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Summary. Computing and analyzing the topology of scalar fields has proven to be
a powerful tool in a wide variety of applications. In recent years the field has evolved
from computing contour trees of two-dimensional functions to Reeb graphs of general
two-manifolds, analyzing the topology of time-dependent volumes, and finally to
creating Morse-Smale complexes of two and three dimensional functions. However,
apart from theoretical advances practical applications depend on the development of
robust and easy to implement algorithms. The progression from initial to practical
algorithms is evident, for example, in the contour tree computation where the latest
algorithms consist of no more than a couple of dozens lines of pseudo-code. In this
paper we describe a similarly simple approach to compute progressive Morse-Smale
complexes of functions over two-manifolds. We discuss compact and transparent
data-structures used to compute and store Morse-Smale complexes and demonstrate
how they can be used to implement interactive topology based simplification. In
particular, we show how special cases arising, for example, from manifolds with
boundaries or highly quantized functions are handled effectively. Overall the new
algorithm is easier to implement and more efficient both run-time and storage wise
than previous approaches by avoiding to refine a given triangulation.

1 Introduction

Scalar field topology has proven to be a powerful tool in a wide variety of app-
lications. In scientific visualization it has been used, for example, for speeding
up the extraction of iso-surfaces [25], simplifying them [4], and also for general
data analysis [3, 11]. However, topology is also useful as a shape descriptor [22,
14], can help in remeshing surfaces [24, 7], and widely used concepts like
watershed and flood-fill algorithms [12] are also topological in nature.

The most complete description of the topology of a scalar field is its Morse-
Smale complex which segments the field based on its gradient. While the
usefulness of the Morse-Smale complex has been widely acknowledged it has
rarely been applied in practice. The problem is that intuitive straightfor-
ward computations of the Morse-Smale complex which have been described
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initially [23, 2] do not work in general. Only recently, generically correct algo-
rithms to compute two- and three-dimensional Morse-Smale complexes have
been discovered [9, 8]. However, these algorithms are notoriously difficult to
implement which again limits their use in practice. Only the third genera-
tion of algorithms [3, 11] approach usability by combining correctness with a
reasonable implementation.

In this paper we discuss a further improvement on the algorithms for com-
puting the Morse-Smale complex of two-dimensional functions. In particular,
we want to encourage the use of topology in practice. Therefore, the paper
focuses not on any particular scientific result using Morse-Smale complexes
but rather on providing a simple but complete description of the data struc-
tures and algorithms necessary to apply the theory of Morse-Smale complexes
in general.

1.1 Related Work

Under various names the Morse-Smale complex has been used in a number
of different contexts. Initially, they were used to describe the topology of
terrains [5, 17] or other functions that could be connected to geography [26].
Naturally, the early research was limited to theoretical definitions rather than
computer based algorithms. This line of research also includes the definitions
of early multi-resolution structures [20, 21] as well as an in-depth discussion
about potential degeneracies arising from non-smooth functions [19].

The first straight forward implementations are described by Takahashi
et al. [23] and Bajaj and Schikore [1]. However, neither paper discusses any
of the degeneracies (e.g. areas of zero gradient, merging integral lines) which
arise when applying smooth theory to piece-wise linear functions. Therefore,
these algorithms are likely to run into difficulties on any scalar field with
non-trivial topology. The algorithms discussed in this paper are most closely
related to the ones by Edelsbrunner et al. [9] and Bremer et al. [3]. Edelsbrun-
ner et al. describe extensively how to handle merging and splitting steepest
paths. However, their algorithm is quite involved and its implementation error
prone. Bremer et al. simplify the implementation significantly by showing that
only certain steepest lines must be kept separate and suggest to refine the
mesh in order to avoid the complicated data structures of Edelsbrunner et
al. Unfortunately, this approach, by definition, requires a dynamic mesh data
structure able to refine the mesh at run-time. This is a distinct disadvantage
when dealing with large data sets since it prevents the use of highly compact
but rigid mesh encodings. Here we use a further extension of the algorithm
in [3]. In Sect. 3 we show that not only can certain steepest lines be merged
but those that must be kept separated can only create a very limited number
of local configurations. We show how to encode these configurations efficiently
and thus mostly avoid refining the mesh. Furthermore, Sect. 4 describes how
a Morse-Smale complex with boundary is simplified and how to locally deter-
mine all possible simplifications.



