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Summary. A variety of computational intelligence approaches to nuclei segmentation
in the microscope images of fine needle biopsy material is presented in this chapter.
The segmentation is one of the most important steps of the automatic medical diagno-
sis based on the analysis of the microscopic images, and is crucial to making a correct
diagnostic decision. Due to complex nature of biological images, standard segmenta-
tion methods are not effective enough. In this chapter we present and discuss some
modified versions of watershed algorithm, active contours, cellular automata, Grow-
Cut technique, as well as new approaches like fuzzy sets of I and II type, and the
sonar-like method.

7.1 Introduction

Segmentation of the object of interest is one of the most critical tasks in image anal-
ysis and therefore it has been the subject of considerable research activity over the
last four decades. During all this time we have witnessed a tremendous develop-
ment of new, powerful instruments for detecting, storing, transmitting, and dis-
playing images but automatic segmentation still remained a challenging problem.

This fact is easy to notice in medical applications, where image segmentation is
particularly difficult due to restrictions imposed by image acquisition, pathology
and biological variation. Biomedical image segmentation is a sufficiently complex
problem that no single strategy has proven to be completely effective. Due to
a complex nature of biomedical images, it is practically impossible to select
or develop automatic segmentation methods of generic nature, that could be
applied for any type of these images, e.g. for either micro- and macroscopic
images, cytological and histological ones, MRI and X-ray, and so on.

In this chapter we are focused on the microscopic images of the Fine Needle
Biopsy (FNB) material taken from the breast cancer. In the last decade we have
been observing a dynamic growth in the number of research works conducted
in the area of breast cancer diagnosis. Many university centers and commercial
institutions [18] are focused on this issue because of the fact that breast cancer is
becoming the most common form of cancer disease of today’s female population.
The attention covers not only curing the external effects of the disease [2, 43]
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but also its fast detection in the early stadium. Thus, the construction of a fully
automatic cancer diagnosis system supporting a human expert has became a
challenging task.

Many nowadays camera-based automatic breast cancer diagnosis systems have
to face the problem of cells and their nuclei separation form the rest of the image
content [19, 35, 38, 48]. This process is very important because the nucleus of the
cell is the place where breast cancer malignancy can be observed. Thus, much
attention in the construction of the expert supporting diagnosis system have to
be paid to the segmentation stage.

The main difficulty of the segmentation process is due to incompleteness and
uncertainty of the information contained in the image. Imperfection of the data
acquisition process in the form of noise, chromatic distortion and deformity of
the cytological material caused by its preparation additionally increases the com-
plicity of the problem. The nature of the image acquisition (3D to 2D transfor-
mation) and the method of scene illumination also affects the image’s luminance
and sharpness. In many cases one must also deal with a low-cost CCD sensor
whose quality and resolution capabilities are rather small.

Until now many segmentation methods have been proposed [3, 4, 16, 33, 47,
42] but, unfortunately, each of them introduces different kinds of additional
problems and usually works in practice under given assumptions and/or needs
the end-user’s interaction/co-operation [19, 41, 48, 49]. Since many nowadays
cytological projects assume full automation and real-time operation with a high
degree of efficacy, a method free of drawbacks of the already known approaches
has to be constructed.

The aim of this chapter is presentation a variety of computational intelli-
gence approaches to nuclei segmentation in the microscope images of fine nee-
dle biopsy material. Some of them are modified versions of cytological image
segmentation methods adopted for fine needle biopsy images, that is the wa-
tershed algorithm [10], active contours [11], cellular automata [27], GrowCut
technique [9], and decision three technique [29]. Some of them exemplify quite
new proposals of segmentation techniques: sets of I and II type approach [7], the
sonar-like method [28]. One can also find here a description of the denoising and
contrast enhancement techniques, pre-segmentation and a fully automatic nuclei
localization mechanism used in our approaches. The quality and applicability of
described segmentation methods are still investigated by our team. The final
judgement can be precised after finishing the next steps of automatical breast
cancer diagnosis, i.e. morphometric parameters calculating and classification.
The quality of classification will be testimony of the applied segmentation.

7.2 Image Segmentation of Cytological FNB Microscope
Images

7.2.1 Segmentation within Image Analysis

Image segmentation consists in subdividing an image into its constituent regions
that hopefully correspond to structural units in the scene or distinguish objects
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Fig. 7.1. An automatic vision system

of interest. The level to which this subdivision is carried depends on the problem
being solved and applied approach. In the Fig.7.1 one can notice that segmenta-
tion is a crucial and a central step in whole image analysis system. The dashed
lines in the picture illustrate vagueness of the definitions adopted in literature (see
e.g. [26, 36]). Some of them are deliberately restrictive and assume that no contex-
tual information is utilized in the segmentation [36]. In this approach segmentation
does not involve identifying and isolating segments. The process consists in sub-
dividing an image according to some homogeneity criteria defined for individual
pixels; it does not attempt to recognize the individual segments nor their relation-
ships to one another. In the most opposite approach, segmentation is defined as a
process of isolation of components that correspond to the physical objects in the
scene. In this case, a feedback from the subsequent steps is taken into account, i.e.
analysis outcomes and relations between isolated image regions are important fac-
tors constituting the segmentation criteria. In life-crucial applications (e.g.medical
diagnosis) even the intervention of a human operator is required.Different patterns
of such interaction can be found in [14, 26, 32].

As a consequence of application-driven approach in defining the process of
segmentation, no single standard methodology has emerged. In principle, there
is no general theory of image segmentation, though some attempts to build a
functional model have been made (see for example [50]). Moreover, the prob-
lem of segmentation is ill-defined and can be perceived as one of psychophysical
perception and therefore not susceptible to a purely analytical solution [8]. As a
consequence, no single standard method of image segmentation has been elabo-
rated, although there are methods that have received some degree of popularity.
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7.2.2 Testing Database of Images

What we have on input is the cytological images database of the Fine Needle
Biopsy material gained in a cooperation with experts from the Zielona Góra’s
Onkomed medical center [21, 22]. The database consists of 750 images of 75
clinical cases, including 25 images of benign tumour, 25 of malignant tumour and
25 of fibroadenoma. There are 10 images for every case - one of them is magnified
by 100 and 9 magnified by 400. Photographs x400 where selected in such a way
as to contain at least 10 nucleus suitable for the morphometric analysis. As a
result, the set of images for one case contains at least 90 nucleuses to analyze.
The image itself is coded using the RGB colorspace and is not subject to any
kind of lossy compression (a raw color bitmap format), and with a resolution of
704 × 578 pixels and 24-bit color depth (16.7M colors). The number of distinct
colors in images varies from about 10 to 60 thousands.

