Number search which is a special case of adversarial search
algorithm. The goal is to reduce computational overhead of searching game trees while
still discovering a quality decision.

1.3.3 Optimization

Opposition-based ant colony algorithms are extended in “Improving the Exploration
Ability of Ant-Based Algorithms” by A. Malisia. Integrating antipheromone into the
traditional pheromone update and decision making processes is shown to have potential
for improving different ant-based optimization approaches.

Through the use of antichromosomes S. Rahnamayan and H.R. Tizhoosh are able to
improve the differential evolution algorithm in “Differential Evolution via Exploiting
Opposite Populations”. The effect of antichromosomes for both population initialization
and the actual optimization process is explored. Additionally, the generation jumping
scheme is introduced which yields a higher convergence rate to higher quality solutions
by jumping between opposite populations.

In “Evolving Opposition-Based Pareto Solutions: Multiobjective Optimization Us-
ing Competitive Coevolution”, T.G. Tan and J. Teo extend ideas of opposition-based
differential evolution to the multiobjective domain. They are able to better approximate
the true Pareto front through the use of opposition.

1.3.4 Learning

L. Shi in “Bayesian Ying-Yang Harmony Learning for Local Factor Analysis: A Com-
parative Investigation” provides a comparison for local factor analysis model selection.
The concept of Ying-Yang Harmony Learning is based on the balance between an ex-
ternal observation and its inner representation.

M. Shokri, H.R. Tizhoosh and M. Kamel in “The Concept of Opposition and its
Use in Q-learning and Q(λ) Techniques” suggest the use of non-Markovian updates to
improve reinforcement learning techniques. The additional updates accelerate the con-
vergence based on knowledge about the action and opposite actions which are exploited
to assign reward/opposite reward to corresponding actions.
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In “Two Techniques for Improving Gradient-Based Learning Algorithms”, M. Ven-
tresca and H.R. Tizhoosh explore properties of a specific adaptive transfer function, the
opposite transfer function. Two variations on the concept are presented and shown to
improve the accuracy, convergence and generalization ability of backpropagation-based
learning algorithms.

1.3.5 Real World Applications

The problem of image segmentation is tackled by F. Sahba and H.R. Tizhoosh in “Op-
posite Actions in Reinforced Image Segmentation”. By defining opposite actions during
image thresholding, reinforcement learning is extended to extract prostate boundaries
in ultrasound scans.

Using a real-world application, M. Mahootchi, H.R. Tizhoosh and K. Ponnambalam
in “Opposition Mining for Reservior Management” demonstrate how to conduct oppo-
sition mining in a pratical context. This concept is used to perform additional reinforce-
ment learning updates resulting in increased modelling performance.

As mentioned above, these chapters in no means summarize all possible uses and
applications of opposition. These are merely some successful examples of much broader
range of oppositional concepts in computational intelligence.
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Summary. Diverse forms of opposition are already existent virtually everywhere around us but
the nature and significance of oppositeness is well understood only in specific contexts within the
fields of philosophy, linguistics, psychology, logic and physics. The interplay between entities
and opposite entities is apparently fundamental for maintaining universal balance. However, it
seems that there is a gap regarding oppositional thinking in engineering, mathematics and com-
puter science. Although many opposition-based techniques exist in these fields, the oppositional
properties they employ are not usually directly studied. A better understanding of opposition
could potentially establish new search, reasoning, optimization and learning schemes with a wide
range of applications. For instance, improving convergence rate for hyperdimensional problems
could be improved through the use of oppositional strategies.

A large number of problems in engineering and science cannot be approached with conven-
tional schemes and are generally handled with intelligent techniques such as evolutionary, neu-
ral, reinforcing and swarm-based techniques. These methodologies, however, suffer from high
computational costs. In this work, the outlines of opposition-based computing, a proposed frame-
work for computational intelligence, will be introduced. The underlying idea is simultaneous
consideration of guess and opposite guess, estimate and opposite estimate, viewpoint and oppo-
site viewpoint and so on in order to make better decisions in a shorter time, something that all
aforementioned techniques could benefit from. The goal is to better understand the role of op-
position within a computational intelligence context with the intention of improving existing or
developing more powerful and robust approaches to handle complex problems.

Due to its diversity, it is difficult, if not impossible, to uniquely and universally define the
nature and the scope of what we call opposition. However, there is no doubt that we need a
mathematical formalism if we are going to, at least to some degree, exploit the oppositional
relationships in real-world systems. Hence, we attempt to establish a generic framework for com-
puting with opposites in this chapter, a framework which may not mathematically capture the
very essence of oppositeness in all systems accurately but it will be, as we hope, a point of depar-
ture for moving toward opposition-based computing. The ideas put forward in this chapter may
not be shared by all those who work on some aspect of opposition (and usually without labeling
it opposition), nevertheless, we believe that this framework can be useful for understanding and
employing opposition.

2.1 Introduction

The idea of explicitly and consiously using opposition in machine intelligence was
introduced in [21]. The paper contained very basic definitions and three application

H.R. Tizhoosh, M. Ventresca (Eds.): Oppos. Concepts in Comp. Intel., SCI 155, pp. 11–28, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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examples providing preliminary results for genetic algorithms, reinforcement learning
and neural networks. The main scheme proposed was to not only to look at chromo-
somes, actions and weights but simultaneously consider anti-chromosomes, counter-
actions and opposite weights. The paper argued that by considering these opposites and
by simultaneous analysis of quantities and their opposite quantities we can accelerate
the task in focus by increasing the chances of discovering the basins of attraction for
optimal (or high quality) solutions.

In this chapter, the framework of opposition-based computing (OBC) will be pro-
vided, new definitions will be established and a rudimentary classification of opposi-
tional concepts in computational intelligence will be provided. In section 2.2 the nature
of opposition will be briefly discussed. Section 2.3 provides introductory definitions
which we propose to be employed to understand opposition. We also show an example
based on low-discrepancy sequences, of the type of improvements opposition can po-
tentially deliver. In Section 2.4 we formally describe opposition-based computing using
our definitions from Section 2.3. In section 2.5 a rough guideline or classification of
OBC algorithms is provided. Section 2.6 summarizes the work with some conclusions.

2.2 What Is Opposition?

According to the American Heritage Dictionary opposite is defined as, “being the other
of two complementary or mutually exclusive things” and oppositional as “placement
opposite to or in contrast with another” [1]. Generalizing these definitions we can in-
fer that opposites are two complementary elements of some concept or class of ob-
jects/numbers/abstractions, and the relationship which defines their complementarity is
the notion of opposition1. More formally, two elements c1, c2 ∈ C are considered op-
posite relative to some mapping ϕ : C → C, where ϕ is a one-to-one function and C is
some non-empty set of concepts.

The class C can represent any form of concept, whether it be a physical entity (i.e. a
state or estimate) or more abstract notion (i.e a hypothesis or viewpoint). The mapping
between the opposite elements is also very robust, indeed the very notion of opposite
is defined relative to this mapping, which can essentially be any function determin-
ing which entities are opposites. Therefore, changing ϕ consequently changes how the
concepts are percieved.

Consider the following two simple situations, letting C be a continuous interval be-
tween [0, 1] and X ∈ C : .

1. Let ϕ(X) = (X + 0.5)%1. The modulo operator guarantees a constant distance of
0.5 between X = x and its opposite x̆ = ϕ(x)2.

2. Let ϕ(X) = 1 − X . Under this definition as X = x → 0.5, x̆ → 0.5 (the center
of the search interval). Therefore ϕ is less concerned with physical distance within
the natural ordering of C and more related to similarity.

These situations highlight an important facet of oppositional thinking. Namely, the
natural ordering of concepts from class C is not necesarily the only manner in which

1 See the introduction, Chapter 1, for a more general motivation on opposition.
2 We denote the opposite of x with x̆.
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opposites can be defined. More often than not the problem definition may indicate or
hint towards something more appropriate. In fact, the second scenario contains a para-
dox in that if x = 0.5 then x̆ = 0.5, leaving a debate as to whether a concept can be
its own opposite or whether it is possible for the concept to not have an opposite at all3.
This situation must also be appropriately addressed through the definition of ϕ.

The above examples were restricted to a single dimensional problem. A logical next
step is to examine how oppositional thinking changes as the problem dimensionality
increases. Let C =< c1, c2, . . . , cn > be an arbitrary concept in C and ci be the ith

dimensional component of the n-dimensional system. We can then define Φ(C) =<
ϕ1(c1), ϕ2(c2), . . . , ϕn(cn) > where ϕi defines opposition solely for dimension i and
Φ is the resultant mapping over all n single dimension mappings. That is, the opposite of
a multi-dimensional system is defined with respect to the opposite of each component.
Also, as with the single dimension situation, Φ must be a one-to-one function.

Let S be an arbitrarily selected subset of integers from {1, 2, . . . , n}, corresponding
to one of {ϕ1, ϕ2, . . . , ϕn}. In total there exist 2n possible subsets, of which only one
has all n integers (denoted S∗). Then, for every S we can calculate

τ(S) =
|S|
|S∗| =

|S|
n

, (2.1)

to represent the degree of opposition between the concepts represented by S and the true
opposite S∗, where |·| is the cardinality of the respective set. It is important to notice that
in this case each component is given equal weighting, meaning that there does not exist
a component which contributes more “oppisitional tendency” than any other (i.e. each
dimension of the problem is equally important). However, allowing unequal weighting
allows for greater flexibility and freedom when employing opposition in computational
intelligence (as will be shown throughout this book).

By introducing the idea of varying degrees of oppositeness we also can ask whether
opposition is a static or dynamic concept. This refers to the redefinition of opposition
as undesirable elements of C are excluded through a search, optimization or learning
process (i.e. |C| can vary at each iteration). We denote a system with a dynamic concept
of opposition as Φt, indicating there exists a time component to the mapping (where
each component is also time varying and denoted by ϕi

t).
Exploiting symmetry is in many cases a good example for incorporating opposition

within learning and search operations. In its essence, considering oppositional rela-
tionships is nothing but integration of a-priori knowledge. There exist a large num-
ber of works on using a-priori or expert knowledge in computational intelligence, why
then, one may ask, should we concern ourselves with opposition since we are inte-
grating a-priori knowledge anyway? The knowledge of oppositeness in context of a
given problem is a very special type of a-priori knowledge, which, if we comprehend
the oppositional relationships between quantities and abstractions, its processing bears
virtually no uncertainty. If, for instance, we know that the quantity/abstaction X has
a high evaluation in context of the problem in focus, then its opposite X̆ can be confi-
dently dismissed as delivering a low evaluation. By recognizing oppositional entities we

3 This is a very old debate in logic and philosophy which everybody may know via the example
“is the glass half full or half empty?”.
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acquire a new type of a-priori knowledge that, if processed as general, non-oppositional
knowledge, its contributions to problem solving remain widely unexploited.

A final major issue to address is whether opposite concepts are required to have an
antagonistic nature (mutually exclusive), or can they interact in a constructive manner
(balance maintenance). Is the system constantly deciding between which of two con-
cepts is most desirable or are these two concepts used together to produce a more desir-
able system? Furthermore, is this interaction a constant or dynamic phenomena? That
is, can competitive and cooperative relationships exist between opposites at different
times? Most likely antipodal answers to these questions are true for different problem
settings.

Most of the ideas behind these notions can be found scattered in various research
areas. Chapters 3 and 4 further discuss some of the statistical and logical motivations
and interpretations of opposition, respectively.

2.3 Computing with Opposites

In this section we attempt to establish a generic framework for computing with
opposites which will be used in subsequent sections when discussing opposition-based
computing. We have left the definitions abstract to provide flexibility and robustness in
their practical application. First we provide important definitions followed by a simple
example of using the outlined concepts.

2.3.1 Formal Framework

In this subsection we will provide abstract definitions pertaining to type-I and type-II
opposition. For each definition we discuss its implications and provide examples where
appropriate.

Definition 1 (Type-I Opposition Mapping). Any one-to-one mapping function,
Φ: C → C, which defines an oppositional relationship between two unique4 elements
C1, C2 of concept class C is a type-I opposition mapping. Furthermore, the relationship
is symmetric in that if Φ(C1) = C2, then Φ(C2) = C1.

This mapping is understood to define the opposite nature between C1, C2 with respect
to the problem and/or goal of employing the relationship. In some cases this may be
directly related to solving the problem at at hand (i.e. with respect to minimizing an
evaluation function). Another possible use is to implcitly aid in solving the problem,
for example to provide a more diverse range of solutions.

Definition 2 (Type-I Opposition). Let C ∈ C be a concept in n-dimensional space and
let Φ: C → C be an opposition mapping function. Then, the type-I opposite concept is
determined by C̆ = Φ(C).

4 The assumption is that an element cannot be its own opposite, although it is technically possi-
ble to relax this condition.
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For convenience, we often omit the explicit reliance on Φ. For example, if x̆i =
Φ(xi) = ai + bi − xi, we simply write this as x̆i = ai + bi − xi. Analogously, we
can also denote type-I opposites as x̆i = −xi or x̆i = 1− xi depending on the range of
the universe of discourse.

Type-I opposites capture linear opposition and are simple and easy to calculate. For
instance, if we regard Age as an integer set A = {0, 1, . . . , 100} and define Φ(age) =
100− age, then the opposite of a 10 year old child is an 90 year old adult, where age is
some random element of A (the sex could provide additional oppositional attributes).

Definition 3 (Type-I Super-Opposition). Let C be an n-dimensional concept set C.
Then, all points C̆s are type-I super-opposite of C when d(C̆s, C) > d(C̆, C) for some
distance function d(·, ·).

Type-I super-opposition plays a role in systems where the opposite is defined such that
|C̆s| ≥ 1 corresponding to the existence of at least one point further in distance from
concept C, but not with respect to logical meaning. Consider Φ(X) = −X where
−∞ < X < ∞. For X = x = 0.1, x̆ = −0.1, but there exists an infinite number of
values further from x than its opposite x̆. These extreme (or super) points are in super-
opposition to C. Note that |C̆s| ≥ 0 for any Φ (i.e. super-opposition is not required
to exist). For instance, if we regard the age as an integer set A = {0, 1, . . . , 100},
then the super-opposites of a 10 years old are all those members with an age above 90
years. On the other hand, consider an adult of exactly 100 years; his/her opposite is
an unborn child (exactly equal to age 0). So in this case when age = 100 there is no
super-opposition (i.e. |C̆s| = 0).

As another example of super-opposition, let C = R and use x̆ = a + b − x as the
relationship between opposites. Then for x ∈ [a, b]

x̆s ∈

⎧
⎪⎨

⎪⎩

[a, x̆) for x > (a + b)/2
[a, b] − {x} for x = (a + b)/2
(x̆, b] for x < (a + b)/2

(2.2)

represents the corresponding super-oppostion relationship. In other words, for x = a+b
2

the entire interval except x becomes the super-opposite of x. This means that for x →
a+b
2 the type-I opposites converge to the same value and the range of super-opposite

values increases. Using our above child/adult age example, then a member with an age
of 50 years has all elements �= 50 as its super-opposites, including the 10 year old and
the 90 year old, simultaneously.

Definition 4 (Type-I Quasi-Opposition). Let C be an n-dimensional concept in set C.
Then, all points C̆q are type-I quasi-opposite of C when d(C̆q, C) < d(C̆, C), for some
distance function d(·, ·).

Similar to super-opposition, quasi-opposition will not enter into all systems. For exam-
ple, consider a binary problem where each xi ∈ {0, 1}. In this case, neither quasi- nor
super-opposition are of any relevance. However, for a more practical situation consider
the single dimensional hypothecial case where x̆ = a + b − x, then



16 H.R. Tizhoosh, M. Ventresca, and S. Rahnamayan

x̆q ∈

⎧
⎪⎨

⎪⎩

(x̆, x̆ + min[d(a, x̆), d(x̆, c)]) for x > (a + b)/2
∅ for x = (a + b)/2
(x̆ − min[d(b, x̆), d(x̆, c)], x̆) for x < (a + b)/2

(2.3)

defines the set of quasi-oppositional values with c = a+b
2 .

Whereas the super-opposition is naturally bounded by the extremes of the universe
of discourse, the quasi-opposites can be bounded differently. A convenient way is to
mirror the same distance that the opposite has to the closest interval limit in order
to set a lower bound for quasi-opposites. This is illustrated in Figure 2.1. Of course,
one could define a degree of quasi-oppositeness and determine the slope of gradual in-
crease/decrease based on problem specifications. This, however, will fall into the scope
of similarity/dissimilarity measures, which has been extensively investigated for many
other research fields [5,10,19,20].

We have defined how type-I opposition deals with the relationship between concepts
based on features of the concepts without regard to the actual quality of the concept.
Although, there does exist a relationship between these two cases, they are at heart, dif-
ferent. Quality is measured with respect to the question being asked of the opposites,in
contrast to the physical structure of the two concepts. We can summarize that type-I
opposition models/captures oppositional attributes in a linear or almost linear fashion,
is easy to compute and, most likely, can be regarded as an approximation of the real
opposites (type-II opposition) for non-linear problems.

Definition 5 (Type-II Opposition Mapping). Any one-to-many function Υ: f(C) →
f(C) which defines an oppositional relationship between the evaluation f of a concept

x

x̆I

quasi-opposites

super-opposites

d

d

Fig. 2.1. Simplified representation of quasi- and super-opposites in a 2-dimensional space. The
distance d of the type-I opposite x̆I from the closest corner can be used to define the quasi-
and super-oppositional regions. The boundary between these two region (bolded dashed circle
segment) can be regarded quasi-opposite for a strict interpretation.
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C ∈ C to a set S of all other evaluations of concepts also in C such that C ∈ Υ(s)
∀s ∈ S.

The focus on evaluation f of concepts, instead of focusing on the concepts themselves,
leads to loss of information regarding the true relationship of opposite concepts (i.e.
type-II is a phenotypical relationship as opposed to a structural one). Given some con-
cept C and its associated evaluation f(C), the type-II opposition mapping will return a
set of opposite evaluations which can then lead to concepts (although the specific true
type-I opposite concept cannot be determined with certainty). Here, Υ returns a set be-
cause f is not restricted to any functional form. For example, if f is a periodic function
such as the sine wave defined over [−2π, 2π], then for any f(x) there will be at least
two opposites since a horizontal plane will cut the wave twice at each of −3/2π, 1/2π
and −1/2π, 3/2π, respectively (5 points at −2π,−π, 0, π, 2π and will cut the wave at
4 points elsewhere).

Definition 6 (Type-II Opposition). Let concept C be in set C and let Υ: f(C) → f(C)
be a type-II opposition mapping where f is a performance function (such as error, cost,
fitness, reward, etc.) Then, the set of type-II opposites of C are completely defined by
Υ. Type-II opposition can also be coined non-linear opposition.

An example of type-II opposition is in the following. Let y = f(x1, x2, · · · , xn) ∈ R

be an arbitrary function where y ∈ [ymin, ymax] are the extreme values of f . Then,
for every point C = (c1, c2, · · · , cn) we can define the type-II opposite point C̆ =
(c̆1, c̆2, · · · , c̆n) according to

C̆ = Υ(C) = {c | y̆ = ymin + ymax − y}. (2.4)

We can assume that f is unknown, but that ymin and ymax are given or can be reasonably
estimated.

Alternatively, at sample t we may consider a type-II opposite with respect to t − 1
previous samples. Using Equation (2.4), this temporal type-II opposite can be calculated
according to

c̆i(t) =
{

c | y̆(t) = min
j=1,...,t

y(j) + max
j=1,...,t

y(j) − y(t)
}

. (2.5)

Figure 2.2 depicts the difference between type-I and type-II opposition for a simple case
where we are trying to find the extremes of a non-linear function. As apparent, type-II
opposition can provide more reliable information.

In general, a type-II opposition scenario implies a deep understanding of the tartget
concept, which is typically difficult to attain for real-world applications. However, type-
II opposition mappings can be approximated online as the learning/search is in progress.
We term this situation opposition mining.

Definition 7 (Opposition Mining). Let C∗ ∈ C be a target concept and Υ a type-II
opposition mapping. Then, opposition mining refers to the online discovery of Ῡ, which
represents an approximation to Υ.
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x̆I

x

x̆II

ymin

ymax

xmin xmax

f(x)

f(x̆I)

f(x̆II)

Fig. 2.2. Type-I versus type-II opposition. A nonlinear function f : x → [ymin, ymax] has
the value f(x) at the position x. The type-I opposite x̆I = xmax + xmin − x generates the
function value f(x̆I). The type-II opposite x̆II , however, corresponds to the real opposite value
f(x̆II) = f̆(x) = ymax + ymin − f(x). Evidently, f(x̆I) → f(x̆II) for a linear or almost
linear f .

The definitions for super- and quasi-oppostion can also be extended to the type-II do-
main, although we have not provided definitions here. Similarily, we can discuss the
notion of a degree of opposition for both type-I and type-II scenarios (we will assume,
without loss of generality a type-I situation).

Definition 8 (Degree of Opposition). Let Φ be a type-I opposition mapping and
C1, C2 ∈ C arbitrary concepts such that C1 �= Φ(C2). Then, the relationship between
C1 and C2 is not opposite, but can be described as partial opposition, determined by a
function τ : C1, C2 → [0, 1]. As τ(C1, C2) approaches 1 the two concepts are closer to
being opposite of each other.

So, it is possible to compare elements C1, C2 ∈ C within the framework of opposition.
Calculating the degree of opposition τ(C1, C2) will depend on how concepts are repre-
sented for the problem at hand. Nevertheless, this definition allows for the explanation
of the relationship between elements that are not truly opposite. For example, consider
the statements

s1 = “Everybody likes apples”

s2 = “Nobody likes apples”

s3 = “Some people like apples”

s4 = “Some people do not like apples”

We can describe the relationship between these concepts with respect to s1 using the

degree of opposition. Doing so, we can determine that τ(s1, s4) < τ(s1, s3) <
τ(s1, s2), where the exact value of each relationship is ignored but is related to the
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logical meaning of the statements. It is important to distinguish between the degree of
opposition and super- and quasi-opposition. The latter relationships are related to phys-
ical distance whereas the former is concerned with the logical relationship. In some
cases these may overlap, and others there may be no such similarity.

As an example of how to combine the degree of opposition with a temporal situation
as described above, assume only the evaluation function g(X) is available. This is ac-
complished by adding the temporal variable t to the definition of the τ function. Then,
using the same scenario as Equation (2.5) the type-II temporal opposite for variables
X1 and X2 could then be computed according to

τ(X1 = x1, X2 = x2, t) =
|g(x1) − g(x2)|

max
j=1,...,t

g(xj) − min
j=1,...,t

g(xj)
∈ [0, 1]. (2.6)

A more practical example of employing the degree of opposition can be found in [22],
where opposite actions were utilized for a reinforcement learning (RL) algorithm. In
order to make additional updates to the Q matrix for the Q-learning algorithm, an RL
agent has to know how to find opposite actions and opposite states. Clearly, this is
an application-dependant problem although in some applications such as control and
navigation a good definition of opposite actions is generally straightforward (increase
temperature is the opposite of decrease temperature, and move left is the opposite of
move right). Nonetheless, general procedures may be defined to facilitate the situation
where a good opposite action may not be so apparent.

In [22] this was accomplished by defining the degree of opposition τ as a measure in
how far two actions a1 and a2 are opposite of each other in two different states si and
sj , respectively, such as

τ(a1|si , a2|sj ) = η ×

⎡

⎣1 − exp

⎛

⎝− |Q(si, a1) − Q(sj , a2)|
max

k
(Q(si, ak), Q(sj , ak))

⎞

⎠

⎤

⎦ , (2.7)

where the Q matrix contains the accumulated discounted rewards (which guide learn-
ing), and η is the state similarity and can be calculated based on state clustering or by a
simple measure such as

η(si, sj) = 1 −

∑

k

|Q(si, ak) − Q(sj , ak)|
∑

k

max (Q(si, ak), Q(sj , ak))
. (2.8)

In [22] limited examples are provided to intuitively verify the usefulness of this measure
in context of the reinforcement learning problems. However, online opposition mining
based on this measure, embedded inside the parent algorithm, has not been investigated.

2.3.2 Example for Using Opposition

There are numerous manifestations of oppositional relationships in both physical world
and the human society, too many to show an example for each. Instead, we will restrict
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ourselves to a random sampling scenario. We assume at least one optimal solution exists
within a given interval [a, b], and that we are given feedback regarding the distance of
a guess to the closest optimal solution. To make comparing the approaches easier we
group guesses into pairs.

It has been shown that for a problem with a single optima, where distance feedback
is given as evaluation criteria that guesses made in a specific dependent manner (in
contrast to purely random) have a higher probability of being closer to the optimal
solution [17,18].

Theorem 1 (Searchig in n-Dimensional Space). Let y = f(Xn) be any unknown
function with Xn = (x1, . . . , xn) such that xi ∈ [ai, bi], where ai, bi ∈ R. Also, let
y have some extreme values S = {s1, . . . , sn}, without loss of generality assumed the
minima of y. Generate X, Y based on a uniform distribution with respect to the interval
[ai, bi] and let X̆ = ai + bi − Xi. Then

Pr
(
‖X̆, S‖ < ‖Y, S‖

)
> Pr

(
‖Y, S‖ < ‖X̆, S‖

)

where ‖ · ‖ denotes the Euclidean distance.

Similarily, if X̆ = (0.5+X)%1 we can also achieve a similar expected behavior. Indeed
any low discrepancy sequence (see Chapter 3) should yield an improvement, in terms of
probability of making guesses closer to the optima, over purely random sampling. This
concept has been employed in quasi-Monte Carlo methods [8, 9, 15, 23], evolutionary
algorithms [7,11,12,17], particle swarms [13,14,16] and neural networks [3,6], to name
a few. The underlying concept is similar in all cases. Although in relation to opposition-
based computing, typically the focus is on pairs of samples (guess, opposite guess).

Table 2.1 shows probabilities of randomly generating a solution in 2, 5 and 10 di-
mensions over two opposition mappings, both compared to purely random sampling.
For each dimension we assume the interval is [0, 1], without loss of generality. The first
method, called “Mirror”, uses x̆i = 1−xi, and the second method, “Modulo”, is defined
as x̆i = (0.5 + xi)%1. To make comparing the approaches simpler, we examine pairs
of guesses. The table shows triples < P (min(X, Y ) = min(X̆, Y )), P (min(X, X̆) <
min(X, Y )), P (min(X, X̆) > min(X, Y ) > which compare the probability of two
guesses being equal, opposition-based technique is more desirable and random guesses
are better, respectively. The data was gathered by randomly selecting 1000 solutions,
where 10,000 guessing pairs were considered. The value provided represents the aver-
age over these experiments.

In all experiments, the non-random guessing yields a higher probability of being
closer to one of the optimal solutions. Although, as the number of optimal solutions
increases, this benefit decreases, especially for the Mirror opposition mapping. But, the
Mirror function seems to be the best of the two mappings when there only exists one
optimal solution.

In general for distance-based problems, given m optimal solutions represented as the
set S = {S1, ..., Sm}, the goal is to devise an opposition mapping such that if we let
g1 = d(X, s1,∗), g2 = d(Y, s2,∗) and g3 = d(Φ(X), s3,∗) then we desire the expected
value relationship,
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Table 2.1. Generating guesses where < P (min(X, Y ) = min(X̆, Y )), P (min(X, X̆) <
min(X, Y )), P (min(X, X̆) > min(X, Y ) > for variables X, Y . In most cases, a Modulo
function outperforms the Mirror function, but both show an improvement over purely random
sampling. See Chapter 3 for more on low-discrepancy sequences.

Number of optimal Solutions
Method 1 2 5

2 Dimensions
Mirror < 0.358, 0.358, 0.283 > < 0.344, 0.343, 0.313 > < 0.338, 0.338, 0.321 >

Modulo < 0.364, 0.364, 0.273 > < 0.355, 0.355, 0.291 > < 0.344, 0.344, 0.312 >

5 Dimensions
Mirror < 0.361, 0.361, 0.278 > < 0.346, 0.346, 0.309 > < 0.334, 0.334, 0.332 >

Modulo < 0.359, 0.359, 0.282 > < 0.353, 0.354, 0.293 > < 0.347, 0.347, 0.307 >

10 Dimensions
Mirror < 0.361, 0.362, 0.277 > < 0.345, 0.345, 0.310 > < 0.332, 0.332, 0.336 >

Modulo < 0.344, 0.360, 0.296 > < 0.343, 0.358, 0.299 > < 0.340, 0.356, 0.304 >

E[min(g1, g3)] < E[min(g1, g2)] (2.9)

where d(·, ·) is a distance function and s1,∗, s2,∗, s3,∗ are the solutions closest to each
of X, Y and Φ(X), respectively. Thus, the most desirable opposition map Φ∗ will be
one that maximizes the difference

Φ∗ = argmax
Φ

E[min(g1, g2)] − E[min(g1, g3)], (2.10)

although improved performance should be observed for any Φ satisfying equation 2.9.
Notice though that it is possible to design poor opposition mapping functions which
actually decrease the performance of the algorithm.

2.4 Opposition-Based Computing

Having introduced the foundational definitions for opposition-based computing, we
will now provide its definition as well as a first attempt at a classification strategy for
opposition-based computing methods in the following section.

Definition 9 (Opposition-Based Computing). We speak of opposition-based comput-
ing, when a computational method or technique implicitly or explicitly employs opposi-
tional relations and attributes either at its foundation (purely oppositional algorithms)
or to improve existing behavior of some parent algorithm (opposition-based extensions
of existing algorithms).

Situations in which opposition is inherent to the algorithm existence (for instance
switching between opposite alternatives in a decision-making scenario) is generally
termed implicit because the underlying concept tends to be overlooked in favor of im-
proving its behavior by other means. For example, adversarial searching using game
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tree searching typically follows a turn-based rule which alternates between two play-
ers. The focus of research in this area tends towards decreasing computational time via
improving the decision as to which nodes are to be explored instead of changing the un-
derlying adversarial structure of the algorithm. A similar concept also applies to other
competition-based methods and paradigms.

In contrast to implicit opposition, explicit forms occur when the goal is to utilize the
non-apparent or imperceptible opposition as a means of improving an existing, usually
non-oppositional algorithm. An example of this is the use of antithetic sampling to re-
duce the variance and improve convergence rate of Monte Carlo integration methods.
The integration method works without the use of any opposites, but by explicitly us-
ing antithetic variates we can observe improved behavior in terms of reduced variance
leading to faster convergence.

In both implicit and explicit algorithms it is possible to further determine the man-
ner in which opposites interact with respect to the scale [0 = cooperative, . . . , 1 =
competitive].

Definition 10 (Degree of Competition). Let C1, C2 ∈ C be arbitrary concepts where
C1 = Φ(C2). With inherent respect to the algorithm employing opposition, Σ, the
degree at which C1, C2 compete for use in Σ is given by the function ζ : C1, C2|Σ →
[0, 1]. Values of ζ closer to 1 indicate a more competive situation. For readability we
often drop the Σ, though it is implied.

Basically, this definition allows us to measure how cooperative or competitive the con-
sideration of two opposite guesses/concepts are. For a game tree search ζ → 1 (totally
competitive), and in case of antithetic variates we take an average of the results such
that ζ → 0 (totally cooperative).

We can also speak of the degree of competition between concepts which have a
degree of opposition < 1. The above definition changes slightly in that the requirement
of C1 = Φ(C2) is dropped and we adopt a subscript ζτ to represent the case that the
concepts are not true opposites.

Whether wishing to describe the degree of opposition or the degree of competition
between opposites, there may be a time componet to the interaction. In such cases the
goal is to describe the degree of opposition between aribitrary concepts C1, C2 ∈ C as
time (or algorithm iterations) t varies,

Υt(C1, C2) =
dΥ(C1, C2)

dt
. (2.11)

In a similar fashion we can describe the behavior of the degree of competition between
concepts with respect to algorithm Σ at time t as

ζt(C1, C2) =
dζ(C1, C2)

dt
. (2.12)

These definitions are very broad and there are many possible manifestations of
opposition that can arise. We provide possibilities below, but this is by no means a
comprehensive list. Of course, some of these areas overlap, and can be hybridized.
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2.5 OBC Algorithms

Opposition can be embedded into existing algorithms implicitly or explicitly. For in-
stance, the Proof Number Search (Chapter 6) is an example of implicit opposition
usage, whereas the ODE algorithm (Chapter 8) is an explicit implementation. In this
section we establish a general framework for explicit employment of OBC within exist-
ing methodologies. For this purpose we begin general definitions of OBC algorithms.

Definition 11 (Implicit OBC Algorithms). Any algorithm that incorporates opposi-
tional concepts without explicitly using type-I or type-II opposites is an implicit OBC
algorithm, or short an I-OBC algorithm.

The range of I-OBC techniques is large since they have been in use since quite some
time. For example, the well-known bisection method [4] for solving equations can
be considered an I-OBC algorithm since it shrinks the search interval by looking at
positive versus negative sign change. As well, using Bayes theorem [2] is an implicit
usage of oppositional relationship between the conditional probabilities p(A|B) and
p(B|A)5. A different, stronger version of implicit incorporation of oppositional con-
cepts is Bayesian Yin-Yang Harmony Learning which is based on the alternative view-
points of Bayes Rule (Chapter 10).

Definition 12 (Explicit OBC Algorithms). Any algorithm dealing with an unknown
function Y = f(X) and a known evaluation function g(X) (with higher values be-
ing more desirable) extended with OBC to calculate type-I or type-II opposite X̆ of

numbers, guesses or estimates X for considering max
(
g(X), g(X̆)

)
in its decision-

making is an explicit OBC algorithm, or short an E-OBC algorithm.

Generally, three classes of E-OBC algorithms can be distinguished:

1. Initializing E-OBC Algorithms – The concept of opposition is only used during
the initialization. The effect is a better start (initial estimates closer to solution
vicinity). Further, since it is done before the actual learning/searching begins, this
creates no additional overhead.

2. Somatic E-OBC Algorithms – This approach is based on modification of the body
of an existing algorithm. For instance, changing the weights in a neural network
during the learning based on integration of opposites weights changes the way the
algorithm works in every step. The effect of OBC will be much more visible since
opposition is considered in every iteration/episode/generation.

3. Initializing and Somatic E-OBC Algorithms – This class uses OBC both during
initialization and actual learning/search by combining the two previous approaches.

Algorithm 1 provides the generic structure of E-OBC algorithms. However, it seems that
the selection of an appropriate OBC algorithm and its specific steps directly depend on
the problem at hand and cannot be universally established.
5 The underlaying idea of Bayes theorem is looking at events from opposite perspectives

when analyzing a cause-effect problem. For example, if we have the prior probability of
cancer, p(cancer), and on smoking, p(smoking), then the conditional posterior probability
p(cancer|smoking) can be determined when we make an antipodal observation for the condi-
tional probability p(smoking|cancer).
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Algorithm 1. General pseudo code of initializing and somatic E-OBC algorithms. Dif-
ferent schemes may/shall be defined for specific parent algorithms.
1: Establish evaluation function g(·) (e.g. error, fitness, reward etc.)
2: Initialize parameters P={p1, · · · , pn} (e.g. weights, chromosomes etc.)
3: Find opposites P̆ = {p̆1, · · · , p̆n}

4: if First option then
5: Establish M = P ∪ P̆
6: Sort M in descending order with respect to g(·)
7: Choose the n first parameters m1, · · · , mn from M
8: end if

9: if Second option then
10: Run the algorithm with P
11: Run the algorithm with P̆
12: Choose the better one with respect to g(·)
13: end if

14: for each learning/search loop of the parent algorithm do
15: Calculate the estimate X based on schemes provided by the parent algorithm
16: if OBC-condition satisfied then
17: Calculate X̆
18: Perform the parent algorithm’s steps for X̆
19: Take X or X̆ based on max(g(X), g(X̆))
20: end if
21: end for

Line 1 in Algorithm 1 controls the frequency of relaying on opposition while the
parent algorithm runs. The following cases can be distinguished:

1. OBC condition always true – OBC can be applied during the entire learn-
ing/search, meaning that in all iterations/episodes/generations, proper opposite
quantities are calculated and comparisons with original quantities are conducted.
It could appear that in this way we can fully exploit the benefit of oppositional con-
cept. However, in some cases the additional overhead for calculation of opposite
entities can exceed its advantage; the extended algorithm becomes less effective
than its original version in terms of convergence speed (the accuracy will be at
least as high as the regular call without OBC due to max(g(X), g(X̆))).

2. OBC condition as a threshold – If we decide to activate OBC only for a fraction
of time, then the most straightforward condition for opposite estimates is to set a
threshold θ. If number of iterations/episodes/generations is less than θ, for instance,
then opposite estimates will be calculated and considered. This will eliminate the
overhead complexity but adds a degree of freedom which needs empirical knowl-
edge to be filled.

3. OBC condition as a probabilistic constraint – Opposite consideration could
be triggered by a probability function, which ideally is coupled with the evalu-
ation function g(X). Empirical and uniform probabilities may be used as well.
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Generally, probabilistic control of opposition frequency should be either a decreas-
ing or increasing function. For former, we rely on opposition rather at the begining
stages of learning/search and do not use it towards the end to suppress the compu-
tational overhead. For latter case, we increase the opposition frequency as learn-
ing/search progresses since, perhaps, we do not know the true opposites initially.
This would correspond to dynamic/online opposition mining.

In following subsections we try to categorize different OBC algorithms.

2.5.1 Search and Reasoning

Generally speaking, a search algorithm explores possible solutions to a problem in a
systematic manner with the goal of discovering some solution. Although, in many in-
stances the goal may not be obtainable in a reasonable amount of time. A popular
approach to deal with this scenario is to incorporate heuristic knowledge about the
problem or solution to guide the searching algorithm, instead of an uninformed search
which does not use any such knowledge. Reasoning is a process of searching for some
explanation for a belief or action. Therefore search and reasoning are closely coupled
processes. Examples include:

1. Implicit: adversarial search and reasoning (see Chapter 6).
2. Explicit: understanding or compromising between opposing arguments, consider-

ing opposite reasonings (see Chapter 5).

2.5.2 Optimization

The purpose of optimization algorithms is to maximize or minimize some real-valued
function. Without loss of generality, consider a minimization problem where we are
given a function f : A → R from some set A we seek to find an element a∗ ∈ A such
that f(a∗) ≤ f(a) ∀a ∈ A. Of course, this generalizes all searches, but the reader
should keep important aspects such as constraint satisfation, multiple objectives, etc in
mind. Examples include:

1. Implicit: Competitive coevolution (see Chapter 9).
2. Explicit: Using a low-discrepancy paired guessing strategy to improve diversity

and/or convergence rate (see Chapter 3).

2.5.3 Learning

Learning refers to the process of modifying behavior as a result of experiences and/or
instructions. In other words, given some initial hypothesis, learning allows for its mod-
ification as more data are observed. This contrasts with search and reasoning in that
learning is not concerned with explaining why the data is observed, only to perform
some action when it occurs. Often learning can be seen as an optimization problem,
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however, here we distinguish them because they do not always imply one another. Ex-
amples include:

1. Implicit: model selection using opposing viewpoints of a problem (see Chapter 10).
2. Explicit: considering two opposing actions or states during active learning (see

Chapter 11).

2.6 Summary and Conclusions

In this work, the general framework of opposition-based computing was introduced. Ba-
sic definitions of type-I and type-II opposites along with categorization of oppositional
algorithms were provided as well. Generally, OBC provides a straightforward frame-
work for extension of many existing methodologies as this has been demonstrated for
neural nets, evolutionary algorithms, reinforcement learning and ant colonies. The OBC
extensions of existing machine learning schemes seem to primarily accelerate search,
learning and optimization processes, a characteristic highly desirable for hyperdimen-
sional complex problems.

Opposition-based computing, however, encompasses multiple challenges as well.
First and foremost, a solid and comprehensive formalism is still missing. Besides, the
definition of opposition may not be straightforward in some applications such that the
need for opposition mining algorithms should be properly addressed in future investi-
gations. On the other side, the cost of calculating opposite entities can exceed the time
saving so that the OBC-extended algorithm becomes slower than the parent algorithm.
Extensive research is still required to establish control mechanisms to regulate the fre-
quency of opposition usage within the parent algorithms.

Due to our imperfect understanding of interplay between opposite entities, this work
will most likely be a preliminary investigation. Hence, more comprehensive elabora-
tions with a solid mathematical understanding of opposition remain subject to future
research.

The motivation of this chapter was not to just provide a framework for oppositional
concepts claiming to cover all possible forms of opposition (due to the diversity of
oppositeness this seems to be extremely difficult, if not impossible), but also to estab-
lish a general umbrella under which other, existing techniques can be classified and
studied. This should not be understood to just put a new label on existing methodolo-
gies and algorithms but to consciously comprehend the oppositional nature of problems
and exploit a-priori knowledge in light of inherent antipodality and complementarity of
entities, quantities and abstractions.
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Antithetic and Negatively Associated Random Variables
and Function Maximization

Don L. McLeish

Department of Statistics and Actuarial Science, University of Waterloo, Canada

Summary. A pair of antithetic random numbers are variates generated with negative dependence
or correlation. There are several reasons why one would wish to induce some form of negative
dependence among a set of random numbers. If we are estimating an integral by Monte Carlo, and
if the inputs are negatively associated, then an input in an uninformative region of the space tends
to be balanced by another observation in a more informative region. A similar argument applies
if our objective is Monte Carlo maximization of a function: when the input values are negatively
associated, then inputs far from the location of the maximum tend to be balanced by others
close to the maximum. In both cases, negative association outperforms purely random inputs
for sufficiently smooth or monotone functions. In this article we discuss various concepts of
negative association, antithetic and negatively associated random numbers, and low-discrepancy
sequences, and discuss the extent to which these improve performance in Monte Carlo integration
and optimization.

3.1 Antithetic and Negative Association

Antithetic random numbers are normally used to generate two negatively correlated
copies of an unbiased estimator so that on combination, we have reduced variance.
They are one of a large number of variance-reduction techniques common in Monte-
Carlo methods (for others, see [12] ). For example, suppose we wish to estimate an
integral ∫ ∞

−∞
h(x)f(x)dx

where f(x) is a probability density function and h is an arbitrary function for which
this expected value exists. One very simple method for doing this, usually known as
“crude Monte Carlo”, is to generate independent observations Xi, i = 1, 2, ..., n from
the probability density function f(x) and then estimate the above integral with a sample
mean

1
n

n∑

i=1

h(Xi).

In order that the above estimator be unbiased, i.e. that

E

[
1
n

n∑

i=1

h(Xi)

]

=
∫ ∞

−∞
h(x)f(x)dx
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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we do not need the assumption of independence, but only that each of the random
variables Xi have probability density function f(x) so it is natural to try and find joint
distributions of the random variables Xi which will improve the estimator, i.e. make its
variance var

(
1
n

∑n
i=1 h(Xi)

)
smaller. One of the simplest approaches to this problem

is through the use of antithetic random numbers. This is easier to understand in the case
n = 2, for then, if h(X1) and h(X2) have identical distributions and therefore the
same variance,

var

(
1
2

2∑

i=1

h(Xi)

)

= 2[var(h(X1)) + cov(h(X1), h(X2))] (3.1)

Of course if X1 and X2 are independent random variables, in order to minimize this
quantity while fixing the common marginal distribution of X1, X2, we need to min-
imize the covariance between the two, cov(h(X1), h(X2)), subject to the constraint
that X1, X2 have the required probability density function f(x). The solution is quite
simple. Suppose that X1and X2 both have finite variance,

F (x1, x2) = P (X1 ≤ x1, X2 ≤ x2)

is the joint cumulative distribution function and F1(x1) = P (X1 ≤ x1), F2(x2) =
P (X2 ≤ x2) are the marginal cumulative distribution functions of X1, X2 respectively.
Then in [10] it is proved that

cov(X1, X2) =
∫ ∞

−∞

∫ ∞

−∞
(F (x1, x2) − F1(x1)F2(x2))dx1dx2 (3.2)

and [11] gives a simple proof of this identity. In [3] it is proved that if α(X1) and β(X2)
are functions of bounded variation on the support of the probability distribution of the
random vector (X1, X2) with finite first moments and E(|α(X1)||β(X2)|) < ∞, then

cov(α(X1), β(X2)) =
∫ ∞

−∞

∫ ∞

−∞
(F (x1, x2) − F1(x1)F2(x2))α(dx1)β(dx2)

Now suppose that we wish to minimize the variance (3.1). Since we are constrained
to leave the marginal distribution alone, we can only change the dependence between
X1 and X2 and thus vary the term F (x1, x2) in (3.2). Our problem becomes the min-
imization of F (x1, x2), if possible for all values of x1, x2 with a constraint on the
marginal distributions of X1and X2.

Suppose we generate both X1 and X2 by inverse transform, that is by generating
(continuous) uniform random numbers U1 and U2 of the interval [0, 1] and then solving
F (X1) = U1, F (X2) = U2 or, equivalently by using the inverse of the function F,
X1 = F−1(U1), X2 = F−1(U2)1 Obviously we build some dependence between X1

and X2 by generating dependence between U1 and U2 so let us try an extreme form of
dependence U2 = 1 − U1, for example. In this case, the joint cumulative distribution
function is
1 This definition requires that F (x) be continuous and strictly increasing. The definition of

inverse transform that applies to a more general c.d.f. is X = inf{x; F (x) ≥ U}.
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F (x1, x2) = P (X1 ≤ x1, X2 ≤ x2)

= P (F−1(U1) ≤ x1, F
−1(1 − U1) ≤ x2)

= P (U1 ≤ F (x1), 1 − U1 ≤ F (x2))
= P (U1 ≤ F (x1) and U1 ≥ 1 − F (x2))
= max(0, F (x1) − 1 + F (x2)).

There is an elegant inequality due to Fréchet [5], [4] which states that for all joint
cumulative distribution functions F (x1, x2) which have marginal c.d.f. F (x),

max(0, F (x1) + F (x2) − 1) ≤ F (x1, x2) ≤ min(F (x1), F (x2))

and so indeed the smallest possible value for F (x1, x2) is achieved when we generate
both X1 and X2 from the same uniform random variate and put X1 = F−1(U1),
X2 = F−1(1 − U1). This strategy for generating negative dependence among random
variables is referred to as the use of antithetic (or opposite) random numbers.

Definition 1. Random numbers X1 and X2 with continuous cumulative distribution
functions F1, F2 respectively are said to form an antithetic pair if for some uniform[0,1]
random variable U, we have X1 = F−1

1 (U), and X2 = F−1
2 (1 − U).

The concept of antithetic random numbers as a tool for reducing the variance of sim-
ulations appears in the early work of Hammersley (see [8] and [7]). The extent of the
variance reduction achieved with antithetic random numbers is largely controlled by the
degree of symmetry in the distribution of the estimator. In the best possible case, when
h(F−1(U)) is a linear function of U, the use of paired antithetic variates can entirely
eliminate the Monte Carlo variance so that the estimator with

1
2
[h(X1) + h(X2)]

X1 = F−1(U1), X2 = F−1(1 − U1) is perfect in the sense that it is exactly equal to∫∞
−∞ h(x)f(x)dx and its variance, var(1

2 [h(X1) + h(X2)]) is zero. When two random
variables come in antithetic pairs, e.g. X1 = F−1(U1),and X2 = F−1(1 − U1), we
will later use the notation X2 = X−

1 to indicate this dependence.
For a more general function, of course, the variance of the estimator is unlikely to

be zero but as long as the function h is monotonic, we are guaranteed that the use of
antithetic random numbers is at least as good in terms of variance as using independent
random numbers, i.e. in this case

var{1
2
[h(X1) + h(X2)]} ≤ 1

2
var{h(X1)}

The problem of generating negatively associated random variables in more than two
dimensions has a richer variety of solutions. One possibility is to generate n (assum-
ing n is even) points using n/2 independent uniform random numbers U1, ..., Un/2

and then their antithetic partners, 1 − U1, ..., 1 − Un/2. In general random variables
(X1, ..., Xn) are said to be negatively dependent if for any two functions h1 and h2
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where h1 is a function of a subset of the X ′
is say {Xi1 , Xi2 , ..., Xik

} which is non-
decreasing in each of the k components, and h2 is a similar function of a subset of the
remaining X ′

is i.e. a function of {Xj ; j �= i1, i2, ..., ik} then

cov(h1(Xi1 , Xi2 , ..., Xik
), h2{Xj; j �= i1.i2, ..., ik}) ≤ 0

Such structures of positive and negative dependence were introduced by [1]. Random

variables (X1, ..., Xn) achieve the extreme antithesis property if they are exchangeable
(that is the joint distribution of any permutation of (X1, ..., Xn) is the same as that
of (X1, ..., Xn)) and if they achieve the minimum possible correlations for the given
marginal distribution. Notice for exchangeable random variables Xi all with marginal
c.d.f. F (x), variance σ2 and correlation coefficient ρ, that

var(
n∑

i=1

Xi) = σ2n[1 + (n − 1)ρ] ≥ 0. (3.3)

This implies that ρ ≥ − 1
n−1 so that the smallest possible value for the covariances

among n exchangeable random variables is − 1
n−1 . This is not always achievable but

it is possible to get arbitrarily close to this value for uniformly distributed random vari-
ables. The following iterative Latin hypercube sampling algorithm (see [2]) allows us
to get arbitrarily close in any dimension n:

Iterative Latin Hypercube Sampling Algorithm

1. Begin with t = 0. Define U (0) = (U
(0)
1 , U

(0)
2 , ...U

(0)
n ) all independent U [0, 1].

2. Draw a random permutation πt of {1, 2, ..., n} independent of all previous draws.
3. Define

U(t+1) =
1

n
(πt + U(t))

4. Set t = t + 1. If t > tmax exit, otherwise return to step 2.

In [2] it is shown that

cor(U (t)
i , U

(t)
j ) = − 1

n − 1
(1 +

1
n2t

) for i �= j

which very rapidly approaches the minimum possible value of − 1
n−1 as t grows. Run-

ning this algorithm for a few (e.g. tmax = 10) steps then results in a vector U(t) whose
components are pairwise very close to the minimum possible correlation − 1

n−1 .
Because antithetic random numbers and negative dependence control the covariance

between two monotone functions, it is a device suited best to reducing the variance of
Monte Carlo integrals such as

var{ 1
n

∑

i

h(Xi)}.
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We might also wish to induce dependence in a sequence of values Xi however if we
wanted to determine the location of the minimum or the maximum of the function h,
and this is the theme of the next section.

3.2 Monte Carlo Maximization Using Antithetic and Dependent
Random Numbers

In this section, we will discuss the general problem, that of the design of points
u1, ..., um in one or more dimensions with a view to improvement over the case of inde-
pendent random variables. The basic questions are: how should we select the points ui

and how much improvement can we expect over a crude independent sample? We begin
with a general result. We wish to approximately maximize a function g : [0, 1]d → �
and to that end determine a set of points (u1, u2, ...um) which are marginally uniformly
distributed (i.e. each u1 has a uniform distribution on [0, 1]d) but possibly dependent
so that the probability of improvement over crude

pim = P [max(g(U1), g(U2), ...g(Un)) < max(g(u1), g(u2), ..., g(um))] (3.4)

is maximized for smooth functions g. Here each of the random vectors U1, ..., Un are
independent uniform on [0, 1]d and each of the ui are also uniform[0, 1]d but the latter
may be dependent.

Properties of the maximum are closely tied to the Hessian H of the function g(x) at
its maximum, a matrix H where

Hij =
∂2g(x)
∂xi∂xj

.

Assume first that this matrix H has all eigenvalues equal to −λ so that, after an orthog-
onal transformation we can assume that H = −λId, where Id is the d−dimensional
identity matrix. Suppose D is a random variable defined as the closest distance from a
random point in [0, 1]d, say U to a point in the set {u1, u2, ..., um}, i.e.

D2 = min{(U − uj)′(U − uj), j = 1, 2, ..., m}.

Then there is a simple relationship between the probability of improvement and the
distribution of D2 valid for reasonably large values of n (large enough that edge effects
do not play a significant role),

pimp � E{exp(−nV (D))} = E{exp(−cdnDd)} (3.5)

where V (D) is the volume of a ball of radius D in dimension d and cd is defined by
V (D) = cdD

d. Particular values are:

d 1 2 3 4 5 6 7 8

cd 2 π 4
3π π2

2
8π2

15
π3

6
16π3

105
π4

24
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Proof of formula (3.5). Let D be the distance between the point u∗ = argmax
g(u) and the closest point in the set {u1, u2, ..., um}. Let Vu∗(D) be the volume of
the intersection of the unit cube [0, 1]d with a ball of radius D around the point u∗.
Then the probability that no point among {U1, ..., Un} is inside this ball is the proba-
bility that every one of the points Ui falls outside the ball:

pimp = E[(1 − Vu∗(D))n]

� E[(1 − cdD
d)n] (3.6)

� E[exp(−cdnDd)] for n large and Dd small.

Note that the approximation in (3.6) holds provided that D is small, (i.e. m is large),
because then the edge effect which occurs when u∗ is within d units of the boundary of
the cube is negligible.

This approximation (3.5) is remarkably accurate for reasonably large n and shows that
in order to maximize the probability of improvement, we need to choose a point set
ui which is as close as possible to a randomly chosen point in [0, 1]d. The potential
improvement over independent Ui is considerable. To generate such as set of ui we
will use the notation xmod 1 to represent the fractional part of the real number x.
Suppose d = 1 and we choose points equally spaced such as

ui = (u0 +
i

n
)mod 1, i = 1, 2, ..., n (3.7)

for u0 uniform[0,1]. For example in Figure 3.1, n = 10, the value of u0 was 0.815
and the closest distance from the random point U to a point in the set {u0,u1, ...u9} is
denoted D.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 

 

 

 

 

 

 

 

 

 

 

u
1u

2 u
3

U

D

u
0

Fig. 3.1. The points (6) when n=10
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It is easy to see that D has a uniform[0, 1
2n ] distribution and so

pimp � E{exp(−2nD)} = 2n

∫ 1/2n

0

e−2nxdx = 1 − e−1 � 0.632.

In this case the probability of improvement over the independent case can be computed
exactly and a correction to this approximation obtained since

pimp = 2n

∫ 1/2n

0

(1 − 2x)ndx =
n

n + 1
(1 − (1 − 1

n
)n+1)

� (1 − e−1) − 1
n

(1 − 5
2
e−1) + O(n−3) = 0.63212− 0.0803

n
+ O(n−3)

The term 0.0803
n above renders the approximation nearly exact. For example when

n = 2,

pimp = 4
∫ 1

4

0

(1 − 2x)2dx =
7
12

� 0.58333

whereas the first two terms give 0.63212 − 0.0803
2 = 0.59197. The closeness of these

two answers leads us to believe that use of the first two terms will provide an accurate
approximation for any n > 2.

There is nothing particularly unique about the placement of points suggested by (3.7)
that we used to generate dependent values ui. This is simply a device used for strati-
fication of the sample, so that every subinterval of length 1/n contains a point. There
are a variety of other potential algorithms for filling space evenly so that the sizes of
holes are small, often referred to as low-discrepancy sequences under the general topic
Quasi-Monte Carlo Methods. See for example [14]. We will discuss briefly a special
case of these methods, the Halton sequence later.

We might, however, also try using antithetic random numbers as a device to get
close to an optimum. Suppose u0 is uniform on [12 , 1] and u−

0 = 1 − u0. Then the
distance D from U, a uniform[0, 1] random variable to the closer of u0 and u−

0 has
the same distribution as that of the distance between two independent random points on
the interval [0, 1

2 ], with cumulative distribution function F (x) = 1 − (1 − 2x)2 for
0 < x < 1

2 and probability density function F ′(x) = 4(1− 2x), for 0 < x < 1
2 . In this

case

pimp = E[(1 − V (D))n] = E[(1 − 2D)n] (3.8)

= 4
∫ 1/2

0

(1 − 2x)n(1 − 2x)dx =
2

n + 2
(3.9)

which is 1
2 in the case n = 2. When n = 2, two antithetic random numbers are no bet-

ter or worse than two completely independent random numbers. In fact for a particular
function, it is possible that a pair of antithetic random numbers are worse than a pair of
independent random numbers. Consider, for example, a function with maximum at
u = 1

2 which is symmetric about its maximum (for example the function g(u) =
(1 − u)). Then P (max(g(U1), g(U2)) < max(g(u0), g(u−

0 )) is the probability that
u0 is closer to 1

2 than either U1 or U2 and this probability is 1
3 .
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However if the function g is monotone, it is a somewhat different story, because in
this case the antithetic random numbers are more likely to be closer to the maximum,
at one of the two ends of the interval. In particular, for one-dimensional monotone
functions g and continuous random variables Xi, the use of antithetic inputs provides
for an improvement over independent inputs with probability 7

12 .

Theorem 1. For strictly monotone g,

P (max(g(U1), g(U2)) < max(g(u0), g(u−
0 )) = 7/12 (3.10)

Proof. By the monotonicity of g (we assume it is increasing),

P (max(g(U1), g(U2)) < max(g(u0), g(u−
0 )) = P (max(U1, U2) < max(u0, u

−
0 ))

=
∫ 1

0

[P (U1 < max(x, 1 − x))]2dx

=
∫ 1

0

(max(x, 1 − x))2dx =
7
12

Theorem 1 means that, at least for monotone functions g, the candidates U1, U2, u0, u
−
0

for maximizing the function g(u) maximize it with probabilities 5
24 , 5

24 , 7
24 , 7

24 respec-
tively.

For the validity of Theorem 1, we do not need to require that u0 and u−
0 are antithetic

in the usual sense that u−
0 = 1 − u0 or that the function g is monotonic provided that

we can define a suitable partner u−
0 for u0. The ideal pairing is one for which, when

g(u0) is small, then g(u−
0 ) will tend to be large. Let us suppose for example we have

established some kind of pairing or “opposite” relationship (u, u∗) so that for some
value g1/2,

g(u) > g1/2 if and only if g(u∗) < g1/2. (3.11)

For example for the function g(u) = u(1 − u), the standard use of antithetic random
numbers fails to provide variance reduction but in this case we can define u∗ = 1

2−u for
u < 1

2 , and u∗ = 3
2 −u for u ≥ .1

2 and then (3.11) holds with g1/2 = 3
16 . Moreover we

suppose that the transformation u → u∗ is measure-preserving2 so that, for example,
if u is uniformly distributed on some set A, then u∗ is uniformly distributed on the
corresponding set A∗. Let us replace antithetic random numbers such as u−

0 by u∗
0

in (3.10). We denote the cumulative distribution function of g(u0), by F (x) and its
derivative f(x) = F ′(x), its probability density function (which we will assume exists,
to keep things simple).

Theorem 2. Suppose g is strictly monotone g, the transformation u → u∗ is measure-
preserving and for some value g1/2 (3.11) holds. Then

P (max(g(U1), g(U2)) < max(g(u0), g(u∗
0)) = 7/12 (3.12)

2 A probability or measure space together with a measure-preserving transformation on it is
referred to as a measure-preserving dynamical system.
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Proof. By the measure-preserving property, if u is uniformly distributed over the set
A then u∗ is uniformly distributed over A∗. Furthermore, since u → u∗ is measure-
preserving and that the distribution of g(u) is continuous, P (g(u) > g1/2) =
P (g(u) < g1/2) = 1

2 . Then

P [max(g(U1), g(U2)) < max(g(u0), g(u∗
0)] =

∫

[F (max(g(u), g(u∗))]2du

=
∫

{u;g(u)>g1/2}
F 2(g(u))du +

∫

{u;g(u)<g1/2}
F 2(g(u∗))du

+
∫

{u;g(u)=g1/2}
F 2(g(u∗))du

=
∫ ∞

g1/2

F 2(x)f(x)dx +
∫ ∞

g1/2

F 2(x)f(x)dx + 0 (3.13)

=
2
3
(1 − F 3(g1/2)) =

7
12

This shows that for approximating a maximum or minimum, the preferred notion of
“opposites” is one which maps large values of the function g into small values, not one
which maps large values of u into small values of u, unless it is known that the function
g is monotone.

Return to the context of Theorem 1. If we compare the more favorable of a random
number and its antithetic with a single random variable X1, then the probability that
the better of the antithetic pair is larger is 3

4 , which means that the best is determined
by u0, u

−
0 , U1 with frequencies 37.5%. 37.5% and 25% respectively.

Theorem 3. For strictly monotone g,

P (g(U1) < max(g(u0), g(u−
0 )) =

3
4

Proof. Assume without loss of generality that g is monotonically increasing. By the
monotonicity of g,

P [g(U1) < max(g(u0), g(u−
0 ))] = P [U1 < max(u0, u

−
0 )]

=
∫ 1

0

P [U1 < max(x, 1 − x)]dx

=
∫ 1

0

max(x, 1 − x)dx =
3
4

We can carry out a similar calculation in d = 2 dimensions. The easiest way of dis-
tributing m2 points at random in the unit square is with a shifted lattice, i.e. begin with
a point z = (z1, z2) uniform in the unit square [0, 1]2 and then define points on a lattice

uij = ((z1 +
i

m
)mod 1, (z2 +

j

m
)mod 1), i, j = 0, 1, ..., m− 1

See Figure 3.2 for such a set of points in the case m = 10.
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Fig. 3.2. A shifted lattice with n = 100

If D = the distance between a random point in the unit square and this point set
{uij}, then we can determine P (D ≤ x) from a simple geometric argument. When
x < 1

2m , P (D ≤ x) = πx2m2. When x > 1
2m , see the area of the shaded region in

Figure 3.3.

0           1/2m
 

 

 

 

 

 

 

 

 

 

1/2m

phiφ

φ
0.5 π−2φ

x

x

Fig. 3.3. Finding the distance between a random point in a square and the lower left corner

This area is the sum of the pie-shaped region, x2(π
4 − φ) where φ = cos−1( 1

2mx)

plus the sum of the area of two triangles, each with area 1
2 ( 1

2m )
√

x2 − 1
4m2 . Thus

P (D ≤ x) =

⎧
⎪⎪⎨

⎪⎪⎩

πx2m2 for x ≤ 1
2m

4m2x2(π
4 − cos−1( 1

2mx ))
+(4m2x2 − 1)1/2 for 1√

2m
> x > 1

2m

1 for x > 1√
2m
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P

Fig. 3.4. Triangulation or Tessellation of the unit square

It remains to determine

pimp � E[(1 − πD2)n] � E[exp(−πnD2)]

which, although not the prettiest integral in the world, is feasible under the above dis-
tribution. We will compare various other possibilities in 2-dimensions with this one.

A more efficient design for filling spaces in 2 dimensions is with a triangular
tessellation. Suppose the points (u1, u2, ...un) provide an equilateral triangulation or
tessellation3 of the unit square. By this we mean that each vertex ui (except possibly
for those on the boundary) is the corner of 6 triangles in the triangularization (see Figure
3.4). Suppose the side of each triangle is of length y. Then there are approximately 1/y
points on a given row, and the vertical distance between rows is the height of a triangle
or y

√
3/2 so there are approximately 2

y
√

3
rows of points giving about n = 2

y2
√

3

points in total. We use this relationship to determine y from the number of points n.
Again in this case it is not difficult to determine the distribution of the squared dis-

tance D2 from a random point in the unit square to the nearest vertex of a triangle.
Assume the triangle has sides of length y. We want to determine the distribution of
the distance between a random point in the triangle and the closest vertex. The sides of
the triangle are as in Figure 3.5: we wish to determine the distribution of the squared
distance of the point P to the closest corner of the large equilateral triangle.

By symmetry we can restrict to a point in the smaller right-angle triangle ABC. If
we pick a point P at random uniformly in ABC (the point C has coordinates (y

2 , y

2
√

3
))

3 Weisstein, Eric W. “Regular Tessellation.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/RegularTessellation.html
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Fig. 3.5. Determining the c.d.f. for a triangular tessellation

then for 0 < z < y2

3 , the probability that the squared distance to this random point P is
less than z is

8
√

3
y2

∫ y/2

0

∫ x/
√

3

0

I[x2 + y2 ≤ z]dydx =
8
√

3
y2

∫ π/6

0

∫ min(
√

z,y sec(θ)/2)

0

rdrdθ

=
4
√

3
y2

∫ π/6

0

min(z,
y2 sec2(θ)

4
)dθ

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2
y2

π√
3
z if z ≤ y2

4√
12z
y2 − 3

+ 4
√

3
y2 z(π

6 − arccos( y
2
√

z
))

if y2

3 > z > y2

4

1 if z ≥ y2

3

where I[x2 + y2 ≤ z] = 1 or 0 as x2 + y2 ≤ z or x2 + y2 > z respectively.
From this we can determine the probability density function of D2 and the value of

pimp � E{exp(−πnD2)} (3.14)

There is another method for generating a uniform point set that is commonly used,
the method of low discrepancy sequences. A simple example of this is the Halton se-
quence. We begin with a special case in one-dimension, the Van der Corput sequence
(see for example [12, Section 6.4]), obtained by reversing the digits in the represen-
tation of the sequence of integers in a given base. Consider the binary (base b = 2)
representation of the sequence of natural numbers:

1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, ...

We map these into the unit interval [0, 1] so that the integer
∑t

k=0 akbk is mapped
into the point

∑t
k=0 akb−k−1 using the displayed algorithm for producing nmax Van

der Corput random numbers.
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Van Der Corput Algorithm

1. Begin with n = 1.
2. Write n using its binary expansion. e.g. 13 = 1(8) + 1(4) + 0(2) + 1(1) becomes 1101
3. Reverse the order of the digits. e.g. 1101 becomes 1011.
4. Determine the number in [0,1 ] that has this as its binary decimal expansion. e.g. 1011 =

1( 1
2
) + 0( 1

4
) + 1( 1

8
) + 1( 1

16
) = 11

16
.

5. Set n = n + 1 and if n > nmax exit, otherwise return to step 2.

Thus 1 generates 1
2 , 10 generates 0(1

2 )+1(1
4 ), 11 generates 1(1

2 )+1(1
4 ) etc. The in-

tervals are recursively split in half in the sequence 1
2 , 1

4 , 3
4 , 1

8 , 5
8 , 3

8 , 7
8 , ... and the points

are fairly evenly spaced for any value for the number of nodes.
The Halton sequence is the multivariate extension of the Van der Corput sequence.

In higher dimensions, say in d dimensions, we choose d distinct primes, b1, b2, ...bd

(usually the smallest primes) and generate, from the same integer m, the d com-
ponents of the vector using the method described for the Van der Corput sequence.
For example, when d = 2 we use bases b1 = 2, b2 = 3. The first few points,
(1
2 , 1

3 ), (1
4 , 2

3 ), (3
4 , 1

9 ), (1
8 , 4

9 ), (5
8 , 7

9 ), (3
8 , 2

9 ), (3
8 , 2

9 ), (7
8 , 5

9 ), ( 1
16 , 8

9 ), ( 9
16 , 1

27 ), ... are gen-
erated as in Table 1 using the bold values in pairs:

We plot the first 1000 points of this sequence in Figure 3.6. Since it appears to fill
space more uniformly than independent random numbers in the square, it should also
reduce the value of D2 and consequently increase the probability of improvement over
crude Monte Carlo.
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Fig. 3.6. The first 1000 points of the Halton sequence of dimension 2
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Table 1. Generating a 2-dimensional Halton sequence

m
representation

base 2
first

component
representation

base 3
second

component
1 1 1/2 1 1/3
2 10 1/4 2 2/3
3 11 3/4 10 1/9
4 100 1/8 11 4/9
5 101 5/8 12 7/9
6 110 3/8 20 2/9
7 111 7/8 21 5/9
9 1000 1/16 22 8/9
10 1001 9/16 100 1/27

Table 2. Comparison of pimp for various methods of placing ui

n crude
antithetic
pairs

Halton shifted lattice
triangular
tessellation

4 1
2

1
2

0.54 0.66 0.61
16 1

2
1
2

0.59 0.60 0.64
64 1

2
1
2

0.59 0.61 0.65
256 1

2
1
2

0.58 0.62 0.63

Table 2 provides an approximation to pimp in the case d = 2 for non-monotonic
functions for various methods for distributing the points ui and for various values of n.
As we have seen, we can improve on the performance of these methods if the function
to be optimized is known to be monotonic.

3.2.1 Other Optimization Methods Using Monte Carlo

There is a very large number of different routines, based on Monte-Carlo, for optimiz-
ing functions. The methods described above are largely black-box methods that do not
attempt to adapt to the shape of the function. However there are alternatives such as
Markov Chain Monte Carlo methods (see [6] and [15]) that sequentially adapt to the
function shape, drawing more observations in regions for example near the maximum
and fewer where the function is relatively small.

We wish to maximize a non-negative function g(x) over a domain which might well
be high-dimensional. The idea is essentially quite simple-we move around the space
with probabilities that depend on the value of the function at our current location and at
the point we are considering moving to. If we are currently (at time t) at location xt in
our space then we start by proposing a move to a new location x∗

t+1, a point randomly
chosen in the domain. This new location is chosen according to some distribution
or probability density function q(x∗

t+1|xt) that may depend on our current location
xt. For example we might pick a proposed location x∗

t+1 at random inside a ball or
small radius around xt. Having chosen a proposed move to x∗

t+1, whether the move is
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actually carried out must depend on the the size of the function both at xt and at x∗
t+1.

In particular, we “accept” the move with probability

min
(

1,
g(x∗

t+1)q(xt|x∗
t+1)

g(xt)q(x∗
t+1|xt)

)

(3.15)

and if the move is accepted then xt+1 = x∗
t+1, otherwise xt+1 = xt (we stay at the

last location). Of course the process of “accepting” (or not) the proposed move re-
quires generating an additional uniform random number Ut and accepting the move if

Ut ≤ g(x∗
t+1)q(xt|x∗

t+1)

g(xt)q(x∗
t+1|xt)

. It is apparent from the form of (3.15) that proposed moves to

higher ground are favoured (more likely to be accepted) because then
g(x∗

t+1)

g(xt)
is larger.

The other terms in the ratio, for example q(x∗
t+1|xt) are to compensate for a possible

imbalance or asymmetry in the proposal distribution. For example if we are very likely
to move to a particular point x∗

t+1 from xt then the term q(x∗
t+1|xt) in the denominator

adjusts for this. If we run this algorithm over a long period of time then it is possible to
show that the limiting distribution of xt is proportional to the distribution g(x) so that
values of xt will tend to be clustered near the maximum of the function. If the contrast
between large and small values of g is insufficient to provide a clear separation, or if
the function g is not non-negative, then the algorithm can be applied instead with g(x)
replaced by a function eTg(x) for some user-selected “temperature” parameter T. For
large values of the “temperature” T, the resulting density is very much peaked around
its maxima. This algorithm is often referred to as the Metropolis-Hastings algorithm
(see [15], [13] and [9]).

3.3 Conclusion

There are clear advantages to using a dependent sequence of values u0, ...um over a
crude independent sequence. For moderate sample sizes e.g. 16-64, there is some ad-
vantage to the more complex triangular tessellation of the unit square but for very small
or very large sample sizes, it appears that in 2 dimensions, the simple shifted lattice
provides for improvement over crude Monte Carlo with probability around 62%. For
higher dimensions a Halton sequence or another low-discrepancy sequence is a reason-
able compromise between ease of use and efficiency. If we wish to adapt our sequence
to the function g to be optimized there is a very rich literature on possible methods,
including Markov-Chain Monte Carlo algorithms such as the Metropolis-Hastings al-
gorithm (see [15]), and in this case, at the expense of some additional coding, we can
achieve much greater efficiencies.
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Summary. From the middle of the twentieth century contradictory logics have been growing
in number, scope, and applications. These are logics which allow for some propositions to be
true and false at the same time within a given formal system. From psychology to physics one
finds many examples of areas of the mind and of physical reality which exhibit an unmistakable
degree of antinomicity. Quantum mechanics is a prime example. Now, it is commonly thought
that antinomies depend essentially of negation. This is not so. In fact, there are many antinomies
whose contradictory character is created by the fusing of opposite assertions into one. Indeed,
antinomicity should be considered an instance of the more general notion of opposition. A logic
of opposition is essential to deal with this general case.

But what about terms? The nouns, adjectives, and verbs that form part of statements? Terms
are neither true nor false, they have to be fed to a predicate in order to obtain a true or false
sentence. Yet, terms can be antinomic in a very important sense. We often define a term A in
terms of an opposite term B, but only to find that in turn B has to be defined in terms of A. This
“vicious circle” is most of time inevitable, and it makes of B part of the meaning of A and vice
versa. I sustain that circularity should be looked at positively and put to good use. An example:
“one” and “many” are opposite concepts. Now, if we attempt to go beyond the naive approach of
taking one and many neutrally as simple ideas absolutely complete each in itself, we realize that
aware of it or not we think of “one” as “one of many,” and of “many” as “many ones.” One and
many are inextricably interwoven concepts, and a logic of “antinomic terms” is necessary to deal
with this regular semantic phenomenon that is found in all categories of thought as they combine
with their opposite counterparts.

This chapter deals with (i) the relations that exist between antinomicity, opposition, and cir-
cularity; with (ii) ways of dealing explicitly with the antinomic character of certain terms, a
character which becomes obvious every time we think of them reflectively; then with (iii) the an-
swer to the question of what changes are necessary to make in the usual constructions of logical
models to enable us to expose antinomic terms explicitly: formalization must undergo substantial
changes if we are to make systematically obvious the fact that, whether we know or not, we do
think regularly in terms of opposites.

4.1 Purpose

The study of contradictory logics has grown considerably since the middle of the twen-
tieth century. Nowadays there are many such logics developed from different starting
points, all with a positive attitude toward contradictions, and a number of them hav-
ing significant applications, most notably to quantum mechanics, a discipline whose

H.R. Tizhoosh, M. Ventresca (Eds.): Oppos. Concepts in Comp. Intel., SCI 155, pp. 45–57, 2008.
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contradictory conclusions keep growing in extraordinary and puzzling ways, notable
examples: nonlocality and the Bose-Einstein Condensate. Classical formal logics are
really not adequate to deal with such conclusions. Here I shall use the words “con-
tradiction,” “paradox”, and “antinomy” as synonymous. These words are often given
somewhat distinct connotations with respect to one another but for the purpose of this
work such differences are not essential and will be disregarded.

One of the oldest antinomies is that of the liar: “I am not telling the truth.” If we apply
the sentence to itself, it is obviously false if assumed to be true, and true if assumed to
be false. Many examples exist of this kind of paradoxical statement given in ordinary
or technical languages. It is often believed that antinomies depend essentially on the
use of negation. This is not the case. Antinomies can be obtained without negation
just by putting together into a single conjunction two opposite statements: antinomies
generated by negation are only a special case. The logic of antinomies should be broadly
understood as a special logic of opposition [1]. In this chapter I do not want to revisit
the ideas of the work I just referred to, nor to look into the opposition of sentences in
particular; rather, I shall look into the opposition of terms in themselves, the terms that
occur as subject of a sentence. I shall be interested especially in the kind of opposition
that involves circularity, that is, the cases - much more common than one would think -
in which opposite terms hinge semantically on one another to the point of making each
term unintelligible without thinking of its opposite counterparts at the same time.

