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Summary. In this paper we study the applicability of topological methods for cre-
ating expressive, feature revealing visualizations of 3D vector fields. 3D vector fields
can become very complex by having a high number of critical points and separa-
trices. Moreover, they may have a very sparse topology due to a small number of
critical points or their total absence. We show that classical topological methods
based on the extraction of separation surfaces are poorly suited for creating expres-
sive visualizations of topologically complex fields. We show this fact by pointing out
that the number of sectors of different flow behavior grows quadratically with the
number of critical points – contrary to 2D vector fields. Although this limits the
applicability of topological methods to a certain degree, we demonstrate the exten-
sibility of this limit by using further simplifying methods like saddle connectors. For
3D vector fields with a very sparse topology, topological visualizations may fail to
reveal the features inherent to the field. We show how to overcome this problem for
a certain class of flow fields by removing the ambient part of the flow.

1 Introduction

Topological methods are standard tools to visualizing 2D vector fields. They
gained a rather high popularity because they offer to express even a complex
flow behavior by only a limited number of graphical primitives. The main
idea behind them is to segment the vector field into areas of different flow
behavior. To do so, so-called separatrices, mainly starting from critical points,
are extracted and visualized.

Topological methods for 2D vector fields have been introduced to the visu-
alization community in [11]. Later they were extended to higher order critical
points [23], boundary switch points [6], and closed separatrices [34]. In addi-
tion, topological methods have been applied to simplify [6, 7, 28, 29], smooth
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[33], compress [17, 25, 16] and construct [24, 32] vector fields as well as to
compute distance functions of them [15, 2, 26].

For 3D vector fields, there is a remarkable gap between the need for sim-
plified visual representations of vector fields, the knowledge of topological
concepts, and their application as a visual analysis tool. The need for sim-
plified visual representations of 3D vector fields is even higher than for 2D
vector fields, since 3D vector fields tend to have a significantly higher amount
of information to be visualized. Also, topological concepts for 3D vector fields
are well-understood. Nevertheless, there are only a few applications of topo-
logical methods for 3D vector fields. Similar to 2D vector fields, [12] proposed
methods for detecting and classifying first order critical points by an eigen-
value/eigenvector analysis of the Jacobian matrix. A system for visualizing
the topological skeleton of 3D vector fields has been presented in [9]. Topolog-
ical skeletons of particular analytic 3D vector fields are extracted in [18, 10].
Mahrous et. al [20, 19] obtain a topological segmentation of a vector field
by densely sampling stream lines over the field and clustering areas where
a similar inflow/outflow behavior of the stream lines is observed. [27] and
[31] extract and visualize the intersection curves of the separation surfaces to
obtain less cluttered and more expressive visualizations.

Like every visualization technique, topological methods do not give expres-
sive visualizations for all kinds of 3D vector data. In fact, topological methods
are limited to rather moderate topological complexity which becomes man-
ifest in the number of present topological features: if only very few features
are present (or no features at all), topological methods fail. On the other
hand, if there are too many topological features, topological methods fail as
well because they produce cluttered visualizations which are hard (or even
impossible) to interpret.

It is the purpose of this paper to study where the limits for applying topo-
logical methods are, and to present solutions to extend these limits in both
directions. For the upper limit (i.e. the fact that topological methods fail if
the data is too complex), a number of technical and perceptional reasons are
known. Here we show that there is an additional theoretical reason which
strongly limits 3D topology to rather simple data sets. This reason lies in
the fast growing number of sectors of different flow behavior. We show that –
contrary to 2D vector fields – the number of sectors of different flow behavior
grows in the worst case quadratically with the number of present topological
features (i.e. critical points). As a consequence of this, classical topological
methods (focusing on extracting critical points and separation surfaces) are
not relevant for topologically complex vector fields. Nevertheless, we show that
for simplifying methods like saddle connectors [27], the upper limit is above
the currently considered topological complexity. In fact, we apply topologi-
cal methods to topologically far more complex vector fields than previously
considered in the visualization community.

For the lower limit of topological methods (i.e. the fact that topological
methods fail for a very poor topology), a simple and well-known solution to
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move the topological complexity up to a range where expressive visualizations
are possible is to remove the ambient part of the flow. We show that this
approach can reveal important structures of certain types of flow.