What we expect on output is a binary segmentation mask with one pixel sep-
aration rule which will allow more robust morphometric parameters estimation
in our future work. Additionally, the proposed segmentation algorithm should
be insensitive to colors of contrasting pigments used for preparation of the cy-
tological material (see an example in Fig. 7.2).

(a) (b)

Fig. 7.2. Exemplary fragment of: (a) cytological image, (b) appropriate segmentation
mask

7.2.3 Image Filtering and Preparation

The quantity of information contained in a color image is surplus at the early
stage of image processing. The color components do not carry as important in-
formation as luminosity so they can be removed to reduce processing complexity.
An RGB color image can be converted to greyscale by calculating a luminance
value in the same way as it is calculated for YCbCr color space [37].

Since a great deal of images have a low contrast, an enhancement technique
is needed to improve theirs quality. In our research we use a simple histogram
processing with the linear transform of images levels of intensities, namely a
cumulated sum approach [36].
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(a) (b)

Fig. 7.3. Examplary fragment of cytological image with circular nuclei

1

-1 -2

21 1

-1 -1

1 1

-1 -1

1

-1-3-2-1

1

2

3

-2

2

Fig. 7.4. Gradient masks used in our experiments

If we look closely at the nuclei we have to segment, we notice that they all
have an elliptical shape (Fig. 7.3). Most of them resemble an ellipse but, unfor-
tunately, detection of the ellipse is computationally expensive. The shape of the
ellipse can be approximated by a given number of circles (as shown in Fig. 7.3b).
The detection of circles is much simpler in the sense of the required computations
because we have only one parameter, which is the radius R. These observations
and simplifications constitute grounding for a nucleus pre-segmentation algo-
rithm – in our approach we try to find such circles with different radii in a given
feature space.

The Hough transform [1, 6, 51] can be easily adopted for the purpose of circle
detection. The transform in a discrete space can be defined by:

HTdiscr(R, i0, j0) =
i0+R∑

i=i0−R

j0+R∑
j=j0−R

g(i, j)δ
(
(i − i0)2 + (j − j0)2 − R2

)
, (7.1)

where g is a two-dimensional feature image and δ is Kronecker’s delta (equal to
unity at zero). HTdiscr plays the role of an accumulator which accumulates the
levels of feature image g similarity to the circle placed at the (i0, j0) position
and defined by the radius R.

The feature space g can be created by many different ways. In our approach
we use a gradient image as the feature indicating the occurrence or absence of
the nucleus in a given fragment of the cytological image. The gradient image is a
saturated sum of gradients estimated in eight directions on the greyscale image
prepared in the pre-processing stage. The base gradients can be calculated using,
e.g., Prewitt’s, Sobel’s mask methods [12, 44] or their heavy or light versions
(Fig. 7.4).

Thresholding the values in the accumulator by a given θ value we can obtain a
very good pre-segmentation mechanism with a lower threshold strategy (see, for
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(a) (b)

Fig. 7.5. Exemplary results of the pre-segmentation stage for two different θ threshold
strategies: (a) high and (b) low

(a) (b) (c)

Fig. 7.6. Exemplary fragment of: (a) cytological image, (b) Euclidian distance to the
mean background color, (c) smoothed out version of (b)

instance, Fig. 7.5). Since the threshold value strongly depends on the database
and the feature image g, the method can only be used as a pre-segmentation
stage. A smaller value of the threshold causes fast removal of unimportant in-
formation from the background, and what we achieve is a mask, which approx-
imately defines the places where are the objects we have to segment (nuclei in
this case) and where is the background. Such a mask can constitute a base for
more sophisticated and detail-oriented algorithms.

The results obtained from the pre-segmentation stage can lead us to the esti-
mation of an average background color. Such information can be used to model
the nuclei as a color distance between the background and the objects, which ful-
fils the requirements of the lack of any color dependency in the imaged material
(the color of contrasting pigments may change in the future). In our research we
tried few distance metrics: Manhattan’s, Chebyshev’s, the absolute Hue value
from the HSV colorspace, but the Euclidian one gives us visually the best results
(Fig. 7.6ab):

Deuclid =
√

(IR − BR)2 + (IG − BG)2 + (IB − BB)2, (7.2)

where B is the average background color estimated for the I input image.
Since the modeling distance can vary in the local neighborhood (see Fig. 7.6b),

mostly because of camera sensor simplifications, a smoothing technique is needed
to reconstruct the nuclei shape. The smoothing operation in our approach relies
on the fact that this sort of 2D signal can be modeled as a sum of sinusoids [20]
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with defined amplitudes, phase shifts and frequencies. Cutting all low amplitude
frequencies off (leaving only a few significant ones with the highest amplitude)
will result in a signal deprived of our problematic local noise effect (Fig. 7.6c).
What we finally achieve is a three-dimensional modeled terrain where hills
correspond to nuclei.

The localization of objects on a modeled map of nuclei can be performed
locally using various methods. In our approach we have chosen an evolutionary
(1+1) search strategy [25, 30, 31] mostly because it is simple, quite fast despite
appearances, can be easily parallelized due to its nature and settles very well in
local extrema, which is very important in our case.

The search in our approach can be conducted in two versions: single-point
and multi-point. In the single-point version it is only allowed to have only one
marker pointing a nucleus while in the multi-point one it is allowed to have more
than one marker pointing the same nucleus.