4.2 Vicious Circles

Our inveterate desire for simplicity pushes us to constantly analyze wholes into parts.
However, there are situations and processes in which to disassemble the complex only
obfuscates the picture. There are properties that emerge when small parts are assembled
into a larger whole and which were not present in any of the parts taken in isolation,
properties that become lost when we insist in splitting the whole into its smallest pos-
sible components. This unfortunate attitude is present also in the way we comprehend
ideas, especially our most basic concepts, the so-called categories of thought. We like to
keep categories simple so that our thinking is kept simple as well. But simple thoughts
are often not adequate for the understanding of a complex reality. Clarity can be deceiv-
ing. Even in the realm of pure thought we cannot escape complexity if we really want
to comprehend how our mind works in order to go effectively beyond platitudes.

Charles Peirce remarked that on first approximation we do take ideas at a neutral
state, simple, unadorned [18]. We all start at this uncomplicated first approximation.
One is one and many is many, and we do not care to go beyond this clear-cut approach.
But when the mind begins to function reflectively the picture changes. Any attempt at
defining a concept as a function of another, and then do it vice versa ends in what is pe-
joratively called a ‘vicious circle”. But such “vicious circles” are not only inevitable in
any striving toward real comprehension, they are also essential, indeed positive compo-
nents of sound thought. We need to become explicitly aware of this semantic situation
and incorporate circularity as a regular way of building our repertoire of basic ideas.
Nothing can be defined thoroughly without resorting to circularity at some point. Cat-
egories, in particular, can only be defined in circular ways. This should be accepted
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as a normal way our mind functions. In the present considerations we want to focus
especially on circular concepts formed by the semantic conjunction of an idea and its
opposite. Let us call “ antinomic term” a circle made up of two or more opposite nouns
or gerunds together, and let us call “ antinomic predicate” a circle made up of two or
more opposite predicates taken together, keeping in mind that relations are predicates
calling for two or more terms in a given order to complete a well-formed sentence.

Take the example of “one” and its opposite “many”, the latter in the sense of “more
than one”. Both categories emerge from our naive perceptive experience, and we usually
take them as neutral, simple ideas. We identify objects one by one, and consider each
of them as a “one-in-itself”. Similarly, we identify a plurality of objects as a “many”.
We perform these identifying acts of perception without any pondering whatsoever,
yet, if we stop to think on what we are doing, the “one” of an object is not a primitive
concept in itself, but the result of a choice, of the act of addressing our attention to one
object among many. “One” implies the rejection of other “ones”, it is a “one-of-many”.
This means that if we were to define this more realistic idea of “one”, we could not
do it without bringing along the idea of “many”. Vice versa, it would not be possible
to conceive of “many” at this reflective level in any other way than as “many ones”.
We have then that what in logic is labeled a “vicious circle” is in effect an unavoidable
fact of semantics, as a consequence of which, we cannot extract any component of
an antinomic term without automatically hiding its deeper meaning, the fact that the
component originates in an inextricable circularity.

Matter-and-energy is another antinomic term. Energy is characterized by its effect on
matter, and matter is known to be energy waiting to be released, the source of nuclear
power, for example. Whole-and-parts constitutes one more example of a very fruitful
opposition, indeed, a very productive antinomy. And perhaps one of the most obvious
cases of antinomicity is that of identity-and-difference, an antinomic “vicious circle”
which is of the essence of becoming. Becoming clearly implies change, but change is
never absolute: this would be tantamount to chaos; something always remains iden-
tificably the same during the most radically transforming process. Real-and-potential,
universal-and-particular, activity-and-passivity also add to the endless list of antinomic
terms.

But the complexity of thought does not stop at the first conjunction of opposite con-
cepts. Let us look again at the one-and-many circle: it involves a second circle. “One”
is chosen from many ones, “many” is a gathering of ones. Choosing-and-gathering is
another circle hidden inside the meaning of one-and-many, a circle composed of two
active gerunds, pointing at two opposite movements of the mind acting in conjunction.

The semantic situation we have just described has been recognized already by a num-
ber of authors (see [7] and [10]), although it has not been taken as a logical theme by
itself, nor has it been analyzed, and much less acknowledged as taking sometimes the
form of a cascade of antinomic terms in successive inclusion deep inside. The linguist
Jost Trier, who introduced the notion of field in semantics, put it this way: “Every ut-
tered word reminds us of the one of opposite sense ... The value of a word is recognized
only if it is bounded against the value of the neighboring and opposing words” [7].
The antinomy is the force that makes up the semantic field [10]. And Charles Bally
before Trier: “Logical notions exist together in our mind with the opposite concepts,
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and these oppositions are ready to present themselves to the consciousness of the speak-
ing subject. It can be said that the contrary of an abstract word is part of the sense of
that word” [11].

4.3 Hidden Circles as Special Cases of Pregnant Meaning

Implicit circularity is a particular case of a more general semantic phenomenon which
we have labeled “ pregnant meaning”. By the last expression we mean the condition
of certain concepts, statements, or paragraphs of obscurely containing other significant
connotations than those set in clear explicitness. The implicit content cries to be uncov-
ered and may consist of related ideas, situations, or memories buried under the surface
of our consciousness, important some times, insignificant occasionally. Marcel Proust
has left several classical descriptions of the semantic phenomenon we are referring to
and of the process of recovering those half-forgotten remembrances that suddenly claim
for our attention promoted by a casual reference or event [19]. This is a common occur-
rence: often words and sentences are gravid with related meanings whose whole import
escapes us momentarily but that we can usually uncover with a well-directed reflection.
The concept of “one” is pregnant with the concept of “many”, and vice versa [6].

4.4 Antinomic Terms Versus Antinomic Predicates

Affirmation and negation, pertains to sentences; the logic of opposition allows for the
conjunction of two opposite sentences to be both asserted together, and the conjunction
to be true and false at the same time. We want to focus now on the parallel treatment of
antinomic terms and predicates. The antinomic term “one-and-many” has already been
discussed. Predicates are subject to a similar kind of circularity. We all accept the mean-
ing of the word “bittersweet” without stopping to reflect that it is in fact an example of
antinomic predicate. A situation or a memory may be bitter and sweet at the same time,
which can clearly be expressed by an antinomic sentence that states such opposition by
the propositional conjunction of the two sentences stating bitterness and sweetness sep-
arately. But the predicates of bitterness and sweetness combine by themselves to form
the antinomic predicate “bittersweet”. The same applies to the relation of membership
in set theory. The set of all sets which are not members of themselves is and is not a
member of itself. This is the well-known Russells antinomy, which in turn induces the
antinomic relation “to be and not to be a member of” [5].

We want now to introduce symbols to systematize this new situation. We already
noted in passing that terms as well as predicates may have more than one opposite.
The binary predicate “less than” has the opposites “greater than”, “neither less than nor
greater than”, and “less than and greater than”. In order to represent opposition for both
terms and predicates we shall use the negation symbol “¬”-extending its usual logical
meaning to opposition in general - negation being after all a special case of opposition.
The expressions “¬t” and “¬P ” indicate the term and predicate opposite respectively
to the term t and the predicate P , if there is only one opposite in each case. If t and
P have more than one opposite, we shall list them respectively thus: ¬1t,¬2t,..., and
¬1P,¬2P , ... The symbol “¬” has now three possible applications: to sentences, to
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terms, and to predicates. No confusion can be derived from this multiple use of the
same symbol, syntactically or semantically.

In a similar way we shall extend the use of the connective “&” (and) used to repre-
sent the conjunction of sentences. Here we shall use the same symbol to indicate the
conjunction of terms and predicates. Thus, “t & ¬t” and “P & ¬P ” are formal expres-
sions to represent, say, “one-and-many” and “bittersweet”. Again, no confusion should
derive from the use of the same symbol “&” to stand for the three kinds of conjunction.

Semantically, sentences become true or false when interpreted in a given structure,
which then becomes a model of the sentence or its negation. A sentence may be true
in one structure and false in another. Constant terms are interpreted in classical model
theory each by a specific individual in the domain of interpretation of the given structure
- the universe of discourse. Variable terms range over such domain. Of course, different
constant terms have different interpretation in different domains.

For us, terms will not all be simple, or in other words, atomic. Complex terms of the
forms t & ¬t, or t & ¬1t & ¬2t, etc., are to be taken as irreducible complex entities -
such as complex numbers in mathematics are irreducible pairs of real numbers - and each
complex term interpreted by a different single or complex individual according to the way
the domain of interpretation is defined: in any case, opposition necessarily enlarges the
universe of discourse by forcing the membership of complex individuals in it.

As for predicates, classically each is assigned a subset of the domain of interpreta-
tion if the predicate calls for only one term. This subset is precisely the collection of
all individuals that satisfy the predicate. An antinomic predicate P & ¬P should be
assigned the intersection of the two subsets that interpret P and ¬P respectively, an
intersection that is always empty in classical logic. If the predicate is an n-ary relation
with n greater than or equal to 2, the interpretation of such relation is, of course, the
collection of all n-tuples of individuals that satisfy the relation.

4.5 A Term Is Made Up of All the Predicates That Apply to It

A term that represents a concept or an actual entity - a thing - is never an atom. Each
is the sum of all the predicates, including all the relations, that the term satisfies by
itself or occurring in pairs, triples, etc. In the parallel real world, concrete things can
be said equally to be made up of all the properties and relations they exhibit. Relations,
in particular, incorporate at the core of each actual entity the presence of other objects
to which the entity is related, a presence that may transcend time and location. To sum
up: as we try to analyze a thing, what we do is in effect to mentally unfold property
after property and relation after relation as though we were peeling off an onion. We
shall then accept as a given that a term that represents a concrete or abstract object is
composed entirely of predicates unary, binary, ternary, etc. This conduces us to state
that in addition to predicate formulas of the form P (t) - read “the predicate P applies
to the term t” - we should now introduce “ term formulas” of the form t(P ) - read “the
term t displays the predicate P ” - both formulas eventually becoming true or false when
specifically interpreted in a fixed structure.

In order to make clear the difference between P (t) and t(P ) - expressions which su-
perficially may sound synonymous - let us set up a sequence of logical types or levels.
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Type 0 is the level of terms and predicates by themselves, neither predicate formu-
las nor term formulas occur at this level. Type 1 is the level of formulas of the form
P (t), P (t1, · · · , tn), etc. These formulas may contain P or t as variables; if not, or if
P and t do not occur free, the formulas are called sentences. The usual propositional
connectives, as well as quantifiers over terms belong to type 1, where the classical and
the antinomic predicate logics can both be developed with their associated semantic
interpretations, models, etc.

We want now to place the term formulas t(P ) in a different type. For this purpose,
we will make use of the notion of negative types introduced by Hao Wang with an
entirely different objective [21]. He used negative types only as a device to show the
independence of the axiom of infinity in set theory, not to analyze terms. In fact, Wang
states that “it may be argued that in logic and mathematics there is no reason for us to
discuss individuals [12]. In his Theory of Negative Types “there are no more individ-
uals, and all types are on an equal footing [12]. Here, we want to use negative types
precisely to formalize the structure of terms and of their interpretations. Since thought
begins and ends with individuals, and since logic and mathematics originate in abstrac-
tions performed on individuals, it is reasonable to make room for a more concrete way
of considering terms by looking into their inside, that is, the predicates that make them.
Type−1 is the first level in which to look at terms in such a way, and to this level belong
term formulas such as t(P ).

The domain of interpretation of these term formulas contains in type−1 all the sets of
individuals of the domain of interpretation of terms in type 1. Each predicate P1, P2...
of the language of all formulas is interpreted in type 1 by one such set, precisely the set
of individuals that satisfy that predicate in type 1. Each term t in turn is then interpreted
in type−1 by the set of all the interpreted predicates P for which P (t) is true in type 1.
Given that in type−1 predicates are not interpreted by point-like individuals but each by
a fixed set of individuals, each term becomes in turn associated with a collection of sets
in succession, like a collection of folds in an onion. There are examples in mathematics
of such a kind of universe of discourse. The so-called Riemann surfaces to represent
functions of complex variables is one such example [8]. In this type of representation
an indefinite number of planes, or just regions, are superimposed successively each over
the next to represent the inverse values of such functions in a single-valued manner. We
shall interpret here each term by a Riemann surface of sorts, that is, by the collection
of folds that successively interpret the predicates that satisfy t. Each term t is then
interpreted in type−1, by its own Riemann surface, its own “space of onions”. Each
predicate P that satisfies t is in turn interpreted by exactly one fold of the onion; again,
each fold is the set of individuals that satisfies P , in type 1, which naturally includes t
itself as an individual from type 1. Negative types are then constructed on the basis of
what is already built in the corresponding positive types.

If the term under consideration is antinomic, say t & ¬t, then its corresponding
Riemann surface is such that each fold corresponds to a predicate P that satisfies t
and its opposite, that is, the set-theoretic intersection of the fold for t and the fold for
the ¬t. In antinomic models such interjection is not empty because there are predicates
that satisfy t and ¬t. See example at the end of the next section.
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Syntactically, the chief difference between P (t) and t(P ) is the following. In type 1,
the predicate formula P (t), with P constant and t variable, is quantified over all terms
in expressions such as (∀t)P (t) and (∃t)P (t). In contrast, in type−1 the term formula
t(P ), with t constant and P variable, is quantified over all predicates in expressions
such as (∀P )t(P ) and (∃P )t(P ). Parallel to the predicate calculus in type 1, there is a
calculus of terms in type−1.

4.6 More on the Semantics of Terms

In type 1 a term is never identified as the sum of its predicates. The focus is on pred-
ication, and the individuals that interpret the terms as well as the terms themselves are
devoid of content, points in the universe of discourse. Yet, it is the term that exhibits the
predicates, not vice versa. In type−1 the term is not fed to a predicate: the predicate is
unfolded in the term. In type 1 only predicate formulas can be true, false, true and false,
or neither true nor false. At such level, it does not make sense to speak of the truth of a
term. Yet, we can assert with Christian Wolff that everything that exists is in a sense true
(“Omne ens est verum”) [22]. Nature provides individuals, not genera, the latter being a
product of the mind. These individuals come assembled in folded stages, leaf over leaf;
we analyze them accordingly, leaf by leaf. Concrete terms are therefore true because
they always have real, identifiable properties, and because they display the impact of all
the other real terms to which they relate. This makes true predication possible, and the
sentence t(P ) true. No real predication can be asserted of a unicorn.

If a term is antinomic, say t & ¬t, some properties apply to t and to its opposite
¬t, others only to t and not to its opposite. In such cases, respectively, (t & ¬t)(P )
is true, t(P ) is true, and (¬t)(P ) false. There is also another way in which a term
can be antinomic: when a predicate P holds for the term t, and so does as well the
opposite predicate¬P . Then, both t(P ) and t(¬P ) are true; t is antinomic by exhibiting
both a predicate P and its opposite ¬P , making t(P & ¬P ) also true. No real object
represented by a term t can be false, this would mean that for all predicates P, t(P ) is
false. Since everything that exists exhibits properties and relations, the “truth of things”
- veritas rei - is inescapable in the real world. If (t&¬t) stands for matter-and-energy
and P for capacity for action, (t&¬t)(P ) is true. If t stands for a villain that performs
altruistic actions and P for goodness and ¬P for badness, t(P&¬P ) is true.

4.7 “Vicious Circles” as a Kind of Concept Expansion

The notion of concept expansion originates in the way ideas in mathematics, the sci-
ences, etc., keep enlarging the scope of their application, and therefore that of their
meaning as well [4]. Thus, the concept of number started with thinking about the natu-
ral numbers, then it was successively extended to the integers, the rational numbers, the
real numbers, the complex numbers, etc. Given that the truth of a sentence depends on
the model in which the sentence is interpreted, it is not surprising that specific true sen-
tences related to an expanded concept may not be true in the expanded models without
effecting important reinterpretations of their meaning, if that is at all possible.
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When two concepts originally separated by opposition merge by conjunction into
one complex idea in a merger, each concept becomes an example of concept expansion
but in a different sense. This applies to all circles, not only antinomic ones. What dis-
tinguishes circles from other types of concept expansion is that the said expansion does
not take place by a broadening of the scope of application of each of its components -
horizontally, so to say - but by deepening its original meaning - vertically. The expan-
sion consists in an intrinsic enlargement of the meaning of the concepts involved which
adds new semantic levels and resonances to each of them. Through renewed antinomic
actions like choosing-and-gathering, identifying-and-distinguishing, etc., we can con-
tinue such process of expansion up to the point when we become satisfied with the state
of our comprehension.

4.8 The Inescapable Vagueness of Thought

There is a bias among many mathematicians toward a belief in the existence of Platonic
Ideas, a heaven of essences eternally identical to themselves waiting to be apprehended
periodically as we need them. This bias obfuscates our understanding of the true nature
of thought. Predicates do not float by themselves in a heaven of Ideas, they exist in an
individual, or nowhere. We think necessarily with relatively vague concepts, concepts
whose contour we seldom can circumscribe clearly. Kant saw this situation well and
described it as follows: “The limits of the concept never remain within secure bound-
aries . .., I can never be certain that the clear representation of a given concept has been
effected completely . . . The integrity of the analysis of my concept is always in doubt,
and a multiplicity of examples can only make it probable [14].

Mathematical concepts are of course the exception to the primacy of vagueness. But
in general, we make our way toward definiteness in a universe of thoughts which remain
to the end incurably vague. In Peirce’s words: “Vagueness is an ubiquitous presence and
not a mark of faulty thinking, no more to be done away with than friction in mechanics
[16]. The apparent definiteness of language deceives us into believing that we have
captured reality in the flesh when we describe it with words. The truth is that, as Russell
said, “all language is vague [20] despite appearances to the contrary. Language is finite
and discrete, reality is the opposite. We approach reality with atomic thoughts, but there
are no atoms in either world or mind.

The realizations just pointed out lead us to reflect that opposition itself must not be
taken as being always clear-cut except in the most abstract thought. Between a term and
its opposite there is a continuous spectrum of possible contrasts in between. There is
in actuality a degree of opposition, a degree that goes continuously from total opposi-
tion, to no opposition at all. Accordingly, there are also degrees of circularity: t may
depend on its opposite ¬t more than ¬t on t, etc. In fuzzy mathematics the degree of
membership of an element e to a set S is measured by a real number a between 0 (no
membership) and 1 (full-fledged membership); the expression e ∈a S symbolizes this
fact [15]. In fuzzy set theory we have not one, as in classical set theory, but an infinite
number of predicates of membership: for each real number a such that 0 ≤ a ≤ 1, there
is one binary predicate of membership εa.
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Following the pattern of fuzzy set theory, we can now deal with degrees of oppo-
sition. Let us do it in two alternative ways. First, the expression ¬at shall indicate
that ¬at is a term opposite to the term t with a degree of opposition a. In an additional
way, we can introduce a binary predicate of opposition “Opp”, and make the expression
t1Oppat2 indicate in symbols that the term t1 is in opposition to the term t2 with degree
of opposition a. The predicate Opp is symmetric, that is, if t1Oppat2, then t2Oppbt1
as well, but the opposition of t2 to t1 may have a different degree b. Both approaches
open the door to a fuzzy logic of opposition which we shall not pursue here.

In type 1 specific systems usually deal with a finite number of constant predicates and
an infinite number of terms. In classical set theory for example, we have only one two-
place constant predicate, membership, in fuzzy set theory, we have as many predicates
of membership as membership has degrees. In a parallel way, in type-1, if we allow
for degrees of opposition, for each term t we have as many opposite terms as degrees
of opposition, in principle infinite. The same applies to predicates. In both types 1 and
−1 we can allow for an infinite number of predicates of the form ¬aP representing a
predicate opposed to P with degree a.

4.9 Contradictions Are Not Contagious

To feed an antinomic term such as t & ¬t to a nonantinomic predicate P in type 1
does not necessarily produce an antinomic sentence: P (t & ¬t) can be simply true or
simply false. Similarly, to feed an antinomic predicate as P & ¬P to a term t in type−1
does not make t(P & ¬P ) antinomic, the latter can be simply true or simply false. The
conjunction of n predicates generates a compound predicate P1 & P2 & · · · & Pn in
type 0. In type 1 (P1 & P2 & · · · & Pn)(t) is a well-formed predicate formula, and in
type−1, t(P1 & P2 & · · · & Pn) is a well-formed term formula. Thus, for example, if T
is the set of all sets that are not members of themselves, and ε & (¬ε) the corresponding
antinomic predicate, then (ε & (¬ε))(T ) is true, not antinomic. Correspondingly, T (ε
& (¬ε)) is true in type−1, not antinomic.

Both t & ¬t and P & ¬P are not to be considered “unitary” in any sense. We
subconsciously tend to think that there is a supremacy of unity over multiplicity in
thought, that unity is generally a desirable objective to reach. But complex numbers for
instance do not form a unity; they are each a single entity, made up of an irreducible
pair, a multiple object - a many taken as a many, not as a one. So are circles of any kind
also irreducible multiplicities, including the conjunction of antinomic mental processes
such as identifying-and-distinguishing, etc. Now, whereas it makes no difference to
write t & ¬t or ¬t & t on the one hand, or P & ¬P or ¬P & P on the other, we
do obtain very different entities if we commute the order of the mental operations in
a conjunction of gerunds. We know already that it makes a substantial difference to
gather distinguishable items first and then choose from them, or to identify items to
then gather them into a many - we end up with opposite objects of thought. We usually
pay no attention to the order in which we carry out our movements of the mind, but they
do branch creatively in different, often opposite directions toward opposite ends.
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4.10 More on the Differences between P (t) and t(P )

Satisfiability can be defined in type−1 as follows: the constant predicate P satisfies
the constant term t if and only if P (t) is true in type 1 in the usual model-theoretic
sense. But given the different role P plays in a formula in type−1, the situation is
more complex there. I think it better to explain such situation with an example. To say
that Mary is good (in symbols: P (t), t for Mary, P for goodness) means that Mary is
selected from all the good persons I know and kept in isolation. To say, as we do in
type−1, that goodness is one of Mary’s traits (in symbols: t(P )), means that goodness
is one of the personal qualities that Mary possesses, but in addition, given that goodness
is correlated to the assemblage of all the good persons in my knowledge, Mary is good
together with all the other good persons I know. The predicate that satisfies the term
automatically conveys in type−1 the set of all the other terms that the predicate satisfies
as well. Only an abstract way of thinking makes us think that Mary can exhibit goodness
in isolation of what all the other good persons, exhibit. Of course, we think in abstract
terms and predicates routinely, we need to move on, and we circumvent reflection out
of necessity. And yet, implicitly we do know that to say that Mary exhibits goodness as
one of her traits places her in the company of all the other persons I know of whom the
same can be said. This is the ultimate meaning of saying “No person is an island”, that
is, a mere isolated object with attributes: Indeed, “Life is always with others”, and as
part of many personal circles we are often defined by others as much as we define them.

4.11 Two Kinds of Relations

We have so far put the emphasis on properties, qualities that an object can have, that is
to say, on one-place predicates, predicates that call for exactly one term, simple or anti-
nomic, to yield a complete predicate formula in type 1. But at least equally important
are relations, i.e., n-place predicates with n greater or equal to two. Binary, ternary rela-
tions, etc., yield a complete predicate formula in type 1 when given the required number
of terms in the appropriate order. This reduction of relations to n-place predicates was
introduced by Norbert Wiener, the inventor of cybernetics, and made the so-called logic
of relations superfluous as an independent chapter of logic [17]. But this applies only to
what can be called “external relations”, relations that are attached to the correct num-
ber of terms after the terms have already been given. As Bradley and Whitehead have
remarked, there is another kind of relation which they labeled “internal”, relations that
intrinsically affect the terms related, become of the essence of the terms, are part of the
terms, and independent of the terms for reason of being genetically prior, like chemical
valences acting as relations ready to link [2]. This way of viewing relations as constitu-
tive of the terms cannot be described in type 1. In type−1, in contrast, relations become
the subject of term formulas as they are fed to a term. We can say that external relations
belong to type 1 and internal relations to type−1. A relation that is external in type 1
reemerges as internal in type−1.

In an effort to persuade the reader of the reality of internal relations and give a sense
of their omnipresent concreteness let us look at an eminently antinomic experience that
we constantly have in daily life, the phenomenon of intersubjectivity, the fact that we
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regularly put ourselves in other peoples place, that we think with their minds, feel with
their hearts, and will their will. We have at least a subconscious realization of this fact
of life; often we are even conscious that we think as though we were somebody else
thinking, more: that we are momentarily somebody else thinking, that the other mind is
an opposite consciousness introjected into my own. Literally, the other person looks at
me from within, and I see myself with the eyes of others, sometimes better than I see
myself - just as the others see themselves through my eyes. Rightly or wrongly, we often
define ourselves in terms of other persons, have other persons as active agents within in
many considerations and decisions. This way person’s minds are part of one another is
intersubjectivity, a term introduced by Husserl to describe such presence and primacy of
personal relations in the constitution of each persons consciousness [9]. We look inside
each individual and we find ... relations, internal relations that literally bring the outside
inside. There is opposition and circularity in the way I live my life from within through
the life of others. Within and without are extremely relative words, indeed. Relations
that effectively bridge what seems to be in with what seems to be out are present in us as
part of our make up as subjects, as terms. As we reflect on it, all this becomes obvious
to us: there is not a figment of solipsism in real life. Personal relations are, as a norm,
much more than a mere external accretion; as we introject the others we make of social
life a network of circular oppositions intrinsic to us, and a factor in the outcome of our
actions. Internal relations, functioning like what in mathematics are called independent
variables act inside the terms.

4.12 Final Remarks

It should be clear that the semantic constructions in type−1 are not the mirror image
of those of type 1, the way negative integers are a mirror image of the natural num-
bers, and therefore an alternative model of the latter. The same rules that apply to the
propositional and predicate calculuses in type 1 apply in type−1, except that predicate
formulas are replaced by term formulas and universal and existential quantification - as
already mentioned - range not over domains of terms, but over domains of predicates.
The expression

t(P1) ⇒ t(P2)

reads “if the term t exhibits the property or relation P1, then necessarily exhibits the
property or relation P2.” We should distinguish between ¬(t(P )) and (¬t)(P ); in the
first expression, the symbol “¬” is the logical propositional operator of negation that
yields a compound statement; in the second expression, ¬t is the term opposite to t,
(¬t)(P ) is then atomic. If both t(P ) and (¬t)P are satisfied by P , then P satisfies (t
& ¬t)(P ), and hence P belongs to the folds that interpret (t & ¬t).

A classical example of contradictory opposition generated by negation is Russell’s
antinomy of the set T of all sets which are not members of themselves, a set which
necessarily belongs and does not belong to itself, as we already pointed out. Propo-
sitionally, this is stated by (T ∈ T ) & ¬(T ∈ T ). But still in type 1, we also have
available from type 0 the antinomic binary relation (ε & (¬ε)), where the symbol “¬”
stands for negation applied to the relation ε, “¬ε” reads “is not a member of”. We can
then express Russell’s antinomy alternatively as (ε & (¬ε))(T, T ), an atomic rather
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than a compound predicate formula: ε and T are both constant and (ε & (¬ε))(T, T )
is a simply true sentence. In type−1, on the other hand, the antinomy becomes T (ε &
(¬ε)). While not all antinomic predicates and relations engender antinomic terms, (ε &
(¬ε)) does.

In the haste to get rid of the antinomy, no effort has been made to investigate the
nature of T itself. “To be and not to be a member of” is an unsettling idea which points
to a radical ambiguity of thought, an ambiguity which subverts our leanings toward
clarity, simplicity, and definiteness. We want our thoughts about ideas, and about reality
itself, to be exactly one way and not any other. Then we find T , an ambiguous entity
fit for an ambiguous universe. And then we find the many unsettling conclusions that
quantum mechanics keeps adding daily to our conception of the world. This makes us
conclude that ambiguity is ultimately one of the characteristics of mind and reality.
There are regions of the mind and of the world in which things are not just one way,
and in which the coexistence of opposites reigns supreme and is the rule.

The conceptual and real ambiguity we have pointed out establishes an uncertainty
principle of thought and fact. There are unsurpassable barriers to our deep desire
for achieving certainty, barriers that keep receding but cannot disappeared altogether.
Bradley said: “nothing in the end is real but the individual” [3], but “individuality means
the union of sameness and diversity with the qualification of each by the other. . . [be-
cause] there are in the end no such things as sheer sameness and sheer diversity” [13].
Bradley states also that qualities themselves are in relation. To which we can add that
relations themselves are in relation. Each such conjunction of predicates creates a new
predicate, P & Q say, a new internal relation.

We know opposition when we see it, and we see it everywhere. But without formally
exhibiting it systematically we are bound to remain trapped in platitudes. It takes a
slight shift in our intellectual attitude, a sustained redirection of our intuition, to dispel
the illusions of a spurious simplicity. Then we find that, paraphrasing Whitehead, the
complexity of nature is inexhaustible, and so is also the complexity of the mind.
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Summary. We discuss the adoption of a three-valued setting for inductive concept learning. Dis-
tinguishing between what is true, what is false and what is unknown can be useful in situations
where decisions have to be taken on the basis of scarce, ambiguous, or downright contradictory
information. In a three-valued setting, we learn a definition for both the target concept and its
opposite, considering positive and negative examples as instances of two disjoint classes. Ex-
plicit negation is used to represent the opposite concept, while default negation is used to ensure
consistency and to handle exceptions to general rules. Exceptions are represented by examples
covered by the definition for a concept that belong to the training set for the opposite concept.

After obtaining the knowledge resulting from this learning process, an agent can then interact
with the environment by perceiving it and acting upon it. However, in order to know what is the
best course of action to take the agent must know the causes or explanations of the observed
phenomena.

Abduction, or abductive reasoning, is the process of reasoning to the best explanations. It is the
reasoning process that starts from a set of observations or conclusions and derives their most likely
explanations. The term abduction is sometimes used to mean just the generation of hypotheses to
explain observations or conclusions, given a theory. Upon observing changes in the environment
or in some artifact of which we have a theory, several possible explanations (abductive ones) might
come to mind. We say we have several alternative arguments to explain the observations.

One single agent exploring an environment may gather only so much information about it and
that may not suffice to find the right explanations. In such case, a collaborative multi-agent strat-
egy, where each agent explores a part of the environment and shares with the others its findings,
might provide better results. We describe one such framework based on a distributed genetic al-
gorithm enhanced by a Lamarckian operator for belief revision. The agents communicate their
candidate explanations — coded as chromosomes of beliefs — by sharing them in a common
pool. Another way of interpreting this communication is in the context of argumentation.

We often encounter situations in which someone is trying to persuade us of a point of view
by presenting reasons for it. This is called “arguing a case” or “presenting an argument”. We can
also argue with ourselves. Sometimes it is easy to see what the issues and conclusions are, and
the reasons presented, but sometimes not. In the process of taking all the arguments and trying to
find a common ground or consensus we might have to change, or review, some of assumptions
of each argument. Belief revision is the process of changing beliefs to take into account a new
piece of information. The logical formalization of belief revision is researched in philosophy, in
databases, and in artificial intelligence for the design of rational agents.

The resulting framework we present is a collaborative perspective of argumentation where
arguments are put together at work in order to find the possible 2-valued consensus of opposing
positions of learnt concepts.

H.R. Tizhoosh, M. Ventresca (Eds.): Oppos. Concepts in Comp. Intel., SCI 155, pp. 61–89, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 5.1. Knowledge Model refinement cycle through Diagnosis

5.1 Introduction

The scientific approach is the most skeptical one towards finding the explanations to
natural phenomena. Such skeptical stance leads to a pre-disposition to continuous
knowledge revision and refinement based on observations — the solid foundations for
any reasonable theory. The endless scientific cycle of theory building and refinement
consists of 1) the environment; 2) producing candidate theories that best cover the ob-
servations; 3) create and exploit the experiences that will best test and stress the theo-
ries; and 4) going back to step 1) by collecting new observations from the environment
resulting from the experiences. This cycle is depicted in figure 5.1.

After some iterations along this theory building/refinement cycle the theory built is
“good enough” in the sense that the predictions it makes are accurate “enough” concern-
ing the environment observations resulting from experiences. At this point the theory
can be used both to provide explanations to observations as well as to produce new
predictions.

Throughout the years, scientists from every area of knowledge have relied upon logic
to develop and refine theories and to argue about them. Logic has been an indispensable
tool to build theories from observations, to use the theories to make predictions, and to
revise theories when observational data contradicts the predicted results.

Expressing theories as Logic Programs has become more natural and common as the
field of Computational Logic has grown mature and other fields started to use its tools
and results. Theories are usually expressed as a set of ‘if-then’ rules and facts which
allow for the derivation, through the use of logic inference, of non-obvious results.
When writing such rules and facts, explicit negation, just like explicit affirmation, can be
used to formalize sure knowledge which provides inevitable results. Not only has formal
argumentation been characterized in terms of Logic Programs, but the various semantics
of Logic Programs themselves have been characterized as the result of argumentation
between competing program interpretations.
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Theories can be further refined by adding special rules taking the form of Integrity
Constraints (ICs) . These impose that, whatever the assumptions might be, some condi-
tions must be met. One implicit constraint on every reasonable theory is overall consis-
tency, i.e, it must not be possible to derive one conclusion and its opposition.

Since in the real world the most common situation is one where there is incom-
plete and updatable information, any system making a serious attempt at dealing with
real situations must cope with such complexities. To deal with this issue, the field of
Computational Logic has also formalized another form of negation, Default Negation,
used to express uncertain knowledge and exceptions, and used to derive results in the
absence of complete information. When new information updates the theory, old con-
clusions might no longer be available (because they were relying on assumptions that
become false with the new information), and further new conclusions might now be
derived (for an analogous reasons).

The principle we use is thus the Unknown World Assumption (UWA) where every-
thing is unknown or undefined until we have some solid evidence of its truthfulness or
falseness. This principle differs from the more usual Closed World Assumption (CWA)
where everything is assumed false until there is solid evidence of its truthfulness. We
believe the UWA stance is more skeptical, cautious, and even more realistic than the
CWA. We do not choose a fuzzy logic approach due to its necessity of specific thresh-
old values. For such an approach we would need to compute those values a priori,
possibly recurring to a probabilistic frequency-based calculation. Accordingly, we use
a 3-valued logic (with the undefined truth value besides the true and false ones) instead
of a more classical 2-valued logic.

We start by presenting the method for theory building from observations we use — a
3-valued logic rule learning method, and in the following section we focus on a method
to analyze observations and to provide explanations for them given the learned theory.
We show how the possible alternative explanations can be viewed as arguments for
and against some hypotheses, and how we can use these arguments in a collaborative
way to find better consensual explanations. Conclusions and outlined future work close
this chapter.

5.2 Theory Building and Refinement

In real-world problems, complete information about the world is impossible to achieve
and it is necessary to reason and act on the basis of the available partial information. In
situations of incomplete knowledge, it is important to distinguish between what is true,
what is false, and what is unknown or undefined.

Such a situation occurs, for example, when an agent incrementally gathers informa-
tion from the surrounding world and has to select its own actions on the basis of acquired
knowledge. If the agent learns in a two-valued setting, it can encounter the problems that
have been highlighted in [22]. When learning in a specific to general way, it will learn
a cautious definition for the target concept and it will not be able to distinguish what is
false from what is not yet known (see Figure 5.2a) . Supposing the target predicate rep-
resents the allowed actions, then the agent will not distinguish forbidden actions from
actions with an outcome and this can restrict the agent’s acting power. If the agent learns
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Fig. 5.2. (a,b) two-valued setting, (c) three-valued setting (Taken from [22])

in a general to specific way (i.e., the agent starts with a most general concept and pro-
gressively restricts it by adding exceptions as he learns), instead, it will not know the
difference between what is true and what is unknown (Figure 5.2b) and, therefore, it can
try actions with an unknown outcome. Rather, by learning in a three-valued setting, it
will be able to distinguish between allowed actions, forbidden actions, and actions with
an unknown outcome (Figure 5.2c) . In this way, the agent will know which part of the
domain needs to be further explored and will not try actions with an unknown outcome
unless it is trying to expand its knowledge.

In [47] the authors showed that various approaches and strategies can be adopted
in Inductive Logic Programming (ILP, henceforth) for learning with Extended Logic
Programs (ELP) — including explicit negation — under an extension of well-founded
semantics. As in [37, 38], where answer-sets semantics is used, the learning process
starts from a set of positive and negative examples plus some background knowledge
in the form of an extended logic program. Positive and negative information in the
training set are treated equally, by learning a definition for both a positive concept p
and its (explicitly) negated concept ¬p. Coverage of examples is tested by adopting the
SLX [3] interpreter for ELP under the Well-Founded Semantics with explicit negation
(WFSX) defined in [5, 25], and valid for its paraconsistent version [17].

Example 1. Explicit negation
Consider a person who just moved to another city. He has just arrived and so he does

not know yet if the neighborhood he is going to live in is dangerous or not.

dangerous neighborhood ← not ¬dangerous neighborhood
¬dangerous neighborhood ← not dangerous neighborhood

Suppose now that he learns for sure that the neighborhood is not dangerous at all. In
such case the program has another rule (which is actually a fact):

¬dangerous neighborhood

Default negation is used in the learning process to handle exceptions to general rules.
Exceptions are examples covered by the definition for the positive concept that belong
to the training set for the negative concept or examples covered by the definition for the
negative concept that belong to the training set for the positive concept.

In this work, we consider standard ILP techniques to learn a concept and its opposite.
Indeed, separately learned positive and negative concepts may conflict and, in order
to handle possible contradiction, contradictory learned rules are made defeatable by
making the learned definition for a positive concept p depend on the default negation
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of the negative concept ¬p, and vice-versa, i.e., each definition is introduced as an
exception to the other. This way of coping with contradiction can be even generalized
for learning n disjoint classes, or modified in order to take into account preferences
among multiple learning agents or information sources (see [45]).

In the learning problem we consider we want to learn an ELP from a background
knowledge that is itself an ELP and from a set of positive and a set of negative examples
in the form of ground facts for the target predicates.

A learning problem for ELP’s was first introduced in [38] where the notion of cov-
erage was defined by means of truth in the answer-set semantics. Here the problem
definition is modified to consider coverage as truth in the preferred WFSX.

Definition 1 (Learning Extended Logic Programs)
Given:

• a set P of possible (extended logic) programs

• a set E+ of positive examples (ground facts)

• a set E− of negative examples (ground facts)

• a non-contradictory extended logic program B (background knowledge 1)

Find:

• an extended logic program P ∈ P such that
• ∀e ∈ E+ ∪ ¬E−, B ∪ P |=WFSX e (completeness)

• ∀e ∈ ¬E+ ∪ E−, B ∪ P �|=WFSX e (consistency)
where ¬E = {¬e|e ∈ E}.

We suppose that the training sets E+ and E− are disjoint. However, the system is also
able to work with overlapping training sets.

The learned theory will contain rules of the form:

p(X) ← Body+(X)
¬p(X) ← Body−(X)

for every target predicate p, where X stands for a tuple of arguments. In order to satisfy

the completeness requirement, the rules for p will entail all positive examples while
the rules for ¬p will entail all (explicitly negated) negative examples. The consistency
requirement is satisfied by ensuring that both sets of rules do not entail instances of the
opposite element in either of the training sets.

Note that, in the case of extended logic programs, the consistency with respect to the
training set is equivalent to the requirement that the program is non-contradictory on the
examples. This requirement is enlarged to require that the program be non-contradictory
also for unseen atoms, i.e., B ∪ P �|= L ∧ ¬L for every atom L of the target predicates.

We say that an example e is covered by program P if P |=WFSX e. Since the SLX
procedure is correct with respect to WFSX, even for contradictory programs, coverage
of examples is tested by verifying whether P �SLX e.

1 By non-contradictory program we mean a program which admits at least one WFSX model.
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The approach to learning with extended logic programs considered consists in ini-
tially applying conventional ILP techniques to learn a positive definition from E+ and
E− and a negative definition from E− and E+. In these techniques, the SLX proce-
dure substitutes the standard Logic Programming proof procedure to test the coverage
of examples.

The ILP techniques to be used depend on the level of generality that we want to have
for the two definitions: we can look for the Least General Solution (LGS) or the Most
General Solution (MGS) of the problem of learning each concept and its complement.
In practice, LGS and MGS are not unique and real systems usually learn theories that are
not the least nor most general, but closely approximate one of the two. In the following,
these concepts will be used to signify approximations to the theoretical concepts.

LGSs can be found by adopting one of the bottom-up methods such as relative least
general generalization (rlgg) [66] and the GOLEM system [57] 2, inverse resolution
[56] or inverse entailment [48]. Conversely, MGSs can be found by adopting a top-
down refining method (cf. [49]) and a system such as FOIL [68] or Progol [55].

5.2.1 Strategies for Combining Different Generalizations

The generality of concepts to be learned is an important issue when learning in a three-
valued setting. In a two-valued setting, once the generality of the definition is chosen,
the extension (i.e., the generality) of the set of false atoms is automatically decided,
because it is the complement of the true atoms set. In a three-valued setting, rather, the
extension of the set of false atoms depends on the generality of the definition learned for
the negative concept. Therefore, the corresponding level of generality may be chosen
independently for the two definitions, thus affording four epistemological cases. The
adoption of ELP allows case combination to be expressed in a declarative and smooth
way.

Furthermore, the generality of the solutions learned for the positive and negative con-
cepts clearly influences the interaction between the definitions. If we learn the MGS for
both a concept and its opposite, the probability that their intersection is non-empty is
higher than if we learn the LGS for both. Intuitively, this happens because, as explained
above, when learning the MGS for a concept we begin with a most permissive definition
for that concept and progressively refine it by adding exceptions. It is easy to see that at
the very beginning of the learning process, if the MGS is used for both a concept and its
opposite, these coincide. As the process of refinement goes on, the intersection of the
MGS of the concept and the MGS of its opposite diminishes. Accordingly, the decision
as to which type of solution to learn should take into account the possibility of inter-
action as well: if we want to reduce this possibility, we have to learn two LGS, if we
do not care about interaction, we can learn two MGS. In general, we may learn differ-
ent generalizations and combine them in distinct ways for different strategic purposes
within the same application problem.

The choice of the level of generality should be made on the basis of available knowl-
edge about the domain. Two of the criteria that can be taken into account are the damage

2 For a recent implementation see http://www.doc.ic.ac.uk/∼shm/Software/golem/
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or risk that may arise from an erroneous classification of an unseen object, and the con-
fidence we have in the training set as to its correctness and representativeness.

When classifying an as yet unseen object as belonging to a concept, we may later
discover that the object belongs to the opposite concept. The more we generalize a
concept, the higher is the number of unseen atoms covered by the definition and the
higher is the risk of an erroneous classification. Depending on the damage that may
derive from such a mistake, we may decide to take a more cautious or a more confident
approach. If the possible damage from an over extensive concept is high, then one
should learn the LGS for that concept, if the possible damage is low then one can
generalize the most and learn the MGS. The overall risk will depend also on the use of
the learned concepts within other rules: we need to take into account the damage that
may derive from mistakes made on concepts depending on the target one.

The problem of selecting a solution of an inductive problem according to the cost
of misclassifying examples has been studied in a number of works. PREDICTOR [34]
is able to select the cautiousness of its learning operators by means of meta-heuristics.
These meta-heuristics make the selection based on a user-input penalty for prediction
error. In [67] Provost provides a method to select classifiers given the cost of misclas-
sifications and the prior distribution of positive and negative instances. The method is
based on the Receiver Operating Characteristic (ROC) [35] graph from signal theory
that depicts classifiers as points in a graph with the number of false positives on the
X axis and the number of true positive on the Y axis. In [59] it is discussed how the
different costs of misclassifying examples can be taken into account into a number of
algorithms: decision tree learners, Bayesian classifiers and decision list learners.

As regards the confidence in the training set, we can prefer to learn the MGS for
a concept if we are confident that examples for the opposite concept are correct and
representative of the concept. In fact, in top-down methods, negative examples are used
in order to delimit the generality of the solution. Otherwise, if we think that examples
for the opposite concept are not reliable, then we should learn the LGS.

In the following, we present a realistic example of the kind of reasoning that can
be used to choose and specify the preferred level of generality, and discuss how to
strategically combine the different levels by employing ELP tools to learning.

Example 2. Consider now a person living in a bad neighborhood in Los Angeles. He is
an honest man and to survive he needs two concepts, one about who is likely to attack
him, on the basis of appearance, gang membership, age, past dealings, etc. Since he
wants to take a cautious approach, he maximizes attacker and minimizes ¬attacker,
so that his attacker1 concept allows him to avoid dangerous situations.

attacker1(X) ← attackerMGS(X)
¬attacker1(X) ← ¬attackerLGS(X)

Another concept he needs is the type of beggars he should give money to (he is a
good man) that actually seem to deserve it, on the basis of appearance, health, age, etc.
Since he is not rich and does not like to be tricked, he learns a beggar1 concept by
minimizing beggar and maximizing ¬beggar, so that his beggar concept allows him to
give money strictly to those appearing to need it without faking.
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beggar1(X) ← beggarLGS(X)
¬beggar1(X) ← ¬beggarMGS(X)

However, rejected beggars, especially malicious ones, may turn into attackers, in this
very bad neighborhood. Consequently, if he thinks a beggar might attack him, he had
better be more permissive about who is a beggar and placate him with money. In other
words, he should maximize beggar and minimize ¬beggar in a beggar2 concept.

beggar2(X) ← beggarMGS(X)
¬beggar2(X) ← ¬beggarLGS(X)

These concepts can be used in order to minimize his risk taking when he carries, by his
standards, a lot of money and meets someone who is likely to be an attacker, with the
following kind of reasoning:

run(X) ← lot of money(X), meets(X, Y ), attacker1(Y ),
not beggar2(Y )

¬run(X) ← lot of money(X), give money(X, Y )
give money(X, Y ) ← meets(X, Y ), beggar1(Y )
give money(X, Y ) ← meets(X, Y ), attacker1(Y ), beggar2(Y )

If he does not have a lot of money on him, he may prefer not to run as he risks being
beaten up. In this case he has to relax his attacker concept into attacker2, but not relax
it so much that he would use ¬attackerMGS .

¬run(X) ← little money(X), meets(X, Y ), attacker2(Y )
attacker2(X) ← attackerLGS(X)
¬attacker2(X) ← ¬attackerLGS(X)

The various notions of attacker and beggar are then learned on the basis of previous
experience the man has had (see [47]).

5.2.2 Strategies for Eliminating Learned Contradictions

The learned definitions of the positive and negative concepts may overlap. In this case,
we have a contradictory classification for the objective literals3 in the intersection. In
order to resolve the conflict, we must distinguish two types of literals in the intersection:
those that belong to the training set and those that do not, also dubbed unseen atoms
(see Figure 5.3).

In the following we discuss how to resolve the conflict in the case of unseen literals
and of literals in the training set. We first consider the case in which the training sets are
disjoint, and we later extend the scope to the case where there is a non-empty intersec-
tion of the training sets, when they are less than perfect. From now onwards, X stands
for a tuple of arguments.

For unseen literals, the conflict is resolved by classifying them as undefined, since the
arguments supporting the two classifications are equally strong. Instead, for literals in
the training set, the conflict is resolved by giving priority to the classification stipulated
by the training set. In other words, literals in a training set that are covered by the
opposite definition are considered as exceptions to that definition.
3 An ‘objective literal’ in a Logic Program is just an atom, possibly explicitly negated. E.g.,

‘attacker2(X)’ and ‘¬attacker2(X)’ in example 2 are objective literals.
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Contradiction on Unseen Literals

For unseen literals in the intersection, the undefined classification is obtained by mak-
ing opposite rules mutually defeasible, or “non-deterministic” (see [10, 5]). The target
theory is consequently expressed in the following way:

p(X) ← p+(X), not ¬p(X)
¬p(X) ← p−(X), not p(X)

where p+(X) and p−(X) are, respectively, the definitions learned for the positive and
the negative concept, obtained by renaming the positive predicate by p+ and its ex-
plicit negation by p−. From now onwards, we will indicate with these superscripts the
definitions learned separately for the positive and negative concepts.

We want both p(X) and¬p(X) to act as an exception to the other. In case of contradic-
tion, this will introduce mutual circularity, and hence undefinedness according to WFSX.
For each literal in the intersection of p+ and p−, there are two stable models, one contain-
ing the literal, the other containing the opposite literal. According to - WFSX, there is a
third (partial) stable model where both literals are undefined, i.e., no literal p(X),¬p(X),
not p(X) or not ¬p(X) belongs to the well-founded (or least partial stable) model. The
resulting program contains a recursion through negation (i.e., it is non-stratified) but the
top-down SLX procedure does not go into a loop because it comprises mechanisms for
loop detection and treatment, which are implemented by XSB Prolog through tabling.

Example 3. Let us consider the Example of Section 5.2.1. In order to avoid contradic-
tions on unseen atoms, the learned definitions must be:

attacker1(X) ← attacker+
MGS(X), not ¬attacker1(X)

¬attacker1(X) ← attacker−LGS(X), not attacker1(X)
beggar1(X) ← beggar+

LGS(X), not ¬beggar1(X)
¬beggar1(X) ← beggar−MGS(X), not beggar1(X)
beggar2(X) ← beggar+

MGS(X), not ¬beggar2(X)
¬beggar2(X) ← beggar−LGS(X), not beggar2(X)
attacker2(X) ← attacker+

LGS(X), not ¬attacker2(X)
¬attacker2(X) ← attacker−LGS(X), not attacker2(X)

Note that p+(X) and p−(X) can display as well the undefined truth value, either be-
cause the original background is non-stratified or because they rely on some definition
learned for another target predicate, which is of the form above and therefore non-
stratified. In this case, three-valued semantics can produce literals with the value “un-
defined”, and one or both of p+(X) and p−(X) may be undefined. If one is undefined
and the other is true, then the rules above make both p and ¬p undefined, since the
negation by default of an undefined literal is still undefined. However, this is counter-
intuitive: a defined value should prevail over an undefined one.

In order to handle this case, we suppose that a system predicate undefined(X)
is available4, that succeeds if and only if the literal X is undefined. So we add the
following two rules to the definitions for p and ¬p:
4 The undefined predicate can be implemented through negation NOT under CWA (NOT P

means that P is false whereas not means that P is false or undefined), i.e., undefined(P ) ←
NOT P, NOT (not P ).
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p(X) ← p+(X), undefined(p−(X))
¬p(X) ← p−(X), undefined(p+(X))

According to these clauses, p(X) is true when p+(X) is true and p−(X) is undefined,
and conversely.

E+ E-

p ¬p

Unseen atoms
Exceptions to the
negative concept:
positive examples

Exceptions to the
positive concept:

negative examples

Fig. 5.3. Interaction of the positive and negative definitions on exceptions

Contradiction on Examples

Theories are tested for consistency on all the literals of the training set, so we should not
have a conflict on them. However, in some cases, it is useful to relax the consistency
requirement and learn clauses that cover a small amount of counterexamples. This is
advantageous when it would be otherwise impossible to learn a definition for the con-
cept, because no clause is contained in the language bias that is consistent, or when
an overspecific definition would be learned, composed of many specific clauses instead
of a few general ones. In such cases, the definitions of the positive and negative con-
cepts may cover examples of the opposite training set. These must then be considered
exceptions, which are then due to abnormalities in the opposite concept.

Let us start with the case where some literals covered by a definition belong to the
opposite training set. We want of course to classify these according to the classifica-
tion given by the training set, by making such literals exceptions. To handle exceptions
to classification rules, we add a negative default literal of the form not abnormp(X)
(resp. not abnorm¬p(X)) to the rule for p(X) (resp. ¬p(X)), to express possible ab-
normalities arising from exceptions. Then, for every exception p(t), an individual fact
of the form abnormp(t) (resp. abnorm¬p(t)) is asserted so that the rule for p(X) (resp.
¬p(X)) does not cover the exception, while the opposite definition still covers it. In this
way, exceptions will figure in the model of the theory with the correct truth value. The
learned theory thus takes the form:

p(X) ← p+(X), not abnormp(X), not ¬p(X) (5.1)

¬p(X) ← p−(X), not abnorm¬p(X), not p(X) (5.2)
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p(X) ← p+(X), undefined(p−(X)) (5.3)

¬p(X) ← p−(X), undefined(p+(X)) (5.4)

Abnormality literals have not been added to the rules for the undefined case because a
literal which is an exception is also an example, and so must be covered by its respective
definition; therefore it cannot be undefined.

Notice that if E+ and E− overlap for some example p(t), then p(t) is classified
false by the learned theory. A different behavior would be obtained by slightly chang-
ing the form of learned rules, in order to adopt, for atoms of the training set, one classifi-
cation as default and thus give preference to false (negative training set) or true (positive
training set).

Individual facts of the form abnormp(X) might be then used as examples for learn-
ing a definition for abnormp and abnorm¬p, as in [30, 38]. In turn, exceptions to the
definitions of abnormp and abnorm¬p might be found and so on, thus leading to a
hierarchy of exceptions (for our hierarchical learning of exceptions, see [44, 74]).

Example 4. Consider a domain containing entities a, b, c, d, e, f and suppose the target
concept is flies. Let the background knowledge be:

bird(a) has wings(a)
jet(b) has wings(b)
angel(c) has wings(c) has limbs(c)
penguin(d) has wings(d) has limbs(d)
dog(e) has limbs(e)
cat(f) has limbs(f)

and let the training set be:

E+ = {flies(a)} E− = {flies(d), f lies(e)}

A possible learned theory is:

flies(X) ← flies+(X), not abnormalflies(X), not ¬flies(X)
¬flies(X) ← flies−(X), not f lies(X)

flies(X) ← flies+(X), undefined(flies−(X))
¬flies(X) ← flies−(X), undefined(flies+(X))

abnormalflies(d) ← true

where flies+(X) ← has wings(X) and flies(X)− ← has limbs(X).

The example above and Figure 5.4 show all the possible cases for a literal when
learning in a three-valued setting. a and e are examples that are consistently covered
by the definitions. b and f are unseen literals on which there is no contradiction. c and
d are literals where there is contradiction, but c is classified as undefined whereas d is
considered as an exception to the positive definition and is classified as negative.
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       ba d fec

flies+ flies-E+ E-

Fig. 5.4. Coverage of definitions for opposite concepts

Identifying contradictions on unseen literals is useful in interactive theory revision,
where the system can ask an oracle to classify the literal(s) leading to contradiction, and
accordingly revise the least or most general solutions for p and for ¬p using a theory
revision system such as REVISE [15] or CLINT [21, 23]. Detecting uncovered literals
points to theory extension.

Extended logic programs can be used as well to represent n disjoint classes
p1, . . . , pn. When one has to learn n disjoint classes, the training set contains a number
of facts for a number of predicates p1, . . . , pn. Let p+

i be a definition learned by using,
as positive examples, the literals in the training set classified as belonging to pi and, as
negative examples, all the literals for the other classes. Then the following rules ensure
consistency on unseen literals and on exceptions regardless of the algorithm used for
learning the p+

i .

p1(X) ← p+
1 (X), not abnormalp1(X), not p1(X), not p2(X), . . . , not pn(X)

p1(X) ← p+
1 (X), not abnormalp1(X), not p2(X), . . . , not pn(X)

p2(X) ← p+
2 (X), not abnormalp2(X), not p1(X), not p3(X), . . . , not pn(X)

· · · ← · · ·
pn(X) ← p+

n (X), not abnormalpn(X), not p1(X), . . . , not pn−1(X)

p1(X) ← p+
1 (X), undefined(p+

2 (X)), . . . , undefined(p+
n (X))

p2(X) ← p+
2 (X), undefined(p+

1 (X)), undefined(p+
3 (X)), . . . ,

undefined(p+
n (X))

· · · ← · · ·
pn(X) ← p+

n (X), undefined(p+
1 (X)), . . . , undefined(p+

n−1(X))

5.3 Observation Analysis and Explanation

After a theory is built it can now be used to analyze observations and to provide ex-
planations for them. Such explanations are sets of abductive hypotheses which, when
assumed true under the theory at hand, yield the observations as conclusions. We can
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also understand each such set of hypotheses as an argument explaining why the observa-
tions hold. There can be, of course, many different possible explanations, or arguments.
In the end, most of the times, we want to find the single “best” explanation for the ob-
servations, and hence we must have some mechanism to identify the “best” solution
among the several alternative ones.

5.3.1 Abduction

Deduction and abduction differ in the direction in which a rule like “a entails b” is used
for inference. Deduction allows deriving b as a consequence of a ; i.e., deduction is the
process of deriving the consequences of what is known. Abduction allows deriving a as
a hypothetical explanation of b. Abduction works in reverse to deduction, by allowing
the precondition a of “a entails b” to be derived from the consequence b, i.e., abduction
is the process of explaining what is known. Charles Saunders Peirce [60] introduced
abduction into logic, to mean the use of a rule or hypothetical fact to explain an obser-
vation, e.g. “if it rains the grass is wet” is used to explain why the grass is wet, given
that it has rained, or vice-versa. In logic, abduction is done from a logical theory T
representing a domain and a set of observations O. Abduction is the process of deriving
a set of explanations of O according to T . For E to be an explanation of O according
to T , it should satisfy two conditions:

• O follows from E and T ;
• E is consistent with T .

In formal logic, O and E are assumed to be sets of literals. The two conditions for E
being an explanation of O according to theory T are:

• T ∪ E |= O;
• T ∪ E is consistent.

Among the possible explanations E satisfying these two conditions, a condition of min-
imality is usually imposed to avoid irrelevant facts (i.e. not contributing to the entail-
ment of O) to be included in the explanations. An application of abduction is that of
detecting faults in systems: given a theory relating faults with their effects and a set of
observed effects, abduction can be used to derive sets of faults that are likely to be the
cause of the problem. Belief revision, the process of adapting beliefs in view of new
information, is another field in which abduction has been applied. The main problem
of belief revision is that the new information may be inconsistent with the corpus of
beliefs, while the result of the incorporation must not be inconsistent.

5.3.2 An Argumentation Perspective

When different alternative explanations arise, people argue for and against their
theories and others’. For a long time, because of its origins in rhetoric and the law,
argumentation has been thought of as a kind of a battle where two (or more) oppos-
ing opinions are formalized into arguments, and logic is used for the framing rules for
the battle and to decide the outcome. At the end of the battle one of the arguers will
be ‘right’ and the other(s) ‘wrong’. The ‘winner’ is the one whose argument, attacking
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others’ arguments, cannot be counter-attacked. The problem of argumentation becomes
more complex when all arguments successfully attack each other’s corresponding to dif-
ferent possible opinions, not inevitable conclusions. In this case, argumentation could
take a new flavor, one of Collaboration besides Conflict.

5.3.3 Finding Alternative Explanations for Observations

Trying to find explanations for observations can be implemented by simply finding the
alternative abductive models that satisfy both the theory’s rules and the observations.
The latter can be coded as Integrity Constraints (ICs) which are added to the theory
thereby imposing the truthfulness of the observations they describe.

Example 5. Running example
We will use this running example throughout the rest of the chapter.
Consider the following Logic Program consisting of four rules. According to this

program a ‘professional’ is someone who is a regular employee or someone who is a
boss in some company. Also, a non-employee is assumed to be a student as well as all
those who are junior (all children should go to school!).

professional(X) ← employee(X)
professional(X) ← boss(X)

student(X) ← not employee(X)
student(X) ← junior(X)

For now keep this example in mind as we will use it to illustrate the concepts
and methods we are about to describe. Assume that ‘employee/1’, ‘boss/1’, and
‘junior/1’ are abducible hypotheses.

Adding one single IC to the theory might yield several alternative 2-valued models (sets
of abductive hypotheses) satisfying it, let alone adding several ICs.

In the example above, adding just the Integrity Constraint
‘⊥ ← not professional(john)’ — coding the fact that John is a professional —
would yield two alternative abductive solutions: {employee(john)} and {boss(john)}.

When the information from several observations comes in at one single time, several
ICs must be added to the theory in order to be possible to obtain the right explanations
for the corresponding observations.

In a fairly complex knowledge domain coded in a complex and lengthy theory, find-
ing each one alternative explanation for a given observation can be quite hard and time
consuming, let alone finding the “best” explanation. In general, following Occam’s prin-
ciple, the “best” explanation for any given observation is usually the simplest one, i.e.,
the one recurring to the fewest number of hypotheses — the minimal set of hypotheses.

In [46] the authors presented a method for finding the minimal belief revision
solution for a set of observations. Therein, each belief corresponds to an abducible hy-
pothesis and the belief revision is the process of finding the set of hypotheses that con-
forms to the observations by revising their truth value from true to false or vice-versa.
Minimality is required for compliance with the Occam’s principle.

In [46] the authors also code observations as ICs added to the theory, but they recur
to finding the support sets for falsum (⊥)— the special reserved atom for the heads of
the rules coding ICs, in order to find the belief revisions necessary to comply to the ICs.
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After finding such support sets they can identify the minimal sets of hypotheses that
need to be revised in order to prevent falsum from being derived.

Here we are also concerned with finding explanations to observations, but the method
used is quite different. In a nutshell, we split the set of observations into several smaller
subsets; then we create several agents and give each agent the same base theory and
a subset of the observations coded as ICs. We then allow each agent to come up with
several alternative explanations to its ICs; the explanations need not be minimal sets of
hypotheses.

Going back again to our running example, if we also know that John is a student,
besides adding the ‘⊥ ← not professional(john)’ IC we must also add the ‘⊥ ←
not student(john)’ IC.

Finding possible alternative explanations is one problem; finding which one(s) is(are)
the “best” is another issue. In the next section we assume “best” means minimal set of
hypotheses and we describe the method we use to find such best. Another interpretation
of “best” could be “most probable” and in this case the theory inside the agents must
contain the adequate probabilistic information. One such possibility would be the one
described in [9]. We do not pursue this approach yet, but we consider it for future work,
namely following the principles in [9].

5.3.4 Choosing the Best Explanation

Ex contradictione quodlibet. This well-known Latin saying means “Anything follows
from contradiction”. But contradictory, oppositional ideas and arguments can be com-
bined together in different ways to produce new ideas. Since “anything follows from
contradiction” one of the things that might follow from it is a solution to a problem to
which several alternative positions contribute.

One well known method for solving complex problems widely used by creative
teams is that of ‘brainstorming’. In a nutshell, every agent participating in the ‘brain-
storm’ contributes by adding one of his/her ideas to the common idea-pool shared by
all the agents. All the ideas, sometimes clashing and oppositional among each other, are
then mixed, crossed and mutated. The solution to the problem arises from the pool after
a few iterations of this evolutionary process.

The evolution of alternative ideas and arguments in order to find a collaborative
solution to a group problem is the underlying inspiration of this work.

Evolutionary Inspiration

Darwin’s theory is based on the concept of natural selection: only those individuals that
are most fit for their environment survive, and are thus able to generate new individuals
by means of reproduction. Moreover, during their lifetime, individuals may be subject
to random mutations of their genes that they can transmit to offspring. Lamarck’s [42]
theory, instead, states that evolution is due to the process of adaptation to the environ-
ment that an individual performs in his/her life. The results of this process are then
automatically transmitted to his/her offspring, via its genes. In other words, the abilities
learned during the life of an individual can modify his/her genes.



76 L.M. Pereira and A.M. Pinto

Experimental evidence in the biological kingdom has shown Darwin’s theory to be
correct and Lamarck’s to be wrong. However, this does not mean that the process of
adaptation (or learning) does not influence evolution. Baldwin [8] showed how learning
could influence evolution: if the learned adaptations improve the organism’s chance of
survival then the chances for reproduction are also improved. Therefore there is selec-
tive advantage for genetically determined traits that predisposes the learning of specific
behaviors. Baldwin moreover suggests that selective pressure could result in new in-
dividuals to be born with the learned behavior already encoded in their genes. This is
known as the Baldwin effect. Even if there is still debate about it, it is accepted by most
evolutionary biologists.

Lamarckian evolution [43] has recently received a renewed attention because it can
model cultural evolution. In this context, the concept of “meme” has been developed. A
meme is the cognitive equivalent of a gene and it stores abilities learned by an individual
during his lifetime, so that they can be transmitted to his offspring.

In the field of genetic programming [41], Lamarckian evolution has proven to be a
powerful concept and various authors have investigated the combination of Darwinian
and Lamarckian evolution.

In [46] the authors propose a genetic algorithm for belief revision that includes, be-
sides Darwin’s operators of selection, mutation and crossover, a logic based Lamarckian
operator as well. This operator differs from Darwinian ones precisely because it mod-
ifies a chromosome coding beliefs so that its fitness is improved by experience rather
than in a random way. There, the authors showed that the combination of Darwinian
and Lamarckian operators are useful not only for standard belief revision problems,
but especially for problems where different chromosomes may be exposed to different
constraints, as in the case of a multi-agent system. In these cases, the Lamarckian and
Darwinian operators play different roles: the Lamarckian one is employed to bring a
given chromosome closer to a solution (or even find an exact one) to the current belief
revision problem, whereas the Darwinian ones exert the role of randomly producing
alternative belief chromosomes so as to deal with unencountered situations, by means
of exchanging genes amongst them.

Evolving Beliefs

Belief revision is an important functionality that agents must exhibit: agents should
be able to modify their beliefs in order to model the outside world. What’s more,
as the world may be changing, a pool of separately and jointly evolved chromo-
somes may code for a variety of distinct belief evolution potentials that can respond
to world changes as they occur. This dimension has been explored in [46] with specific
experiments to that effect. Mark that it is not our purpose to propose here a competi-
tor to extant classical belief revision methods, in particular as they apply to diagno-
sis. More ambitiously, we do propose a new and complementary methodology, which
can empower belief revision — any assumption based belief revision — to deal with
time/space distributed, and possibly intermittent or noisy laws about an albeit varying
artifact or environment, possibly by a multiplicity of agents which exchange diversified
genetically encoded experience. We consider a definition of the belief revision problem
that consists in removing a contradiction from an extended logic program by modifying
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the truth value of a selected set of literals corresponding to the abducible hypotheses.
The program contains as well clauses with falsum (⊥) in the head, representing ICs.
Any model of the program must ensure the body of ICs false for the program to be
non-contradictory. Contradiction may also arise in an extended logic program when
both a literal L and its opposite ¬L are obtainable in the model of the program. Such a
problem has been widely studied in the literature, and various solutions have been pro-
posed that are based on abductive logic proof procedures. The problem can be modeled
by means of a genetic algorithm, by assigning to each abducible of a logic program a
gene in a chromosome. In the simplest case of a two valued revision, the gene will have
the value 1 if the corresponding abducible is true and the value 0 if the abducible is
false . The fitness functions that can be used in this case are based on the percentage of
ICs that are satisfied by a chromosome. This is, however, an over-simplistic approach
since it assumes every abducible is a predicate with arity 0, otherwise a chromosome
would have as many genes as the number of all possible combinations of ground values
for variables in all abducibles.

Specific Belief Evolution Method

In multi-agent joint belief revision problems, agents usually take advantage of each
other’s knowledge and experience by explicitly communicating messages to that effect.
In our approach, however, we introduce a new and complementary method (and some
variations of it), in which we allow knowledge and experience to be coded as genes in an
agent. These genes are exchanged with those of other agents, not by explicit message
passing but through the crossover genetic operator. Crucial to this endeavor, a logic-
based technique for modifying cultural genes, i.e. memes, on the basis of individual
agent experience is used.

The technique amounts to a form of belief revision, where a meme codes for an
agent’s belief or assumptions about a piece of knowledge, and which is then diversely
modified on the basis of how the present beliefs may be contradicted by laws (expressed
as ICs). These mutations have the effect of attempting to reduce the number of unsatis-
fied constraints. Each agent possesses a pool of chromosomes containing such diversely
modified memes, or alternative assumptions, which cross-fertilize Darwinianly amongst
themselves. Such an experience in genetic evolution mechanism is aptly called Lamar-
ckian.

Since we will subject the sets of beliefs to an evolutionary process (both Darwinian
and Lamarckian) we will henceforth refer to this method as “Belief Evolution” (BE)
instead of the classical “Belief Revision” (BR).

General Description of the Belief Evolution Method

Each agent keeps a population of chromosomes and finds a solution to the BE problem
by means of a genetic algorithm. We consider a formulation of the distributed BE prob-
lem where each agent has the same set of abducibles and the same program expressed
theory, but is exposed to possibly different constraints. Constraints may vary over time,
and can differ because agents may explore different regions of the world. The genetic al-
gorithm we employ allows each agent to cross over its chromosomes with chromosomes
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from other agents. In this way, each agent can be prepared in advance for situations that
it will encounter when moving from one place to another.

The algorithm proposed for BE extends the standard genetic algorithm in two ways:

• crossover is performed among chromosomes belonging to different agents5,
• a Lamarckian operator called Learn is added in order to bring a chromosome closer

to a correct revision by changing the value of abducibles

The Structure of a Chromosome

In BR and BE, each individual hypothesis is described by the truth value of all the ab-
ducibles. Several possibilities of increasing complexity and expressive power arise now.
Concerning truth values we can have 2-valued and 3-valued revisions — if we are not
considering multi-valued logics. Orthogonally to this criterion we can eventualy encode
more information in each gene of a chromosome. In particular, some possibilities are:

• each gene encodes a ground literal — all its variables are bound to fixed values
• each gene encodes a literal with non-ground variables plus constraints restricting

the possible values for the free variables

Surely there are many other possibilities for the information each gene can encode, but
in this work we restrict ourselves to the first one above. In such case, we represent a
chromosome as a list of genes and memes, and different chromosomes may contain
information about different genes. This implies a major difference to traditional genetic
algorithms where every chromosome refers exactly to the same genes and the crossover
and mutation operations are somewhat straightforward.

The memes in a chromosome will be just like genes — representing abducibles —
but they will have extra information. Each meme has associated with it a counter keep-
ing record of how many times the meme has been confirmed or refuted. Each time a
meme is confirmed this value is increased, and each time it is refuted the value de-
creases. This value provides thus a measure of confidence in the corresponding meme.

Example 6. Running example (cont.)
Continuing with our running example, let us assume that both

professional(john) and student(john) have been observed.
We can create two agents, each with the same rule-set theory, and split the observa-

tions among them. We would have thus

Agent 1:
← not professional(john)

professional(X) ← employee(X)
professional(X) ← boss(X)
student(X) ← not employee(X)
student(X) ← junior(X)

5 Similarly to what happens with island models [75].



5 Collaborative vs. Conflicting Learning, Evolution and Argumentation 79

Agent 2:
← not student(john)

professional(X) ← employee(X)
professional(X) ← boss(X)
student(X) ← not employee(X)
student(X) ← junior(X)

In the simplest case where a gene encodes an abductive ground literal Agent 1 would
come up with two alternative abductive solutions for its IC ‘⊥ ← not professional
(john)’: {employee(john)} and {boss(john)}. Moreover, Agent 2 would come up
with two other alternative abductive solutions for its IC ‘⊥ ← not student(john)’:
{not employee(john)} and {junior(john)}.

Crossover

When a chromosome is a list of abducible hypotheses (with or without constraints over
variables), as it is in the case we present here, the crossover and mutation operations
cannot fallback into the well-known versions of standard genetic algorithms. If two
different chromosomes, each encoding information about different abducibles, are to
be crossed over there are more possibilities other than simply selecting cut points and
switching genes between cut points.

As described above, each agent produces several chromosomes which are lists of ab-
ducible hypotheses needed to respect the ICs the agent knows. Since each agent knows
only some ICs the abductive answer the algorithm seeks should be a combination of
the partial answers each agent comes up with. In principle, the overlap on abducibles
among two chromosomes coming from different agents should be less than total — af-
ter all, each agent is taking care of its own ICs which, in principle, do not refer to the
exact same abducibles. Therefore, crossing over such chromosomes can simply turn out
to be the merging of the chromosomes, i.e., the concatenation of the lists of abducibles.

If several ICs refer to the exact same abducibles the chromosomes from different
agents will contain either the same gene — in which case we can see this as an ‘agree-
ment’ between the agents as far as the corresponding abducible is concerned — or
genes stating contradictory information about the same abducible. In this last case if
the resulting concatenated chromosome turns out to be inconsistent in itself the fitness
function will filter it out by assigning it a very low value.

Example 7. Running example (cont.)
Continuing with our running example, recall that Agent 1 would come up with two

alternative abductive solutions for its IC
‘⊥ ← not professional(john)’: {employee(john)} and {boss(john)}. Moreover,
Agent 2 would come up with two other alternative abductive solutions for its IC ‘⊥ ←
not student(john)’: {not employee(john)} and {junior(john)}.

The crossing over of these chromosomes will yield the four combinations
{employee(john), not employee(john)}, {employee(john), junior(john)},
{boss(john), not employee(john)}, and {boss(john), junior(john)}.
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The first resulting chromosome is contradictory so it will be filtered out by the fit-
ness function. The second chromosome correspond to the situation where John is a
junior employee who is still studying — a quite common situation, actually. The third
chromosome corresponds to the situation where John is a senior member of a company
— a ‘boss’ — who is taking some course (probably a post-graduation study). The last
chromosome could correspond to the situation of a young entrepreneur who, besides
owning his/hers company, is also a student — this is probably an uncommon situation
and, if necessary, the fitness function can reflect that “unprobability”.

Mutation

When considering a list of abducible literals the mutation operation resembles the stan-
dard mutation of genetic algorithms by changing one gene to its opposite; in this case
negating the truth value of the abducted literal.

Example 8. Running example (cont.)
In the example we have been using this could correspond to mutating the chromo-

some {not employee(john)} to {employee(john)}, or to mutating the chromosome
{junior(john)} to {not junior(john)}.

The Lamarckian Learn operator

The Lamarckian operator Learn can change the values of variables of an abducible in
a chromosome ci so that a bigger number of constraints is satisfied, thus bringing ci

closer to a solution. Learn differs from a normal belief revision operator because it
does not assume that all abducibles are false by CWA before the revision but it starts
from the truth values that are given by the chromosome ci. Therefore, it has to revise
the values of variables of some abducibles and, in the particular case of an abducible
without variables, from true to false or from false to true .

In the running example this could correspond, for example, to changing the chro-
mosome {junior(john)} to {junior(mary)}, where ‘mary’ is another value in the
domain range of the variable for abducible junior/1.

This Lamarckian Learn operator will introduce an extra degree of flexibility allow-
ing for changes to a chromosome to induce the whole belief evolution algorithm to
search a solution considering new values for variables.

