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Preface

We describe in this book, new methods and applications of hybrid intelligent systems 
using soft computing techniques. Soft Computing (SC) consists of several intelligent 
computing paradigms, including fuzzy logic, neural networks, and evolutionary algo-
rithms, which can be used to produce powerful hybrid intelligent systems. The book is 
organized in five main parts, which contain a group of papers around a similar subject. 
The first part consists of papers with the main  theme of intelligent control, which are 
basically papers that use hybrid systems to solve particular problems of control. The 
second part contains papers with the main theme of pattern recognition, which are 
basically papers using soft computing techniques for achieving pattern recognition in 
different applications. The third part contains papers with the themes of intelligent 
agents and social systems, which are papers that apply the ideas of agents and social 
behavior to solve real-world problems. The fourth part contains papers that deal with 
the hardware implementation of intelligent systems for solving particular problems. 
The fifth part contains papers that deal with modeling, simulation and optimization for 
real-world applications. 

In the part of Intelligent Control there are 5 papers that describe different contribu-
tions on achieving control of dynamical systems using soft computing techniques. The 
first paper, by Ricardo Martinez et al., deals with the Optimization of Interval Type-2 
Fuzzy Logic Controllers for a Perturbed Autonomous Wheeled Mobile Robot Using 
Genetic Algorithms. The second paper, by Nohé Cázarez et al., deals with the Fuzzy 
Control for Output Regulation of a Servomechanism with Backlash. The third paper, 
by Jose Morales et al., studies the Stability on Type-1 and Type-2 Fuzzy Logic Sys-
tems. The fourth paper, by Alma Martinez et al., describes a Comparative Study of 
Type-1 and Type-2 Fuzzy Systems Optimized by Hierarchical Genetic Algorithms. 
The fifth paper, by Cristina Martinez et al., describes a Comparison between Ant 
Colony and Genetic Algorithms for fuzzy system optimization.  

In the part of Pattern Recognition there are 5 papers that describe different contribu-
tions on achieving pattern recognition using hybrid intelligent systems. The first paper, 
by Denisse Hidalgo et al., describes Type-1 and Type-2 Fuzzy Inference Systems as 
Integration Methods in Modular Neural Networks for Multimodal Biometry and its Op-
timization with Genetic Algorithms. The second paper, by Olivia Mendoza et al., deals 
with Interval Type-2 Fuzzy Logic for Module Relevance Estimation in Sugeno Integra-
tion of Modular Neural Networks. The third paper, by Miguel Lopez et al., deals with the 



      Preface VI 

Optimization of Response Integration with Fuzzy Logic in Ensemble Neural Networks 
using Genetic Algorithms. The fourth paper, by José M. Villegas et al., describes the 
Optimization of Modular Neural Network, Using Genetic Algorithms: The Case of Face 
and Voice Recognition. The fifth paper, by Pedro Salazar et al., describes a new biomet-
ric recognition technique based on hand geometry and voice using Neural Networks and 
Fuzzy Logic. 

In the part of Intelligent Agents and Social Systems there are 5 papers that describe 
different contributions to solving real-world problems with the computing paradigms 
of agents and social behavior. The first paper by Cecilia Leal and Oscar Castillo, 
describes a hybrid model based on a cellular automata and fuzzy logic to simulate the 
population dynamics. The second paper, by Jose A. Ruz-Hernandez et al., deals with 
Soft Margin Training for Associative Memories: Application to Fault Diagnosis in 
Fossil Electric Power Plants. The third paper, by Manuel Castañón-Puga et al., de-
scribes Social Systems Simulation Person Modeling as Systemic Constructivist Ap-
proach. The fourth paper by Arnulfo Alanis et al., describes Modeling and Simulation 
by Petri Networks of a Fault Tolerant Agent Node. The fifth paper, by Eugenio Dante-
Suarez et al., describes the new concept of Fuzzy Agents and its possible applications.  

In the part of Hardware Implementations several contributions are described on the 
implementation of intelligent systems in hardware devices. The first paper, by Yazmin 
Maldonado et al., describes the Design and Simulation of the Fuzzification Stage 
Through the Xilinx System Generator. The second paper by Rogelio Serrano et al., 
describes High Performance Parallel Programming of a GA using Multi-Core Tech-
nology. The third paper by Martha Cardenas et al., describes the Scalability Potential 
of Multi-Core Architecture in a Neuro-Fuzzy System. The fourth paper by Jose A. 
Olivas et al., describes a Methodology to Test and Validate a VHDL Inference Engine 
Through the Xilinx System Generator. The fifth paper, by Gabriel  Lizarraga et al., 
describes Modeling and Simulation of the Defuzzification Stage using Xilinx System 
Generator and Simulink. 

In the part of Modeling, Simulation and Optimization several contributions are de-
scribed on the application of soft computing techniques for achieving modeling, simu-
lation and optimization of non-linear systems. The first paper, by Fevrier Valdez et al., 
describes a New Evolutionary Method Combining Particle Swarm Optimization and 
Genetic Algorithms using Fuzzy Logic. The second paper, by Juan R. Castro et al., 
describes a new Hybrid Learning Algorithm for Interval Type-2 Fuzzy Neural Net-
works and its application to the Case of Time Series Prediction. The third paper, by 
Salvador González-Mendivil et al., deals with the Optimization of Artificial Neural 
Network Architectures for Time Series Prediction using Parallel Genetic Algorithms. 
The fourth paper, by Qiang Wei et al., describes an Optimized Algorithm of Discover-
ing Functional Dependencies with Degrees of Satisfaction based on the Attribute Pre-
Scanning Operation. The fifth paper, by Tina Yu and Dave Wilkinson, deals with a 
Fuzzy Symbolic Representation for Intelligent Reservoir Well Logs Interpretation. 
The sixth paper, by Rostislav Horcik, describes how to Solve a System of Linear 
Equations with Fuzzy Numbers. The seventh paper by Ismael Millan et al., describes 
the design and implementation of a hybrid fuzzy controller using VHDL.  



  Preface VII 

In conclusion, the edited book comprises papers on diverse aspects of soft comput-
ing and hybrid intelligent systems. There are theoretical aspects as well as application 
papers.  

Tijuana Institute of Technology, Mexico 
Tijuana Institute of Technology, Mexico 
Polish Academy of Sciences, Poland 
University of Alberta, Canada 

April 25, 2008 

Oscar Castillo 
Patricia Melin 

Janusz Kacprzyk 
Witold Pedrycz 
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Olivia Mendoza, Patricia Meĺın, Guillermo Licea . . . . . . . . . . . . . . . . . . . . . 115

Optimization of Response Integration with Fuzzy Logic in
Ensemble Neural Networks Using Genetic Algorithms
Miguel Lopez, Patricia Melin, Oscar Castillo . . . . . . . . . . . . . . . . . . . . . . . . . 129

Optimization of Modular Neural Network, Using Genetic
Algorithms: The Case of Face and Voice Recognition
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Optimization of Interval Type-2 Fuzzy Logic  
Controllers for a Perturbed Autonomous Wheeled 
Mobile Robot Using Genetic Algorithms 

Ricardo Martínez1, Oscar Castillo1, and Luis T. Aguilar2 

1 Division of Graduate Studies and Research, Tijuana Institute of Technology, Tijuana México 
molerick@hotmail.com, ocastillo@hafsamx.org 

2 Instituto Politécnico Nacional, Centro de Investigación y Desarrollo de Tecnología Digital, 
2498 Roll Dr., #757 Otay Mesa, San Diego CA 92154,  
Fax: +52(664)6231388  
luis.aguilar@ieee.org 

Abstract. We describe a tracking controller for the dynamic model of a unicycle mobile robot 
by integrating a kinematics and a torque controller based on Interval Type-2 Fuzzy Logic The-
ory and Genetic Algorithms. Computer simulations are presented confirming the performance 
of the tracking controller and its application to different navigation problems. 

1   Introduction 

Mobile robots have attracted considerable interest in the robotics and control research 
community, because they have nonholonomic properties caused by nonintegrable 
differential constrains. The motion of nonholonomic mechanical systems [3] is con-
strained by its own kinematics, so the control laws are not derivable in a straightfor-
ward manner (Brockett condition [4]). 

Furthermore, most reported designs rely on intelligent control approaches such as 
Fuzzy Logic Control (FLC) [24][29][2][11][15][23][28] and Neural Networks[26][8]. 
However the majority of the publications mentioned above, have concentrated on 
kinematics models of mobile robots, which are controlled by the velocity input, while 
less attention has been paid to the control problems of nonholonomic dynamic sys-
tems, where forces and torques are the true inputs: Bloch and Drakunov [3] and Chwa 
[6], used a sliding mode control to the tracking control problem.  

This paper is organized as follows: Section 2 presents the problem statement and 
the kinematics and dynamic model of the unicycle mobile robot. Section 3 introduces 
the posture and velocity control design where a genetic algorithm is used to select the 
parameters of the posture controller. Robustness properties of the closed-loop system 
are achieved with a type-2 fuzzy logic velocity control system using a Takagi-Sugeno 
model where the wheel input torques, linear velocity, and angular velocity will be 
considered as linguistic variables. Section 4 provides a simulation study of the unicy-
cle mobile robot using the controller described in Section 3. Finally, Section 5  
presents the conclusions. 
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2   Problem Statement 

2.1   The Mobile Robot 

The model considered in this paper is of a unicycle mobile robot (Figure 1), and it 
consists of two driving wheels mounted of the same axis and a front free wheel.  
 

 
Fig. 1. Wheeled Mobile Robot 

A unicycle mobile robot is an autonomous, wheeled vehicle capable of performing 
missions in fixed or uncertain environments. The robot body is symmetrical around 
the perpendicular axis and the center of mass is at the geometric center of the body. It 
has two driving wheels that are fixed to the axis that passes through C and one passive 
wheel prevents the robot from tipping over as it moves on a plane. In what follows, it 
is assumed that the motion of the passive wheel can be ignored in the dynamics of the 
mobile robot represented by the following set of equations [14]:  

( ) ( ) ( )tPDvvqqCvqM +=++ τ&& ,                              (1) 
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where ( )Tyxq θ,,=   is the vector of the configuration coordinates; ( )Twv,=υ  is 

the vector of velocities; ( )21,τττ =  is the vector of torques applied to the wheels of 

the robot where 1τ  and 2τ  denote the torques of the right and left wheel, respectively 

(Figure 1); 2RP∈  is the uniformly bounded disturbance vector; ( ) 22xRqM ∈  is 
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the positive-definite inertia matrix; ( )ϑqqC &,  is the vector of centripetal and coriolis 

forces; and 22xRD∈  is a diagonal positive-definite damping matrix. Equation (2) 

represents the kinematics of the system, where ( )yx,  is the position in the X – Y 

(world) reference frame; θ  is the angle between the heading direction and the x -
axis; v  and w  are the linear and angular velocities, respectively. Furthermore, the 
system (1)-(2) has the following nonholonomic constraint: 

0sincos =− θθ xy &&                                              (3) 

which corresponds to a no-slip wheel condition preventing the robot from moving 
sideways [16]. The system (2) fails to meet Brockett’s necessary condition for feed-
back stabilization [4], which implies that no continuous static state-feedback control-
ler exists that stabilizes the close-loop system around the equilibrium point. 

The control objective is to design a fuzzy logic controller   that ensures  

                    ( ) ( ) ,0lim =−
∞→

tqtqd
t

                                           (4) 

for any continuously, differentiable, bounded desired trajectory 3Rqd ∈  while at-

tenuating external disturbances.  

2.2   Fuzzy Logic Control Design 

This section illustrates the framework to achieve stabilization of a unicycle mobile 
robot around a desired path. The stabilizing control law for the system (1)-(2) can be 
designed using the backstepping approach [13] since the kinematics subsystem (2) is 
controlled indirectly through the velocity vector v . The procedure to design the over-
all controller consists of two steps: 

 

1. Design a virtual velocity vector ϑϑ =r  such that the kinematics model (2) be 

uniformly asymptotically stable. 
2. Design a velocity controller τ  by using FLC that ensures 

 

              ( ) ( ) ,0=− ttr ϑϑ  stt ≥∀                                      (5) 
 

where st  is the reachability time. 

In (5), it is considered that real mobile robots have actuated wheels, so the control 
input is  that must be designed to stabilize the dynamics (1), without destabilizing 

the system (2), by forcing 2R∈ϑ  to reach the virtual velocity vector 2Rr ∈ϑ  in 

finite-time. Roughly speaking, if (5) is satisfied asymptotically ( )∞=stei ;,  then ϑ  

along ∞<t , consequently the mobile robot will be neither positioned nor oriented at 
desired point. Figure 2 illustrates the feedback connection which involves the fuzzy 
controller. 
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Fig. 2. Tracking control structure 

Posture Control Design 

First, we focus on the kinematics model by designing a virtual control ( )rϑ  such that 

the control objective (4) is achieved. To this end, let us consider the reference trajec-

tory ( )tqd  as a solution of the following differential equation: 
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where ( )tdθ  is the desired orientation, and ( )tvd  and ( )twd  denote the desired 

linear and angular velocities, respectively. In the robot’s local frame, the error coordi-
nates can be defined as 
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where ( ) ( )( )tytx dd ,  is the desired position in the world X – Y coordinate system, 

1
~q  and 2

~q  are the coordinates of the position error vector, and 3
~q  is the orientation 

error. The associated tracking error model is 
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which is in terms of the corresponding real and desired velocities, is then obtained by 
differentiating (7) with respect to time. 

In order to present the main result of this subsection, we need first to recall the fol-
lowing theorems [4]. 

Theorem 1 [12](Uniform stability): Let 0=x  be an equilibrium point for 

( )txfx ,=&  and nRD ⊂  be a domain containing 0=x . Let 

[ ] RDV →×∞,0:  be a continuously differentiable function such that 
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( ) ( ) ( )
( ) 0,

2,1

≤
∂
∂+

∂
∂

≤≤

txf
x

V

t

V

xWtxVxW
 

 

for all 0≥t and for all Dx∈ , where ( )xW1  and  ( )xW2  are continuous positive 

definite functions on D. Then,  0=x  is uniformly stable. 
 

Theorem 2 [12](Uniform asymptotic stability): Suppose the assumptions of Theorem 
1 are satisfied with inequality (10) strengthened to 

 

           ( ) ( )xWtxf
x

V

t

V
3, −≤

∂
∂+

∂
∂

                            (11) 

 

for all 0≥t  and for all Dx∈ , where ( )xW3  is a continuous positive definite 

function on D. Then,  0=x  is uniformly asymptotically stable. 
 

Theorem 3: Let the tracking error equations (8) be driven by the control law (virtual 
velocities)                                                 

 

3322

113

~sin~

~~cos

qqvww

qqvv

ddr

dr

γγ
γ
++=

+=
                            (12) 

 

where 21,γγ  and 3γ  are positive constants. If  rvv =  and rww =  for all 0≥t  in 

(2), then the origin of the closed-loop system (8)-(12) is uniformly asymptotically 
stable. 
 
Proof: Under the control (12), the closed-loop system takes the form: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
+−−−