The used watershed algorithm as a final segmentation method forced us to
create two population of individuals. The first population localizes the back-
ground. Specimens are moved through the mutation stage Y t

i = Xt
i + rtNi(0, 1)

with a constant movement step (rt = 1) preferably to places with a smaller
density of population to maximize background coverage. The second popula-
tion localizes the nuclei. Specimens are moved with a decreasing movement step
(rt = Rmax(1/Rmax)t/tmax) to group very fast the population near local ex-
tremum in the first few epochs and to finally work on details in the ending ones.
The movement of individuals is preferred to be directed towards places with a
higher population density to create the effect of nuclei localization.

The fitness function φ calculates the average height of the terrain in a given
position including the nearest neighborhood defined by the smallest radius de-
tected by the Hough transform in the pre-segmentation stage. Such a definition
of the fitness function avoids a possible split of the population, localized near
a nucleus with multimodal character of its shape, giving only one marker for a
nucleus (Fig. 7.7b).

Finally, the nucleus is localized in the place where the density of the popula-
tion searching for hilltops in the modeled terrain is locally maximal. As we have

(a) (b)

Fig. 7.7. Exemplary single-point localization: (a) screenshot after 8 epochs, (b) final
result (localization points are marked with red asterisks)
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(a) (b)

Fig. 7.8. Exemplary multi-point localization: (a) screenshot after few epochs, (b) final
result

mentioned earlier, the method is quite fast and just a few epochs are needed
to observe a visible progress in nuclei localization and background coverage
(Fig. 7.7a).

The algorithms that do not have such tight requirements concerning only
one single marker per nucleus, that is they allow multiple markers pointing the
same one, not optimal or even false localization points and can take information
about the background location from the pre-segmentation mask [9], can use
much simplified version of the above presented (1 + 1) search strategy. In such
cases we can use only one population, that is the one searching for nuclei and
the fitness function is simply the terrain height at an individuals position. The
number of iterations of the algorithm can also be reduced, because we need only
an approximate localization of nuclei (Fig. 7.8). Thus, the algorithm is the same
and the only difference with the one described above is the fitness function φ
and reduced number of epochs.

7.2.4 Watershed Segmentation

Method description

The watershed segmentation algorithm is inspired by natural observations, such
as a rainy day in the mountains [12, 36, 37]. A given image can be defined as a
terrain on which nuclei correspond to valleys (upside down the terrain modeled
in previous steps). The terrain is flooded by rainwater and arising puddles are
starting to turn into basins. When the water from one basin begins to pour away
to another, a separating watershed is created.

The flooding operation has to be stopped when the water level reaches a given
θ threshold. The threshold should preferably be placed somewhere in the mid-
dle between the background and a nucleus localization point. In our approach
the nuclei are flooded to the half of the altitude between the nucleus localiza-
tion point and the average height of the background in the local neighborhood.
Since the images we have to deal with are spot illuminated during the imaging



7 CI Techniques in Image Segmentation for Cytopathology 177

// For each basin
∀p ∈ P assign a label (i + 1)

for θ ∈ 0 : Δ : 1
for ∀p ∈ P

color p to the level � θ ∗ Ψ(p)
2

end
end

Algorithm 1. The simplified version of the watershed algorithm

operation (resulting in a modeled terrain higher in the center of the image and
much lower in the corners), this mechanism protects the basins from being over-
flooded and, in consequence, nuclei from being undersegmented.

The simplified version of the watershed algorithm is given in Alg. 1. The
coloring to the level of θ implements the flooding operation. It also considers a
possible situation of watershed building when there is a neighbor nearby with
another label. Δ defines water level increase in each iteration of the algorithm
and Ψ defines the difference between the p valley’s depth and the background’s
height in its local neighborhood.

Typical results for cytological images

Exemplary results of the presented watershed segmentation method and common
errors observed in our hand-prepared benchmark database can be divided into
four classes:

• class 1 : good quality images with only small irregularities and rarely gener-
ated subbasins (a basin in another basin) (Fig. 7.9ab),

• class 2 : errors caused by fake circles created by spots of fat (Fig. 7.9cd),
• class 3 : mixed nucleus types: red and purple in this case and those reds

which are more purple than yellow (background) are also segmented, which
is erroneous (Fig. 7.9ef),

• class 4 : poor quality image with a bunch of nuclei glued together, which causes
basin overflooding and, in consequence, undersegmentation (Fig. 7.9gh).

The conducted experiments show that the watershed algorithm gives a 68.74%,
on average, agreement with the hand-prepared templates using a simple XOR
metric. Most errors are located at boundaries (see, for instance, Fig. 7.13a) of
nuclei where the average distance between the edges of segmented and reference
objects is about 3.28 pixels. The XOR metric is underestimated as a consequence
of not very high level of water flooding the modeled terrain, but the shape of
the nuclei seems to be preserved, which is important in our future work – the
estimation of morphometric parameters of segmented nuclei.



178 A. Obuchowicz et al.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7.9. Exemplary results of the watershed segmentation

7.2.5 Active Contour Technique

Method description

The active contouring technique can be considered as a more advanced region
growing method [44]. The algorithm groups neighboring pixels when a given
homogeneity and similarity criteria is met. All joined pixels create a segment,
which boundary spreads in all directions until another segment is met or the new
candidates for joining introduce not acceptable error. The algorithm is stopped
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Fig. 7.10. Illustration of the contour merging operation

when all pixels get a label, that is the object in the image is separated from the
background.

The images we are dealing with can contain more than a single object per
image. Additionally, the assumption of the project is that the segmentation
process have to be fully automatic (there is no human operator which manually
initializes the method). This two factors forces us to modify the algorithm to
meet the stated requirements. Thus, the algorithm, which in our case is based
on fast marching method (FMM) [39], must have multilabel extension [40] and
the seeding process has to be done without end-user’s interaction.

In the proposed approach the multilabel FMM is initialized with a pre-
segmentation mask and the results obtained from the multi-point nuclei local-
ization stage. The background-object boundary from the pre-segmentation mask
is the initial seed for the background segment. The nuclei localization points, on
the other hand, are initial seeds for the object segments. The most important in
this method is that the initialization mask and the nuclei localization points do
not have to be perfect – all fake initial markers are fully acceptable and they do
not have any influence on the final segmentation result and its quality.