The Fitness Functions

Various fitness functions can be used in belief revision. The simplest fitness function is
the following

Fitness(ci) =
ni

n

1 + NC
(5.5)

where ni is the number of integrity constraints satisfied by chromosome ci, n is the total
number of integrity constraints, and NC is the number of contradictions in chromosome
ci. We will call it an accuracy fitness function.
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5.4 Argumentation

In [28], the author shows that preferred maximal scenarios (with maximum default
negated literals — the hypotheses) are always guaranteed to exist for NLPs; and that
when these yield 2-valued complete (total), consistent, admissible scenarios, they coin-
cide with the Stable Models of the program. However, preferred maximal scenarios are,
in general, 3-valued. The problem we address now is how to define 2-valued complete
models based on preferred maximal scenarios. In [64] the authors took a step further
from what was achieved in [28], extending its results. They did so by completing a pre-
ferred set of hypotheses rendering it approvable, ensuring whole model consistency and
2-valued completeness.

The resulting semantics thus defined, dubbed Approved Models [64], is a conser-
vative extension to the widely known Stable Models semantics [32] in the sense that
every Stable Model is also an Approved Model. The Approved Models are guaranteed
to exist for every Normal Logic Program, whereas Stable Models are not. Concrete ex-
amples in [64] show how NLPs with no Stable Models can usefully model knowledge,
as well as produce additional models. Moreover, this guarantee is crucial in program
composition (say, from knowledge originating in divers sources) so that the result has
a semantics. It is important too to warrant the existence of semantics after external up-
dating, or in Stable Models based self-updating [1].

For the formal presentation and details of the Approved Models semantics see [64].

5.4.1 Intuition

Most of the ideas and notions of argumentation we are using here come from the Ar-
gumentation field — mainly from the foundational work of Phan Minh Dung in [28].
In [64] the Reductio ad Absurdum reasoning principle is also considered. This has been
studied before in [62], [63], and [65].

Definition 2. Argument. In [28] the author presents an argument as

“an abstract entity whose role is solely determined by its relations to other
arguments. No special attention is paid to the internal structure of the argu-
ments.”

In this paper we will pay attention to the internal structure of an argument by con-
sidering an argument (or set of hypotheses) as a set S of abducible literals of a NLP
P .

We have seen before examples of Extended Logic Programs — with explicit nega-
tion. In [18] the authors show that a simple syntactical program transformation applied
to an ELP produces a Normal Logic Program with Integrity Constraints which has the
exact same semantics as the original ELP.

Example 9. Transforming an ELP into a NLP with ICs
Taking the program

dangerous neighborhood ← not ¬dangerous neighborhood
¬dangerous neighborhood ← not dangerous neighborhood
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we just transform the explicitly negated literal ¬dangerous neighborhood into the
positive literal dangerous neighborhoodn, and the original
dangerous neighborhood literal is converted into dangerous neighborhoodp

Now, in order to ensure consistency, we just need to add the IC
⊥ ← dangerous neighborhoodp, dangerous neighborhoodn. The resulting trans-
formed program is

dangerous neighborhoodp ← not dangerous neighborhoodn

dangerous neighborhoodn ← not dangerous neighborhoodp

⊥ ← dangerous neighborhoodp, dangerous neighborhoodn

Now know that we can just consider NLPs with ICs without loss of generality and so,
henceforth, we will assume just that case. NLPs are in fact the kind of programs most
Inductive Logic Programming learning systems produce.

5.4.2 Assumptions and Argumentation

Previously, we have seen that assumptions can be coded as abducible literals in Logic
Programs and that those abducibles can be packed together in chromosomes. The evo-
lutionary operators of genetic and memetic crossover, mutation and fitness function
applied to the chromosomes provide a means to search for a consensus of the initial
assumptions since it will be a consistent mixture of these.

Moreover, the 2-valued contradiction removal method presented in subsection 5.2.2
is a very superficial one. That method removes the contradiction between p(X) and
¬p(X) by forcing a 2-valued semantics for the ELP to choose either p(X) or ¬p(X)
since they now are exceptions to one another. It is a superficial removal of the contra-
diction because the method does not look into the reasons why both p(X) and ¬p(X)
hold simultaneously. The method does not go back to find the underlying assumptions
supporting both p(X) and ¬p(X) to find out which assumptions should be revised in
order to restore overall consistency. Any one such method must fall back into the prin-
ciples of argumentation: to find the arguments supporting one conclusion in order to
prevent it if it leads to contradiction.

One such ‘deeper’ method for contradiction removal is presented in [46]. In this
chapter we have presented another alternative method inspired by evolution.

5.4.3 Collaborative Opposition

In [28] the author shows that the Stable Models of a NLP coincide with the 2-valued
complete Preferred Extensions which are self-corroborating arguments. However, as it
is well known, not all NLPs have Stable Models. In fact, [31] showed that the NLPs
with Odd Loops Over Negation (OLONs) 6 are the one who might have no Stable
Models. It is always possible to argue that when an ILP system is building the NLP it can
detect if there are such OLONs and do something about them. However, in a distributed
knowledge environment, e.g. a Semantic Web, several NLPs can be produced by several

6 An OLON is just a loop or cycle in the program’s dependency graph for some literal where
the number of default negations along the loop is odd.
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ILP systems and the NLPs may refer to the same literals. There is a reasonable risk that
when merging the NLPs together OLONs might appear which were not present in each
NLP separately. The works in [62], [63], [64], and [65] show how to solve OLONs.

The more challenging environment of a Semantic Web is one possible ‘place’ where
the future intelligent systems will live in. Learning in 2-values or in 3-values are open
possibilities, but what is most important is that knowledge and reasoning will be shared
and distributed. Different opposing concepts and arguments will come from different
agents. It is necessary to know how to conciliate those opposing arguments, and how
to find 2-valued consensus as much as possible instead of just keeping to the least-
commitment 3-valued consensus. In [64] the authors describe another method for find-
ing such 2-valued consensus in an incremental way. In a nutshell, we start by merging
together all the opposing arguments into a single one. The conclusions from the theory
plus the unique merged argument are drawn and, if there are contradictions against the
argument or contradictions inside the argument we non-deterministically choose one
contradicted assumption of the argument and revise its truth value. The iterative repeti-
tion of this step eventually ends up in a non-contradictory argument (and all possibilities
are explored because there is a non-deterministic choice).

In a way, the evolutionary method we presented in subsection 5.3.4 implements a
similar mechanism to find the consensus non-contradictory arguments.

5.5 Conclusions

The two-valued setting that has been adopted in most work on ILP and Inductive Con-
cept Learning in general is not sufficient in many cases where we need to represent real
world data. This is for example the case of an agent that has to learn the effect of the
actions it can perform on the domain by performing experiments. Such an agent needs
to learn a definition for allowed actions, forbidden actions and actions with an unknown
outcome, and therefore it needs to learn in a richer three-valued setting.

The programs that are learnt will contain a definition for the concept and its opposite,
where the opposite concept is expressed by means of explicit negation. Standard ILP
techniques can be adopted to separately learn the definitions for the concept and its
opposite. Depending on the adopted technique, one can learn the most general or the
least general definition.

The two definitions learned may overlap and the inconsistency is resolved in a dif-
ferent way for atoms in the training set and for unseen atoms: atoms in the training set
are considered exceptions, while unseen atoms are considered unknown. The different
behavior is obtained by employing negation by default in the definitions: default abnor-
mality literals are used in order to consider exceptions to rules, while non-deterministic
rules are used in order to obtain an unknown value for unseen atoms.

We have also presented an evolution-inspired algorithm for performing belief revi-
sion in a multi-agent environment. The standard genetic algorithm is extended in two
ways: first the algorithm combines two different evolution strategies, one based on Dar-
win’s and the other on Lamarck’s evolutionary theory and, second, chromosomes from
different agents can be crossed over with each other. The Lamarckian evolution strategy
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is obtained be means of an operator that changes the genes (or, better, the memes) of an
agent in order to improve their fitness.

Lamarckian and Darwinian operators have complimentary functions: Lamarckian
operators are used to get closer to a solution of a given belief revision problem, while
Darwinian operators are used in order to distribute the acquired knowledge amongst
agents. The contradictions that may arise between chromosomes of memes from dif-
ferent agents are of a distinct nature from the contradictions arising from the learning
process. The former correspond to different alternative explanations to the observations,
whereas the latter correspond to uncertainties in the learned concepts.

Moreover, we can also bring the same evolutionary algorithm to a single agent’s
mind. In such case, we can think of the agent’s mind as a pool of several sub-agents,
each considering one aspect of the environment, each acting as a specialist in some
sub-domain.

We have presented too a new and productive way to deal with oppositional concepts
in a collaboration perspective, in different degrees. We use the contradictions arising
from opposing arguments as hints for the possible collaborations. In so doing, we extend
the classical conflictual argumentation giving a new treatment and new semantics to
deal with the contradictions.

The direction of our future work includes three main axis: continuing theory devel-
opment, implementing prototypes and exploring possible applications.

Most recently, we have been exploring the constructive negation [51] reasoning
mechanism. In a nutshell, constructive negation concerns getting answers to queries
by imposing inequality constraints on the values of variables (e.g., getting an answer of
the form “all birds fly, except for the penguins”). Such mechanism is particularly well
suited for the integration of answers coming from different agents, e.g., one agent can
learn the general rule that “all birds fly”, and another might learn only the exceptional
case that “penguins do not fly”, and that “penguins are birds”. Constructive negation
can play a synergistic rôle in this matter by gracefully merging the knowledge of the
different agents into a single consistent, integrated, more specialized and refined one.

Our future efforts will therefore engage in bringing together the three branches we
described — learning, belief evolution, and argumentation — under the scope of con-
structive negation. Besides the theoretical research we have been doing, and will con-
tinue to do in this area, we have already under way a practical implementation of this
constructive negation reasoning mechanism [58] on top of XSB Prolog [71].

Also, one application field for all this work is Ambient Intelligence [14]. In a nut-
shell, Ambient Intelligence concerns intelligent software agents embedded in real-world
environments and that are sensitive and responsive to the presence of people. Such en-
vironments are constantly changing as different people come in and out of play, each of
which may influence the rest of the environment.

We envisage a framework for Ambient Intelligence where agents interact with users

(i) with the aim of monitoring them for ensuring some degree of consistence and
coherence in user behavior and, possibly,

(ii) with the objective of training them in some particular task.

In our view, a system which is a realization of the envisaged framework will bring
to a user the following potential advantages: the user is relieved of some of the
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responsibilities related to her behavior, as directions about the “right thing” to do are
constantly and punctually provided. She is assisted in situations where she perceived
herself as inadequate, in some respect, to perform her activities or tasks. She is possibly
told how to cope with unknown, unwanted or challenging circumstances. She interacts
with a “Personal Assistant” that improves in time, both in its “comprehension” of the
user needs, cultural level, preferred kinds of explanations, etc. and in its ability to cope
with the environment.
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A Appendix

The definition of WFSX that follows is taken from [2] and is based on the alternating
fix points of Gelfond-Lifschitz Γ -like operators.

Definition 3. The Γ -operator. Let P be an extended logic program and let I be an in-
terpretation of P . ΓP (I) is the program obtained from P by performing in the sequence
the following four operations:

• Remove from P all rules containing a default literal L = not A such that A ∈ I .
• Remove from P all rules containing in the body an objective literal L such that

¬L ∈ I .
• Remove from all remaining rules of P their default literals L = not A such that

not A ∈ I .
• Replace all the remaining default literals by proposition u.
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In order to impose the coherence requirement, we need the following definition.

Definition 4. Seminormal Version of a Program.
The seminormal version of a program P is the program Ps obtained from P by adding
to the (possibly empty) Body of each rule L ← Body the default literal not ¬L, where
¬L is the complement of L with respect to explicit negation.
In the following, we will use the following abbreviations: Γ (S) for ΓP (S) and Γs(S)
for ΓPs(S).

Definition 5. Partial Stable Model.
An interpretation T ∪ not F is called a partial stable model of P iff T = ΓΓsT and
F = HE(P ) − ΓsT .
Partial stable models are an extension of stable models [32] for extended logic pro-
grams and a three-valued semantics. Not all programs have a partial stable model (e.g.,
P = {a,¬a}) and programs without a partial stable model are called contradictory.

Theorem 1. WFSX Semantics.
Every non-contradictory program P has a least (with respect to ⊆) partial stable model,
the well-founded model of P denoted by WFM(P ).

Proof. To obtain an iterative “bottom-up” definition for WFM(P ) we define the fol-
lowing transfinite sequence {Iα}:

I0 = {}; Iα+1 = ΓΓSIα ; Iδ =
⋃
{Iα|α < δ}

where δ is a limit ordinal. There exists a smallest ordinal λ for the sequence above, such
that Iλ is the smallest fix point of ΓΓS . Then, WFM(P ) = Iλ∪not (HE(P )−ΓSIλ).

��
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Summary. Proof-Number (PN) search is a best-first adversarial search algorithm especially
suited for finding the game-theoretical value in game trees. The strategy of the algorithm may
be described as developing the tree into the direction where the opposition characterised by value
and branching factor is to expect to be the weakest. In this chapter we start by providing a short
description of the original PN-search method, and two main successors of the original PN search,
i.e., PN2 search and the depth-first variant Proof-number and Disproof-number Search (PDS). A
comparison of the performance between PN, PN2, PDS, and αβ is given. It is shown that PN-
search algorithms clearly outperform αβ in solving endgame positions in the game of Lines of
Action (LOA). However, memory problems make the plain PN search a weaker solver for harder
problems. PDS and PN2 are able to solve significantly more problems than PN and αβ. But PN2

is restricted by its working memory, and PDS is considerably slower than PN2. Next, we present
a new proof-number search algorithm, called PDS-PN. It is a two-level search (like PN2), which
performs at the first level a depth-first PDS, and at the second level a best-first PN search. Hence,
PDS-PN selectively exploits the power of both PN2 and PDS. Experiments show that within an
acceptable time frame PDS-PN is more effective for really hard endgame positions. Finally, we
discuss the depth-first variant df-pn. As a follow up of the comparison of the four PN variants,
we compare the algorithms PDS and df-pn. However, the hardware conditions of the comparison
were different. Yet, experimental results provide promising prospects for df-pn. We conclude the
article by seven observations, three conclusions, and four suggestions for future research.

6.1 Endgame Solvers

Most modern game-playing computer programs use the adversarial search method
called the αβ algorithm [16] for online game-playing [11]. However, the αβ search
even with its enhancements is sometimes not sufficient to play well in the endgame. A
variety of factors may cause this lack of effectiveness, for instance the complexity (in
Go) and the depth of search (in many endgames). In some games, such as Chess, the
latter problem is solved by the use of endgame databases [22]. Due to memory con-
straints this solution is only feasible for endgames with a relatively small state-space
complexity, although nowadays the size may be considerable.

In the last three decades many other search approaches have been proposed, tested
and thoroughly investigated (for an overview see [12]). Two lines of research focused

H.R. Tizhoosh, M. Ventresca (Eds.): Oppos. Concepts in Comp. Intel., SCI 155, pp. 91–118, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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on the possibilities of the opponent and the potential threats of the opponent. The devel-
opment started with the idea of conspiracy-number search as developed by McAllester
[17] and worked out by Schaeffer [30]. This idea was heuristical by nature. It inspired
Allis [1] to propose PN Search, a specialised binary (win or non-win) search method
for solving games and for solving difficult endgame positions [2].

PN search is a best-first adversarial search algorithm especially suited for finding
the game-theoretical value in game trees. In many domains PN search outperforms αβ
search in proving the game-theoretic value of endgame positions. The PN-search idea
is a heuristic, which prefers expanding slim subtrees over wide ones. PN search or a
variant thereof has been successfully applied to the endgame of Awari [2], Chess [6],
Checkers [31, 32, 33], Shogi [34], and Go [15]. Since PN search is a best-first search, it
has to store the whole search tree in memory. When the memory is full, the search has
to end prematurely.

To overcome this problem PN2 was proposed by Allis [1] as an algorithm to reduce
memory requirements in PN search. It is elaborated upon in Breuker [5]. Its implemen-
tation and testing for chess positions is extensively described in Breuker, Uiterwijk, and
Van den Herik [8]. PN2 performs two levels of PN search, one at the root and one at
the leaves of the first level. As in the B* algorithm [4], a search process is started at the
leaves to obtain a more accurate evaluation. Although PN2 uses far less memory than
PN search, it does not fully overcome the memory obstacle.

Therefore, the idea behind the MTD(f ) algorithm [25] was applied to PN variants:
try to construct a depth-first algorithm that behaves as its corresponding best-first search
algorithm. This idea became a success. In 1995, Seo formulated a depth-first iterative-
deepening version of PN search, later called PN* [34]. The advantage of this variant is
that there is no need to store the whole tree in memory. The disadvantage is that PN* is
slower than PN [29].

Other depth-first variants are PDS [18] and df-pn [21]. Although their generation of
nodes is even slower than PN*’s, they are building smaller search trees. Hence, they are
in general more efficient than PN*.

In this chapter we will investigate several PN-search algorithms, using the game of
Lines of Action (LOA) [26] as test domain. We will concentrate on the offline application
of the PN-search algorithms. The number of positions they can solve (i.e., the post-
mortem analysis quality) is tested on a set of endgame positions. Moreover, we will
investigate to what extent the algorithms are restricted by their working memory or by
the search speed.

The chapter is organised as follows. In Section 6.1 we discuss the need for special
algorithms to solve endgame positions. Section 6.2 describes PN, PN2, PN*, PDS, and
df-pn. In Section 6.3 two enhancements of PN and PN2 are described. In Section 6.4 we
examine the offline solution power and the solution time of three PN variants, in relation
to those of αβ. In Section 6.5 we explain the working of PDS-PN by elaborating on
PDS and the idea of two-level search algorithms. Then, in Section 6.6, the results of
experiments with PDS-PN on a set of endgame positions are given. Subsequently, we
briefly discuss df-pn and compare the results by PDS and df-pn in Section 6.7. Finally,
in Section 6.8 we present seven observations, three conclusions and four suggestions
for future research.
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6.2 Five Proof-Number Search Algorithms

In this section we give a short description of PN search (Subsection 6.2.1), PN2 search
(Subsection 6.2.2) and three depth-first variants of PN search. Recently, three depth-
first PN variants, PN*, PDS, and df-pn have been proposed, which solved the memory
problem of PN-search algorithms. They will be discussed in Subsection 6.2.3, 6.2.4,
and 6.2.5.

6.2.1 Proof-Number Search

Proof-Number (PN) search is a best-first search algorithm especially suited for finding
the game-theoretical value in game trees [1]. Its aim is to prove the true value of the root
of a tree. A tree can have three values: true, false, or unknown. In the case of a forced
win, the tree is proved and its value is true. In the case of a forced loss or draw, the tree is
disproved and its value is false. Otherwise the value of the tree is unknown. In contrast
to other best-first algorithms PN search does not need a domain-dependent heuristic
evaluation function to determine the most-promising node to be expanded next [2]. In
PN search this node is usually called the most-proving node. PN search selects the most-
proving node using two criteria: (1) the shape of the search tree (the branching factor
of every internal node) and (2) the values of the leaves. These two criteria enable PN
search to treat game trees with a non-uniform branching factor efficiently. The strategy
of the algorithm may be described as developing the tree into the direction where the
opposition characterised by value and branching factor is to expect to be the weakest.

Below we explain PN search on the basis of the AND/OR tree depicted in Figure 6.1,
in which a square denotes an OR node, and a circle denotes an AND node. The numbers
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Fig. 6.1. An AND/OR tree with proof and disproof numbers
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to the right of a node denote the proof number (upper) and disproof number (lower).
A proof number (pn) represents the minimum number of leaf nodes which have to be
proved in order to prove the node. Analogously, a disproof number (dpn) represents the
minimum number of leaf nodes which have to be disproved in order to disprove the
node. Because the goal of the tree is to prove a forced win, winning nodes are regarded
as proved. So, they have proof number 0 and disproof number ∞ (e.g., node i). Lost or
drawn nodes are regarded as disproved (e.g., nodes f and k). They have proof number
∞ and disproof number 0. Unknown leaf nodes have a proof and disproof number of
unity (e.g., nodes g, h, j, and l). The proof number of an internal AND node is equal to
the sum of its children’s proof numbers, since to prove an AND node all the children
have to be proved. The disproof number of an AND node is equal to the minimum of
its children’s disproof numbers, since to disprove an AND node it suffices to disprove
one child. The proof number of an internal OR node is equal to the minimum of its
children’s proof numbers, since to prove an OR node it suffices to prove one child. The
disproof number of an internal OR node is equal to the sum of its children’s disproof
numbers, since to disprove an OR node all the children have to be disproved.

The procedure of selecting the most-proving node to expand is as follows. We start
at the root. Then, at each OR node the child with the lowest proof number is selected as
successor, and at each AND node the child with the lowest disproof number is selected
as successor. Finally, when a leaf node is reached, it is expanded (which makes the leaf
node an internal node) and the newborn children are evaluated. This is called immediate
evaluation. The selection of the most-proving node (j) in Figure 6.1 is given by the
bold path.

The number of node traversals to select the most-proving node can have a nega-
tive impact on the execution time. Therefore, Allis [1] proposed the following minor
enhancement. The updating process can be terminated when the proof and disproof
number of a node do not change. From this node we can start the next most-proving
node selection. For an adequate description of implementation details we refer to Allis
et al. [2], where the essentials for implementation are given.

In the naive implementation, proof and disproof numbers are each initialised to unity
in the unknown leaves. In other implementations, the proof number and disproof num-
ber are set to 1 and n, respectively, for an OR node (and the reverse for an AND node),
where n is the number of legal moves. In LOA this would mean that we take the mobil-
ity of the moving player in the position into account, which is an important feature in
the evaluation function as well [37]. The effect of this enhancement is tested in Section
6.3. We would like to remark that there are other possibilities to initialise the proof and
disproof numbers. Allis [1] applies domain-specific knowledge to set the variables in
Awari. Saito et al. [27] apply an algorithm called MC-PNS in the game of Go. It gives a
value to the proof and disproof number by performing a Monte-Carlo evaluation at the
leaf node of the tree.

Here we reiterate that a disadvantage of PN search is that the whole search tree has to
be stored in memory. When the memory is full, the search process has to be terminated
prematurely. A partial solution is to delete proved or disproved subtrees [1]. In the next
subsections we discuss two main variants of PN search that handle the memory problem
more adequately.
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6.2.2 PN2 Search

For an appropriate description we repeat a few sentences of our own. PN2 is first de-
scribed by Allis [1], as an algorithm to reduce memory requirements in PN search. It
is elaborated upon in Breuker [5]. Its implementation and testing for chess positions is
extensively described in Breuker et al. [8]. PN2 consists of two levels of PN search.
The first level consists of a PN search (PN1), which calls a PN search at the second
level (PN2) for an evaluation of the most-proving node of the PN1-search tree. This
PN2 search is bound by a maximum number of nodes to be stored in memory. The
number is a fraction of the size of the PN1-search tree. The fraction f(x) is given by the
logistic-growth function [3], x being the size of the first-level search:

f(x) =
1

1 + e
a−x

b

, (6.1)

with parameters a and b, both strictly positive. The number of nodes y in a PN2-search
tree is restricted to the minimum of this fraction function and the number of nodes
which can still be stored. The formula to compute y is:

y = min(x × f(x), N − x), (6.2)

with N the maximum number of nodes to be stored in memory.
The PN2 search is stopped when the number of nodes stored in memory exceeds y

or the subtree is (dis)proved. After completion of the PN2 search, the children of the
root of the PN2-search tree are preserved, but subtrees are removed from memory. The
children of the most-proving node (the root of the PN2-search tree) are not immediately
evaluated by a second-level search; evaluation of such a child node happens only after
its selection as most-proving node. This is called delayed evaluation. We remark that
for PN2-search trees immediate evaluation is used. The essentials of our implementation
are given in [5].

As we have seen in Subsection 6.2.1, proved or disproved subtrees can be deleted. If
we do not delete proved or disproved subtrees in the PN2 search the number of nodes
searched is the same as y, otherwise we can continue the search longer. The effect of
deleting (dis)proved PN2 subtrees is tested in Section 6.3.

6.2.3 PN*

In 1995, Seo formulated the first depth-first iterative-deepening version of PN search,
later called PN* [34]. PN* uses a method called multiple-iterative deepening. Instead
of iterating only at the root node such as in the ordinary iterative deepening, it iterates
also at AND nodes. To each AND node a threshold is given. The subtree rooted at that
node is continued to be searched as long as the proof number is below the assigned
threshold. To keep iterative deepening effective, the method is enhanced by storing the
expanded nodes in a transposition table.
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6.2.4 PDS

The disadvantage of PN* is that it has difficulties to disprove a (sub)tree, which harms
its solving performance [29]. Nagai [18, 19] proposed a second depth-first search
algorithm, called Proof-number and Disproof-number Search (PDS), which is a straight
extension of PN*. Instead of using only proof numbers such as in PN*, PDS uses dis-
proof numbers too.1 Moreover, PDS uses multiple-iterative deepening in every node.
To keep iterative deepening effective, the method is enhanced by storing the expanded
nodes in a TwoBig transposition table [7]. PDS uses two thresholds in searching, one
for the proof numbers and one for the disproof numbers. We note that PDS suffers from
the Graph-History Interaction (GHI) problem (cf. [9]).2 In the present implementation
this problem is ignored [19]. In Section 6.5.2 we will describe PDS in detail.

6.2.5 df-pn

Nagai [20, 21] has introduced a third depth-first PN algorithm, called df-pn (depth-first
proof-number search). It is mainly a variant of PDS. The algorithm df-pn does not
perform iterative deepening at the root node. As with PDS, df-pn uses two thresholds
for a node, one as a limit for proof numbers (pnt) and one for disproof numbers (dnt).
In contrast to PDS, it sets the thresholds of both proof number and disproof number
at the root node to ∞. Once the thresholds are assigned to a node, the subtree rooted
in that node is stopped to be searched if the proof number (pn) or disproof number
(dpn) is larger than or equal to their corresponding threshold. Obviously, the condition
pn < ∞ and dn < ∞ holds if the tree is not solved. As the search goes more deeply,
the threshold values are distributed among the descendant nodes.

At an OR node p we select the child n with lowest pn just like in the regular PN
search. Assume that there is a node s with the second lowest pn value. The thresholds
of node n are set in the following way:

pntn = min(pntp, pns + 1), (6.3)

dntn = dntp − dnp + dnn. (6.4)

Similarly, at an AND node p we select the child n with lowest dn just like in the reg-
ular PN search. Assume that there is a node s with the second lowest dpn value. The
thresholds of node n are set in the following way:

pntn = pntp − pnp + pnn, (6.5)

dntn = min(dntp, dpns + 1). (6.6)

Contrary to PDS, it has been proved that df-pn always selects the most-proving node
[20]. Initially, the results of df-pn were mixed [21, 28]. Although df-pn sometimes
solves positions faster than PDS, it may solve in practice fewer positions [28]. It turns

1 We recall that PN and PN2 use disproof numbers too.
2 In a search graph a node’s value may be dependent on the path leading to it. Different paths

may lead to different values. Hence, it is difficult to determine the value of any node unambigu-
ously. The problem is known as the Graph-History Interaction (GHI) problem (see [10, 23]).
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out that the standard df-pn algorithm suffers more from the GHI problem than PDS.
It has a fundamental problem when applied to a domain with repetitions [14]. Nagai
proposed an ad-hoc way to solve this problem for Tsume-Shogi [20]. Recently, Kishi-
moto and Müller proposed a solution, which adequately handles the GHI problem in
df-pn [13, 15].

To prevent multiple recreations of a subtree due to multiple-iterative deepening,
Pawlewicz and Lew [24] developed the 1 + ε trick enhancement that might improve
df-pn considerably. It transforms formula 3 to formula 6.7 for the child’s proof-number
threshold in a OR node:

pntn = min(pntp, �pns(1 + ε)�), (6.7)

where ε is a small real number greater than zero.

6.3 Two Enhancements of PN and PN2

Below, we test the effect of enhancing PN and PN2 with (1) adding mobility and (2)
deleting (dis)proved PN2 subtrees. For PN and PN2, all nodes evaluated for the termi-
nation condition during the search are counted. The node count is equal to the num-
ber of nodes generated. The maximum number of nodes searched is 50,000,000. The
maximum number of nodes stored in memory is 1,000,000. These numbers roughly
corresponds to the tournament conditions of the Computer Olympiad with respect to
Pentium III. The parameters (a,b) of the growth function used in PN2 are set at (1800K,
240K) according to the suggestions in Breuker et al. [8].

In the first experiment, we tested PN search and PN2 with the mobility enhancements
on a test set of 116 LOA positions.3 The results are shown in Table 6.1. In the second
column we see that PN search solved 85 positions using mobility; without mobility
it solved 53 positions. PN2 search using mobility solved 109 positions and without it
solved only 91 positions. Next, in the third column we see that on a set of 53 positions
solved by both PN algorithms, PN search using mobility is roughly 5 times faster in
nodes than PN search without mobility. Finally, in the fourth column we see that on
a set of 91 positions solved by both PN2 algorithms, PN2 search using mobility is
more than 6 times faster in nodes than PN2 search without using mobility. In general
we may conclude that mobility speeds up the PN and PN2 with a factor 5 to 6. The
time spent on the mobility extension is estimated at 15% of the total computing time.
Owing to mobility PN search can make better search decisions and therefore solve
many more positions. The underlying reason is that the memory constraint is violated
less frequently.

In the second experiment, we tested the effect of deleting (dis)proved subtrees at the
PN2 search of the PN2. The results are shown in Table 6.2. Both variants (not deleting
PN2 subtrees and deleting PN2 subtrees) used mobility in the experiment. On a set of
108 positions that both versions were able to solve, we can see that deleting (dis)proved
subtrees improves the search by 10%. It also solves one additional position.

In the remainder of this chapter we will use these two enhancements (i.e., mobility
and deleting (dis)proved PN2 subtrees) for PN and PN2.

3 The test set can be found at www.cs.unimaas.nl/m.winands/loa/tswin116.zip.
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Table 6.1. Mobility in PN and PN2

Algorithm # of pos. solved Total nodes (53 pos.) Total nodes (91 pos.)

PN 53 24,357,832 -
PN + Mob. 85 5,053,630 -
PN2 91 - 345,986,639
PN2 + Mob. 109 - 56,809,635

Table 6.2. Deleting (dis)proved subtrees at the second-level search PN2

Algorithm # of pos. solved Total nodes (108 pos.)

PN2 not deleting PN2 subtrees 108 463,076,682
PN2 deleting PN2 subtrees 109 416,168,419

6.4 PN Search Performance

In this section we test the offline performance of three PN-search variants by compar-
ing PN, PN2, PDS, and αβ search with each other. The goal is to investigate the effec-
tiveness of the PN-search variants by experiments. We will look how many endgame
positions they can solve and how much effort (in nodes and CPU time) they take. For
the αβ depth-first iterative-deepening search, nodes at depth i are counted only during
the first iteration that the level is reached. This is how analogous comparisons are done
in Allis [1]. For PN, PN2, and PDS search, all nodes evaluated for the termination con-
dition during the search are counted. For PDS this node count is equal to the number
of expanded nodes (function calls of the recursive PDS algorithm). PN, PN2, PDS, and
αβ are tested on a set of 488 forced-win LOA positions.4 Two comparisons are made,
which are described in Subsection 6.4.1 and 6.4.2.

6.4.1 A General Comparison of Four Search Techniques

In Table 6.3 we compare PN, PN2, PDS, and αβ on a set of 488 LOA positions. The
maximum number of nodes searched is again 50,000,000. In the second column of
Table 6.3 we see that 470 positions were solved by the PN2 search, 473 positions by
PDS, only 356 positions by PN, and 383 positions by αβ. In the third and fourth column
the number of nodes and the time consumed are given for the subset of 314 positions,
which all four algorithms were able to solve. If we have a look at the third column, we
see that PN search builds the smallest search trees and αβ by far the largest. PN2 and
PDS build larger trees than PN but can solve significantly more positions. This suggests
that both algorithms are better suited for harder problems. PN2 investigates 1.2 times
more nodes than PDS, but PN2 is (more than) 6 times faster than PDS in CPU time for
this subset.
4 The test set can be found at www.cs.unimaas.nl/m.winands/loa/tscg2002a.zip.
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Table 6.3. Comparing the search algorithms on 488 test positions

Algorithm # of positions solved 314 positions
(out of 488) Total nodes Total time (ms.)

αβ 383 1,711,578,143 22,172,320
PN 356 89,863,783 830,367
PN2 470 139,254,823 1,117,707
PDS 473 118,316,534 6,937,581

From the experiments we may draw the following three conclusions.

1. PN-search algorithms clearly outperform αβ in solving endgame positions in LOA.
2. The memory problems make the plain PN search a weaker solver for the harder

problems.
3. PDS and PN2 are able to solve significantly more problems than PN and αβ.

6.4.2 A Deep Comparison of PN2 and PDS

For a better insight into how much faster PN2 is than PDS in CPU time, we did a second
comparison. In Table 6.4 we compare PN2 and PDS on the subset of 463 test positions,
which both algorithms were able to solve. Now, PN2 searches 2.6 times more nodes
than PDS. The reason for the decrease of performance is that for hard problems the
PN2-search tree becomes as large as the PN1-search tree. Therefore, the PN2-search
tree is causing more overhead. However, if we have a look at the CPU times we see
that PN2 is still three times faster than PDS. The reason is that PDS has a relatively
large time overhead because of the delayed evaluation. Consequently, the number of
nodes generated is higher than the number of nodes expanded. In our experiments, we
observed that PDS generated nodes 7 to 8 times slower than PN2. Such a figure for the
overhead is in agreement with experiments performed in Othello and Tsume-Shogi [29].
We remark that Nagai’s [19] Othello results showed that PDS was better than PN search,
(i.e., it solved the positions faster than PN). Nagai assigned to both the proof number and
the disproof number of unknown nodes a 1 in his PN search and therefore did not use the
mobility enhancement. In contrast, we incorporated the mobility in the initialisation of
the proof numbers and disproof numbers in our PN search. We believe that comparing
PDS with a PN-search algorithm without using the mobility component is not fair. Since
PDS does not store unexpanded nodes that have a proof number 1 and disproof number
1, we may state that PDS initialises the (dis)proof number of a node by counting the
number of its newborn children [19]. So in the PDS search, the mobility enhancement
coincides with the initialisation of the (dis)proof number.

From this second experiment we may conclude that PDS is considerably slower than
PN2 in CPU time. Therefore, PN2 seems to be a better endgame solver under tourna-
ment conditions. Counterbalancing this success, we note that PN2 is still restricted by
its working memory and is not fit for solving really hard problems.
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Table 6.4. Comparing PDS and PN2 on 463 test positions

Algorithm Total nodes Total time (ms.)

PN2 1,462,026,073 11,387,661
PDS 562,436,874 34,379,131

6.5 PDS-PN

In Section 6.4 we have observed two facts: (1) the advantage of PN2 over PDS is that
it is faster and (2) the advantage of PDS over PN2 is that its tree is constructed as a
depth-first tree, which is not restricted by the available working memory. In the next
sections we try to overcome fact (1) while preserving fact (2) by presenting a new
proof-number search algorithm, called PDS-PN [35, 36]. It is a two-level search (like
PN2), which performs at the first level a depth-first Proof-number and Disproof-number
Search (PDS), and at the second level a best-first PN search. Hence, PDS-PN selectively
exploits the power of both PN2 and PDS. In this section we give a description of PDS-
PN search, which is a two-level search using PDS at the first level and PN at the second
level. In Subsection 6.5.1 we motivate why we developed the method. In Subsection
6.5.2 we describe the first-level PDS, and in Subsection 6.5.3 we provide background
information on the second-level technique. Finally, in Subsection 6.5.4 the relevant parts
of the pseudo code are given.

6.5.1 Motivation

The development of the PDS-PN algorithm was motivated by the clear advantage that
PDS is traversing a depth-first tree instead of a best-first tree. Hence, PDS is not re-
stricted by the available working memory. As against this, PN has the advantage of
being fast compared to PDS (see Section 6.4).

The PDS-PN algorithm is designed to combine the two advantages. At the first level,
the search is a depth-first search, which implies that PDS-PN is not restricted by mem-
ory. At the second level the focus is on fast PN. It is a complex balance, but we expect
that PDS-PN will be faster than PDS, and PDS-PN will not be hampered by memory re-
strictions. Since the expectation on the effectiveness of PDS-PN is difficult to prove we
have to rely on experiments (see Section 6.6). In the next two subsections we describe
PDS-PN.

6.5.2 First Level: PDS

PDS-PN is a two-level search like PN2. At the first level a PDS search is performed,
denoted PN1. For the expansion of a PN1 leaf node, not stored in the transposition table,
a PN search is started, denoted PN2.

Proof-number and Disproof-number Search (PDS) [18] is a straightforward exten-
sion of PN*. Instead of using only proof numbers such as in PN*, PDS uses disproof
numbers too. PDS exploits a method called multiple-iterative deepening. Instead of iter-
ating only in the root such as in ordinary iterative deepening, PDS iterates in all interior
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nodes. The advantage of using the multiple-iterative-deepening method is that in most
cases it accomplishes to select the most-proving node (see below), not only in the root,
but also in the interior nodes of the search tree. To keep iterative deepening effective, the
method is enhanced by storing the expanded nodes in a TwoBig transposition table [7].

PDS uses two thresholds for a node, one as a limit for proof numbers and one for
disproof numbers. Once the thresholds are assigned to a node, the subtree rooted in that
node is stopped to be searched if both the proof number and disproof number are larger
than or equal to the thresholds or if the node is proved or disproved. The thresholds
are set in the following way. At the start of every iteration, the proof-number threshold
pnt and disproof-number threshold dnt of a node are equal to the node’s proof number
pn and disproof number dn, respectively. If it seems more likely that the node can be
proved than disproved (called proof-like), the proof-number threshold is increased. If it
seems more likely that the node can be disproved than proved (called disproof-like), the
disproof-number threshold is increased. In passing we note that it is easier to prove a
tree in an OR node, and to disprove a tree in an AND node. Below we repeat Nagai’s
[18] heuristic to determine proof-like and disproof-like.

In an interior OR node n with parent p (direct ancestor) the solution of n is proof-like,
if the following condition holds:

pntp > pnp AND (pnn ≤ dnn OR dntp ≤ dnp), (6.8)

otherwise, the solution of n is disproof-like.
In an interior AND node n with parent p (direct ancestor) the solution of n is disproof-

like, if the following condition holds:

dntp > dnp AND (dnn ≤ pnn OR pntp ≤ pnp), (6.9)

otherwise, the solution of n is proof-like.
When PDS does not prove or disprove the root given the thresholds, it increases

the proof-number threshold if its proof number is smaller than or equal to its disproof
number, otherwise it increases the disproof-number threshold. Finally, we remark that
only expanded nodes are evaluated. This is called delayed evaluation (cf. [1]). The
expanded nodes are stored in a transposition table. The proof and disproof number of
a node are set to unity when not found in the transposition table. Since PDS does not
store unexpanded nodes which have a proof number 1 and disproof number 1, it can be
said that PDS initialises the proof and disproof number by using the number of children.
The mobility enhancement of PN and PN2 (see Subsection 6.2.1) is already implicitly
incorporated in the PDS search.

PDS is a depth-first search algorithm but behaves like a best-first search algorithm.
In most cases PDS selects the same node for expansion as PN search. By using transpo-
sition tables PDS suffers from the GHI problem (cf. [9]). Especially the GHI evaluation
problem can occur in LOA too. For instance, draws can be agreed upon due to the three-
fold-repetition rule. Thus, dependent on its history a node can be a draw or can have a
different value. However, in the current PDS algorithm we ignore this problem, since
we believe that it is less relevant for the game of LOA than for Chess.
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A Detailed Example

A detailed step-by-step example of the working of PDS is given in Figure 6.2. A square
denotes an OR node, and a circle denotes an AND node. The numbers at the upper
side of a node denote the proof-number threshold (left) and disproof-number threshold
(right). The numbers at the lower side of a node denote the proof number (left) and
disproof number (right).

In the first iteration (top of Figure 6.2), threshold values of the root A are set to unity.
A is expanded, and nodes B and C are generated. The proof number of A becomes 1 and
the disproof number becomes 2. Because both numbers are larger than or equal to the
threshold values the search stops.

In the second iteration (middle of Figure 6.2), the proof-number threshold is incre-
mented to 2, because the proof number of A (i.e., 1) is the smaller one of both A’s proof
number and disproof number (i.e., 2). We again expand A and re-generate B and C.
The proof number of A is below its proof-number threshold and we continue searching.
Now we have to select the child with minimum proof number. Because B and C have
the same proof number, the left-most node B is selected. Initially, we set the proof-
number and disproof-number threshold of B to its proof and disproof number (both 1).
Because B is an AND node we have to look whether the solution of B is disproof-like
by checking the appropriate condition (i.e., formula 6.9). The disproof-number thresh-
old of A is not larger than its disproof number (both are 2), therefore the solution of
B is not disproof-like but proof-like. Thus, the proof-number threshold of B has to be
incremented to 2. Next, node B is expanded and the nodes D, E, F and G are gener-
ated. The search in node B is stopped because its proof number (i.e., 4) and disproof
number (i.e., 1) are larger than or equal to the thresholds (i.e., 2 and 1, respectively).
Node B is stored in the transposition table with proof number 4 and disproof number 1.
Then the search backtracks to A. There we have to check whether we still can continue
searching A. Since the proof number of A is smaller than its threshold, we continue and
subsequently we select C, because this node has now the minimum proof number. The
thresholds are set in the same way as in node B. Node C has two children H and I. The
search at node C is stopped because its proof number (i.e., 2) and disproof number (i.e.,
1) are not below the thresholds. C is stored in the transposition table with proof number
2 and disproof number 1. The search backtracks to A and is stopped because its proof
number (i.e., 2) and disproof number (i.e., 2) are larger than or equal to the thresholds.
We remark that at this moment B and C are stored because they were expanded.

In the third iteration (bottom of Figure 6.2) the proof-number threshold of A is in-
cremented to 3. Nodes B and C are again generated, but this time we can find their
proof and disproof numbers in the transposition table. The node with smallest proof
number is selected (C with proof number 2). Initially, we set the proof-number thresh-
old and disproof-number threshold of C to its proof and disproof number (i.e., 2 and
1, respectively). Because C is an AND node we have to look whether the solution is
disproof-like by checking condition 6.9. The disproof-number threshold of A is not
larger than its disproof number (both are 2), therefore the solution is not disproof-like
but proof-like. Thus, the proof-number threshold of C has to be incremented to 3. C
has now proof-number threshold 3 and disproof-number threshold 1. Nodes H and I are
generated again by expanding C. This time the proof number of C (i.e., 2) is below the
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proof-number threshold (i.e., 3) and the search continues. The node with minimum
disproof number is selected (i.e., H). Initially, we set the proof-number threshold and
disproof-number threshold of H to its proof and disproof number (i.e., both 1). Be-
cause H is an OR node we have to look whether the solution is proof-like by checking
condition 6.8. The proof-number threshold of C (i.e., 3) is larger than its proof num-
ber (i.e., 2), therefore the solution is proof-like. Hence, the search expands node H
with proof-number threshold 2 and disproof-number threshold 1. Nodes J and K are
generated. Because the proof number of H (i.e., 1) is below its threshold (i.e., 2), the
node with minimum proof number is selected. Because J is an AND node we have to
look whether the solution of J is disproof-like by checking condition 6.9. The disproof-
number threshold of H (i.e., 1) is not larger than its disproof number (i.e., 2), therefore
the solution of J is not disproof-like but proof-like. J is expanded with proof-number
threshold 2 and disproof-number threshold 1. Since node J is a terminal win position
its proof number is set to 0 and its disproof number set to ∞. The search backtracks to
H. At node H the proof number becomes 0 and the disproof number ∞, which means
the node is proved. The search backtracks to node C. The search continues because the
proof number of C (i.e., 1) is not larger than or equal to the proof-number threshold (i.e.,
3). We select now node I because it has the minimum disproof number. The thresholds
of node I are set to 2 and 1, as was done in H. The node I is a terminal win position;
therefore its proof number is set to 0 and its disproof number to ∞. At this moment
the proof number of C is 0 and the disproof number ∞, which means that the node is
proved. The search backtracks to A. The proof number of A becomes 0, which means
that the node is proved. The search stops at node A and the tree is proved.

6.5.3 Second Level: PN Search

For an adequate description we reiterate a few sentences from Subsection 6.2.2. At the
leaves of the first-level search tree, the second-level search is invoked, similar as in PN2

search. The PN search of the second-level, denoted PN2 search, is bounded by the number
of nodes that may be stored in memory. The number is a fraction of the size of the PN1-
search tree, for which we take the current number of nodes stored in the transposition table
of the PDS search. Preferably, this fraction should start small, and grow larger as the size
of the first-level search tree increases. A standard model for this growth is the logistic-
growth model [3]. The fraction f(x) is therefore given by the logistic-growth function, x
being the size of the first-level search:

f(x) =
1

1 + e
a−x

b

, (6.10)

with parameters a and b, both strictly positive. The parameter a determines the transition
point of the function: as soon as the size of the first-level search tree reaches a, the second-
level search equals half the size of the first-level search. Parameter b determines the S-
shape of the function: the larger b, the more stretched the S-shape is. The number of
nodes y in a PN2-search tree is restricted by the minimum of this fraction function and
the number of nodes which can still be stored. The formula to compute y is:

y = min(x × f(x), N − x), (6.11)

with N the maximum number of nodes to be stored in memory.
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Leaf node in the first level. 
Root node in second level.

Second-level search stops when 
a certain limit of nodes in 
memory is reached or its root is 
(dis)proved.

The subtrees of the root are 
deleted when the second-
level search stops. 

PDS 

PN

Fig. 6.3. Schematic sketch of PDS-PN

The PN2 search is stopped when the number of nodes stored in memory exceeds y
or the subtree is (dis)proved. After completion of the PN2-search tree, only the root of
the PN2-search tree is stored in the transposition table of the PDS search. We remark
that for PN2-search trees immediate evaluation (cf. [1]) is used. This two-level search
is schematically sketched in Figure 6.3.

In the second-level search proved or disproved subtrees are deleted. If we do not
delete proved or disproved subtrees in the PN2 search, the number of nodes searched
becomes the same as y. When we include deletions the second-level search can continue
on average considerably longer.

//Iterative deepening at root r
procedure NegaPDSPN(r){

r.proof = 1;
r.disproof = 1;

while(true){
MID(r);
//Terminate when the root is proved or disproved
if(r.proof == 0 || r.disproof == 0)
break;

if(r.proof <= r.disproof)
r.proof++;

else
r.disproof++;

}
}

Fig. 6.4. PDS-PN: Root node
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6.5.4 Pseudo Code for PDS-PN

In this subsection we provide the pseudo code for PDS-PN. For ease of comparison
we use similar pseudo code as used by Nagai [18] for the PDS algorithm. The proof
number in an OR node and the disproof number in an AND node are equivalent. Anal-
ogously, the disproof number in an OR node and the proof number in an AND node
are equivalent. As they are dual to each other, an algorithm similar to negamax in the
context of minimax searching can be constructed. This algorithm is called NegaPDSPN
(see Figure 6.4).

In the following, procedure MID(n) performs multiple iterative deepening
(see Figure 6.5). The function proofSum(n) computes the sum of the proof numbers
of all the children. The function disproofMin(n) finds the minimum of the dis-
proof numbers of all the children. The procedureputInTT() stores information to and
lookUpTT() retrieves information from the transposition table. isTerminal(n)
checks whether a node is a win, a loss, or a draw. The proceduregenerateChildren
(n) generates the children of the node. By default, the proof number and disproof
number of a node are set to unity. The procedure findChildrenInTT(n) checks
whether the children are already stored in the transposition table. If a hit occurs for a
child, its proof number and disproof number are set to the values found in the trans-
position table. The procedure PN() is just the plain PN search. The algorithm is de-
scribed in Allis [1] and Breuker [5], and is reproduced in the Appendix . The function
computeMaxNodes() computes the number of nodes, which may be stored for the
PN search, according to Equation 6.11.

Finally, the function selectChild() selects the child that will be traversed next
(see Figure 6.6).

6.6 Experiments

In this section we compare αβ, PN2, PDS, and PDS-PN search with each other. The
goal is to prove experimentally the effectiveness of PDS-PN. We will investigate how
many endgame positions it can solve and the effort (in terms of number of nodes and
CPU time) it takes compared with αβ, PN2, PDS. For PDS and PDS-PN we use a
TwoBig transposition table. In Subsection 6.6.1 we test PDS-PN with different param-
eters a and b for the growth function. In Subsection 6.6.2 we compare PDS-PN with
αβ, PN2, and PDS on a set of 488 LOA positions in three different ways. In Subsec-
tion 6.6.3 we compare PDS-PN with PN2 on a set of hard LOA problems. Finally, we
evaluate the algorithms PDS-PN and PN2 in solving problems under restricted memory
conditions in Subsection 6.6.4.

6.6.1 Parameter Tuning

In the following series of experiments we measured the solving ability with different
parameters a and b. For our specific parameter choice we follow Breuker [5], i.e., pa-
rameter a takes values of 150K, 450K, 750K, 1050K, and 1350K, and for each value of
a parameter b takes values of 60K, 120K, 180K, 240K, 300K, and 360K. The results



6 Proof-Number Search and Its Variants 107

procedure MID(n){

//Look up in the transposition table

lookUpTT(n, &proof, &disproof);

if(proof == 0 || disproof == 0

|| (proof >= n.proof && disproof >= n.disproof)){

n.proof = proof; n.disproof = disproof;

return;

}

if(isTerminal(n)){

if((n.value == true && n.type == AND_NODE)

||(n.value == false && n.type == OR_NODE)){

n.proof = INFINITY; n.disproof = 0;

}

else{

n.proof = 0; n.disproof = INFINITY;

}

putInTT(n);

return;

}

generateChildren(n);

//Avoid cycles

putInTT(n);

//Multiple-iterative deepening

while(true){

//Check whether the children are already stored in the TT.

findChildrenInTT(n);

//Terminate when both pn and dn exceed their thresholds

if(proofSum(n) == 0 || disproofMin(n) == 0 || (n.proof <=

disproofMin(n) && n.disproof <= proofSum(n))){

n.proof = disproofMin(n);

n.disproof = proofSum(n);

putInTT(n);

return;

}

proof = max(proof, disproofMin(n));

n_child = selectChild(n, proof);

if(n.disproof > proofSum(n) && (proof_child <= disproof_child

|| n.proof <= disproofMin(n)))

n_child.proof++;

else

n_child.disproof++;

//This is the PDS-PN part

if(!lookUpTT(n_child)){

PN(n_child, computeMaxNodes());

putInTT(n_child);

}

else

MID(n_child);

}

}

Fig. 6.5. PDS-PN: Multiple-Iterative Deepening
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//Select among children
selectChild(n, proof){

min_proof = INFINITY;
min_disproof = INFINITY;
for(each child n_child){

disproof_child = n_child.disproof;
if(disproof_child != 0)

disproof_child = max(disproof_child, proof);

//Select the child with the lowest disproof_child (if there are
//plural children among them select the child with the lowest
//n_child.proof)
if(disproof_child < min_disproof || (disproof_child

== min_disproof && n_child.proof < min_proof)){
n_best = n_child;
min_proof = n_child.proof;
min_disproof = disproof_child;

}
}
return n_best;

}

Fig. 6.6. PDS-PN: Selection mechanism

are given in Table 6.5. For each a holds that the number of solved positions grows with
increasing b, when the parameter b is still small. If b is sufficiently large, increasing
it will not enlarge the number of solved positions. In the process of parameter tuning
we found that PDS-PN solves the most positions with (450K, 300K) (see the bold line
in Table 6.5). However, the difference with parameter configurations (150K, 180K),
(150K, 240K), (150K, 300K), (150K, 360K), (450K, 360K), and (1350K, 300K) is not
significant. On the basis of these results we decided that it is not necessary to perform
experiments with a larger a.

6.6.2 Three Comparisons of the Algorithms

In the experiments with PN2, PDS, and PDS-PN all nodes evaluated during the search
are counted; for the αβ depth-first iterative-deepening searches nodes at depth i are
counted only during iteration i. We adopted this method from Allis [1]. It makes a gen-
eral comparison possible. The maximum number of nodes searched is 50,000,000. The
limit corresponds roughly to tournament conditions. The maximum number of nodes
stored in memory is 1,000,000. The parameters (a,b) of the growth function used in
PN2 are set at (1800K, 240K) according to the suggestions in Breuker et al. [8]. The
parameter configuration (450K, 300K) found in the previous subsection will be used for
PDS-PN. The smaller value of a corresponds to the smaller PN1 trees resulting from
the use of PDS-PN instead of PN2. The fact that PDS is much slower than PN is an
important factor too.
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Table 6.5. Number of solved positions (by PDS-PN) for different values of a and b

a b # of solved accuracy
positions (%)

150,000 60,000 460 94.3
150,000 120,000 458 93.9
150,000 180,000 466 95.5
150,000 240,000 466 95.5
150,000 300,000 465 95.3
150,000 360,000 466 95.5
450,000 60,000 445 91.2
450,000 120,000 463 94.9
450,000 180,000 460 94.3
450,000 240,000 461 94.5
450,000 300,000 467 95.7
450,000 360,000 464 95.1
750,000 60,000 432 88.5
750,000 120,000 449 92.0
750,000 180,000 461 94.5

a b # of solved accuracy
positions (%)

750,000 240,000 463 94.9
750,000 300,000 460 94.3
750,000 360,000 461 94.5

1,050,000 60,000 421 86.3
1,050,000 120,000 448 91.8
1,050,000 180,000 451 92.4
1,050,000 240,000 459 94.1
1,050,000 300,000 459 94.1
1,050,000 360,000 460 94.3
1,350,000 60,000 421 86.3
1,350,000 120,000 433 88.7
1,350,000 180,000 447 91.6
1,350,000 240,000 454 93.0
1,350,000 300,000 465 95.3
1,350,000 360,000 459 94.1

First Comparison

αβ, PN2, PDS, and PDS-PN are tested on the same set of 488 forced-win LOA positions
as described in Section 6.4. The results are given in Table 6.6. In the first column the
four algorithms are mentioned. In the second column we see that 382 positions are
solved5 by αβ, 470 positions by PN2, 473 positions by PDS, and 467 positions by
PDS-PN. The set of 488 positions contains no position that only could be solved by αβ
search. In the third and fourth column the number of nodes and the time consumed are
given for the subset of 371 positions, which all four algorithms are able to solve. A look
at the third column shows that PDS search builds the smallest search trees and αβ by far
the largest. Like PN2 and PDS, PDS-PN solves significantly more positions than αβ.
This suggests that PDS-PN is a better endgame solver than αβ. As we have seen before,
PN2 and PDS-PN investigate more nodes than PDS, but both are still faster in CPU time
than PDS for this subset. Due to the limit of 50,000,000 nodes and the somewhat lower
search efficiency, PDS-PN solves three positions fewer than PN2 (result PDS-PN is
99.4% with respect to PN2) and six fewer than PDS (result PDS-PN is 98.7% with
respect to PDS).

Second Comparison

To investigate whether the memory restrictions are an actual obstacle we increased the
limit of nodes searched to 500,000,000 nodes. In this second comparison PN2 solves
now 479 positions and PDS-PN becomes the best solver with a performance of 483
positions. The detailed results are given in Table 6.7.

5 We remark that a slightly less inefficient version of our αβ implementation could solve 383
positions (see Section 6.4).
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Table 6.6. Comparing the search algorithms on 488 test positions with a limit of 50,000,000
nodes

Algorithm # of positions solved accuracy 371 positions
(out of 488) (%) Total # of nodes Total time (ms.)

αβ 382 78.3 2,645,022,391 33,878,642
PN2 470 96.3 505,109,692 3,642,511
PDS 473 96.9 239,896,147 16,960,325

PDS-PN 467 95.7 924,924,336 5,860,908

Table 6.7. Comparing PN2 and PDS-PN on 488 test positions with a limit of 500,000,000 nodes

Algorithm # of positions solved accuracy 479 positions
(out of 488) (%) Total # of nodes Total time (ms.)

PN2 479 98.2 2,261,482,395 13,295,688
PDS-PN 483 99.0 4,362,282,235 23,398,899

The performance of PDS-PN in Table 6.7 is more effective than that of PN2, viz.
483 to 479. However, we should thoughtfully take into account the condition for the
total number of nodes searched and the time spent. Therefore, we continue our research
in the direction of nodes searched and time spent with the 50,000,000 nodes limit. A
reason for this decision is that the experimental time constraints are necessary for the
PDS experiments.

Third Comparison

For a better insight into the relation between PN2, PDS, and PDS-PN we performed
a third comparison. In Table 6.8 we provide the results of PN2, PDS, and PDS-PN
on a new subset of 457 positions of the principal test set, viz. all positions the three
algorithms could solve under the 50,000,000 nodes limit condition. Now, PN2 searches
2.6 times more nodes than PDS. The reason for the difference of performance is that for
hard problems the PN2-search tree becomes as large as the PN1-search tree. Therefore,
the PN2-search tree is causing more overhead. However, if we look at the CPU time we
see that PN2 is almost 4 times faster than PDS. PDS has a relatively large time overhead
because it performs multiple-iterative deepening at all nodes. PDS-PN searches 3.7
times more nodes than PDS but is still 3 times faster than PDS in CPU time. This is
because PDS-PN is focussing more on the fast PN at the second level than on PDS
at the first level. PDS-PN searches more nodes than PDS since the PN2-search tree
is repeatedly rebuilt and removed. The overhead is even bigger than PN2’s overhead
because the children of the root of the PN2-search tree are not stored (i.e., this is done
to focus more on the fast PN search). It explains why PDS-PN searches 1.4 times more
nodes than PN2. Hence, our provisional conclusions are that on this set of 457 positions
and under the 50,000,000 nodes condition: (1) PN2 outperforms PDS-PN, and (2) PDS-
PN is a faster solver than PDS and therefore more effective than PDS.
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Table 6.8. Comparing PN2, PDS and PDS-PN on 457 test positions (all solved) with a limit of
50,000,000 nodes

Algorithm Total # of nodes Total time (ms.)

PN2 1,275,155,583 9,357,663
PDS 498,540,408 36,802,350

PDS-PN 1,845,371,831 11,952,086

Table 6.9. Comparing PN2 and PDS-PN on 286 hard test positions with a limit of 500,000,000
nodes

Algorithm # of positions solved accuracy 255 positions
(out of 286) (%) Total # of nodes Total time (ms.)

PN2 265 92.7 10,061,461,685 57,343,198
PDS-PN 276 96.5 16,685,733,992 84,303,478

6.6.3 Comparing the Algorithms for Hard Problems

Since the impact of the 50,000,000 nodes condition somewhat obscured our provisional
conclusions above and since we felt that the 99.4% score by PDS-PN with respect to
PN2 was rather close, we performed a new experiment with a different set of LOA prob-
lems in an attempt to find more insights into the intricacies of these complex algorithms.
In the new experiment PN2 and PDS-PN are tested on a set of 286 LOA positions, which
were on average harder than the ones in the previous test set.6 In this context ‘harder’
means a longer distance to the final position (the solution), i.e., more time is needed.
The conditions are the same as in the previous experiments except that the maximum
number of nodes searched is set at 500,000,000. The PDS algorithm is not included be-
cause it takes too much time given the current node limit. In Table 6.9 we see that PN2

solves 265 positions and PDS-PN 276. We remark that PN2 solves 10 positions, which
PDS-PN does not solve, but that PDS-PN solves 21 positions that PN2 does not solve.
The ratio in nodes and time between PN2 and PDS-PN for the positions solved by both
(255) is roughly similar to the previous experiments. The reason why PN2 solves fewer
positions than PDS-PN is its being restricted in working memory. We are in a delicate
position since new experiments with much more working memory are now on the list
to be performed. However, we assume that the nature of PN2 with respect to using so
much memory cannot be overcome. Hence we may conclude that within an acceptable
time frame PDS-PN is a more effective endgame solver than PN2 for hard problems.

6.6.4 Comparing the Algorithms under Reduced Memory

From the experiments in the previous subsection it is clear that PN2 will not be able
to solve very hard problems since it will run out of working memory. To further solid-
ify this statement experimentally, we tested the solving ability of PN2 and PDS with
restricted working memory. In these experiments we started with a memory capacity

6 The test set can be found at www.cs.unimaas.nl/m.winands/loa/tscg2002b.zip.
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sufficient to store 1,000,000 nodes, subsequently we divided the memory capacity by
two at each next step. The parameters a and b were also divided by two. The relation
between memory and number of solved positions for both algorithms is given in Figure
6.7. We see that the solving performance rapidly decreases for PN2. The performance of
PDS-PN remains stable for a long time. Only when PDS-PN is restricted to fewer than
10,000 nodes, it begins to solve fewer positions. This experiment suggests that PDS-PN
is to be preferred above PN2 for the very hard problems when the memory capacity is
in some way restricted. The reason is that PDS-PN is not suffering from memory con-
straints. If there are no memory constraints at all, PN2 is preferred because under those
circumstances it is the fastest algorithm.

6.7 Df-pn and PDS Comparison

Pawlewicz and Lew [24] used the set of 286 LOA positions of Subsection 6.6.3 to com-
pare their implementation of df-pn and PDS with each other. Moreover, they enhanced
df-pn and PDS with the 1 + ε trick. To compare the speed differences in CPU time

Table 6.10. Comparison of df-pn and PDS on 286 hard test positions with a limit of 30 minutes
by Pawlewicz and Lew [24]. The rate number r in row A and in column B indicates that algorithm
A is r times faster than algorithm B.

Algorithm df-pn df-pn 1 + ε PDS PDS 1 + ε

df-pn 1.00 0.63 2.83 2.64
df-pn 1 + ε 1.58 1.00 4.46 4.17
PDS 0.35 0.22 1.00 0.93
PDS 1 + ε 0.38 0.24 1.07 1.00
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for each two methods, they calculated the geometric mean of the ratio of solving times
(see Table 6.10). We see that the enhanced df-pn is the most efficient method, plain df-
pn is the second best, and both PDS versions are the least efficient. Although the 1 + ε
trick was not designed for PDS, there is a noticeable difference between enhanced PDS
and plain PDS in their experiments. For more details we refer to their paper [24].

Pawlewicz and Lew did neither implement nor tested PN2 and PDS-PN on their
hardware and with their data-structure implementation. Up to now there has not been a
direct comparison between df-pn with PDS-PN using the same hardware and the same
data-structure implementation. However, even so, we may still conclude that df-pn is
an interesting alternative to PDS-PN. In Table 6.10 we see that df-pn is 4 times faster
than PDS, while in Table 6.8 (Subsection 6.6.3) we see that PDS-PN is able to search 3
times faster than PDS.

6.8 Conclusions and Future Research

Below we offer seven observations, three conclusions, and four suggestions for future
research. Since observations and conclusions are intermingled, we present the conclu-
sions in relation to the observations.

First, we have observed that mobility and deleting (dis)proved PN2 subtrees speed up
PN and PN2 and increase their ability of solving endgame positions. Second, we have
seen that the various PN-search algorithms outperform αβ in solving endgame positions
in LOA. Third, the memory problems make the plain PN search a weak solver for the
harder problems. Fourth, PDS and PN2 are able to solve significantly more problems
than PN and αβ.

Our first conclusion is that PN and its variants offer a valuable tool for enhancing
programs in endgames. We remark that PN2 is still restricted by working memory, and
that PDS is three times slower than PN2 (Table 6.4) because of the delayed evaluation.

Our fifth observation is that PDS-PN is able to solve significantly more LOA
endgame problems than αβ search with enhancements. Our sixth observation is that
the PDS-PN algorithm is almost as fast as PN2 when the parameters for its growth
function are chosen properly. It turns out that for each a it holds that the number of
solved positions grows with increasing b, when the parameter b is still small. If b is suf-
ficiently large, increasing it will not enlarge the number of solved positions. Our seventh
observation states that (1) PDS-PN solves more hard positions than PN2 within an ac-
ceptable time frame and (2) PDS-PN is more effective than PN or even PN2 because it
does not run out of memory for hard problems. Moreover, PDS-PN performs quite well
under harsh memory conditions. This is especially appropriate for hard problems and
for environments with very limited memory such as hand-held computer platforms.

Hence, our second conclusion is that PDS-PN may be a more effective endgame
solver for a set of hard problems than PDS and PN2.

In this chapter we discussed the results of comparing PDS with df-pn as performed
by Pawlewicz and Lew [24]. Df-pn was solving the set of hard problems 4 times faster
than PDS. In Subsection 6.6.3 we saw that PDS-PN was able to search 3 times faster
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than PDS, whereas in Section 6.7 df-pn was 4 times faster than PDS. Although the
conditions were different, our third conclusion is that df-pn may be an interesting
alternative to PDS-PN.

Finally, we believe that there are four suggestions for the near future. The first chal-
lenge is testing PDS-PN in other domains with difficult endgames. An example of a
game notoriously known for its complicated endgames is the game of Tsume-Shogi (a
variant of Shogi). Several hard problems including solutions over a few hundred ply are
solved by PN* [34] and PDS [20, 29]. It would be interesting to test PDS-PN on these
problems. Second, it would be interesting to have a direct comparison between df-pn
with PDS-PN using the same hardware and the same data-structure implementation.
The third challenge would be to construct a two-level Proof-Number search variant us-
ing df-pn at the first level search, and a plain best-first PN search at the second level.
Fourth, one problem clearly remains, viz. that there is no dynamic strategy available that
determines when to use PN search instead of αβ in a real game. This will be subject of
future research as well.
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Appendix: Pseudo Code for PN Search

Below we give the pseudo code for PN search, which was discussed in Subsec-
tion 6.2.1. For ease of comparison we use similar pseudo code as given in Breuker
[5]. PN(root, maxnodes) is the main procedure of the algorithm. The procedure
evaluate(node) evaluates a position, and assigns one of the following three val-
ues to a node: FALSE, TRUE, and UNKNOWN. The proof and disproof numbers of a
node are initialised by setProofAndDisproofNumbers(node). The function
selectMostProvingNode(node) finds the most-proving node. Expanding the
most-proving node is done by expandNode(node). After the expansion of the most-
proving node, the new information is backed up by updateAncestors(node,
root). The function countNodes() gives the number of nodes currently stored
in memory.

//The PN-search algorithm
PN(root, maxnodes){

evaluate(root);
setProofAndDisproofNumbers(root);

while(root.proof != 0 && root.disproof != 0
&& countNodes() <= maxnodes){

//Second Part of the algorithm
mostProvingNode = selectMostProvingNode(currentNode);
expandNode(mostProvingNode);
currentNode = updateAncestors(mostProvingNode, root);

}
}

//Calculating proof and disproof numbers
setProofAndDisproofNumbers(node){

if(node.expanded) //Internal node;
if(node.type == AND_NODE){
node.proof = 0;
node.disproof = INFINITY;
for(each child n){

node.proof = node.proof + n.proof;
if(n.disproof < node.disproof)

node.disproof = n.disproof;
}

}
else{ //OR node
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node.proof = ProofNode.INFINITY;
node.disproof = 0;
for(each child n){

node.disproof = node.disproof + n.disproof;
if(n.proof < node.proof)

node.proof = n.proof;
}

}
else //Leaf

switch(node.value){
case FALSE:

node.proof = INFINITY;
node.disproof = 0;

case TRUE:
node.proof = 0;
node.disproof = INFINITY;

case UNKNOWN:
node.proof = 1;
node.disproof = 1;

}
}

//Select the most-proving node
SelectMostProvingNode(node){

while(node.expanded){
n = node.children;

if(node.type == OR_NODE) //OR Node
while(n.proof != node.proof)

n = n.sibling;
else //AND Node
while(n.disproof != node.disproof)

n = n.sibling;

node = n;
}
return node;

}

//Expand node
expandNode(node){

generateAllChildren(node);
for(each child n){

evaluate(n);
setProofAndDisproofNumbers(n);
//Addition to original code
if((node.type == OR_NODE && n.proof == 0) ||

(node.type == AND_NODE && n.disproof == 0))
break;

}
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node.expanded = true;
}

//Update ancestors
updateAncestors(node, root){

do{
oldProof = node.proof;
oldDisProof = node.disproof;

setProofAndDisproofNumbers(node);
//No change on the path
if(node.proof == oldProof &&

node.disproof == oldDisProof)
return node;

//Delete (dis)proved trees
if(node.proof == 0 || node.disproof == 0)

node.deleteSubtree();

if(node == root)
return node;

node = node.parent;
}while(true)

}
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Summary. The chapter discusses the application of Opposition-Based Optimization (OBO) to
ant algorithms. Ant Colony Optimization (ACO) is a powerful optimization technique that has
been used to solve many complex problems. Despite its successes, ACO is not a perfect algorithm:
it can remain trapped in local optima, miss a portion of the solution space or, in some cases, it can
be slow to converge. Thus, we were motivated to improve the accuracy and convergence of the
current algorithm by extending it with the concept of OBO. In the case of ACO, the application
of opposition can be challenging because ACO usually optimizes using a graph representation
of problems, where the opposite of solutions and partial components of the solutions are not
clearly defined.

The chapter presents two types of opposition-based extensions to the ant algorithm. The first
type, called Opposite Pheromone per Node (OPN), involves a modification to the construction
phase of the algorithm which affects the decisions of the ants by altering the pheromone values
used in the decision. Basically, there is an opposite rate that determines the frequency at which op-
posite pheromone will be used in the construction step. The second method, Opposite Pheromone
Update (OPU), involves an extension to the update phase of the algorithm that performs additional
updates to the pheromone content of opposite decisions. The opposition-based approaches were
tested using the Travelling Salesman Problem (TSP) and the Grid World Problem (GWP).

Overall, the application of some fundamental opposition concepts led to encouraging results
in the TSP and the GWP. OPN led to some accuracy improvements and OPU demonstrated signif-
icant speed-ups. However, further work is necessary to fully evaluate the benefits of opposition.
Theoretical work involving the application of opposition to graphs is necessary, specifically in
establishing the ‘opposite graph’.

7.1 Introduction

Ant Colony Optimization (ACO) is classified under the general class of algorithms
known as Swarm Intelligence (SI). SI reflects the emergence of collective intelligence
from a swarm of simple agents. It is generally defined as a structured collection of
interacting organisms which cooperate to achieve a greater goal [1, 14]. It is possible to
have genetic cooperation, as it is the case with genetic algorithms, but in SI, it is more
of a social interaction. The framework is based on the repeated sampling of solutions
to the problem at hand, where each member of the population provides a potential
solution. In the case of ACO, the algorithm mimics the social interaction of ants, thus,

H.R. Tizhoosh, M. Ventresca (Eds.): Oppos. Concepts in Comp. Intel., SCI 155, pp. 121–142, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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the population is a colony of ants. Social behaviour increases the ability of individuals to
adapt, as they can cooperate and learn from each other. The main idea of SI algorithms is
that organisms of a swarm behave in a distributed manner while exchanging information
directly or indirectly.

In addition, ACO is a population-based metaheuristic. Metaheuristics are procedures
that use heuristics to seek a near-optimal solution with reasonable computation time
[8, 9]. The general idea behind a metaheuristic is to create a balance between local
improvements and a high-level strategy. They optimize problems through guided search
of the solution space [9, 29]. In brief, metaheuristics seek optimality while attempting
to reduce computation time.

ACO is a powerful technique that has been used to solve many complex optimiza-
tion problems, such as the travelling salesman problem [6, 7, 10], quadratic assignment
problem [18], vehicle routing [2, 3, 11], and many others [9]. Given the complexity of
these problems and their real-world applications, any improvement to the ant algorithm
performance is encouraged. Specifically, an increase in accuracy and faster convergence
are strongly welcomed. Ant algorithms can become trapped in a local optimum, miss a
portion of the solution space or simply be slow to converge because the ants might take
a long time to discover and learn to use the best paths. Thus, it is interesting to study
and develop more complex behaviour for ant algorithms.

We attempt to improve the accuracy and convergence of ACO by extending the cur-
rent algorithm with the concept of opposition-based optimization (OBO), which is a
subclass opposition-based computing. This chapter provides a general overview how
OBO can be applied to ACO. We will discuss two types of opposition-based extensions
to the ant algorithm. The first type involves a modification to the construction phase of
the algorithm which affects the decisions of the ants by altering the pheromone values
used in the decision. This modification is called Opposite Pheromone per Node. The
second type is an extension to the update phase of the algorithm that performs addi-
tional updates to the pheromone content of opposite decisions. The second extension is
called Opposite Pheromone Update. The opposition-based approaches were tested on
two different problems: the Travelling Salesman Problem (TSP) and the Grid World
Problem (GWP).

The remaining of this chapter is organized as follows. Section 7.2 provides back-
ground information, including an overview of ant colony optimization and a review
of the work that has been conducted to improve the performance of ant algorithms.
Section 7.3 presents the two opposition-based approaches. Section 7.4 includes the ex-
perimental results of the opposition-based ant algorithms for the TSP and the GWP.
Conclusions and future work are discussed in Sect. 7.5.

7.2 Background Information

This section will describe ACO, followed by a discussion on some of the pitfalls of the
algorithm that we address using opposition. It also provides an overview of relevant
work that has been conducted to improve the performance of the ant algorithm.
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7.2.1 Ant Colony Optimization

The ant algorithm was introduced by M. Dorigo in 1992 [5]. It was developed to solve
complex discrete combinatorial optimization problems. The first ACO algorithm was
the Ant System (AS) [6], which was designed to solve the TSP.

Since the introduction of ACO, researchers have developed multiple versions to im-
prove the performance of the AS. The extensions tend to focus more on the best so-
lutions found to attempt to guide the ants search more effectively. The Ant Colony
System (ACS) is a popular revised version of ACO [9] that achieved considerable accu-
racy improvements [7, 9]. Other extensions include the Best-Worst Ant System [4], the
Max-Min Ant System [30], Ant-Q (extends ACO with reinforcement learning), AntNet
(dynamic version of the algorithm designed for the vehicle routing problem), and the
ACS combined with local search [9].

The ACO algorithm is inspired from the natural behaviour of trail laying and fol-
lowing by ants [1, 9]. When exploring a region, ants are able to find the shortest path
between their nest and a food source. This is possible because the ants communicate
with each other indirectly via pheromone deposits they leave behind as they travel. The
pheromone deposited by one ant influences the selection of the path by the other ants. A
high pheromone concentration increases the probability that the path will be selected.
The pheromone deposits work as a form of positive feedback, reinforcing good path
choices and guiding the ants to better paths.