−++
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3322

33132121

1133
2

222

3

2

1

~sin~

~sin~sin~~~~

~~~~

~

~

~

qqv

qvqqqqvqw

qqqvqw

q

q

q

d

ddd

dd

γγ
γγ

γγγ

&

&

&

                    (13) 

 

Note that the origin ( ) 0~,~,~
321 =Tqqq  is an equilibrium point of the closed-loop 

system but not unique because 3
~q  can adopt several postures 

( )ππ nqei ,...,,0~.,. 3 = . Genetic algorithms are applied for tuning the kinematics 

control gains 3,2,1, =iiγ  to ensure that the error 3~ Rq ∈  converges to the origin. 

The asymptotic stability theorem is invoked as a guideline to obtain bounds in the 

values of  which shall guarantee convergence of the error 3~ Rq ∈  to zero. For this 

purpose, let us introduce the Lyapunov function candidate 
 

(9) 
 

(10) 
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( ) ( )3
2

2
2

2
1

~cos1
1~

2

1~
2

1~ qqqqV −++=
γ

                     (14) 

 

which is positive definite. Taking the time derivative of ( )qV ~  along the solution of 

the closed-loop system (13), we get 

( ) ( ) 0~sin~~sin~1~~~~ 2
3

2

32
1133

2
2211 ≤−=++= qqqqqqqqqV

γ
γγ

γ
&&&&&                (15) 

 

Thus concluding that for any positive constant ,iγ  the closed-loop system is uni-

formly stable. To complete the proof it remains to note that 
nn LqqLqqq ∞∞ ∈∈ 31321

~,~;~,~,~  and nLqq ∞∈21
~,~ &&  where  

 

( ) ( ) ( ){ }∫
∞

∞+ ∞<==
0

2

2

2

2 : dttxtxRRtxL nn a  

( ) ( ) ( ){ }∞<==
∞+

2

2

2

2 sup: txtxRRtxL nn a  
 

hence we conclude, by applying Barbalat’s lemma that 1
~q  and 3

~q  converge to the 

origin. Finally, by invoking the Matrosov’s Theorem [21], convergence of 2
~q  to the 

origin can be concluded. 
The genetic algorithm was codified with a chromosome of 24 bits in total, eight bits 

for each of the gains. Figure 3 shows the binary chromosome representation of the 
individuals in the population. Different experiments were performed, changing the 
parameters of the genetic algorithm and the best results were obtained by comparing 
the corresponding simulations. Changing the crossover rate and the number of cross-
over points used did not affect the results. Also, changing the mutation rate did not 
affect the optimal results. The advantage of using the genetic algorithm to find the 
gains is that time-consuming manual search of these parameters was avoided. 

In the execution of the genetic algorithm for find the gains, we used the Lyapunov 
function for the stability, so that one is fulfilled, the result of this function must be a 
negative value for the optimal gains of the system.  

 

Fig. 3. Chromosome representation 

where bi,  i = 1, . . . 24 are binary values  (0 or 1) representing the constants gains  
parameters. 
 

k1 

Binary 

k2 k3 

8 1 16 24 
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Velocity Control Design 

In this subsection a fuzzy logic controller is designed to force the real velocities of the 
mobile robot (1) and (2) to match those required in equations (12) of Theorem 3 to 
satisfy the control objective (4). 

We design a Takagi-Sugeno fuzzy logic controller for the autonomous mobile ro-
bot, using linguistic variables in the input and mathematical functions in the output. 

The linear ( )dv  and the angular ( )dw  velocity errors were taken as input variables 

and the right ( )1τ  and left ( )2τ  torques as the outputs.  The membership functions 

used in the input are trapezoidal for the Negative (N) and Positive (P), and triangular 
for the Zero (C) linguistics terms. The interval used for this fuzzy controller is [-50 
50]. Figure 4 shows the input variables.   

                              (a)                                                   (b) 
 
 
 
 
 
 
 
 
 

Fig. 4. (a) Linear velocity error ( )ve . (b) Angular velocity error ( )we . 

The rule set of the FLC contain 9 rules, which govern the input-output relationship 
of the FLC and this adopts the Takagi-Sugeno style inference engine [22], and we use 
a single point in the outputs (constant values), obtained using weighted average de-
fuzzification procedure. In Table 1, we present the rule set whose format is estab-
lished as follows: 

 

Rule i: If ev is G1 and ew is G2 then F is G3 and N is G4 
 

where G1..G4 are the fuzzy set associated to each variable and i= 1 ... 9. 
To find the best fuzzy controller, we used the genetic algorithm to find the parame-

ters of the membership functions. In figure 5 we show the chromosome with 28 bits 
(positions). 

Table 1. Fuzzy rule set 
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Fig. 5. Chromosome representation for the fuzzy logic controller 

Table 2. Parameters of the membership functions 

MF Type Point Minimum 
Value 

Maximum 
Value 

a -50 -50 
b -50 -50 
c -15 -5.05 

Trapezoidal 

d -1.5 -0.5 
a -5 -1.75 
b 0 0 Triangular 

c 1.75 5 
a 0.5 1.5 
b 5.05 15 
c 50 50 

Trapezoidal 

d 50 50 

Table 2 shows the parameters of the membership functions, the minimal and the 
maximum values in the search range for the genetic algorithm to find the best fuzzy 
controller system. 

3   Simulation Results 

In this section, we evaluate, through computer simulation performed in MATLAB® 
and SIMULINK®, the ability of the proposed controller to stabilize the unicycle mo-
bile robot, defined by (1) and (2) where the matrix values 

( ) ,
3739.00202.0

0202.03749.0
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=qM   ( ) ,

01350.0

1350.00
, ⎥

⎦

⎤
⎢
⎣

⎡
−

=
θ

θ
qqC &

   
⎥
⎦

⎤
⎢
⎣

⎡
=

100

010
D  

were taken from [3]. 

1 2

Input 1 - Linear velocity error (ev) Input 2 – Angular velocity error (ev) Output 1  
(T 1)

Output 2 
(T 2) 

Takagi-Sugeno 
Parameters Trapezoidal 

MF’s
Trapezoidal 

MF’s 
Trapezoidal 

MF’s 
Trapezoidal 

MF’s 
Triangular 

MF’s
Triangular 

MF’s N   C   P N   C   P 

a b c d b c a a c d b a b c d a b c d a b c

Inputs 
• Linear velocity error 

Negative, Zero, Positive 
• Angular velocity error  

Negative, Zero, Positive  

Outputs 
• Torque 1 

                 Constant    
                      Negative, Zero, Positive  
• Torque 2 

                  Constant  
                       Negative, Zero, Positive  
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The desired trajectory is the following one: 

( ) ( ) ( )( )
( ) ( )⎩

⎨
⎧

=
−−=

=
ttw

ttv
t

d

d
d 5.0sin4.0

exp12.0
ϑ                                  (16) 

and was chosen in terms of its corresponding desired linear dv  and angular velocities 

dw , subject to the initial conditions  

( ) ( )Tq 0,1.0,1.00 =  and  ( ) 200 R∈=ϑ  
 

The gains 3,2,1, =iiγ  of the kinematics model (12) were tuned by using genetic 

algorithm approach resulting in ,51 =γ  242 =γ  and ,33 =γ  the best gains that 

were found. 

3.1   Genetic Algorithm Results for the Gains k1, k2 and k3 

To find these gains we changed the number of generations, the mutation and the cross-
over operators of the genetic algorithm represented in Table 3. Figure 6 shows the plot 
 

Table 3. Results of the simulation to find the constants k1, k2 and k3 

No. Indiv. Gen. Cross. Mut. Average  
error 

k1 k2 k3 

1 100 70 0.8 0.3 14.1544 39 483 66 
2 50 40 0.8 0.4 109.6417 451 416 80 
3 20 15 0.7 0.4 41.4291 174 320 59 
4 40 30 0.9 0.4 85.8849 354 311 51 
5 60 80 0.9 0.4 116.6302 477 287 47 
6 60 70 0.8 0.3 70.0033 293 382 59 
7 70 100 0.7 0.2 31.4233 138 485 72 
8 50 60 0.8 0.2 16.8501 74 402 59 
9 40 20 0.5 0.2 101.0294 420 428 68 
10 40 20 0.8 0.2 70.8432 299 481 78 
11 55 25 0.8 0.3 15.0319 31 509 72 
12 50 70 0.5 0.2 122.8667 507 406 65 
13 30 50 0.8 0.3 103.7498 428 320 49 
14 3 5 0.8 0.1 20.0183 27 507 98 
15 2 10 0.8 0.1 31.4037 132 346 138 
16 5 15 0.8 0.1 114.8469 477 219 27 
17 30 50 0.8 0.1 4.1658 6 9 6 
18 30 50 0.8 0.1 4.1844 6 9 5 
19 30 50 0.8 0.1 4.0008 4 8 4 
20 30 50 0.8 0.1 4.0293 4 5 4 
21 50 40 0.8 0.4 3.8138 5 24 3 
22 50 40 0.8 0.4 4.5141 10 16 6 
23 50 40 0.8 0.4 6.9690 25 28 5 
24 50 40 0.8 0.4 4.1202 6 15 5 
25 70 80 0.8 0.3 3.9736 4 10 4 
26 70 80 0.8 0.3 4.3726 7 10 4 
27 30 20 0.8 0.1 4.0466 5 12 4 
28 40 20 0.8 0.1 4.0621 5 11 4 
29 70 80 0.8 0.3 4.7051 12 15 5 
30 40 70 0.8 0.3 4.4199 8 11 5 
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Fig. 6. Evolution of GA finding the optimal gains 

Table 4. Best simulations results 

Average error k1 k2 k3 

3.8138 5 24 3 

of the evolution of the population on the genetic algorithm finding the best gains.  
Table 4 shows best error that was found and the values of the gains k1, k2 and k3. 

Figure 7 shows the plot of the best simulation results. 

Time [sec] 

Position error (y) 

Position error (theta) 

Position error (x) 

e
[r

ad
]

e y
[m

] 
e x

[m
] 

 

Fig. 7. Tracking errors 
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3.2   Genetic Algorithms Results for the Optimization of the Fuzzy Logic 
Controller (FLC) 

Table 5 contains the results of the FLC, obtained by varying the values of generation 
number, percentage of replacement, mutation and crossover and Figure 8 shows the 
evolution of the GA. 

Table 5. Genetic Algorithm results for FLC optimization 

No. Indiv. Gen. %Repl. Cross. Mut. Selection 
Method 

Average 
error 

G.A. 
time 

1 50 30 0.7 0.7 0.2 Roulette 0.4122618 7:18 
2 100 25 0.7 0.8 0.3 Roulette 0.4212924 12:11 
3 20 15 0.7 0.8 0.2 Roulette 0.5524043 1:26 
4 10 20 0.7 0.8 0.2 Roulette 0.4899811 1:21 
5 80 25 0.7 0.7 0.4 Roulette 0.4126189 9:57 
6 150 50 0.7 0.6 0.3 Roulette 0.4094381 43:15 
7 90 60 0.7 0.9 0.4 Roulette 0.4087614 44:43 
8 10 25 0.7 0.8 0.2 Roulette 0.5703853 2:09 
9 65 40 0.7 0.8 0.2 Roulette 0.4099531 22:52 

10 30 25 0.7 0.9 0.5 Roulette 0.4086178 6:21 
11 70 50 0.7 0.8 0.3 Roulette 0.4086729 29:17 
12 80 50 0.7 0.9 0.3 Roulette 0.4099137 33:32 
13 200 100 0.7 0.4 0.1 Roulette 0.4085207 2:43:28 
14 15 10 0.7 0.8 0.5 Roulette 0.5669795 1:14 
15 15 25 0.7 0.9 0.2 Roulette 0.4789307 3:03 
16 30 40 0.7 0.7 0.2 Roulette 0.4108032 10:28 
17 50 60 0.7 0.6 0.4 Roulette 0.4111103 1:05:14 
18 20 50 0.7 0.6 0.2 Roulette 0.4339689 9:13 
19 80 20 0.7 0.8 0.6 Roulette 0.4490967 13:13 
20 100 80 0.7 0.8 0.3 Roulette 0.4083982 6:16 
21 30 60 0.7 0.8 0.5 Roulette 0.4943807 14:43 
22 25 40 0.7 0.8 0.6 Roulette 0.4247892 8:10 
23 70 60 0.7 0.8 0.4 Roulette 0.4084446 34:44 
24 35 40 0.7 0.7 0.3 Roulette 0.4099876 11:30 
25 45 50 0.7 0.7 0.3 Roulette 0.4128472 18:19 
26 26 30 0.9 0.6 0.3 Roulette 0.4082359 6:40 
27 60 40 0.9 0.8 0.5 Roulette 0.4106830 20:38 
28 80 50 0.9 0.4 0.1 Roulette 0.4095522 33:37 
29 40 30 0.9 0.9 0.4 Roulette 0.4102437 10:07 
30 100 35 0.9 0.7 0.4 Roulette 0.4094340 29:01 
31 80 45 0.9 0.7 0.2 Roulette 0.4100034 29:50 
32 5 20 0.9 0.9 0.2 Roulette 0.4377697 0:49 
33 10 15 0.9 0.8 0.2 Roulette 0.4370570 1:16 
34 15 15 0.9 0.7 0.4 Roulette 0.4769542 2:01 
35 15 40 0.9 0.8 0.2 Roulette 0.4107797 5:12 
36 5 30 0.9 0.9 0.3 Roulette 0.5089666 1:19 
37 10 15 0.9 0.8 0.1 Roulette 0.5206810 1:55 

Continuing with the results, the best simulation for control of tracking is shown in 
Figure 9, which shows the parameters optimized by the genetic algorithm for the 

input variables ( )wv ee , .  
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Fig. 8. Evolution of the GA for FLC optimization 

       (a)                                                   (b) 

 

Fig. 9. (a) Linear velocity error, (b) Angular velocity error 
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Fig. 10. Stabilization of the autonomous mobile robot with Type-1 FLC 
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Figure 10 shows the results of the linear and angular velocity errors, the input 
torques, the position errors and the obtained trajectory under desired trajectory of the 
robot autonomous mobile and we can observe the stability on the position error and 
how the robot mobile follows the trajectory. 

3.3   Genetic Algorithms Results for the Optimization of the Type-2 Fuzzy Logic 
Controller (FLC) 

Figure 11 shows the evolution of the GA and Table 6 contains the results of the  
Type-2 FLC, obtained by varying the values of generation number, percentage of  
replacement, mutation and crossover rate. 

 

 
Fig. 11. Evolution of the GA for Type-2 FLC optimization 

Table 6. Genetic Algorithm results for Type-2 FLC optimization 

No. Indiv. Gener. %Repl. Cross. Mut. Selection 
Method 

Average 
error 

G.A. 
time 

1 50 20 0.7 0.8 0.4 Roulette 0.3993130 4:52:08 
2 20 15 0.7 0.8 0.5 Roulette 0.4008340 1:13:03 
3 23 20 0.7 0.8 0.4 Roulette 0.3994720 02:56:23 
4 40 25 0.7 0.8 0.5 Roulette 0.3993860 6:37:16 
5 30 19 0.7 0.9 0.5 Roulette 0.3994950 3:02:35 
6 35 10 0.7 0.8 0.5 Roulette 0.4111980 1:15:03 
7 45 25 0.7 0.9 0.5 Roulette 0.4008810 7:22:52 
8 38 18 0.7 0.7 0.3 Roulette 0.3991930 3:40:29 
9 60 20 0.7 0.8 0.6 Roulette 0.3989860 6:40:59 

10 45 20 0.7 0.8 0.6 Roulette 0.4007900 5:56:20 
11 45 15 0.7 0.7 0.5 Roulette 0.4068480 3:22:18 
12 58 25 0.9 0.6 0.4 Roulette 0.3995240 7:49:24 
13 40 18 0.9 0.9 0.6 Roulette 0.3990670 3:29:21 
14 58 45 0.9 0.8 0.6 Roulette 0.3989470 15:20:34 
15 26 18 0.9 0.9 0.5 Roulette 0.4021550 3:48:35 
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Table 6. (continued) 

16 10 15 0.9 0.8 0.5 Roulette 0.4028900 1:43:28 
17 15 15 0.9 0.7 0.4 Roulette 0.4006630 1:45:03 
18 25 22 0.9 0.8 0.5 Roulette 0.3995900 2:11:58 
19 60 25 0.9 0.9 0.4 Roulette 0.4002830 9:38:31 
20 30 15 0.9 0.8 0.4 Roulette 0.4110670 2:23:33 
21 20 18 0.9 0.6 0.4 Roulette 0.3989810 1:28:53 
22 46 28 0.9 0.6 0.4 Roulette 0.3991000 6:19:01 
23 70 25 0.9 0.7 0.5 Roulette 0.3989980 10:36:57 
24 54 20 0.9 0.8 0.6 Roulette 0.3992210 6:19:40 
25 66 30 0.9 1 0.6 Roulette 0.3989810 12:54:21 
26 42 35 0.9 0.8 0.6 Roulette 0.3989410 7:11:52 
27 26 10 0.9 0.6 0.4 Roulette 0.4027990 2:29:51 
28 40 20 0.9 0.6 0.4 Roulette 0.3990530 4:24:41 
29 50 15 0.9 0.9 0.5 Roulette 0.4005340 3:33:39 
30 80 12 0.9 0.9 0.6 Roulette 0.3997710 6:32:30 
31 11 15 0.9 0.5 0.3 Roulette 0.4026380 1:55:02 
32 28 18 0.9 0.8 0.3 Roulette 0.3997890 2:46:05 
33 22 18 0.9 0.7 0.6 Roulette 0.4008280 2:11:57 
34 15 12 0.9 0.8 0.9 Roulette 0.4109010 0:36:24 
35 30 14 0.9 0.6 0.6 Roulette 0.4006320 2:32:30 
36 60 18 0.9 0.7 0.5 Roulette 0.3990440 5:06:51 
37 28 17 0.9 0.5 0.5 Roulette 0.3992410 3:43:54 

 
                              (a)                                                             (b) 

 

Fig. 12. (a) Linear velocity error, (b) Angular velocity error 

Figure 12 shows the membership functions obtained by the genetic algorithm, and 
they are the inputs variables of the FLC Type-2 and Figure 13 shows the results of the 
position errors and the obtained trajectory under desired trajectory of the robot 
autonomous mobile and we can observe the stability on the position error and how the 
robot mobile follows the trajectory. 
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Fig. 13. Stabilization of the autonomous mobile robot with Type-2 FLC 

4   Conclusions 

We have designed a trajectory tracking controller taking into account the kinematics 
and the dynamics of the autonomous mobile robot using type-2 fuzzy logic and ge-
netic algorithms. 

Genetic algorithms are used for the optimization of the constants for the trajectory 
tracking and also for the optimization of the parameters of membership functions for 
fuzzy logic control.  

Currently, the design of a type-2 fuzzy logic controller has been tested under a per-
turbed autonomous wheeled mobile robot, but more tests are in progress. 
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Abstract. A Fuzzy Logic Control System is designed to achieve the output regulation for a  
servomechanism with backlash. The problem is to design a fuzzy controller to obtain the 
closed-loop system in which the load of the driver is regulated to a desired position. The pro-
vided servomotor position as the only measurement available for feedback, the proposed 
method is far from trivial because of non-minimum phase properties of the system. Simulation 
results illustrate the effectiveness of the closed-loop system. 

1   Introduction 

A major problem in control engineering is a robust feedback design that asymptoti-
cally stabilizes a nominal plant while also attenuating the influence of parameters 
variation and external disturbances. In the last decade, this problem was heavily stud-
ied and considerable research efforts have resulted in the development of systematic 
design methodology for nonlinear feedback systems. A survey of the methods, fun-
damental in this respect, is given in [1]. 

This paper is in spirit of [2], where Aguilar et. al. extends a nonlinear ןܪ regulator 
for the output regulator of a nonminimum phase servomechanism with backlash, 
showing that using ןܪ as controller is sufficient to solve the problem in question. Our 
approach is to design and implement a fuzzy controller so as to obtain the closed-loop 
system in which all trajectories are bounded and the load of the driver is regulated to a 
desired position while also attenuating the influence of external disturbances. 

Fuzzy controllers are used as compensators of other control strategies as PID [3-5] 
to solve the problem in question. Our approach is to use a fuzzy controller as the 
whole control strategy.  

The paper is organized as follows. The backlash phenomenon and state equations 
of the drive system are introduced in Section 2. The output regulation problem is 
stated in Section 3. A fuzzy controller for output regulation is presented in Section 4. 
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Performance issues of this regulator are illustrated in a simulation study in Section 5. 
Finally, Section 6 presents the conclusions. 

2   Dynamic Model 

The dynamic models of the angular position ݍ௜ሺݐሻ of the DC motor and the ݍ଴ሺݐሻ of 
the load is as follows 

ሷ଴ݍ଴ܰିଵܬ  ൅ ଴݂ܰିଵݍሶ଴ ൌ ܶ ൅ ሷ௜ݍ௜ܬ ଴ݓ ൅ ௜݂ݍሶ௜ ൅ ܶ ൌ ߬௠ ൅ ௜ݓ  (1) 

 

hereafter, ܬ଴, ଴݂, ݍሷ଴, and ݍሶ଴ are, respectively, the inertia of the load and the reducer, 
the viscous output friction, the output acceleration, and the output velocity. The iner-
tia of the motor, the viscous motor friction, the motor acceleration, and the motor ve-
locity are denoted by ܬ௜, ௜݂, ݍሷ௜, and ݍሶ௜, respectively. The input torque ߬௠ serves as a 
control action, and ܶ stands for the transmitted torque. The external 
bances ݓ௜ሺݐሻ, ݓ௢ሺݐሻ have been introduced into the driver equation (1) to account for 
destabilizing model discrepancies due to hard-to-model nonlinear phenomena, such as 
friction and backlash. 

The transmitted torque ܶ through a backlash with an amplitude j is typically mod-
eled by a dead-zone characteristic ([6], p. 18) 

 ܶሺ∆ݍሻ ൌ ൜ 0 |ݍ∆| ൑ ݍ∆݆݇ െ ሻݍ∆ሺ݊݅ݏ݆ܭ  (2) ݁ݏ݅ݓݎ݄݁ݐ݋

 

where 
ݍ∆  ൌ ௜ݍ െ  ଴ (3)ݍܰ

 

K is the stiffness, and N is the reducer ratio. Such a model is depicted in Fig. 1. Pro-
vided the servomotor position ݍ௜ሺݐሻ is the only available measurement on the system, 
the above model (1)-(3) appears to be nonminimum phase because along with the ori-
gin the unforced system possesses a multivalued set of equilibria ሺݍ௜, ௜ݍ ଴ሻ withݍ ൌ 0 
and ݍ଴ א ሾെ݆, ݆ሿ. 

To avoid dealing with a nonminimum phase system, we replace the backlash 
model (2) with its monotonic approximation (see Fig. 2): ܶ ൌ ݍ∆ܭ െ  ሻ (4)ݍ∆ሺߜܭ

where 

ߜ ൌ െ2݆ 1 െ ݁ିቀ∆௤௝ ቁ1 ൅ ݁ିቀ∆௤௝ ቁ (5) 
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Fig. 1. The dead-zone model of backlash 

 

Fig. 2. The monotonic approximation of the dead-zone model 

The present backlash approximation is inspired from [7]. Coupled to the drive  
system (1) subject to motor position measurements, it is subsequently shown to con-
tinue a minimum phase approximation of the underlying servomotor, operating under 
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uncertainties ݓ௜ሺݐሻ, ݓ଴ሺݐሻ to be attenuated. As a matter of fact, these uncertainties in-
volve discrepancies between the physical backlash model (2) and its approximation 
(4) and (5). 

3   Problem Statement 

The objective of the Fuzzy Control output regulation of the nonlinear drive system (1) 
with backlash (4) and (5), is thus to design a Fuzzy Controller so as to obtain the 
closed-loop system in which all these trajectories are bounded and the output ݍ଴ሺݐሻ 
asymptotically decays to a desired position ݍௗ as ݐ ՜ ∞ while also attenuating the in-

fluence of the external disturbances ݓ௜ሺݐሻ, ݓ௢ሺݐሻ. To formally state the problem, let 
us introduce the state deviation vector ݔ ൌ ሾݔଵ, ,ଶݔ ,ଷݔ ,ସݔ ሿ்  with 

ଵݔ  ൌ ଴ݍ െ ଶݔ ௗݍ ൌ ଷݔ ሶ଴ݍ ൌ ௜ݍ െ ସݔ ௗݍܰ ൌ  ሶ௜ݍ
 

where ݔଵ is the load position error, ݔଶ is the load velocity, ݔଷ is the motor position 
deviation from its nominal value, and ݔସ is the motor velocity. The nominal motor po-
sition ܰݍௗ has been prespecified in such a way to guarantee that ∆ݍ ൌ  where ,ݔ∆

ݔ∆  ൌ ଷݔ െ  .ଵݔܰ 

Then, system (1)-(5), represented in terms of the deviation vector ݔ, takes the form 
ሶଵݔ  ൌ ሶଶݔ ଶݔ ൌ ଴ିܬ ଵሾݔܰܭଷ െ ଵݔଶܰܭ െ ଴݂ݔଶ ൅ ሻݍ∆ሺߜܰܭ ൅ ሶଷݔ ௢ሿݓ ൌ ሶସݔ ସݔ ൌ ௜ିܬ ଵሾ߬௠ ൅ ଵݔܰܭ െ ଷݔܭ െ ௜݂ݔସ ൅ ሻݍ∆ሺߜܭ ൅  .௜ሿݓ

(6) 

 

The zero dynamics 
ሶଵݔ  ൌ ሶଶݔ ଶݔ ൌ ଴ିܬ ଵሾെܰܭଶݔଵ െ ଴݂ݔଶ ൅  ଵሻሿ (7)ݔሺെܰߜܰܭ

 

of the undisturbed version of system (6) with respect to the output ݕ ൌ  ଷ (8)ݔ

 
is formally obtained (see [8] for details) by specifying the control law that maintains 
the output identically zero.  
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4   Fuzzy Controller 

To solve the Fuzzy Control Output Regulation problem, two-inputs one-input rules 
will be used in the formulation of the knowledge base. The IF-THEN rules are of the 
following form: 

 

IF ݔଵ is ܣଵ௟  AND ݔଶ is ܣଶ௟  THEN ݕ is ܤ௟  (9) 

where ሾݔଵ ݔଶሿ் ൌ ࢞ א ܷ ൌ ଵܷ ൈ ଶܷؿRଶ and ݕ א ܸ ؿ Թ. For each input fuzzy set ܣ௝௟ 
in ݔ௝ ؿ ௝ܷ  and output fuzzy set ܤ௟  in ݕ ؿ ܸ exists an input membership function ߤ஺ೕ೗ ൫ݔ௝൯ and output membership function ߤ஻೗ሺݕሻ, respectively, with ݈ being the num-

ber of membership functions associated to the input j. The number of rules ܯ is de-
fined by the number of membership functions of each input ܯ ൌ ଵܰ ଶܰ. 

The particular choice of each ߤ஻೗ሺݕሻ will depend on the heuristic knowledge of the 
experts. 

In our case, we select triangular membership functions for each input and output 
variables, membership functions can be seen in Figs. 3, 4 and 5 respectively, where 
you can see that we select to granulate each variable in three fuzzy sets n (negative), z 
(zero) and p (positive). 

These input and output variables are combined in fuzzy rules in the form of (9), in 
our case, we select the seven fuzzy rules shown in Table 1.  

For the inference process, we use the Mamdani [9-10] type of Fuzzy Inference, 
with minimum as disjunction operator, maximum as conjunction operator, minimum  
 

 

 
Fig. 3. Fuzzy input variable error 
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Fig. 4. Fuzzy output variable control 

 

Fig. 5. Fuzzy input chance of error 

as implication operator, maximum as aggregation operator and mean of maximums as 
our defuzzification method. 

With the combination of the rules, variables, membership functions and fuzzy sys-
tem parameters, we obtain the surface of fuzzy control shown in Fig. 6. 
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Table 1. Fuzzy Rules 

 

 
Fig. 6. Control surface 

5   Simulation Study 

5.1   Simulation Test Bench 

For our simulations we use the dynamical model (1) of the experimental test bench 
installed in the Robotics & Control Laboratory of CITEDI-IPN, which involves a DC 

No. Error change of error control

1 N n p

2 N p z

3 N z p

4 P p n

5 P n z

6 P z n

7 Z z z
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motor linked to a mechanical load through an imperfect contact gear train. Fig. 7 
shows the physical test bench. 

The input-output motion graph of Fig. 8 reveals the gear backlash effect. 
In our simulations, the gear reduction ratio is of N=3, and it is the main source of 

friction, and the backlash level is of j=0.2 rad. The stiffness coefficient is of K=5 
Nm/rad. Table 2 represents the parameters of the motor, taken from the manufacturer 
data specifications, and the nominal load parameters, and the load parameters, are 
taken from [2]. 

 

Fig. 7. Experimental test bench 

 

Fig. 8. Backlash hysteresis before compensation 
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Table 2. Nominal parameters 

 

5.2   Simulation Results 

The experiments were carried out for the closed-loop system, and we consider the  
angular motor position as the only information available for feedback. In the  
simulations, the load was required to move from the initial static position ݍ଴ሺ0ሻ ൌ 0 
to the desired position ݍௗ ൌ  rad. In order to illustrate the size of the attraction 2/ߨ
domain, the initial load position was chosen reasonably far from the desired position. 

The resulting trajectories are depicted in Fig. 9. This figure demonstrates that the 
regulator stabilizes the disturbance-free load motion around the desired position and 
attenuates external load disturbances. 

 

 

Fig. 9. Simulation results for the fuzzy regulator considering only motor position information 
available feedback 

Description Notation Value 

Motor inertia 2.8 x 10-6 Kgm2

Load inertia 1.07 Kgm2

Motor viscous friction 7.6 x 10-7 Nms/rad 

Load viscous friction 1.73 Nms/rad 
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6   Conclusions 

A partial state stabilization around a desired load position is developed for a servomo-
tor with backlash. A simulation where the motor position is the only available meas-
urement for feedback is under study. The fuzzy control output regulator proposed is 
shown to be eminently suited to locally solve the stabilization problem in question 
while also attenuating the backlash model discrepancies. 
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Abstract. The fuzzy systems present some characteristics that the classical control systems (PI, 
PD and PID) don’t have, like smoother control, noise immunity, important mathematical com-
plexity reduction, little mathematical knowledge of the model work, and they can obtain results 
from imprecise data. Broadly stated, fuzzy logic control attempts to come to terms with the in-
formal nature of the control design process. In its most basic form, the so-called Mamdani ar-
chitecture is directly translating external performance specifications and observations of plant 
behavior into a rule-based linguistic control strategy. This architecture forms the backbone of 
the great majority of fuzzy logic control systems reported in the literature in the past years. This 
paper is based on the fuzzy Lyapunov synthesis, to determine the systems stability, which is 
based on the Lyapunov criterion; this concept was introduced by Margaliot to adjust the 
Lyapunov criteria by considering linguistic variables instead of numeric variables to determine 
the systems stability. The stability will be proving on Mamdani’s architecture fuzzy logic  
systems type-1 and type-2 respectively. 

Keywords: Fuzzy Systems, Control Systems, Imprecise Data, Fuzzy Lyapunov Synthesis,  
Systems Stability. 

1   Introduction  

Fuzzy logic has found applications in a incredibly wide range of areas in the relatively 
short period of time since its conception. Invented by Lofti Zadeh, a leading control 
expert, it is perhaps not surprising that system’s theory is one of the areas in which 
fuzzy logic has made a profound impact.  

This is because fuzzy logic, combined with the paradigm of computing with words, 
allows the use and manipulation of human knowledge and reasoning in the modeling 
and control of dynamical systems. 

The ongoing research and applications in this field demonstrate the power and versa-
tility of fuzzy logic. The fuzzy models considered include classical If-Then rule sys-
tems, cognitive maps, relational fuzzy equations, fuzzy-neuro models and much more, 
and have found applications in every field of engineering. Often, however, the design of 
these systems, be it fuzzy models or fuzzy controllers, is ad-hoc and based on heuristics, 
which also makes them difficult, if not impossible, to analyze mathematically [1]. 

Fuzzy logic has been widely studied ever since the very first introduction of this 
fundamental concept. Its main attraction undoubtedly lies in the unique characteristics 
that fuzzy logic systems possess. They are capable of handling complex, nonlinear so-
lutions. Very often, fuzzy systems may provide a better performance than conven-
tional non-fuzzy approaches with less development cost. 
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2   Control Engineering 

The term control engineering refers to a discipline whose main concern is with 
problems of regulating and generally controlling the behavior of physical systems. 
The term physical system refers to a physical objects or entities that together serve a 
specific purpose of function predictable in accordance with physical laws. The  
objective of control is to perform a particular task and this objective is realized, 
generally speaking, via feedback loop where some variable of the system is used to 
adjust the parameters needed to minimize or ideally eliminate the error that occurs 
[2]. A key component of a feedback control system is the controller, whose purpose 
is to accomplish the performance objectives one states at the outset of the formula-
tion of the given control problem, in this paper, the problem consist to maintain the 
desired level of water in a water tank system. Broadly stated, fuzzy logic control  
attempts to come to terms with the informal nature of the control design process. In 
its most basic form, the so-called Mamdani architecture which will be discussed in 
the following paragraph, one may view fuzzy logic control as directly translating 
external performance specifications and observations of plant behavior into a  
rule-based linguistic control strategy.  This architecture forms the backbone of the 
great majority of fuzzy logic control systems reported in the literature in the past  
20 years. 

2.1   Control Design Process 

The design process in control engineering is generally a multistage process involving 
(i) selection of control design technique of methodology, (ii) determination of techni-
cal design objectives, and (iii) development of the plant model. 

2.1.1   Selection of Design Methodology 
Generally design methodologies in control engineering are categorized as either  
time or frequency-domain-based. Frequency-domain design methods range from the 
classical “loop Shaping” to the modern H∞-based design techniques while time-
domain design methods range from the simple PID design to linear quadratic optimal 
control.  

2.1.2   Determination of Technical Design Objectives 
This task requires interpreting, refining, and quantifying the given external perform-
ance objectives into a set of technical design objectives compatible with the given de-
sign methodology. In the context of the water tank system, for instance, one must 
translate such notions as “nearly desired level” or “quickly” into appropriate technical 

design objectives such as “inflow” denoted by ( )tq , “nominal fixed flow” denoted 

by sq , “outflow” denoted by ( )uxp  or in the case of optimal control design as  

design to regulating the amount of water in a cylindrical water tank (figure 1). 
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Fig. 1. Water tank system 

This system’s dynamical behavior is governed by the following differential  
equation: 

( ) ( )uxptqx −=
•

 (1) 

where x is the amount of water in the tank, ( )tq  is the inflow to the tank (we assume 

that ( )tq varies around some nominal fixed flow sq , ( )uxp  is the outflow from de 

tank, where ( )
2

2
r

x
gaxp
π

= ( a is a positive constant, r is the tank’s radius, and 

2sec/8.9 mg = is the acceleration due to gravity), and u the control variable, is the 

cross-section area of the drain opening. The control objective is: Design 

( )ss qpxu ,;= to regulate ( )tx  to a desired nominal amount sx . We assume that the 

functional relationship (1) is known but that ( )xp is not known explicitly and the 

only knowledge we have about ( )xp is: 

•  ( )xp ≥ 0 for all x  

•  The value ( )ss xpp = is known 

Following, we assume that the fuzzy partition of the domain of x is already given, 
namely, the system has three operating modes: x  is low, x is normal, and x  is high. 

Qualitatively, as depicted in Fig. 2, x is low when x is much larger than sx x is high 

when x is much larger than sx , and x is normal when sxx − is small. 

To determine the control rules in each of the three modes, we apply the fuzzy 

Lyapunov synthesis method using the Lyapunov function candidate ( )2
2

1
sxxV −= . 

DifferentiatingV , we get: 

( ) ( ) ( ) ( )( )uxptqxxxxxV ss −−=−=
••

 (2) 
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Fig. 2. Operating conditions  

Equation (2) enables us to derive conditions for making 
•

V negative in each of the 

operating modes. If x is low, then sxx − < 0. Hence, to make 
•

V negative, we  

require ( ) ( )uxptq > . But, we know that ( )tq and ( )xp are non-negative, therefore, 

we set 0=u . 

Next, if x  is high, then 0>− sxx . Hence, to make 
•

V negative, we require 

( ) ( )uxptq < and set maxuu =  is the maximal opening of the drain. 

Finally, the more difficult case is when x normal. Since we are designing a Mam-
dani fuzzy controller, we are based on a Takagi-Sugeno fuzzy controller, then Then-

part of each fuzzy rule -in TS fuzzy controller- is in the form 21 kxku +=  for some 

constants 1k , 2k . Substituting this form in (2), we obtain: 

( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( )( )

( )( ) ( ) ( ) ( )( )( )21
2

1

211

21

    

    

kxkxptqxxxxxpk

kxkxxkxptqxx

kxkxptqxxV

sss

sss

s

+−−+−−=

++−−−=
+−−=

•

 (3) 

The first term in (3) is non-positive for any 01 >k . Hence, to make 
•

V negative we 

would like the second term to vanish, that is, 

( ) ( )( ) 021 =+− kxkxptq s or
( )
( ) sxk
xp

tq
k 12 −= . Since ( )tq  and ( )xp  are un-

known, we approximate them using sq  and sp , respectively (this is a logical ap-

proximation when x  is normal). Thus, we obtain s
s

s xk
p

q
k 12 −= . So, when x  is 
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normal, sxkkxku 121 =+=  for some 01 >k . Note, however, that the drain open-

ing is always non-negative, hence 1k  must satisfy: ( ) 001 ≥+−
s

s
s p

q
xk , or: 

ss

s

xp

q
k ≤1

 (4) 

To summarize, using fuzzy Lyapunov synthesis we obtain the following TS-type 
control rules for the water tank system: 

•  If x is low Then 0=u  

•  If x  is normal Then ( )
s

s
s p

q
xxku +−= 1  

•  If x  is high Then maxuu =  
 

Now, using the fuzzy Lyapunov synthesis and Takagi-Sugeno fuzzy control rules 
type obtained for the Water Tank System, help us to get the rules where Mamdani 
type. In terms of input variables will be almost the same, the input variables are given 
as linguistic variables as x  is the amount of water in the tank, which was seen as may 
be low, normal or high. Now in terms of the output variables we can notes there is a 
difference with the Takagi-Sugeno type controller where output variables are mathe-
matical functions as: 
. 
 
 
Where now it will be linguistic variables on the output, as follows: 

If x  is low Then valve_opening = close_fast 
If x  is normal and currenty_flow is positive Then  
valve_opening=close_fast 
If x  is normal Then valve_opening=no_change 
If x  is normal and currenty_flow is negative Then 
valve_opening=open_slow 
If x  is high Then valve_opening=open_fast 

 

Fig. 3. Water tank system model plant 

s

s
s p

q
xxkunormalx +−= )(Then   is  If 1
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2.1.3   Development of the Plant Model 
In order to properly design a control strategy, we must have a predictive model of the 
plant. In general such a model is a mathematical description of the behavior of  
the given physical system and is derived according to applicable physical laws. In the 
case of water tank system we use the plant depicted in figures 3 and 4. 

 

Fig. 4. Water tank system submask 

3   Type-1 Fuzzy Inference Systems 

The human brain interprets imprecise and incomplete sensory information provided 
by perceptive organs. Fuzzy set theory provides a systematic calculus to deal with 
such information linguistically, and it performs numerical computation by using lin-
guistic labels stipulated by membership functions. Moreover, a selection of fuzzy  
If-Then rules forms the key component of a fuzzy inference system (FIS) that can  
effectively model human expertise in a specific application [3].  

A classical set is a set with a crisp boundary. For example, a classical set A of real 
numbers greater than 6 can be expressed as 

{ }6>= xxA  (5) 

Where there is a clear, unambiguous boundary 6 such that if x is greater than this 

number, then x belongs to the set A ; otherwise x does not belong to the set. Al-
though classical sets are suitable for various applications and have proven to be an 
important tool for mathematics and computer science, they do not reflect the nature of 
human concepts and thoughts, which tend to be abstract and imprecise. 

As an illustration, we can express the set denoted by Equation (3.1), if we let 
A =”Tall person” and x=”height”. According to the theory of classical logic whole 
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"Tall men" is a set to belong to the man with a stature greater than a certain value, we 
can establish at 1.80 meters, for example, and all men with a height lower than this 
value would be out of joint. Well that would have a man measuring 1.81 meters in 
height belong to all tall men, and instead a man measuring 1.79 meters in height no 
longer belong to this group. But it does not seem very logical to say that a man is tall 
and the other is not when the height differs in two centimeters. 

The approach of fuzzy logic believes that the set of "Tall men" is a set that does not 
have a clear boundary to belong or not to belong: with a function which defines the 
transition from "high" to "not high," he attached to each value of a high degree of 
membership in the joint between 0 and 1. For example, a man from 1.79 height could 
belong to a fuzzy collection "Tall men" with a grade of 0.8 of belonging, a person 
1.81 tall with a degree 0.85, and a person 1.50 m tall with a grade 0.1. 

Seen from this perspective can be seen that the classic logic is a limit case of fuzzy 
logic in which assigns a degree of belonging 1 to men with a height greater than or equal 
to 1.80 and a degree of belonging 0 to those with a lower altitude as shown in Figure 5. 

 
Fig. 5. Classic Logic and Fuzzy Logic 

Well then, the fuzzy sets can be regarded as a classic joint generalization of the 
classical theory of sets only provides for the membership or non membership of an 
element to a set, but the fuzzy set theory provides for the membership of a partial 
element a whole, each item has a membership degree of a fuzzy collection can take 
any value between 0 and 1. This level of membership is defined by a function of 
membership associated with a fuzzy collection: for each value that it can take an ele-

ment or variable input function x membership ( )xAμ  provides the membership de-

gree of the value of x to a fuzzy collection A . 

Formally, a classic set A , in a universe of discourseU , can be defined in several 
ways: by listing the elements that belong to all, specifying the properties to be met by 

elements belonging to this group or, in terms of membership function ( )xAμ : 

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∉

∈=
Axif

Axif
xA

0

1μ  (6) 
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A fuzzy collection in the universe U is characterized by a membership function 
which takes values in the interval [0, 1], and can be represented as a set of ordered 
pairs of an element x and its value of membership to a set: 

 

( )( ){ }UxxxA A ∈= μ,  (7) 

3.1   Mamdani Fuzzy Models 

The basic assumption of underlying the approach to fuzzy logic control proposed by 
E.H. Mamdani in 1974[4] is that in the absence of an explicit plant model an/or clear 
statement of control design objectives, informal knowledge of the operation of the 
given plant can be codified in terms of if-then, or condition-action, rules and form the 
basis for a linguistic control strategy. 

The basic paradigm for a fuzzy logic control that has emergent following Mam-
dani’s original work is a linguistic or rule-based control strategy of the form 

If 1OA  is --- and 2OA  is --- and --- Then 1CA  is --- and 2CA  is --- 

If 1OA  is --- and 2OA  is --- and --- Then 1CA  is --- and 2CA  is --- 

Which maps the observable attributes ( ),..., 21 OAOA  of the given physical system 

into its controllable attributes ( ),..., 21 CACA . The controller structure in fig. 2.4, re-

lates this architecture to than of a conventional feedback control system, where  
appropriately,  

Output ↔  Observable Attribute 

Input ↔  Controllable Attribute 

 

Fig. 6. Architecture for Fuzzy Control 

In particular each iOA , ,...2,1=i  is either a directly measurable variable and/or 

the difference between any such variable and its associated reference value.  
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4   Interval Type-2 Fuzzy Logic 

The type-2 fuzzy sets are used to model the uncertainty and inaccuracy in real-world 
problems. This set was originally proposed by Zadeh in 1975 and are essentially 
"fuzzy-fuzzy" sets in which grades of membership are type-1 fuzzy sets.  

A type-2 fuzzy set expresses the degree of non-determinist truth with vagueness 
and uncertainty with which an element belongs to the whole set. 

The type-2 fuzzy set was originally proposed by Zadeh in 1975 and it is essentially 
a “fuzzy-fuzzy” set in which membership grades are a type-1 fuzzy set. A type-2 
fuzzy [5, 6] expresses the non-deterministic truth degree with imprecision and uncer-
tainty for an element that belongs to a set. 

If ( ) 1, [ , ] [0,1]u u
x x xf u u J J= ∀ ∈ ⊆ , the type-2 membership function 

( , )
A

x uμ % is expressed by a lower membership function ( )u
x AJ xμ≡  and higher 

membership function ( )u
x AJ xμ≡  of type-1 is labeled interval type-2 fuzzy set, de-

noted by: 

( ){ }, ,1 | , [ ( ), ( )] [0,1]A AA x u x X u x xμ μ= ∀ ∈ ∀ ∈ ⊆%  (6) 

or  

[ ( ), ( )] [0,1][ , ] [0,1]

1/ / 1/ /
u u

A Ax xx X x X u x xu J J

A u x u x
μ μ∈ ∈ ∈ ⊆∈ ⊆

⎧ ⎫⎧ ⎫ ⎡ ⎤⎡ ⎤⎪ ⎪ ⎪ ⎪⎢ ⎥= ⎢ ⎥ =⎨ ⎬ ⎨ ⎬
⎢ ⎥⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

∫ ∫ ∫ ∫%  (7) 

4.1   Type-2 Fuzzy Reasoning 

Assuming a fuzzy system with M  rules, p input variables and one output variable, 

we have that the antecedent and consequent are type-2 fuzzy sets.  

^
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pp
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11

 is                                                             :
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yyC
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 (8) 

This reasoning evaluation is: 
 

The k-th rule relation its 

llllll
p

ll GAGFGxFxFR Π=→=→= 11 ...  (9) 
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The Fact relation is: 

pp xxxxx AAAxxAA ΠΠ== ... ... 
11

 (10) 

l
x

l RAB o= , Generalized, fuzzy reasoning 
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The interval type-2 fuzzy reasoning is depicted in figure 7. 

4.2   Type-2 Rule Based Fuzzy Logic System 

A rule based Fuzzy Logic System (FLS) contains four components: Rules, fuzzifier, 
inference engine, and output processor that are interconnected, as shown in Figure 8. 
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Fig. 7. Interval type-2 fuzzy reasoning 

 

Fig. 8. Type-2 Fuzzy Logic System 

A Fuzzy Inference System is a system based on fuzzy rules, instead Boolean logic, 
to data analysis [7, 8, 9]. Its basic structure includes four principal components, as 
shown in Figure 8. 

 
1. Fuzzifier.  Map inputs (crisp values) into fuzzy values 
2. Inference System. Applies a fuzzy reasoning to obtain a type-2 fuzzy output. 
3. Defuzzifier/Type Reducer.  The defuzzifier maps an output to a crisp values; the 

type reducer transform a type-2 fuzzy set into a type-1 fuzzy set. 
4. Knowledge Base.  Contains a fuzzy rule set, known as the base of rules, and a 

membership function set known as a database. 
 

The decision process is conducted by an inference system using the rules from the 
base of rules. These fuzzy rules define the connection between input and output fuzzy 
variables. A fuzzy rule has the form: IF <antecedent> THEN <consequent>, where 
antecedent is fuzzy-logic expressions consist of one of more simple fuzzy expressions 
connected by fuzzy operators, and consequent its an expression which assigns fuzzy 
values to a output variables. The inference system values all of the rules from the base 
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of rules and combining weights of consequents of all the relevant rules in an only 
fuzzy set using the aggregation operation.  

5   Stability of the System 

Stability studies three fundamental problems that are very important [10]. The first 
problem, absolute stability, it is qualitative in nature, in which we look for a simple 
answer -“yes” or “not”- in relation at the system stability. The second problem, rela-
tive stability, is quantitative in nature and its associated with the problem of deter-
mines how stable a system is. The third one discusses the robustness qualities to de-
termine how much we can perturb the plant maintaining the stability. 

In fuzzy control systems, given the linguistic characteristics, the stability problem 
becomes somewhat controversial. For the people that based their work on intelligent 
control, it’s not necessary to establish formal criterions to demonstrate that the control 
systems are stables, besides relying this on the pioneer approaches [15]: 

• Zadeh: The fuzzy control is accepted because is a task control oriented, instead tra-
ditional control which is characterized because is oriented toward achieving a ref-
erence, therefore fuzzy control doesn’t need a mathematical stability analysis . 

• Sugeno: In general, in most of the industrial applications, the control stability is not 
always guaranteed and its most important the reliability of  the mechanisms created 
than its stability 

These justifications have not been accepted by all researches, for example Mar-
galiot in [1] and [16] in which is based this paper, proposed a method to guarantee 
stability of fuzzy systems. 

6   Fuzzy Lyapunov Synthesis 

Margaliot in [11] introduces the concept, of “Fuzzy Lyapunov Synthesis” based on the 
Lyapunov Criterion to determine the stability of a system. The adjustment Margaliot 
does is to consider linguistic variables instead of numeric variables to find the sys-
tem’s stability, which means using the Lyapunov Criterion [12] and the Computing 
With Words paradigm introduced by Zadeh in [13]. 

To guarantee stability, a Lyapunov candidate function V must be proposed which 

represents the problem to solve following the Lyapunov Criterion, once we haveV , 

we calculate 
•

V which also, and according the Lyapunov Criterion is known it must 
have the follow characteristics:  

definite (11) or semi definite negative (12) to guarantee asymptotic stability or sta-
bility respectively. 

0<
•

V  (11) 

0≤
•

V  (12) 
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At this moment, the equations are the same as followed by traditional methods. To 
guarantee stability on fuzzy control systems, we must find the necessary linguistic re-
strictions to ensure compliance of  (11) or (12), for this we must properly granulate the 
linguistic variables [14], [3], [2], hence, find the adequate number and type of member-
ship functions to ensure compliance of (11) or (12). Given the linguistic characteristics 
of the fuzzy systems, in general we look for satisfying (5.1) and make stable the system, 
although is very common the system tends to satisfy condition (12) instead (11). 

7   Simulation Results  

In this paper, the measure of the error is given by the equation (13). 

n

ur
IAE

n

i
ii∑

=

−
= 1  

(13) 

Where: 

=ir Reference value in each sampled point 

=iu Control value in each sampled point 

n = Total sampled points 

7.1   Type-1 Mamdani  

7.1.1   Generic Type-1 Mamdani FIS 
The Generic Type-1 Mamdani FIS, its inputs, output and the set of rules are shown in 
Figures 9 and 10. Then we show the results of the simulation and the error achieved. 

 

 

Fig. 9. Generic Type-1 Mamdani FIS 
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Fig. 10. Generic Type-1 Mamdani FIS, Rule Base 

Figure 11 shows the result of the Generic Type-1 Mamdani FIS, this fuzzy system, 
achieved a 0.1099 error. 

  

Fig. 11. Generic Type-1 Mamdani FIS, Simulation 

7.1.2   Optimized Type-1 Mamdani FIS 
To optimize the Generic Type-1 Mamdani FIS shown before, we used Genetic Algo-
rithms for tuning the membership functions. The chromosome used in this case is 
shown in Figure 12. 

 

Fig. 12. Type-1 Mamdani Chromosome 

The Optimized Type-1 Mamdani FIS, and its inputs and output, are shown in  
Table 1. Then we show the table of results, the simulation of the best result and the  
error achieved. Each row of the table is a different test. 
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Table 1. Results for Optimized Type-1 Mamdani FIS 

  

We show in Figure 13 an example of an optimized fuzzy system. 

 

Fig. 13. Optimized Type-1 Mamdani FIS 

Figure 14 shows the result of the Optimized Type-1 Mamdani FIS of Figure 13, 
this fuzzy system, achieved an error of 0.028155. 
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Fig. 14. Optimized Type-1 Mamdani Simulation 

 
 

Fig. 15. Generic Type-2 Mamdani FIS 
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7.2   Type-2 Mamdani 

7.2.1   Generic Type-2 Mamdani FIS 
The Generic Type-2 Mamdani FIS, its inputs, output and the set of rules, are shown in 
Figures 15 and 16.  

 

Fig. 16. Generic Type-2 Mamdani FIS, Rule Base 

Figure 17 shows the result of the Generic Type-2 Mamdani FIS, this fuzzy system, 
achieved a 0.043581 error. 

 

Fig. 17. Generic Type-2 Mamdani FIS, Simulation  

7.2.2   Optimized Type-2 Mamdani FIS 
To optimize the Generic Type-2 Mamdani FIS show before, we used Genetic Algo-
rithms to tuning the membership functions. The chromosome used in this case is 
shown in Fig. 18. 

 

Fig. 18. Type-2 Mamdani Chromosome 



46 J. Morales, O. Castillo, and J. Soria 

The Optimized Type-2 Mamdani FIS, and its inputs and output, are shown in  
Table 2. Then we show the table of results, the simulation of the best result and the er-
ror achieved. Each row of the table is a different test. 

Table 2. Results for Optimized Type-2 Mamdani FIS 

  

 

Fig. 19. Optimized Type-2 Mamdani FIS 

Figure 20 shows the simulation results of the Optimized Type-2 Mamdani FIS of 
Figure 19, this fuzzy system, achieved an error of 0.015506. 
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Fig. 20. Optimized Type-2 Mamdani FIS, Simulation 

7.3   Type-1 Mamdani with Reference Change 

The Optimized Type-1 Mamdani FIS, and its inputs and output, are shown in Table 3. 
Then we show the table of results, the simulation of the best result and the error 
achieved. Each row of the table is a different test. In this case we introduced one pulse 
on the input signal, which simulate unexpected increase of water in the nominal fixed 
flow.  

Table 3. Results for Optimized Type-1 Mamdani 

  

Figure 21 shows the details of the optimal fuzzy system of Table 3. 
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Fig. 21. Optimized Type-1 Mamdani FIS with reference change 

 
Fig. 22. Optimized Type-1 Mamdani FIS with reference change 

Table 4. Results of optimized Type-2 Mamdani FIS (reference change) 
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Figure 22 shows the simulation results of the Optimized Type-1 Mamdani FIS with 
reference change, this fuzzy system, achieved a 0.10853 error. 

7.4   Type-2 Mamdani with Reference Change 

The Optimized Type-2 Mamdani FIS, and its inputs and output, are shown in Table 4. 
Then we show the table of results, the simulation of the best result and the error 

 

 

Fig. 23. Optimized Type-2 Mamdani FIS with reference change 

 
Fig. 24. Optimized Type-1 Mamdani FIS with reference change 
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achieved. Each row of the table is a different test. In this case we introduced one pulse 
on the input signal, which simulate unexpected increase of water in the nominal fixed 
flow.  

Figure 24 shows the result of the Optimized Type-2 Mamdani FIS (shown in  
Figure 23) with reference change, this fuzzy system, achieved a 0.043575 error. 

8   Conclusions 

Based on the Stability Theory of Lyapunov, an extension to fuzzy logic was proposed 
by Margaliot. We built a fuzzy controller for a tank water problem. We notice that 
fuzzy controller for a tank water problem don’t keep stable its performance. The main 
reason was that the parameters of the membership functions were not suitable chosen.  
To solve this problem we utilize genetic algorithms for the optimal set of parameters 
for the fuzzy logic controller. This assured the Stability Theory of Lyapunov for a 
Type-1 Mamdani fuzzy controller and Type-2 Mamdani fuzzy controller. 

After we built our fuzzy controller, we tested it on the simulink model to obtain the 
error performance, that way we could built our results tables to show the errors.  

Reviewing the performance and the results tables we can conclude that with the 
Fuzzy Stability Theory is the basis to built a stable fuzzy controller, anyhow this is 
not assured that this controller will be the optimal but to test the theory we optimized 
the controllers with genetic algorithms and the results showed that the theory was 
confirmed. 
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Comparative Study of Type-1 and Type-2 Fuzzy 
Systems Optimized by Hierarchical Genetic 
Algorithms 

Alma I. Martinez, Oscar Castillo, and Mario Garcia  

Division of Graduate Studies and Research, Tijuana Institute of Technology, 
Tijuana, Mexico 

Abstract. This paper describes a comparative study of type-1 and type-2 fuzzy controllers that 
are optimized using hierarchical genetic algorithms. Fuzzy controllers of Sugeno and Mamdani 
form are studied. The hierarchical genetic algorithms optimize the membership functions and 
the rules of the fuzzy controllers. 

Keywords: Mamdani Fuzzy Inference System, Sugeno Fuzzy Inference System, Interval  
Type-2 Fuzzy Inference System, Hierarchical Genetic Algorithms. 

1   Introduction 

Fuzzy logic is an area of great interest now, not only in terms of its theory scope but 
also by the variety of applications that can be made with the techniques of this area of 
computing. In recent years, systems based on fuzzy rules have become one of the 
main applications of fuzzy models [1]. This paper presents an analysis of the applica-
tion of genetic algorithms to optimize fuzzy control systems, to collect behavior data 
about the fuzzy system without optimization and compare them with data from the 
optimized version of every system built. 

This work consist of building different fuzzy systems, to solve the same problem, 
Mamdani fuzzy systems and Sugeno fuzzy systems, using Type-1 and Type-2 fuzzy 
logic in all cases. Once the fuzzy systems are built they also optimized through hier-
archical genetic algorithms, information is gathered and a comparison is made of 
fuzzy systems and their optimized versions of its with hierarchical genetic algorithms. 
Currently, there is an increasing interest to augment fuzzy systems with learning and 
adaptation capabilities. One of the most successful approaches to hybridize fuzzy sys-
tems with learning methods have been made in the realm of soft computing. Genetic 
fuzzy systems hybridize the approximate reasoning method of fuzzy systems with the 
learning capabilities of evolutionary computing. A genetic fuzzy system is basically a 
fuzzy systems augmented by a learning process based on a generic algorithm (GA). 
GAs are search algorithms, based on natural genetics, that provide a robust search ca-
pabilities in complex spaces, and thereby offer a valid approach to problems requiring 
efficient an effective search processes [2, 3, 4]. 
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2   Type-1 Fuzzy Set Theory 

In contrast to a classical set, a fuzzy set, as the name implies, is a set without a crisp 
boundary. That is, the transition of “belong to a set” to “not belong to a set” is grad-
ual, and this smooth transition is characterized by membership functions that give 
fuzzy sets flexibility in modeling commonly used linguistic expressions. Unlike the 
characteristic function of a classical set, a fuzzy set A , of the universe of dis-
course X , is characterized by a membership function  

]1,0[: →XAμ  (1) 

This function associates every element x of X a number ( )xAμ on the interval [ ]1,0  

represented by a membership grade of x in A . 

( )
⎪⎩

⎪
⎨
⎧

∉

∈=∈∀
Axif

Axify
xXx A

0
,μ  (2) 

Where y can take any value on the interval ( ]1,0 . 

Therefore we can say that the definition of a classical set, according to equation 
(2), is a special case in the fuzzy set because the characteristic function can take only 

two values{ }1,0 , and the membership function of a fuzzy set covers any possible 

value in the interval [ ]1,0 . 

Analyzing equation (2), we have that if X is a collection of objects already generi-
cally denoted by x , then a fuzzy set A  in X  is defined like a ordered pair set: 

( ){ }XxxxA A ∈= μ,  (3) 

Where ( )xAμ  is called membership function of the set A . The membership func-

tions map every element of X in a membership grade between 0 and 1. 
The membership functions can represent discrete universes, or continuous uni-

verses [11]. If a fuzzy set A  has a finite number of elements { }nxxx ,...,, 21  then the 

equation (3) can be represented by the summation: 

nn xA /...21 μμμ +++=  (4) 

 Or 

∑
=

=
n

i
ii xA

1

/μ  (5) 

Where summation sign indicates the individual values union and it is considered a 
discrete discourse universe. 
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On continuous discourse universe, the fuzzy set A  can be represented as:  

( )∫=
X

A xxA /μ  (6) 

Where the integral indicates the union of the fuzzy individual values. Both the  
equation 5 and 6, the symbol “/” is only a separator and does not involve a division. 

3   Type-2 Fuzzy Set Theory 

A type-2 fuzzy set [26, 27] expresses the non-deterministic truth degree with impreci-
sion and uncertainty for an element that belongs to a set. A type-2 fuzzy set denoted 

by
≈
A , is characterized by a type-2 membership function ( )ux

A
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An example of a type-2 membership function constructed in the IT2FLS Toolbox 
developed by our search group [28] is shown in Fig. 1 was composed by a lower and 
upper type-1 membership functions, and then is called Interval type-2 fuzzy set is de-
noted by equation 8. 

( ) ( ) ( )[ ] [ ]{ }1,0,,1,, ⊆∈∀∈∀= ≈≈

≈
xxuXxuxA AA

μμ  (8) 

      
Fig. 1. Triangular Interval Type-2 Membership Function 
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4   Fuzzy Inference Systems 

The fuzzy inference system is a popular computing framework based on the concepts 
of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. We show in Figure 2 the 
structure of a fuzzy inference system. 

 

Fig. 2. Block diagram for a fuzzy inference system 

4.1   Mamdani Fuzzy Inference System 

The Mamdani fuzzy inference system [12] was proposed as the first attempt to control 
a steam and boiler combination by a set of linguistic control rules obtained from ex-
perienced human operators. 

 

Fig. 3. The Mamdani fuzzy inference system using min and max for T-norm and T-conorm op-
erators, respectively. 

Figure 3 shows an illustration of how a two-rule Mamdani fuzzy inference system 
derives the overall output z  when subjected to two crisp inputs x  and y . Since the 

physical plant takes only crisp values as inputs, we have to use a defuzzifier to con-
vert a fuzzy set to a crisp value.  
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The most widely adopted defuzzification strategy is: 
 

Centroid of area :COAz  

( )

( )
'

∫

∫=
dZZZA

dZZZA
COA

Z

Zz

μ

μ
 (9) 

Where ( )ZAμ is aggregated output MF. This strategy is reminiscent of the calcula-

tion of expected values in probability distributions.                    

4.2   Sugeno Fuzzy Model 

The Sugeno fuzzy model (also known as the TSK fuzzy model) was proposed by Ta-
kagi, Sugeno, and Kang [13, 14] in an effort to develop a systematic approach to gen-
erating fuzzy rules from a given input-output data set. A typical fuzzy rule in a 
Sugeno fuzzy model has the form 

If x  is A and y  is B  then z = ( )yxf , , (10) 

Where A and B are fuzzy sets in the antecedent, while z = ( )yxf ,  is a crisp func-

tion in the consequent.  
Figure 4 shows the fuzzy reasoning procedure for a Sugeno fuzzy model. 

 
Fig. 4. The Sugeno Fuzzy Model 

5   Hierarchical Genetic Algorithms 

Genetic Algorithms are general purpose search algorithms which use principles in-
spired by natural evolution to generate solutions to problems [19, 20, 21].  
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Fig. 5. Principal Structure of a genetic algorithm 

 

Fig. 6. HGA fuzzy logic control system 

A GA starts with a population of randomly generated chromosomes, and ad- 
vances towards better chromosomes by applying genetic operators modeled on the 
genetic processes occurring in nature. The population undergoes evolution in a form 
of natural selection. During successive iterations, called generations, chromosomes  
in the population are rated for their adaptation as solutions, and on the basis of  
these evaluations, a new population of chromosomes is formed using a selection  
mechanism and specific genetic operators such as crossover and mutation. An evalua-
tion or fitness function must be devised for each problem to be solved. Given a  
particular chromosome, a possible solution, the fitness function returns a single  
numerical value, which is supposed to be proportional to the utility or adaptation  
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of the solution represented by that chromosome. The operation mode if a GA is illus-
trated in Fig. 5. 

To bring out the best use of the GA, we should explore further the study of genetic 
characteristics so that we can fully understand that the GA can be used with the  
approach of the hierarchical genetic structure for engineering purposes. The advan-
tages that can be obtained from this method for solving typical fuzzy systems topol-
ogy designs are given below. 

The operational procedure of the fuzzy logic controller (FLC) examines the receiv-
ing input variables e and eΔ in a fuzzzifying manner so that an appropriate actuating 

signal is derived to drive the system control input ( )u  in order to meet the ultimate 

goal of control [30].  
Considering that the main attribute of the HGA is its ability to solve the topological 

structure of an unknown system, then the problem of determining the fuzzy member-
ship functions and rules could also fall into this category.  

The conceptual idea is to have an automatic and intelligent scheme to tune the 
fuzzy membership functions and rules, in which the closed loop fuzzy control strategy 
remains unchanged, as indicated in Fig. 6. 

6   Simulation Results  

We describe in this section the benchmark problem that will be considered to test the 
genetic algorithm optimization. 

The problem to solve is the following: “We place a ball on a beam where it’s al-
lowed to roll with certain liberty along the beam, adding a lever arm and a servo-gear 
at one of the ends of the beam. As the servo-gear rotates an angle θ, the lever arm 
changes its angle α. When the angle trends to a vertical position the gravity makes the 
ball roll along the beam.” 

The simulink control scheme to test the different fuzzy inference systems is shown 
in Fig. 7. 

We present results of a comparative analysis of the ball and beam problem, using 
Mamdani Type-1 fuzzy system, Optimized Mamdani Type-1 fuzzy system, Sugeno 
Type-2 fuzzy system and Optimized Sugeno Type-2 fuzzy system, respectively. The 
measure of the error is given by equation (11). 

n

ur
IAE

n

i
ii∑

=

−
= 1  

(11) 

Where: =ir Reference value in each sampled point 

=iu Control value in each sampled point 

n = Total sampled points 
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Fig. 7. Ball and beam simulink control scheme 

6.1   Type-1 Mamdani Fuzzy Systems 

In this section we present the simulation results of the type-1 Mamdani fuzzy systems, 
both with and without optimization. 

6.1.1   Generic Type-1 Mamdani FIS 
The Generic Type-1 Mamdani FIS, its inputs, output and the set of rules after the op-
timization, are shown as follows. Then we show the results of the simulation and the 
error achieved. In Figure 8 we show the structure of fuzzy system and the member-
ship functions. In Figure 9 we show the fuzzy rules, and in Figure 10 a simulation of 
the fuzzy controller. 

Figure 10 shows the result of the Generic Type-1 Mamdani FIS, this fuzzy system, 
achieved a 0.1406 error. 

 

Fig. 8. Generic Type-1 Mamdani FIS 
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Fig. 9. Generic Type-1 Mamdani FIS, Rule Base 

 

Fig. 10. Generic Type-1 Mamdani FIS, Simulation 

6.1.2   Optimized Type-1 Mamdani FIS 
To optimize the Generic Type-1 Mamdani FIS show after, we used Hierarchical Ge-
netic Algorithms for tuning the membership functions and activate/deactivate the 
rules. The chromosome used in this case is shown in Figure 11 

 

Fig. 11. Type-1 Mamdani Chromosome 

The Optimized Type-1 Mamdani FIS, and its inputs, output and the set of rules be-
fore the optimization, are shown as follows. Then we show the table of results, the 
simulation of the best result and the error achieved (Table 1). Each row of the table is 
a different test, and each test was performed 5 times to obtain average results. 

Figure 14 shows the result of the Optimized Type-1 Mamdani FIS, this fuzzy  
system, achieved a 0.061491 error. 
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Table 1. Average results for Optimized Type-1 Mamdani FIS 
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Fig. 12. Optimized Type-1 Mamdani FIS 

 
Fig. 13. Optimized Type-1 Mamdani, fuzzy rules 

 
Fig. 14. Optimized Type-1 Mamdani, Simulation  
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6.2   Type-2 Mamdani 

6.2.1   Generic Type-2 Mamdani FIS 
The Generic Type-2 Mamdani FIS, its inputs, output and the set of rules, are shown in 
Figures 15 and 16.  

  

Fig. 15. Generic Type-2 Mamdani FIS 

 

Fig. 16. Generic Type-2 Mamdani FIS, Rule Base 

 

Fig. 17. Generic Type-2 Mamdani FIS, Simulation 
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Figure 17 shows the result of the Generic Type-2 Mamdani FIS, this fuzzy system, 
achieved a 0.1116 error. 

6.2.2   Optimized Type-2 Mamdani FIS 
To optimize the Generic Type-2 Mamdani FIS show after, we used Hierarchical Ge-
netic Algorithms to tuning the membership functions and activate/deactivate the rules. 
The chromosome used in this case is shown in Figure 18 

 

Fig. 18. Type-2 Mamdani Chromosome 

The Optimized Type-2 Mamdani FIS, and its inputs, output and the set of rules be-
fore the optimization, are shown as follows. Then we show the table of results, the 
simulation of the best result and the error achieved (Table 2). Each row of the table is a 
different test, and each test was performed 5 times to obtain average results. Figures 19 
and 20 show the optimal type-2 controller. 

Table 2. Average Results for Optimized Type-2 Mamdani FIS 
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Fig. 19. Optimized Type-2 Mamdani FIS 

 

Fig. 20. Optimized Type-2 Mamdani FIS, Rule Base 

 

Fig. 21. Optimized Type-2 Mamdani FIS, Simulation 

Figure 21 shows the result of the Optimized Type-2 Mamdani FIS, this fuzzy sys-
tem, achieved a 0.099384 error. 
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6.3   Type-1 Sugeno 

6.3.1   Generic Type-1 Sugeno 
The Generic Type-1 Sugeno FIS, its inputs, output and the set of rules, are shown as 
follows in Figures 22 and 23.  

 

Fig. 22. Generic Type-1 Sugeno FIS 

 

Fig. 23. Generic Type-1 Sugeno FIS, Rule Base 

 

Fig. 24. Generic Type-1 Sugeno FIS, Simulation 
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Figure 24 shows the result of the Generic Type-1 Sugeno FIS, this fuzzy system, 
achieved a 0.092009 error. 

6.3.2   Optimized Type-1 Sugeno FIS 
Figures 25, 26 and 27 describe the type-1 Sugeno fuzzy system. 

 
Fig. 25. Type-1 Sugeno Chromosome 

  

Fig. 26. Optimized Type-1 Sugeno FIS 

 

Fig. 27. Optimized Type-1 Sugeno FIS, Rule Base 

 

Fig. 28. Optimized Type-1 Sugeno FIS, Simulation 
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Figure 28 shows the result of the Generic Type-1 Sugeno FIS, this fuzzy system, 
achieved a 0.048685 error. 

7   Conclusions 

In this paper we applied tests on different fuzzy systems, and the results show that 
when using the Mamdani model, we will get an error higher than when using the 
Sugeno model; also that by using type-2 we will get an even lower error, in this case 
we show evidence for Type-1 and Type-2 Mamdani models and evidence only for 
Type-1 Sugeno Model. With the results, we can conclude that Sugeno model helps 
maintain better control. Genetic algorithms help to optimize the system to outperform 
those that might be find by the developers by trial and error, since the user experience 
serves to construct a general outline of control but the parameters of the membership 
functions and the number of rules that the system needs to function properly are very 
difficult to find. 
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Comparison between Ant Colony and Genetic Algorithms 
for Fuzzy System Optimization 
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Abstract. In this paper we show some of the results that we obtain with different evolutionary 
methods on a Mamdani Fuzzy Inference System (FIS); we work with Hierarchical Genetic  
Algorithms (HGA) and the Ant Colony Optimization (ACO), the fuzzy inference system con-
trols a benchmark problem which is “The Ball and Beam” system, optimizing the fuzzy rules of 
the system. Firs, we work to optimize the FIS that is structured by two inputs (the error and the  
derived error), an output (the angle of the beam so that we can get the ball position on it); and 
the 44 fuzzy rules that we used to be reduced with the evolutionary methods (HGA, ACO), so 
that we could make the comparisons between them via average and standard deviation, and 
concluding with the best evolutionary method for a fuzzy system optimization control problem. 

1   Introduction 

A large number of papers have been published regarding the combination of fuzzy 
logic (FL) and genetic algorithms (GA’s) [24, 25 and 26] and also fuzzy logic and ant 
colony optimization (ACO) [23 and 26]. Fuzzy logic is a useful tool for modeling 
complex systems and deriving useful fuzzy relations or rules. However, it is often 
complicated for human experts to define the fuzzy sets and fuzzy rules used by these 
systems. GA’s have proven to be a useful method for optimizing the membership 
functions of the fuzzy sets and the fuzzy rules used by these fuzzy systems; ACO has 
the ability to solve combinatorial optimization problems that has been inspired by the 
foraging behavior of ant colonies.  

Most of the papers in optimization of fuzzy systems consider only the optimization 
of membership functions; for this reason, we decided to optimize the fuzzy rules of a 
fuzzy system using GA’s and ACO. As we said before it is very difficult for human 
experts to define a fuzzy system even though we create a FIS based on  two inputs 
one output using triangular membership function for all the fuzzy sets, 44 fuzzy rules 
(first we started at 25 then we choose to rebuild the initial fuzzy rules set and extend 
more the search space so the evolutionary algorithms would have more experimental 
space). 

2   Genetic Algorithms 

Our lives are essentially dominated by genes. They govern our physical features, our 
behavior, our personalities, our health, and indeed our longevity. The recent greater 
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understanding of genetic has proven to be a vital tool for genetic engineering applica-
tions in many disciplines, in addition to medicine and agriculture. It is well known 
that genes can be manipulated, controlled and even turned on and off in order to 
achieve desirable amino acid sequences of a polypeptide chain. This significant dis-
covery has led to the use of genetic algorithms (GA) for computational engineering. 
GA has proven to be unique approach for solving various mathematical intangible 
problems which other gradient type of mathematical optimizers have failed to solve.  
The basic principles of the GA were first proposed by Holland [2]. Thereafter, a series 
of literature [3, 4, and 5] and reports [6, 7, 8, 9, 10, and 11] became available. GA is 
inspired by the mechanism of natural selection where stronger individuals are likely 
the winners in a competing environment. Here, the GA uses a direct analogy of such 
natural evolution. Through the genetic evolution method, an optimal solution can be 
found and represented by the final winner of the genetic game. The GA presumes that 
the potential solution of any problem is an individual and can be represented by a set 
of parameters. These parameters are regarded as the genes of a chromosome and can 
be structured by a string of values in binary form. A positive value, generally known 
as a fitness value, is used to reflect the degree of “goodness” of the chromosome for 
the problem which would be highly related with its objective value. Throughout a  
genetic evolution, the fitter chromosome has a tendency to yield good quality off-
spring, which means a better solution to any problem. In figure 1 we show the genetic 
GA cycle. 

 

Fig. 1. A genetic algorithm cycle 

The concept of applying a GA to solve engineering problems is feasible and sound. 
However, despite the distinct advantages of a GA for solving complicated, con-
strained and multi-objective functions where other techniques may have failed, the 
full power of the GA in engineering application is yet to be exploited and explored.  

Hierarchical Genetic Algorithms (HGA) are known for the tree structure that  
generates, called “dendogram” in which every level is a set of possible solutions of 
the collection [7]. Each node of the tree (first level) is structured just by one set that 
contains all the elements. Each leaf of the last level of the tree is a set composed by 
one element (there are many leafs as objects on the collection). In the intermediate 
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levels every node of the “n” level is divided for the offspring levels “n+1”.  This type 
of algorithms combine the notion of the fittest survival and the random and structured 
exchange of the characteristics between individuals of a population of possible solu-
tions, conforming a search algorithm that applies for solving diverse optimization 
fields. We show in figure 2 an example of HGA with a chromosome of three levels. 

1

1 10

4 7 3

0

1 01

9 6 2

Level 2 control genes 

Level 1 control genes 

Parametric genes 

 

Fig. 2. An example of 3-level chromosome 

3   Ant Colony Optimization 

Ant Colony Optimization (ACO) is part of a larger field of research termed based on 
social behavior of animals swarm intelligence that deals with algorithmic approaches. 
Swarm intelligence is a relatively new approach to problem solving that takes inspira-
tion from the social behaviors of insects and of other animals. In particular, ants have 
inspired a number of methods and techniques among which the most studied and the 
most successful is the general purpose optimization technique known as ant colony 
optimization [12] – [14], [15], [16]. ACO takes inspiration from the foraging behavior 
of some ant species. These ants deposit pheromone on the ground in order to mark 
some favorable path that should be followed by other members of the colony. ACO 
exploits a similar mechanism for solving optimization problems.  

In ACO, the discrete optimization problem considered is mapped onto a graph 
called a construction graph in such a way that feasible solutions to the original prob-
lem correspond to paths on the construction graph. Then, artificial ants can generate 
feasible solutions by moving on the construction graph. In practice, colonies of artifi-
cial ants search for good solutions for several iterations. Every (artificial) ant of a 
given iteration builds a solution incrementally by taking several probabilistic  
decisions. The artificial ants that find a good solution mark their paths on the con-
struction graph by putting some amount of pheromone on the edges of the path they 
followed. The ants in the next iteration are attracted by the pheromones, i.e., their  
decision probabilities are biased by the pheromones: in this way, they will have a 
higher probability of building paths that are similar to paths that correspond to good 
solutions.  

ACO has been applied successfully to a large number of difficult combinatorial  
optimization problems including traveling salesman problems, quadratic assignment 
problems, and scheduling problems, as well as to dynamic routing problems in tele-
communication networks. Unfortunately, it is difficult to analyze ACO algorithms 
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theoretically, the main reason being that they are based on sequences of random  
decisions (taken by a colony of artificial ants) that are usually not independent and 
whose probability distribution changes from iteration to iteration. Accordingly, most 
of the ongoing research in ACO is of an experimental nature, as this is also reflected 
by the content of most of papers published in the literature. 

Deneubourg et al. [17] thoroughly investigated the pheromone laying and follow-
ing behavior of ants.  The model proposed by Deneubourg and co-workers for  
explaining the foraging behavior of ants was the main source of the inspiration for the 
development of ant colony optimization. In ACO, a number of artificial ants build  
solutions to the considered optimization problem at hand and exchange information 
on the quality of these solutions via a communication scheme that is reminiscent of 
the one adopted by real ants. Different ant colony optimization algorithms have been  
proposed. The original ant colony optimization algorithm is known as Ant-System 
[18]-[20] and was proposed in the early nineties. Since then, a number of other ACO 
algorithms have been introduced. All ant colony optimization algorithms share the 
same basic idea.  

ACO has been formalized into a metaheuristic for combinatorial optimization 
problems by Dorigo and co-workers [21], [22]. A metaheuristic is a set of algorithmic 
concepts that can be used to define heuristic methods applicable to a wide set of  
different problems. In other words, a metaheuristic is a general-purpose algorithmic 
framework that can be applied to different optimization problems with relatively few 
modifications. In order to apply ACO to a given a combinatorial optimization  
problem, an adequate model is needed.  

A model P=(S, Ω, f) of combinatorial optimization problem consists of:  

 A  search  space  S  defined   over   a   finite  set  of  discrete  decision  vari-
ables Xi, i=1,…,n; 

 A set Ω of constraints among the variables; and 
 An objective function f: S →  to be minimized. 

The generic variable Xi takes values in Di = [ … }.  A feasible solution s Є S 
is a complete assignment of values to variables that satisfies all constraints in Ω. A 
solution s* Є S is called a global optimum if and only if: f(s*) ≤ f(s) ∀ s Є S.  

The model of a combinatorial optimization problem is used to define the phero-
mone model of ACO. A pheromone value associated with each possible solution 
component; that is, with each possible assignment of a value to a variable. Formally, 
the pheromone value τij is associated with the solution component cij, which consists 

of the assignment Xi=  the set of all possible solution components is denoted by C. 
In ACO, an artificial ant builds a solution by traversing the fully connected  

construction graph GC (V, E), where V is a set of vertices and E is a set of edges. This 
graph can be obtained from a set of solution components C in two ways: components 
may be represented either by vertices and edges. Artificial ants move from a vertex 
along the edges of the graph, incrementally building a partial solution. Additionally, 
ants deposit a certain amount of pheromone on the components; that is, either on the 
vertices or on the edges that they traverse. The amount ∆τ of pheromone deposited 
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may depend on the quality of the solution found. Subsequent ants use the pheromone 
information as a guide toward promising regions of search space. 

 

The Ant Colony Optimization Algorithm:  
Set parameters, initialize pheromone trails 
While termination condition not met do 
 ContructAntSolutions 
 ApplyLocalSearch (optional) 

UpdatePheromones 
endwhile 

4   Experiment Results 

The problem we’re about to describe is a benchmark in the control area called “The 
Ball and Beam System” and it’s primarily based on the  scheme shown in figure 3. 

In this system we place a ball on a beam and it is allowed to roll with certain  
liberty along the beam, adding a lever arm and a servo-gear at one of the ends of the 
 

 

 

Fig. 3. Scheme of the Ball and Beam system 

 

Fig. 4. Structure of the Fuzzy Controller 
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beam. As the servo-gear rotates an angle θ, the lever arm changes its angle α. When 
the angle trends to a vertical position the gravity makes the ball roll along the beam. 

We have now to establish a knowledge base of fuzzy rules to be considered the  
initial fuzzy controller to be optimized by evolutionary methods. We have two inputs 
(error and change of error, Fig. 4) and one output (α angle) to know the position of the 
ball on the beam. We show in table 1 a set of initial fuzzy rules. 

As we can see in figure 4 the error and the change of error as the inputs and the  
angle as the output, structure the fuzzy inference system of Mamdani type. 

Table 1. Initial set of Fuzzy rules (Base of knowledge) 

NO. INDEXED RULES 
1 1 1 1 (1): 1 if error=NL  and  derror=NL then 

angulo=NL 
2 1 2 1 (1): 1 if error=NL  and  derror=N then 

angulo=NL 
3 1 3 1 (1): 1 if error=NL  and  derror=Z  then 

angulo=NL 
4 1 4 2 (1): 1 if error=NL  and  derror=P  then 

angulo=N 
5 1 5 3 (1): 1 if error=NL  and derror=PL then 

angulo=Z 
6 2 1 1 (1): 1 if error=N  and  derror=NL then 

angulo=NL 
7 2 2 1 (1): 1 if error=N  and  derror=N  then 

angulo=NL 
8 2 3 2 (1): 1 if error=N  and  derror=Z  then  

angulo=N 
9 2 4 3 (1): 1 if error=N  and  derror=P  then   

angulo=Z 
10 2 5 4 (1): 1 if error=N  and  derror=PL  then 

angulo=P 
11 3 1 1 (1): 1 if error=Z  and  derror=NL then 

angulo=NL 
12 3 2 2 (1): 1 if error=Z  and  derror=N   then 

angulo=N 
13 3 3 3 (1): 1 if error=Z and derror=Z then angulo=Z 
14 3 4 4 (1): 1 if error=Z and derror=P then angulo=P 
15 3 5 5 (1): 1 if error=Z and derror=PL then 

angulo=PL 
16 4 1 2 (1): 1 if error=P and derror=NL then 

angulo=N 
17 4 2 3 (1): 1 if error=P and derror=N then angulo=Z 
18 4 3 4 (1): 1 if error=P and derror=Z then angulo=P 
19 4 4 5 (1): 1 if error=P and derror=P then angulo=PL 
20 4 5 5 (1): 1 if error=P and derror=PL then 

angulo=PL 
21 5 1 3 (1): 1 if error=PL and derror=NL then 

angulo=Z 



 Comparison between Ant Colony and Genetic Algorithms 77 

22 5 2 4 (1): 1 if error=PL and derror=N then 
angulo=N 

23 5 3 5 (1): 1 if error=PL and derror=Z then 
angulo=PL 

24 5 4 5 (1): 1 if error=PL and derror=P then 
angulo=PL 

25 5 5 5 (1): 1 if error=PL and derror=PL then 
angulo=PL 

26 1 2 2 (1): 1 if error=NL and derror=N then 
angulo=NL 

27 1 3 2 (1): 1 if error=NL and derror=Z then 
angulo=N 

28 1 4 3 (1): 1 if error=NL and derror=P then 
angulo=Z 

29 1 5 2 (1): 1 if error=NL and derror=PL then 
angulo=N 

30 1 5 4 (1): 1 if error=NL and derror=PL then 
angulo=P 

31 2 1 2 (1): 1 if error=N and derror=NL then 
angulo=N 

32 2 2 2 (1): 1 if error=N and derror=N then angulo=N 
33 2 5 3 (1): 1 if error=N and derror=PL then 

angulo=Z 
34 3 1 2 (1): 1 if error=Z and derror=NL then 

angulo=N 
35 3 2 3 (1): 1 if error=Z and derror=N then angulo=Z 
36 3 5 4 (1): 1 if error=Z and derror=PL then angulo=P 
37 4 1 3 (1): 1 if error=P and derror=NL then 

angulo=Z 
38 4 4 4 (1): 1 if error=P and derror=Pthen angulo=P 
39 4 5 4 (1): 1 if error=P and derror=PL then angulo=P 
40 5 1 2 (1): 1 if error=PL and derror=NL then 

angulo=N 
41 5 1 4 (1): 1 if error=PL and derror=NL then 

angulo=P 
42 5 2 3 (1): 1 if error=PL and derror=N then 

angulo=Z 
43 5 3 4 (1): 1 if error=PL and derror=Z then angulo=P 
44 5 4 4 (1): 1 if error=PL and derror=P then angulo=P 

4.1   Genetic Algorithm Experiments 

Starting with the GA paradigm, we can apply a GA to generate different FIS’ combin-
ing the rules of the knowledge base structured previously, with 44 fuzzy rules creating 
the search space for the evolutionary method. We based our implementation on the 
simple genetic algorithm, with some improvements to adequate it to our problem, and 
as a fitness function we have a function that evaluates as many Fuzzy Systems as  
individuals has the populations; they are created with the same inputs and outputs but 
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every FIS has different active rules depending on the chromosome. We use the chro-
mosome as an array of active rules; where 1 means “ON” and 0 means “OFF”, as we 
can appreciate in figure 5 the chromosome representation in our GA. 

      ACTIVATION BITS                     44 RULES 

 

Fig. 5. Representation of the GA chromosome 

Evaluation of the FIS is based on a simulation in order to get an average of the error 
obtained from the reference and the control given by the fuzzy controller. To have an 
average of the error we’re using the Integral of the Absolute Error (IAE) equation:   

 

           IAE =  
n

n

i ii∑=
−

1
|| μγ

 
(1) 

 

Where  marks the reference value, μi is the control value and n is the total sample 
points. We test the algorithm varying the mutation, crossover, with very low and very 
high levels and also the individuals, generations and the percentage of new individual 
per generations, all just to test the performance of the genetic algorithm. We obtain very 
good controllers for the Ball and Beam system; every individual was simulated with a 
plant that we previously described, where was simulated the reference as the input and 
we got a fuzzy controller where the inputs are taken by the error and the change of error, 
the α angle as the output and at the same time it’s the input for the Ball and Beam 
Model, where the equations are computed and the output is the feedback for the plant 
shown in figure 6:  

 

Fig. 6. Simulink Ball and Beam plant 
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As you can see the plant has a “Step” reference, we used 0.25 as the reference but, 
we also used some generators to change it, amplifying the frequency and the ampli 
tude, and we’ll see it in the graphics later.  As was mentioned before we tested the GA 
with variations on the genetic operations; in the table 2 we can appreciate the results 
of the GA. 

Table 2. Results obtaned with GA tests 

 

We see that the best result (the one marked) was obtained with a population of 30 
individuals, 50 generations with a 30% of new individuals per generation, 1% of mu-
tation and the 20% of crossover using a multipoint crossover; we obtained an error of 
0.00012907 with a very low standard deviation.  In the simulation the fuzzy controller 
has 27 fuzzy rules. Later in the comparison we could appreciate more clearly the  
results. 

4.2   Ant Colony Optimization Experiment 

The ant colony optimization (ACO) has to be started with the same base of knowl-
edge. Describing the method, we can say that there’s a colony which is going to  
explore a search space for the best trails that are saved in a matrix; then when we got 
the trails (real numbers) we make some adjustments to the numbers so that we can 
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work with them. Also a Fitness Function is needed for the ACO algorithm and we can 
use the same function that we used in GA, but with some modifications that must to 
be made; as we can remember in a GA a chromosome was taken as the vector of  
active rules, now we only have a real number; 6 digits to be more accurate, and we’re 
going to need 44 bits, so multiplying the real number by 100,000,000,000 and con-
verting the result to binary code we should have a vector for the active rules. It’s very 
important to mention that the ACO algorithm that is used in this paper was previously 
improved. Including some modifications that make the algorithm faster then the 
original one. Basically  from the nest to the food is a line marked and the best trail is 
the one that makes a diagonal from the nest to the food.  

If we describe the pseudo code of the algorithm we have that first of all we need  
to initialize some of the variables like the initial pheromone, the percentage of evapo-
ration we want, we also have to construct a graph (with the dimensions for the search 
space). Once the variables are initialized every ant has to construct its trails and these 
trails are updated so the ant could not walk the same trail, the best trails of the ants are 
the ones we convert to binary for the active rules of  the fuzzy controllers when its 
created the FIS we got the rules average then is the simulation that we have to do so 
we can obtain the error average and compare the best fuzzy controller of every epoch 
of the algorithm. Some of the results that were obtained with the ACO algorithm tests 
are shown in table 3. 

Table 3. Results obtained with ACO algorithm tests 
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In the best result given by ACO, the algorithm was executed with very low level of 
ants (10),  10 epochs with a 20% of initial pheromone and a 5% of  evaporation, the 
error reached is very low as the standard deviation is.  

4.3   Comparison between the Evolutionary Methods GA vs. ACO 

In this section will appreciate the differences between the methods by comparing the 
results obtained with the evolutionary algorithms. In the graphics we can appreciate 
how the fuzzy systems had an evolution during the different tests that have been real-
ized. Is also notable how in some cases one method is better than the other and this is 
shown with the error averages in the result tables previously shown. 

Most of the samples were realized with a linear reference, but we also tested with a 
change of reference so we could know the efficiency of the fuzzy controllers, at the 
same time another samples were realized from the beginning with a certain change of 
reference so the fuzzy controller could reach more easily a linear reference without 
any constraint.  

  

Fig. 7. Active rules GA sample Fig. 8. Active rules ACO sample 

We can see in figures 7 and 8 the active rules of the best simulations with each 
method; there’s a difference of 6 rules where GA has more rules than ACO, at a first 
sight we could say ACO is better and it is in some cases, but having more active rules 
could bring a better control in different cases, and we’ll appreciate it later. In figures 
9-10 the surfaces of the both cases are shown, the differences are due to the active 
rules in the fuzzy controllers.  

Once the fuzzy controllers were created the simulations have to be the next step for 
the experiments. The simulations in figures 11-12 represent the fuzzy controllers  
obtained with each method GA and ACO with a linear reference both samples were 
tested with a 0.25 of linear reference and as we can see the ACO reach perfectly the 
reference but GA is not.  
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Modifying the reference the following simulations have a saw tooth reference  
varying the amplitudes and frequencies the best results were obtained at a 50% of 
amplitude and a frequency of 10% (Figures 13 and 14). 

In the saw tooth case we can see that the GA obtained a better fuzzy controller, and 
ACO is good but in some units of time the control is not as perfect as the GA is; this 
is result of the difference between the fuzzy rules that each evolutionary method has 
activated in each sample.  

 

 

Fig. 9. FIS’ Surface, GA sample                   Fig. 10. FIS surface, ACO sample 

 
Fig. 11. Best GA simulation with 27 fuzzy rules, 30 individuals, 50 generations 

 

 

Fig. 12. Best ACO simulation with 21 fuzzy rules, 10 ants, 10 epochs 

 

 

Fig. 13. Best GA simulation, saw tooth reference, 0.5 amplitude and a frequency of 0.1 
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Fig. 14. Best ACO simulation, saw tooth reference, 0.5 amplitude and 0.1 frequency 

 

Fig. 15. GA with sinusoidal reference, 0.5 amplitude, 0.5 frequency 