The contour expansion speed of the multilabel FMM is governed globally by
the function [11]:

F =
1

|g(x, y) − ḡ(i)|3 + 1
, (7.3)
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Fig. 7.11. Illustration of the contour pushing operation

where g(x, y) is the color under the contour and ḡ(i) is the mean color under the i-
th segment. Such a definition of the expansion speed slows down the contour near
object (nucleus) boundary. Two very close to each other spreading segments can
meet while the algorithm execution. The two meeting segments can be merged
(the smaller one into the bigger) when their mean color difference is below certain
threshold (Fig. 7.10). The segments not classified to be merged can bush back
the segment with the lower difference between considered pixel and mean color
of each segment (Fig. 7.11). The pushing operation can be performed only once
to reduce contour oscillation known from the classical approach and the pushed
back segment can not move father at this place.

Typical results for cytological images

The conducted experiments show that the modified multilabel FMM algorithm
is very stable and robust to initialization errors. Visually, segmentation quality
is promising and gives good detection of even small objects (Fig. 7.12). Unfor-
tunately, the algorithm has problems with connected nuclei and detect them as
a one single object, which is erroneous. The average XOR metric score with the
hand-prepared templates is only 22.32% and the average distance between the
edges of segmented and reference objects is about 4.1 pixels.

Despite the mentioned problems the shape of segmented nuclei seems to be
represented accurately and most errors are located at the boundaries of the
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(a) (b)

(c) (d)

Fig. 7.12. Exemplary results of the active contouring segmentation

(a) (b)

Fig. 7.13. Exemplary XOR results with a fragment of the hand-prepared segmentation
mask for: (a) watershed algorithm, (b) active contouring technique

segmented objects (see, for instance, Fig. 7.13b). This illustrates that the proper
selection of merging threshold and detection of overlapping nuclei is still a chal-
lenge and has to be improved in the future works.

7.2.6 GrowCut Cellular Automata Segmentation

Method description

The next technique inspired by natural observations is the GrowCut cellular
automata segmentation algorithm [46]. It imitates growth and struggle for dom-
ination of rivalry bacteria colonies. Each type of bacteria represents a single
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type of objects used in segmentation. The GrowCut algorithm was originally
developed for multi-label intelligent scissors tasks for photo-editing tools. It
requires manual initialization of the seed pixels, but concatenated with a
proper pre-segmentation method gives a fully automated hybrid segmentation
technique.

The GrowCut algorithm defines a cellular space P as k×m array, where k and
m are dimensions of the image. Each of the array cells is an automaton described
by the state triplet (lp, θp,Cp), where lp is the label of the cell, θp is the strength
of the cell and Cp is the feature vector of the cell defined by associated image
pixel. An unlabeled image may be then considered as particular configuration
state of cellular automata, where initial states for ∀p ∈ P are set to:

lp = 0, θp = 0, Cp = RGBp, (7.4)

where RGBp is the three dimensional vector of pixel p color in RGB space. The
final goal of the segmentation is to assign each pixel to one of the K possible
labels. As stated before, we use two labels in segmentation of cytological images –
the nuclei and the background.

In a single evolution step each cell (the bacteria) tries to attack all its neigh-
bors. The evolution goal is to occupy all image area starting from a group of
previously initialized pixels. Cell neighbors are defined by neighborhood system.
In our approach the Moore neighborhood system was used:

N(p) =
{

q ∈ Zn :‖ p − q ‖∞:= max
i=1,...,n

|pi − qi| = 1
}
. (7.5)

The attack power is defined as a function of attacker q and defender p strengths
and the distance between their feature vectors: Cq and Cp. The basic rule of

// For each cell
for ∀p ∈ P

// copy previous state
lt+1
p = ltp
θt+1

p = θt
p

// neighbors try to attack
// current cell
for ∀q ∈ N(p)

if g(‖ Cp − Cq ‖2) · θt
q > θt

p

lt+1
p = ltq
θt+1

p = g(‖ Cp − Cq ‖2) · θt
q

end
end

end

Algorithm 2. The GrowCut algorithm
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(a) (b) (c) (d) (e)

Fig. 7.14. Exemplary segmentation of a FNB image with the GrowCut algorithm.
White – nucleus labeled cells, black – background labeled cells: (a) the seed, (b) step
2, (c) step 4, (d) step 6, (e) final 19-th step.

(a) (b) (c)

Fig. 7.15. Exemplary segmentation with the GrowCut algorithm initialized with
thresholding result: (a) exemplary image, (b) thresholding result, (c) GrowCut result

automaton state change at time t + 1 is shown in Alg. 2. The g function is
monotonous, decreasing and bounded to [0, 1]. For the purpose of this work,
simple g function was used, as proposed in [46]:

g(x) = 1 − x

max ‖ C ‖2
, (7.6)

where max ‖ C ‖2 is calculated as a feature vector length for white pixel (RGB
= [255, 255, 255]). As the strength of each cell is increasing and bounded, so the
method is guaranteed to converge. Thus for any seed configuration of the image,
after finite number of evolution steps, all cells are labeled and their states seize
to change. Fig. 7.14 shows subsequent steps of the GrowCut segmentation for a
manually initialized cytological image.

The GrowCut algorithm requires initialization of a number of cells with proper
labels for each separate, consistent group of pixels (segment seed). To allow for
application of the algorithm to the automated diagnostic system we employ the
information from the pre-segmentation and the nuclei localization stage to ini-
tialize the seed pixels. At this point almost any rough segmentation technique
(e.g. thresholding) can be also applied as the pre-segmentation (Fig. 7.15), how-
ever our research shows that initialization which leaves unclassified pixels at
objects boundaries performs better. One of the techniques, which results can be
utilized at the GrowCut algorithm initialization stage is the pre-segmentation
mask obtained using the Hough transform. The transform result is a set of circles
covering regions of the image, where nuclei are located. Pixels enclosed inside
these regions are initially labeled as the nucleus pixels. Remaining pixels of the
image are labeled as the background. For this type of initialization, all the image
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pixels are classified before the first GrowCut evolution step. The goal of the
algorithm application is only to adjust the segments edges to real boundaries of
objects. Therefore, to enforce the proper direction and the range of label changes
within following evolution steps, associating suitable values of initial strength for
both of the pixel classes is necessary.