A Practical Approach to Two-Dimensional Scalar Topology 153

The remainder of the paper is organized as follows: Section 2 introduces
all necessary concepts of Morse theory and provides a collection of terms
used throughout the paper. Section 3 discusses how to compute a Morse-
Smale complex of functions on triangulated two-manifolds. Finally, Sect. 4
deals with simplifying a Morse-Smale complex with boundary and discusses
a simple data structure to store a complex progressively.

2 Theory

In this section we introduce the necessary concepts from smooth and piece-
wise linear Morse theory. We refer to [18] and [16] for further background.

2.1 Morse-Smale Complexes

Throughout this paper, M denotes a compact 2-manifold without boundary
and f : M → R denotes a real-valued smooth function on M. Assuming a
local coordinate system (x, y) at a point a ∈ M, the point is called critical if
its gradient �f(a) = (∂f/∂x, ∂f/∂y) vanishes and called regular otherwise.
Examples of critical points are maxima (f decreases in all directions), minima
(f increases in all directions), and saddles (f switches between decreasing and
increasing more than twice around the point).

Using the local coordinates at a, we compute the Hessian of f denoted
by H(a), which is the matrix of second order partial derivatives. A critical
point is non-degenerate if the Hessian is non-singular, which is a property
that is independent of the local coordinate system. According to the Morse
Lemma, it is possible to construct a local coordinate system such that f has
the form f(x, y) = f(a) ± x2 ± y2 in a neighborhood of a non-degenerate
critical point a. The number of minus signs is the index of a and distinguishes
the different types of critical points: minima have index 0, saddles have index
1, and maxima have index 2. The function f is a Morse function when all its
critical points are non-degenerate and have pairwise different function values.

At any regular point, the gradient (vector) is non-zero, and when we follow
the gradient we trace out an integral line, which starts at a critical point
and ends at a critical point, while technically not containing either of them.
Since f is smooth, two integral lines are either disjoint or the same. The
descending manifold D(a) of a critical point a is the set of points that flow
toward a. More formally, it is the union of a and all integral lines that end at
a. The collection of descending manifolds is a complex in the sense that the
boundary of a cell is the union of lower-dimensional cells. For example, the
descending manifolds of maxima are open discs, whose boundary consists of
the descending manifolds of saddles (open intervals) which in turn are bounded
by (descending manifolds of) minima (points). Symmetrically, we define the
ascending manifold A(a) of a as the union of a and all integral lines that start
at a. If no integral line starts and ends at a saddle, see [9], we can overlay these
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two complexes and obtain the Morse-Smale complex (MS complex) of f . Its
nodes are the vertices of the two overlayed complexes, which are the minima,
maxima, and saddles of f . Its arcs are integral lines starting or ending at
saddles, and its regions are areas bounded by four arcs. An example is shown
in Fig. 8(a). The MS complex provides a complete topological segmentation of
M and thus is the fundamental theoretical structure many popular algorithms
like contour-tree extractions or watershed computations are build upon.

2.2 PL Morse Theory

Unfortunately, traditional Morse theory is very dependent on f being smooth;
a requirement rarely fulfilled in practice. Usually, one deals with piece-wise
linear (pl-) functions defined by function values at the vertices of a triangula-
tion T = (V,E, F ) and linearly interpolated on edges and faces of T . For the
moment, let us assume that no two neighboring vertices have equal function
value. To succinctly describe pl-extensions of Morse theory we first need some
handy definitions. Given a vertex v ∈ V the star St(v) is defined as the collec-
tion of simplices containing v: St(v) = {σ ∈ T |v ∈ σ}. The upper star St+(v)
consists of all simplices in the star whose vertices all have function values
higher than v: St+(v) = {σ ∈ T |u ∈ σ ⇒ f(u) > f(v)} and the lower star
St−(v) is defined symmetrically. The link Lk(v) is defined as the boundary of
the star Lk(v) = ∂St(v) and the lower link LL(v) as the subset with function
values below that of vertex v: LL(v) = {σ ∈ Lk(v)|u ∈ σ ⇒ f(u) < f(v)}.

v

minimum saddle maximumregular point

v vv v

three−fold saddle

Fig. 1. Classification of a vertex v based on its lower link drawn in bold solid black