In figures 15-16 the simulations with a sinusoidal reference are shown, the ampli-
tude is maintained in a 50% but frequency is increased at a 50% comparing with the 
saw tooth reference. The best result with sinusoidal reference was obtained in the GA 
test with 30 individuals, 50 generations as maximum, 1% of mutation and 20% for the 
crossover. The ACO best fuzzy controller is outrageously bad at this case of change 
of reference, as we can see. The controller tries to follow the reference and we could 
say it has sequence but control it’s never reached. 

 

Fig. 16. ACO with sinusoidal reference, 0.5 amplitude, 0.5 frequency 

 

Fig. 17. GA with square reference, 0.5 amplitude, frequency 0.5 
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Fig. 18. ACO with square reference, 0.5 amplitude, frequency 0.5 

In a square simulation the reference at a 50% of amplitude and 50% of frequency, 
the results obtained (figure 17 and 18) were not satisfactory at any case, the FIS could 
not have a perfect control at this reference change and it was because of the active 
rules at each sample; the range of the fuzzy rules were not able to reach a change of a 
square reference. 

5   Conclusions 

Natural intelligence is the product of millions of years of biological evolution. Simu-
lation of complex biological evolutionary processes may lead us to discover how  
evolution propels living systems toward higher-level intelligence. Greater attention it 
thus being paid to evolutionary computing techniques such genetic algorithms and ant 
colony systems. 

The use of fuzzy controllers is very helpful when control issues we’re talking 
about; fuzzy controller works to obtain a better performance reaching a goal faster 
than a non fuzzy controller. In this project the control problem that solved is the Ball 
and Beam model; where we tried to balance a ball on a beam, in every circumstance a 
good controller could maintain the system working perfectly. It’s very known that 
finding good parameters for a controller to its well functioning is very hard and it 
means lost of time. Evolutionary methods that are used to optimize in this project are 
Genetic Algorithms (GA) and Ant Colony Optimization (ACO). GA is a paradigm 
that has proved to be a unique approach for solving various mathematical problems 
which other gradient type of mathematical optimizers have failed to reach; ACO has 
been applied successfully to a large number of difficult combinatorial optimization 
problems. 

For the case of optimizing the ball and beam system, is fine to say that both meth-
ods performed with good quality; when parameters are adequate and the reference  
is set, the controller may reach the goal but when is also used to follow another refer-
ence things may not be clear, so the controller could lose sequence most of the time 
depending on its efficiency. Both methods have advantages and disadvantages;  
during this project the performance of these methods were kind of similar but once 
you have experimented individually is notable how a method could be more tolerable 
at changes, the lapses of time, the error averages at the simulation area. ACO have 
more possibilities at this time in my opinion, the experience of this project aloud me 
to say that for the Ball and Beam system ACO is more quick than GA, ACO reached 
a lower error than GA did, it also optimize more the base of knowledge with good  
results than GA did, but is also important to mention that sometimes reducing things 
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reduces are possibilities, so in this case a reduce number of fuzzy rules is not always 
the best result you can obtain. ACO is better than GA, even when GA obtained good 
results in this project.  
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Abstract. We describe in this paper a comparative study of Fuzzy Inference Systems as  
methods of integration in modular neural networks (MNN’s) for multimodal biometry. These 
methods of integration are based on type-1 and type-2 fuzzy logic. Also, the fuzzy systems are 
optimized with simple genetic algorithms. First, we considered the use of type-1 fuzzy logic 
and later the approach with type-2 fuzzy logic. The fuzzy systems were developed using ge-
netic algorithms to handle fuzzy inference systems with different membership functions, like 
the triangular, trapezoidal and Gaussian; since these algorithms can generate the fuzzy systems 
automatically. Then the response integration of the modular neural network was tested with the 
optimized fuzzy integration systems. The comparative study of type-1 and type-2 fuzzy infer-
ence systems was made to observe the behavior of the two different integration methods f 
modular neural networks for multimodal biometry.  

1   Introduction 

Biometry, is a discipline that studies the recognition of people through its physiologi-
cal characteristics (fingerprint, face, retina…) or of behavior (voice, signature,…). 
The interest of the society to use biometric patterns to identify or verify the authentic-
ity of the people has had a drastic increase, that it is reflected in the appearance of  
diverse practical applications like identity Passports that include biometrics character-
istics. Biometry provides a true identification of people, since this technology is based 
on the recognition of unique corporal characteristics, reason why recognizes the peo-
ple based on who they are. Only biometric identification can provide a really efficient 
and precise control of the people, since it is possible to know with a high degree of 
certainty that the person that went through this form of recognition is the recognized 
person. As it is habitual in many scientific disciplines, before making a search of the 
solutions to the problem, it is reasonable and preferable to stop a moment and to make 
an analysis of the problem. The result of this analysis will be a vision of the different 
parts that form the whole, having transformed the initial task, probably complex, in a 
set of more elementary subtasks, susceptible to be approached in a simpler and effi-
cient way. Once this is done, the problem is transformed into the opposite: to integrate 
the obtained partial results of each of the subtasks and of generating the solution to 
the complete problem [27]. 
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The primary goal of this research was to implement type-1 fuzzy logic and type-2 
fuzzy logic as methods to integrate the partial results of each of the modules by which 
the modular neural network was formed and to optimize the type-1 and type-2 fuzzy 
systems with genetic algorithms; this with the purpose of obtaining the optimal  
results in the recognition, and making a comparison between the different fuzzy logic  
methods.  

2   Modular Neural Networks 

As it is common in many scientific disciplines, before making the search of the solu-
tions to the problem, it is reasonable and preferable to stop a moment and make an 
analysis of the problem. The result of this analysis will be a vision of the different 
parts that form the whole, having transformed the initial task, probably complex, in a 
set of more elementary subtask, able to be approached in a simpler and efficient way. 
Once this is done, the problem is transformed into the opposite: to integrate the ob-
tained partial results of each of the subtasks and of generating the solution to the 
complete problem. The first step is to divide the task (problem) in to subtasks, and 
later to create and to organize in a suitably way the constructed subsystems to allow 
the communication among them and thus to integrate them as a whole, which pro-
vides the desired solution. The idea of modularity, as it was proposed in the origins of 
the connectionist computation, has been inspired in the biological models. A review 
of the physiological structures of the nervous system in vertebrate animals reveals the 
existence of a representation and hierarchical modular processing of the information 
[22]. Considering as a basis the biological indications, one of the first modular ap-
proaches to complex systems was proposed by Jacobs and Jordan that can use two 
types of different methods of learning: 

Supervised Learning: During which an external teacher provides for each input the 
correct output. However, this teacher does not specify which module is the one that 
must learn the corresponding pair (input, desired output). 

Unsupervised Learning: That basically consists of a competitive learning, in that dif-
ferent modules do competitive learning whit the presented example [34]. 

In general, a computational system can be considered as a modular structure if it is 
possible to divide it in two or more modules, in which each individual module can 
evaluate different or the same inputs without communicating with the others. The 
outputs of the modules are aggregated by an integrating unit, which decides:  

- How the modules are combined to form the final output of the system. 
- How each module must learn the patterns. 

It is important to mention that the use of the MNN to solve a problem in particular, 
requires ample knowledge of the problem to be able to make the subdivision of the 
problem, and to build the suitable modular architecture to solve it, in such a way that 
it is possible to train each of the modules independently, and later to integrate the 
knowledge learned by each module, in the global architecture [8]. 
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2.1   Methods of Integration 

According to the form in which the division of the tasks takes place, the integration 
method allows to integrate or to combine the results given by each of the constructed 
modules. Some of the commonly used methods of integration are: Average, Gating 
Network, Fuzzy Inference Systems, Mechanism of voting using softmax function, the 
winner takes all, among others [8].In this paper we will describe methods of integra-
tion based on Fuzzy Inference Systems, since it is one that is of interest to us in this 
research work. We show next the block diagram of the modular neural network (see 
Figure 1). 

Module N

Module 1

Module 2
Method of
Integration Output

X1

X2

Xn

 

Fig. 1. Blocks diagram of a modular neural network 

3   Type-1 Fuzzy Logic 

Fuzzy Logic was created in 1965 with the publication of “Fuzzy Sets” [32] by Lofti 
A. Zadeh in the University of California in Berkeley for the Information an Control 
magazine, which was based on the work of J. Lukasiewicz [6] on multiple-valued 
logic. Once the foundations of fuzzy logic becomed firm, their applications have 
grown in number and diversity, and its influence within basic sciences, has become 
more visible and more substantial [33]. Fuzzy Logic creates mathematical approaches 
in the solution of certain kinds of problems. Fuzzy Logic produces exact results from 
vague data, thus it is particularly useful in electronic or computational applications.  

Type-1 Fuzzy Inference System 
The basic structure of fuzzy inference system consists of three conceptual components: 
a set of rules, which contains a selection of fuzzy rules; a data base (or dictionary), that 
defines the used membership functions in the rules; and a reasoning mechanism, that 
makes the inference procedure (usually fuzzy reasoning). The basic fuzzy inference 
system can take fuzzy or traditional inputs, but the outputs that are produced are al-
ways fuzzy sets. Some times it is necessary to have a traditional output, especially 
when a fuzzy inference system is used as a controller. Then, a “defuzzification” 
method is needed to extract the numerical value of output (see Figure 2). 

A Fuzzy Inference System is a non linear mapping of its input space to its output 
space. This mapping is obtained by means of a set of fuzzy if-then rules, each of 
which describes the local behavior of the mapping. The basic structure of a type-1 
fuzzy system is shown in Figure 3. 
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Fig. 2. Fuzzy Inference System 

 

Fig. 3. Basic structure of Type-1Fuzzy Inference System 

In this paper we study the integration method of modular neural networks. We use 
type-1 and type-2 fuzzy inference systems as integration methods and genetic algo-
rithms are used to optimize the structure of the fuzzy system. 

4   Type-2 Fuzzy Logic 

The original theory of Fuzzy Logic (FL), was proposed by Lotfi Zadeh, more than 40 
years ago, and this theory fully handle all the uncertainty present in real-world prob-
lems. “To handle,” it is understood as “to model and to reduce to the minimum the  
effect of”. That type-1 fuzzy logic cannot completely do this, sounds paradoxical be-
cause this has the uncertainty connotation. Type-2 Fuzzy Logic can handle uncer-
tainty because it can model and reduce it to the minimum their effects. Also, if all the 
uncertainties disappear, type-2 fuzzy logic reduces to type-1 fuzzy logic, in the same 
way that, if the randomness disappears, the probability is reduced to the determinism 
[14]. Fuzzy sets and fuzzy logic are the foundation of fuzzy systems, and have been 
developed looking to model the form as the brain manipulates inexact information. 
Type-2 fuzzy sets are used to model uncertainty and imprecision; originally they were 
proposed by Zadeh in 1975 and they are essentially “fuzzy-fuzzy” sets in which the 
membership degrees are type-1 fuzzy sets. 
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Type-2 Fuzzy Inference System 
A fuzzy Inference System is a system based on rules that uses fuzzy logic, instead  
of Boolean logic, to analyze data [5,10]. Its basic structure includes four main  
components: 

• Fuzzifier. It translates inputs (real values) to fuzzy values. 
• Inference System. Type-1 or type-2 applies a mechanism of fuzzy reasoning 

to obtain a fuzzy output. 
• Defuzzifier/Type Reducer. The defuzzifier it translates an output to precise 

values; the type reducer transforms a fuzzy set of type-2 to type-1; and 
• Knowledge Base. It contains a set of fuzzy rules, known as base rules, and a 

set of membership functions known as the data base. 

    In Figure 4 we can appreciate the basic structure of a type-2 Fuzzy Inference 
System. 

 

 
Fig. 4. Basic structure of Type-2 Fuzzy Inference System 

Uncertainty is “the imperfection in the knowledge on the state or the processes of 
the nature”. The statistical uncertainty is “the randomness or the originating error of 
several sources like described when using statistical methodology” [5]. 

5   Genetic Algorithms 

The Genetic Algorithm (GA), is a search technique based on Darwin’s theory of evo-
lution, and has received tremendous popularity anywhere in the world during the past 
few years. They are adaptive methods that can be used to solve search and optimiza-
tion problems. They are based on the genetic process of the living organisms. 
Throughout the generations, the populations evolve in the same form as in nature, 
with the principles of natural selection and the survival of fittest, postulated by  
Darwin. Simulating evolution, GA’s are able to create solutions to problems of the 
real world. The evolution of these solutions towards optimal values of the problem 
depends largely on a suitable codification of the solutions [2]. The use of new  
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Fig. 5. Structure of a generational GA 

representations and the construction of new operators to manipulate information have 
caused that the present conception of a GA is quite different and more general than 
the original idea. The basic structure of a GA is shown in Figure 5 [1]. 

6   Modular Architecture Description 

In this paper we are making a comparison between the integration methods of a 
modular neural network; this comparison is done with the integration method as fuzzy 
systems, which used techniques of type-1 Fuzzy logic and type-2 Fuzzy Logic. These 
methods of integration were implemented in modular neural networks for biometry. 
In others words, the MNN´s were trained to make the recognition of persons using 
their face, fingerprint and voice. These features of persons are the 3 more important 
biometric measures in the field of pattern recognition, at the moment. The general ar-
chitecture of the modular system is show in Figure 6. 

Now we describe in more detail the pattern recognition system (Figure 7). 
 

   Input Output

Module 1

Module 2

Module 3

 Type-1 Fuzzy Inference 
System

Type-2 Fuzzy Inference 
System

Method of Inte-
gration

 

Fig. 6. General Architecture of the Modular System 
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A) B C) D) E F)

Optimization of the 
FIS by means of Ge-

netic Algorithms 

Type-1 Fuzzy Inference 
System

Method of 
Integrator

Type-2 Fuzzy Inference 
System

Output
Winner 

Act.

FACE 

FINGERPRINT 

Module 

Module 

Module 

VOICE 

G)

 

Fig. 7. General Scheme of the pattern recognition system 

6.1   Description of the Problem and the Solution 

In this section we describe in detail the different parts of the recognition system. 
 

A) Input Data 
We describe at this point the input data used in the modular architecture for pattern 
recognition: 

Face: Images of the faces of 30 different people were used to make the training of the 
MNN without noise, we also use 30 images of the face of these same people but with 
different gestures, to use them in the training with noise. The used images were pre-
processed with a wavelet function to obtain better results in the training, as given in 
[3]. These images were obtained from a group of students of Tijuana Institute of 
Technology, combined with some others of the ORL data base. The size of these im-
ages is of 268 x 338 pixels with extension .bmp. These are shown in Figure 8. 

Fingerprint: Images of the fingerprints of 30 different people were used to make the 
training without noise. Then it was added random noise to the fingerprint use them in 
the training with noise. The used images were preprocessed with a wavelet function to 
obtain better results in the training, as given in [3].  These images were obtained from 
a group of students of Tijuana Institute of Technology, combined with some others of 
the ORL data base. The size of these images is of 268 x 338 pixels with extension 
.bmp. These are shown in Figure 9. 
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Voice: For the training of module of voice was used word spoken by different persons 
with samples of 30 persons as with the face and fingerprint. We applied the Mel cep-
strals coefficients [23], as preprocessing for the training in the MNN.  

 

The used three Spanish words as follows: 

- Accesar  
- Hello  
- Presentation  

Where some people will say the words in Spanish “Accesar”, others “Hello”, and 
some other “Presentation”.  

Fig. 8. Data base used for the training of faces 

Fig. 9. Data base used for the training of fingerprints 
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We also have to mention that random noise was added to the voice signals to train 
the MNN with noisy signals. 

 

B) Modules of the MNN for the Training Phase 
In the modular neural network for the training phase we are considering three mod-
ules, one for the face, another one for the fingerprint and finally another for the voice, 
each of the three modules has three submodules. In others words, the architecture of 
the modules could be visualized as in Figure 10. 

It is possible to mention that for each trained module and each submodule, differ-
ent architectures were used, that is to say, different number of neurons, layers, etc., 
and different training methods. 

C) Output of the Modular Neural Network (MNN) 
The output of the MNN is a vector that is formed by 30 activations (in this case be-
cause the network has been trained with 30 different people). 

D) Competition between Activations 
The competition between the 30 winning activations is performed, and the final result 
from the MNN is obtained; where this is an activation by module, these activations 
were used as input to the fuzzy system, this data represented then the higher activation 
from a each module. In others words, three results were obtained; one for the module 
of the face, another one for module of the fingerpri0nt and another one for the module 
of the voice. 

 

Module 1

Submodule 1

Submodule 2

Submodule3

Module 2

Submodule 4

Submodule 5

Submodule 6

Module 3

Submodule 7

Submodule 8

Submodule 9

Face

Fingerprint

Voice

 
Fig. 10. Architecture of the modular neural network for the training 
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E) Integration of the MNN (with Type-1 and Type-2 Fuzzy Systems) 
In this part, once the winning activations are obtained for each module, they are used 
as input to the fuzzy system, in which these activations are evaluated and depending 
on the characteristics of the fuzzy system, a result of final output is obtained, which 
will give us, the winning module. 

 

F) Final Output (Winning Activation) 
The result of the fuzzy system will give us to which module belongs, once this data is 
obtained we will know that a person has been recognized. 

 

G) Optimization of the Fuzzy Systems using Genetic Algorithms 
The optimization of the fuzzy systems consists of, as the name indicates it, optimizing 
the membership functions of the fuzzy systems, for type-1 and type-2 fuzzy logic, 
with genetic algorithms. 

7   Simulation Results 

The simulation results were obtained after several steps were carried out. First, a set 
of trainings with the MNN were performed. Second, several fuzzy systems (type-1 
and type-2) were developed by using a genetic algorithm. The data used for training 
was obtained from previous research work and was also used to test the fuzzy integra-
tion modules. 

Once we collected the data, the training phase of MNN with different architectures, 
was initiated, this with the purpose of being able to make comparisons between the 
different tests. We choose 5 of them (see figure 7) to test of integration module with 
the type-1 and type-2 fuzzy systems optimized with GA' s and to obtain a comparison 
of the results. 

After we obtained the necessary trainings of the MNN´s, the genetic algorithm was 
used to obtain the type-1 fuzzy inference system with triangular membership func-
tions and to use it then as integration method, therefore it was optimized with the  
genetic algorithm that allowed to obtain the type-1 fuzzy inference system with trape-
zoidal membership functions, and then with the genetic algorithm to obtain the type-1 
fuzzy inference system with Gaussian membership functions and to test the different 
methods to integrate the results given by the MNN’s. We show in table 1 the training 
of the modular neural networks for response integration. 

7.1   Type-1 Fuzzy Inference System 

As was mentioned previously several type-1 fuzzy inference systems were build, us-
ing Triangular, Trapezoidal and Gaussian membership functions; next we show the 
obtained fuzzy systems optimized by the GA. It is worth mentioning that not all the 
systems that were obtained are shown here because they were too many; therefore we 
show only one of each membership function. 

7.1.1   Type-1 Fuzzy System 
The type-1 fuzzy inference system shown in figure 11 have three inputs (activation of 
the face, activation of the fingerprint and activation of the voice), which are composed 
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Table 1. Training of the modular neural network 

 

by three membership functions each; and an output that defines the winning activation 
after going through the Mamdani inference machine. 

As it was already mentioned different types of membership functions were used, 
therefore it is possible to observe next the different optimized systems created by the 
GA. It can be noticed that different values of the membership functions are obtained 
for each case; and this is true as well for the inputs as for the outputs of each fuzzy 
system. 

7.1.1.1   Triangular Type-1 Fuzzy System. In figures 12, 13, 14 and 15, it is possible 
to appreciate the parameters values of the triangular membership function for each 
variable, as well as for the inputs and the output, for the type-1 fuzzy system. In this 
case the GA was used with a population of 55 individuals, a maximum of 100 genera-
tions, mutation of 0.001, one point crossover of 0.6; which lasted 2 minutes and it was 
stopped at generation 12, and the error was 0.000017082. 
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Fig. 11. Graphical representation of the Type-1 Fuzzy Inference System with its inputs and 
outputs 

  

Fig. 12. First input variable (higher activa-
tion of the face) 

Fig. 13. Second input variable (higher activa-
tion of the fingerprint)  

  

Fig. 14. Third input variable (higher activa-
tion of the voice) 

Fig. 15. Variable of output (winner activation ) 
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7.1.1.2   Trapezoidal Type-1 Fuzzy System. In figures 16, 17, 18 and 19, it is possible 
to appreciate the parameters values of the trapezoidal membership function for each 
variable, as well as for the inputs and the output, for the type-1 fuzzy system. In this 
case the GA was used with a population of 85 individuals, a maximum of 100 genera-
tions, mutation of 0.0001, one point crossover of 0.25; which lasted of 12 minutes and 
it was stopped at generation 36, and the obtained error was 0.000046453. 

 

  
Fig. 16. First input variable (higher activation 
of the face) 

Fig. 17. Second input variable (higher activa-
tion of the fingerprint) 

 

  
Fig. 18. Third input variable (higher activa-
tion of the voice)  

Fig. 19. Variable of output (winner activation ) 

7.1.1.3   Gaussian Type-1 Fuzzy System. In figures 20, 21, 22 and 23, it is possible to ap-
preciate the parameters values of the gaussian membership function for each variable, as well 
as for the inputs and the output, for the type-1 fuzzy system. In this case the GA was used with 
a population of 50 individuals, a maximum of 100 generations, mutation of 0.001, multipoint 
crossover of 0.65; which lasted of 4 minutes and it was stopped at generation 21, and the ob-
tained error was 0.00011068. 

We have to mention that the previously shown fuzzy systems are the ones with the 
smallest errors. In the following tables (2, 3 and 4) we show all the obtained results 
with the GA. 
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Fig. 20. First input variable (higher activation 
of the face) 

Fig. 21. Second input variable (higher activa-
tion of the fingerprint) 

 
 

  
Fig. 22. Third input variable (higher activa-
tion of the voice)  

Fig. 23. Variable of output (winner activation ) 

Table 2. Results of the GA applied to Type-1 Fuzzy Inference Systems with Triangular mem-
bership functions 
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Table 3. Results of the GA applied to Type-1 Fuzzy Inference System with Trapezoidal mem-
bership functions 

 

Table 4. Results of the GA applied to Type-1 Fuzzy Inference System with Gaussian member-
ship functions 
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7.2   Type-2 Fuzzy Inference System 

As was mentioned previously several type-2 fuzzy inference systems were build, us-
ing Triangular, Trapezoidal and Gaussian membership functions; next we show the 
obtained fuzzy systems optimized by the GA. It is worth mentioning that not all the 
systems that were obtained are shown here because they were too many; therefore we 
show only one of each membership function. 

7.2.1   Type-2 Fuzzy System 
The type-2 fuzzy inference system shown in figure 24 have three inputs (activation of 
the face, activation of the fingerprint and activation of the voice), which are composed 
by three membership functions each; and an output that defines the winning activation 
after going through the Mamdani inference machine. 

As it was already mentioned different types of membership functions were used, 
therefore it is possible to observe next the different optimized systems created by the 
GA. It can be noticed that different values of the membership functions are obtained for 
each type; and this is true well as for the inputs as for the outputs of each fuzzy system. 

7.2.1.1   Triangular Type-2 Fuzzy System. In the previous figures (25, 26, 27 and 28), it 
is possible to appreciate the parameters values of the triangular membership function for 
each variable, as well as for the inputs and the output, for the type-2 fuzzy system. In 
this case the GA was used with a population of 40 individuals, a maximum of 100 
generations, mutation of 0.001, one point crossover of 0.7; which lasted of 19 minutes 
and it was stopped at generation 51, and the obtained error was 0.000011385. 

 

 

Fig. 24. Graphical representation of the Type-2 Fuzzy Inference System with its inputs and 
outputs 
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Fig. 25. First input variable (higher activation 
of the face) 

Fig. 26. Second input variable (higher activa-
tion of the fingerprint) 

 

  

Fig. 27. Third input variable (higher activa-
tion of the voice) 

Fig. 28. Variable of output (winner activation) 

 
 

  

Fig. 29. First input variable (higher activation 
of the face) 

Fig. 30. Second input variable (higher activa-
tion of the fingerprint) 

7.2.1.2   Trapezoidal Type-2 Fuzzy System. In the figures (29, 30, 31 and 32), it is 
possible to appreciate the parameters values of the trapezoidal membership function 
for each variable, as well as for the inputs and the output, for the type-2 fuzzy system. 
In this case the GA was used with a population of 80 individuals, a maximum of 100 
generations, mutation of 0.0001, multipoint crossover of 0.3; which lasted of 13 min-
utes and it was stopped at generation 10, and the obtained error was 0.0247836. 
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Fig. 31. Third input variable (higher activa-
tion of the voice) 

Fig. 32. Variable of output (winner activation) 

 
7.2.1.3   Gaussian Type-2 Fuzzy System. In the figures (33, 34, 35 and 36), it is possi-
ble to appreciate the parameters values of the gaussian membership function for each 
variable, as well as for the inputs and the output, for the type-2 fuzzy system. In this 
case the GA was used with a population of 55 individuals, a maximum of 100 genera-
tions, mutation of 0.001, one point crossover of 0.6; which lasted of 50 seconds and it 
was stopped at generation 4, and the obtained error was 0.0000103302. 

 

  

Fig. 33. First input variable (higher activation 
of the face) 

Fig. 34. Second input variable (higher activa-
tion of the fingerprint) 

  

Fig. 35. Third input variable (higher activa-
tion of the voice) 

Fig. 36. Variable of output (winner activation) 
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We have to mention that the previously shown fuzzy systems are the ones with the 
smallest errors. In the following tables (5, 6 and 7) we show all the obtained results 
with the GA. 

Table 5. Results of the GA applied to Type-2 Fuzzy Inference System with Triangular mem-
bership functions 

 

Table 6. Results of the GA applied to Type-2 Fuzzy Inference System with Trapezoidal mem-
bership functions 
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Table 7. Results of the GA applied to Type-2 Fuzzy Inference System with Gaussians member-
ship functions 

 

7.3   Results of the Type-1 Fuzzy Logic Integration 

We show in table 8 and 9 the results of type-1 Fuzzy Logic Integration. 

Table 8. Results of the response integration of the MNN’s with Type-1 FIS for the best  
training 

 
 

Table 9. Results of the response integration of the MNN’s with Type-1 FIS for the worse  
training 
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7.4   Results of the Type-2 Fuzzy Logic Integration 

We show in table 10 and 11 the results of type-2 Fuzzy Logic Integration. 

Table 10. Results of the response integration of the MNN’s with Type-2 FIS for the best training 

 

Table 11. Results of the response integration of the MNN’s with Type-2 FIS for the worse 
training 

 

 
In the following graphic (see Figure 37)  can appreciate the comparison of the per-

centage obtained for the best and worse training, the trainings show in the table 1. 
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Fig. 37. Comparison of Type-1 and Type-2 Fuzzy Integration in Best and Worse Trainings of 
MNN 
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Table 12. Average Errors for the Fuzzy Inference Systems with Triangular membership functions 

Type-1 Type-2  

Average Error Average Error 

0.389196189 0.269979242 

Table 13. Average Errors for the Fuzzy Inference Systems with Trapezoidal membership  
functions 

Type-1 Type-2  

Average Error Average Error 

0.298306163 0.688638346 

Table 14. Average Errors for the Fuzzy Inference Systems with Gaussian membership  
functions 

Type-1 Type-2  

Average Error Average Error 

0.041501285 0.002356073 
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Fig. 38. Comparison of Integration with type-1 and type-2 Fuzzy Systems 



 Type-1 and Type-2 Fuzzy Inference Systems as Integration Methods 111 

Table 15. Comparison of Integration with type-1 and type-2 Fuzzy Systems 

Percentages of identification 
obtained by test Type-1 and Type-2  

Fuzzy Systems 

# of 
Training

Architecture of the MNN (By layer neurons 
for each submodule) 

Average%
for Type-1 

Average % 
for Type-2 

1
ModuleFace:  65,50; 75,73; 80,85

ModuleFingerprint: 110,90; 115,95; 120,100 
ModuleVoice: 30,35; 35,43; 40,32 

100% 100%

2
ModuleFace:  112,98; 112,98; 112,98

ModuleFingerprint: 121,93; 121,93; 121,93 
ModuleVoice: 52,36; 52,36; 52,36 

100% 100%

3
ModuleFace:  96,78; 96,78; 96,78

ModuleFingerprint: 113,95; 113,95; 113,95 
ModuleVoice: 56,44; 56,44; 56,44 

96.67% 100%

4
ModuleFace:  102,88; 102,88; 102,88

ModuleFingerprint: 111,83; 111,83; 111,83 
ModuleVoice: 62,46; 62,46; 62,46 

100% 100%

5
ModuleFace:  99,87; 99,87; 99,87

ModuleFingerprint: 118,96; 118,96; 118,96 
ModuleVoice: 78,53; 78,53; 78,53 

100% 100%

6
ModuleFace:  85,70; 85,70; 85,70

ModuleFingerprint: 90,80; 90,80; 90,80 
ModuleVoice: 60,70; 60,70; 60,70 

100% 100%

7
ModuleFace:  60,40; 95,80; 90,75 

ModuleFingerprint: 150,100; 150,100; 150,100 
ModuleVoice: 50,25; 50,25; 50,25 

90% 96.67%

8
ModuleFace:  64,32; 64,32; 64,32

ModuleFingerprint: 120,60; 120,60; 120,60 
ModuleVoice: 80,40; 80,40; 80,40 

10% 96.67%

9
ModuleFace:  100,80; 100,80; 100,80

ModuleFingerprint: 100,100; 100,100; 100,100 
ModuleVoice: 65, 50; 65, 50;  65, 50 

96.67% 100%

10
ModuleFace:  50,70; 50,70; 50,70

ModuleFingerprint: 90,70; 90,70; 90,70 
ModuleVoice: 75,35; 75,35; 75,35 

100% 100%

11
ModuleFace:  100,90; 100,90; 100,90

ModuleFingerprint: 50,25; 50,25; 50,25 
ModuleVoice: 60,60; 60,60;  60,60 

26.67% 73.33%

12
ModuleFace:  110,80; 110,80; 110,80

ModuleFingerprint: 40,60; 40,60; 40,60 
ModuleVoice: 80,70; 80,70; 80,70 

16.67% 86.67%

13
ModuleFace:  120,85; 120,85; 120,85

ModuleFingerprint: 20,30;  20,30; 20,30 
ModuleVoice: 60,50; 60,50; 60,50 

23.33% 93.33%

14
ModuleFace:  130,90; 130,90; 130,90

ModuleFingerprint: 50,15; 60,20; 65,25 
ModuleVoice: 68,32; 68,33; 68,34 

100% 100%

15
ModuleFace:  125,90; 125,90; 125,90

ModuleFingerprint: 100,150; 100,150; 100,150
ModuleVoice: 70,65; 70,65; 70,65 

63.33% 100%

16
ModuleFace:  120,85; 110,80; 125,90

ModuleFingerprint: 70,40; 60,35; 65,45 
ModuleVoice: 70,30; 65,45; 75,35 

3.33% 43.33%

17
ModuleFace:  135,100; 135,100; 135,100 

ModuleFingerprint: 200,100; 200,100; 200,100 
ModuleVoice: 80,50; 80,50; 80,50 

100% 100%

18
ModuleFace:  150,100; 150,100; 150,100

ModuleFingerprint: 200,150; 200,150; 200,150
ModuleVoice: 80,50; 80,50; 80,50 

100% 100%

19
ModuleFace:  128,72; 128,85; 128,92

ModuleFingerprint: 95,100; 100,85; 90,78 
ModuleVoice: 55,43; 55,43; 55,43 

50% 100%

20
ModuleFace:  165,100; 165,100; 165,100
ModuleFingerprint: 10,15; 30,50; 50,85 

ModuleVoice: 75,30; 75,30; 75,30 
93.33% 100%
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7.5   Comparison Errors of GA between Type-1 and Type-2 Fuzzy Inference 
Systems  

We show in tables 12, 13 and 14the comparison of errors of GA between the type-1 
and type-2 Fuzzy Inference Systems for Triangular, Trapezoidal and Gaussian mem-
bership functions. 

7.6   Comparative Integration with Type-1 and Type-2 Fuzzy Inference Systems 

After the modular neural network trainings were obtained, we make the integration of 
the modules with the type-1 and type-2 optimized fuzzy systems. Next we show  
type-1 and type-2 graphics with the 20 modular neural network new trainings and the 
percentage of the identification (See Figure 38 and Table 15). We can appreciate that 
type-2 is better. 

7.7   Average Percentages for Pattern Recognition  

Table 16 shows the average percentages integration with type-1 and type-2 Fuzzy  
Inference Systems that we tested on the last experiment.  

Table 16. Comparative table of average percentage integration with type-1 and type-2 fuzzy  
inference systems 

Type-1 Type-2
Average percentage 

of identification 
Average percentage 

of identification

73.50 % 94.50 %
 

8   Conclusions 

In this paper a study of fuzzy integration methods for MNN’s is presented. Type-1 
and type-2 fuzzy system are considered as integration methods for a MNN’s in bi-
ometry applications. The fuzzy systems were optimized using GA to be able to make 
an accurate comparison of type-1 and type-2 fuzzy logic as methods of integration. A 
comparison with simulation results for pattern recognition was made. Type-2 Fuzzy 
Logic is shown to be a superior method for integration of responses in MNN’s. 

References 

[1] Algoritmos genéticos en la construcción de funciones de membresía difsa (February 
2007), 
http://wotan.liu.edu/docis/dbl/iariia/2003_18_25_AGELCD.htm 

[2] Algoritmos Genéticos, http://eddyalfaro.galeon.com/geneticos.html 
[3] Alvarado-Verdugo, J.M.: Reconocimiento de la persona por medio de su rostro y huella 

utilizando redes neuronales modulares y la transformada wavelet, Instituto Tecnológico 
de Tijuana (2006) 



 Type-1 and Type-2 Fuzzy Inference Systems as Integration Methods 113 

[4] Bronstein, M.: Biolynx, Biometría, National Geographic Instituto de Inves-tigación Tec-
nológica de Georgia (April 2007), 

 http://www.tecnociencia.es/monografico/biometria/biometria. 
 htm 

[5] Castro, J.R.: Tutorial Type-2 Fuzzy Logic: theory and applications, Univer-sidad 
Autónoma de Baja California-Instituto Tecnológico de Tijuana (October 9, 2006), 

  http://www.hafsamx.org/cis-chmexico/seminar06/tutorial.pdf 
[6] Chen, G., Phan, T.T.: Introduction to Fuzzy Sets, Fuzzy Logic and Fuzzy Control Sys-

tems. CRC Press, EEUU (2000) 
[7] http://sci2s.ugr.es/publications/ficheros/estylf-2004-1-8.pdf 

(February 2007) 
[8] INSYS, Gpo.: Soluciones Biométricas, Torreón Coah. MEXICO(February 2007), 

  http://www.insys.com.mx/biometria/biometria.htm 
[9] Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing, A Computa-

tional Approach to Learning and Machine Intelligence. Prentice Hall, Englewood Cliffs 
(1997) 

[10] Karnik, N., Mendel, J.M.: Operations on type-2 fuzzy sets. In: Signal and Image Process-
ing Institute, Department of Electrical Engineering-Systems, University of Southern Cali-
fornia, Los Angeles, CA, USA (May 11, 2000) 

[11] Karnik, N., Mendel, J.M., Liang, Q.: Type-2 Fuzzy Logic Systems. IEEE Transactions on 
Fuzzy Systems 7(6) (December 1999) 

[12] Man, K.F., Tang, K.S., Kwong, S.: Genetic Algorithms, Concepts and Designs. Springer, 
Heidelberg (1999) 

[13] Mendel, J.M.: UNCERTAIN Rule-Based Fuzzy Logic Systems. In: Introduction and New 
Directions. Prentice Hall, Englewood Cliffs (2001) 

[14] Mendel, J.M.: Why We Need Type-2 Fuzzy Logic Systems? Article is provided courtesy 
of Prentice Hall, By Jerry Mendel (May 11, 2001), 

  http://www.informit.com/articles/article.asp?p=21312&rl=1 
[15] Mendel, J.M.: Uncertainty: General Discussions, Article is provided courtesy of Prentice 

Hall, By Jerry Mendel (May 11, 2001), 
  http://www.informit.com/articles/article.asp?p=21313 

[16] Mendel, J.M., Bob-John, R.I.: Type-2 Fuzzy Sets Made Simple. IEEE Transactions on 
Fuzzy Systems 10(2), 117 (2002) 

[17] Melin, P., Castillo, O., Gómez, E., Kacprzyk, J., Pedrycz, W.: Analysis and Design of In-
telligent Systems Using Soft Computing Techniques. Advances in Soft Computing, 
vol. 41. Springer, Heidelberg (2007) 

[18] Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition Using Soft 
Computing. In: An Evolutionary Approach for Neural Networks and Fuzzy Systems. 
Studies in Fuzziness and Soft Computing, (Hardcover - April 29) (2005) 

[19] Melin, P., Castillo, O., Kacprzyk, J., Pedrycz, W.: Hybrid Intelligent Systems. Studies in 
Fuzziness and Soft Computing, (Hardcover - December 20) (2006)  

[20] Melin, P., Castillo, O., Gómez, E., Kacprzyk, J.: Analysis and Design of Intelligent Sys-
tems using Soft Computing Techniques. Advances in Soft Computing, (Hardcover - July 
11) (2007) 

[21] Mendoza, O., Melin, P., Castillo, O., Licea, P.: Type-2 Fuzzy Logic for Improving Train-
ing Data and Response Integration in Modular Neural Networks for Image Recognition. 
In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. 
LNCS (LNAI), vol. 4529, pp. 604–612. Springer, Heidelberg (2007) 



114 D. Hidalgo, O. Castillo, and P. Melin 

[22] Quiliano, I.: Sistemas Modulares, Mezcla de Expertos y Sistemas Híbridos, Spain (February 
2007), http://lisisu02.usal.es/~airene/capit7.pdf 

[23] Ramos-Gaxiola, J.: Redes Neuronales Aplicadas a la Identificación de Locutor Mediante 
Voz Utilizando Extracción de Características, Instituto Tecno-lógico de Tijuana (2006) 

[24] Romero, L.A.: Aplicaciones e Implementaciones de las Redes Neuronales en recono-
cimiento de Patrones (AIRENE) 30/06/99, cyted.html; Spain (March 2007), 

  http://lisisu02.usal.es/~airene/airene.html 
[25] Sigüenza, J., Tapiador, M.: Tecnologías Biométricas Aplicadas a la Seguri-dad (Rama) 

(March 2007), 
  http://www.agapea.com/Tecnologias-biometricas-aplicadas-a-la- 
 seguridad–n214440i.htm 

[26] The 2007 International Joint Conference on Neural Networks. In: IJCNN 2007 Confer-
ence Proceedings. Orlando, Florida, USA, August 12-17, 2007. IEEE Catalog Number: 
07CH37922C; ISBN: 1-4244-1380-X, ISSN: 1098-7576, ©2007 IEEE 

[27] Urías, J.: Desarrollo de un nuevo Método de Integración utilizando Lógica Difusa Tipo-2 
para Sistemas Biométricos, Instituto Tecnológico de Tijuana (2006) 

[28] Urias, J., Melin, P., Castillo, O.: A Method for Response Integration in Modular Neural 
Networks using Interval Type-2 Fuzzy Logic. In: FUZZ-IEEE 2007. FUZZ, vol. 1, pp. 
247–252. IEEE, London (2007) 

[29] Urias, J., Hidalgo, D., Melin, P., Castillo, O.: A Method for Response Integration in 
Modular Neural Networks with Type-2 Fuzzy Logic for Biometric Systems. In: Patricia, 
M., et al. (eds.) Analysis and Design of Intelligent Systems using Soft Computing Tech-
niques. Studies in Fuzziness and Soft Computing, vol. 1, pp. 5–15. Springer, Germany 
(2007) 

[30] Urias, J., Hidalgo, D., Melin, P., Castillo, O.: A New Method for Response Integration in 
Modular Neural Networks Using Type-2 Fuzzy Logic for Biometric Systems. In: Proc. 
IJCNN-IEEE 2007, IEEE, Orlando (2007) 

[31] Zadeh, L.A.: Knowledge representation in Fuzzy Logic. IEEE Transactions on knowl-
edge data engineering 1, 89 (1989) 

[32] Zadeh, L.A.: Fuzzy Sets. Information and Control 8 (1975) 
[33] Zadeh, L.A.: Fuzzy Logic = Computing with Words. IEEE Transactions on Fuzzy  

Systems 4(2), 103 (1996) 
[34] Zadeh, L.A.: Fuzzy Logic. Computer 1(4), 83–93 (1998) 



O. Castillo et al. (Eds.): Soft Computing for Hybrid Intel. Systems, SCI 154, pp. 115–127, 2008. 
springerlink.com                                                           © Springer-Verlag Berlin Heidelberg 2008 

Interval Type-2 Fuzzy Logic for Module Relevance 
Estimation in Sugeno Integration of Modular 
Neural Networks 

Olivia Mendoza1, Patricia Melín2, and Guillermo Licea1 

1 Universidad Autónoma de Baja California, 2 Tijuana Institute of Technology 
  México 
  omendozad@uabc.mx, epmelin@hafsamx.org, glicea@uabc.mx 

Abstract. In this paper we show the performance of an Interval Type-2 Fuzzy Inference  
System as a method to estimate the relevance of each module in a Modular Neural Network for 
images recognition. The aggregation operator used to make the integration of the simulation 
matrices is Sugeno Integral, and the output of the inference system are the fuzzy densities to 
calculate the fuzzy λ measures. Although this integration method was tested for image recogni-
tion, is possible to adapt it for distinct applications, which need information fusion of sources 
with uncertain relevance. 

1   Introduction 

Aggregation has the purpose of making simultaneous use of different pieces of infor-
mation provided by several sources in order to come to a conclusion or a decision.  
The aggregation operators are mathematical objects that have the function of reducing 
a set of numbers into a unique representative number, and any aggregation or fusion 
process done with a computer underlies numerical aggregation [1]. 

Most aggregation operators use some kind of parameterization to express addi-
tional information about the objects that take part in the aggregation process; then the 
parameters are used to represent the background knowledge. Among all the existing 
types of parameters, the fuzzy measures are a rich and important family. They are of 
interest because they are used for aggregation purposes in conjunction with fuzzy in-
tegrals like Choquet and Sugeno Integrals [2]. 

In this paper we describe an image recognition method using Modular Neural Net-
works combined with the Sugeno Integral. The information to be combined is the 
simulation output of the 3 modules trained to recognize a different part of the image 
[3]. The modular architecture consists in dividing each image in 3 parts after the 
edges detection process, and using each part as training data for 3 monolithic neural 
networks [4]. Then the problem becomes how to combine the simulation of the three 
modules in order to recognize the maximum number of images possible. 

We make the final decision using the Sugeno Integral, which is used to combine 
the simulation vectors into only one vector, then at the end of the method the system 
decides on the best choice of recognition in the same manner than made with only one 
monolithic neural network, but with the problem of complexity resolved with  
modularity [5]. 
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Then the problem is to find the ideal input parameters for the Sugeno Integral, 
which means, the values of the fuzzy density for each module, to rank its relevance in 
the decision process. This problem was solved by building a FIS to estimate the fuzzy 
densities using only the simulation vectors as input variables. This step was imple-
mented with two fuzzy logic systems, namely using Type-1 and Interval Type-2 
Fuzzy Logic respectively [6]. 

2   Modular Neural Networks 

In this section the modular neural networks are described. 

2.1   Modular Structure 

The modular structure was designed specifically for a database of images, like the 
Olivetty Research Laboratory database of faces (ORL) [7], but it is not limited to this 
data. To measure the recognition rate in an objective form, we trained the modular 
neural networks with the set of images in a random ordered fashion, this process is 
called a random permutation. 

The design of the Modular Neural Network consists of 3 monolithic feed-forward 
neural networks, each one trained with a supervised method with the first 7 samples 
of the 40 images of the ORL database. 

The edges vector for each image is accumulated into a matrix, as shown in the 
scheme of figure 1. Then the complete matrix of images is divided into 3 parts, each 
module is trained with a corresponding part, with the some rows for overlapping [8][9]. 

The target to the supervised training method consists of one identity matrix with 
dimensions 40x40 for each sample, building one matrix with total dimensions 
(40x40x7), as shown in figure 2 [10]. 

 

Fig. 1. Input: Seven images for each person 

 

Fig. 2. Target: One identity matrix with dimensions 40x40 for each sample 
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Each monolithic neural network has the same structure of figure 3 and was trained 
under the same conditions [11]: 

• Three hidden layers with 200 neurons and tansig transfer functions. 
• The output layer with 40 neurons and purelin transfer functions. 
• The training function is gradient descent with momentum and adaptive learning 

rate back-propagation (traingdx). 

 

Fig. 3. Structure of each monolithic neural network 

2.2   Training of the Modules 

The next code segment was created to train each module, where newff is a Matlab 
Neural Network Toolbox function to create a feed-forward back-propagation network 
with the parameters specified as follows [12]. 

 
layer1=200; layer2=200; layer3=40; 
net=newff(minmax(p),[layer1,layer2,layer3],{'tansig','tansig','log 
sig'},'traingdx'); 
net.trainParam.goal=1e-5; 
net.trainParam.epochs=1000; 

2.3   Modules Simulation 

A program was developed in Matlab that simulates each module with the 400 images 
of the ORL database, building a matrix with the results of the simulation of each 
module, as it is shown in figure 4. These matrices are stored in the file “mod.mat” to 
be analyzed later for the combination of results [13]. 

 

Fig. 4. Scheme of simulation matrices for the three modules 
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In the simulation matrix, columns corresponding to the images in the training data, 
with a value near one, are always selected correctly.  However, some outputs of the 
training data have very low values in all positions, reason why it is very important to 
have a good combination method to recognize more images [13]. 

3   Sugeno Integral for Modules Fusion 

For the recognition of one image we have to divide it in three parts, and then simulate 
each one using the corresponding module. Then for each image for recognition we 
have three simulation vectors. To make the final decision is necessary the fusion of 
the three vectors, using an aggregation operator like the Sugeno Integral. In this  
section we provide some basic concepts about Sugeno Measures and Sugeno Integral. 

3.1   Sugeno λ-Meausures 

The Sugeno measures (λ-measures) are monotonic measures, μ that are characterized 
by the following requirement: For all A, B ∈ P (X), if A ∩ B = Ø, then: 

)()()()()( BABABA μλμμμμ ++=∪  (1) 

Where λ>-1 is a parameter by which different λ-measures are distinguished. Equation 
(1) is usually called λ-rule [14]. 

When X is a finite set and values µ({x}) (called fuzzy densities) are given for all 
x∈X, then the value µ(A) for any A ∈ P (X), can be determined from these values on 
singletons by a repeated application of the λ-rule. This value can be expressed as: 
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Observe that, given values µ({x}) for all x∈X, the values of λ can be determined 
by the requirement that µ({X})=1. Applying this requirement to the equation (2) re-
sults in the equation (3): 
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for λ. This equation determines the parameter uniquely under the conditions stated in 
the following theorem [14]: 

 
Theorem 1. Let µ({x}) <1 for all x∈X and let µ({x}) >0 for at least two elements on 
X. Then equation (3) determines the parameter λ uniquely as follows: 

∑
∈

<
Xx

x 1})({μ
 

If the above expression is valid, then λ is equal to the unique root of the equation in 
the interval ),0( ∞ , which means that µ qualifies as a lower probability, λ>0. 
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∑
∈
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If the above expression is valid, then λ=0, which is the only root of the equation, 
which means that µ is a classical probability measure, λ=0. 

∑
∈

>
Xx

x 1})({μ
 

If the above expression is valid, then λ is equal to the unique root of the equation in 
the interval )0,1(− , which means that µ qualifies as an upper probability, λ<0. 

Once the value of  λ  is calculated using some numerical method for zero finding, 
the Sugeno measures can be calculated using equations (4) and (5), after descendent 
ordered of the sets X and µ({x}), respect to the elements of set X [15]. 

)()( 11 xA μμ =  (4) 

)()()()()( 11 −− ++= iiiii AxAxA μλμμμμ  (5) 

3.2   The Sugeno Integral 

The Sugeno Integral can be interpreted in a way similar to the weighted maximum, 
but using the measures instead of possibility distributions. The difference is that now 
each value is weighted according to the weight (the measure) of all the sources that 
support the value (6) [16] . 
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Where σi= σ(xi)  y  0 ≤ σ1 ≤…≤ σn ≤ 1 
The Sugeno Integral generalizes both weighted minimum and weighted maximum. 
A weighted maximum with a possibilistic weighting vector u is equivalent to a 

Sugeno integral with fuzzy measure 
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A weighted minimum with a possibilistic weighting vector u is equivalent to a 
Sugeno integral with fuzzy measure 
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(8) 

4   Fuzzy Logic for Density Estimation 

After the simulation of an image in the Neural Network, the simulation value is the 
only known parameter to make a decision, then to estimate the fuzzy density of  
each module this is the only available information.  For this reason we analyze the  
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simulation matrix in many tests and decide that each of the inputs to the FIS corre-
sponds to the maximum value of each column corresponding to the simulation of each 
module of the 400 images [17]. Then m1, m2 and m3 correspond to the simulation 
values to combine, max1, max2 and max3 correspond to the maximum values of the 
simulation vector, and d1, d2 and d3 the fuzzy densities for each module, as shown in 
figure 5 [18]. 

 

Fig. 5. Variables for the FIS to find the fuzzy densities 

Each output corresponds to one fuzzy density, to be applied to each module to per-
form the fusion of results later with the Sugeno Integral [19]. The inference rules cal-
culate fuzzy densities near 1 when de maximum value in the simulation is between 
0.5 and 1, and near 0 when the maximum value in the simulation is near 0. The fuzzy 
rules are shown next.  

 

1.If (m1 is LOW) and (max1 is LOW) then (d1 is LOW)          
2.If (m1 is MEDIUM) and (max1 is MEDIUM) then (d1 is MEDIUM) 
3.If (m1 is HIGH) and (max1 is HIGH) then (d1 is HIGH)     
4.If (m2 is LOW) and (max2 is LOW) then (d2 is LOW)          
5.If (m2 is MEDIUM) and (max2 is MEDIUM) then (d2 is MEDIUM) 
6.If (m2 is HIGH) and (max2 is HIGH) then (d2 is HIGH)     
7.If (m3 is LOW) and (max3 is LOW) then (d3 is LOW)          
8.If (m3 is MEDIUM) and (max3 is MEDIUM) then (d3 is MEDIUM) 
9.If (m3 is HIGH) and (max3 is HIGH) then (d3 is HIGH)     
10.If (m1 is LOW) and (max1 is MEDIUM) then (d1 is LOW) 
11.If (m1 is MEDIUM) and (max1 is HIGH) then (d1 is MEDIUM) 
12.If (m2 is LOW) and (max2 is MEDIUM) then (d2 is LOW)      
13.If (m2 is MEDIUM) and (max2 is HIGH) then (d2 is MEDIUM) 
14.If (m3 is LOW) and (max3 is MEDIUM) then (d3 is LOW)      
15.If (m3 is MEDIUM) and (max3 is HIGH) then (d3 is MEDIUM) 
16.If (m1 is LOW) and (max1 is HIGH) then (d1 is LOW)      
17.If (m2 is LOW) and (max2 is HIGH) then (d2 is LOW)        
18.If (m3 is LOW) and (max3 is HIGH) then (d3 is LOW) 
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According to exhaustive tests made in the simulation matrices, we know that rec-
ognition of the images that were used for the training the neural networks is 100%. 
Therefore the interest is focused on the recognition of the samples that do not belong 
to the training set, in other words samples 8,9 and 10. 

The parameters for the Sugeno Fuzzy Integral that will be inferred will be the 
Fuzzy Densities, with values between 0 and 1 for each module, which determines the 
relevance rate for each module. 

4.1   FIS-1 for Estimate Fuzzy Densities 

The membership functions in figure 6 and the solution surface in figure 7 show the 
system’s behavior. 
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Fig. 6. Variables for FIS-1 to find fuzzy densities, before optimization 

 
Fig. 7. Solution surface for max1, m1 and d1 in FIS-1 to find fuzzy densities 
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4.2   FIS-2 for Estimate Fuzzy Densities 

To compare the results FIS-1 and FIS-2 to estimate the fuzzy densities, we added a 
FOU=0.2, to the same fuzzy variables in FIS-1, as we can see in figure 8 [20][21]. 
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Fig. 8. Variables for the FIS-2 to estimate fuzzy densities, using the same centers of the FIS-1 
and FOU=0.2 

 

Fig. 9. Solution surface for max1, m1 and d1 in FIS-2 to find fuzzy densities 

5   Sugeno Integral for Information Fusion      

Then, after the simulation of one image divided in three modules we have three simu-
lation vectors of length 40 to combine. The value for each element of the resulting 
vector is the Sugeno Integral for the values corresponding to the same position in the 
3 vectors to combine [22].               
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Consider the following values corresponding to the simulation of sample 8 of per-
son number 13, this sample is not on the training data. 

 
   m1  m2  m3 

1      

2      

3      

:      

13 0.1575  0.0094  0.0247 

14      

:      

40      

 max1  max2  max3 

 0.1575  0.0286  0.0574 

 
The fuzzy densities were inferred by a FIS as follows: First the FIS calculates the 

fuzzy densities for each module. 
 

d1= 0.3069 
d2= 0.1788 
d3= 0.1890 
 

Then we need to solve the function f (λ)=(1+0.3069λ)(1+0.1788λ)(1+0.1890λ) –
(1+λ) as we can see in figure 10, according with equation (11).  
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Fig. 10. Plot for f (λ)=(1+0.3069λ)(1+0.1788λ)(1+0.1890λ) –(1+λ) 

The value of λ can be calculated by equation (11), using a numerical method such 
as Newton-Raphson or bisection, to find the root of f (λ) shown in figure 10. To solve 
this equation we used the Matlab function ‘fzero’ that find the root of continuous 
function of one variable. The solution for λ= 1.9492 in this example, and the Sugeno 
Measures can be constructed using the recursive formulas (12) and (13), but before 
this calculation the fuzzy densities must be sorted descendent by σ (xi), that is shown 
in Table 1. 
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Table 1. The Values Sorted Descendent By  X Before Normalization 

xi σ (xi)=trapmf([0 max(i) max(i) 2],xi) µ(xi) 
0.1575 0.9989 0.3069 
0.0247 0.0492 0.1890 
0.0094 0.0249 0.1788 

 
µ(A1)=µ(x1)                                                                
µ(Ai)=µ(xi)+µ(Ai-1)+λµ(xi)µ(Ai-1)  
                            
µ(A1)= 0.3069  
µ(A2)= 0.1890+0.3069+(1.9492)(0.1890)(0.3069)= 0.6090 
µ(A3)= 0.1788+0.6090+(1.9492)(0.1788)(0.6090)= 1         
                                          
The Fuzzy Sugeno Integral, can now be calculated using (6): 
h(0.9989,0.0492,0.0249)= 
max( 
min(0.9989,0.3069), 
min(0.0492,0.6090), 
min(0.0249,1)) 
h(0.9989,0.0492,0.0249)=max(0.3089,0.0492,0.0249)=0.3089 
 
As can be seen in figure 11, for person number 13 it was obtained the highest value 

of the Sugeno Integral and is correctly selected.  
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Fig. 11. Simulation of the Modules and the Sugeno Integral 

In order to measure in an objective form the final results, we developed a method 
of random permutation, which rearranges the samples of each person before the train-
ing. Once a permutation is made, the modular neural networks are trained 5 times and 
the net weights and permutation order are saved for posterior tests.  
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6   Simulation Results  

Some of the images don’t reach a sufficient value in the simulation of the three mod-
ules, in these cases, there isn’t enough information to select an image at the modules 
combination, and the image can be wrongly selected. But, in most of the cases the im-
ages are correctly selected. In tables 1 and 2 we show the recognition rates for the 
FIS-1 and FIS-2 methods. 

Table 2. Recognition rates with FIS-1 Fuzzy Densities Estimation 

P Image Recognition (%) 
 Train 1 Train 2 Train 3 Avg Max 
1 94.00 95.75 94.50 94.75 95.75 
2 94.25 94.75 94.25 94.41 94.75 
3 94.25 94.25 95.25 94.58 95.25 
4 94.00 93.25 93.50 93.58 94.00 
5 94.75 94.75 94.00 94.36 94.75 
    94.36 95.75 

Table 3. Recognition rates with FIS-2 Fuzzy Densities Estimation 

P Image Recognition (%) 
 Train 1 Train 2 Train 3 Avg Max 

1 97.25 96.25 95.00 96.17 97.25 
2 94.75 95.25 95.75 95.25 95.75 
3 95.50 97.50 96.00 96.33 97.50 
4 95.25 95.00 95.50 95.25 95.50 
5 96.50 97.00 96.00 96.50 97.00 
    95.90 97.50 

 
Fig. 12. Recognition Rates for FIS-1 and FIS-2 fuzzy densities estimation 
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To appreciate the performance of each fuzzy system more clearly, in figure 12 we 
show the recognition rates for the simulation of the Modular Neural Network, for 3 
different trainings of type-1 and type-2 fuzzy logic. 

In figure 13 we show the best recognition rates for both types of fuzzy systems. As 
we can see in this comparison, the best recognition rates using the Type-2 Fuzzy Sys-
tem are better than with the Type-1 Fuzzy System. 

 
Fig. 13. The best Recognition Rates for the FIS-1 and FIS-2 fuzzy densities estimation 

7   Conclusions 

In image recognition with Modular Neural Networks, when an image is divided into 
several parts, each module is an expert to recognize only one part. Then, in the simu-
lation phase if one of the modules doesn’t reach the target values, is a module with 
low relevance for the recognition. 

The Fuzzy density is the rate of the relevance of each module, and the estimation 
of its values improves the recognition rates on Modular Neural Networks combined 
with Sugeno Integral. Fuzzy densities estimated with the Interval Type-2 Fuzzy Sys-
tem produces better recognition rates than the Type-1 Fuzzy System.  
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Abstract. We describe in this paper a new method for response integration in ensemble neural 
networks with Type-1 Fuzzy Logic and Type-2 Fuzzy Logic using Genetic Algorithms (GA’s) 
for optimization. In this paper we consider pattern recognition with ensemble neural networks 
for the case of fingerprints. An ensemble neural network of three modules is used. Each module 
is a local expert on person recognition based on their biometric measure (Pattern recognition for 
fingerprints). The Response Integration method of the ensemble neural networks has the goal of 
combining the responses of the modules to improve the recognition rate of the individual mod-
ules. Using GA’s to optimize the Membership Functions of The Type-1 Fuzzy System and 
Type-2 Fuzzy System we can improve the results of the fuzzy systems. We show in this paper 
the results of a type-2 approach for response integration that improves performance over the 
type-1 logic approaches. 

1   Introduction 

At the moment, a variety of methods and techniques are available to determine the 
unique identity of the person, the most common being fingerprint, voice, face and iris 
recognition [12]. Of these, fingerprint and iris offer a very high level of certainty as to 
a person’s identity, while the others are less accurate. The four primary methods of 
biometric authentication in widespread use today are face, voice, fingerprint, and iris 
recognition. In this paper, we consider pattern recognition with ensemble neural net-
works for the case of fingerprints. 

Fingerprint Recognition. The process of authenticating people based on their fin-
gerprints can be divided into three tasks. First, you must collect an image of a finger-
print, second, you must determine the key elements of the fingerprint for confirmation 
of identity, and third, the set of identified features must be compared with a previ-
ously-enrolled set for authentication. The system should be never expected to see a 
complete1:1 match between these two sets of data. In general, you could expect to 
couple any collection device with any algorithm, although in practice most vendors 
offer proprietary, linked solutions. 
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A number of fingerprint image collection techniques have been developed. The 
earliest method developed was optical: using a camera-like device to collect a high 
resolution image of a fingerprint. Later developments turned to silicon-based sensors 
to collect an impression by a number of methods, including surface capacitance, 
thermal imaging, pseudo-optical on silicon, and electronic field imaging. 
 

 

Fig. 1. Sample images from FCV200 database; each row shows different impressions of the 
same finger 

 
Fig. 2. Images from FCV200 database; all the samples are from different fingers and are  
ordered by persons 
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As discussed, a variety of fingerprint detection and analysis method exist, each 
with their own strengths and weaknesses. Consequently, researchers vary widely on 
their claimed (and achieved) false accept and false reject rates. The poorest systems 
offer a false accept rate of around 1:1,000, while the best are approaching 
1:1,000,000. False reject rates for the same vendors are around 1:100 to 1:1000. 

In the experiments performed in this research work, we used the database of the 
Fingerprint Verification Competition FCV2000 [8], [9]; the image size is 300 pixels 
wide and 300 pixels high with a resolution of 500 ppi, and representation of a gray 
scale. The fingerprints were acquired by using a low-cost optical sensor; up to four 
fingers were collected for each volunteer (forefinger and middle finger of both the 
hands). The database is 10 fingers wide (w) and 8 impressions per finger deep (d) (80 
fingerprints in all); the acquired fingerprints were manually analyzed to assure that 
the maximum rotation is approximately in the range [-15°, 15°] and that each pair of 
impressions of the same finger have a non-null overlapping area. 

Sample images from the FCV200 database are shown in figures 1 and 2; each row 
shows different impressions of the same finger: 

2   Design of the Genetic Algorithms for Optimization 

GA’s are well-known robust methods of optimization. The GA deals with coding the 
problem using chromosomes to optimize the membership function of the type-1 and 
type-2 fuzzy logic system, used as response integration methods in ensemble neural 
networks. The Characteristics of the GA are the following: 

 
1 GA’s are parallel-search procedures that can be implemented on parallel process-

ing machines for massively speeding up their operations. 
2 GA’s are applicable to both continuous and discrete optimization problems. 
3 GA’s are stochastic and less likely to get trapped in local minima, which inevita-

bly are present in any practical optimization application. 
4 GA’s have flexibility in both structure and parameter identification in complex 

models such as neural networks and fuzzy inference systems. 
 

In each generation, the GA’s build a new population using genetic operators such 
as crossover and mutation, that is, members with higher fitness values are more likely 
to survive and participate in mating crossover operations. After a number of genera-
tions, the populations contains members with better fitness values in which this is 
analogous to Darwinian models of evolution by random mutation and natural selec-
tion. GA’s are sometimes referred to as methods of population based optimization that 
improves performance by upgrading entire populations rather than individual  
members. 

In this paper, the GA’s are used to optimize the membership functions of the type-1 
and type-2 fuzzy logic system as response integration methods in ensemble neural  
networks [3], [4]. The GA deals with coding of the problem using chromosomes for op-
timize the membership function of the type-1 and type-2 fuzzy logic system. The Chro-
mosome Structure used to optimize the membership function of the type-1 fuzzy system 
as response integration method in ensemble neural networks shown in the figure 3. 
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Fig. 3. The Chromosome Structure of Type-1 Fuzzy Logic to optimize the input and output 
membership functions 

Chromosome for Type-1 Fuzzy Logic. The first 9 bits represent the activation of the 
membership functions for Module1. Each Module has three input linguistic variables, 
which are Activation Low, Activation Medium and Activation High. In the same way 
the bits from 10 to the 18 for Module2 and the bits from the 19 to the 27 are for Mod-
ule3, and the bits from the 28 to the 36 represent to the output variable Winning  
Module for three Membership functions, WinnningModule1, WinningModule2 and 
WinningModule3.  

The Chromosome Structure used to optimize the membership function of the  
type-2 fuzzy logic system, as response integration method, in ensemble neural net-
work is shown in the figure 4. 

 

Fig. 4. The Chromosome Structure Type-1 Fuzzy Logic for optimizes the input and output 
membership function 

Chromosome for Type-2 Fuzzy Logic. The first 12 bits represent the activation of 
the membership functions for Module1. Each Module has three input linguistic vari-
ables, which are Activation Low, Activation Medium and Activation High. In the 
same way the bits from 13 to 24 are for the Module2 and the bits from 25 to the 36 
are for the Module3, the bits from the 37 at the 48 represents to the output variable 
Winning Module for three Membership functions, WinnningModule1, WinningMod-
ule2 and WinningModule3. 

3   Proposed Architecture for Fingerprint Recognition 

The proposed architecture in this paper consists of three main modules, in which  
each module in turn consists of a set of neural networks trained with the same data  
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Fig. 5. Architecture of the Proposed Ensemble Neural Network for Fingerprint Recognition us-
ing GA’s for Optimize Type-1 and Type-2 Membership Function 

(fingerprints), which provides the modular architecture that is shown in Figure 5. The 
integration of responses is performed with a fuzzy system that is optimized using a GA.  

4   Response Integration with Type-1 Fuzzy Logic 

Over the past decade, fuzzy systems have displaced conventional technology in dif-
ferent scientific and system engineering applications, especially in pattern recognition 
and control systems. The same fuzzy technology, in approximate reasoning form, is 
resurging also in the information technology, where it is now giving support to deci-
sion making and expert systems with powerful reasoning capacity and a limited quan-
tity of rules [25]. For the case of modular networks, a fuzzy system can be used as an 
integrator of results [24]. 

The Type-1 Fuzzy Inference System, as method of response integration, of the  
ensemble neural network output, is considering as input three linguistic variables, Ac-
tivation Low, Activation Medium, and Activation High, and one output linguistic 
variable, Winning Activation of the three modules. 

Three membership functions were used for each linguistic variable (input and out-
put) of the triangular type, to be considered in a range from 0 to 1.  
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We show in figures 6, 7, 8, and 9, the membership functions designed using the 
editor of the fuzzy logic toolbox of MATLAB [10], for all the linguistic variable of 
the fuzzy system. 

 

Fig. 6. Membership Functions of Input Module 1 

 

Fig. 7. Membership Functions of Input Module 2 

 

Fig. 8. Membership Functions of Input Module 3 
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Fig. 9. Membership Functions of Fuzzy System Output 

5   Response Integration with Type-1 Fuzzy Logic Using the GA 

We used a genetic algorithm to optimize the triangular membership functions of the 
type-1 fuzzy system, with the following GA parameters: population of 5 individuals, 
crossing rate of 85%, mutation rate of 10%, roulette wheel selection, Stopping Condi-
tions for the Algorithm are a maximum of 100 generations or if the error is zero be-
tween the type-1 fuzzy system base (figs. 6 to 9) and the type-1 fuzzy system obtained 
with the genetic algorithm (fig.10). We show in figures 11, 12, 13, and 14, the mem-
bership functions obtained with the genetic algorithm using the editor of the fuzzy 
logic toolbox of MATLAB [10]. The results of the optimized type-1 fuzzy system 
will be presented later. 
 

 
Fig. 10. Results of convergence of the genetic algorithm for Response Integration Type-1 



136 M. Lopez, P. Melin, and O. Castillo 

 

Fig. 11. Membership Functions of Input Module 1 using the GA 

 

Fig. 12. Membership Functions of Input Module 2 using the GA 

 

Fig. 13. Membership Functions of Input Module 3 using the GA 
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Fig. 14. Membership Functions of Fuzzy System Output using the GA 

6   Response Integration with Type-2 Fuzzy Logic 

The Type-2 Fuzzy Inference System, as method of Response integration, of the en-
semble neural network output, is defined considering as input three linguistic vari-
ables, Activation Low, Activation Medium, and Activation High, and one output lin-
guistic variable, Winning Activation of the three modules. 

Three membership functions were used for each linguistic variable of input and 
output of the Gaussian type, to be managed in a range from 0 to 1.  

We show in figures 15, 16, 17, and 18, the membership functions designed using 
the editor of IT2FUZZY fuzzy logic toolbox, which was developed by our group [1]. 

 

 

Fig. 15. Type-2 Membership Functions of Input Module 1 
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Fig 16. Type-2Membership Functions of Input Module 2 

 

Fig. 17. Type-2 Membership Functions of Input Module 3 

 

Fig. 18. Type-2 Membership Functions of Type-2 Fuzzy System Output 
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7   Response Integration with Type-2 Fuzzy Logic and GA 

We used a genetic algorithm to optimize the Gaussian membership functions of the 
type-2 fuzzy s, with the following parameters: population of 5 individuals, crossing 
rate of 85%, mutation rate of 10%, roulette wheel selection, Stopping Conditions for 
the Algorithm are a maximum of 100 generations or if the error is zero between the 
type-1 fuzzy system base (figs. 15 to 18) and the type-2 fuzzy system obtained for the 
 

 

Fig. 19. Results of convergence of the genetic algorithm 

 

Fig. 20. Type-2 Membership Functions of Input Module 1 using the GA 
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Fig. 21. Type-2 Membership Functions of Input Module 2 using the GA 

 

Fig. 22. Type-2 Membership Functions of Input Module 3 using the GA 

 

Fig. 23. Type-2 Membership Functions of Type-2 Fuzzy System Output using the GA 

genetic algorithm (fig. 19). We show in figures 20, 21, 22, and 23, the membership 
functions obtained with the genetic algorithm using the editor of IT2FUZZY fuzzy 
logic toolbox [1]. 
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8   Simulation Results with Blur Motion Noise Using GA’s 

Once the Ensemble Neural Network is trained, the fuzzy inference system integrates 
the outputs of the modules. We used the same 80 people's images to which we had 
applied different levels of noise with blur motion, both the type-1 and type-2 fuzzy  
 

 

Fig. 24. Experimental results of the fingerprints using the type-1 Fuzzy Inference System (blur 
motion 10 displacement pixels) 

 
Fig. 25. Experimental results of the fingerprints using the type-1 Fuzzy Inference System (blur 
motion 50 displacement pixels) 
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Fig. 26. Experimental results of the fingerprints using the type-2 Fuzzy Inference System (blur 
motion 10 displacement pixels) 

 

 
Fig. 27. Experimental results of the fingerprints using the type-2 Fuzzy Inference System (blur 
motion 50 displacement pixels) 

 
 

inference system gives an answer for the stage of the final decision, and show the re-
sult if the fingerprint input was recognized. We show in Figures 24 and 25 the ex-
perimental results using the type-1 fuzzy inference system and in Figures 26 and 27 
the experimental results using the type-2 fuzzy inference system obtained for the ge-
netic algorithm. 
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9   Simulation Results with Blur Radial Noise Using GAs 

Once the Ensemble Neural Network is trained, the fuzzy inference system integrates the 
answers of the modules. We used the same 80 people's images to which we had applied 
different levels of noise with blur radial, both the type-1 and type-2 fuzzy inference sys-
tems give an answer for the stage of the final decision, and shows the result if the fin-
gerprint input was recognized. We show in Figures 28 and 29 the experimental results 
 

 
Fig. 28. Experimental results of the fingerprints using the type-1 Fuzzy Inference System (blur 
radial 10 displacement pixels) 

 
Fig. 29. Experimental results of the fingerprints using the type-1 Fuzzy Inference System (blur 
radial 50 displacement pixels) 
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Fig. 30. Experimental results of the fingerprints using the type-2 Fuzzy Inference System (blur 
radial 10 displacement pixels) 

 
Fig. 31. Experimental results of the fingerprints using the type-2 Fuzzy Inference System (blur 
radial 50 displacement pixels) 

using the type-1 fuzzy inference system and Figures 30 and 31 the experimental results 
using the type-2 fuzzy system obtained with the genetic algorithm. 

10   Simulation Results with Blur Gaussian Noise Using GAs 

Once the Ensemble Neural Network is trained, the fuzzy inference system integrates 
the answers of the modules. We used the same 80 people's images to which we had 
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applied different levels of noise with blur Gaussian, both the type-1 and type-2 fuzzy 
inference system gives an answer for the stage of the final decision, and show the re-
sult if the fingerprint input was recognized. We show in Figures 32, and 33, the ex-
perimental results using the type-1 fuzzy inference system and Figures 33, and 34, the 
experimental results using the type-2 fuzzy inference system obtained with the genetic 
algorithm. 

 
Fig. 32. Experimental results of the fingerprints using the type-1 Fuzzy Inference System (blur 
Gaussian 5 radius pixels) 

 
Fig. 33. Experimental results of the fingerprints using the type-1 Fuzzy Inference System (blur 
radial 10 radius pixels) 
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Fig. 34. Experimental results of the fingerprints using the type-2 Fuzzy Inference System (blur 
radial 5 displacement pixels) 

 
Fig. 35. Experimental results of the fingerprints using the type-2 Fuzzy Inference System (blur 
radial 10 radius pixels) 

11   Comparison of Results with Type-1 and Type-2 Fuzzy Logic as 
Response Integration Methods 

We performed 30 trials of the fingerprint recognition with an average of 100% recog-
nition without noise for all methods. For the case in which noise was added to the fin-
gerprint input the obtained results are as follows. The Identification Rate with blur 
motion of 10 displacement pixels is 98.75 % for type-1 (not optimized) and also for 
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Table 1. Comparison between Type-1 and Type-2 using GA’s with blur motion noise 

Response In-
tegration 
Method 

Recognition 
Rate 

  Identification 
Rate 

  

    Blur Motion 
Noise Dis-
tance Pixels 

  

  10 20 30 40 50 
Type-1 (not 
optimized) 

80/80 
100% 

79/80 
98.75% 

77/80 72/80 69/80 66/80 
82.5% 

Type-1 using 
GA’s 

80/80 
100% 

79/80 
98.75% 

78/80 73/80 70/80 68/80 
85% 

Type-2 (not 
optimized) 

80/80 
100% 

77/80 
96.25% 

73/80 71/80 69/80 59/80 
73.75% 

Type-2 using 
GA’s 

80/80 
100% 

78/80 
97.5% 

74/80 72/80 71/80 61/80 
76.25% 

Table 2. Comparison between Type-1 and Type-2 using GA’s with blur radial noise 

Response 
Integration 
Method 

Recognition 
Rate 

  Identification 
Rate 

  

    Blur Radial 
Noise Distance 
Pixels 

  

  10 20 30 40 50 
Type-1 (not 
optimized) 

80/80 
100% 

73/80 
91.75% 

73/80 71/80 68/80 59/80 
73.75% 

Type-1 us-
ing GA’s 

80/80 
100% 

74/80 
92.5% 

74/80 73/80 72/80 60/80 
75% 

Type-2  (not 
optimized) 

80/80 
100% 

78/80 
97.5% 

73/80 70/80 63/80 63/80 
78.75% 

Type-2 us-
ing GA’s 

80/80 
100% 

79/80 
98.75% 

74/80 71/80 65/80 64/80 
80% 

 
type-1 using GA’s, for type-2 (not optimized) is 96.25 % and for type-2 using GA’s is 
97.5%. The Identification rate with blur radial noise of 10 displacement pixels is 
91.75% for type-1 (not optimized) and is 92.5% for type-1 using GA’s, for type-2 not 
optimized is 97.5 % and for type-2 using GA’s is 98.75%. The Identification rate with 
blur Gaussian noise of 5 radius pixels is 82.5% for type-1 (not optimized) and 83.75% 
for type-1 using GA’s, for type-2 not optimized is 75 % and for type-2 using GA’s 
76.25%. In tables 1, 2 and 3 we show a detailed comparison between the type-1 and 



148 M. Lopez, P. Melin, and O. Castillo 

the type-2 fuzzy systems using genetic algorithms with the levels of noise mentioned. 
We can appreciate from Table 2 that type-2 fuzzy logic is superior than type-1 in the 
case of blur radial noise. 

We used the same 80 people’s images to which we had applied noise with blur mo-
tion, blur radial, and blur Gaussian noise, and the type-1 and type-2 fuzzy inference 
system gives an answer for the stage of the final decision. 

Table 3. Comparison between Type-1 and Type-2 using GA’s with blur Gaussian noise 

Response  
Integration 
Method 

Recognition 
Rate 

Identification 
Rate 

 

  Blur Gaussian 
Noise Radius 
Pixels 

 

  5 10 
Type-1 (not 
optimized) 

80/80 
100% 

73/80 
98.75% 

66/80 
82.5% 

Type-1 using 
GA’s 

80/80 
100% 

74/80 
98.75% 

67/80 
83.75% 

Type-2  (not 
optimized) 

80/80 
100% 

68/80 
96.25% 

60/80 
75% 

Type-2 using 
GA’s 

80/80 
100% 

69/80 
97.5% 

61/80 
76.25% 

 
In the figure 35 we shown the Comparison of Results with Type-1 and Type-2 Fuzzy 

Logic as Response Integration methods in Ensemble Neural Networks using GA’s. 

 

Fig. 35. Comparison between Type-1, and Type-2 using GA’s. Trainscg, 2 Layers, Neurons by 
layer (36,18), Goal Error=.001, MSE, 80 Input Fingerprint, 10 Persons and 8 samples by per-
sons, 80 input fingerprints. 
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12   Conclusions 

Based on the experimental results, we can conclude that using a genetic algorithm to 
optimize the membership function of the type-1 and type-2 fuzzy logic, as response 
integration of the output ensemble neural networks for the fingerprints is a good 
choice. It is necessary to make more tests, to validate the proposed architecture of en-
semble neural networks for fingerprints. 

For the case of the type-1 fuzzy and type-2 fuzzy inference systems for response 
integration of ensemble neural networks, we can conclude that the behavior can be 
improved. We think that there is an advantage in using a type-2 fuzzy inference sys-
tem to manage the uncertainty of the knowledge base in pattern recognition problems. 

Future work will include, testing with more kinds of noise, using wavelets like fea-
ture extraction, and other methods of the image compression, with the goal of improv-
ing the identification rate. Also using genetic algorithms to optimize the fuzzy rules of 
the type-1 and type-2 fuzzy logic. 

Acknowledgments 

We would like to express our gratitude to the CONACYT, Universidad Autonoma de 
Baja California and Tijuana Institute of Technology for the facilities and resources 
granted for development of this research project. 

References 

[1] Castro, J.R., Castillo, O., Melin, P., Martinez, L.G., Escobar, S., Camacho, I.: Building 
Fuzzy Inference Systems with Interval Type-2 Fuzzy Logic Toolbox, 1st edn. Number 1 
in Studies in Fuzziness and Soft Computing, vol. 6, pp. 53–62. Springer, Germany (2007) 

[2] Castro, J.R., Castillo, O., Melin, P.: An Interval Type-2 Fuzzy Logic Toolbox for Control 
Applications. In: Proc. FUZZ-IEEE 2007 (2007) 

[3] Chang, S., Greenberg, S.: Fuzzy Measures and Integrals: Theory and Applications, pp. 
415–434. Physica-Verlag, NY (2003) 

[4] Cunningham, P.: Overfitting and Diversity in Classification Ensembles based on Feature 
Selection, TCD Computer Science Technical Report, TCD-CS-2000-07.  

[5] Grabisch, M., Murofushi, T., Sugeno, M.: Fuzzy Measures and Integrals: Theory and Ap-
plications, pp. 348–373. Physica-Verlag, NY (1989) 

[6] Grabisch, M.: A new algorithm for identifying fuzzy measures and its application to pat-
tern recognition. In: Proc. of 4th IEEE Int. Conf. on Fuzzy Systems, Yokohama, Japan, 
pp. 145–150 (1995) 

[7] Gutta, S., Huang, J., Takacs, B., Wechsler H.: Face Recognition Using Ensembles of 
Netrworks. In: 13th International Conference on Pattern Recognition (ICPR 1996), Vi-
enna, Austria, vol. 4, p. 50 (1996) 

[8] Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: FVC 2004: Third Fingerprint 
Verification Competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 
1–7. Springer, Heidelberg (2004) 



150 M. Lopez, P. Melin, and O. Castillo 

[9] Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: The full FVC2000 and FVC2002 data-
bases are available in the DVD included. In: Handbook of Fingerprint Recognition, 
Springer, New York (2003) 

[10] MATLAB Trade Marks, by the MathWorks, Inc. © (1994-2007) 
[11] Mostafa Abd Allah, M.: Artificial Neural Networks Fingerprints Authentication with 

Clusters Algorithm. Informatica 29, 303–307 (2005) 
[12] Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition Using Soft 

Computing. Springer, Heidelberg (2005) 
[13] Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition using Soft 

Computing. Springer, Berlin (2005) 
[14] Melín, P., González, F., MartínezG.: Pattern Recognition Using Modular Neural Net-

works and Genetic Algorithms. In: IC-AI 2004, pp 77–83 (2004)  
[15] Melín, P., Mancilla, A., Lopez, M., Solano, D., Soto, M., Castillo, O.: Pattern Recogni-

tion for Industrial Security using the Fuzzy Sugeno Integral and Modular Neural Net-
works. In: WSC11 11th Online World Conference on Soft Computing in Industrial Ap-
plications (September 18- October 6) (2006) 

[16] Melín, P., Urias, J., Solano, D., Soto, M., Lopez, M., Castillo, O.: Voice Recognition with 
Neural Networks, Type-2 Fuzzy Logic and Genetic Algorithms. Engineering Let-
ters 13(2), 108–116 (2006) 

[17] Mendoza, O., Melin, P., Licea, G.: Modular Neural Networks and Type-2 Fuzzy Logic 
for Face Recognition. In: Reformat, M. (ed.) Proceedings of NAFIPS 2007, San Diego, 
vol. 1 (June 2007); CD Rom  

[18] Nemmour, H., Chibani, Y.: Neural Network Combination by Fuzzy Integral for Robust 
Change Detection in Remotely Sensed Imagery. EURASIP Journal on Applied Signal 
Processing 14, 2187–2195 (2005) 

[19] Opitz, D.W.: Feature Selection for Ensembles. In: Sixteenth National Conference on Arti-
ficial/ Intelligence (AAAI), Orlando, FL, pp. 379–384 (1999) 

[20] Opitz, D., Maclin, R.: Popular Ensemble Methods: An Empirical Study. Journal of Artifi-
cial Intelligence Research 11, 169–198 (1999) 

[21] Opitz, D.W., Shavlik, J.W.: Generating accurate and diverse members of a neural net-
work ensemble. In: Touretzky, D.S., Mozer, M., Hasselmo, M. (eds.) Advances in Neural 
Information Processing Systems, vol. 8, pp. 535–541. MIT Press, Cambridge (1996) 

[22] Sharkey, A.C.: Modularity, combining and artificial neural nets. Connection Science 8, 
299–313 (1996) 

[23] Sharkey, A.: On combining artificial neural nets. Connection Science 8, 299–313 (1996) 
[24] Urias, J., Solano, D., Soto, M., Lopez, M., Melín, P.: Type-2 Fuzzy Logic as a Method of 

Response Integration in Modular Neural Networks. In: IC-AI 2006, pp. 584-590 (2006) 
[25] Zadeh, L.A.: Fuzzy Logic. Computer 1(4), 83–93 (1998) 



O. Castillo et al. (Eds.): Soft Computing for Hybrid Intel. Systems, SCI 154, pp. 151–169, 2008. 
springerlink.com                                                           © Springer-Verlag Berlin Heidelberg 2008 

Optimization of Modular Neural Network, Using 
Genetic Algorithms: The Case of Face and Voice 
Recognition 

José M. Villegas, Alejandra Mancilla, and Patricia Melin 

Department of Computers Science, Tijuana Institute of Technology, 
Tijuana, México 
pmelin@tectijuana.mx 

Abstract. This paper deals with two optimization problems as the architecture (modules, layers 
and neurons) and the best training of an artificial neural network (ANN). For that matter is used 
a Hierarchical Genetic Algorithm, which theorically has the capacity to bring the optimal archi-
tecture and the training result of the ANN, for a particular task; in this case the recognition of 
an individual is via voice and face. 

1   Introduction 

Biometrics is the study of automated methods for recognizing humans based only on 
one or more intrinsic physical or behavioral features. The term derives from the Greek 
words "bios" life and "metrics" measurement [2]. 

That's why the current systems increasingly require a solution-oriented use of secu-
rity systems based on biometrics because of the constant identity theft and fraud to in-
crease in all types of organizations. 

The Applied Biometrics can provide solutions needed to protect companies in 
these constant attacks ensuring the user, employee or customer who is requesting ac-
cess it is really who they say they are the process involves verification of their identity 
through reviewing their biometric features as their official documents, ensuring that 
these are not false. 

Security is a very important issue for all people and even more for businesses, 
which is why each time the are emerging new techniques to improve it. 

One of these techniques as mention is: biometrics of voice or speech recognition, 
which is the process of automatically recognizes who is talking on the basis of the in-
formation contained in wave’s voice [3] . Other biometric technologies are widely 
used identification of the face, fingerprint, hand geometry, iris, retina and signing 
among others. 

To accomplish biometrics there are several ways to do Artificial Neural Networks 
(ANN) is a paradigm of learning and automatic processing inspired by the way in 
which the nervous system of animals, so the pattern recognition through Artificial 
neural networks has proved to give good results in this type of application, which can 
be very complex to be dealt with neural networks monolithic therefore recommend 
the use of neural networks Modular which divide the complex problem into several 
problems smaller. 
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It's hard to find a neural network architecture for modular, with successful results, 
that is why this research is focused on the optimization of neural networks through 
Genetic Algorithms, these are systematic methods for troubleshooting search and op-
timization, are based on the concept of natural selection and evolutionary processes of 
living beings (selection based on the population, mating and mutation. These are sys-
tematic methods for troubleshooting search and optimization, are based on the con-
cept of natural selection and evolutionary processes of living beings (selection based 
on the population, mating and mutation. 

To decide who is the person to recognize through his face and voice there is a 
technique called Fuzzy Logic and has been proven to be particularly useful in expert 
systems and other applications of artificial intelligence. 

The present paper describes the methods used during the development of this work 
both for face and voice. Also presents the results obtained after developing the system 
and doing some tests. And finally describes the conclusions it arrived. 

2   Basic Theoretical Concepts  

2.1   Artificial Neural Networks 

It is a system consisting of a large number of basic elements (Artificial Neurons), 
grouped into layers, and who are highly interconnected Synapses); his structure has 
several inputs and outputs; these will be trained to respond in a manner desired, to in-
put stimuli. 

These systems emulate, in a certain way, the human brain. They need to learn how 
to behave (Learning) and someone should be responsible for teaching (Training), 
based on previous knowledge of the environment problem. [6] 

2.2   Modular Artificial Neural Networks 

A complex problem can be divided into a number of sub-problems simpler than can 
be solved efficiently by smaller networks. From a point of view neurocomputation, 
Modularity is an essential feature of the human brain. 

The advantage is that if the model admits in a natural way A breakdown in functions 
simpler, The use of a modular network translates into a learning faster and easier. 

Each module can be constructed differently, to fit the requirements of each sub-task. 

2.3   Genetic Algorithms 

They were introduced by John Holland in 1970 inspired by the process observed in 
the natural evolution of living beings. 