The rest of the paper is organized as follows: section 2 recollects topo-
logical concepts for 3D vector fields and their visualization. Section 3 studies
the upper limit of topological methods by counting the number of sectors of
different flow behavior. Section 4 demonstrates at an example how topologi-
cal methods can be applied to topologically more complex data sets. Section
5 presents and discusses a solution for dealing with data sets of a very low
topological complexity. Section 6 draws conclusions.

2 3D Vector Field Topology and its Visualization

Topological structures of 3D vector fields are well-understood in the visual-
ization community for many years [12, 1, 3, 21]. In this section, we collect
the most important concepts and properties, and we review approaches to
visualizing them.

2.1 Critical Points

Consider a 3D vector field

v(x, y, z) =

⎛
⎝

u(x, y, z)
v(x, y, z)
w(x, y, z)

⎞
⎠ . (1)

A first order critical point x0 (i.e., v(x0) = 0) can be classified by an
eigenvalue/eigenvector analysis of the Jacobian matrix Jv(x) = ∇v(x), iff
det(Jv(x0)) �= 0. Let λ1, λ2, λ3 be the eigenvalues of Jv(x0) ordered accord-
ing to their real parts, i.e. Re(λ1) ≤ Re(λ2) ≤ Re(λ3). Furthermore, let
e1, e2, e3 be the corresponding eigenvectors. The sign of the real part of an
eigenvalue λi denotes – together with the corresponding eigenvector ei – the
flow direction: Positive values represent an outflow and negative values an
inflow behavior. This leads to the following classification of first order critical
points:

Sources: 0 <Re(λ1)≤Re(λ2)≤Re(λ3)
Repelling saddles: Re(λ1)< 0 <Re(λ2)≤Re(λ3)
Attracting saddles: Re(λ1)≤Re(λ2)< 0 <Re(λ3)
Sinks: Re(λ1)≤Re(λ2)≤Re(λ3)< 0

Thus, sources and sinks consist of a complete outflow/inflow, while saddles
have a mixture of both. A repelling saddle has one direction of inflow behavior
(called inflow direction) and a plane in which a 2D outflow behavior occurs



108 H. Theisel, T. Weinkauf, H.-C. Hege, H.-P. Seidel

(called outflow plane). Similar to this, an attracting saddle consists of an
outflow direction and an inflow plane.

Each of the 4 classes above can be further divided into two stable subclasses
by deciding whether or not imaginary parts in two of the eigenvalues are
present (λ1, λ2, λ3 are not ordered):

Foci: Im(λ1) = 0 and Im(λ2) = −Im(λ3) �= 0
Nodes: Im(λ1) = Im(λ2) = Im(λ3) = 0

An iconic representation is an appropriate visualization for critical points,
since vector fields usually contain a finite number of them. Several icons have
been proposed in the literature, see [12, 9, 18, 10, 27]. Here we follow the
approach of [31] and color the icons depending on the flow behavior: Attracting
parts (inflow) are colored blue, while repelling parts (outflow) are colored red.
Higher order critical points are not considered in this paper.

2.2 Separatrices

Separatrices are stream lines or stream surfaces which separate regions of
different flow behavior. Different kinds of separatrices are possible: They can
emanate from critical points or boundary switch curves, or they are closed
separatrices without a specific emanating structure. However, in this paper
we consider separatrices starting from critical points only.

Due to the homogeneous flow behavior around sources and sinks (either
a complete outflow or inflow), they do not contribute to separatrices. Each
saddle point creates two separatrices: Considering a repelling saddle xR, it
creates one separation curve (which is a stream line starting in xR in the
inflow direction by backward integration) and a separation surface (which is a
stream surface starting in the outflow plane by forward integration). A similar
statement holds for attracting saddles. Since for the segmentation of a vector
field into sectors of different flow behavior only the separation surfaces (and
not the separation lines) contribute, we only consider separation surfaces in
the following.

Contrary to the 2D case, separatrices of 3D vector fields can intersect in a
number of stream lines called saddle connectors [27]. Saddle connectors start
in the repelling plane of a repelling saddle and end in the attracting plane of an
attracting saddle. [31] extends the concept of saddle connectors to boundary
switch connectors which are the intersections of separatrices emanating from
boundary switch curves.