Ant System

When applied to an optimization problem, the ACO metaheuristic usually involves so-
lution construction on a graph. The solutions are a path along the graph. The AS algo-
rithm is summarized in Alg. 1. In line 3, the ants are distributed randomly among the
nodes. Then, they move between nodes, sequentially adding edges to their current path
until they have visited all nodes. The selection of an edge depends on the pheromone
content of the edge, represented by values in a n × n matrix where n is the number of
nodes, and the value of the heuristic function of each edge. At each step of construction,
ant k selects the next node using a probabilistic action choice rule which dictates the
probability with which the ant will choose to go from current node i to next node j (see
line 6):

pk
ij =

[τij ]α[ηij ]β
∑

l∈Nk
i
[τil]α[ηil]β

if j ∈ Nk
i , (7.1)

where τij represents the pheromone content on the edge. Node j is included in Nk
i , the

neighbourhood for ant k given its current location i. The neighbourhood only includes
nodes that have not been visited by ant k and are connected to node i. The parameter
ηij represents the heuristic information. The heuristic value of an edge is a measure of
the cost of extending the current partial solution with that edge (typically the inverse of
the weight of the edge). The constants α and β represent the influence of pheromone
content and heuristic information respectively. The stochastic component of the algo-
rithm, namely probabilistically selecting a component, leads to exploration of a higher
number of solutions.
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Algorithm 1. Pseudocode of the Ant System
1: Initialize pheromone matrix (τ = τo)
2: while Termination condition is not satisfied do
3: Place m ants on random nodes
4: for k = 1 to m do
5: if Solution construction for ant k is NOT complete then
6: Pick next node j (see (7.1))
7: end if
8: end for
9: Update pheromone matrix (evaporation and trail update) using (7.2) and (7.3)

10: end while

When all the ants have completed their paths the pheromone content is updated (see
line 9). First, the pheromone content of the arcs, τij , is evaporated based on the evapo-
ration rate, ρ, following the relation

τnew
ij = (1 − ρ)τcurrent

ij 0 < ρ < 1. (7.2)

After the evaporation step, the solution of each ant is evaluated and pheromone is
deposited on the ant’s path relative to the quality of its solution. The ants deposit
pheromone on the arcs they visited as follows:

τnew
ij = τcurrent

ij +
m∑

k=1

Δτk
ij , (7.3)

where Δτk
ij is the amount of pheromone ant k contributes to the arc going from node i

to node j and m is the total number of ants. The additional pheromone is based on the
overall quality of the total path and is defined by

Δτk
ij =

{
1

Ck
if arc is in the path of ant k,

0 otherwise,
(7.4)

where Ck is the total cost of the solution for ant k. All arcs of one path will receive the
same amount of pheromone (i.e. each ant deposits a constant amount of pheromone per
edge).

Ant Colony System

Another commonly used version of ACO is the ACS. This version differs from the AS
algorithm in three aspects [7, 9]: 1) different selection rule for path construction, 2) trail
update only occurs for the best-so-far solution, and 3) local pheromone removal occurs
each time an ant visits a node.

The general steps of the ACS algorithm are summarized in Alg. 2. When ants con-
struct their paths in ACS, they use a selection rule that has a strong emphasis on
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exploitation of previous experience. An ant k located on node i chooses the next node
j using a pseudorandom proportional rule described by

j =

⎧
⎨

⎩

argmax
l∈Nk

i

{
τil[ηil]β

}
if q < qo,

J otherwise.
(7.5)

The parameter q is a uniform random number between 0 and 1 and qo is the probability
that an ant will use learned knowledge. If q < qo, the ant will select the node with the
highest product of pheromone content and heuristic function value. Otherwise, it will
use J , which is the node selected by the probabilistic action rule used in the AS (see
(7.1)). This pseudorandom rule is a greedy selection approach that will tend to favour
edges with a higher heuristic value and a high pheromone content.

The ACS has a pheromone update approach that exploits the best solutions found.
The solutions found by the ants during the iteration are compared to the best solution
found so far (best-so-far), and if one of the solutions is better, then the best-so-far solu-
tion is revised (see line 10). In line 11 the evaporation and deposit of pheromone is only
applied to the arcs contained in the current best solution. The update is implemented by

τnew
ij = (1 − ρ)τcurrent

ij + ρ(Δτ bs
ij ) ∀(i, j) ∈ T bs, (7.6)

where Δτbs
ij is additional pheromone, ρ is the global evaporation rate, and T bs is the

best-so-far path. Sometimes the best-iteration path is used for smaller problems [9]. The
additional pheromone is calculated using the cost of the best-so-far path.

The ACS includes a local pheromone update to reduce emphasis on exploitation of
existing solutions (see line 7). Immediately after an ant adds an arc to its current path
the amount of pheromone on the arc is decreased as follows:

τnew
ij = (1 − ξ)τcurrent

ij + ξτo 0 < ξ < 1, (7.7)

where τo is the initial amount of pheromone. The parameter ξ is the local evaporation
rate, which controls the amount of pheromone that is removed. In the case of the TSP,
research indicates that for the ACS, this value should be set to 1

nCnn
, where n represents

the number of cities and Cnn is cost of the nearest neighbour solution [9]. This local
update works to counterbalance the greedy construction rule by reducing the pheromone
on the selected edge, thus making it less desirable to the next ant.

7.2.2 Challenges and Drawbacks

Despite being a powerful algorithm, ACO can benefit from performance improvements.
Like other optimization techniques, ACO can remain trapped in a local optimum, miss
a portion of the solution space or, in some cases, it can be slow to converge. ACO has
many applications and deals with complex optimization problems, such as the travelling
salesman problem [6, 7, 10], the quadratic assignment problem [18], vehicle routing
[2, 3, 11] and many more [9]. Thus, any increase in speed of convergence and accuracy
is beneficial.
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Algorithm 2. Ant Colony System
1: Initialize pheromone matrix (τ = τo)
2: while Termination condition is not satisfied do
3: Place m ants on random nodes
4: for k = 1 to m do
5: if Solution construction for ant k is NOT complete then
6: Pick next node j (see (7.5))
7: Apply local pheromone update using (7.7)
8: end if
9: end for

10: If necessary, revise the overall best (best-so-far) solution
11: Update pheromone matrix (trail update) according to (7.6)
12: end while

Given the fundamental structure of ACO, which involves reinforcement of good solu-
tions, the algorithm can sometimes remain trapped in local optima resulting in reduced
accuracy. This situation can occur when a certain component is very desirable on its
own, but leads to a sub-optimal solution when combined with other components. Con-
sequently, modifications that can help the algorithm move away from a local optimum
will likely lead to an increase in accuracy, are also welcome. Moreover, by moving away
from a local optimum, one will increase exploration, which may also lead to improved
solution quality.

Another interesting aspect of ACO is that it generates new solutions in every iteration
using pheromone information. It is the progress and quality of the pheromone informa-
tion that will affect the quality of the solutions. ACO can be slow to converge because
sometimes it will take quite a number of iterations before the pheromone content of
edges start having a strong impact on the ants decisions. Thus, one may improve the ant
algorithm by making additional pheromone updates, which will help achieve accurate
pheromone information faster.

7.2.3 Related Works

Since the introduction of ACO, researchers have developed multiple versions to im-
prove the performance of the algorithm. The Ant Colony System (ACS) is a popular
extension of the original ant algorithm that was developed to improve upon the per-
formance of the AS [9]. The ACS has a greedy selection rule, but provides regular
pheromone reduction as a measure to decrease desirability of edges once they are vis-
ited [7]. This attempts to prevent all the ants in the colony from generating the same
solution. Another successful version of the ant algorithm is the Max-Min Ant System
(MMAS) [9, 30]. The MMAS strongly exploits the best tours found, but also limits the
range of pheromone content values and initializes the pheromone contents at the upper
limit. These modifications led to performance improvements.

In addition, work has been conducted to establish more complex pheromone mech-
anisms, such as multiple pheromone matrices, and complex pheromone updates. These
modifications were implemented so ant algorithms could solve more complex problems
and to improve the performance of the ACS. For instance, one particular variant of the
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ant algorithm, known as the Best-Worst Ant System (BWAS) [4], substracts pheromone
content based on the results of the worst ant of the colony. The BWAS also uses a form
of pheromone mutation based on concepts from evolutionary computation. To solve
bi-criterion optimization problems, Iredi et al. proposed a version of the ACS where
two different pheromone trail matrices and two heuristic functions are considered si-
multaneously [13]. Randall and Montgomery proposed the Accumulated Experience
Ant Colony as a method to determine the effect of each component on the overall solu-
tion quality [24]. In their approach, the pheromone and heuristic values of an edge are
weighted.

Schoonderwoerd and his colleagues were one of the first to elude to the concept of
an ‘anti-pheromone’, where ants would decrease pheromone contents rather than rein-
force them [26]. Montgomery and Randall developed three methods based on the con-
cept of anti-pheromone as an attempt to capture complex pheromone behaviour [19].
In the first method, the pheromone content of the elements composing the worst solu-
tions is reduced. Their second alternative combines a pheromone content for the best
solution and pheromone content for the worst solution. The ants select edges based on
a weighted combination of pheromone and anti-pheromone and the heuristic. Finally,
their third approach involves the use of a small number of explorer-ants that have a
reversed preference for the pheromone. On average, their methods produced better so-
lutions on the smaller TSP problems (less than 200 cities).

Given these existing extensions, their results, and the potential for performance im-
provement, there was motivation to investigate the application of oppositional concepts
to ant colony optimization. Moreover, opposition-based computing has already been
successfully applied to reinforcement learning [27, 28, 31], evolutionary algorithms
[20, 21, 22, 23] and neural networks [33, 34]. Opposition can potentially lead to a new
way of developing more complex pheromone and path selection behaviour for ACO.
The use of opposition is very interesting because it provides a structured way to inves-
tigate how to modify the ant algorithm.

7.3 Opposition and Ant Colony Optimization

The main idea of opposition-based optimization (OBO) is that by considering “op-
posites” one can increase the coverage of the solution space leading to increased
accuracy and/or faster convergence [17, 20, 21, 22, 23, 31] (see also Chapter 2). OBO
provides a general strategy that can be tailored to the technique of interest. Increasing
the speed of convergence of the ant algorithm can be seen as a type-I opposition problem
(Definitions 1 and 2 on page 14 in Chapter 2), because we can attempt to reach a better
solution faster by using opposite guesses. It could also be addressed as a type-II opposi-
tion problem (Definitions 5 and 6 on page 17 in Chapter 2), because we can attempt to
look for solutions that have opposite fitness, which would guarantee that we are mov-
ing to a better location. However, it is not obvious how to determine the solution that
has the opposite fitness. Thus, we can use the type-I opposition as an approximation
of type-II. An increase in accuracy can be achieved by using opposition to move away
from a local optimum. Remaining trapped in a local optimum can be characterized as
a type-I opposition problem since picking a guess that is opposite to the current guess
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will likely lead to a new area of the solution space. The following sections will dicuss
the different ways that opposition can be applied to ACO and it will introduce two main
opposition-based extensions to the ant algorithm: Opposition per Node and Opposite
Pheromone Update.

7.3.1 Motivating Principles

In the case of ACO, the application of opposition is not as straightforward as mapping
between an estimate and its opposite. Due to the graph structure of the problems, the
opposite of a solution or of the partial components of the solutions are not clearly de-
fined. Given the combinatorial aspect of solutions on a graph, even if only one element
of a solution is changed, it leads to a whole set of new solutions. Moreover, simply
taking the opposite of every component of the solution might not necessarily lead to a
plausible solution because it might not lead to a connected path. It is not clear how one
can generate an opposite solution, mainly because of the combinatorial aspect of the
applications associated with ACO. To fit in the OBO scheme, the term opposite must
be related to ant algorithms.

The concept of opposition serves as a starting point for the proposed extensions. The
main idea is to think of opposition as a way of increasing the coverage of the solution
space, which may lead to greater accuracy and faster convergence.

Ant algorithms do not work by modifying the existing solutions at each iteration;
instead, new solutions are created based on the pheromone matrix. It is the pheromone
matrix that changes as the algorithm progresses. In algorithms that work with complete
solutions, such as genetic algorithms, one can generate an opposite candidate solution
and replace the current candidate solution. Then, the algorithm proceeds with the op-
posite candidate solution. In contrast, in the ant algorithm, even if the opposite solution
is generated, one needs to find a way to alter the pheromone content since that is what
affects solution creation. To move in the solution space, the algorithm has to move in
the pheromone space. Thus, instead of looking at a solution candidate and its opposite,
the concept of opposition has to involve the pheromone matrix.

However, it is not easy to define an opposite pheromone matrix because a pheromone
matrix is not a point in the solution space. The pheromone matrix is indirectly related
to the final solutions. Given the probabilistic nature of the path selection in ACO, a
particular pheromone matrix can lead to an array of solutions. This leads to an array of
paths and, hence, there is no one-to-one relationship between a particular matrix and a
single path. Thus, instead of focusing on an opposite pheromone matrix, another idea
is to find a way to use opposition to move in the pheromone matrix solution space.

Consequently, it was determined that opposition could be applied to directly or indi-
rectly affect the pheromone matrix. There are many different ways in which this can be
achieved. For example, instead of initializing the pheromone content of all the edges to
the same value, one could use opposition to determine a better initial value. However,
while there can be many different places where opposition can be applied, we decided to
concentrate on two main parts of the ACO algorithm: 1) the construction phase and/or
2) the update phase. These two phases were selected because, unlike initialization, they
were present in every iteration of the algorithm. Thus, modifications and extensions to
these phases will likely have a greater impact on the performance of the algorithm.
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The construction phase can be modified by affecting the ant’s decision. This can be
done by altering the parameters used by the decision, namely the pheromone content.
The modification to the update phase involves changing the way the pheromone is up-
dated. It can be done by making additional updates using other ants. A form of this
idea was implemented in the Best-Worst Ant System [4], which uses the worst-ant to
remove pheromone. However, there are other ways to affect the update phase. One way
is to use opposite components of the current solutions without necessarily creating an
opposite solution, which can be seen as identifying the opposite actions of the ants.

With these oppositional modifications, the algorithm is able to move to a new re-
gion of pheromone space. By changing the decision rule of the ants or changing
the pheromone content used in the decision, one simulates the creation of another
pheromone matrix without directly changing the current matrix, which is useful to help
the algorithm escape a local optimum. Moreover, this leads to exploration of a higher
number of solutions because components with lower pheromone content can be se-
lected. In contrast, in the case of opposition-based pheromone updates, the algorithm
is actually moving to a new pheromone matrix, which may eventually lead to an area
closer to the optimal solution.

The discussed modifications provide a general framework as to how opposition can
extend ACO. The ideas were used to design specific opposition-based algorithms which
were tested with travelling salesman and the grid world problems. The next section
will describe two successful extensions to the ant algorithm: Opposite Pheromone per
Node and Opposite Pheromone Update. Detailed descriptions of these extensions, and
of other less successful implementations can be found in [16].

7.3.2 Opposite Pheromone Per Node

The Opposite Pheromone per Node (OPN) is a direct modification of the pheromone
value used by the ants to make their selection. It was designed to help the ants try
different paths, and addresses the problem where the ant algorithm remains trapped in
a local optimum. OPN attempts to move the ants out of their current paths by altering
the pheromone they use in their decisions.

Algorithm 3 describes the OPN extension to ACS. The local pheromone update in
line 12 and the best-trail update (line 16 are identical to the ones of the normal ACS
algorithm. During the construction phase from line 4 to 14, the ants will move from
node to node creating a solution until they have visited all nodes, achieved a specific
number of steps or reached a goal.

Every time an ant k has to select the next node, the pheromone content used for
its decision will depend on the value of a random number λ and the opposite-rate, λ̆.
The opposite-rate, λ̆o, determines the rate at which opposite pheromone will be used in
the construction step of the algorithm. If λ < λ̆ (line 6), then the algorithm calculates
the opposite pheromone content for the edges in line 7 and the ant will use the opposite
pheromone content, τ̆ , to pick its next city (line 8). Otherwise, the ant will simply select
the next city in line 10 using the original pheromone content.

The opposite pheromone content, τ̆ij , for the edge connecting the current node i to
an available node j is calculated as follows:

τ̆ij = τmin + τmax − τij . (7.8)
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Algorithm 3. Opposite Pheromone per Node Algorithm
1: Initialize pheromone matrix (τ = τo)
2: while Termination condition is NOT satisfied do
3: Place m ants on random nodes
4: for k = 1 to m do
5: if Solution construction for ant k is NOT complete then
6: if λ < λ̆ then
7: Calculate opposite pheromone values, τ̆ = τmin + τmax − τ
8: Pick next node j using pseudorandom rule (see (7.5)) with τ̆
9: else

10: Pick next node j using pseudorandom rule (see (7.5)) with τ
11: end if
12: Apply local pheromone update using (7.7)
13: end if
14: end for
15: If necessary, revise the overall best (best-so-far) solution
16: Update pheromone matrix (trail update) according to (7.6)
17: end while

The parameters τmin and τmax represent the minimum and maximum available
pheromone contents, respectively. In the case of the ACS algorithm, τmin can be the ini-
tial pheromone deposit and τmax can be the inverse of the length of the best-so-far path,
Lbs. These values can be used to determine the opposite pheromone content because,
given the pheromone update equations of ACS (see (7.6) and (7.7)), the pheromone
content is bounded by the initial pheromone deposit and the global optimal value [9].
With the AS, the maximum and minimum pheromone contents are not bounded. Thus,
the opposite can be calculated using the maximum and minimum pheromone contents
of the available edges or of the entire pheromone matrix.

7.3.3 Opposite Pheromone Update

The Opposite Pheromone Update (OPU) extends the pheromone update phase of the
ant algorithm. This extension focuses more on the convergence issues existing in the ant
algorithm. By adding or removing pheromone from opposite edges, the algorithm will
modify the pheromone content faster than the ants normally would, which will speed up
their learning. OPU performs additional updates using opposition information. When an
ant completes its path, pheromone is added to every decision along the path, or in the
case of ACS the edges of the best-so-far path. With the OPU extension, pheromone can
also be added or removed from opposite edges.

OPU has a standard framework, where opposite edges receive additional updates.
However, the specific way to define an opposite edge and how to update the pheromone
varies depeding on 1) the version of the ant algorithm that is used, and 2) the problem
that is being solved. In the case of the ACS, where pheromone is only added to the
best-so-far path, the pheromone levels will not be very high on the other edges. Thus,
OPU might work better if pheromone is added to the opposite edges. In constrast, in
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Algorithm 4. Opposite Pheromone Update Algorithm
1: Initialize pheromone matrix (τ = τo)
2: while Termination condition is NOT satisfied do
3: Place m ants on random nodes
4: for k = 1 to m do
5: if Solution construction for ant k is NOT complete then
6: Pick next node j using pseudorandom rule (see (7.5)) with τ
7: end if
8: end for
9: Update pheromone matrix (trail update) according to (7.3)

10: if λ̆ < λ̆o then
11: Calculate opposition-rating ŏ for all edges using (7.9)
12: Apply opposite pheromone update (see 7.10)
13: end if
14: end while

the case of the AS, it is probably best to remove pheromone because the AS algorithm
deposits pheromone on all generated paths.

Algorithm 4 describes the OPU extension to the AS. The initialization, the termi-
nation conditions, and the pheromone trails update (line 9) are identical to the ones of
the normal AS algorithm. Also, like in the AS framework, the ants will construct their
solutions (line 4 to 8) until they have a complete solution (i.e. visited all nodes, visited
a specific number of nodes or found a goal). The selection of the next nodes in line 6
also follows the AS framework.

After the pheromone trails update (line 9), the OPU algorithm will potentially per-
form an opposite update. The rate at which the opposite update occurs depends on the
value of a random number λ and the opposite-rate, λ̆. If λ < λ̆ (line 10), the opposition-
rating is calculated in line 11 and the OPU algorithm performs the opposite update in
line 12. If λ̆ = 1, the opposite update is done in every iteration.

The opposition-rating in line 11 of the OPU algorithm is a way to evaluate the degree
of opposition of other edges in the graph relative to the current solution. In the case of
AS, there are multiple current solutions: the solution found by each ant. In the case of
ACS, the current solution is the best-so-far solution. For a given current solution, at
every node of that solution, one outgoing edge will receive the trail pheromone update.
Then, the opposition-rating, ŏ, is calculated for all the other outgoing edges relative to
the winning edge. This rating is used to determine the amount of pheromone to add to
the other edges.

There are different ways to evaluate the degree of opposition of an edge. For exam-
ple, ŏ can be calculated using the heuristic function values:

ŏij =

∣
∣ηij − ηbs

i

∣
∣

ηmax − ηmin
, (7.9)

where ηij represents the heuristic function value for the edge going from node i to node
j, and ηbs

i is the value for the edge outgoing from node i included present in the best
path. The values ηmax and ηmin are the maximum and minimum heuristic values of the
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graph. They are used to normalize the opposition-rating of the edges. This calculation
method was used in OPU experiments for the TSP which can be found in [16].

In problems where each edge has a clearly defined opposite, the opposition-rating is
straightforward: ŏ = 1 for the opposite edge and ŏ = 0 for the other outgoing edges. For
example, in a path finding problem where the ants must pick a direction to take at every
node, the selected direction (or edge) and opposite-direction pairs are clear. If, at node
i, the ant chooses to move “up”, then for that particular node, the “down” direction is
the opposite edge. Thus, the “down” direction will have an opposition-rating of 1, and
the “left” and “right” directions will have a rating of 0.

Once the opposition-rating is determined in line 11, the pheromone content of the
“opposite-rated” edges is updated in line 12. The additional pheromone can be added
or removed depending on the type of ant algorithm. The opposite update is based on
the equation used in the regular pheromone trail update. In the case of AS, the opposite
update equation involves pheromone removal:

τnew
ij = τcurrent

ij −
m∑

k=1

ŏijΔτk, (7.10)

where ŏij is the opposition-rating for the edge, τcurrent
ij is the current pheromone level

on the edge going from node i to node j, Δτk is the pheromone added to the path found
by ant k (see 7.4). This equation can be modified depending on the ant algorithm used
and the application. In some cases, the opposite pheromone value can be divided by a
weight to reduce its impact and, instead of a removal, the opposite pheromone can be
added. In OPU experiments for the TSP [16], the opposite pheromone was added and it
was divided by a weight.

Finally, in the OPU implementation for the AS, where the opposite update involves
a removal of pheromone, the opposite update can replace evaporation. Evaporation is
used as a way to “forget” bad decisions and thus, removing pheromone from opposite
edges is achieving the same goal as evaporation. Keeping both the evaporation and the
opposite pheromone update is not necessary, especially if the amount of pheromone
being removed is as high as Δτk (the pheromone added to edges of the path of ant k).
In summary, OPU provides an additional opposite update that can be interpreted as an
intelligent evaporation.

7.4 Experimental Evidence

This section will outline some of the experimental results of applying opposition to
ACO. The OPN algorithm was tested with the Travelling Salesman Problem (TSP) and
the OPU algorithm was tested using the Grid World Problem (GWP). The Wilcoxon
rank sum (or Mann-Whitney) test was used to compare the results [12]. If the result
of the test comparing the two samples is significant (p < 0.05), one can accept the
alternative hypothesis that there is a difference between the median of the two samples.
Other experimental investigations can be found in [16].
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7.4.1 OPN Experiment

The OPN algorithm was compared to the ACS algorithm on 9 symmetric TSP instances,
namely att48, eil51, eil76, kroA100, pr124, ch150, d198, lin318 and pcb442 [25].
Table 7.1 provides more details about each instance.

Table 7.1. Overview of the TSP Instances

Instance #Cities Optimal Tour
att48 48 10628
eil51 51 426
eil76 76 538
kroA100 100 21282
pr124 124 59030
ch150 150 6528
d198 198 15780
lin318 318 42029
pcb442 442 50778

The TSP is an optimization problem based on the problem faced by a travelling sales-
man who, given a starting city, wants to take the shortest trip through a set of customer
cities, visiting each city only once before returning to the starting point. Mathemati-
cally, the TSP involves finding the minimum cost path in a weighted graph, which is an
NP-hard problem [15]. A particular TSP instance has a specific number of cities (nodes)
and arc weights (typically the distance between the cities).

Experimental setup

The parameters of the ant algorithms were all set to the same values, namely β = 2,
ρ = 0.1, ξ = 0.1, m = 10, and qo = 0.9. These values were selected based on other
research done using ACS and TSP [7, 19]. The algorithms completed 100 trials and
each trial was terminated after 5000 iterations or if the optimal solution was found. For
the OPN algorithm, the opposite-rate, λ̆o, was set to a fixed rate of 0.0005, 0.001, 0.05,
and 0.1.

Experimental results

The accuracy of each algorithm was evaluated in terms of the median final path length,
the median accuracy difference with the ACS, the mean and standard deviation of the
final path length and the number of times the optimal solution was found. The Wilcoxon
rank sum (or Mann-Whitney) test was used to compare the medians of the results [12].

The median accuracy difference between ACS and the OBO algorithms was quanti-
fied as follows:

Ādiff (%) =
(

ĀOPN

ĀACS
− 1
)

× 100%. (7.11)
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where ĀOPN and ĀACS are the median accuracies of the best path found for the OPN
and ACS algorithms. The accuracy of final path found by each algorithm is determined
by

A = 2 − (
Lbs

Lopt
) × 100%. (7.12)

where Lbs is the length of the best path found by the algorithm and Lopt is the length
of the optimal solution. The accuracy results are reported in Table 7.2.

The results show that the opposite-rate, λ̆o, is an important factor in the success
of the OPN strategy. In the smaller instances, λ̆o = 0.1 provided the best results, but
as the number of cities increased the opposite-rate had to decrease to achieve good
results. A high opposite-rate becomes detrimental to a problem with higher number
of cities because the use of opposite pheromone becomes too frequent during the path
construction. OPN is meant to be a strategy to affect a small number of the decisions in
the hopes of helping the ants move from a local optimum. The frequent use of opposite
pheromone does not let the ants benefit from their learning.

OPN performed very well in instances with 150 cities and less. Given the appropriate
λ̆o, OPN achieved statistically significant results in all the smaller instances. Moreover,
for the instances where optimal solutions were found, the OPN was able to achieve a
higher number of optimal solutions. The statistically significant improvements in accu-
racy ranged from 0.187% to 0.757%. Even if these improvements are below 1%, they
are important because the accuracy achieved by the different algorithms is already very
high. On problems d198 and lin318, OPN achieved a lower median path length than
ACS, but the difference was not statistically significant. In general, the standard devia-
tion from the mean final path length was lower for the OPN algorithm. OPN produced
worse results than the ACS for the pcb442 problem. It can be seen that OPN helps im-
prove the accuracy of the ACS, which suggests it is addressing the local optimum trap
issue faced by the ant algorithm.

To evaluate the convergence rate of the algorithms, a desired accuracy of 85% was
set for the two larger instances (lin318, pcb442) and 95% level of accuracy was set for
the other instances. The number of iterations needed to reach the accuracy was used
as the convergence measure. The total computational time in seconds is also reported.
A speed-up factor, S, was also defined to compare the median number of iterations of
ACS relative to the median number of iterations of the OBO algorithm:

S =
(

1 − n̄OBL
I

n̄ACS
I

)

× 100% (7.13)

Table 7.3 summarizes the convergence results for OPN algorithms. Like the accuracy
results, the convergence results support the idea that the performance of OPN depends
on the opposite-rate. The OPN algorithm was able to achieve an increase in conver-
gence rate in the instances with less than 200 cities. The increases ranged from 4.6%
to 22.7%. In three of the problem instances, namely kroA100, pr125 and ch150 with
speed-up factors of 22.1%, 22.7% and 19.3% respectively, the difference was statis-
tically significant. The standard deviations of the means for the OPN algorithm were
generally lower than for the ACS. Typically, the OPN that achieved the best conver-
gence results had the lower standard deviations. OPN did not perform as well for the
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Table 7.2. Median (Ā), Mean (μA), and Standard Deviation (σA) of the Accuracy, Accuracy
Difference (Ādiff (%)) and Number of Optimal Solutions Found Comparing the AS and OPN for
the TSP

Instance Algorithm Median Ādiff (%) μA ± σA #Opt
att48 ACS 10653 – 10682 ± 46 6

OPN 0.005 10653 0 10687 ± 54 7
OPN 0.01 10653 0 10674 ± 45 9
OPN 0.05 10653 0 10670 ± 42 11
OPN 0.1 10653 0 10663 ± 36 15

eil51 ACS 428 – 429.3 ± 2.9 7
OPN 0.005 429.5 -0.354 430.3 ± 3.4 11
OPN 0.01 428 0 429.6 ± 3.3 9
OPN 0.05 428 0 428.5 ± 3.5 10
OPN 0.1 427 † 0.236 428.2 ± 2.3 16

eil76 ACS 548 – 547.7 ± 5.2 1
OPN 0.005 547 0.189 547.4 ± 5.0 2
OPN 0.01 548 0 547.2 ± 5.2 5
OPN 0.05 545 † 0.568 545.4 ± 4.9 8
OPN 0.1 544 † 0.757 545.0 ± 5.1 11

kroA100 ACS 21423 – 21530 ± 238 3
OPN 0.005 21460 -0.177 21542 ± 242 2
OPN 0.01 21389 † 0.161 21471 ± 235 14
OPN 0.05 21383 † 0.187 21435 ± 179 12
OPN 0.1 21393 † 0.142 21474 ± 219 6

pr124 ACS 59385 – 59475 ± 439 4
OPN 0.005 59185 0.342 59401 ± 425 5
OPN 0.01 59242 0.243 59512 ± 494 6
OPN 0.05 59087 † 0.508 59352 ± 425 12
OPN 0.1 59159 0.385 59431 ± 431 9

ch150 ACS 6641 – 6654 ± 67.8 0
OPN 0.005 6643 -0.031 6656 ± 74 0
OPN 0.01 6621 † 0.32 6636 ± 59.7 0
OPN 0.05 6601 † 0.631 6612 ± 49.7 0
OPN 0.1 6623 0.281 6638 ± 64.1 0

d198 ACS 16093 – 16113 ± 116.9 0
OPN 0.005 16076 0.11 16109 ± 155 0
OPN 0.01 16105 -0.08 16109 ± 103 0
OPN 0.05 16275 † -1.18 16275 ± 142 0
OPN 0.1 16690 † -3.86 16695 ± 180 0

lin318 ACS 44426 – 44372 ± 495.3 0
OPN 0.005 44230 0.496 44353 ± 519 0
OPN 0.01 44305 0.305 44318 ± 519 0
OPN 0.05 46296 † -4.72 46402 ± 891 0
OPN 0.1 49274 † -12.2 49233 ± 1012 0

pcb442 ACS 55684 – 55610 ± 982 0
OPN 0.005 55955 † -0.59 56100 ± 1233 0
OPN 0.01 57519 † -0.305 57656 ± 1467 0
OPN 0.05 63253 † -4.72 63301 ± 1249 0
OPN 0.1 64833 † -12.2 64848 ± 965 0

Bold values indicate the best results.
† Difference with the ACS median is significant (p < 0.05).
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Table 7.3. Median (Ī), Mean (μI ), and Standard Deviation (σI ) of the Number of Iterations,
Speed-up Factor (S), and Median Time (t(s)) to Reach Desired Accuracy Comparing the AS and
OPN for the TSP

Instance Algorithm Ī S(%) μI ± σI t(s)

att48 ACS 40.5 – 51.6 ± 45.4 0.031
A=95% OPN 0.005 44.5 -9.88 56.4 ± 40 0.031

OPN 0.01 40.0 1.23 49.9 ± 33.0 0.031
OPN 0.05 32.5 19.8 42.0 ± 34.5 0.031
OPN 0.1 32.0 21 39.5 ± 29.5 0.031

eil51 ACS 76.0 – 109.2 ± 103 0.054
A=95% OPN 0.005 72.0 5.26 123.1 ± 150.5 0.047

OPN 0.01 66.0 13.2 91.3 ± 81.6 0.047
OPN 0.05 68.5 9.87 80 ± 52.9 0.062
OPN 0.1 74.5 1.97 99.1 ± 95 0.078

eil76 ACS 173 – 310 ± 390 0.203
A=95% OPN 0.005 204 -17.63 305 ± 369 0.235

OPN 0.01 169 2.60 270 ± 492 0.204
OPN 0.05 165 4.62 219 ± 199 0.265
OPN 0.1 186 -7.51 266 ± 222 0.360

kroA100 ACS 238 – 453 ± 707 0.422
A=95% OPN 0.005 231 2.94 363 ± 583 0.438

OPN 0.01 186 † 22.1 324 ± 614 0.360
OPN 0.05 200 16 304 ± 371 0.492
OPN 0.1 284 -19.3 394 ± 380 0.891

pr124 ACS 64.0 – 74.4 ± 46.1 0.172
A=95% OPN 0.005 66.0 -3.13 80.6 ± 62.3 0.187

OPN 0.01 62.5 2.34 86.2 ± 81.1 0.180
OPN 0.05 49.5 † 22.7 61.7 ± 46 0.188
OPN 0.1 55.5 13.3 76.5 ± 65.9 0.266

ch150 ACS 468 – 791 ± 915 1.66
A=95% OPN 0.005 471 -0.749 709 ± 872 1.77

OPN 0.01 378 † 19.3 490 ± 484 1.48
OPN 0.05 379 19.0 542 ± 443 1.95
OPN 0.1 705 † -50.7 960 ± 840 4.69

d198 ACS 979 – 1129 ± 725 5.42
A=95% OPN 0.005 916 6.44 1095 ± 796 5.36

OPN 0.01 1050 -7.25 1137 ± 599 6.45
OPN 0.05 1925 † -96.6 2145 ± 1011 15.8
OPN 0.1 5000 † -410.7 4650 ± 799 54.3

lin318 ACS 672 – 706 ± 331 9.34
A=85% OPN 0.005 700 -4.09 721 ± 329 10.3

OPN 0.01 752 -11.9 802 ± 303 11.6
OPN 0.05 2107 † -213.5 2297 ± 1044 44.2
OPN 0.1 5000 † -644 4770 ± 720 140.1

pcb442 ACS 2399 – 2406 ± 762 67.9
A=85% OPN 0.005 2946 † -22.8 2883 ± 971 88.5

OPN 0.01 4081 † -70.1 3977 ± 945 128.6
OPN 0.05 – † – – –
OPN 0.1 – † – – –

Bold values indicate the best result.
† Difference with the ACS median is significant (p < 0.05).
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two larger instances. It is also important to note that the computational time (in seconds)
for OPN are comparable to AS, and even below ACS in most of the smaller instances.
This indicates that the speed-ups achieved do not have a high computational cost. Over-
all, the results indicate that fixed rate OPN has a faster convergence rate than the normal
ACS.

7.4.2 OPU Experiment

The OPU algorithm was compared to the Ant System (AS) using the Grid World Prob-
lem (GWP) on three different grid sizes, namely 20 × 20, 50 × 50 and 100 × 100.
The GWP involves a n × n grid where one square is randomly selected as the goal.
This means that a direction is assigned to each square of the grid so that when an agent
moves using this grid, it will reach the goal in the smallest number of steps. The GWP
was selected because it has been previously used as a benchmark problem for studies
involving opposition-based Reinforcement Learning (RL) [27, 28, 31].

We adapted the AS algorithm to solve the GWP. In our implementation, the location
of the goal is unknown to the ants until they reach it. The ants start in a random square in
the grid and travel until they reach the goal, which means that in one iteration they may
not travel on every square of the grid. Each square is associated with four pheromone
contents, one for each available direction. Also, since ants do not visit every square
in every iteration, the evaporation was only applied to the squares visited by the ants.
Complete details of the actual implementation can be found in [16].

Experimental Setup

The algorithms were terminated after 10000 iterations. Each algorithm completed 100
trials on each grid set. The parameters of the ant algorithms were set to the following
values: α = 1, ρ = 0.001, τo = 1, and m = 10. These parameters were selected based
on some general experimentation. The initial pheromone value (τo) was set to the high
value of 1 to encourage more exploration in the early stages of the algorithm, so that
the ants do not focus too fast on a single direction.

In the case of the OPU extension the removal of pheromone was done on every
iteration (λ̆o = 1). Also, since the GWP has clearly defined opposites, the edges that
are true opposites have an opposition-rating of 1 and the other have a rating of 0. For
example, if, at square (node) i, the ant chose to move up, then for that particular square
(node) the up direction is part of the current solution, the down direction will have an
opposition-rating of 1, and the left and right directions will have a rating of 0.

Experimental Results

The perfomance of each algorithm was evaluated based on the accuracy of the final
policy and the convergence rate of the algorithm. The Wilcoxon rank sum (or Mann-
Whitney) test was used to compare the medians of the results [12]. The accuracy or
quality of the policies is determined by comparing them to an optimal policy. This
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Table 7.4. Median (Ā), Mean (μA), and Standard Deviation (σA) of the Accuracy Comparing
the AS and OPU for the GWP

Instance Algorithm Ā μA ± σA

20 × 20 AS 98.00 98.05 ± 0.818
OPU 98.25 † 98.26 ± 0.801

50 × 50 AS 97.10 97.23 ± 0.612
OPU 97.84 † 97.87 ± 0.487

100 × 100 AS 93.21 93.4 ± 0.7235
OPU 96.67 † 96.74 ± 0.465

† Difference with the AS median is significant (p < 0.05).

Table 7.5. Median (Ī), Mean (μI ), and Standard Deviation (σI ) of the Number of Iterations,
Speed-up Factor (S), and Median Time (t(s)) to Reach a 90% Accuracy Comparing the AS and
OPU for the GWP

Instance Algorithm Ī S(%) μI ± σI t(s)

20 × 20 AS 321 – 343.6 ± 113.9 0.312
OPU 108.5 † 66.2 114.8 ± 25.4 0.109

50 × 50 AS 1885.5 – 1885.1 ± 212.1 10.45
OPU 755.5 † 59.9 752.4 ± 62.7 4.28

100 × 100 AS 6155 – 6018.2 ± 563.4 135.3
OPU 3048.5 † 50.5 2995.4 ± 197.3 72.1

† Difference with the AS median is significant (p < 0.05).

accuracy calculation, which was used in other work with GWP experiments [31], is
defined as follows:

Aπ∗ =
‖(π∗ ∩ π1) ∪ (π∗ ∩ π2)‖

n × n
, (7.14)

where π∗ is the policy being evaluated and π1 and π2 represent the two optimal pos-
sibilities for each square given a goal. Table 7.4 reports the overall accuracy results
including the median, mean and standard deviation of the accuracy.

The OPU extension performed very well. OPU improved the accuracy for all grid
sizes. The difference of the medians is statistically significant for the smaller size (p <
0.05) and very significant (p < 0.01) for the 50×50 and 100×100 grids. In the 100×100
grid case, the median accuracy was improved by 3.7%, which is good considering that
the base accuracy is already above 90%. Moreover, comparing to the AS, the OPU mean
accuracies are all higher and their standard deviations are all lower.

In order to evaluate the convergence rate of the algorithms, a desired accuracy of
90% was set. The median, mean and standard deviation of the number of iterations to
reach the desired accuracy were used as comparative measures. The Wilcoxon test was
used to statistically compare the median number of iterations. The speed-up factor (see
(7.13)) and the computational time to reach the accuracy are also reported. Table 7.5
summarizes the convergence results for the AS and OPU algorithms.
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The OPU algorithm was significantly faster than the AS. It achieved a speed-up
factor of 66%, 60% and 50% for the 20×20, 50×50, and 100×100 grids, respectively.
The mean number of iterations and their standard deviation were also lower. The lower
standard deviations indicate that the OPU will reliably reach the 90% accuracy with
fewer number of iterations that the AS. It is also important to note that the computational
time (in seconds) for the OPU are also below the AS, which shows that the speed-up
achieved does not have a high computational cost.

7.4.3 Discussion

While the application of opposition to ACO can be challenging, in general, results indi-
cate that the use of opposition can be beneficial. Specifically, the OPN approach, using
opposite pheromone for some decisions was beneficial for improving the accuracy for
the TSP. The OPU extension, which involved performing additional updates during the
best trail update phase, led to excellent results for the GWP. The OPU method applied
to the GWP led to accuracy improvements in all grid sizes and convergence speed-ups
reaching 66%. It was interesting to see that the performance improvements were rela-
tively similar for all grid sizes.

One fundamental difference between the TSP and the GWP is that, in the GWP, the
“opposite” is clearly defined. For each square in a grid, there are two sets of opposite
pairs: up/down and left/right. Each direction has a unique opposite. In the TSP, a choice
made by the ant at a certain node does not have a clearly defined opposite. Also, a
straight mathematical opposite might not even be defined. Simply defining opposites
with respect to the length of the edge might not make sense because, in some solutions,
you need to take a longer edge to get an overall shorter path. In the GWP, the partial
components of the solution are all the perfect components, which may be a reason why
OPU, by removing pheromone in rejected directions, is very advantageous for the GWP.
In the TSP, the algorithm makes local sacrifices for global success, which may explain
why OPN is helpful for the TSP.

Moreover, in the GWP, the path travelled by the ants from their starting point to the
goal is unidirectional. Thus, it is possible to define an “opposite” path that makes sense.
This opposite path would include all the decisions that would bring the ants away from
the goal. In the TSP, the solutions are bidirectional: going in the opposite direction
of the path makes no difference in the final solution. Therefore, defining the “opposite”
path is not as straightforward and so problem-type dependent. The combinatorial aspect
of the TSP complicates the definition of an opposite path. Changing a single component
in the solution brings a new array of possibilities. The partial components of a solution
are all dependent.

The speed-ups achieved with the use of opposite pheromone updates can be ex-
plained by the fact that the algorithm is rapidly moving toward the final optimal
pheromone matrix. With usual pheromone updates, the algorithm takes very small steps
moving towards the final pheromone matrix. In contrast, the opposite pheromone up-
dates allow the algorithm to take very large guided jumps toward the optimal solution
by removing or adding more pheromone in the appropriate regions.
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7.5 Conclusions and Future Work

The work of investigating the application of opposition to ACO is just beginning. The
use of some fundamental opposition concepts, such as the use of opposite pheromone
and performing opposite updates, led to encouraging results in the TSP and the GWP.
Thus, opposition is a way that can provide benefits to ant algorithms, but more work is
needed to fully develop the OBO framework for ACO.

While the OPN extension proved successful for the smaller TSP instances, more
work is required to determine all the benefits of this extension. The results show that
opposite-rate, λ̆o, is a key element in the success of the OPN algorithm. Thus, selecting
the rate wisely can lead to a better accuracy at a faster rate. Additional investigations in
new ways to vary the pheromone rate are necessary.

Further work is needed to explore the application of opposition to different versions
of the ant algorithm, namely the Max-Min Ant System and the Best-Worst Ant System.
Continuing the investigation with the ACS and the AS is also necessary so that perfor-
mance differences can be clearly understood. It is also possible that applying opposition
to ant algorithms will eventually generate a new form of the algorithm, which will be
separate from the existing ACO frameworks. There should also be some experiments
with the concept of opposition in combination with local search. It would be impor-
tant to determine if the benefits of opposition complement those achieved through local
search.

While it is true that the GWP is not a typical ACO problem, it helped reinforce some
of the good results achieved with the TSP. Some of the differences might be attributed
to the implementations, the use of different ACO versions and different opposition al-
gorithms. However, the problem is what defines the algorithm that is used. Thus, future
work should include more applications of ACO.

Another potential issue is that, in the TSP, pheromone matrices lead to an array of
possible solutions. There is no one-to-one relation between the pheromone matrix and a
solution. Therefore, it might be important to establish rules on how to generate an actual
opposite solution in a graph, so that there can be an exact fitness value. Additionally,
it is important to establish how to compute the opposite pheromone matrix. The GWP
is a little different from the TSP, in that the pheromone matrix was directly related to a
solution, which may be one reason why OPU performed well with the GWP. This work
explored opposite pheromone values and opposite updates; however, it did not create a
direct relation between two pheromone matrices.

The most important work that needs to be developed is fundamental theoretical work
with opposition and graph theory. While the GWP was an application that worked well
with opposition, the true nature of ant algorithms are graphs like in the TSP. Thus, it
is crucial to establish a strong theoretical base regarding opposition and graphs. As it
has already been mentioned, opposition is not clearly defined in TSP, which springs
from that fact that opposition is not clearly defined in graphs. Research has established
opposite actions [27, 28, 31], opposite estimates [20, 21, 22], and opposite transfers
functions [33, 34]. Perhaps, the next step is to establish the “opposite graph”.
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Summary. The concept of opposition can contribute to improve the performance of population-
based algorithms. This chapter presents an overview of a novel opposition-based scheme to ac-
celerate an evolutionary algorithm, differential evolution (DE). The proposed opposition-based
DE (ODE) employs opposition-based computation (OBC) for population initialization and also
for generation jumping. Opposite numbers, representing anti-chromosomes, have been utilized
to improve the convergence rate of the classical DE. A test suite with 15 well-known benchmark
functions is employed for experimental verification. Descriptions for the DE and ODE algo-
rithms, and a comparison strategy are provided. Results are promising and confirm that the ODE
outperforms its parent algorithm DE. This work can be regarded as an initial study to exploit
oppositional concepts to expedite the optimization process for any population-based approach.

8.1 Introduction

Evolutionary algorithms (EAs) are well-established techniques to approach problems
with mixed-type variables, many local optima, and with undifferentiable or non-
analytical functions [1]. Among various kinds of evolutionary algorithms, differential
evolution (DE) is well known for its effectiveness and robustness. Many comparative
studies confirm that the DE outperforms many other optimizers [5]. Finding more ac-
curate solution(s) in a shorter period of time for complex black-box problems is still a
crucial target of research on evolutionary algorithms.

In this chapter, opposition-based schemes including opposition-based population ini-
tialization and generation jumping, will be described. The differential evolution (DE) is
selected as a parent algorithm to verify the acceleration effect of the proposed schemes.
A set of well-known complex benchmark functions is employed to experimentally com-
pare and analyze the algorithms. Results confirm that Opposition-Based Differential
Evolution (ODE) performs better than DE in terms of convergence speed and solution
accuracy.

The main purpose of this and previous works has been to introduce a new notion
into nonlinear continuous optimization via innovative metaheuristics, namely the notion
of opposition. Although, all conducted experiments utilize DE as a parent algorithm,
the proposed schemes are defined at the population level and, hence, have an inherent
potential to be utilized for acceleration of other population-based algorithms.

H.R. Tizhoosh, M. Ventresca (Eds.): Oppos. Concepts in Comp. Intel., SCI 155, pp. 143–160, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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The organization of this chapter is as follows: A short review of differential evolu-
tion is given in section 8.2. The main reasons to select DE as a parent algorithm are
explained in section 8.3. Opposition-based differential evolution is described in sec-
tion 8.4. Experimental verifications are elaborated in section 8.5. Finally, the chapter is
concluded in section 8.6.

8.2 Differential Evolution (DE)

Differential evolution (DE) is a population-based optimization algorithm based on the
idea of genetic annealing which was used to solve the Chebyshev polynomial fitting
problem [1]. In order to solve the Chebyshev problem in continuous space, a modified
genetic annealing algorithm from bit-string to floating-point encoding and a consequent
switch from logical operators to arithmetic ones were proposed [2, 3, 4]. During these
experiments, the differential mutation operator to perturb the population of vectors was
discovered. Additionally, by using differential mutation, discrete recombination, and
pair-wise selection, it was recognized that an annealing mechanism is not needed; it
was removed completely and DE was born.

Let us assume that Xi,G(i = 1, 2, ..., Np) are candidate solution vectors in gener-
ation G (Np : population size). Like other evolutionary algorithms, DE starts with an
initial population, which is usually generated in a random manner. A typical vector of
the initial population can be generated as follows [5]:

Xi,j = lj + RANDj(0, 1) × (lj − uj) with j = 1, 2, ..., D, (8.1)

where D is the problem dimensionality; lj and uj are the lower and the upper bound-
aries of the jth variable, respectively, and RAND(0, 1) is a uniformly generated random
number in [0, 1].

Successive populations are generated by adding the weighted difference of two ran-
domly selected vectors to a third randomly selected vector. For classical DE (see Algo-
rithm 1), the mutation, crossover, and selection operators are straightforwardly defined.

8.2.1 Mutation

For each vector Xi,G in generation G a mutant vector Vi,G (see line 9 of Algorithm 1)
is defined by

Vi,G = Xa,G + F (Xc,G − Xb,G), (8.2)

where i = {1, 2, ..., Np}, and a, b, and c are mutually different random integer indices
selected from {1, 2, ..., Np}. Further, the variables i, a, b, and c are different so that
Np ≥ 4 is necessary. The factor F ∈ [0, 2] is a real constant which determines the
amplification of the added differential variation of (Xc,G−Xb,G) [5]. Larger values for
F result in higher diversity in the generated population and lower values cause faster
convergence.
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8.2.2 Crossover

DE utilizes the crossover operation to generate new solutions by shuffling competing
vectors and also to increase the population diversity. For the classical DE (lines 10−16
of Algorithm 1), the binary crossover is utilized. It defines the following trial vector:

Ui,G = (U1i,G, U2i,G, ..., UDi,G), (8.3)

where

Uji,G =
{

Vji,G if RANDj(0, 1) ≤ Cr ∨ j = k,
Xji,G otherwise.

(8.4)

Cr ∈ (0, 1) is the predefined crossover rate, and RANDj(0, 1) is the jth evaluation of a
uniform random number generator. The parameter k ∈ {1, 2, ..., D} is a random index
chosen once for each i to make sure that at least one parameter is always selected from
the mutated vector Vji,G. The most common values for Cr are in the range of (0.4, 1)
[17]. Figure 8.1 illustrates a pictorial example for the binary crossover.

Fig. 8.1. A pictorial example for the binary crossover in DE (k = 7) [5]. When RANDj(0, 1) ≤
Cr ∨ j = k, then the variable is copied from Vji,G, otherwise copied from Xji,G to Uji,G.

8.2.3 Selection

Selection is a mechanism to decide which vector (Ui,G or Xi,G) should be a member
of next (new) generation G + 1. For a minimization problem, the vector with the lower
objective function value is chosen (greedy selection). If f(Ui) ≤ f(Xi), then Ui is
selected; otherwise Xi will be chosen (lines 17 − 23 of Algorithm 1).
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(a) Population initialization for DE
(Np = 9). Contour lines for f(x1, x2)
are shown by ellipses.

(b) Generating difference vector Xc −
Xb. b and c are the randomly selected
indices.

(c) Generating Xa,G + F (Xc,G −
Xb,G). a is the third randomly selected
index.

(d) After the crossover if the generated
vector has lower objective value, then it
will be replaced with the vector 0.

Fig. 8.2. Illustration of one generate-and-test cycle for DE (starting from vector 0) [5]

This evolutionary cycle (i.e., mutation, crossover, and selection) is repeated Np times
to generate new populations. These successive generations are produced until the ter-
mination conditions are satisfied. One generate-and-test cycle for DE is presented in
Figure 8.2.

The starting point for the mutation, crossover and selection is indicated by the com-
ments in the algorithm. The algorithm terminates (line 5) when the best achieved fitness
value (BFV) is smaller than the value-to-reach (VTR), or the number of function calls
(NFC) exceeds the predefined maximum number of function calls (MAXNFC). The ter-
mination strategy can be defined differently based on the application or the purpose
of the experiment. The number of generations, the execution time, or some population
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Algorithm 1. Differential Evolution (DE). P0: Initial population, Np: Population size,
V : Noise vector, U : Trial vector, D: Problem dimension, BFV: Best achieved fitness
value, VTR: Value-to-reach, NFC: Number of function calls, MAXNFC: Maximum num-
ber of function calls, F: Mutation constant, RAND(0, 1): Uniformly generated random
number, Cr: Crossover, f(·): Objective function, P ′: Population of the next generation.
1: Generate uniformly distributed random population P0

2: NFC ← 0
3: Evaluate individuals of P0

4: NFC ← NFC + Np

5: while ( BFV > VTR and NFC < MAXNFC ) do
6: {Generate-and-Test-Loop}
7: for i = 0 to Np do
8: Select three parents Xa, Xb, and Xc randomly from current population where i �= a �=

b �= c
{Mutation}

9: Vi ← Xa + F × (Xc − Xb)
{Crossover}

10: for j = 0 to D do
11: if RAND(0, 1) < Cr then
12: Ui,j ← Vi,j

13: else
14: Ui,j ← Xi,j

15: end if
16: end for

{Selection}
17: Evaluate Ui

18: NFC ← NFC + 1
19: if (f(Ui) ≤ f(Xi)) then
20: X ′

i ← Ui

21: else
22: X ′

i ← Xi

23: end if
24: end for
25: X ← X ′

26: end while

statistics (e.g., diversity or the improvement rate) are some commonly used termination
criteria.

8.2.4 DE in Optimization Field

A summary classification of optimization methods can be seen in Figure 8.3. According
to the proposed classification scheme for optimization methods, DE is a population-
based, nonlinear, continuous and global optimization algorithm [1].

Studies have been conducted to enhance the performance of the classical DE al-
gorithm by adaptive determination of DE control parameters. For instance, the fuzzy
adaptive differential evolution algorithm (FADE) was introduced by Liu and Lampinen



148 S. Rahnamayan and H.R. Tizhoosh

Fig. 8.3. A simple classification scheme of optimization methods [1]

[24]. They employed a fuzzy logic controller to set the mutation and crossover rates.
In the same direction, Brest et al. [20] proposed self-adaptive DE. Teo [30] proposed
a dynamic population sizing strategy based on self-adaptation, and Ali and Törn [25]
introduced auxiliary population and automatic calculating of the amplification factor F
for the difference vector.

Other researchers have experimented with multi-population ideas. Tasoulis et al. [31]
proposed parallel DE where they assign each subpopulation to a different processor
node. Shi et al. [32] partitioned high-dimensional search spaces into smaller spaces and
used multiple cooperating subpopulations to find the solution. They called this method
cooperative co-evolutionary differential evolution.

Hybridization with different algorithms is another direction for improvement of DE.
Sun et al. [26] proposed a new hybrid algorithm based on a combination of DE and esti-
mation of distribution algorithm. This technique uses a probability model to determine
promising regions in order to focus the search process on those areas. Noman and Iba
[35] incorporated local search into the classical DE. They employed fittest-individual
refinement which is a crossover-based local search. Fan and Lampinen [33] introduced a
new local search operation, trigonometric mutation, in order to obtain a better trade-off
between convergence speed and robustness. Kaelo and Ali [34] employed reinforce-
ment learning and some other schemes for generating fitter trial points.
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All mentioned approaches are proposed to increase the convergence rate and/or the
accuracy of DE. For more details about DE extensions, the reader is referred to literature
[1, 5, 27].

8.3 Why Differential Evolution?

Differential evolution is a simple and compact metaheuristic which directly operates on
continuous variables (arithmetic operators instead of logical operators). Unlike many
binary versions of the genetic algorithms, DE works with the floating-point numbers.
This removes encoding and decoding of the variables which is a source of inaccuracy.
Consequently, this feature makes DE scalable for high-dimensional problems and also
time and memory efficient.

Another reason for choosing DE is that it does not need a probability density func-
tion to adapt the control parameters (unlike most evolutionary strategies) or any prob-
ability distribution pattern for the mutation (unlike genetic algorithms or evolutionary
programming). DE’s different mutation and crossover schemes distinguish it from other
evolutionary algorithms [5].

Additionally, handling mixed integers, discrete and continuous variables makes DE
more applicable for a wider range of real-world applications. The main advantage of DE
while working with integer variables is that it internally works on a continuous space
and only switches to the integer space during the evaluation of the objective function.
This characteristic supports higher accuracy compared to some other well-known al-
gorithms (e.g., GAs) which perform in the reverse manner [27]. Extensions of classical
DE are capable of handling boundary constraints and also nonlinear function constraints
which both are commonly required in the real-world problems [5].

Many comparative studies report higher robustness, convergence speed, and solution
quality of the DE when compared to other evolutionary algorithms for both benchmark
functions and real-world applications. A comprehensive performance study is provided
in [5]. The authors first compare DE to 16 other optimizers against five well-known
thirty-dimensional test functions (namely, Rosenbrock, Ackley, Griewangk, Rastrigin,
and Schwefel). Consequently, they explored eight function-based comparative studies
(e.g., unconstrained optimization, multi-constraints nonlinear optimization, and multi-
objective optimization) and also eleven application-oriented performance comparison
studies (e.g., multi-sensor fusion, earthquake relocation, image registration, and opti-
mization of neural networks). Finally, they conclude [5] “[...] DE may not always be the
fastest method, it is usually the one that produces the best results, although the number
of cases in which it is also the faster is significant. DE also proves itself to be robust,
both in how control parameters are chosen and in the regularity with which it finds the
true optimum. [...] As these researchers have found, DE is a good first choice when ap-
proaching a new and difficult global optimization problem is defined with continuous
and/or discrete parameters.”

8.4 Opposition-Based Differential Evolution

In his primary paper on opposition-based learning (OBL), Tizhoosh proposed to use
anti-chromosmes for GAs [12]. For every selected chromosome a corresponding
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Fig. 8.4. Generation of anti-chromosomes [12]

anti-chromosome can be generated. The initial chromosomes are generally generated
randomly meaning that they can possess high or low fitness. However, in a complex
problem it is usually very likely that the initial populations do not contain optimal
solutions. Hence, in lack of any a-priori knowledge, it is reasonable to look at anti-
chromosomes simultaneously. Considering the search direction and its opposite at the
same time will bear more likelihood to reach the best population in a shorter time (for
more motivation on OBL see also Chapters 1-2). Tizhoosh also suggested to use total
or sub-total-mutation to generate opposite candidate solutions (Figure 8.4).

Similar to all population-based optimization algorithms, two main steps are dis-
tinguishable for DE, namely population initialization and producing new generations
by evolutionary operations such as mutation, crossover, and selection. The opposition-
based differential evolution (ODE) [6, 9, 13] will enhance these two steps by consid-
ering opposite solutions. For black-box optimization – which is a general assumption
for optimization methods – there is no information about the shape of the problem
landscape such that type II opposition can only be approximated via type I opposi-
tion (see Definitions 2 and 6 in Chapter 2). The pseudo-code of ODE is presented in
Algorithm 2 [13].

8.4.1 Opposition-Based Population Initialization

In absence of domain knowledge, uniform random number generation is generally the
only choice to create an initial population. But as mentioned before, by utilizing type-I
opposition it is possible to obtain fitter starting candidates. Block (1) from Figure 8.5
shows the implementation of opposition-based population initialization (lines 5− 12 of
Algorithm 2). The following steps explain that procedure [6]:

Step 1. Initialize the population P(Np) randomly,
Step 2. Create the opposite population OP by

OPi,j = aj + bj − Pi,j , with i = 1, 2, ..., Np; j = 1, 2, ..., D, (8.5)
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Algorithm 2. Pseudo-code of Opposition-Based Differential Evolution (ODE) in or-
der to solve a minimization problem [Adopted from [13]]. P0: Initial population, OP0:
Opposite of initial population, P : Current population, OP : Opposite of current popu-
lation, D: Problem dimension, [lj , uj]: Range of the j-th variable, Jr: Jumping rate,
Cr: Crossover rate, minp

j /maxp
j : Minimum/maximum value of the j-th variable in the

current population. Lines 1-12 and 33-42 are implementations of opposition-based pop-
ulation initialization and opposition-based generation jumping, respectively.

1: Generate uniformly distributed random population P0

2: NFC ← 0
3: Evaluate individuals of P0

4: NFC ← NFC + Np

{**Begin of Opposition-Based Population Initialization**}
5: for i = 0 to Np do
6: for j = 0 to D do
7: OP0i,j ← lj + uj − P0i,j

8: end for
9: end for

10: Evaluate individuals of OP0

11: NFC ← NFC + Np

12: Select Np fittest (best) individuals from P0 and OP0 as initial population P0

{Begin of DE’s Evolution Steps}
13: while ( BFV > VTR and NFC < MAXNFC ) do
14: for i = 0 to Np do
15: Select three parents Pi1 , Pi2 , and Pi3 randomly from current population where

i �= i1 �= i2 �= i3
16: Vi ← Pi1 + F × (Pi2 − Pi3)
17: for j = 0 to D do
18: if RAND(0, 1) < Cr then
19: Ui,j ← Vi,j

20: else
21: Ui,j ← Pi,j

22: end if
23: end for
24: Evaluate Ui

25: NFC ← NFC + 1
26: if (f(Ui) ≤ f(Pi)) then
27: P ′

i ← Ui

28: else
29: P ′

i ← Pi

30: end if
31: end for
32: P ← P ′

{**Begin of Opposition-Based Generation Jumping**}
33: if RAND(0, 1) < Jr then
34: for i = 0 to Np do
35: for j = 0 to D do
36: OPi,j ← MINp

j + MAXp
j − Pi,j

37: end for
38: end for
39: Evaluate individuals of OP0

40: NFC ← NFC + Np

41: Select Np fittest (best) individuals from P and OP as current population P
42: end if
43: end while
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Fig. 8.5. Gray boxes extend DE to ODE. Block (1): Opposition-based initialization, Block (2):
Opposition-based generation jumping (Jr: jumping rate, RAND(0, 1): uniformly generated ran-
dom number, Np: population size).

where Pi and OPi denote the ith individual of the current population and its corre-
sponding opposite, respectively, and [lj, uj ] is the range of the jth variable.

Step 3. Select the Np fittest (best) individuals from P ∪ OP as the initial population.

According to the above procedure, 2Np function evaluations are required instead
of Np for the regular random population initialization. But, by the opposition-based
initialization, the parent algorithm can start with the fitter initial individuals instead.

8.4.2 Opposition-Based Generation Jumping

By applying a similar approach mentioned in Sec. 8.4.1 to the current population, which
means selecting Np best individuals from the current and corresponding opposite popu-
lations, the evolutionary process can be forced to jump to a fitter generation (the gener-
ation with fitter individuals). After generating new populations, the opposite population
is calculated and the Np fittest (best) individuals are selected from the union of the cur-
rent and opposite population based on a jumping rate Jr ∈ (0, 0.4) [13, 15]. In order to
calculate the opposite population for generation jumping, the opposite of each variable
is calculated dynamically; that is, the maximum and minimum values of each variable
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Fig. 8.6. Example to visualize the opposition-based generation jumping in 2D space (Np = 8)

in the current population ([MINp
j , MAXp

j ]) are used to calculate opposite points instead
of using variables’ predefined interval boundaries ([lj, uj ]):

OPi,j = MINp
j + MAXp

j − Pi,j , i = 1, 2, ..., Np; j = 1, 2, ..., D. (8.6)

If the opposites are calculated within variables’ static boundaries, it is possible to
jump outside of the already shrunken search space and lose the knowledge of the
already reduced space. Hence, we calculate opposite points by using variables’ current
interval in the population ([MINp

j , MAXp
j ]) which is, as the search does progress, in-

creasingly smaller than the corresponding initial range [lj , uj ]. Block (2) from
Figure 8.5 illustrates the implementation of opposition-based generation jumping (lines
33 − 42 of Algorithm 2).

A pictorial example for opposition-based generation jumping procedure in 2D space
is illustrated in Figure 8.6. The letter ‘S’ indicates the location of the optimal solution.
Dark and light circles represent the points and the opposite points, respectively.

In [14], we established mathematical proofs and experimental evidence to verify the
advantage of opposite points compared to additional random points when dealing with
high-dimensional problems (see also Chapter 2 for more discussions on the formalism
of opposition). Both experimental and mathematical results confirmed that opposite
points are more beneficial than additional independent random points. We can conclude
that the opposition-based learning can be utilized to accelerate optimization methods
since considering the pair x and its opposite x̆ has apparently a higher fitness probability
than pure randomness.

8.5 Experimental Verifications

In this section, the convergence metrics are defined and DE and ODE are com-
pared experimentally over well-known benchmark functions (section 8.5.1). Also, the
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contribution of opposite points to the achieved acceleration rate is investigated by re-
placing them with random points (section 8.5.2).

8.5.1 Comparison of DE and ODE

A set of 15 well-known benchmark functions [6, 13, 15], which contains 7 unimodal
(f1,f2,f3,f6,f10,f11,f14) and 8 multimodal functions (f4,f5,f7,f8,f9,f12,f13,f15), has
been selected for performance verification of ODE. The definition of the benchmark
functions is given in Table 8.1.

Table 8.1. List of employed benchmark functions (unimodal and multimodal)

Function Search Space

f1(X) =
D∑

i=1
xi

2 [−5.12, 5.12]D

f2(X) =
D∑

i=1
ixi

2 [−5.12, 5.12]D

f3(X) =
D∑

i=1

(
i∑

j=1
xj

)2

[−65, 65]D

f4(X) = 10D +
D∑

i=1

(
x2

i − 10 cos(2πxi)
)

[−5.12, 5.12]D

f5(X) =
D∑

i=1

x2
i

4000 −
D∏

i=1
cos

(
xi√

i

)
+ 1 [−600, 600]D

f6(X) =
D∑

i=1
|xi|(i+1) [−1, 1]D

f7(X) = −20 exp

⎛

⎜
⎜
⎝−0.2

√
D∑

i=1
x2

i

D

⎞

⎟
⎟
⎠ − exp

⎛

⎜
⎝

D∑

i=1
cos(2πxi)

D

⎞

⎟
⎠ + 20 + e [−32, 32]D

f8(X) = sin2(3πx1) +
D−1∑

i=1
(xi − 1)2(1 + sin2(3πxi+1)) + (xD − 1)(1 + sin2(2πxD)) [−10, 10]D

f9(X) = −
D∑

i=1
sin(xi)(sin(ix2

i /π))2m, (m = 10) [0, π]D

f10(X) =
D∑

i=1
x2

i +

(
D∑

i=1
0.5ixi

)2

+

(
D∑

i=1
0.5ixi

)4

[−5, 10]D

f11(X) =
D∑

i=1
|xi| +

D∏

i=1
|xi| [−10, 10]D

f12(X) =
D∑

i=1
(�xi + 0.5	)2 [−100, 100]D

f13(X) =
D∑

i=1
|xi sin(xi) + 0.1xi| [−10, 10]D

f14(X) = exp

(

−0.5
D∑

i=1
x2

i

)

[−1, 1]D

f15(X) = 1 − cos(2π ‖ x ‖) + 0.1 ‖ x ‖, where ‖ x ‖=
√

D∑

i=1
x2

i [−100, 100]D

We compare the convergence speed of DE and ODE by measuring the number of
function calls (NFC) which is the most commonly used metric in literature [5, 7, 8, 9,
10, 11, 19]; a smaller NFC means higher convergence speed. The termination criterion
is to find a value smaller than the value-to-reach (VTR) before reaching the maximum
number of function calls MAXNFC. In order to minimize the effect of the stochastic
nature of the algorithms on the metric, the reported number of function calls (NFC) for
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Table 8.2. Parameter settings for conducted experiments

Parameter name Setting Reference
population size (Np) 100 [20, 21, 22]
differential amplification factor (F ) 0.5 [11, 20, 23, 24, 25]
crossover probability constant (Cr) 0.9 [11, 20, 23, 24, 25]
jumping rate constant (Jr) 0.3 [9, 13, 18]
maximum number of function calls (MAXNFC) 106 [9, 13, 18]
value to reach (VTR) 10−8 [10]
mutation strategy DE/rand/1/bin [5, 20, 23, 26, 27]

Table 8.3. Comparison of DE, ODE, and RDE. The best result for each case is highlighted in
boldface. Results for RDE have been discussed in section 8.5.2 (corresponding results for replac-
ing the opposite points with random points).

DE ODE RDE
F D NFC SR SP NFC SR SP NFC SR SP
f1 30 87748 1 87748 47716 1 47716 115096 1 115096
f2 30 96488 1 96488 53304 1 53304 126780 1 126780
f3 20 177880 1 177880 168680 1 168680 231152 1 231152
f4 10 328844 1 328844 70389 0.76 92617 501875 0.96 522786
f5 30 113428 1 113428 69342 0.96 72231 149744 1 149744
f6 30 25140 1 25140 8328 1 8328 29096 1 29096
f7 30 169152 1 169152 98296 1 98296 222784 1 222784
f8 30 101460 1 101460 70408 1 70408 138308 1 138308
f9 10 191340 0.76 251763 213330 0.56 380946 306900 0.60 511500
f10 30 385192 1 385192 369104 1 369104 498200 1 498200
f11 30 187300 1 187300 155636 1 155636 244396 1 244396
f12 30 41588 1 41588 23124 1 23124 54316 1 54316
f13 30 411164 1 411164 337532 1 337532 927230 0.24 3863458
f14 10 19528 1 19528 15704 1 15704 23156 1 23156
f15 10 37824 1 37824 24260 1 24260 46800 1 46800

SRave 0.98 0.95 0.92

each function is the average over 50 different trials. The number of times, for which
the algorithm successfully reaches the VTR for each test function is measured as the
success rate SR:

SR =
number of times reached VTR

total number of trials
. (8.7)

In order to combine these two measures (NFC and SR), a new measure, called suc-
cess performance has been introduced as follows [10]:

SP =
average of NFC over successful runs)

SR
. (8.8)

The parameter setting for all conducted experiments is summarized in Table 8.2.
In order to maintain a reliable and fair comparison, the parameter settings are kept

the same for all conducted experiments, unless we mention new settings. Besides, for
all experiments, the reported values are the average of the results for 50 indepen-
dent runs. In addition, and most importantly, extra fitness evaluations required for the
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(a) f1, ODE is 1.83 times faster

(b) f2, ODE is 1.81 times faster

(c) f5, ODE is 1.63 times faster

(d) f7, ODE is 1.72 times faster

Fig. 8.7. Sample convergence graphs (best solution vs. number of function calls). As seen, ODE
(dotted curve) shows better convergence speed than DE (solid curve) because it needs small
amount of function calls to find the solution. is calculated by NFCDE

NFCODE
.
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opposite points (both in population initialization and also generation jumping phases)
are counted as well to accurately measure the benefit in spite of the additional overhead
for computing the opposites.

The results for DE and ODE to solve the test problems are given in Table 8.3 (the
results in the last column will be discussed in section 8.5.2). ODE outperforms DE on
14 benchmark functions with respect to the success performance. Some sample perfor-
mance comparison graphs are presented in Figure 8.7. ODE (dotted curve) shows better
convergence speed than DE (solid curve) because it needs smaller number of function
calls to find the solution. With the same parameter settings for both algorithms and fix-
ing the jumping rate for the ODE (Jr = 0.3), their success rates are comparable while
ODE shows better convergence speed than DE. DE has a better success rate (SR) than
ODE on 3 functions (f4,f5, and f9). The jumping rate is an important control parameter
which, if optimally set, can achieve even better results. Detailed discussions about this
parameter can be found in [13].

On 7 multimodal functions (out of 8), ODE performs better than DE. This means that
the opposition-based extension performs well even when the function contains many
optima.

8.5.2 Contribution of Opposite Points

In this section, we verify whether the achieved acceleration rate for DE is really due to
utilizing opposite points. For this purpose, all parts of the proposed algorithm remain
unchanged and instead of using opposite points for the population initialization and the
generation jumping, uniformly generated random points will be employed. In order to
have a fair competition for this case, exactly like what we did for opposite points, the
current interval (dynamic interval, [MINp

j , MAXp
j ]) of the variables are used to generate

new random points in the generation jumping phase. So, line 4 in Algorithm 2 should
be changed to:

RP0i,j ←− lj + (uj − lj) × RAND(0, 1),

where RAND(0, 1) generates a uniformly distributed random number on the interval
(0, 1). In fact, instead of generating Np, 2Np random individuals are generated. In the
same manner, line 30 in Algorithm 2 should be replaced with

RPi,j ←− MINp
j + (MAXp

j − MINp
j ) × RAND(0, 1).

As mentioned before, the current boundaries of the variables ([MAXp
j , MINp

j ]) are
used to generate random numbers for generation jumping. And finally, in order to have
the same selection method, lines 7 and 33 in Algorithm 2 are substituted with

Select Np fittest (best) individuals from P and RP as current populationP ;

After these modifications, the random version of ODE (called RDE) is established.
Results for the current algorithm are presented in Table 8.3. As apparent, RDE can



158 S. Rahnamayan and H.R. Tizhoosh

not outperform DE or ODE on any of benchmark function with respect to the success
performance. This clearly demonstrates that the achieved improvements are due to us-
age of opposite points, and that the same level of improvement cannot be achieved via
additional random sampling [14, 15].

8.6 Conclusions and Future Work

In this chapter, we briefly reviewed how opposition-based optimization can be em-
ployed to accelerate convergence speed of differential evolution by embedding
opposition-based population initialization and opposition-based generation jumping.
The experimental results confirmed that ODE provides a higher performance than the
classical DE. However, opposition-based optimization is still in its infancy and future
research is required to fully investigate its benefits and drawbacks.

By replacing opposite points with uniformly generated random points in the same
variables’ range, the resulted algorithm (RDE) performs slower than the parent algo-
rithm (DE). Therefore, the contribution of opposite points to the acceleration process
was confirmed and was not reproducible by additional random sampling.

The benefits of opposition-based optimization is most likely not the same for dif-
ferent problems. This is because of using fixed settings for the parameters and/or the
different characteristics of each problem (e.g., modality, dimension, surface features,
separability of the variables and so on). Similar to all optimization approaches, ODE
does not present a consistent behavior over different problems. However, over the em-
ployed benchmark test suite, ODE performed better than classical DE.

The proposed opposition-based schemes are general enough to be applied to other
population-based algorithms. The opposition-based schemes work at the population
level and leave the evolutionary part of the algorithms untouched. This generality
gives higher flexibility to these schemes to be embedded inside other population-based
algorithms.

Opposition-based optimization opens new perspectives to accelerate optimization
processes. For most practical applications, we are faced with constrained functions and
also with multi-objective problems. So far, there are many approaches for handling
constraints in DE and also for multi-objective optimization using DE. All of these pro-
posals can be borrowed and investigated to generalize ODE to solve multi-objective
constrained problems.
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Summary. Recently a number of researchers have begun exploring the idea of combining
Opposition-Based Learning (OBL) with evolutionary algorithms, reinforcement learning, neu-
ral networks, swarm intelligence and simulated annealing. However, an area of research that is
still in infancy is the application of the OBL concept to coevolution. Hence, in this chapter, two
new opposition-based competitive coevolution algorithms for multiobjective optimization called
SPEA2-CE-HOF and SPEA2-CE-KR are discussed. These hybrid algorithms are the combination
of Strength Pareto Evolutionary Algorithm 2 (SPEA2) with two types of the competitive fitness
strategies, which are the Hall of Fame (HOF) and K-Random Opponents (KR), respectively. The
selection of individuals as the opponents in the coevolutionary process strongly implements this
opposition-based concept. Scalability tests have been conducted to evaluate and compare both
algorithms against the original SPEA2 for seven Deb, Thiele, Laumanns, and Zitzler (DTLZ) test
problems with 3 to 5 objectives. The experimental results show clearly that the performance scal-
ability of the opposition-based SPEA2-CE-HOF and SPEA2-CE-KR were significantly better
compared to the original non-opposition-based SPEA2 as the number of the objectives becomes
higher in terms of the closeness to the true Pareto front, diversity maintenance and the coverage
level.