Many of the key-concepts necessary to define the Morse-Smale complex
do not exist for pl-functions. Most notably, derivatives are not defined. In the
following we show how all necessary concepts can be adapted to pl-functions
leading to the definition of a (quasi) Morse-Smale complex [9]. First, we justify
the assumption that no two vertices of T have the same function value by
breaking ties using, for example, vertex indices. Now, the topology of the lower
link can be used to classify vertices, see Fig. 1. A vertex v is a maximum if
its lower link is the entire link and a minimum if its lower link is empty. In
all other cases the lower link consists of k ≥ 1 connected pieces. A vertex is
regular if k = 1 and a k-fold saddle otherwise. Essentially, v is classified using
an arbitrarily small neighborhood around v rather than derivative information
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at v. The next step is to ensure that there exist no multiple saddles (k > 1)
by splitting them into simple ones as described in Sect. 3.2. Finally, integral
lines are replaced by steepest lines. As the name suggests, steepest lines are
defined as greedily following a steepest ascending or descending line starting
at a given vertex. In general, steepest lines are not uniquely defined. However,
given any set of non-crossing steepest lines one can define ascending and
descending manifolds for pl-functions and their intersection returns a quasi MS
complex [9]. A quasi MS complex is guaranteed to have the same combinatorial
structure as a Morse-Smale complex but is not unique for a given pl-function.
Nevertheless, the differences between two equally valid quasi MS complexes
are usually minor and mostly due to inadequate sampling. In the following we
ignore these differences and simply refer to the MS complex.

3 Computation

This section contains an in-depth description of how to compute MS complexes
on triangulated two-manifolds with boundary. First, we introduce the data
structure and list all flags needed during the algorithm. Second, we discuss
the necessary algorithms in detail and provide corresponding pseudo-code to
allow easy reimplementation.

3.1 Setup

descending paths ascending paths

maximum
saddle
minimum

(a) (b)

Fig. 2. (a) The mesh is stored as a standard half-edge data structure. (b) If des-
cending paths are computed first an edge can be shared by at most three paths
resulting in an ascending-descending-ascending classification. Any additional path
merges with one of the existing ones

We store the triangulation in a typical half-edge data structure consisting of
vertices, (half-)edges, and faces, see Fig. 2(a). Each vertex stores a function
value and the function is continued to edges and faces by piece-wise linear
interpolation. To each element we add some flags necessary for the algorithm:

• vertex: each vertex stores a type and a classification
• half-edge: each half-edge stores a classification and direction.
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A vertex type can be either minimum, maximum, saddle, or regular. Vertices
and half-edges are classified as either free or part of an ascending and/or
descending path. The classifications of two neighboring half-edges provide a
directed classification of edges. Given a certain orientation an edge can be, for
example, part of an ascending path on its left but part of a descending paths
on its right. As will be discussed below we compute all descending paths
before computing ascending paths and paths in the same direction merge.
As a result the most complicated edge classification possible is ascending-
descending-ascending as shown in Fig. 2(b). This makes it possible to store
all possible edge-classifications using two bits in each half-edge. Another bit
is used to indicate the direction (upwards or downwards) of a half-edge. The
vertex type and classification also each take two bits. If necessary, the memory
foot-print can be optimized further by encoding the edge classification in three
bits per edge (not half-edge) leaving one bit for the direction. The resulting
two bits per half-edge can be stored in one byte per triangle.

3.2 Algorithm

The algorithm proceeds in four steps:

1. Preparing the mesh;
2. Computing descending paths;
3. Computing ascending paths;
4. Extracting connectivity information between Morse-Smale regions.

Mesh preparation. Section 2.2 discussed how areas of zero gradient are sim-
ulated as non-degenerate by breaking ties arbitrarily via the direction flags.
There exist other degeneracies that for various reasons we also resolve sym-
bolically before computing an MS complex. In particular, we split multiple
saddles into a collection of simple saddles and remove boundary saddles.

Figure 3(a) shows how a saddle s of arbitrary multiplicity can be recur-
sively split into a collection of simple saddles. While the multiplicity of s is
larger than two we compute a single component C of its lower link and create
a new vertex u with f(u) = f(s). We delete all edges incident to C from s
and connect them to u. Furthermore, we create three new edges connecting u
to s and to the two vertices a and b neighboring C in the link of s (creating
two new faces in the process). Finally, we mark the (directed) edge from u to
s as descending and the edges from u to a and b as ascending. As a result,
u is a simple saddle and the multiplicity of s has been reduced by one. In
practice, one often wants the new vertices created in the process of splitting
multiple saddles to have a reasonable embedding. One choice of embedding
for u that works well in practice is to pick u as the mid-point of one of the
edges between s and a vertex in C, as shown in Fig. 3(a).