The appropriate direction of label changes depends on the θ threshold value,
used at pre-segmentation stage. For lower values of threshold, Hough transform
results in a number of background pixels located in boundaries of regions labeled
as nucleus. These pixels should change their labels do background in process of
actual segmentation. Thus, the initial strength value of nucleus labeled pixels
has to be less than strength of the background pixels. For higher values of the θ
threshold a number of the nucleus pixels are incorrectly labeled as background.
In this case labels of boundary pixels should be changed to nucleus. Therefore,
initial strength of the nucleus pixels has to be greater than the background pixels.

The GrowCut algorithm can be also initialized with the result obtained from
the multi-point nuclei localization stage described above. Due to only few ini-
tialized pixels of each segment, strengths of the cells can be set to equal values
for both classes. It allows for automation of the segmentation process. How-
ever, more uninitialized pixels results in more evolution steps and so greater
computational cost.

Typical results for cytological images

Typical results of the GrowCut cellular automata, initialized with the result
obtained from the multi-point nuclei localization stage, can be seen in Fig. 7.16.
For the exemplary image the proportion of incorrectly labeled pixels was about
6%. However, the shape of the identified nuclei segments is too ragged (due
to camera sensor interlace), so additional smoothing post-segmentation stage is
needed for this combination of techniques.

The problem with the Hough transform and the GrowCut cellular automata
hybrid is that the optimum proportion of the initial nucleus pixels strength
should be estimated to achieve good segmentation quality. The proportion
strongly depends on the analyzed image contrast and the pigment used, so a

(a) (b)

Fig. 7.16. Exemplary result of the segmentation (b) with the GrowCut cellular au-
tomata, initialized with multi-point nuclei localization points (a)
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potential automated diagnostic system should be learned beforehand. The sec-
ond hybrid – the GrowCut cellular automata initialized with multi-point nuclei
searching algorithm, can be applied with fixed initial strength values for the nu-
cleus and the background seed pixels. However it is much more computationally
expensive due to more cellular automata iterations required.

7.2.7 Fuzzy Sets of Type I and II in Thresholding

The technique used in this subsection belongs to object attribute-based methods
and is based on a type-1 fuzzy thresholding technique. However type-1 fuzzy sets
still have some inherent uncertainties. There are (at least) four different sources
of uncertainties in type-1 fuzzy logic systems [23]: uncertainty about meanings
of the words that are used (words mean different things to different people),
uncertainty about consequents, uncertainty about measurements, which may be
noisy and uncertainty about the data that is used to tune parameters. Thus,
to address this problem type-2 fuzzy sets (T2FSs) have been formulated, which
let us model and minimize the effects of this uncertainties. Such sets are fuzzy
sets whose membership grades themselves are T1FSs; they are very useful in
circumstances where it is difficult to determine an exact membership function
for a fuzzy set; therefore, they are useful for incorporating uncertainties [15].

Nevertheless a general T2FSs computational complexity is severe and it is very
difficult to justify the use of any other kind of secondary membership functions
(e.g. right now there is no best choice for a T1FS, therefore secondary membership
functions only complicate the matter). Thus interval T2FSs were introduced —
when the T2FSs are interval T2FSs, all secondary grades equal one [23].

Another drawback of the thresholding techniques is that they are, in general,
monochrome techniques. Compared to gray scale, color provides information in
addition to the intensity. Color is useful or even necessary for pattern recognition
and computer vision. Thus the other part of this paper is concerned with the adap-
tation of this monochrome technique to use extra information of color images.

Interval type-2 fuzzy sets

An interval type-2 fuzzy set (IT2 FS) Ã is characterized as [24]

Ã =
∫

x∈X

∫
u∈Jx⊆[0,1]

dudx

ux
=

∫
x∈X

(∫
u∈Jx⊆[0,1]

du

u

)
dx

/
x (7.7)

where x, the primary variable, has domain X ; u ∈ U , the secondary variable,
has domain Jx at each x ∈ X ; Jx is called the primary membership of x and
is defined in (7.11); and, the secondary grades of all Ã equal 1. Note that (7.7)
means: Ã : X → {[a, b] : 0 � a � b � 1}. Uncertainty about Ã is conveyed
by the union of all the primary memberships, which is called the footprint of
uncertainty (FOU) of Ã (see Fig. 7.17), i.e.

FOU(Ã) =
⋃

∀x∈X

Jx = {(x, u) : u ∈ Jx ⊆ [0, 1]} (7.8)
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Fig. 7.17. FOU (shaded), LMF (dashed), UMF (solid) and an embedded FS (wavy
line) for IT2 FS Ã

The upper membership function (UMF) and lower membership function (LMF)
of Ã are two type-1 membership functions that bound the FOU (Fig. 7.17). The
UMF is associated with the upper bound of FOU(Ã) and is denoted μÃ(x), ∀x ∈
X , and the LMF is associated with the lower bound of FOU(Ã) and is denoted
μ

Ã
(x), ∀x ∈ X , i.e.

μÃ(x) ≡ FOU(Ã) ∀x ∈ X (7.9)

μ
Ã
(x) ≡ FOU(Ã) ∀x ∈ X (7.10)

Note that Jx is an interval set, i.e.

Jx =
{
(x, u) : u ∈

[
μ

Ã
(x), μÃ(x)

]}
(7.11)

so that FOU(Ã) in (7.8) can also be expressed as

FOU(Ã) =
⋃

∀x∈X

[
μ

Ã
(x), μÃ(x)

]
(7.12)

The upper and lower membership degrees μÃ and μ
Ã

can also be defined by
means of linguistic hedges like dilation and concentration on a principle member-
ship function μA. Because hedges are usually available as pairs, that represent
diagonally different modifications of the basic term, so it seems practical to use
linguistic hedge and its reciprocal value to draw the FOU. Thus, upper and lower
membership values can be defined as follows [45]:

μÃ(x) = [μA(x)]1/α, (7.13)

μ
Ã
(x) = [μA(x)]α . (7.14)

where α ∈ (1, ∞). However, according to [45] α 	 2 is usually not meaningful
for image data.