They are systematic methods for troubleshooting search and optimization, are 
based on the concept of natural selection and evolutionary processes of living organ-
isms (Selection based on the population, mating and mutation). 

These algorithms make evolve a population individuals Subjecting random actions 
Similar to those operating in biological evolution (Mutations and genetic recombina-
tion), as well as a selection according to some criteria, Depending on which decides 
which individuals are more adapted to survive, and which are less suitable, which are 
discarded. 
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3   Development and Methods Used 

For the development of this research was necessary to divide it into three parts: Voice 
Recognition, Face Recognition and Decision making. We describe below each of 
these parts. 

3.1   Part One: Voice Recognition 

For training Voice of the Modular Neural Network tube is a base pattern of 36 sam-
ples and 12 samples to train without training, which is comprised of six alumni of the 
institution, taken from the reference [4] . Everyone read his name on a slow, normal 
and fast. 

Each of the words were engraved on individual files, for the recording of these jobs 
are code and MatLab Wav Floor to add noise to the original samples. 

The signals were acquired through MatLab code, using a standard PC microphone 
for this. The signals are captured with the following characteristics: 

• Speed Transmission  88 kbps. 
• Sample Size   8 bits. 

• Channels     mono. 

• Speed      11025 MPS. 

• Duration     1 sec. [4]  

To add noise to sound signals are using the program Wave Flow 5.6, the noise 
level was 0.5 gaussian noises [4]. 

The signal from the word Daniel said of the three forms shown in Figure 1. 

 

Fig. 1. Signal Of The Word Daniel 

Daniel in form slowly Daniel in form normal  

Daniel in form quickly 
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The architecture chosen for particular Artificial neural networks can determine the 
success or failure of using them in a given application, that is why in this research was 
proposed the use of the Method of Genetic Algorithms Hierarchical (HGA) with a 
view that the search and optimization of the architecture is carried out automatically 
and in a way that the HGA we projected as a result an architecture appropriate to 
solve the problem silver. 

3.1.1   Proposed Architecture 
To define the chromosome of Genetic Algorithms Hierarchical, must be taken into 
account a Architecture initial Modular Neural Network so that it will decrement and 
So that it will decrement at the same time optimizing the parameters of the modular 
neural network with the genetic algorithm, the objective of the optimization is to 
modulate the neural network has the lowest number of modules in each of the mod-
ules will have the lowest number of layers and neurons for each layer; further find the 
best training, this with the intention that the neural network can learn the best, This is 
why it proposes a modular neural network with 4 modules as maximum as shown in 
Figure 2 To solve the problem of voice recognition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Fig. 2. Proposed Modular Architecture for Voice 

3.1.1.1   For the Voice Recognition Modular Neural Network. The entries of the mod-
ules are set out in Table 1 and by the following formula (ns ÷ nm), (ns where are the 
sounds that number is equal to 36 nm and are the number of modules, where 1 <nm ≤ 
4). For example, the Genetic Algorithm Hierarchical have to find less than 4 modules 
and minimum two modules, in the event that ns outside two modules each module 
will feed samples of 18 words or sound, that is the first module with the trains first 18 
words and the second module with the following 18 words. 
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Table 1. Number Of Sounds ÷ Number Of Modules 

Module Number Voice 

1 36 

2 18 

3 12 

4 9 

3.1.2   Method of Integration Modules Voice 
The method was performed to make the integration of the modules of the voice was: 
“Gating Network”, why was chosen this technique integration was because it is one of 
the best and also that by giving the entries to the modules, there are modules that are 
not fed with the same sounds or voices as shown in Table 5.1, the sounds are different 
in each module. 

3.1.3   Chromosome the Genetic Algorithm for Hierarchical Voice 
The architecture of the Modular Neural Network will form the chromosome of  
Genetic Algorithm Hierarchical as follows: 

• 4 Modules. 
• 3 Layers For each module (12 layers in total). 
• 90 Neurons for each layer (1080). 

Based on these data, will proceed  to form Hierarchical chromosome binary of two 
levels, which possesses genes control and genes parameters; With a length of 1096 
bits, The first 4 bits symbolize the second level of genetic algorithm Hierarchical and 
represent 4 modules Modular Neural Network, the following 12 genes represent the 
first level of genetic algorithm Hierarchical and symbolize the number of layers that 
exist for each of the modules of the Modular Neural Network  (3 layers for module) 
and 1080 bits which represent genes parameters Genetic Algorithm Hierarchical, 
symbolizing the neurons for each of the layers of the Modular Neural Network. 

In Figure 3, we can see how you can represent the architecture of the chromosome 
of Genetic Algorithm Hierarchical we explained above. 

The optimization process of the neural network modular took place as follows, first 
generates a random group of chromosomes which takes architecture to train the neural 
network system, then provides an assessment of each individual and select the most 
suitable and to select the most suitable for operations crossing and mutation in order 
to give new life to individuals, after that is done recombination in which individuals 
are least able replaced by the children and after this takes place again training the neu-
ral network system, this process can be seen in Figure 4. 

Depending on the result given by the Hierarchical Genetic Algorithm relative to 
the number of modules that must have the modular neural network, is the division be-
tween the number of voices and the number modules, for example: if the Hierarchical 
Genetic Algorithm result is that the best architecture consists of 3 modules, which are 
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         Neurons Layers Modules

 

Fig. 3. Architecture Binary Chromosome From Hierarchical Genetic Algorithm 

 

Fig. 4. Training Process Of A Modular Neural Network With HGA 

36 sounds is divided between 3, which will serve as data entry for each of the  
modules of the Modular Neural Network; 12 for the first module, 12 for the second 
module and another 12 for the third module. In Figure 5 you can appreciate the archi-
tecture of a number N of words for 3 modules. 

The Hierarchical Genetic Algorithm scheduled for this never produces a single 
module and the minimum numbers of modules are 2 and 4 the highest. The use of 
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neural networks provides a modular increase in the speed of learning, since each 
module expert has to learn a smaller number of data and is responsible for a subtask 
that is easier to complete the entire task, as if it were a modular ensemble, it is easier 
to understand the task that has been responsible for each module. 

In this figure we see they are giving 12 different voices, they are giving 12 differ-
ent voices as input to each of the modules, subsequently employ a method of integra-
tion and finally get out that the person would recognize. 

Table 2. Division Sounds Of The Number Of Modules 

Number of Modules 
 

Division 

1 Modules      36 Samples of sound 

1-18   Samples of sound 
2 Modules 

19-36 Samples of sound 

1-18   Samples of sound 

1-18   Samples of sound 3 Modules 

1-18   Samples of sound 

1-18   Samples of sound 

1-18   Samples of sound 

1-18   Samples of sound 
4 Modules 

1-18   Samples of sound 

 

 

Fig. 5. Example Of The Neural Network Architecture For 3 Modules 
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The training method that was used for training the neural network is the Trainscg 
(Scaled Conjugate Gradient), with an error goal of 0.001 and between 150 and 300 
times, we use this method because it is one of the best training methods for the pattern 
recognition [3]  and [4]. 

3.2   Part Two: Face Recognition 

For training Face of the Modular Neural Network tube is a base pattern of 48 samples 
and 12 samples to train without training, which is comprised of six alumni of the in-
stitution, taken from the reference [4] .  

The first images were taken with them was going to work for training the neural 
network, these images were taken with a digital camera, will use a white background 
and were taken with a resolution of 4 Megapixels, then cut the face with a paint pro-
gram and through code in MatLab was given the format of 90 * 100 pixels and 16-bit. 

Were used 30 photographs normal for training, Figure 3.6 shows the images used.  
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 6. The Faces Used For Training 
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At the same time these same images were used to be included in training with 
noise, was used to add noise, the function of MatLab addnoise . 

The noise was added 0.02 salt and pepper, Figure 7 shows the images with noise. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 7. The Images With Noise added 

3.2.1   Proposed Architecture for Face Recognition 
Like on the first part, it is for voice recognition, will be, avoided training network a 
trial and error and I choose to use Hierarchical Genetic Algorithm; since it is neces-
sary to solve two types of optimization problems, such as: architecture (modules, lay-
ers and neurons) and the search for better training of an artificial neural network 
modules. 
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To define the chromosome of a Hierarchical Genetic Algorithms are must taken 
into account initial Architecture Neural Network so that it will decrement and at the 
same time optimizing the parameters of Modular neural network with the genetic al-
gorithm. The figure 8 shows this architecture similar to the architecture for voice. 

 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 

Fig. 8. Modular Architecture Proposals to Face 

Table 3. Images by module 

Number of Modules Images by module 

1 Modules     48  Sample Face 

1-24   Sample Face 
2 Modules 

25-48 Sample Face 

1-16   Sample Face 

17-32   Sample Face 3 Modules 

33-48   Sample Face 

1-12   Sample Face 

13-24   Sample Face 

25-36   Sample Face 
4 Modules 

37-48   Sample Face 
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3.2.1.1   Modular Neural Network For Face Recognition. For the development of this 
investigation for face, took place in the same way that the voice; the number of pic-
tures divided by the number of modules. 

The number of modules is determined by the Genetic Algorithm Hierarchical, there 
may be minimum 2 modules and maximum 4 modules. 

The entries of the modules are set out in Table 3. 

3.2.2   Method of Integration Modules in Face 
As in voice, this is by modulating number of images between the number of modules, 
and the method of integration is the same as that of the voice, as it does not feed mod-
ules with the same images. 

3.2.3 Chromosome of Hierarchical Genetic Algorithm for the Face 
It was proposed to create a chromosome similar to Figure 3.3 to 1096 bit, which in 
Table 4 describes the parameters of chromosome proposed Face. 

Table 4. Criteria Chromosome Nominated To Face 

Levels Of 
Chromosome Name 

# BITS in the 
Chromosome Descripsion 

Second Level Control Modules 4 bits 4  Modules 

First Level Control 
Layers On 

Module 
12 bits 

3 Layers For 
Module 

Nivel De Parámetros 
Neurons For 

Layer 
1080 bits 

90 Neurons 
For Layer 

3.3   Objective Function 

When it is intended to optimize a neural network, the objective function of a Genetic 
Algorithm is to minimize both the precision (f1) and complexity (f2) of the network 
which is defined by the number of active connections on the network; this is using the 
equation (1). [1] 

 

 
 

(1) 
 
 

Where N is the size of the vector, ỹi y yi, are output the network and the desired out-
put for the sample ith a vector test respectively. 

The fitness determines always the Chromosomes to be reproduced which will 
eliminate, the ability of chromosome hierarchical       genetic algorithm for voice and 
face; for optimizing neural network is determined by the function (2). 

 
(2) 

 

    N 

ƒ1=1/N∑(ỹi-yi) 

           i=1 

f(z)= α٠ rank [f1 (z)] + β٠ f2 (z) 
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Where α is the coefficient of the accuracy of weights; β is the ratio of the complexity 
of weights and rank [f1 (z)] ε Z + value ranking. 

The equation 2, was used to evaluate individuals of each generation in hierarchy 
genetic algorithm. 

The function is multiple goal, why they want to search for the best training [f1 (z)] 
and minimize architecture f2 (z), then: α has to be a number larger than β to be able to 
find a good training, because it is the alpha rank error; which case results are shown 
below; this find the Better training more beta number nodes by the f2 (z). 

3.4   Part Three: Fuzzy System 

It proposed a thesis as to allow recognition of individuals, it proposed a thesis as to al-
low the recognition of people so united by integrating information  2  important bio-
metric measures, such as: Voice and Face, to perform such recognition using artificial 
neural networks, In a manner that got a Modular Neural Network for each of the bio-
metric measures. 

Once they obtained the exits of the modules in each of the neural networks, was the 
integration of results using Gating Network, this allowed us to determine independently, 
that person belongs to the voice or face, because it gave us 2 results (one for each Meas-
ure Biometric), will tube that integrate those results to determine the identity of the per-
son, for this integration will developed a system of decision, it used Fuzzy Logic to take 
into account the uncertainty involves the decision-making process. 

In the diagram that shown in Figure 3, are displayed and more clearly, which is the 
system for the recognition of people through a system of decision diffuse. 

This phase consisted of a system that would allow diffuse integrate the results Gat-
ing Network, to determine the identity of the person. Figure 10 shows the fuzzy sys-
tem that was conducted for this research. 

 

 
Fig. 9. System Architecture Recognition of Persons 
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Fig. 10. Variable Input and Output System fuzzy 

 

Fig. 11. Functions Gaussians Membership of the Input Variables 

 

Fig. 12. Gaussians Membership of the Output Variables  

This fuzzy system was thought to have input 2 variable these are: Face and the 
Voice, and a variable exit which is: Person and the method of fuzzy inference Mamdani. 
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The membership functions of this fuzzy system are Gaussians, both for the entry to 
the exit and its parameters are as follows: 

 

• Low: The parameters of this function membership are [0.2 0]. 
• Medium: The parameters of this function membership are [0.2 0.5].  

[0.2 0]. 
• High: The parameters of this function membership are [0.2 1]. 

The rules are shown on table 5. 

Table 5. Rules Fuzzy System 

Reglas Face Voice Result 

1 Low Low Low 

2 Baja Medium Medium 

3 Baja High High 

4 Medium Low Medium 

5 Medium Medium Media 

6 Medium High High 

7 High Low High 

8 High Medium High 

9 Alta Alta Alta 

4   Results 

In the development of this research work a series of tests were carried out, To achieve 
optimization of the architectures of Modular neural networks we use Hierarchical Ge-
netic Algorithm in the case of the Voice and Face, as well as tests were carried out 
with the fuzzy systems, obtaining different results in the experiments. 

4.1   Part One: Voice Recognition 

We proceeded to develop programs in Matlab, for the optimization of the modular 
neural network with genetic algorithm. 

Some tests were made to optimize a modular neuronal network by means of the 
genetic algorithm whose values are in the table 6: 

4.2   Part Two: Face Recognition 

In this second phase the goal is to develop a Hierarchical Genetic Algorithm to seek 
the best training and minimizing the architecture neural network for modular to Face. 
The results of these experiments can be found in Table 8. 

Table 8 Results optimized with GA with 48 images for training, and 12 to identify. 
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Table 6. Parameters of the GA and RNA for Voice 

GA RNA 

Crossing Mutation GGap M. E Meta error Times 

0.5 0.1 0.5 trainscg 0.001 150 
   GA= Genetic Algorithm, GGap = Number of new individuals to create. 
   RNA= Data of the Artificial Neural Network, M.E= Method of training. 

Simulation results are shown in Table 7. Figure 13 shows the convergence of the 
genetic algorithm. 

Table 7. Optimized Results with Genetic Algorithms 

Test GA Arq Time Recognizes  Identifies 

Gen 20 44-38 35/36 12/12 
1 

Ind 10 48-45 

2 hrs 41 
min 27 seg 97.22% 100% 

Gen 15 45-43 31/36 10/12 
2 

Ind 13 41 

3 hrs 12 
min 28 seg 86.10% 83% 

Gen 10 44-37 36/36 12/12 
3 

Ind 5 44-44-46 

1 hrs 45 
min 9 seg 100% 100% 

Gen 40 52-50 28/36 08/12 
4 

Ind 20 35 

6 hrs 17 
min 3seg 77.70% 66% 

Gen 12 39-36 36/36 12/12 
5 

Ind 12 44-45  

2 hrs  5 min 
43 seg  100% 100% 

Gen 30 44-51 28/36 09/12 
6 

Ind 10 41 

3 hrs 8min 
33 seg 77.70% 75% 

Gen 15 39-40  35/36 11/12 
7 

Ind 10  42-52-34 

3 hrs 15 min 
56 seg  97.20% 91.60% 

Gen 10 48-46-45 36/36 12/12 
8 

Ind 10 41-48 

1hr 17 min 
7 seg 100% 100% 

Gen 15 45-38 34/36 11/12 

Ind 5 47 94.40% 91.60% 9 

  37-43 

3 hr  1 min 30 
seg 
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Fig. 13. Convergence of the algorithm genetic 

  
 

Traincsg was used to train the network with a goal error of 0.001 and executed 500 
times. 

4.3   Part three: Fuzzy System 

This section explains the results of the experiments of the part the Fuzzy System; 
where, the architecture was shown in Figure 9. 

Several Modular neural networks were trained whose architecture was suggested 
by the genetic algorithm in which it holds a good share of recognition in the case of 
voice, and not very successful in the case of Face, as well as training in which is not 
achievement get a high percentage of recognition, and this could help us to test the 
system later decision diffuse.  

As we look in Table 7 are training for Voice, where there are very good results and 
others not so good, just as it also happens in Table 8 in the case of Face.  
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In Table 9 shows the results obtained with the system diffuse type mamdani to 
identify the person, whose rules can be found in Table 5 with the best results of train-
ing for Modular Neural Network Voice and Face obtained with the Hierarchical Al-
gorithm Genetic. 

Table 9. Results of the fuzzy system to identify the people 

File 
voice 

File  
Face AnswerR AnswerV Sis. Dif Person 

1-6a 1-6ª 1 1 1 Daniel 

1-6a 1-6b 6 1 1 Daniel 

9-16a 7-12ª 2 2 2 Jazzyni 

9-16b 7-12b 2 2 2 Jazzyni 

17-24a 13-18ª 3 3 3 Karim 

17-24b 13-18b 3 3 3 Karim 

25-32a 19-24ª 4 4 4 Maribel 

25-32b 19-24b 3 4 4 Maribel 

33-40a 25-30ª 5 5 5 Mike 

33-40a 25-30b 5 5 5 Mike 

41-48a 31-36ª 2 6 6 Omar 

41-48b 31-36b 6 6 6 Omar 

 

 

Fig. 14. Results of the fuzzy system to identify the people 
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Table 10. Percent identification of the person fuzzy system 

Good Trainings  Trainings   

Regular 

Trainings  Ill 
 

100 % 83 % 16.6% 

In Figure 14 you can see the result, the method of integration. “The Winner takes 
all “(Gating Network), face and voice. And the result of the identification of the per-
son. There may be the case where the module of face says it is a person diferent that 
of the voice, this is why the fuzzy system decision was used. 

The activations (AnswerR and AnswerV) are the input variables for the fuzzy  
system. 

And the Exit fuzzy system is the result of the identification of the individual, with 
his two biometric measures (Face and Voice). 

5   Conclusions 

At the beginning of the research work it was uncertain about how the chromosomes 
should be used, it was thought to segment the voice and face to find the modules, used 
in previous works. This led us to: instead of segmenting, Why we not divide the num-
ber of samples between  the number of modules and in that way train the modular 
neuronal network in an automatically way by the GA . 

The best Modular Neural Network is obtained to develop modules in accordance 
with mistaken identity and the complexity of the modules, the best architecture con-
sists of two modules of the four modules proposed initially, for both Voice and Face. 

The results of the problem of Speech Recognition are good and show the feasibility 
of Hierarchical Genetic Algorithms for the optimization of a neural network topology 
modular, however, the GAs can require hundreds and thousands of evaluations which 
may take some time computer huge this could mean hours or days in order to obtain 
an optimum result, but also relies heavily parameters of both neural networks and the 
GA. 
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A New Biometric Recognition Technique Based on 
Hand Geometry and Voice Using Neural Networks and 
Fuzzy Logic 

Pedro Antonio Salazar-Tejeda, Patricia Melin, and Oscar Castillo 

Tijuana Institute of Technology, Tijuana BC. México 

Abstract. In this paper, we describe an application of biometric recognition that is structured 
basically with three inputs: the hand geometry, voice and image. The hand geometry is given 
by an image of “the palm” of the hand with a 480x640 size which is preprocessed with a feature 
extraction that uses computer vision techniques and with certain features we recognize the indi-
vidual. After that we preprocessed the image and get some variables as the fingers, palm, wrist, 
also a segment of the palm; they appear to be from a with a fuzzy system that will tell us how 
much they seemed to a certain person, comparing each variable given by the preprocessing of 
the image according to the data base that its already stored (all the images of the individuals, 
voice, etc.). 

1   Introduction 

Since ancient times, man has been concerned with security, and has laid hands on 
physical characteristics to achieve this end, today the subject to recognition and iden-
tification has become essential for achieving solve security problems that have arisen 
the solution to like, in recognizing a vehicle, a car registration, identification of a per-
son. Has been inspired by the mechanics of how a living being interacts with its envi-
ronment to make decisions, as an example, one could say that a human being is able 
to recognize a person through one of your senses, listening to his tone of voice, to 
identify any odor, even when viewing a person in a place with little light, is able to 
know who is, thanks to the senses that owns and pattern recognition analysis. The pat-
tern recognition, also called reading patterns, consist of identifying shapes and shape 
recognition, pattern recognition signals. Not only is a field of computer science, is a 
fundamental process that is found in almost all human actions [4]. 

2   The Problem 

The problem was solved by developing an implementation in Matlab 7.1 based on the 
analysis of voice, measurements of the geometry of the hand and similarity of the 
palms of the individual; techniques using hand geometry, voice and computer vision 
extraction of features, neural networks and fuzzy logic. 

Neural Networks were applied to a database of 29 persons which consisted of a 
sample of original sound (“which was the name") and 3 more variants which were the 
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same sounds original (116 samples in total), with the difference that these samples 
they had been implemented variations in the signal with respect to the original sam-
ple, this would be spelled later. On the other hand is working with a cut made to the 
palms which a neural network assessment to obtain a result of identification of an in-
dividual, this cut in the image were applied different techniques for extracting features 
regarding the image with the intention of starting from the general to the particular 
with regard to the image data to work with the neural network. Another key point for 
the application of neural networks is the need to find suitable architectures; it is note-
worthy that these were determined to trial and error. With regard to the geometry of 
the hand, was conducted in Matlab an algorithm which its purpose is to find some 
measurements on the image that happens to analyze. Finally, we developed two fuzzy 
systems, the first of which is responsible for assessing the results of the analysis re-
sulting geometry of the hand, and give an outcome, the second fuzzy system is  
responsible for evaluating the final results of each analysis, i.e. (the result of the ge-
ometry of the hand result of neural network + voice + result of the neural network 
palms = identification of individuals), see figure 1. 

 

Fig. 1. Proposed architecture for recognition 

3   Database 

3.1   Database of Sounds 

There is a database that consists in 116 sound of samples, of 29 different people, which 
recorded its name; these samples are divided in the following way, See the figure 2. 
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29 original files (feed network for training).  
29 with noise option # 1.  
29 with noise option # 2.  
29 with noise option # 3. 

 

 
 
 
 
 
 
 
 
 
 

File of original

File of sound number one

File of sound number two

File of sound number three 
 

Fig. 2. Example of the database of sounds 

3.2   Database of Hand Geometry  

There is a database that consists in 42 images of samples, three images for person, and 
14 people in total, of which in the case of geometry of the hand, was elected as one of 
three reference images to identify the two remaining images of each person, that is to 
say the database of 42 images of the 14 people alone were registered 14 images and 28 
images remaining were used to identify the individual, as is observed in the figure 3. 

3.3   Database of Part of the Hand Palm 

For the case of the neural network of part of the hand palm, of the same mentioned 
previous database new images of the process of part of the hand palm were obtained, 
42 samples in total of same 14 people, see figure 4.   

 

………………………: 64kbps 
………......….…: 8bits 

………………………….………...: mono 
………...……….: 8 KHz 

……………………………..: PCM 
….…………………………..….…..: 7.85KB 

Characteristic of the sound file 
 
Transmission speed 
Size of the sample of sound 
Channel        
Speed of sample of sound 
Format of audio  
Size 
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Fig. 3. Example of three samples images, each image is of different taking. Size of the image is 
480 x 640 of format jpg. 

 

Fig. 4. Example of three samples of images, each image is of different taking. Size of the image 
is 201 x 201 of format jpg. 

4   General Theory 

We describe in this section some basic concepts relevant to the paper. 
 

Biometrics: The term biometrics applies generally to science that is dedicated to the 
statistical study of the quantitative characteristics of living beings: weight, length, 
etc.. But in more recent times this term is also used to refer to the automatic methods 
that analyze certain human characteristics to identify and authenticate individuals 
[14]. 
 
Pattern Recognition: It is the science that is responsible for the description and classi-
fication (recognition) of objects, people, signs, representations, and so on. While the 
margin of applications is very wide, the most important are related to vision and hearing 
by a machine, in a manner similar to humans. Some examples of its application are: 

• Character Recognition  
• Industrial Applications  
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• Mapping medical applications  
• Guided Vehicle  
• Automatic Speech Recognition  
• Recognition biometric people 

Neural networks: They aim to mimic the shape of tiny scale operation of the neu-
rons that make up the human brain. Any development of the neural network has a lot 
to do with the neuro-physiology, it is not in vain to imitate a human neuron as accu-
rately as possible, Figure 5. 

 

Fig. 5. Structure of a biological neuron 

The ANNs (Artificial Neural Networks) were originally an abstract simulation of 
biological nervous systems, composed of units called neurons "or" nodes "connected 
with each other. These connections have a great resemblance to the dendrites and ax-
ons in the biological nervous systems [22] [15], see figure 6. 

 

 

                                  

 
 
 
 

Fig. 6. (a) Biological neuron (b) Artificial neuron 

Fuzzy Logic: It has two different meanings. In a narrow sense, is a fuzzy logic sys-
tem can be considered an extension of the multiple – valued logic. But in a broad 

(q)                                        (b) 
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sense is dominant, fuzzy logic is almost synonymous with the fuzzy set theory, a the-
ory that relates to object classes with undefined borders where membership is a matter 
of degree. The basic concept fundamental fuzzy logic is the linguistic variable which 
is a variable whose values are words rather than numbers. While the words are inher-
ently less accurate than the numbers, their use is closest to human intuition. Calculat-
ing with words rather than numbers lowers the cost of the solution.  
 
Geometry of the hand: The use of the geometry of various body parts to identify 
people, started as study [7] [14], at the time of the ancient Egyptians, although closest 
to our times can be found in the Bertillon system of the late nineteenth century. The 
authentication systems based on the analysis of the geometry of the hand are undoubt-
edly the fastest within the biometric: with a low probability of error in most cases, in 
approximately one second can determine whether a person is who is said. 

5   Identification Process 

The first step is the analysis of the complete image of the hand process based on the 
technique of the hand geometry, this analysis will give a result that later can be evalu-
ated with a Fuzzy System, this result that they can be (Identified, resemblance or dif-
ferent). See figure 7. 

The second step is the analysis of part of the image of the hand palm, by means of 
a neural network, the result is if the image that was given from entrance to the net cor-
responds the individual required, if this is certain will tell us identified if not, not 
identified. 

 

Fig. 7. Result of method of hand geometry 
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Step three, is the analysis of the sounds samples by means of a neural network, the 
result of the neural network is if the sound that was given from entrance to the net 
corresponds the individual required, if this is certain will tell us identified if not, not 
identified. 

Step four, for finish a fuzzy system evaluates the final results of the voice analyses, 
image of the hand palm and measures of geometry of the hand, and the system de-
cides if the individual is identified, resemblance or different, as a result final, as is ob-
served in the figure 1. 

6   Fuzzy System 

The fuzzy system presented in the figure 8, is the one that evaluates the result of the 
analysis of the geometry of the hand. 

 

Fig. 8. Fuzzy system of hand geometry 

The fuzzy system presented in the figure 9, is the one that evaluates the final re-
sults of the analysis of the geometry of the hand, voice and part of hand palm.  

The fuzzy system work in the following way has three of entrance variables that 
correspond to the final results of the analysis of the geometry of the hand, voice and 
part of palm of the hand. The variables of entrance netsound and netimg, will receive 
the number 0 when it is not identified (membership D) and 1 when it is identified 
(membership R), see figure 10 y 11. The i variable GM (Hand Geometry), they will re-
ceive the number 0 when it is not identified (membership D), number 0.5 when it is not 
seemed (membership P), and 1 when it is identified (membership R), see figure 12. 
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Fig. 9. Final fuzzy system 

 

Fig. 10. Functions of membership of the variable netsound 

The variable of outp person, will receive values from 1 to 3, the value 1 mean that 
alone one of the three analyses identifies to a person and the value 3 that the three 
analyses identified the person, see figure 13. 
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Fig. 11. Membership functions of the variable netimg 

 
Fig. 12. Functions of membership of the variable GM (Hand Geometry) 
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Fig. 13. Membership Functions of output variable of the final fuzzy system 

7   Results 

The voice neural network is defined as follows. 
Architecture of one hidden layer and one of the output. 
S1=58; 
net = newff(minmax(sonido),[S1 S2],{'logsig' 'purelin'},'trainrp'); 
Resilient backpropagation ‘trainrp’ 

In the search of the best architecture for an ANN of voice, the nine shown architec-
tures are the result of the best nine trainings found in the search of the identification 
percentage most high possible. The results of the training of the neural network are 
shown in the figure 14; the result number nine is the best. 

Analysis of hand geometry (HG) 

When running the algorithm of hand geometry, eight variables are obtained, ADI, 
ADM, ADA, ADMe, LDI, LDM, LDA y AM, see figure 7. In the figure 16, all the re-
sults of the analysis of hand geometry are observed. 

The values represented in the figure 15 are the values to compare, that is to say, re-
ferring to the point three, of the 42 images 14 were used to register each person and 
the 28 remaining images are used for evaluation of the analysis of the geometry of the 
hand, the result is shown in the figure 17. 

Example 
Original value. 
Person: 1 ADI= 66 ADM= 57 ADA= 65 ADMe= 52 LDI= 149 LDM= 197 LDA= 
155 AM= 193, see figure 15, number 1. 
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Value obtained to compare with the original. 
Person: 1 ADI= 63  ADM= 57  ADA= 61  ADMe= 48  LDI= 146  LDM= 194  LDA= 
151  AM= 184 see figure 16, person 1 image 2. 

 

Fig. 14. Is observed that the best training was the finish 

 

Fig. 15. Sample fourteen results of the 42 images analyzed for hand geometry 
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Fig. 16. Results of the analysis of hand geometry of fourteen people with their 3 images to 
compare 
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Fig. 17. Are observed all the results of the analysis of the hand geometry 

Differences with regard to the original values. 
Person: 1 ADI= 3  ADM= 0  ADA= 4  ADMe= 4  LDI= 3  LDM= 3  LDA= 4  

AM= 9 
These variables are labeled in three ways, Acep (for variables accepted), Pare (for 

similar variables), Dife (for different variables). 
X can have any value of (1...8), for the eight variables that one obtains of the 

analysis of the hand geometry.  
 
if (valorX >= 0)&&(valor1 <= 3) 
    Acep=Acep+1; 
end 
if (valorX >= 4)&&(valor1 <= 6) 
    Pare=Pare+1; 
end 
if (valorX >= 7) 
    Dife=Dife+1; 
end 
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The result: Acep=4.; Pare=3; Dife = 1.  
 
This result evaluated it the fuzzy system of hand geometry, see figure 8. 
  
Result = P (similar person). See figure 17, person 1 image 2. 
 
The neural network of the part of the hand palm 
 
Architecture of one hidden layer and one of exit. 
 
S1 = 56; 
net = newff(minmax(imagen),[S1 S2],{'tansig' 'logsig'},'trainscg'); 
 
Scaled conjugate gradient backpropagation ‘trainscg’ 
 
The network was fed with 28 of 42 images of 14 people, as mentioned in section 

three, see figure 4, and the 14 remaining images were used to identify. In figure 3 some 
results of the network are shown. The one selected was based on speed of training and 
recognition percentage and identification is the one in row number 6 of Table 1. 

Table 1. Some results of the neural network of images that were observed 

Time S1 Recognition Identification Method Error 

1.8seg 62 28 de 28 14 de 14 trainscg 0.00001 

8seg 27 18 de 28 5 de 14 trainscg 0.00001 

1.3seg 54 28 de 28 11 de 14 trainscg 0.00001 

1.6 56 26 de 28 10 de 14 traingdx 0.00001 

1.4 40 22 de 28 7 de 14 traingdx 0.00001 

1.4seg 56 28 de 28 14 de 14 trainscg 0.00001 

8   Conclusions 

In this paper, we have described an application of biometric recognition that is struc-
tured basically with three inputs: the hand geometry, the voice and an image of the 
hand palm. The hand geometry is given by an image of “the palm” of the hand with a 
480x640 size, which is preprocessed with a feature extraction that uses computer  
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vision techniques and with certain features we recognize the individual. Simulation 
results show the feasibility of the proposed approach. 
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Abstract. At present time, new advances in the generation of computational models can be ap-
plied to improve tasks in different areas of research. The hybrid computational models can be 
considered as new advances in science. In the present work a hybrid model has been proposed 
on the basis of a cellular automata and fuzzy logic to simulate, in space and time, the dynamics 
of a population structured by ages and where the changes in the levels of the biomass are in-
duced by a stochastic variation of the environment. The model can be used as computational 
tool in the area of the Biology to describe and quantify the changes that continuously occurs in 
the population, knowing not only their size and its structure, but the form and the intensity in 
which it changes and renews. 

Keywords: hybrid model, cellular automata, fuzzy logic, biomass. 

1   Introduction 

The satisfaction of human needs of natural resources implies creating a balance be-
tween the needs and the resources, in other words, the resources required by a human 
society that increase at certain moment must exceed the supply (Malthus 1798). In or-
der of handle this balance is necessary to have information about the current state of 
the environment and use efficient tools to predict possible changes of this state, due to 
diverse effects (Bulla and Rácz 2004). This implies knowing, in the area of the ecol-
ogy, the population dynamics to negotiate the biological resources and to evaluate the 
environmental consequences of the human actions. 

The population dynamics takes care of the study of the changes that the biological 
populations suffer as for size, physical dimensions of their members, age structure 
and sex and other parameters that define them, as well as of the factors that cause 
these changes and the mechanisms that produce them. The development and analysis 
of the mathematical models lead to a better and deeper interpretation of the dynamic 
processes that are produced in the populations. The formulation of the models is fo-
cused to the acquisition of new knowledge from the mathematical development or the 
population processes when allowing to draw greater conclusions and to obtain more 
complete results. In the last two hundred years a great variety of mathematical models 
on populations dynamics have been proposed (Molina 2004). In 1966, von Neumann 
introduced the Cellular Automata (AC), these mathematical models are broadly used 
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by scientists to model complex ecological systems and well known due to its mathe-
matical simplicity when not using differential equations (Wolfram (1986), Gutowitz 
(1991), Moreno et al. (2002), Molofsky and Bever (2004), Rohde (2005)). 

In the present work we constructed a model composed of a cellular automata and a 
fuzzy logic system that we call a 'hybrid model' to model the population dynamics 
structured by ages. The attributes or characteristic that are studied in all the popula-
tions, are the mortality, reproduction and migration. The transition function is defined 
in terms of these characteristics, which are induced by the environment stochastic 
variation and controlled by a fuzzy logic system. The join between cellular automata 
and the fuzzy logic system is given by the transition function definition, which deter-
mines the state of a cellular space's cell in a time unit. 

From the point of view of Zadeh (1975, 1988), founder of the fuzzy sets theory, 
any field can be represented by fuzzy sets wherein the benefits increase the ability to 
model problems of the real world. The fuzzy approach as a possible road to handle 
uncertainty is particularly useful to process uncertainty or imprecise data of the envi-
ronment. These can be defined as fuzzy sets that reflect better the continuous charac-
ter of the nature. 

Several models have been constructed combining cellular automata and fuzzy sets 
applied in different problems in the ecological investigation. For example, Di Stefano 
(2000) developed a model based on this combination for analysis of spread of epi-
demics, and Mandelas et al. (2006) developed a shell for modeling urban growth by 
using the same combination. However all they have differences in their construction, 
because their purposes are different. Our purpose is to represent environment vari-
ables by using fuzzy sets, whose combination is the result of the factors that deter-
mine the growth model of the population dynamics. 

In the second section of this paper a detailed description of the architecture of the 
hybrid model is presented. In the third section an implementation is made using a 
simulation program. We show trajectories described by the population dynamics be-
havior under different biological interpretations represented by means of the fuzzy 
rules. In the fourth section we finished with the conclusions about the applicability of 
the hybrid model. 

2   The Hybrid Model 

A model is a representation of a particular thing, idea or condition. The models can be 
very simple, such as models of logistical growth for species or extremely complex 
such as models based on individuals. In this study, a hybrid model is presented which 
is composed by a cellular automata and a fuzzy logic system wherein the union of 
both architectures is given by the transition function. The transition function is de-
fined in terms of the general characteristics of any study of populations' dynamics. 
The fuzzy logic system controls the environment factors that induce the population 
behaviour variation. 

2.1   Cellular Automata 

The Cellular Automatas (CA) are flexible and particularly useful for the investigation 
in space-temporary modeling of natural processes (Wolfram (1986), Czárán (1998)).  
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Fig. 1. The cellular automata architecture with neighborhood 1=r  for each cell 

The concept of a CA is based on the original Von Neumann’s idea (1966). A CA is a 
formal model composed of a rectangular region of MxN  cells in which the evolution 
of each cell depends on its present state and the state of its immediate neighboring 
cells (figure 1). All of the cells, at the same time, pass to the following generation ac-
cording to a transition function, being this same one for all the cells. Let C  the repre-

sentation of a cell, then ),( jiC  is the cell that is centered in the point of coordinates 

where Mi ≤≤1  and Nj ≤≤1 . 

Then, we defined the union of all the cells of the cellular automata by  

U
ij

jiCNM )},({),( =Ω . 

Each cell interacts with the others one within a finite neighborhood according to a 
local rule (gray blocks in figure 1). The cell neighborhood ),( jiC  in terms of a ra-

dius r  is represented by means of ),( jirΠ , which is defined as 
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where r  is a positive integer number and  k , l   are the coordinates of another cell 
where the magnitude of the difference between  i , k  and j , l  does not exceed the 

value r  for any case. The defined CA for this study considers the kind of Moore 
neighborhood ( 1=r ) with absorbent edges, wherein the cells of the edges do not 
have neighboring cells beyond of the grid limits (figure 1). 
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2.2   Population Dynamics 

Each CA cell is a fundamental element for the population change, in each cell exists a 
population of individuals structured in ages, which reproduce, die and emigrate to-
wards neighboring cells, reason why the contribution of all the cells that constitute the 

cellular space ( )NM ,Ω  results in the global dynamics of the population. Then total 

number of individuals in ),( NMΩ  is given by 

∑=
k

k tntN )()( . 

For each cell, let )),,(( tjiCnk  the number of individuals of the age class thk  

that at the same time t  is over the cell ),( jiC . Therefore, at time t  the total number 

)(tnk  of individuals of the age class thk  distributed in ),( NMΩ  is expressed by 

)),,(()( ∑∑=
i j

kk tjiCntn , 

and the number of individuals that are distributed in the cell ),( jiC  at time t  is ex-

pressed by means of 

( ) ∑=
k

k tjiCntjiCn )),,((),,( . 

Every population is constantly under the effect of opposed factors that at the same 
time tend to increase and diminish it. The size of the population depends at any mo-
ment on the existing balance among these factors. Therefore the transition function 
that calculates the number of individuals in a cell at time 1+t  is expressed in terms 
of the reproduction rate, mortality rate and emigration, wherein these factors are con-
trolled by a fuzzy logic system. 

Let 1μ , 2μ  and 3μ  the mortality rates of the individuals of the age class one, two 

and three respectively, therefore the number of surviving individuals in each age class 
at time t  is expressed by 

))),,((()),,(( 111 tjiCntjiCn μ− ,                                           (1) 

))),,((()),,(( 122 tjiCntjiCn μ− ,                                           (2) 

))),,((()),,(( 133 tjiCntjiCn μ− ,                                           (3) 

and let 1b , 2b  y 3b  the reproduction rates of the individuals of the age class one, 

two and three respectively 

))]),,((()),,(([ 1111 tjiCntjiCnb μ−                                        (4) 

))]),,((()),,(([ 1222 tjiCntjiCnb μ−                                      (5) 

))]),,((()),,(([ 1333 tjiCntjiCnb μ−                                       (6) 
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All the individuals generated by the reproduction belong to the individuals of the 
first age class at time 1+t . The individuals that time t  survive in the first class 
transfer to time 1+t  to the second class. In the same way it occurs with the indi-

viduals of the second class, the survivors to time t  pass at time 1+t  to the third 
class. The survivors in the third age class to time t  remain on it to time 1+t . This is 
expressed of the following way by taking the expressions (1), (2), (3), (4), (5) and (6)  

+−+−=+ ))]),,((()),,(([))]),,((()),,(([)1),,(( 122211111 tjiCntjiCnbtjiCntjiCnbtjiCn μμ
))]),,((()),,(([ 1333 tjiCntjiCnb μ−                                                      (7) 

))),,((()),,(()1),,(( 1112 tjiCntjiCntjiCn μ−=+                        (8) 

))),,((()),,(())),,((()),,(()1),,(( 1331223 tjiCntjiCntjiCntjiCntjiCn μμ −+−=+     (9) 

All the individuals have optimal environment conditions under which they can be 
developed better and even though all the conditions are not the optimal ones, each 
population will always try to be located in environment conditions where each one of 
these conditions is within tolerable limits that allow their normal development. In this 
context the function that measures the intensity of the individual’s emigration process 

that are in cell ),( jiC  towards the cells of their neighborhood ),( jirΠ  is defined 

by means of the following expression 

3,2,1)),,(( =∀Π ktjiE rk                                              (10) 

The emigration of the individuals from the ),( jiC  towards ),( lkC  occur when 

the cell ),( lkC  has better relative environmental factor than the cell ),( jiC , where 

this factor  is obtained by means of 
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Where in )(tf ij  is absolute environmental factor of cell ),( jiC . We supposed that 

the amount of individuals )(tek
klij→  of age class thk  that transfer themselves from 

the cell ),( jiC  towards the cell ),( lkC  is given by the expression 
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ijε  is a function of the gradient of relative environmental factors between 
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where )(t
kl

ij
α  is a random number distributed uniformly between 0 and 1. Therefore 

the transition function that calculates the number of individuals for the following gen-
eration of the cell ),( jiC  at time t  is expressed in terms of the equations (7), (8), 

(9) and (10) and given by 
 

    +−+−=+ ))]),,((()),,(([))]),,((()),,(([)1),,(( 122211111 tjiCntjiCnbtjiCntjiCnbtjiCn μμ    

    )),,(())]),,((()),,(([ 11333 tjiEtjiCntjiCnb rΠ+− μ                        

   )),,(())),,((()),,(()1),,(( 21112 tjiEtjiCntjiCntjiCn rΠ+−=+ μ    

+−+−=+ ))),,((()),,(())),,((()),,(()1),,(( 1331223 tjiCntjiCntjiCntjiCntjiCn μμ                              

)),,((3 tjiE rΠ                                                                                                  (11) 

2.3   Fuzzy Logic System 

Fuzzy logic (FL) is a area of soft computing that handles the fuzzy sets. These sets are 
defined by their membership functions, which indicate the degree of membership (a 
value between 0 and 1) of an element to given set (Anderson 1983). 

A fuzzy logic system is composed by five elements: fuzzifier, rules, inference 
mechanism and defuzzifier (figure 2). The system starts with the fuzzyfier, which 
maps the input values on the fuzzy sets that characterize to both, antecedents and con-
sequences. These sets are used as inputs to the inference mechanism through the rules. 
These rules are combined in the inference mechanism to produce a fuzzy exit  
(fuzzy sets), which it is mapped to a numerical value, by means of the defuzzyfier, to 
produce an output. 

The fuzzy logic system used in the transition function is made up of two antece-
dents and two consequent ones, whose relation controls the reproduction and mortal-
ity rates of a population structured in ages. 

In the hybrid model the population distributed in the CA cells is considered as popu-
lation of fish, whose pattern of growth describes a sigmoidal curve type (figure 3). In 
the very early stages of the life of the fish the increment in weight is very slow. But 
later, the growth goes accelerating until reaching approximately 1/3 of its maximum 
weight. After this, an inflection appears and the growth becomes more and more slow, 
and the fish goes coming closer asymptotically to his maximum weight (von Bertalanffy 
(1938)). 

The fish population growth pattern is taken as reference to structure the population in 
three fuzzy sets that represent three edge classes: Small, Young and Adult (figure 4). 
The fuzzy sets are defined by means of membership functions, which assign the mem-
bership that input values have on the fuzzy sets, being these values the rank of the 
weights that a fish is acquiring during all the stage of its life (figure 3). 
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Fig. 2. The fuzzy logic system architecture 

 
Fig. 3. Growth curve in weight of a fish population 

For example, a fish with a weight of 150 grams belongs to but of a fuzzy set being 
a fish that this stopping being small to happen to the youthful age, which means that 
the fish has a membership degree to the fuzzy set Small less than that membership 
degree that it has to the Young fuzzy set. That's why it is deduced that the fish has a 
membership degree equal to zero on the Adult diffuse set. The membership function 
that defines the class of fish Adult concludes with the pattern of growth of the fish de-
scribed in figure 3,  wherein it shows as the growth is become slower approaching as-
intotically to its maximum weight, in which it will remain until aging or dying. 
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Fig. 4. Fuzzy sets defined to the structure of ages 
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Fig. 5. Fuzzy sets defined to the environment factor 

The environment is another factor that has great influence in the development and 
the state of the fish populations. The conditions can be several that alter positively or 
negatively the size and the population dynamic balance, for example: temperature, sa-
linity, amount of oxygen, direction and wind force and currents, amount and quality 
of the organic material in suspension, structure of the land, etc. The environment must 
be considered like result of several variables that independently are affecting the 
population, causing some changes in its growth density and growth speed, as well as 
in any of the population parameters, changes that are evidently not related to the size 
of the same population.  

In the fuzzy logic system, the environment factor is considered a value that repre-
sents the result of several environmental variables, which means that these variables 
are not handled of independent way in this system. Consequently the environment 
factor is represented by fuzzy sets: Bad, Mid, High (figure 5). The rank of the input 
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Fig. 6. Fuzzy sets defined to the reproduction and mortality rates 

values for the membership function that define such fuzzy sets are values between 0 
and 10, nevertheless this rank can be changed in terms of others units of measurement 
in accordance with any variable that is considered. 

In the fuzzy logic system, the operations among sets are considered in terms of 
their membership functions and the results of these operations are the reproduction 
and mortality rates, which cause the changes in the population of each age class. 

The reproduction and mortality rates are characterized by the same fuzzy set, the 
figure 6 show in a graph the states in which the both variables can appear as result of 
the environment effects, but in the design of the fuzzy system these are managed in an 
independent way. The fuzzy logic system considers two antecedents ‘WEIGHT’ and 
‘ENVIRONMENT’, and two consequences ‘RT’ and ‘MT’. These are characterized 
by fuzzy sets defined for age structure and environment factor, and the consequences 
ones are characterized by the fuzzy sets defined to reproduction and mortality rates. 
The results of the implication depends on the composition of the decision rules, these 
must be adapted to the type behavior desired. In the present work the decision rules 
composition is presented according to population behavior characteristics considered 
for hybrid model  

• The young fish class is more able of reproducing than the adult fish class. 
• Therefore, the biggest reproduction is centered in the young fish class. 
• The small fish class is considered as unable of reproducing. 
• The small fish class reduces its mortality under good environmental conditions. 
• The small fish class has the highest index in mortality under environment low con-

ditions. 
• The young fish class resists more the environment unfavorable changes that the 

others classes. 
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Decision Rules 

1. IF (Environment is High) AND (Weight is Adult) THEN (RT is High) AND (MT 
is Mid)  

2. IF (Environment is Mid) AND (Weight is Adult) THEN (RT is Mid) AND (MT is 
High)   

3. IF (Environment is Bad) AND (Weight is Adult) THEN (RT is VeryLow) AND 
(MT is VeryHigh) 

4. IF (Environment is High) AND (Weight is Young) THEN (RT is VeryHigh) AND 
(MT is VeryLow) 

5. IF (Environment is Mid) AND (Weight is Young) THEN (RT is High) AND (MT 
is Mid) 

6. IF (Environment is Bad) AND (Weight is Young) THEN (RT is Low) AND (MT 
is Mid)  

7. IF (Environment is High) AND (Weight is Small) THEN (MT is Low)      
8. IF (Environment is Mid) AND (Weight is Small) THEN (MT is Mid)       
9. IF (Environment is Bad) AND (Weight is Small) THEN (MT is VeryHigh)       

The fuzzy logic system Integra in the transition function redefining itself the repro-
duction and mortality rates like functions that depend on the factor ‘ENVIRONMENT’ 
and of the weight of ‘FISH’, whose evaluation is given by the fuzzy logic system. The 
redefined function is given by  

)]),,((),()),,(()[,()1),,(( 11111
tjiCnweighttenvironmentjiCnweighttenvironmenbtjiCn

)]),,((),()),,(()[,( 3333 tjiCnweighttenvironmentjiCnweightenviromentb

)]),,((),()),,(()[,( 2222 tjiCnweighttenvironmentjiCnweighttenvironmenb  
  

                                     

                                                                                                                                                                   

                             

          

(12) 

3   Simulation Results 

In the hybrid model, the transition function is defined as a pattern of the population 
behaviour affected by environment (equation 12), whose objective is to generate the 
states (changes) of population in space and time (figure 7). 

En el fuzzy logic system, the fuzzy rules are combined, according to effects that 
the environment causes to population. The model considers that the environment must 
 

)),,((1 tjiE rΠ

+−=+ )),,((),()),,(()1),,(( 1112 tjiCnweighttenvironmentjiCntjiCn μ

)),,((2 tjiE rΠ

+−=+ )),,((),()),,(()1),,(( 2223 tjiCnweighttenvironmentjiCntjiCn μ

+− )),,((),()),,(( 333 tjiCnweighttenvironmentjiCn μ

)),,((3 tjiE rΠ
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Fig. 7. The hybrid model architecture 

vary at the time and in the cellular space, and must vary the effect among the different 
age classes. The transition function is applied synchronously to each cell in the cellu-
lar space; this opens an opportunity for the approach in the field of situations of local 
colonization and extinction.  

With the objective of seeing the feasibility of the model to describe the population 
dynamics, we implement in a simulation program the hybrid model and used Matlab 
7.1 to program it. The obtained results are divided in three cases of study. In the first 
of them, considered that the reproduction and mortality rates do not represent the re-
sult of a relation between the age classes and the environment (a controller does not 
exist in the transition function), are simply stochastic values uniformly distributed. 
This is, the fish reproduces or die without concerning the effect of environment on 
themselves (figure 8). 

In figure 8 we can observe that exist too much variation in the density of the popu-
lation of the three classes, without a clear tendency in the trajectories. The changes 
are given by the main characteristics in any study on population dynamics: the  
reproduction, mortality and emigration. Although the emigration is given by the envi-
ronmental favorability, the reproduction and the mortality not, these change without 
an order, its variation is stochastic without concerning the environment effect on each 
population. Leal (2004) made a detailed study of the variability and stability of the 
trajectories in a population structured by ages under the same characteristics of this 
case. 

In the following cases we introduce the fuzzy logic system, and defined through 
the fuzzy rules, the effect that the environment could have on the individuals.  There-
fore in a second case, the biggest reproduction is centered in the class of young fish, 
which means that this population resists more the unfavorable changes of the envi-
ronment that the other classes. The results of this case are shown in figure 9, wherein 
we can observe, how the adult fish population increases quickly, because the young 
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Fig 8. Density of population generated by the first case of study 
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Fig. 9. Density of the population generated by the second case of study 
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fish population go to the class of adult fish in more proportion, with a clear tendency 
towards a model of exponential growth in the three classes. 

In a third case, the rules change so the biggest reproduction effort is centered in the 
adult fish population, therefore the rules are combined by obtaining  

1. IF (Environment is High) AND (Weight is Adult)  THEN  (RT is VeryHigh) AND 
(MT is Low)  

2. IF (Environment is Mid) AND (Weight is Adult)    THEN  (RT is Mid) AND (MT 
is Mid)   

3. IF (Environment is Bad) AND (Weight is Adult)   THEN  (RT is VeryLow) AND 
(MT is VeryHigh) 

4. IF (Environment is High) AND (Weight is Young) THEN  (RT is Mid) AND (MT 
is VeryLow) 

5. IF (Environment is Mid) AND (Weight is Young)   THEN  (RT is Low) AND (MT 
is Mid) 

6. IF (Environment is Bad) AND (Weight is Young)  THEN  (RT is VeryLow) AND 
(MT is High) 

7. IF (Environment is High) AND (Weight is Small)  THEN  (MT is Low)      
8. IF (Environment is Mid) AND (Weight is Small)   THEN  (MT is Mid)       
9. IF (Environment is Bad) AND (Weight is Small)  THEN  (MT is VeryHigh)                 

In the figure 10 show that the class of young fish diminishes because they have a 
reproduction rate smaller than the class of adult fish and of the last example. Then, the 
young fish go to the class of adult fish in minus proportion. In addition, the class of 
adult fish has a mortality rate higher than the last example. 
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Fig. 10. Density of the population generated by the third case of study 
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Also, in figure 10 only the class of adult fish tends to grow exponentially, the oth-
ers two classes present a growth mode different. Those classes could maintain their 
density in a low level of threshold. 

4   Conclusions 

The combination of fuzzy logic with cellular automata allowed us to model the dy-
namics of a population, wherein we controlled the effects that the environment could 
cause to a population, according to different interpretations defined by the fuzzy sets 
and the combination from the fuzzy rules in each case of study. Nevertheless the in-
terpretations that we can represent with fuzzy logic system are limited, firstly because 
the environment is considered as a representative value of several variables that inter-
acts with the environment, which also cause changes in the population dynamics, and 
the interpretations that can be formed from the fuzzy sets that characterize to envi-
ronment and to population are few, this must to that only some of the combinations 
can be used because the representations must be similar to the reality. The tendencies 
to the exponential growth presented in figures 8 and 9, do not represent the generali-
zation for all interpretation of the environmental effects, can be expected another type 
of tendencies, more when are added more variables to the fuzzy logic system that  
allows to establish conditions that regulate the growth by different way. A right com-
bination of the fuzzy rules could represent the real interpretation of population behav-
iour in space and time.   
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Abstract. In this paper, the authors discuss a new synthesis approach to train associative 
memories, based on recurrent neural networks. They propose to use soft margin training for as-
sociative memories, which is efficient when training patterns are not all linearly separable. On 
the basis of the soft margin algorithm used to train support vector machines, the new algorithm 
is developed in order to improve the obtained results via optimal training algorithm also inno-
vated by the authors, which are not fully satisfactory due to that some times the training  
patterns are not all linearly separable. This new algorithm is used for the synthesis of an asso-
ciative memory implemented by a recurrent neural network with the connection matrix having 
upper bounds on the diagonal elements to reduce the total number of spurious memory. The 
scheme is evaluated via a full scale simulator to diagnose the main faults occurred in fossil 
electric power plants and taking into account three different cases.   

1   Introduction 

The implementation of associative memories via recurrent neural networks is dis-
cussed in [1], where a synthesis approach is developed based on the perceptron train-
ing algorithm. The goal of associative memories is to store a set of desired patterns as 
stable memories such that a stored pattern can be retrieved when the input pattern (or 
the initial pattern) contains sufficient information about that stored pattern. In practice 
the desired memory patterns are usually represented by bipolar vectors (or binary vec-
tors). There are several well-known methods available in the literature, which solve 
the synthesis problem of RNNs for associative memories, including the outer product 
method, the projection learning rule and the eigenstructure method, [2].  

Due to their high generalization performance, Support Vector Machines (SVMs) 
have attracted great attention for pattern recognition, machine learning, neural net-
works and so on, [3]. Learning of a SVM leads to a quadratic programming (QP) 
problem, which can be solved by many techniques [4]. Furthermore, the relation  
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existing between SVMs and the design of associative memories based on the general-
ized brain-state-in-a-box (GSB) neural model is formulated in [5]. 

On the basis of the optimal hyperplane algorithm used to train SVMs, an optimal 
training algorithm for associative memories has been developed and applied by the 
authors in [6] and [7]. The proof related to the convergence properties for this algo-
rithm when patterns are linearly separable, and the corresponding proof for the design 
of an associative memory via RNNs using constraints in the diagonal elements of 
connection matrix can be reviewed in [6] and [8].  

This paper proposes a new soft margin training for associative memories imple-
mented by RNNs. On the basis of the soft margin algorithm used to train SVMs as de-
scribed in [3], the new algorithm is developed in order to improve the obtained results 
via optimal training algorithm when the training patterns are not all linearly separable. 

2   Preliminaries 

This section introduces useful preliminaries about associative memories implemented 
by RNNs, the perceptron training algorithm and a synthesis for RNNs based on this 
algorithm, which is proposed in [1]. The class of RNNs considered is described by 
equations of the form 

sat( )

sat( )

dx
Ax T x I

dt
y x

= − + +

=
 , (1) 

where x is the state vector, y ∈ Dn = {x ∈ Rn | –1 ≤ xi ≤ 1} is the output vector,                
A = diag [a1, a2, …, an] with ai> 0 for i = 1, 2, ..., n, T ∈ Rnxn is the connection matrix 
with elements Tij ∈ R, I = [I1, I2,…, In]

T is a bias vector, and sat(x) = [sat(x1), …, 
sat(xn)]

T represents the activation function, where 
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>⎧
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 . (2) 

It is assumed that the initial states of (1) satisfy | xi(0) |≤ 1 for i = 1, 2, ..., n. System 
(1) is a variant of the analog Hopfield model with activation function sat(•). 

2.1   Synthesis Problem for Associative Memories Implemented by RNNs  

For the sake of completeness, the following results are taken from [1] and included in 
this section. A vector α will be called a (stable) memory vector (or simply, a memory) 
of system (1) if α = sat(β) and if β is an asymptotically stable equilibrium point of 
system (1). In the following lemma, Bn is defined as a set of n-dimensional bipolar 
vectors Bn = {x ∈ Rn | xi = 1 or –1 , i = 1, 2, ..., n }. For α = [α1, α2, …, αn]

T ∈ Bn de-
fine C(α) = {x ∈ Rn | xiαi > 1, i = 1, 2, ..., n }. 
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Lemma 2.1. If α ∈ Bn and if  

β = A-1(Tα + I) ∈C(α) , (3) 

then (α, β) is a pair of stable memory  vector and an asymptotically stable equilibrium 
point of (1). The proof of this result can be reviewed in [1].  

The following synthesis problem concerns the design of (1) for associative  
memories.  
 
Synthesis Problem: Given m vectors α1, α2, ..., αm in the set of n-dimensional bipolar 
vectors, Bⁿ, choose {A, T, I} in such a manner that: 

 

1. α1, α2, ..., αm are stable memory vectors  of  system (1); 
2. the total number of spurious memory vectors (i.e., memory vectors 

which are not desired) is as small as possible, and the domain (or  
basin) of attraction of each desired memory vectors is as large as  
possible. 

 

Item 1) of the synthesis problem can be guaranteed by choosing the {A, T, I} such 
that every αi satisfies condition 3 of Lemma 2.1. Item 2) can be partly ensured by 
constraining the diagonal elements of the connection matrix. 

In order to solve the synthesis problem, one needs to determine A, T and I from (3) 
with α =αk,  k = 1, 2,..., m. 

Condition given in (3) can be equivalently written as 

  if  1

    if  1

k k
i i i i

k k
i i i i

T I a

T I a

α α
α α

⎧ + > =⎪
⎨ + < − = −⎪⎩

 , (4) 

for k = 1, 2,..., m and i = 1, 2,..., n where Ti  represents the ith row of T, Ii denotes the 
ith element of I, ai is the i-th diagonal element of A, and k

iα is the i-th entry of αk.  

3   New Approach: Soft Margin Training for Associative Memories 

This section contains our principal contribution. First, we describe soft margin algo-
rithm used for SVMs when training patterns are not all linearly separable. We propose 
a new soft margin training for associative memories implemented by RNN (1). 

3.1   Soft Margin Algorithm 

Consider the case where the training data can not be separated without error by an 
SVM. In this case one may want to separate the training set with a minimal number of 
errors. To express this formally let us introduce some non-negative variables ξi ≥ 0,     
i = 1, …, l.  

We can now minimize the functional  

1

( )
l

i
i

σφ ξ ξ
=

=∑  (5) 
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for small σ > 0, subject to the constraints 

y (W ) 1 ,       1,..., .i i iX b i lξ+ ≥ − =i  (6) 

0,       1,..., .i i lξ ≥ =  (7) 

For sufficiently small σ the functional (5) describes the number of the training er-
rors. Minimizing (3) one finds some minimal subset of training errors 

(yi1, X i1), …, (y ik, X ik). (8) 

If these data are excluded from the training set one can separate the remaining part 
of the training set without errors. To separate the remaining part of the training data 
one can construct an optimal separating hyperplane. To construct a soft margin hy-
perplane we maximize the functional 

1

1
( )

2

l

i
i

W W C σξ
=

Φ = + ∑i  (9) 

subject to constraints (6) and (7), where C is a constant. The solution to the optimiza-
tion problem under the constraint (6) is given by the saddle point of the Lagrangian, 
as obtained in [3] 

1 1 1

1
( , , , , ) ( ) [ ( ) 1 ]

2

l l l

i i i i i i i
i i i

L W b R W W C y x W b rξ ξ α ξ ξ
= = =

Λ = + − + − + −∑ ∑ ∑i i  (10) 

where RT=[r1, r2, r3, r4, r5] enforces the constraint (6). In [3] is described that vector W 
can be written as a linear combination of support vectors when optimal hyperplane al-
gorithm is used for training. To find the vector ΛT=[λ1, …, λl] one has to solve the 
dual quadratic programming problem of maximizing 

21
( , ) [ ]

2
T TW P Q

C

δδΛ = Λ − Λ Λ +  (11) 

subject to the constraints 

0T YΛ =  (12) 

0δ ≥  (13) 

0 Pδ≤ Λ ≤  (14) 

where P is an l-dimensional unit vector, ΛT=[λ1, λ2, …, λl] contains Lagrange multi-
pliers, Y contains the entries, and Q is a symmetric matrix are the same elements as 
used in the optimization problem for constructing an optimal hyperplane, δ is a scalar, 
and (14) describes coordinate-wise inequalities. 

Note that (14) implies that the smallest admissible value δ in the functional (11) is  

maxδ λ= = max [λ1, λ2, …, λl] (15) 



 Soft Margin Training for Associative Memories 209 

Therefore to find a soft margin classifier one has to find a vector Λ that maximizes 

2
max1

( ) [ ]
2

T TW P QA
C

λ
Λ = Λ − Λ +  (16) 

under the constraints Λ ≥ 0 and (14). This problem differs from the problem of con-
structing an optimal margin classifier only by the additional term with λmax in the 
functional (11). Due to this term the solution to the problem of constructing the soft 
margin classifier is unique and exist for any data set. 

3.2   New Synthesis Approach 

Considering the soft margin algorithm, we propose the soft margin training for asso-
ciative memories implemented by RNNs which is described as follows. 

Synthesis Algorithm 3.1: Given m training patterns αk, k = 1, 2,…, m which are known 
to belong to class X1 (corresponding to Z = 1) or X2 (corresponding to Z = –1), the 
weight vector W can be determined by means of the following algorithm. 

 

1. Start out by solving the quadratic programming problem given by  

2
i i i i max1

(Λ ) (Λ ) [(Λ ) QΛ ]
2

T TF P
C

λ
= − + , (17) 

under the constraints 

i 1 2(Λ ) 0,  where T i i m
i i iY Y α α α⎡ ⎤= = ⎣ ⎦" ,  

0δ ≥ , 
 

0 Qδ≤ Λ ≤  
 

to obtain 1

i
2Λ , , ..., n

i i iλ λ λ⎡ ⎤= ⎣ ⎦ . 

2. Compute the weight vector 

1 12
1

, , ..., ,n n

m
i k k k i i i i

i j
k

W w w w wλ α α +
−

=

⎡ ⎤= = ⎣ ⎦∑ , (18) 

                 i = 1, 2, …, n, such that 

1    if   1,

1   if   1,

i k k
i i

i k k
i i

W b

W b

α ξ α
α ξ α

−

−

•

•

+ ≥ − =

+ ≤ − + = −
 (19) 

and for k = 1, 2, ..., m where 

...

1

k

k

α
α−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 . (20) 
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Choose A = diag [a1, a2, …, an]  with ai > 0. For i, j = 1,2,...,n choose i
ij jT w=  if i ≠ j, 

i
ij j i iT w a μ= + -1 if i=j, with μi >1 e 1

i
i n iI w b+= + . 

4   Application to Fault Diagnosis in Fossil Electric Power Plants 

In order to illustrate the applicability of the above proposed optimal procedure to train 
associative memories, based on recurrent neural networks, we discuss its application 
to fault diagnosis in fossil electric power plants. 

Fault diagnosis can be performed by a three steps algorithm [9]. First, one or sev-
eral signals are generated which reflect faults in the process behavior. These signals 
are called residuals. For the second step, the residual are evaluated. A decision has to 
be taken in order to determine time and location of possible faults from the residuals. 
Finally the nature and the cause of the fault is analyzed by the relations between the 
symptoms and their physical causes. 

In order to describe the fault free nominal behavior of the process under supervi-
sion, a model (mathematics or heuristic) is employed, giving to this concept the name 
of model-based fault diagnosis. Model-based approaches have dominated the fault di-
agnosis research [10], [11].   

Employing measurements of the process under normal operation, if possible, or 
with the help of a simulator as realistic as possible, a suitable neural network can be 
trained to learn the process input-output behaviour [12].  

This section presents a neural network scheme for fault diagnosis. It uses for resid-
ual generation a predictor which consists of a bank of recurrent multilayer perceptron 
neural network models. Fault diagnosis is carried out by an associative memory, 
which is based on a recurrent neural network, and trained with the proposed soft mar-
gin learning algorithm. 

4.1   Problem Description 

Fault diagnosis in fossil electric power plants is a task carried out by an expert opera-
tor. This operator recognizes typical faults via supervision of key variables evolution. 
Adequate fault detection and diagnosis aids will help the human operator in order to 
take the right decisions to maintain the required electric energy production, avoiding 
failures and even accident risky to humans and the environment [13].  

For this kind of plants, the main faults can be clustered as: faults related to tem-
perature control of the superheated and reheated steam, faults related to combustion 
control and faults related to the steam generator drum water level. In order to under-
stand the first group of faults, it is helpful to briefly describe the steam generator and 
superheated and reheated steam system. A simplified scheme is presented in Fig. 1, 
which illustrates the main components of a typical steam generator and superheating/ 
reheating system. 

The feedwater from the economizer enters the steam drum, and by forced circula-
tion, the drum water flows down the downcomers and rises through the furnace wall 
tubes to generate steam by means of the hot combustion gases in the furnace. The wa-
ter and steam in the drum are separated by steam separators and the steam becomes 
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Fig. 1. Steam Generator and Reheating / Superheating System 

superheated as it passes through various superheaters. The turbine exhaust steam is 
again superheated in the reheater before generating power in the intermediate and low 
pressure turbines. For this system, the main automatic control loops are the main 
steam temperature control and the reheated steam temperature control. The first one is 
controlled by the spray attemperator, and the second one is controlled by the burners 
inclination angle, as well as by other spray attemperator. 

As an example, we discuss a typical fault: waterwall tubes breaking, which is part 
of the above first fault group. It could be due to inadequate design, selection of mate-
rials, and/or unsuitable start-up operations [14]. In presence of this fault, the combus-
tion gases do not circulate properly and the waterwall tubes are not suitable cold.  
Additionally, the water level on the steam generator drum goes down and the level 
control tries to keep it by means of varying the feedwater flow. However if the maxi-
mum value of this flow is reached, and the water level continues to decrease, the low 
level monitoring orders the steam generator out of operation. If this order takes a long 
time to be executed or if it is not performed, the waterwalls tubes operating normally 
will suffer strong damages.  

This fault also diminishes the steam generator drum pressure, causing reductions 
on the superheated and reheated steam pressures. The combustion control tries to cor-
rect this situation by increasing the air flow and the fossil oil flow; these actions could 
increase the steam generator pressure beyond the allowed limit, and as a consequence 
the steam generator would be taken out of operation. If the human operator, in pres-
ence of this fault, does not take the adequate corrective actions, the healthy waterwalls 
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tubes could be damaged due to thermal stress. The turbine will also suffer from ther-
mal and mechanical stress.  

4.2   Scheme for Fault Diagnosis 

This scheme has two components: residual generation and fault diagnosis. The 
scheme is displayed in Fig. 2. The first component is based on comparison between 
the measurements coming from the plant and the predicted values generated by a neu-
ral network predictor. The predictor is based on neural network models, which are 
trained using healthy data from the plant. The differences between these two values, 
named as residuals, constitute a good indicator for fault detection. The residuals are 
calculated as 

�( ) ( ) ( )ii ir k x k x k= − , i = 1, 2, …, n. (21) 

where xi(k) are the plant measures and � ( )ix k  are the predictions. The residuals should 

be independent of the system operating state under nominal plant operating condi-
tions. In absence of faults, the residuals are only due to noise and disturbance. When a 
fault occurs in the system, the residuals deviate from zero in characteristic ways.  

For the second component, residuals are encoded in bipolar or binary vectors  
using thresholds to obtain fault patterns. These fault patterns are used to train an asso-
ciative memory based on a recurrent neural network, which is employed to carry out 
the fault diagnosis. Our proposed soft margin algorithm is used to train this associa-
tive memory.  
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Fig. 2. Scheme for Fault Diagnosis 
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4.2.1   Residual Generation 
For residual generation purposes the neural network replaces the analytical model de-
scribing the process under normal operation. The neural networks training is done us-
ing the series-parallel scheme [15]. After finishing the training, the neural networks 
can be applied for residual generation (Fig. 3); its weights are fixed and used as a par-
allel scheme to carry out predictions. The neural network predictor is designed using 
ten neural network models which were training via the Levenberg-Marquardt Learn-
ing Algorithm ([16], [17]). Each neural network is a recurrent multilayer perceptron. 
The networks have one hidden layer with hyperbolic tangent activation functions and 
a single neuron with a linear activation function as the output layer. The neural net-
work models are obtained employing the toolbox NNSYSID [18], which runs in 
MATLAB1.  

Process
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Network

+

-

Residual Generation

q-1

ˆ( )x k

( )x k( 1)u k−

Process

Neural
Network
Predictor

ˆ( )x k
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Fig. 3. Scheme for training and application of neural networks for residual generation 

All the models have eight input variables and a one output variable with a NNARX 
structure as: 

1 1 1 1 1 1 1

8 8

( ) [ , ( 1), , ( 6), ( 1), , ( 6),

                 , ( 1), , ( 6)]

x k F W x k x k u k u k

u k u k

∧
= − − − −

− −
 (22) 

2 2 2 2 2 1 1

8 8

( ) [ , ( 1), , ( 4), ( 1), , ( 4),

                 , ( 1), , ( 4)]

x k F W x k x k u k u k

u k u k

∧
= − − − −

− −
 (23) 

                                                           
1 MATLAB is a registered trademark of The Math Works, Inc. 
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3 3 3 3 3 1 1

8 8

( ) [ , ( 1), , ( 6), ( 1), , ( 6),

                   , ( 1), , ( 6)]

x k F W x k x k u k u k

u k u k

∧
= − − − −

− −
 (24) 

4 4 4 4 4 1 1

8 8

( ) [ , ( 1), , ( 6), ( 1), , ( 6),

                 , ( 1), , ( 6)]

x k F W x k x k u k u k

u k u k

∧
= − − − −

− −
 (25) 

5 5 5 5 5 1 1

8 8

( ) [ , ( 1), , ( 5), ( 1), , ( 5),

                 , ( 1), , ( 5)]

x k F W x k x k u k u k

u k u k

∧
= − − − −

− −
 (26) 

6 6 6 6 6 1 1

8 8

( ) [ , ( 1), , ( 3), ( 1), , ( 3),

                  , ( 1), , ( 3)]

x k F W x k x k u k u k

u k u k

∧
= − − − −

− −
 (27) 

7 7 7 7 7 1 1

8 8

( ) [ , ( 1), , ( 6), ( 1), , ( 6),

                 , ( 1), , ( 6)]

x k F W x k x k u k u k

u k u k

∧
= − − − −

− −
 (28) 

8 8 8 8 8 1 1

8 8

( ) [ , ( 1), , ( 6), ( 1), , ( 6),

                 , ( 1), , ( 6)]

x k F W x k x k u k u k

u k u k

∧
= − − − −

− −
 (29) 

9 9 9 9 9 1 1

8 8

( ) [ , ( 1), , ( 6), ( 1), , ( 6),

                 , ( 1), , ( 6)]

x k F W x k x k u k u k

u k u k

∧
= − − − −

− −
 (30) 

10 10 10 10 10 1 1

8 8

( ) [ , ( 1), , ( 6), ( 1), , ( 6),

                   , ( 1), , ( 6)]

x k F W x k x k u k u k

u k u k

∧
= − − − −

− −
 (31) 

where the input variables are  
 
u1(.) = Fossil oil flow (%). 

     u2(.) = Air flow (%). 
     u3(.) = Condensed water flow (Litres per minute). 
     u4(.) = Water flow to attemperator (Kg/s). 
     u5(.) = Feedwater flow (T/H). 
     u6(.) = Replacement flow to condenser ( Litres per second). 
     u7(.) = Steam water flow (Litres per minute). 
     u8(.) = Burner inclination angle (Degrees) 
    
and the output variables are 
    x1(.) = Load power (MW). 

x2(.) = Boiler pressure (Pa). 
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x3(.) = Drum level (m). 
x4(.) = Reheated steam temperature (ºK).  
x5(.) = Superheated steam temperature (ºK). 
x6(.) = Reheated steam pressure (Pa). 
x7(.) = Drum pressure (Pa). 
x8(.) = Differential pressure (spray steam – fossil oil flow) (ºK).  
x9(.) = Fossil oil temperature to burners (ºK). 
x10(.) = Feedwater temperature (ºK). 

Wi represents the weights for each neural network model. The lag structure of each 
neural network model is determined using the same criterion as in [18]. Once neural 
networks have been trained, its weights are fixed and used as a parallel scheme for 
carry out the predictions. Neural networks models are validated with healthy fresh 
data. Prediction errors close to 1 % are obtained for each model. We display in Fig. 4 
a validation test with neural network model given by equation (22) working as a par-
allel scheme to carry out predictions. This validation test considers load power 
changes, and it is assumed that initial condition for  neural network model is different 
to the data acquired x1(0) from full scale simulator. 
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Fig. 4. Validation test for neural network model given by equation (32) working as a parallel 
scheme 

The residual generation scheme is implemented to six faults: waterwall tubes 
breaking, superheater tubes breaking, superheated steam temperature control fault, 
dirty regenerative preheater, velocity varier of feedwater pumps operating to maxi-
mum value and blocked  fossil oil valve named as fault 1 to fault 6, respectively. For 
faults 1 to 4 , data bases are acquired with a full scale simulator for 75% of initial load 
power (225 MW), 15 % of severity fault, 2 minutes for inception and 8 minutes of 
simulation time. Furthermore, for fault 5 and fault 6 the simulator has only available 
severity and inception which are chosen as 15 % and 2 minutes, respectively.  For 
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these two faults, data bases are acquired for 3 and 4 minutes of simulation time, re-
spectively. The fault 5 is very critical because it can shoot the drum level alarm and 
break out of operation the fossil electric power plant. It is clear that fault 6 is visible 
when load power is changed by operator because the fossil oil valve does not work 
adequately. In six cases, residuals are close to zero during time for inception. After 
this interval, residuals deviate of zero in different ways. The residuals for fault 1 and 
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Fig. 5. Residuals for fault 1 
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Fig. 6. Residuals for fault 5 
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fault 5 are displayed in Fig. 5 and Fig. 6. In Fig. 7 a load power change at 140 s can 
be seen; after this change, the load power decreases due to that the fossil oil valve is 
blocked. Fig. 8 displays residuals for fault 6 which are closed to zero before the valve 
is blocked. Once the valve is blocked, the fault is not detected until the operator  
carries out the load power change and the residuals starts its deviation from zero in 
distinctive ways to indicate the fault 6 is occurring. 
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Fig. 7. Load power change made by the operator to detect  fault 6 
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Fig. 8. Residuals for  fault 6 
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4.2.2   Fault Diagnosis 
Fig. 9 presents a scheme to carry out the fault diagnosis via this associative memory. 
The previous stage generates a residual vector with ten elements which are evaluated by 
detection thresholds. Detection thresholds are contained in Table 1. This evaluation pro-
vides a set of residuals encoded (bipolar vectors) [s1(k), s2(k), …, s10(k)]T where 

1 if 
( ) ,  1, 2, ...,10.

1 if 
i i

i
i i

r
s k i

r

τ
τ

− <⎧
= =⎨ ≥⎩

 (32) 

Detection thresholds are determined taking into account the following criteria: 
 

1. They are selected bigger than the corresponding prediction errors. 
2. In [13], it is explained how each fault evinces on steam generator operation 

variables. Based on this information, thresholds are selected by trial and error, 
in order to reproduce these behaviors. 

3. Encoded residuals are all equal to -1 to indicate normal operating conditions. 
 

Residuals are encoded on-line for every fault. Encoded residuals for fault 1,  fault 5 
and fault 6 are displayed in Fig. 10, Fig. 11 and Fig. 12. Fault 1 presents an evolution 
as indicated; encoded residuals values before inception (2 minutes) have elements 
 

Table 1. Detection thresholds 
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Fig. 9. Scheme for fault diagnosis 

 Residuals

 Detection 
Thresholds 

 Associative
Memory 
  for 

Diagnosis 

 Bipolar
Vector

Fault i



 Soft Margin Training for Associative Memories 219 

equals to –1 indicating normal operating condition. After this time, some components 
of encoded residuals starts to take values equal to +1 indicating that a fault is present. 
When fault evolution time is over the encoded residuals do not change anyway. Fault 
5 and fault 6 do not have evolution time. For these faults, some residuals present tran-
sient values, which are used for fault classification. Once residuals are encoded, it is 
necessary to analyze them to choose the fault patterns to store in the associative mem-
ory. This selection is done in order to discriminate adequately every fault, to reduce 
false alarms and to isolate fault as soon as it is possible.  

The obtained patterns are used, based on the synthesis algorithm proposed by us to 
train the recurrent neural network and to design the respective associative memory as 
a way to isolate the faults. Fault patterns are contained in Table 2 where fault 0  
pattern is included to denote a normal operating condition.  

Table 2. Fault patterns to store in associative memory 

α0
 α1 α2 α3 α4 α5 α6 

-1 1 -1 -1 -1 -1 1 
-1 1 -1 -1 -1 -1 -1 
-1 1 1 1 1 1 1 
-1 1 -1 1 -1 -1 -1 
-1 1 1 1 -1 -1 1 
-1 1 -1 1 -1 1 1 
-1 1 1 1 1 -1 1 
-1 -1 -1 -1 -1 -1 1 
-1 1 -1 -1 -1 1 1 
-1 1 -1 -1 -1 -1 1 
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Fig. 10. Encoded residuals for  fault 1 
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Fig. 11. Encoded residuals for  fault 5 

0 50 100 150 200 250 300
-1

0

1

s1

0 50 100 150 200 250 300
-1

0

1

s2

0 50 100 150 200 250 300
-1

0

1

s3

0 50 100 150 200 250 300
-1

0

1

s4

0 50 100 150 200 250 300
-1

0

1

s5

time (s)

0 50 100 150 200 250 300
-1

0

1

s6

0 50 100 150 200 250 300
-1

0

1

s7

0 50 100 150 200 250 300
-1

0

1

s8

0 50 100 150 200 250 300
-1

0

1

s9

0 50 100 150 200 250 300
-1

0

1

s1
0

time (s)

fault inception time 

 
Fig. 12. Encoded residuals for  fault 6 

The soft margin training algorithm is encoded in MATLAB. The number of  
neurons is n=10 (fault pattern length) and the patterns are m=7 (number of fault pat-
terns). The Lagrange multipliers matrix LM= [Λ1, Λ2

, …,Λn], the weight matrix 
WM=[W1, W2, …,Wn+1] and the bias vector BV=[b1, b2, …, bn] are obtained as in (33), 
(34) and (35). The matrices A, T and I are calculated as in (36), (37) and (38).  
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0.00 0.00 0.10 0.00 0.02 0.05 0.10 0.00 0.05 0.00

0.08 0.12 0.00 0.10 0.00 0.00 0.00 0.06 0.06 0.08

0.00 0.00 0.00 0.08 0.10 0.10 0.03 0.02 0.00 0.00

0.09 0.04 0.00 0.10 0.08 0.10 0.03 0.00 0.10 0.09

0.00 0.00 0.06 0.00 0.10 0.08 0.10 0.00 0.04 0

LM =
.00

0.05 0.00 0.03 0.03 0.10 0.10 0.10 0.02 0.10 0.05

0.07 0.06 0.00 0.08 0.04 0.03 0.03 0.10 0.02 0.07

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

, (33) 

0.51 0.37 0.07 0.22 0.22 0.22 0.07 0.37 0.37 0.51 0.22

0.30 0.42 0.18 0.68 0.30 0.06 0.06 0.18 0.18 0.30 0.30

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.26 0.43 0.08 0.64 0.61 0.26 0.08 0.08 0.08 0.26 0.26

0.13 0.04 0.13 0.
WM

− −
− − −

− −

=
00 0.13 0.13 0.22 0.04 0.04 0.13 0.04

0.10 0.03 0.10 0.05 0.10 0.23 0.03 0.03 0.16 0.10 0.03

0.03 0.03 0.16 0.03 0.03 0.03 0.23 0.03 0.03 0.03 0.10

0.50 0.30 0.30 0.22 0.10 0.10 0.10 0.70 0.30 0.50 0.50

0.14 0.08 0.02 0.00 0.02 0.14 0.02 0.0

− − −
− − −

− 8 0.20 0.14 0.02

0.51 0.37 0.07 0.22 0.22 0.22 0.07 0.37 0.37 0.51 0.22

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

, (34) 

 

[ 0.07 0.80 0.80 0.52 0.16 0.20 0.26 0.88 0.05 0.07]TBV = − − − − − , (35) 

  of 10 X 10A Identity matrix=  ,  (36) 

1.00 0.37 0.07 0.22 0.22 0.22 0.07 0.37 0.37 0.51

0.30 1.00 0.18 0.30 0.06 0.06 0.06 0.18 0.18 0.30

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.26 0.43 0.08 1.00 0.26 0.26 0.08 0.08 0.08 0.26

0.13 0.04 0.13 0.13 1.00 0.13 0.22 0.04 0.
T

−
− −

−

=
04 0.13

0.10 0.03 0.10 0.10 0.00 1.00 0.03 0.03 0.16 0.10

0.03 0.03 0.16 0.03 0.10 0.03 1.00 0.03 0.03 0.03

0.50 0.30 0.30 0.10 0.16 0.10 0.10 1.00 0.30 0.50

0.14 0.08 0.02 0.02 0.10 0.14 0.02 0.08 1.00 0.14

0.51 0.37 0.07 0.22 0.02 0.22 0.0

− − −
− −

−
− 7 0.37 0.37 1.00