3 Counting the Number of Sectors

We start with an analysis of existing 3D topological visualization approaches
and consider the topological complexity of the treated data sets. Table 1
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gives a collection of these techniques, including the topological complexity of
the treated examples. We express this complexity by counting the number of
critical points, boundary switch curves and separatrices which are present in
the application. Table 1 does not intend to give an evaluation of the consid-
ered techniques because they focus on different data sets or incorporate other
visualization techniques as well. However, table 1 reveals that most of the
applications deal only with vector fields of a very low topological complexity.
Only the recent papers [27] and [31] consider fairly complex data sets but
conclude that classical topological methods are not appropriate there.

reference #cp #scp #bsc #sbsc

[12] ≈20 ≈5 0 0

[9] ≈2 0 0 0

[18] 3 2 0 0

[20] 0 0 ≈10 ≈10

[19] 1 1 ≈10 ≈10

[27] 184 121 0 0

[31] 184 121 13 22

[this paper] 452 452 0 0

Table 1. 3D topological visualiza-
tion approaches and their number
of treated topological features; #cp:
number of critical points; #scp: num-
ber of separatrices starting from
critical points; #bsc: number of
boundary switch curves; #sbsc: num-
ber of separatrices starting from
boundary switch curves.

We search for reasons why up to now topological methods have been app-
lied only to rather simple data sets. Two classes of reasons are already known
[27]:

1. Technical reason: 3D topological methods involve the integration of stream
surfaces which is computationally more involved, less stable, and less
accurate than the integration of stream lines in 2D.

2. Perceptional reason: The sectors of different flow behavior may have a
complicated shape and hide each other, making a visual analysis of them
a cumbersome task. Figure 6 shows an example of a vector field consisting
of 4 saddles which create 6 sectors of different flow behavior. Even for this
rather low number of sectors we observe the hiding effect making it hard
to distinguish the different sectors.

In recent years the first problem became more and more unimportant
due to the dramatic increase of computing capacities and a number of new
algorithmic solutions ([13], [8], [22], [30]). One solution for the second problem
is the saddle connector approach [27] [31].

Now we show that there is a third reason that topological methods are
limited to low-complexity vector fields. We show that – simply spoken – the
number of sectors of different flow behavior grows fast when the topological
complexity of the vector field increases. As a measure of topological complex-
ity, we take the number of present saddle points. Since most considered data
sets have a global index around zero, the number of saddles is approximately
half the number of critical points. Then we get a
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3. Theoretical reason: The number of sectors of different flow behavior grows
in the worst case quadratically with the number of saddle points in a 3D
vector field.

We show that this reason is a serious limitation of applying topological meth-
ods to 3D vector fields. To prove this reason, we present formulas to compute
the number of sectors of different flow behavior. To see the differences, we do
so both for 2D and 3D vector fields.

3.1 Sector counting for 2D vector fields

2D vector fields generally consist of sources, sinks and saddles where a saddle
creates 4 separation curves [11]. We get

Property 1. Given a 2D vector field vnS
consisting of nS saddle points, the

number sec(vnS
) of sectors of different flow behavior fulfills

sec(vnS
) ≤ 3ns + 1 (2)

where the equality in (2) can be reached.

Property 1 essentially says that the number of sectors grows linearly with
the number of saddle points. To show it, we start with a vector field consisting
of only one saddle, as shown in figure 1(a). This saddle divides the domain
into four sectors. Now we insert a new saddle as shown in figure 1(b). Since
the different sectors are separated by stream lines which must not intersect
each other, a new saddle replaces one of the old sectors by 4 new sectors, thus
increasing the total number of sectors by 3. This gives

sec(vnS+1) ≤ sec(vnS
) + 3, (3)

which is an inequality since separatrices may end in the same source/sink
which reduces the number of sectors. Figure 1(c) illustrates this. (3) and
sec(v0) = 1 gives (2). To complete the proof, we only have to show that the
equality in (2) can be reached. To do so, we construct a vector field vnS

with
sec(vnS

) = 3ns + 1. Figure 2 illustrates the construction of such a simple
vector field.

Property 1 gives a reason why 2D topological methods are rather popular
even for fairly complex vector fields: the number of sectors to be distinguished
grows only slowly (in fact linearly) with the increasing of the topological
complexity (i.e. the number of saddle points). As we will show now, this does
not hold for 3D vector fields.

3.2 Sector counting for 3D vector fields

For 3D vector fields, the number of sectors of different flow behavior depends
in the worst case quadratically on the number of saddle points. We formulate
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(a) (b) (c)

Fig. 1. (a) a single saddle point segments the domain into 4 sectors; (b) an addi-
tionally included saddle increases the total number of sectors by 3; (c) if separatrices
end in the same source/sink, two sectors are merged.

