
O. Castillo et al. (Eds.): Soft Computing for Hybrid Intel. Systems, SCI 154, pp. 333–343, 2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008

Modeling and Simulation of the Defuzzification
Stage Using Xilinx System Generator and
Simulink

Gabriel Lizárraga1,a, Roberto Sepúlveda1, Oscar Montiel1, and Oscar Castillo2

1 Centro de Investigación y Desarrollo de Tecnología Digital (CITEDI)
 del IPN. Av. del Parque No.1310, Mesa de Otay, 22510, Tijuana, BC, México
 lizarraga@citedi.mx, {o.montiel,r.sepulveda}@ieee.org
2 Division of Graduate Studies and Research, Calzada Tecnológico S/N, Tijuana, México
 ocastillo@hafsamx.org
a M.S. Student of CITEDI

Abstract. Nowadays, there is an increasing interest in using FPGA devices to design digital
controller, and a growing interest in control systems based on fuzzy logic where the
Defuzzification stage is of primordial importance. In this work we are presenting the design,
modeling and simulation of a fixed point defuzzification VHDL method. The modeling and
simulation of this stage is realized in Simulink through the Xilinx System Generator, and a
second inference system was implemented with Matlab code. Comparative analysis of both
systems and result are shown.

1 Introduction

Since the development of digital technology, there has been a trend in manufacturing
products sharing the common goals of being smaller in integration, highly efficient in
power consumption, faster regarding processing speed, and others. Several technolo-
gies have emerged and dead in the last 40 years following the Moore’s Law crawling
to be ever smaller in size. Alternative but parallel ways to develop high performance
applications is to use VLSI programmable devices with the idea of developing the ap-
plications in software. In this field, the use of devices such as Field Programmable
Gate Array (FPGA) is a very good option because this technology offers appealing
characteristics for designers, some of them are the high scale of integration, low
power consumption, the existence of high level languages to develop and simulate the
application code, and reprogrammability.

Nowadays, there is an increasing interest in using FPGA devices to design digital
controllers, and a growing interest in control systems based on fuzzy logic, since they
allow compensating inaccuracies in the data from the instrumentation systems, such
as noise. This work is about digital fuzzy controllers, it is focused in the Defuzzifica-
tion stage which is of primordial importance in this kind of controllers.

There are several works around this topic; however it is well known that designing
of functional VHDL modules involves a several step process where it is common to
write VHDL simulation test benches to make exhaustive simulations, in [1] is given
simulation code to achieve this task.

334 G. Lizárraga et al.

In this case the Defuzzification stage was simulated using the Software Xilinx Sys-
tem Generator (XSG) [2], which is a software tool that creates and verify hardware
designs for Xilinx FPGA's[3,4].

One of the contributions of this work is that we are giving an alternative way to test
the final VHDL module avoiding writing a VHDL test bench.

In [1] was proposed a deffuzzified architecture that handles fixed point with arith-
metic for real values. In contrast, we are proposing the use of a modified high per-
formance fixed point architecture for positive numbers, and make at the final stage the
conversion to real numbers. Moreover, comparative numerical analysis is achieved.

This paper is organized as follows, Section 2 presents in a general context the de-
fuzzification method using VHDL, it is explained trough an easy example how the
Defuzzification stage works; in Section 3 it is presented the experimental set up, as
well as the software tools used; Section 4 discusses the experiments and results with a
VHDL Simulink model of the Defuzzification stage using Xilinx System Generator
and shows the evaluation of the operation of this stage with the remaining stages of
the fuzzy system created in Matlab/Simulink, with three cases of study. Section 5
presents the conclusions of this work.

2 General Contexts

Fuzzy logic is a mathematical method to obtain approximate reasoning, emulating the
human brain mechanism from facts described using natural language with uncertainty.
A Fuzzy Inference System (FIS) is based on fuzzy logic and consists of three stages
which are called: Fuzzification, Inference and Defuzzification.

The Fuzzification stage transforms the crisp values to fuzzy values [5,6,7]. The In-
ference Engine is the core of the fuzzy logic system, here are proposed rules of the
form IF-THEN that describe the behavior of a system [8,9]. The Defuzzification
stage, involves extracting a crisp numerical value from a fuzzy set [1, 10, 11].

The explanation of this work is made using a two input and one output FIS. Figure 1
shows the general scheme of the FIS with the three stages, Fuzzification, Inference and
Defuzzification.