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

,  (37) 

[ ]0.29 1.10 0.80 0.78 0.21 0.23 0.36 1.38 0.02 0.29
T

I = − − − − − . (38) 

 

It is worth to mention that all diagonal elements in matrix T satisfies the optimal 
constrainst Tii ≤  ai  in order to reduce the total number of spurious memories as de-
scribed in [1] and [6]. New soft margin training algorithm improves the obtained re-
sults via optimal training developed by the authors where T88 = 2.59 > a8  and w88 = 
1.59 >1 does not satisfy the corresponding optimal constraint as obtained in [7 p. 60]. 
Using soft margin training, T88 = a8=1 and w88 = 0.7 < 1 are obtained.  

The associative memory is evaluated with these matrices fixed using encoded re-
siduals as input bipolar vectors. According to encoded residuals analysis and selected 
fault patterns, if an encoded residual as an input bipolar vector contains sufficient in-
formation about stored pattern in associative memory then corresponding fault pattern 



222 J.A. Ruz-Hernandez, E.N. Sanchez, and D.A. Suarez 

is retrieved. Three cases are considered for fault diagnosis via this associative mem-
ory using full scale simulator as plant. These cases are described as follows. 
 

Case 1: Fault diagnosis when load power is constant. Fig. 13 displays retrieved fault 
pattern by the associative memory when load power is constant and fault 1 appears. It is 
clear that fault pattern α1 is retrieved when encoded residuals as illustrated in Fig. 10 
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Fig. 13. Fault pattern retrieved by associative memory, fault 1 
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Fig. 14. Fault pattern retrieved by associative memory, fault 5 
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contain enough information about this fault pattern. Fault pattern α1 is retrieved be-
fore fault evolution time is finished.  

For this same case, Fig. 14 displays retrieved fault pattern by associative memory 
when fault 5 occurs. Fault pattern α5 is retrieved before fossil electric power plant is 
forced by this fault to take out if operation. As explained for residual generation, fault 
6 is not detected when load power holds constant and then fault 6 diagnosis is not 
considered in this case. 
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Fig. 15. Load power changes free of faults 
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Fig. 16. Encoded residuals when load power changes are made by the operator 
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Fig. 17. Fault pattern retrieved by associative memory when load power changes are made by 
the operator 
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Fig. 18. Load power changes made by the operator when fault 1 occurs 

Case 2: Normal operating conditions when operator carry out load power changes 
free of faults). In this case, the proposed scheme for fault diagnosis is evaluated in 
presence of load power changes free of faults. This changes are generally carried out 
by the operator (see Fig. 15). Encoded residuals as input bipolar vector to associative 
memory are displayed in Fig. 16 which shows that s6 (k) take values between –1 and 
+1 during a short transient time. However, in Fig. 17 the associative memory retrieves 
α0 indicating normal operating conditions. 
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Case 3: Fault diagnosis when the operator is carrying out load power changes. This case 
considers a fault appearing when the operator carries out load power changes to satisfy 
the electric power demand requirement by the users. As in the first case, faults have an 
inception time of 120 s.  Fig. 18, 19 y 20 illustrate load power changes made by the  
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Fig. 19. Input bipolar vector to associative memory when load power changes are made by the 
operator and fault 1 occurs 
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Fig. 20. Fault pattern retrieved by associative memory when load power changes made by the 
operator and fault 1 occurs 
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Fig. 21. Load power changes made by the operator when fault 5 occurs 
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Fig. 22. Input bipolar vector to associative memory when load power changes made by the op-
erator and  fault 5 occurs 

operator, encoded residuals used as input bipolar vector to associative memory and  
retrieved fault pattern when fault 1 occurs, respectively. As expected, fault pattern α1is 
retrieved.  

Fig. 21 illustrates load power changes made by the operator when fault 5 has  
occurred. After 170 seconds, fossil electric power plant is out of operation. Fig. 22  
illustrates encoded residuals used as an input bipolar vector to associative memory 
and Fig. 23 displays retrieved fault pattern which corresponds to α5. Despite this fault 
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is very critical, fault diagnosis is fast. For fault 6, retrieved fault pattern is only dis-
played in Fig. 24 due to that load power change used for fault detection and corre-
sponding encoded residuals have been illustrated in Fig. 8 and Fig. 12, respectively. 
Retrieved fault pattern corresponds to α6 to indicate that fossil oil valve is blocked. 
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Fig. 23. Fault pattern retrieved by associative memory when load power changes are made by 
the operator and fault 5 occurs 
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Fig. 24. Fault pattern retrieved by associative memory when load power changes are made by 
the operator and fault 6 occurs 
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4.2.3   Diagnosis Results 
Diagnosis results based on associative memory must be useful to the operators. In or-
der to this requirement in Fig. 25 and 26 are displayed the results for fault 1 diagnosis 
considering case 1 and case 3, respectively. Diagnosis results show that two logic  
values are possible for each fault indicator, the logic state placed as 1 indicates that 
fault 1 pattern has been retrieved by associative memory and the logic state placed as 
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Fig. 25. Diagnosis results for fault 1, case 1 
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Fig. 26. Diagnosis results for fault 1, case 3 
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Fig. 27. Diagnosis results when the operator carries out load power changes free of faults, case 2 

0 indicates that any other fault is not occurring. Similar diagnosis results are obtained 
when other faults are appearing. 

Finally, Fig. 27 illustrates the corresponding results when load power changes free 
of faults are carried out by the operator. The logic state for each indicator is zero, then 
fossil electric power plant is operating on normal conditions. This information is very 
easy to be interpreted by the operator.  

5   Conclusions 

The obtained results illustrate that soft margin training proposed in this work is ade-
quated to train associative memories based on RNNs. By means of this new approach, 
a n associative memory is designed and applied to fault diagnosis in fossil electric 
power plants. This application considers three cases to evaluate its robustness. Using 
soft margin training, all diagonal elements on connection matrix T are equals to di-
agonal elements in matrix A. This fact indicates that the total number of spurious 
memories is reduced. As a future work, it is necessary to analyze convergence proper-
ties for this new algorithm and it is necessary to establish the corresponding properties 
on connection matrix T.  
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Abstract. In recent years, social simulation has become one of the main tools for social re-
search due to its ability to explore and validate social phenomena. While simulations tradition-
ally consider populations as whole, and as such they tend to miss individual decisions and cul-
tural reasons for actions. Our work focuses on the need for models that take into account 
personality for individuals, and its importance for characterizing virtual persons inside a simu-
lation. We discuss different personality models and define a Systemic Constructivist Fuzzy 
Model that includes Transactional Analysis Theory as a basis for defining personality structure 
and behavior. An example is overviewed in a simulation for a typical social interaction case 
study. An autonomous intelligent agent is implemented, and the corresponding interactions 
with other agents inside a simulation are analyzed. Several diagrams in UML representation are 
given in order to discuss design and implementation features in Agent Oriented Paradigm. We 
conclude with a discussion on how this approach helps to a social scientist explore social  
processes and individual behavior in a more systematic way. 

Keywords: Social Simulation, Personality, Virtual Persons, Multi Agents Systems, Transac-
tional Analysis. 

1   Introduction 

Simulations as a research tool have gained more attention by researchers as a possibil-
ity for the study and understanding of social phenomena. Several disciplines have 
adopted it as a regular tool with success to generate data that closely resembles  
experimental results. 

Traditionally, social sciences use statistical methods for creating and studying 
models that describe observed phenomena, but the advent of emergent systemic ap-
proach has made the possibility of creating new software is more and more appealing.  

In artificial societies, one interesting and challenging task is to show interaction be-
tween individuals, in a process where the personality of the actors comes to light. 
Several proposals have been made on how to achieve this and the Multi-Agent Sys-
tems (MAS) paradigm—along with other cognitive model—seems to be a promising 
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option to model and implement virtual persons in artificial worlds. On the one hand, 
agent technology adapts very well to model issues of real-life human behavior, such 
as adaptability, mobility, learning, reasoning, and personality. Moreover, cognitive 
models represent naturally what people think or know. Even though the MAS para-
digm is not limited to any particular discipline, it is still not a fully developed tech-
nology. A growing literature is currently being developed; one that should leads us to 
further advance a modeling strategy of computer programs that behave and think 
more and more like human.  

Getting closer to a virtual person model is an important challenge to undertake, 
since it is in the cross path of many different disciplines such as philosophy, psychol-
ogy, cognitive sciences, sociology, communications, artificial intelligence, cybernet-
ics, and others. With that in mind, what we are interested is in creating is artificial  
societies with distinct individuals, and claim to achieve that by following a MAS ap-
proach and psycho-cognitive theories in order to replicate human behavior by simulat-
ing internal processes that occur in human minds and those characteristics that psy-
chologists consider as driven by personality.  

The proposal of this document is to use autonomous intelligent agents and cogni-
tive-psychological theories to simulate realistic persons. In particular, we focused on 
the topic of personality with the purpose of providing a tool that allows for agents to 
have a personality profile. 

A well known technique used by therapists all over the world to identify personal-
ity profiles that describe communication conflicts between individuals in a very suc-
cessful way is Transactional Analysis (TA). A tool that implements such a technique 
enables a social scientist to generate a whole spectrum of behaviors that will lead to 
finding explanations for the underlying mechanisms of human interaction. 

An advantage of using this technique is that it is well documented, it was derived 
form practice and therapists experience, and that it has proven useful for explaining 
and solving real-life communication problems between individuals. Because its con-
cepts are based on real life experience, TA has the advantage of being intuitive, easy 
to learn and understand by people that are not experts in psychology. 

On the next section, we introduce the core concepts considered into this paper. 
Section 2 we introduce to Minsky´s theory of mind and in Section 3 we introduce to 
the theory of Zadeh concerning to perceptions.  Section 4 we propose a person archi-
tecture and in Section 5 we show several agent design diagrams on UML. Section 7 
discusses some positions about cognitions-action agents and Section 8 presents our 
conclusions. Finally section 9 concerns to future work. 

1.1   Multi Agents Systems (MAS) 

From a computational systems point of view, an agent is a computational process that 
implements autonomy (through internal decision strategies) and communication skills 
(through a set of symbols and semantics associated to those symbols). Through their 
actions, agents make a system functional. For FIPA (Foundation for Intelligent Physi-
cal Agents), concrete instances of this abstraction are key elements for implementing 
and application according to a given agent architecture [1]. 

MAS are built by multiple layers of interacting agents. Each of these instances is 
prepared for interchanging messages with other agents and show group behavior. 
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These agent’s capacities for interacting as well as their capacities for autonomy and 
adaptability are determined by the type of research they are being used for, and gener-
ally have a life time and evolve inside the virtual world that contains them. MAS have 
evolved and the new tools seem able to escalate them in various ways, for example, 
every time more and more concurrent agents can be used at the same time, or the ca-
pacity to process more internal processes inside each agent is achieved. 

1.1.1   Intelligent Autonomous Agents 
Agents are normally defined as entities with attributes that are considered useful in a 
particular domain. This is the case of intelligent agents, where agents are seen as enti-
ties that emulate mental processes or simulate a rational behavior [2]; personal assis-
tants, where agents are entities that help users with their tasks; mobile agents, where 
entities are capable of traveling inside a network in order to achieve their goals;  
information agents, where agents organize in a coherent way data gathered from dif-
ferent and sometimes unrelated places; and autonomous agents, where agents are  
capable of achieving tasks in an unsupervised way.  

Flores-Mendez makes an interesting list of common agent attributes [3]: 

• Adaptation: The capability for making internal changes through learning and ex-
perience. 

• Autonomy: Reflecting important characteristics of the entity, which is goal ori-
ented, proactive and the existence of a decision-making mechanism. 

• Collaborative Behavior: refers to the ability to work with other agents for a com-
mon objective. 

• Reasoning: Ability to infer new knowledge.  
• Communication: Ability to communicate at the knowledge level.  
• Mobility: Ability to migrate from one computer (container or world) to another. 
• Personality: Ability to manifest behavioral attributes commonly ascribed to hu-

mans.  
• Reactivity: Ability to “feel” its environment and act in a selective way. 
• Temporal continuity: Identity and states persistence through long periods of time. 
• So, we refer to [4]: 
 
“A software agent is an interface that looks like a person, acts like a person and even appears 
to think like one” [4], and “An agent has mental properties, such as knowledge, belief, inten-
tion and obligation. In addition, it may have mobility, rationality …” [4] 
 

Based on the above description, our work is based on the idea that it is possible to 
achieve a “virtual person” based on agent architectures. 

1.2   Adaptive Complex Systems 

Adaptive Complex Systems are used to study natural and artificial systems generally 
defined by populations of adaptive agents that interact in a non-lineal way, and where 
an emergent property is created as a result of the interaction  [5]. Even though  
there are several approaches to address and analyze complex systems, one common 
approach involves investigating adaptive complex systems by building systems based 
on artificial intelligence [6] [7]. 
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1.3   Personality 

To talk about personality means to talk about people. Different theories have been de-
veloped over the years, but it is in the last decades that a systemic approach has im-
proved those theories, allowing us to pursue the modeling of these theories with 
MAS.  

1.3.1   Psychoanalysis 
Freud’s proposed Psychoanalysis Theory absolutely revolutionized the way in which 
we understand human behavior. Freud draws the attention to the idea that in human 
mind we find multiple processes, including dynamics that generate tension over moti-
vations. In his seminal propositions, Freud introduced concepts such as libido, ego, 
superego, consciousness, etc., which can be thought of representing internal energies 
or sub-systems in tension. These potentially conflicting produce—as the resultant en-
ergy—observed behavior. Each system processes different types of information and 
represent different types of knowledge. All knowledge (learned or experienced) is 
taken into account by Freud [8], whether it was acquired from childhood or from the 
way in which people communicate with their environment, and in general referring to 
the way in which people handle internal and external drives. Freudian theories 
evolved in many different ways, and became a method for analyzing personality and 
therapeutic techniques. 

1.3.2   Psychodynamics 
Freud associated different systems that drive personality as an emergent behavior, 
since they are the result of the interaction of various dynamical systems (similar to a 
thermo dynamical system). The components of these systems potentially engage in 
competition among them, generating tensions throughout the general system. These 
tensions, if not liberated, can be responsible for observed pathological behavior [8]. 

1.3.3   Reflexive Knowledge Versus Embodied Knowledge 
In relation with our research, it is worth mentioning the HUMAINE Group [9], as it is 
also involved in research intended to understand emotions and how they can be im-
plemented in computer software. This group distinguishes between reflexive knowl-
edge and embodied knowledge, in order to better analyze how emotions are related to 
perception-action and cognition-action processes. The former is proposed for tackling 
body related knowledge, albeit to that which is not necessarily related to language, 
whereas the latter is proposed for tackling the high-level knowledge which is repre-
sented by language. 

1.3.4   Fuzzy Inference Systems 
A Fuzzy Inference System (FIS) converts measures to linguistics variables and solves 
actions using a rule-based database. In this approach, we can apply Fuzzy Logic tech-
niques to convert perceptions to linguistics variables using a Fuzzify method, and then 
solve the decision problem through FIS. Finally, we can apply a Defuzzify method to 
return perception like values. Figure 1 shows this technique, a Fuzzy Inference En-
gine (FIE) solves linguistic variables querying (production) rules from a data base.  
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Fig. 1. Main components of a Fuzzy Inference System 

2   Minsky´s Theory of Mind 

In the process of creating a virtual person, an important theory to consider is Minsky's 
Society of Mind [10]. Inspired by his experiences in Artificial Intelligence and Cy-
bernetics, as well as some ideas from psychological theories, Minsky proposes that 
the mind is best understood as a collection of multiple processes. Originally, he re-
ferred to these as agents, but later, in his last publication entitled “The Emotional Ma-
chine” [11],  he referred to them as “resources,” so they would not be mistaken with 
software agents, or with agents in the economical sense (as independent beings). The 
function of these resources is to solve concrete problems, which encapsulate inside 
their own representational system the knowledge and its processing. Complexity of 
the mind is then complexity of the interconnections between the different resources 
(agents) at different levels. These resource agents have the ability to associate and 
create agencies to solve more complex problems. Singh, [12] examines the different 
concepts proposed by Minsky in his Society of Mind Theory [10]. 

One of the interesting aspects of Minsky´s last book [11] is that it integrates Freu-
dian Theory as an integral component of the analysis. Freud’s idea of the mind as a 
kind of sandwich, connects very low-level knowledge (drives of the Id) with higher-
level knowledge (ideals of the superego). In the middle part we find the ego, which 
handles the ways to settle conflicts between the two. Figure 2 reflects the overlap 
where Freud's and Minsky's ideas are integrated into Minsky's model. 

Figure 3 shows Minsky's six intermediate levels, which can be used in an “increasing 
way of thinking”. These intermediate levels were called “Common Sense Knowledge”, 
representing a kind of knowledge that can be shared between several individuals, with 
several similar ways for interpreting and solving problems. 

 

 

Fig. 2. Minsky´s illustration of Freud’s idea of the mind as a "sandwich" with three major  
parts [11] 
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Fig. 3. Minsky´s sequence of levels at which we can use increasingly ways to think [11] 

 

Fig. 4. Minsky´s illustration where Sigmund Freud’s idea of the mind as a "sandwich" with 
three major parts can be directly compared to Minsky´s Model Six [11] 

Furthermore, figure 4 shows that—while on the subject of central control—we 
should point out that Minsky´s Model Six is showing in terms of Sigmund Freud’s 
idea of the mind as a "sandwich," with three major interacting and potentially compet-
ing parts [11]. 

3   From Computing with Numbers to Computing with Words 

Perceptions that can be translated into linguistic variables and vice versa are discussed 
by Lofti Zadeh [13]. Following his theories of fuzzy sets, fuzzy logic and soft-
computing, he suggests that—in a “counter-traditional” way of treating perceptions in 
a computer—perceptions can be converted primarily in measurements. Furthermore, 
these measurements are computed for decision-making in a high-knowledge level. 
However, once this decision has been taken, perceptions should be computed in order 
to be translated into measurements that result as a consequence of actions. Many of 
these decisions are taken based on knowledge expressed in IF-THEN rules, and 
formed by linguistic variables (discursive knowledge formed at the language level). 
As an example, consider IF IS_HOT THEN MOVE_FAST. In this example it can 
be seen that, even though body perceptions can be defined by continuous values, the 
final decision of moving is taken at another level, where words that can be used to 
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Fig. 5. Zadeh's illustration where a different approach to the conversion of measurements into 
perceptions. Traditionally, perceptions are converted into measurements [13]. 

evaluate and to take a decision, are ambiguous and with fuzzy meaning [13]. Figure 5 
shows Zadeh's idea that perceptions are converted in measures so they can be com-
puted and vice versa. 

Most importantly, Zadeh's main idea is that perceptions with decision-making and 
its consequent actions can be understood as a fuzzy system whose problematic is to be 
approached with fuzzy inference systems (FIS). 

4   Person Model 

Taking all of the above into account, our goal is to build an autonomous intelligent 
agent model that implements personality profiles using a constructivist systemic ap-
proach. To complement the model, a psychology theory can be used to give a basis 
for personality. As an example, we combine Transactional Analysis and a Model of 
Mind to build our agent. Transactional Analysis is on its own a constructivist model 
and is suited for systemic approach [14]. 

4.1   Person Architecture 

Our model consists of an agent that contains a “mind,” which is in turn formed by a 
set of resources. The function of these resources is to represent ways of thinking re-
lated with knowledge-action. This agent represents a real person and can be formed 
by a set of subsystems which implement different ways of representing and process-
ing information (knowledge). This agent will have a communication system and a  
dynamic system. 

Each cognition-action agent encapsulates its own functionality, just as the “person” 
agent. This object will also contain a communication system and a dynamic system. 
Different ways of representing and processing knowledge can be implemented as part 
of the characteristics of these resources. This structure is shown in Figure 6. 

Figure 7 shows how a person can use a resource, which in turn consults different 
sources of cognition-action. The resource’s dynamic system will propose a set of pos-
sible actions. Figure 8 reflects the fact that different agents can form new agencies by 
communicating among them in order to collaborate in solving a given problem. 

These intermediate agents will allow us to represent critical systems that help  
select the best way to solve a problem.  
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Fig. 6. Person architecture with communication, dynamics and cognition-action structure 

 

Fig. 7. Use of a resource by “person” and its link with a cognition-action structure 

 

Fig. 8. Different cognition-action agents can collaborate to tackle a complex problem. The 
agents involved in this process implicitly create new forms of agency through their coordinated 
actions. 

 

Fig. 9. Activation and process of person perception transfer dynamics to cognition-action 
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Fig. 10. Perception dynamics starts several agencies than activate different resources processes 

Figure 9 shows how person perception and resource process are activated. It also 
describes transfer dynamics to cognition-action dynamics. Several resources can be 
activated to resolve different questions.  

As we show in Figure 10, perception dynamics starts several resources that activate 
different cognition-action processes in a cascade fashion. 

5   Person Agent Design Model 

Through a computational approach, we propose the construction of a virtual person. 
To do so, we use as a basis for design the agent’s specifications delineated by FIPA 
[1]. This organization establishes standards for agents with the capacity of executing a 
number of behaviors, to communicate with each other through messages codified in a 
standardized protocol, and to have mobility through a distributed system. The pro-
posed designs are intended to adapt these characteristics to the proposed model of a 
virtual person. 

5.1   Agent Oriented Design 

We shall use one agent to represent a virtual person. This virtual person in turn encap-
sulates a set of additional subsystems. Each one of these subsystems is also imple-
mented by computational agents, which have their own knowledge base and its own 
dynamical processes. 

We present below a class diagram in the unified modeling language of UML [15], 
which represents a design oriented to agents that perform the proposed abstractions 
described in previous sections.   

Figure 11 displays the implementation of a person agent and a cognition-action 
agent. A person agent can contain a number of cognition-action agents. The design is 
makes reference in the available library of JADE® [16], which is integrated in FIPA 
standards. 

Figure 12 describes in further detail the relationship between the person agent and 
the cognition-action agent. In turn, the cognition-action agent can reference multiple 
resource objects. 
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Fig. 11. A person agent contains a set of cognition-action agents 

 

Fig. 12. Cognition-action agents reference different resource objects 

 

Fig. 13. One type of resource may be an instinctive reaction resource that could be imple-
mented using a fuzzy engine with a rule-based database 

Figure 13 shows an example of how we can specify the specialization of a type of 
resource. The type InstinctiveReactionResource encapsulates the dynam-
ics and attributes related to knowledge at this level. This type of resource could, for 
example, contain a fuzzy inference engine that solves for certain numerical variables 
with linguistic values. 

This simple design allows us to implement different subsystems that compose a 
person, by means of programming oriented to agents and to different ways in which to 
represent and process knowledge. 
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Many types of cognition-action agents can be implemented to tackle a given prob-
lem, just as many different techniques will produce similar results. The capacity of the 
agents to communicate through a language and a standardized communication proto-
col (ACL) is allowed by the establishment of an interface between them [17]. 

Through the application of techniques for collaboration amongst agents, nets can be 
formed in which a number of agents propose different solutions to a given problem. 

New cognition-action agents should be created as the result of these collaborative 
interactions, establishing new societies that know how to solve problems for which 
they may already have previous experience. 

6   Case Study 

To exemplify our approach, we analyze a known pathological profile described with 
the previously discussed technique of Transactional Analysis. Our case study repre-
sents a viable option to describe the profile of an agent that is represented within the 
system. Different pathological profiles are available in the Psychology literature, and 
in many cases these profiles have also been expressed within the framework of Trans-
actional Analysis. 

6.1   Transactional Analysis 

Transactional Analysis (TA) is a technique developed by Berne [18], who intended to 
disentangle personality based on the ideas described above. This procedure evolved 
out of a more general literature on personality. Berne proposes the identification of 
personality traits associated with the three profiles or states of the ego, which repre-
sent distinct characteristics of behavior, in turn stemming from different internal 
processes. He coined these three states as the father state, the adult state, and the kid 
state. He proposes main roles and attitudes too which the people adopt during interac-
tions. Based on these states, roles and attitudes, he created a methodology for study-
ing the way in which people communicate with each other; as well as how one can 
detect communication problems stemming from natural human interaction (one can 
find a thorough summary of the basic concepts of TA in [19]).  

We can link each TA Ego State with each Freudian subsystem; child TA state 
represents in part the Id states of the Freudian model of personality, and adult state 
represents the Ego states and Parent the Superego states respectively. For all practical 
purposes, TA is a way to manage Freudian concepts in a friendly technique and easy 
to associate to a conventional person experience. The great advantage of TA is that it 
has grown since its origins out of therapeutic practice, and as such it is intended to 
help real people with real problems. 

6.2   Cathexis Flux 

Cathexis represents the psychodynamic processes that control the selection of differ-
ent psychological states and activities at any given moment. This concept puts  
forward the idea that the combination of different energies (such as potential energy, 
kinetic energy and free energy) defines the emergent final action and the correspond-
ing state of the ego at any given moment [20]. This energy is affected by internal and 
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external stimuli, and is translated into the motivations held by a person as he or she 
relates to a specific activity, drawn form a set of possible activities. 

6.3   Don Juan Syndrome 

Novellino [21] describes “The Don Juan Syndrome” as a pathological profile of an 
individual who follows a specific script of behavior similar to that portrayed in the 
play EI Burlador de Sevilla, by Tirso de Molina (1620), Moliere's play Don Juan 
(1665) and Mozart's opera Don Giovanni (1787).  

The psychoanalytic interpretation of Don Juan is based on three key concepts: 
 

1 The constant need to prove his own sexual identity. 
2 The constant search for a maternal element in women. 
3 The constant resurfacing of a female element, which is then suppressed once 

seduction has been accomplished. [21] 
 

Our ‘hero's’ game unfolds in the sexual-emotional sphere, it represents a variation of 
the "Kick me" TA game [18], developing through the following moves: 
 
1. Don Juan uses flattery and promises to present himself as the rescuer of a woman 

who is prey to her own need to be free and to feel appreciated (the Victim). This 
first move comprehends the con and the gimmick in Berne's (1972, p. 24) game 
formula. 

2. The work of seduction continues until she capitulates (the response). 
3. The moment our ‘hero’ reneges on any further demands for emotional closeness; 

the woman remains bewildered and shocked. 
4. As soon as she realizes how gullible she has been, she turns into a persecutor seek-

ing revenge, and Don Juan, in turn, becomes the victim of female voracity ready to 
start fresh anew as another woman's rescuer (this move is the switch). 

5. The game's payoff is for Don Juan to prove once again how voracious women are 
and to feel "all set and raring to go" in a new attempt to win over the ideal woman; 
the woman's payoff is to confirm men are untrustworthy. [21] 

 

This psychological profile will allow us to prove our methodology for developing a 
virtual person with such behavior. 

6.4   Characterizing Don Juan 

In order to develop the Don Juan syndrome we have the specifications described be-
low. Figure 14 reflects the specifications for the relevant types: PersonAgent, 
CognitionActionAgent and resources with of the types DonJuanAgent, 
EgoStatesSystem and PhsychologicalStateSystem, respectively. 

Figure 15 illustrates a representative interaction sequence among the environ-
ment’s systems, Don Juan, and the internal system of his ego. The main idea is that 
the environment will interact with the DonJuan agent, and that he in turn interact 
with the EgoSystem agent to resolve how he would respond to multiple stimuli. The 
different states can be represented as a resource, in which the relationships among dif-
ferent states, as well as the rules that control the transitions from one state to another. 
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Fig. 14. DonJuanAgent and EgoStateSystem especification 

 

Fig. 15. Sequence diagrams of possible interactions between Environment, Don Juan and the 
internal Ego System 

 

Fig. 16. State diagram expressing ego states transitions on AT 

 

Fig. 17. State diagram expressing role switching transitions on AT 
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Figure 16 shows the different states and their possible transitions. Furthermore, 
Table 1 displays these transitions as expressed by rules. 

Figure 17 shows the different roles and their possible transitions.  

Table 1. Example representing AT ego states transitions with rule base database 

IF parentState THEN adultState 
IF parentState THEN childState 
IF adultState THEN parentState 
IF adultState THEN childState 
IF childState THEN parentState 
IF childState THEN adultState 

Similarly, we can express activities as they relate to different states. For example, if 
the person were to be in a child state, then the corresponding action may be to play, 
while if the person were in an adult state, then the corresponding action would be to 
work, and if the person were in a father state, then the corresponding action may then 
be to rest. We can see in Table 2 how these conditions could be expressed as a rule set. 

Table 2. Different states expressed as rules 

IF parentState THEN restAction 
IF adultState THEN workAction 
IF childState THEN playAction 

Other rules that are not as clearly defined can also be expressed. For example, if 
the person has been working for a significant amount of time, then it would necessar-
ily have to rest. The degree of tiredness can be expressed in terms of energy levels, 
and as such the evaluation of this condition presents ambiguity of defining the state 
tired. For this reason, we opt for a different way in which we solve this condition, 
using a fuzzy methodology to evaluate the numerical variable as a linguistic variable, 
and afterwards take the corresponding action. 

Table 3. State and action rule example 

IF tired THEN restAction 

For this type of decision-making, one would need for the system of the ego to in-
clude a fuzzy inference machine that transforms the numerical values into linguistic 
values and vice versa. Including these capacities, we can then establish new rules in-
volving environment actions that are related to states of the ego. For example, to es-
tablish the rule of when the person is in the child state and at the same time it is very 
cold, and then the state is irrelevant. 
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Table 4. Fuzzy value and ego state example 

IF veryCold && childState THEN restAction 
IF veryCold && parentState THEN movingToAction 

 
We can represent the script of behavior by following the Don Juan syndrome, and 

writing rules that establish the sequence of characteristic actions of this behavior such 
as, for example, by combining conditions like IF adultState && noCompro-
mised THEN lookinForGirlAction. 

Table 5. Don Juan Sript rules example 

IF me.victimEgoRole THEN lookingForGirlAction 
IF lookingForGirlAction THEN me.rescuerEgoRole 
IF me.rescuerEgoRole && she.victimEgoRole THEN 
me.flatering 
IF me.flatering && she.victimEgoRole && she.capitulate 
THEN me.inLove 
IF me.inLove  && she.persecutorEgoRole THEN 
me.victimEgoRole 

 
The dynamics of the different actions can be controlled by a dynamical system in 

which each action could potentially contain different energy behaviors, and in a selec-
tion process in agreement with a resulting cathexis. This notwithstanding, a decision 
to change action could be taken if only the requisites of certain pre-established rules 
are met, such as in the previous examples. 

A complementary paper to this work explains the system of cathexis flux that im-
plements the dynamic part of this approximation [22]. Figure 18 displays an advance 
of this implementation. 

In Figure 19 we can observe the different energies that compete for each state of 
the ego in the TA, and which determines what will be the dominant state of the ego. 

 

Fig. 18. Different functions determine the dynamic behavior of different actions 
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Fig. 19. Only the state with most energy will dominate all others and thus determining the cur-
rent activity 

The methodology of cathexis flux can be understood as energy containers that react 
to diverse internal and external stimuli (that is, internal motivations and environment 
stimuli), and create the illusion of a dynamic of motivations that make people pay  
attention to any given activity. 

7   Discussion 

In previous work, we start to build a first approach to virtual persons applying basics 
elements of agents [23]. In this approximation, we have considered a number of ideas 
abut how an actual person can be modeled. A good starting point for this bold task is 
Freud’s psychoanalysis theory [8], since it represents the basis for modern psychol-
ogy, and it includes many original concepts that are used today. By proposing that 
humans represent a collection of interacting subsystems, it prescribes abstractions that 
encapsulate much of what may occur inside the mind, and to some degree explains the 
nature of thought and behavior. Freud conceived of behavior as an emergent property 
of a dynamic system, which is also related to the systemic idea of homeostasis.  

In another sense, one of the most relevant contemporary models of theory of mind 
is that of Minsky [10, 11], which without a doubt includes many of the advances in 
the area of artificial and cybernetic intelligence, in terms of how to reproduce the hu-
man mind. In his last publication, “the emotional machine” [11], he comprises impor-
tant concepts of Freud [8], such as that which is traditionally called common sense 
[24, 25], the idea of multiple ways of thinking [11], of mental resources [10], and  
others. These ideas serve as a basis for future research in many different levels. For 
one, they allow the possibility of better understanding the human mind. Moreover, the 
theory of mind described by Minsky has the advantage of having been born out of ex-
perience building artificial individuals, and therefore is well aware of the problems 
that this area has faced. 

At this point, something that is worth stressing is how Minsky sees emotions  
as emergent behavior stemming from the different and complex systems that form  
a human [11]. In contrast with many psychological theories of traits and types of  
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personality [26], Minsky begins from Freudian theory [8], where personality is not 
programmed, but rather an emergent phenomenon of the multiple internal subsystems 
of a human being.  

“There is not one unique way of thinking, but instead many and very complex ways 
of doing it, if any one way of solving a problem does no work, then the mind selects 
another one” says Minsky [11]. This vision is important because it offers us the nec-
essary flexibility to tackle problems in multiple ways. In the same way that this theory 
describes how our minds work, we can just as well incorporate different approaches 
to the way in which our proposed virtual person can solve a problem. The agents that 
we build based on this methodology allow us these capabilities. This is because our 
virtual persons could be implemented by a number of agents that can collaborate in 
different ways in order to solve a problem; the subsystems have the facility to com-
bine through a communications system based on messages. These messages provide 
the required flexibility needed to model different systems, whose combinations are 
defined by the communication language in which they are imbedded [23].  

Furthermore, Zadeh [13] also in a way comes close to these same ideas by treating 
perceptions as lower-level knowledge, but that can relate to a higher-level knowledge 
through fuzzy logic techniques. The author is aware of this connection and using 
Fuzzify and Defuzzify methods proposes the conversion of numerical values to lin-
guistic ones. This idea coincides with those of Minsky and Freud, by indicating the 
difference between different types of knowledge, as well as offering a way in which 
they can be translated from one onto the other. 

Finally, transactional analysis is a methodology that has helped resolve communi-
cation problems between real people, and has the characteristic of systematically 
modeling people and their behavior. Even though the states of the ego described by 
transactional analysis do not perfectly overlap with Freud’s concepts [8], it nonethe-
less resembles both psychoanalysis as well as Minsky’s theory of the mind [10]. 
Therefore, even though there may be some who criticize methodology, one of its best 
features is that it can be easily understood. Cases such as the one we have developed 
can be extremely useful in the development of tools for social researchers, since the 
language used is accessible for many people. The concept of cathexis has also  
been criticized by some researchers, but by the same token, the idea of internal ener-
gies can be assimilated by lay people, as it helps to better visualize the proposed  
dynamics inside people. At the end of the day, the most important issue for the social 
researcher is to be able to assign behavioral profiles to individuals being studied,  
and through these means provide a coherent explanation to their behavior, as set 
within a community.  

8   Conclusions 

An approximation of virtual persons can be achieved through the use of systems 
based on agents. In psychology, the study of people leads us to the issue of personal-
ity. We propose the use of the concepts of transactional analysis as a basis for creating 
personality profiles in virtual persons. This methodology is well known, well docu-
mented, developed from practice with real individuals, and easily assimilated by lay 
people. We can with this methodology represent the different psychological states, 
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playbooks, goals and actions, all set within a model of person from a systemic and 
constructivist point of view. With this we want to say that the concepts of TA have a 
systemic basis, and, furthermore, they refer to a cognitive where people represent 
their experiences as mental constructions. Different agents can represent different 
mental processes and knowledge. Agents can be considered for handling knowledge 
at different levels, and can use fuzzy logic for handling knowledge at different levels. 
In the same fashion, the fuzzy logic methodology can be used for solving the commu-
nication corporal sensations to the knowledge represented by linguistic variables. In 
terms of sensations, what we are referring to are low-level numerical values that are 
generated by a dynamical system imbedded in the agent. The emerging result of these 
interacting variables can be converted into linguistic variables by Fuzzify and De-
fuzzify methods, as well as a fuzzy inference machine that understands observed ac-
tions. Using the same technique, these actions can in turn be converted into low-level 
perceptions.  

9   Future Work 

As part of our future work, we are considering the advancement of our proponed 
methodology in several fronts. The first one referring to the refining the characteris-
tics of the model so as to closer resemble the conceptual model proposed, that is, by 
incorporating more varied ways of representing and administering knowledge. An-
other route is to experiment with more examples related to transactional analysis,  
applying different profiles to populations of multi-agents. Another research avenue 
implies the incorporation of knowledge bases representing common sense, and apply-
ing them to different projects being studied. Yet another route has to do with scaling 
this person model to an organizational model. Following the ideas of Minsky, and in-
corporating into the mix the ideas of the Beer´s Viable Systems model [27], the  
research avenue would imply ascribing profiles to organizations. 
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Abstract. Intelligent Agents have originated a lot discussion about what they are, and how they 
are a different from general programs. We describe in this paper a new paradigm for intelligent 
agents, This paradigm helped us deal with failures in an independent and efficient way. We 
proposed these types of agents to treat the system in a hierarchical way. The Agent Node is also 
described. A new method to visualize fault tolerant system (FTS) is proposed in this paper with 
the incorporation of intelligent agents, which as they grow and specialize create the Multi 
Agent System (MAS).The communications diagrams of the each of the agents is described in 
diagrams of transaction of states. 

1   Introduction 

At the moment, the approach of using agents for real applications, has worked with 
mobile agents, which work at the level of the client-server architecture.  However, in 
systems where the requirements are higher, as in the field of the architecture of em-
bedded industrial systems, the idea is to innovate in this area by working with the 
paradigm of intelligent agents. Also, it is a good idea in embedded fault tolerant sys-
tems, where it is a new and good strategy for the detection and solution of errors.  

A rational agent is one that does the right thing. Obviously, this is better than doing 
the wrong thing, but what does it mean? As a first approximation, we will say that the 
right action is the one that will cause the agent to be most successful. That leaves us 
with the problem of deciding how and when to evaluate the agent’s success 

By an agent-based system, we mean one in which the key abstraction used is that 
of an agent. In principle, an agent-based system might be conceptualized in terms of 
agents, but implemented without any software structures corresponding to agents at 
all. We can again draw a parallel with object-oriented software, where it is entirely 
possible to design a system in terms of objects, but to implement it without the use of 
an object-oriented software environment. But this would at best be unusual, and at 
worst, counterproductive. A similar situation exists with agent technology; we there-
fore expect an agent-based system to be both designed and implemented in terms of 
agents. A number of software tools exist that allow a user to implement software sys-
tems as agents, and as societies of cooperating agents[2].  

2   Agents 

For some, the term "agent" means only "autonomous, intelligent" agents. An example 
of this type of thinking can be found in Franklin and Graesser's paper "Is it an Agent, 
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or just a Program?: A Taxonomy for Autonomous Agents". Another example of this 
view is Lenny Foner's excellent article "Agents and Appropriation". (Then there is the 
other side of the coin: Sverker Janson's list of "Intelligent Software Agents" includes 
anything called an "agent".)  

The Franklin and Graesser paper is a good paper because it 1) surveys various 
agents, 2) presents a reasoned taxonomy based on features, and 3) avoids assigning 
any meaning to the word "intelligent". However, it proposes a " formal mathemati-
cally " definition: "An autonomous agent is a system situated within and a part of an 
environment that senses that environment and acts on it, over time, in pursuit of its 
own agenda and so as to effect what it senses in the future." This is, of course, not a 
definition any mathematician would recognize as being formal. The idea of "senses in 
the future" is just too open for interpretation to be an objective, much less formal, 
definition. Moreover, it equates being an agent with this quality of "autonomous" 
[Only autonomous agents were defined - other kind of agents may exist. - Private 
Communication from Stan Franklin, June, 1996.]  

For Foner, an agent is necessarily "intelligent" and "autonomy" is just one crucial 
characteristic. His definition of autonomy has a bit more of operational semantics: 
"This requires aspects of periodic action, spontaneous execution, and initiative, in 
that the agent must be able to take preemptive or independent actions that will even-
tually benefit the user."  

There are three major problems with the attempts to define "agents" as "intelli-
gent". First, as alluded above, the meaning of the adjectives "intelligent" and 
"autonomous", so far, are subjective labels. Foner´s definition suggests that there 
might be a test for autonomy, but saying that some action is "preemptive" or "inde-
pendent" does not get us far. This definition of intelligence, as do all, depends upon 
the opinion of an intelligent observer after interacting with the candidate agent.  

Furthermore, the example agent, Julia, does not exhibit much initiative. The fact 
that Julia maps a maze without direction from users with whom she interacts does not 
distinguish Julia from almost any other software that performs a background task 
while answering queries from users and performing other tasks when directed, such as 
message forwarding. In fact, Julia never interrupts to volunteer information except to 
deliver a message as directed: she speaks only when spoken to. Julia's claim of intelli-
gence is much more of the Eliza sort: Julia strikes users as a person. And indeed, the 
implementation and documentation suggests that Julia is intended to pass a Turing 
test just above the level of Eliza.  

Second, these subjective labels are applicable only to an Epiphenomenon [23] 
rather than a design objective. Except to pass a Turing test, no one sets out to build an 
"intelligent agent" as that is a poor target for software. One sets out to build an agent 
that accomplishes a task in hopes that the task is so difficult or it is so well-
accomplished that the agent might be considered intelligent or somehow self-directed. 
This begs the question of why the agent is one, and not some other kind of software 
[3],[18].  

Third, various definitions of intelligence exist, but the main deficiency of such a 
label is that it does not sufficiently distinguish the resulting software from other tech-
nologies that may also claim intelligence as an attribute. One can take any definition 
of intelligent software that covers the work in Artificial Intelligence and find that it 
does not serve to distinguish "agents" as a kind of software. The point is that if it is 
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claimed that to be an agent is to be intelligent, then we have still begged the question 
of what is an "agent" apart from all of the other intelligent software that has been  
developed [1],[4],[5].  

3   Petri Nets  

A Petri net is a graphical and mathematical modeling tool. It consists of places, transi-
tions, and arcs that connect them. Input arcs connect places with transitions, while 
output arcs start at a transition and end at a place. There are other types of arcs, e.g. 
inhibitor arcs. Places can contain tokens; the current state of the modeled system (the 
marking) is given by the number (and type if the tokens are distinguishable) of tokens 
in each place. Transitions are active components. They model activities which can oc-
cur (the transition fires), thus changing the state of the system (the marking of the 
Petri net). Transitions are only allowed to fire if they are enabled, which means that 
all the preconditions for the activity must be fulfilled (there are enough tokens avail-
able in the input places). When the transition fires, it removes tokens from its input 
places and adds some at all of its output places. The number of tokens removed / 
added depends on the cardinality of each arc. The interactive firing of transitions in 
subsequent markings is called token game. 

Petri nets are a promising tool for describing and studying systems that are charac-
terized as being concurrent, asynchronous, distributed, parallel, non-deterministic, 
and/or stochastic. As a graphical tool, Petri nets can be used as a visual-
communication aid similar to flow charts, block diagrams, and networks. In addition, 
tokens are used in these nets to simulate the dynamic and concurrent activities of sys-
tems. As a mathematical tool, it is possible to set up state equations, algebraic equa-
tions, and other mathematical models governing the behavior of systems.  

To study the performance and dependability issues of systems it is necessary to in-
clude a timing concept into the model. There are several possibilities to do this for a 
Petri net; however, the most common way is to associate a firing delay with each 
transition. This delay specifies the time that the transition has to be enabled, before it 
can actually fire. If the delay is a random distribution function, the resulting net class 
is called stochastic Petri net. Different types of transitions can be distinguished de-
pending on their associated delay, for instance immediate transitions (no delay),  
exponential transitions (delay is an exponential distribution), and deterministic transi-
tions (delay is fixed) [15]. 

4   FIPA (The Foundation of Intelligence Physical Agents) 

FIPA is specifications represent a collection of standards, which are intended to promote 
the interoperation of heterogeneous agents and the services that they can represent. 

The life cycle [6] of specifications details what stages a specification can attain 
while it is part of the FIPA standards process. Each specification is assigned a specifi-
cation identifier [7] as it enters the FIPA specification life cycle. The specifications 
themselves can be found in the Repository [8]. 
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The Foundation of Intelligent Physical Agents (FIPA) is now an official IEEE 
Standards Committee. 

4.1   FIPA Is Specifications Life Cycle 

FIPA’s specifications are classified according to their position in the specification life 
cycle. The intent of the specification life cycle is to chart the progress of a given 
specification from its inception through its ultimate resolution, figure 1. 

 

Fig. 1. FIPA’s specifications life cycle 

4.2   FIPA ACL Message 

Over time, failure has come to be defined in terms of specified service delivered by a 
system. This avoids circular definitions involving essentially synonymous terms such 
as defect, etc. This distinction appears to have been first proposed by Melliar-Smith 
[17]. A system is said to have a failure if the service it delivers to the user deviates 
from compliance with the system specification for a specified period of time. While it 
may be difficult to arrive at an unambiguous specification of the service to be deliv-
ered by any system, the concept of an agreed-to specification is the most reasonable 
of the options for defining satisfactory service and the absence of satisfactory service, 
failure.  

The definition of failure as the deviation of the service delivered by a system from 
the system specification essentially eliminates "specification" faults or errors. While 
this approach may appear to be avoiding the problem by defining it away, it is impor-
tant to have some reference for the definition of failure, and the specification is a 
logical choice. The specification can be considered as a boundary to the system's re-
gion of concern, discussed later. It is important to recognize that every system has an 
explicit specification, which is written, and an implicit specification that the system 
should at least behave as well as a reasonable person could expect based on experi-
ence with similar systems and with the world in general. Clearly, it is important to 
make as much of the specification as explicit as possible.  

It has become the practice to define faults in terms of failure(s). The concept  
closest to the common understanding of the word fault is one that defines a fault as 
the adjudged cause of a failure. This fits with a common application of the verb  
form of the word fault, which involves determining cause or affixing blame. How-
ever, this requires an understanding of how failures are caused. An alternate view of 
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faults is to consider them failures in other systems that interact with the system under 
consideration––either a subsystem internal to the system under consideration, a com-
ponent of the system under consideration, or an external system that interacts with the 
system under consideration (the environment). In the first instance, the link between 
faults and failures is cause; in the second case it is level of abstraction or location.  

The advantages of defining faults as failures of component/interacting systems are: 
(1) one can consider faults without the need to establish a direct connection with a 
failure, so we can discuss faults that do not cause failures, i.e., the system is naturally 
fault tolerant, (2) the definition of a fault is the same as the definition of a failure with 
only the boundary of the relevant system or subsystem being different. This means 
that we can consider an obvious internal defect to be a fault without having to estab-
lish a causal relationship between the defect and a failure at the system boundary.  

In light of the proceeding discussion, a fault will be defined as the failure of (1) a 
component of the system, (2) a subsystem of the system, or (3) another system which 
has interacted or is interacting with the considered system. Every fault is a failure 
from some point of view. A fault can lead to other faults, or to a failure, or neither.  

A system with faults may continue to provide its service, that is, not fail. Such a 
system is said to be fault tolerant. Thus, an important motivation for differentiating 
between faults and failures is the need to describe the fault tolerance of a system. An 
observer inspecting the internals of the system would say that the faulty component 
had failed, because the observer's viewpoint is now at a lower level of detail [16]. 

The following terms are used to define the ontology and the abstract syntax of the 
FIPA ACL message structure: 

Frame. This is the mandatory name of this entity that must be used to represent each 
instance of this class. 

Ontology. This is the name of the ontology, whose domain of discourse includes their 
parameters described in the table.  

Parameter. This identifies each component within the frame. The type of the parame-
ter is defined relative to a particular encoding. Encoding specifications for ACL mes-
sages are given in their respective specifications. 

Description. This is a natural language description of the semantics of each parame-
ter. Notes are included to clarify typical usage. 

Reserved Values. This is a list of FIPA-defined constants associated with each pa-
rameter. This list is typically defined in the specification referenced. 

All of the FIPA is message parameters share the frame and ontology shown in  
Table 1. 

Table 1. FIPA ACL Message Frame and Ontology 

Frame                        fipa-acl-message 
Ontology fipa-acl 
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5   The KQML Language 

Communication takes place on several levels. The content of the message is only a 
part of the communication. Being able to locate and engage the attention of someone 
you want to communicate with is a part of the process. Packaging your message in a 
way which makes your purpose in communicating clear is another.  

When using KQML, a software agent transmits content messages, composed in a 
language of its own choice, wrapped inside of a KQML message. The content mes-
sage can be expressed in any representation language and written in either ASCII 
strings or one of many binary notations (e.g. network independent XDR representa-
tions).All KQML implementations ignore the content portion of the message except 
to the extent that they need to recognize where it begin sand ends.  

The syntax of KQML is based on a balanced parenthesis list. The initial element of 
the list is the performative and the remaining elements are the performative's argu-
ments as keyword/value pairs. Because the language is relatively simple, the actual 
syntax is not significant and can be changed if necessary in the future. The syntax re-
veals the roots of the initial implementations, which were done in Common Lisp, but 
has turned out to be quite flexible. 

KQML is expected to be supported by a software substrate which makes it possible 
for agents to locate one another in a distributed environment. Most current implemen-
tations come with custom environments of this type; these are commonly based on 
helper programs called routers or facilitators. These environments are not a specified 
part of KQML. They are not standardized and most of the current KQML environ-
ments will evolve to use some of the emerging commercial frameworks, such as 
OMG's CORBA or Microsoft's OLE2, as they become more widely used. 

The KQML language supports these implementations by allowing the KQML mes-
sages to carry information which is useful to them, such as the names and addresses 
of the sending and receiving agents, a unique message identifier, and notations by any 
intervening agents. There are also optional features of the KQML language which 
contain descriptions of the content: its language, the ontology it assumes, and some 
type of more general description, such as a descriptor naming a topic within the on-
tology. These optional features make it possible for the supporting environments to 
analyze, route and deliver messages based on their content, even though the content 
itself is inaccessible  

KQML and Intelligent Information Integration We could address many of the dif-
ficulties of communication between intelligent agents described in the Introduction by 
giving them a common language. In linguistic terms, this means that they would share 
a common syntax, semantics and pragmatics. 

Getting information processes, especially AI processes, to share a common syntax 
is a major problem. There is no universally accepted language in which to represent 
information and queries. Languages such as KIF [10], extended SQL, and LOOM 
[17] have their supporters, but there is also a strong position that it is too early to 
standardize on any representation language [14]. As a result, it is currently necessary 
to say that two agents can communicate with each other if they have a common repre-
sentation language or use languages that are inter-translatable. 

Assuming a common or translatable language, it is still necessary for communicat-
ing agents to share a framework of knowledge in order to interpret message they  
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exchange. This is not really a shared semantics, but a shared ontology. There is not 
likely to be one shared ontology, but many. Shared ontologies are under development 
in many important application domains such as planning and scheduling, biology and 
medicine. Pragmatics among computer processes includes 1) knowing who to talk 
with and how to find them and 2) knowing how to initiate and maintain an exchange. 
KQML is concerned primarily with pragmatics (and secondarily with semantics). It is 
a language and a set of protocols that support computer programs in identifying,  
connecting with and exchanging information with other programs [12]. 

5.1   Typed-Message Agents 

Apart from intelligent/autonomous agents, servers, and mobile agents, a fourth com-
mon type of agent is the type using a KQML or a similar agent protocol such as the 
one being developed for SRI's Open Agent Architecture. These KQML agents may 
also be considered intelligent though not often mobile. An excellent description of 
this kind of software agent is Michael Genesereth's and Steven Ketchpel's paper 
"Software Agents". This paper takes more of a systems engineering approach to the 
definition of agents, which has the advantage that it more objectively distinguishes 
agents from other types of software. In this paper, software agents communicate using 
a shared outer language, inner (content) language, and ontology. This approach is also 
called the "weak" notion of agenthood by Wooldridge and Jennings. Within the engi-
neering community, this view is especially appropriate to the use of agents as an  
integration technology, as in the paper by Cranefield and Purvis and the Stanford 
Agent-Based Engineering work.  

We follow Genesereth's approach, but differ somewhat from the definition of this 
paper in light of our experience with Next-Link agents and comparison with other 
KQML-like agents, our Typed-Message Agents are defined in terms of communities 
of agents. (We may also call these "ACL Agents" after Genesereth.) The community 
must exchange messages in order to accomplish a task. They must use a shared mes-
sage protocol, such as KQML, in which the some of the message semantics are typed 
and independent of the application. And semantics of the message protocol necessi-
tate that the transport protocol not be only client/server but rather a peer-to-peer  
protocol. An individual software module is not an agent at all if it can communicate 
with the other candidate agents with only a client/server protocol without degradation 
of the collective task performance [19].  

6   Agent Communication Protocols 

There are a variety of interprocess information exchange protocols. In the simplest 
case, one agent acts as a client and sends a query to another agent acting as a server 
and then waits for a reply, as is shown between agents A and B in Figure 1. The 
server's reply might consist of a single answer or a collection or set of answers. In  
another common case, shown between agents A and C, the server's reply is not the 
complete answer but a handle which allows the client to ask for the components of the 
reply, one at a time. A common example of this exchange occurs when a client que-
ries a relational database or a reasoner which produces a sequence of instantiations in 
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Fig. 2. Several basic communication protocols are support in KQLM 

response. Although this exchange requires that the server maintain some internal 
state, the individual transactions are as before - involving a synchronous communica-
tion between the agents. A somewhat different case occurs when the client subscribes 
to a server's output and an indefinite number of asynchronous replies arrive at irregu-
lar intervals, as between agents A and D in Figure 2. The client does not know when 
each reply message will be arriving and may be busy performing some other task 
when they do.  

There are other variations of these protocols. Messages might not be addressed to 
specific hosts, but broadcast to a number of them. The replies, arriving synchronously 
or asynchronously have to be collated and, optionally, associated with the query that 
they are replying to [13], [9]. 

7   Proposed Method 

Lets suppose that we have a Distributed System (mainly applied to the industrial con-
trol), which is made up of a set of Nodes, where each one of them can be constituted 
by several Devices [21].  

On these Nodes a set of ordered Tasks, is executed all of them to have the func-
tionality of the system. In order to identify this Distributed System the following  
definitions are set out:  

 
Definition 1: is N ={N}, the set of the Nodes of the system, being “n” is the number 
of units that integrate it.  

 
Definition 2:  is [Di, z], the set of devices that contains Node i. Where “z” can take 
value 1, if it is wanted to see the Node like only device, or greater than 1 if it is  
desired to be visible to some of the elements that integrate it.  

 
Definition 3: is T = {Tj}, the set of tasks that are executed in the system, being “t” 
the number of tasks that integrate the system.  

 
Definition 4: A System Distributed like tuple is defined: SD = (N, T) Once character-
ized what a Distributed System could be denominated Basic (without no characteristic 
of Tolerance to Failures), one is going away to come to the incorporation on itself 
from the paradigm of Intelligent Agents with the purpose of equipping it with a layer 
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with Tolerance to Failures. The Fault tolerant Agents will define themselves now that 
worked in the SD. 

 
Definition 5: An Agent is ANi when is itself a Node, whose mission is the related one 
to the tolerance to failures at level of the Node N..  
 
Definition 6: {ANi is AN=} a set of Node Agents.  

 
Definition 7: An application of N to AN of form of a is α each node N, of the system 
associates an Agent to him ANi Node, that is to say: α: N→ANi N → ANi 

 
Definition 8: A System is SMATF Fault tolerant Multi-Agent, formed by tripla of 
AN, AT, AS. That is to say With it a Distributed System Fault tolerant SDTF is de-
fined as:  SMATF = <N, AT, AS> 

 
Definition 9: A Distributed System Fault tolerant SDTF like tuple is defined SDTF 
=<SD, SMATF>, [22]. 

7.1   Agent Task ATj 

Once having defined the Node Agent, the Agent Task be defined that will be respon-
sible for taking all actions aimed at ensuring that the tasks in the system have an er-
ror-free behavior.  

In defining the work and behavior of Agent Task, it is necessary to contemplate 
their allocation which is conditional on those nodes that can be successful. 

There will be a copy of this agent in each node of  the SMTF where they can  
execute the task and will have the characteristics of a Mobile Agent, thereby, be able 
to work throughout the system. 

 

Fig. 3. Location mistake by either hardware or software specified by the designer 



260 A.A. Garza, O. Castillo, and J.M.G. Valdez 

 

Fig. 4. Isolation of the error by Software determined by the designer 

Internally each Agent Task provides a number of variables, defined as standard, 
which govern its operation:  

Definition 10: Be ATj.Phase, is a variable which will be five events: Detection, Loca-
tion, Privacy, Reconfiguration and Recovery. 

Where: 

ATj. Phase.Detection This is the phase of troubleshooting if the Agent task is not 
yet with all entries in error, then operation of the task is correct. This is the phase 
which initially placed all tasks.  

ATj. Phase.Location, this stage is entered after the detection of an error and it in-
tends to locate the error. 

Note 1: The designer undertake the actions necessary to determine the error. And de-
termine which is correct one, fig.3. 

ATj. Phase.Isolation, after entering this phase, once the localization phase  is done, 
and will try to isolate the task that the previous phase mark as potentially as wrong. 

Note 2: If you are at this stage and there is a software error, the designers carry out the 
necessary actions and determine what is indicated, see fig 4. 

ATj. Phase.Reconfigured, at this stage all actions necessary are performed for the 
reconfigured of the task, this is shown in fig 5. 

ATj. Phase.Recovery, in this last phase the actions needed to proceed with the re-
covery of the task were carried out, this is shown in fig 6. 

Note 3: If you are at this stage and an error occurs, the designer can perform the nec-
essary actions and determine what is indicated, and once that determination is done, 
the result will be obtained. 
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Fig. 5. Reconfiguration of the error by Software determined by the designer 

 

Fig. 6. Recovery actions by the task of the designer 

All these mechanisms for detecting errors generate information about the status of 
the Task that is collected directly by the ATj, at the stage of detection.  

The tasks covered in the SMATF as follows:  
 
Once an error occurs will determine whether this is a hardware or software. This 

can be determined, a) to continue running normally, b) the task to recover c) that Tj is 
abortion, and therefore will be removed from the system or c) that Tj be stopped be-
cause there was a mistake, so that when an error detection mechanism (either hard-
ware or software) Tj of the show, finds an error, and this can come to know where and 
what to do with the tasks assigned to a node in particularly, in SMAFT.  
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Having said all this, know we define the AS (Agent System), which contain all the 
information system and both agents. 

7.2   Petri Nets of the Agent Task 

The Petri network of the Agent Task is shown in fig 7. The output communication vari-
ables are of red color, and the input communication variables are of green color. These 
interrelate with the agent to whom it must send or receive information to interact. 

 

Fig. 7. Petri Network of the Fault Tolerant Agent Node 

8   State Transition Diagrams 

State transition diagrams were around long before object modeling. They give an ex-
plicit, even a formal definition of behavior. A big disadvantage for them is that they 
mean that you have to define all the possible states of a system. Whilst this is all right 
for small systems, it soon breaks down in larger systems as there is an exponential 
growth in the number of states. This state explosion problem leads to state transition 
diagrams becoming far too complex for much practical use. To combat this state ex-
plosion problem, object-oriented methods define separate state-transition diagrams for 
each class. This pretty much eliminates the explosion problem since each class is 
simple enough to have a comprehensible state transition diagram. (It does, however, 
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Fig. 8. Several basic communication protocols are supported in KQML 

raise a problem in that it is difficult to visualize the behavior of the whole system 
from a number of diagrams of individual classes - which leads people to interaction 
and activity modeling) [22].  

State transition diagrams have been used right from the beginning in object-
oriented modeling. The basic idea is to define a machine that has a number of states 
(hence the term finite state machine). The machine receives events from the outside 
world, and each event can cause the machine to transition from one state to another. 
For an example, take a look at figure 8. Here the machine is a bottle in a bottling 
plant. It begins in the empty state. In that state it can receive squirt events. If the squirt 
event causes the bottle to become full, then it transitions to the full state, otherwise it 
stays in the empty state (indicated by the transition back to its own state). When in the 
full state the cap event will cause it to transition to the sealed state. The diagram indi-
cates that a full bottle does not receive squirt events, and that an empty bottle does not 
receive cap events. Thus you can get a good sense of what events should occur, and 
what effect they can have on the object.  

9   Communications Diagram 

Now we show the diagram of transition of states of the Agent Task. In figure 8 we 
show the diagram of transition of states, one is, Agent Task (AT), its operation and in-
terchange of messages, as well as the variables that take part in the passage of their  
 



264 A.A. Garza, O. Castillo, and J.M.G. Valdez 

internal communication, in addition to connect with one of the agents of the SMA, the 
agent system (AS), which as well in its internal states of communication and also, 
handle its communication with the other agent of the SMATF, the Agent Task [22]. 

10   Communications Diagram 

In SMATF it offers an option of growth system level but single in phase in real time 
because, and although a state of optimal work can be supposed, could be pre-
sented/displayed disadvantages in the execution of a process or task, FIPA does not 
offer a recovery to short time which could mean lost in time, money or solutions, in 
SMATF it offers a reaction at the moment to come up lost and to look for the way to 
solve a problem in the execution of a process. Fig 9 shows is communications dia-
gram based on FIPA-ACL, and table 2 shows the definition in the communication 
model [11], [22]. 

 
Fig. 9. Communications diagram based on FIPA-ACL in SMATF 
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Table 2. Definitions in the communication SMATF model 

Components Function 
Agent System the function of this agent is in the 

components at level of administration of 
agents has to the Agent System whose 
mission is the related one to the toler-
ance to failures system level (what tasks 
must be executed in the system and on 
what nodes). 

Agent Task the Agent Task verifies by means of 
a request (request) at task level if it does 
not seem that this integral one sends it 
to recovery. 

Agent Node Receives the message by means of 
entrances and reviews the integrity of 
the message at node level if it does not 
seem that this integral one sends it to 

recovery Communication channel or 
Conditions 

Is the three agents (System, Task, 
Node) since they have a shared channel 
of communication and this becomes by 
means of conditions (they if-then). 

 

Phases of Recovery (*) 

 

This has the function to correct the 
messages that can come in “a suspi-
cious” state only has the task of fixing 
the message and this consists in: Detec-
tion, Location, Isolation, Reconfigura-
tion and Recovery  

 

11   Conclusions 

We described in this paper our approach for building multi-agents system for achiev-
ing fault tolerant control system in industry.  The use of the paradigm of intelligent 
agents has enabled the profile generation of each of the possible failures in an embed-
ded industrial system. In our approach, each of the intelligent agents is able to deal 
with a failure and stabilize. It is observed the models and forms to make the commu-
nication between the agents’ efficient using tools of efficient handling. The system in 
an independent way, and that the system has a behavior that is transparent for the use 
application as well as for the user.  
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Abstract. The common historically reductionist past of evolutionary biology and traditional  
social sciences such as economics has led way to a nascent holistic perspective of nonlinear sci-
ence that is capable of describing multiple levels of reality. We propose a novel language for 
describing human behavior and social phenomena, set within a general theory of collective be-
havior and structure formation, with a resulting architecture that can be broadly applied. This 
work represents the blue print for a Multi-Agent Systems (MAS) design language in which 
agency is granted in a quantitative, rather than the traditional qualitative way. The relevant 
agents in the proposed system are intermediate in the sense that they are both influenced by an 
upper level with its own degree of agency, while at the same time they are determined by rela-
tively independent subcomponents that must be ‘subdued’ into acceptable behavior. Any ob-
served action is considered to be the result of the interplay of multiple distinguishable actors. 
We put forward this language as a basis for the construction of large-scale simulations and for 
the description of complex social phenomena.  

Keywords: Multi-Agent Systems, Social Simulation, Distributed Agency, Levels of Reality. 

1   Introduction 

Multi-Agent Systems (MAS) have been increasingly used to model a variety of social 
phenomena. From ants (Wagner and Bruckstein 2001) to countries forming coalitions 
in preparation to a cold war (Axelrod 2005), developments in MAS are increasingly 
allowing breakthroughs in the understanding of systems with multiple interacting 
agents. The analysis of such systems was previously beyond the reach of science, as 
the intrinsic nonlinear nature of the phenomena did not permit appropriate analysis by 
conventional means.  

Systems in which multiple, heterogeneous, interacting entities adaptively influence 
the behavior of each other quickly became intractable for traditional mathematical 
techniques. To continue the advancement of science and technology, most disciplines 
generally opted for the simplification of interacting agents, commonly describing 
them as homogeneous, independent and altogether exogenous. As such, the paradigm 
of Newtonian physics—where atoms interact in predictable patterns to compose ag-
gregate objects—was followed by the classical economic paradigm of Adam Smith 
(Smith 1904), in which selfish agents acting independently are guided by an invisible 
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hand to maximize the greater good (Beinhocker 2006). Similarly, Darwin’s (Darwin 
1909) revolutionary theory of evolution describes independent agents that survive 
based upon their individually defined fitness. These three paradigms delineated the 
boundaries of most research done for more than two centuries in all physical, biologi-
cal and social realms—even though they represent branches of the same tree; a tree 
rooted in a linear description of the world around us. 

The advent of the computer experiment has turned this tree into a blossoming or-
chard, in the sense that it does not necessarily contradict the previous way of doing 
science but rather expands from its foundations. The previously pervasive common 
paradigm was adopted out of necessity, as any other set up is inaccessible without the 
aid of a computer. Computer simulations have opened the door to a whole new area of 
research, where the modeling possibilities are seemingly endless. What is now hinder-
ing new advancements in these growing interdisciplinary fields? Is it computing ca-
pacity? We believe that the pieces are in place for a novel understanding of the world. 
What the field needs is a fresh influx of social and evolutionary biology modelers that 
understand the newfound capabilities brought about by the MAS paradigm and can 
see their own disciplines through this new light. What this nascent wave of nonlinear 
modeling needs is a common language to describe social interaction, and it is to this 
task that we devote this paper. This work represents the blue print for a MAS design 
language in which agency is granted in a quantitative, rather than the traditional  
qualitative way.  

To describe a more general theory of social interaction, we propose a model in 
which we drop customary assumptions made in traditional disciplines about what is 
considered a decision-making unit. The relevant agents in the proposed system are in-
termediate in the sense that they are both influenced by an upper level with its own 
degree of agency, while at the same time they are determined by relatively independ-
ent subcomponents that must be ‘subdued’ into acceptable behavior. Any observed 
action is considered to be the result of the interplay of multiple distinguishable actors. 
The proposed architecture may be used to build large-scale simulations, as well as 
models that focus on the interaction between levels of interest. 

This language represents a decomposition of intent, based on the idea that an 
agent’s behavior can be seen as an emergent property of a collection of intertwined 
aims and constraints. We consider a disentangled agent that is formed by multiple and 
relatively independent components. Part of the resulting agent’s task is to present al-
ternatives, or ‘fields of action’ to its components. Correspondingly, the composed 
agent is itself constrained by a field of action that the superstructure to which it be-
longs presents and can thus be ascribed agency and modeled as an agent. To arrive at 
this view, we redefine what a unit of decision is by unscrambling behavioral influ-
ences to the point of not being able to clearly delineate what the individual is, who is 
part of a group and who is not, or where a realm of influence ends; the boundary be-
tween an individual self and its social coordinates is dissolved. The proposed  
intermediate agent can be thought of as a person, a family, a social class, a political 
party, a country at war, a species as a whole, or a simple member of a species trying 
to survive. The archetype of the agents we attempt to describe can be summarized as a 
group of colluded oligopolists, such as the oil-producing countries of OPEC. As a 
whole, they share the common interest of jointly behaving like a monopoly and  
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restricting their production, but they cannot avoid having an incentive to deviate and 
produce above their quota. 

The proposed model redefines agents in two ways. First, there are no obvious 
atomic agents, for all actors represent the emerging force resulting from the organiza-
tion of (perhaps competing) subsets. The subcomponents in turn form an internal  
system that is actively reorganized, and shall be referred to as the ‘lower level’ of a 
structure. On the other hand, agents are to be described within a group to which they 
belong, which will be defined as the ‘upper level’ of the hierarchical representation, 
and will constrain its subcomponents’ behavior. Thus, agents considered in this 
framework are intermediate; only possessors of some degree of agency that is granted 
by the higher-level agent to which they belong, and extracted out of the lower-level 
agents that compose it. 

As we discuss in the following sections, we are not advocating for the modeling of 
all levels of interaction at once; that would obviously be unfeasible as well as imprac-
tical. Instead, the modeler can focus at any level of reality of interest. What we are 
proposing is a modeling language in which the researcher can focus at one level of 
agency, but without a need for building the description based upon agents that are as-
sumed to be atomic. Instead, atomic agents are only modeled as such because there is 
no perceived need to model their internal subcomponents, not because it is a defining 
characteristic. In other words, we propose a view of the world in which all levels dis-
play agents that are composed of lower-level components that are constrained by the 
realm of action the upper-level agent allows. The composing elements of any ‘lower 
level’ could always conceivably consider themselves as relatively independent and 
ascribed an objective function; in the other direction, the level’s agents are also de-
termined by the ‘upper level’ to which they belong, whether they recognize it or not. 
We do not assume agency at any of these levels, but we also do not assume that it 
does not exist. 

Our framework stands in contrast to traditional approaches for understanding 
agency, such as MAS, evolutionary biology or economics. For example, standard 
economic representations have focused on instantaneous individuals or current profit-
maximizing firms as the smallest unit or the ultimate irreducible atom of the para-
digm, but we propose further attention to the possibility that such units may actually 
be agglomerates, and thus the products of internal networks that deserve attention. We 
can think of a company’s organization or a strategic military coalition, and no agency 
is allowed for identifiable players forming the organizations and alliances, nor em-
phasis is given to the study of blurry abstract borders dividing the participating mem-
bers. The possibility of understanding some of the internal complexities that give rise 
to their positions is essentially ignored. One of the main purposes of this research is 
then to break apart the threads that make up an agent, whether a person or company, 
both in an intertemporal and a static sense, in order to recognize the emergent proper-
ties that compose it. 

Microeconomics has usually relied on simplistic definitions of what represents an 
indivisible actor in the two main levels of interaction: Individuals or households for 
consumption decisions, and firms for production ones. Generally speaking, firms have 
a straightforward behavioral directive: to maximize their profits. Correspondingly, in-
dividuals attempt to maximize their utility function. On the other hand, macroeco-
nomic models usually rely on linear aggregation or recursive processes. Economics 
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has thus most commonly modeled behavior through a closed objective function that 
the agent attempts to maximize, subject to the constraints imposed by the exogenous 
environment. As the research of Herbert Simon (Simon 1982; Simon 1996) points 
out, however, many economic structures do not organize themselves in a market 
scheme, but rather optimize their underlying internal relationships with intricate  
structures of command. Thus, the company is in a constant reorganization process to 
create a structure that maximizes profits (its objective function or an aggregate meas-
ure of ‘fitness’), and then turns around to allocate the spoils among its participating 
members. 

Following this introductory section, Section 2 of the paper describes the workings 
of a general model of disentangled agents, both those subagents of a lower level, as 
well as those meta-agents of upper levels. Section 3 proposes a new view of the 
world, as seen through this proposed paradigm, where agency cannot be pinpointed to 
any given agent, but is rather distributed across the system. Section 4 summarizes this 
understanding and further investigates an appropriate description of such fuzzy 
agents, of how they are created and how they interact. Section 5 provides examples of 
how this methodology would be used to model human behavior. The concluding  
section 6 proposes the methodology of distributed agency as an interdisciplinary  
language that can serve as a modeling taxonomy or as the building block for the con-
struction of large-scale simulations.  

2   Fuzzy Agents 

Throughout this work, we describe different instances of abstract concepts of distrib-
uted agency, attractors and other aspects that influence behavior, and to draw analo-
gies it is imperative that we use welcoming terminology. For example, the word to 
describe an agglomeration of agents is most commonly ‘group’, but that might bring 
to mind a set of humans, and the concept must at all times be kept at an abstract level. 
It should also not be ‘set’ because it may not define who are members from who are 
not: individuals or groups of individuals may be part or partially belong to one or 
many, in many different coordinates and according to drastically different definitions. 