9.1 Introduction

Coevolution is defined as the simultaneous evolution of two or more species with a
coupled fitness [3]. One of the main advantages of the coevolutionary approach as a
learning method is that coevolution does not necessarily need to specify a global fitness
function to rank individuals in the population explicitly; rather only a relative fitness is
needed [25]. At the population level, coevolution can be applied to the artificial evolu-
tion of individuals that compete with each other for superiority within their performing
environment. The fitness of individuals thus depends on their superiority or otherwise
when compared against opposing individuals that compete for survival within the pop-
ulation. Generally, coevolution can be divided into Cooperative Coevolution (CC) and
Competitive Coevolution (CE). The cooperative coevolution [18] involves a number
of individuals working together to solve the problem while the competitive coevolu-
tion involves individuals that compete against each other for dominance in the popula-
tion. These are some well known examples using CE architecture and concept to solve

H.R. Tizhoosh, M. Ventresca (Eds.): Oppos. Concepts in Comp. Intel., SCI 155, pp. 161–201, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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adversarial problems. Axelrod [13] used a Round Robin model or full competition strat-
egy to obtain solutions to the Iterated Prisoner’s Dilemma (IPD). Angeline and Pol-
lack [12] presented a Single Elimination Tournament strategy to solve the Tic-Tac-Toe
game. Hillis [31] used Bipartite tournament strategy to solve network sorting problems.
Kim et al. [2] described an Entry Fee Change tournament topology to test some well-
known problems such as sorting networks and the Nim game.

A variety of optimization solution techniques have been introduced for solving mul-
tiobjective problems or tasks [10]. Among these techniques, Evolutionary Algorithms
(EAs) have been established as one of the most widely used methods. EAs are able to
find a set of optimal solutions in a single run. Having this advantage, EAs are useful
in the circumstance of multiobjective optimization, of which the task is to approxi-
mate the Pareto front of optimal solutions. Recently, numerous Multiobjective Evo-
lutionary Algorithms (MOEAs) have been presented to solve real life problems [29].
However, a number of issues still remain with regards to MOEAs such as conver-
gence to the true Pareto front as well as scalability to many objective problems rather
than just bi-objective problems. The performance of these algorithms may be aug-
mented by incorporating the coevolutionary concept. In this study, our objective is
to conduct a comprehensive test for CE as an opposition-based method for evolving
Pareto solutions to multiobjective problems. In our proposed algorithms, the Hall of
Fame (HOF) and K-Random Opponents (KR) competitive fitness strategies will be
integrated with the Strength Pareto Evolutionary Algorithm 2 (SPEA2). These mod-
ified SPEA2 algorithms will be referred to as SPEA2-CE-HOF and SPEA2-CE-KR.
The performance of opposition-based coevolutionary SPEA2-CE-HOF and SPEA2-
CE-KR algorithms will be compared against the original SPEA2 algorithm, which
does not implement the opposition-based competitive coevolution, using the well-
known multi-objective optimization DTLZ test problems. Generational distance, spac-
ing and coverage metrics will be used to empirically validate the performance of the
proposed opposition-based coevolutionary algorithms against its non-opposition-based
counterpart.

The organization of this chapter is as follows. Section 9.2 provides a detailed de-
scription of Opposition-Based Learning. Then, the explanation on multiobjective op-
timization definitions and concepts are presented in Section 9.3. Section 9.4 presents
the framework of SPEA2. Section 9.5 discusses the characteristics of each competi-
tive fitness strategy. The integration between the CE and SPEA2 will be explained in
Section 9.6. In Section 9.7, geometries of each of the test problems and the performance
metrics used in the tests will be discussed, followed by the experimental settings in
Section 9.8. The experimental results and discussions are given in Section 9.9. Finally,
the conclusions and future work are presented in Section 9.10.

9.2 Proposed Use of Opposition

Opposition-Based Learning (OBL) was formally introduced by Tizhoosh [24]. OBL
is a simple to understand yet powerful concept for machine learning. One can say that
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whenever we are estimating, at the same time we ought to look at the opposite esti-
mate. For instance, the quantity in genetic algorithms is chromosome, while the oppo-
site quantity is anti-chromosome [33]. OBL has been used and shown to improve the
performances of evolutionary algorithms [4,5,19,20], reinforcement learning [6,22,23],
neural networks [27], swarm intelligence [15] and simulated annealing [28]. The oppo-
site numbers [24] can be defined as follows:

Definition 1. Let x be a real number in an interval [a,b], (x ∈[a,b]); the opposite
number x̆ is defined by

x̆ = a + b − x

In the same way, the definition of an opposite number in a multidimensional case can
be defined as follows [24]:

Definition 2. Let F (x1,x2,. . .,xn) be a point in n-dimensional space, where
x1,x2,. . .,xn

∈ � and xi ∈[ai,bi], ∀i ∈{1, 2,. . ., n}. The opposite number of F is defined by
F̆ (x̆1,x̆2,. . .,x̆n) where:

x̆i = ai + bi − xi

Now, by utilizing the above opposite number definition, the opposition-based com-
petitive coevolution can be defined as follows:

Definition 3. Let P (I1,I2, . . . , Im) be a set of individuals in the population, where
I1,I2, . . . , Im ∈ I and m is the size of the population. Based on the opposite number
definition, the opposite set P̆ can be defined by P̆ (Ĭ1,Ĭ2,. . .,Ĭm) where

Ĭi = Ii − I

The “−” denotes the operation “remove from”. For example, if the population consist
of 4 individuals P (I1,I2,I3,I4) and (I1,I2) are the individuals to be evaluated through
competitive coevolution, then

Non-opponent set P (I1,I2)

Opponent set P̆ (Ĭ1,Ĭ2) = P̆ (I3,I4)

These two sets of individuals will compete among each other for dominance. If the op-
ponent individual is better than non-opponent individual, then the opponent individual
will replace the non-opponent individual, because competitive coevolution is based on
the law of survival of the fittest.
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9.3 Multiobjective Optimization Problems

The common explanation of Multiobjective Optimization Problems (MOPs) [29] can
be formally defined as:

minimize (or maximize) z = f(v) = [f1(v1, . . . , vn), . . . , fm(v1, . . . , vn)] subject
to

constraints p are ≥ restriction ai(v) ≥ 0 (i = 1, 2, . . . , p)

constraints q are ≤ restriction bi(v) ≤ 0 (i = 1, 2, . . . , q)

constraints r are equality restriction ci(v) = 0(i = 1, 2, . . . , r)

where

v = (v1, v2, . . . , vn) ∈ V

z = (z1, z2, . . . , zm) ∈ Z

Vector v, (v1,v2, . . . , vn) in the decision space V is called the decision vector and n
is the number of decision variables. Additionally, the vector z, (z1, z2, . . . , zm) in the
objective space Z is called the objective vector and m is the number of the objective
functions. The entire decision vector under consideration must satisfy a given set of
constraints to produce an optimum solution values via the objective functions.

The concept of Pareto dominance [9] is defined as follows. An objective vector z1

is said to dominate another objective vector z2 or z1 is said to be nondominated by z2,
(z1 � z2) if z1 is not worse than z2 with respect to every objective and z1 is strictly
better than z2 with respect to at least one objective. An optimal decision vector to a
multiobjective problem is denoted as Pareto optimal if it is nondominated concerning
the entire decision space, and at the same time its image in the objective space is denoted
as a Pareto optimal objective vector. The whole of all Pareto optimal objective vectors
is called the Pareto front and the set of all the Pareto optimal decision vectors is called
the Pareto optimal set.

9.4 Multiobjective Evolutionary Algorithm: SPEA2

SPEA2 is a relatively new approach for finding or approximating the Pareto set in mul-
tiobjective optimization problems, which is the enhanced version of the original SPEA.
SPEA2 proposed by Zitzler et al. in [11]. This algorithm is an elitist multiobjective
evolutionary algorithm which incorporates a fine-grained fitness assignment strategy,
a density estimation technique and an improved archive truncation method. SPEA2
is selected as the modified algorithm because it is one of the current state-of-the-art
MOEAs. Furthermore, the performance of SPEA2 is better than other present day well-
known algorithms, such as Pareto Envelope-based Selection Algorithm (PESA) and
Nondominated Sorting Genetic Algorithm 2 (NSGA2) in higher dimensional objective



9 Evolving Opposition-Based Pareto Solutions 165

spaces [11] . Frequently, the MOEAs must attempt to accomplish two core aims, that are
to guide the search towards the global Pareto optimal region and maintain population
diversity in Pareto optimal front [30]. The general framework of SPEA2 is introduced
as below:

Algorithm 1. SPEA2 Algorithm
Input:
M (offspring population size)
N (archive size)
T (maximum number of generations)
Output:
A∗(nondominated set)

Step1: Initialization: Generate an initial population P0 and create the empty archive (external
set) A0 = φ. Set t = 0.

Step2: Fitness assignment: Calculate fitness value of individuals in Pt and At.

Step3: Environmental selection: Copy all nondominated individuals in Pt and At to At+1. If size
of At+1 exceeds N then reduce At+1 by means of the truncation operator, otherwise if size At+1

is less than N the fill At+1 with dominated individuals in Pt and At.

Step4: Termination: If t ≥ T or another stopping criterion is satisfied then set A∗ to the set of
decision vectors represented by the nondominated individuals in At+1. Stop.

Step5: Mating selection: Perform binary tournament selection with replacement on At+1 in
order to fill the mating pool.

Step6: Variation: Apply recombination and mutation operators to the mating pool and set Pt+1

to the resulting population. Increment generation counter (t = t + 1) and go to Step 2.

9.5 Competitive Fitness Strategies

Thus far, there have been only a very limited number of studies that incorporate com-
petitive coevolution into MOEAs. Parmee and Watson [17] introduced cooperative co-
evolution in evolutionary multiobjective optimization for bi-objective and tri-objective
problems to design airframes. Lohn et al. [14] presented a competitive coevolution ge-
netic algorithm to solve bi-objective problems. In his approach, the tournament is held
between two populations, which are the trial population and target population.

In terms of canonical coevolution, a number of different competitive fitness strate-
gies have been used to implement the competitive coevolution, such as Hall of Fame,
K-Random Opponents, Round Robin and Single Elimination Tournament, as shown in
Fig. 9.1 to Fig. 9.4. Rosin and Belew [21] introduced a Hall of Fame tournament con-
cept, whereby each member from the current generation will be competing with every
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Fig. 9.1. Hall of fame Fig. 9.2. K-random opponents

Fig. 9.3. Round robin Fig. 9.4. Single elimination tournament

preserved best member from previous generations. Panait and Luke [16] explained a
K-Random Opponents strategy, where each member will be competing against K other
members of opponents. The opponents will be randomly selected from the same pop-
ulation without repeating the same opponents and rejecting self-play. Axelrod [13] de-
scribed a Round Robin method as a full competition. Each member will be competing
against every single member of the population and also disallowing self-play. Ange-
line and Pollack [12] presented a Single Elimination Tournament topology, whereby
all members in the population will be randomly paired up and each pair will compete
among themselves. For each competition, the loser will be eliminated, and the winner
is preserved to the next level. After that, all the winners will also be randomly paired up
and put to compete again, until a single winner is left.

9.6 Proposed Algorithms: SPEA2-CE-HOF and SPEA2-CE-KR

Two new opposition-based coevolutionary algorithms that integrate SPEA2 with HOF
and KR respectively are presented. The resulting algorithms are referred to as
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SPEA2-CE-HOF and SPEA2-CE-KR . Generally, the framework of the two hybrid al-
gorithms are similar to the framework of SPEA2 with the exceptions of two additional
methods, Opponents selection and Reward assignment as shown in below.

Algorithm 2. SPEA2-CE-HOF/SPEA2-CE-KR Algorithms
BEGIN
gen = 0
Pops(gen) = randomly initialized population
Fitness assignment Pops(gen)
Opponents selection Pops(gen) //choose the opponents based on HOF or KR
Reward assignment Pops(gen)
Environmental selection Pops(gen)

WHILE Termination = False
gen = gen + 1
Mating selection Pops(gen)
Variation Pops(gen)
Fitness assignment Pops(gen)
Opponents selection Pops(gen) //choose the opponents based on HOF or KR
Reward assignment Pops(gen)
Environmental selection Pops(gen)

END

END SPEA2-CE-HOF / SPEA2-CE-KR

Fig. 9.5 shows the overall flow of SPEA2-CE-HOF and SPEA2-CE-KR. At the ini-
tialization state, the proposed algorithms randomly generate an initial population of
real-valued vector (individuals). The individuals represent possible solutions to the
problem. Then, the fitness values for each individual in the population are evaluated.
Next, the Opponent selection method will select individuals as the opponents based
on the HOF or KR strategies. In the proposed algorithms, an archive is created to
store all of the nondominated solutions. With this addition, SPEA2-CE-HOF’s Oppo-
nents selection method can easily select all the current best individuals as opponents
from the archive. Meanwhile, SPEA2-CE-KR will randomly select opponents from the
same population without repeating the identical opponents and prohibiting self-play.
The K is tested with the values of 10, 20, 30, 40, 50, 60, 70, 80 and 90. After that,
each individual will compete against the entire set of opponents. During the tourna-
ment, the reward value will be calculated for each competition by the reward func-
tion. Each reward value will be summed up as the fitness score for the individual using
the Reward assignment method. The number of competitions is based on the size of
the archive or the K values. Subsequently, the archive update operation is executed.
The archive is updated by copying nondominated individuals into the archive using the
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Fig. 9.5. Flowchart of SPEA2-CE-HOF and SPEA2-CE-KR

archive truncation method to maintain boundary solutions. Any dominated solutions
will be removed from the archive during the update operation. Individuals which are
then selected to form offspring according to their fitness by performing the genetic op-
erations of simulated binary crossover and polynomial mutation. Each loop iteration
is referred to as a generation. The run of SPEA2-CE-HOF and SPEA2-CE-KR termi-
nates when the termination criterion is satisfied. The predefined maximum number of
generations serves as the termination criterion of the loop.

Equation (9.1) illustrates the reward function . I represents the participating individ-
ual, while O represents the opponent. R is the raw fitness value, max(R) is the max-
imum raw fitness value and the min(R) is the minimum raw fitness value. The range
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for values in this function is within [-1, 1]. If Reward(I , O) = 0, it corresponds to the
competition being a draw.

Reward(I, O) =
R(O) − R(I)

max(R) − min(R)
(9.1)

9.7 Test Problems and Performance Metrics

The algorithms will be benchmarked using seven test problems, DTLZ1 to DTLZ7 for
the following reasons [8]:

• It is one of the latest sets of test problems for multiobjective benchmarking prob-
lems but more importantly, these problems can be tested with varying numbers of
decision variables and objectives.

• The structure of the test problems is easy created by using a bottom-up technique.
• The test problems have exact and known shapes as well as the location of the result-

ing true Pareto front. Also, the corresponding optimal decision variable values are
known.

The true Pareto front for the entire seven test problems are displayed in Fig. 9.6 to
Fig. 9.9. These problems are M -objective problems. Table 9.1 summarizes the geomet-
rical properties of the DTLZ test problems.

Table 9.1. The geometries of DTLZ

Test Problem Geometry

DTLZ1 Linear
DTLZ2, DTLZ3, DTLZ4 Concave
DTLZ5, DTLZ6 Curve
DTLZ7 Disconnected

Fig. 9.6. True Pareto front of DTLZ1 Fig. 9.7. True Pareto front of DTLZ2 to
DTLZ4
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Fig. 9.8. True Pareto front of DTLZ5
and DTLZ6

Fig. 9.9. True Pareto front of DTLZ7

Three performance metrics were used to validate the proposed algorithms, namely
generational distance, spacing and coverage metrics.

Generational distance (GD): This metric was proposed by Van Veldhuizen and Lam-
ont [26] and is used for estimating how far the elements in the Pareto front obtained are
from the true Pareto front of the problem. This metric is defined as:

GD =

√
n∑

i=1

d2
i

n
(9.2)

where n is the number of nondominated vectors found by the algorithm being analyzed
and di is the Euclidean distance (measured in objective space) between each of these
and the nearest member of the true Pareto front. A value of GD = 0 indicates that all
the elements generated are in the true Pareto front of the problem. Therefore, any other
value will indicate how “far” the obtained solutions are from the global Pareto front of
our problem.

Spacing (SP): This metric was introduced by Schott [32] and measures how evenly
the points in the approximation set are distributed in the objective space. This metric is
defined as:

SP =

√
√
√
√ 1

n − 1

n∑

i=1

(d − di)2 (9.3)

where

di = minj(
m∑

k=1

|f i
m − f j

m|)
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i, j = 1, . . . , n and m is the number of objectives, d is the mean of all di, and n refers
to the number of elements of Pareto optimal set found so far. If SP = 0 it means that all
the nondominated solutions found are equidistantly spaced.

Coverage metric (C): This metric was proposed by Zitzler et al. [7]. By using this met-
ric, two sets of nondominated solutions can be compared to each other. ConsiderX ′, X ′′

as two sets of phenotype decision vectors. C is defined as the mapping of the ordered
pair (X ′,X ′′) to the interval [0, 1]:

C(X ′, X ′′)Δ
|{a′′ ∈ X ′′; ∃a′ ∈ X ′ : a′�a′′}|

|X ′′| (9.4)

a′�a′′ if a′ dominates a′′ or a′ equal to a′′. C(X ′,X ′′) = 1 means that all the decision
vectors in X ′′ are dominated by X ′. Otherwise, C(X ′,X ′′) = 0 represents the situation
when none of the points in X ′′ are dominated by X ′. If C(X ′,X ′′) > C(X ′′,X ′),
then X ′ is better than X ′′. Fig. 9.10 and Fig. 9.11 show the graphical presentations for
coverage metric.

Fig. 9.10. C(X ′,X ′′) = 0 Fig. 9.11. C(X ′,X ′′) = 1

9.8 Experimental Settings

The following common parameters and operators were based on the previous study of
Deb [8]. In order to have a fair comparison across all algorithms, all runs considered
are implemented with the same real-valued representation, simulated binary crossover
(SBX) [1], polynomial mutation [1] and binary tournament selection as shown in
Table 9.2. The number of evaluations in each run is fixed at 60,000. Table 9.3 lists
all the parameter settings for each evolutionary multiobjective optimization algorithm.

Table 9.2. Evolutionary settings

Representation : Real valued vectors
Crossover : Simulated binary crossover
Mutation : Polynomial mutation
Selection : Binary tournament selection
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Table 9.3. Parameter settings

Parameter SPEA2, SPEA2-CE-HOF, SPEA2-CE-KR

Population size 100
Archive size 100
Number of decision variables per generation 12
Number of objectives 3 to 5
Number of generations 600
Mutation probability 0.08
Crossover probability 1
Polynomial mutation operator 20
SBX crossover operator 15
Number of repeated runs 30

9.9 Experimental Results and Discussions

The graphical presentations in box plot format of generational distance and spacing are
shown in Fig. 9.12 to Fig. 9.14. The leftmost box plot relates to SPEA2, second left-
most box plot relates to SPEA2-CE-HOF while from the third leftmost to the rightmost
relate to SPEA2-CE-KR with a set of K values (10, 20, 30, 40, 50, 60, 70, 80 and 90).
The dark dash is the median, the top of the box is the upper quartile, and the bottom of
the box is the lower quartile. The graphical presentations for the test problems in terms
of the coverage metric are shown in Fig. 9.15. Each rectangle contains seven box plots
representing the distribution of the C value; the leftmost box plot relates to DTLZ1
while the rightmost box plot relates to DTLZ7. The box plots of SPEA2-CE-KR with
90 opponents are selected to be presented in Fig. 9.15, because the results show that the
proposed algorithm with 90 opponents has a very good coverage level compared with
other K values. In addition, Appendix presents the detailed description of the experi-
mental results.

In the figures and tables, some symbols are utilized to represent the name of the
the algorithms. The symbol S2 corresponds to the SPEA2 algorithm and the symbol
CH represents the SPEA2-CE-HOF. The symbol CK indicates the SPEA2-CE-KR and
the number refers to the size of the opponents. For example, CK10 corresponds to
the SPEA2-CE-KR with 10 random opponents. From the results, the following can be
observed.

Generational distance (GD): SPEA2-CE-KR is shown to be better than SPEA2 and
SPEA2-CE-HOF in almost all the DTLZ test problems except DTLZ5 with 3 objec-
tives. However for 4 and 5 objectives, the results reveal that SPEA2-CE-KR strongly
outperformed SPEA2 and SPEA2-CE-HOF for the entire set of test problems. In ad-
dition, the mean GD values for most of the SPEA2-CE-KR are close to zero, which
indicates that SPEA2-CE-KR is very near to the true Pareto front. Furthermore, a ma-
jor enhancement in the search results produced by SPEA2-CE-KR can be obviously
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GD Test Problem SP

DTLZ1

DTLZ2

DTLZ3

DTLZ4

DTLZ5

DTLZ6

DTLZ7

Fig. 9.12. Box plots of SPEA2, SPEA2-CE-HOF and SPEA2-CE-KR for generational distance
(GD) and spacing (SP) with 3 objectives
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noticed in the test problems DTLZ1, DTLZ3 and DTLZ7, which are problems with
linear, concave or disconnected Pareto front. Overall, the performance of SPEA2-CE-
KR significantly improved when the number of the objectives increased. It means that
SPEA2-CE-KR has a far enhanced capability to escape from the sub-optimal local solu-
tions in its exploration process for a more optimal solution. As observed in GD results,
having larger opponent sizes will generally improve the performance of the augmented
SPEA2 algorithm. Moreover, it scales very well in terms of convergence. It means that
the KR competitive coevolution effect helps in creating a set of solutions that are very
close the to the true Pareto front.

In addition, SPEA2-CE-HOF is better than SPEA2 in most of the DTLZ test prob-
lems with 3 to 5 objectives, in which SPEA2-CE-HOF performed better in 4 of 7 DTLZ
problems. The SPEA2 with HOF strategy can achieve a good convergence, where a ma-
jor improvement in the search performance of SPEA2-CE-HOF can be observed in the
test problem DTLZ6. In the rest of the test problems, the proposed algorithm seems
to only contribute a minor improvement, compared to the KR approach. Also, SPEA2-
CE-HOF scales well in terms of convergence metric.

Spacing (SP): For test problems with 3 objectives, the performances of SPEA2-CE-KR
against SPEA2 and SPEA2-CE-HOF are comparable, because SPEA2-CE-KR com-
bined all the different objectives into a single raw fitness values. The tournament had
focused only on some objectives caused by using raw fitness values as the competitive
criteria. Once the number of objectives were increased to four and five, the performance
of SPEA2-CE-KR is noticeably better than both algorithms. The SPEA2-CE-KR shows
a slight improvement for the solution distribution in the test problems with three objec-
tives. In contrast, a major improvement in the optimization results produced by the
proposed algorithm can be noticed in the test problems with four and five objectives.
Also, SPEA2-CE-KR scales very well in terms of the spacing metric. Here, the SPEA2-
CE-KR is shown to have a better spread of solutions compared to SPEA2 and SPEA2-
CE-HOF, especially for problems with a higher number of objectives. This means that
SPEA2-CE-KR has an excellent ability to maintain a diverse set of final solutions.

SPEA2-CE-HOF performed moderately in most of the test problems for the diver-
sity index. In the 3-objective problems, only two test problems, DTLZ1 and DTLZ3
performed better compared with the SPEA2. The reason may be that SPEA2-CE-
HOF always preserves the existence of extreme solutions with higher reward scores,
so this can cause worsening in the spacing values. But the performance of SPEA2-
CE-HOF increased in the 4-objective problems, four of the DTLZ problems performed
well, which are DTLZ1, DTLZ2, DTLZ5 and DTLZ6. Similarly, in the 5-objective
problems, SPEA2-CE-HOF performed better for three DTLZ test problems, DTLZ1,
DTLZ3 and DTLZ7. A major improvement in the search performance of SPEA2-CE-
HOF can be observed in the test problem DTLZ1. However, in test problems DTLZ2,
DTLZ3, DTLZ5, DTLZ6 and DTLZ7, there was only a minor enhancement. Moreover,
SPEA2-CE-HOF scales less favorably in terms of the spacing metric.

Coverage (C): SPEA2-CE-KR shows regular coverage of nondominated solutions for
DTLZ test problems with 3 objectives. But for 4 and 5 objectives, the obtained non-
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GD Test Problem SP

DTLZ1

DTLZ2

DTLZ3

DTLZ4

DTLZ5

DTLZ6

DTLZ7

Fig. 9.13. Box plots of SPEA2, SPEA2-CE-HOF and SPEA2-CE-KR for generational distance
(GD) and spacing (SP) with 4 objectives
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GD Test Problem SP

DTLZ1

DTLZ2

DTLZ3

DTLZ4

DTLZ5

DTLZ6

DTLZ7

Fig. 9.14. Box plots of SPEA2, SPEA2-CE-HOF and SPEA2-CE-KR for generational distance
(GD) and spacing (SP) with 5 objectives
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3 Objectives 4 Objectives 5 Objectives

C(CH,S2)

C(S2,CH)

C(CK90,S2)

C(S2,CK90)

C(CK90,CH)

C(CH,CK90)

Fig. 9.15. Box plots of SPEA2, SPEA2-CE-HOF and SPEA2-CE-KR for coverage metric with
3 to 5 objectives

dominated solutions found by SPEA2-CE-KR clearly dominated the obtained nondom-
inated solutions found by SPEA2 and SPEA2-CE-HOF in almost all of the DTLZ
test problems, since C(SPEA2-CE-KR, SPEA2) > C(SPEA2, SPEA2-CE-KR) and
C(SPEA2-CE-KR, SPEA2-CE-HOF) > C(SPEA2-CE-HOF, SPEA2-CE-KR). The
SPEA2-CE-KR’s weakest results are in DTLZ5 against SPEA2 and SPEA2-CE-HOF.
As can be seen from the box plots of 4 and 5 objectives, some box plots in the column
C(SPEA2, SPEA2-CE-KR) and C(SPEA2-CE-HOF, SPEA2-CE-KR) are at the bottom
of the rectangle, which indicates that the proposed algorithm is completely free from
the domination of SPEA2 and SPEA2-CE-HOF. Basically, it can be observed that with
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increasing values of K and the number of objectives, the dominance of SPEA2-CE-KR
becomes greater over both algorithms. Additionally, SPEA2-CE-KR scales very well
in terms of the coverage metric. A major improvement in the search performance of
SPEA2-CE-KR can be observed in almost all the test problems, except for the DTLZ5
problem.

SPEA2-CE-HOF and SPEA2 have comparable performances for the coverage met-
ric. SPEA2-CE-HOF is shown to be better in the 3- and 4-objective problems. But, the
performance of this proposed algorithm decreased in the 5-objective problems. In the
3-objective problems, SPEA2-CE-HOF had a good performance for DTLZ2, DTLZ3
and DTLZ6, which have multiple local Pareto fronts, in order to attain good C values.
The performance increased in the 4-objective problems for DTLZ2 to DTLZ6. On the
other hand, SPEA2-CE-HOF performed better only for two test problems, DTLZ2 and
DTLZ3 in the 5-objective problems. The results show that the use of HOF does have a
minor improvement for the coverage level in test problems DTLZ4 to DTLZ6. In con-
trast, a major enhancement in the search results produced by SPEA2-CE-HOF can be
noticed in the test problems DTLZ2 and DTLZ3. SPEA2-CE-HOF scales moderately
well for this metric.

9.10 Conclusions and Future Work

In this chapter, two newly proposed opposition-based competitive coevolution algo-
rithms, named SPEA2-CE-HOF and SPEA2-CE-KR, have been studied. A thorough
comparison performance between these algorithms against the original SPEA2 were
demonstrated using a set of DTLZ test problems. According to the experimental re-
sults, the analysis reveals that the overall performances of both the SPEA2-CE-KR and
SPEA2-CE-HOF algorithms are superior to that of SPEA2. SPEA2-CE-KR was found
to produce better results in terms of generational distance, spacing and coverage in
almost all of the test problems while SPEA2-CE-HOF improved the performance of
SPEA2 in some of the problems. This is a very promising indication that the inclu-
sion of opposition-based competitive coevolution as an augmentation to the original
SPEA2 algorithm is highly beneficial for improving its performance on evolutionary
multi-objective optimization.

Several issues still remain for future research. It would be interesting to investigate
whether a hybrid structure of competitive coevolution together with cooperative coevo-
lution would be able to further improve the performance of MOEAs, since cooperative
coevolution can focus on the individual objectives using speciation and competitive co-
evolution can focus on the opposition-based learning between individual solutions. The
enhanced algorithm has been focusing on 3 to 5 objectives only, therefore it would also
be highly informative to conduct further tests of scalability in higher dimensions for the
proposed algorithms. Also, it would be worthwhile to test SPEA2-CE using different
competitive fitness strategies, such as single elimination tournament. Based on Panait
and Luke [16], the single elimination tournament is superior to K-Random opponents
in noise free problems.
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Appendix

Table 9.4. Summarization of mean and standard deviation of generational distance (GD) between
SPEA2, SPEA2-CE-HOF and SPEA2-CE-KR for DTLZ1 test problem with 3 to 5 objectives.
The boldface indicates the best mean values.

Algorithm 3 Objectives 4 Objectives 5 Objectives
Mean St Dev Mean St Dev Mean St Dev

S2 9.692000 2.987000 33.740000 5.610000 46.520000 6.510000
CH 10.082000 3.714000 34.836000 3.645000 47.342000 1.576000

CK10 2.306000 0.782000 3.247000 1.034000 3.910000 1.711000
CK20 1.619000 0.818000 1.817000 0.974000 3.194000 2.004000
CK30 1.948000 1.529000 1.666000 0.947000 2.566000 1.446000
CK40 1.619000 2.002000 1.439000 0.563000 2.190000 0.900000
CK50 1.309000 1.124000 1.212600 0.533600 1.614000 0.842000
CK60 1.114000 0.868000 1.301000 0.722000 1.575000 1.053000
CK70 1.394000 1.642000 1.399000 0.854000 1.659000 1.305000
CK80 1.046000 1.114000 1.113000 0.847000 1.402000 0.828000
CK90 0.725600 0.428700 0.851700 0.533500 1.401000 1.000000

Table 9.5. Summarization of mean and standard deviation of generational distance (GD) between
SPEA2, SPEA2-CE-HOF and SPEA2-CE-KR for DTLZ2 test problem with 3 to 5 objectives.
The boldface indicates the best mean values.

Algorithm 3 Objectives 4 Objectives 5 Objectives
Mean St Dev Mean St Dev Mean St Dev

S2 0.003689 0.001755 0.062900 0.012560 0.141180 0.009030
CH 0.003291 0.001458 0.059010 0.012270 0.141950 0.005810

CK10 0.002249 0.000264 0.006647 0.000544 0.015267 0.001333
CK20 0.002051 0.000193 0.006527 0.000626 0.013589 0.001257
CK30 0.002007 0.000212 0.006280 0.000628 0.013094 0.000968
CK40 0.002036 0.000265 0.006388 0.000612 0.013241 0.001240
CK50 0.001973 0.000219 0.006352 0.000515 0.012942 0.000957
CK60 0.001942 0.000224 0.006105 0.000427 0.012947 0.000829
CK70 0.001948 0.000218 0.006107 0.000381 0.013064 0.001247
CK80 0.001964 0.000227 0.006164 0.000443 0.012837 0.000919
CK90 0.001886 0.000256 0.006066 0.000429 0.012938 0.000924
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Table 9.6. Summarization of mean and standard deviation of generational distance (GD) between
SPEA2, SPEA2-CE-HOF and SPEA2-CE-KR for DTLZ3 test problem with 3 to 5 objectives.
The boldface indicates the best mean values.

Algorithm 3 Objectives 4 Objectives 5 Objectives
Mean St Dev Mean St Dev Mean St Dev

S2 19.110000 5.381000 73.000000 7.870000 118.610000 5.700000
CH 19.330000 5.840000 74.210000 7.170000 116.330000 5.570000

CK10 6.941000 4.228000 7.842000 2.849000 13.031000 5.146000
CK20 7.545000 4.646000 5.356000 2.584000 8.401000 4.094000
CK30 5.625000 4.256000 4.178000 2.129000 5.783000 3.705000
CK40 6.056000 4.071000 4.459000 2.777000 5.627000 3.746000
CK50 7.120000 5.740000 3.533000 1.701000 5.793000 3.216000
CK60 6.262000 4.028000 3.222000 1.696000 5.331000 2.950000
CK70 6.673000 5.469000 2.374000 1.451000 4.089000 2.540000
CK80 7.371000 4.611000 4.371000 3.957000 8.040000 6.340000
CK90 7.569000 5.444000 3.154000 2.405000 4.422000 3.528000

Table 9.7. Summarization of mean and standard deviation of generational distance (GD) between
SPEA2, SPEA2-CE-HOF and SPEA2-CE-KR for DTLZ4 test problem with 3 to 5 objectives.
The boldface indicates the best mean values.

Algorithm 3 Objectives 4 Objectives 5 Objectives
Mean St Dev Mean St Dev Mean St Dev

S2 0.003235 0.001623 0.047410 0.029130 0.125830 0.038940
CH 0.002993 0.001583 0.046880 0.028060 0.134240 0.033110

CK10 0.001949 0.000512 0.006746 0.001131 0.015870 0.003744
CK20 0.001778 0.000435 0.006551 0.001080 0.016043 0.002673
CK30 0.001937 0.000424 0.006018 0.001097 0.016413 0.004181
CK40 0.001758 0.000395 0.006022 0.001062 0.015638 0.003222
CK50 0.001917 0.000387 0.005852 0.001155 0.016380 0.003657
CK60 0.001799 0.000389 0.006244 0.001189 0.015299 0.002971
CK70 0.001870 0.000327 0.005869 0.001108 0.015377 0.003034
CK80 0.001903 0.000336 0.006196 0.001285 0.015659 0.003024
CK90 0.001823 0.000350 0.006131 0.001036 0.015561 0.003229
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Table 9.8. Summarization of mean and standard deviation of generational distance (GD) between
SPEA2, SPEA2-CE-HOF and SPEA2-CE-KR for DTLZ5 test problem with 3 to 5 objectives.
The boldface indicates the best mean values.

Algorithm 3 Objectives 4 Objectives 5 Objectives
Mean St Dev Mean St Dev Mean St Dev

S2 0.000378 0.000105 0.137610 0.003870 0.168450 0.005550
CH 0.000363 0.000146 0.138730 0.003970 0.168760 0.005290

CK10 0.000503 0.000102 0.067310 0.009430 0.140890 0.009030
CK20 0.000407 0.000081 0.055040 0.008940 0.131820 0.012600
CK30 0.000492 0.000290 0.056210 0.016760 0.133220 0.012570
CK40 0.000356 0.000067 0.080160 0.039710 0.128740 0.013820
CK50 0.000413 0.000142 0.078390 0.040110 0.128630 0.016290
CK60 0.000349 0.000065 0.078030 0.038570 0.123830 0.014280
CK70 0.000364 0.000062 0.088880 0.044920 0.127430 0.013990
CK80 0.000385 0.000151 0.083890 0.034450 0.124230 0.016860
CK90 0.000371 0.000085 0.070140 0.035950 0.125510 0.013660

Table 9.9. Summarization of mean and standard deviation of generational distance (GD) between
SPEA2, SPEA2-CE-HOF and SPEA2-CE-KR for DTLZ6 test problem with 3 to 5 objectives.
The boldface indicates the best mean values.

Algorithm 3 Objectives 4 Objectives 5 Objectives
Mean St Dev Mean St Dev Mean St Dev

S2 0.105450 0.034230 0.516590 0.049630 0.806390 0.005660
CH 0.099750 0.027580 0.513270 0.054590 0.806890 0.003910

CK10 0.015030 0.001044 0.092410 0.028960 0.728800 0.060900
CK20 0.014478 0.001036 0.078690 0.009460 0.485100 0.150900
CK30 0.014149 0.001120 0.070310 0.010540 0.437000 0.140900
CK40 0.014515 0.001231 0.070240 0.009010 0.374600 0.095900
CK50 0.014206 0.000972 0.069210 0.010440 0.352300 0.123500
CK60 0.013800 0.001118 0.068540 0.007930 0.340600 0.139300
CK70 0.013869 0.001069 0.065610 0.008830 0.325100 0.124800
CK80 0.014164 0.001340 0.067870 0.009310 0.327900 0.124300
CK90 0.013555 0.000732 0.069020 0.006420 0.291700 0.108200
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Table 9.10. Summarization of mean and standard deviation of generational distance (GD) be-
tween SPEA2, SPEA2-CE-HOF and SPEA2-CE-KR for DTLZ7 test problem with 3 to 5 objec-
tives. The boldface indicates the best mean values.

Algorithm 3 Objectives 4 Objectives 5 Objectives
Mean St Dev Mean St Dev Mean St Dev

S2 0.021630 0.015890 0.670800 0.138700 1.571800 0.148600
CH 0.029550 0.023300 0.619400 0.170400 1.583500 0.182700

CK10 0.001613 0.000451 0.006187 0.000827 0.024740 0.010030
CK20 0.001646 0.000846 0.005505 0.000789 0.021870 0.009090
CK30 0.001419 0.000488 0.005266 0.000930 0.023990 0.010150
CK40 0.002002 0.001753 0.005358 0.001250 0.018890 0.009220
CK50 0.001692 0.001306 0.005376 0.000776 0.023730 0.010280
CK60 0.002886 0.002978 0.005342 0.000761 0.021530 0.009880
CK70 0.002132 0.001894 0.005464 0.001020 0.021100 0.010060
CK80 0.001952 0.001602 0.005124 0.000923 0.021520 0.009880
CK90 0.002731 0.002518 0.005265 0.001200 0.023100 0.010140

Table 9.11. Summarization of mean and standard deviation of spacing (SP) between SPEA2,
SPEA2-CE-HOF and SPEA2-CE-KR for DTLZ1 test problem with 3 to 5 objectives. The bold-
face indicates the best mean values.

Algorithm 3 Objectives 4 Objectives 5 Objectives
Mean St Dev Mean St Dev Mean St Dev

S2 9.964000 5.157000 25.372000 4.639000 39.550000 8.690000
CH 9.177000 4.561000 24.241000 3.175000 37.895000 2.385000

CK10 9.519000 4.736000 13.180000 5.550000 12.148000 4.196000
CK20 6.225000 3.949000 8.590000 5.520000 11.346000 4.244000
CK30 7.748000 5.287000 7.904000 4.832000 10.914000 4.268000
CK40 5.677000 4.375000 8.019000 4.281000 10.389000 3.195000
CK50 5.791000 4.235000 6.780000 3.958000 8.201000 4.702000
CK60 4.890000 4.263000 7.552000 5.101000 8.030000 5.760000
CK70 5.255000 5.456000 7.025000 4.762000 7.173000 4.842000
CK80 3.684000 3.363000 5.832000 4.625000 6.866000 4.012000
CK90 3.486000 4.046000 3.990000 3.556000 6.195000 4.347000
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Table 9.12. Summarization of mean and standard deviation of spacing (SP) between SPEA2,
SPEA2-CE-HOF and SPEA2-CE-KR for DTLZ2 test problem with 3 to 5 objectives. The bold-
face indicates the best mean values.

Algorithm 3 Objectives 4 Objectives 5 Objectives
Mean St Dev Mean St Dev Mean St Dev

S2 0.025130 0.002828 0.105250 0.016970 0.188760 0.018550
CH 0.025798 0.002481 0.101090 0.013820 0.193700 0.017120

CK10 0.056490 0.006580 0.107560 0.011310 0.159290 0.021840
CK20 0.057880 0.009250 0.106140 0.011250 0.154670 0.016860
CK30 0.053980 0.007510 0.105410 0.012680 0.141060 0.019560
CK40 0.058720 0.010500 0.102490 0.013380 0.149950 0.013820
CK50 0.055440 0.007620 0.103920 0.010090 0.151160 0.016610
CK60 0.056230 0.007960 0.101030 0.012330 0.147530 0.013810
CK70 0.054930 0.007000 0.100560 0.012550 0.142850 0.017940
CK80 0.055560 0.009810 0.100240 0.010830 0.144540 0.021450
CK90 0.053190 0.007890 0.096240 0.013010 0.136720 0.018290

Table 9.13. Summarization of mean and standard deviation of spacing (SP) between SPEA2,
SPEA2-CE-HOF and SPEA2-CE-KR for DTLZ3 test problem with 3 to 5 objectives. The bold-
face indicates the best mean values.

Algorithm 3 Objectives 4 Objectives 5 Objectives
Mean St Dev Mean St Dev Mean St Dev

S2 19.650000 8.920000 64.150000 10.360000 103.780000 9.920000
CH 15.660000 6.590000 63.760000 10.670000 102.400000 8.830000

CK10 21.280000 7.800000 23.910000 7.340000 33.260000 8.470000
CK20 20.240000 10.850000 21.290000 8.960000 27.340000 11.530000
CK30 16.460000 10.330000 18.430000 9.130000 20.450000 8.580000
CK40 16.830000 10.420000 17.910000 9.260000 22.400000 13.090000
CK50 20.680000 9.640000 19.010000 11.840000 20.780000 9.710000
CK60 18.440000 9.180000 15.940000 10.480000 21.660000 11.800000
CK70 19.740000 10.910000 11.150000 8.300000 19.580000 12.840000
CK80 19.120000 10.130000 16.240000 11.350000 24.010000 11.930000
CK90 18.630000 9.130000 13.550000 10.160000 20.650000 18.050000
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Table 9.14. Summarization of mean and standard deviation of spacing (SP) between SPEA2,
SPEA2-CE-HOF and SPEA2-CE-KR for DTLZ4 test problem with 3 to 5 objectives. The bold-
face indicates the best mean values.

Algorithm 3 Objectives 4 Objectives 5 Objectives
Mean St Dev Mean St Dev Mean St Dev

S2 0.020280 0.011180 0.077580 0.042130 0.170310 0.046350
CH 0.020150 0.009290 0.080380 0.039380 0.177090 0.041840

CK10 0.039890 0.022820 0.035320 0.025380 0.019710 0.018860
CK20 0.036810 0.026750 0.035830 0.025080 0.016780 0.014820
CK30 0.048220 0.022330 0.046900 0.021310 0.017550 0.015340
CK40 0.038040 0.026630 0.040350 0.020760 0.022970 0.021730
CK50 0.050300 0.024360 0.047040 0.024660 0.026470 0.022980
CK60 0.042800 0.025890 0.038070 0.026050 0.018260 0.015630
CK70 0.051110 0.024040 0.047170 0.025620 0.020430 0.018760
CK80 0.044430 0.024800 0.036720 0.024380 0.017460 0.016090
CK90 0.043890 0.024900 0.044530 0.024310 0.016910 0.016340

Table 9.15. Summarization of mean and standard deviation of spacing (SP) between SPEA2,
SPEA2-CE-HOF and SPEA2-CE-KR for DTLZ5 test problem with 3 to 5 objectives. The bold-
face indicates the best mean values.

Algorithm 3 Objectives 4 Objectives 5 Objectives
Mean St Dev Mean St Dev Mean St Dev

S2 0.005045 0.000556 0.087290 0.023240 0.153300 0.034530
CH 0.005081 0.000351 0.076880 0.021160 0.167570 0.037590

CK10 0.015992 0.005078 0.086360 0.012440 0.135960 0.032300
CK20 0.016060 0.008690 0.070680 0.012950 0.135090 0.026560
CK30 0.018090 0.010840 0.072470 0.016850 0.130680 0.016560
CK40 0.015450 0.007410 0.075970 0.024600 0.122080 0.021270
CK50 0.016158 0.004952 0.068730 0.016130 0.123490 0.016690
CK60 0.015590 0.006710 0.072170 0.019250 0.122920 0.024530
CK70 0.016270 0.011220 0.072260 0.023260 0.119010 0.024650
CK80 0.014040 0.005860 0.078800 0.028770 0.115720 0.017900
CK90 0.016820 0.007700 0.068610 0.014970 0.125250 0.028930
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Table 9.16. Summarization of mean and standard deviation of spacing (SP) between SPEA2,
SPEA2-CE-HOF and SPEA2-CE-KR for DTLZ6 test problem with 3 to 5 objectives. The bold-
face indicates the best mean values.

Algorithm 3 Objectives 4 Objectives 5 Objectives
Mean St Dev Mean St Dev Mean St Dev

S2 0.047210 0.013340 0.329610 0.040750 0.533700 0.056900
CH 0.048660 0.015810 0.330500 0.064200 0.532490 0.048650

CK10 0.029610 0.008310 0.125610 0.030270 0.788100 0.126100
CK20 0.026600 0.007370 0.103040 0.017620 0.683500 0.212400
CK30 0.029700 0.016570 0.097870 0.018060 0.646300 0.241600
CK40 0.025280 0.004798 0.094650 0.016940 0.514200 0.125600
CK50 0.024665 0.004728 0.100610 0.021540 0.501600 0.198200
CK60 0.025970 0.010340 0.094400 0.016750 0.498100 0.212400
CK70 0.025350 0.006090 0.090630 0.018780 0.454800 0.200300
CK80 0.024084 0.004731 0.097290 0.018670 0.470100 0.188200
CK90 0.024180 0.005930 0.094290 0.014670 0.396500 0.144000

Table 9.17. Summarization of mean and standard deviation of spacing (SP) between SPEA2,
SPEA2-CE-HOF and SPEA2-CE-KR for DTLZ7 test problem with 3 to 5 objectives. The bold-
face indicates the best mean values.

Algorithm 3 Objectives 4 Objectives 5 Objectives
Mean St Dev Mean St Dev Mean St Dev

S2 0.046800 0.022270 0.164590 0.029300 0.294940 0.026320
CH 0.047580 0.013370 0.169140 0.036380 0.291100 0.030800

CK10 0.060870 0.018470 0.101470 0.054240 0.038600 0.065400
CK20 0.068610 0.013110 0.109700 0.044780 0.032790 0.047390
CK30 0.068020 0.013500 0.099190 0.043070 0.035700 0.054800
CK40 0.066900 0.011590 0.108500 0.042540 0.054100 0.059500
CK50 0.067150 0.012790 0.095710 0.048720 0.033130 0.043700
CK60 0.063200 0.013920 0.100220 0.045890 0.038870 0.050960
CK70 0.065690 0.014890 0.112270 0.053140 0.038200 0.041560
CK80 0.070240 0.011120 0.125730 0.033250 0.036680 0.048520
CK90 0.064500 0.017210 0.118580 0.044200 0.032510 0.042730
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Table 9.18. Summarization of coverage (C) between SPEA2 and SPEA2-CE-HOF for DTLZ test
problems with 3 to 5 objectives

If C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′

DTLZ C Metric 3 Objectives 4 Objectives 5 Objectives

1
C(CH,S2)

S2 S2 S2C(S2,CH)

2
C(CH,S2)

CH CH CHC(S2,CH)

3
C(CH,S2)

CH CH CHC(S2,CH)

4
C(CH,S2)

S2 CH S2C(S2,CH)

5
C(CH,S2)

CH CH S2C(S2,CH)

6
C(CH,S2)

CH CH S2C(S2,CH)

7
C(CH,S2)

S2 S2 S2C(S2,CH)

Table 9.19. Summarization of coverage (C) between SPEA2 and SPEA2-CE-KR (10, 20, 30
opponents) for DTLZ test problems with 3 objectives

If C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′

DTLZ C Metric 10 Opponents 20 Opponents 30 Opponents

1
C(CK,S2)

S2 S2 S2
C(S2,CK)

2
C(CK,S2)

S2 S2 S2
C(S2,CK)

3
C(CK,S2)

S2 S2 S2
C(S2,CK)

4
C(CK,S2)

S2 S2 S2
C(S2,CK)

5
C(CK,S2)

S2 S2 S2
C(S2,CK)

6
C(CK,S2)

CK CK CK
C(S2,CK)

7
C(CK,S2)

CK CK CK
C(S2,CK)
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Table 9.20. Summarization of coverage (C) between SPEA2 and SPEA2-CE-KR (40, 50, 60
opponents) for DTLZ test problems with 3 objectives

If C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′

DTLZ C Metric 40 Opponents 50 Opponents 60 Opponents

1
C(CK,S2)

S2 S2 S2
C(S2,CK)

2
C(CK,S2)

S2 S2 S2
C(S2,CK)

3
C(CK,S2)

S2 CK CK
C(S2,CK)

4
C(CK,S2)

S2 S2 S2
C(S2,CK)

5
C(CK,S2)

S2 S2 S2
C(S2,CK)

6
C(CK,S2)

CK CK CK
C(S2,CK)

7
C(CK,S2)

CK CK CK
C(S2,CK)

Table 9.21. Summarization of coverage (C) between SPEA2 and SPEA2-CE-KR (70, 80, 90
opponents) for DTLZ test problems with 3 objectives

If C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′

DTLZ C Metric 70 Opponents 80 Opponents 90 Opponents

1
C(CK,S2)

S2 S2 CK
C(S2,CK)

2
C(CK,S2)

S2 CK S2
C(S2,CK)

3
C(CK,S2)

CK CK CK
C(S2,CK)

4
C(CK,S2)

S2 S2 S2
C(S2,CK)

5
C(CK,S2)

S2 S2 S2
C(S2,CK)

6
C(CK,S2)

CK CK CK
C(S2,CK)

7
C(CK,S2)

CK CK CK
C(S2,CK)
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Table 9.22. Summarization of coverage (C) between SPEA2 and SPEA2-CE-KR (10, 20, 30
opponents) for DTLZ test problems with 4 objectives

If C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′

DTLZ C Metric 10 Opponents 20 Opponents 30 Opponents

1
C(CK,S2)

CK CK CK
C(S2,CK)

2
C(CK,S2)

CK CK CK
C(S2,CK)

3
C(CK,S2)

CK CK CK
C(S2,CK)

4
C(CK,S2)

CK CK CK
C(S2,CK)

5
C(CK,S2)

S2 CK CK
C(S2,CK)

6
C(CK,S2)

CK CK CK
C(S2,CK)

7
C(CK,S2)

CK CK CK
C(S2,CK)

Table 9.23. Summarization of coverage (C) between SPEA2 and SPEA2-CE-KR (40, 50, 60
opponents) for DTLZ test problems with 4 objectives

If C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′

DTLZ C Metric 40 Opponents 50 Opponents 60 Opponents

1
C(CK,S2)

CK CK CK
C(S2,CK)

2
C(CK,S2)

CK CK CK
C(S2,CK)

3
C(CK,S2)

CK CK CK
C(S2,CK)

4
C(CK,S2)

CK CK CK
C(S2,CK)

5
C(CK,S2)

S2 S2 S2
C(S2,CK)

6
C(CK,S2)

CK CK CK
C(S2,CK)

7
C(CK,S2)

CK CK CK
C(S2,CK)
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Table 9.24. Summarization of coverage (C) between SPEA2 and SPEA2-CE-KR (70, 80, 90
opponents) for DTLZ test problems with 4 objectives

If C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′

DTLZ C Metric 70 Opponents 80 Opponents 90 Opponents

1
C(CK,S2)

CK CK CK
C(S2,CK)

2
C(CK,S2)

CK CK CK
C(S2,CK)

3
C(CK,S2)

CK CK CK
C(S2,CK)

4
C(CK,S2)

CK CK CK
C(S2,CK)

5
C(CK,S2)

S2 S2 S2
C(S2,CK)

6
C(CK,S2)

CK CK CK
C(S2,CK)

7
C(CK,S2)

CK CK CK
C(S2,CK)

Table 9.25. Summarization of coverage (C) between SPEA2 and SPEA2-CE-KR (10, 20, 30
opponents) for DTLZ test problems with 5 objectives

If C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′

DTLZ C Metric 10 Opponents 20 Opponents 30 Opponents

1
C(CK,S2)

CK CK CK
C(S2,CK)

2
C(CK,S2)

CK CK CK
C(S2,CK)

3
C(CK,S2)

CK CK CK
C(S2,CK)

4
C(CK,S2)

CK CK CK
C(S2,CK)

5
C(CK,S2)

S2 S2 S2
C(S2,CK)

6
C(CK,S2)

CK CK CK
C(S2,CK)

7
C(CK,S2)

CK CK CK
C(S2,CK)
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Table 9.26. Summarization of coverage (C) between SPEA2 and SPEA2-CE-KR (40, 50, 60
opponents) for DTLZ test problems with 5 objectives

If C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′

DTLZ C Metric 40 Opponents 50 Opponents 60 Opponents

1
C(CK,S2)

CK CK CK
C(S2,CK)

2
C(CK,S2)

CK CK CK
C(S2,CK)

3
C(CK,S2)

CK CK CK
C(S2,CK)

4
C(CK,S2)

CK CK CK
C(S2,CK)

5
C(CK,S2)

S2 S2 S2
C(S2,CK)

6
C(CK,S2)

CK CK CK
C(S2,CK)

7
C(CK,S2)

CK CK CK
C(S2,CK)

Table 9.27. Summarization of coverage (C) between SPEA2 and SPEA2-CE-KR (70, 80, 90
opponents) for DTLZ test problems with 5 objectives

If C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′

DTLZ C Metric 70 Opponents 80 Opponents 90 Opponents

1
C(CK,S2)

CK CK CK
C(S2,CK)

2
C(CK,S2)

CK CK CK
C(S2,CK)

3
C(CK,S2)

CK CK CK
C(S2,CK)

4
C(CK,S2)

CK CK CK
C(S2,CK)

5
C(CK,S2)

S2 S2 S2
C(S2,CK)

6
C(CK,S2)

CK CK CK
C(S2,CK)

7
C(CK,S2)

CK CK CK
C(S2,CK)
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Table 9.28. Summarization of coverage (C) between SPEA2-CE-HOF and SPEA2-CE-KR (10,
20, 30 opponents) for DTLZ test problems with 3 objectives

If C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′

DTLZ C Metric 10 Opponents 20 Opponents 30 Opponents

1
C(CK,CH)

CH CH CH
C(CH,CK)

2
C(CK,CH)

CH CH CH
C(CH,CK)

3
C(CK,CH)

CH CH CH
C(CH,CK)

4
C(CK,CH)

CH CH CH
C(CH,CK)

5
C(CK,CH)

CH CH CH
C(CH,CK)

6
C(CK,CH)

CK CK CK
C(CH,CK)

7
C(CK,CH)

CK CK CK
C(CH,CK)

Table 9.29. Summarization of coverage (C) between SPEA2-CE-HOF and SPEA2-CE-KR (40,
50, 60 opponents) for DTLZ test problems with 3 objectives

If C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′

DTLZ C Metric 40 Opponents 50 Opponents 60 Opponents

1
C(CK,CH)

CH CH CH
C(CH,CK)

2
C(CK,CH)

CH CH CH
C(CH,CK)

3
C(CK,CH)

CH CK CK
C(CH,CK)

4
C(CK,CH)

CH CH CH
C(CH,CK)

5
C(CK,CH)

CK CK CH
C(CH,CK)

6
C(CK,CH)

CK CK CK
C(CH,CK)

7
C(CK,CH)

CK CK CK
C(CH,CK)
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Table 9.30. Summarization of coverage (C) between SPEA2-CE-HOF and SPEA2-CE-KR (70,
80, 90 opponents) for DTLZ test problems with 3 objectives

If C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′

DTLZ C Metric 70 Opponents 80 Opponents 90 Opponents

1
C(CK,CH)

CH CH CK
C(CH,CK)

2
C(CK,CH)

CH CH CK
C(CH,CK)

3
C(CK,CH)

CK CK CK
C(CH,CK)

4
C(CK,CH)

CH CH CH
C(CH,CK)

5
C(CK,CH)

CH CH CH
C(CH,CK)

6
C(CK,CH)

CK CK CK
C(CH,CK)

7
C(CK,CH)

CK CK CK
C(CH,CK)

Table 9.31. Summarization of coverage (C) between SPEA2-CE-HOF and SPEA2-CE-KR (10,
20, 30 opponents) for DTLZ test problems with 4 objectives

If C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′

DTLZ C Metric 10 Opponents 20 Opponents 30 Opponents

1
C(CK,CH)

CK CK CK
C(CH,CK)

2
C(CK,CH)

CK CK CK
C(CH,CK)

3
C(CK,CH)

CK CK CK
C(CH,CK)

4
C(CK,CH)

CK CK CK
C(CH,CK)

5
C(CK,CH)

CH CH CH
C(CH,CK)

6
C(CK,CH)

CK CK CK
C(CH,CK)

7
C(CK,CH)

CK CK CK
C(CH,CK)
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Table 9.32. Summarization of coverage (C) between SPEA2-CE-HOF and SPEA2-CE-KR (40,
50, 60 opponents) for DTLZ test problems with 4 objectives

If C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′

DTLZ C Metric 40 Opponents 50 Opponents 60 Opponents

1
C(CK,CH)

CK CK CK
C(CH,CK)

2
C(CK,CH)

CK CK CK
C(CH,CK)

3
C(CK,CH)

CK CK CK
C(CH,CK)

4
C(CK,CH)

CK CK CK
C(CH,CK)

5
C(CK,CH)

CH CH CH
C(CH,CK)

6
C(CK,CH)

CK CK CK
C(CH,CK)

7
C(CK,CH)

CK CK CK
C(CH,CK)

Table 9.33. Summarization of coverage (C) between SPEA2-CE-HOF and SPEA2-CE-KR (70,
80, 90 opponents) for DTLZ test problems with 4 objectives

If C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′

DTLZ C Metric 70 Opponents 80 Opponents 90 Opponents

1
C(CK,CH)

CK CK CK
C(CH,CK)

2
C(CK,CH)

CK CK CK
C(CH,CK)

3
C(CK,CH)

CK CK CK
C(CH,CK)

4
C(CK,CH)

CK CK CK
C(CH,CK)

5
C(CK,CH)

CH CH CH
C(CH,CK)

6
C(CK,CH)

CK CK CK
C(CH,CK)

7
C(CK,CH)

CK CK CK
C(CH,CK)
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Table 9.34. Summarization of coverage (C) between SPEA2-CE-HOF and SPEA2-CE-KR (10,
20, 30 opponents) for DTLZ test problems with 5 objectives

If C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′

DTLZ C Metric 10 Opponents 20 Opponents 30 Opponents

1
C(CK,CH)

CK CK CK
C(CH,CK)

2
C(CK,CH)

CK CK CK
C(CH,CK)

3
C(CK,CH)

CK CK CK
C(CH,CK)

4
C(CK,CH)

CK CK CK
C(CH,CK)

5
C(CK,CH)

CH CH CH
C(CH,CK)

6
C(CK,CH)

CK CK CK
C(CH,CK)

7
C(CK,CH)

CK CK CK
C(CH,CK)

Table 9.35. Summarization of coverage (C) between SPEA2-CE-HOF and SPEA2-CE-KR (40,
50, 60 opponents) for DTLZ test problems with 5 objectives

If C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′

DTLZ C Metric 40 Opponents 50 Opponents 60 Opponents

1
C(CK,CH)

CK CK CK
C(CH,CK)

2
C(CK,CH)

CK CK CK
C(CH,CK)

3
C(CK,CH)

CK CK CK
C(CH,CK)

4
C(CK,CH)

CK CK CK
C(CH,CK)

5
C(CK,CH)

CH CH CH
C(CH,CK)

6
C(CK,CH)

CK CK CK
C(CH,CK)

7
C(CK,CH)

CK CK CK
C(CH,CK)
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Table 9.36. Summarization of coverage (C) between SPEA2-CE-HOF and SPEA2-CE-KR (70,
80, 90 opponents) for DTLZ test problems with 5 objectives

If C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′

DTLZ C Metric 70 Opponents 80 Opponents 90 Opponents

1
C(CK,CH)

CK CK CK
C(CH,CK)

2
C(CK,CH)

CK CK CK
C(CH,CK)

3
C(CK,CH)

CK CK CK
C(CH,CK)

4
C(CK,CH)

CK CK CK
C(CH,CK)

5
C(CK,CH)

CH CH CH
C(CH,CK)

6
C(CK,CH)

CK CK CK
C(CH,CK)

7
C(CK,CH)

CK CK CK
C(CH,CK)

Table 9.37. Summarization of mean and standard deviation of coverage (C) between SPEA2 and
SPEA2-CE-HOF for DTLZ test problems with 3 to 5 objectives. C(X ′,X ′′) > C(X ′′,X ′), then
X ′ is better than X ′′.

DTLZ C Metric 3 Objectives 4 Objectives 5 Objectives
Mean St Dev Mean St Dev Mean St Dev

1
C(CH,S2) 0.497800 0.254100 0.156300 0.099100 0.105900 0.061200
C(S2,CH) 0.533300 0.265400 0.198000 0.159400 0.133000 0.173600

2
C(CH,S2) 0.052330 0.025010 0.126000 0.068700 0.120700 0.069000
C(S2,CH) 0.043330 0.022180 0.109000 0.051820 0.110300 0.076100

3
C(CH,S2) 0.621000 0.211700 0.196300 0.111300 0.162000 0.111500
C(S2,CH) 0.540300 0.225000 0.176700 0.109600 0.105700 0.067400

4
C(CH,S2) 0.075700 0.059400 0.318300 0.213500 0.248300 0.191500
C(S2,CH) 0.081000 0.056800 0.303000 0.207200 0.325300 0.226500

5
C(CH,S2) 0.095670 0.040660 0.110670 0.052450 0.122000 0.090900
C(S2,CH) 0.090330 0.038100 0.087670 0.034510 0.187000 0.123400

6
C(CH,S2) 0.502300 0.364000 0.175000 0.133500 0.001667 0.003790
C(S2,CH) 0.419700 0.352400 0.162700 0.135500 0.002333 0.004302

7
C(CH,S2) 0.083300 0.058400 0.170300 0.071300 0.090700 0.061300
C(S2,CH) 0.103670 0.052090 0.172300 0.089200 0.100700 0.061700
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Table 9.38. Summarization of mean and standard deviation of coverage (C) between SPEA2 and
SPEA2-CE-KR (10, 20, 30 opponents) for DTLZ test problems with 3 objectives. C(X ′,X ′′) >
C(X ′′,X ′), then X ′ is better than X ′′.

3 Objectives 10 Opponents 20 Opponents 30 Opponents
DTLZ C Metric Mean St Dev Mean St Dev Mean St Dev

1
C(CK,S2) 0.079100 0.055500 0.065500 0.063700 0.086100 0.078700
C(S2,CK) 0.255300 0.261000 0.257700 0.323300 0.242000 0.295100

2
C(CK,S2) 0.020000 0.016610 0.023000 0.016220 0.021000 0.015610
C(S2,CK) 0.046330 0.028220 0.029000 0.022950 0.033670 0.024700

3
C(CK,S2) 0.090000 0.074700 0.156000 0.152200 0.155000 0.173900
C(S2,CK) 0.326000 0.325700 0.328000 0.312300 0.233300 0.279700

4
C(CK,S2) 0.032330 0.040740 0.050670 0.048630 0.039330 0.044020
C(S2,CK) 0.105300 0.115000 0.065700 0.076300 0.055000 0.051780

5
C(CK,S2) 0.024670 0.018140 0.031000 0.020230 0.033330 0.019880
C(S2,CK) 0.169300 0.079800 0.126700 0.056000 0.122700 0.056400

6
C(CK,S2) 0.404300 0.062000 0.397300 0.064800 0.388700 0.075100
C(S2,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

7
C(CK,S2) 0.080000 0.042260 0.067330 0.033110 0.074330 0.037200
C(S2,CK) 0.012670 0.012300 0.015670 0.029090 0.010000 0.017020

Table 9.39. Summarization of mean and standard deviation of coverage (C) between SPEA2 and
SPEA2-CE-KR (40, 50, 60 opponents) for DTLZ test problems with 3 objectives. C(X ′,X ′′) >
C(X ′′,X ′), then X ′ is better than X ′′.

3 Objectives 40 Opponents 50 Opponents 60 Opponents
DTLZ C Metric Mean St Dev Mean St Dev Mean St Dev

1
C(CK,S2) 0.070060 0.049160 0.085300 0.061100 0.088100 0.103000
C(S2,CK) 0.190700 0.289500 0.150700 0.277800 0.154000 0.295600

2
C(CK,S2) 0.020000 0.013390 0.020670 0.015070 0.015670 0.012230
C(S2,CK) 0.029670 0.026190 0.033000 0.018030 0.025670 0.018880

3
C(CK,S2) 0.201300 0.179300 0.286000 0.207600 0.292300 0.210700
C(S2,CK) 0.248300 0.319600 0.183000 0.229900 0.213000 0.258500

4
C(CK,S2) 0.059000 0.049010 0.033330 0.037260 0.041000 0.038000
C(S2,CK) 0.060700 0.062300 0.060300 0.062300 0.053700 0.057400

5
C(CK,S2) 0.034670 0.025430 0.036670 0.020730 0.037330 0.024200
C(S2,CK) 0.105670 0.037750 0.113700 0.059500 0.089330 0.047700

6
C(CK,S2) 0.387700 0.062900 0.368300 0.058400 0.387700 0.064000
C(S2,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

7
C(CK,S2) 0.062000 0.039860 0.057000 0.039050 0.057000 0.034560
C(S2,CK) 0.031300 0.064500 0.011670 0.028050 0.045300 0.071300
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Table 9.40. Summarization of mean and standard deviation of coverage (C) between SPEA2 and
SPEA2-CE-KR (70, 80, 90 opponents) for DTLZ test problems with 3 objectives. C(X ′,X ′′) >
C(X ′′,X ′), then X ′ is better than X ′′.

3 Objectives 70 Opponents 80 Opponents 90 Opponents
DTLZ C Metric Mean St Dev Mean St Dev Mean St Dev

1
C(CK,S2) 0.071300 0.075400 0.083600 0.121100 0.072100 0.060500
C(S2,CK) 0.192000 0.309000 0.171300 0.316900 0.069700 0.174600

2
C(CK,S2) 0.023330 0.017290 0.024000 0.017730 0.018670 0.015480
C(S2,CK) 0.028670 0.020800 0.023000 0.016850 0.021330 0.022700

3
C(CK,S2) 0.320300 0.228500 0.314300 0.211900 0.335000 0.227800
C(S2,CK) 0.173300 0.187600 0.204300 0.245500 0.179300 0.189700

4
C(CK,S2) 0.032000 0.030330 0.037330 0.043230 0.038670 0.036360
C(S2,CK) 0.061700 0.063100 0.070300 0.080600 0.050670 0.052650

5
C(CK,S2) 0.035330 0.020800 0.032670 0.024490 0.032330 0.022080
C(S2,CK) 0.126670 0.046490 0.098700 0.057800 0.100000 0.041850

6
C(CK,S2) 0.376300 0.063500 0.359300 0.068900 0.368700 0.056700
C(S2,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

7
C(CK,S2) 0.060330 0.038730 0.054670 0.035790 0.063330 0.033150
C(S2,CK) 0.034700 0.069400 0.032300 0.065100 0.046700 0.078800

Table 9.41. Summarization of mean and standard deviation of coverage (C) between SPEA2 and
SPEA2-CE-KR (10, 20, 30 opponents) for DTLZ test problems with 4 objectives. C(X ′,X ′′) >
C(X ′′,X ′), then X ′ is better than X ′′.

4 Objectives 10 Opponents 20 Opponents 30 Opponents
DTLZ C Metric Mean St Dev Mean St Dev Mean St Dev

1
C(CK,S2) 0.471500 0.119000 0.418600 0.126700 0.423300 0.113200
C(S2,CK) 0.017000 0.089400 0.028000 0.153400 0.018300 0.098500

2
C(CK,S2) 0.042330 0.020120 0.034670 0.027000 0.037670 0.023290
C(S2,CK) 0.005670 0.008980 0.005670 0.007740 0.004000 0.008940

3
C(CK,S2) 0.532700 0.146300 0.508700 0.158500 0.506700 0.176300
C(S2,CK) 0.002000 0.004068 0.000330 0.001826 0.000333 0.001826

4
C(CK,S2) 0.158700 0.096700 0.158000 0.090800 0.145000 0.111700
C(S2,CK) 0.014670 0.048900 0.019330 0.048350 0.022000 0.045140

5
C(CK,S2) 0.046330 0.028100 0.045670 0.029440 0.049330 0.029350
C(S2,CK) 0.069670 0.049650 0.044330 0.032130 0.042330 0.044460

6
C(CK,S2) 0.455000 0.094600 0.472300 0.068600 0.460700 0.080000
C(S2,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

7
C(CK,S2) 0.153000 0.137900 0.123700 0.114700 0.137700 0.111900
C(S2,CK) 0.001333 0.003457 0.000000 0.000000 0.001000 0.004026
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Table 9.42. Summarization of mean and standard deviation of coverage (C) between SPEA2 and
SPEA2-CE-KR (40, 50, 60 opponents) for DTLZ test problems with 4 objectives. C(X ′,X ′′) >
C(X ′′,X ′), then X ′ is better than X ′′.

4 Objectives 40 Opponents 50 Opponents 60 Opponents
DTLZ C Metric Mean St Dev Mean St Dev Mean St Dev

1
C(CK,S2) 0.395200 0.090700 0.407700 0.099800 0.364000 0.107100
C(S2,CK) 0.031000 0.169800 0.025300 0.138800 0.018300 0.100400

2
C(CK,S2) 0.032000 0.022030 0.040330 0.026060 0.030000 0.019650
C(S2,CK) 0.004330 0.008580 0.005000 0.010420 0.005330 0.009000

3
C(CK,S2) 0.489300 0.178100 0.445300 0.200200 0.404000 0.176900
C(S2,CK) 0.000000 0.000000 0.000330 0.001826 0.000000 0.000000

4
C(CK,S2) 0.138700 0.090700 0.141700 0.097200 0.143300 0.075800
C(S2,CK) 0.012000 0.028090 0.013670 0.041310 0.019670 0.052880

5
C(CK,S2) 0.054330 0.028000 0.056670 0.034070 0.055330 0.025290
C(S2,CK) 0.121700 0.151200 0.118700 0.143500 0.099700 0.112000

6
C(CK,S2) 0.481700 0.090900 0.463300 0.074200 0.448300 0.074200
C(S2,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

7
C(CK,S2) 0.094700 0.090400 0.152000 0.127400 0.119700 0.136000
C(S2,CK) 0.000330 0.001826 0.000000 0.000000 0.001000 0.003051

Table 9.43. Summarization of mean and standard deviation of coverage (C) between SPEA2 and
SPEA2-CE-KR (70, 80, 90 opponents) for DTLZ test problems with 4 objectives. C(X ′,X ′′) >
C(X ′′,X ′), then X ′ is better than X ′′.

4 Objectives 70 Opponents 80 Opponents 90 Opponents
DTLZ C Metric Mean St Dev Mean St Dev Mean St Dev

1
C(CK,S2) 0.390700 0.114300 0.368500 0.110300 0.355200 0.098800
C(S2,CK) 0.027000 0.147900 0.026700 0.146100 0.029000 0.158800

2
C(CK,S2) 0.030330 0.018840 0.035000 0.034910 0.029670 0.021730
C(S2,CK) 0.003670 0.011590 0.002000 0.004842 0.002670 0.006910

3
C(CK,S2) 0.427300 0.190900 0.456300 0.193700 0.441300 0.229600
C(S2,CK) 0.000000 0.000000 0.000333 0.001826 0.000000 0.000000

4
C(CK,S2) 0.132000 0.085400 0.147700 0.085900 0.132300 0.075900
C(S2,CK) 0.021300 0.056700 0.013330 0.038710 0.013000 0.036020

5
C(CK,S2) 0.059670 0.036530 0.057330 0.026120 0.052670 0.025720
C(S2,CK) 0.162300 0.162100 0.128700 0.117200 0.085300 0.100600

6
C(CK,S2) 0.468300 0.086300 0.464700 0.075500 0.474000 0.084100
C(S2,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

7
C(CK,S2) 0.132000 0.156100 0.078700 0.055900 0.094700 0.114400
C(S2,CK) 0.000000 0.000000 0.000333 0.001826 0.000667 0.002537
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Table 9.44. Summarization of mean and standard deviation of coverage (C) between SPEA2 and
SPEA2-CE-KR (10, 20, 30 opponents) for DTLZ test problems with 5 objectives. C(X ′,X ′′) >
C(X ′′,X ′), then X ′ is better than X ′′.

5 Objectives 10 Opponents 20 Opponents 30 Opponents
DTLZ C Metric Mean St Dev Mean St Dev Mean St Dev

1
C(CK,S2) 0.911000 0.119000 0.911400 0.122400 0.906400 0.112300
C(S2,CK) 0.018300 0.100400 0.009330 0.051120 0.010000 0.054800

2
C(CK,S2) 0.148300 0.068100 0.120000 0.053820 0.122700 0.063400
C(S2,CK) 0.000330 0.001826 0.000000 0.000000 0.000000 0.000000

3
C(CK,S2) 0.909700 0.063500 0.890700 0.092400 0.912700 0.072500
C(S2,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

4
C(CK,S2) 0.363000 0.085000 0.329300 0.112300 0.342700 0.103500
C(S2,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

5
C(CK,S2) 0.061000 0.039770 0.049000 0.026310 0.034000 0.024300
C(S2,CK) 0.205700 0.112400 0.209000 0.100300 0.187000 0.101200

6
C(CK,S2) 0.067700 0.116500 0.384300 0.215800 0.433000 0.163900
C(S2,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

7
C(CK,S2) 0.591300 0.267300 0.522300 0.252900 0.562700 0.296100
C(S2,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 9.45. Summarization of mean and standard deviation of coverage (C) between SPEA2 and
SPEA2-CE-KR (40, 50, 60 opponents) for DTLZ test problems with 5 objectives. C(X ′,X ′′) >
C(X ′′,X ′), then X ′ is better than X ′′.

5 Objectives 40 Opponents 50 Opponents 60 Opponents
DTLZ C Metric Mean St Dev Mean St Dev Mean St Dev

1
C(CK,S2) 0.888600 0.112800 0.889800 0.124600 0.886300 0.106600
C(S2,CK) 0.007670 0.041990 0.021700 0.118700 0.010000 0.054800

2
C(CK,S2) 0.110670 0.052780 0.105000 0.043850 0.121000 0.054900
C(S2,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

3
C(CK,S2) 0.897300 0.099400 0.883300 0.080500 0.875300 0.135100
C(S2,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

4
C(CK,S2) 0.338000 0.106400 0.346700 0.106100 0.353000 0.093500
C(S2,CK) 0.000330 0.001826 0.000000 0.000000 0.000000 0.000000

5
C(CK,S2) 0.039670 0.037180 0.040000 0.025330 0.037670 0.026480
C(S2,CK) 0.163000 0.103000 0.163000 0.090800 0.160700 0.111900

6
C(CK,S2) 0.472000 0.113700 0.513700 0.158900 0.529300 0.157800
C(S2,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

7
C(CK,S2) 0.408700 0.280400 0.580300 0.256000 0.504700 0.282400
C(S2,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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Table 9.46. Summarization of mean and standard deviation of coverage (C) between SPEA2 and
SPEA2-CE-KR (70, 80, 90 opponents) for DTLZ test problems with 5 objectives. C(X ′,X ′′) >
C(X ′′,X ′), then X ′ is better than X ′′.