Fig. 1. Fuzzy Inference System

 Modeling and Simulation of the Defuzzification Stage Using Xilinx System 335

The fuzzy controller has two inputs and one output, the first ones are connected to
the Fuzzification stage which produces a fuzzy output for each evaluation. A fuzzy
outputs has two values, the membership grade and the linguistic value, that are repre-
sented in this work as ge values for the input In1, and gde for the input In2 arranged in
order according how the linguistic values are ordered in their universe of discourse; in
this way, for a five membership function we have ge1, ge2,…, ge5 and gde1, gde2,…,
gde5 respectively, that are the Inference Engine inputs. The output values of the Infer-
ence Engine named as o1, o2, o3, o4 and C1, C2, C3, C4 are the four possible grades of
activation with their respective consequent values. The Defuzzication stage using the
o’s values and C’s tags produces a crisp value using the Height defuzzification
method.

Considering that the FIS is going to be used in a dc speed control application, we
can set some parameters in order to make numeric calculation to compare the VHDL
implementation against the code developed in Matlab. In this controller, there are two
inputs called error and cerror (change of error). Each input has five membership func-
tions, where two are trapezoidal and three are of triangular type. The output has five
membership functions, two trapezoidal type and three triangular type. The universe of
discourse for inputs and outputs is in the range [-80, +80].

2.1 Defuzzification Method for Fuzzy System Using VHDL Code

Defuzzification stage is in many practical applications an essential step, especially
where the fuzzy inference system is going to be use as a controller, where it is neces-
sary to have a crisp output value instead of having a fuzzy set.

There are several methods to achieve this task, and their selection usually depends
on the application and processing capacity available. The method used in this work is
known as Height [10] that calculates a weighted average value which is a good option
for a FPGA implementation. A remarkable characteristic is that its performance de-
pends on how symmetrical the MFs are [12, 13, 14].

Based on the diagrams of Figure 2, the Defuzzification process using the Height
method can be expressed by

∑
∑

=

=
⋅

= n

m

m

n

m

mm

o

oC
yf

1

1)((1)

where

f(y) is the crisp output value.
Cm is the peak value for the linguistic value LUm.
om is the height of the linguistic value LUm .

This method was implemented developed in VHDL using the simplified block dia-
gram shown in Figure 3, where Cm is the peak value for the linguistic value LUm, om is
the height of the linguistic value LUm. These two inputs are connected to a block
multiplier which corresponds to the part of the numerator in (1); only the addition of
the om will produce the denominator. Both, numerator and denominator are connected
to the block divider. The result of that division is f(y) [15].

336 G. Lizárraga et al.

Fig. 2. Distribution possibility of an output condition

Fig. 3. Block diagram of Height defuzzification method

Fig. 4. Membership functions of output variable

Note in Fig. 4 that the useful scale is in the real domain. Because this implementa-
tion works with positive integer numbers, it was necessary to adapt the original scale
[-80,80], to a positive scale [0,160]. For 8 bit representation, finally we used the scale
[0,255], this is illustrated in Fig. 4.

The design entity of the Height Defuzzification method is shown in Figure 5. Such
entity was programmed in VHDL to be implemented in a FPGA, but it can be used to
simulate the Defuzzification stage without the necessity of designing and implement-
ing any test bench.

 Modeling and Simulation of the Defuzzification Stage Using Xilinx System 337

Fig. 5. Entity and RTL scheme of the Height Defuzzification stage

This entity has 11 inputs and three outputs. The first eight inputs correspond to the
four possible activation grades with their respective consequent. The remaining three
input signals are the clock enable, clock, and reset.

The defuzzification output f(y) is given as an 8 bits word in “sal(7:0)”. The other
two outputs, “sal1(9:0)” and “sal2(9:0)” correspond to numerator and denominator re-
sults, and they are used for debugging purposes, so they can be removed at the final
implementation.

3 Experimental Set-Up

We used three main different software tools; they are:

1. Simulink from Mathwork which is a very attractive high-level design and
simulation tool because it provides a flexible design and simulation platform
that allows to test and correct designs at high level.

2. Xilinx Integrated Software Environment (Xilinx ISE) is a Hardware Descrip-
tion Language (HDL) design software suite that allows taking designs throw
several steps in the ISE design flow finishing with final verified modules that
can be implemented in a hardware target such a Field Programmable Gate Ar-
ray (FPGA). Top level designs can be created using VHDL (Very High Speed
Integrated Circuits VHSIC and HDL), Verilog, or Abel.

3. Xilinx System Generator is a DSP design tool that enables the use of the
Simulink for FPGA design. This tool allows generating VHDL code from
the System Generator Simulink modules; and vice versa, VHDL modules
can be included in the Simulink design platform by placing the VHDL code
in a System Generator “Black box”. The last characteristic is the one we
used to test the designed VHDL module of the inference engine.

338 G. Lizárraga et al.

To make this set-up works, it is very important to have the adequate versions of
each software tool. In this case we have the next setting:

1. Matlab/Simulink version is: 7.1 (R14).
2. Xilinx ISE Project Navigator: Release version 8.2.03i, application version

1.34.
3. Xilinx System Generator: v8.2.

