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Preface

For the past decade or so, Computational Intelligence (CI) has been an ex-
tremely “hot” topic amongst researchers working in the fields of biomedicine
and bioinformatics. There are many successful applications of CI in such areas
as computational genomics, prediction of gene expression, protein structure, and
protein-protein interactions, modeling of evolution, or neuronal systems model-
ing and analysis. However, there still are many problems in biomedicine and
bioinformatics that are in desperate need of advanced and efficient computa-
tional methodologies to deal with tremendous amounts of data so prevalent in
those kinds of research pursuits. Unfortunately, scientists in both these fields are
very often unaware of the abundance of computational techniques that could
be put to use to help them analyze and understand the data underlying their
research inquiries. On the other hand, computational intelligence practitioners
are often unfamiliar with the particular problems that their algorithms could
be successfully applied for. The separation between the two worlds is partially
caused by the use of different languages in these two spheres of science, but also
by a relatively small number of publications devoted solely to the purpose of
facilitating the exchange of new computational algorithms and methodologies
on one hand, and the needs of the realms of biomedicine and bioinformatics on
the other.

In order to help fill the gap between the scientists on both sides of this spectrum,
we have solicited contributions from researchers actively applying computational
intelligence techniques to important problems in biomedicine and bioinformatics.
The purpose of this book is to provide an overview of powerful state-of-the-art
methodologies that are currently utilized for biomedicine- and/or bioinformatics-
oriented applications, so that researchersworking in those fields could learn of new
methods to help them tackle their problems. On the other hand, we also hope that
the CI community will find this book useful by discovering a new and intriguing
area of applications.

We have divided the book into three major parts. Part I, Techniques and
Methodologies, contains a selection of contributions that provide a review of
several theories and methods that could be (or to some extent already are) of
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great benefit to practitioners in the fields of biomedicine and bioinformatics
dealing with problems of data exploration and mining, search-space exploration,
optimization, etc.

In Chapter 1, Aboul ella Hassanien et al., present an overview of selected CI
techniques including Artificial Neural Networks (ANN), Particle Swarm Opti-
mization (PSO), Genetic Algorithms (GA), Fuzzy Sets (FS), and Rough Sets
(RS) and discuss their applications to several problems in bioinformatics and
computational biology, including gene selection, DNA fragment assembly, mul-
tiple sequence alignment, protein structure prediction, and human genetics.

Chapters 2, by Christopher M. Taylor and Arvin Agah, and 3 by Ray R.
Hashemi, Alexander A. Tyler, Azita A. Bahrami, deal with several methodolo-
gies widely used for mining of, quite broadly speaking, “bio-data.” The discussed
techniques and approaches include rough and fuzzy sets, rule induction, and ge-
netic algorithms. The authors provide intuitive examples to explain the presented
methods and review several real-life applications in the areas of analysis of gene
and protein expression, genome annotation, and mutations in cancer.

Concluding this part of the book is Chapter 4, by Nikola Kasabov et al., in
which the authors propose a novel ontology-based decision support framework
and a development platform for the creation of global knowledge representation
for local and personalized modeling and decision support in biomedical and bioin-
formatics applications. The authors discuss a case study on brain-gene-disease
ontology, where they derive from existing data and local profiles of patients a set
of 12 genes related to the central nervous system cancer. Through this ontology
analysis, these genes are found to be related to different functions, areas, and
other diseases of the brain.

Part II of this book, Computational Intelligence in Biomedicine, contains a
collection of contributions on current state-of-the-art biomedical applications of
CI.

Opening this section of the book is Chapter 5, by Samuel Neymotin et
al., which presents a time-domain algorithm to facilitate data-mining of large
electroencephalogram/electrocorticogram datasets to identify the occurrence of
spike-wave or other activity patterns. The authors successfully used the proposed
algorithm to identify and classify activity from both simulated and experimental
seizures.

Chapter 6, by Frank-Michael Schleif et al., treats on recent extensions of Self-
Organizing Maps (SOM) as universal tools in the light of clinical proteomics.
The authors consider extensions of the standard SOMs and Learning Vector
Quantization (LVQs) for handling of more general metrics and propose a semi-
supervised approach and a fuzzy classification scheme based on prototypes for
classification of spectra.