5 Objectives 70 Opponents 80 Opponents 90 Opponents
DTLZ C Metric Mean St Dev Mean St Dev Mean St Dev

1
C(CK,S2) 0.861200 0.122200 0.863800 0.134900 0.867600 0.105400
C(S2,CK) 0.000000 0.000000 0.030300 0.166100 0.001670 0.009130

2
C(CK,S2) 0.107330 0.053880 0.126000 0.054430 0.113330 0.050330
C(S2,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

3
C(CK,S2) 0.897300 0.077400 0.901000 0.091700 0.899300 0.107300
C(S2,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

4
C(CK,S2) 0.354300 0.092500 0.349000 0.106000 0.354700 0.096400
C(S2,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

5
C(CK,S2) 0.043330 0.027210 0.033670 0.021730 0.034670 0.029560
C(S2,CK) 0.159300 0.092800 0.163000 0.104100 0.151000 0.105900

6
C(CK,S2) 0.524300 0.147300 0.513300 0.172300 0.568300 0.133500
C(S2,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

7
C(CK,S2) 0.479300 0.273700 0.502700 0.273500 0.506000 0.277000
C(S2,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 9.47. Summarization of mean and standard deviation of coverage (C) between SPEA2-
CE-HOF and SPEA2-CE-KR (10, 20, 30 opponents) for DTLZ test problems with 3 objectives.
C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′.

3 Objectives 10 Opponents 20 Opponents 30 Opponents
DTLZ C Metric Mean St Dev Mean St Dev Mean St Dev

1
C(CK,CH) 0.076000 0.068700 0.072300 0.074700 0.087700 0.068900
C(CH,CK) 0.223700 0.240600 0.258300 0.343900 0.168300 0.258900

2
C(CK,CH) 0.016670 0.011240 0.023330 0.018630 0.022330 0.015240
C(CH,CK) 0.054000 0.028840 0.036000 0.024150 0.033000 0.022770

3
C(CK,CH) 0.083300 0.069600 0.129000 0.123600 0.142000 0.139100
C(CH,CK) 0.363700 0.360600 0.355300 0.319000 0.291300 0.336700

4
C(CK,CH) 0.042000 0.047730 0.054000 0.051230 0.028670 0.041250
C(CH,CK) 0.092000 0.106300 0.057300 0.078800 0.062300 0.062100

5
C(CK,CH) 0.027330 0.023030 0.033670 0.022200 0.037670 0.023290
C(CH,CK) 0.180300 0.063700 0.116000 0.052890 0.110700 0.056500

6
C(CK,CH) 0.416000 0.064500 0.405670 0.053670 0.394000 0.057300
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

7
C(CK,CH) 0.085000 0.042810 0.077330 0.030280 0.067670 0.021760
C(CH,CK) 0.009000 0.012420 0.014000 0.031360 0.013330 0.021710
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Table 9.48. Summarization of mean and standard deviation of coverage (C) between SPEA2-
CE-HOF and SPEA2-CE-KR (40, 50, 60 opponents) for DTLZ test problems with 3 objectives.
C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′.

3 Objectives 40 Opponents 50 Opponents 60 Opponents
DTLZ C Metric Mean St Dev Mean St Dev Mean St Dev

1
C(CK,CH) 0.073000 0.062000 0.064670 0.036740 0.092700 0.100500
C(CH,CK) 0.173000 0.290800 0.114000 0.215800 0.168000 0.286300

2
C(CK,CH) 0.019000 0.015390 0.016000 0.013800 0.020670 0.017410
C(CH,CK) 0.031670 0.019840 0.029670 0.021570 0.024330 0.019600

3
C(CK,CH) 0.197300 0.178500 0.239000 0.184100 0.270000 0.208600
C(CH,CK) 0.266300 0.330100 0.170000 0.175200 0.241000 0.250300

4
C(CK,CH) 0.050670 0.048990 0.039330 0.049610 0.039330 0.043700
C(CH,CK) 0.053700 0.067000 0.053300 0.056800 0.051300 0.057700

5
C(CK,CH) 0.041330 0.022850 0.040330 0.025390 0.044000 0.027240
C(CH,CK) 0.106000 0.046360 0.127700 0.065800 0.093670 0.045820

6
C(CK,CH) 0.398300 0.065500 0.381000 0.069000 0.398300 0.065200
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

7
C(CK,CH) 0.061330 0.034410 0.065330 0.033500 0.057000 0.030870
C(CH,CK) 0.031000 0.061200 0.014000 0.024010 0.046700 0.073000

Table 9.49. Summarization of mean and standard deviation of coverage (C) between SPEA2-
CE-HOF and SPEA2-CE-KR (70, 80, 90 opponents) for DTLZ test problems with 3 objectives.
C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′.

3 Objectives 70 Opponents 80 Opponents 90 Opponents
DTLZ C Metric Mean St Dev Mean St Dev Mean St Dev

1
C(CK,CH) 0.083000 0.104100 0.090300 0.120400 0.080330 0.050620
C(CH,CK) 0.167000 0.315600 0.125000 0.265700 0.038700 0.144600

2
C(CK,CH) 0.015330 0.011960 0.018670 0.014320 0.023330 0.019000
C(CH,CK) 0.032330 0.022850 0.029330 0.020160 0.021000 0.021550

3
C(CK,CH) 0.275300 0.185800 0.292000 0.205900 0.304700 0.194900
C(CH,CK) 0.225000 0.230100 0.259000 0.279400 0.225700 0.234700

4
C(CK,CH) 0.033670 0.037920 0.043330 0.050610 0.041670 0.042680
C(CH,CK) 0.055000 0.054310 0.061700 0.076400 0.050700 0.057200

5
C(CK,CH) 0.034330 0.023440 0.041330 0.029210 0.037000 0.025350
C(CH,CK) 0.115000 0.042160 0.098330 0.047860 0.103330 0.048020

6
C(CK,CH) 0.386700 0.057700 0.370000 0.061200 0.377300 0.065200
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

7
C(CK,CH) 0.055670 0.031810 0.062000 0.030220 0.051330 0.034610
C(CH,CK) 0.032700 0.060000 0.031700 0.071200 0.046300 0.072300
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Table 9.50. Summarization of mean and standard deviation of coverage (C) between SPEA2-
CE-HOF and SPEA2-CE-KR (10, 20, 30 opponents) for DTLZ test problems with 4 objectives.
C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′.

4 Objectives 10 Opponents 20 Opponents 30 Opponents
DTLZ C Metric Mean St Dev Mean St Dev Mean St Dev

1
C(CK,CH) 0.499300 0.144800 0.446300 0.121600 0.444700 0.146700
C(CH,CK) 0.002670 0.007850 0.000000 0.000000 0.001000 0.005480

2
C(CK,CH) 0.032670 0.019990 0.038670 0.027380 0.032670 0.017410
C(CH,CK) 0.005330 0.008190 0.005670 0.012780 0.004000 0.008940

3
C(CK,CH) 0.512700 0.125100 0.496300 0.157100 0.491700 0.161600
C(CH,CK) 0.001000 0.003051 0.001000 0.004026 0.000667 0.002537

4
C(CK,CH) 0.149000 0.095900 0.143300 0.085800 0.128000 0.093800
C(CH,CK) 0.015000 0.052960 0.014330 0.044460 0.013330 0.028450

5
C(CK,CH) 0.050330 0.024980 0.039330 0.022730 0.046670 0.020230
C(CH,CK) 0.079000 0.052220 0.056670 0.039420 0.051000 0.046490

6
C(CK,CH) 0.451000 0.062700 0.482700 0.067200 0.466300 0.080300
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

7
C(CK,CH) 0.164300 0.141700 0.128000 0.107300 0.131700 0.106800
C(CH,CK) 0.002000 0.004842 0.002000 0.005510 0.001667 0.004611

Table 9.51. Summarization of mean and standard deviation of coverage (C) between SPEA2-
CE-HOF and SPEA2-CE-KR (40, 50, 60 opponents) for DTLZ test problems with 4 objectives.
C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′.

4 Objectives 40 Opponents 50 Opponents 60 Opponents
DTLZ C Metric Mean St Dev Mean St Dev Mean St Dev

1
C(CK,CH) 0.417700 0.095700 0.425000 0.123400 0.389700 0.117800
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000333 0.001826

2
C(CK,CH) 0.034670 0.021610 0.035670 0.019770 0.025330 0.015480
C(CH,CK) 0.004330 0.008170 0.002000 0.004842 0.001333 0.003457

3
C(CK,CH) 0.455300 0.170600 0.423700 0.162100 0.387300 0.185200
C(CH,CK) 0.000333 0.001826 0.000000 0.000000 0.000000 0.000000

4
C(CK,CH) 0.129000 0.086600 0.142700 0.085300 0.161300 0.090000
C(CH,CK) 0.005330 0.013830 0.010670 0.025450 0.011330 0.031810

5
C(CK,CH) 0.048330 0.022450 0.050670 0.025590 0.043330 0.027960
C(CH,CK) 0.122300 0.146100 0.135000 0.150000 0.115000 0.127300

6
C(CK,CH) 0.480300 0.068200 0.461300 0.060800 0.450300 0.088400
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

7
C(CK,CH) 0.105000 0.093200 0.146000 0.120800 0.140000 0.134500
C(CH,CK) 0.002000 0.004842 0.000333 0.001826 0.000667 0.002537
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Table 9.52. Summarization of mean and standard deviation of coverage (C) between SPEA2-
CE-HOF and SPEA2-CE-KR (70, 80, 90 opponents) for DTLZ test problems with 4 objectives.
C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′.

4 Objectives 70 Opponents 80 Opponents 90 Opponents
DTLZ C Metric Mean St Dev Mean St Dev Mean St Dev

1
C(CK,CH) 0.385700 0.121700 0.385700 0.110000 0.377000 0.115900
C(CH,CK) 0.000000 0.000000 0.000333 0.001826 0.000000 0.000000

2
C(CK,CH) 0.030330 0.016710 0.029000 0.020570 0.028330 0.017040
C(CH,CK) 0.002333 0.005040 0.002333 0.005040 0.002000 0.004068

3
C(CK,CH) 0.416000 0.178600 0.436700 0.156000 0.425700 0.199600
C(CH,CK) 0.000333 0.001826 0.000667 0.002537 0.000000 0.000000

4
C(CK,CH) 0.124700 0.085100 0.149300 0.085100 0.131700 0.098900
C(CH,CK) 0.015330 0.034710 0.007670 0.020960 0.012330 0.029560

5
C(CK,CH) 0.053000 0.030070 0.049330 0.026770 0.049000 0.030210
C(CH,CK) 0.171700 0.161100 0.143700 0.137700 0.099300 0.114700

6
C(CK,CH) 0.464300 0.086800 0.454700 0.081000 0.471300 0.079600
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

7
C(CK,CH) 0.128000 0.163800 0.083000 0.068700 0.119700 0.113600
C(CH,CK) 0.000667 0.002537 0.001000 0.004026 0.001000 0.003051

Table 9.53. Summarization of mean and standard deviation of coverage (C) between SPEA2-
CE-HOF and SPEA2-CE-KR (10, 20, 30 opponents) for DTLZ test problems with 5 objectives.
C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′.

5 Objectives 10 Opponents 20 Opponents 30 Opponents
DTLZ C Metric Mean St Dev Mean St Dev Mean St Dev

1
C(CK,CH) 0.937700 0.059100 0.927000 0.072100 0.928000 0.057100
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

2
C(CK,CH) 0.152000 0.076200 0.121000 0.056400 0.123300 0.054900
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

3
C(CK,CH) 0.873300 0.107900 0.863000 0.133000 0.895000 0.089500
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

4
C(CK,CH) 0.372300 0.100100 0.362700 0.062000 0.350300 0.076300
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

5
C(CK,CH) 0.076670 0.045740 0.058330 0.035440 0.043330 0.022940
C(CH,CK) 0.152300 0.091600 0.160000 0.111400 0.146000 0.112500

6
C(CK,CH) 0.068700 0.108500 0.376300 0.208800 0.427000 0.155500
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

7
C(CK,CH) 0.594300 0.266100 0.512300 0.265000 0.566700 0.274400
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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Table 9.54. Summarization of mean and standard deviation of coverage (C) between SPEA2-
CE-HOF and SPEA2-CE-KR (40, 50, 60 opponents) for DTLZ test problems with 5 objectives.
C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′.

5 Objectives 40 Opponents 50 Opponents 60 Opponents
DTLZ C Metric Mean St Dev Mean St Dev Mean St Dev

1
C(CK,CH) 0.901000 0.087600 0.895700 0.077200 0.919000 0.058200
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

2
C(CK,CH) 0.117330 0.047560 0.114300 0.063900 0.121300 0.059300
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

3
C(CK,CH) 0.878300 0.140400 0.883300 0.090800 0.882300 0.122100
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

4
C(CK,CH) 0.354000 0.111600 0.359300 0.102400 0.380700 0.102600
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

5
C(CK,CH) 0.045000 0.027640 0.056000 0.023870 0.045330 0.024880
C(CH,CK) 0.127700 0.089800 0.126000 0.108100 0.112300 0.099100

6
C(CK,CH) 0.475000 0.126600 0.508700 0.142000 0.522000 0.163300
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

7
C(CK,CH) 0.425000 0.272000 0.570300 0.258000 0.484700 0.283500
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 9.55. Summarization of mean and standard deviation of coverage (C) between SPEA2-
CE-HOF and SPEA2-CE-KR (70, 80, 90 opponents) for DTLZ test problems with 5 objectives.
C(X ′,X ′′) > C(X ′′,X ′), then X ′ is better than X ′′.

5 Objectives 70 Opponents 80 Opponents 90 Opponents
DTLZ C Metric Mean St Dev Mean St Dev Mean St Dev

1
C(CK,CH) 0.886300 0.085400 0.901000 0.076700 0.897000 0.056700
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

2
C(CK,CH) 0.109000 0.073500 0.121670 0.049690 0.119000 0.062900
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

3
C(CK,CH) 0.878300 0.135500 0.887300 0.088800 0.867700 0.116000
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

4
C(CK,CH) 0.363700 0.088200 0.355300 0.082400 0.372700 0.088100
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

5
C(CK,CH) 0.051330 0.028370 0.047000 0.028910 0.042330 0.032450
C(CH,CK) 0.120000 0.092600 0.130000 0.108700 0.107300 0.100900

6
C(CK,CH) 0.534300 0.142800 0.510700 0.162200 0.570700 0.132900
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

7
C(CK,CH) 0.488000 0.277800 0.519700 0.271200 0.527300 0.263000
C(CH,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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Summary. For unsupervised learning by Local Factor Analysis (LFA), it is important to de-
termine both the component number and the local hidden dimensions appropriately, which is a
typical example of model selection. One conventional approach for model selection is to im-
plement a two-phase procedure with the help of model selection criteria, such as AIC, CAIC,
BIC(MDL), SRM, CV, etc.. Although all working well given large enough samples, they still
suffer from two problems. First, their performances will deteriorate greatly on a small sample
size. Second, two-phase procedure requires intensive computation. To tackle the second problem,
one type of efforts has been made in the literature, featured by an incremental implementation,
e.g. IMoFA and VBMFA. Bayesian Ying-Yang (BYY) harmony learning provides not only a
BYY harmony data smoothing criterion (BYY-C) in a two-phase implementation for the first
problem, but also an algorithm called automatic BYY harmony learning (BYY-A) that have au-
tomatic model selection ability during parameter learning and thus can reduce the computational
expense significantly. The lack of systematic comparisons in the literature motivates this work.
Comparative experiments are first conducted on synthetic data considering not only different set-
tings including noise, dimension and sample size, but also different evaluations including model
selection accuracy and three other applied performances. Thereafter, comparisons are also made
on several real world classification datasets. In two-phase implementation, the observations show
that BIC and CAIC generally outperform AIC, SRM and CV, while BYY-C is the best for small
sample sizes. Moreover, in the cases of a sufficiently large sample size, IMoFA, VBMFA, and
BYY-A produce similar performances but with much reduced computational costs, where, still,
BYY-A provides better or at least comparably good performances.

Keywords: Local Factor Analysis, Model selection, Two-phase implementation, Incremental
methods, Automatic model selection, Bayesian Ying-Yang harmony learning, Data smoothing,
Small sample size.

10.1 Model Selection for Local Factor Analysis

As a useful and widely-used multivariate analysis model, Local Factor Analysis (LFA),
also called Mixture of Factor Analyzers (MFA), has received wide applications includ-
ing pattern recognition, bioinformatics, and financial engineering [10, 11, 33, 34]. One
important task for LFA model is to determine both the component number and the local
hidden dimensions appropriately, which is a typical example of model selection. Under
this topic, many efforts have been made in the literature [9, 10, 11, 16, 17, 25, 33, 37].

H.R. Tizhoosh, M. Ventresca (Eds.): Oppos. Concepts in Comp. Intel., SCI 155, pp. 209–232, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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However, there still lacks enough comparative investigations on them. This chapter is
such a comparative study organized as follows: In Section 1, after introducing LFA
and its model selection problem, we briefly describe two kinds of efforts in the lit-
erature, i.e., the two-phase implementation with the help of model selection criteria,
and incremental methods, respectively. In Section 2, a sketch of Bayesian Ying-Yang
(BYY) harmony learning will be given on LFA, including both an automatic BYY har-
mony learning algorithm (BYY-A) and a BYY harmony learning criterion (BYY-C) in a
two-phase implementation. Thereafter, comparative experiments are conducted on sim-
ulated datasets in Section 3 and on real world datasets in Section 4. Finally, concluding
remarks are given in Section 5.

10.1.1 Local Factor Analysis and Its Model Selection Problem

Local Factor Analysis (LFA) combines Gaussian Mixture Model (GMM) with Factor
Analysis (FA), performing clustering and dimension reduction in each component si-
multaneously. As a whole, LFA implements nonlinear dimension reduction by modeling
the density as a mixture of local linear subspaces. Provided a d-dimensional observable
variable vector x, LFA assumes that x is distributed according to a mixture of k un-
derlying probability distributions p(x) =

∑k
l=1 αlp(x|l), where αl is the prior of the

l-th component with αl ≥ 0, l = 1, . . . , k,
∑k

l=1 αl = 1, and p(x|l) is the conditional
probability of x on the l-th component modeled by a single FA [10, 11, 33]. That is,

p(x|y, l) = G(x|Aly + μl,Ψl), p(y|l) = G(y|0, Iml
),

p(x|l) =
∫

p(x|y, l)p(y|l)dy = G(x|μl,AlAT
l + Ψl), (10.1)

where G(x|μ,Σ) is the multivariate Gaussian distribution of x with the mean μ and
the covariance matrix Σ. For the l-th component, y is a ml-dimensional unobservable
latent vector, Al is a d × ml loading matrix, μl is a d-dimensional mean vector, Ψl is
a diagonal covariance matrix, l = 1, 2, . . . , k.

For a set of observations {xt}N
t=1, supposing that the component number k and

the local hidden dimensions {ml} are given, one widely used method to estimate pa-
rameters Θ = {αl,Al, μl,Ψl}k

l=1 is the maximum-likelihood (ML) learning, which
aims for maximizing the log-likelihood function L(X|Θ̂) and can be effectively im-
plemented by the well-known Expectation-Maximization (EM) algorithm [11, 14].
Throughout this chapter, Θ̂ is the estimate of Θ.

However, two important issues are still left, i.e., how to determine the Gaussian com-
ponent number k and how to determine the local hidden dimensions {ml}k

l=1, or say
in general, how to determine an appropriate scale tuple k = {k, {ml}k

l=1}. This is a
typical model selection problem to avoid both under-fitting and over-fitting, for which
many efforts have been made in the literature, including three major types of methods,
i.e., two-phase procedure [1, 2, 3, 5, 6, 7, 9, 18, 19, 21, 22, 24, 36, 38], incremental
[10, 11, 17] and automatic [25, 36, 38]. The former two types will be discussed in the
current section, while a representative of the last one will be introduced in Section 2.
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10.1.2 Two-Phase Procedure and Several Typical Criteria

In the literature, one conventional approach for model selection is featured by a two-
phase procedure [1, 2, 3, 5, 11, 18, 19, 21, 22]. In the first phase, a range of model
complexity for k = {k, {ml}} is pre-specified and assumed to include the optimal
complexity k∗. For each specific k in this range, parameters Θk are estimated un-
der the ML principle, usually implemented by EM algorithm [11, 12, 14]. In the sec-
ond phase, among all trained candidate models {Θ̂k} within the pre-determined model
range, the optimal model scale k̂∗ is selected as the one with the minimum criterion1

value J(k, Θ̂k), i.e.:
k̂∗ = argmin

k
J(k, Θ̂k). (10.2)

Several typical model selection criteria J(k, Θ̂k) have been investigated for the two-
phase implementation in the literature, including Akaike’s Information Criterion (AIC)
[1], Bozdogan’s Consistent Akaike’s Information Criterion (CAIC) [5], Schwarz’s
Bayesian Inference Criterion (BIC) [18] which coincides with Rissanen’s Minimum
Description Length (MDL) criterion [2], Structural Risk Minimization (SRM) [21, 22]
principle based on Vapnik’s VC dimension theory, and cross-validation (CV) [3, 19].
The mathematical expressions for these criteria are summarized in Table 10.1 and will
be briefly explained in the following. Here L(XN |Θ̂k) is the log-likelihood of train-
ing samples XN based on the estimated parameters Θ̂k under a given model scale
k = {k, {ml}} for LFA.

For criteria AIC, CAIC, and BIC, they share a similar form, where D(k) is the
number of free parameters in the referred model. For a LFA model with parameters
Θk = Θk,{ml}k

l=1
= {αl, μl,Ψl,Al}k

l=1, the free parameter number for {αl} is k−1,

for {μl} and {Ψl} are both kd, while for {Al} is
∑k

l=1(dml−ml(ml−1)/2). Finally,
the total number of free parameters is:

D(k) = D(k, {ml}) = k − 1 + kd + kd +
k∑

l=1

[dml −
ml(ml − 1)

2
]. (10.3)

Based on the well-known VC (Vapnik-Chervonenkis) dimension theory, Structure
Risk Minimization (SRM) principle [21, 22] trades off between the empirical error
and hypothesis space complexity, which leads to finding the model with the minimum
structural risk R(Θ). Due to the impossibility of directly minimizing the risk, Vapnik
[21, 22] suggested to minimize its upper bound. However, finding a computable expres-
sion of this upper bound for a given specific learning model is usually quite a difficult
task. For our task on LFA, we have tried several academic search engines, but found
only one result on GMM in [24], as briefly adopted in Table 10.1. In order to simply ap-
ply this GMM result onto LFA, we revisit the original result on the VC dimension type

1 Actually, given an infinite or a sufficiently large size of samples, the log-likelihood
value L(X|Θ̂k) can work asymptotically to select the component number, i.e., k̂∗ =
arg mink L(X|Θ̂k). However, given a finite or small size of samples, it does not work. In-
stead, a better model selection criterion J(k, Θ̂k) is needed.
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Table 10.1. Description of typical model selection criteria

Criteria Mathematical Description

AIC JAIC(Θ̂k, k) = −2L(X|Θ̂k) + 2D(k)

CAIC JCAIC(Θ̂k,k) = −2L(X|Θ̂k) + [ln(N) + 1]D(k)

BIC JBIC(Θ̂k,k) = −2L(X|Θ̂k) + ln(N)D(k)

JSRM (Θ̂k,k) = −L(Z|Θ̂k)

1−{
w(d+m,k)[ln N

w(d+m,k) +1]+ 1
2 ln N

N
}

1
2

SRM
w(d + m, k) = k · max{ (d+m)[ln(d+m)−1]

ln 2
, 2(d + m) + 3}

CV-m JCV (m)(Θ̂k,k) = −
∑m

i=1 L(Di|Θ̂D−i,k)

integer w(k), i.e. just with respect to k, and extract the dimension d as another variable
to rename it w(k, d), i.e. with respect to both k and d. Thus after defining a new variable
z = (xT ,yT )T , we just need to think about GMM for (d + ml) dimensional vector z,
i.e.,

p(z|Θ) =
k∑

l=1

αlG(z|ϕl,Γl), ϕl =
(

μl

0ml

)

,

Γl =
(

AlAT
l + Ψl Al

AT
l Iml

)

. (10.4)

In order to apply this on LFA, given one sample xt, for each component l we can
get yl,t = AT

l (AlAT
l + Ψl)−1(xt − μl), which easily results from ML estimation.

Consequently, Zl is obtained from training samples {xt}N
t=1 for each l-th component

via Zl = {(xT
t ,yT

l,t)
T }N

t=1. Then used to calculate the criterion value. Due to the above
arbitrary simplification, the local hidden dimensions {ml}k

l=1 have to be the same, i.e.,
ml = m, for l = 1, . . . , k.

Another well-known model selection technique is called cross-validation (CV) [3,
19]. Here we consider CV based on the maximum-likelihood estimation. First the data
are randomly and evenly divided into m parts, namely XN = {Di}m

i=1. For the i-th
partition, let Di be the subset used for testing and D−i be the rest used for training, the
CV criterion is given as follows:

JCV (m)(Θ̂k,k) = −
m∑

i=1

L(Di|Θ̂D−i,k) (10.5)
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where Θ̂D−i,k is the ML estimate based on D−i given the model scale k, and
L(Di|Θ̂D−i,k) is the log-likelihood on Di given Θ̂D−i,k. Featured by m, it is usu-
ally referred as m-fold CV and in this chapter shortly denoted as CV-m.

As discussed in [25, 31, 32, 37, 38], the two-phase implementation still has two
problems. First, in the cases that the sample size N is small or not large enough, each
criterion actually provides a rough estimate that can not guarantee to give k̂∗ = k∗,
and even results in a wrong selection especially when k consists of several integers
to enumerate. Second, in addition to the performance problem, another difficulty is its
feasibility in implementation, because the two-phase implementation is so extensive in
computing that it may be infeasible in many real applications, letting alone the difficulty
to appropriately pre-decide the candidate model range.

10.1.3 Approaches with an Incremental Implementation

To tackle the second problem of a two-phase implementation, i.e. the intensive com-
putational cost problem, one type of efforts have been made in the literature, featured
by an incremental implementation [10, 17]. Briefly speaking, instead of enumerating
every candidate model, this type of efforts conduct parameter learning incrementally
in a sense that it attempts to incorporate as much as possible what learned at k into
the learning procedure at k + 1. Also, the calculation of criterion J(k, Θ̂k) is made
incrementally. As discussed in [37], although such an incremental implementation can
indeed save computing costs to a certain extent, parameter learning has to be made still
by enumerating the values of k, and computing costs are still very high. Moreover, as
k increases to k + 1, an incremental implementation of parameter learning may also
lead to suboptimal performance because not only those newly added parameters but
also the old parameters have to be re-learned. Two approaches under such an incre-
mental implementation are considered in this chapter, namely Incremental Mixture of
Factor Analysers (IMoFA) [17] and Variational Bayesian Mixture of Factor Analyzers
(VBMFA) [10].

Incremental Mixture of Factor Analysers

The first incremental algorithm is Incremental Mixture of Factor Analysers (IMoFA)
[17], which adds in both components and factors iteratively. IMoFA aims at making
model selection by a procedure component splitting or factor adding according to the
validation likelihood, which is terminated when there is no improvement on the vali-
dation likelihood. It starts with 1-factor, 1-component mixture and proceeds by adding
new factors or new components until some stopping condition is satisfied. There are two
variants IMoFA-L and IMoFA-A for unsupervised and supervised approaches, respec-
tively. In this chapter, we consider unsupervised learning by IMoFA-L, shortly denoted
by IMoFA, and the validation set is randomly selected out from the original data with
10% size. The sketch of IMoFA is listed in Algorithm 1, while the detailed procedures
are referred to [17].



214 L. Shi

Algorithm 1. Sketch for IMoFA algorithm
Initialization: Divide the original data XN into training set XT and validation set XV . Initial-
ize a 1-component 1-factor model based on XT . Set the old validation likelihood Lold = −∞.
repeat

Splitting: select a component l1 and split it. Train Θ1 on XT by EM(split l1), and calculate
the validation likelihood L1 on XV , i.e, L1 = L(XV |Θ1).
Factor Adding: select a component l2 and add one hidden dimension to it, then train Θ2

on XT by EM(add a factor to l2), calculate the validation likelihood L2 on XV , , i.e, L2 =
L(XV |Θ2).
Select Action: select either splitting or adding factor according to z = arg maxi(Li). Let
Θ = Θz , Lnew = Lz , and Lold = Lnew .

until Lnew < Lold

Variational Bayesian Mixture of Factor Analyzers

The other approach with such an incremental model selection nature is the Variational
Bayesian Mixture of Factor Analyzers (VBMFA) [10]. Under the Bayesian framework,
the VBMFA method targets at maximizing the variational function F , an approximated
lower bound of the marginal log-likelihood, which is motivated by avoiding the inte-
gration difficulty in help of the Jensen’s inequality [10]. Similar to IMoFA, still starting
from 1-component full factor model, VBMFA makes parameter learning in an incre-
mental tendency for the component number via stochastically selecting out and split-
ting a component l with probability proportional to e−ζFl , where Fl is component l’s
contribution to F , reject this attempt if F does not recover. During this procedure,
VBMFA also deletes component l if its responsibility approaches zero and deletes the
i-th hidden dimension of component l if its corresponding hyper-parameter νi

l → ∞.
The iteration stops if the variational function F has no improvement. The sketched al-
gorithm of VBMFA is listed in Algorithm 2, while details about VBMFA are referred
to [10].

Algorithm 2. Sketch for VBMFA algorithm
Initialization: Initialize a 1-component full factor model with hyper-parameters that indicate
the priors. Set the old variational function Fold = −∞.
repeat

E Step: Partially fix the current model and change the model scales by:
(1) Stochastically pick a component l with probability proportional to e−ζFl .

Split it into two components, and reject this attempt if F does not recover;
(2) Regard component l dead and delete it if its responsibility is too small;
(3) Delete the i-th hidden dimension of the l-th component if νi

l → ∞.
M Step: Fixing current model scales k, adjust both the model parameters and hyper-
parameters so as to maximize the variational function F . Calculate the new variational func-
tion Fnew .

until Fnew < Fold
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10.2 Bayesian Ying-Yang Harmony Learning for LFA

Bayesian Ying-Yang (BYY) harmony learning was firstly proposed in 1995 and then
systematically developed in the past decade [25, 26, 33, 34, 35, 37, 38]. The BYY har-
mony learning with typical structures leads us to a set of new model selection criteria,
new techniques for implementing regularization and a class of algorithms with auto-
matic model selection ability during parameter learning. Considering the LFA model,
in order to remove the rotational indeterminacy and conduct automatic model selection,
BYY harmony learning adopts the alternative but probabilistically equivalent model
compared with (10.1), where the l-th component’s distribution is assumed as follows:

p(l) = αl, p(y|l) = G(y|0,Λl), p(x|y, l) = G(x|Uly + μl,Ψl),
p(x|l) = G(x|μl,UlΛlUT

l + Ψl), UT
l Ul = Iml

, (10.6)

where both Λl and Ψl are diagonal, while loading matrix Ul is constrained on the
Stiefel manifold, i.e., UT

l Ul = Iml
. Furthermore, data smoothing based regulariza-

tion combining parametric model with Gaussian-kernel Parzen window is adopted, i.e.,
ph(x) = 1

N

∑N
t=1 G(x|xt, h

2Id).
Applying BYY harmony learning to LFA, the harmony function H(Θ, h) targeted

to be maximized is adopted as follows:

H(Θ, h) = Lh(Θ) + Z(h)

Z(h) = − ln
N∑

t=1

ph(xt) = − ln[
1
N

N∑

t=1

N∑

τ=1

G(xt|xτ , h2Id)]

Lh(Θ) =
k∑

l=1

∫

p(x,y, l) ln q(x,y, l)dxdy

=
k∑

l=1

∫

ph(x)p(l|x)p(y|x, l) ln[αlp(y|l)p(x|y, l)]dxdy (10.7)

where Lh(Θ) is the harmony measure between the Yang machine p(x,y, l) and the
Ying machine q(x,y, l). And Z(h) can be understood as a regularization prior. Maxi-
mizing the harmony function will lead us the best matching between Yang and Ying ma-
chines, the simplest structure, and an appropriate smoothing window width h [36, 38].

Finally, we can obtain an algorithm with automatic model selection ability during
parameter learning. Shortly named as BYY-A, this algorithm can greatly save com-
putational cost. Moreover, a model selection criterion in a two-phase implementation
is also provided and shortly named as BYY-C, which aims to tackle the first problem
discussed in Section 10.1.2. Moreover, [37] discussed about the relationship not only
between BYY-A and incremental methods, but also between BYY-C and other typi-
cal model selection criteria. The details of BYY harmony system and best harmony
learning are referred to [25, 37, 38] for recent systematical summaries.

10.2.1 Automatic BYY Harmony Learning

Briefly, the automatic BYY harmony learning (BYY-A) works under the trend of ef-
forts on seeking fast model selection. Stating in a sense that parameter learning on a
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model begins with a large enough scale to include the correct one, BYY-A implements
model selection automatically during parameter learning, by shrinking the model scale
appropriately and discarding those extra substructures. In detail, after initialization at
large enough k = kinit and ml = minit for l = 1, . . . , k with minit < d and dur-
ing maximizing the harmony function, BYY-A will push αl towards zero if compo-
nent l is extra. Thus we can delete component l if αl approaches zero. Also, if the
latent dimension y(j) is extra, maximizing ln p(y|l) will push the variance Λ(j)

l to-
wards zero, thus factor j can be removed. As long as k and {ml} are initialized at
values large enough, they will be determined appropriately and automatically during
parameter learning [25, 31, 33, 37, 38].

Algorithm 3. Sketch for BYY-A algorithm
Initialization: Randomly initialize the component number k and local hidden dimensions
{ml}k

l=1 with large enough integer values. Set τ = 0 and the initial harmony function
H(τ ) = −∞.
repeat
Yang-Step: Randomly selecting a sample xt

for l = 1, . . . , k do
et,l = xt − μl, ŷl(xt) = arg maxy ln[p(xt|y, l)p(y|l)] = Wl(xt − μl),

p(l|xt) =

{
1, if l = lt,
0, otherwise.

, lt = arg maxl{F (xt, l) + h2

2
Tr[∂2F (x,l)

∂xxT |x=xt ]},

where Wl = ΛlUT
l Ml, Ml = (UlΛlUT

l + Ψl)
−1,

F (x, l) = ln[αlp(ŷl(x)|l)p(x|ŷl(x), l)].
end for

Ying-Step: Update the parameters and conduct model selection as follows
for l = 1, . . . , k do

αnew
l =

{
αl+η0
1+η0

, if l = lt,
αl

1+η0
, otherwise.

end for
μnew

lt
= μlt

+ η0et,lt , εt,l = et,l − Ulŷl(xt)

Λnew
lt = (1 − η0)Λlt + η0{h2diag[WltW

T
lt ] + diag[ŷlt(xt)ŷlt(xt)

T ]}
Ψnew

lt = (1 − η0)Ψlt + η0{h2diag[(Id − UltWlt)(Id − UltWlt)
T ] + diag[εt,lε

T
t,l]}

GUlt
= Mltet,lt ŷlt(xt)

T + h2MltW
T
lt , Unew

lt =Ult + η0(GUlt
−UltG

T
Ult

Ult).
(#) Discard the l-th component if αl approaches 0.
(#) Discard the j-th factor of component l if Λl’s j-th element approaches 0.

Smoothing-Step:
h2new

= hnew2, hnew = h + η0Δh, Δh = d
h

− h
∑k

l=1 αlTr[Ml] − β
h3 .

where, β =
∑N

t=1
∑N

τ=1(xτ −xt)
T (xτ −xt) exp[− 1

2h2 (xτ −xt)
T (xτ −xt)]

∑N
t=1

∑N
τ=1 exp[− 1

2h2 (xτ −xt)T (xτ −xt)]

(*) If without data smoothing, h can be simply assigned and held as h = 0.
if Another N/5 iterations have passed then

τ = τ + 1
H(τ ) = 1

2

∑k
l=1 αl{2 ln αl − ml ln(2π) − ln |Λl| − ln |Ψl| − h2Tr[M−1

l ]}.
end if

until H(τ ) − H(τ − 1) < εH(τ − 1), with ε = 10−5 in our implementation
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The algorithm of BYY-A is sketched in Algorithm 3, which implements automatic
model selection during parameter learning via iterating through three steps named
Yang-Step, Ying-Step and Smoothing-Step, respectively [25, 36, 37, 38]. At the Yang-
Step, lt, ŷl(xt), and Wl are estimated, while the parameters θ ∈ {αl, μl,Λl,Ψl,Ul}
are updated at the Ying-Step via computing the gradient∇θH , subject to the constraints
that αl > 0,

∑k
l=1 αl = 1, Λl,Ψl are positive definite diagonal, and UT

l Ul = Iml
.

Moreover, the smoothing parameter h is adjusted in Smoothing-Step.
For details about BYY harmony learning please refer to [25, 31, 32, 33, 36, 37, 38].

Particularly, the derivation of BYY-A is referred to [25] and Section 3.3.2 in [38] for
recent summaries. Three notes during the BYY-A implementation need to be mentioned
here:

1. During computing F (x, l), both det(UlΛlUT
l +Ψl) and Ml = (UlΛlUT

l +Ψl)−1

can be calculated via the following cheaper ways instead of direct calculation, es-
pecially in case of ml << d:

det(UlΛlUT
l + Ψl) = det(Λ−1

l + UT
l Ψ−1

l Ul) det(Λl) det(Ψl),
Ml = (UlΛlUT

l + Ψl)−1 = Ψ−1
l − Ψ−1

l Ul(Λ−1
l + UT

l Ψ−1
l Ul)−1UT

l Ψ−1
l .

2. The learning rate η0 in different parameters’ updating equations may be different.
Actually, in our experience, different learning rates usually perform better than a
constant value.

3. The value N/5 is heuristically set in our experiments.

10.2.2 BYY Harmony Criterion

Besides BYY-A, a BYY harmony learning criterion (BYY-C) is also adopted for LFA
model selection, implemented in a two-phase procedure. In the first phase, the learning
algorithm is similar with BYY-A listed in Algorithm 3, except those steps marked with
(#) are all absent, i.e., without any automatic model selection operations. In the second
phase, the BYY harmony criterion from [25, 33, 38] is taken as follows:

JBY Y (Θ̂k,k) = −H(Θ̂k, h) + 0.5D(k).

H(Θ̂k, h) =
1
2

k∑

l=1

αl{2 lnαl − ml[ln(2π) + 1] − ln |Λl| − ln |Ψl| − h2Tr[M−1
l ]}

(10.8)

where JBY Y (Θ̂k,k) consists of the negative of harmony function and an additional
term 0.5D(k), which comes from the consideration to regain the Hessian information
of p(Θ|XN ). More details are referred to [25, 36, 38] and skipped here to save space.

The D(k) in (10.8) is still the number of free parameters in the referred model
with scale k. For an LFA model with parameters Θk = Θk,{ml}k

l=1
= {αl, μl,Ψl,

Ul,Λl}k
l=1, the free parameter number for {αl} is k − 1, for {μl} and {Ψl} are both

kd, while for {Ul} is
∑k

l=1(dml −ml(ml + 1)/2), and for {Λl} is
∑k

l=1 ml. Finally,
the total number of free parameters is as follows, identical to that given in (10.3):

D(k) = D(k, {ml}) = k − 1 + kd + kd +
k∑

l=1

[dml −
ml(ml + 1)

2
+ ml]. (10.9)
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10.3 Experimental Results on Simulated Datasets

In the following two sections, we evaluate the performance of LFA by BYY harmony
learning (BYY-A and BYY-C) on simulated and real world datasets respectively, com-
pared with not only the two-phase implementation with the help of criteria AIC, CAIC,
BIC, SRM and CV, but also the incremental methods IMoFA and VBMFA. For the
cross-validation (CV) method, we consider the 5-fold CV, shortly named as CV-5 in the
following. Trying to avoid local optima caused by inappropriate initialization, we im-
plement the parameter training in the two-phase implementation for 10 times on each
candidate model k, as well as the automatic or incremental methods for 10 times on
each simulation. Among the 10 rounds’ learned models, we choose the one with the
best target function based on the training data as the resulted model.

In this section, after generating data sets from designed LFA models, we compare
each method on both the model selection accuracy, and three other evaluations includ-
ing the clustering accuracy, the testing samples’ log-likelihood, and the classification
accuracy2. The comparison is designed systematically, mainly considering and chang-
ing three key scales for the training data, i.e., noise, data dimension, and sample size.
That is, the environment in our experiments will deteriorate as the noise increases, the
data dimension increases, and the sample size decreases. Each simulation in a specific
environment is repeated for 100 times.

10.3.1 Results of Model Selection Accuracy

In this part, we focus on comparing the model selection accuracy by each method based
on simulated datasets. We generate 7 series simulated data sets from LFA models with
the same component number k = 3 and the same local hidden dimension ml = 3 for
each l = 1, . . . , k. The design of the 7 series are shown in Figure 10.1 and Table 10.2,
where the former shows the three environmental settings, noise, data dimension d and
sample size N , and the latter shows each series trends. The Gaussian noise is added
with the covariance ψ2Id determined based on ζ, where ζ = minl ζl, and ζl denotes the
mean eigenvalue of component l’s covariance UlΛlUT

l + Ψl. In an increasing trend,
the noise is set as ψ2 = 0.2ζ, 0.5ζ, 0.8ζ. The dimension d in an increasing trend is set
d = 5, 7, 9. The sample size N in a decreasing trend is set N = 1000, 200, 40. Since
we know the true model complexity, i.e. k∗ = 3 and each m∗

l = m∗ = 3, the candidate
model range for the two-phase implementation is pre-determined with the component
number k ∈ [1, 5] and the same local hidden dimension ml = m ∈ [1, 5]. BYY-A
is initialized with the component number kinit = 5 and each local hidden dimension
equal to 5, while for IMoFA and VBMFA the upper bounds for both the component
number and local hidden dimension is set as 5.

2 Actually, the model selection accuracy is the major focus of this chapter. Whereas, the other
three reflect different application of the LFA model, which are not directly based on but at
outer levels of the model selection. Since often considered in the machine learning society,
they are also evaluated here, trying to offer some valuable and related observations for future
research.
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Fig. 10.1. Cubic expression of the environmental settings for 7 simulated experimental series.
Three scales are considered, including noise, dimension and sample size, respectively.

Table 10.2. Description of 7 experimental series configuration. Each environmental setting se-
quence is listed in the same order as Figure 10.1.

series noise ψ2 dimension d sample size N

1 0.2ζ, 0.5ζ, 0.8ζ 5 1000
2 0.2ζ 5, 7, 9 1000
3 0.2ζ 5 1000, 200, 40
4 0.2ζ, 0.5ζ, 0.8ζ 5, 7, 9 1000
5 0.2ζ, 0.5ζ, 0.8ζ 5 1000, 200, 40
6 0.2ζ 5, 7, 9 1000, 200, 40
7 0.2ζ, 0.5ζ, 0.8ζ 5, 7, 9 1000, 200, 40

After running 100 times for each situation, the selection rates for each method on
each experimental environment are investigated. We show the rates of the total correct
selection, i.e., correct on both component number k = 3 and the hidden dimensions
m = 3, in Figure 10.2 also in the same cubic expression as Figure 10.1. The results of
SRM are expressed in the form of r1(r2), which means that SRM makes total correct
selection r1 times out of correct selection rate r2 on only component number k. To save
space, only the detailed selection rates along Series 6 are reported in Figure 10.3 and
Figure 10.4 for example, where Figure 10.3 corresponds to the case with ψ2 = 0.2ζ,
d = 7, and N = 200, and Figure 10.4 for the case with ψ2 = 0.2ζ, d = 9, and N = 40.
Each pole represents a selection rate out of 100 at the corresponding model complexity,
ranging through the scale space of k ∈ [1, 5] and ml ∈ [1, 5]. Each labeled value at the
center pole corresponds to the correct selection rate.

The results show that, when the experimental case design is at the baseline, i.e.,
a comparably good enough environment, all these different methods perform well,
without considerable difference. However, when the environment is changing worse
along the three configuration axes, they all suffer from a problem in model selec-
tion, while different methods behave differently for the changing effects. Analyti-
cally, on one hand, for the two-phase methods as the environment deteriorates: AIC
tends to over-select both the hidden dimension and components number; CAIC tends
to have the risk of under-selection; BIC and CV perform generally better than AIC
and CAIC, where 5-fold CV owns a relatively better robustness as the environment
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Fig. 10.2. Correct selection rates out of 100 implementations by different methods. The exper-
iments are conducted in 7 series simulations. The cube is constructed in the same way as in
Figure 10.1, where each labeled value is the correction selection rate in that particular correspond-
ing environment. The component number is fixed as k = 3 and each local hidden dimension is
the same as m = 3. For SRM, the numbers in the parentheses represent the rates for correct
selection purely on component number k, while those outside represent the correct rates on both
component number and local hidden dimensions.

shades worse; SRM also performs well in selecting the component number, while
over-selecting the local hidden dimensions, which probably originates from the sim-
ply direct adoption of the results on GMM; BYY-C generally outperforms all other
methods, especially in case of either small enough sample size or high dimension.
On the other hand, among the automatic methods, as the environment deteriorates,
IMoFA and VBMFA tend to make wrong selections, especially when noise increases;
although owning a tend to over-select, BYY-A still obviously outperforms IMoFA and
VBMFA.



10 BYY Harmony Learning for LFA: A Comparative Investigation 221

AIC CAIC BIC SRM CV-5

BYY-C IMoFA VBMFA BYY-A

Fig. 10.3. Histogram representation of selection rates by different methods in Series 6 with ψ2 =
0.2ζ, d = 7, and N = 200. The two axes against the selection rates are the component number
k ∈ {1, . . . , 5} and the identical local hidden dimension m ∈ {1, . . . , 5}, respectively.

Computational Cost

We also list the computational cost of each method during the 7 simulated series experi-
ments in Table 10.3 for comparison, in terms of the average cost and standard deviation
along the simulated series. The whole procedure is computed by MATLAB 7.0.1 (R14)
on a P4 3.2GHz 1GB DRAM PC. We can find that, on one hand, since sharing the
EM implementation, AIC, CAIC, BIC and SRM cost almost the same time, and BYY-
C costs a little more mainly due to the data smoothing computation, while CV needs
the most computational cost due to the cross-folder repetitions. On the other, BYY-A,
IMoFA and VBMFA cost similar amounts but far less than the criteria.

10.3.2 Results of Clustering Accuracy

One widely-used application of LFA is to do clustering analysis, or unsupervised learn-
ing. Given a set of data consisting of unlabeled samples from C classes, the task of
clustering analysis is to label every sample in the same class by the same symbol such
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AIC CAIC BIC SRM CV-5

BYY-C IMoFA VBMFA BYY-A

Fig. 10.4. Histogram representation of selection rates by different methods in Series 6 with ψ2 =
0.2ζ, d = 9, and N = 40. The two axes against the selection rates are the component number
k ∈ {1, . . . , 5} and the identical local hidden dimension m ∈ {1, . . . , 5}, respectively.

that the data set is divided into several clusters (classes), each associated with a different
symbol. This task by LFA is carried out in two steps. First, the LFA model is obtained
based on the samples. Second, each component l in the model is named as the center of
a possible class, and each sample xt is labeled to l̂(xt) as follows:

l̂(xt) = argmax
l

p(xt|l). (10.10)

As a result, all the samples with the same label l constitute a class, and the component
number k is the number of labeled classes. Since the samples are generated, we thus
know the actual true clustering result, i.e., the true class number C and the true labels
{c(xt)}, with each c(xt) ∈ {1, . . . , C}. Once each sample xt is labeled by a cluster
l̂(xt), we can construct a connection from the true class label c ∈ [1, . . . , C] the cluster
label l ∈ [1, . . . , k] via the following mapping:

l(c) = arg max
l

|X(l, c)|, X(l, c) = {xt|c(xt) = c and l̂(xt) = l} (10.11)
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Table 10.3. Comparison of computational cost by each method on simulated data (in minutes).
Each item is reported in terms of averages and standard deviations along the 7 series. The item
Crit refers to the average of AIC, CAIC, BIC, and SRM, due to their computational costs’ sim-
ilarity. The experiments were carried out by MATLAB 7.4.0 (R2007a) on a P4 3.2 GHz 1 GB
RAM PC.

Methods CPU Time (in minutes)
Crit 10.5 ± 5.7

CV-5 53.7 ± 28.0
BYY-C 12.8 ± 4.7

IMoFA 2.6 ± 2.6
VBMFA 2.9 ± 1.3
BYY-A 2.5 ± 1.2

That is, we first construct sample subsets X(l, c), for l = 1, . . . , k and c = 1, . . . , C.
Then cluster l(c) with the maximum sized X(l, c) is selected as the optimal expression
of the true class c. Then the clustering accuracy is evaluated by the optimal described
samples’ percentage as follows:

ClusterAccuracy =
∑C

c=1 |X(l(c), c)|
N

(10.12)

Actually, this kind of evaluation is widely used for clustering analysis, usually ex-
pressed in form of a confusion matrix. However, we conduct the simulations for 100
times and select the same cubic expression for experimental statistics instead. One dif-
ference in this part from the previous two is, since the mapping from l = 1, . . . , k to
c = 1, . . . , C needs k ≥ C, such that each true class has one corresponding cluster, we
revise the candidate model scale for k from k = 1, . . . , 5 to k = 3, . . . , 7, with the true
class number known as C = 3. The samples and the remaining settings are the same as
Section 10.3.1.

After running 100 simulations for each case, the average clustering accuracies (in
percentage) are shown in Figure 10.5, still in the same cubic expression as Figure 10.1.
From these results, we can briefly have the following observations. First, as the data
environment deteriorates, BIC and BYY-C provide similarly better values than all the
other criteria. Again, BYY-A outperforms IMoFA and VBMFA. Second, due to the
revised candidate model range k ∈ [3, 7] bounded with the true class number c = 3,
the criterion CAIC, which has an under-estimate tendency of k, usually obtains the
best performance in good data environments. However, these values cannot reflects the
modeling performance in total.

10.3.3 Results of Testing Samples’ Log-Likelihood

Since the LFA model can also be used for density description, this part evaluates each
method on the testing samples’ log-likelihood, given the trained and selected LFA mod-
els. The settings of models and datasets are the same as in Section 10.3.1. The testing
set is randomly generated from the same LFA model as that for constructing the corre-
sponding training set. The testing sample size is fixed as 200, no matter what the training
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Fig. 10.5. Average clustering accuracies (in percentage) on the testing set out of 100 implementa-
tions by each method. The experiments are conducted in 7 series simulations, where each labeled
value is the average clustering accuracy in that particular corresponding environment. The com-
ponent number is fixed as k = 3 and each local hidden dimension is the same as m = 3.

sample size N is. Then, after running 100 times for each situation, the testing samples’
log-likelihood values based on all learned and selected LFA models are investigated,
where the probability p(xt|Θ) of a testing sample xt is computed according to (10.1)
or (10.6). We show the mean log-likelihood values on the testing set in Figure 10.6
still in the same cubic expression as Figure 10.1. It is different from Figure 10.2 since
different LFA models may generate data with quite different likelihood value-levels, so
that the values of a cube in Figure 10.6 do not have the vertical tendency comparison
but tendency comparisons in the lateral plane and among different methods on the same
corresponding position.

These results briefly show the following observations. First, on the same position,
the values’ difference by all methods are not that obvious especially for a good enough
environment, compared with the correct selection rates as shown in Figure 10.2. Sec-
ond, as the data environment deteriorates, we can observe that BYY-A and VBMFA
outperforms IMoFA, with BYY-A a little better than VBMFA. Moreover, BIC, CAIC,
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Fig. 10.6. Average log-likelihood values on the testing set out of 100 implementations by each
method. The experiments are conducted in 7 series simulations, where each labeled value is
the average log-likelihood value in that particular corresponding environment. The component
number is fixed as k = 3 and each local hidden dimension is the same as m = 3.

and CV provides similarly better values than AIC and SRM, while interestingly BYY-C
still outperforms them.

10.3.4 Results of Classification Accuracy

In this part, the comparison is conducted on the classification accuracy by each method’s
obtained LFA classifier. For classification on samples of C classes, one LFA model
Mc is obtained on each class c, with c = 1, . . . , C. As a test sample xt comes,
the classification is conducted via a Bayesian way, i.e., xt is assigned to the class
with the maximum posterior probability ĉ(xt) = arg maxc=1,...,C p(Mc|xt), with
p(Mc|xt) ∝ p(Mc)p(xt|Mc). Here p(Mc) is the prior probability, which can be simply
assigned as proportional to the training sample size of the c-th class. And p(xt|Mc) is
the probability of xt on the trained model Mc, which is computed according to (10.1)
or (10.6).
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Fig. 10.7. Average correct classification rates (in percentage) with LFA classifiers on the test-
ing set out of 100 implementations by each method. The experiments are conducted in 7 series
simulations, where each labeled value is the correction classification rate in that particular corre-
sponding environment. The component number is fixed as k = 3 and each local hidden dimension
is the same as m = 3.

The simulated datasets used here for classification are different from those in pre-
vious three subsections. We generate a series of three-class datasets, where the data
generating LFA model of each class has the same model complexity as k = 3 and
each ml = m = 3. The environmental settings are still taken in the same tendency as
shown in Figure 10.1 and Table 10.2, considering again the noise, dimension and train-
ing sample size. The testing sets are randomly generated from the same LFA models,
with a fixed testing sample size of 200, no matter what the training sample size N is.
Then, after running 100 times for each situation, the average correct classification rates
(in percentage) of testing samples based on LFA classifiers are reported in Figure 10.7.

From the results of average classification accuracies on testing samples, we can
briefly have the following observations. When the training sample sizes are large,
IMoFA, VBMFA and BYY-A produce performances similar to or even better than the
two-phase methods. As the training sample sizes decrease, all methods’ performances
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deteriorate considerably. The two-phase procedure generally produces better classifica-
tion accuracies than the incremental and automatic methods. Interestingly, BYY-C gen-
erally outperforms all the other criteria, especially for the small-sample-size cases. Still,
BYY-A produces better or at least similar results compared with IMoFA and VBMFA.

10.4 Experimental Results on Real World Datasets

In this section, experiments are conducted on several real world datasets with a decreas-
ing ratio between training and testing sample sizes. Since every true model complexity
k∗ is unknown, the performance of each method is indirectly evaluated based on the
classification accuracies on testing set out of 100 independent implementations. The or-
ganization and classification procedure by a LFA classifier is the same as that described
in Section 10.3.4.

The candidate model range for a two-phase procedure, the model complexity upper
bound for incremental methods, and the initial model scale for BYY-A are chosen as
follows:

• Since the true component number k∗ is unknown in the real world data, kinit for
BYY-A and kmax for incremental methods are assigned a same and large enough
integer. Similarly, we assign a same large enough integer to minit for BYY-A and
mmax for IMoFA and VBMFA.

• For a two-phase procedure it is here not easy to determine the candidate model
range. Heuristically, we first implement the automatic and incremental methods, and
obtain the mostly selected component number k̃. Then, for the two-phase procedure,
we let kmax = 2k̃ + 1 and kmin = 2. Moreover, mmin = 1 and mmax = minit are
assigned, where minit is the initial hidden dimension for BYY-A.

• For the method using SRM as discussed in Section 10.1.2, we have to constrain all
the local hidden dimensions to be the same, while for other criteria approaches the
hidden dimensions can be assigned different.

Table 10.4. Rough description of real world datasets

Datasets Description
Datasets Dimensions Classes Training Testing

(O) 7,494 3,498
PEN (H) 16 10 3,747 7,245

(Q) 1,874 9,118
(O) 2,880 1,797

OPT (H) 64 10 1,440 3,237
(Q) 720 3,957
(O) 700 1,610

SEG (H) 14 7 350 1,960
(Q) 175 2,135
(O) 300 4,700

WAV (H) 21 3 150 4,850
(Q) 75 4,925
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Table 10.5. Experimental results on real world datasets. The correct classification percentages
are reported in the form of average ± standard deviation after 20 independent implementations.
The best average result on each dataset is bolded.

PEN
Methods PEN(O) PEN(H) PEN(Q)

AIC 94.28 ± 0.14 85.33 ± 2.61 72.16 ± 5.12
CAIC 95.18 ± 0.16 92.74 ± 1.99 80.34 ± 4.76
BIC 97.77 ± 0.13 91.35 ± 2.32 83.63 ± 4.47
SRM 96.92 ± 0.18 86.29 ± 3.10 78.44 ± 5.89
CV-5 95.39 ± 0.13 88.81 ± 2.03 78.31 ± 4.20

BYY-C 97.93 ± 0.16 93.92 ± 2.22 85.35 ± 4.31

IMoFA 97.90 ± 0.20 84.15 ± 4.93 67.14 ± 7.15
VBMFA 98.30 ± 0.24 86.96 ± 3.97 69.96 ± 6.30
BYY-A 98.41 ± 0.19 87.58 ± 4.09 72.65 ± 6.88

OPT
Methods OPT(O) OPT(H) OPT(Q)

AIC 92.76 ± 0.32 87.35 ± 2.38 66.36 ± 5.55
CAIC 96.98 ± 0.49 89.16 ± 2.04 74.79 ± 5.17
BIC 97.82 ± 0.56 90.55 ± 1.87 73.33 ± 4.87
SRM 97.15 ± 0.69 88.83 ± 2.24 69.05 ± 5.26
CV-5 97.52 ± 0.46 88.34 ± 1.69 69.77 ± 4.51

BYY-C 97.61 ± 0.41 92.96 ± 2.02 77.98 ± 5.02

IMoFA 96.39 ± 0.49 85.41 ± 4.81 63.74 ± 7.97
VBMFA 96.42 ± 0.72 86.13 ± 4.03 65.89 ± 6.96
BYY-A 96.96 ± 0.69 86.37 ± 3.84 68.68 ± 7.03

SEG
Methods SEG(O) SEG(H) SEG(Q)

AIC 77.48 ± 2.31 67.67 ± 6.35 54.45 ± 7.62
CAIC 84.08 ± 3.89 73.97 ± 5.34 58.12 ± 6.91
BIC 82.61 ± 2.54 73.81 ± 5.10 61.70 ± 6.60
SRM 75.02 ± 3.67 69.12 ± 5.58 56.28 ± 7.51
CV-5 81.20 ± 2.91 70.43 ± 4.63 57.73 ± 6.29

BYY-C 85.33 ± 2.45 74.11 ± 5.04 60.21 ± 6.57

IMoFA 86.11 ± 3.90 65.38 ± 7.49 49.82 ± 9.31
VBMFA 88.32 ± 3.61 67.55 ± 6.51 53.67 ± 8.12
BYY-A 87.81 ± 2.37 67.29 ± 6.13 55.30 ± 8.35

WAV
Methods WAV(O) WAV(H) WAV(Q)

AIC 71.28 ± 1.24 65.39 ± 3.86 57.62 ± 6.62
CAIC 75.85 ± 2.31 69.25 ± 3.42 60.28 ± 6.97
BIC 82.74 ± 2.04 71.34 ± 3.50 61.63 ± 6.42
SRM 81.24 ± 2.34 66.37 ± 4.11 53.34 ± 7.26
CV-5 79.61 ± 2.10 67.42 ± 3.87 57.45 ± 5.88

BYY-C 83.11 ± 3.03 73.56 ± 3.29 62.40 ± 6.31

IMoFA 81.88 ± 2.99 61.33 ± 6.23 50.23 ± 8.90
VBMFA 81.43 ± 2.45 64.25 ± 5.54 53.25 ± 8.13
BYY-A 82.83 ± 1.87 65.77 ± 5.80 55.01 ± 8.27
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Table 10.6. CPU time on real world datasets (in minutes). The item Crit refers to the average of
AIC, CAIC, BIC, and SRM, due to their computational costs’ similarity. Each item represents the
average time on the corresponding three datasets. The experiments were carried out by MATLAB
7.4.0 (R2007a) on a P4 3.2 GHz 1 GB RAM PC.

CPU Time (in minutes)
Methods PEN OPT SEG WAV

Crit 131 183 174 103
CV-5 596 712 689 95

BYY-C 159 195 188 117
IMoFA 20 39 35 17

VBMFA 31 50 47 23
BYY-A 23 35 32 17

We comparatively investigate the performance of each method on four real world
datasets, including Pendigits (PEN), Optdigits (OPT), Segment (SEG) and Waveform
(WAV), all collected from the UCI machine learning repository 3. In order to investigate
the effect of sample sizes, another two pairs of training and testing datasets are gener-
ated from each original dataset by moving samples randomly from the training set to
the testing set, with the training set reduced to a half and a quarter, respectively. Thus,
we have three datasets shortly denoted as O, H and Q, respectively. Dataset series under
consideration are shown in Table 10.4, e.g., PEN(O) denotes the original dataset PEN,
while PEN(H) denotes one with a half of samples from PEN(O).

In implementation, 20 independent simulations are conducted by each method on
each of the datasets PEN, OPT, SEG and WAV. Again, for each simulation we con-
duct the learning procedure for 10 times, and then the results with the highest target
functions are selected, as discussed in Section 10.3. The resulted classification accu-
racy are listed in Table 10.5, where each item is the correct classification percentage
expressed in a form of average ± standard deviation. These results show that, BYY-C
still generally outperforms all the other criteria, especially for the small-sample-size
cases, while BYY-A produces better or at least similar results compared with IMoFA
and VBMFA. Interestingly, when the sample sizes are large, automatic and incremen-
tal model selection methods produce performances similar to or sometimes even better
than the two-phase methods. As the training sample sizes decrease, all methods’ perfor-
mances deteriorate considerably, where the two-phase methods’ performances become
better again.

Table 10.6 compares the CPU time of each method on the real world datasets, taking
the average on the three training sets (O, H and Q). Those with criteria AIC, CAIC,
BIC, and SRM in the two-phase procedure are merged into one item since their per-
formances are very similar. BYY-C spends a little more computational cost due to the
calculation of smoothing parameters. CV-5 requires the highest computational cost.
Computational costs reduce considerably for automatic and incremental methods, where
interestingly BYY-A runs faster than IMoFA and VBMFA.

3 Website of UCI machine learning repository: http://archive.ics.uci.edu/ml/.
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10.5 Concluding Remarks

Focusing on the model selection task on LFA, both an automatic BYY harmony learn-
ing algorithm (BYY-A) and a BYY harmony criterion (BYY-C) in the two-phase imple-
mentation are introduced. For a systematic comparison, not only several typical model
selection criteria including AIC, CAIC, BIC(MDL), SRM and CV, but also two in-
cremental learning methods named Incremental Mixture of Factor Analyzers (IMoFA)
and Variational Bayesian Mixture of Factor Analyzers (VBMFA) are adopted. Compar-
ative experiments conducted on both synthetic and real world datasets mainly show the
following observations. First, BYY-C is generally best in terms of performance, while
BYY-A is usually the best in terms of computational cost. Importantly, when sample
size is small or dimension is high, those discussed LFA methods all face a risk of mis-
selection. However, BYY-C and BYY-A show advantages of producing more accurate
selection for small-sample-size cases compared to the remaining methods. Thus, for the
LFA model selection task, we recommend using BYY-C for small-sample-size cases
in a two-phase implementation, while BYY-A for practical datasets with large sample
sizes.

Last but not least, as recognized in the machine learning literature, among different
model selection criteria or methods, one may work better in one case while the other
may work better in another. None can be said to be better than the others, and thus this
chapter only compares those methods on LFA, which is widely-used and representative
for model selection problem. We expect these results could give some valuable and
related observations for future research.
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Summary. Reinforcement learning (RL) is a goal-directed method for solving problems in un-
certain and dynamic environments. RL agents explore the states of the environment in order
to find an optimal policy which maps states to reward-bearing actions. This chapter discusses
recently introduced techniques to expedite some of the tabular RL methods for off-policy, step-
by-step, incremental and model-free reinforcement learning with discrete state and action space.
The concept of opposition-based reinforcement learning has been introduced for Q-value updat-
ing. Based on this concept, the Q-values can be simultaneously updated for action and opposite
action in a given state. Hence, the learning process in general will be accelerated.Several algo-
rithms are outlined in this chapter. The OQ(λ) has been introduced to accelerate Q(λ) algorithm
in discrete state spaces. The NOQ(λ) method is an extension of OQ(λ) to operate in a broader
range of non-deterministic environments. The update of the opposition trace in OQ(λ) depends
on the next state of the opposite action (which generally is not taken by the agent). This limits
the usability of this technique to the deterministic environments because the next state should be
known to the agent. NOQ(λ) is presented to update the opposition trace independent of knowing
the next state for the opposite action. The primary results show that NOQ(λ) can be employed
in non-deterministic environments and performs even faster than OQ(λ).

11.1 Introduction

The ultimate goal of machine intelligence is to develop autonomous artificial agents that
are able to think and act rationally. Currently, there exist numerous machine intelligence
methods that are involved in learning, understanding, adapting, interacting, achieving
goals or objectives, reasoning, predicting, recognizing, or acting rationally.

Reinforcement learning (RL) is one of the techniques in machine intelligence that
can be considered a goal-directed method for solving problems in uncertain and dy-
namic environments. The RL agent learns by receiving reinforcement signals (reward
or punishment) from its environment. One of the advantages of using reinforcement
learning is its independence from a-priori knowledge in terms of required training data.
The learning is rather performed based on trial and error. This behavior is useful for
all user-dependent applications where it is generally difficult to obtain sufficiently large
training data.

One of reinforcement learning schemes is the temporal differencing (TD) which
generally does not require a model of the environment and is based on step-by-step,

H.R. Tizhoosh, M. Ventresca (Eds.): Oppos. Concepts in Comp. Intel., SCI 155, pp. 233–253, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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incremental computation. Q-learning is off-policy TD control and one of the most pop-
ular methods in reinforcement literature. In off-policy techniques, agent learns a greedy
policy and also applies an exploratory policy for action selection. One of the charac-
teristics of Q-learning is model-freedom which makes it suitable for many real-world
applications.

Dynamic programming, Monte Carlo algorithms, and temporal-difference learning
(TD) are three classes of techniques for solving problems using reinforcement idea.
Some of the RL methods are based on the concept of an eligibility trace which provides
a bridge between TD techniques and Monte Carlo methods. The underlaying idea is
that only eligible states or actions will be assigned a credit or blamed for an error.

Most real-world applications constitute large environments which are dynamic,
stochastic, nondeterministic, hidden, and/or only partially observable. One of the the-
oretical conditions for convergence of reinforcement learning methods such as Q-
learning [37] requires that each state-action pair must be visited infinite times (in
practice, of course, this reduces to ‘multiple times’). Hence, tabular and naive RL algo-
rithms (e.g. Q-learning) could benefit from any extension capable of decreasing their
computation time in the case of large state spaces where multiple visits of all states can
easily become infeasible.

This chapter outlines the newly proposed opposition-based RL algorithm for ac-
celerating the learning process in off-policy, step by step, incremental and model-free
reinforcement learning with discrete state-action space. We integrate the concept of op-
position [19, 20, 21, 29, 35] within a new scheme to make some tabular RL algorithms
perform faster. The general idea behind the algorithms is that in Q-value updating, the
agent updates the value of an action in a given state. If the agent knows the value of the
opposite state or the opposite action, then instead of one value, the agent can update two
Q-values at the same time without taking the corresponding opposite action. This ac-
celerates the learning process, particularly the exploration phase. The most challenging
part of this scheme, however, is defining the opposite state and/or the opposite action.
For some applications, the concept of opposition can be established heuristically. A
variety of algorithms can be generated based on the concept of opposition to improve
learning and casue a faster convergence [28, 31, 32, 33]. For other cases where opposi-
tional relationships are not obvious (hidden), incremental opposition mining algorithms
are required to exploit the benefit of simultaneous multiple-updates.

The chapter consists of four sections. Section 11.2 introduces the reinforcement
learning techniques as well as a survey of the techniques for accelerating reinforcement
learning. In Section 11.3 a class of new opposition-based RL algorithms are introduced
and major techniques based on opposition are described. Experimental results are pre-
sented in Section 11.4. Section 11.5 draws some conclusions.

11.2 Reinforcement Learning

Reinforcement learning (RL) can be considered as a class of goal-directed intelligent
techniques for solving problems in uncertain and dynamic environments. An agent is
a function or software component that maps the states of an environment to a set of
actions to establish an steady (stable) state of the environment. The agent attempts to
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maximize the profit (performance/reward) in order to reach this goal. Intelligent robots
and softbots (software agents) are examples of machine intelligent agents. A reinforce-
ment learning agent is autonomous [23] meaning that its behavior is determined by its
own experience. What is outside the agent is considered the environment. The states are
parameters (features) describing the environment. An RL agent has the ability to sense
the environment and learn the optimal policy (or a good policy) for taking optimal/good
actions in every state of the environment to achieve its goal. As a result of taking an ac-
tion, the agent has the ability to influence the state of the environment (and can map the
states to appropriate actions). The agent must be aware of the states of the environment
by interacting with the environment, and learns from receiving reinforcement feedback
through a reward or punishment function. The reward function represents, directly or in-
directly, the goal of the reinforcement learning problem. RL agents try to maximize the
reward or minimize the punishment [2, 4, 30]. The reward values could be objective or
subjective. In the subjective case, the agent will receive reward and punishment directly
from the interactive user (in some cases by using a software interface). In the objective
case, the reward is defined based on some optimality measures or desired properties of
the results [25, 27, 30]. Actions could affect the next state and subsequent rewards and
have the ability to optimize the environment’s state [30].

As mentioned earlier, one of the advantages of some reinforcement learning tech-
niques is their independency from a priori knowledge by learning based on trial and
error. Some RL agents learn from their own experience without relying on a teacher
or training data. This kind of learning is not supervised, but because of using a reward
function and exploitation of rewarding actions a weak supervision can be assumed.
The agent can learn online by adapting through interaction with the environment while
performing the required task and improving its behavior in real time. This behavior
is useful for all user-dependent applications where a sufficiently large training data is
difficult or impossible to obtain.

Learning is the core characteristic of any intelligent system and can be described as
“modification of a behavioral tendency by experience” [14]. For an RL agent, learning
by trial and error has mainly two stages, namely exploration and exploitation. Explo-
ration means that the agent tries to discover which actions yield the maximum reward
by taking different actions repeatedly. Exploitation, on the other hand, means that the
agent takes those actions that yield more reward. The transition between exploration
and exploitation generally occurs in a gradual manner depending on the selected action
policy.

The history of RL has two major parts: the study of animal learning, and the so-
lution of optimal control problems using value functions and dynamic programming
[30]. Value functions are functions of states or of state-action pairs that quantify the
performance of an action in a given state. Watkins developed the Q-learning algorithm
in 1989 [36, 37] in such a way that the agent maintains a value for both state and action
representing a prediction of the value of taking that action from the state.

11.2.1 General Framework

The design of an RL agent is based on the characteristics of the problem at hand. First
of all the problem must be clearly defined and analyzed and the purpose of designing
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Fig. 11.1. Basic components of reinforcement learning

the agent must be determined. Figure 11.1 illustrates the components, which constitute
the general idea behind reinforcement learning.

The RL agent takes an action that influences the environment. The agent acquires
knowledge of the actions that generate rewards and punishments and eventually learns
to perform the actions that are most rewarding in order to attain a certain goal. In the
RL model presented in Figure 11.1 the learning process is as follows [23, 30]:

• Observe the state of the environment
• Take an action
• Observe reward/punishment
• Observe the new state

11.2.2 Action Policy

Another key element of reinforcement learning is the action policy which defines the
agent’s behavior at a given time. It maps the perceived states to the actions to be taken
[30]. There are three common policies, softmax, ε-greedy, and greedy policy. The ε-
greedy or near greedy policy is based on the idea of selecting greedy actions most of
the time but a few times selecting a random action with probability of ε. Based on the
near greedy policy an agent has a chance to explore more and balance exploration with
exploitation, in contrast to greedy policy that always selects rewarding actions. In this
situation all actions may not be explored.

Generally, choosing the appropriate policy depends on the application but it must
be considered that the greedy policy sometimes leads to sub-optimal solution which
is a common problem in many intelligent systems. On the other hand, one of the dis-
advantages of using ε-greedy is that this technique uses random action selection by
considering equal probability for each action based on a uniform distribution for the
exploration. An alternative solution is considering the estimated value of each action
to vary the probability of action selection. This technique is called softmax action se-
lection [30]. The Boltzmann policy is the most common softmax method which uses a
Gibbs, or Boltzmann distribution for defining the policy. The probability of taking each
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action is presented based on Boltzmann policy in Equation 11.1, where Q(s, a) is a Q-
matrix [36, 37] representing the state-action values, τ is a parameter called temperature,
s is state, and a is action:

P (a) =
e

Q(s,a)
τ

∑
e

Q(s,:)
τ

, (11.1)

where the parameter τ is used to control the exploration. At the beginning of learning τ
has higher values which enforces more exploration. As time increases τ decreases and
consequently exploitation intensifies [6].

11.2.3 Markov Decision Process (MDP)

Reinforcement learning is learning via interaction of the agent with the environment
to achieve a certain goal, i.e. maximizing the accumulated rewards over the long run
[10]. The other concept that should be addressed here is the Markov property for rein-
forcement learning. If an environment is Markovian then its states at the time step t + 1
depend on the state and action at time t. If the reinforcement learning task satisfies the
Markov property it is called a finite Markov decision process (MDP) [30]. Regarding
RL problems as MDPs, it is assumed that the next state depends on the finite history
of previous states [25]. Hence, the environment can be modeled as a Markov decision
processe (MDP). The first order Markov property used to predict the probability of a
possible next state as follows:

P a
ss′ = Pr{st+1|st = s, at = a}, (11.2)

where P a
ss′ is the transition probability to next state s′ given any current state s and

action a [30].