The word ‘network’ could be a better candidate, as it brings to mind a system inter-
connected with varying intensities. All in all, the problem in finding the right termi-
nology is analogous to the general quandaries facing fuzzy systems, where all is not 
on or off, black or white, but rather some tone of gray in between.  

A useful word that comes to mind is ‘bubble’, since one can picture them to be 
joined at the border, one inside of the other or in the process of swallowing it, merg-
ing, splitting, or having an intersection. Throughout this work, we use several of these 
words to convey the sense of a fuzzy agent that is at the same time an agglomeration 
without clearly defined boundaries. Nonetheless, we will normally feel most comfort-
able using the word agent—with the understanding that it is a fuzzy agent—because 
most of the entities we are referring to are commonly thought of as qualifying under a 
vague definition of agent. Most importantly, what we need is a word that reminds the 
reader of the novel aspect of the term, and for this reason we officially refer to these 
entities as “agons,” which comes from the same Greek etymological root as “agency.” 
When the agons we are referring to represent subcomponents of our main agents of 
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study, we join the concept with the Greek prefix for lower “kata,” and refer to these as 
“katagons.” Similarly, when we refer to upper-level or meta-agents, we use the Greek 
prefix for above “ana,” and refer to these as “anagons.”   

The reason for using the neologism “agon” to describe these agent-like entities is 
that most other words might mislead the reader, by invoking preconceived ideas of 
what the concept stands for, what is being referred to, and what can or cannot qualify 
to fit the concept. Most commonly, the stereotypical agent people would conceive of 
is a human, and commonly ascribe human qualities to other entities, such as a greedy 
corporation, a welcoming culture, or a loving family. We will argue in this work that 
humans enjoy a limited amount of agency, both because we cannot be understood 
outside of a context and because we are not in complete control of all of the subsys-
tems that compose us (Cohen 2005). Individuals have social, physical, emotional, and 
religious selves. They also play different roles depending on circumstances. A subject 
position incorporates both a conceptual repertoire and a location for persons within 
the structure of rights for those that use that repertoire (Davies and Harré 1990 ). 
Once having taken up a particular position as one's own, a person inevitably sees the 
world from the vantage point of that position and in terms of the particular images, 
metaphors, storylines and concepts which are made relevant within the particular dis-
cursive practice in which they are positioned.  

Similarly, other entities such as an army, a corporation or a family, may be just as 
well modeled as an agent. For example, if we think of a couple as a higher level for 
two loving adults, the implication of the proposed paradigm is that the couple, as an 
entity per se, will have purposes which can be thought of as relatively detached from 
both participants forming the couple, for their individual utility functions are inter-
twined in the complexities of sharing, and can be returned unrecognizable from their 
origins. Moreover, if the couple is sanctified by a social, political, or religious institu-
tion such as marriage, then we can more clearly see that at some point both parties 
could want divorce, but it may be best for them to stay together because of social 
pressures, and it is in this sense that we may consider the couple as independent of its 
forming parts, and having what we could model as desires of its own.  

Moreover, any of the proposed levels will have a historical context that will further 
restrain the most immediate composing parts. If we want to understand the evolution 
of organisms that may roam a hypothetical earth-like planet, we must conceive that 
institutions such as monogamy will be just as important as the people who inhabit 
them. The upper level may or may not have conscious aspects, as it could be created 
to fulfill a goal (as a police force), or simply emerge from the evolutionary benefits it 
offers (as the benefits of mutualism). Either way, we consider the composing agents 
as having an intrinsic nature that is constrained, transformed, and perhaps consciously 
channeled by the aggregate to which they belong.   

Reductionist linear science has concentrated on the study of entities that are clearly 
delineated, where one could separate what belongs to an agent's nature against the 
backdrop of what does not. The relevant agent is taken to be exogenous, and therefore 
disconnected from the system to which it belongs. At their core, these traditional dis-
ciplines are based on a selfish and unitary agent, or atom of description. Implicitly or 
explicitly, these paradigms claim that all aggregate complexity can be traced back to 
the lower level of the system: the strategies and actions of the selfish agent. In other 
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words, these represent research agendas that purposely de-emphasize the existence of 
any level other than that of the individual.  

On the other hand, the idea of emergence reflects the fact that different and irre-
ducible levels of interaction will naturally arise in complex systems such as the ones 
studied by social disciplines, and thus the agent, as we define it in this work, is a 
combination of levels of interaction. It is through this lens that we would like to con-
sider humans, who will partly be independent creatures, possessors of free will, but 
who are also partly created by an array of upper levels that ‘suggest’ agreeable utility 
functions. This conception stems directly from the concept of complexity, in which 
wholes are more than the sum of their parts. If we believe in that proposition, then we 
should expect to find a world full of emergent phenomena, with distinctive levels of 
interaction that have agency of their own. The proposed language redefines agents in 
two ways. First, there are no obvious atomic agents, for all actors represent the emerg-
ing force resulting from the organization of relatively independent subsets. Second, 
agents are not created in a vacuum, but are rather the result of what an upper level 
spawns. To avoid confusion, and with fear of creating a neologism, we propose the 
term agon to represent these intermediate-level agent-like actors.  

Figure 1, below defines the agon concept in more detail. At the extreme of the X-
axis we find a liver, which represents a stereotypical object without relevant subcom-
ponents, but also lacking independence. Even though it is composed of cells, we can 
think of these as perfectly coordinated under the objective function of the liver. 
Unless it is not functioning properly, the ‘objective function’ of the liver is in com-
plete coordination with its upper level anagon, the body. As an upper level anagon, 
such as the body, coordinates its subcomponents, its lower level seemingly disappear. 
In such cases, the lower level components enjoy no agency, just as the soldiers of an 
army would if they were perfectly trained to follow all orders. On the other extreme, 
at the end of the Y-axis, we find a group full of unconstrained agents, such as the one 
conceived of in traditional economic science, where there is no earth to take care of, 
but only selfish individuals maximizing their own utility functions.  

No Upper Level 

A fully decentralized ji-
hadist movement / A market
economy  

A liver 

Agons

God.
The idealized agent 

No Relevant Lower Level 

An environment  

An epiphenomenon  

Agency 

 

Fig. 1. The concept of a standard agent in MAS and traditional social sciences refers to an indi-
visible and independent entity. We propose a fuzzy agent, or agon, that is never fully in control 
of its subcomponents, nor ever fully independent from its context. The concept of agon refers to 
an entity that enjoys some degree of agency. Agency is thus granted in a quantitative, rather 
than the traditional qualitative way. As the agon becomes more independent and more inter-
nally cohesive, it becomes more of an agent.  
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In traditional economics, society does not exist, and so the homo economicus, or 
hypothetical consumer is defined in isolation. In contrast, agons are beset within the 
limits imposed by the upper level. For example, we can conceive of a company 
(formed by groups of investors, managers and employees) as set within the bounda-
ries of an industry, unable to define itself in ways that go against established social 
norms and applicable laws. Upper levels can therefore represent coordination, identi-
fication with others, identities, institutions, implicit laws, religion, a credit bureau, or 
any human relationship. An environment, however, is not by itself an upper-level 
agon, for the environment may be independent of the creatures that inhabit it, and, 
unlike the traditional concept of an agent, it does not proactively react to changes in 
the system. The idealized agent appears in the upper right hand corner of the quad-
rant. God, as most commonly conceived, is omnipotent and therefore in complete 
control of all its subcomponents, while at the same time there is nothing above,  
controlling Him. Aside from these extreme cases, all other agent-like forces in the 
proposed language, or agons, enjoy only limited agency.  

Observed behavior as described this language by definition optimizes a behavioral 
function, which is the result of the interplay of all agons maximizing their constrained 
objective functions. The proposed behavioral function tautologically describes how 
the system unfolds, as any agon makes decisions in a setting that implicitly considers 
the effects of its actions on future selves, offspring, family, other members of its spe-
cies, and all sorts of lower- and upper-level layers of which it is composed and to 
which it belongs; in contrast to a more abstract utility function that pertains to its in-
dividual, most immediate self. Most importantly, the proposed language will allow for 
a parsimonious computational description of the world. The simplifications of the past 
were generally adopted for purposes of tractability, and understandably so, since 
models grow exponentially more difficult to understand when we consider the interac-
tions of agents defined in different dimensions. With the advent of complexity theory, 
however, we can now imagine the possibility of tackling these problems directly, with 
the use of fuzzy MAS, neural networks, cellular automata, numerical approaches, and 
a whole lot of computer power. 

3   A World Divided into Levels 

The idea of “emergence” reflects a whole that is more than the sum of its parts(Abbot 
2005). Significant research has been devoted to the study of this concept, without 
coming to a well-accepted consensus. A thorough discussion of the idea is beyond the 
scope of this paper, but as a working definition, it should suffice to say that the exis-
tence of emergent phenomena constrains us to the study of systems that are separated 
into distinct ontological levels. In other words, a reductionist approach is insufficient 
for understanding complex entities. Wholes cannot be explained solely by its individ-
ual components, but rather the interactions, topology and design of those components 
matter in the understanding of the whole. Thus, one must analyze an anthill as an or-
ganism (Johnson 1999) and a mind as more than a collection of neurons.  

Complex social behavior must be studied taking into account the multiple onto-
logical levels that affect it. In particular, an accurate description of human behavior 
must take into account both the lower-level emotional subcomponents as well as the 
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upper-level context of social influences. Again, the proposition of this paper is that we 
must consider all traditionally defined agents and other agent-like agons as intermedi-
ate, in the sense that they are not independent of the context they inhabit and at the 
same time are not fully in control of their subcomponents, which may in turn enjoy 
some degree of agency of their own. Although the analysis could be kept at an ab-
stract level, we mostly discuss the modeling of a human agent as a point of reference.  

Humans are traditionally modeled as having a utility function, which is an abstract 
representation of what makes us tick; our happiness. The idea is that we can conceive 
of people as having such an objective function and living to maximize it, given the 
constraints that we face. Economists call for caution in the modeling of humans with 
this methodology, and stress, for example, that at all times the researcher must recog-
nize that the only observable facts are the preferences by consumers when they make 
a choice. It is therefore imperative that we do not ascribe mathematical properties to 
the utility function that are not necessarily present in the revealed preferences of the 
individuals (VonNeumann and Morgenstern 1944). Aside from that point of caution, 
the utility function is commonly considered to be exogenous and static (Cohen 2005). 
Now, stop at this point for a moment and ask the question: Who am I? Or, in other 
words: Whose utility am I maximizing? The answer to this question has been implic-
itly avoided in traditional MAS and economic modeling. Figure 2, proposes a general 
model in which the utility function is the result of an internal system with potentially 
conflicting desires. It also considers the temporal self as one who is not fully inde-
pendent, but rather defined within the larger context of a long-term plan. As such, one 
may want to eat a cake, but is worried about gaining weight. Similarly, one may set 
lofty new year’s resolutions, but finds oneself with no desire to fulfill them later on 
(McClennen 1998).  

A number of scientific disciplines have conceived of humans that have a multiplic-
ity of internal components, such as in the modularity approach of Evolutionary Psy-
chology (Buss 1995; Durrant and Ellis 2003; Tooby and Cosmides 2005; Buss 2008), 
where each human subsystem was evolved to fulfill a particular need. This internal 
process is modeled as linear and static, thus making it implicitly irrelevant. In actual-
ity, the process itself may be highly complex, rendering the study of an individual’s 
conflicting desires incomplete and thus inaccurate. This is because such a study both 
does not account for external pressures and lacks description of the hidden negotia-
tions and transformations that give rise to externally expressed wants, and the corre-
sponding expression of those wants as a utility function. Following Marvin Minsky’s 
research (Minsky 1986; Minsky 2006) we take the position that people may not be the 
unbreakable wholes, but are rather a collection of many selves entrenched in intense 
negotiations. 

For example, consider the fact that many folk buy a disproportionate amount of lot-
tery tickets, and altogether engage in many risky activities that do not fit the standard 
description of a risk averse individual. The people in question drastically enjoy buy-
ing a $2 lottery ticket with an expected payoff of less than fifty cents, but would never 
in a lifetime consider a fair bet for a million dollars. A standard representation of this 
behavior can be embodied in a utility function of income that has decreasing returns 
to scale in most regions, but highly increasing returns to scale for larger income lev-
els. This set up would ensure that the individual is not prone to take even a fair bet 
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Fig. 2. We relax standard assumptions about the utility function and allow for one that can vary 
though time. This generalized conception of utility is the product of a complex internal process 
representing the wants of the disconnected subcomponents of a person. At any given moment, a 
person has internally competing aims that give rise to their external desires. Also, at each time, 
the person can be thought of as being an independent individual that is constrained by the 
longer-term plans of the same person.  

that will lose or earn him ten thousand dollars, but would be willing to do it if it im-
plied possibly getting a few million (Kahneman and Tversky 1979). Figure 3 depicts 
such a tradeoff.   

The necessary calibration of the particular utility function necessary to obtain these 
results is not negligible. In other words, it is not easy to conceive of a utility function 
that would be optimized by the behavior at hand. Moreover, such a person would 
have an odd view of life, seemingly reaching satisfaction at some level of income 
(where the marginal utility flattens out), and then suddenly finding himself in a frenzy 
for more money, as increases in income gradually increase his utility by larger and 
larger amounts. Most importantly, it is not only the implausibility of the standard util-
ity’s interpretation of lottery consumption what makes it inappropriate, it is the fact 
that it tells us nothing about the internal process that may give rise to such incongru-
ous behavior.  

In contrast, our interpretation is based on the way that the network of disconnected 
selves is organized. The idea is that all selves that are not positively affected by an 
eventual winning ticket will be so close to indifference that will not veto buying the 
low-priced tickets, while serious lobbying efforts are devoted by the selves with the 
millionaire dreams. In the proposed setup, we conceive of internal actors, or katagons 
whose opinions are heard before taking any decision. Each one of these possesses an 
objective function that is nonlinear, with a threshold that makes them not care much 
about petty purchases. As a whole, most humans act this way, taking a long time to 
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Fig. 3. Here, we depict the standard conception of a utility function that could account for the 
way in which individuals incur in highly unfair, but small ‘lottery’ bets, but would not accept 
large fair bets. The utility function that one could conceive of to account for such behavior is 
marginally decreasing for ‘normal’ amounts of income, but marginally increasing for extraordi-
nary large amounts. Because of this particular construction, the utility of the expected payoff 
for flipping a coin for a thousand dollars is significantly beneath the utility of not having the 
bet. The expected utility of buying a lottery ticket, however, is above the utility of the certain 
(perhaps low) income one has without it.  

decide upon a big purchase, but not caring much about whether or not to buy bubble 
gum. Once in a while, the lottery-crazed sub agent comes along and proposes to the 
person’s internal parliament whether to buy in a sweepstakes. All of the other agents 
then make a comparison of the world with or without the two dollars the ticket costs, 
and see no general difference in their possible well-being. Therefore, no one objects 
to the plan. The original proponent of the bet however, will be very happy with the 
purchase, and will start planning about how he will gladly spend the first prize win-
nings, as well as all the praises he will get from peers, just for existing. This agent 
will be happy with a ticket in hand, and no potential agent will have anything to say 
about it. Moreover, the happiness that he creates from himself can be so great that 
may have surplus, and conceivably affect the individual as a whole. Quite contrary to 
this situation is the one in which a considerable sum is at play. Under such circum-
stances, the potentially affected sub-selves (katagons) come out in force to reject the 
demand for a bet.    

If a model with endogenous utility functions is to be conceived, the way in which 
the internal decision-making process takes place must be analyzed (Bowles 1998). 
Only when we understand this internal design will we be able to understand how peo-
ple make their choices, how they think of themselves, and how they join to form 
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groups. Moreover, the processes that we would like to address in this essay go beyond 
the way in which the human mind is structured. From now on, we conceive of any 
possible agent—whether an animal, a family, a university, or a beehive—as an emer-
gent phenomenon possessing a relevant internal system, and we refer to it as a lower 
level agent (katagon).  

In many cases, the lower level may seem irrelevant because it may not be readily 
apparent. As an upper-level agent coordinates its subcomponents, its lower level may 
seemingly disappear, leaving us once again with unitary subjects. In such cases, the 
lower-level components enjoy no agency, just as the soldiers of an army would if they 
were perfectly trained to follow all orders. In other words, our livers might have a 
utility function to maximize (making them happiest when they correctly process the 
body’s substances), but that objective function has been perfectly coordinated with 
upper-level objectives. In this sense, it is not relevant to think of the way in which 
human cells work when thinking about that person’s behavior. However, taking up 
the case of perfectly trained soldiers, we envision cases in which the lower levels may 
become exceedingly relevant as they have the ability to reorganize, and may even  
actively reorganize depending on circumstances. Therefore, the agents we are consid-
ering are not time or situation invariant. What makes the attention to the lower levels 
interesting is not only the possibility but the frequency of the tendency to reorganize. 

Cohesion refers to the optimal design of the hierarchical agent. Cohesion does not 
imply that all lower-level actors are acting in coordination with respect to each other, 
but rather that an upper level agon exists for whom the actions, design, and general 
topology of the lower-level agents maximize their objective function. What this im-
plies is that an upper level agon may want some of its lower-level agents to compete, 
and in this sense perfect competition could be ideal for the upper level that an econ-
omy represents. Complete cohesion thus exists when—given a set of constrains, per-
haps of the nature of the subcomponents—there are no reorganization possibilities 
that will better serve an upper-level agon, and it is therefore a relative concept. As 
agons are defined inside one another, the proposed insight is that a subset of the com-
ponents of an agglomerate will attempt to maximize what we can define as their  
objective function, in a process that can be considered selfish or myopic from the 
point of view of the whole, but optimal for the acting subset. 

Aside from an understanding that we may have to consider the subcomponents of 
any agent, we propose further attention to the context within which the agent is 
imbedded. Agons are to be described within a group to which they belong, which will 
be defined as the ‘upper level’ agents, or anagons, of the hierarchical representation, 
and will constrain its subcomponents’ behavior. In other words, the bee itself is in-
complete if not defined as a part of an acting beehive, just as a neuron cannot be fully 
described outside its complex brain network. In this sense, a beehive reacts to changes 
in the environment, with the individual bees acting more like neurons rather than de-
cision-making agents in their own right. Similarly, a company will be designed  
according to somewhat strict guidelines, spanning from the way in which the different 
departments are organized, to the accounting rules it will be judged by, to the regula-
tions it will abide by, all the way to the competition it must be made prepared to face. 
So long as all these restrictions are reflective of an economic or survival process that 
increases the probability of success, we shall refer to all of these constraints encircling 
the company, or any other agent, as upper-level agons (anagons). Moreover, a social 
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level can be modeled as an agent, in the sense that it can be ascribed an objective 
function and—given an appropriate time frame—be expected to maximize it by reor-
ganizing its subcomponents. 

It is important to stress that an environment is not by itself an anagon, for the envi-
ronment may be independent of the creatures that inhabit it. An upper level is the su-
perstructure that creates the individual, and without which the nature of the individual 
would have to be redefined. In this last sense, the environment is an upper-level agon 
to the degree that it is interconnected with the lower-level agents it breeds. Under this 
definition, both levels at play coexist, are complicit, and represent indispensable com-
ponents of the recursive process that gives them existence. Any actor is therefore con-
structed and defined by the rules of the game that its predecessors instituted, and it is 
also established in a reality that is constrained by what the recursive system that  
perpetuates future generations.  

Anagons may be created by a conscious decision or by an evolutionary force. In 
the case of the company, there exist organizational schemes that align the incentives 
of the administrators with those of the stockholders. Therefore, a conscious attempt to 
mitigate agency problems will create the optimal structure for the upper level: the 
corporation. On the other hand, anagons may emerge simply as a product of continued 
interaction and a corresponding increase in cooperation, as was the case for World 
War I soldiers stuck in opposite trenches who did not shoot to kill, but rather at-
tempted to wound each other lightly, therefore providing the enemy with a much-
desired ticket home. This last example represents an anagon in the sense that the  
observed behavior cannot be explained in isolation. 

The anagon actively arranges its subcomponents so that they find individual maxi-
mizations that are in accordance with its overall objective function. We thus find rela-
tively sovereign entities inside the agent that need to be controlled, and who do not 
necessarily maximize the objective function they would in more isolated circum-
stances. The analysis distinguishes between a standard objective function describing a 
simplified, unitary, and clearly-defined agent, and a function that actually describes 
how the agent reacts to any given situation, once we realize that the true actor belongs 
to an upper level, and that it has only limited control over itself. We refer to this 
broader objective as a behavioral function, which implicitly explains what the agent 
does under any set of circumstances, in a decision-making process that may most often 
consider the effect of her actions on future selves, offspring, family, peers, and all sorts 
of lower- and upper-level layers of which she is composed and to which she belongs.  

Figure 4, below, describes the sub-composition of a human agent, modeled as hav-
ing a utility function of the self Us. This Us can be thought of as a traditional Von 
Morgenstern utility function (Morgenstern 1976), but unlike in traditional MAS ap-
proaches, it represents the emergent result of a combination of internal aims, traumas, 
emotions, fears and other wants that can be though of as internal agents with their 
own agenda, and thus potentially modeled as having their own utility function Ui. Fur-
thermore, the individual’s utility function is not to be understood in isolation, but 
rather as itself having positioned itself within the realm of possibilities, or realm of 
action allowed by the family he or she belongs to. The family in turn can be modeled 
as having its own agenda or utility function, Uf. And yet the family is in turn not 
whatever it wants to be, but positioning itself in accordance with what the community 
(potentially modeled as having its own utility function Uc) ‘wants’ it to be.         
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Fig. 4. The utility function of a person cannot be defined in isolation. A human represents an 
intermediate agent that is controlling its potentially independent subagents (emotions), and to 
some degree controlled by its social context. Each level of agency can be modeled as having its 
own utility function. In this sense, a family can be modeled as an agent of its own regard, and 
thus possessing a utility function. The utility function of the family is maximized when the fam-
ily members act in agreement with its objectives. Moreover, the utility of the family is defined 
within the realm of possibilities allowed for by the social agent to which it belongs.   

The proposed model therefore subdivides observed behavior into many different 
levels of agency and interaction. Along the lines of traditional MAS approaches and 
utility maximization, the actor chooses its best alternative given the set of possibilities 
it encounters at each one of these levels. The main difference of our approach is that 
the phase space will include transformations made by an upper-level, agent-like agon 
to which it belongs. In this fashion, we can think of a rowdy married man as having a 
utility function of his own, but also belonging to an upper-level relationship that re-
stricts his raucous nature. Moreover, the agent is composed of lower-level subcompo-
nents that may posses agendas of their own. It is the agent’s responsibility to present 
its subcomponents with phase spaces with individual optimal solutions that are agree-
able to the upper-level encompassing agent. In other words, the subcomponent agents 
will optimize the phase spaces in which they find themselves, while the upper-level 
agon must consider the manipulations of these realms of possibilities that will render 
the desired aggregate behavior. In this sense, if we consider a firm to be an agent, then 
this level is composed of the subdivisions that form the company, which in turn are 
run by a group of people. The company also finds itself in an upper-level anagon that 
includes all possible regulations for the industry, which is in turn encapsulated in a 
given society.  
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4   Distributed Agency 

As we have argued, reductionist linear science has concentrated on the study of enti-
ties that are clearly delineated, where one could separate what belongs to an agent's 
nature against the backdrop of what does not. The relevant agent is taken to be exoge-
nous, and therefore disconnected from the system to which it belongs. At their core, 
the traditional scientific disciplines we have discussed are based on a selfish and uni-
tary agent, or atom of description. Implicitly or explicitly, these paradigms claim that 
all aggregate complexity can be traced back to the lower level of the system: the 
strategies and actions of the selfish agent. In other words, these represent research 
agendas that purposely de-emphasize the existence of any level other than that of the 
individual. Similarly, MAS have commonly been applied to systems in which only 
one level of agency is allowed, and where agents are modeled as exogenous entities.    

On the other hand, the idea of emergence reflects the fact that different and irre-
ducible levels of interaction will naturally arise in complex systems such as the ones 
studied by social disciplines, and thus the agent, as we define it in this work, is a 
combination of levels of interaction. It is through this lens that we would like to con-
sider humans, who will partly be independent creatures, possessors of free will, but 
who are also partly created by an array of upper-level agons that ‘suggest’ agreeable 
utility functions. This conception stems directly from the basic formulation of com-
plexity, in which wholes are more than the sum of their parts. This conception of real-
ity forces us to not analyze agents in isolation but rather in context. If we believe in 
that proposition, then we should expect to find a world where emergent phenomena 
are ubiquitous, with distinctive levels of interaction that have agency of their own. 

Along this train of thought, we have argued that the traditional concept of an agent 
is outdated and must therefore be refined. The problem with the concept of an autar-
kic and unitary agent is twofold: on the one hand, it does not consider the fact that 
agents belong to an upper-level system that gives them life and meaning, and on the 
other hand, it does not consider the relevance of lower-level subsystems that compose 
the agent, but that may possess some degree of agency in their own right. Further-
more, agency may exist in many different dimensions, and each dimension may not 
overlap in terms of how it defines its agents. We thus propose redefining agency by 
creating a concept that can include these necessary modifications. In order to stress 
the novelty of the concept, we believe it is necessary to use a new word to describe 
the concept, and we have proposed—as a preliminary term—the word agon to de-
scribe these fuzzy agents.  

What exactly is an agon? An agon shares many of the attributes of a traditional 
agent, but is more general in the sense that it represents a building block for a model 
where agency is distributed across many actors. Agons are defined in many dimen-
sions, and only possess some amount of agency. Agents are here therefore not defined 
in an either-or fashion, but rather in a fuzzy, quantitative way. An agon must possess 
an objective function that grants valence to a number of different possibilities the 
agon is choosing from. Valence can be defined as the capacity of one person or thing 
to react with or affect another in some special way, as by attraction or the facilitation 
of a function or activity. Following traditional MAS jargon, we can think of this sub-
stance as some sort of sugar (Epstein and Axtell 1996) or cathexis flux (Castañón-
Puga, Rodriguez-Diaz et al. 2007).   
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In other words, a traditional economic agent is thought to have a utility function 
that ranks different alternatives. The agent maximizes its objective function, given the 
reality of its constraints. Similarly, an agon represents an entity that is modeled as 
having an objective function that it attempts to maximize. Unlike the traditional eco-
nomic agent and its utility function, the agon has an objective function that cannot be 
understood in isolation, and it is the emergent result of the objective functions of the 
lower-level agons that compose it. In this sense, an agon represents a building block 
of a system of distributed agency, which stands in direct contrast to the traditional 
agents of economic theory and MAS that represent complete and independent beings, 
by definition disconnected from their environment and other agents.    

The analysis of distributed agency distinguishes between a standard objective func-
tion describing a simplified, unitary, and clearly-defined agent, and a function that  
actually describes how the agent reacts to any given situation, once we realize that the 
true actor belongs to an upper level, and that it has only limited control over itself. We 
refer to this broader objective as a behavioral function. It implicitly explains what the 
agent does under any set of circumstances, in a decision-making process that may 
most often consider the effect of her actions on future selves, offspring, family, peers, 
and all sorts of lower- and upper-level layers of which it is composed and to which it 
belongs.  

Our proposed methodology is therefore intrinsically descriptive. It does not test 
any particular hypothesis. Rather, we propose that any observed social behavior can 
be expressed as the result of an array of intertwined aims and constrains, hereby mod-
eled as agons. The behavioral function tautologically represents observed behavior, 
and we propose that any such behavioral function can be built by an appropriate com-
bination of agons, with their corresponding objective function. Following Ossorio 
(Ossorio 1978), the idea is that once the researcher is able to describe our world in  
detail, then the researcher does not have much left to explain. 

What we propose is a benchmark position in which all observed behavior is the  
result of the optimization of a myriad of agons’ objective functions, so long as we un-
derstand the active agons involved in the observed behavior, and always taking into 
account that the relevant agons may be abstractly defined. In this sense, when we ar-
bitrarily zoom in and analyze a relatively well-defined agent, we may classify its be-
havior as suboptimal in relationship to its own abstract objective function, but only 
because we would be artificially studying it in isolation, or without regard for the 
struggles of its internal nature. The upper level may force lower level members into 
behaviors that are only considered optimal for the former, and it is in this sense that 
we can understand the behavior of a kamikaze pilot. In other words, the actions of a 
suicide bomber cannot be accurately modeled as the result of an individual maximiz-
ing his objective function, and must instead be modeled as reflections of the inten-
tions of a larger social agent. Similarly, one may say that the actions of a  
self-conscious heroin addict are irrational, since he is aware that such behavior is det-
rimental to his well-being. In our methodology, we would state that there must be a 
lower-level agent—the internal drug addict—that considers ‘getting a fix’ as optimal.    

After the language of distributed agency is implemented, the researcher may won-
der how these agons are created. The answers to these deep questions may well repre-
sent a research agenda in its own right, and is therefore beyond the scope of this  
paper. Nonetheless, as an introductory discussion we can consider the electoral  
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process in a simple majority-based democracy, where the winning party must do its 
best to find an objective that satisfies the desires of a social contraption attempting to 
win the election, and in order to do so, they must bring the majority of the population 
to their side. The process is naturally a very complex one: on the one hand, the politi-
cal party searches for positions that are most agreeable for its core identity, while on 
the other, it must be careful to choose the issues that bring to its side the necessary 
amount of people to win the election. Naturally, these two sides are interwoven, as 
finding an acceptable political position for the base must include a directive not to 
alienate the general population by doing so. 

In addition, the winning party must take into account that new elections will come 
again later, and that its actions must not disturb the losing party too much, for the dis-
enfranchised could become a liability to the ruling coalition, as the opposition could 
let go of most of its issues in order to concentrate on just winning. The entity created 
will find its position in a longer-term upper level of existence, with an objective func-
tion that does not get trapped in immediacy. Although it may reach across many dif-
ferent coordinates of concerns, the identity, platform, ideology or political party will 
most commonly have the incentive to present itself as internally consistent and rela-
tively homogeneous, as its internal cohesion will likely prove key to its success. 
Groups that have found cooperative structures to abide by will tend to survive longer 
than groups that are penalizing themselves internally for lack of such coordination.  

As the history of the world’s game unfolds, evolutionary pressures will solicit lar-
ger, more complex and adaptive organisms or networks of coordinated organisms that 
find themselves better at exploiting the ever changing environments offered. These 
larger organisms will have a nature, a design that has optimized the possibility for ex-
ploitation at that level. The upper level agon or ‘agglomerate individual’ will have to 
become cohesive, and organize its subcomponents in order to maximize its emergent 
objective function, since suboptimal internal coalitions can materialize. We can think 
of living organisms as smoothly coordinated societies, as their subcomponents ‘magi-
cally’ aid each other, quasi-perfectly specialize in tasks, and have well-developed 
methods of internal communication (such as a central nervous system). Disconnected 
organisms are therefore a near oxymoron. There must be an evolutionary force  
connecting otherwise autarkic selves and individuals. 

5   Modeling Human Behavior with Distributed Agency 

Distributed Agency represents a language in which social behavior can be described, 
allowing the researcher to state hypothesis and to represent multiple and interactive 
levels of reality. Within this framework, all observed behavior is said to be the result 
of a myriad of agent-like entities—broadly described as agons—that maximize their 
respective objective functions, given constraints. Our approach is therefore intrinsi-
cally descriptive (Ossorio 1978).  

In economics, humans are said to have a utility function, which basically represents 
the happiness of the individual, who is normally described as an independent, rational 
and well-informed agent. In contrast, we propose a model in which humans are made 
of relatively independent components, and who are also best described as parts of lar-
ger wholes (Schwartz 1986). Upper-level meta-agents, or anagons may influence both 
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the constraints and rewards faced by a human, as well as the utility function itself. We 
cannot think of the traditional utility function as the relatively unrestricted happiness 
of the agent, in absence of upper-level restrictions. In a prisoner’s dilemma, for ex-
ample, the utility function is represented by the proposed payoffs presented to the 
prisoners, while the behavioral function we propose is represented by what the indi-
vidual actually does. Moreover, the constraints to which the behavioral function has 
to abide by are different than those presented by a typical budget constraint, as they 
literally define the agent, in a sense compelling the individual to ‘like’ consumption 
bundles that he would otherwise object. One could only dread to wonder, for exam-
ple, what a suicide bomber feels as he presses the deadly button, but it must be none-
theless something that he would not have felt in the absence of social pressures. The 
behavioral function describes at all times how the system unfolds, in a setting where 
the agents make decisions that may most often consider the effects of her actions on 
future selves, offspring, family, other members of her species, and all sorts of lower 
and upper level layers of which she is composed and to which she belongs; in contrast 
to a more abstract utility function that pertains to her individual, most immediate self. 

The prisoner’s dilemma model predicts lack of cooperation between the two par-
ticipants. What such a model is implicitly doing is defining the relevant agons, which 
in this case represent selfish, rational, myopic, exogenous and autarkic individuals. 
When in experiment after experiment (Smith 1982; Gurerk, Irlenbusch et al. 2006) we 
observe cooperation, the descriptive language of distributed agency defines an upper-
level agon (anagon) that has enough power to influence the behavior of these indi-
viduals into a cooperative result. The anagon is represented as possessor of a given 
quantity of reward currency to coerce the player to behave in unison. Anagons thus 
are modeled as owners of a given amount of ‘sugars’ that the lower-level agents, or 
katagons, crave (Epstein and Axtell 1996). Anagons in turn have an objective func-
tion, which they maximize by allocating the sugar they have to bring about the desired 
behavior. In this recursive process, anagons represent themselves subagents to a yet 
higher agon that is itself reorganizing its own sugar. As an analogy, we can think of a 
CEO that allocates salaries, bonuses and other incentives to induce the appropriate 
coordinated work of her employees. The CEO may have incentives of her own, but 
mostly she should have the objective of maximizing shareholder wealth.  

Empirical evidence has consistently shown that humans cooperate when facing a 
prisoner’s dilemma situation. One of the pioneers in experimental economics is Nobel 
Laureate Vernon Smith, who was forced to pay significantly more money to his irra-
tionally cooperating students facing this situation, than he would have if they acted as 
detached individuals. Given this dilemma and these circumstances, not cooperating 
becomes, rationally, the best choice, if only we make reference to the anagon repre-
senting the coalition. An individual who does not choose its maximizing strategy in a 
prisoner’s dilemma is obviously choosing based on something it deems better, 
whether by a pre-commitment or by an evolutionary influence. We must look for 
these fuzzy upper-level agents, or agons that are explicitly defining behavior; binding 
the individualistic nature of the prisoner to a strategy that does not make sense when 
analyzed in isolation. 

The better-than rational results of Smith’s experiments may then be understood by 
appropriately characterizing the acting agent: in this case, the people who decided  
to cooperate against their incentive to defect were not acting as individuals, but as  
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representations of the anagon of evolved and cooperating persons. In this way, the 
anagon asserted its agency. Individuals are born into structures that are usually in 
many ways set for them, with incentives for cooperation and trade that are inescap-
able for the individual, as their nature intrinsically possesses an appetite for the  
resources that only the superstructure can provide. Other examples of this process in-
clude the behavior of working ants, unmonitored employees committed to the success 
of a company that is not their own, or soldiers acting in the name of their religion.  

The payoff structure that a player faces in the prisoner’s dilemma refers to its ab-
stract utility function, which could only be understood in isolation. The payoff must 
not be the sole source of information for the decision maker. The participants in ex-
perimental games such as the one discussed above are making decisions as represen-
tatives of potential intertemporal selves, or of the human race, and not as isolated  
individuals. One of the most important reasons that humans have been so successful 
on this earth is because they learned to take advantage of mutual cooperation, of the 
possibility of social synergies for finding better scales of environmental exploitation.  

In terms of rationality as it is most commonly defined (Marschak 1946), one can 
think of the actions of benevolent cooperators as irrational, since they do not follow 
their individual best interest. However, as these cooperators generally end up prevail-
ing, one may wonder if an agent in more realistic circumstances may be aware of such 
outcomes—as well as of the likely retaliations of deceived players—and be therefore 
acting in a perfectly rational way, once she acknowledges the better information of 
peers’ characteristics, retaliation functions and gains of cohesion, and in that sense 
develops a less myopic mind. In comparing intrapersonal choice and personal deci-
sions, it is interesting to note that an individual who acts in a resolute manner (that is, 
forcing through a pre-commitment a future self to act in a manner which is then not 
optimal for her) is deemed by some as irrational; a statement which is in direct  
contrast with calling myopic someone who does not recognize the opportunities of  
intrapersonal rearrangements to achieve preferred outcomes, when having a longer 
horizon to base their decisions. 

Moreover, aside from an unclear definition of what is to be considered ‘I’ or ‘we’, 
we must of course see the other side of the coin: at some point we leave the ‘we’ terri-
tory to enter into the world of ‘them’. Another incentive for individuals in a group to 
merge their incentives lies in the fact that discontented individuals have the tendency 
to be nasty. The payoffs of a more realistic version of the prisoner’s dilemma are 
naturally determined by the history of the game—most importantly, whether the par-
ticipants are anonymous or known participants, and the previous experiences of the 
participants. Non-cooperative actions can always set a precedent for something that 
will later affect an agent directly related to the defector, as cooperation and lack of it 
are normally persistent. An angry participant may thus set drastic reactionary payoffs, 
possibly to instill fear in possible rivals of future similarly afflicted selves, as any ma-
licious action played against a peer can become institutionalized and potentially harm-
ful for the meta-temporal self. 

In summary, anagons have abstract objective functions with varied ontological out-
lets. As such, humans live in a vast net of positive and negative incentives that trap us 
with or without us being aware of them. We may think of ethics as given to us by 
God, but we may also model them as the reflection of the objective function of the  
social agent. Individuals could become unfriendly, criminals, traitors, and generally 
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undesirable, but the society will create mechanisms to discourage such outcomes, here 
modeled by an ‘expensive’ region in the realm of action of the agent’s utility function, 
or directly as sugar with negative valance (poison) that the anagon allocates.  

By the same token, honorability, courage, honesty, friendliness, and all sorts of 
likeable characteristics will be praised and encouraged, thus modeled as regions with 
more sugar. People may encounter temptations they avoid because of previous ex-
periences in which the then current self became uncontrollable and detrimental to the 
welfare of the more general self. Such an agent does not act in isolation, as the ana-
gons it belongs to impose their muscle in her decisions, through forces that can be 
translated into the same dimensions as the ones in which the utility is defined. Aside 
from other incentives for joint effort (such as specialization, risk sharing, and the 
avoidance of violence), individuals mostly make decisions based on incomplete in-
formation, and often without a clear objective to maximize. Therefore, the current  
individual may often find herself in a position where she may evade searching for 
drastic, egoistic outcomes, and instead settle for strategies that have proven useful at 
maintaining the long-run individual alive, healthy and wealthy.  

The payoff structure of the standard prisoner’s dilemma is thus relatively hard to 
conceive of for a realistic human, since most current selves and individual agents will 
naturally be afraid of—or compelled by evolution to avoid—strategies that overem-
phasize rampant immediacy. The benefits of cooperation cannot be understood if we 
zoom in too close to the individual’s decision without understanding her within the 
context of the superstructure to which she belongs, as the setup of a one-time deal 
given to an individual with no recourse to an uncertain future is unrealistic, as organ-
isms who think like this would shortly perish without intertemporal cooperation. 

More than altruism, what we are referring to is coordination. Any activity one 
could think of, from walking to talking to tool-making, requires some degree of coor-
dination, and for activities with longer-term horizons intertemporal coordination is in-
dispensable. Like humans, animals living in an environment with seasons must also 
coordinate thrifty summer selves with needy winter partners. The upper level to which 
we am referring works as a process of identification with intertemporal selves as well 
as with other related individuals in a group.  

In terms of describing individual behavior, we can also conceive of a person as an 
anagon, with internal subagents possessing relatively independent agendas, such as it 
is described by transactional analysis (Berne 1964). We nonetheless conceive of the 
potentially vast legion of selves as naturally related, and perhaps having a more static 
and institutional complex function ordering their preferences; that is, we can think of 
individuals as possessing an internal government body that may be relatively stable. 
In terms of having different ‘selves’ inside, most people refer to the one that they are 
in the very moment they talk about this subject, and claim that the current spokesper-
son is the only version of themselves that exists; granted, sometimes this person can 
be angry or on a particularly good mood, but the variation does not grant them in any 
way as having multiple personalities. The view we propose recognizes that a person 
plays very diverse roles in life, and that each role can be represented as an independ-
ent agent that embodies different ‘subject positions’(Davies and Harré 1990 ).  

The katagons, subagents, aims, or desires that compose the more general and uni-
fied perspective in which we normally conceive of humans as not entrenched in  
a lawless competition for attention, but rather as confined within a sort of political 
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system, full of laws, traditions, history, habits, coalitions, and all imaginable aspects 
of a full-fledged bureaucracy of mind. This internal system may be well established 
and generally permanent, perhaps reflecting what we think of when we say ‘I’. From 
the point of view of the internal katagon, the person’s system represents an anagon 
that offers a rugged landscape for the subagents to maximize. In this sense, the desire 
to go on vacation is always there, but in order to be actualized, it must form a coali-
tion based on the current political circumstances, as well as wait for the opportunity 
when the protocols allow for a vote on the proposed bill. This could be modeled as a 
neural network in which receptor neurons receive the person’s partitions wishes. The 
receptors can be in turn anthropomorphized as a system of extremely capable political 
analysts who calculate all the effects of any particular decision, determining whether 
or not it would be approved by the particular political system in place.  

6   A Language to Build Large-Scale Simulations 

We have proposed the basis of a language for describing social behavior in which 
agents are replaced by a more general fuzzy or distributed concept that grants agency 
in a relative, rather than the traditional absolute fashion. In this generalized multi-
agent language, all agents are intermediate, in the sense that they are potentially part 
of another, higher-level agent, and potentially formed by lower-level agents. Agents 
are also fuzzy in the sense that they are defined in more than one dimension, such as a 
person that belongs to a political party but does not share its position on a wedge is-
sue. To stress the novelty of the concept we are putting forward, we distinguish the 
fact that the agents we are defining may be abstract, and thus use the working concept 
of “agons” to describe these intermediate building blocks. Distributed agency, as a 
generalized language of description, can be used to construct large-scale simulations, 
because the proposed agons are intrinsically designed to integrate to multiple levels of 
interaction.   

Most importantly, we establish a benchmark position in which all observed behavior 
is the result of interacting agons described in the ontological process of maximizing 
their objective functions. The discussion so far has left us with an important absolute 
principle: that all possible definitions of optimality in a hierarchically decomposed 
world are relative. The relativity is a direct result of the hierarchical nature of the sys-
tem, where each agent binds the subagents that compose it, and is bounded by the super-
agent to which it belongs. Therefore, defining optimality implies defining an agon, for it 
is only by placing it within its appropriate context that we can describe how one  
behavior is better than another. 

Observed behavior is then classified as optimal only in the sense that we are mod-
eling it under the assumption of entities that can control their environment, given their 
constraints. The behavioral function represents the description of actual behavior, and 
it is the emergent result of the interconnection of the minimum number of agons that 
the researcher needs to describe reality at an appropriate level of detail. In building a 
simulation, we must abide by Occam’s razor and put forth the simplest possible de-
scription, albeit one that captures the desired level of realism and complexity. As part 
of this process, the researcher must decide which actors are going to be granted 
agency in the simulation. In this way, when studying cultural shifts over time, the  
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researcher—perhaps a sociologist—may opt for only granting agency at the level of 
social groups and ethnicities, while an economist may prefer to focus at the household 
level. This notwithstanding, if built on the proposed principles of distributed agency, 
either model may still be able to potentially interact with each other, as they would 
both be expressed in a similar and interconnecting language.    

In recent years, there has been ample discussion of the building of a parallel world 
inside the computer, such as Second Life® or the one depicted in the classic sci-fi 
movie “The Matrix®” (Wachowski, Wachowski et al. 2001). Naturally, the computing 
capabilities necessary to build a complete recreation of our world are impossible 
(Hofstadter 1979), so the researcher must choose what aspects of reality to focus on in 
the process of building a simulation. Complex phenomena refers to systems that can-
not be described in a reductionist fashion, as the algorithm that describes observed re-
sults is itself the shortest solution, and thus cannot be adequately simplified into a set  
of dynamic equations. Nonetheless, the researcher may not be particularly interested 
in detail at all levels of description, and must therefore proactively choose what levels 
to study in a nonlinear fashion, and which levels can be ignored and correspondingly 
studied linearly (that is, as a direct aggregation of atomic components). Each resulting 
level, however, is ‘scalable’ in the sense that if it is essentially ignored in one model, 
it may be naturally resurrected in another.         

Following the discussion, an example of a large-scale simulation may clarify the 
power of distributed agency. Suppose that we are interested in understanding the rea-
son why Latin American countries are relatively poor, and in the process of creating 
an agent-based simulation to analyze the problem, we find ourselves lost as to how to 
define our agents. Should we have a macro view in which we make the Latin Ameri-
can bloc an agent that deals with its position in world politics? Or should we consider 
each one of the participating countries as separate entities? Should we rather adopt a 
micro model that starts from individual people? One of the main ideas of this work is 
to bring attention to the way in which a more general model would deal with the con-
nection between the different dimensions of analysis. In the twentieth century, a push 
was made for developing macroeconomic models with strong microeconomic founda-
tions, but the need for tractability left the discipline with no choice but to resort to  
linear models of interaction, as well as unrealistic assumptions about rationality. The 
era of agent-based modeling, however, can forgo linearity and perfect foresight, and 
take a leap towards a more general and realistic model that can describe the emergent 
strategic interactions at each relevant level.   

Within that description, supposed that we are interested in understanding the politi-
cal effects of granting Mexican immigrants living in the United States the right to 
vote in Mexican elections. If we think of Mexican culture, political parties, and other 
sociological actors as abstract agents or agons, should we then classify the affected 
group as a subset of Latin America or as an independent entity? Neither one necessar-
ily, since not all aspects of Mexico can be defined inside the concept of Latin Amer-
ica. In particular, the Mexican business cycle is now much more related to Canada 
and the U.S., its partners in the North American Free Trade Agreement (NAFTA). 

The example of Mexican immigrants in the U.S. sheds light on the fact that no 
agent we describe under the proposed paradigm may necessarily have clear borders 
delineating what belongs to it from what does not. Consequently, any agent consid-
ered will be fuzzy in the sense that it will be described according to many different 
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Fig. 5. A large-scale simulation describing the Hispanic population of the United States must 
take into account aspects of agency that take place in multiple dimensions. Any one individual 
of this group may share agency and be part of an agon in some respects and not in others. If a 
researcher wanted to understand how the group may stand in terms of the debate on illegal im-
migration, the analysis must include representations of actors that affect behavior in distinctly 
separate dimensions, such as national ties, culture, commerce and economic treaties.    

criteria, that it will have relatively blurry borders, and that it may or may not have 
overlap with other agents, depending on the criteria we consider for defining it. When 
we think of people at a micro level, we think of individuals who are to some degree 
the one they are in the very moment we look at them, but also to some degree a reflec-
tion of a longer time horizon of the self; to some degree the relationships they are  
involved in; as well as to some degree a piece of their family, of their community, and 
of their nation. 

Moreover, simulations of this nature will allow social scientists to describe ab-
stract, but most relevant aspects of social interaction, such as norms, traditions, insti-
tutions and individual freedom. It is here, we claim, that wealth is created (Ball 1991; 
Beinhocker 2006). By contrast, society does not exist in traditional economics, as it 
merely represents the linear agglomeration of independent actors. This is in direct 
contradiction with the language of distributed agency, where societies can more accu-
rately described as anagons, that is, upper-level agents that attempt to maximize an 
abstract objective function. This notwithstanding, the concept of an agon is one that is 
quantitative, rather than qualitative, in the sense that one can have entities that are 
more or less of an agon, that is, have more or less agency, be more of an agent or 
more of a simple aggregate. In this sense, we argue that one can understand the reason 
why North America is significantly wealthier than Latin America, as the former 



 Fuzzy Agents 291 

represents more of a cohesive agon, while the latter represents more of a direct aggre-
gation of uncoordinated individuals and other social actors.   

To understand the agency imbedded in the American social agent, let us consider 
its history. The American constitution represents one of the greatest experiments in 
the history of human evolution, and the scope of its results are written every day in 
the history of the most powerful social object the world has ever seen. The Founding 
Fathers of America had a great practical vision for how to organize a society with 
such great potential, as it had a fresh start with a relatively equal society (of its free 
men) as well as vast resources, both natural and human, as they inherited the rich cul-
tural and scientific tradition of European nations. With the grand ideas of the French 
revolution, backed by the condensed knowledge of the Western world, the Founding 
Fathers applied all their scientific and pragmatic wisdom into a constitution that  
separates powers very effectively, with an executive branch that remains relatively 
external to the government, and a commander in chief with significant control over 
bellicose decisions; a legislative power designed to ‘listen’ more intently to the needs 
of its heterogeneous constituency, and is somewhat comparable to a living organism’s 
nervous system; and a judicial power that ensures the permanency of rules that should 
remain relatively constant, providing fertile ground for projects that need longer time 
horizons to develop fully, and makes sure that rules are applied equally to all indi-
viduals, thereby maintaining the hard fought equality of the citizens that will eventu-
ally make the country strongest, with reliable institutions, networks, generalized 
habits and the corresponding social norms.  

7   Conclusions 

One of the most important aspects that the separation of powers is that it allows for 
the social organism to better discern the many different aspects of change. We would 
expect a social object to be ‘fearful’ of change, as it is hard to digest all the implica-
tions of an organizational scheme that has never been tested, and that affects citizens 
through so many different and regularly unquantifiable dimensions. The separation of 
powers represents a mechanism by which individuals can discern and disentangle the 
all-encompassing effects of social change, knowing that their government will follow 
rules of engagement that will attempt to protect their need for security and the exploi-
tation of known benign structures and norms, while accepting the possibility of 
change and further progress through the exploration of other dimensions of the social 
conundrum. Aside from the original design, the fact that the American system has 
been bipartisan has made for a government that is most ready for immediate action, a 
trait most important in the art of inter-group conflict (i.e. war), since the ruling  
coalition of a multi-partisan political system could partition, particularly in times of 
political stress. 

In contrast, social systems such as the one Latin American countries have present a 
political ruling class for which it is convenient to have a significant part of the elec-
torate left in the dark, and this can be seen in the vague—and mostly devoid of con-
troversial issues—electoral campaigns that their candidates run. The most important 
example is that no significant attack on generalized poverty is proposed, and this is 
the direct reflection of the fact that the system is implicitly colluded with the  
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economic ruling classes, in an agreement that precludes an evolution that could bring 
about the birth of a more equitable state. Would such a state be preferable? The im-
provement could be measured in any reasonable dimension, and definitively provide 
visible monetary results after a generation. The objective function of a well-oiled so-
cial anagon will take into account the nature and corresponding complexities of all the 
levels of agents it encompasses, quantifying such abstract notions as social cohesive-
ness, identification, and play allowed for the individual’s utility functions. Such a  
social welfare function would then provide a scale in which we can evaluate alterna-
tive social structures. Most directly, the proposed function could map social structures 
to corresponding future changes in per capita GDP. Such a scale is unavailable until 
now in traditional economic theory, and it would be most useful in the understanding 
of real-world economic development.    
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Abstract. In the last years, several algorithms to implement the fuzzification stage for Very 
Large Scale of Integration (VLSI) Integrated Circuits (IC) using a Hardware Description 
Language (HDL) have been developed.  In this work it is presented a proposal based in the 
arithmetic calculation of the slopes in triangular and trapezoidal membership functions to 
obtain a fuzzified value. We used an arithmetic calculation algorithm to implement trapezoidal 
and triangular membership functions. This proposal is different to others that at present time are 
currently used. We discuss the advantages and disadvantages of this implementation. A 
methodology to test and validate this stage through the Xilinx System Generator is described.  

1   Introduction 

Theory of fuzzy sets proposes to obtain solutions to problems with vague information, 
formalizing human reasoning mathematically to get conclusions from facts observed 
vague or subjective [1]. 

The use of fuzzy logic systems is getting more common because they can tolerate 
inaccurate information, they can be used to model nonlinear functions of arbitrary 
complexity, they make possible to build a system based on the experts’ knowledge us-
ing a natural language. The main drawbacks associated with the realization of microe-
lectronics fuzzy logic systems, come from the high cost and development time associ-
ated with the design and manufacture of an IC. A solution to this problem is to use 
FPGA's (Field Programmable Gate Array) to implement specific processing architec-
tures with the advantage of the reusability of large amount of existing code that was 
developed using a Hardware Description Language, this provide an excellent relation-
ship "cost-performance" [2,3]. 

An FPGA is a semiconductor device that contains in its interior components such 
as gates, multiplexers, etc. It is interconnected with each other, according to a given 
design. These devices use the VHDL programming language, which is an acronym 
that represents the combination of VHSIC (Very High Speed Integrated Circuit) and 
HDL (Hardware Description Language) [2]. 

A fuzzy logic system consists mainly of three stages: fuzzification, inference, and 
defuzzification [4,5]. 
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Fuzzification comprises the process of transforming crisp values into grades of 
membership for linguistic terms of fuzzy sets. The membership function is used to as-
sociate a grade to each linguistic term. 

The inference process is the brain of the fuzzy logic system, here are proposed 
rules of the form IF-THEN that describe the behavior of a system.   

Defuzzification is the process of producing a quantifiable result in fuzzy logic. 
In this work it is presented a proposal based in the arithmetic calculation of the 

slopes in triangular and trapezoidal membership functions to obtain a fuzzified value. 
We used an arithmetic calculation algorithm to implement trapezoidal and triangular 
membership functions.  This proposal is different to others that at present time are 
currently used. 

This paper is organized as follows, section 2 describes diverse methods to imple-
ment the fuzzification stage; section 3 explains our proposal to implement the fuzzifi-
cation stage; in section 4 is the description of the experiments realized. Finally,  
section 5 presents the conclusions. 

2   VHDL Methods to Implement the Fuzzification Stage 

In literature, there are two main methods to design the fuzzification stage using 
VHDL codification, they are: 

1) Storage Memory. 
2) Arithmetic Calculation. 

The Storage Memory method uses tags values instead of names to identify the lin-
guistic variable names [6,7]. The method consists in storing into a memory the tags val-
ues (La, Lb, and Lc) and their corresponding membership function degrees ( aμ , bμ , cμ ). 

To obtain a fuzzified value, it will be necessary to search into the look up table the cor-
responding binary word for the crisp input x [4], Fig. 1 illustrates this method. 

The arithmetic method consists in performing a progressive calculation of the degree 
of membership of the antecedents. This method is restricted to use only normalized  
 

 

Fig. 1. The input x1 showed in (a) has two membership function values to it. In (b) is shown 
how the tags and fuzzified values are stored into a memory for a determined input, more spe-
cifically for the input x1. 
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Fig. 2. Arithmetic calculation method. In (a) is showed the intercept points (ai’s) and slopes 
(mi’s) of each straight line. In (b) the ai’s and mi’s are used to calculate the degree of member-
ship and tags. 

triangular MFs [6-9].  The method uses two memory locations for each straight line, 
where their slopes values and interception points are saved. An arithmetic circuit for 
each input shown in Fig. 2(a), solves the corresponding straight-line equation as can be 
seen in Fig. 2(b). 

3   New Algorithm to Implement the Fuzzification Stage  

This proposal is based on the arithmetic calculation method; however, there exist a 
significant difference to those we found reported using the same algorithm. This dif-
ference increases the flexibility to implement an application since the slope value is 
calculated dynamically at demanding time, although we have to expect an increase of 
the execution time that is not important for many applications considering the high 
speed of calculation that a VLSI can reach. 

This algorithm can be divided in the next three steps: 

1. Calculate the value of the slope. 
2. Calculate the degree of membership. 
3. Assign to the outputs the degree of membership as well as the respective tag 

of the linguistic variable.  

Figure 3 shows a flow diagram to explain the abovementioned steps. 
One more advantage that we can obtain implementing this proposal is that it is pos-

sible to implement triangular and trapezoidal MFs using formulas (1), and (2) [10,11]. 
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Fig. 3. Flow diagram of the fuzzification stage 
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4   Experiment Design and Validation 

4.1   Experiment Set Up 

To test the proposed algorithm a comparative experiment was designed using  
Matlab/Simulink and Xilinx System Generator [12,13] which is an integrated de-
signed envorinmet (IDE) tool for Matlab/Simulink, in [14,15] are some application 
examples.  
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To achieve the comparison between methods, we follow the next steps: 

1. We considered a two input system with five MFs for each input, two trapezoi-
dal MFs and three triangular MFs. Figures 4 and 5 show the MF of these  
inputs. 

2. A fuzzifing VHDL entity was codified using the proposed algorithm of section 3. 
The obtained schematic diagram and design entity is shown in Fig. 6.  We used 
8 bits, but the entity can be easily scalable to any common size. Hence, for this 
case the universe of discourse is in the range 0 to 255. 

3. The fuzzification stage coded in VHL was exported to the graphical simulation 
platform Simulink, through the use of a “black box” provided by Xilinx Sys-
tem Generator, see Fig. 7. 

4. The simulation model shown in Fig. 8 was implemented. There are three inputs 
and nine outputs. The Inputs x1 and x2 are going to be fuzzified. Attached to 
each input x1 and x2, there are three block sequentially connected blocks. Go-
ing from left to right, in the first block is given the numeric value that we want 
to fuzzify. Next is a conversion function to the range 0 to 255, and the 
last block is a Xilinx System Generator function known as “gateway in” func-
tion which is used to convert numeric values from the Simulink to the format 
needed by the Xilinx “black box”, i.e., fixed point.  The reset input is used to 
initialize the system.  In the model, there are two classes of outputs, one class 
 

 

 

Fig. 4. Membership functions for input x1 

 

Fig. 5. Membership functions for input  x2 
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                    (a)                                                (b) 

Fig. 6. a) Schematic diagram of the Fuzzification stage. b) Entity of Fuzzification stage in 
VHDL. 

 

Fig. 7.  Xilinx Blockset Library after its installation. We used the Matlab/Simulink version 7.2, 
and the the Xilinx ISE software version 8.2i. 

       is to provide the degree of membership, and the other class is to indicate which 
linguistic variable was activated. The first output class is labeled as “de-
gree_in1a”, degree_in1b”, etc. Attached to these outputs are three blocks, go-
ing from right to left, the first block is a Xilinx System Generator function 
known as “gateway out”. The goal of this block is to perform a numeric  
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conversion from eight bits fixed point, which is the output format of the fuzzi-
fication entity embedded in the “black box”, to double precision needed in 
Simulink. The next block converts from 0 to 255 to values in the universe of 
discourse of the membership functions. The last Simulink block is a display 
used to visualize the results. 

 

Fig. 8. Fuzzification stage coded in VHDL embedded in a “black box” of the Xilinx System 
Generator. The simulation was achieved using Simulink.  

 

Fig. 9. Subsystem of the two inputs of fuzzification stage in Matlab 
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5. The same inputs given in figures 4 and 5 were programmed with the Fuzzy 
Logic Toolbox for Simulink.  Fig. 9 shows the two subsystems, one for each 
input. Note that the idea is to visualize inputs and outputs values, hence we 
used the appropriated Simulink blocks to achieve this task. 

4.2   Experiment Validation 

The validation was achieved by statically comparing the results obtained with the 
VHDL fuzzification stage implemented through the Xilinx System Generator and 
Simulink [12,13], and fuzzification stage implemented using the Fuzzy Logic Tool-
box block for Simulink. The maximal error between the implementations was 0.001. 
This error can be considered very small for many applications. The error can be di-
minished easily by increasing the number of bits employed in the fuzzification stage.     

5   Conclusions 

A novel fuzzification algorithm to implement the fuzzification stage in VLSI using 
VHDL was presented.  

The algorithm has the next advantages: It only needs the values of each characteris-
tic point of the straight lines, being unnecessary to calculate previously the slopes 
values. Allows the use of symmetric and non-symmetric membership functions. The 
maximal approximation error for eight bits words is 0.001. 

Once the code has been validated, this stage can be combined with the other two 
stages (inference and defuzzification), in order to simulate the whole system in Simu-
link. The final code can be implemented in a FPGA. 
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Abstract. Multi-core computers give the opportunity to solve high-performance applications 
more efficiently by using parallel computing. In this way, it is possible to achieve the same 
results in less time compared to the non-parallel version. Since computers continue to grow on 
the number of cores, we need to make our parallel applications scalable. This paper shows how 
a Genetic Algorithm (GA) in a non-parallel version takes long time to solve an optimization 
problem; in comparison, using multi-core parallel computing the processing time can be 
reduced significantly as the number of cores grows. The tests were made on a quad-core 
computer; a comparison of the speeding up in relation to the number of cores is shown. 

1   Introduction 

Genetic Algorithms as well as other Soft Computing techniques take lots of time to 
solve a problem, and before the development of multi-core computers, the most practi-
cal way to speed this system up was by applying distributed computation using a very 
expensive multi-processor computer or a cluster [1]. However, these relatively new ar-
chitectures allow us to take the same techniques used in distributed computation and 
apply them on a single multi-core computer, so that we can take advantages of all its 
processing capability to solve a high performance application. Some of the advantages 
of multi-core architectures are shown at [2,3]. Parallel Genetic algorithms (PGAs) can 
provide considerable gains in terms of performance and scalability. PGAs can easily be 
implemented on networks of heterogeneous computers or on parallel mainframes. Sev-
eral interesting applications of parallel computing are presented by Dongarra et al. [4], 
the white paper [5] presents a description on multi-core processor architecture. An in-
troduction to Multi-Objetive Evolutionary Algorithm can be found in [6]. 

The Distributed Computing Toolbox extends the Matlab technical computing 
environment to solve computationally and data-intensive problems using a multi-
processor computing environment. The toolbox provides high-level constructs, such 
as parallel for loops and MPI- based functions, as well as low-level constructs for job 
and task management. 
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The Genetic Algorithm presented in this paper was implemented using the 
Distributed Computing Toolbox of MatLab 7.4a. which uses the Message Passing 
Interface model for distributed computation [7]. 
The goal of this work is to achieve an analysis of multi-core technology applied to the 
problem of GAs to solve the optimization of a path of a 2 Degree Of Freedom (DOF) 
arm in presence of an obstacle. 

This paper is organized as follows, in Section 2 it is explained the problem to be 
solved as well as the characteristics of the GA; in Section 3  shows the experiments to 
evaluate the multi-core parallelization, and finally in Section 4 are the conclusions.  

2   Problem Statement 

The parallel algorithm consists in simulate a mechanical arm, which will be moved 
from its initial position PA to the final position PB on a plane surface as shown in Fig 
1. In the movement it is considered the following conditions: 

• There is an obstacle within the working area with a circular shape.  
• The application must find a four-point trajectory to get from PA to PB without col-

liding with the obstacle.  
• The distance between the ends of all points of the trajectory must be minimal. 

The Genetic Algorithm has an initial chromosome composed of six pairs of genes; 
each pair correspond to the angles that defines the position of each articulation for the 
mechanical arm. The first and last pair of genes corresponds to the initial and final 
position, PA and PB respectively; the other four pairs correspond to the four points 
who will define the trajectory of the arm. 

Each part of the arm is 4 units long. The first articulation can only be moved in the 
90 degrees that define the first quadrant; the second articulation can be moved freely 
in his 360 degrees. 

 
Fig. 1. The 2 DOF mechanical arm is avoiding the obstacle by going from point PA to PB 
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The Genetic Algorithm has the following characteristics: 

• Population size. Defines the number of individuals that will compose each genera-
tion of the population.  
• Population_Size =10 

• Maximum of Generations. Determinates how many generations will the genetic 
algorithm generate for solving the problem. 
• Max_Generations=30 

• Selection Probability. When using the Roulette Wheel selection, each individual 
has a probability of been selected defined in part by their fitness. 
• Selection_Prob=0.6 

• Crossover Probability. The selected individuals have a probability of mating, act-
ing as parents to generate two new individuals that will represent them in the next 
generation. The crossing point can be random or can follow a certain pattern. 
• Crossover_Prob=0.8 

• Mutation Probability. Represents the probability that an arbitrary bit in the indi-
vidual sequence will be changed from its original stat.  
• Mutation_Prob=0.4 

• Chromosome Size. It is the number of genes in each individual. For this applica-
tion, each individual is defined by six pairs of values, representing the two angles 
of the mechanical arm. Each angle represents a gene; therefore each chromosome 
has 12 genes. 

 

 

 

Fig. 2. Genetic Algorithm Diagram. (a) Initial configuration.- This block is done just one time. 
(b) Evaluation of each Generation.- Operations done for each generation. (c) Validation and 
Fitness Evaluation.- High performance module to be parallelized. 
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• Obstacle. The obstacle has a circle shape with radium of one, and its center is lo-
cated at the coordinates (x,y)=(3,5). 

 

This Genetic Algorithm is applied as shown in Fig 2.  Other methods for solving a 
Parallel GA can be seen at [8,9,10]. 

3   Experiments to Evaluate Multi-core Parallelization 

The Genetic Algorithm will be tested in a Multi-Core computer with following char-
acteristics: CPU Intel Core 2 Quad Q6600, x86_64 2.4 GHz, Bus 1066 MHz, 8MB of 
L2 cache, Memory 2 GBytes DDR2 of main memory,  Local Disk 300 GBytes 
SATA, Operating System GNU/Linux Fedora 8, Kernel version 2.6.23.8-63.fc8. All 
the experiments were achieved in the MatLab Version 7.4a (2007). 

Since we have written the application in MatLab, we can use its Implicit Parallel 
Mode [11] to get a free speedup. The Speedup is calculated by 

N
p T

T
S 1= , (1) 

where T1 is the execution time in one core and TN is the execution time in N cores. 
The results of the parallelization are shown in Table 1, it can be seen that the ex-

plicit parallel mode presents a higher speedup compared to implicit parallel mode. 

Table 1. Implicit vs Explicit Parallel Speedup 

Implicit parallel mode Explicit parallel mode Cores 
Time (s) Speedup Time (s) Speedup 

2 120.21 1.10 74.32 1.78 
3 111.54 1.18 48.46 2.73 
4 108.13 1.22 35.95 3.68 

 
The MatLab Parallel Mode follows the MPI model for SIMD [12] (Single Instruc-

tion Multiple Data) programming architecture, where we have N initial threads who 
communicates through Message Passing. For this application we will use a Master-
Slave Single Population model for solving a Parallel Genetic Algorithm [13]. This 
model defines that the Master node solves all the methodic modules of the Genetic 
Algorithm (Fig. 2(a) and (b)); and the Validation and Fitness modules will be solved 
in conjunction with the slaves nodes as shown on Fig. 2(c).  

In MatLab’s Parallel Mode we can find a pair of functions to communicate be-
tween two process, labSend and labReceive; but since we need to make our 
application scalable so that the same program runs from an N-core computer, we will 
use the function labBroadcast, which can be used both to send and receive a 
message. 

After a successful parallelization of the Genetic Algorithm, using techniques for 
multi-threading programming [14,15], the speedup becomes higher as shown on  
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Table 1, now we can see that the explicit parallel mode presents a higher speedup 
compared to implicit parallel mode. 

The performance of the Genetic Algorithm is shown in Fig 3, the best, average and 
worst case. The trajectory followed by the robot arm is shown in Fig. 4. 

In Table 2 we can see the first and last configuration created by the genetic  
algorithm. 

Table 2. Application Results 

GENERATION 1: Best Chromosome: 1,
with a Distance = 36.5 

 
Robot Configurations: 

Initial Position  : q1=   80, q2=   10 
Configuration 2: q1=   74, q2=   91 
Configuration 3: q1=   12, q2=   92 
Configuration 4: q1=   57, q2=  100 
Configuration 5: q1=   50, q2=   96 
Final Position   : q1=   40, q2=   15 

GENERATION 10: Best Chromosome: 6, 
with a Distance = 18.1 

 
Robot Configurations: 

Initial Position  : q1=   80, q2=   10 
Configuration 2: q1=   66, q2=   49 
Configuration 3: q1=   53, q2=  240 
Configuration 4: q1=   18, q2=   69 
Configuration 5: q1=   17, q2=   48 
Final Position   : q1=   40, q2=   15 

 
In Fig. 5 we can se the time taken by the Genetic Algorithm in each execution 

mode. Fig. 6 shows the final speedup performed by the Genetic Algorithms. 
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Fig. 6. Parallel Genetic Algorithm Speedup 

4   Conclusions 

Multi-core computers can help us solve high performance applications in a more effi-
cient way by using parallel computation. On the other hand, Genetic Algorithm can be 
parallelized to speedup its execution; and if we use Explicit Parallelization we can 
achieve much better speedup than when using Implicit Parallelization. Therefore the 
study of parallelization techniques is required to implement high performance appli-
cations in a multi-core computer. 
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Abstract. Parallelism in hardware and software is necessary to solve aplications that require 
high processing. Parallel computers provide great amounts of computing power, the multi-core 
technology will be designed to increase performance and minimize heat. This paper shows the 
performance improvements with multi-core architecture and parallel programming applied in a 
Multiple Adaptive Neuro-Fuzzy Inference System, obtaining with this a significantly reduction 
of the processing time. In addition, it shows the comparison between the non-parallel and 
parallel implementation and the results obtained. 

1   Introduction 

Some applications develop large dimensions because the amount of data involved and 
their processing.  In the last years, fuzzy logic has been used in a wide number of ap-
plications [1]. An important area of application is in the fuzzy logic controllers, how-
ever, to select the appropriate parameters, like a number, type, parameters, of the 
membership functions and rules for the performance desired is difficult in most cases. 
Adaptive Neuro-fuzzy Systems (ANFIS) facilitate the learning and adaptation [2], 
ANFIS systems combine the theory of artificial neural networks and fuzzy systems. 
The artificial neural networks provide effective learning methods whereas fuzzy the-
ory allows working with uncertain data in an effective manner. Part of the problem 
with ANFIS is the Neural Networks, whose disadvantage is that the learning process 
can be long processing time. 

This paper introduces the multi-core concept, and shows the performance and ad-
vantages results in an implementation of large time processing with parallel comput-
ing applied in the multi-core technology. 

This paper is organized as follows, Section 2 describes the differences between 
single-core, multiprocessors, and multi-core architectures; it explains the models of 
parallel programming.  Section 3 explains the ANFIS implementation to solve a prob-
lem of control position and motion of a robotic arm of three Degree Of Freedom 
(DOF), using non-parallel and parallel training; Section 5 presents the experimental 
results. Finally, section 5 presents the conclusions. 
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2   Parallelism 

In recent years, computing has undergone a change in technology. Architecture, etc., 
although this has not been able to evolve in as far as performance concerns, and that 
because do not fully exploit new technologies and architectures. Today, the computa-
tion demand higher performance, which can provide a conventional computer mono-
processor in which programs followed the standard model of straight-line instruction 
execution proposed by the Von Neumann architecture. 

The most commonly used metric in measuring computing performance is CPU 
clock frequency. Over the past 40 years, CPU clock speed has tended to follow 
Moore’s law (the number of transistors available to semiconductor manufacturers 
would double approximately every 18 to 24 months), unfortunately impose limits in 
design of microprocessors. Also, rising the rate at which signals move through the 
processor, create a larger increase in heat and more energy consumption.  

Currently the hardware advances faster than the software, the processor technolo-
gies now offer parallel personal computers; this opens the door to the implementation 
of parallel computing. The main goal of parallel computing is to optimize the perform-
ance and processing speed. 

2.1   Multi-core  

In order to achieve parallel execution in software, hardware must provide a platform 
that supports the simultaneous execution of multiple threads. Software threads of exe-
cution are running in parallel, it means that the active threads are running simultane-
ously on different hardware resources, or processing elements. Multiple threads may 
make progress simultaneously [3]. Now it is important to understand that the parallel-
ism occurs at the hardware level too. 

Multi-core processors technology is the implementation of two or more “execution 
cores” within a single processor. These cores are essentially two individual processors 
on a single chip. Depending on design, these processors may or may not share a large 
on-chip cache [3], the operating system perceives each of its execution cores as a dis-
crete logical processor with all the associated execution resources [4]. 

These features allow us to see a single computer with a multi-core architecture, like 
