
11

Contraction-Based Heuristics to Improve the
Efficiency of Algorithms Solving the Graph
Colouring Problem

István Juhos1 and Jano van Hemert2

1 Department of Computer Algorithms and Artificial Intelligence,
University of Szeged, Hungary
paper@juhos.info

2 National e-Science Institute, School of Informatics, University of Edinburgh,
United Kingdom
j.vanhemert@ed.ac.uk

Summary. Graph vertex colouring can be defined in such a way where colour assign-
ments are substituted by vertex contractions. We present various hypergraph represen-
tations for the graph colouring problem all based on the approach where vertices are
merged into groups. In this paper, we explain this approach and identify three reasons
that make it useful. First, generally, this approach provides a potential decrease in
computational complexity. Second, it provides a uniform and compact way in which
algorithms, be it of a complete or a heuristic nature, can be defined and progress to-
ward a colouring. Last, it opens the way to novel applications that extract information
useful to guide algorithms during their search. These approaches can be useful in the
design of an algorithm.

Keywords: Graph Contraction, Graph Colouring, Graph Representation, Heuristics,
Graph Homomorphisms, Evolutionary Computation.

11.1 Introduction

The graph colouring problem (GCP) is an important problem from the class
of non-deterministic polynomial problems. It has many applications in the real
world such as scheduling, register allocation in compilers, frequency assignment
and pattern matching. To allow these applications to handle larger problems, it
is important fast algorithms are developed. Especially as high-performance com-
puting is becoming more readily available, it is worthwhile to develop algorithms
that can make use of parallelism.

A graph G = (V, E) consists of a set of vertices V and a set of edges E ⊆ V ×V
defines a relation over the set of vertices. We let n = |V |, m = |E|, d(v) is the
degree of a vertex v ∈ V and A is the adjacency matrix of G. A colouring c of a
graph is a map of colours to vertices (c : V → C) where C is the set of colours
used. There can be several such mappings, which can be denoted if necessary
(e.g. c1, c2, . . .). A colouring c is a k-colouring iff |C| = k. It is a proper or valid
colouring if for every (v, w) ∈ E : c(v) �= c(w). In general, when we refer to a

C. Cotta and J. van Hemert (Eds.): Recent Advances in Evol. Comp., SCI 153, pp. 167–184, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

paper@juhos.info
j.vanhemert@ed.ac.uk

168 I. Juhos and J. van Hemert

colouring we mean a valid colouring, unless the context indicates otherwise. The
chromatic number χ(G) of a graph G is the smallest k for which there exists a k-
colouring of G. A colouring algorithm makes colouring steps, i.e., it progressively
chooses an uncoloured vertex and then assigns it a colour. Let t ∈ {1, . . . , n} be
the number of steps made.

The graph colouring approaches discussed here will construct a colouring for
a graph by progressively contracting the graph. This condensed graph is then
coloured. The colouring of intermediate graphs in examples serves only to help
the reader follow the process. In reality, contractions themselves define the whole
colouring process.

The operations that allow these contractions are naturally parallel. More-
over, they allow us to extract heuristic information to better guide the search.
Two types of graph contractions exist in the literature. The first is the vertex-
contraction; when unconnected or connected vertices are identified as one vertex,
some original edges can either be kept or removed. The name ’contraction’ can
be seen as a merge or a form of coalescing ([225,226,227,228,229,230,231,232,
233, 234, 235]) as well. The latter is commonly used in the domain of register
allocation problems, which can be modeled as a graph colouring problem. In
the colouring model of the register allocation, vertices are coalesced where this
is safe, in order to eliminate move operations between distinct variables (regis-
ters). The second is the edge-contraction. This approach is similar to the idea
described in case of vertices whenever two edges are merged together, vertices
can be merged.

The purpose of the merging can either be simplification or the combination
of several simple graphs into one larger graph. Both edge and vertex contraction
techniques are valuable in proof by induction on the number of vertices of edges
in a graph, where we can assume that a property holds for all contractions of a
graph and use this to show it for the larger graph.

Usually, colouring algorithms use vertex merging for graph simplification and
graph combination. Simplification is done by merging two or more unconnected
vertices to get fewer vertices before or during colouring. In [225], [226] and [227]
preprocessing of graphs is performed before colouring, where two vertices in a
graph are merged to one if they are of the same colour in all colourings. This
is analogous to studies of the development of a backbone or spine in the satis-
fiability problem [236,237]. Here, the application of merging refers to removing
one of two unconnected vertices. In fact, we could remove also edges that belong
to the removed vertex. The only reason to perform these merges is to remove
unnecessary or unimportant vertices from the graph in order to make it sim-
pler. Those vertices that fulfil some specific condition, will be removed from the
data structure, which describes the graph. This process will result in the loss of
information.