4 Experiments and Results

Two experimental Simulink models were created to achieve a comparative test. The
difference between them is in the Defuzzification stage since we are interested in test-
ing it. In the first system, the Defuzzification stage was coded in VHDL and the other
two fuzzy stages using models from Fuzzy Logic Toolbox. In the second one, the

Fig. 6. Configuration of the Xilinx System Generator to work with the Spartan 3, starter board
from Digilent

 Modeling and Simulation of the Defuzzification Stage Using Xilinx System 339

whole system was designed with the Fuzzy Logic Toolbox. Several comparative
experiments were made with both models.

4.1 VHDL Simulink Model Using Xilinx System Generator

In Fig. 6 is presented the necessary configuration for the FPGA Spartan 3. These ex-
periments were made considering that the final implementation will be achieved in
the development starter board Spartan 3 from Digilent.

In Fig. 7 is the whole Simulink model where the three main blocks are the Fuzzifi-
cation, Inference Engine, and Defuzzification stages, the two first stages were pro-
grammed using the Fuzzy Logic Toolbox, and the Defuzification stage using VHDL
codification, and it was simulated with Xilinx System Generator. The system was test
with several values, in this figure are shown two of them, -45 for the “error” and 5 for
“cerror”.

4.2 Simulink Model with the Fuzzy Logic Toolbox

In Fig. 8 it is shown the system where the three stages are an implementation of the
“max-min” method using Matlab codification. We used this system to compare results
with the system shown in Fig. 7, where the Defuzzification stage was created using
VHDL.

The values at the inputs of this system are the same values used in the previous
system. This allows a comparison between the two systems.

Fig. 7. System 1. Simulation of the FIS, the Height Defuzzification stage is in VHDL contained
in a XSG black box.

340 G. Lizárraga et al.

Fig. 8. System 2. Simulation of the FIS. It is an implementation of the “max-min” method in
Matlab.

4.3 Comparison of Results

In Table 1, a comparison between the performances of the two systems is shown.
From Table 1, we chose three cases of study to present numeric analysis of the er-

ror in order to justify the differences. For all the cases, we used (1) to calculate the
Defuzzified output; where first, we present the numeric results of System 1, an then
for System 2.

Fig. 4 shows that for D (LU2 in Fig. 2) the center has a value of 115, in H (LU3 in
Fig. 2) the center is in 128, and for I (LU4 in Fig. 2) the center is in 140. Other values
not shown are BD (LU1) with a center value in 13, and BI (LU5) in 242. In Fig. 4, we

Table 1. Percentage difference between systems. The inputs are error and change of error
(cerror).

Inputs
Experiment

error cerror

Output of
System 1
(VHDL)

Output of
System 2

Difference of
two systems

(%)

1 -45 5 33.57 34.29 -2.14
2 -28 -10 6.58 7.27 -10.48
3 -10 -8 2.82 2.66 5.67
4 15 6 -4.07 -4 1.71
5 30 15 -7.84 -8 2.04

 Modeling and Simulation of the Defuzzification Stage Using Xilinx System 341

can see that the universe of discourse is [-80,80]; because this design was made for
positive numbers, it was necessary to make a domain transformation to handle only
positive numbers in eight bits representation, so we obtain the transformed positive
universe of discourse [0,160] ; for example the number -80 correspond to 00 hex, -72
is 0D hex, 0 is 80 hex, 72 is F2 hex.

One important thing to note is that, to revert to the original values we will not ob-
tain the same values because there are truncation and roundoff errors. For example,
when we first transform -72 to 8 in the positive decimal scale, the number 8 is repre-
sented in eight bits to obtain the value 0D hex. In this step we have introduced a trun-
cation error since 0D hex corresponds to 12.75 in the original scale instead of 13. As
we are using the integer digital representation, we are obligated to use the 0D hex
value; hence we have also a roundoff error.

Case of Study 1

The inputs are: error = -45 and cerror= 5.

System 1: Simulink with XSG calculates the next digital output:

181
)12812843(

)128*242()128*140()43*128(
=

++
++

=out (2)

The value 181 decimal (0B5 hex) is 33.57 in the original universe of discourse [-
80,80].

System 2: Matlab/Simulink.

29.342847.34
)5.05.01667.0(

)5.0*72()5.0*8()1667.0*0(≅=
++

++=out (3)

Now, it is clear that 33.57-34.29=-0.72, hence the percentage difference between
systems is 2.14%

Case of Study 2

error = -28 and cerror= -10, using

System 1: Simulink with XSG calculates the next digital output

138
)17017(

)170*140()17*128(
=

+
+

=out (4)

The value 138 decimal (8A hex) is 6.58 in the original universe of discourse [-
80,80].