a high-performance computer. The fast communication between the cores in the proc-
essor makes these great systems speedup compared with other multiprocessors  
systems, because of the intra-node speed and communication (intra-cores). Some ad-
vantages and experiments for evaluating multi-core architectures are shown at [5,6]. 

Figure 1, shows graphically the comparison of a) single-core, b) Multi-processor, 
and c) Multi-core architectures. In c) Multi-core, it has its own execution units, cache 
memory, etc., it allows the truly parallel computing and therefore increases the 
speedup of large applications. 

The improvement measure or speedup takes as reference, the time of execution of a 
program in a mono-core system regarding the time of execution of the same program 
in a multiprocessor or multi-core system that is represented as follows: 

 
jt

t
speedup 1= , (1) 
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Fig. 1. Comparisons of a) single-core, b) Multi-processor, c) Multi-core architectures 

where t1 is the time it takes to run the program in a mono-processor system and tj is the 
time it takes to run the same program in a system with j execution units, see Fig. 1. 

2.2   Parallel Programming 

There are many models of parallel programming, the two main choices and the most 
common are: 
 
- Shared-memory programming model, all data accessed to a global memory, is ac-

cessible from all parallel processors; each processor can fetch and store data to any 
location in the memory independently. 

- Message-passing model, data are associated with particular processors, so commu-
nication through messaging is required to access a remote data location. 

 
Although these two programming models are inspired by the corresponding paral-

lel computer architectures, their use is not restricted. It is possible to implement the 
shared-memory model on a distributed-memory computer, either through hardware 
(distributed shared memory). Symmetrically, message passing can be made to work 
with reasonable efficiency on a shared-memory system [7]. Programming techniques 
to effective parallelism and optimization techniques are shown in [8,9]. 

Furthermore, the parallelism can be implemented in two ways, implicit parallelism, 
that some compilers do automatically. These are responsible to generate the parallel 
code for the parts of the program that are parallel, on the other hand, the explicit  
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parallelism is implemented using parallel languages, and the responsible of the paral-
lelism is the programmer, that defines the threads to work, the code of each thread, 
the communication, etc., this last parallelism get higher performance. 

The Message Passing Interface (MPI), is an important and increasingly popular 
standardized and portable message passing system, that brings us closer to the poten-
tial development of practical and cost-effective large-scale parallel applications. The 
major goal of MPI, as with most standards, is the degree of portability across the dif-
ferent machines [10]. The Matlab existing libraries that correspond to the functions 
MPI are denominated MatlabMPI, the Distributed Computing Toolbox works with 
MPI, and the  MatLab Parallel Mode follows the MPI model [11,12], so with explicit 
parallelism it can be increased the potential of parallel programming.  

3   ANFIS Implementation 

Adaptive Neuro-Fuzzy Inference System (ANFIS) is a class of adaptive networks that 
are functionally equivalent to a fuzzy inference system [2]. The advantage of ANFIS 
is the Neural Network like facility to represent a fuzzy system, however one of its 
disadvantages is that the learning process is relatively slow, i.e. many train epochs. 
This can be solved if it is applied parallel programming models. 

The problem to solve is the parallel implementation of a MANFIS model to control 
position and movement of a robotic arm. The programming took place in Matlab 7.4 
R2007a, like the original implementation Non-parallel. The parallel implementation 
carries the same architecture that the original network, this is in order to have a com-
parison and show the advantages of parallelism. 

The objective is obtain a model to solve the inverse kinematics model, using a di-
rect kinematics model , to solve the problem of control position and motion for a ro-
botic arm of 3 DOF as it is shown in Fig. 2 in 3 dimensions [13]. 

First there were obtained the coordinates in space based on the angles chosen, this 
was carried out by the equation of direct kinematics, this gives a data table, to be used 
for training the proposed model.  

Taking the table of data training, it was perform the inverse modelling, i.e. we used 
the values of the coordinates in space to get the right angles of each articulation of the 
robot when it is placed in a desired position. 

The proposed model learns the behaviour of the data of the table, comparing the 
desired output, t which is in the table of data training, with the output calculated, to 
get the difference error that exists through the use of optimization methods. The goal 
is that the error tends to zero as time progresses. 

The system consists of 3 ANFIS with a set of independent rules, corresponding to 
the angles of the three degrees of freedom of the arm, theta1, theta2, theta3. The ar-
chitecture is a MANFIS model of 3 input and 3 output as shown in Fig. 3, where x,y 

and z are the corresponding inputs of the coordinates in the space and 1 2 3, ,θ θ θ  the 

corresponding outputs to the angles of each articulation of the robot.  

The number of Membership Functions for 1 2 3, ,θ θ θ  is 7, 6 and 5 for ANFIS1, 

ANFIS2 and ANFIS3 respectively. There were built training tables for each degree of 

freedom, i.e. 1(x,y,z, )θ , 2(x,y,z, )θ , 3(x,y,z, )θ  for each ANFIS. 
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Fig. 2. Robotic arm used in this problem 

Table 1. Characteristics of the computers for the model training 

Non-Parallel Training Parallel Training  
Intel Pentium IV 2.4 Ghz Intel Core 2 Quad core 2.4 Ghz 

 RAM 512 MB   RAM 2 Gb 
40 Gb HD      320 Gb HD 

 
 

 

Fig. 3. MANFIS architecture 

As shown in Table 1, the parallel training was carried out on a computer with par-
allel architecture, a Multi-Core computer Quad-Core, among them were distributed 
the 3 ANFIS system. 
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The parallel training was implemented using the tool Interactive Parallel Mode or 
Pmode of Matlab, it is part of the toolbox of distributed computing.  This tool allows 
us to work with up to 4 laboratories or instances simultaneously of Matlab, and lets 
you work interactively with a parallel job running simultaneously on several labs. The 
labs receive commands entered in the Parallel Command Window process them, and 
send the command output back to the Parallel Command Window. Variables can be 
transfered between the MATLAB client and the labs [14]. Besides of Matlab func-
tions, Pmode provides functions, makes parallel sections of code, the message passing 
between different laboratories, i.e. we can send and receive data from one laboratory 
to others, copy variables, etc. 

One of the most important advantages of working with the multi-core architecture 
and the Pmode tool, is that each laboratory of Matlab runs in a specific core. These 
features allow us to view this as a distributed architecture. 

4   Experimental Results 

This section presents the performance numeric results of the training experiments in 
Non-parallel and parallel mode. First it is presented the time consumed to train the 
MANFIS in a mono-core system, next the results obtained in the training of the same 
MANFIS, but in a multi-core system. The differences in time are very significantly, 
as can be seen on Tables 2, 3 and 4. 

Table 2. Training the MANFIS with 150 epoch and 8000 data 

Angles Hours of training Error 

1θ  
240 hrs 0.06486 

2θ  168 hrs 0.01162 

3θ  84 hrs 0.01508 

 
Table 3. Train times with 300 epoch and 4096 
data 

Angles Hours  
of train 

Error 

1θ  27.2217 hrs 0.00816 

2θ  12.01379 hrs 0.0036 

3θ  3.7852 hrs 0.0064 

Table 4. Train Times with 150 epoch and 
8000 data 

Angles Hours  
of train 

Error 

1θ  26.10744 hrs 0.00816 

2θ  12.01379 hrs 0.0036 

3θ  3.8066 hrs 0.0064 
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Non-Parallel Original Mode  

Table 2, shows the time of training in hours, of non-parallel training for the MANFIS 
model proposed, with 150 epoch and 8000 data. The next Tables 3 and 4, show the 
time of training in hours of parallel training with 300 epoch and 4096 data, and with 
150 epoch and 8000 data. 

Parallel Mode 

In Fig 4, we can see the first 3 cores that correspond to the 3 ANFIS, they work at 
100%, while the fourth core remains coordinating the others, this model is known as 
master-slave. 

  

Fig. 4. CPU performance 

Figure 5, shows a performance comparison between a parallel and a non-parallel 
training. 

 
Fig. 5. Performance between non-parallel training and parallel training 

 



322 M. Cárdenas et al. 

 

Fig. 6. Multi-core experimental platform for controlling position and movement of a 3 DOF  
robotic arm 

The resultant trained ANFIS was tested in a multi-core experimental platform for 
controlling position and movement of a manipulator robot, and the results are shown 
in the Fig. 6. The ‘O’ light grey points are the Desired Points generated random, and 
the ‘x’ dark grey points are the calculated points for the train MANFIS system. 

5   Conclusions 

In this paper, improvements of using multi-core architectures and parallel programming 
in an application with processing large time were shown, the results of performance take 
a full advantage of this technology to minimize in a large-scale the processing time. 

Multi-core processing continues with a significant impact on software evolution re-
sulting in potential performance increases providing more processing at a lower price 
with lower power consumption and heat problems. Multi-core technology will be  
predominant in the next years, this encourages writing software in a parallel form. 
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Abstract. There exists an increasing interest in the field of digital intelligent systems, being one 
of the current research target the computational efficiency. This work presents the 
implementation of a fuzzy inference system faced to achieve high performance computations 
since the highly flexibility that a specific tailored FPGA implementation can offer to parallelize 
processes.  A methodology to simulate and validate the inference engine developed in VHDL is 
given. Improvements over an exciting inference engine are proposed. The resulting code can be 
implemented in specific application hardware.  

1   Introduction 

Fuzzy logic is a branch of artificial intelligence that is based on the concept of percep-
tion, which allows handling vague information or of difficult specification. Fuzziness 
concept is born when one left to think that all phenomena founded in everyday world 
may qualify under crisp sets, when it is admitted the necessity to mathematically  
express vague concepts that can not be represented in an adequate way using crisp 
values [1]. 

The fuzzy systems are increasingly used because they tolerate inaccurate informa-
tion, can be used to model nonlinear functions of arbitrary complexity to build a sys-
tem based on the knowledge of experts using a natural language [2]. 

There are many choices to implement a fuzzy inference system [3,4,5], this work 
presents the implementation of a fuzzy inference system faced to achieve high per-
formance computations since the highly flexibility that a specific tailored FPGA im-
plementation can offer to parallelize processes. Any hardware implementation of an 
electronic system requires a complex methodology to test and validate every stage in 
the design process to guarantee its correct functionality. In particular, the use of 
VHDL to develop a product is an appealing tool, because it can be used in the differ-
ent stages involved in taking a conceptual idea by means of its formal hardware de-
scription to the final product [6].  

In this work we are presenting a slightly different architecture of an inference en-
gine that the one proposed in [7,8,9]. Although the difference is substantially small it 
gives the user some improvements in flexibility to make modifications.   
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A methodology to simulate and validate the inference engine developed in VHDL 
is given. In order to achieve this goal, it was used the Xilinx System Generator (XSG) 
[10], which is an integrated design environment (IDE) for FPGAs level system, that 
uses Simulink as a development environment and is present in the form of blocks 
[11]. It has an integrated design flow, to move straight to the configuration file (*. bit) 
necessary for the programming of FPGA.  XSG can automatically generate VHDL 
code and an ISE project of the model being developed [12]. It is possible to make hi-
erarchical synthesis VHDL, expansion and mapping hardware, in addition to generat-
ing UCF files, files simulation, test vectors and test bench files, among other things. 
XSG was created principally to work with complex DSPs (Digital Signal Processing) 
applications [13], but it has other applications as is the topic of this paper. 

This paper is organized as follows Section 2 explains the High performance Infer-
ence engine architecture, it is explained trough an easy example how the fuzzification 
stage works; in Section 3 it is presented the Simulation and test of the inference en-
gine using the XSG, Section 4 shows the evaluation of the operation of this stage with 
the remaining stages of the fuzzy system created in Matlab/Simulink; finally Section 
5 discusses some conclusions of this work. 

2   High Performance Inference Engine Architecture  

The inference engine described in this section allows the realization of fuzzy infer-
ence systems known as SISC (Singleton Input Singleton Consequent) that are very 
common in control applications where inputs are crisp values usually collected from 
sensors and can be represented with fuzzy singletons. In this kind of realization, each 
rule has its own consequent defined by its firing strength.  

The SISC realization has two main advantages that help to reduce the hardware 
cost by mean of reducing its complexity. Hence, the system considers processing only 
the active rules, and limiting to two the degree of overlapping between membership 
functions.  

 

Fig. 1. Fuzzy inputs and outputs. Each fuzzy input has membership named as Negative Big 
(NB), Negative (N), Zero (Z), Positive (P), Positive Big (PB). The output has five singletons 
called Big Decrease (BD), Decrease (D), Hold (H), Increase (I), Big Increase (BI).  
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The inputs and output names were used in a motor speed fuzzy controller applica-
tion. Each input has five MFs (NB, N, Z, P, PB) and their respective labels have asso-
ciated binary values; for example, the label NB (Negative Big) is associated with the 
binary value “000”, etc. The output has five singleton values labeled as (BD, D, H, I, 
BI) with their corresponding associated binary values, i.e., the label BD (Big De-
crease) is associated with the binary value “000”, etc. 

The architecture used in this work is illustrated in Fig. 2. First, it is the fuzzifica-
tion stage, it has two inputs, each input produces two fuzzified values, i.e., in input 1 
(in1) the dashed line indicates a crisp value that is being fuzzified, so it will produce 
the labels e1 and e2 with their corresponding degree of membership ge1 and ge2. The 
label value for e1 is “000”, and “001” for e2. The input 2 (in2) is handle in similar way.  

 

Fig. 2. Fuzzification and Inference engine stages. The system has two crisp inputs named in1 
and in2. The fuzzification stage gives four output values for each input, they are the input of the 
Inference engine, which has four outputs (o1-o4). Each output has two values, the label and the 
firing strength of a set of rules. 

The values e1, e2, ge1 and ge2 from the fuzzification stage are the inputs of the in-
ference engine. They are connected to the MUX block which function is to address 
each combination of ei and dei to joint the labels values in order to obtain a rule com-
bination to determine which output fuzzy set is involved. For example if the counter 
value pq in Fig. 2 is “00”, and considering the dashed line of in1 in Fig. 1, we will 
have the rule combination “000000”, for pq=“01” the rule combination is “000001”, 
for pq=“10” the combination is “001000”, and for pq=“11” is “001001”.  A rule that 
uses this codification is written as follows: 

 
If e1 is “000” and de1 is  “000” then BI  

 
In Fig. 3 is illustrated a code piece that handles the rules. Using the above rule, the 

antecedent (ante) is form by the concatenation of the values e1 and e2, so we have the 
“ante” value of “000000”.  
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Fig. 3.  VHDL code used to determine the labels of the active rules 

For this rule, we also calculate the “min” of both fuzzified values, since we are us-
ing the max-min method. The label and the firing strength are saved into a memory 
position, tagged as “00” in Fig. 2.  The whole process is repeated for all the active 
rules; the maximal is four since the method that we are using.  

Once the rules have been evaluated and saved their results in memory, the next 
step is to calculate the max value of all memory positions tagged with the same label. 
Finally, at the outputs we can have the four possible consequents tags and theirs firing 
strength, this is indicated in Fig. 2 by four output values o1-o4. For example for the 
output o1 can be given by the content of C1 and the resulting firing strength after ap-
plying the “max” operation to the corresponding set of rules. 

3   Test of the Inference Engine  

Every Simulink model that uses any block from the Xilinx Blockset must contain the 
block called “System Generator” since in this block is the relevant information of the 
card where the final application will be implemented, as well as one of the System 
Generator block. It is possible to specify how code generation and simulation should 
be handled.  

In order to provide bit-accurate simulation of hardware, System Generator blocks 
operate on Boolean and arbitrary precision fixed-point values.  

In contrast, Simulink uses double precision floating point as the fundamental scalar 
signal type. 

 

Fig. 4. Gateway Blocks of the XSG 
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Fig. 5. Simulink model to test the Inference Engine 

The connection between Xilinx blocks and non-Xilinx blocks is made through in-
put and output “gateway blocks”, they are shown in Fig. 4. The “Gateway In” con-
verts a double precision signal into a Xilinx signal, and the “Gateway Out” converts a 
Xilinx signal into double precision. Simulink continuous time signals must be sam-
pled by the Gateway In block [10]. 

To test the inference engine we simulated the VHDL developed code in Mat-
lab/Simulink and the XSG. The XSG allows integrating the developed VHDL code 
into the Simulink through the use of a Black Box. The created Simulink model and 
the VHDL design entity must be kept in the same directory. The VHDL code is im-
ported using a XSG Black Box which automatically opens a wizard to add the file to 
be imported. At this time, the file automatically generates a Matlab function (M-file) 
which is associated with the Black Box. Fig. 5 shows the simulation model of the  
inference engine. 

4   Testing the Fuzzy System 

Once the simulation and evaluation of the VHDL inference engine has been done, the 
next step is to test it with the fuzzification and defuzzification stages programmed us-
ing the appropriated Matlab function from the Fuzzy Matlab Toolbox. The idea is to 
provide the inference engine with labels and membership degrees values generated 
using a known sequence to obtain at the output, after the defuzzification stage, known 
values. The Simulink model is shown in Fig. 6.  
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Fig. 6. Simulink model of the Fuzzy System 

5   Conclusions 

Modifications made to the original model to implement an inference engine, using a 
hardware description language, give a more practical and flexible model since the 
process of updating any change in the rule base can be made easily. Modeling and 
simulating a hardware design to obtain a final product is not easy. The methodology 
proposed in this paper is an alternative to quickly achieve both goals, since the devel-
oped code to describe the hardware, i.e. the system model, can be used with any 
modification to simulate the system and make the system implementation in the final 
target, for example in an FPGA. 
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Abstract. Nowadays, there is an increasing interest in using FPGA devices to design digital 
controller, and a growing interest in control systems based on fuzzy logic where the 
Defuzzification stage is of primordial importance. In this work we are presenting the design, 
modeling and simulation of a fixed point defuzzification VHDL method. The modeling and 
simulation of this stage is realized in Simulink through the Xilinx System Generator, and a 
second inference system was implemented with Matlab code. Comparative analysis of both 
systems and result are shown. 

1   Introduction 

Since the development of digital technology, there has been a trend in manufacturing 
products sharing the common goals of being smaller in integration, highly efficient in 
power consumption, faster regarding processing speed, and others. Several technolo-
gies have emerged and dead in the last 40 years following the Moore’s Law crawling 
to be ever smaller in size. Alternative but parallel ways to develop high performance 
applications is to use VLSI programmable devices with the idea of developing the ap-
plications in software. In this field, the use of devices such as Field Programmable 
Gate Array (FPGA) is a very good option because this technology offers appealing 
characteristics for designers, some of them are the high scale of integration, low 
power consumption, the existence of high level languages to develop and simulate the 
application code, and reprogrammability. 

Nowadays, there is an increasing interest in using FPGA devices to design digital 
controllers, and a growing interest in control systems based on fuzzy logic, since they 
allow compensating inaccuracies in the data from the instrumentation systems, such 
as noise.  This work is about digital fuzzy controllers, it is focused in the Defuzzifica-
tion stage which is of primordial importance in this kind of controllers. 

There are several works around this topic; however it is well known that designing 
of functional VHDL modules involves a several step process where it is common to 
write VHDL simulation test benches to make exhaustive simulations, in [1] is given 
simulation code to achieve this task. 
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In this case the Defuzzification stage was simulated using the Software Xilinx Sys-
tem Generator (XSG) [2], which is a software tool that creates and verify hardware 
designs for Xilinx FPGA's[3,4].  

One of the contributions of this work is that we are giving an alternative way to test 
the final VHDL module avoiding writing a VHDL test bench.  

In [1] was proposed a deffuzzified architecture that handles fixed point with arith-
metic for real values. In contrast, we are proposing the use of a modified high per-
formance fixed point architecture for positive numbers, and make at the final stage the 
conversion to real numbers. Moreover, comparative numerical analysis is achieved.  

This paper is organized as follows, Section 2 presents in a general context the de-
fuzzification method using VHDL, it is explained trough an easy example how the 
Defuzzification stage works; in Section 3 it is presented the experimental set up, as 
well as the software tools used; Section 4 discusses the experiments and results with a 
VHDL Simulink model of the Defuzzification stage using Xilinx System Generator 
and shows the evaluation of the operation of this stage with the remaining stages of 
the fuzzy system created in Matlab/Simulink, with three cases of study. Section 5  
presents the conclusions of this work. 

2   General Contexts 

Fuzzy logic is a mathematical method to obtain approximate reasoning, emulating the 
human brain mechanism from facts described using natural language with uncertainty. 
A Fuzzy Inference System (FIS) is based on fuzzy logic and consists of three stages 
which are called: Fuzzification, Inference and Defuzzification. 

The Fuzzification stage transforms the crisp values to fuzzy values [5,6,7].  The In-
ference Engine is the core of the fuzzy logic system, here are proposed rules of the 
form IF-THEN that describe the behavior of a system [8,9]. The Defuzzification 
stage, involves extracting a crisp numerical value from a fuzzy set [1, 10, 11]. 

The explanation of this work is made using a two input and one output FIS. Figure 1 
shows the general scheme of the FIS with the three stages, Fuzzification, Inference and 
Defuzzification. 

 

Fig. 1. Fuzzy Inference System 
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The fuzzy controller has two inputs and one output, the first ones are connected to 
the Fuzzification stage which produces a fuzzy output for each evaluation. A fuzzy 
outputs has two values, the membership grade and the linguistic value, that are repre-
sented in this work as ge values for the input In1, and gde for the input In2 arranged in 
order according how the linguistic values are ordered in their universe of discourse; in 
this way, for a five membership function we have ge1, ge2,…, ge5 and gde1, gde2,…, 
gde5 respectively, that are the Inference Engine inputs. The output values of the Infer-
ence Engine named as o1, o2, o3, o4 and C1, C2, C3, C4 are the four possible grades of 
activation with their respective consequent values. The Defuzzication stage using the 
o’s values and C’s tags produces a crisp value using the Height defuzzification 
method. 

Considering that the FIS is going to be used in a dc speed control application, we 
can set some parameters in order to make numeric calculation to compare the VHDL 
implementation against the code developed in Matlab. In this controller, there are two 
inputs called error and cerror (change of error). Each input has five membership func-
tions, where two are trapezoidal and three are of triangular type. The output has five 
membership functions, two trapezoidal type and three triangular type. The universe of 
discourse for inputs and outputs is in the range [-80, +80]. 

2.1   Defuzzification Method for Fuzzy System Using VHDL Code 

Defuzzification stage is in many practical applications an essential step, especially 
where the fuzzy inference system is going to be use as a controller, where it is neces-
sary to have a crisp output value instead of having a fuzzy set.  

There are several methods to achieve this task, and their selection usually depends 
on the application and processing capacity available. The method used in this work is 
known as Height [10] that calculates a weighted average value which is a good option 
for a FPGA implementation. A remarkable characteristic is that its performance de-
pends on how symmetrical the MFs are [12, 13, 14].  

Based on the diagrams of Figure 2, the Defuzzification process using the Height 
method can be expressed by 
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where 
 
f(y) is the crisp output value. 
Cm is the peak value for the linguistic value LUm. 
om is the height of the linguistic value LUm . 

 
This method was implemented developed in VHDL using the simplified block dia-
gram shown in Figure 3, where Cm is the peak value for the linguistic value LUm, om is 
the height of the linguistic value LUm. These two inputs are connected to a block  
multiplier which corresponds to the part of the numerator in (1); only the addition of 
the om will produce the denominator. Both, numerator and denominator are connected 
to the block divider. The result of that division is f(y) [15]. 
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Fig. 2. Distribution possibility of an output condition 

 

Fig. 3. Block diagram of Height defuzzification method 

 

Fig. 4. Membership functions of output variable 

Note in Fig. 4 that the useful scale is in the real domain. Because this implementa-
tion works with positive integer numbers, it was necessary to adapt the original scale 
[-80,80], to a positive scale [0,160]. For 8 bit representation, finally we used the scale 
[0,255], this is illustrated in Fig. 4. 

The design entity of the Height Defuzzification method is shown in Figure 5. Such 
entity was programmed in VHDL to be implemented in a FPGA, but it can be used to 
simulate the Defuzzification stage without the necessity of designing and implement-
ing any test bench. 
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Fig. 5. Entity and RTL scheme of the Height Defuzzification stage 

This entity has 11 inputs and three outputs. The first eight inputs correspond to the 
four possible activation grades with their respective consequent. The remaining three 
input signals are the clock enable, clock, and reset. 

The defuzzification output f(y) is given as an 8 bits word in “sal(7:0)”. The other 
two outputs, “sal1(9:0)” and “sal2(9:0)” correspond to numerator and denominator re-
sults, and they are used for debugging purposes, so they can be removed at the final 
implementation.  

3   Experimental Set-Up 

We used three main different software tools; they are:   
 

1. Simulink from Mathwork which is a very attractive high-level design and 
simulation tool because it provides a flexible design and simulation platform 
that allows to test and correct designs at high level.  

2. Xilinx Integrated Software Environment (Xilinx ISE) is a Hardware Descrip-
tion Language (HDL) design software suite that allows taking designs throw 
several steps in the ISE design flow finishing with final verified modules that 
can be implemented in a hardware target such a Field Programmable Gate Ar-
ray (FPGA). Top level designs can be created using VHDL (Very High Speed 
Integrated Circuits VHSIC and HDL), Verilog, or Abel.  

3. Xilinx System Generator is a DSP design tool that enables the use of the 
Simulink for FPGA design. This tool allows generating VHDL code from 
the System Generator Simulink modules; and vice versa, VHDL modules 
can be included in the Simulink design platform by placing the VHDL code 
in a System Generator “Black box”. The last characteristic is the one we 
used to test the designed VHDL module of the inference engine. 
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To make this set-up works, it is very important to have the adequate versions of 
each software tool. In this case we have the next setting: 

 
1. Matlab/Simulink version is: 7.1 (R14). 
2. Xilinx ISE Project Navigator: Release version 8.2.03i, application version 

1.34. 
3. Xilinx System Generator: v8.2. 

4   Experiments and Results 

Two experimental Simulink models were created to achieve a comparative test. The 
difference between them is in the Defuzzification stage since we are interested in test-
ing it.  In the first system, the Defuzzification stage was coded in VHDL and the other 
two fuzzy stages using models from Fuzzy Logic Toolbox. In the second one, the 
 

 

Fig. 6. Configuration of the Xilinx System Generator to work with the Spartan 3, starter board 
from Digilent 
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whole system was designed with the Fuzzy Logic Toolbox. Several comparative  
experiments were made with both models. 

4.1   VHDL Simulink Model Using Xilinx System Generator 

In Fig. 6 is presented the necessary configuration for the FPGA Spartan 3. These ex-
periments were made considering that the final implementation will be achieved in 
the development starter board Spartan 3 from Digilent. 

In Fig. 7 is the whole Simulink model where the three main blocks are the Fuzzifi-
cation, Inference Engine, and Defuzzification stages, the two first stages were pro-
grammed using the Fuzzy Logic Toolbox, and the Defuzification stage using VHDL 
codification, and  it was simulated with Xilinx System Generator. The system was test 
with several values, in this figure are shown two of them, -45 for the “error” and 5 for 
“cerror”.  

4.2   Simulink Model with the Fuzzy Logic Toolbox 

In Fig. 8 it is shown the system where the three stages are an implementation of the 
“max-min” method using Matlab codification. We used this system to compare results 
with the system shown in Fig. 7, where the Defuzzification stage was created using 
VHDL.  

The values at the inputs of this system are the same values used in the previous 
system. This allows a comparison between the two systems.  

 

 

Fig. 7. System 1. Simulation of the FIS, the Height Defuzzification stage is in VHDL contained 
in a XSG black box. 
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Fig. 8. System 2. Simulation of the FIS. It is an implementation of the “max-min” method in 
Matlab. 

4.3   Comparison of Results 

In Table 1, a comparison between the performances of the two systems is shown.  
From Table 1, we chose three cases of study to present numeric analysis of the er-

ror in order to justify the differences. For all the cases, we used (1) to calculate the 
Defuzzified output; where first, we present the numeric results of System 1, an then 
for System 2.  

Fig. 4 shows that for D (LU2 in Fig. 2) the center has a value of 115, in H (LU3 in 
Fig. 2) the center is in 128, and for I (LU4 in Fig. 2) the center is in 140.  Other values 
not shown are BD (LU1) with a center value in 13, and BI (LU5) in 242. In Fig. 4, we 
 

Table 1. Percentage difference between systems. The inputs are error and change of error 
(cerror). 

Inputs 
Experiment 

# 
error cerror 

 

Output of 
System 1 
(VHDL) 

Output of 
System 2 

 

Difference of 
two systems 

(%) 

1 -45 5 33.57 34.29 -2.14 
2 -28 -10 6.58 7.27 -10.48 
3 -10 -8 2.82 2.66 5.67 
4 15 6 -4.07 -4 1.71 
5 30 15 -7.84 -8 2.04 
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can see that the universe of discourse is [-80,80]; because this design was made for 
positive numbers, it was necessary to make a domain transformation to handle only 
positive numbers in eight bits representation, so we obtain the transformed positive 
universe of discourse [0,160] ; for example the number -80 correspond to 00 hex, -72 
is 0D hex, 0 is 80 hex, 72 is F2 hex.  

One important thing to note is that, to revert to the original values we will not ob-
tain the same values because there are truncation and roundoff errors. For example, 
when we first transform -72 to 8 in the positive decimal scale, the number 8 is repre-
sented in eight bits to obtain the value 0D hex. In this step we have introduced a trun-
cation error since 0D hex corresponds to 12.75 in the original scale instead of 13. As 
we are using the integer digital representation, we are obligated to use the 0D hex 
value; hence we have also a roundoff error. 

Case of Study 1 

The inputs are: error = -45 and cerror= 5.  
 
System 1:  Simulink with XSG calculates the next digital output: 
 

181
)12812843(

)128*242()128*140()43*128(
=

++
++

=out  (2) 

 

The value 181 decimal (0B5 hex) is 33.57 in the original universe of discourse [-
80,80]. 

 
System 2:  Matlab/Simulink. 
 

29.342847.34
)5.05.01667.0(

)5.0*72()5.0*8()1667.0*0( ≅=
++
++=out  (3) 

 

Now, it is clear that 33.57-34.29=-0.72, hence the percentage difference between 
systems is 2.14% 

Case of Study 2 

error = -28 and cerror= -10, using 
 
System 1:  Simulink with XSG calculates the next digital output 
 

138
)17017(

)170*140()17*128(
=

+
+

=out  (4) 

The value 138 decimal (8A hex) is 6.58 in the original universe of discourse [-
80,80]. 
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It is very important to note that the floating point answer of (4) is 138.9091 that is 
closer to 139 (8B hex), which is 7.21 in the original scale, so the difference is 7.21-
6.58=.63. In this case the roundoff error produces the biggest difference possible (±1 
bit) for this implementation.  

 
System 2:  Matlab/Simulink. 
 

273.7
73337.0

3336.5

)6667.006667.0(

)6667.0*8()06667.0*0( ==
+
+=out  (5) 

 

In the same way as in the previous case, we have 6.58-7.23=-0.65, hence the per-
centage difference between systems is 10.48%. 

Case of Study 3 

error = -10 and cerror= -8, using 
 
System 1:  Simulink with XSG calculates the next digital output: 
 

132
)85170(

)85*140()170*128(
=

+
+

=out  (6) 

 
The value 132 decimal (84 hex) is 2.8235 in the original universe of discourse [-

80,80]. 
 
System 2:  Matlab/Simulink. 
 

667.2
)3333.06667.0(

)3333.0*8()6667*0( =
+
+=out  (7) 

 
Similar to the other two study cases, the difference between System 1 and System 

2 is 2.8235-2.667=0.1565, hence the percentage difference between systems is 5.67%. 

5   Conclusions 

We inspected the control surfaces of System 1 and System 2 and observed that in 
general terms the behavior for both systems is very similar. Some numerical differ-
ences are given in Table 1, they are attributable to the numerical 8 bits implementa-
tion of System 1, being the most important the roundoff and truncation errors that are 
spread in all the stages suffering multiplicative effects. We conclude that the maximal 
expected error is ±1 bit of resolution. Depending on the application as well as the  
users constrains, this error can be acceptable.  If it is needed more resolution it is in-
dispensable to used more bits to reduce the magnitude of errors. 
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In general terms, considering the chosen resolution, both systems behave very 
similar, so we can conclude that the developed VHDL code to implement the De-
fuzzification stage will work fine in the final implementation in an FPGA.   
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Abstract. We describe in this paper a new hybrid approach for mathematical function optimi-
zation combining Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) using 
Fuzzy Logic to integrate the results. The new evolutionary method combines the advantages of 
PSO and GA to give us an improved PSO+GA hybrid method. Fuzzy Logic is used to combine 
the results of the PSO and GA in the best way possible. The new hybrid PSO+GA approach is 
compared with the PSO and GA methods with a set of benchmark mathematical functions. The 
new hybrid PSO+GA method is shown to be superior than the individual evolutionary methods. 

1   Introduction 

We describe in this paper a new evolutionary method combining PSO and GA, to give 
us an improved PSO+GA hybrid method. We apply the hybrid method to mathemati-
cal function optimization to validate the new approach. Also in this paper the applica-
tion of a Genetic Algorithm (GA) [12] and Particle Swarm Optimization (PSO) [5] for 
the optimization of  mathematical functions is considered. In this case, we are using 
the Rastrigin’s, Rosenbrock’s, Ackley’s, Sphere’s and Griewank’s functions [4][13] 
to compare the optimization results between a GA, PSO and PSO+GA. 

The paper is organized as follows: in part 2 a description about the Genetic Algo-
rithms for optimization problems is given, in part 3 the Particle Swarm Optimization 
is presented, in part 4 we can appreciate the proposed PSO+GA method and the fuzzy 
system, in part 5 we can appreciate the mathematical functions that were used for this 
research, in part 6 the simulations results are described, in part 7 we can appreciate a 
comparison between GA, PSO and PSO+GA, in part 8 we can see the conclusions 
reached after the study of the proposed evolutionary computing methods. 

2   Genetic Algorithm for Optimization 

John Holland, from the University of Michigan initiated his work on genetic algo-
rithms at the beginning of the 1960s. His first achievement was the publication of  
Adaptation in Natural and Artificial System [1] in 1975. 

He had two goals in mind: to improve the understanding of natural adaptation proc-
ess, and to design artificial systems having properties similar to natural systems [7]. 
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The basic idea is as follows: the genetic pool of a given population potentially con-
tains the solution, or a better solution, to a given adaptive problem. This solution is 
not "active" because the genetic combination on which it relies is split between sev-
eral subjects. Only the association of different genomes can lead to the solution. 

Holland’s method is especially effective because it not only considers the role of 
mutation, but it also uses genetic recombination, (crossover) [7]. The crossover of 
partial solutions greatly improves the capability of the algorithm to approach, and 
eventually find, the optimal solution. 

The essence of the GA in both theoretical and practical domains has been well 
demonstrated [12]. The concept of applying a GA to solve engineering problems is 
feasible and sound. However, despite the distinct advantages of a GA for solving 
complicated, constrained and multiobjective functions where other techniques may 
have failed, the full power of the GA in application is yet to be exploited [12] [4]. 

To bring out the best use of the GA, we should explore further the study of genetic 
characteristics so that we can fully understand that the GA is not merely a unique 
technique for solving engineering problems, but that it also fulfils its potential for 
tackling scientific deadlocks that, in the past, were considered impossible to solve. In 
figure 1 we show the reproduction cycle of the Genetic Algorithm.  

 

Fig. 1. The Reproduction cycle 

The Simple Genetic Algorithm can be expressed in pseudo code with the following 
cycle: 

1. Generate the initial population of individuals aleatorily P(0).     
2. While (number _ generations <= maximum _ numbers _ generations)    
       Do:     
           {   
              Evaluation;   
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              Selection;   
              Reproduction;   
              Generation ++;   
           }   
3. Show results    

4. End of the generation 

3   Particle Swarm Optimization 

Particle swarm optimization (PSO) is a population based stochastic optimization 
technique developed by Eberhart and Kennedy in 1995, inspired by social behavior of 
bird flocking or fish schooling [2]. 

PSO shares many similarities with evolutionary computation techniques such as 
Genetic Algorithms (GA) [5]. The system is initialized with a population of random 
solutions and searches for optima by updating generations. However, unlike GA, the 
PSO has no evolution operators such as crossover and mutation. In PSO, the potential 
solutions, called particles, fly through the problem space by following the current  
optimum particles [1].   

Each particle keeps track of its coordinates in the problem space, which are associ-
ated with the best solution (fitness) it has achieved so far (The fitness value is also 
stored). This value is called pbest. Another "best" value that is tracked by the particle 
swarm optimizer is the best value, obtained so far by any particle in the neighbors of 
the particle. This location is called lbest. When a particle takes all the population as its 
topological neighbors, the best value is a global best and is called gbest. 

The particle swarm optimization concept consists of, at each time step, changing 
the velocity of (accelerating) each particle toward its pbest and lbest locations (local 
version of PSO). Acceleration is weighted by a random term, with separate random 
numbers being generated for acceleration toward pbest and lbest locations.  

In the past several years, PSO has been successfully applied in many research and 
application areas. It is demonstrated that PSO gets better results in a faster, cheaper 
way compared with other methods [2].   

Another reason that PSO is attractive is that there are few parameters to adjust. 
One version, with slight variations, works well in a wide variety of applications.  
Particle swarm optimization has been used for approaches that can be used across a 
wide range of applications, as well as for specific applications focused on a specific 
requirement. 

The pseudo code of the PSO is illustrated in figure 2. 
Choose the particle with the best fitness value of all the particles as the gBest 
    For each particle  
        Calculate particle velocity  
        Update particle position  
    End  
While maximum iterations or minimum error criteria is not attained 
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For each particle
    Initialize particle 
End
Do
    For each particle
        Calculate fitness value 
        If the fitness value is better than the best fitness value
(pBest) in history 
            set current value as the new pBest 
    End 

 

Fig. 2. Pseudocode of PSO 

4   PSO+GA Method 

The general approach of the proposed method PSO+GA can be seen in figure 3. The 
method can be described as follows:  

1. It receives a mathematical function to be optimized 
2.  It evaluates the role of both GA and PSO.  
3.  A main fuzzy system is responsible for receiving values resulting from step 2.  
4. The main fuzzy system decides which method to take (GA or PSO) 
5. After, another fuzzy system receives the Error and DError as inputs to  

evaluates if is necessary change the parameters in GA or PSO. 
 

 

Fig. 3. The PSO+GA scheme 
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6. There are 3 fuzzy systems. One is for decision making (is called main fuzzy), 
the second one is for change parameters the GA (is called fuzzyga) in this 
case change the value of crossover and the third fuzzy system is used for 
change parameters the PSO(is called fuzzypso) in this case change the value 
of dimension. 

7.  The main fuzzy system decides in the final step the optimum value for the 
function introduced in step 1.  

8.  Repeat the above steps until the termination criterion of the algorithm is met. 

The basic idea of the PSO+GA scheme is to combine the advantage of the individ-
ual methods using a fuzzy system for decision making and the others two fuzzy sys-
tems to improve the parameters of the GA and PSO when is necessary. 

4.1   Fuzzy System 

As can be seen in the proposed hybrid PSO+GA method, it is the internal fuzzy  
system structure, which has the primary function of receiving as inputs (Error and 
DError) the results of the outputs GA and PSO. The fuzzy system is responsible for 
integrating and decides which is the best results being generated at run time of the 
PSO+GA. It is also responsible for selecting and sending the problem to the “fuz-
zypso” fuzzy system when is activated the PSO or to the “fuzzyga” fuzzy system 
when is activated GA. Also activating or temporarily stopping depending on the re-
sults being generated. Figure 4 shows the membership functions of the main fuzzy 
system that is implemented in this method. The fuzzy system is of Mamdani type and 
the defuzzification method is the centroid. The membership functions are triangular in 
the inputs and outputs as is shown in the figure 4. The fuzzy system has 9 rules, for 
example one rule is if error is P and DError is P then best value is P (view figure 5). 
Figure 6 shows the fuzzy system rules viewer. Figure 7 shows the surface correspond-
ing for this fuzzy system. The other two fuzzy system are as the fuzzy system main. 
 

 

Fig. 4. Fuzzy system membership functions 
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Fig. 5. Fuzzy system rules 

 

Fig. 6. Fuzzy system rules viewer 

5   Mathematical Functions 

In the field of evolutionary computation, it is common to compare different algo-
rithms using a large test set, especially when the test set involves function optimiza-
tion. However, the effectiveness of an algorithm against another algorithm cannot be 
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Fig. 7. Surface of fuzzy system 

measured by the number of problems that it solves better. If we compare 3 searching 
algorithms with all possible functions, the performance of any 3 algorithms will be, 
on average, the same.  As a result, attempting to design a perfect test set where all the 
functions are present in order to determine whether an algorithm is better than any 
other for every function is impossible. The reason is because, when an algorithm is 
evaluated, we must look for the kind of problems where its performance is good, in 
order to characterize the type of problems for which the algorithm is suitable. In this 
way, we have made a previous study of the functions to be optimized for constructing 
a test set with five benchmark functions. This allows us to obtain conclusions of the 
performance of the algorithm depending on the type of function. The mathematical 
functions analyzed in this paper are the Rastrigin’s function, Rosenbrock’s function, 
Ackley’s function, Sphere’s function and Griewank’s function [7] [15]. All the  
functions were evaluated considering 2 variables. 

5.1   Rastrigin’s Function 

The Rastrigin’s function is given by the following  equation :   

))2cos(10(10)( 2

1
i

n

i

xxnxf π−+= ∑
=

    (1) 

Where the global minima is:  x* =  (0, …, 0), f(x*) = 0 
In figure 8 the Rastrigin’s function is shown, in which it can be appreciated that 

there are several local minima. 
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Fig. 8. Rastrigin’s function 

5.2   Rosenbrock’s Function 

The Rosenbrock’s function is given by the following   equation:  
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Where the global minima is:  x* =  (1, …, 1), f(x*) = 0. 
In figure 9 the Rosenbrock’s function is shown, in which it can be appreciated that 

there are several local minima. 

 

Fig. 9. Rosenbrock’s function 
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5.3   Ackley’s Function 

The Ackley’s function is given by the following equation:  

                  )2cos(/12020)( 11
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n

i
π∑∑ ==

− −−+=                   (3) 

Where the global minima is:  x* =  (0, …, 0), f(x*) = 0. 
In figure 10 the Ackley’s function is shown, in which it can be appreciated that 

there are several local minima. 

 

Fig. 10. Ackley’s function 

5.4   Sphere’s Function 

The Sphere’s function is given by the following   equation:  

                ∑ =
= n

i ixxf
1

2)(                          (4) 

Where the global minima is:  x* =  (0, …, 0), f(x*) = 0. 

 

Fig. 11. Spheres’s function 
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In figure 11 the Sphere’s function is shown, in which it can be appreciated that there 
are only one global minima. 

5.5   Griewank’s Function 

The Griewank’s function is given by the following   equation: 
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Where the global minima is:  x* =  (0, …, 0), f(x*) = 0. 
In figure 12 the Griewank’s function is shown, in which it can be appreciated that 

there are only one global minima. 

 

Fig. 12. Griewank’s function 

6   Experimental Results 

Several tests of the PSO, GA and PSO+GA algorithms were made with and  
implementation done in the Matlab programming language.  

All the implementations were developed using a computer with processor AMD  
turion X2 of 64 bits that works to a frequency of clock of 1800MHz, 2 GB of RAM 
Memory and Windows Vista Ultimate operating system. 

The results obtained after applying the GA, PSO and PSO+GA to the mathematical 
functions are shown in tables 1, 2, 3, 4 and 5: 

The parameters of Tables 1, 2 and 3: 
 

POP= Population size 
CROS= % crossover 
MUT = % mutation 
BEST= Best Fitness Value 
MEAN= Mean of 50 tests 
DIM=Dimensions 



 A New Evolutionary Method Combining Particle Swarm Optimization 357 

6.1   Simulation Results with the Genetic Algorithm (GA) 

From Table 1 it can be appreciated that after executing the GA 50 times, for each of 
the tested functions, we can see the better results and their corresponding parameters 
that were able to achieve the global minimum with the method. In figure 13 it can be 
appreciated the experimental results of table 1. In figure 13 it can be appreciated that 
the genetic algorithm was not able to find the global minimum for the Ackley’s  
function because the closest obtained value was 2.98. 

Table 1. Experimental results with GA 

MATHEMATICAL 

FUNCTION 
POP %CROS %MUT BEST MEAN 

Rastrigin 100 80 2 7.36E-07 2.15E-03 
Rosenbrock 150 50 1 2.33E-07 1.02E-05 

Ackley 100 80 2 2.981 2.980 
Sphere 20 80 1 3.49-07 1.62E-04 

Griewank 80 90 6 1.84E-07 2.552E-05 

 

Fig. 13. Experimental results with GA 

6.2   Simulation Results with Particle Swarm Optimization (PSO) 

From Table 2 it can be appreciated that after executing the PSO 50 times, for each of 
the tested functions, we can see the better results and their corresponding parameters 
that were able to achieve the global minimum with the method. In figure 13 it can be 
appreciated the experimental results of table 2. In figure 14 it can be appreciated that 
the particle swarm optimization was not able to find the global minimum for Ackley’s 
function because the closest obtained value was 2.98. 
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Table 2. Experimental results with GA 

MATHEMATICAL 

FUNCTION 
POP DIM BEST MEAN 

Rastrigin 20 10 2.48E-05 5.47 
Rosenbrock 40 10 2.46E-03 1.97 

Ackley 30 1 2.98 2.98 
Sphere 20 10 4.88E-11 8.26E-11 

Griewank 40 20 9.77E-11 2.56E-02 

 

Fig. 14. Experimental results with PSO 

6.3   Simulation Results with PSO+GA 

From Table 4 it can be appreciated that after executing the GA 50 times, for each  
of the tested functions, we can see the better results and their corresponding parame-
ters that were able to achieve the global minimum with the method. We can see  
that the crossover in the GA and dimension in the PSO are two variables parameters, 
because are changing every time the fuzzy system decides modify the two parameters. 
 

Table 4. Experimental results with PSO+GA 

GA PSO RESULTS
MATH POP %CR

OS

%
MUT

DIM POP BEST MEAN

Rastrigin 
100 Vari-

able
5 variable 100

7.03E-06 1.88E-04 

Rosenbrock 
100 Va-

riable 
2 variable 100

3.23E-07 3.41E-04 

Ackley
100 Va-

riable 
3 variable 100

1.76E-04 1.84E-03 

Sphere 
100 Va-

riable 
3 variable 10

2.80E-09 
5.91E-07 

Grienwak
160 Va-

riable 
2 variable 80

6.24E-09 9.03E-07  
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Fig. 15. Experimental results with PSO+GA 

In figure 15 it can be appreciated the experimental results for table IV. In figure 15  
it can be appreciated that the PSO+GA was able to find the global minimum for all 
test functions in this paper because the objective value was reached, and in all  
cases was 0. 

7   Comparison Results between GA, PSO and PSO+GA 

In Table 5 the comparison of the results obtained between the GA, PSO and PSO+GA 
methods  for the optimization of the 5 proposed mathematical functions is shown.  
Table 5 shows the results of figure 16, it can be appreciated that the proposed 
PSO+GA method was better than GA and PSO, because with this method all test 
functions were optimized. In some cases the GA was better but in table 5 and  
figure 16 it can be seen that the better mean values were obtained with the PSO+GA, 
only in the Sphere function was better the PSO than the other two methods. Also in 
the Rosenbrock’s  function was better the GA than the other two methods.  

Table 5. Experimental results with PSO+GA 

Mathematical 
Functions 

GA PSO PSO+GA Objective 
Value 

Rastrigin 2.15E-03 5.47 1.88E-04 0 
Rosenbrock 1.02E-05 1.97 3.41E-04 0 

Ackley 2.980 2.98 1.84E-03 0 

Sphere 
1.62E-04 8.26E-11 5.91E-07 0 

Griewank 
2.552E-05 2.56E-02  

9.03E-07 
0 
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Fig. 16. Comparison results between the proposed methods 

8   Conclusions 

The analysis of the simulation results of the 3 evolutionary methods considered in this 
paper, in this case the Genetic Algorithm (GA), the Particle Swarm Optimization 
(PSO), and PSO+GA lead us to the conclusion that for the optimization of these 5 
mathematical functions, in all cases one can say that the 3 proposed methods work 
correctly and they can be applied for this type of problems.  But we can appreciate 
that for the Ackley’s function the GA and PSO were not able of reach the global 
minimum.   

After studying the 3 methods of evolutionary computing (GA, PSO and PSO+GA), 
we reach the conclusion that for the optimization of these 5 mathematical functions, 
GA and PSO evolved in a similar form, achieving both methods the optimization of 4 
of the 5 proposed functions, with values very similar and near the objectives. Also it 
is possible to observe that even if the GA as the PSO did not achieve the optimization 
of the Ackley’s function, this may have happened because they were trapped in local 
minima. However we can appreciate that the proposed hybrid method in this paper 
(PSO+GA) was able of optimize all test functions. Also, in general PSO+GA had the 
better average optimization values. The advantage the use this method is that it incor-
porates a fuzzy system to improve the optimization results.   

Figure 16 shows the comparison of the results obtained for these 5 test functions 
and it can be appreciated that the values that were taken from the tables  above men-
tioned, the GA and the PSO obtained very good results and was very little the differ-
ence between of them. But the PSO+GA was able of optimize the Ackley’s function 
while that other two methods were not able to reach the global minimum for this func-
tion. Table 5 shows the values corresponding to figure 16. The advantage to use PSO 
is that there are few parameters used for the implementation. The genetic algorithm 
uses more parameters for its implementation. The PSO+GA is a more complex 
method but is more reliable because is a hybrid method that combines the PSO and 
GA, also uses a fuzzy system for decision and integration of the final results and other 
two fuzzy systems for changes the parameters of method, therefore in this research 
was better that the other two methods. 



 A New Evolutionary Method Combining Particle Swarm Optimization 361 

Table 5 shows the final results of figure 16, it can be appreciated in some cases, the 
GA was better than the PSO, for example, for the Rastrigin’s function, Rosenbrock’s 
function and Griewank’s function. In other cases, the PSO was better than the GA, for 
example, for the Sphere’s function. But as above is mentioned GA+PSO was better 
because with this method all functions were optimized with a smaller error. 
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Abstract. In this work, a class of Interval Type-2 Fuzzy Neural Networks (IT2FNN) is pro-
posed, which is functionally equivalent to interval type-2 fuzzy inference systems. The compu-
tational process envisioned for fuzzy neural systems is as follows: it starts with the develop-
ment of an ”Interval Type-2 Fuzzy Neuron”, which is based on biological neural morphologies, 
followed by the learning mechanisms. We describe how to decompose the parameter set such 
that the hybrid learning rule of adaptive networks can be applied to the IT2FNN architecture for 
the Takagi-Sugeno-Kang reasoning. 

Keywords: Interval type-2 Fuzzy Neural Networks, Interval Type-2 Fuzzy Neuron, Hybrid 
Learning Algorithm, Interval Type-2 Fuzzy Systems. 

1   Introduction 

Intelligent hybrid systems combining fuzzy logic (FL), neural networks (NN), genetic 
algorithms (GA), and expert systems (ES) are proving their effectiveness in a wide 
variety of real-world problems [1], [22]-[25]. Every intelligent technique has particu-
lar computational properties (e.g. ability to learn and explanation of decisions) that 
make them suitable for special kinds of problems and not for others. For example, 
while neural networks are good at recognizing patterns, they are not good at explain-
ing how they reach their decisions. Fuzzy systems [2], [20], [11]-[13], which can rea-
son with imprecise information and uncertainty, are good at explaining their decisions 
but they cannot automatically acquire the rules they use to make those decisions. 
These limitations have been a central driving force behind the creation of intelligent 
hybrid systems, where two or more techniques are combined in a manner that over-
comes the limitations of individual techniques. Intelligent hybrid systems are also  
important when considering the varied nature of application domains. Many complex 
domains have many different component problems, each of which may require differ-
ent types of processing. If there is a complex application, which has two distinct  
sub-problems (e.g. a signal processing task and a serial reasoning task), then a neural 
network and an expert system respectively can be used for solving these separate 
tasks. The use of intelligent hybrid systems is growing rapidly with successful appli-
cations in many areas including process control, engineering design, financial trading, 
credit evaluation, medical diagnosis, and cognitive simulation [1],[21],[30],[31]. 
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While interval type-2 fuzzy logic (IT2FL) provides an inference mechanism under 
cognitive uncertainty, computational neural networks offer exciting advantages, such 
as learning, adaptation, fault-tolerance, parallelism and generalization. To enable a 
system to deal with cognitive uncertainties in a manner more like humans do, one 
may incorporate the concept of interval type-2 fuzzy logic into neural networks. 

The idea of considering type-1 fuzzy neurons (T1FN) was introduced by Hirota 
and Pedrycz [3] and Pedrycz and Rocha [4]. While the models of those neurons in-
volve max and min operators and triangular norms, the neuron presented in this paper 
utilizes a particular extension of fuzzy sets. 

The computational process envisioned for fuzzy neural systems is as follows: it 
starts with the development of an “interval type-2 fuzzy neuron (IT2FN) ” based on 
the understanding of biological neural morphologies, followed by the learning 
mechanisms. This leads to the following three steps in an interval type-2 fuzzy neural 
computational process: 

• Development of interval type-2 fuzzy neural models motivated by biological 
neurons.  

• Models of synaptic connections, which incorporate fuzziness into neural 
networks.  

• Development of learning algorithms (that is, the method of adjusting the 
synaptic weights)  

An interval type-2 fuzzy neural network (IT2FNN) is a neural network with inter-
val type-2 fuzzy signals and/or interval type-2 fuzzy weights, gaussian, generalized 
bell and sigmoid transfer function, and all operations defined by Zadeh’s [5]-[10]  
extension principle. 

2   Interval Type-2 Fuzzy Logic Systems 

A general interval type-2 fuzzy logic system (IT2FLS) is depicted in Figure 1. An 
IT2FLS is very similar to a type-1 fuzzy logic systems (FLS) [1,2], the major struc-
tural difference being that the defuzzifier block of type-1 FLS is replaced by the out-
put processing block in an interval type-2 FLS, which consists of type-reduction fol-
lowed by defuzzification. 

Consider an interval type-2 Takagi-Sugeno-Kang (TSK) FLS having n inputs 

11 Xx ∈ ,…, ii Xx ∈ ,…, nn Xx ∈  and m outputs 11 Yy ∈ , …, jj Yy ∈ ,…, 

mm Yy ∈ . An interval type-2 TSK FLS is also described by fuzzy IF-THEN rules 

that represent input-output relations of a system. In general, a first-order interval type-
2 TSK [1], [15], [16], [30], [31] models with a rule base of M rules, each having n an-
tecedents, the kth rule can be expressed as follows: 
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Fig. 1. Type-2 Fuzzy Logic Systems 

where Mk ,,1 K= , j
ikC , , (i=0,1,…, n; j=1,…, m) are consequent interval type-1 

fuzzy sets; j
ky~ . The jth output of the kth rule is also an interval type-1 fuzzy set 

(since it is a linear combination of interval type-1 fuzzy sets); and k
iA~ (i=1 ,...,n) are 

interval type-2 antecedent fuzzy sets. These rules take into account simultaneously 
uncertainty about antecedent membership functions and consequent parameter values. 

In an interval type-2 TSK FLS with meet under product or minimum t-norm, the 

firing set of the kth rule is )(xF k , which is an interval type-1 set defined as: 

=)(xF k [ ])(),()(~1 xfxfx
kk

iA

n
i k

i
== μ                               (1) 

where 

 
f k (x) =

i=1

n
%* μ

%Ai
k (xi )⎡

⎣
⎤
⎦  and f

k
(x) =

i=1

n
%* μ %Ai

k (xi )⎡⎣ ⎤⎦                            (2) 

The consequent of rule kR , %yk
j = [ l yk

j , r yk
j ] , is also an interval; 

 
%yk

j = Ck ,1
j x1 +K+ Ck ,i

j xi +K+ Ck ,n
j xn + Ck ,0

j  set; and 

Ck ,i
j ∈ ck ,i

j − sk ,i
j ,ck ,i

j + sk ,i
j⎡⎣ ⎤⎦  where ck ,i

j  denotes the center (mean) of Ck ,i
j , sk ,i

j  

denotes the spread of Ck ,i
j  and l yk

j , yk
j  are defined by: 

l yk
j = ck ,i

j xi
i=1

n

∑ + ck ,0
j − sk ,i

j

i=1

n

∑ xi − sk ,0
j

r yk
j = ck ,i

j xi
i=1

n

∑ + ck ,0
j + sk ,i

j

i=1

n

∑ xi + sk ,0
j

                            (3) 



366 J.R. Castro et al. 

The jth output of a first-order interval type-2 TSK FLS is obtained by applying the 

extension principle, where now both f k (x)  and yk
j (x)  are replaced by interval 

type-1 fuzzy sets. Hence,  
%YTSK ,2

j (x)  is an interval type-1 set. To compute 
%YTSK ,2

j (x) , 

we therefore only need to compute its two end-points l y j  and r y j  as follows: 
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In an interval type-2 TSK FLS, %YTSK ,2
j (x)  is an interval type-1 fuzzy set. 

 
%YTSK ,2

j (x)  is defuzzified using the average of l y
j  and r y j ; hence, the defuzzified 

output of any interval type-2 TSK FLS is 

yTSK ,2
j (x) = l y

j + r y j

2
                                                  (5) 

 

Fig. 2. Interval Type-2 TSK FLS 

For example, Figure 2 shows an interval type-2 TSK FLS [14], [26] with two in-

puts ),( 21 xx , one output ( 1y ) and four rules (k=1,…,4); each input fuzzified by four 

membership functions ),( ,2,1 kk AA and each output is fuzzified by four interval linear 

membership functions f1,k ∈(yl
k , yr

k ) . 
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3   Interval Type-2 Fuzzy Neural Networks 

One way to build interval type-2 fuzzy neural networks (IT2FNN) is to fuzzify a con-
ventional neural network. Each part of a neural network (the activation function, the 
weights, and the inputs and outputs) can be fuzzified. A fuzzy neuron is basically simi-
lar to an artificial neuron, except that it has the ability to process fuzzy information. 

An IT2FNN with TSK reasoning and processing elements called interval type-2 
fuzzy neurons (IT2FN) for defining antecedents and interval type-1 fuzzy neurons 

(IT1FN) for defining the consequents of rules kR  is proposed. 
Figure 3 shows an IT2FN with crisp input signals (x), crisp synaptic weights (w, b) 

and type-1 fuzzy outputs ( μ1 , μ1 ,μ,μ ). This kind of neuron is build from two con-

ventional neurons with transference functions μ(net) , gaussian, generalized bell and 

logistic for fuzzifier the inputs.  Each neuron equation is defined as follows: 

net1 = w1,1x + b1 ;μ1 = μ(net1)

net2 = w2,1x + b1 ;μ2 = μ(net2)
                                    (6) 

μ(x) = μ(net1) ⋅ μ(net2 )

μ(x) = μ(net1) + μ(net1) − μ(x)
                                  (7) 

 

Fig. 3. Interval type-2 fuzzy neuron (IT2FN) 

Each IT2FN adapts an interval type-2 fuzzy set [2], A~ , expressed in terms of out-

put μ(x) , of type-1 fuzzy neuron with T-norm and μ(x)  of type-1 fuzzy neuron 

with S-norm. An interval type-2 fuzzy set is denoted as: 
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Figure 4 shows an interval type-1 fuzzy neuron build from two conventional adap-

tive linear neurons (ADALINE) [29] for adapting consequents ],[~ j
kr

j
kl

j
k yyy ∈  

from rules kR , for the jth output defined by: 
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Thus, consequents can be adapted with a network of adaptive linear networks 

(MADALINE) [29]. This network weights are the parameters of consequents j
ikc ,  and 

j
iks , for the kth rule. The outputs represent interval linear membership functions of the 

rule’s consequents, as shown in Figure 5. 

 

 

Fig. 4. Interval type-1 fuzzy neuron 

 

Fig. 5. Interval type-1 fuzzy neural network 
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Fig. 6. Interval type-2 fuzzy neural network 

In this paper, three IT2FNN architectures are proposed. The main difference be-
tween them is the way inputs are fuzzified and how type-reduction of the IT2FLS 
TSK is made. The learning rule used is back-propagation with descendent gradient, 
with the alternative of using recursive LSE algorithm to upgrade the consequent rules. 

The first architecture (Figure 6) is an adaptive five layer NN. Nodes of the first 
layer fuzzify the inputs; each node is a lower-upper membership function. Layer two 
has non-adaptive nodes that represent lower-upper firing set rules of the antecedents. 
In layer three each node evaluates consequent rules. In layer four the left-right points 
are evaluated using Karnik-Mendel type-reduction algorithm [2]. Layer five defuzzi-
fies the system’s output. For simplicity, we assume the IT2FNN under consideration 
has n inputs and one output. The forward-propagation procedure is described as  
follows:  
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Layer 0. Inputs 

x = (x1,..., xi ,..., xn )t
 

Layer 1. Interval type-2 member functions, %μk ,i (xi ) = {μ
k ,i

(xi ),μk ,i (xi )}  

For example: 

μk ,i (xi ) = {μ
k ,i

(xi ),μk ,i (xi )} = igaussmtype2(xi ,[σ k ,i ,
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Layer 3. Consequent left-right firing points 
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Layer 4. Left-right points (Type-reduction using KM Algorithm) 
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Layer 5. Defuzzification 
 

ŷ =
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The IT2FNN uses back-propagation (steepest descent) method [27] for learning 

how to determine premise parameters (to find the parameters related to interval mem-
bership functions) and consequent parameters. The learning procedure has two parts: 
In the first part the input patterns are propagated, the consequent parameters and the 
premise parameters are assumed to be fixed for the current cycle through the training 
set. In the second part the patterns are propagated again, and at this moment, back-
propagation is used to modify the premise parameters, and consequent parameters. 
These two parts are considered to be an epoch.  

Given an input-output training pair {(xp : t p )} ∀ p = 1,...,q , in order to get the 

design of the IT2FNN, the error function (E) must be minimized. 

ep = t p − ŷp                                                  (10) 

Ep = 1
2 ep

2 = 1
2 t p − ŷp( )2                                        (11) 
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E = Ep
p=1

q

∑                                                     (12) 

Accordingly, the update formulas for the generic antecedents (ξk ,i ) and conse-

quents ( ck ,i , sk ,i ), are given by equations (13) to (15) respectively 
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where η  is a learning rate. 

Equations from (16) to (19) update the parameters of the consequents of the rules 
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Equations from (20) to (23) update the parameters of the antecedents of the rules 
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Fig. 7. Interval type-2 fuzzy neural network 
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The second architecture (Figure 7) is an adaptive six layer NN. The nodes of the 
first layer fuzzify the inputs, each node is a type-1 fuzzy neuron. Nodes from the sec-
ond layer are T-norm type-1 fuzzy neurons whose outputs are the lower membership 
function and S-norm type-1 fuzzy neurons whose outputs are the upper membership 
functions. Layer three contains non-adaptive nodes that represent lower-upper firing 
set of the antecedents of the rules. In layer four each node evaluates the consequents 
rules. In layer five left-right points are evaluated using the Karnik-Mendel type-
reduction algorithm [2]. Layer six defuzzifies the output of the system. The forward-
propagation procedure is described as follows: 
 
Layer 0. Inputs 

x = (x1,..., xi ,..., xn )t
 

Layer 1. Every node l  in this layer is a square (Figure 7) with a node function. 
 

for k=1 to M 
 for i=1 to n 
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k=1,2,…,M ; i= 1,2,…,n 
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Layer 2. Every node l  in this layer is a circle labeled with T-norm and S-norm  
alternated.  
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Layer 4. Consequent left-right firing points 
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Layer 5. Left and right firing points (Type-reduction) 
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Layer 6. Defuzzification 
 

ŷ =
ŷl + ŷr

2
 

 
Equations from (16) to (19) update the parameters of the consequents and (20) to 

(23) update the parameters of the antecedents of the rules. 
 

 

Fig. 8. Interval type-2 fuzzy neural network 

The third IT2FNN architecture implements a TSK IT2FIS and has a seven layered 
architecture as shown in Figure 8. The first and second hidden layers are for fuzzify-
ing input variables, and T-norm operators are deployed in the third hidden layer to 
compute the rule antecedent part. The fourth hidden layer evaluates firing left-most 

and right-most points, f k (x)∈[ f k (x), f
k
(x)] , the rule strengths followed by the 

fifth hidden layer where the consequent for each rule are determined by 

 %yk
j ∈[ l yk

j , r yk
j ]  (see Figures 5 and 8). The sixth layer computes its two end-points, 

l y j and r y j , and in the seventh layer, we defuzzify the jth output using the average of 

l y j  and r y j . The forward-propagation procedure is described as follows: 
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Layer 0. Inputs 

x = (x1,..., xi ,..., xn )t
 

Layer 1. Every node l  in this layer is a square (Figure 6) with a node function. 
for k=1 to M 
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or gbell transfer function:  
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k=1,2,…,M ; i= 1,2,…,n 
 
Layer 2. Every node l  in this layer is a circle labeled with T-norm and S-norm alter-
nated.  
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Layer 3. Every node l  in this layer is a circle labeled T, which multiplies the incom-

ing signals and sends the product out. Each output node represents the lower ( f k
) 

and upper ( f
k

) firing strength of a rule. 
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Layer 4. Every node l  in this layer is a circle labeled ℘  which evaluates the left-

most and right-most firing points denoted by:  
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where ω  are adjustable weights. 
 
Layer 5. Every node l  in this layer is a square labeled yl and yr , which computes 
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Layer 6. The two nodes in this layer are circles labeled with “Σ” that evaluates the 
two end-points, yl  and yr  
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Layer 7. The single node in this layer is a circle labeled “Σ” that computes the output. 
 

ŷ =
ŷl + ŷr
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Equations from (16) to (19) update the parameters of the consequents of the rules 
and (24) to (27) update the left-right most firing set points for type-reduction 
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fr
j

j=1

M

∑
⋅
∂fr

k

∂ξk,i

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

                    (30) 



380 J.R. Castro et al. 

4   Simulation Results 

We present results form simulations of three different IT2FNN architectures for the 
TSK model. Tables 1 and 2 show the results of the hybrid models for the on-line iden-
tification in a control system and prediction of Mackey-Glass chaotic series respec-
tively. The first column in tables show indexes of the hybrid model, first index  
represent the architecture and second index the transference function type where 1 is 
for Gaussian symmetric (igaussmtype2) with uncertain mean and 2 for asymmetric 
transference function (igausssttype2) with uncertain mean and standard deviation. 

4.1   On-Line Identification in Control Systems 

In this paper, we compare our IT2FNN with a simulation example given in [1], [18], 
where a 1-20-10-1 back-propagation MLP is employed to identify a nonlinear com-
ponent in a control system. The plant under consideration is governed by the follow-
ing difference equation: 
 

y(k +1) = 0.3y(k) + 0.6 * y(k −1) + f (u(k))                                 (31) 
 
where y(k) and u(k) are the output and input, respectively, at time step k. The un-
known function f (⋅)  has the form 

 

f (u) = 0.6sin(πu) + 0.3sin(3πu) + 0.1sin(5πu)                                 (32) 
 
In order to identify the plant, a series-parallel model governed by the difference equa-
tion 

 

ŷ(k +1) = 0.3ŷ(k) + 0.6 * ŷ(k −1) + F(u(k))                                 (33) 
 

was used, where F(⋅)  is the function implemented by the IT2FNN and its parameters 

are updated at each time step. 
The number of membership functions assigned to each input of the IT2FNN was 

arbitrarily set to 5, so the rule number is 5. After 50 epochs (Table I), we obtained a 
RMSE = 0.0055 (training). The desired and predicted values for both training data are 
essentially the same in Figure 7. 

Table 1. Training RMSE After 50 epochs 

Hybrid Model IT2MF RMSE 
11 igaussmtype2 0.0061 
12 igausssttype2 0.0064 
21 igaussmtype2 0.0063 
22 igausssttype2 0.0057 
31 igaussmtype2 0.0056 
32 igausssttype2 0.0055 
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Fig. 7. Off-line learning with five rules 

In table 1 and figure 7 it is shown that proposed architectures clearly identify con-
trol function and the best architecture is the third one (Models 31 and 32) with asym-
metric transference functions.  

4.2   Predicting Chaotic Time Series 

The time series used for the simulation was generated by the chaotic Mackey-Glass 
differential delay equation [17] defined below: 

 
&x(t) =

0.2x(t − τ )

1+ x10 (t − τ )
− 0.1x(t)                                   (34) 

The prediction of future values of these time series is a benchmark problem, which 
has been considered by a number of connectionist researchers [18]. 

The goal is to use known values of the time series up to the point x=t to predict the 
value at some point in the future x=t+P. The standard method for this type of predic-
tion is to create a mapping from D points of the time series spaced Δ  units apart, that 
is (x(t-(D-1)Δ ),…,x(t-Δ ),x(t)), to a predicted future value x(t+P). To allow compari-
son with earlier work [18], the values D=4 and Δ =P=6 were used. All other simula-
tion setting in this example were purposely arranged to be as close as possible to those 
reported in [19].  

To obtain the time series value at each integer point, we applied the fourth-order 
Runge-Kutta method to find the numerical solution to the equation. The time step 
used in the method is 0.1, initial condition x(0)=1.2, τ=17, and x(t) is thus derived for 
0<=t<=2000. From the Mackey-Glass time series x(t), we extracted 1000 input-output 
data pairs of the following format: 

[x(t-24),x(t-18),x(t-12),x(t-6);x(t)] 
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where t=124 to 1123. The first 500 pairs (training data set) were used for training the 
IT2FNN while the remaining 500 pairs (checking data set) were used for validating 
the identified model. The number of membership functions assigned to each input of 
the IT2FNN was arbitrarily set to 4, so the number of rules is 4. 

After 50 epochs (Table 2), we obtained a RMSE = 0.0135 (training) and RMSE = 
0.0155 (checking). The desired and predicted values for both training data and check-
ing data are essentially the same in Figure 7. Rules and surface after 50 epochs are 
shown in Figures 8, 9 and 10. 

It can be seen in table 2 that architecture 3 identifies best Mackey-Glass series and 
figure 10 shows that architecture 3 (models 31 and 32) converges faster with asym-
metric transference functions. 

Table 2. Training RMSE After 50 epochs 

Hybrid Model IT2MF RMSE 
11 igaussmtype2 0.0257 
12 igausssttype2 0.0250 
21 igaussmtype2 0.0196 
22 igausssttype2 0.0221 
31 igaussmtype2 0.0153 
32 igausssttype2 0.0135 

 
 

 

Fig. 7. Mackey-Glass time series from t=124 to 1123 and six-step ahead prediction 
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Fig. 8. Rules and Membership functions after learning 

 

Fig. 9. Final non-linear surface 
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Fig. 10. RMSE curves for the Hybrid Model IT2FNN 

5   Conclusions 

Before the introduction of hybrid learning algorithms into the interval type-2 fuzzy in-
ference systems, the relationships between the neural network (NN) and the interval 
type-2 fuzzy inference system (IT2FIS) can be viewed as two extreme endpoints on a 
spectrum of modeling approaches. At one end, IT2FIS has meaningful representations 
(interval type-2 fuzzy If-Then rules and interval type-2 fuzzy reasoning) derived from 
human expertise, but it has no adaptive capability (learning from examples) to take 
advantage of a desired input-output data set. At the other end, NN represents a totally 
different paradigm with learning capability that adapts its parameters based on desired 
input-output pairs, but neither can accommodate a priori knowledge from humans 
experts, nor can we transform a network configuration and connection weights into a 
meaningful representation to account for structured knowledge. 

Because of the extreme flexibility of adaptive networks the IT2FNN can be gener-
alized in a number of different ways. For instance, the interval type-2 membership 
functions can be changed to any of the parameterized MFs. Furthermore; we can re-
place the nodes in layer 3 with a parameterized T-norm and let the learning rule de-
cide the best T-norm operator for a specific application. Moreover, the realization of 
rules with OR’ed antecedents, linguistic hedges, and multiple outputs can be put into 
the IT2FNN accordingly. Another important issue in the training of the IT2FNN is 
how to preserve some intuitive features that make the resulting interval type-2 fuzzy 
rules easy to interpret. 

Throughout this paper, we have assumed that the structure of IT2FNN is fixed and 
that the parameter identification is solved through the hybrid learning rule. However, 
to make the whole approach more complete, the structure identification (which is 
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concerned with the selection of an appropriate input-space partition style, the number 
of membership functions on each input, and so on) is equally important to the suc-
cessful application of IT2FNN, especially for modeling problems with a large of in-
puts. Effective partitioning of the input space can decrease the number of rules and 
thus increase the speed in both the learning and application phases. 

The time series results show that intelligent hybrid methods can be derived as a 
generalization of the autoregressive non-linear models in the context of time series. 
This derivation allows a practical specification for a general class of prognosis and 
identification time series models, where a set of input-output variables are part of the 
dynamics of the time series knowledge base. This helps the application of the meth-
odology to a series of diverse dynamics, with a very small number of causal variables 
to explain behavior. 
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Optimization of Artificial Neural Network  
Architectures for Time Series Prediction Using  
Parallel Genetic Algorithms 

Salvador González Mendivil, Oscar Castillo, and Patricia Melin 

Tijuana Institute of Technology 

Abstract. This paper considers the application of parallel genetic algorithms to the optimiza-
tion of modular neural network architectures for time series prediction. We have a cluster  
configuration of 16 computers and the application is executed using the Matlab Distributed 
Computing Engine included in MATLAB r2006b.  The Linux Fedora Core VI Operating Sys-
tem was installed and configured for the cluster execution due to its high performance, scalabil-
ity and because it presents innumerable benefits that facilitate the implementation of distributed 
computing applications. The first part of this paper presents the theoretical framework with ba-
sic concepts like times series, artificial neural networks, genetic algorithms, and parallel genetic 
algorithms.  The second part of this paper presents the procedure for configuring the cluster of 
computers, requirements, experiences and main problems that were encountered. Also, the de-
velopment of the project is presented explaining as it was initially proposed and the adjustments 
that were required.  The third part of this paper presents the obtained results for the time series 
prediction using tables, graphics and describing each one of them. Finally the conclusions and 
future works are presented. 

1   Introduction 

Forecasting refers to a process by which the future behavior of a dynamical system is 
estimated based on our understanding and characterization of the system. If the  
dynamical system is not stable, the initial conditions become one of the most impor-
tant parameters of the time series response, i.e. small differences in the start position 
can lead to a completely different time evolution. This is what is called sensitive de-
pendence on initial conditions, and is associated with chaotic behavior [1, 2] for the  
dynamical system. 

The financial markets are well known for wide variations in prices over short and 
long terms.  These fluctuations are due to a large number of deals produced by agents 
that act independently from each other. However, even in the middle of the apparently 
chaotic world, there are opportunities for making good predictions [3, 4]. Tradition-
ally, brokers have relied on technical analysis, based mainly on looking at trends, 
moving averages, and certain graphical patterns, for performing predictions and sub-
sequently making deals.  Most of these linear approaches, such as the well-known 
Box-Jenkins method, have disadvantages [5]. 

More recently, soft computing [6] methodologies, such as neural networks, fuzzy 
logic, and genetic algorithms, have been applied to the problem of forecasting complex 
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time series. These methods have shown clear advantages over the traditional statistical 
ones [7].  The main advantage of soft computing methodologies is that, we do not need 
to specify the structure of a model a-priory, which is clearly needed in the classical re-
gression analysis [8].  Also, soft computing models are non-linear in nature and they 
can approximate more easily complex dynamical systems, than simple linear statistical 
models. Of course, there are also disadvantages in using soft computing models instead 
of statistical ones.  In classical regression models, we can use the information given by 
the parameters to understand the process, i. e. the coefficients for the model can repre-
sent the elasticity of price for a certain good in the market. However, if the main objec-
tive is to forecast as closely as possible the time series, then the use of soft computing 
methodologies for prediction is clearly justified. 

2   Monolithic Neural Network Models 

A neural network model takes an input vector X and produces an output vector Y.  The 
relationship between X and Y is determined by the network architecture, there are 
many forms of network architecture (inspired by the neural architecture of the brain).  
The neural network generally consists of at least three layers: one input layer, one 
output layer, and one or more hidden layers. Figure 1 illustrates a neural network with 
n neurons in the input layer, one hidden layer with m neurons, and one output layer 
with one neuron. 

 

Fig. 1. Single Hidden Layer feedforward network 

3   Modular Neural Networks 

There exists a lot of neural network architectures in the literature that work well when 
the number of inputs is relatively small, but when the complexity of the problem 
grows or the number of inputs increases, their performance decreases very quickly.  
For this reason, there has also been research work in compensating in some way the 
problems in learning of a single neural network over high dimensional spaces. 
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Fig. 2. Ensembles for one task and subtask 

 

Fig. 3. Modular approach for task and subtask 

In the work of Sharkey [9], the use of multiple neural systems (Multi-Nets) is de-
scribed.  It is claimed that multi-nets have better performance over even solve prob-
lems that monolithic neural networks are not able to solve.  It is also claimed that 
multi-nets or modular systems have also the advantage of being easier to understand 
or modify, if necessary. 

In the literature there is also mention of the terms “ensemble” and “modular” for 
this type of neural networks.  The term “ensemble” is used when a redundant set of 
neural networks is utilized, as described in Hansen and Salomon [10], in this case, 
each of the neural networks is redundant because it is providing a solution for the 
same task, as it is shown in Figure 2. On the other and, in the modular approach, one 
task or problem is decompose in subtasks, and the complete solution requires the  
contribution of all the modules, as it is shown in Figure 3. 

4   Genetic Algorithms for Optimization 

John Holland, from the University of Michigan began his work on genetic algorithms 
at the beginning of the 60’s.  Hi first achievement was the publication of Adaptation 
in Natural and Artificial System [12] in 1975. 

Holland had two goals in mind_ to improve the understanding of natural adaptation 
process, and to design artificial systems having properties similar to natural systems 
[13]. 
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The basic idea is as follows: the genetic pool of a given population potentially con-
tains the solutions, or a better solution, to a given adaptive problem.  This solution is 
not “active” because the genetic combination on which it relies is split between sev-
eral subjects.  Only the association of different genomes can lead to the solution.   

Holland’s method is especially effective because it not only considers the role of 
mutation, but it also uses genetic recombination (crossover) [14]. The crossover of 
partial solutions greatly improves the capability of the algorithm to approach, and 
eventually find, the optimal solution. 

The essence of the GA in both theoretical and practical domains has been well 
demonstrated [15].  The concept of applying a GA to solve engineering problems is 
feasible and sound. However, despite the distinct advantages of a GA for solving 
complicated, constrained and multi-objective functions where other techniques may 
have failed, the full power of the GA in applications is yet to be exploited [16]. 

To bring out the best use of the GA, we should explore further the study of genetic 
characteristics so that we can fully understand that the GA is not merely a unique 
technique for solving engineering problems, but that it also fulfils its potential for 
tackling scientific deadlocks that, in the past, were considered impossible to solve. 

5   Parallel Genetic Algorithms 

The basic idea behind most parallel programs is to divide a large problem into smaller 
tasks and to solve the tasks simultaneously using multiple processors. This divide-
and-conquer approach can be applied to GAs in many different ways, and the  
literature contains numerous examples of successful parallel implementations. Some 
parallelization methods use a single population, while others are better suited to mul-
ticomputers with fewer and more powerful processing elements connected by a 
slower network. 

We can recognize four major types of parallel GAs [17]: 

1. Single-population master-slave GAs. 
2. Multiple-population GAs. 
3. Fine-grained GAs. 
4. Hierarchical Hybrids. 

Master-slave GAs have a single population.  One master node executes the GA  
(selection, crossover, and mutation) and the evaluation of fitness is distributed among 
 

 

Fig. 4. A schematic of a master-slave parallel GA 
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several slave processors (see Figure 4).  The slaves evaluate the fitness of the indi-
viduals that they receive from the master and return the results.   Since in this type of 
parallel GAs selection and crossover consider the entire population, master-slave GAs 
are also known as “global” parallel GAs. 