The second approach is to consider two graphs, which have some colouring
properties. For example the property could be that they are not k-colourable.
Then, the two graphs are joined by merging vertices from both graphs to create a

11 Contraction-Based Heuristics to Improve the Efficiency of Algorithms 169

more complex graph, where the aim is that the original properties are inherited.
In both cases the identified vertices get the same colour.

Register allocation can be modelled as a graph colouring problem, but it is
modelled in other ways too. Coalescing is a terminology frequently used instead
of merging, where two register are coalesced. If the problem is represented by
graph colouring, coalescing is the same as merging unconnected vertices. Register
coalescing techniques can be identified as vertex merging in a graph colouring
problem [228,229,230,231,232].

Using the idea of graph contraction we will describe an efficient graph colour-
ing model, where contractions are performed on unconnected vertices. We will
define two well known and two novel heuristics based on this model. The model
itself serves as a framework to describe graph colouring algorithms in a concise
manner. Moreover, we show how the model allows an increase in the performance
of certain algorithms by exploiting the data structures of the model through sev-
eral heuristics.

11.2 Representing Solutions to Graph Colouring as
Homomorphisms

We define merge operations to perform contraction of the original graph and
subsequent contractions. A merge operation takes two unconnected vertices from
a graph G = (V, E) and produces a new graph G′ = (V ′, E′) where these vertices
become one hyper-vertex. If edges exist between another vertex and both the
original vertices, then these become one hyper-edge. If v1, v2 ∈ V are merged
to {v1, v2} ∈ V ′ and both (v1, u), (v2, u) ∈ E then ({v1, v2}, u) ∈ E′ is called a
hyper-edge. Examples of merge operations are shown in Figure 11.1. The merge
operation is applied similarly to hyper-vertices.

By repeating merge operations we will end up with a complete graph. If during
each merge operation we ensure only hyper-vertices and vertices are merged
that have no edges between them, we then can assign all the vertices from the
original graph that are merged into the same hyper-vertex one unique colour.
The number of hyper-vertices in the final contracted graph corresponds to the
number of colours in a valid colouring of the original graph. As Figure 11.1
shows, the order in which one attempts to merge vertices will determine the
final colouring. Different colourings may use different number of colours. We
will investigate a number of different strategies for making choices about which
vertices to merge.

Graph colouring solvers make use of constraint checks during colouring. The
adjacency checks to verify if assigned colourings are valid play a key role in the
overall performance (see [238, 233, 234, 235]). The number of checks depends on
the representation of the solution, the algorithm using the representation and
the intrinsic difficulty of the problem. Graph colouring problem are known to
exhibit an increase in difficulty in the so-called phase transition area [227]. In
our experiments we will test several algorithms on problems in this area.

170 I. Juhos and J. van Hemert

merge(r1,r4)

merge(r2,r5)

merge(r2,r6)

merge(r3,r5)

(a) (b)

(c)

(d)

(e)

v1

v2

v4

v5

v6

v3
v5 v3

{v2,v6 }

{v1,v4 }

{v3,v5 }

{v2,v6 }

{v1,v4 }

v5

v3

v2v6

{v1,v4 }

{v1,v4 }

{v2,v5 }v6

v3

Fig. 11.1. Examples of the result of two different merge orders P1 = v1, v4, v2, v5, v3, v6

and P2 = v1, v4, v2, v6, v3, v5. The double-lined edges are hyper-edges and double-lined
nodes are hyper-nodes. The P1 order yields a 4-colouring (c), however with the P2

order we get a 3-colouring (e).

Merge operations and the contracted graphs can reduce the number of con-
straint checks considerably [239]. There are two main possibilities to check if a
colour can be assigned to a vertex. Either one examines the already coloured
vertices for adjacency or one checks the neighbours of the vertex to validate
the same colouring is not assigned to any of these. Using merge operations, we
will have colour groups instead of sets of coloured vertices, thereby reducing the
amount of checks required. In [235] a speed-up of about log n is derived both
empirically and theoretically.

11.3 Vertex Colouring by Graph Homomorphisms

In this section we describe a valid vertex colouring of a graph G via several
homomorphisms. Let φ be a homomorphism, we define φ in the following ways,

1. φ : V → C defines an assignment from vertices to colours. It provides a valid
colouring if φ(u) = φ(v) ⇒ (u, v) /∈ E. Let the number of assigned colours
be k, it defines the quality of the assignment when minimising the number
of colours used (See Figure 11.2). We can represent the coloured graph by
a composite structure 〈G, C〉. A homomorphism can be defined by atomic
steps, where at each step one vertex is coloured. These steps will be defined
in Section 11.3.1.