Image thresholding with type-2 fuzzy sets

Measures of the fuzziness estimate the average vagueness in fuzzy sets. Intu-
itively, one should expect that if the set is maximally ambiguous then the
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fuzziness measure should be maximum. On the other hand, the fuzziness of
the crisp set using any measure should be zero, as there is no ambiguity about
whether an element belongs to the set or not. When the membership value ap-
proaches either 0 or 1, vagueness in the set decreases. Thus a fuzzy set is the
most vague when μA(x) = 0.5 ∀x [34].

The most common measure of fuzziness, introduced by [17], is the linear index
of fuzziness. For an M ×N image subset A ⊆ X with L gray levels g ∈ [0, L−1],
the histogram h(g) and the membership function μA(g), the linear index of
fuzziness γl can be defined as follows:

γl(A) =
2

MN

L−1∑
g=0

h(g) × min[μA(g), 1 − μA(g)]. (7.15)

But if images or thresholds are to be interpreted as T2FSs then there is a
need for a new measurement. In this case one can ask how ultrafuzzy is a fuzzy
set? If the degrees of the membership can be defined without any uncertainty
(T1FSs), then clearly the ultrafuzziness should be minimum (=0). For the case
that individual membership values can only be indicated as an interval, the
amount of the ultrafuzziness should increase. And while absolutely nothing is
known about the nature of membership degrees of the problem at hand, then
the ultrafuzziness should be maximal (=1). With respect to these thoughts and
the way a T2FS is defined, a measure of ultrafuzziness γ̃ for an M × N image
subset Ã ⊆ X with L gray levels g ∈ [0, L − 1], histogram h(g) and membership
function μ̃A(g) can be defined as follows [45]:

γ̃(Ã) =
1

MN

L−1∑
g=0

h(g) × [μÃ(g) − μ
Ã
(g)], (7.16)

where μÃ(g) = [μA(g)]1/α and μ
Ã
(g) = [μA(g)]α, α ∈ (1, 2]. This basic definition

relies on the assumption that singletons sitting on the FOU are all equal in height
(which is the reason why the IT2 FS is used). Thus, only the variation in the
length of the FOU can be measured.

The general algorithm for the image thresholding based on type II fuzzy sets
and measures of the ultrafuzziness can be formulated as follows: 1) Select the
shape of the principle (skeleton) membership function μA(g) and initialize α;
2) Calculate the image histogram; 3) Initialize the position of the membership
function; 4) Shift the membership function along the gray-level range; 5) Cal-
culate in each position upper and lower membership values μÃ(g) and μ

Ã
(g);

6) Calculate in each position the amount of the ultrafuzziness, using Eq. 7.16;
7) Locate the position gopt with the maximum ultrafuzziness; 8) Threshold the
image with T = gopt.

For the thresholding algorithm to be complete, there is a need to define a
suitable principle membership function. In this paper we are using following
membership functions.
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Function defined by [13] as follows:

μA(g) =

⎧⎨
⎩

1
1+|g−μ0|/C , g � T,

1
1+|g−μ1|/C , g > T,

(7.17)

where C is a constant value such that 0.5 � μA(g) � 1, e.g. C = gmax − gmin;
the average gray levels of the background μ0 =

∑T
g=0 gh(g)

/∑T
g=0 h(g) and the

object μ1 =
∑L−1

g=T gh(g)
/∑L−1

g=T h(g), for a certain threshold T .

Color quantization

In the case of a widespread 24 bit color image representation, the number of
possible colors is over 16 millon and exhaustive searching is computationally
expensive or even unfeasible. However, in most cases images do not occupy the
entire color gamut, and the number of colors used is much lower. Thus quanti-
zation of the color space is a viable choice.

A quantized image M × N may be regarded as a mapping defined by

q : M × N → R ⊆ Ψ (7.18)

where Ψ = (r, g, b)|0 � r, g, b � 255 is the RGB color space, R = {r̄1, r̄2, . . . , r̄k}
is a set of representative colors used in the quantized image [5].

Hence, the color quantization can be divided into two parts: color palette
design, in which a desirable number of colors (usually 8–256) is specified, and
pixel mapping, in which each pixel is assigned to one of the colors in the designed
palette. The goal is to achieve the lowest perceivable difference between the
quantized image and the original one.

The color palette design can be obtained by simply dividing a color cube into
a smaller cube, but the result is usually poor. Better results are achieved by
means of clustering algorithms such as K-means or fuzzy c-means. However, a
major drawback of these algorithms is a high computational time. On the other
hand, there are still fast quantization algorithms characterized by high quality
performance and time efficiency.

When a palette has been designed, what remains is to assign the original
color of each pixel in the input image to their best match in the color palette.
The simplest way is to compute the distances between the original color vectors
and all color vectors of the new palette, then choose the one with the minimum
distance. However, faster methods can be used, such as binary tree search or k-d
tree search.

Of course, quantization of the color space alone is not enough to be appropriate
for the image segmentation. One of the reasons is that the new color palette is
disordered, and therefore the histogram of the image is also chaotic and not
useful for thresholding. One of the way to deal with that problem is to sort the
new color palette. When sorted, the palette, and therefore the histogram, should
consist of the organized data, that visually resembles the original image. In this
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approach the color information (palette) is discarded and the image is treated
like a monochrome one, by using only the frequency of the color occurrence.

This technique requires a definition of the distance measure, such as the Eu-
clidean distance, in order to correctly sort color vectors. However, the RGB color
space is non-uniform and thus it is hard to measure color differences. Hence, other
color space, like the CIE L∗a∗b∗ which is perceptually uniform and efficient in
measuring a small color difference, can be used to sort the color palette, or even
as a substitute of the RGB space for the entire color quantization process. This
approach can be considered as a nonlinear projection of 3-D space onto a lower
dimensional 1-D space. Also the big advantage of this method is that it can be
used for any type of monochrome segmentation techniques.