Other than areas of zero gradient and multiple saddles, boundary saddles
are in principle not degenerate. Even smooth Morse functions on manifolds
with boundary can have saddles on the boundary. However, Morse theory in
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Fig. 3. Preparing the mesh: Filled/empty circles indicate vertices above/below s
and for selected edges the arrow indicates ascending direction. (a) Splitting a mul-
tiple saddle by “removing” one component of its lower link. (b) Padding boundary
saddles: Restricted to the boundary the saddle can be an extremum (left) or a regu-
lar vertex (right). It is padded by two triangles moving it into the interior. The grey
color indicates that the choice of direction for u, s on the far right depends on the
actual function values

general does not apply to manifolds with boundary. Instead, one must look
to stratified Morse theory [10] for theoretically applicable results. A central
assumption in stratified Morse theory is that there exist no boundary sad-
dles. Apart from the theoretical justification for removing boundary saddles
we found that they significantly complicate the computation as well as sim-
plification of an MS complex.

We remove boundary saddles by padding them with two new triangles
effectively moving them to the interior of the mesh. Figure 3(b) illustrates this
process. Let s be the boundary saddle and a and b its neighboring vertices
along the boundary. We create a new vertex u and two new triangles (u, s, a)
and (u, b, s) and wlg. assume f(a) < f(s) and f(a) < f(b). We set f(u) = 0.5∗
(f(a) + f(b)). We mark the edges (a, u) and (u, b) upward and depending on
f(u) < f(s) or f(u) > f(s) we mark (s, u) downward or upward. As a result,
u is a regular boundary vertex and s has become an interior saddle which, if
necessary, can be split into simple saddles as described above. Splitting saddles
as well as moving boundary saddles is a local operation that is performed
during the initial read-in of the mesh and therefore does not require a dynamic
mesh structure.

Descending Path Computation. For the remainder of the paper we assume
that the mesh has been prepared according to the previous section and there
exist no multiple or boundary saddles. In the next step we compute all des-
cending paths. When computing integral lines in general there exist two
choices. One can restrict steepest lines to follow edges in the triangulation [9]
or trace steepest lines through triangles [3]. This paper focuses on the first
option as it requires more complicated algorithms and potentially creates a
number of challenging degenerate cases. Furthermore, tracing along existing
edges is faster and requires no additional mesh refinement. Nevertheless, we
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indicate how all algorithms can be adapted to tracing steepest lines through
triangles and what the advantages and disadvantages are in either case.

Paths are traced starting at saddles and ending at extrema. We store paths
by marking edges and vertices incident to them. As discussed above, edges
are marked in a directed way such that an ascending-descending classification
can be distinguished from a descending-ascending one. Initially, only critical
points are classified non-free: Maxima/minima are classified as part of an
ascending/descending path and saddles as both.

Descending paths are computed following three rules:

R1: Two paths of the same type can merge;
R2: Paths are not allowed to split;
R3: Paths that reach the boundary stay on the boundary;

R1 is a direct consequence of f being piece-wise linear. One can easily imag-
ine a valley floor consisting of only a single edge. All descending lines flowing
into such a valley must merge on this edge. R2 is fulfilled implicitly, since each
path is computed following the same (deterministic) algorithm. R3 potentially
forces a path from its “correct” location since boundary edges are not neces-
sarily the steepest edges. However, by enforcing rule R3 we effectively avoid

Let T = (V, E, F ) be a triangulation
ComputeAllDescendingPaths(Vertices V ,Edges E)
forall s ∈ V with MorseIndex(s) == 1 //for all saddles
forall C component of LL(s) //for each component of the lower link

//find the steepest edge
u = EndPointOfSteepestDescendingEdge(C, V, E);
ClassifyAsDescending(Edge(s, u),left&right);
if IsDescending(u) == false //if we have not hit an existing path