2. The second homomorphism groups vertices of the same colour together to
form hyper-vertices, i.e., colour sets. The edges defined between normal
and hyper-vertices (colour sets) provide an implicit representation of the
colouring by the special graph formed this way. An example is shown in

11 Contraction-Based Heuristics to Improve the Efficiency of Algorithms 171

(1)

V

G0

C

<G,C>

(2) (3)

G
n-k

=Kk G
n-k

Fig. 11.2. Three homomorphisms from graphs to colourings

Figure 11.2. In this homomorphism, vertices grouped together form hyper-
vertices as colour sets. The original vertices are associated with the colour
set(s) where its adjacent vertices reside. When a normal vertex has more than
one adjacent vertex in a colour set, then all the edges are folded into one
hyper-edge. The cardinality of all the edges that were merged are assigned
as a weight to the hyper-edge. This way we can keep track of the vertices in
relation to the colours, and the cardinality allows us to measure the strength
of such a relationship. We present a basic and a weighted representation
of the contracted graph above, where vertices and edges are merged into
one hyper-vertex or hyper-edge. The matrices that result from these merge
operations are non-square, which is why the representation is called a table.
Due to the basic and weighed edges, there are two types of representations,
a Binary (BMT) and an Integer (IMT) type. The assigned An−k matrix
dimension is k × n. Columns represents normal vertices and rows refer to
hyper-vertices, i.e., colour-sets. Zeros in a row define the members of the
hyper-vertex. Non-zeros define edges between hyper-vertices and vertices.

3. The third homomorphism comes from the second by contracting normal
nodes in color sets to one node. Let us define φ : G → K. It assigns a
complete graph K to G. The number of vertices of K defines the quality of
the colouring. The colouring is valid iff φV (u) = φV (v) ⇒ (u, v) /∈ E. If we
consider the original colour assignment then we merge all the vertices that
have the same colour assigned. In other words, we can create the homomor-
phism by atomic sequential steps such as, colouring or merging one vertex
at a time. Hence n − k steps are needed to get Kk. An example is shown in
Figure 11.2. In the previous homomorphism, the merge operations per-
formed on G result in a complete graph on k vertices: Kk. Vertices as-
signed with the same colour are collapsed into a hyper-vertex, and all edges
that connect to these vertices are collapsed into a hyper-edge. We provide a

172 I. Juhos and J. van Hemert

representation of the resulting graph by two different matrices. The first ma-
trix does not rely on the number of collapsed edges it is the basic adjacency
matrix that represents the graph Kk, while the second does and it is the
weighed adjacency matrix of the same graph. Here, the homomorphism is
performed on the relevant matrices φ : A0 → An−k. As the matrices that
arise during the steps are square matrices, this model is called the Merge
Square (MS) model. If we do not keep track of the cardinality of the edges
we call this the Binary Merge Square model. Otherwise, we call this the
Integer Merge Square model.

11.3.1 Merge Operations as Atomic Transformation Steps of the
Homomorphisms

The different matrix representations require different kinds of merge operations.
By combining two of these representations with two operations we will provide
four colouring models. The representations are the Binary Merge Square or In-
teger Merge Square and the Binary Merge Table or Integer Merge Table, which
are denoted by A,�, T,� respectively. Merge Squares refers to the adjacency
matrix of the merged graph. The Integer types assign weights to the (hyper-
)edges according to the number of edges merged into hyper-edges. The Binary
types collapse these edges simply into one common edge. The tables keep track
of the vertices that were merged into a hyper-vertex and their cardinality. The
graph depicted in Figure 11.3 and its adjacency matrix will be used in examples
to explain the different models.

The zeroth element of the steps is the adjacency matrix of G in all cases:

A0 = �
0 = T 0 = �

0 := A

We only deal with valid colourings, hence only non-adjacent vertices can be
merged together. In case of Merge Squares representations columns and rows
refer to the same (hyper-)vertex/colour-set. Thus, the condition of the merge
depends on the relation between hyper-vertices; the coincidence of the appro-
priate row and column of the Merge Square must be zero. We can easily see
that this condition is the same for Merge Tables (MT). Hence, we have to check

v1

v2

v4

v5

v6

v3

v1 v2 v3 v4 v5 v6

r1 0 1 1 0 0 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r4 0 0 1 0 1 0
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

Fig. 11.3. A graph G and its adjacency matrix: v-s refer to vertices and r-s refer to
rows, i.e., colours

11 Contraction-Based Heuristics to Improve the Efficiency of Algorithms 173

the adjacency between a normal vertex (which refers to an MT column) and
a hyper-vertex/colour-set (which refers to an MT row). We can summarise the
merge conditions by at

ij = �t
ij = ttij = �t

ij = 0. Consequently at
ji = �t

ji = 0 and
thanks to the inherited graph property at

ii = at
jj = �t

ii = �t
jj = 0.