Chapters 7, by Andrzej Obuchowicz et al., and 8, by Dongqing Chen et al.,
focus on state-of-the-art image processing techniques used in clinical applica-
tions. The first chapter presents an overview of CI methods applied to image
segmentation for cytopathology and the second introduces a novel anisotropic
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3D surface evolution model for detecting protrusion shape based colonic polyps
on curved surfaces.

Chapter 9, by Feng Chu et al., describes a study on an application of a fuzzy
neural network (FNN) for cancer classification in microarray gene expression
data. The authors use three well-known microarray databases, i.e., the lym-
phoma data set, the small round blue cell tumor (SRBCT) data set, and the
ovarian cancer data set to test their approach. The results indicate that the
FNN classifier not only improves the accuracy of cancer classification problem,
but also helps find a better relationship between important genes and develop-
ment of cancers.

Finally, in Chapter 10, by Benjamin Haibe-Kains et al., the authors present a
retrospective clinical study where the adoption of computational intelligence ap-
proaches for performing knowledge extraction from gene expression data enabled
an improved oncological clinical analysis.

Part III, Computational Intelligence in Bioinformatics, opens with Chapter 11,
by Vitoantonio Bevilacqua et al., which presents an overview of artificial immune
systems (AIS) in bioinformatics. The chapter describes how AIS have been suc-
cessfully used in computational biology problems and gives readers further hints
about possible implementations in unexplored fields.

Chapters 12, by Heitor Silvério Lopes, and 13, by Xiao-min Hu et al., treat on
applications of biology-inspired methods to the protein folding problem (PFP).
The first chapter provides a review of current developments in the area of ap-
plication of Evolutionary Algorithms (EA) to the PFP. The author discusses
several computational approaches for the PFP, from molecular dynamics and
approximation algorithms to several implementations of EAs. The second chap-
ter presents an application of Ant Colony Optimization (ACO) to the flexible
PFP. The authors test their proposed algorithm on benchmark two-dimensional
hydrophobic-polar (2D-HP) protein sequences and compare its performance with
some other well-known methods.

In Chapter 14, Kirt M. Noël and Kay C. Wiese, advocate considering stem-
loops as sequence signals for finding ribosomal RNA genes. The authors devel-
oped an algorithm to identify stem-loops along a genomic sequence which are
similar to those found in rRNA secondary structures. The described results are
encouraging and demonstrate that stem-loops indeed have the potential to act
as sequence signals to discover rRNA genes.

Chapter 15, by Radhakrishnan Nagarajan, deals with the analysis of Genechip
oligonucleotide microarrays, in which gene expression estimation is given as a
complex combination of atomic entities on the array called probes. The study
investigates qualitative similarities in the distributional signatures and local cor-
relation structures/patchiness between the perfect-match (PM) and mis-match
(MM) probe intensities. The results presented raise fundamental concerns in
interpreting Genechip oligonucleotide microarray data.

In Chapter 16, Vijayaraj Nagarajan and Mohamed O. Elasri describe and
discuss methods and tools used to predict structure and function of a puta-
tive protein sequence (Msa) with unknown function. The authors address the



X Preface

advantages and limitations of these approaches by using the Msa protein from
the human pathogen Staphylococcus aureus as a case study.

Finally, in Chapter 17, Deyu Zhou et al. discuss the importance for biomed-
ical researchers to be able to retrieve and mine specific knowledge from huge
quantity of published articles with high efficiency. The authors provide a road
map to the various information extraction methods in biomedical domain, such
as protein name recognition and discovery of protein-protein interactions, and
review current work and challenges in biomedical information extraction.