Fig. 2. Vector field vnS with sec(vnS ) = 3 ns + 1

Property 2. Given a 3D vector field vnR, nA
consisting of nR repelling saddles

and nA attracting saddles, for the number sec(vnR, nA
) of sectors of different

flow behavior the inequality holds

sec(vnR, nA
) ≤ (nR + 1)(nA + 1) (4)

where the equality in (4) can be reached.

To show property 2, we start with a simple vector field v1,0 consisting only
of one repelling saddle xR, as shown in figure 3(a). The separation surface
created by xR divides v1,0 into two sectors. If we insert a new saddle, this can
be either an attracting saddle yA or a repelling saddle yR as well. In the last
case, the separation surfaces of xR and yR create three sectors of different flow
behavior since they must not intersect. In case of a newly inserted attracting
saddle yA, two cases are possible:

• The separation surface of yA does not intersect the separation surface of
xR. In this case, one of the old sectors is divided into two new sectors,
and the total number of sectors is increased by 1. Figure 3(b) gives an
illustration.

• The separation surface of yA intersects the separation surface of xR. In
this case, each of the two old sectors is divided into two new sectors. Thus,
the total number of sectors is increased by 2. Figure 3(c) illustrates this.

As we can see from the simple example above, the total number of sectors
does not only depend on the number of saddles but also on the number of
saddle connectors.

For now we assume that every repelling saddle has a connector to every
attracting saddle. Given a vector field vnR, nA

, we consider the insertion of
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(a) Simple vector field
with one xR: two
sectors are present.

(b) Inserting yA without
connector gives 3
sectors.

(c) Inserting yA with
connector gives 4 sectors.

Fig. 3. Correlation between number of sectors, saddles and connectors.

a new attracting saddle xA. Assuming that xA has a connector to all nR

repelling saddles of vnR, nA
, xA divides nR +1 of the old sectors into two new

sectors each. We get

sec(vnR, nA+1) ≤ sec(vnR, nA
) + nR + 1 (5)

and in a similar way

sec(vnR+1, nA
) ≤ sec(vnR, nA

) + nA + 1. (6)

(5), (6) and sec(v0,0) = 1 give (4).
To complete the proof of property 2, we construct an example vector field

vnR, nA+1 with sec(vnR, nA
) = (nR + 1)(nA + 1). To do so, we use the topo-

logical vector field construction approach described in [32]. We place the nR

repelling saddles to the locations (1, nA

2 ,−d), (2, nA

2 ,−d), ..., (nR, nA

2 ,−d) in
such a way that the inflow plane of each saddle is parallel to the y − z plane
of the underlying Euclidian coordinate system. Furthermore, we place nR + 1
sources at the locations (0.5, nA

2 ,−d), (1.5, nA

2 ,−d), ..., (nR + 0.5, nA

2 ,−d).
To place the nA attracting saddles, we choose the locations (nR

2 , 1, d),
(nR

2 , 2, d), ..., (nR

2 , nA, d). In addition we place nA + 1 sinks at the locations
(nR

2 , 0.5, d), (nR

2 , 1.5, d), ..., (nR

2 , nA +0.5, d). The positive number d describes
the distance of the two rows of saddles. Figure 4a illustrates the location of
the critical points for the example v4,4.

In the next step we have to construct a system of connectors such that each
repelling saddle is connected to each attracting saddle. This is a set of nR ·nA

curves which must not intersect each other (except in the saddles themselves).
Given the arrangement of critical points described above, this can easily be
done as illustrated in figure 4(a) for v4,4. The complete constructed vector field
ensures that for any source xSo and for any sink xSi there are stream lines
starting in xSo and ending in xSi. Figure 4(b) shows the complete topological
skeleton of v4,4. Figure 4(c) shows an example of the constructed vector field
v20,20 consisting of 441 sectors of different flow behavior.
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(a) v4,4: critical points
and 16 saddle
connectors.

(b) v4,4: separation
surfaces.

(c) v20,20: critical points and 400
saddle connectors.

Fig. 4. Constructed vector fields v4,4 and v20,20.