We define the following matrices:

P : eie′j M : eje′j W = P − M ,

where P (Plus) will be used for addition (or bitwise or operation) of the j-th
row of a matrix to its i-th row. M (Minus) will support the subtraction of the
j-th row from itself, thereby setting its components to zero. This could be done
also by a bitwise exclusive or (xor). W combines these operations together.
Let a and b define the i-th and j-th row vector of a merge matrix in step t.
We need only n − k contraction steps to get a solution instead of n needed by
the traditional colouring methods. As much hardware nowadays provide CPUs
with vector operations, this opens the possibility to perform the atomic merge
operations in one CPU operation, thereby increasing the efficiency.

We now define the four models formulated both as row/column operations and
matrix manipulations. First the integer-based models and then the binary-based
model, which do not track the number of edges folded into a hyper-edge.

Integer Merge Table (IMT) model

Row based formulation of the i-th and j-th row of � after merging j-th vertex
into i-th: let �i is the i-th row and � i is the column vector.

�
t+1
i = a + b , �

t+1
j

= 0 (11.1)

Matrix based formulation:

�t+1 = �
t + W�

t = (I + W)�t (11.2)

In the example below, rows r1 and r4 are merged, after which the row corre-
sponding to colour c4 is removed.

v1 v2 v3 v4 v5 v6

r1 0 1 1 0 0 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r4 0 0 1 0 1 0
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

v1 v2 v3 v4 v5 v6

{r1, r4} 0 1 2 0 1 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r4 0 0 0 0 0 0
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

v1 v2 v3 v4 v5 v6

{r1, r4} 0 1 2 0 1 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

Integer Merge Square (IMS) model

Row/column based formulation: let �i be the i-th row and � i be the column
vector and define �j and � j in the same way for the j-th row and column.

174 I. Juhos and J. van Hemert

�
t+1
i = a + b , �

t+1
j = 0′ (11.3)

�
t+1
i = a′ + b′ , �

t+1
j = 0 (11.4)

Matrix based formulation:

�t+1 = �
t + W�

t +�
tW ′ (11.5)

Since, �t
ij = 0 and �t

ji = 0, hence W�
tW ′=0. Due to this fact we can rewrite

(11.5) as

�t+1 = (I + W)�t(I + W)′ (11.6)

In the example below, a merge square has caused both columns and rows to
be merged. The result is an adjacency matrix of the merged graph with weights
on the edges, which describe the number of edges that were merged.

v1 v2 v3 v4 v5 v6

r1 0 1 1 0 0 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r4 0 0 1 0 1 0
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

{v1, v4} v2 v3 v4 v5 v6

{r1, r4} 0 1 2 0 1 1
r2 1 0 1 0 0 0
r3 2 1 0 0 0 1
r4 0 0 0 0 0 0
r5 1 0 0 0 0 1
r6 1 0 1 0 1 0

{v1, v4} v2 v3 v5 v6

{r1, r4} 0 1 2 1 1
r2 1 0 1 0 0
r3 2 1 0 0 1
r5 1 0 0 0 1
r6 1 0 1 1 0

Binary Merge Table Model (BMT) model

Row based formulations:

tt+1
i = a ∨ b , tt+1

j = 0 (11.7)

tt+1
i = �

t+1
i − a • b , tt+1

j = 0 (11.8)

a • b = diag(a′b) =
∑

i

(a′b)ei

Matrix based formulations:

T t+1 = T t ∨ PT t − MT t (11.9)

T t+1 = �
t+1 −

∑

j

(a′b)Eji (11.10)

In the example below, row r4 is merged with row r1 to form {r1, r4}, after
which r4 is deleted.

11 Contraction-Based Heuristics to Improve the Efficiency of Algorithms 175

v1 v2 v3 v4 v5 v6

r1 0 1 1 0 0 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r4 0 0 1 0 1 0
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

v1 v2 v3 v4 v5 v6

{r1, r4} 0 1 1 0 1 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r4 0 0 0 0 0 0
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

v1 v2 v3 v4 v5 v6

{r1, r4} 0 1 1 0 1 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

Binary Merge Square (BMS) model

Row/column based formulations: let aj be the j-th row and a j be the column
vector.

at+1
i = a ∨ b , at+1

j = 0′ (11.11)

at+1
i = (At+1

i)′ , at+1
j = 0 (11.12)

Matrix based formulations:

At+1 = At ∨ (PAt + AtP ′) − (MAt + AtM ′) (11.13)
At+1 = At ∨ (PAtP ′) − (MAtM ′) (11.14)

The example below shows a binary merge collapse, which does not perform
any accounting of merged structures.

v1 v2 v3 v4 v5 v6

r1 0 1 1 0 0 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r4 0 0 1 0 1 0
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

{v1, v4} v2 v3 v4 v5 v6

{r1, r4} 0 1 1 0 1 1
r2 1 0 1 0 0 0
r3 1 1 0 0 0 1
r4 0 0 0 0 0 0
r5 1 0 0 0 0 1
r6 1 0 1 0 1 0

{v1, v4} v2 v3 v5 v6

{r1, r4} 0 1 1 1 1
r2 1 0 1 0 0
r3 1 1 0 0 1
r5 1 0 0 0 1
r6 1 0 1 1 0

11.3.2 Information Derived from the Data Structures

First order structures are the cells of the representation matrices. They define
the neighbourhood relation of the hyper-vertices for the binary and weighted
relation for the integer models.