The editors are very grateful to the authors of the contributions included
in this volume and to the referees for their tremendous service by critically
reviewing the chapters. We would especially like to thank Prof. Janusz Kacprzyk,
Editor-in-chief of the series “Studies in Computational Intelligence,” Dr. Thomas
Ditzinger, Senior In-house Editor, and Ms. Heather King, Editorial Assistant
of Springer Verlag, Germany, for their help, editorial assistance, and excellent
cooperation. We sincerely hope that this book will prove useful to researchers
working in biomedicine and bioinformatics as well as computational intelligence
and that it will facilitate a productive dialog between the communities and result
in fruitful collaborations and scientific advancements on both sides.

January 2008 Tomasz G. Smolinski
Mariofanna G. Milanova

Aboul-Ella Hassanien
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Zielona Góra, Poland
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Summary. This chapter presents a broad overview of Computational Intelligence (CI)
techniques including Artificial Neural Networks (ANN), Particle Swarm Optimization
(PSO), Genetic Algorithms (GA), Fuzzy Sets (FS), and Rough Sets (RS). We review a
number of applications of computational intelligence to problems in bioinformatics and
computational biology, including gene expression, gene selection, cancer classification,
protein function prediction, multiple sequence alignment, and DNA fragment assembly.
We discuss some representative methods to provide inspiring examples to illustrate how
CI could be applied to solve bioinformatic problems and how bioinformatics could be
analyzed, processed, and characterized by computational intelligence. Challenges to be
addressed and future directions of research are presented. An extensive bibliography is
also included.

1.1 Introduction

The past few decades have seen a massive growth in biological information gath-
ered by the related scientific communities. A deluge of such information coming
in the form of genomes, protein sequences, gene expression data and so on have
led to the absolute need for effective and efficient computational tools to store,
analyze and interpret the multifaceted data. Bioinformatics and computational
biology involve the use of techniques including applied mathematics, informatics,
statistics, computer science, artificial intelligence, chemistry, and biochemistry

T.G. Smolinski et al. (Eds.): Comp. Intel. in Biomed. & Bioinform., SCI 151, pp. 3–47, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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to solve biological problems usually on the molecular level. Research in com-
putational biology often overlaps with systems biology. Major research efforts
in the field include sequence alignment, gene finding, genome assembly, protein
structure alignment, protein structure prediction, prediction of gene expression
and protein-protein interactions, and the modeling of evolution [128]. Hence, in
other words, bioinformatics can be described as the application of computational
methods to make biological discoveries [10]. The ultimate attempt of the field
is to develop new insights into the science of life as well as creating a global
perspective, from which the unifying principles of biology can be derived [5].
There are at least 26 billion base pairs (bp) representing the various genomes
available on the server of the National Center for Biotechnology Information
(NCBI) [27]. Besides the human genome with about 3 billion bp, many other
species have their complete genome available there. Cohen [23] explained the
needs of biologists to utilize and help interpret the vast amounts of data that
are constantly being gathered in genomic research. He also pointed out the basic
concepts in molecular cell biology, and outlined the nature of the existing data,
and illustrated the algorithms needed to understand cell behavior.

Bioinformatics involve the creation and advancement of algorithms using tech-
niques including computational intelligence, applied mathematics and statistics,
informatics, and biochemistry to solve biological problems usually on the molec-
ular level. Major research efforts in the field include sequence analysis, gene
finding, genome annotation, protein structure alignment analysis and predic-
tion, prediction of gene expression, protein-protein docking/interactions, and
the modeling of evolution.

Bioinformatics and computational biology are concerned with the use of com-
putation to understand biological phenomena and to acquire and exploit bio-
logical data, increasingly large-scale data [38]. Methods from bioinformatics and
computational biology are increasingly used to augment or leverage traditional
laboratory and observation-based biology. These methods have become critical
in biology due to recent changes in our ability and determination to acquire
massive biological data sets, and due to the ubiquitous, successful biological in-
sights that have come from the exploitation of those data. This transformation
from a data-poor to a data-rich field began with DNA sequence data, but is now
occurring in many other areas of biology [27].