ClassifyAsDescending(u);
TraceSteepestDescendingLine(u); //continue tracing

endif

endfor

endfor

TraceSteepestDescendingLine(Vertex v)
if IsBoundaryVertex(v) == true //If v lies on the boundary

u = GetLowerIncidentBoundaryVertex(v); //stay on the boundary
else

u = EndPointOfSteepestDescendingEdge(LL(v), V, E);
endif

ClassifyAsDescending(Edge(s, u),left&right);
if IsDescending(u) == false //if we have not hit an existing path

ClassifyAsDescending(u);
TraceSteepestDescendingLine(u); //continue tracing

endif

Fig. 4. Pseudo-code to compute all descending paths in a triangulation
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detachment points [13] and simplify constructing the final MS complex signifi-
cantly. If necessary, one can check whether rule R3 has significantly altered the
final complex by re-computing an unconstrained steepest line and comparing
the end-points. In such a case the complex can be corrected accordingly [9].

Following these rules, computing descending paths is straightforward: In
each component of the lower link of all saddles we search for a steepest des-
cending edge and classify it descending on both sides. If its end-point a is not
yet classified descending we mark it as such and recursively look for a steepest
descending edge out of a. The detailed algorithm is shown in Fig. 4.

Note, that in the boundary case of TraceSteepestDescendingLine

there exists a unique lower boundary vertex neighboring v since otherwise
v would be a saddle. Furthermore, the test whether a vertex u is already
classified as descending combines three possible cases. We stop tracing a path
when we have reached: another path (when we merge), a minimum (when
we are done), or another saddle. In the last case the path merges with one
of the descending path starting at u. However, there exist two equally valid
choices. By convention, we assume that a descending path hitting another
saddle verges to the right relative to its downward direction. Figure 5(a) shows
a stable manifold whose boundary is computed by the algorithm described
above.

ascending pathsdescending paths

saddle
minimum

maximum

(a) (b)

Fig. 5. (a) Stable manifold as computed by ComputeAllDescendingPaths. The
arrows indicate the ascending direction and the bold line elements indicate how paths
hitting saddles are routed. (b) Unstable manifold as computed by ComputeAllAs-

cendingPaths

pp q
p

q
r

(a) (b) (c)

Fig. 6. Degeneracies encountered
when computing ascending paths.
The shaded disk slices indicate
possible choices for the steepest
edge.
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When one is interested in tracing paths through triangles the simplest
method is to change EndPointOfSteepestDescendingEdge. Rather than
only examining all existing edges one computes the true steepest path. If this
path runs through a triangle one splits the triangle to create a corresponding
edge and returns the newly created vertex. However, refining extremely large
meshes is often undesirable and in the case of out-of-core meshes can be
prohibitively expensive.

Ascending path computation. In principle, ascending paths are computed
symmetrically to the descending ones. The same three rules R1-R3 hold but
another one must be added:

R4: Two paths are not allowed to cross.

Whenever one looks to extend a steepest ascending path the choice of “steep-
est” edge must be modified to observe rule R4. This becomes relevant when
descending and ascending paths share a vertex. Figure 6 shows some exam-
ples in which special care must be taken to not violate R4. In Fig. 6(a) an
ascending path p has joined a descending path q from the left (relative to p’s
direction). Since p must not cross q only those ascending edges to the left of
q or part of q can be used to extend p. In particular, there can exist another
ascending path r joining q from the right as shown in Fig. 6(b). Even though
p and r share edges they are separated by q and cannot merge. If they would
be allowed to merge they could never split (rule R2) and therefore one of
them would cross q at some point. The same principles apply if an ascending
paths p hits a saddle s, see Fig. 6(c). There can exist only one ascending path
starting at s that p can join without crossing descending paths. Given these
conventions, the ascending paths can be computed as shown in Fig. 7.

There are two significant differences between computing the ascending
compared to the descending paths. First, an ascending path does not neces-
sarily stop once it hits another vertex classified as ascending or even a saddle.
Only reaching a maximum or sharing an edge already marked (on the correct
side) is a sufficient condition to stop tracing. Second, the search for steepest
edges is constrained by rule R4 and therefore only considers parts of the upper
star of a vertex, see Fig. 6. As before, the function SteepestAscendingEdge