Secondary order structures or co-structures are the summary of the first or-
der structures; i.e., the rows and columns in the representation matrices respec-
tively. They form four vectors. Since, sequential colouring algorithms take steps,
and the coloured and uncoloured part of the graphs are changing step-by-step

176 I. Juhos and J. van Hemert

7

v1

v2

v4

v5

v6

v3

(a)

(b)

r1 0 1 1 0 0 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r4 0 0 1 0 1 0
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

v1 v2 v3 v4 v5 v6 0 1 2 1 1 2
5 0 1 2 0 1 1 4

0 1 1 1 1 2

v1 v2 v3 v4 v5 v6

{r1,r4}

2 0 0 0 1 0 1 2r5

v5 v3

v2v6

{v1,v4 }

(c)

(b) 1 1 2 1 2
5 0 1 2 1 1 4

1 1 1 1 2

{r1,r4}

2 0 0 0 0 1 2r5

v5 v3

v2v6

{v1,v4 }

{v1,v4} v2 v3 v5 v6

6 6

7 (b)

(c)

(d)

Fig. 11.4. The original graph, its induced sub-IMT and then its induced sub-IMS
when colouring is in progress. (a) gives the sum of the degree of the nodes, (b) gives
the number adjacent vertices already assigned a colour, (c) gives the degree of the
hyper-vertex, and (d) gives the number of coloured hyper-edges.

it is worth to define these structures separately to the coloured/merged and
uncoloured/non-merged sub-graphs. To identify these partial sums we use col

and unc superscripts. We can obtain the sum of the rows and columns of binary
merge matrices from their integer pairs by counting their non-zero elements.
Hence, in Figure 11.4 only the left side of the sub-matrices sum the columns
and the right side sum the non-zero elements to get the relevant summary in
the binary matrix. This is the same for the columns, where the top vector is the
sum of the rows and the bottom is the number of non-zeros. The second order
structures are denoted by τ , using t,b,l,r indices as subscript to refer to the top,
bottom, left and right vector.

Third order structures are formed by summarising the secondary order struc-
tures. These can be divided into two parts similar to the second order structures
according to the coloured and uncoloured sub-graphs. These structures are de-
noted by ζ. In this study, they will be used in the fitness function of the evolu-
tionary algorithm. The top-left sums the top vector (or the left vector) and the
bottom-right sums the bottom vector (or the right vector). These are shown in
bold font in Figure 11.4.

11.4 Heuristics Based on Merge Model Structures

before we define the heuristics, we first introduce two abstract sequential algo-
rithms. These are appropriate for defining existing or novel GCP solvers in a
concise manner.

11 Contraction-Based Heuristics to Improve the Efficiency of Algorithms 177

Definition 1 (Sequential contraction algorithm 1 (SCA1))

1. Choose a non-merged/uncoloured vertex v
2. Choose a non-neighbour hyper-vertex/colour-set r to v
3. Merge v to r
4. If there exists a non-merged vertex then continue with Step 1

Definition 2 (Sequential contraction algorithm 2 (SCA2))

1. Choose a hyper-vertex/colour-set r
2. Choose a non-neighbor non-merged/uncoloured vertex v to r
3. Merge v to r
4. If there exists a non-merged vertex then continue with Step 1

The proceedings of the DIMACS Challenge II [240] states a core problem of
the algorithm design for graph colouring: it is crucial to find an initially good
solution, because each algorithm needs exhaustive searching to find an opti-
mal solution, hence the problem becomes NP-hard to solve. There are several
polynomial algorithms (see [241, 242, 243, 244]), which provide a guarantee for
the approximation of the colouring for a given number of colours. For example,
Erdős heuristics [242] guarantees at most O(n/logχ(n)) number of colours in
the worst case. Several algorithms have improved upon this bound, but many of
them use the main technique introduced by Erdős. We will define this heuristics
in our model. Another reference method is the well known heuristic of Brèlaz;
the DSatur algorithm, which works very well on graphs that have a small chro-
matic number. Two additional novel heuristics are introduced: the DotProd

and Cos heuristics.