Computational intelligence is a well-established paradigm, where new the-
ories with a sound biological understanding have been evolving. The current
experimental systems have many of the characteristics of biological computers
(“brains”) and are beginning to be built to perform a variety of tasks that are
difficult or impossible to do with conventional computers. Computational intel-
ligence methods are now being applied to problems in molecular biology and
bioinformatics [70]. To name a few, Tasoulis et al. [104] present an applica-
tion of neural networks, evolutionary algorithms, and clustering algorithms to
DNA microarray experimental data analysis; Liang and Kelemen [60] propose a
time lagged recurrent neural network with trajectory learning for identifying and
classifying gene functional patterns from the heterogeneous nonlinear time series
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fmicroarray experiments. Reader may refer to [51, 22] for an extensive review of
various computational intelligence techniques applied to different bioinformatics
problems. Defining computational intelligence is not an easy task. In a nutshell,
which becomes quite apparent in light of the current research pursuits, the area
is heterogeneous with a combination of such technologies as neural networks,
fuzzy systems, evolutionary computation, swarm intelligence, and probabilistic
reasoning. The recent trend is to integrate different components to take advan-
tage of complementary features and to develop a synergistic system [51]. Hybrid
architectures like neuro-fuzzy systems, evolutionary-fuzzy systems, evolutionary-
neural networks, evolutionary neuro-fuzzy systems, rough-neural, rough-fuzzy,
etc. are widely applied for real world problem solving [1, 2, 46].

The objective of this book chapter is to present to the computational intelli-
gence and bioinformatics research communities the state of the art computational
intelligence applications to bioinformatics processing and motivate research in
new trend-setting directions. Hence, we review and discuss in the following sec-
tions some representative methods to provide inspiring examples to illustrate
how CI techniques could be applied to solve bioinformatics problems and how
bioinformatics could be analyzed, processed, and characterized by computational
intelligence. These representative examples include (i) CI in gene expression and
clustering, (ii) rough discretization of gene expression, (iii) CI in protein se-
quence classification, (iv) CI in gene selection, (v) CI in cancer classification
and the DNA fragment assembly problem, and (vi) CI in the multiple sequence
alignment problem.

To provide useful insights for CI applications in bioinformatics, we structure
the rest of this chapter as follows. Section 1.2 introduces some fundamental
aspects and key components of modern computational intelligence including Ar-
tificial Neural Networks (ANN) , Rough Sets (RS), Fuzzy Sets (FS), Particle
Swarm Optimization (PSO), and Genetic Algorithms (GA). Section 1.3 reviews
some published papers on using computational intelligence in Gene Expression.
A review of the current literature on CI-based approaches in Protein Sequence
Classification problems is provided in Section 1.4. Section 1.5 discusses some suc-
cessful work to illustrate how CI could be applied to Gene Selection problems.
Applications of computational intelligence in DNA Fragment Assembly, Multi-
ple Sequence Alignment Problems (MSA), and Protein Structure Prediction are
reviewed in Sections 1.6, 1.7 and 1.8, respectively. An example of applications
of CI in the field of human genetics, in the form of genetic programming neural
networks, is presented in Section 1.9. CI in Microarray Classification is discussed
and reviewed in Section 1.10. Conclusions, Challenges, and Future Directions are
addressed in Section 1.11.

1.2 Computational Intelligence: Overview

In the following subsections, we present an overview of selected modern compu-
tational intelligence techniques including artificial neural networks, fuzzy sets,
particle swarm optimization, genetic algorithms, and rough sets.
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1.2.1 Artificial Neural Networks (ANN)

Artificial neural networks have been developed as generalizations of mathematical
models of biological nervous systems. In a simplified mathematical model of the
neuron, synapses are representedby connection weights that modulate the effect of
the associated input signals, and the nonlinear characteristic exhibited by neurons
is represented by a transfer function. There are many transfer functions developed
to process the weighted and biased inputs, among which four basic and widely
adopted in the field transfer functions are illustrated in Figure 1.1.

Fig. 1.1. Basic transfer functions

The neuron impulse is computed as the weighted sum of the input signals,
transformed by the transfer function. The learning capability of an artificial neu-
ron is achieved by adjusting the weights in accordance to the chosen learning
algorithm. Most applications of neural networks fall into the following categories:
(1) Prediction: Use the input values to predict some output; (2) Classification:
Use the input values to determine the classification of the input; (3) Data Asso-
ciation: Similar to classification, but also recognizes data containing errors; and
(4) Data conceptualization: Analyze the inputs so that grouping relationships
can be inferred.