can be adapted to compute the true steepest ascent by splitting triangles.
Furthermore, it can be modified to refine the mesh to keep ascending and des-
cending paths completely separate. The disadvantage is again the potential
cost of refining the mesh, the advantage is that extracting the connectivity
between MS regions, see below, becomes trivial.
Extracting connectivity. Once all paths are constructed one also knows all
arcs (endpoints and geometric embedding) of the MS complex. Then we iden-
tify the starting edge of each path with the corresponding arc. (These are the
edges used for the first step in ComputeAll(A-)DescendingPaths.) Triv-
ially, the order of arcs around saddles is given by the order of these edges. An
additional breadth-first traversal of only descending paths starting from the
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Let T = (V, E, F ) be a triangulation
ComputeAllAscendingPaths(Vertices V ,Edges E)
forall s ∈ V with MorseIndex(s) == 1 //for all saddles
forall C component of St+(s) //for each component of the upper star

e = SteepestAscendingEdge(C, V, E); //find the steepest edge
//now we make an arbitrary choice to start all
//ascending paths on the right side of an edge
ClassifyAsAscending(e,right);
if MorseIndex(v) �= 2 AND IsAscending(u,right) = false

TraceSteepestAscendingLine(e,right); //start tracing
endif

endfor

endfor

TraceSteepestAscendingLine(Edge e, Orientation side)
v = Endpoint(e);
if IsBoundaryVertex(v) = true //If v lies on the boundary

u = AscendingBoundaryEdge(v);
else if IsDescending(v) = true AND side = right

u = SteepestAscendingEdge(RightHalf(St+(v)),V, E);
else if IsDescending(v) = true AND side = left

u = SteepestAscendingEdge(LeftHalf(St+(v)),V, E);
else

u = SteepestAscendingEdge(St+(v), V, E);
endif

v = Endpoint(u);
if MorseIndex(v) �= 2 AND IsAscending(u,side) = false

ClassifyAsAscending(u,side);
if IsDescending(u,side)

TraceSteepestAscendingLine(u,side);
else if IsDescending(v) = true AND u ∈ LeftHalf(St−(v))

TraceSteepestAscendingLine(u,left);
else

TraceSteepestAscendingLine(u,right);
endif

endif

Fig. 7. Pseudo-code to compute all ascending paths in a triangulation

minima determines the order of arcs around minima. Note, that care must
be taken for descending paths flowing though saddles. Here, observing the
earlier convention that paths always turn right at saddles is crucial. Knowing
the order of arcs around minima and saddles is enough to deduce the order
of arcs around maxima which completes the connectivity information. If nec-
essary one can perform a flood-fill to determine which faces belong to which
Morse-Smale region. When ascending and descending paths are kept disjunct
the connectivity can also be computed using a simple flood-fill algorithm. In
this case each Morse-Smale region corresponds to a single cluster of faces which
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form a topological disc. The clusters must touch all four arcs of the region
and the connectivity is induced directly by the connectivity of the mesh.

4 Simplification

In most applications computing the topology of a data set is only the first
step. To use the topology for analysis one must often simplify it if only to
remove noise. This section describes how to store an MS complex as a pro-
gressive mesh [15]. A progressive mesh is a data structure that for a given
error threshold allows fast access to a simplified MS complex in which all
features below the error threshold have been removed.

The generic operation to simplify an MS complex is called a cancellation.
An example is shown in Fig. 8(a) and (b). The maximum-saddle pair u, v

wu wwv

maximumsaddleminimum

(a) (b) (c)

Fig. 8. Situation before (a) and after (b) canceling the critical point pair u, v. (c)
Implementing a cancellation by deactivating nodes and arcs

is removed by merging four regions into two and extending all arcs ending
at u. The reverse operation which introduces u, v and splits the regions is
called an anti-cancellation. To rank cancellations each one is assigned an error
indicating the importance of the corresponding node pair. Some examples are
the difference in function value between the critical points involved (also called
persistence), geometric distance, or absolute function value.

Valid cancellations. Not all connected critical point pairs can be can-
celed. For example, if a saddle is connected to the same extremum twice,
see Fig. 9(a), it cannot be canceled with this extremum. Such a cancellation
would require a change in genus of the underlying manifold which is usually
not desirable. For MS complexes without boundary such double-connected
saddles are the only configuration which cannot be canceled. For manifolds
with boundary, however, there exist additional rules. Figure 9(b) shows why
a boundary extremum can only be canceled if its “opposite” extremum across
the saddle also lies on the boundary. Canceling a boundary extremum to the
inside would create a boundary saddle which is disallowed. Let us assume
a saddle is connected to two boundary maxima and should be canceled with
either of them. The boundary minimum between the two maxima is implicitly
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Fig. 9. Invalid cancellations: (a) Canceling u, v would change the genus of the
underlying manifold. (b) Canceling u, v creates a boundary saddle at u. (c) Cancel-
ing u, v would remove all critical points between u − v − w and the boundary