Property 2 can be concretized by incorporating not only the number of
critical points but also the number of connectors:

Property 3. Given a 3D vector field vnR, nA, nCo
consisting of nR repelling

saddles, nA attracting saddles and nCo saddle connectors, for the number
sec(vnR, nA, nCo

) of sectors of different flow behavior the inequality holds

sec(vnR, nA, nCo
) ≤ nR + nA + nCo + 1. (7)

To show property 3, we assume a vector field vnR, nA, nCo
in which we insert a

new attracting saddle xA . Further we assume that xA creates m new saddle
connectors, i.e. xA is connected with m repelling saddles of vnR, nA, nCo

. In
this case, m+1 sectors of the old vector field are divided into two new sectors
each. We obtain

sec(vnR, nA+1, nCo+m) ≤ sec(vnR, nA, nCo
) + m + 1 (8)

and in a similar way

sec(vnR+1, nA, nCo+m) ≤ sec(vnR, nA, nCo
) + m + 1. (9)

This and sec(v0,0,0) = 1 gives (7).

Remarks:

1. The conditions in properties 2 and 3 are formulated as inequality because
- similar to the 2D case - separatrices might end in the same critical points
which leads to a reduction of the total number of sectors.

2. Properties 2 and 3 did not consider separatrices emanating from bound-
ary switch curves. However, their quantitative behavior is similar to the
separatrices from saddle connectors: the number of sectors grows in the
worst case quadratically to the number of boundary switch curves.

3. Property 3 shows that in the best case the number of sectors grows linearly
with the number of saddles. This happens if no saddle connectors exist at
all. However, the example of the data sets in section 4 show that a higher
number of saddle connectors usually exists.
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4. Properties 2 and 3 considered at most one connector between a repelling
saddle xR and an attracting saddle xA. If multiple connectors are present,
a sector (describing the flow from one particular source to one particular
sink) may consist of different unconnected parts.

5. The sector counting presented here is a worst case estimation. Although
an average case estimation would be useful, we are not aware of any
approaches for this.

3.3 Interpretation of sector counting

From the sector counting approach in section 3 we draw the conclusion that
classical 3D topological methods are limited to topologically rather simple
vector fields. If the topological complexity (i.e. the number of saddles) grows,
the number of sectors of different flow behavior very soon exceeds the limit
of what can be distinguished in visualization. The only solution for this is to
apply simplifying topological methods. The topological skeleton may be sim-
plified by removing unimportant critical points or collapse clusters of critical
points to a higher order one. While these methods are well-established for 2D
vector fields ([6] [29]), we are not aware of any 3D extensions. The simplify-
ing method we consider here are saddle connectors which we apply to more
complex data sets in the next section.

4 Topologically Rich Vector Fields

From examples in [27] and [31] and from section 3 it is known that topological
methods are hardly applicable for topologically complex vector fields. How-
ever, in this section we investigate topological methods for a 3D vector field of
such a high topological complexity as it has – to the best of our knowledge –
not been treated in the literature yet.

Figure 5 shows the transitional flow around a backward-facing step. The
flow field is obtained from a numerical simulation of Kaltenbach and Janke
at a Reynolds number of ReH=3000 based on oncoming velocity and on step
height. The corresponding boundary conditions are described in [14]. The data
set contains 452 critical points which are visualized in figure 5(a). Since the
vector field is divergence-free, all of them are saddles.

A complete extraction and visualization of the separation surfaces was
possible only at a very coarse resolution (figure 5(b)) since for higher resolu-
tions the number of produced triangles very soon exceeded the limits of our
available hardware. But even if we were able to process the complete skeleton
at a high resolution, already figure 5(a) shows that an expressive topological
visualization can not be achieved due to the sheer number of surfaces. Nev-
ertheless, we were able to extract the intersection curves of these surfaces,
namely the saddle connectors. As known from [27], this algorithm exhibits far
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less memory consumption for both extraction and display than the treatment
of separation surfaces themselves.

Figure 5(d) shows the visualization of the 1023 extracted saddle connec-
tors. As we can see there, certain flow structures become visible: there are 3
rather independent clusters of turbulent flow behavior. However, it also shows
that the segmentation property gets lost for vector fields of this complexity:
no regions of different flow behavior can be distinguished any more from such
a large number of saddle connectors. In fact, for complex data sets the app-
roach of saddle connectors shifts from a topological segmentation techniques
to a stream line selection technique.

Even if the complexity is too rich for a direct topological visualization,
topological information can be used to parameterize other visualization tech-
niques. We demonstrate this in figure 5(e). Here, we made use of the extracted
critical points and seeded stream lines close to them. This gives a far more
expressive visualization than figure 5(c), where stream lines have been seeded
homogeneously over the whole domain. Both figures show the same number
of stream lines.