DSatur

DSatur is a SCA1 type algorithm. Where the choice of colouring the next un-
coloured vertex v is determined by colour saturation degree. As colour saturation
is calculated by observing the colours of neighbouring vertices, it requires O(n2)
constraint checks. However, if we merge the already coloured vertices, e.g., using
MTs, we have the possibility to obtain this information by observing at most
the number of hyper-vertices for v. Hence, O(nkt) constraint checks are required,
where kt is the number of colours used in step t. The bottom co-structure of the
relevant sub-IMT provide the saturation degree exactly which gives O(n) com-
putational effort to find the largest one. Hence, IMT is an appropriate structure
for the definition. Here, the choice for hyper-vertex/colour-set is done in a greedy
manner.

Definition 3 (Non-merged/Uncoloured vertex choice of the DSaturimt)

1. Find those non-merged/uncoloured vertices which have the highest saturated
degree: S = arg maxu τcol

b (u) : u ∈ V unc

2. Choose those vertices from S that have the highest non-merged/uncoloured-
degree: N = arg maxv τunc

b (v)
3. Choose the first vertex from the set N

178 I. Juhos and J. van Hemert

DotProd

This heuristic is based on a novel technique, which is shown to be useful in [239].
Two vertices of a contracted graph are compared by consulting the corresponding
BMS rows. The dot product of these rows gives a valuable measurement for the
common edges in the graph. These values are the same in binary MT and MS
but can differ between the binary and integer variations. Application of the
DotProd heuristics to the BMS representation provides the Recursive Largest
First (RLF) algorithm. Unfortunately the name RLF is somewhat misleading,
since the largest first itself does not define exactly where largest first is relating
to. The meaning of it differs throughout the literature. Here, we introduce a
DotProd heuristic that is combined with the BMS representation and the
SCA2 type algorithm, which results in the RLF of Dutton and Birgham [245].
We explore only thess combinations, but other combinations are possible, making
the DotProd a more general technique.

Definition 4 (Non-merged/Uncoloured vertex choice of the
DotProdbms)

1. Find those non-merged/uncoloured vertices which have the largest num-
ber of common neighbours with the first hyper-vertex (colour set): S =
arg maxu 〈u, r〉 : u ∈ V unc

2. Choose the first vertex from the set S

Cos

The Cos heuristics is the second novel heuristics introduced here. It is derived
from DotProd by normalisation of the dot product. As opposed to DotProd,
Cos takes in consideration the number of non-common neighbours as well. In
the following definition we provide an algorithm of type SCA2 that uses the Cos

heuristics to choose the next vector:

Definition 5 (Non-merged/Uncoloured vertex choice of the Cosbms)

1. Find the non-merged (i.e., uncoloured) vertices that have the largest number
of common neighbours with the first hyper-vertex (colour set), and that have
the least number of constraints: S = argmaxu

〈u,r〉
‖u‖‖r‖ ≡ argmaxu

〈u,r〉
‖u‖ ≡

arg maxu
〈u,r〉
τr(u) : u ∈ V unc

2. Choose the first vertex from the set S

Pál Erdős O(n/ log n) number of colours guaranteed heuristic

The approach [242, page 245] is as follows. Take the first colour and assign it
to the vertex v that has the minimum degree. Vertex v and its neighbours are
removed from the graph. Continue the algorithm in the remaining sub-graph in
the same fashion until the sub-graph becomes empty, then take the next colour
and use the algorithm for the non-coloured vertices and so on until each vertex
is assigned a colour.

11 Contraction-Based Heuristics to Improve the Efficiency of Algorithms 179

All of representations are suitable as a basis for this heuristic. It uses SCA2,
where the choice for the next target r-th (hyper-)vertex/colour-set for merging
and colouring is greedy.

Definition 6 (Non-merged/Uncoloured vertex choice of the Erdősbmt)

1. Choose an uncoloured vertex with minimum degree. S = arg minu τunc
b (u)

2. Choose the first vertex from the set S

The Erdős and DSatur heuristics make use of the secondary order struc-
tures, whereas the other two, DotProd and Cos, make use of the first order
information. The Erdős heuristic uses similar assumptions as DSatur but in
the opposite direction, which becomes clear in the results from the experiments.

11.5 An Evolutionary Algorithm Based on Merge Models

We apply an evolutionary algorithm (EA) to guide the heuristics. It uses the
BMT representation for colouring and the SCA1 contraction scheme. The geno-
type is a permutation of the vertices, i.e., the rows of the BMT. The phenotype
is a final BMT, where no rows can be merged further. Vertex selection is defined
by an initial random ordering of all vertices. The order is then evolved by the
EA toward an optimum directed by both the fitness function and the genetic
operators of the EA. The strategy for merging of selected vertices is guided by
one of the DotProd and Cos heuristics.