removed as well since the restriction of f to the boundary is a one-dimensional
function of which minima and maxima can only be canceled in pairs. However,
if the minimum is connected to additional saddles, as shown in Fig. 9(c), these
structures must be removed as well since without the minimum they cannot
form part of a valid MS complex. To avoid such implicit multi-cancellations
we disallow the cancellation of boundary extrema unless they remove exactly
three critical points. This condition is equivalent to requiring the minimum
between the two maxima in our example to have valence one. Subsequently, we
call a cancellation valid if it does not violate one of the three rules described
above.
Construction. Given an error metric it is easy to progressively simplify an
MS complex. Each arc of the MS complex corresponds to a possible (but not
necessarily valid) cancellation. All valid cancellations are added into a priority
queue which returns the arc/cancellation with the smallest error. As long as
the queue is not empty we greedily cancel the critical point pair with smallest
error. Note, that performing one cancellation can invalidate other cancella-
tions. For example, a saddle can usually be canceled either with a minimum
or with a maximum and clearly either choice will invalidate the other. For
most metrics the error of a cancellation can be changed by neighboring can-
cellations as the connectivity of the complex changes. Typically, however, the
error is only increased by earlier cancellations and therefore it can be updated
in a lazy fashion. The complete simplification algorithm is shown in Fig. 10.

4.1 Progressive MS Complexes

The algorithm of Fig. 10 simplifies an MS complex until no valid cancellations
remain. By introducing a break-off point it can easily be adapted to simplify
a complex up to a certain error threshold. In practice, however, one usually
wants to interactively change this threshold and simplifying the complex in
a bottom-up fashion each time is slow and cumbersome. Instead, one wants
to maximally simplify the complex once and keep a record of all intermediate
configurations.

We store an MS complex as a graph consisting of nodes and arcs. Arcs are
assumed to be ordered around nodes and regions are not represented explicitly.
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Let MS = (N, A, R) be an MS complex
Let Q be a priority queue of arcs ordered by increasing error
Simplify(MS complex MS)
forall a ∈ A //for all arcs in the complex
if IsValidCancellation(a)

Push(Q, a, ComputeError(a));
endif

endfor

while IsEmpty(Q) == false

top = Pop(Q);
if IsValidCancellation(top) // if this cancellation is still valid

err = ComputeError(top);
if (err ≤ NextPriority(Q);

CancelCriticalPoints(a);
else

Push(Q, a, err);
endif

endif

endwhile

Fig. 10. Pseudo-code to maximally simplify an MS complex

Using this simple data structure we implement a cancellation as shown in
Fig. 8(c). Rather than deleting the two arcs and two critical points, we only
“deactivate” them. deactivating a node creates “super-arcs” by concatenating
the remaining active arcs and deactivated arcs are treated as being removed.
A progressive MS complex is stored by assigning each node and each arc an
error. Prior to simplification, the errors are initialized to a value larger than
the largest possible error. During a cancellation elements are deactivated by
setting their error to the error of the current cancellation. For any given error
threshold the corresponding simplified MS complex is given by the collection
of active nodes and super-arcs, where an element is considered active if its
error is larger than the current threshold.

To explicitly construct a simplified MS complex for a particular error bud-
get one performs restricted breadth-first traversals of the graph starting at
each active extremum. The restrictions are that only active arcs and deacti-
vated nodes can can be traversed. Each traversal covers a tree of active arcs
rooted at the starting extremum with either active saddles or deactivated
extrema as leaves. (Note, that an active saddle can be a leaf of two different
branches of this tree. However, in this case it makes sense to consider the
saddle as two nodes and maintain that the structure has no cycle.) Each path
from a leaf to the root represents a super-arc. The simplified MS complex
consists of all active nodes and those super-arcs that start at saddles, see
Fig. 11. In practice, the tree traversals are helpful in a variety of situations.
For example, a complex can be rendered very efficiently by associating each
arc with a line strip and creating appropriate display lists during the tree
traversals. Furthermore, when one considers a cancellation as the merging of
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maximumminimum saddle