Neural Network Architecture

The behavior of the neural network depends largely on the interaction between
the different neurons. The basic architecture consists of three types of neuron
layers: input, hidden, and output layers.

In feed-forward networks the signal flow is from input to output units strictly
in a feed-forward direction. The data processing can extend over multiple (layers
of) units, but no feedback connections are present, that is, connections extend-
ing from outputs of units to inputs of units in the same layer or previous layers.
Recurrent networks contain feedback connections. Contrary to feed-forward net-
works, the dynamical properties of such networks are important. In some cases,
the activation values of the units undergo a relaxation process such that the
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network will evolve to a stable state in which these activations do not change
anymore.

In other applications, the changes of the activation values of the output neu-
rons are significant, such that the dynamical behavior constitutes the output of
the network. There are several other neural network architectures (Elman net-
work, adaptive resonance theory maps, competitive networks etc.) depending on
the properties and requirement of the application.

Reader may refer to [13] for an extensive overview of the different neural
network architectures and learning algorithms. A neural network has to be con-
figured such that the application of a set of inputs produces the desired set
of outputs. Various methods to set the strengths of the connections exist. One
way is to set the weights explicitly, using a priori knowledge. Another way is to
train the neural network by feeding it teaching patterns and letting it change its
weights according to some learning rule. The learning situations in neural net-
works may be classified into three distinct sorts. These are supervised learning,
unsupervised learning, and reinforcement learning. In supervised learning, an in-
put vector is presented at the inputs together with a set of desired responses, one
for each node, at the output layer. A forward pass is done and the errors or dis-
crepancies, between the desired and actual response for each node in the output
layer, are found. These are then used to determine weight changes in the net-
work according to the prevailing learning rule. The term ‘supervised’ originates
from the fact that the desired signals on individual output nodes are provided
by an external teacher. The best-known examples of this technique occur in the
backpropagation algorithm, the delta rule, and perceptron rule. In unsupervised
learning (or self-organization) an output unit is trained to respond to clusters
of patterns within the input. In this paradigm the system is supposed to dis-
cover statistically salient features of the input population. Unlike the supervised
learning paradigm, there is no a priori set of categories into which the patterns
are to be classified; rather the system must develop its own representation of
the input stimuli. Reinforcement learning is learning what to do–how to map
situations to actions–so as to maximize a numerical reward signal. The learner
is not told which actions to take, as in most forms of Machine Learning (ML),
but instead must discover which actions yield the most reward by trying them.
In the most interesting and challenging cases, actions may affect not only the
immediate reward, but also the next situation and, through that, all subsequent
rewards. These two characteristics, trial-and-error search and delayed reward are
the two most important distinguishing features of reinforcement learning.

1.2.2 Rough Sets (RS)

Rough set theory [83, 84, 86, 82] is a methodology fairly new to the medi-
cal domain capable of dealing with uncertainty in data. It is used to discover
data dependencies, evaluate the importance of attributes, discover the patterns
of data, reduce redundant objects and attributes, seek the minimum subset of
attributes, recognize and classify objects. Moreover, it is being used for extrac-
tion of rules from databases. Rough sets have proven useful for representation of
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vague regions in spatial data. One advantage of rough sets is creation of readable
if-then rules. Such rules have a potential to reveal new patterns in the data ma-
terial. Furthermore, they also collectively function as a classifier for unseen data.
Unlike other computational intelligence techniques, rough set analysis requires
no external parameters and uses only the information presented in the given
data. One of the nice features of rough sets theory is that its can tell whether
the data is complete or not based on the data itself. If the data is incomplete, the
theory can suggest more information about the objects needed to be collected
in order to build a good classification model. On the other hand, if the data is
complete, rough sets can determine whether there is any redundant information
in the data and find the minimum data needed for classification. This property
of rough sets is very important for applications where domain knowledge is very
limited or data collection is very expensive/laborious because it makes sure the
data collected is good enough to build a good classification model without sac-
rificing the accuracy of the classification model or wasting time and effort to
gather extra information about the objects [83, 84, 86, 82].