An intuitive way of measuring the quality of an individual (permutation) p in
the population is by counting the number of rows remaining in the final BMT.
This equals to the number of colours k(p) used in the colouring of the graph,
which needs to be minimised. When we know the optimal colouring1 is χ then
we may normalise the fitness function to g(p) = k(p) − χ. This function gives
a rather low diversity of fitnesses of the individuals in a population because it
cannot distinguish between two individuals that use an equal number of colours.
This problem is called the fitness granularity problem. We modify the fitness
function introduced in [234] to allow the use of first and second order structures
introduced in Section 11.3.2.

The fitness relies on the heuristic that one generally wants to avoid highly con-
straint vertices and rows in order to have a higher chance of successful merges
at a later stage, commonly called a succeed-first strategy. It works as follows.
After the last merge the final BMT defines the groups of vertices with the same
colour. There are k(p)−χ over-coloured vertices, i.e., merged rows. Generally, we
use the indices of the over-coloured vertices to calculate the number of vertices
that need to be minimized (see g(p) above). But these vertices are not neces-
sarily responsible for the over-coloured graph. Therefore, we choose to count
the hyper-vertices that violates the least constraints in the final hyper-graph.
To cope better with the fitness granularity problem we should modify the g(p)
according to the constraints of the over-coloured vertices discussed previously.
1 In our experiments χ is defined in advance.

180 I. Juhos and J. van Hemert

The fitness function used in the EA is then defined as follows. Let ζunc(p) denote
the number of constraints, i.e., non-zero elements, in the rows of the final BMT
that belong to the over-coloured vertices, i.e., the sum of the smallest k(p) − χ
values of the right co-structure of the uncoloured vertices. This is the uncoloured
portion of the (right-bottom) third order structure. The fitness function becomes
f(p) = g(p)ζunc(p). Here, the cardinality of the problem is known, and used as
a termination criterium (f(p) = 0) to determine the efficiency of the algorithm.
For the case where we do not know the cardinality of the problem, this approach
can be used by leaving out the normalisation step.

Procedure EAdot and EAcos

1. population = generate initial permutations randomly
2. repeat

evaluate each permutation p:
merge pj − th unmerged vertex v into hyper-vertex r by DotProd or Cos

calculate f(p) = (k(p) − χ)ζunc(p)
populationxover = xover(population, probxover)
populationmut = mutate(populationxover , probmut))
population = select2-tour(population ∪ populationxover ∪ populationmut)

3. until termination condition

Fig. 11.5. The EA meta-heuristic uses directly the BMT structure and either the
DotProd or Cos merge strategy

Figure 11.5 shows the outline of the evolutionary algorithm. It uses a gener-
ational model with 2-tournament selection and replacement, where it employs
elitism of size one. This setting is used in all experiments. The initial population
is created with 100 random individuals. Two variation operators are used to
provide offspring. First, the 2-point order-based crossover (ox2) [246, in Section
C3.3.3.1] is applied. Second, a simple swap mutation operator, which selects at
random two different items in the permutation and then swaps. The probability
of using ox2 is set to 0.4 and the probability for using the simple swap mutation
is set to 0.6. These parameter settings are taken from previous experiments [234].

The Erdős heuristic guarantees its performance. We omit this heuristics from
the EA, as we would not be able to guarantee this property once embedded
in the EA. A baseline version of the EA called EAnoheur serves a basis of the
comparison. and the DSatur with backtracking is used as well, as it is commonly
used as a reference method. Moreover, as this algorithm performs an exhaustive
search it is useful to find the optimal solutions to some of the problem instances;
some of the instances are too difficult for it to solve and we have to terminate it
prematurely.

11.6 Experiments and Results

The test suites are generated using the well known graph k-colouring generator
of Culberson [247]. It consists of k-colourable graphs with 200 vertices, where

11 Contraction-Based Heuristics to Improve the Efficiency of Algorithms 181

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
ve

ra
ge

 n
um

be
r

of
 c

ol
or

s
us

ed

Average density of edges in the graphs

cosbms
dotprodbms

Erd s bms
dsaturimt

 5

 6

 7

 8

 9

 10

 11

 12

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
ve

ra
ge

 n
um

be
r

of
 c

ol
or

s
us

ed

Average density of edges in the graphs

cosbms
dotprodbms

Erd s bms
dsaturimt

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 n
um

be
r

of
 c

ol
or

s
us

ed

Average density of edges in the graphs

cosbms
dotprodbms

Erd s bms
dsaturimt

 15

 20

 25

 30

 35

 40

 45

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 n
um

be
r

of
 c

ol
or

s
us

ed

Average density of edges in the graphs

cosbms
dotprodbms

Erd s bms
dsaturimt

Fig. 11.6. Average number of colours used in sequential colouring heuristics. χ is 3,
5, 10, and 20, respectively in the sequence of figures.