Exemplary results

RGB images were converted to gray levels, for the non-fuzzy reference the Otsu
technique was employed. Exemplary results obtained for techniques can be seen
on Fig. 7.18. For the recursive thresholding the best results were achieved by F1
with HW MF followed closely by F2 and Otsu techniques.

Afterwards, the color quantization approach, described in Sec. 7.2.7 was uti-
lized in order to quantize color cell images. Color images were quantized using

(a) (b)

(c) (d)

Fig. 7.18. The comparison of different methods of conversion from RGB images to
gray levels: original image (a), Otsu method (b), Fuzzy-1 method with HW MF (c)
and Fuzzy-2 method with HW MF
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(a) (b)

(c) (d)

Fig. 7.19. Color quantization approach: L∗a∗b∗, L∗a∗b∗ sorted (a), Otsu method (b),
Fuzzy-1 method with HW MF (c) and Fuzzy-2 method with HW MF

a minimum variance quantization method, using L∗a∗b∗ color spaces. Sub-
sequently, the resulted monochrome images were thresholded using recursive
thresholding techniques. The results were significantly improved over normal
gray images used in previous example. Otsu technique and fuzzy based tech-
niques, with the HW membership function, achieved comparable score with mi-
nor differences. Exemplary results obtained for this techniques can be seen on
Fig. 7.19.

The exact results can be seen in [7].

7.2.8 The Sonar-Like Segmentation Method

The sonar-like segmentation is a novel method developed by the authors for the
cytological image segmentation purpose. The method consists in classification of
image pixels based on spatial analysis of a pixel feature variance. Each class rep-
resents a visual artefact (e.g. edges, uniform inner regions, etc.). Artefact classes
are distinguished by comparison with a number of feature variance templates.
The result of pixel classification is a set of regions which after proper merging
allows for identification of actual objects. The name of the method originates
from a similarity of the feature variance analysis mechanism to the physical
phenomenon of a sonar sound wave speed alternation between water regions of
different physical condition (temperature, pressure, etc.).
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(a) (b)

Fig. 7.20. Sonar neighborhood model for s = 8, r = 4 and θ = 0 (a) and its discrete
realization for range R = 8 (b)

The base concept for the feature variance analysis is the sonar pixel neighbor-
hood. It is defined as a set of concentrically situated rings of pixels. All of the
rings have the same width and together they cover a circle, which centre is in
the examined pixel. The circle is then partitioned into a number of slices along
concentrically located bearings. Intersections of the rings and the slices are the
neighborhood sectors. The number of sectors in each ring is the same, and it
equals to the number of the neighborhood bearings.

Formally, the sonar neighborhood Nsonar can be defined as quadruplet:

Nsonar = (R, r, s, θ) (7.19)

where R is the neighborhood range, r is the number of rings, s is the number
of bearings (sectors in each ring) and θ is the angle between the zero-sector
axis and the ‘north’ bearing. The neighborhood bearings are numbered from
0 and rings are numbered from 1. The zero-ring is the examined pixel itself.
Figure 7.20 shows a visual model of the sonar neighborhood for s = 8 , r = 4
and θ = 0 (a) and its discrete realization for R = 8 (b).

The sonar neighborhood applied to an actual pixel allows for calculation of
the sonar vector σ. The length of the vector equals to the number of bearings, so
each of the vector values represents the variance of the examined feature along
single bearing. The values bounded to [0, 1] are calculated on the basis of a set of
differences of the feature statistics between subsequent sectors along the bearing.
The statistics used in the presented application of the method was arithmetic
mean of the luma component of the YCbCr color model.

Figure 7.20(b) shows a scheme of a sonar vector value calculation for a single
bearing. The value can be seen as the energy of the sound wave signal after
passing from the central point through subsequent sectors along bearing. Passage
through each boundary between two adjacent sectors decreases the signal energy
by Δsi value, which is calculated as a weighted function of the sectors feature
statistics difference:

Δsi = δ(|fs,i − fs,i−1|)wi (7.20)
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where fs,i is the feature statistics of the sector at s-bearing of the i-th ring, and
wi is the weight for the boundary between i − 1-th and i-th ring. The function
δ is a monotonous nondecreasing function, bounded to [0, 1]. The function can
be defined as follows:

δ(t) =
{

t
d if t ≤ d,
1 if t > d,

(7.21)

where d > 0 is the sensitivity parameter defining the threshold value of the
statistics difference over which the value of δ function remains 1. If the feature
variance in the neighborhood is high enough, the value can reach zero just after
subtracting only few of the delta values. If so, subsequent feature differences are
ignored and the value remains zero.

The weights for subsequent boundaries are inversely proportional to the dis-
tance of the boundary to the central point, so differences between sectors closest
to the neighborhood centre have the greatest impact on the sonar vector value.
The weights sequence can be arbitrarily chosen or defined as a function of the
ring number, for example:

wi =
1

2iw
(7.22)

where w is the arbitrary weighting factor.
The calculated sonar vector can be visualized with a radar plot. A shape of the

plot expresses the feature variance in the neighborhood of the examined pixel.
Later in this section, the sonar vectors visualizations are stated as sonar views.

The sonar vector matrix representing the image, prepared as described above,
is used for a classification of the image pixels. The classification is performed by
the comparison of the pixel sonar vector with a number of template vectors. The
template vectors can be prepared manually or calculated automatically by the
evaluation of average sonar vectors for a set of images classified with reference
segmentation masks.

Some of the searched artifacts, like edges, have a number of same-shaped,
but rotated sonar vectors. To reduce computational cost regarding introduction
of a number of sub-classes for single artefact, a normalization of sonar vectors
can be performed beforehand. The normalization process is a cyclic rotation
of the vector values, until the lowest value is at the zero-bearing. After such
an operation, each of the artefact sub-class sonar vectors equals the vector of
the unrotated artefact with lowest value at the zero-bearing. So, a single class
template can be produced. Figure 7.21 shows sonar views and normalized sonar
views for pixels located at differently aligned nucleus edges.