11.2.4 Temporal-Difference Learning

Temporal-difference learning is a combination of Monte Carlo and dynamic program-
ming ideas. If at time t a non-terminal state st is visited, TD methods estimate the value
of that state, V (st), based on what happens after that visit. TD methods wait until the
next step (t + 1) to determine the increment to V (st) as opposed to Monte Carlo that
must wait until the end of the learning episode. The simplest TD update, called TD(0),
is presented in Equation 11.3 where α is a step-size parameter (0 < α ≤ 1), r is result
of taking an action1, γ is a discount-rate parameter (0 ≤ γ ≤ 1) and V (st) is value
function in each time step t:

V (st) ← V (st) + α[rt+1 + γV (st+1) − V (st)]. (11.3)

The tabular TD(0) for estimating the value function is presented in Algorithm 1
where V is value function and π is the action policy to be evaluated.

1 Generally, in all RL algorithms r represents the result of the action which can be reward or
punishment. The variable r represents the reward and a variable p represents the punishment.
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Algorithm 1. Tabular TD(0) for estimating value function [30]
1: Initialize V (s) arbitrarily, π the policy to be evaluated
2: for each episode do
3: Initialize s
4: for each step of episode do
5: a ← action given by π for s
6: Take action a: observe reward, r, and next state, s′

7: V (s) ← V (s) + α[r + γV (s′) − V (s)]
8: s ← s′

9: end for
10: end for

11.2.5 Sarsa

Sarsa is on-policy TD control [30]. For an on-policy method the state-action value
Qπ(s, a) must be estimated for the current policy π, and all states s and actions a.
In the on-policy Sarsa, the learned policy for the action-value function is the same as
the policy which is applied for action selection. The general algorithm for Sarsa is pre-
sented in Algorithm 2.

Algorithm 2. Sarsa: An on-policy TD control algorithm [30]
1: Initialize Q(s, a) arbitrarily
2: for each episode do
3: Initialize s
4: Choose a from s using policy derived from Q (e.g.,ε-greedy)
5: for each step of episode do
6: Take action a, observe r, s′

7: Choose a′ from s′ using policy derived from Q (e.g., ε-greedy)
8: Q(s, a) ← Q(s, a) + α[r + γQ(s′, a′) − Q(s, a)]
9: s ← s′, a ← a′

10: end for
11: end for

11.2.6 Q-Learning

Q-learning is off-policy TD control and is one of the most popular methods in reinforce-
ment learning. In an off-policy technique the learned action-value function, Q(s, a),
directly approximates the optimal action-value function Q∗, independent of the policy
being followed. In other words, the agent learns a greedy policy as well as applying
exploratory policy for action selection [30]. This simplifies the algorithm and facilitates
convergence. The agent learns to act optimally in Markovian domains by experiencing
sequences of actions. The agent takes an action at a particular state and uses immedi-
ate reward and punishment and estimates the state value. It evaluates the consequences
of taking different actions. By trying all actions in all states multiple times, the agent
learns which action is best overall for each visited state [37]. Therefore, the agent must
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determine an optimal policy and maximize the total discounted expected reward. Equa-
tion 11.4 must be employed for updating the action-value function, Q, where s is state,
a is action, α is learning step, γ is discount factor, r is the reward or punishment, a′ is
the next action, and s′ is the next state:

Q(s, a) ← Q(s, a) + α[r + γ max
a′

Q(s′, a′) − Q(s, a)]. (11.4)

The task of Q-learning is determining an optimal policy π∗. The values of the Q
matrix are the expected discounted reward for executing action a at state s using policy
π [37]. The (theoretical) condition for convergence of the Q-learning algorithm is that
the sequence of episodes which forms the basis of learning must visit all states infinitely.
It must be mentioned that based on Watkins and Dayan’s Theorem in [37] the rewards
and learning rate are bounded (|rn| ≤ Rmax, 0 ≤ αn < 1). The Q-learning algorithm
is presented in Algorithm 3.

Algorithm 3. Q-Learning: An off-policy TD control algorithm [30]
1: Initialize Q(s, a) arbitrarily
2: for each episode do
3: Initialize s
4: for each step of episode do
5: Choose a from s using policy derived from Q {e.g., ε-greedy}
6: Take action a, observe r, s′

7: Q(s, a) ← Q(s, a) + α[r + γ max
a′

Q(s′, a′) − Q(s, a)]

8: s ← s′;
9: end for

10: end for

Q-learning is model-free and uses bootstrapping. The bootstrapping property helps
the algorithm to use step-by-step reward, which is the result of the taking an action in
each step. This reward is a useful source of information which guides the agent through
the environment. Q-learning is considered a general and simple technique for learning
through interaction in unknown environments.

Initialization of parameters can be considered as using a priori knowledge for re-
inforcement learning. Choosing the appropriate parameters may influence the conver-
gence rate [18]. The focus of opposition-based reinforcement learning is on accelerating
the update process for Q-learning which is a major obstacle for its application and is
mainly a result of the hyper-dimensionality of states and actions in real-world problems.

11.2.7 Q(λ) – A Bridge between Monte Carlo and Q-Learning

Sutton et al. [30] introduce the eligibility trace as a bridge between TD techniques and
Monte Carlo methods. The idea behind the eligibility traces is that only eligible states
or actions will be assigned a credit or blame for the error. TD(λ) is based on a weighted
averaging of n-step backups, λn−1 (0 ≤ λ ≤ 1). This weighted averaging is presented
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in Equation 11.5 and Equation 11.6 (λ-return) where Rn
t is the n-step target at time t

[30]:

Rn
t = rt+1 + γrt+2 + γ2rt+3 + ... + γn−1rt+n + γnVt(st+n), (11.5)

Rλ
t = (1 − λ)

∞∑

n=1
λn−1Rn

t . (11.6)

The alternative choice for non-Markovian tasks with delayed rewards is using the
eligibility traces. “Eligibility trace is a temporary record of occurance of an event”
and “marks the memory parameter associated with the event as eligible for under-
going learning changes” [30]. Eligibility traces require more computation but yield
faster learning especially for applications with delayed rewards [30]. The parameter
λ (0 ≤ λ ≤ 1) must be adjusted to place the eligibility somewhere between TD and
Monte Carlo. For λ = 1 the algorithm behaves like the Monte Carlo technique. In con-
trast, if the λ = 0, then the overall backups behave like one-step TD backup. Sutton
et al. suggest that there is not sufficient theoretical investigations on determining the
suitable location for placing the eligibility [30].

The idea of eligibility traces can be applied to TD techniques such as Sarsa and
Q-learning. Watkins’s Q(λ) unlike the TD(λ) and Sarsa(λ) looks ahead until the next
exploratory action. TD(λ) and Sarsa(λ) need to look ahead until the end of the episode.
In contrast, in Q(λ), if an agent takes an exploratory action then the eligibility traces
will become zero. During the exploration process in early learning the traces will be cut
off [30]. Peng et al. [16] introduced a solution for this problem by using a mixture of
backups. The implementation of Peng’s technique is more difficult than the Q(λ) [16,
30]. This technique is “experimentation-sensitive” when λ > 0. Rewards associated
with “non-greedy action” will not be used for evaluating “greedy policy” [16].

Sutton et al. proposed a third variation of Q(λ) [30], namely Naive Q(λ), which is
similar to Watkins’s Q(λ) with the difference that in this version the traces related to
exploratory actions are not set to zero. In this chapter the Watkins’s Q(λ) has been im-
plemented (presented in Algorithm 4). The reason for this is that in Watkins’s Q(λ) the
representation of the update for the value function is based on using Q(s, a), contrary
to Peng’s technique which is based on a combination of backups based on both V (s)
and Q(s, a). The opposition-based RL technique benefits from the concept of opposite
actions, therefore the updates should be presented for Q(s, a) and Q(s, ă) where ă is
opposite action (see section 11.3).

11.2.8 Benefits and Shortcomings of Reinforcement Learning

Reinforcement learning has the ability of learning through interaction with a dynamic
environment and using reward and punishment, generally independent of any training
data set. RL agents learn from their own experience without relying on teachers or train-
ing data. The agent does not need a set of training examples. Instead, it learns online by
continuously learning and adapting through interaction with the environment. In some
of the RL techniques the model of the environment can be applied to predict the next
state and next reward by using the given state and action. Model-based reinforcement
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Algorithm 4. Tabular Watkins’s Q(λ) algorithm [30]
1: Initialize Q(s, a) with arbitrary numbers and initialize e(s, a) = 0 for all s and a
2: for each episode do
3: Initialize s and a
4: for each step of episode do
5: Take action a, observe r and next state s′

6: Choose next action a′ from s′ using policy
7: a∗←− argmaxb Q(s′, b) {if a′ ties for max, then a∗ ← a′}
8: δ ←− r + γ Q(s′, a∗)−Q(s, a)
9: e(s, a)←− e(s, a) + 1

10: for all s, a do
11: Q(s, a)←− Q(s, a) + αδe(s, a)
12: if a′ = a∗ then
13: e(s, a)←− γλe(s, a)
14: else
15: e(s, a)←− 0
16: end if
17: end for
18: s ←−s′;a←−a′

19: end for
20: end for

learning methods have the advantage of yielding more accurate value estimation but
they usually need more memory and may suffer from the curse of dimensionality. The
other major problem is that the model of the environment is not always available.

The strengths and shortcomings of RL can be summarized as follows:

Strengths:

• Learning through interaction with environment (Online learning)
• No training data is required for some of the RL techniques
• No model is required for some of the RL techniques
• Independency of a priori knowledge for some of the RL techniques

Shortcomings:

• Exploring the state space is computationally expensive
• The large number of actions also makes the RL techniques more computationally

expensive
• Design of RL agents is not straightforward for all applications [7, 9, 17]

Existing Literature

The condition for convergence of Q-learning requires that each state-action pair must
be visited infinite times. This requirement is impossible to fulfill in the real world. In
practice, nearly optimal action policies can usually be achieved when all actions have
been taken multiple times for all states [22]. In real world applications generally the
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agent faces a very large state or action space which limits the usability of reinforcement
learning. There are several solutions proposed in literature. Some general solutions to
this problem are briefly reviewed in the following.

Using a priori knowledge – It is argued that RL is not always a tabula rasa and
additional knowledge can be provided for the agent [12, 22]. The knowledge can be
gained through imitation of other agents or transformation of knowledge from previ-
ously solved problems [12]. Ribeiro proposed a technique of using knowledge about
rates of variation for action values in Q-learning and updating temporal information
for the visited states and neighboring states which have similarities with the visited
states [22]. Knowledge can be transfered to the agent by a human user through giving
advice to the agent. Maclin et al. [11] propose the Preference Knowledge-Based Kernel
Regression algorithm (Pref-KBKR). Their proposed algorithm uses human advice as a
policy based on if-then rules.

Using hierarchical models and task decomposition – The idea of a hierarchical model
is presented by Mahadevan and Kaelbling in [12] as a way of increasing the speed of
learning by decomposing the task into a collection of simpler subtasks. Goel provides a
technique of sub-goal discovery based on learned policy for hierarchical reinforcement
learning [5]. In this technique, hierarchies of actions are produced by using sub-goals
in a learned policy model. Hierarchies of actions can then be applied for more effec-
tive exploration and acceleration of the process [12]. Goel emphasizes that for finding
the sub-goals the states with certain structural properties must be searched [12]. Kael-
bling [8] introduces hierarchical distance to goal learning (HDG) by using decompo-
sition of the state space. She argues that this modified version achieves the goal more
efficiently. Shapiro et al. [26] combine the hierarchical RL with background knowledge.
They propose Icarus, an agent architecture that embeds hierarchical RL within a pro-
gramming language representing an agent’s behavior, where the programmer writes an
approximately correct plan including options in different level of details to show how
to behave with different options. The agent then learns the best options from experience
and the reward function given by the user.

Parameters optimization – Potapov and Ali mention that choosing the appropriate
parameters may influence convergence rate of reinforcement learning [18]. Specifically,
they investigate the problem of selecting parameters for Q-learning method.

Function approximation – Function approximation techniques such as neural net-
works can also be considered as a technique for reducing the large stochastic state
space, especially in continuous domains [12, 24]. These techniques provide methods
for approximating the value function [12].

Offline training – The RL agent could be trained offline. The demands of the user
can be learned offline in order to minimize the online learning time [34].

Generalization – Agent generalizes by learning similar or closely related tasks. The
generalization techniques “allow compact storage of learned information and transfer
of knowledge between “similar” states and actions” [10].

Hybrid techniques – As mentioned earlier, neural networks can be applied in the
framework of the RL as function approximators [12, 24]. In the case of model learning,
the Bayesian network can represent the state transition and reward function [12].



11 The Concept of Opposition and Its Use in Q-Learning and Q(λ) Techniques 243

Using macro actions – Mc Govern and Sutton [13] introduce the macro actions as
temporally extended actions by combining smaller actions. They argue that macro ac-
tions can affect the speed of learning based on the task at hand.

Relational state abstraction – Morales proposes relational state abstraction for re-
inforcement learning [15]. In this technique Morales describes that the states can be
presented as a set of relational properties which yields to abstraction and simplification
of the state space. Then, the agent can learn over abstracted space to produce reusable
policies which can be transferred and applied to problems with the same relational
properties [15].

11.3 Opposition-Based Reinforcement Learning

The goal of this chapter is to introduce opposition-based RL techniques which expedite
the learning process for Q-learning and Q(λ). These methods are based on multiple
and concurrent Q-value updates. In conventional Q-learning, an agent considers one
state-action pair and updates one Q-value per iteration. In opposition-based Q-learning
we assume that for each action there is an opposite action. If the agent takes an action
and receives a reward (or punishment) for that action, it would receive punishment
(reward) for the opposite action. Therefore, instead of taking the opposite action in
a given state, the agent will simply update its associated Q-value. It means that for
a given state the Q-values can be updated for both the action (which is taken) and
its corresponding opposite action (which is not taken) at the same time. This strategy
saves time and accelerates the learning process [31, 32, 33]. In this section we introduce
two oppositional RL techniques, opposition-based Q(λ) (OQ(λ)) and opposition-based
Q(λ) with Non-Markovian Update (NOQ(λ)) [28, 29].

11.3.1 OQ(λ) – Opposition-Based Q(λ)

The relationship between the idea of opposition and RL has been explored in the frame-
work of the opposition-based Q(λ) technique, OQ(λ) [28, 29]. If an OQ(λ) agent at
each time t receives a reward for taking the action a in a given state s, then at that
time the agent may also receive punishment for opposite action ă in the same state s
without taking that opposite action. It means that the value function, Q, (e.g. Q-matrix
in tabular Q-learning) can be updated for two values Q(s, a) and Q(s, ă) instead of
only one value Q(s, a). Therefore, an agent can simultaneously explore actions and in-
tegrate knowledge about the opposite actions. Consequently, updating the Q-values for
two actions in a given state for each time step can lead to faster convergence since the
Q-matrix can be filled in a shorter time [31, 32, 33].

Figure 11.2 demonstrates the difference between Q-matrix updating using reinforce-
ment learning (left image) and Q-matrix updating using opposition-based reinforce-
ment learning (right image). In the left image the states are si and actions are aj where
1 ≤ i ≤ 5 and 1 ≤ j ≤ 4. The agent in state s2 takes action a2 and receives reward r.
Then by using reward r the value v1 = Q(s2, a2) of action a2 in the state s2 is calcu-
lated using the updating formula of Q-learning algorithm as follows:

Q(s2, a2) ← Q(s2, a2) + α[r + γQ(s′, a′) − Q(s2, a2)]. (11.7)
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Fig. 11.2. Q-matrix updating; Left: Q-matrix updating using reinforcement learning, right: Q-
matrix updating using opposition-based reinforcement learning where an additional update (v2)
can be performed for the opposite action ă2

In the right image of Figure 11.2, there are two actions a1 and a2 with their associated
opposite actions ă1 and ă2. The agent in state s2 takes action a2 and receives reward r.
By using reward r the value v1 of action a2 in the state s2 is calculated as before. In the
opposition-based technique we assume that the agent will receive an opposite reward
by taking opposite action. Hence, by assuming that the agent will receive punishment p
( opposite reward) by taking the opposite action ă2 in state s2, the value v2 = Q(s2, ă2)
in Q-matrix is also updated as follows [31, 32, 33]:

Q(s2, ă2) ← Q(s2, ă2) + α[p + γQ(s′, a′) − Q(s2, ă2)]. (11.8)

It means that the value function Q can be updated for two values instead of only one
value. Therefore, an agent can simultaneously explore actions and update its knowledge
about the opposite actions. Hence, the additional update should accelerate the learning.

The OQ(λ) algorithm is constructed based on opposition traces which represent
eligibility traces for opposite actions. Assume that e(s, a) is the eligibility trace for
action a in state s, then the opposition trace is ĕ = e(s, ă). For updating the Q-matrix
in a given state s, agent takes action a and receives reward r. Then by using reward r
the Q-matrix will be updated for all states and actions:

δ1 ←− r + γQ(s′, a∗) − Q(s, a), (11.9)

Q(s, a) ←− Q(s, a) + αδ1e(s, a), (11.10)

By assuming that the agent will receive punishment p by taking opposite action ă, the
Q-matrix will be updated for all states s and opposite actions ă:

δ2 ←− r̆ + γQ(s′′, a∗∗) − Q(s, ă), (11.11)

Q(s, ă) ←− Q(s, ă) + αδ2e(s, ă), (11.12)

The OQ(λ) algorithm [28] is presented in Table 5.
OQ(λ) differs from Q(λ) algorithm in the Q-value updating. In OQ(λ) the op-

position trace facilitates updating of the Q-values for opposite actions and instead of
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Algorithm 5. OQ(λ) [28]. If the agent receives punishment p for taking an action then
the opposite action receives reward r

1: For all s and a initialize Q(s,a) with arbitrary numbers and initialize e(s, a) = 0
2: for each episode do
3: Initialize s and a
4: for each step of episode do
5: Take action a, observe r and next state s′

6: Determine opposite action ă and next state s′′

7: Calculate opposite reward (punishment) r̆ = p
8: Choose next action a′ from s′ using policy
9: Determine next opposite action ă′ from s′′

10: a∗←− argmaxb Q(s′, b) {if a′ ties for max, then a∗ ← a′}
11: a∗∗←− argmaxb Q(s′′, b) {if ă′ ties for max, then a∗∗ ← ă′)}
12: δ1 ←− r + γ Q(s′, a∗)−Q(s, a)
13: δ2 ←− r̆ + γ Q(s′′, a∗∗)−Q(s, ă)
14: e(s, a)←− e(s, a) + 1
15: e(s, ă)←− e(s, ă) + 1
16: for all s, a in action set A do
17: Q(s, a)←− Q(s, a) + αδ1e(s, a)
18: if a′ = a∗ then
19: e(s, a)←− γλe(s, a)
20: else
21: e(s, a)←− 0
22: end if
23: end for
24: s ←−s′; a←−a′

25: for all s, ă in the opposite action set Ă where Ă is not ⊂ A do
26: Q(s, ă)←− Q(s, ă) + αδ2e(s, ă)
27: if ă′ = a∗∗ then
28: e(s, ă)←− γλe(s, ă)
29: else
30: e(s, ă)←− 0
31: end if
32: end for
33: end for
34: end for

punishing/rewarding the action and opposite action2 we punish/reward the eligible trace
and opposite trace.

Reward/Punishment Confusion

An issue that must be addressed here is that in some situations an action and its opposite
action may yield the same result (=reward/punishment) in a given state. The action and

2 It is assumed that when the agent receives reward (r)/punishment (r̆) for taking an action, it
will receive punishment (r̆)/reward (r) for taking the opposite action.
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Fig. 11.3. Both action and opposite action should be punished for going away from the target
(star)

opposite action may both lead to reward, or both lead to punishment. The example
in Figure 11.3 illustrates this situation using the grid world problem [28]. The goal is
presented by a star and the present state is s. For both action a1, and its opposite ă1 the
result is punishment because they both increase the distance of the agent from the goal.
Hence, both of them should be punished. Rewarding one of them will falsify the value
function and affect the convergence.

Opposition traces are possible solutions for this problem since the Q-matrix updat-
ing is not limited to one action and one opposite action at a given state, but also de-
pends on updating more Q-values by using eligibility and opposition traces. Therefore,
all actions in the trace and all opposite actions in the opposition trace will affect the
learning process and help to avoid/reduce the effect of reward/punishment confusion.
It can also be stated that for grid-based problems with one target the influence of con-
fusing cases becomes completely negligible with increase in dimensionality. However,
the confusing cases can cause algorithm oscillations around the corresponding state if
mechanisms such as opposition traces are not employed. This has been reported for
standard Q-learning [33].

11.3.2 Opposition-Based Q(λ) with Non-markovian Update

It has been assumed that the agent has knowledge of opposite state. This may limit the
usability of the technique to deterministic environments because the next state of the
environment (for the opposite action) should be provided, considering that the agent
will not actually take the opposite action. In order to relax this assumption, the Non-
Markovian Opposition-Based Q(λ) (NOQ(λ)) algorithm is introduced in this section.

The new method is a hybrid of Markovian update for eligibility traces and non-
Markovian-based update for opposition traces. The NOQ(λ) method specifically fo-
cuses on investigating the possible Non-Markovian updating of opposition traces where
the next state for the opposite action may not be available. This extends the usability
of OQ(λ) to a broader range of applications where the model of environment is not
provided for the agent.

One issue regarding the OQ(λ) algorithm is the problem of Markovian-based updat-
ing of the opposite trace which will be addressed here. As it is presented in Algorithm 5,
line 6, the agent should determine the next state s′′ after defining the opposite action ă.
In this algorithm the agent does not actually take ă. For instance, if the action is going
to the left, then the opposite action is determined (not taken) as going to the right. In a
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deterministic environment the agent can figure out the next state by using the model of
the environment. In the case of the Gridworld problem the agent assumes that the next
state s′′ for opposite action ă is the opposite of next state s̆′ with respect to initial states.
In this case the Q values can be updated for the opposition trace as follows:

a∗∗ ←− argmaxbQ(s′′, b), (11.13)

δ2 ←− r̆ + γQ(s′′, a∗∗) − Q(s, ă), (11.14)

Q(s, ă) ←− Q(s, ă) + αδ2e(s, ă), (11.15)

where α is step-size parameter and γ is a discount-rate parameter. Equations 11.13,
11.14, and 11.15 present the Markovian-based updating by considering the next state
of s′′ [29]. In NOQ(λ) we address this problem by introducing the non-Markovian
updating for opposition traces.

The OQ(λ) method updates opposite traces without taking opposite actions (which
intuitively would not make sense in any event). For this reason, the opposition update
(the Markovian update) depends on the next state of the environment that should be
known by the agent. This limits the applicability of the OQ(λ) to deterministic envi-
ronments. We relax the constraint of Markovian updating by introducing a new update
for opposition traces. Equation 11.16 presents the new update formula for opposition
traces where r̆ is the opposite reward, and e(s, ă) is the opposite trace:

Q(s, ă) ←− Q(s, ă) + W × r̆ × e(s, ă). (11.16)

The parameter W ∈ [0, 1] is introduced to impose a weight on opposition update.
If in some application the definition of opposite action is not straightforward, then it
should be defined as a function of the number of iterations. Hence, we assume that at
the beginning of learning the weight of the update is low and increases gradually as
the agent explores the actions and the opposite actions. In the case of the Gridworld
problem, the definition of opposite actions are known and hence W = 1.

As it is presented in Equation 11.16, Q(s, ă) does not depend on the next state, in
contrast to the OQ(λ) technique which depends on s′′ (see Equations 11.15 and 11.14).
The algorithm of the NOQ(λ) technique is presented in the Algorithm 6.

11.4 Experimental Results

The Gridworld [29] problem with three sizes (20 × 20, 50 × 50, and 100 × 100) is
chosen as a test-case problem. The grid represents the learning environment and each
cell of the grid represents a state of the environment. A sample Gridworld is presented
in Figure 11.4. The agent can move in 8 possible directions indicated by arrows in the
figure. The goal of the agent is to reach the defined target in the grid which is marked
by a star.

Four actions with their corresponding four opposite actions (if a = Up then
ă = Down) are defined. By taking an action, the agent has the ability to move to
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Algorithm 6. NOQ(λ) Algorithm [29]. If the Agent Receives Punishment p for Taking
an Action then the Opposite Action receives Reward r

1: For all s and a initialize Q(s,a) with arbitrary numbers and initialize e(s, a) = 0
2: for each episode do
3: Initialize s and a
4: for each step of episode do
5: Take action a, observe r and next state s′

6: Determine opposite action ă
7: Choose next action a′ from s′ using policy
8: Determine next opposite action ă′

9: a∗←− argmaxb Q(s′, b) {if a′ ties for max, then a∗ ← a′}
10: δ1 ←− r + γ Q(s′, a∗)−Q(s, a)
11: e(s, a)←− e(s, a) + 1
12: e(s, ă)←− e(s, ă) + 1
13: for all s, a in the action set A do
14: Q(s, a)←− Q(s, a) + αδ1e(s, a)
15: if a′ = a∗ then
16: e(s, a)←− γλe(s, a)
17: else
18: e(s, a)←− 0
19: end if
20: end for
21: for all s, ă in the opposite action set Ă where Ă is not ⊂ A do
22: Q(s, ă)←− Q(s, ă) + W ∗ r̆ ∗ e(s, ă)
23: if a′ = a∗ then
24: e(s, ă)←− γλe(s, ă)
25: else
26: e(s, ă)←− 0
27: end if
28: end for
29: s ←−s′; a←−a′

30: end for
31: end for

Fig. 11.4. Sample Gridworld [29]. There are eight possible actions presented by arrows. The letter
S represents the state and the star is the target.
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Table 11.1. The Initial Parameters for all experiments [29]

nE Imax α γ λ

100 1000 0.3 0.2 0.5

Table 11.2. The results for the four measures of I, T , χ, and ζ for algorithms (Q(λ), OQ(λ),
and NOQ(λ)) [29]. The results are based on 100 runs for each algorithm [29].

Q(λ) OQ(λ) NOQ(λ)

X × Y 20 × 20 50 × 50 100 × 100 20 × 20 50 × 50 100 × 100 20 × 20 50 × 50 100 × 100

I 255 ± 151 528 ± 264 431 ± 238 20 ± 8 57 ± 26 103 ± 50 19 ± 7 48 ± 23 100 ± 46

T 3 ± 2 17 ± 6.6 102 ± 25 0.3 ± 0.1 5 ± 1 80 ± 7 0.2 ± 0.1 5 ± 0.7 58 ± 6

χ 0 11 9 0 0 0 0 0 0

ζ 93.3% 100% 100%

one of the neighboring states. The actions/opposite actions are left/right, up/down, up-
right/down-left, and up-left/down-right. The initial state is selected randomly for all
experiments. If the size of a grid is (Xmax, Ymax), then the coordinates of the target
are fixed at ( Xmax

2 , Ymax

3 ). The value of immediate reward is 10, and punishment is -10.
After the agent takes an action, if the distance of the agent from the goal is decreased,
then agent will receive a reward. If the distance is increased or not changed, the agent
receives punishment. The Boltzmann policy is applied for all implementations. The
Q(λ), OQ(λ), and NOQ(λ) algorithms are implemented. The initial parameters for
the algorithms are presented in Table 11.1.

The following measurements are considered for comparing the results of Q(λ),
OQ(λ), and NOQ(λ) algorithms:

• overall average iterations I: average of iterations over 100 runs
• average time T : average running time (seconds) over 100 runs
• number of failures χ: number of failures over 100 runs

The agent performs the next episode if it reaches the target represented by the star.
Learning stops when the accumulated reward of the last 15 iterations has a standard
deviation below 0.5. The results are presented in Table 11.2.

The results presented in Table 11.2 are also plotted in Figures 11.5 and 11.6 for
visual comparisons. Figure 11.5 presents changes in the overall average number of iter-
ations for Q(λ), OQ(λ), and NOQ(λ) algorithms for the three grid sizes. We observe
that the total number of iterations for convergence of Q(λ) is far higher than OQ(λ)
and NOQ(λ) algorithms. The NOQ(λ) takes slightly less iterations than OQ(λ). The
reason for this may be related to the independency of NOQ(λ) of next state for the
opposite action.

Figure 11.6 presents the average time for Q(λ), OQ(λ), and NOQ(λ) algorithms
for the three grid sizes. Even though the number of iterations for OQ(λ) and NOQ(λ)
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Fig. 11.5. The average of average iterations I for Q(λ), OQ(λ), and NOQ(λ);

Fig. 11.6. The average time T for Q(λ), OQ(λ), and NOQ(λ) [29]

are almost the same, the average computation time of NOQ(λ) is much less than the
average time of the OQ(λ) for 100 × 100 grid. The reason is that NOQ(λ) algorithm
is more efficient than OQ(λ) due to decrease in the computational overhead associated
with updating the opposition traces.

In order to compare Q(λ), OQ(λ), and NOQ(λ) algorithms we also need to con-
sider that Q(λ) failed to reach the goal or target 20 times3. To reflect this failure in the
performance measure, the success rate ζoverall for the algorithms (presented in [28]) is
calculated:

3 If the fixed numbers of iterations and episodes are not enough for the algorithm to reach the
target (in one run) then we consider this as one failure.
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ζoverall =

⎛

⎝1 −
k∑

i=1
χi

∑

k

H

⎞

⎠× 100, (11.17)

where k is the number of grids tested (in this case k = 3), χ is the number of failures,
and H is the number of times the code is run for each grid. Considering the convergence
conditions, for the Q(λ) algorithm, the overall success rate is ζoverall = 93.3% because
the agent failed to reach the goal 20 times. For the proposed algorithm NOQ(λ), and
the oppsotion-based algorithm OQ(λ), the overall success rate is ζoverall = 100%;
Both always successfully find the target.

11.5 Conclusions

The goal of this chapter was to review new techniques for expediting some of the tab-
ular RL methods for off-policy, step-by-step, incremental and model-free reinforce-
ment learning with discrete state and action space. To solve this problem the concept
of opposition-based reinforcement learning has been used. The general idea is that in
Q-value updating, the agent updates the value of an action in a given state. If the agent
knows the value of the opposite state or the opposite action, then instead of one value,
the agent can update multiple Q-values at the same time without taking the associated
opposite action.

A variety of algorithms can be generated based on the concept of opposition to im-
prove the learning and design faster RL techniques. Opposition is applied to create
several algorithms based on using Q-learning. The OQ(λ) has been introduced to ac-
celerate Q(λ) algorithm with discrete state and action space. The NOQ(λ) method is
an extension of OQ(λ) to cover a broader range of non-deterministic environments.
The update of the opposition trace in OQ(λ) depends on the next state of the oppo-
site action (which cannot be taken). This limits the usability of this technique to the
deterministic environments because the next state should be detected or known by the
agent. NOQ(λ) was presented to update the opposition traces independent of knowing
the next state for the opposite action. The primary results show that NOQ(λ) can be
employed in non-deterministic environments and performs even faster (see Figure 11.6)
than OQ(λ).

The future work will focus on the extending the opposition-based technique to other
reinforcement learning algorithms. We will also study the effects of the opposite states
on the performance of RL algorithms with respect to the number of iterations and run-
ning time of the codes. The investigation of the effects of opposition-based RL methods
in hybrid techniques is an interesting research topic which should be considered as well.
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Summary. Backpropagation is the most popular algorithm for training neural networks. How-
ever, this gradient-based training method is known to have a tendency towards very long train-
ing times and convergence to local optima. Various methods have been proposed to alleviate
these issues including, but not limited to, different training algorithms, automatic architecture de-
sign and different transfer functions. In this chapter we continue the exploration into improving
gradient-based learning algorithms through dynamic transfer function modification. We propose
opposite transfer functions as a means to improve the numerical conditioning of neural networks
and extrapolate two backpropagation-based learning algorithms. Our experimental results show
an improvement in accuracy and generalization ability on common benchmark functions. The
experiments involve examining the sensitivity of the approach to learning parameters, type of
transfer function and number of neurons in the network.

12.1 Introduction

Neural network learning algorithms are extremely capable of discovering solutions in
quadratic or simply-shaped, non-complex error surfaces [4, 23]. Some popular learn-
ing algorithms such as backpropagation [39, 52, 53], Levenbeg-Marquardt [21], quick
propagation [18], resilient propagation [38] and various conjugate gradient-based ap-
proaches [7, 34] have been developed which are capable of learning in more complex
scenarios. However, no learning algorithm is perfect, and countless heuristics and other
techniques to improve on these and other algorithms have been developed.

In this chapter we propose two frameworks for hybridizing gradient-based learning
algorithms with notions of opposition. Our global decision-based framework allows a
network to decide which neurons are candidates for a transfer function change. Whereas
our second approach allows specific neurons to decide whether to change their transfer
function based only on local information. These frameworks show improvements in
network accuracy at the expense of a small amount of computational overhead.

Both frameworks are based on employing opposite networks which utilize opposite
transfer functions in different manners [48, 49, 50]. An opposite transfer function is es-
sentially a transformation on a neuron transfer function which alters the input/output
mapping of the network. While other structural transformations do not guarantee a
change in the network input/mapping, opposite transfer function guarantee this for min-
imal networks. Each combination of these functions represents a unique location on
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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the training error surface and transformations between all networks is accomplished in
O(1) computational complexity. This property allows for the efficient consideration of
opposite networks.

The remainder of this chapter is organized as follows. Section 12.2 will discuss the
backpropagation algorithm and previous works concerning the influence of adaptive
transfer functions on its performance. We also point out properties of symmetric trans-
formations and their effect on the input/output mapping and error surface. In Section
12.3 we introduce the concept of an opposite network, which has its foundation on the
notion of an opposite transfer function. We also discuss properties of these types of net-
works. Then, in Section 12.4 we propose two frameworks for using opposite networks,
based on global and local decision rules. The backpropagation and backpropagation
through time algorithms are extended as examples of each framework. Our experimen-
tal results on both modified algorithms are presented in Section 12.5 and our conclu-
sions and some possible directions for future works are provided in Section 12.6.

12.2 Background

Many neural network learning algorithms are based on utilizing gradient information
∇E(w) to guide the weight optimization procedure, where w ∈ W is a configuration
of weights and biases (hereafter simply referred to as weights) of the space of possible
weight configurations, W . The gradient is calculated with respect to the error function
E which summarizes the network error over all training patterns {(x,d)p}P

p=1. For
each input vector x there exists a target vector d, where commonly |x| � |d|. The
input and output layer sizes of the network equal the size of the input and target vectors,
respectively.

12.2.1 Backpropagation

Backpropagation is the most popular gradient-based algorithm for training feedforward
and recurrent neural networks [39, 52, 53]. Many other learning approaches either em-
ploy backpropagation (BP) directly, or are based on its principles. Therefore, using this
algorithm in our study potentially has a wider influence than other learning algorithms.
The general idea of BP is to update w in the direction of the greatest rate of decrease of
the error function.

We will assume a feedforward network with L layers indexed by l = 0..L where |l|
is the size of the lth layer. It must be that |l = 0| = |x| and |l = L| = |d|. Further
assuming that network performance E is measured by the mean-squared error (MSE)
function where yk is the kth output of the network then,

E =
1

2P

P∑

p=1

K∑

k=1

(dk − yk)2 (12.1)

and we can quickly derive the backpropagation algorithm. Since E is a function of a
neuron’s output error (ej), which is a function of the neuron output (yj), which is itself
a function of the neuron input (vj) it follows from the Chain Rule of Calculus that
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∂E

∂wij
=

∂E

∂ej

∂ej

∂yj

∂yj

∂vj

∂vj

∂wij
(12.2)

represents the derivative of E with respect to each weight wij in the network between
every neuron pair (i, j). Separately calculating the derivative of each value in (12.2)
yields

∂E

∂ej
= ej and

∂ej

∂yj
= −1 and

∂yj

∂vj
= φ′(vj) and

∂vj

∂wij
= yi, (12.3)

where φ′ is the derivative of the neuron transfer function, φ. It is common to group the
local gradient values of neuron j as

δj = ejφ
′(vj). (12.4)

Algorithm 1. The Backpropagation Algorithm
1: randomly select w ∈ W
2: while termination criteria not satisfied do
3: for each training pattern {(x,d)} do

{set input pattern into network}
4: y0 = x

{forward propagation}
5: for each layer, l=1 to L do
6: for each neuron, j = 1 . . . |l| do

7: vl
j =

|l−1|∑

i=0

wl
ijy

l−1
i

8: yl
j = φ(vl

j)
9: end for

10: end for

{calculate error of each output neuron}
11: eL = d − yL

{backward propagation}
12: for l = L . . . 1 do
13: for j = 1 . . . |l| do

14: δl
j =

⎧
⎪⎪⎨

⎪⎪⎩

eL
j φ′

j(v
L
j ) if l=L

φ′
j(v

l
j)

|l+1|∑

k=1

δl+1
k wl+1

kj otherwise

15: wl
ij = wl

ij + αδl
jy

l−1
i , for i = 0 . . . |l − 1|

16: end for
17: end for
18: end for
19: end while
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Weight update in backpropagation then follows the Delta Rule,

Δw = α
∂E

∂wij
. (12.5)

where 0 < α ≤ 1 represents a learning rate parameter and controls how w is updated.
Learning typically begins at an initially random w and proceeds until a maximum num-
ber of iterations is met or E < ε, where ε ≥ 0 is an acceptable performance threshold.

The pseudocode for backpropagation is presented in Algorithm 1. For readability
we use index l to refer to a specific layer, i.e. wl

ij represents the weight connecting
neuron i in layer l − 1 to neuron j in layer l. The forward propagation steps (lines 5-
10) determine the input and output value of each neuron in the network. The network
error on the current training pattern is calculated in line 11. In lines 12-17 the δ values
of each neuron in the output and hidden layers are computed and each wl

ij is updated
accordingly. This online version of backpropagation will continue until the termination
criteria are satisfied.

Extending backpropagation to recurrent neural networks is possible through the
backpropagation through time algorithm [52]. In this approach, the recurrent connec-
tions are unfolded such that the network is essentially feedforward. Then, we can use
Algorithm 1 to train the unfolded network.

As with other learning algorithms, backpropagation is not perfect. It is very sensi-
tive to its initial conditions, i.e. the random weight settings or transfer function type,
amongst others [46]. A poor initial network, an ill-conditioned one, typically will ex-
hibit premature convergence towards a poor input/output mapping. To aid in alleviat-
ing this problem other learning algorithms utilize second-order information regarding
the curvature of the error surface. Other approaches include adaptive learning rate and
momentum values [12, 27, 33] to allow the learning algorithm to make larger weight
updates to avoid flat areas and better explore the error surface. For more information
regarding these strategies the interested reader is referred to [3, 4, 23].

12.2.2 Adaptive Transfer Functions

Typically the transfer functions used by a neural network are arbitrarily chosen and fixed
before training begins. However, the Universal Approximation Theorem (see Appendix
A) does not particularly favor any specific sigmoid function [19, 25]. One approach
is to employ a global search algorithm to determine a better set of transfer functions
before learning, however this approach tends to be very time consuming [32]. Another
approach is to use additional parameters in the transfer functions which can be adapted
during the learning process.

Figure 12.1 shows an example of different slope parameterizations of the logistic
function, which is commonly utilized in neural network learning. Specifically, the func-
tion has the form

φ(x) =
1

1 + ae−mx
(12.6)

where m is a parameter controlling the slope of the function and a controls the gain.
By learning the slope and gain for each transfer function in the network it is possible to
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Fig. 12.1. Different slope parameterizations of the logistic function

improve on the accuracy and learning rate of backpropagation-based learning algo-
rithms [26, 44].

Various researchers have investigated justifications for the use adaptive transfer func-
tions. Chandra and Singh [6] hypothesize that for a specific data set there may be a pre-
ferred type of transfer function. However, deciding this specific function is too complex
a task for large real world problems and therefore they raise a case for the use of transfer
functions which can adapt during learning to better suit the problem. This hypothesis
was also echoed by Xu and Ming [56] and by Hu and Shao [26], who also report a
decrease in the complexity of the network (i.e the number of hidden neurons required
to perform the given task).

Adaptive sigmoid functions have been investigated in [5]. Their proposed algorithm
was shown to outperform traditional backpropagation by up to an order of magnitude.
The addition of a gain parameter to adjust sigmoid networks was proposed in [29]. The
method showed an increase in network performace. And in [43] another adaptive trans-
fer function network is proposed which yields a faster convergence rate and accuracy
for classification of echocardiogram data than networks with fixed sigmoid functions.

A comparison was performed in [10] between single hidden layer networks with and
without adaptive transfer functions for static and dynamic patterns. It was found that uti-
lizing adaptive transfer functions was able to model the data more accurately.Improved
generalization and robustness were also observed using adaptive functions in multires-
olution learning [31].

The special case of learning the amplitude of transfer functions was considered in
[45]. Using a variety of function approximation, classification and regression tasks it
was shown that the method yielded an increase in convergence rate and a possible im-
provement in generalization ability by finding better areas of the error surface. This
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work was extended to recurrent networks using a real-time recurrent learning algorithm
and showed similar improvements [20]. Another work on adaptive amplitute transfer
functions focused on complex-valued nonlinear filters [22].

Higher-order adaptive transfer functions were considered in [55]. They reported an
increased flexibility, reduced network size, faster learning and lower approximation
errors.

Vecci et al. investigate a special class of neural networks which are based on cubic
splines [47]. The method adapts the control points of a Catmull-Rom spline. It is shown
that this model has several advantages including lower training times and reduced
complexity.

Hoffmann [24] proposes universal basis functions (UBFs) which are parameterized
to allow for a smooth transition between different functional forms. The UBFs can be
utilized for both bounded and unbounded subspaces. Hoffmann’s experimental results
show an improvement over radial basis functions for some common benchmark data
sets.

These works show that adaptive transfer functions can lead to improvements in accu-
racy, robustness and generalization of neural networks. Adjusting the parameters of the
neural network structure represents a structural transformation. It is possible that some
transformations do not alter the network input/output mapping, making them irrelevant.

12.2.3 Symmetric Structural Transformations

Symmetry refers to a physical system’s ability to remain unaffected by some transfor-
mation. A neural network represents a mapping Ψ : �n  → �q from an n-dimensional
space of input features to a q-dimensional space of target values or concepts. Symmetry
in neural networks typically refers to a transformation T in the network structure or
free parameters which does not affect the input-output mapping. That is, Ψ is invariant
to the transformation such that T (Ψ) = Ψ . Two networks N1 and N2 representing the
same mapping are denoted as N1 ∼ N2 (� is used for different mappings). In this work
we concentrate on structural symmetry as it is concerned with transfer functions, but a
more thorough examination can be found in [2].

Structural symmetries can arise as a result of permuting neurons within a hidden
layer or by a sign inversion of a transfer function. Permutation is possible by exchanging
all the input and output connections within a set of neurons from a specific layer. This
permutation transformation does not affect the output of the network, and thus is a
symmetric transformation. Given n neurons, a total of n! permutations are possible [8].

The other coherent transformation operates directly on the transfer function and is
known as a sign transformation. Given some transfer function having odd symmetry
(i.e. φ(x) = −φ(−x)), multiplying all input and output weights by -1 will result in
an invariant input/output mapping [8]. It has been shown that this specific symmetry
is valid for any infinitely differentiable function where each successively differentiated
function evaluates to zero [1].

On the other hand, if the transfer function exhibits even symmetry (i.e. φ(x) =
φ(−x)) then multiplying all input connections by -1 also leaves Ψ(N ) unchanged. This
symmetry is also valid for an infinitely differentiable function [1], of which the most
common is the radial-basis transfer function. For either even or odd transfer functions,
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given a layer of n non-input neurons there exists 2n possible sign-symmetric transfor-
mations.

The following remark summarizes the aforementioned symmetries [8]:

Remark 1. The set of all equi-output transformations on the weight space W forms a
non-Abelian group G of order #G, where

#G =
L−1∏

l=2

(ml!)(2ml) (12.7)

where L is the number of non-input layers and ml is the number of neurons in layer l.

Each of these strutural transformations defines a symmetry in weight space consist-
ing of equivalent parts. By taking these symmetries into consideration it is possible to
reduce the size of the weight space [1, 2, 8, 9, 28, 42]. Considering non-symmetric
transformations may also be beneficial to neural network learning. Specifically, we are
concerned with even-signed transformations on odd-signed transfer functions.

12.3 Opposite Networks

Before defining an opposite network we discuss the concept of an opposite transfer
function (OTF). The underlying idea behind OTFs is to provide a means for altering the
network structure such that knowledge stored in connection weights is retained but the
input/output mapping differs. That is, viewing the purpose of each non-input neuron as
a “decision maker” based on the given signal, what effect does reversing the decision
have on the input-output mapping? We will show that this specific form of transfer
function guarantees a different mapping when the networks are minimal.

12.3.1 Opposite Transfer Functions

Dynamically adjusting transfer function parameters, and thus modifying the error sur-
face and input/output mapping has, of course, been investigated. Similarly, many alter-
native transfer functions have also been proposed, refer to [51] for a survey. However,
most of these methods or alternative transfer functions increase the search space size by
(a) defining a set of transfer functions which can be used instead of a single function or,
(b) increasing the parameterizations of the functions or, (c) infusing more parameters
into the learning algorithm. As we will see below opposite transfer functions do not
imply that the size of search space increases. Although, in practice this may not neces-
sarily be the case. Nevertheless, OTFs will be shown to be useful and warrant further
investigation.

Essentially, an OTF is an even transformation of an odd transfer function and can be
defined as follows [48]:

Definition 1 ( Opposite Transfer Function). Given some odd-symmetric transfer func-
tion ϕ : �  → �, its corresponding opposite transfer function is ϕ̆(x) = ϕ(−x), where
the breve notation indicates the function is an opposite and x ∈ �.
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Fig. 12.2. Comparing the tanh(x) and its opposite tanh(-x)

According to this definition, the relationship between a transfer function and its cor-
responding opposite is not odd (i.e. ϕ(−x) �= −ϕ̆(x)). This will be a key feature which
many useful properties of OTFs are discussed in the next section. An example of a tanh
function and its opposite are presented in Figure 12.2.

From Definition 1 we notice that the transformation is equivalent to multiplying all
input weights to a neuron by -1, but not the output signal, as is the case in a sign
transformation. This new weight configuration lies in the same weight space as the
original network, and thus does not increase the size of the search space. Actually, the
OTF is simply a means to consider a different, yet related location in the existing search
space.

In order to be useful in backpropagation-like learning algorithms the following char-
acteristics of an OTF should be present:

1. Both ϕ(x) and ϕ̆(x) are continuous and differentiable.
2. For derivatives we have dϕ̆(x)

dx = − dϕ(x)
dx .

Extrapolating on Definition 1 we can now define the concept of an opposite network
N̆ and the set of opposite networks Γ (N ) [48]:

Definition 2 ( Opposite Network). Given some minimal neural network N the cor-
responding set of opposite network(s) Γ (N ) is defined as all networks having identi-
cal connection structure and weight values, but differing in that at least one transfer
function is in an opposite state. Any opposite network is referenced as N̆ where it is
understood that N̆ ∈ Γ (N ).

Inherent in this definition is a notion of “degree of opposition”. That is, if two net-
works differ by only one transfer function then they are less opposite than two networks
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differring in more than two functions. In this scenario, true opposite networks differ in
all transfer functions.

12.3.2 Properties of Opposite Networks

While almost naive in concept, opposite networks have useful properties. The fact that
given any irreducible neural network we can easily translate between any opposite net-
work (each having a unique input-output mapping) forms the basis of the benefits of
opposite networks. Furthermore, the transformation requires constant computation time
(i.e. O(1)) since only a single multiplication operation is required per transfer function.

Uniqueness of Input-Output Mapping

Aside from symmetrical transformations, it is possible for N1 ∼ N2 if one network
can be reduced to the other [42]. For example, if there exists some neuron η ∈ N
which has all outgoing weights equal to zero. Then, the removal of η does not affect the
input-output mapping of N .

A formal definition of minimality, or equivalently, irreducibility has been given in
[42]:

Definition 3 (Irreducibility). A feedforward neural network with m input nodes and
one hidden layer of n hidden neurons can be called irreducible if none of the following
is true:

1. One of the vj,k vanishes.
2. There exists two indices j1, j2 ∈ {1, ..., n} where j1 �= j2 such that the functionals

ψj1 , ψj2 are sign-equivalent1.
3. One of the functionals ψj is constant.

where ψj is the total input signal to neuron j. An important consequence of minimality
is that every minimal network represents a unique input/output mapping [1, 42].

Using the fact that OTFs represent a non-symmetric transformation it is possible to
prove the following theorem [48]:

Theorem 1 (Opposite Network Irreducibility). Let N be a minimal network having
|Γ (N )| ≥ 1. Then, for S = {N} ∪ Γ (N ), si � sj ∀ si, sj ∈ S where i �= j (i.e. all
the networks are minimal and represent a unique input-output mapping).

While the mappings for each network are unique, it must also be shown that there
does not exist a priori bias or tendency for a certain set of transfer function states to
yield a lower error, over all possible unknown data sets. Otherwise, there is no use for
considering OTFs, or any other transfer function for that matter. We will consider only
the case for OTFs versus similar fixed functions.

In order to prove the equi-probably mapping property we assume the underlying
distribution of the input data X is unknown but bounded to [−1, 1]. We also make the

1 Two functions f1(x), f2(x) are sign-equivalent if f1(x) = f2(x) or f1(x) = −f2(x) ∀x ∈
�d where d is the dimensionality of the space.
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conjecture that for any unknown X, and any unknown N1 and N2, both minimal, but
having exactly the same architecture such that both networks lie in the same search
space then we have

P (EN1(X) ≤ EN2 (X)) = P (EN2 (X) ≤ EN1(X)) = 0.5. (12.8)

That is, over all possible data sets there is no predisposition for one mapping to yield
a more favorable outcome, with respect to all error functions E. This is similar to the
No Free Lunch Theorem [54], but specifically for neural networks existing in the same
search space.

Theorem 2 (Equi-Probable Input-Output Mapping [48]). Let N be a minimal neu-
ral network with opposite networks Γ (N ). Without a-priori knowledge concerning X
and for some s∗ ∈ S,

P (s∗ = min(S)) =
1
|S|

where,
|S| =

∏

l∈L

2ml ,

where L corresponds to the number of layers which can utilize opposite transfer func-
tions, each having ml neurons and S = Γ (N ) ∪ {N}.

Therefore, before learning begins there is no inherent bias towards choosing a random
network, or one of its opposites (with respect to the error function). While this holds
for a random location in weight space, the rate at which this probability decays for
each network during learning has not be determined analytically. In [48] we provide
experimental evidence to support an exponential increase in probability using some
common benchmark data sets.

Numerical Condition

Numerical condition is an important and fundamental concept affecting the speed and
accuracy of neural network learning algorithms [4]. It refers to the sensitivity of the net-
work output to changes in its weights and biases. Typically, conditioning is most impor-
tant when initializing network weights since learning algorithms can rapidly determine
a local minimum of a specific location on the error surface. Thus, an ill-conditioned net-
work may require long training times or could converge to a poor solution. Therefore,
techniques to alleviate or lessen the degree of ill-conditioning are important to neural
learning, and numerical optimization in general.

Aside from the initialization phase of learning, the conditioning will change dur-
ing training when nonlinear hidden or output units are employed [40]. So, it is also
possible to improve conditioning during, especially early stages, of training. As such,
some learning algorithms have been developed which are capable of adapting to an
ill-conditioned situation, the most popular are resilient propagation (rProp) [38], quick
propagation (quickProp) [18], conjugate gradient-based [23] and quasi-Newton-based
[23] algorithms. Despite their ability to adapt to ill-conditioned situations, these tech-
niques will still tend to yield more desirable results in well conditioned scenarios.
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Common approaches to aid in alleviating the detriments of ill-conditioning include
data preprocessing, weight initialization and regularization [4, 23, 35, 41]. Investigating
the impact of transfer functions on the error surface has also been researched recently
[13, 14, 15]. More importantly for this work is the consideration of adaptive transfer
functions as a possible means to help alleviate ill-conditioning and improve accuracy
and training times [29, 44].

One common measure related to conditioning is the rank of the Jacobian, J. This
matrix is composed of first derivates of the residual error for each pattern x ∈ X with
respect to the weights, w. For a network with one output neuron J is computed as

J =
[
∂e(X)
∂wi

]

i=0...,|w|
, (12.9)

where e(x) = d(x)−φ(x) is the residual error between the target output d(x) and actual
network output φ(x). The rank of an m × n matrix J represents the number of linearly
independent rows or columns. Numerical condition occurs when rank(J) < min(m, n).

Rank deficiency of the Jacobian is related to the concept of ill-conditioning [40, 46].
For backpropagation-like algorithms, a rank deficient Jacobian implies only partial in-
formation of possible search directions is known. This can lead to longer training times.
Furthermore, many optimization algorithms such as steepest decent, conjugate gradi-
ent, Newton, Gauss-Newton, Quasi-Newton and Levenberg-Marquardt directly utilize
the Jacobian to determine search direction [23, 40]. So, these algorithms will also likely
exhibit slower convergence rates and possibly less desirable error than otherwise would
be possible.

Since each opposite network represents a unique input/output mapping, it is likely
that their respective Jacobians are also different. This will be true when the error sur-
face itself is not symmetric about the origin (this symmetry is very rare in practice).
Considering an error surface that is not symmetrical about the origin, the difference
between the respective Jacobians of a random network N and one of its opposites N̆ is
computed according to

ΔJ = J(N ) − J(N̆ ). (12.10)

It must follow that |{δJ
i,j �= 0}| ≥ 1 for δJ

i,j ∈ ΔJ . Due to this property the rank(ΔJ) >

0, which may also lead to a difference in rank(J(N )) − rank(J(N̆ )). If this value is
negative, it may be beneficial to consider training N̆ instead of N .

The other popular conditioning measure is related to the Hessian matrix H, which
represents the second derivatives of Er(X) with respect w,

H =
[
∂2Er(X)
∂wiwj

]

i,j=0...,|w|
. (12.11)

The Hessian is very important to nonlinear optimization as it reveals the nature
of the curvature of the error surface. Most importantly, the eigenvalues of H have a
large impact on the learning dynamics of backpropagation-like second-order algorithms
[4, 23]. Also, the inverse H−1 has also been used in network pruning strategies [30].
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For neural networks using a sum-of-squares based performance function it is com-
mon to computer

H = JT J. (12.12)

We have already argued the expected change ΔJ. Since (12.12) directly uses J, a
change in the Jacobian will also lead to a change in the Hessian

ΔH = H(N ) − H(N̆ ) (12.13)

where there exists some δH
i,j ∈ ΔH such that δH

i,j �= 0. Depending on the quantity
and magnitude of each δH

i,j �= 0, the difference between the two positions in weight

space (i.e. N and N̆ ) could be significant enough to warrant moving the search to that
location.

As with rank(J), the conditioning of H has a profound impact on the learning time
and accuracy of the learning algorithm. The most common measure of the condition of
H is the condition number,

κ =
λmax

λmin
(12.14)

where λmax and λmin are the largest and smallest nonzero eigenvalues of H, respec-
tively. The larger this ratio, the more ill-conditioned the network is. So, if some N̆ is has
a larger κ value than N , it could be beneficial to consider training the opposite network
instead.

Experiments concerning the numerical conditioning of opposite networks prior and
during early stages of training have been conducted in [48]. It was shown that con-
sidering opposite networks can have a substantial influence on the Hessian, and a to
a lesser degree the Jacobian. Nevertheless, results show that considering opposite net-
works seems promising and warrants further examination.

12.4 Proposed Framework

We present two frameworks for utilizing opposite networks during neural network train-
ing. The methods are presented in a general form and are flexible enough to work with
most learning algorithms. As an example of the first famework, we discuss a method to
improve backpropagation through time. The second example focuses on training feed-
forward networks with backpropagation.

12.4.1 Global Decision-Based Framework

By a global decision-based algorithm we mean an approach which bases decisions
on the entire neural network structure, its input/output mapping and related proper-
ties (such as the Jacobian and Hessian). The fundamental concept is that training is
performed on a single network at each epoch, but to consider that another (opposite)
network which may actually be more desirable with respect to some criteria, F .

Algorithm 2 provides the general framework for the global decision-based approach.
In line 3 the current network is trained using any learning algorithm. After a single
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epoch or iteration of the learning algorithm each opposite network is evaluated (line 4)
on the training and/or validation data used to train N . Finally, in line 5 we determine
on which network, either N or one of γ ∈ Γ (N ) (since S = {N} ∪ Γ (N )), learning
should continue. The function argdes returns the argument with the most desirable re-
sult with respect to F , whether it be the minimum or maximum. It should be noted that
F represents a (heuristic) decision as to which network training should continue on,
and therefore could involve more variables than only the network error performance
measure.

Algorithm 2. Global Decision-Based Framework
1: generate initial network N
2: while termination criteria not satisfied do
3: perform n iterations of learning on N
4: evaluate Γ (N )
5: set N = argdes

s
F(s ∈ S)

6: end while

There are three main concerns which must be addressed in order for this framework
to be practical:

1. Minimizing the computational cost associated with examining Γ (N ).
2. Maximizing the usefulness of the decision function F .
3. Minimizing the computational time for evaluating F .

Minimizing the computational cost associated with the examination of the elements
of Γ (N ) is very important. By Definition 2, Γ (N ) includes all possible opposite net-
works. If a large network with many hidden nodes and multiple hidden layers is being
trained this set will be very large. So, evaluating each opposite network by process-
ing all training data will be impractical, although for small networks may be possible.
Therefore, to limit the computational cost, methods for determining the output of an
opposite network given the original network output would be very beneficial. Since the
relationship betweenN and each N̆ is known and strictly defined it seems reasonable to
believe that a method should exist to directly determine the output for a given opposite
network.

The design of an efficient and robust decision function F is vital because it deter-
mines the quality of all s ∈ S and decides which one is the most desirable network
to continue learning with. This function may be simple, for example a purely random
decision or solely based on the evaluation of each network performed in line 4. Al-
ternatively, more advanced information such as the Hessian, Jacobian or heuristic in-
formation based on the network architecture could be included. Nevertheless, the goal
is to determine which network/location in weight space is most desirable to continue
learning from.

As F becomes more complex, it will include more detailed information of each
network. The gathering and evaluation of this information may also be time consuming
and thus a tradeoff between information and computational efficiency may need to be



268 M. Ventresca and H.R. Tizhoosh

made. Additionally, if the output of each opposite network can be determined without
direct evaluation then it should also be possible to directly determine the Jacobian and
Hessian matrices, further saving computation time.

12.4.2 Example: Backpropagation Through Time

The opposition-based backpropagation through time (OBPTT) algorithm [49] which
extends the global decision-based framework. The general idea is based on utilizing
probabilities to represent the state of each neuron transfer function, which in turn are
employed when deciding which opposite networks should be considered. As learning
progresses these probabilities are adjusted such that only the more likely networks are
examined, until eventually only a single network remains (i.e. the probability of using
φ(·) converges to either 1 or 0).

The OBPTT pseudocode is presented in Algorithm 3. In line 2 the Q ⊂ Γ (N ) net-
works to be considered are generated. The connection weights are all exactly the same
as those of N , however, the transfer function employed by each neuron is probabilisti-
cally decided when each q ∈ Q is generated. So, each hidden neuron ηi ∈ N has an
associated probability p(ηi), initially equal to 0.5 due to lack of information regarding
the better of the two transfer functions, where each network transfer function φi(·) is
decided according to

φ(·)i =

{
φ(·), if r ≥ p(ηi)
φ̆(·), otherwise

(12.15)

where r ∈ U(0, 1) is a uniformly generated random number. For simplicity we also use
the notation ηi(φ) = true or ηi(φ)= false if the transfer function for the ith neuron is
in the original or opposite state, respectively.

Upon generating the subset of candidate opposite neurons, the backpropagation al-
gorithm is then executed on each network in lines 3-6. In this manner, we can determine
which network exists on a steeper area of the error surface. That is, given the current
location in weight space represented by each network, which network will yield the
lowest error after a single epoch of backpropagation. In lines 7 and 3, we greedily se-
lect this lowest error network.

After the best network N ∗ is selected, the transfer function probabilities need to
be updated such that when generating the next Q, the tendancy is towards networks
which have already yielded low errors. This is accomplished in lines 9-14 using the
user-defined control parameters τampl and τdecay which define the rate at which each
p(ηi) converges towards or away from φ or φ̆, respectively.

It is important to note that |Q| → 0 as the probabilities converge towards 1 or 0,
respectively. Therefore, in line 2 when attempting to generate the set Q, eventually with
a high probability each q ∈ Q will equal N , which is not permissible (i.e. a network
cannot be equal to itself and its opposite simultaneously). In this situation, OBPTT
degrades to traditional backpropagation, and in general towards the parent algorithm
being employed.
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Algorithm 3. Opposition-Based Backpropagation Through Time
1: while termination criteria not satisfied do
2: generate Q ⊂ Γ (N̆)

3: backpropagate one epoch(N )
4: for all q ∈ Q do
5: backpropagate one epoch(q)
6: end for

{Find the network with minimum error}
7: S = {N} ∪ Q
8: N ∗ = argmin

s∈S
E(s)

{Update probabilities}
9: for all ηi ∈ N ∗ do

10: if E(N ∗) − E(N ) ≤ 0 then

11: p(ηi) =

{
τampl · p(ηi) if ηi(φ) = true
1 − τampl · p(ηi) if ηi(φ) = false

12: else

13: p(ηi) =

{
τdecay · p(ηi) if ηi(φ) = false
1 − τdecay · p(ηi) if ηi(φ) = true

14: end if
15: end for

16: N = N ∗

17: end while

12.4.3 Local Decision-Based Framework

Local decision-based methods are based on decisions made at the local (i.e. neuron)
level of the network. Here, each neuron decides whether to output the original transfer
function value, φ(·) or the opposite value φ̆(·).

The general idea behind the local framework is presented in Algorithm 4, where it
is assumed to be utilized during the forward propagation step of backpropagation. The

Algorithm 4. Local Decision-Based Framework
1: {during forward propagation}
2: for each layer, l=1 to L do
3: for each neuron, j = 1 . . . |l| do

4: vl
j =

|l−1|∑

i=0

wl
ijy

l−1
i

5: yl
j =

{
φ(vl

j) if G(l, j) = true
φ̆(vl

j) otherwise
6: end for
7: end for
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input to the neuron is computed, as usual, in line 4 and the output of each neuron is
computed in line 5. The decision between the output of φ(·) or φ̆(·) is made using the
local decision function G(l, j). This function takes as input the current neuron, which
can send a “message” to any neuron sending or receiving signals to/from it. Therefore,
the neuron is restricted to local information between itself and the direct previous and
post neurons.

The only difference between traditional forward propagation and this modified ver-
sion is the addition of G(l). However, this function is very loosely defined and can
have a profound impact on the learning process. Given that a neuron only has access to
its internal parameters (total input signal, previous input/output signals, local gradient,
etc) and to connected neurons, designing an efficient G(l) may be complicated. Fur-
thermore, knowledge of the local influence on the input/output mapping of the network
must also be accounted for such that a higher (global) decision function is not required
to determine the quality of the local change.

12.4.4 Example: Backpropagation

As an example of a local decision-based learning approach we extend backpropagation
for feedforward networks, we call this opposition-based backpropagation. Here, we are
really only concerned with the decision G(l, j) employed by each neuron in line 5 of
Algorithm 4, where j is the jth neuron in layer l. The rule presented here is based on the
expected change in network output if a transfer function is changed to its opposite. It
should be noted that if a transfer function is currently φ̆ then its opposite will of course
be the original φ.

Algorithm 5 presents the pseudocode for the local decision rule G(l, j). To allow the
learning process to customize to a transfer function configuration we define a minimum
number of epochs between transfer function changes, λ. In line 1, the decision is con-
sidered if λ epochs have passed between the current epoch i and last transfer function
change ω.

The first step of the decision is to determine the change in neuron output if the trans-
fer function is changed (line 2). The idea behind this, is that if the output y is increasing
then the associated input weights must have increased (since the data is constant). So, if
a change in transfer function expedites the weight update process, then it should accel-
erate learning. To accomplish this, we compute the average input to a neuron according
to

μ̄ =
1
P

∑

p∈X

I (12.16)

where I is the total input to (l, j) for each pattern.
To determine the current direction of weight updates, in line 3 we compute the sum

of the difference in all outgoing neuronal outputs over the last two epochs. The change
in output is Δyo, where o ∈ O and the set O corresponds to output neurons from
the current neuron. In line 4 we then approximate the total change in output neuron
response. That is, the estimated difference between the current output neuron signals
and their output if neuron j changed its transfer function.

The decision in lines 5-7 whether to change the transfer function is based on using the
results from lines 3 and 4. If both values have the same numerical sign, then a transfer
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Algorithm 5. Local neuron decision rule G(l, j)
Require: ω ≡ last epoch with transfer function change for neuron (l, j)
Require: i ≡ current epoch

{Ensure minimum number of epochs between transfer function change}
1: if i − ω > λ then

{Determine difference in output between φ and φ̆}

2: Δφ(μ̄) =

{
φ̆(μ̄) − φ(μ̄) if ηi(φ) = true
φ(μ̄) − φ̆(μ̄) if ηi(φ) = false

{Compute the direction output neuron signals are moving in}
3: ψ =

∑

o∈O

Δφo

{Compute expected change in total output neuron response}
4: Δψ =

∑

o∈O

[φo(μ̄o) − φo(Δφ(μ̄)wj,o)]

{Decide whether to change transfer function}
5: if sign(ψ) = sign(Δψ) then
6: change transfer function
7: end if
8: end if

function change is made. Otherwise, the function is kept as it was. To limit transfer
function changes which do not yield an improvement in overall network performance
it is possible to require that the network error measure also show a beneficial affect.
Furthermore, we also require that selecting a neuron to change its transfer function is
based on a probabilistic decay.

12.5 Experimental Results

In this section we show how BP and BPTT can be improved by considering the two
opposition-based frameworks. First the OBPTT approach is discussed and then we pro-
vide results for OBP. In both cases we show statistically signifant improvements over
the original algorithms.

12.5.1 Opposition-based Backpropagation Through Time

We employ the OBPTT algorithm discussed in Section 12.4.2 and test it using the em-
bedded Reber grammar benchmark problem [37]. The results of our approach are com-
pared to traditional backpropagation through time over different hidden layer sizes and
learning rate and momentum values. These findings are a summary of those found in
[49].

We restrict the experimental results to the Elman recurrent topology [17], as depicted
in Figure 12.3. In this topology, the hidden layer outputs feed back into itself via a
context layer, representing the previous time step. The context layer is thus a copy of
the hidden layer from the previous time step. So, adding more context layers allows the
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Fig. 12.3. The Elman topology in which the hidden layer has recurrent connections which feed
back to itself

network to consider states further back in time. Due to this structure Elman networks
can represent time-varying patterns, making them very useful for modeling dynamic
problems.

The presented results assume a single hidden layer network, where only the hidden
layer neurons are permitted to consider the logistic or opposite logistic transfer func-
tions. The quality of the output is determined by the mean-squared error measure and
the parameters τdecay = 0.1 and τampl = 0.75 were found to yield the best results for
the Reber grammar problem.

To ensure a proper comparison between the approaches, both BPTT and OBPTT
algorithms begin from the exact same starting weights, as determined by the Nguyen-
Widrow rule [35]. In this manner, we can better show that any improvements must be
due to the use of OTFs, and not a result of randomness in initial conditions. We train
each network for 30 epochs, and average the results over 30 trials. During each epoch
of OBPTT the maximum number of opposite networks under consideration was set to
|Q| = 3.

Embedded Reber Grammar

A Reber grammar [37] is a deterministic finite automaton representing some language,
L, where an element of the language is generated according to the rules which define the
Reber grammar. We can also use the Reber grammar/automaton to determine whether
a given string is invalid, with respect to the rules of the language.

It is possible to use an Elman network to represent the automaton of a grammar
[11, 36]. The training data is composed of valid and optionally invalid strings. The final
trained network should then be able to distinguish whether an unknown string is an
element of L or not. Figure 12.4 shows a finite automaton representation of a Reber
grammar having alphabet, Σ = {B, P, T, S, X, V, E}.

An embedded Reber grammar is a more difficult extension of the Reber grammar.
These grammars are of the form nLm|aLb where n, m, a, b ∈ L are unique strings.
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Fig. 12.4. An automaton representation of a Reber grammar which begins with the symbol B and
ends with the symbol E

This tasks is much more difficult because the neural network must model the ini-
tial sequence over a greater number of time steps than the simple grammar shown in
Figure 12.4.

The experiments shown in this chapter use the above language of 6 symbols. We
convert each symbol to a 6-bit binary string where each bit represents one of the six
symbols. So, each training string contains a single ‘1’ bit, corresponding to one of the
respective original symbols. In total our training data consists of 8000, 6-bit embedded
Reber grammar strings. The goal of this learning task is to be able to predict the next
symbol in the training data, as opposed to test whether a given string is indeed valid
with respect to the rules of the grammar. Thus, the output layer also contains 6 neurons,
representing each of the 6 symbols of Σ.

Considering Opposite Networks

At each iteration of OBPTT we train a maximum |Q| = 3, as well as the original N net-
work. So, there is an associated computational overhead for OBPTT that manifests itself
into lost epochs which could have been performed by BPTT. However, since |Q| → 0
as discussed above, the practical number of additional epochs may be small. The addi-
tional computations are intended to search for better locations on the error surface, and
thus may be acceptable.

The number of considered opposite networks is plotted against the number of epochs
in Figure 12.5. We also present the average number of networks which were found to
improve the overall network error.

From Figure 12.5, we see that on average about 20% of the networks in Q have
a lower error than N . Keeping in mind that Q is randomly selected from Γ (N ) this
result is rather promising. A more intelligent strategy is likely to increase the usefulness
of Q, however, the current method still yields improvements which will be described
below.
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Fig. 12.5. The average usefulness of Q over 30 trials for a network with 7 hidden neurons

Learning Rate and Momentum

In this set of experiments we aim to examine the behavior of OBPTT for different
settings of learning rate (α) and momentum (β). To better see the improvement we
compare to traditional BPTT.

Table 12.1 shows the results of the both BPTT and OBPTT when the hidden layer
size is fixed at 5 neurons. Each experiment varied the learning rate and momentum
from values of {0.10, 0.25, 0.50, 0.75} an {0.00, 0.10, 0.25, 0.50}, respectively. Also,
we only consider the situation where α > β. The results show the mean (μ) and standard
deviation (σ) of the MSE averaged over the 30 trials.

Table 12.1. Varying learning rate and momentum, bolded values are statistically significant. All
OBPTT values are found to be significant.

OBPTT BPTT
α β μ σ μ σ

0.10 0.00 0.040 0.002 0.045 0.004
0.25 0.00 0.040 0.002 0.045 0.004
0.25 0.10 0.040 0.002 0.043 0.003
0.50 0.00 0.042 0.003 0.046 0.003
0.50 0.10 0.042 0.003 0.046 0.004
0.50 0.25 0.042 0.001 0.046 0.004
0.75 0.00 0.043 0.002 0.047 0.004
0.75 0.10 0.044 0.003 0.047 0.005
0.75 0.25 0.045 0.004 0.050 0.005
0.75 0.50 0.046 0.003 0.051 0.006
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Fig. 12.6. Comparing BPTT and OBPTT over the 30 trials where α = 0.1 and β = 0.0

For each experiment shown in Table 12.1, we see that the OBPTT approach is able
to yield a lower MSE, as well as a lower standard deviation. Furthermore, all of the
results significantly favor OBPTT according to a t-test at a 0.95 confidence level (bolded
values). Another observation is that comparing the best results for each algorithm (α =
0.10, β = 0.0 for OBPTT and α = 0.25, β = 0.10 for BPTT), still reveals that OBPTT
yields a statistically significant outcome at the 0.95 confidence level.

Figure 12.6 shows a characteristic plot of a network trained with learning parameters
α = 0.10 and β = 0.0. Not only does the OBPTT approach converge to a lower MSE
value, but it also shows a more stable learning trajectory about the convergence point.
This is important because it shows the network is not “unlearning” the data. It also
indicates the network may have been better conditioned for the problem.

Hidden Layers

This experiment aims at examining the sensitivity of the approach to different hidden
layer sizes. As with the previous experiment, we also consider different settings of
learning rate for each size of hidden layer. The results for this experiment are presented
in Table 12.2, which for comparison purposes, includes the findings from the previous
section (for 5 hidden nodes).

For each set of learning parameters we find that the opposition-based algorithm out-
performs the original one. Similarly to the aforementioned results, all except one of
these is found to be statistically significant at the 0.95 confidence level. We also ob-
serve the standard deviation also tends to be lower, indicating more reliable results
with the OBPTT algorithm. Additionally, for each layer size, comparing the best re-
sult obtained from each algorithm also shows a statistically significant result favoring
OBPTT.
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Table 12.2. Results varying the learning rate, momentum and hidden layer size. Values in bold
are statistically significant.

OBPTT BPTT
Hidden Neurons=3

α β μ σ μ σ

0.10 0.00 0.043 0.003 0.047 0.006
0.25 0.00 0.042 0.003 0.045 0.005
0.25 0.10 0.044 0.004 0.049 0.006
0.50 0.00 0.043 0.003 0.049 0.008
0.50 0.10 0.044 0.005 0.049 0.006
0.50 0.25 0.045 0.003 0.051 0.005
0.75 0.00 0.045 0.004 0.050 0.005
0.75 0.10 0.047 0.005 0.051 0.006
0.75 0.25 0.046 0.004 0.052 0.005
0.75 0.50 0.051 0.006 0.052 0.004

Hidden Neurons=5
α β μ σ μ σ

0.10 0.00 0.040 0.002 0.045 0.004
0.25 0.00 0.040 0.002 0.045 0.004
0.25 0.10 0.040 0.002 0.043 0.003
0.50 0.00 0.042 0.003 0.046 0.003
0.50 0.10 0.042 0.003 0.046 0.004
0.50 0.25 0.042 0.001 0.046 0.004
0.75 0.00 0.043 0.002 0.047 0.004
0.75 0.10 0.044 0.003 0.047 0.005
0.75 0.25 0.045 0.004 0.050 0.005
0.75 0.50 0.046 0.003 0.051 0.006

Hidden Neurons=7
α β μ σ μ σ

0.10 0.00 0.039 0.001 0.042 0.001
0.25 0.00 0.040 0.001 0.042 0.002
0.25 0.10 0.040 0.001 0.042 0.002
0.50 0.00 0.041 0.001 0.044 0.004
0.50 0.10 0.042 0.002 0.046 0.004
0.50 0.25 0.042 0.001 0.046 0.003
0.75 0.00 0.043 0.002 0.045 0.004
0.75 0.10 0.043 0.002 0.046 0.004
0.75 0.25 0.044 0.002 0.047 0.006
0.75 0.50 0.045 0.002 0.049 0.005

12.5.2 Opposition-Based Backpropagation

To test the efficacy of the local decision-based OBP algorithm described in Section
12.4.4 we examine properties of accuracy and generalization ability as the network
structure and learning parameters are varied. The experiments focus on feedforward
networks for the task of function approximation, where the hidden layer neurons
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employ the hyperbolic tangent (tanh) and opposite tanh function (tanh(−x)). We per-
mit each neuron to change between these functions if λ ≥ 1 iterations have passed since
the last epoch the neuron transfer function changed.