Probably the easiest way to implement GAs on parallel computers is to distribute the 
evaluation of fitness among several slave processors while one master executes the GA 
operations. This paper examines master-slave parallel GAs. These algorithms are impor-
tant for several reasons: 

• They explore the search space in exactly the same manner as serial GAs, and 
therefore the existing design guidelines for simple GAs are directly applicable, 

• They are very easy to implement, which makes them popular with practitio-
ners, and 

• In many cases master-slave GAs result in significant improvements in per-
formance. 

6   Cluster’s Configuration 

6.1   Network Configuration 

 Operating System Fedora Core VI 
 Matlab r2006b for UNIX/LINUX 
 Computer’s name: 

 CLUSTER1  -  CLUSTER16 
 Static IP directions 

 For computers: 

• 192.168.1.1  -  192.168.1.16 
 In the network switch: 

• 192.168.1.254 
 Resolution of names 

 /etc/hosts 

 

Fig. 5. Graphical representation for the cluster 
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6.2   Matlab Distributed Computing Toolbox 

Distributed Computing Toolbox and MATLAB Distributed Computing Engine enable 
you to coordinate and execute independent MATLAB operations simultaneously on a 
cluster of computers, speeding up execution of large MATLAB jobs. 

A job is some large operation that you need to perform in your MATLAB session. 
A job is broken down into segments called tasks. You decide how best to divide your 
job into tasks. You could divide your job into identical tasks, but tasks do not have to 
be identical. 

The MATLAB session in which the job and its tasks are defined is called the client 
session. Often, this is on the machine where you program MATLAB. The client uses 
Distributed Computing Toolbox to perform the definition of jobs and tasks. 
MATLAB Distributed Computing Engine is the product that performs the execution 
of your job by evaluating each of its tasks and returning the result to your client  
session. 

The job manager is the part of the engine that coordinates the execution of jobs 
and the evaluation of their tasks. The job manager distributes the tasks for evaluation 
to the engine’s individual MATLAB sessions called workers. Use of the MathWorks 
job manager is optional; the distribution of tasks to workers can also be performed by 
a third-party scheduler, such as Windows CCS or Platform LSF [18]. 

 

Fig. 6. Developing distributed and parallel applications with the Distributed Computing Tool-
box of Matlab 

7   Structure of the Chromosome 

The Number of modules, hidden layers and neurons per hidden layer were optimized 
by genetic algorithm. Table 1 shows the proposed structure of the chromosome,  
Equation 1 calculates the total quantity of neurons for a hidden layer. 
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Fig. 7. Variables to optimize using genetic algorithm 

Table 1. Structure of the Chromosome 

GA1 (31 Neurons) GA2 (63 Neurons)

MONOLITHIC MODULAR MONOLITHIC MODULAR

MODULES 6 6

LAYERS 3 3 3 3

NEURONS 5 5 6 6

Length(bits) 18 114 21 132  
Equation 1: 

 

Table 2. Binary-decimal conversion 

BINARY Equation 1 DECIMAL 
11111 

 
31 

111111 
 

63 

 
Figure 8 is graphical representation for the structure of the chromosome to repre-

sent a monolithic neural network called GA1 MONOLITHIC: first 3 bits represent the 
hidden layers, next 5 bits represent the neurons of first hidden layer, next 5 bits repre-
sent the neurons of second hidden layer and, last 5 bits represent the neurons of last 
hidden layer. 

Figure 9 is graphical representation for the structure of the chromosome to repre-
sent a modular neural network called GA2 MODULAR: first 6 bits represent the 
number of modules to be training, next 6 sections of 21 bits represent a structure type 
GA2 MONOLITHIC: first 3 bits represent the hidden layers, next 6 bits represent the 
neurons of first hidden layer, next 6 bits represent the neurons of second hidden layer 
and, last 6 bits represent the neurons of last hidden layer. 
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Fig. 8. Graphical representation for minimum structure of the chromosome (GA1 monolithic) 
with 18 bits 

 

Fig. 9. Graphical representation for maximum structure of the chromosome (GA2 modular) 
with 132 bits 

8   Objective Function 

The objective of training the network is to minimize two different parameters: the ac-
curacy of the network (  ) and the complexity of the network (  ) which is simply 

defined by the number of active connections or neurons in the network.  This is calcu-
lated based upon the summation of the total number of active connections taking 
place.  The accuracy of the network (  ) is defined as: 

 
Where N is the size of the testing vector,  and  are the network output and desired 

output for the i-th pattern of the test vector respectively [15]. 

8.1   Selection Process 

Since there are two different objective functions, (  ) and (  ) of the network opti-

mization process, the fitness value of chromosome z is thus determined: 
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Where  is accuracy weighting coefficient;  is complexity weighting coefficient; 

and  is the rank value [15]. 

 is set as following to ensure . 

 

9   Simulation Results 

Table 3 show the parameters used in execution of the genetic algorithm in the cluster.  
Levenberg-Marquardt was used like Training function due previous investigations 
[19] it obtained the best results. 

Table 3. Parameters for execution of genetic algorithm 

Number of individuals 40 
Generations  10 
Training function Levenberg-Marquardt 
Selection Roulette 
Mutation 10% 
Crossover 70% 
Elitism 10% 

9.1   Simulation and Forecasting the Logistic Equation 

We will consider the problem forecasting the logistic equation series calculated using 

                                                 (2) 

When  

Figure 10 shows the time series for first 200 point calculated with logistic equation. 
We show in Table 4 the evolution of the genetic algorithm for logistic equation  

series. 
 

 

Fig. 10. First 200 values for logistic equation 
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Table 4. Evolution of the genetic algorithm for logistic equation series 

GENERATION FITNESS 
VALUE 

CHROMOSOME ARCHITECTURE 

1 3.0835 
[1 1 1 0 0 0 0 1 1 0 
1 0 1 1 0 1 1 1] 

[1 21 23] 

2 3.0835 
[1 1 1 0 0 0 0 1 1 0 
1 0 1 1 0 1 1 1] 

[1 21 23] 

3 3.0835 
[1 1 1 0 0 0 0 1 1 0 
1 0 1 1 0 1 1 1] 

[1 21 23] 

4 3.0835 
[1 1 1 0 0 0 0 1 1 0 
1 0 1 1 0 1 1 1] 

[1 21 23] 

5 3.0835 
[1 1 1 0 0 0 0 1 1 0 
1 0 1 1 0 1 1 1] 

[1 21 23] 

6 3.0835 
[1 1 1 0 0 0 0 1 1 0 
1 0 1 1 0 1 1 1] 

[1 21 23] 

7 3.0835 
[1 1 1 0 0 0 0 1 1 0 
1 0 1 1 0 1 1 1] 

[1 21 23] 

8 1.3801 
[1 1 1 0 0 0 0 1 1 1 
1 0 1 1 0 1 1 0] 

[1 29 22] 

9 1.3801 
[1 1 1 0 0 0 0 1 1 1 
1 0 1 1 0 1 1 0] 

[1 29 22] 

10 1.3801 
[1 1 1 0 0 0 0 1 1 1 
1 0 1 1 0 1 1 0] 

[1 29 22] 

 

 

Fig. 11. Optimized neural network architecture for forecasting the logistic equation series 

 

Fig. 12. Monolithic network results for logistic equation series 
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In Figure 11we show the optimized neural network architecture for forecasting lo-
gistic equation series. We have to mention that the architecture shown in Figure 11 is 
result of the genetic algorithm execution. 

We need to mention that the results shown in Figure 12 are for the best individual 
that the genetic algorithm was able to find in its execution with a minimum square er-
ror of 0.00472857. 

 

Fig. 13. First 1200 values for Mackey-glass series 

Table 5. Evolution of the genetic algorithm for Mackey-Glass series 

GENERATION FITNESS 
VALUE 

CHROMOSOME ARCHITECTURE 

0  27.1113  [0 1 1 0 1 0 1 1 0 1 
0 1 0 0 1 1 0 1]  

[10 13]  

1 25.7873  [0 1 0 1 0 0 1 1 1 1 
1 1 0 1 1 0 1 1]  

30  

2  25.7873  [0 1 0 1 0 0 1 1 1 1 
1 1 0 1 1 0 1 1]  

30  

3  13.4572  [1 1 1 0 0 0 1 1 0 1 
1 1 0 1 0 0 0 1]  

[3 14 17]  

4  13.4572  [1 1 1 0 0 0 1 1 0 1 
1 1 0 1 0 0 0 1]  

[3 14 17]  

5  13.4572  [1 1 1 0 0 0 1 1 0 1 
1 1 0 1 0 0 0 1]  

[3 14 17]  

6  13.4572  [1 1 1 0 0 0 1 1 0 1 
1 1 0 1 0 0 0 1]  

[3 14 17]  

7  10.1092  [1 1 1 0 0 0 1 1 0 0 
1 1 0 1 0 0 0 1]  

[3 6 17]  

8  10.1092  [1 1 1 0 0 0 1 1 0 0 
1 1 0 1 0 0 0 1]  

[3 6 17]  

9  7.1342  [1 1 1 0 0 0 0 1 0 1 
1 1 0 1 0 0 0 1]  

[1 14 17]  

10  7.1342  [1 1 1 0 0 0 0 1 0 1 
1 1 0 1 0 0 0 1]  

[1 14 17]  
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9.2   Simulation and Forecasting Mackey-Glass Series 

We show in Figure 13 the values of Mackey-Glass series provided by Matlab r2006b 
Table 5 shows the evolution of genetic algorithm for Mackey-Glass series. 
In Figure 14 we show the optimized neural network architecture for forecasting lo-

gistic equation series. We have to mention that the architecture shown in Figure 14 is 
result of the genetic algorithm execution. 

We need to mention that the results shown in Figure 15 are for the best individual 
that the genetic algorithm was able to find in its execution with a minimum square  
error of 0.000394663. 

 

Fig. 14. Optimized neural network architecture for forecasting logistic equation series 

 

Fig. 15. Monolithic network results for Mackey-Glass series 

10   Conclusions  

We describe in this paper the use of parallel genetic algorithms for optimization of 
neural networks architectures for simulation and forecasting of chaotic time series. 
We have considered two chaotic series: logistic equation and Mackey-Glass series.  
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The genetic algorithm train both monolithic and modular neural networks and find the 
best architecture for each times series. 
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Abstract. Functional dependency (FD) is an important type of semantic knowledge reflecting 
integrity constraints in databases. Traditionally, FDs are proposed by managers or domain ex-
perts, which is regarded as a logic-driven method. FD has nowadays attracted an increasing 
amount of research attention in data mining and many efforts have been made to discover FDs 
in large-scale databases automatically. In mining FDs, two major problems exist. First, impre-
cise or noisy data may often exist in massive databases which will lead to missing precise FDs. 
Second, how to efficiently discover the so-called minimal set of FDs is still a hot issue. In order 
to tolerate partial truth due to imprecise or incomplete data, or due to a very tiny insignificance 
of tuple differences in a huge volume of data, the notion of functional dependency with degree 
of satisfaction, denoted as (FD)d, has been proposed in [32], along with Armstrong-like proper-
ties and the concept of minimal set. Moreover, the efficient mining algorithm MFDD has been 
proposed in [29, 30, 33], by which some inference rules could be used to improve efficiency in 
mining process and the minimal set of satisfied (FD)d could be discovered. Based on the MFDD 
algorithm, this paper will further propose the concept of degree of diversity of attribute, which 
will be proved consistent to the framework of degree of satisfaction. Moreover, some important 
properties along with some optimization strategies will be presented. Furthermore, by measur-
ing the degree of diversities of attributes with pre-scanning operation, quite many (FD)d could 
be determined satisfied or dissatisfied using the strategies. This process could highly save the 
computational consumption for further scanning databases in MFDD algorithm, which could 
effectively improve the efficiency of the whole mining algorithm. Furthermore, the experimen-
tal results show the optimization strategies could take significant effects to improve the compu-
tational efficiency. Finally, some concluding remarks and future works will be presented. 

1   Introduction 

Nowadays, more than 99% commercial databases are relational databases (RDB). 
RDB theories and modeling methods are also the mainstream in research and applica-
tion fields of databases. One of the reasons that RDBs are so popular is that, the RDB 
modeling process has been standardized and supported by several ripe theories and 
methods, e.g., Entity-Relationship (ER) conceptual modeling, ER algebra, Normaliza-
tion theory, SQL query language, etc [11, 26-27]. 
                                                           
* Partly supported by the National Natural Science Foundation of China (79925001/70231010), 
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Traditionally, in typical RDB modeling, the ER conceptual modeling should be 
processed first, by which the entities, relationships, attributes, etc., could be extracted 
based on context information and experts’ knowledge. Moreover, the conditions and 
constraints regarding an objects’ static aspects and its dynamic aspects, which are of-
ten referred as the business rules, should be considered and integrated into data mod-
eling. A particular business rules can be categorized as data constraints, e.g., domain 
constraints, key constraints, integrity constraints and data dependencies. Specifically, 
a kind of data dependency, called functional dependency, play a very important role 
in RDB modeling [26-27]. 

Generally, for two collections A and B of attributes, a functional dependency A→B 
means that A values uniquely determine B values. An example of A→B is (Student#, 
Course#)→Grade, meaning that the value of grade can be uniquely determined by a 
given value of Student# and a given value of Course#. Formally, let ℜ(I1, I2, ..., Im) be 
an n-ary relational scheme on domains D1, D2,..., Dn with Dom(Ii) = Di, A and B be 
subsets of the attribute set U = {I1, I2, ..., Im}, i.e., A, B ⊆ U, and R be a relation of 
scheme ℜ(U), R ⊆ D1×D2×...×Dm. A functionally determines B (or B is functionally 
dependent on A), denoted as A→B, if and only if ∀t, t’ ∈ R, if t(A) = t’(A) then t(B) = 
t’(B), where t and t’ are tuples of R, and t(A), t’(A), t(B) and t’(B) are values of t and t’ 
for A and B respectively [26-27]. 

In this way, the original relational scheme, or called relational model, could be ob-
tained, e.g., ℜ(U, F), where U is the set of attributes in ℜ, and F is the set of func-
tional dependencies on U, which is regarded as first normal form (1NF) [29-30]. In 
RDB, functional dependencies reflect some kind of important business rules, which 
can be used to avoiding data redundancy and update anomalies. It is important to note 
that functional dependency possesses several desirable properties, including so-called 
Armstrong axioms that constitute a FD inference system [26-27]. 

Concretely, the axiomatic system composed of the axioms (A1, A2, A3) is as  
follows: 

A1: If B ⊆ A, then A→B; 
A2: If A→B, then AC→BC; 
A3: If A→B and B→C, then A→C. 

Suppose that F is a set of FDs on relational model ℜ. Then the set of all FDs that 
are derived from F using the inference rules A1, A2 and A3 is denoted as FA. Based 
on Armstrong axioms, normalization theory and decomposition operations could be 
conducted for further RDB model optimization.  

In 1NF data model, potential data redundancy and update anomalies may exist in-
evitably and highly affect the efficiency and effectiveness of RDB modeling, espe-
cially in large-scale data modeling problem. With normalization theory, the original 
relational schemes could be optimized and normalized with decomposition  
algorithms, so the so-called 1NF could be converted to 2NF, 3NF, BCNF, etc. Ac-
cordingly, 3NF is the highest normal form which supports lossless-join and depend-
ency-preservation [26-27], which is called the optimized relational data model in this 
paper. It could be formalized that, after normalization, the original ℜ(U, F) could be 
decomposed into ∪ℜi(Ui, Fi), each of which satisfies 3NF, where U = ∪Ui and  
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F = ∪Fi. In so doing, the RDB modeling process is finished, following which the da-
tabases could be constructed. 

Clearly, functional dependency (FD) play a very important role in RDB modeling. 
The quality of FDs highly affect the quality of RDB modeling. Traditionally, the way 
to deriving FDs is based on context and expert knowledge, which is regarded as a 
logic-driven method. This method is effective and efficient while the problem scale is 
not so large. However, nowadays, with the IT fusion in all levels of business man-
agement, normally, the scales of RDB-enabled modeling problems are usually large 
and the structures are very complex. It is not easy for managers or domain experts to 
conclude all the necessary business rules in terms of functional dependencies. 

On the other hand, several decades of IT applications had resulted in a large num-
ber of databases that were constructed and maintained in which useful and interesting 
FDs might have already exist in the databases. However, these FDs are not explicitly 
known or are hidden, and therefore need to be discovered. 

Go a step further, nowadays, in the great amount of databases and data warehouses, 
some previously unknown and potentially useful FDs may exist. This kind of FDs are 
actually much more important, since they express some innovatively new business 
rules, which will play more important roles to improve business process and further 
optimize the business databases. This could also be regarded as one of the parts of 
data mining and knowledge discovery [14, 20]. 

For the above three aspects, it will be very interesting to develop some data mining 
methods to discover hidden FDs in large-scaled databases. Furthermore, if the hidden 
FDs could be discovered from data mountains, then the optimized RDB could be con-
structed automatically. 

In this paper, a method to discover FDs efficiently in large-scale databases will be 
further discussed. This method is the key step in the process of constructing and opti-
mizing RDB model automatically. First, given the large-scale databases, the set of all 
attributes, e.g., U, could be collected easily. Then the original ℜ(U, F) could be con-
struct, where F = ∅. Second, the databases could be scanned and the satisfied FDs 
could be discovered, then F could be updated as F’. So ℜ’(U, F’) could be retrieved. 
Third, based on normalization theory and decomposition operation, ∪ℜi(Ui, Fi) could 
be retrieved, each of which satisfies 3NF, where U = ∪Ui and F’ = ∪Fi. In so doing, 
given data, the RDB modeling could be done using this automatically data-driven 
method. 

According to the data-driven process, the key step is to discovering FDs efficiently. 
Since 1990s, an increasing number of efforts have been devoted to mining FDs and 
related issues [1-7, 15-16, 24, 34-35]. Moreover, some other attempts centered on ex-
tended forms of FD, such as functional dependencies with null values [21], partial  
determination [19], approximate functional dependencies [17-18], fuzzy functional 
dependencies (FFDs) [8-10, 12-13, 22, 28, 36], functional dependencies with degrees 
of satisfactions (FDs)d [29-33], etc. 

Apparently, by definition, FDs do not tolerate such noisy or disturbing data, which 
strictly express the semantics that “Equal A values determine equal B values for all 
tuples”. In discovering functional dependencies, there still exist some open problems. 
First, in large existent databases, noises often pertain, such as conflicts, nulls, and er-
rors that may result from, for instance, inaccurate data entry, transformation or up-
dates. Even without noisy data, sometimes a partial truth of a FD may still make 
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sense. For instance, “a FD almost holds in a database” or “Equal A values determine 
equal B values for most of the tuples” expresses a sort of partial knowledge, meaning 
that the FD satisfies the relational databases of concern to a large extent. 

Second, in developing corresponding mining methods, the computational effi-
ciency needs to be further improved. Since FD inference is desirable but still needs to 
be further investigated. That is, deriving a FD by inference from discovered FDs 
without scanning the database may help improve the computational efficiency of the 
mining process. For example, if both A→B and B→C satisfy a relational database, 
and if A→C could be inferred directly, then the effort in scanning the database for 
checking whether A→C holds can be saved. 

In 2002, Wei and Chen [32] presented a notion of functional dependency with de-
gree of satisfaction (FDd: (A→B)α) to reflect the semantic that equal B values corre-
spond to equal A values at a certain degree (α). Moreover, Wei and Chen presented 
the Armstrong-like inference rules, along with an inference system, based on which 
the minimal set of (FDs)d has been proposed [29-30]. Furthermore, a fuzzy relation 
matrix-based algorithm has been constructed to perform transitivity-type FD infer-
ence. Accordingly, the algorithm for mining (FDs)d, called MFDD, has been pro-
vided, which can discover the minimal set of (FDs)d efficiently [33]. Further, two  
optimized strategies have been incorporated to further improve the efficiency in [31]. 

In this paper, based on [31, 33], we will further discuss the optimization strategies 
by attribute pre-scanning operation. The paper is organized as follows. Some prelimi-
naries about the functional dependency with degree of satisfaction will be briefly  
reviewed in Section 2. Section 3 will discuss how to evaluate the diversity of an at-
tribute based on degree of satisfaction by pre-scanning operation and propose several 
derivatives, by which more (FDs)d could be inferred satisfied or dissatisfied without 
scanning database. In Section 4, the optimized algorithm will be proposed along with 
the theoretical analysis on corresponding computational efficiency. Data experimental 
results will be proposed in Section 5 to show how the strategies take significant ef-
fects on computational efficiency. Finally, some concluding remarks will be discussed 
in Section 6. 

2   Preliminaries 

The concept of functional dependency with degree of satisfaction, e.g., (FD)d, should 
be introduced first along with some important preliminaries [31, 33]. 

 

Definition 1: Let ℜ(I1, I2, …, Im) be a relation scheme on domains D1, D2, …, Dm, A, 
B ⊆ U, and R be a relation of ℜ(U), R ⊆ D1×D2×…×Dm, where tuples ti, tj ∈ R and ti 
≠ tj. Then B is called to functionally depend on A for a tuple pair (ti, tj), denoted as 
(ti,tj)(A→B), if ti(A) = tj(A) then ti(B) = tj(B). 
 
It can easily be seen that the FD for a tuple pair could be represented in terms of de-
gree of satisfaction, d(ti,tj)(A→B), where if ti(A) = tj(A) and ti(B) ≠ tj(B), then d(ti, 

tj)(A→B) = 0; otherwise 1. Subsequently, FD for relation R can be defined in terms of 
degree of satisfaction. 
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Definition 2: Let ℜ(U) be a relation scheme, A, B ⊆ U, and R be a relation of ℜ(U) 
with n tuples. Then the degree that R satisfies A→B is dR(A→B) or d(A→B) in brief: 

d(A→B) = dR(A→B) = 

( , )
,

( )
i j

i j

i j

t t
t t R

t t

d A B

NTP
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≠

→∑
, 

where NTP represents the number of tuple pairs in R and equals n(n–1)/2. 
Normally, for a (FD)d A→B, if d(A→B) = α, we will denote this (FD)d as (A→B)α. 

Given a minimum satisfaction threshold θ, 0 ≤ θ ≤ 1, if d(A→B) ≥ θ, then A→B is 
called a satisfied functional dependency. Moreover, some properties could be derived. 
Let R be a relation on ℜ(U) and A, B, C ⊆ U, we have [31-33]: 
 
A1’: If B ⊆ A, then d(A→B) = 1. 
 
A2’: If d(A→B) = α, then d(AC→BC) ≥ α, 0 ≤ α ≤ 1. 
 
A3’: If d(A→B) = α and d(B→C) = β, then d(A→C) ≥ α + β – 1. 
 
A4’: If d(A→B) = α, then d(B→C) ≥ 1 – α. 

 
The first three properties are similar to the three classical Armstrong inference 

rules, except for A3’ in that it guarantees a lower-bound d(A→B) value for a transitive 
(FD)d that could be inferred without scanning database. Moreover, A4’ is important to 
guarantee that invalid values less than 0 will not be generated in transitive inference. 

Based on A1’, A2’ and A3’, the Armstrong-like inference system has be defined, 
as well as the θ-equivalence and minimal set of (FDs)d.  
 
Theorem 1: (Armstrong-like Axioms) Let R be a relation on ℜ(U) and A, B, C ⊆ U. 
Then for any R in ℜ, the following inference rules, denoted as extended Armstrong-
like axioms (A1’, A2’, A3’), hold: 

A1’: If B ⊆ A, then d(A→B) = 1; 
A2’: If d(A→B) ≥ α, then d(AC→BC) ≥ α; 
A3’: If d(A→B) ≥ α and d(B→C) ≥ β, then d(A→C) ≥ γ, where α + β − 1 ≤ γ ≤ 1. 
 

Furthermore, Suppose that F is a set of (FDs)d on ℜ. Then we denote FA’ as the set of 
all (FDs)d that are derived from F using A1’, A2’ and A3’. And FA+ could be defined 
as a set containing the (FDs)d with upper bound degrees of satisfaction. So we can 
have the following definitions. 
 
Definition 3: Let F and G be two sets of (FDs)d on ℜ. Then F and G are called 
equivalent if and only if FA+ = GA+. 
 
In the mining process, however, we are only concerned with those (FDs)d with satis-
fied degrees as mining outcomes. For θ = 0.7, both (A→C)0.8 and (A→C)0.7 will be  
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regarded satisfied. If the set of (FDs)d could be viewed as a fuzzy set with the corre-
sponding degrees of satisfaction as the grades of membership, then F and G are the 
same in terms of the 0.7-cuts of FA+ and GA+. That is, (FA+)0.7 = {A→B, B→C, A→C, 
AC→B, AB→C, AB→C} = (GA+)0.7. In general, the θ-cut of a set of (FDs)d F is de-
noted as (F)θ = {A→B | (A→B)α ∈ F, and α ≥ θ}. Based on (F)θ, the notion of θ-
equivalence could be defined. 
 
Definition 4: Let F and G be two sets of (FDs)d and θ be an θ-cut threshold with θ ∈ 
[0, 1]. Then F and G are called θ-equivalent if and only if θ-cuts of FA+ and GA+ are 
equal, i.e., (FA+)θ = (GA+)θ. 

 
Note that, for any (FDs)d F and its FA+, it can be proved that there exists a minimal set 
MF of (FDs)d such that MF is a subset of FA+ and is θ-equivalent to FA+. It seems de-
sirable and efficient if we could develop an approach to discovering FA+ by only 
scanning databases for obtaining MF and deriving all other (FDs)d in (FA+ − MF) us-
ing the extended Armstrong-like axioms [31, 33].  

Accordingly, an algorithm called MFDD based on fuzzy relation matrix operation 
has been proposed, by which the minimal set of satisfied (FDs)d could be discovered 
efficiently. For details, please refer to [33]. 

In the framework of MFDD, all the satisfied (FDs)d could be classified into 2 
groups, Scanned (FDs)d and Inferred (FDs)d. The group of Scanned (FDs)d represent 
the (FDs)d in MF, which could be obtained only through scanning databases. The 
group of Inferred (FDs)d represent the (FDs)d in (FA+ − MF), which could be inferred 
by Scanned (FDs)d without scanning databases. 

It should be emphasized that, for a database with m attributes and n tuples, the 
computational complexity of database scanning operation for each (FD)d generally 
highly exceeds the computational complexity of inference, because usually m is far 
less than n, e.g., a database with 10 attributes could have 10,000 tuples. So the orien-
tation of optimization is to infer as many (FDs)d as possible instead of scanning  
database. 

In [31], the MFDD algorithm has been further optimized on two aspects. First, the 
algorithm of computing the degree of satisfaction of a certain (FD)d have been opti-
mized with group operation. Second, the A4’ inference rule has been further investi-
gated to a greater extent for efficiency purposes. 

In this paper, we will further investigate the framework to find further optimization 
strategies to improve the computational efficiency by inferring as many (FDs)d as 
possible instead of scanning database. 

3   Evaluation on Attribute Diversity and Derivatives 

According to Definition 1 and 2, it could be found that the degree of (FD)d A B is 
highly related to the diversity of attribute A and B. Roughly speaking, diversity of an 
attribute represents the level of degree that the values are different. Generally, the 
more the diversity of A is, the more the degree of satisfaction of A→B, e.g., d(A B), 
is. The less the diversity of B is, the less of the degree of satisfaction of A→B, e.g., 
d(A B), is. This could be easily conducted according to definition 1 and 2. So, if the 
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attributes could be scanned before mining process, called pre-scanning operation, 
some attributes could be determine to have more or less diversity. Further, some cor-
responding (FDs)d could be inferred satisfied or dissatisfied without scanning data-
bases in mining process afterwards. Theoretically, the cost of pre-scanning operation 
is to scan m attribute with n tuples, e.g., O(m×n2). However, for a (FD)d A B, A or B 
are single attribute, the scanning cost is O(2×n2). Roughly estimating, if m/2 (FDs)d 
could be inferred after pre-scanning operation, the pre-scanning operation is worth 
doing. 

In this section, we will discuss in detail how to evaluate the diversity in the frame-
work of degree of satisfaction. Secondly, some important derivatives could be further 
obtained, based on which the optimization strategies to improve algorithmic efficiency 
could be performed. 
 
Definition 5: Let ℜ(U) be a relation scheme, A ⊆ U, and R be a relation of ℜ(U) with 
n tuples, then d(ti, tj)(A) = 1, while ti(A) ≠ tj(A), otherwise 1. Moreover, 

dR(A) = 

( , )
,

( )

( )

i j

i j

i j

t t
t t R
t t
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where NTP represents the number of tuple pairs in R and equals n(n–1)/2. 
Clearly, d(A) could be regarded as a measure to evaluate the diversity of the values 

of attribute A. Specifically, if A values of all tuple are identical, then d(A) = 0,  
representing attribute A are not diversified. If A value of each tuple is unique, then 
d(A) = 1, representing attribute A are totally diversified. 

Importantly, we can deem d(A) in another way. Let R be a relation of ℜ(U) with n 
tuples, A ⊆ U, we can construct a new attribute X, where for any ti, tj ∈ R, ti(X) ≠ tj(X), 
which means X is totally diversified . Then the following property could be obtained. 

 
Property 1: d(A→X) = d(A). 
Proof: Without loss of generality, all the tuple pairs could be classified into two 
groups. The A values of each tuple pairs which are equal are classified into Group 1, 
otherwise into Group 2. Then the following table could be constructed.  
    It could be found that d(A→X) = N2/(N1+N2) = d(A).                                                 

 
Tuple 

pair group 
Number of 

tuple pairs 
ti(A) ≠ 
tj(A) 

ti(X) ≠ 
tj(X) 

d(ti, 

tj)(A) 
d(ti, 

tj)(A→X) 
1 N1 No Yes 0 0 
2 N2 Yes Yes 1 1 

 
Moreover, one of the byproduct of Property 1 is that, since X is totally diversified, 
then d(X→Y) = 1, for any Y ∈ U. 

Property 1 is very important on two aspects. First, Property 1 links diversity of at-
tribute to degree of satisfaction. Second, with Property 1, it is proved that the diversity 
of attribute is consistent to the degree of satisfaction, and so the entire framework of 
(FD)d, which will be illustrated further in following parts of the paper. 
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Based on Definition 3 and Property 1, some important derivatives could be ob-
tained. Let R be a relation on ℜ(U) and A, B ⊆ U, and X is a totally diversified con-
structed attribute, then we have the following derivatives. 

 

Derivative 1: d(AB) ≥ d(A). 
Proof: Since d(AB) = d(AB→X), and d(A) = d(A→X). Then according to 

A2’ and A3’, 
   d(AB→X) ≥ d(AB→A) + d(A→X) – 1 

≥ 1 + d(A→X) – 1 = d(A→X) = d(A). 
  So d(AB) ≥ d(A).                                                                                 
 

Derivative 2: d(AB) ≤ d(A) + d(B). 
Proof: Since X is totally diversified, d(AB) = d(AB→X), d(A) = d(A→X) 

and d(B) = d(B→X). 
  According to A1’, A2’ and A3’, we have  

d(A→X) ≥ d(A→AB) + d(AB→X) – 1 
= d(A→B) + d(AB→X) – 1. 

  According to A4’, we have d(A→B) + d(B→X) ≥ 1, so d(A→B) ≥ 1 
– d(B→X). 

Then we have 
d(A→X) ≥ 1 – d(B→X) + d(AB→X) – 1. 

So d(A→X) + d(B→X) ≥ d(AB→X). 
According to Derivative 1, d(A) + d(B) ≥ d(AB).                                           

 
The above two derivatives describe the characteristics on attributes themselves, how-
ever, in the process of mining so-called satisfied (FDs)d, we care more on the charac-
teristics on how diversity of attributes will affect the degree of satisfaction of (FDs)d. 
Based on Definition 3, Property 1 and Armstrong-Like Axioms, let R be a relation on 
ℜ(U) and A, B ⊆ U, and X is a totally diversified constructed attribute, then we have 
the following derivatives. 

 
Derivative 3: d(A→B) ≥ d(A). 
Proof: According to A3’, d(A→B) ≥ d(A→X) + d(X→B) – 1 
  Because d(X→B) = 1, since X is totally diversified, then d(A→B) ≥ 

d(A→X), 
  so d(A→B) ≥ d(A).                                                                              
 
Derivative 4: d(A→B) ≥ 1 – d(B). 
Proof: According to A4’, d(A→B) + d(B→X) ≥ 1, then d(A→B) ≥ 1 – 

d(B→X), 
  so d(A→B) ≥ 1 – d(B).                                                                        
 
Derivative 5: d(A→B) ≤ d(A) + 1 – d(B). 
Proof: According to A3’, d(A→X) ≥ d(A→B) + d(B→X) – 1, then d(A) ≥ 

d(A→B) + d(B) – 1, 
  so d(A→B) ≤ d(A) + 1 – d(B).                                                            
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With Derivative 3, 4 and 5, before mining process with MFDD, if the attributes could 
be pre-scanned to compute d(Y), for each Y ∈ U, then some (FDs)d could be inferred 
satisfied or dissatisfied without scanning database. Then some optimized strategies 
could be constructed. 

 
Strategy 1: If d(A) ≥ θ, then d(A Y) ≥ θ, so A Y is satisfied, for ∀Y ∈ U. 
Proof: It could be directly inferred based on Derivative 3.                                       
 

Strategy 1 means that, for a (FD)d A Y, if A values are too diversified, then A Y is 
satisfied, whatever Y is. This is because the degree of satisfaction is major contributed 
by the diversified A values. 

 
Strategy 2: If 1 – d(A) ≥ θ, then d(Y A) ≥ θ, so Y A is satisfied, for ∀Y ∈ U. 
Proof: It could be directly inferred based on Derivative 4.                                       
 

Strategy 2 means that, for a (FD)d Y A, if A values are not so diversified, then Y A 
is satisfied, whatever Y is. This is because the degree of satisfaction is major contrib-
uted by the equivalent A values. 

 
Strategy 3: If d(B) – d(A) ≥ 1 - θ, then d(A B) ≤ θ, so A B is dissatisfied. 
Proof: Since d(B) – d(A) ≥ 1 – θ, then d(B) – 1 – d(A) ≥ 1 – θ – 1. Further, it could 

                be derived that d(A) + 1 – d(B) ≤ θ. 
    According to Derivative 5, d(A B) ≤ d(A) + 1 – d(B) ≤ θ, so d(A B) ≤ θ. 
    So A B is dissatisfied.                                                                                   

 
Strategy 3 means that, for a (FD)d A B, if the B values are much more diversified 
than A values, then A B could be dissatisfied. This is because B values vary a lot 
while A values are equivalent. 

 
Strategy 4: If d(B) – d(A) ≥ θ, then d(B Y) ≥ θ, so B Y is satisfied, for ∀Y ∈ U. 

     Proof: Since d(B) – d(A) ≥ θ, then d(B) – 1 – d(A) ≥ θ - 1. Then it could be derived 
     that d(A) + 1 – d(B) ≤ 1 - θ. Because of Derivative 5, d(A B) ≤ d(A) + 1 –  
     d(B) ≤ 1 - θ, so d(A B) ≤ 1 - θ. 

    According to A4’, it could be derived that d(B Y) ≥ 1 – d(A B) ≥ 1 – 1 + 
     θ. Then d(B Y) ≥ θ. 

So B Y is satisfied, for ∀Y ∈ U.                                                                   
 

Strategy 4 means that, for a (FD)d A B, if B values are more diversified than A val-
ues to some extent, then A B is not only dissatisfied but less than a rather small 
value 1 – θ, so according to A4’, B Y is satisfied, whatever Y is. 

The above 4 inference strategies could be used to infer as many (FDs)d as possible 
before mining process, which could optimize the MFDD algorithm. 

To do so, the relation R should be pre-scanned before mining process to determine 
the degree of diversity of each attribute in U. Based on the computed d(Y), Y ∈ U, the 
4 optimized strategies could be performed. 
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4   Attribute Pre-scanning Algorithm 

According to the discussion previously, if each attribute Y, e.g., Y ∈ U, could be pre-
scanned before mining process, d(Y) could be derived, then the 4 inference strategies 
could be performed to infer satisfied or dissatisfied (FDs)d. The algorithm is as shown 
in Table 2. 

Table 2. Attribute Pre-Scanning Algorithm 

// Attribute Pre-Scanning Algorithm 
for A ∈ U { Calculating d(A) } 
for A ∈ U { if d(A) ≥ θ then d(A→Y) = θ, Y ∈ U; }    // 
Strategy 1 
for A ∈ U { if 1 – d(A) ≥ θ then d(Y→A) = θ, Y ∈ U; }   // 
Strategy 2 
for A ∈ U  

{ for B ∈ U 
{ if d(B) – d(A) ≥ 1 – θ, then d(A→B) = 0;    // 

Strategy 3 
if d(B) – d(A) ≥ θ, then d(B→Y) = θ, Y ∈ U;   // 

Strategy 4 
  } 
} 

 
It has been emphasized that, the pre-scanning algorithm will be performed before 

the mining process. Therefore, theoretically, if at least m/2 (FDs)d could be inferred 
satisfied or dissatisfied with the strategies, then the algorithm is worth doing. 

How the 4 strategies could take effects on efficiency depends on the concrete at-
tribute values in the given database. However, some qualitative aspects could be in-
duced as follows. 

First, since θ is no less than 50% semantically, if d(A) is large (≥ θ) or small (≤ 1 – 
θ) enough, then Strategy 1 or 2 could take effects. And if there exists an attribute A 
that d(A) ≥ θ or d(A) ≤ 1 – θ, then A→Y or Y→A could be inferred satisfied, Y could 
be any attribute in U. The number of inferred (FDs)d will be m – 1. Generally, the ef-
fect of Strategy 1 and 2 will be quite significant. This is also the reason why we put 
Strategy 1 and 2 together in further experimental analysis. 

Second, if θ is small enough, Strategy 4 will take effects, then m – 1 (FDs)d could 
be inferred satisfied. On the other hand, if θ is large enough, then Strategy 3 will take 
effect, then one (FD)d could be inferred dissatisfied. 

Finally, it could also be found that the effects of the 4 strategies are independent 
and could be superpositioned. 

According to analysis, intuitively, it seems that it is not difficult that m/2 (FDs)d 
could be inferred by pre-scanning operation. How the pre-scanning operation will 
take effect, please refer to Section 5. 
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5   Experimental Results and Analysis on Scalabilities 

A real-world database was used for testing the presented approach. The database con-
tains the real business data of The Insurance Company (TIC) Benchmark provided by 
Dutch Data Mining Company Sentient Machine Research, which is usually used as 
benchmarking data for evaluating data mining algorithms. The database is from “The 
Insurance Company 2000,” containing 5,822 tuples with 86 attributes [25]. The ex-
periments were conducted in an environment with a Pentium IV 2.2GHz computer, 
with 512M RAM and Visual C++ 6.0. Due to the exponential exploration on increase 
of number of attributes, we project the whole dataset on the first 10 attributes (m = 10, 
n = 5,822), which can illustrate the problem well. 

The following Table 3 shows the experimental results. For illustration purpose, we 
focus on the number of scanned (FDs)d and inferred (FDs)d in order to evaluate the ef-
fect of pre-scanning operation. Moreover, in order to illustrate the effect of the 4 
strategies. We test the experiments using 3 methods. Method 1 represents the method 
 

Table 3. Experimental Results with Method 1, Method 2 and Method 3 
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00
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in [5, 11] which does not incorporate pre-scanning operation. Method 2 represents the 
method which incorporates Strategy 1 and 2. Method 3 represents the method which 
incorporates all the 4 strategies. For method k, k = 2 and 3, the Method k – Method 1 
represents the number of increased inferred (FDs)d (also represents the number of  
decreased scanned (FDs)d) against Method 1. 

Clearly, given a threshold θ, the total number of scanned (FDs)d and inferred (FDs)d 
are the same in all the 3 methods, which also show the correctness of the 3 methods 
from a certain aspect. For comparison, Figure 1 shows the number of scanned (FDs)d for 
all the 3 methods. 
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Fig. 1. Number of Scanned (FDs)d for Methods 1, 2 and 3 

On the experimental results, some conclusions could be discovered. 
First, in Method 2, Strategy 1 and 2 take significant effects (Method 2 – Method 1 

≥ m/2 = 5) while θ ≤ 0.94, however, with the increase of θ (θ ≥ 0.96), Strategy 1 and 2 
gradually take no effects since the increased number of inferred (FDs)d is no more 
than m/2. According to Strategy 1 and 2, while θ is large to some extent, it is not easy 
to find some d(A) ≥ θ or d(A) ≤ 1 – θ. 

Second, in Method 3, all the 4 strategies take significant effects in any situation. 
According to the pre-scanning algorithm, the effects for all the 4 strategies are inde-
pendent and could be superpositioned. So Method 3 remedies the shortcoming of 
Method 2 due to Strategy 3 and 4. The bigger θ is, the more possibly d(B) – d(A) ≥  
1 – θ take effects. This characteristic is very important, since, in this situation, B val-
ues are much more diversified than A values, then A→B is definitely dissatisfied. 

So the pre-scanning operation could significantly improve the computational  
efficiency. 
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6   Concluding Remarks and Future Works 

In this paper, we have further discussed the functional dependency with degree of sat-
isfaction, which could tolerate noisy data and express partial knowledge and play an 
important role in relational data modeling. Moreover, in order to further improve the 
performance of the discovering algorithm, this paper has focused on analyzing diver-
sity of attribute. In Section 3, it has been proved that the diversity characteristic of at-
tribute, in form of d(A), will highly influence inference of (FDs)d. Furthermore, based 
on the definition of degree of diversity and 5 inferred derivatives, 4 important strate-
gies could be derived. Many (FDs)d could be inferred satisfied or dissatisfied without 
scanning databases. According to the experimental results, it shows that the  
pre-scanning operation can significantly improve the computational efficiency. 

Future works will focus on two aspects. The first is to further optimize the algo-
rithm and test on more large-scaled real databases. The second is to, based on the  
optimized (FD)d mining algorithm, construct the automatically data-driven method of 
RDB modeling. 
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Abstract. Well log data are routinely used for stratigraphic interpretation of the
earth’s subsurface. This paper presents an automatic blocking scheme that transforms
numerical well log data into a fuzzy symbolic representation. This representation main-
tains the character of the original log curves, which is essential for the stratigraphic
interpretation, while making the interpretation task easier. Additionally, fuzzy sym-
bols allow effective interpretation under uncertainty embedded in the data set and our
knowledge of the earth’s subsurface. We present the developed technique and test it on
two sets of well logs collected from oil fields in offshore West Africa. The results give
sensible well log blocking and resemble the original log curves reasonably well. Based
on this fuzzy symbolic representation, an intelligent well logs interpretation system has
been developed.

1 Introduction

In reservoir characterization, well log data are frequently used to interpret physi-
cal rock properties such as lithology, porosity, pore geometry, depositional facies
and permeability [3, 6]. These properties are keys to the understanding of an
oil reservoir and can help determining hydrocarbon reserves and reservoir pro-
ducibility. Based on the information, decisions of where to complete a well, how
to stimulate a field, and where to drill next, can be made to maximize profit and
minimize risk.

Well log data, ranging from conventional logs, such as spontaneous potential,
gamma ray, and resistivity, to more advanced logging technology, such as Nu-
clear Magnetic Resonance (NMR) logs, are sequence of curves indicating the
properties of layers within the earth’s subsurface. Figure 1 gives an example
of grammar ray, neutron and spontaneous potential (SP) logs. The interpreted
lithology is listed on the left-hand side.

Well log interpretation is a time-consuming process, since many different types
of logs from many different wells need to be processed simultaneously. This paper

O. Castillo et al. (Eds.): Soft Computing for Hybrid Intel. Systems, SCI 154, pp. 417–426, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. An example of gamma ray, neutron and spontaneous potential logs. The inter-
preted lithology is listed on the left-hand side.

presents a technique to automatically transform well log data into fuzzy symbols
which maintain the character of the original log curves. This simplified repre-
sentation not only makes the interpretation task easier but also allows efficient
interpretation under the uncertainty embedded in these data sets. The symbolic
representation also has advantages over its numerical counter-part in that it is
easier for computers to manipulate and process. Based on this representation, we
have developed a computer system to perform automatic well-log interpretation.
That work is reported in [7].

The paper is organized as follows. Section 2 presents the methodology to
transform well log data into a fuzzy symbolic representation. In Section 3, we
apply the method to two sets of well log data collected from an oil field in offshore
West Africa and show the results. The intelligent well-log interpretation system
is briefly described in Section 4. Finally Section 5 concludes the paper.

2 Methodology

The fuzzy symbolic representation is an approximation of well-logs that main-
tains the trend in the original data. The transformation process has four steps:

• Segmentation of the numerical well log data;
• Determine the optimal number of segmentation;
• Assign symbols to each segment;
• Symbols fuzzification.

These four steps are explained in the following subsections.
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2.1 Well Log Segmentation

Well log segmentation involves partitioning log data into segments and using
the mean value of the data points falling within the segment to represent the
original data. In order to accurately represent the original data, each segment is
allowed to have arbitrary length. In this way, areas where data points have low
variation will be represented by a single segment while areas where data points
have high variation will have many segments.

The segmentation process starts by having one data point in each segment.
That is the number of segments is the same as the number of original data points.
Step-by-step, neighboring segments (data points) are gradually combined to re-
duce the number of segments. This process stops when the number of segments
reaches the predetermined number of segment.

At each step, the segments whose merging will lead to the least increase in
error are combined. The error of each segment is defined as:

errora =
n∑

i=1

(di − μa)2
where n is the number of data
points in segment a, μa is the
mean of segment a, di is the ith
data point value in segment a.

This approach is similar to the Adaptive Piecewise Constant Approximation
proposed by Keogh et. al. [4]. However, our method has an extra component
that dynamically determines the number of segments (see Section 2.2). Another
similar work using a different approach to determine the number of segments is
reported in [1].

Figure 2 is an example of a well log with 189 data points, which are partitioned
into 10 segments. The same data are partitioned into 20 segments in Figure 3.
The average value of the data points within each segment is used to represent
the original data.
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2.2 Number of Segments

Although a larger number of segments capture the data trend better, it is also
more difficult to interpret. Ideally, we want to use the smallest possible number
of segments to capture the trend of the log data. Unfortunately, these two ob-
jectives are in conflict: the total error of all segments monotonically increases
as the number of segments decreases (see Figure 4). We therefore devised a
compromised solution where a penalty is paid for increasing the number of seg-
ments. The new error criterion is now defined as the previous total error plus
the number of segments:

f = N +
N∑

i=1

errori where N is the number of segment.

During the segmentation process, the above f function is evaluated at each
step. As long as this value f is decreasing, the system continues to merge seg-
ments. Once f starts increasing, it indicates that farther reducing the number of
segments will sacrifice log character, hence the segmentation process terminates.
For the log in Figure 2, 50 is the optimal number of segments for the 189 data
points (see Figure 5).
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2.3 Symbols Assignment

Segmented well logs are represented as a set of numerical values, WL =
s1, s2, s3 . . ., where si is the mean value of the data within the ith segment.
This numerical representation is farther simplified using symbols. Unlike numer-
ical values, which are continues, symbols are discrete and bounded. This makes
it easy for any subsequent computer interpretation scheme.

While converting the numerical values into symbols, it is desirable to produce
symbols with equal-probability [2]. This is easily achieved since normalized se-
quence data have a Gaussian distribution [5]. We therefore applied z-transform
to normalize the data and then determine the breakpoints that will produce n
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Fig. 6. Using 4 breakpoints to produce 5 symbols with equal probability

equal-sized areas under Gaussian curve. Figure 6 gives the four breakpoints -0.84,
-0.25, 0.25 and 0.84 that produce 5 symbols, a, b, c, d, e, with equal probability.
If only 3 symbols (a, b andc) are used, the breakpoints are -0.43 and 0.43.

Once the number of symbols, hence the breakpoints have been decided, we
assign symbols to each segment of the well logs in the following manner: All
segments have mean values that are below the smallest breakpoint are mapped
to the symbol a; all segments have mean values that are greater than or equal to
the smallest breakpoint and less than the second smallest breakpoint are mapped
to the symbol b and so on. Figure 7 gives a well log that is transformed using 5
symbols.
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Fig. 7. A well log transformed using 5 symbols

2.4 Symbols Fuzzification

While some segments are clearly within the boundary of a particular symbol
region, others may not have such clear cut. For example, in Figure 7, there are
3 segments lie on the borderline of a and b regions. A crisp symbol, either a or
b, does not represent its true value. In contrast, fuzzy symbols use membership
function to express the segment can be interpreted as symbol a and b with some
possibility.

As an example, with crisp symbol approach, a segment with mean -0.9 is
assigned with symbol a with 100% possibility (see Figure 8). Using fuzzy symbols
designed by trapezoidal-shaped membership functions, the segment is assigned
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Fig. 8. The data value of -0.9 is trans-
formed as a crisp symbol a
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Fig. 9. The data value -0.9 is transformed
as fuzzy symbol a (80%) and b (20%)

with symbol a with 80% possibility and symbol b with 20% possibility (see
Figure 9). Fuzzy symbol representation is more expressive in this case.

In fuzzy logic, a membership function (MF) defines how each point in the
input space is mapped into a membership value (or degree of membership) be-
tween 0 and 1. The input space consists of all possible input values. In our case,
normalized well log data have open-ended boundaries with mean 0. Since 5 sym-
bols are used to represent a well-log, we need to design 5 membership functions,
one for each of the 5 symbols. Additionally, we used 3 symbols to represent
core permeability. Three membership functions were also designed for these 3
symbols.

To design a trapezoidal-shaped membership function, 4 parameters are re-
quired: f1 and f2 are used to locate the “feet” of the trapezoid and s1 and s2
are used to locate the “shoulders” (see Figure 10). These four parameters are
designed in the following way.

Let c1 and c2 be the breakpoints that define symbol n and c2 > c1:

d =
c2 − c1

4
f1 = c1 − d; s1 = c1 + d; s2 = c2 − d; f2 = c2 + d
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f1 f2
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Fig. 10. 4 parameters, f1, f2, s1, s2, define a trapezoidal-shaped membership function
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Table 1. Parameters used to design the trapezoidal-shaped membership function for
each symbol

data symbol f1 s1 s2 f2

well-log a -3 -3 -0.9875 -0.6925

b -0.9875 -0.6925 -0.3975 -0.1025

c -0.375 -0.125 0.125 0.375

d 0.1025 0.3975 0.6925 0.9875

e 0.6925 0.9875 3 3

permeability a -3 -3 -0.645 -0.215

b -0.645 -0.215 0.215 0.645

c 0.215 0.645 3 3

There are two exceptions: symbol a has f1 = c1 and symbol e has f2 = c2.
Table 1 gives the four parameters used to design the membership functions for
each symbol.

Once the 4 parameters are decided, the membership function f is defined as
follows:

f(x, f1, f2, s1, s2) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if x ≤ f1
x−f1
s1−f1

, if f1 ≤ x ≤ s1

1, if s1 ≤ x ≤ s2
f2−x
f2−s2

, if s2 ≤ x ≤ f2

0, if f2 ≤ x

Using the described fuzzy symbol scheme, 10 segments lie between two symbol
regions in Figure 7 were mapped into fuzzy symbols shown in Figure 11.

In most cases, a reservoir well has multiple logs. To carry out the described
transformation process, a reference log is first selected for segmentation. The
result is then used to segment the other logs in the same well. After that, fuzzy
symbols are assigned to each segmented data.
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Fig. 11. A well log represented with fuzzy symbols
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Fig. 12. The transformed core permeability (k)
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Fig. 14. Transformed RHOB log

3 Testing Results

We tested the developed transformation method on 2 sets of well log data col-
lected from an offshore West Africa field. The first set is from Well A and contains
227 data points while the second set is from Well B and contains 113 data points.
Each well has 3 different logs: PHI (porosity), RhoB (density) and DT (sonic
log). Additionally, V-shale (Volume of shale) information has been calculated
previously [6]. We also have the corresponding core permeability data for these
two wells.

In this case, permeability is the interpreted target. It is therefore chosen as the
reference log to perform segmentation described in Section 2.1 and 2.2. Based
on the segmentation results, the other 4 logs were segmented.

Figures 12, 13, 14, 15 and 16 give the segmented results for Well A. As shown,
the results give sensible blocking and resemble the original log curves reasonably
well. We do not show the transformed fuzzy symbols on these Figures as they
take too much space. Also, due to space constraint, the results of Well B, which
have a similar pattern, are not shown here.
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4 Automatic Well Log Interpreter

Based on the fuzzy symbolic representation, we have developed an interpreta-
tion system that processes the fuzzy symbols and automatically interpret the
permeability ranges that are associated with each well log segment. The system
applies a co-evolutionary mechanism to evolve fuzzy rule sets. The fuzzy rule
set is composed of two fuzzy rules, one classifies high-permeability log segments
while the other identifies low-permeability segments. In this evolutionary system,
two populations were maintained to evolve these two fuzzy rules simultaneously.
The final fuzzy rule set were able to give sensible permeability interpretation for
all well log segments. This work is reported in [7].

5 Conclusions

Well log interpretation is a routine, but time consuming, task in energy compa-
nies. With the increasing global energy demand, it is a natural trend to seek com-
puterized well log interpretation techniques to provide results more efficiently.
We have devised a method that maps the numerical well log data into a fuzzy
symbol representation. This representation not only maintains the original well
curve character but is more interpretable than its crisp numerical counter-part.
The quality of this representation is verified using 2 sets of well logs data from
offshore fields in South Africa. Based on the fuzzy symbolic representation, we
have also implemented an intelligent well logs interpreter to interpret perme-
ability with promising results [7]. We are currently applying this methodology
to generate interpretation system for a wider ranges of reservoir properties, such
as lithology and reservoir facies.

Acknowledgment

We thank Chevron for their permission to publish this work.



426 T. Yu and D. Wilkinson

References

1. Abonyi, J., Feil, B., Nemeth, S., Arva, P.: Modified Gath-Geva Clustering for
Fuzzy Segmentation of Multivariate Time-Series. Fuzzy Sets and Systems 149, 39–56
(2005)

2. Apostolico, A., Bock, M.E., Lonardi, S.: Monotony of Surprise and Large-Scale
Quest for Unusual Words. In: Proceedings of the 6th International Conference on
Research in Computational Molecular Biology, pp. 22–31 (2002)

3. Asquith, G., Krygowski, D.: Basic Well Log Analysis, 2nd edn, American Association
of Petroleum Geologists (2004)

4. Keogh, E., Chakrabarti, K., Mehrotra, S., And Pazzani, M.: Locally Adaptive Di-
mensionality Reduction for Indexing Large Time Series Databases. In: Proceedings
of ACM SIGMOD Conference on Management of Data, pp. 151–162 (2001)

5. Larsen, R.J., Marx, M.L.: An Introduction to Mathematical Statistics and Its Ap-
plications, 2nd edn. Prentice Hall, Englewood Cliffs (1986)

6. Yu, T., Wilkinson, D., Xie, D.: A Hybrid GP-Fuzzy Approach for Reservoir Char-
acterization. In: Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and
Practice, pp. 271–290. Kluwer, Dordrecht (2003)

7. Yu, T.: A Co-Evolutionary Fuzzy System for Reservoir Well Logs Interpretation. In:
Yu, T., Davis, D., Baydar, C., Roy, R. (eds.) Evolutionary Computation in Practice.
Springer, Heidelberg (2007)



How to Solve a System of Linear Equations with

Fuzzy Numbers

Rostislav Horč́ık�
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Abstract. The paper deals with a solution of a fuzzy interval system of linear equa-
tions, i.e. a system in which fuzzy intervals (numbers) appear instead of crisp numbers.
We obtain general results and then use them for finding the united solution set in the
case when all fuzzy interval occurring in the system have the trapezoidal shape.

1 Introduction

Fuzzy numbers and their arithmetic are investigated already for quite a long
time. However, it seems that the fact that they are rather fuzzified versions of
classical crisp intervals is not stressed very much. In this paper, we are going
to reveal their interval nature by showing that many interesting results from
classical interval analysis transfer also into the fuzzy case.

We will illustrate the problems when the fuzzy numbers are considered as
numbers on the example of system of linear equations with fuzzy numbers dis-
cussed in [4]. In that paper, the authors considered a mechanical system which
was described by a system of classical linear equations where some of the pa-
rameters were uncertain (given by fuzzy numbers). In order to solve this system,
they used the common fuzzy arithmetic defined by means of Zadeh’s extension
principle. More precisely, let A, B be fuzzy numbers over reals and c be a crisp
real number. The fuzzy numbers A and B represented unknown material param-
eters and c corresponded to a force acting on the system. The unknown fuzzy
numbers X1 and X2 described the state of the mechanical system. In order to
compute the state of the system, the authors solved the following system of linear
equations: (

A + B −B
−B B

) (
X1
X2

)
=

(
0
c

)
. (1)

However, their method was incorrect. They solved the system symbolically by
Gauss elimination, by means of the inverse matrix, and by means of SVD decom-
position. Each method gives a different expression. Then they computed each
� The author was supported by the grant No. B100300502 of the Grant Agency of the

Academy of Sciences of the Czech Republic.

O. Castillo et al. (Eds.): Soft Computing for Hybrid Intel. Systems, SCI 154, pp. 427–436, 2008.
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of them using fuzzy arithmetic and obtained different results. Thus they con-
cluded that there is an “artificial uncertainty” in fuzzy arithmetic and called for
a different one.

In fact, they claimed that the reason why this is the case is that fuzzy arith-
metic is not able to cope with dependency between the parameters. The same
was mentioned also in [5] where the author somehow attempted to solve this
problem. However, the problem with dependency is rather a secondary problem
and formally can be solved by the constrained fuzzy arithmetic introduced by
Klir in [6]. The main problem of this approach consists in usage of incorrect
manipulations with the equations. Thus we focus here only on this problem.

There are two possible approaches how to define the solution set. The first
one could be the following: find all possible fuzzy numbers X1 and X2 which
satisfy the system (1). However, this is not a very interesting approach because
of two reasons. First, the solution does not exist in almost all cases. Consider
for example the second equation −BX1 + BX2 = c. It is clear that if c �= 0 and
B is not a crisp number, then the left-hand side either represents a fuzzy (not
crisp) number or equals 0 if both X1, X2 are 0. Thus it cannot be equal to a crisp
number c. Second, even if a solution exists then it need not represent what in
fact the authors of [4] wanted to obtain. The more reasonable approach how to
define the solution to the system (1) comes from classical interval analysis (see [8]
for details). Let us firstly assume that A and B are classical crisp intervals. Our
mechanical system is described by the following system of linear equations:

(
a + b −b

−b b

)
x =

(
0
c

)
, (2)

where the entries a, b in the matrix are not known but we know that they belongs
respectively to the intervals A and B, i.e., a ∈ A and b ∈ B. Now it is natural to
call a vector x solution if there exist a ∈ A and b ∈ B such that the system (2) is
satisfied. In other words, we define the solution set as a set of all vectors x ∈ R2

which solves the system (2) for some a ∈ A and b ∈ B. Formally written, x is a
solution if the following first-order formula is valid in classical logic:

(∃a ∈ A)(∃b ∈ B)
((

a + b −b
−b b

)
x =

(
0
c

))
.

Now, if A and B are fuzzy intervals (numbers), then the membership degrees
of a in A and b in B may be in general less than one. Consequently, the solution
set becomes a fuzzy subset of R2. However, the solution set in this case can be
still defined by the same formula as before only interpreted in a suitable fuzzy
predicate logic instead of the classical one:

x ∈ Solution set ≡df (∃a ∈ A)(∃b ∈ B)
((

a + b −b
−b b

)
x =

(
0
c

))

Thus the solution set is a fuzzy set containing all states of the original mechanical
system provided that a and b come from the fuzzy intervals A and B respectively.
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In this paper we are going to discuss how to solve such systems of linear
equations with uncertain parameters given by fuzzy intervals (numbers). Unlike
the above-mentioned example we will assume that all parameters in the system
are independent, i.e. each parameter (quantified variable) can appear only in one
place of the formula describing the system of linear equations. The reason why
we make this assumption is that it is likely a better approach to firstly develop
a theory how to solve such systems where all parameters are independent and
then try to generalize this theory to the case when a dependency may occur.

2 Preliminaries

2.1 Fuzzy Class Theory

Most of our results in this paper can be proved in any fuzzy logic that is at
least as strong and expressive as MTLΔ1. Only at the end of the paper we
restrict ourselves to a particular fuzzy logic. Let F be any fuzzy propositional
logic extending MTLΔ. Thus F can be for instance Hájek’s BL, �Lukasiewicz
logic, Gödel logic, or product logic (of course all of them extended by Baaz’s
delta operator Δ). For details on MTL see [2]. Details on fuzzy logics stronger
than BL can be found in [3].

For dealing with fuzzy intervals we will use fuzzy class theory built over the
logic F . Originally this theory introduced in [1] was built over the logic �LΠ.
However, the definitions and basic results from [1] work in any logic extending
MTLΔ. For convenience, we reproduce basic definitions of fuzzy class theory.
Recall that from the point of view of formal logic, it can be characterized as
Henkin-style higher-order fuzzy logic.

Definition 1 (Henkin-style second-order fuzzy logic). Let F be a logic
which extends MTLΔ. The Henkin-style second-order fuzzy logic over F is a
theory in multi-sorted first-order logic F1 with sorts for atomic objects (lowercase
variables) and classes (uppercase variables).

Besides the logical predicate of identity, the only primitive predicate is the
membership predicate ∈ between objects and classes. The axioms for ∈ are the
following:

1. The comprehension axioms (∃X)Δ(∀x)(x ∈ X ↔ ϕ), ϕ not containing X,
which enable the (eliminable) introduction of comprehension terms {x | ϕ}
with the axioms y ∈ {x | ϕ(x)} ↔ ϕ(y) (where ϕ may be allowed to contain
other comprehension terms).

2. The extensionality axiom (∀x)Δ(x ∈ X ↔ x ∈ Y ) → X = Y .

Convention 1. The formulae (∀x)(x ∈ X → ϕ) and (∃x)(x ∈ X & ϕ) and the
comprehension terms {x | x ∈ A & ϕ} are abbreviated (∀x ∈ X)ϕ, (∃x ∈ X)ϕ,
and {x ∈ A | ϕ} respectively. The formulae ϕ& · · ·&ϕ (n times) are abbreviated
ϕn. Let c be an atomic object. Then {c} denotes the crisp class containing only
c to degree 1, i.e. {c} = {x | x = c}.
1 Recall that MTLΔ is the logic of all left-continuous t-norms and their residua.
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Definition 2 (Fuzzy class operations). The following elementary fuzzy set
operations can be defined:

∅ =df {x | 0} empty class
V =df {x | 1} universal class

X ∩ Y =df {x | x ∈ X & x ∈ Y } intersection
X � Y =df {x | x ∈ X ∨ x ∈ Y } max-union

Definition 3 (Fuzzy class relations). Further we define the following elemen-
tary relations between fuzzy sets:

Norm(X) ≡df (∃x)Δ(x ∈ X) normality
X ⊆ Y ≡df (∀x)(x ∈ X → x ∈ Y ) inclusion
X ‖ Y ≡df (∃x)(x ∈ X & x ∈ Y ) compatibility

2.2 Fuzzy (Interval) Arithmetic

Our intended universal class V of all objects is the set of real numbers R endowed
with the usual structure of an ordered field. However, almost all our results hold
over any ordered field. The field operations and the order between objects will
be denoted in the usual way, i.e. x + y, x − y, x ≤ y, etc.

Definition 4. The following arithmetic operations and relations can be defined
by Zadeh’s extension principle for any fuzzy classes A, B, and a real number k:

A + B =df {z | (∃x ∈ A)(∃y ∈ B)(z = x + y)} addition
A − B =df {z | (∃x ∈ A)(∃y ∈ B)(z = x − y)} substraction

kA =df Ak =df {z | (∃x ∈ A)(z = kx)} scalar multiplication
A ≤ B ≡df (∃x ∈ A)(∃y ∈ B)(x ≤ y) order

Convention 2. Tuples of the elements of the universe and fuzzy classes are
denoted by x,y, z, . . . and A,B,C, . . . respectively. Matrices of elements are
denoted by A, B, C, . . . and matrices of fuzzy classes by boldface capital letters
A,B,C, . . .

Let A = (Aij) be an m×n matrix of fuzzy classes. Then (∀A ∈ A)ϕ stands for
(∀a11 ∈ A11) · · · (∀amn ∈ Amn)ϕ, similarly for (∃A ∈ A)ϕ. We use the analogous
conventions also for tuples of fuzzy classes.

Finally, let us introduce basic definitions on tuples of fuzzy classes. Let A =
〈A1, . . . , An〉 and B = 〈B1, . . . , Bn〉 be tuples of fuzzy classes and z = 〈z1, . . . , zn〉
be a tuple of real numbers. Then we define

z ∈ A ≡df &n
i=1 zi ∈ Ai , A ⊆ B ≡df (∀z)(z ∈ A → z ∈ B) ,

where (∀z)ϕ ≡df (∀z1) · · · (∀zn)ϕ.
The addition and substraction of matrices or vectors of fuzzy classes is defined

componentwise by means of Definition 4. The multiplication of an m×n matrix
A = (Aij) with a vector x = 〈x1, . . . , xn〉 is defined as follows:

Ax =

⎛

⎜⎝
A11x1 + · · · + A1nxn

...
Am1x1 + · · · + Amnxn

⎞

⎟⎠ .
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3 Fuzzy Intervals

In this section we introduce the notion of a fuzzy interval. A fuzzy class A is said
to be convex to the degree to which the formula (x ∈ A & y ∈ A & x ≤ z ≤ y) →
z ∈ A holds. This formula is denoted by Convex(A).

Definition 5. Let A be a fuzzy class. The degree of A being a fuzzy interval is
given by the formula FInt(A) ≡df Norm(A) & Convex(A).

Fuzzy classes which are fully fuzzy intervals can be characterized by means of
its down-class and up-class. A down-class and an up-class generated by a class
A are defined respectively by A↓ =df {x | (∃a ∈ A)(x ≤ a)} and A↑ =df {x |
(∃a ∈ A)(x ≥ a)}.

Theorem 3. Each fuzzy interval A to degree 1 is equal to the intersection of its
down-class and up-class, i.e., Δ FInt(A) → A = A↓ ∩ A↑.

4 Fuzzy Interval Linear System and Its Solution Set

In this section we formally define the solution set of a system of linear equations
with uncertain parameters, i.e., the parameters which are known to belong to
given fuzzy classes. Our intention is of course that these classes will be fuzzy
intervals. However, some of our results hold generally for any fuzzy classes. Thus
we define the solution set for arbitrary fuzzy classes.

Definition 6. Let A = (Aij) be an m×n matrix of fuzzy classes (intervals) and
B = 〈B1, . . . , Bn〉 be an n-tuple of fuzzy classes (intervals). Then the system
Ax = B is called fuzzy (interval) linear system.

Thus a system of linear equations with fuzzy classes is called a fuzzy linear
system whereas the system with fuzzy intervals is called a fuzzy interval linear
system.

The most common approach how to define a solution set Ξ(A,B) of a fuzzy
linear system Ax = B is the one which we described in the introduction, i.e.

Ξ(A,B) =df {x | (∃A ∈ A)(∃b ∈ B)(Ax = b)} .

Such solution set is usually called united solution set. However, it turns out that
usage of the universal quantifiers in the definition is also meaningful. We will
shortly present the main motivation for this coming from the very nice paper [8]
on classical interval analysis. Consider a system which is to be controlled. This
system is described by a system of linear equations Ax = b. Suppose that the
entries of A corresponds to the inputs of the system and b to its outputs. Both
inputs and outputs can be of two sorts. In the set of inputs we distinguish
between

– perturbations: the inputs on which we have no influence (e.g. noise, unknown
material parameter, etc.), but we know that they belong to given fuzzy
classes,
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– controls: the inputs intended for a controller. We can set them arbitrarily but
we are restricted by some constraints, i.e., they can be choosen only within
given fuzzy classes.

In the set of outputs we distinguish between

– stabilized: the outputs which should be stabilized into given fuzzy classes (e.g.
temperature of a heating),

– controlled: the outputs to which we must be able to attain any given values
from prescribed fuzzy classes (e.g. it must be possible to put a robot’s arm
into any place in its operational space).

The vector x corresponds to a state of the system. Now we are interested in those
states x for which for any perturbations and for any values of controlled outputs
from the prescribed fuzzy classes, there exist suitable controls such that the
stabilized outputs are within the given fuzzy classes and the controlled outputs
attain the desired values. Such fuzzy class of vectors x will be for us the most
general solution set of a fuzzy linear system.

Let Ax = B be a fuzzy linear system. In order to define the formula describing
the solution set, we split the matrix A and the tuple B into two disjoint parts
according to the quantifiers. We define A∀ = (A∀

ij), A∃ = (A∃
ij), B∀ = (B∀

i ), and
B∃ = (B∃

i ), where

A∀
ij =

⎧
⎪⎨

⎪⎩

Aij if Aij should be
quantified by ∀,

{0} otherwise,
A∃

ij =

⎧
⎪⎨

⎪⎩

Aij if Aij should be
quantified by ∃,

{0} otherwise,

B∀
i =

⎧
⎪⎨

⎪⎩

Bi if Bi should be
quantified by ∀,

{0} otherwise,
B∃

i =

⎧
⎪⎪⎨

⎪⎪⎩

Bi if Bi should be
quantified by ∃,

{0} otherwise.

Then we have A = A∀ + A∃, B = B∀ + B∃. Now we can write down the formal
definition of the solution set.

Definition 7. Let (A∀ + A∃)x = B∀ + B∃ be a fuzzy linear system. Then its
solution set is the following fuzzy class:

Ξ(A∀,A∃,B∀,B∃) =df {x | ((∀U ∈ A∀)(∀u ∈ B∀)

(∃E ∈ A∃)(∃e ∈ B∃)((U + E)x = u + e)} .

Finally, we generalize the fundamental theorem [8, Theorem 3.4] from classical
logic to fuzzy logic. The theorem characterizes the solutions by means of the
arithmetic defined on fuzzy classes in Subsection 2.2.

Theorem 4 (Fundamental theorem). Let (A∀ +A∃)x = B∀ +B∃ be a fuzzy
linear system. Then a vector x belongs to the solution set Ξ(A∀,A∃,B∀,B∃) to
the same degree as the formula A∀x − B∀ ⊆ B∃ − A∃x holds, i.e.,
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x ∈ Ξ(A∀,A∃,B∀,B∃) ←→ A∀x − B∀ ⊆ B∃ − A∃x .

The operations in A∀x−B∀ and B∃−A∃x are the arithmetic operations defined
on matrices and tuples of fuzzy classes in Subsection 2.2.

5 United Solution Set

The fundamental theorem serves as a good starting point for computing the so-
lution set. Although it works for arbitrary fuzzy classes, we will restrict ourselves
to fuzzy intervals in the rest of the paper. This restriction is necessary if we want
to obtain results like in the classical interval analysis.

The second restriction we make in this section concerns the quantifiers in the
definition of solution set. More precisely, we are going to describe the solution set
for a fuzzy interval linear system in the case when all the quantifiers appearing
in the system are existential. This restriction allows us to separate the particular
equations in the computation of the solution set.

Assume that all quantifiers in Definition 7 of the solution set are existential.
Then A∀ is the matrix of crisp fuzzy classes {0} and the same holds for B∀, i.e.
A∀ + A∃ = A∃ and B∀ + B∃ = B∃. Thus we will denote the solution set in this
case by Ξ(A∃,B∃) and call it the united solution set like in the classical interval
analysis

Let K = {↑, ↓}n be the set of all sequences of symbols ↑, ↓ whose length is n.
The j-th component of k ∈ K will be denoted by kj . Further, we define εjk = 1
if kj =↑ and −1 otherwise. Let Qk, k ∈ K, be the family of all orthants of Rn,
i.e., we have for each Qk:

Qk = {x ∈ R
n | ε1kx1 ≥ 0 & · · · & εnkxn ≥ 0} ,

where xj stands for the j-th component of x. Each Qk is obviously crisp. Finally,
we define −kj =↓ if kj =↑ and ↑ otherwise.

Theorem 5. Let A∃x = B∃ be a fuzzy interval linear system. Then

Ξ(A∃,B∃) =
⊔

k∈K

(
m⋂

i=1

(Qk ∩ Sd
ik ∩ Su

ik)

)
,

where Sd
ik = {x | (

∑n
j=1 A

kj

ij xj) ‖ (B∃
i )↓}, Su

ik = {x | (
∑n

j=1 A
−kj

ij xj) ‖ (B∃
i )↑}.

6 United Solution Set for Trapezoidal Fuzzy Intervals in
�Lukasiewicz Logic

In this section, we want to demonstrate how to use the results from the previous
section for computing concrete solution sets. For this purpose we have to restrict
ourselves to one concrete logic (we choose �Lukasiewicz logic) and one special
type of fuzzy intervals (namely those which are known in the literature under
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the name trapezoidal fuzzy numbers). We will work with the standard semantics
of �Lukasiewicz logic, i.e., with the standard MV-algebra on [0, 1]. Thus all the
predicates can be viewed as [0, 1]-valued functions on reals, & is interpreted as
�Lukasiewicz t-norm, → as the corresponding residuum, ∧, ∨ as min and max
respectively.

We firstly introduce some notation for dealing with the chosen fuzzy intervals.
Let f : R → R be a function. We define its truncation f = (f ∨ 0) ∧ 1. The
trapezoidal fuzzy intervals form a certain subset of piecewise linear [0, 1]-valued
functions. We firstly define their up-classes and down-classes. Let d > 0. Then

/a, d/(t) =
(

t − a

d
+ 1

)
=

⎧
⎪⎨

⎪⎩

1 if t ≥ a ,
t−a

d + 1 if a − d ≤ t ≤ a ,

0 otherwise,

\a, d\(t) =
(

a − t

d
+ 1

)
=

⎧
⎪⎨

⎪⎩

1 if t ≤ a ,
a−t

d + 1 if a ≤ t ≤ a + d ,

0 otherwise.

For d = 0 we define

/a, 0/(t) =

{
1 if t ≥ a ,

0 otherwise,
\a, 0\(t) =

{
1 if t ≤ a ,

0 otherwise.

Note that we require in /a, d/ (resp. \a, d\) the coefficient d to be nonnegative.

Definition 8. Let a1, a2, d1, d2 ∈ R such that a1 ≤ a2 and d1, d2 ≥ 0. Then
the trapezoidal fuzzy interval 〈/a1, d1/, \a2, d2\〉 is the intersection /a1, d1/ ∩
\a2, d2\.

Before we state the final theorem describing the united solution set, we introduce
a further notation. Let T = 〈T1, . . . , Tm〉 be a tuple of fuzzy classes. Then

⋂
T =⋂m

i=1 Ti. For a vector of reals x = 〈x1, . . . , xn〉, we define |x| = 〈|x1|, . . . , |xn|〉.
Further, let A = (Aij) be an m×n matrix and x = 〈x1, . . . , xn〉 a vector of reals.
Then

A � x =

⎛

⎜⎝
A11x1 ∨ · · · ∨ A1nxn

...
Am1x1 ∨ · · · ∨ Amnxn

⎞

⎟⎠ .

Thus A � x corresponds in fact to the usual multiplication of a matrix and
a vector where all sums are replaced by the operation ∨. Finally, define the
following operation for a, b ∈ R:

a � b =

⎧
⎪⎨

⎪⎩

a
b + 1 if b �= 0 ,

1 if b = 0, a ≥ 0 ,

0 if b = 0, a < 0 ,
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Note that if a, b ≥ 0 then a� b = 1. We extend this definitions also for vectors of
numbers component-wise, i.e. 〈a1, . . . , an〉�〈b1, . . . , bn〉 = 〈a1 � b1, . . . , an � bn〉.
Let A be a matrix. The element in the i-th row and j-th column will be also
denoted by (A)ij .

Theorem 6. Let A∃x = B∃ be a fuzzy interval linear system such that A∃ =
(Aij) is an m×n matrix of trapezoidal fuzzy intervals Aij = 〈/a↑

ij , c
↑
ij/, \a↓

ij , c
↓
ij\〉

and B∃ = 〈B1, . . . , Bn〉 is a tuple of trapezoidal fuzzy intervals
Bi = 〈/b↑i , e

↑
i /, \b↓i , e

↓
i \〉. Then the solution set Ξ(A∃,B∃) can be described as

follows:
Ξ(A∃,B∃) =

⊔

k∈K

(
Qk ∩

⋂
Tk ∩

⋂
Rk

)
,

where
Tk(x) =

(
b↓ − A

↑
kx

)
�

(
e↓ ∨

(
C

↑
k � |x|

))
,

Rk(x) =
(
A

↓
kx − b↑

)
�

(
e↑ ∨

(
C

↓
k � |x|

))
,

b↓ = 〈b↓1, . . . , b↓n〉, b↑ = 〈b↑1, . . . , b↑n〉, e↓ = 〈e↓1, . . . , e↓n〉, e↑ = 〈e↑1, . . . , e↑n〉, and
A

↑
k, A

↓
k, C

↑
k, C

↓
k are m × n matrices such that (A↑

k)ij = a
kj

ij , (A↓
k)ij = a

−kj

ij ,

(C↑
k)ij = c

kj

ij , (C↓
k)ij = c

−kj

ij .

7 Example

In this section we are going to illustrate Theorem 6 on a concrete example.
We will in fact consider a fuzzified version of a favorite example from classical
interval analysis.

Example 1. Consider the following classical interval linear system:
(

[2, 4] [−2, 1]
[−1, 2] [2, 4]

)
x =

(
[−2, 2]
[−2, 2]

)
. (3)

The united solution set of this system is depicted in Figure 1 (left).

Fig. 1. The united solution set Ξ(A∃,B∃) of the systems from Examples 1, 2
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Now we fuzzify the latter example and then describe its united solution set.

Example 2. Consider the following fuzzy interval linear system with trapezoidal
fuzzy intervals:

(
〈/2, 1

2/, \4, 1
2\〉 〈/−2, 1

2/, \1, 1
2\〉

〈/−1, 1
2/, \2, 1

2\〉 〈/2, 1
2/, \4, 1

2\〉

)
x =

(
〈/−2, 1

2/, \2, 1
2\〉

〈/−2, 1
2/, \2, 1

2\〉

)
(4)

In this case n = 2. Thus we have four orthants. Since the united solution set
is in fact the union over all orthants, we describe the united solution set only in
Q〈↓,↑〉. This means that we compute T〈↓,↑〉 and R〈↓,↑〉. We have

b↓ =
(

2
2

)
, b↑ =

(
−2
−2

)
, e↓ = e↑ =

( 1
2
1
2

)
.

A
↑
〈↓,↑〉 =

(
4 −2
2 2

)
, A

↓
〈↓,↑〉 =

(
2 1

−1 4

)
, C

↑
〈↓,↑〉 = C

↓
〈↓,↑〉 =

( 1
2

1
2

1
2

1
2

)
.

Then

T〈↓,↑〉(x) =
(

2 − (4x1 − 2x2)
2 − (2x1 + 2x2)

)
�

( 1
2 ∨ 1

2 |x1| ∨ 1
2 |x2|

1
2 ∨ 1

2 |x1| ∨ 1
2 |x2|

)
,

R〈↓,↑〉(x) =
(

2x1 + x2 + 2
−x1 + 4x2 + 2

)
�

( 1
2 ∨ 1

2 |x1| ∨ 1
2 |x2|

1
2 ∨ 1

2 |x1| ∨ 1
2 |x2|

)
.

The united solution set Ξ(A∃,B∃) is depicted in Figure 1 (right). Notice that
the kernel of Ξ(A∃,B∃) is the same as the united solution set from Example 1.
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Abstract. It is presented a novel hybrid controller that combines the benefits of
classical controllers and fuzzy logic to improve the system response in tracking. The
design was developed in VHDL for a posterior FPGA implementation. The code was
simulated using Simulink and Xilinx System Generator (XSG) that allows to simulate
the code of the final FPGA target. Several comparative experiments in soft-real time
were conducted using a geared DC motor and the results are commented.

1 Introduction

The rapid development of digital technology and its decreasing cost in compari-
son with the analog counterpart has impacted the world of controllers by replac-
ing analog solutions with digital proposals because they offer several advantages
such as a considerable time reduction in the design stage, improvements on
system reliability and performance, elimination of discrete tuning components,
and the possibility of including various performance enhancements. Digital con-
trollers can solve problems with enough high complexity to be tackled with
analog technology [1, 2].

Nowadays, no matter how complicated the control of a plant might be, the
majority of control loops in industrial control systems are using a Proportional-
Integral-Derivative (PID) controller type or subtype. There are several ideas
to implement a PID controller to overcome the disadvantages of linear PID
controllers based on difference equations. Some of these ideas transform a linear
PID controller into a PID-like structures of fuzzy controllers.

Digital controllers can be implemented in different hardware platforms,
including personal/industrial computers, industrial boards based on discrete
digital logic, Digital Signal Processor (DSP) or microcontroller systems, using
dedicated hardware for specific applications like Application-Specific Integrated
Circuit (ASIC) or in a Field Programmable Gate Array (FPGA) [3, 4].

O. Castillo et al. (Eds.): Soft Computing for Hybrid Intel. Systems, SCI 154, pp. 437–446, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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At present time, there are several digital techniques to implement a digital
controller. Conventional PID controllers are still being a key component in in-
dustrial control because they are simple and provide useful solutions to many
important industrial processes [5].

Although the extensive use of conventional PID controllers and the imple-
mentation of new techniques to improve them, they have significant limitations,
because they work basically for linear processes. Some of the limitations are:

• They do not work effectively controlling complex processes that are nonlinear,
time-variant, with major disturbances, uncertainties, and large time delays.

• They need to be tuned properly when the plant dynamics change. This is a
frustrating and time-consuming experience if the nonlinearities of the plant
becomes more accentuated. There are several algorithms to tune or auto-
tune PID controllers, but in some situations, when the system becomes too
complex, where the conventional PID controller would not work, no matter
how it is tuned.

• A conventional PID cannot be used as the core of an smart control system.

The traditional structure of a PID controller has evolved, and the Fuzzy
implementation of a PID structure (FPID) has demonstrated to be a successful
idea for several reasons [6, 7], some of them are:

• FPID uses every day words to establish the Fuzzy Inference System (FIS).
The linguistic variables error, change of error, and integral of error can be
used to handle the same signals than the conventional PID controller uses.

• They can work as a linear or a non linear PID controller.
• They can be smart, working in combination with other soft computing tech-

niques.
• The FPID has more parameters to adjust than conventional PID, but there

are several effective methods to tune them [8].

Other ideas to implement digital controllers are focused in hybrid solutions
in the sense of mixing conventional controllers with fuzzy, neural or neurofuzzy
controllers [9]. This proposal presents a controller, that is based in an imple-
mentation of a PID controller in serial configuration, mixed with fuzzy logic to
improve the system response tracking a signal.

This work is organized as follows: Section 2 presents the formal proposal of the
controller which is basically an incremental PID with fuzzy adjustment of the
proportional gain, Section 3 is devoted to explain the experiments and results,
and finally in Section 4 are the conclusions.

2 Controller Design for FPGA Implementation

The standard representation of a PID controller is given in (1); where, three main
components can be identify: They are the proportional, integral and derivative
terms. The error signal e(k) is defined as (2), it is the difference between the
process output y(k) and the set point r(k). The derivative term was obtained
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using the backward difference method, and the integral term using the method of
rectangular integration. In this equation, Kp, Ki, and Kd are parameters related
to the gain of each term; Ts, Ti, and Td are the sampling period, the integral
time, and the derivative time, respectively.

u(n) = Kpe(n) +
Ki

Ti

n∑

j=1

e(j)Ts + KdTd
e(n) − e(n − 1)

Ts
(1)

e(k) = y(k) − r(k) (2)
The algorithm given in (1) is seldom used in practical applications since im-
provements in the overall performance can be obtained. In this work, a serial
realization of this controller known as incremental controller was used. The first
stage consists of a PD controller, hence (1) is transform to (3), the second stage
is the integral part that is calculated with (4); in this way, the controller output
can be rewritten as (5).

upd(n) = Kpe(n) + KdTd
e(n) − e(n − 1)

Ts
(3)

ui(k) =
Ki

Ti

n∑

j=1

e(j)Ts (4)

u(k) =
Ki

Ti

n∑

j=1

(
Kpe(n) − KdTd

e(n) − e(n − 1
Ts

)
Ts (5)

In this proposal Kp is a fuzzy input-output mapping, equation (5) can be ex-
pressed in fuzzy terms where �Kp(r(k)) is representing a FIS, hence the fuzzy
output controller u� is (6),

u�(k) =
Ki

Ti

n∑

j=1

(
�Kp(r(k))e(n) − KdTd

e(n) − e(n − 1
Ts

)
Ts (6)

Since the goal is to carry out the controller to an FPGA implementation, each
stage of the controller was developed using VHDL codification [10]. Five entities
(blocks) were identified and implemented: Proportional, Derivative, Incremental,
Decimal Substraction, and the Sampling Period block.

2.1 Controller Simulink Model

Figure 1 shows the Simulink model developed to test the controller. The main
block labeled PID is the serial implementation of the incremental controller
described by (5). In Figure 1, there is a summing block that produces the error
signal and it is connected to a display, we used this block to monitor the values
of this signal for debugging, the same implementation is also into the PID block
to achieve the controller action. The innovative part is in the Kp input of the
PID block, where a fuzzy selection of this value is achieved according to the
plant characteristic to improve the tracking of a reference signal. The plant is a
geared DC motor model GM9236S025-R1 [11].
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Fig. 1. Controller Simulink Model. The FIS is connected to the input Kp of the PID
incremental controller.

2.2 Fuzzy Adjustment of Kp

The PID implementation based on equation (5) has the characteristic of having
slow response tracking a signal. We are proposing to handle the Kp with a
fuzzy inference system (FIS) to reduce the aforementioned problem. The universe

Fig. 2. Membership functions of Input and Output of the FIS to achieve the Kp

adjustment
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Table 1. Map of Fuzzy Rules

Reference r(k) Kp

VS VS

S S

M M

B B

VB VB

of discourse of the FIS is the domain [0,70] and it is related to the maximal
revolutions per minute (RPM) of the motor. The fuzzy output is the variable
Kp. Figure 2 shows the membership functions for the input and output of the
FIS, and Table 1 shows the fuzzy rules.

3 Experimental Results

To achieve the experiments that we are going to explain next, we implemented
a test platform with the next main components:

1. Matlab from Mathworks 7.1 (R14), service pack 3.
2. Xilinx ISE pack 8.2.03i
3. Xilinx System Generator v8.2
4. BASIC STAMP editor v2.4
5. Two PARALLAX Boards with BS2P24 microcontroller.
6. H-bridge module based on LMD18200 from National Semiconductor.
7. DC Servo Motor GM9236S025-R1 500 CPR.
8. Power Supplies.

The control goal of the experiments is to maintain the speed of the DC Motor
and to eliminate the control error. In the first experiment, we used the classical
controller to illustrate the tracking problem.

3.1 Experiment 1. Classical Controller

Figure 3 shows the system response when the target is to maintain a constant
speed of 50 RPM, Figure 4 shows the response of the same controller tracking
a signal, the changes of speed that we used are 50, 40,30,40,50 RPM. Figure 5
shows the tracking error when the classical controller was used in the aforemen-
tioned serial configuration. Figure 6 shows the effect of using different Kp gains
values in a classical controller.

3.2 Experiment 2. Hybrid Fuzzy Controller

The control goals of this experiment are the same of Experiment 1, the difference
is that the proposed hybrid fuzzy controller was used. Hence, Figure 7 shows the
system response for tracking, Figure 8 presents the error when the controller
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Fig. 3. Experiment 1. Constant speed of 50 RPM.
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Fig. 4. Experiment 1. Speed control with changes of speed.

tracks the signal. It is implicit that the controller does not have any problem
working as regulator. Figure 9 shows how the response change when the FIS is
modified, and Figure 10 shows the control error with fuzzy adjustments of Kp.

3.3 Experiment 3. Comparisons

Figure 11 shows how the classical controller and the Hybrid fuzzy controller work
tracking a signal. Figure 12 shows the corresponding tracking errors. Actually it
is straightforward to appreciate which controller has the faster response tracking
a signal.
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Fig. 5. Experiment 1. System response error when tracking a signal, using a classical
controller.
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Fig. 6. Experiment 1. Effect of using different Kp gain values in a classical controller.
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Fig. 7. Experiment 2. Control with changes of speed, fuzzy adjustment of Kp.
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Fig. 8. Experiment 2. Control error.
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Fig. 9. Experiment 2. Control with changes of speed and fuzzy adjustment of Kp and
different membership functions.
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Fig. 10. Experiment 2. Control error.
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Fig. 11. Experiment 3. Tracking a speed signal (Classical controller in VHDL vs.
Fuzzy PID in VHDL).

0 20 40 60 80 100 120
−40

−30

−20

−10

0

10

20

30

40

50

Time(sec)

E
rr

o
r 

(r
ad

/s
ec

)

Control Error (PID VHDL vs. Fuzzy PID with Defuzzification in VHDL

 

 

Fuzzy PID with Defuzzification in VHDL
PID VHDL

Fig. 12. Experiment 3. Tracking error of Figure 11.

4 Conclusions

This proposal showed that it is a good option to handle the proportional gain of a
classical controller using a FIS to improve the system response when it is tracking
a signal. We tested only one kind of classical PID controller to control the speed
of a DC motor, and all the comparisons using the hybrid controller proposal were
made against this controller. It was shown how the controller performance was
increase when we hybridize the classical controller. All methods were tested using
VHDL codification for a posterior FPGA implementation. The test platform
worked well to achieve the experiments, the results can be improved by using a
hard-real time platform. The use of Simulink and Xilinx System Generator is a
good option for a fast prototyping since minors modification have to be done in
order to have a functional controller embedded into an FPGA.
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Mendoza, Olivia 115
Millán, Ismael 437

Montiel, Oscar 71, 297, 307, 315, 325,
333, 437

Morales, Jose 29

Olivas, José Á. 325
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