182 I. Juhos and J. van Hemert

 3

 3.5

 4

 4.5

 5

 5.5

 0.02 0.03 0.04 0.05 0.06 0.07

A
ve

ra
ge

 n
um

be
r

of
 c

ol
or

s
us

ed

Average density of edges in the graphs

EAcos,bmt
EAdotprod,bmt

EAnoheur
Backtrackdsatur,imt

 3

 4

 5

 6

 7

 8

 9

 10

 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

A
ve

ra
ge

 n
um

be
r

of
 c

ol
or

s
us

ed

Average density of edges in the graphs

EAcos,bmt
EAdotprod,bmt

EAnoheur
Backtrackdsatur,imt

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0.3 0.35 0.4 0.45 0.5 0.55 0.6

A
ve

ra
ge

 n
um

be
r

of
 c

ol
or

s
us

ed

Average density of edges in the graphs

EAcos,bmt
EAdotprod,bmt

EAnoheur
Backtrackdsatur,imt

 20

 25

 30

 35

 40

 0.5 0.55 0.6 0.65 0.7 0.75 0.8

A
ve

ra
ge

 n
um

be
r

of
 c

ol
or

s
us

ed

Average density of edges in the graphs

EAcos,bmt
EAdotprod,bmt

EAnoheur
Backtrackdsatur,imt

Fig. 11.7. Averaged number of colours used in the EA experiments. χ is 3, 5, 10, and
20, respectively in the sequence of the figures.

11 Contraction-Based Heuristics to Improve the Efficiency of Algorithms 183

k is set to 3, 5, 10 and 20. For k = 20, ten vertices will form a colour set,
therefore we do not use any larger chromatic number. The edge density of the
graphs is varied in a region called the phase transition. This is where hard to
solve problem instances are generally found, which is observed in the results as a
typical easy-hard-easy pattern. The graphs are all generated to be equi-partite,
which means that a solution should use each colour approximately as much as
any other. The suite consists of groups where each group is a k-colouring with
20 unique instances.

In the first experiment, we compare the heuristics from Section 11.4 when
embedded in DSatur. Figure 11.6 shows the results for each of the heuristics.
Cos heuristics performed clearly better than the others except for the 3-colouring
where DSatur performs equally well. The DotProd is ranked second. While
DSatur performs well on sparse graphs having small chromatic number, Erdős

heuristics performs well on graphs that require more colours, especially on dense
graphs, i.e., that have a high average density of edges. Interesting is the location
of the phase transitions. Figure 11.6 shows that it depends not only on the edge
density of the graphs but also on the applied algorithm, especially the graph
density where DSatur exhibits its worst performance moves away from the
others with increasing k. DSatur and Erdős heuristics apply only second order
information as opposed to the other two algorithms where first order information
is used. The Erdős heuristic uses the secondary order structures in the opposite
direction to DSatur and our results show how that affects the performance as
the effectiveness flips for different ends of the chromatic number of graphs.

While sequential algorithms make one run to get their result, EA experiments
are performed several times due to the random nature of the algorithm. Therefore
a reduced number of instances is selected from the previous experiments. One
set consists of five instances, except for 3 and 5 colourable instances where the
set contains ten instances because the diversity of the results of the solvers is
low for small chromatic numbers. On each instance we perform ten independent
runs and calculate averages over the total number of runs. 3-colouring needs
more instances to get more confident results.

Figure 11.7 shows the results for the EA with two different heuristics. Also
shown are results for the reference EA without heuristics and the DSatur ex-
haustive algorithm. Similar to the previous experiments, the Cos heuristics per-
forms well, especially for larger k, and the DotProd is a close second. DSatur

is the strongest algorithm on 3-colourable graphs, always finding the optimum
number of colours.

11.7 Conclusions

In this paper, we introduced four kinds of Merge Models for representing graph
colouring problems. It forms a good basis for developing efficient graph colouring
algorithms because of its three beneficial properties: a significant reduction in
constraint checks, access to heuristics that help guide the search, and a compact

184 I. Juhos and J. van Hemert

description of algorithms. We showed how existing algorithms can be described
in terms of the Merge Model concisely.

By incorporating the models in an exhaustive algorithm, Dsatur, and in a
meta-heuristic, an evolutionary algorithm based on a permutation, we showed
how the effectiveness of these algorithms can be improved.

Acknowledgements

This work is supported by the High Performance Computing Group of the
University of Szeged. The second author is supported through the e-Science
Data Information & Knowledge Transformation project funded by the Scottish
Funding Council.

	Contraction-Based Heuristics to Improve the Efficiency of Algorithms Solving the Graph Colouring Problem
	Introduction
	Representing Solutions to Graph Colouring as Homomorphisms
	Vertex Colouring by Graph Homomorphisms
	Merge Operations as Atomic Transformation Steps of the Homomorphisms
	Information Derived from the Data Structures

	Heuristics Based on Merge Model Structures
	An Evolutionary Algorithm Based on Merge Models
	Experiments and Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