The data for the experiments is obtained by training each network using 10 fold cross
validation for 300 epochs. The results are averaged over 30 trials. As in the OBPTT ex-
periments, we generate a random initial weight state and allow both BP and OBP to
begin training from that identical location. This is done to eliminate bias in starting po-
sitions for each algorithm. Contrasting with the OBPTT experiments the initial weights
are generated according to a uniform distribution over the interval [−1, 1].

Function Approximation

Neural networks are extremely capable tools for performing the task of function ap-
proximation. According to the Universal Approximation theorem (Appendix A) a neu-
ral network can approximate any continuous function to arbitrary accuracy. Of course,
this theorem merely states the existence of weights to satisfy this accuracy; it is up to
learning algorithms to discover them.

Table 12.3 shows the 7 common benchmark functions we employ for this task [16].
These are simple problems having 2 dimensional input and a 1 dimensional output.
However, they are sufficient to show the possible type of improvements OTFs can have
over traditional backpropagation.

Table 12.3. The 7 benchmark functions

Function Input Range
f1(x) = x1 + x2 x1 ± 100

x2 ± 10
f2(x) = x1 · x2 x1 ± 10

x2 ± 1
f3(x) = x1

|x2|+1
x1 ± 100

x2 ± 10
f4(x) = x2

1 − x3
2 x1 ± 100

x2 ± 10
f5(x) = x3

1 − x2
2 x1 ± 100

x2 ± 10

f6(x) = 418.9829n +
∑

i=1

n(−xi sin(
√

|xi|) x1 ± 200.0

x2 ± 100.0
f7(x) = 0.26(x2

1 + x2
2) − 0.48x1x2 x1 ± 10.0

x2 ± 1.0

The training set for each function is generated by randomly generating 550 patterns.
The same patterns are used by both networks. We do not perform any pre-processing of
this data, which can influence the problem slightly, but since both networks are operat-
ing under this less than ideal scenario, they are on equal footing (in practice data is not
always preprocessed, although it is usually recommended).
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Consideration of Opposite Networks

To examine the usefulness and computational overhead involved with the local decision-
based approach we will focus on determining the expected number of additional gra-
dient calculations, as well as the number of neurons which considered changing their
transfer functions in ratio to the number of changes which improved the network error.

Table 12.4 compares the number of times a transfer function change was considered
by the parent algorithm, the number of neurons that considered making a change, and
the number of these transfer function changes that were accepted because they improved
the network MSE. For function f1, for every iteration where a function change was
considered, on average the impact of about 4 neurons was evaluated before one was
accepted. This is skewed slightly, because the target function is very simple and so most
attempts at improving the MSE were futile. However, this highlights the fact that using
this type of decision rule for simple target concepts may not be useful. This is further
enforced by noting that only 2 and 8 changes improved the network performance when
using the logistic or tanh transfer functions.

The remaining six functions show an approximate ratio of Considered to Attempted
is slightly less than 1:2, which is a large improvement over the 1:4 ratio for the f1

function. However, this lower ratio is meaningless unless transfer function changes are
actually accepted. As we can see, the ratio of Considered:Attempted average is about
1:1 which means that every time a network decides to allow neurons to change their
functions, on average 2 neurons will attempt to do so and 1 of these will lead to an
improved MSE. These improvements are a consequence of functions f2 − f7 having
a more complicated error surface than that of function f1. Therefore, the opposite net-
works were better conditioned to solving these problems.

Table 12.4. Average amount of additional function calls

Frequency of procedure
Function Considered Attempted Accepted

f1
logistic 12 54 2
tanh 12 41 8

f2
logistic 29 55 25
tanh 29 54 25

f3
logistic 38 43 38
tanh 38 53 37

f4
logistic 38 61 37
tanh 38 49 36

f5
logistic 38 75 33
tanh 38 50 37

f6
logistic 29 53 21
tanh 29 40 27

f7
logistic 38 88 28
tanh 28 60 24
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Another important observation is that the form of the transfer function (i.e. tanh or
logistic) did not have a significant impact on the number of times a transfer function
change was accepted. The likely reason for this is due to the similar shape of the re-
spective functions and they have similar behavior on opposite sides of their inflection
points.

Performance

In this section we will compare the final result with respect to the MSE measure between
OBP and BP. We will additionally, examine the significant epoch which represents the
first epoch where OBP is statistically significant to BP at a 0.95 confidence level, and
remains significant. So, at every point after the significant epoch, the MSE at each
successive epoch is also statistically superior. This measure will allow us to compare
the average time (in epochs) required for opposition to yield improvements. As with
the above experiments each network has a fixed number of 10 hidden neurons, and uses
α = 0.1 with no momentum value.

The results of this experiment are summarized in Table 12.5 and include both the
logistic and tanh transfer functions. All the the results obtained by OBP are found to
be statistically significant at a 0.95 confidence level. In all cases, this significance is
reached by the 3rd epoch which shows that opposite networks have a very immediate
impact on learning.

To further compare the improvements with respect to specific transfer function form
we can compute the average improved error according to

r̄ =
1
7

7∑

i=1

OBP (fi)
BP (fi)

. (12.17)

Table 12.5. Comparing performance of OBP versus BP

BP OBP
Function μ σ μ σ Sig. Epoch

f1
logistic 506.344 103.158 365.950 124.474 3
tanh 759.579 158.928 487.974 168.599 3

f2
logistic 29928.644 6927.741 24337.836 7002.546 3
tanh 45922.595 10733.058 35334.398 12803.404 3

f3
logistic 90.473 6.967 70.287 6.940 3
tanh 179.967 14.954 78.165 9.802 3

f4
logistic 558.956 53.448 376.568 42.427 3
tanh 789.224 82.806 470.703 63.647 3

f5
logistic 524.381 69.982 421.764 85.143 3
tanh 676.859 90.202 450.181 104.757 3

f6
logistic 1284.312 41.198 1080.652 103.901 3
tanh 2139.096 125.796 1364.533 232.263 3

f7
logistic 43.213 4.862 29.619 4.584 3
tanh 60.808 6.532 40.288 9.672 3
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This measure shows the relative average value obtained by OBP compared to BP. For
the logistic function we find that r̄ ≈ 0.66 and for the hyperbolic tangent function
we calculate r̄ ≈ 0.63. Both these improvements are rather substantial and highlight
the type of impact that can be achieved using OTFs, with even a simple implementation
strategy. Furthermore, in these cases the improvement seems to be invariant with respect
to the transfer function being employed.

Generalization Ability

The ability for a neural network to generalize lies in its structure (number of hidden
nodes, connections, etc). However, for a specific data set and error surface, each neu-
ral network configuration will represent its own input/output mapping, assuming the
properties described above. Due to this, each of these networks will yield a different
generalization ability. In this section we will compare this characteristic of generaliza-
tion between BP and OBP which will be calculated from the testing subset of data used
by the 10-fold cross-validation technique used to train the networks.

Table 12.6 presents the results for both logistic and tanh transfer functions. From
these results we find that 6/7 tanh and 3/7 logistic function experiments showed a sta-
tistically significant difference in generalization ability. In total 9/14 experiments with
OBP trained networks had a lower generalization error and thus seems less prone to
problems of over/underfitting.

Table 12.6. Comparing the generalization ability between BP and OBP trained networks using
testing subset of cross-validation data

BP OBP
Function μ σ μ σ

f1
logistic 386.134 77.314 370.589 89.760
tanh 1029.007 451.438 519.156 219.262

f2
logistic 30317.572 12171.253 24158.174 9029.284
tanh 45238.370 28918.824 35734.524 20214.202

f3
logistic 80.383 38.327 71.551 34.783
tanh 122.942 55.640 79.020 43.652

f4
logistic 407.556 149.557 386.865 142.802
tanh 570.027 166.172 502.224 131.787

f5
logistic 706.207 231.591 484.803 179.726
tanh 1116.769 437.079 476.906 240.339

f6
logistic 1098.062 186.130 1095.329 175.426
tanh 1589.940 377.450 1393.687 298.162

f7
logistic 46.578 14.887 31.753 11.661
tanh 88.483 29.722 44.398 14.625

Using the metric of Equation 12.17, we calculate improvements of r̄ ≈ 0.85 and
r̄ ≈ 0.66 for the logistic and tanh transfer functions. Both of these results are very
impressive, especially for the tanh function. This experiment shows that considering
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opposite networks can not only improve the MSE measure, but also the input/output
mapping seems to be more representative of the true distribution of the data.

12.6 Conclusions and Future Work

In this chapter we discussed previous results regarding the influence of adaptive transfer
functions on feedfoward and recurrent neural networks. While these results are very
promising, we focus on a specific type of adaptive transfer function, namely the opposite
transfer function. The opposite function allows for a rapid transformation of a given
network to one of its opposite networks, each having some degree of correlation in their
output.

In order to be useful in neural network learning we propose two frameworks which
can be used to inject the usefulness of opposite networks into existing learning algo-
rithms. The first framework took a global decision-based perspective on this task. Be-
fore each epoch a subset of opposite networks is randomly selected and a single epoch
of learning performed on each one. Learning then proceeds with the network which
exhibited the lowest error at that epoch. The second framework took a local decision-
based approach where each neuron decides, based only on local information, whether
a change in transfer function is likely to yield a lower error than the network currently
being trained. If so, the change is accepted and learning proceeds with the new net-
work, if indeed an improvement was observed. Each hidden neuron can be selected as
a candidate to change its function.

Using these frameworks we showed extensions of the backpropagation and back-
propagation through time learning algorithms. While the frameworks should work for
any gradient-based learning algorithm, we chose these because of their simplicity and
familiarity as a proof of concept. Our experimental results showed an improvement in
accuracy and generalization abilities, at the expense of a small amount of computational
overhead. Since the error was generally lower for opposition-based approaches, it can
be said that they also converged to the lower error faster, but convergence rate is not
necessarily higher.

Future work involves examining different learning algorithms such as rProp, quick-
Prop, Levenberg-Marquardt, etc as parent algorithms. Hopefully, similar improvements
can also be observed for those techniques as well. An examination of different transfer
functions is also an important investigation, as is considering more flexible adaptive
transfer functions where its opposite is dynamically decided at each epoch. More prac-
tical experiments for high dimensional, more complex real world problems is also an
important experiment that should be conducted.

On the theoretical side some possible future works involve convergence conditions
and proofs for each framework. Additionally, the development of more intelligent crite-
ria for deciding amongst which opposite network is most likely to yield a higher quality
input/output mapping is a very important direction. This will likely involve the use
of higher order information, such as the Hessian matrix. Finally, developing a heuris-
tic method to decide candidate networks which are most likely to show improvements
would improve not only the input/output mapping quality, but also lower the computa-
tional requirements of the frameworks.
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Appendix

A Universal Approximation Theorem

Theorem 3 (Universal Approximation [23]). Let φ(·) be a nonconstant, bounded, and
monotone-increasing continuous function. Let Im0 denote the m0-dimensional unit hy-
percube [0, 1]m0 . The space of continuous functions on Im0 is denoted by C(Im0 ). Then,
given any function f $ C(Im0) and ε > 0, there exist an integer ml and sets of real
constants αi, bi, and wij , where i = 1, . . . , ml and j = 1, . . . , m0 such that we may
define

F (x1, . . . , xm0) =
m1∑

i=1

αiφ

⎛

⎝
m0∑

j=1

wijxj + bi

⎞

⎠

as an approximate realization of the function f(·); that is,

|F (x1, . . . , xm0) − f(x1, . . . , xm0)| < ε

for all x1, . . . , xm0 that lie in the input space.
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Summary. In many vision-based applications we need to segment an object of interest in digital
images. For methods which rely on a learning process, the lack of sufficient number of training
samples is usually an obstacle, especially when the samples need to be manually prepared by an
expert. In addition, none of the existing methods uses online feedback from the user in order to
evaluate the generated results and continuously improve them. Considering these factors, a new
algorithm based on reinforcement learning is discussed in this chapter. The approach starts with
a limited number of training samples and improves its performance in the course of time.

A potential obstacle when we apply reinforcement learning into image-based applications is
the large number of state-action pairs. In such cases, it is usually difficult to evaluate the state-
action information especially when the agent is in the exploration mode. The opposition-based
leaning is one of the methods that can be applied to converge to a solution faster in spite of a
large state space. Using opposite actions we can update the agent’s knowledge more rapidly. The
experiments show the results for a medical application.

13.1 Introduction

Image segmentation plays a pivotal rule in many computer vision applications. The de-
mand for higher robustness, reliability and automation of segmentation algorithms has
been steadily increasing in recent years. Segmentation is partitioning of an image into
meaningful regions based on characteristics such as intensity, texture, color and gradi-
ent. Techniques used for segmentation are highly dependent on the particular situation
and the specifications of the problem at hand. Many, if not all, segmentation methods
usually require some user interaction to adjust critical parameters for optimal object ex-
traction. There is not a general segmentation algorithm that could generate acceptable
results for all cases. But there are numerous methods specialized for particular appli-
cations which can usually give better results by taking into account expert or a-priori
knowledge.

In many applications we need to segment only one object in the image. This sim-
plifies the segmentation process. However, we still face difficulties due to some factors
such as poor image contrast, noise and missing or diffuse boundaries. In methods which
rely on learning techniques the lack of a sufficient number of training samples is another
obstacle, especially when the samples are being manually prepared by an expert.

The segmentation of prostate in trans-rectal ultrasound (TRUS) images is an exam-
ple for extremely challenging medical image segmentation [2, 6]. The detection of the
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prostate boundary in such images is crucial for computer-aided cancer diagnosis and
classification. However, due to a very low signal-to-noise ratio, it is difficult to ex-
tract the accurate boundaries such that improvements of segmentation process are still
desirable [8]. Many methods have been proposed in literature to facilitate more accu-
rate automatic or semi-automatic segmentation of the prostate boundaries in ultrasound
images [1, 3, 9, 10, 12, 22].

Recently, some works have been published that show the applications of reinforce-
ment learning for image-based problems [13, 14, 15, 16, 17, 18, 19]. In this chapter a
segmentation system based on opposition-based reinforcement learning (ORL) is intro-
duced. To validate the findings, the system is applied to segment the prostate in TRUS
images. Generally, a reinforcement learning agent can learn from interactions with an
offline simulation system and its online model [20, 23]. Due to the exploratory policy
used in reinforcement learning (RL), it would be well-suited to demonstrate the use-
fulness of considering opposite alternatives compared to pure randomness. The goal of
this ORL system is to identify an object of interest in an image and separate it from the
background. The system can work in offline or online mode. The offline mode is per-
formed using the manually segmented samples to acquire the fundamental information
about the specifications of the problem at hand. In the online mode, the segmentation is
mainly based on the fact that the object of interest has a meaningful shape with respect
to the application at hand.

13.2 Problem Statement and Proposed Approach

A framework for adjusting the parameters of a multi-stage segmentation system by using
an RL agent is discussed in this section. The framework is depicted in Figure 13.1.

As shown, an intelligent agent is employed to find the appropriate parameters for
image processing tasks. The system contains a series of image processing tasks with
parameters that must be adjusted to manipulate the input images in some desired way.
The goal is to choose a final set of parameters for various tasks such that an object of
interest can accurately be extracted. An RL agent operates based on states which are
the features that describe the image content in various stages (after each processing
task). To change the result of segmentation, the RL agent takes actions which have the
capability to change the critical parameters. The learning is guided through rewards
which could be based on subjective or objective measures.

As depicted in Figure 13.1, there are a series of N image processing tasks T1,
T2, . . . , TN with corresponding parameters that must be adjusted. The system adap-
tively computes the set of parameters that increase its performance for a given seg-
mentation problem. Limiting ourselves to the model previously described, we must first
define the states s, actions a and reward r. To generate the states, features of the input
and output images for each processing task are used. These features must describe the
status (content) of these images. It is desirable to use such features with a proper level
of discretization not leading to extremely large state spaces.

Actions can be easily defined as modification of the parameters of the processing
tasks. After the agent adjusts these parameters properly, it receives a reward. The reward
is an external reinforcement signal and must correctly reflect the goal of the agent.
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Fig. 13.1. The general model of the proposed ORL system

The ORL method for object segmentation has two modes: offline and online. The
offline training is conducted by using the manually segmented samples represented as
ground-truth images. In this mode, the agent is adopted in a simulation environment
and interacts with training samples to acquire the fundamental information necessary
to segment the object of interest. Once the agent’s behavior is acceptable in terms of
established criteria (e.g. accuracy), the agent switches to the online mode. In this mode,
the RL agent operates in real-time to segment new (unseen) images. With continuous
learning in this mode, the agent can adapt to changes in the input images.

In the proposed system, an R×C input image is divided into RS ×CS sub-images.
The RL agent works on each of these sub-images separately. Local processing on sub-
images is carried out to find the best segmentation parameters for each of them. To con-
struct the processing task chain, the sub-images are thresholded using local values. Due
to disturbing factors such as poor contrast, noise, or non-uniform illumination, artifacts
exist after thresholding. Therefore, morphological operators are applied to post-process
each thresholded sub-image. The RL agent determines two factors: 1) the local thresh-
old value, and 2) the size of the structuring elements for each individual sub-image.

During the offline mode where the desired output image is available, the agent works
on each sub-image and explores the solution space until a sufficient number of actions
have been taken. In this mode, the agent tries different actions in different states via an
exploratory procedure. The Q-learning algorithm is used to implement the reinforce-
ment scheme (see Chapter 11). After the RL agent changes the parameters for each
sub-image, it receives a reward/puishment for that state-action pair and updates the
corresponding value in the Q-matrix, a matrix storing accumulated rewards (see Chap-
ter 11). After the offline mode, the agent has already explored many actions and is
capable of exploiting the most rewarding ones for segmenting new images. Needless to
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say that the performance of the system after the offline mode depends on the number of
samples that have been learned.

In the online mode, the system operates episodically. During each iteration in each
episode, the agent works on each sub-image and completes the iteration by using the
knowledge previously gained and stored in the Q-matrix. The rewards are not calculated
immediately, and the agent waits until the whole image is scanned and processed. The
reward is then provided for each sub-image objectively and/or subjectively based on the
quality of the segmented object before and after the action is taken.

Components required to construct the RL agent, namely states, actions and rewards,
are defined in the following sub-sections.

13.2.1 States

We considered the idea of the state consisting of some features representing the qual-
ity of the image. These features can be chosen based on various shape and/or bound-
ary properties reflecting the quality of each sub-image after thresholding and post-
processing. Generally, the feature selection is highly dependent on the specifications
of the problem at hand. For the TRUS images, the following features extracted from the
main object in each sub-image are used to define the states:

Feature 1 – Area
In each sub-image, the normalized area with respect to the total area of the sub-
image is calculated and used as the first feature:

Anorm =
Asubimage − ASO

Asubimage
. (13.1)

where Asubimage and ASO are the area of the sub-image and the area of its object,
respectively.

Feature 2 – Compactness
The compactness Ψ of the object after thresholding is defined as:

Ψ =
4πASO

P 2
SO

, (13.2)

where AOS and POS are the area and perimeter of the object in the sub-image,
respectively [4].

Feature 3 – Relative Position
By using the geometric center (xc, yc) of the prostate given by the user via a single
mouse click (or by calculating the center of gravity of the extracted segment), the
relative distance ρ and angle φ of the sub-image with respect to the geometric center
is adopted as a state parameter:

ρ =
√

(xs − xc)2 + (ys − yc)
2
, (13.3)
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φ = tan−1

(
ys − yc

xs − xc

)

, (13.4)

where xs and ys are the coordinates of the center of the current sub-image.

Feature 4 – Gray Level Information
A histogram prototype on the edge of the prostate can be calculated in the ground-
truth images, which shows the gray level distribution along true edgy areas. The
histogram distance between each sub-image and the prototype is then calculated
and used to define a feature. One of the most popular histogram distances, the χ2

distance, is selected for this purpose [24]:

Dχ2(h1, h2) =
Mh∑

b=1

(h1(b) − h2(b))2

(h1(b) + h2(b))
, (13.5)

where Mh is the number of gray levels and h1 and h2 are the normalized histograms
(gray level probability density functions) of each sub-image and the prototype, re-
spectively. To incorporate the spatial gray level information, one may extract tex-
ture information which has frequently been used as a feature in ultrasound image
analysis. However, this may lead to an increase in computational expense.

Feature 5 – Number of the Objects
The last feature used for state definition is the number of revealed objects, NO,
after the morphological opening.

13.2.2 Actions

To extract the object of interest, the actions are defined as “changing of the parameters”
for processing of each sub-image. The assigned values are increased or decreased, or
chosen from the predefined values to control the effect of each processing task. In order
to extract the object of interest, all sub-images are binarized using local thresholds. Due
to disturbances such as speckle noise or poor contrast, irrelevant structures exist after
thresholding. Hence, morphological opening and closing are employed to post-process
each thresholded sub-image. The RL actions are defined as a change in the threshold
value, and the size of the structuring elements for each sub-image.

The assigned local threshold values are increased or decreased by a specific amount
Δ. Using this definition, the values τg1 and τg2 from a predefined set (τ1, τ2, ..., τn),
equally spaced between the local maximum gray level glmax and local minimum gray
level glmin, are selected. For the opening and closing morphological operators, the size
of the structuring elements are chosen from predefined values to control the effects of
these operators. Thus, the set of all actions A can be presented as follows:

A = {τg1 ± Δ, τg2 ± Δ} ∪ {υj} ∪ {υu}, (13.6)

where υj and υu are the sizes of the structuring elements for the morphological
operators.
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13.2.3 Reward/Punishment

The rewards and punishments are defined according to the quality criteria that quantify
how well the object has been segmented in each sub-image. In the offline mode, a
straightforward method is to compare the results with the ground-truth image after each
action. To measure this value for each sub-image, we note how much the quality has
changed after each action was taken. In each sub-image, for improving the quality of
the segmented object, the agent receives a reward otherwise a punishment. A general
form for the reward function is represented by

r =
{

κ1 DΔ ≥ 0
κ2 DΔ ≤ 0,

(13.7)

where DΔ is a measure indicating the difference between the quality before and after
taking the action and is calculated by the normalized number of misclassified pixels in
the segmented sub-images. In Eq. 13.7, κ1 and κ2 are constant values.

13.2.4 Opposition-Based Computing

A potential obstacle when we apply RL agents to image-based applications, is the large
number of state-action pairs involved. Also we are operating on two-dimensinal data
and each action will take time to produce a new result. Therefore, we need to speed
up the learning process to increase the practicality of the system. Opposition-based
computing is one of the methods that can be applied for this purpose (see Chapter 2).

Employing opposition within learning for image segmentation means we have to
introduce opposite states and/or opposite actions and simultaneously explore their ef-
fect when we use the original states and actions. This, however, is highly dependent on
how the state-action pairs are defined in context of the application at hand. Because the
RL agent must visit all sub-images, it takes too long to try various actions especially
when the agent is rather in exploration mode. Using opposition-based computing we
can update the knowledge of the RL agent more frequently resulting in shortening the
exploration time. For image segmentation, this can be easily done for actions. For ex-
ample if the action a is to increase the threshold, τg1 + Δ, the opposite action ă can be
defined as decreasing it, τg1 −Δ. Analogously, if the action is choosing a specific value
among some predefined values, the opposite action can be defined based on the relative
distance of others with respect to the current value. Generally speaking, we can define
the degree of oppositeness based on the distance to the current state.

Whereas the offline reward rOFF is calculated from the difference between the avail-
able ground-truth image and the binary image produced by the agent, in the online mode
the object contour is considered in a global manner to identify the image regions that
correspond to the object of interest. This serves as a guidance from the higher level of
perception to update the agent’s information. The RL agent then uses this feedback as
online reward rON for the action taken on each sub-image. If a sub-image is segmented
correctly in terms of the global feedback, the parameters remain unchanged and learn-
ing process is terminated.
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Objective Evaluation

Objective evaluation is applied as a primary assessment. There are several methods
for implementing this evaluation. One way is to compute the distance between two
shapes. Typically, these techniques compute the best global match between two shapes
by pairing each element of shape Γ1 with each element of shape Γ2. The technique
introduced in [11] is adopted in a 2-D plane to measure the object similarity. In this
technique there is an unknown curve, C1 and a prototype curve C2 corresponding to
shapes Γ1 and Γ2, respectively. If the characteristics of the points located on the two
curves are represented as string x̃ and ỹ, the editing distance between the two strings
is defined as the shortest way (minimum cost) to transform x̃ into ỹ . The idea is to
find a minimum cost path as a sequence of editing operations that transform the string
corresponding to the curve C1 into curve C2 [11]. The algorithm not only gives the
distance Δ(x̃, ỹ) between two strings x̃ and ỹ , but also the way in which the symbols
of x̃ correspond to those of ỹ.

The signature of a shape is used to generate its string. The shape signature is defined
as a 1D function representing a 2D area or boundary of the shape. In the proposed
system, the central distance is calculated as the distance from the points on the boundary
to the central point of the object (given by the expert). It is represented as a 2π periodic
function [5]. The signature of the extracted object is then compared with the standard
signature of the object of interest prior or during the offline mode using the ground-
truth images. Finally, the significant deviations are estimated and the objective reward
(/punishment) rO

ON for the corresponding sub-image is calculated.

Subjective Evaluation

Another alternative to provide the agent with a reinforcement signal is subjective eval-
uation from the online feedback. The user considers the results of the segmentation
system for each image. If he/she is not satisfied, he/she can change the results manually
(manual editing of the extracted contour). These changes are evaluated as subjective
punishment for the agent, where the manually corrected result is used as a new ground-
truth image to improve the agent’s knowledge. The agent then proceeds to the next
image with its updated information. By adopting this method, the agent can be further
trained online by a subjective evaluation as rS

ON . The Q-matrix is updated and the seg-
mentation system can follow the changes in the new input image. During all previous
stages, the object of interest (in our case, the prostate) is extracted by using the position
of the central point (the position of the click).

13.3 Results and Discussions

To evaluate the performance of the segmentation system, validation experiments were
performed. The results of the segmentation system on an image data set containing 80
TRUS image slices from five patients are represented in this section. To train the agent,
12 manually segmented images from the data set were chosen.

The ε-greedy policy is implemented to explore/exploit the solution space when the
RL agent is in the offline mode [21]. The size of the TRUS images are 460×350 pixels.
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Fig. 13.2. Prostate segmentation in TRUS images. From left to right: original, manually seg-
mented and result of the proposed system.

The size of the sub-images RS ×CS is empirically set to 11× 14. The threshold action
is defined by changing the two values between the local maximum and minimum gray
levels in each sub-image by Δ = 1/10. For the post-processing tasks, the size of a
disk shape structuring element for the morphological opening is changed by 5 in the
set {0, ..., 15} and for the morphological closing by 1 in the set {0, ..., 5}. The criterion
to terminate the process for each sub-image is to reach a pixel difference less than 5%
by comparing it with the ground-truth image. The reward (Eq. 13.7) is calculated with
κ1 = 10, κ2 = 0.

The average time for training was 61s per patient set and 7.9s for test images. After
the offline learning, the Q-matrix is filled with the appropriate values and the agent
has gained enough knowledge to recognize the optimal values for the sub-images in
new (unseen) images. The method was consequently applied on the remaining sample
images. Figure 13.2 displays the results of the proposed approach for six sample images.
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Table 13.1. The average area overlap AO, μ, between the segmented and the ground-truth images
for the training samples (for training samples manually segmented versions are available)

AO(%) AO(%) AO(%) AO(%) AO(%)
Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

μ 93.56 95.30 94.07 94.58 93.83

The choice of criteria to measure the accuracy depends on the application and can
be derived from the region or boundary information. For all images, the accuracy of
the final segmented object is defined as the area overlap of the segmented images and
the ground-truth images, a commonly used metric [2]. Table 13.1 shows the results for
training images.

Then, the algorithm was applied again using the opposition-based reinforcement
learning. When employing opposition-based computing, we observed that the train-
ing time is reduced during the exploration mode. This is because the Q-matrix is filled
more rapidly using extra opposition-based updates in each iteration. Table 13.2 shows
the average Learning Time Reduction (LTR) with respect to the standard Q-Learning.
As we can see, a reduction in learning time has been achieved.

Table 13.2. Learning Time Reduction (LTR%) using opposition-based computing comparing to
the strandard Q-learning for patients

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5
LTR% 17.2% 18.2% 19% 16.7% 21.5%

μ = 18.52 σ = 1.88

The results in terms of visual appearance and accuracy can be employed as suitable
coarse level estimations to serve a fine-tuning segmentation algorithm [2]. For instance,
these results can be used as the initial points for the well-known snake method intro-
duced in [7]. In some cases, the results can even be regarded as the final segmentation.
It is important to note that our proposed approach is not designed to compete with the
existing segmentation approaches. As a proof of concept, it is introducing a new class
of knowledge-based methods that require a limited number of samples for training and
can improve their performance in an online learning procedure. To compare with other
techniques and understand the advantages of the proposed method, we note that static
methods such as active contours have static performance; they do not have any ability
to be trained. On the other hand, in the methods that use learning algorithms, we usually
need a large number of training samples. They do not have online training unless we
“retrain” them.

13.4 Conclusion

This chapter intended to present the concept of opposition-based reinforcement learning
in the field of image segmentation by providing some experimental results. This system
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finds the appropriate local values for image processing tasks and segments an object.
Opposition-based computing was employed to reduce the training time. During an of-
fline stage, the agent uses some images and their manually segmented versions to gather
knowledge. The agent is provided with scalar reinforcement signals to explore/exploit
the solution space. It can then use the acquired knowledge to segment similar images.
Also, it can improve itself using online feedback. We have to notice that our proposed
method (as the first version) is a proof of concept of a new learning-based method
and is not designed to compete with the existing segmentation approaches in terms of
accuracy.

NOTE: The subject matter of this work is covered by a US provisional patent
application.
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Summary. Water resource management is one of the important issues for most governmental
and private agencies around the globe. many mathematical and heuristic optimization or simu-
lation techniques have been developed and applied to capture the complexities of the problem;
however, most of them suffered from the curse of dimensionality. Q-learning as a popular and
simulation-based method in Reinforcement Learning (RL) might be an efficient way to cope well
practical water resources problems because of being model-free and adaptive in a dynamic sys-
tem. However, it might have trouble for large scale applications. In this chapter, we are going
to introduce a new type-II opposition of Q-Learning technique in a single and multiple-reservoir
problem. The experimental results at the end of chapter will confirm the contribution of the op-
position scheme in speeding up the learning process especially at the early stage of learning and
making it more robust at the end. These results are promising for large-scale water resources
applications in the future.

14.1 Introduction

In the modern world where the population is on the rise, the efficient utilization of
limited natural resources such as water plays a crucial role in human life. There are
vital questions how to efficiently control, use, and manage different water resources
around the world such that demands are met and minimum cost and waste are achieved.
Sometimes, these questions for some specific resources are not local concerns of one
community or government, but strategic issues for several interrelated communities.

The surface water resources or reservoir management is one of these issues involving
various equipments, facilities, and substantial budgets. For the planning or designing
step of a single reservoir or a set of reservoirs, different objectives such as flood control,
irrigation needs, drinking and industrial supplies, power generation, recreation, naviga-
tions, and environmental issues should be considered. In real-world, the optimization
of these objectives might be non-linear and non-convex which makes the problem more
complex. Moreover, embedding the stochasticity of the parameters such as inflow, evap-
oration, and demand into the simulation model of the reservoir creates further complex-
ities. Existing computational limitations cause various physical constraints.

In this chapter, we would like to apply Q-Learning along with type-II opposition
schemes to a single- and multi-reservoir problem. In the next section, we will de-
scribe the nature of reservoirs, potential objectives and important constraints. In section
14.3, we will demonstrate how to design Q-Learning algorithm to be applied for single

H.R. Tizhoosh, M. Ventresca (Eds.): Oppos. Concepts in Comp. Intel., SCI 155, pp. 299–321, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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and multi-reservoir applications. Section 14.4 introduces a specific type-II opposition
scheme. In section 14.5, we will demonstrate some experimental results for a single
reservoir case study. In the last chapter, we will summarize the final results and point to
future research areas.

14.2 Problem Description

In the following subsections, we will demonstrate schematic figures of the single- and
multi-reservoir case studies and establish some important terminologies. A typical op-
timization model including objective function and some common constraints will be
introduced at the end of this section.

14.2.1 Components of a Single Reservoir

Figure 14.1 represents a general sketch of a single reservoir. The total storage volume
behind a reservoir is usually categorized in four main levels: 1) flood control storage is
a space used to keep the excessive water behind the reservoir, prevent it from spilling,
and reduce the harmful and devastative effects in downstream, 2) water supply storage
or the active storage which is used for different demands such as irrigation, drinking
and industrial water supplies etc., 3) buffer storage which is a safety level of storage
volume set up for every period in a cycle, 4) dead storage or inactive storage which
is usually required for power generation because the pumping level to drain the water
for generating power has been placed at this point. This is also considered for sedi-
ment collection and recreation. There is also a spillway which releases the overflow
downstream.

Flood control 

Dead storage 

Water Supply Storage 

Buffer Storage

Full Supply 
level –Spillway 
level

Dam 

Nominated 
Buffer Storage 
level

Lowest  
Pumping Level 

Fig. 14.1. Schematic representation of a single reservoir
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14.2.2 Multi-reservoir Configuration

Depending on the purpose of the environment, different configurations of reservoirs can
be constructed. The interrelation between these reservoirs could be serial, parallel, or
a combination of both (Figure 14.2). Generally, the whole structure of reservoirs is to
satisfy a specific demand in the downstream reservoirs. This means that the releases of
these reservoirs are only utilized to meet the total demand including irrigation, munic-
ipal water supply, etc. However, in some cases each individual upstream reservoir has
to meet a portion of the whole demand as well. For example, there is a powerplant cor-
responding to each reservoir having responsibility to generate power. It is clear that the
water released to generate hydroelectric power in each reservoir flows again to down-
stream reservoirs for other purposes [11]. It is worth mentioning that a portion of release
in some reservoirs in the configuration can be assigned for other purposes because of
existing water-sharing agreements between different states or governments [4].

Release (R2)

2

1

Inflow

Release (R1)

a

 Inflow
1 2

   Inflow  Inflow

Release (R2)Release (R1)

Release (R1+R2) 

 b 

Fig. 14.2. Different configurations of two reservoirs: (a) serial, (b) parallel

14.2.3 Reservoir Modeling

The purpose in the management of surface water resources is to find an operating policy
such that the maximum benefit or minimum cost is achieved in a short or long period
of time. This operating policy should map the periodic water releases to system states
(which are usually predefined discrete values) indicating the different storage volumes
at the beginning of each period of a cycle (e.g., year). In optimization of some applica-
tions, when the respective model is in the situation of non-stationary Markov decision
process, the preceding inflow in every time period can be considered as a new state
variable [16]. This kind of state variable, along with other state variables for different
reservoirs in the system, form a vector quantifying the system state. It should be noted
that the decision (action) of the system can be a vector representing separate decisions
for each demanding point, corresponding to each reservoir. In other words, if there is M
reservoirs and each reservoir has N demanding points, the number of elements in the
respective vector will become M ×N . Objective function - Assuming that the storage
volumes of each reservoir form the vector of system state, the objective function and
important constraints can be considered as follows

Z = max
T∑

t=1

f t(st,at,dt), (14.1)
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where T is the number of periods, st is a vector presenting the values of state vari-
ables at the time t, at and dt are the vectors of actions taken and the given demands,
respectively. For example,

f t(st,Rt) = max
T∑

t=1

(Rt × ct + ct
s × st). (14.2)

Here, R is the release matrix, ct is the vector of unit prices of water released, and ct
s

is the vector of constant values for the respective storage volume of each reservoir. The
second term in the objective function is related to power generation. In fact this is a
linear form of the nonlinear function as described in [8]. This linear objective function
is the zeroth order approximation of Taylor’s series for energy function, which is pre-
sented by Loucks et al. [8]. Balance Equation - This equality constraint indicates the
conservation of mass with respect to net inflow and outflow of the reservoir:

st+1
i = st

i + It
i − Rt

i +
∑

∀j

ui,j ∀ t = 1 · · · T, i = 1 · · · N. (14.3)

Here, It
i is the amount of inflows to reservoir i. The variable ui,j is determined based on

the routing matrix established by the configuration of reservoirs [7] and demonstrates
the volume of water released from reservoir j to reservoir i. For short term optimization,
the vector of initial storage volume s0

i is assumed to be given.

Minimum and maximum storage - Every element of vector st should satisfy the cor-
responding minimum and maximum storage level at period t in the respective vectors
st
MIN and st

MAX .

Minimum and maximum releases - All possible values for every element of decision
vector Rt should be between the corresponding minimum and maximum release levels
at period t in the respective vectors Rt

MIN and Rt
MAX . The purpose of this set of

constraints is to provide suitable water quality for the existence of wildlife and fish, as
well as preventing floods in downstream.

14.3 Reinforced Techniques for Reservoir Management

Stochastic Dynamic Programming (SDP) is a powerful and efficient algorithm for reser-
voir management in which the original problem is broken down into different sub-
problems. The optimal solutions for all sub-problems constitute the optimal policy for
the main problem. The different techniques in reinforcement learning (RL) such as
Q-learning, Sarsa-Learning, Q(λ), and Sarsa(λ) mostly use the idea or some mathemat-
ical formulations of SDP. For instance, in Q-Learning the Bellman optimality equation
[1] and Robbins-Monro algorithm [13] both contribute to create the main formulation.
This technique is model-free which means it does not need the probability distribution
of the transition from one state to another state. This advantage makes this technique
very attractive for large-scale applications of water resources. In the following subsec-
tions, we will explain how to define/configure the state variables, admissible actions, re-
ward/punishment, the optimal policy, and update action-value functions for Q-Learning.
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14.3.1 System States

Assuming the storage level is the only state variable in our system, we should descretize
the storage volume before the learning is started. There exist some methods for dis-
cretizing the storage level (e.g., [5], [6], [2], and [12]); however, the following formu-
lation is a practical way for a single reservoir which is extendable to multi-reservoir
applications:

Ap =
{

st
i = st

min + (st
max−st

min)
K−1 (i − 1)

}
for i = 1 · · ·K, (14.4)

where K is an integer value showing the number of discretizations and Ap is the set
of all possible actions. One can find a mathematical way to create a label for each
possible state such that the discrete storage levels pertinent to every reservoir in the state
vector are extracted. This could be quite beneficial when the state space is very large.
Therefore, this information is not needed as a reference during the learning process.

14.3.2 Admissible Actions

At each time period, an RL agent should choose an action among alternative actions.
In other words, possible actions may be defined as a set of all discrete values of the
control variable (release) within the range between minimum and maximum release
volumes (Rt

minand Rt
max). Given the maximum number of discrete release volumes at

each period as H , one may determine the set of discrete possible actions as follows:

Ap = {at
i|at

i = Rt
min +

(Rt
max − Rt

min)
H − 1

(i − 1)} for i = 1 · · ·H. (14.5)

The agent may pick an action from this set at each time period based on the policy.
It should be noted that in problems with a small state-action space, more simulation
periods could be performed to experience all possible actions at different states to find
the optimal policy. However, the convergence may be quite slow and perhaps intractable
in multi-reservoir systems with numerous state variables. On the other hand, some of
those actions are physically infeasible.

Since inflows into reservoir are random variables, the set of admissible actions corre-
sponding to each specific storage volume as state variable might be different for every
new inflow. Therefore, in order to have a unique set of admissible actions for every
state, a fixed value for inflow should be chosen in the balance equation (Equation 14.3).
Depending on whether the lower or upper bound of the inflow bound is taken, two dif-
ferent ways in defining the set of admissible actions associated with any storage volume
may be used: 1) optimistic, and 2) pessimistic.

In the optimistic case, the inflow is supposed to be high enough and close to its upper
bound based on historical data available or based on a probability distribution function.
However, in many time periods of the simulation and as the real inflow would be less
than the optimistic inflow chosen, many of those actions might result in infeasible end-
of-period storage volumes in simulation and therefore the control system has to punish
them. A similar procedure is followed in the pessimistic case, except that a low inflow
value is used to specify the set of admissible actions for any state. That low inflow
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Algorithm 1. Finding admissible actions - single reservoir
1: Find all possible actions with respect to maximum and minimum release

Rt
min = at

1, at
2, . . . at

H = Rt
max.

2: Discretize storage levels of reservoir to K values with respect to maximum and minimum
storage levels in each period

st
min = st

i, s
t
2, . . . s

t
K = st

max.

3: Compute minimum and maximum inflow, It
min and It

max, from the historical data or from
the respective probability distribution

P (It ≤ It
min) = ε,

P (It ≤ It
max) = 1 − ε,

where ε is a small positive value close to zero.
4: Compute minimum and maximum evaporation, et

min and et
max, from the historical data or

from the respective probability distribution

P (et ≤ et
min) = ε1,

P (et ≤ et
max) = 1 − ε1,

where ε1 is a small positive value close to zero.
5: Find the end-period-storage

∗ Pessimistic:

st+1
i = s̄t

j + It
min − et

max − at
h,

for j = 1 · · · K, h = 1 · · · H.

∗ Optimistic:

st+1
i = s̄t

j + It
max − et

min − at
h,

for j = 1 · · · K, h = 1 · · · H.

6: Find the set of admissible actions (At
i) with respect to storage values computed in step 5

(those actions are feasible if the related end-of-period storage st+1 volume in balance equa-
tion does not violate the minimum allowable storage volume, st+1

min)

(At
i) = {at

h|st+1
i ≥ st+1

min} for h = 1 · · · H.

value can be easily determined given the probability distribution function of the random
inflow, can be seen in Algorithm 1.

For a stationary system (with respect to time), if the agent is able to maximize the
total benefit obtained by system operations over a long time, it may receive less expected
benefit with lower variance compared to the optimistic case with more expected benefit
and higher variance of the simulated objective function [9].
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Algorithm 2. Finding admissible actions - multi-reservoir

1: Compute minimum and maximum inflow, It
m,min and It

m,max, and minimum and maximum
evaporation, et

m,max and et
m,min for all reservoirs (m = 1 · · · M )

pessimistic

{
P (It

m ≤ It
m,min) = ε1,

P (et
m ≤ et

m,max) = 1 − ε2,

optimistic

{
P (It

m ≤ It
m,max) = 1 − ε1,

P (et
m ≤ et

m,min) = ε2.

2: Find all possible actions

at
m,hm

= Rt
m,min +

(Rt
m,max−Rt

m,min)

Hm−1
(hm − 1), for hm = 1 · · · Hm,

where at
m,hm

is the hm possible action in reservoir m, Rt
m,min and Rt

m,max are the min-
imum and maximum release for reservoir m, respectively, and Hm is the number of dis-
cretizations for release in reservoir m.

3: In an optimistic scenario, find the maximum release flowing from one reservoir to another,
u∗t

m′,m, with respect to routing matrix [7]

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

st+1
m = s̄t

m,km
+ It

m,max − et
m,min − at

m,hm
+

M∑

m′=1,m′ �=m

u∗t
m′,m,

u∗t
m′,m = max{at

m′,h′
m′

|st+1
m′ ≥ st+1

m′,min, s̄t
m′,km′ },

for m = 1 · · · M , km = 1 · · · Km, hm = 1 · · · Hm

where s̄m,km is kth
m discrete value of storage in reservoir m, Km is the number of discretiza-

tions for storage level in reservoir m, and st+1
m is the end-of-period storage volume.

4: In a optimistic scenario, find admissible actions

A(m,km) = {at
m,hm

|st+1
m ≥ st+1

m,min, s̄t
m,km

},
for m = 1 · · · M, km = 1 · · · , Km, hm = 1 · · · Hm.

5: In a pessimistic scenario, perform steps 3, 4 after changing It
m,max and et

m,min to It
m,min

and et
m,max; respectively, and change maximization to minimization for finding u∗t

m′,m.

In multi-reservoir applications, in addition to precipitation and run off water flowing
to each reservoir, water might be released from one reservoir to another depending on
the structures of reservoirs given by the routing matrix [7]. Algorithm 2 demonstrates
the process for finding the admissible action in pessimistic and optimistic schemes.

14.3.3 Reward/Punishment

To find the immediate or delayed reward/punishment, we should first define a new ter-
minology, action taken and actual decision. As the environment is stochastic and be-
cause of existing constraints of maximum and minimum storage volume, it is clear that
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the action taken by the agent might not be the same as the release performed during the
respective period. This release is called the actual decision and is a basis to calculate
the immediate reward and punishment. In other words, because of stochasticity in reser-
voir management, there might be different rewards/punishments for one specific action
in every interaction within the environment. For instance, if the action and the actual
decision are at and dt and the objective function is total income earned from selling
water for rt per unit, the reward and punishment will be at × rt and (at − dt) × rt,
respectively. Therefore, the final reward in this simple example will be dt × rt.

14.3.4 Optimal Policy and Updating Action-Value Function, Q-Learning

Using a greedy, ε-greedy, or Softmax policy, an agent takes the next action based on
updated action-value functions. In other words, after receiving the reward from envi-
ronment, the agent updates the action-value function related to the previous state and
takes a new action. For the starting point, arbitrary values should be considered for all
action-value functions Q(i, a) (e.g., Q(i, a) = 0, for all states i, and actions a). In each
iteration at least one value should be updated. Assuming that the agent places storage st

= i and takes action at, based on the balance equation (Equation 14.3) and the value of
the stochastic variables, the next storage becomes st+1 = j. Suppose this storage meets
the minimum level of reservoir, then the action-value functions are updated as follows:

Q
(n)
t (i, a) =

⎧
⎪⎨

⎪⎩

Q
(n−1)
t (i, a) + α × [rt

e + γ max
b∈A(j,t′)

Qn−1
t′ (j, b) − Q

(n−1)
t (i, a)],

If a = at and i = it

Q
(n−1)
t (i, a), Otherwise

(14.6)

where n is the number of iterations performed from the the starting point of the learning
and rt

e is the immediate reward in time period t.
Although the transition from one storage to another is continuous and is controlled

by the balance equation (Equation 14.3), there is no guarantee that the current or next
storage is exactly one of the discrete values. There are two different storages in each
iteration that should be approximated to discrete values:

1. Storage, which the agent currently redobserves (current state), and
2. Storage, which the agent will observe on in the next iteration (next state).

An easy way to tackle this problem is to find the closest discrete value to the current
or next storage. However, this seems to be error-prone because the respective storage
only partially belongs to this state. To increase the accuracy, we might use a linear or
non-linear interpolation. To interpolate linearly, firstly, we have to find two successive
values s−t, s+t, which are the closest discrete values to the current storage. Finally, the
degrees of closeness of the storage to these boundaries should be computed based on
the following formulation:

w1 = 1 − st − s̄−t

s̄+t − s̄−t
, w2 = 1 − s̄+t − st

s̄+t − s̄−t
. (14.7)
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Algorithm 3. Updating action-value functions using interpolation (single-reservoir)

1: Take the closest discrete value of storage in period t, s̄−t = i or s̄+t = i, to the actual
current storage, st

i

2: Compute the next storage volume using the balance equation (Equation 14.3) and other
boundary constraints

3: Find two successive discrete values which are the closest values to the next storage
(s̄−(t+1) = j, s̄+(t+1) = j + 1)

4: Find w1 and w2 using Equation 14.7
5: Perform interpolation for the next storage

Q
(n)
z = Q

(n−1)
t (i, a) + α[rt

e + γ max
b∈A(j′,t′)

Qn−1
t′ (j′, b) − Q

(n−1)
t (i, a)],

j′ = (j − 1) + z & z = 1, 2

where rt
e is the immediate reward/punishment.

6: Update the action-value function

Q
(n)
t (i, a) =

2∑

z=1

wz × Q(n)
z .

7: Perform interpolation for the current storage as needed. Consider (s̄−t = i, s̄+t = i + 1) as
two consecutive boundaries for current storage and w′

1 and w′
2 as respective weights calcu-

lated using Equation 14.7

Q
(n)
zz′ = Q

(n−1)
t (i′, a) + αw′

z′ [rt
e + γ max

b∈A(j′,t′)
Qn−1

t′ (j′, b) − Q
(n−1)
t (i′, a)],

i′ = (i − 1) + z′, j′ = (j − 1) + z, z = 1, 2 & z′ = 1, 2.

8: Update action-value function

Q
(n)
t (i′, a) =

2∑

z=1

wz × Q
(n)
zz′ for z′ = 1, 2.

As seen in Algorithm 3, since the current storage partially belongs to both upper and
lower state boundaries, the learning rate α in each step should be multiplied by a new
weight obtained from Equation 14.8 for the closest state to the current state (α × w′).
The new learning rate is smaller than the previous one, therefore, the process of learning
of action-value functions is slower and presumably more accurate than the situation in
which only one action-value function pertinent to lower or upper discrete storage is
updated.

In multi-reservoir case, the analogous process should be performed to update action-
value functions but the weighting and some kind of normalization are needed. In a
reservoir application composed of M reservoirs, after taking an action in the current
state, the storages in all reservoirs become st+1

1 , · · · , st+1
M . Each of these storages
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could be exactly the same discrete value considered for the respective state variable or
can be between two successive representatives of state variable:

s̄
(t+1)
1,k1

≤ st+1
1 ≤ s̄

(t+1)
1,k1+1

s̄
(t+1)
2,k2

≤ st+1
2 ≤ s̄

(t+1)
2,k2+1

· · · · · · · · · · · · · · · · · · · · ·
s̄
(t+1)
M,kM

≤ st+1
M ≤ s̄

(t+1)
M,kM+1

−→

⎡

⎢
⎢
⎢
⎢
⎣

s̄
(t+1)
1,k1

s̄
(t+1)
1,k1+1

s̄
(t+1)
2,k2

s̄
(t+1)
2,k2+1

...
...

s̄
(t+1)
M,kM

s̄
(t+1)
M,kM+1

⎤

⎥
⎥
⎥
⎥
⎦

. (14.8)

So there are at most 2M combinations to be considered if none of them is equal to their
boundaries:

S̄ =

1
2
3
...

2M

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s̄
(t+1)
1,k1

s̄
(t+1)
2,k2

· · · s̄
(t+1)
M,kM

s̄
(t+1)
1,k1+1 s̄

(t+1)
2,k2

· · · s̄
(t+1)
M,kM

s̄
(t+1)
1,k1

s̄
(t+1)
2,k2+1 · · · s̄

(t+1)
M,kM

...
...

...
...

s̄
(t+1)
1,k1+1 s̄

(t+1)
2,k2+1 · · · s̄

(t+1)
M,kM+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (14.9)

where S̄ is a matrix showing all possible combinations of storage volumes in the bound-
aries of the respective state in each reservoir. If the current or next storage of one
reservoir becomes one of the values of its boundaries, the possible combinations are
decreased to 2M−1. Therefore, if all storages in the state vector become equal to one of
the boundaries, there is only one combination to be considered as a state of the system,
then no interpolation is required.

Analogously, the closeness of each element of state could be computed as follows:

wj,kj = 1 −
st+1

j − s̄t+1
j,kj

s̄t+1
j,kj+1 − s̄t+1

j,kj

, wj,kj+1 = 1 −
s̄t+1

j,kj+1 − st+1
j

s̄t+1
j,kj+1 − s̄t+1

j,kj

. (14.10)

To obtain the weight for each combination, we have to normalize these values as
follows:

w̄j,kj =
wj,kj

2M−1
M∑

j

wj,kj + wj,kj+1

, (14.11)

w̄j,kj+1 =
wj,kj+1

2M−1
M∑

j

wj,kj + wj,kj+1

. (14.12)

The summation of normalized weights for each combination is considered as a final
weight of the respective state (wl, l = 1 · · · 2M ). This method can be implemented for
the current state after taking an action. The weight for all possible combinations of
current state is denoted by w′

l′ (l′ = 1 · · · 2M ).
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14.4 Opposition-Based Schemes in Reservoir Management

As mentioned in the previous section, a reinforcement agent attempts to acquire knowl-
edge through interactions with the environment. However, when the system of reser-
voirs is large or the number of possible state-action pairs is huge, these interactions
might be time-consuming. Moreover, a physical limitation in terms of computer mem-
ory may exist. Therefore, the question may arise how to achieve an optimal or near-
optimal solution with fewer interactions. Opposition-Based Learning (OBL) scheme,
introduced by Tizhoosh [14], and applied to extend different artificial intelligent (AI)
techniques such as reinforcement learning (RL) [15] could be a suitable answer to the
mentioned question because it uses the current knowledge to update other action-value
functions without taking a new action and visiting a new situation.

14.4.1 Opposite Action and Opposite State

As described in Chapter 2 (pp. 17), we distinguish between type I and II opposition.
For type II opposition, the action-value functions play a key role in finding the oppo-
site action and opposite state. However, the majority of action-value functions have zero
value at the very beginning of the learning process or may have not been sufficiently ob-
served. Therefore, they cannot be reliable values for finding the opposites. To increase
the accuracy of finding the actual opposite action and opposite state, some kind of func-
tion approximation such as a feed-forward Multi-Layer Perceptron networks (MLP) or
a Fuzzy Rule-Based modeling (FRB) can be used. In this type of opposition mining (see
Chapter 2), regular learning is performed in order to obtain initial information about the
behavior of the system and specifically about action-value functions. The information
related to action-state pairs which are visited during learning can be empolyed as train-
ing data for the function approximations. Using other action-state pairs as test data, new
knowledge or action-value functions are extracted. In other words, we can introduce an
opposite agent which is not actually taking any action. However, the knowledge pro-
vided by the function approximation can be used to create a set of new action-value
functions which then are used for finding the opposites.

Furthermore, because training an MLP or creating FRB is time-consuming and might
not be practical during the learning process, the training step could be performed only
once every several episodes. The distance between two consecutive trainings is consid-
ered as a model parameter and should be specified at the beginning of the learning or
dynimically decided based on a heuristic.

As a result, there are two sets of action-value functions: one is obtained from the
direct interactions of the agent with the environment, and the second is extracted from
the function approximation. This knowledge is kept and updated using the action taken
by the agent and the opposite action introduced by the opposite agent until another
function approximation is run and new knowledge is generated. This might increase the
accuracy of finding the actual opposites between two runs of function approximation.
It is quite clear that as the learning process continues, more accurate opposite actions
and states can be achieved. The training and test data can be obtained with respect to
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Fig. 14.3. Type-II oppositional learning using function approximation

the number of observations for action-state pairs or the rate of change in action-value
functions in every iteration.

Figures 14.3 illustrates the opposition-based learning based on this scheme.

14.4.2 Reward and Punishment

As previously mentioned, the opposite agent is not really taking the opposite action.
Given the value of stochastic parameters such as inflow and evaporation after taking
an action, the real opposite decision R̆t pertinent to opposite action ă or action a in
the opposite state s̆ can be extracted using the balance equation (Equation 14.3) and
the boundaries of storage volume. This is illustrated in the equation 14.14 when the
opposite action is introduced:

s̆t+1 = st + It − et − ăt, (14.13)

R̆t =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ăt if st+1
min ≤ s̆t+1 ≤ st+1

max

st − st+1
min + It − et if s̆t+1 < st+1

min

ăt otherwise

, (14.14)

where R̆t is the actual opposite release at time period t. It should be noted that the next
state pertinent to the opposite action is set to the boundary values smin or smax if they
are out of limit.

14.4.3 Proposed Oppostion Mining Algorithm

Using the above definitions, the pseudo-code of the opposition-mining/type-II opposi-
tional Q-learing, is presented through the Algorithm 4. The analogous algorithm can be
designed for opposite state. Moreover, this algorithm is easily extendable to other RL
techniques such as Q(λ) and sarsa(λ).
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Algorithm 4. Q-Learning with Type-II Opposition

1: Initialize action-value functions, e.g., Qt
i,a = 0

2: Find admissible actions, At(i)
3: Determine the total number of episodes ”noepisode” and the number of years ”noyears”

in each episode
4: Set the starting episode sp, a counter showing the number of training n = 1, and the interval

between two consecutive trainings, c
5: Determine the starting and ending os and oe episode for using OBL
6: Start episode with mm = 1
7: Choose initial state: i = s and time t (e.g., randomly)
8: Take an admissible action using policy π (e.g., greedy,...) and receive next

state j=s′ and reward r
9: Find the closeness weights w1 and w2

10: If mm ≤ oe

11: ∗∗ If os ≤ mm < sp
12: ∗ Use type-I scheme to find the opposite action as follows

ăt = Rt
max + Rt

min − at

13: ∗∗ If mm = sp + c × (n − 1)
14: ∗ n = n + 1
15: ∗ Initialize approximated action-value functions
16: Q̂t(i, a) = Qt(i, a) for all i and a
17: ∗ Choose action-state pairs which are visited enough as training data
18: ∗ Train the function approximation, MLP, FRB,...
19: ∗ Update Q̂t(i, a) for the test data using approximated functions,

Q̂t(i, a)
20: ∗∗ If mm ≥ sp & mm ≥ os

21: ∗ Compute the type-II opposite action using the following equation

ă ∈ {â | Q̂t
(i,â) ≈ max

(b∈Ai)
Q̂t

(si,b) + min
(b∈ Ai)

Q̂t
(si,b) − Q̂t

(si,a)}.

22: ∗∗ Find the closeness weights w̆1, w̆2 for next state when the
opposite action is taken,

23: Use Algorithm 3 to update original action-value functions and their
approximates corresponding to the action and the opposite action,
Qt(i, a), Qt(i, ă), Q̂t(i, a), and Q̂t(i, ă)

24: If t �= T , then t = t + 1, i = s′, and go to step 8; otherwise, go to the next
step

25: If year ≤ noyears, then year = year + 1, t = 1, i = s′, and go to step 8;
otherwise, go to the next step

26: If mm ≤ noepisode, then mm = mm + 1, year = 1, and go to step 7;
otherwise, go to the next step

27: Find the best decisions for all states

14.4.4 Performance Criteria

One way to demonstrate the performance of an operating policy is to run a simula-
tion using sufficient historical or synthetic data to calculate the various criteria such as
average cyclic gain
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μ =
Y∑

i=1

μi/Y, (14.15)

cyclic variance

σ =
Y∑

i=1

(μi − μ)/Y − 1, (14.16)

and coefficients of variation cov = σ/μ where Y is the number of years in the sim-
ulation and μi is the benefit/cost in every cycle. It is quite possible to have different
operating policies at the end of each complete run of the learning program for the same
number of episodes.

Another criterion to compare two approaches is to calculate the deviation of achieved
policies if there is an optimal solution. In a multiple-solution application, we can mea-
sure the deviation of value functions with respect to every policy. As a result, a lower
deviation in operating policies or value functions at the end of all experiments repre-
sents a more robust learning method.

To find a performance criterion measuring the robustness of learning and its oppo-
sition versions, we can define the distance between all possible policy pairs or action-
value functions as follows:

L(d,d′) =
T∑

t=1

K∑

i=1

(
|πt

(i,d) − πt
(i,d′)|

)
,

for d = 1 · · ·D − 1, d′ = d + 1 · · ·D, J = D!
2!×(D−2)!

(14.17)

where D is the number of experiments for each set of parameters, K is the number of
state variables, πt

(i,d) and πt
(i,d′) are two different action policies which map the ith state

and the tth period to the optimal action a, and J is the number of pairwise combinations
of these action policies.

Given these distances, the following criteria called the mean and variance of distance,
L̄ and σ2

L, are introduced and utilized to measure the robustness of learning methods
[10]:

L̄ =

D−1∑

d=1

D∑

d′=d+1
L(d,d′)

J ,

σ2
L =

D−1∑

d=1

D∑

d′=d+1
(L(d,d′)−L̄)2

J−1 .

(14.18)

14.5 Experimental Results

We have chosen an application of single reservoir case study according to Fletcher [3].
The detailed information of respective data including minimum and maximum storage
and release in different periods of a cycle are given in Table 14.1. One cycle in this
problem is one complete year with 12 periods (months).
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Table 14.1. Maximum and minimum storage and release, average inflow, and demand

Value Month

m3 1 2 3 4 5 6 7 8 9 10 11 12
Max.

Storage 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.5 8.0 8.0 8.0 8.0
Min.

Storage 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1 1.0 1.0 1.0 1.0
Max.

release 4.0 4.0 6.0 6.0 7.5 12.0 8.5 8.5 6.0 5.0 4.0 4.0
Min.

release 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Average
inflow 3.4 3.7 5.0 5.0 7.0 6.5 6.0 5.5 4.3 4.2 4.0 3.7

Table 14.2. The benefit of release per unit for each month of a year

benefit Month

($) 1 2 3 4 5 6 7 8 9 10 11 12
Release 1.4 1.1 1.0 1.0 1.2 1.8 2.5 2.2 2.0 1.8 2.2 1.8

Table 14.3. Performance criteria of the the learning methods with variable learning rate (α =
A/visit(i, a), A = 1)

number of episodes

Methods Criterion 20 40 60 80 100 200 300 400 500
μ 84.72 91.27 94.10 96.17 98.36 99.14 99.32 99.57 99.89

QL σ 38.78 52.37 55.09 60.11 60.03 80.20 82.08 82.80 82.28
Cov 0.073 0.079 0.079 0.080 0.079 0.090 0.091 0.091 0.091
μ 92.43 96.60 98.44 99.26 99.23 99.30 99.57 99.88 100.18

OBL QL σ 54.50 60.83 65.72 70.43 75.01 81.59 82.65 80.52 79.68
type I Cov 0.080 0.081 0.082 0.085 0.087 0.091 0.091 0.090 0.089

μ∗ 96.46 98.17 98.51 98.99 99.09 99.35 99.73 99.84 100.01
OBL QL σ 55.75 65.07 73.91 77.34 78.32 82.48 82.20 83.02 82.29
type II Cov 0.077 0.082 0.087 0.089 0.089 0.091 0.091 0.091 0.091

To simplify the problem, inflow to the reservoir is normally distributed and the
monthly averages are presented in Table 14.1. The coefficient of variation ( σIt

μIt
) is used

for finding the variance in all periods and is given as an input parameter. Moreover, the
evaporation from the reservoir is neglected.

Power generation is considered as a main objective function. However, in order to
make the objective simple and linear, the benefit of release per/unit is approximated in
a single value for each month and given in Table 14.2.
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Table 14.4. The result of t-test to compare the average gain of regular Q-learning and its OBL
versions (α = A

visit(i,a)
, A = 1)

number of episodes
comparison tv & pv 20 40 60 80 100 200 300 400 500

QL vs. tv 13.35 13.11 14.30 16.18 4.37 1.14 1.79 2.46 2.10
OBL I p∗

v 0 0 0 0 0 0.13 0.040 0.01 0.02
OBL I vs. tv 8.71 5.18 0.30 -1.44 -0.70 0.33 1.12 -0.29 -1.22

OBL II p∗
v 0 0 0.38 0.92 0.76 0.37 0.13 0.62 0.89

∗ pv = Pr(t ≥ tv).
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Fig. 14.4. The average annual benefit for different episodes with variable learning rate

The following configuration was used to generate the results:

• Storage volume and water release were discretized into 55 and 7 equal intervals,
respectively.

• The number of years in each episode is equivalent to 30.
• We have only used opposite actions (no opposite states).
• A multi-layer perceptron (MLP) with one hidden layer and 20 nodes is used to

approximate the respective action-value functions. The number of trainings is set
as a constant value to 2. Moreover, the episode number, c, in which the training
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Fig. 14.5. The average of variance of annual benefit for different episodes with variable learning
rate

is started should be determined at the beginning of each experiment. This number
varies for every set of parameters.

• The results of Stochastic Dynamic Programming (SDP) are used as gold standard
to show how accurate the learning methods are.

• The extracted operating policy from the SDP or the learning parts were simulated
for 2000 years and the mean, variance, and coefficient of variations of benefit in
one year were obtained. However, each experiment was performed 30 times and the
average and the variance of all criteria were used for comparison.

• In order to investigate the efficiency of our approach in a highly stochastic situation,
we have chosen a large coefficient of variations equivalent to 0.3 which creates
reasonable variabilities in inflow during the learning.

• The optimistic scheme for finding admissible action was used.
• Both constant and variable learning rates were considered (α=0.5 or α = A/visit

(i, a) where A = 1 and visit(i, a) is the number of times that state i and action a
have been observed or considered).

• We have chosen the ε-greedy policy with ε = 0.1 for the agent to take action [9].
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Fig. 14.6. The mean of distance between two policies for different episodes in the learning meth-
ods with variable learning rate

• In contrary to those experiments performed in [10], the staring point of the learning
in our experiments was exactly after the training of first function approximation,
and there is no oppositional learning before this point.

• The target performance criteria in terms of average benefit, variance, and coefficient
of variation in this application are 102.27, 80.42, and 0.088, respectively. These
evaluations are obtained through the simulation of the optimal policy which is ex-
tracted from SDP approach.

Table 14.3 compares the performance of regular Q-learning and its opposition-based
versions where the learning rate α is a variable parameter: α= 1

visit(st ,at) . Both OBL
versions make significant improvements for episodes from 20 to 100 as the total in-
teractions of the agent within the environment before the operating policy is extracted.
However, as the number of episodes increases, the performance criteria of all algorithms
get closer together such that there is almost no difference between these values when
the number of episode is sufficiently large. Moreover, the type II scheme of the OBL
learning shows slightly better results compared to type I version for some experiments
with few episodes in terms of average annual gain (Figures 14.4). For instance, in the
case with 20 episodes, the average benefit and the average variance for the simulated
policy pertinent to OBL type II scheme are 96.46 and 55.75, respectively. However,
these values are 92.43 and 54.50 for the OBL type I. In order to verify these results
statistically, assuming the student distribution for average gains, we can use the t-test
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Fig. 14.7. The variance of distance between two policies for different episodes in the learning
methods with variable learning rate

with 58 degrees of freedom to measure the superiority of the learning method in terms
of different criteria. We set null hypothesis as average benefit in regular learning equiv-
alent to its OBL versions versus the alternative hypothesis in which the OBL versions
are more appropriate for different episodes. We can also repeat the respective t-test to
compare both OBL versions with each other.

As it can be seen in Table 14.4, there is strong evidence that the averages in OBL
versions are higher than regular learning for all early episodes (e.g., pv = 0 for all
episodes lower than 100 in the comparison of type I and regular learning) while in the
rest the evidence is not strong enough (e.g., pv = 0.13 where the number of episodes is
equivalent to 200 in the comparison of type I and regular learning). Furthermore, the
test confirms the previous results for both OBL versions.

In terms of the robustness criteria explained in Equation 14.18, the OBL learning
for both type I and type II have better results compared to regular learning specifically
for small number of episodes (Figures 14.6-14.7). It is worth mentioning that we use
the policy πt

i,a instead of action-value functions Qt
i,a to derive these criteria because

the operating policies extracted at the end of different experiments, subject to suffi-
cient iterations, are almost the same. In other words, it seems that this problem has
a unique solution and it therefore can be used to measure the robustness of learning
method.
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Table 14.5. Performance criteria of the learning methods with constant learning rate (α = 0.5)

number of episodes

Methods Criterion 20 40 60 80 100 200 300 400 500
μ 71.13 77.28 80.49 83.42 85.92 89.57 93.45 95.57 96.59

QL σ 35.43 38.59 39.29 43.73 47.84 49.17 48.71 49.35 54.38
Cov 0.081 0.080 0.077 0.079 0.080 0.078 0.075 0.073 0.076
μ 90.62 94.02 95.40 96.36 96.70 98.42 99.32 99.42 99.48

OBL QL σ 40.90 42.48 39.06 45.33 46.32 55.11 62.62 65.50 64.38
type I Cov 0.070 0.069 0.065 0.070 0.070 0.075 0.080 0.081 0.081

μ∗ 83.88 87.45 89.76 92.38 94.14 99.15 99.70 99.76 99.64
OBL QL σ 45.3 48.28 50.79 53.84 56.42 62.74 64.18 63.69 66.28
type II Cov 0.080 0.079 0.080 0.079 0.080 0.080 0.080 0.080 0.082
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Fig. 14.8. The average annual benefit for different episodes in the learning methods with constant
learning rate (α = 0.5)

Furthermore, it seems that the way of determining the learning rate α might affect
the efficiency of the OBL. In order to investigate this issue, we have used the same
set of criteria achieved for this application as reported in [10] with a constant learning
rate α = 0.5 (Table 14.5). As observed in this table, the variation between the average
benefits in all learning methods vanishes as the number of episodes increases. However,
the respective variances of OBL remain almost unchanged in all types of learning for
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Fig. 14.9. The average of variance of annual benefit for different episodes in the learning methods
with constant learning rate (α = 0.5)

episodes higher than 300. This implies that there is no justification to continue opposi-
tional learning after early episodes and we can switch to regular Q-Learning thereafter.
However, as previously illustrated, if the learning rate is variable, the results could be
slightly different. Moreover, the contribution of OBL learning for both versions with a
constant learning rate are better compared to the situation in which the learning rate is
variable specifically when the learning process is performed for a set of small number
of episodes such as 20 or 40.

14.6 Summary and Conclusions

In this chapter, we have demonstrated how to utilize Q-Learning as a popular technique
in Reinforcement Learning (RL) to obtain the operating policies in reservoir manage-
ment and showed some experimental results for a single reservoir case study. However,
in order to overcome the potential computational burden for very large-scale problems
and speed up the learning process, we introduced and tuned a new type-II opposition-
based scheme.
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In type II oppositional RL, we have defined an opposite agent to assist the main agent
to find the opposite action and/or state. This opposite agent receives the knowledge from
a trained function approximation and updates itself using the information coming from
the main agent until receiving new knowledge from the function approximator. The
respective function approximation which is a multi layer perceptron in our case study
is trained using the information captured by the main agent. An equal interval between
two training times is a parameter and has to be determined before the learning is started.

In order to show that the OBL versions are beneficial in finding near-optimal operat-
ing policies, we have chosen a single reservoir problem in which the target value of the
optimal policy can be easily obtained by a Stochastic Dynamic Programming (SDP)
algorithm. Furthermore, to evaluate the extracted policies, some performance criteria
including average annual benefit, variance, and coefficient of variation have been cal-
culated using the respective policies through the simulation.

Both types of OBL-extended algorithms have better results where the total number
of iterations are not sufficiently for regular learning. This means that we could compute
the near-optimal operating policy in a very small number of iterations. This fact creates
a promising perspective to efficiently cope with large-scale applications in the field of
reservoir management.

It seems that the policy extracted in type II learning method is approaching an opti-
mal policy faster than OBL type I. We found that the closeness of operating policy to
optimal one is really dependent on the efficiency of the function approximation as an
input to the opposite agent. The training data fed to the function approximation should
be determined with caution such that it embodies different situations. In other words,
the boundary limit used to separate the training and test data can be specified with re-
spect to the number of observations for all state-action pairs. it is also possible to set
the feeding data based on the rate of change in action-value functions.

The action-value functions conveyed to the opposite agent could be composed of
actual values which are obtained by the regular learning process and considered as
labels for training data, and approximation values which are calculated by the trained
networks. Since in the early stage of the learning, there are not sufficient visited action-
state pairs and the most action-value functions have zero values, the respective inputs to
the function approximation are not accurate enough. It might be also misleading for the
opposite agent to find the actual opposites using these values. One simple solution to
tackle this problem and improve the accuracy of opposites is that the opposite agent can
use the approximated action-value functions for all training and test data. We found this
solution effective specially when the function approximation is trained for the first time
at the early stage of learning. Of course, more research work is needed in the future to
investigate this issue.

In our case study, the statistical information of stochastic parameters (inflow) is not
changing with the time. Therefore, considering a constant learning rate for all interac-
tions might create a slight oscillation which in turn influences the operating policy at
the end.

Type-II algorithm like type I can significantly contribute in speeding up the learn-
ing process especially during the early stage of the learning. However, the respective
operating policy might create more variations during the simulation.
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Markov property 237
measure-preserving 36
Metropolis-Hasting Algorithm 43
mobility 94
Model selection 210
Monte Carlo 234

crude 29
Markov Chain 42
quasi 35

most-proving 93
multi-reservior 301
multiobjective evolutionary algorithm

164
multiple-iterative deepening 95
mutation 79, 144

negation 64
Negative Types

Theory of 50
network

irreducibility 263
minimality 263

Normal Logic Program 81
numerical condition 264

object compactness 290
objective vector 164
off-policy learning 238
on-policy control 238
opposite 36

action 234, 243
neural network 262
pheromone 129
pheromone per node 129
pheromone update 130
random numbers 31
reward 244
set 163
state 234
transfer function 261

Opposites
Square of 4
Table of 2
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opposition
-based backpropagation 270
-based backpropagation through time

268
-based differential evolution 143
-based reinforcement learning 243
-based reservior management 309
-rating 131
balance 14
based computing 21
collaborative 82
degree of 13, 18
degrees of 53
dynamic 13
mining 17
traces 244
type-I 14
type-II 17
type-II mapping 16
type-I mapping 14
type-I quasi 15
type-I super 15

optimization
multiobjective 164

Pareto dominance 164
Pareto front 164
Pareto optimal set 164
PDS 96
PDS-PN 100
permutation transformation 260
PN2 95
PN* 95
predicate

nonantinomic 53
pregnant meaning 48
proof-like 101
Proof-Number Search 91, 93
proof-number threshold 96
proof number 93

Q(λ) 239
Q-learning 234, 238

rank deficiency 265
reasoning

abductive 61
reervior modeling 301
reinforcement

positive vs. negative 3

reinforcement feedback 235
reinforcement learning 233, 234, 288
reinforcement signals 233
reward function 168, 235
round robin 166

sampling
Latin hypercube 32

Sarsa learning 238
second-level search 95
selection 145
sequence

Halton 35, 40
Van der Corput 40, 41

sequences
low-discrepancy 35

Seven series configuration 218
sign transformation 260
single elimination tournament 166
single reservior 300
softmax policy 236
spacing 170
SPEA2 164
SPEA2-CE-HOF 167
SPEA2-CE-KR 167
speedup factor 156
stochastic dynamic programming 302
Structural Risk Minimization (SRM)

211, 212
structural symmetry 260
success performance 155
success rate 155
system

dynamical 36

temperature 43
temporal difference learning 234, 237
term formulas 49
tessellation

triangular 39
thought

categories of 46
trans-rectal ultrasound 287
Travelling Salesman Problem 133
Two-phase implementation 210, 211

ultrasound images 288
Universal Approximation Theorem 258
Unknown World Assumption 63



326 Index

variables
exchangeable random 32
negatively associated 31
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reduction 29
Variational Bayesian Mixture of Factor

Analyzers (VBMFA) 214
vicious circle 46
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