Figure 5(e) illuminates the coherent structures of this type of flow: The
flow separates at the corner of the step. The resulting shear layer rolls up in
two Kelvin-Helmholtz vortices. In the downstream direction, the streamlines
form bundles due to secondary streamwise vorticity. The fluid experiences a
small backward flow in the upstream region below the shear layer.

5 Topologically Sparse Vector Fields

While dealing with a variety of data sets, we encountered vector fields where
topological methods totally fail due to the absence of critical points and
boundary switch curves. While it might not be possible to overcome this
problem for all kinds of data, there is a solution for an important class of flow
fields that exhibit a constant ambient flow part: all convections, i.e. coher-
ent structures, move with nearly the same velocity and direction inside the
flow. Their corresponding topological structures cannot be extracted since
the ambient flow part cancels out the critical points. This clearly shows the
Galilean-variance of topological examinations. By subtracting the ambient
flow part, i.e. choosing a certain frame of reference, the coherent structures
become visible using topological methods. To ensure meaningful results, this
manipulation must be motivated by the physical interpretation of the data.

Consider the mixing layer visualized in figure 7(a), where the flow moves
downstream in both layers and the magnitude of the upper layer is three times
larger than in the lower layer. The data set has been computed with a pseudo-
spectral direct numerical simulation employing the computational domain and
boundary conditions of Comte, Silvestrini & Bégou [4]. The Reynolds number
is 100 based on the initial shear-layer thickness and convection velocity.
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No critical points are present in this original frame of reference. In figure
7(b) we have chosen to subtract the constant vector field (1, 0, 0)T . This yields
the frame of reference where the flow in both layers has the same magnitude,
but a different direction. The physical interpretation behind this manipulation
is that we move as a observer with the same velocity and direction as the
convections. The topology of this frame clearly shows formations of focus
saddles indicating Kelvin-Helmholtz vortices, which alternate with formations
of node saddles.

This example shows that topological methods yield expressive visualiza-
tions even for initially topologically sparse vector fields if a frame of reference
can be chosen with regards to physical interpretation. Nevertheless, Galilean-
invariant methods, like e.g. visualization of vortex regions, overcome the prob-
lem of finding the “right” frame of reference.

6 Conclusions

In this paper we made the following contributions:

• We have shown that – contrary to the 2D case – for 3D vector fields
the number of sectors of different flow behavior grows in the worst case
quadratically to the number of saddle points.

• We applied topological methods to more complex 3D vector fields than
previously done in the literature.

• We have discussed that for some flow data of poor topological complexity,
a removal of the ambient flow makes topological methods applicable.

We conclude that classical topological methods for 3D vector fields including
critical points and separation surfaces are only of rather low relevance for
most practical data sets. In fact, without simplifying methods like critical
point clustering, critical point removing or saddle connectors, 3D topological
methods won’t get such a popularity as for 2D vector fields.

For saddle connectors we have shown that they are applicable to rather
complex data, but from a certain complexity on the segmentation property
gets lost, and saddle connectors are mainly perceived as stream lines.

For the future we expect an ongoing research on topology simplifying tech-
niques because they seem the only promising way to make topological methods
applicable to very complex 3D data sets.
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(a) All 452 critical points (all of them
are saddles) are located in a rather
small area of the whole domain.

(b) 218 attracting and 234 repelling
separations surfaces at a coarse
resolution.

(c) 500 stream lines seeded
homogeneous in the whole domain.

(d) 1023 saddle connectors have been
extracted.

(e) 500 stream lines seeded near critical points.

Fig. 5. Flow around a backward-facing step (colorplate on p. 212).

Fig. 6. Simple topological skeleton
consisting of 4 saddles; the 6 result-
ing sectors of different flow behavior
can hardly be distinguished (color-
plate on p. 212).
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(a) Original frame of reference. No critical points are present.

(b) Frame of reference chosen such that both layers have the same magnitude.
348 saddle points have been detected.

Fig. 7. Mixing layer (colorplate on p. 213).
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(a) Sources & sinks and their icons.
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(b) Saddles and their icons.

(c) Separation
surfaces of the
saddles.

(d) Saddle
connector.

Fig. 8. Critical points and definition of saddle connectors (colorplate on p. 213).
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