Actual classification of the image pixels is preformed by finding the minimal
mean squared error between the pixel sonar vector and each of the template
vectors. The mean squared error MSE of the sonar vector compared to the C-
class template vector is defined as follows:

MSEC(σ) = E((σ − σC)2) =
1
s

s∑
i=0

(σi − σCi)2 (7.23)
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(a) (b) (c)

(d) (e) (f)

Fig. 7.21. Sonar views and normalized sonar views for pixels located at differently
aligned nucleus edges: (a), (d) - location of pixels; (b), (e) - sonar views; (c), (f) -
normalized sonar views

(a) (b)

Fig. 7.22. Cytological image (a) and the result of the pixel classification with Sonar (b)

where σ is the sonar vector, σC is the sonar vector template of the class C,
and s is the number of bearings. The pixel is labeled with the label of the class
with the minimal mean squared error. Figure 7.22 shows a sample cytological
image and the result of the pixel classification with Sonar. For the ’edge’ class
the saved number of the rotation steps is marked with the greyscale, from white
color for the bearing 0 to dark grey for the bearing 7.

At this stage all artifacts are identified and located. For cytological FNB
images the expected result is an identification and location of nuclei. Each of the
nuclei consists of a single interior and a number of adjacent edge-artifacts. To
achieve the proper segmentation, an additional step of artifacts merging needs
to be performed.
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Fig. 7.23. Result segmentation of the cytological image

As can be observed in the Figure 7.22, actual edges of objects are surrounded
from both sides with the edge segments. One side is the nucleus boundary, and
the other is the background boundary. Adjacent segments of the actual edge
have opposite rotation, so it can be distinguished which neighboring interior
segment should be merged with the edge segment. Along a single boundary, the
edge segments should be merged if the distance between their rotations equals
1. The segments should be also merged with the interior segment located below
the ’north’ edge. The result of the segment merging process is the segmentation
of the image along actual edges of objects (Fig. 7.23).

7.2.9 Decision Tree Method

Another algorithm of the pixel-based segmentation area is the decision tree-
based method of pixel classification. The primary mechanism of the method is
classification of image pixels with a decision tree, which input is the pixel color,
and the output is the probability of the pixel membership in each of the applied
object-classes. It is assumed that the numerical information on a pixel color (e.g.
RGB color components) is sufficient to identify the pixel as a member of one of
a number of object-classes.

For the purpose of nuclei segmentation in cytological images, three classes are
introduced: the nucleus (N), the background (B) and the inter-nucleus (I) class.
The last of the three classes represents all objects which cannot be unambigu-
ously labeled as a member of one of the former classes. These pixels are elements
of erythrocytes and cytoplasm.

The decision tree training process is based on a set of manually prepared
three-color image masks along with regarding training images. All image masks
classify a set of pixels to the three classes. Classified pixels of all the training
images together are used as the information for the decision tree training process.
The result of the process is a decision tree, which assigns probabilities of the pixel
being a member of each class. Due to no spatial information is used in the training
process there is no requirement for the masks of images to be completed. Some of
the mask pixel can be left unlabeled. It allows excluding ambiguous pixels from
the decision tree training process. Figure 7.24 shows a sample training image (a)
with regarding mask (b).
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(a) (b)

Fig. 7.24. Sample training image (a) with regarding mask (b). Red - the nucleus
pixels; green - the background pixels; blue - inter-nucleus pixels; black - unclassified
(ambiguous) pixels

Fig. 7.25. Sample decision tree with 3 leaves

As stated before, the output of the decision tree for a pixel is a set of prob-
abilities of the pixel membership in each class. Figure 7.25 presents a sample
decision tree with 3 leaves.

The output of the decision tree can be visualized by rendering the image
with pixel color components proportional to the respective probabilities. Using
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the same components for classes as in mask images, one can get output images
similar to the masks, however there will be no unlabeled pixels left. Actual values
of color components for pixels can be calculated as follows:

C = P (O)Cmax (7.24)

where C is the color component, C ∈ {R, G, B}, P (O) is the probability of the
class O membership, O ∈ {N, I, B}, Cmax is the maximum value of a single
color component (255 for 24-bit color RGB images). Figure 7.26 shows a sample
output image.

(a) (b)

Fig. 7.26. Sample result of the decision tree application: input image (a), output
image (b)

The number of combinations of class-membership probabilities in the decision
tree output is much lower than the number of RGB color components in the pro-
cessed image. Output images have the maximum number of distinct colors equal
to the number of probability combinations. So the application of the decision
tree can be perceived as the problem complexity reduction technique for another
segmentation algorithm. Due to the output of the method are rendered images
along with probability matrices, almost any segmentation technique can be ap-
plied on the actual segmentation stage. For example the thresholding with 3D
homograms can be applied for the actual segmentation. In the authors’ research
the decision tree prepared with the SAS Enterprize Miner had 21 to 56 leaves.
The number of leaves equals the number of bins of a homogram needed to per-
form the segmentation, so the decision tree can play the role of color quantizer
based on the information on the image color characteristics.

7.3 Conclusions

In this chapter we bring together the latest results from researchers involved in
state-of-the-art work in cytological image segmentation, providing both a survey
on segmentation well-known techniques supporting such processes as measure-
ment, visualization, registration and reconstruction of image and a collection of
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new approaches elaborated for the case of cytopathologic scans. A wide variety
of new methods is presented, including solutions based on fuzzy sets of types I
and II, clustering, decision trees, shape detection, active contours and many oth-
ers as well as they hybrids. Issues of automated segmentation of cell nuclei are
broadly described on the examples of microscopic cytological images obtained
via fine needle biopsy technique. Although some of the predictions would prob-
ably be shared by many people working in this field, this presentation still will
be subjective and personal. In our opinion, perspectives for further development
of cytological image segmentation are closely connected with computational in-
telligence, closer interaction between system and a human operator as well as
semantic image interpretation.
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