342 G. Lizárraga et al.

It is very important to note that the floating point answer of (4) is 138.9091 that is
closer to 139 (8B hex), which is 7.21 in the original scale, so the difference is 7.21-
6.58=.63. In this case the roundoff error produces the biggest difference possible (±1
bit) for this implementation.

System 2: Matlab/Simulink.

273.7
73337.0

3336.5

)6667.006667.0(

)6667.0*8()06667.0*0(==
+
+=out (5)

In the same way as in the previous case, we have 6.58-7.23=-0.65, hence the per-
centage difference between systems is 10.48%.

Case of Study 3

error = -10 and cerror= -8, using

System 1: Simulink with XSG calculates the next digital output:

132
)85170(

)85*140()170*128(
=

+
+

=out (6)

The value 132 decimal (84 hex) is 2.8235 in the original universe of discourse [-

80,80].

System 2: Matlab/Simulink.

667.2
)3333.06667.0(

)3333.0*8()6667*0(=
+

+=out (7)

Similar to the other two study cases, the difference between System 1 and System

2 is 2.8235-2.667=0.1565, hence the percentage difference between systems is 5.67%.

5 Conclusions

We inspected the control surfaces of System 1 and System 2 and observed that in
general terms the behavior for both systems is very similar. Some numerical differ-
ences are given in Table 1, they are attributable to the numerical 8 bits implementa-
tion of System 1, being the most important the roundoff and truncation errors that are
spread in all the stages suffering multiplicative effects. We conclude that the maximal
expected error is ±1 bit of resolution. Depending on the application as well as the
users constrains, this error can be acceptable. If it is needed more resolution it is in-
dispensable to used more bits to reduce the magnitude of errors.

 Modeling and Simulation of the Defuzzification Stage Using Xilinx System 343

In general terms, considering the chosen resolution, both systems behave very
similar, so we can conclude that the developed VHDL code to implement the De-
fuzzification stage will work fine in the final implementation in an FPGA.

References

[1] Cirstea, M.N., Dinu, A.: Neural and Fuzzy Logic Control of Drives and Power Systems,
Newnes (2002)

[2] Manual of Xilinx System Generator, http://www.xilinx.com
[3] Lee, C.-C.: Fuzzy Logic Toolbox. For Use with Matlab, User Guide, Version (2000)
[4] Moctezuma, J.C., Torres, C.: Estudio sobre la implementación de redes neuronales artifi-

ciales usando Xilinx System Generator. XII Taller Hiberchip, IWS (2006)
[5] Roger Jang, J., Tsai Sun, C., Mizutani, E.: Neuro-Fuzzy and Soft Computing. In: A com-

putational Approach to Learning and Machine Intelligence. Prentice-Hall, Englewood
Cliffs (1997)

[6] Zadeh, L.A.: A Fuzzy-Set-Theoretic Interpretation of Linguistic Hedge. Journal of Cy-
bernetics 2, 434 (1972)

[7] Bojadziev, G., Bojadziev, M.: Fuzzy Sets, Fuzzy Logic, Applications. World Scientific,
Singapore (1995)

[8] Ross, T.J.: Fuzzy logic with engineering applications, 2nd edn. John Wiley and Sons,
Chichester (2004)

[9] Zhang, R., Phillis, A., Kouikoglou, V.S.: Fuzzy Control of Queuing Systems. Springer,
Heidelberg (2005)

[10] Driankov, D., Hellendoorn, H.: An Introduction to Fuzzy Control, 2nd edn. Springer,
Heidelberg (1996)

[11] Mamdani, E.H.: Applications of fuzzy algorithms for control of simple dynamic plant. In:
Proc. IEE, vol. 121(12) (1974)

[12] Poorani, S., Urmila Priya, T.V.S.: FPGA Based Fuzzy Logic Controller for Electric Vehi-
cle. Journal of the Institution of Engineers 45(5) (2005)

[13] Brown, S., Vranesic, Z.: Fundamentals of Digital Logic with VHDL Design. McGraw-
Hill, New York

[14] Sivanandam, S.N., Sumathi, S.: Introduction to Fuzzy Logic Using Matlab. Springer,
Heidelberg (2006)

[15] Sanchez-Solano, S., Cabrera, A., Jimenez, C., Jimenez, P., Castillo, I.B., Barros, A.: Im-
plementación sobre FPGA de Sistemas Difusos Programables. In: IBERCHIP 2003.
Workshop IBERCHIP La Habana, Cuba (2003)

	Modeling and Simulation of the Defuzzification Stage Using Xilinx System Generator and Simulink
	Introduction
	General Contexts
	Defuzzification Method for Fuzzy System Using VHDL Code

	Experimental Set-Up
	Experiments and Results
	VHDL Simulink Model Using Xilinx System Generator
	Simulink Model with the Fuzzy Logic Toolbox
	Comparison of Results

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