(a) (b) (c)

Fig. 11. Accessing a simplified MS complex using tree traversals. (a) Original MS
complex with three cancellations indicated by the arrows. (b) The complex of (a)
after the cancellations. The tree traversed from the indicated root is shaded in grey.
(c) The final MS complex. Note, that the left most branch of the tree ended at an
extremum and has been removed

three critical points into one, the deactivated nodes in each tree represent all
critical points merged with the root. The main advantage of this data struc-
ture is that it is small and very easy to implement. The only disadvantage is
that creating a simplification takes time linear in the size of the full complex,
rather than linear in the size of the simplification. However, in all applications
we have encountered so far the MS complex is several orders of magnitude
smaller than the surfaces mesh. For example, the full resolution surfaces of
the Mixing Fluids data set (see Sect. 5) contain up to 22 million vertices yet
never more than about 20.000 maxima/bubbles. Therefore, the simplification
remains fully interactive for all models we have been able to process using this
approach.

(a) (b)

Fig. 12. Segmentation of parts of the Mixing Fluids data sets into bubbles. Maxima
are shown in red and each bubble is randomly assigned one of nine colors. (a) Initial
segmentation; (b) Segmentation at 0.2% persistence (relative to the maximal range
in function value). (Colorplate on p. 218.)
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(a) (b) (c)

Fig. 13. Segmentation of the atomic density function on a molecule. Minima are
shown in blue and ascending paths in gold. Segmentation into 198 (a); 100 (b); and
50 (c) protrusions (colorplate on p. 218).

5 Applications

The algorithms described above provide an efficient and stable method to
compute MS complexes of any function on a triangulated manifold. We have
found this a very versatile tool helpful in a variety of independent areas. Here,
we show three very different applications for which we currently use MS com-
plexes: The first is a physics simulation of the turbulent mixing between two
fluids. Figure 12 shows an iso-surface between two mixing fluids extracted from
one time-step of a simulation performed at the Lawrence Livermore National
Laboratory. The data has been generated by the Miranda code a higher order
hydrodynamics code for computing fluid instabilities and turbulent mixing [6].
In particular, scientists are interested in “bubbles” formed during the mixing
process and their automatic segmentation. Using the z-coordinate as Morse
function and the iso-surface (not the xy-plane) as domain bubbles can be
defined as the descending manifolds of maxima. Nevertheless, the initial seg-
mentation shown in Fig. 12(a) is not optimal as some bubbles have multiple
maxima and there exist many superfluous maxima caused by noise in the
data set. Using a uniform simplification of the MS complex one can remove
most of these artifacts and create a much cleaner segmentation, as shown in
Fig. 12(b).

The second application is molecular biology where one is interested in
segmenting a molecular surface into cavities and protrusions. We take a skin
surface of chain A from the protein complex Barnase/Barstar and compute
the atomic density function over this surface. The ascending manifolds of
minima of this function segment the surface into protrusions, see Fig. 13. As
with bubbles, simplifying the MS complex captures protrusions at coarser and
coarser level.

Finally, we use the MS complex to help remesh surfaces. As described
in [7], MS complexes of eigenfunctions of the Laplace matrix of a surface are
well suited to form an all quadrilateral basemesh, see Fig. 14.



A Practical Approach to Two-Dimensional Scalar Topology 167

(a) (b)

Fig. 14. Creating a basemesh from Laplacian eigenfunctions. (a) Initial MS complex
of the 60th eigenfunction of the elephant showing typical noise due to discretization
and the iterative eigensolver. (b) The MS complex of (a) simplified to a persistence
of 0.5%. All noise has been removed and the MS complex now forms a high quality
all-quadrilateral basemesh (colorplate on p. 218).

6 Conclusions

We have shown a new algorithm to compute two-dimensional MS complexes
which allows a straightforward implementation of the original methods dis-
cussed in [9]. Except for few cases during an initial setup phase no refinement
of the mesh is necessary. Nevertheless, if desired the algorithm can be triv-
ially adapted to the one discussed in [3] which computes true lines of steepest
a-/descent. Additionally, we have provided a novel easy-to-implement data
structure for MS complexes which can also be used to encode the complex
progressively. Finally, we have introduced restricted tree traversals to allow
fast access to a simplified complex and related information as well as to pro-
vide efficient rendering of simplified complexes.
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