In rough sets theory, the data is collected in a table, called decision table.
Rows of the decision table correspond to objects, and columns correspond to
attributes. In the data set, we assume that class labels to indicate the class
to which each example belongs are given. We call the class label the decision
attribute and the rest of the attributes the condition attributes. Rough sets
theory defines three regions based on the equivalent classes induced by the at-
tribute values Lower approximation, upper approximation, and the boundary.
Lower approximation contains all the objects which are classified surely based on
the data collected, and upper approximation contains all the objects which can
be classified probably, while the boundary is the difference between the upper
approximation and the lower approximation. Thus we can define a rough set as
any set represented through its lower and upper approximations. On the other
hand, indiscernibility notion is fundamental to rough set theory. Informally, two
objects in a decision table are indiscernible if one cannot distinguish between
them on the basis of a given set of attributes. Hence, indiscernibility is a func-
tion of the set of attributes under consideration. For each set of attributes we
can thus define a binary indiscernibility relation, which is a collection of pairs of
objects that are indistinguishable from each other. An indiscernibility relation
partitions the set of cases or objects into a number of equivalence classes. An
equivalence class of a particular object is simply the collection of objects that
are indiscernible to the object in question. Here we provide an explanation of the
basic framework of rough set theory, along with some of the key definitions. A re-
view of this basic material can be found in sources such as [83, 84, 86, 82, 77, 125]
and many others.

1.2.3 Fuzzy Logic (FL) and Fuzzy Sets (FS)

Zadeh [121] introduced the concept of fuzzy logic to present vagueness in lin-
guistics, and further implement and express human knowledge and inference ca-
pability in a natural way. Fuzzy logic starts with the concept of a fuzzy set. An
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FS set is a set without a crisp, clearly defined boundary. It can contain elements
with only a partial degree of membership. A Membership Function (MF) is a
curve that defines how each point in the input space is mapped to a membership
value (or degree of membership) between 0 and 1. The input space is sometimes
referred to as the universe of discourse. Let X be the universe of discourse and x
be a generic element of X . A classical set A is defined as a collection of elements
or objects x ∈ X , such that each x can either belong to or not belong to the
set A, A � X . By defining a characteristic function (or membership function)
on each element x in X , a classical set A can be represented by a set of ordered
pairs (x, 0) or (x, 1), where 1 indicates membership and 0 non-membership. Un-
like conventional set mentioned above, fuzzy set expresses the degree to which
an element belongs to a set. Hence the characteristic function of a fuzzy set is
allowed to have value between 0 and 1, denoting the degree of membership of
an element in a given set. If X is a collection of objects denoted generically by
x, then a fuzzy set A in X is defined as a set of ordered pairs:

A = {(x, μA(x)) | x ∈ X} (1.1)

μA(x) is called the membership function of linguistic variable x in A, which
maps X to the membership space M , M = [0, 1], where M contains only two
points, 0 and 1, A is crisp, and μA(x) is identical to the characteristic function
of a crisp set. Triangular and trapezoidal membership functions are the simplest
functions formed using straight lines. Some of the other shapes are Gaussian,
generalized bell, sigmoidal, and polynomial based curves.

Figure 1.2, illustrates the shapes of two commonly used MFs. The most im-
portant thing to realize about fuzzy logical reasoning is the fact that it is a
superset of standard Boolean logic.

Fig. 1.2. Shapes of two commonly used MFs

1.2.4 Evolutionary Algorithms (EA)

Evolutionary Algorithms are adaptive methods, which may be used to solve
search and optimization problems, based on the genetic processes of biological
organisms. Over many generations, natural populations evolve according to the
principles of natural selection and “survival of the fittest,” first clearly stated
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by Charles Darwin in The Origin of Species. By mimicking this process, evolu-
tionary algorithms are able to ‘evolve’ solutions to real world problems, if they
have been suitably encoded [30]. Usually grouped under the term Evolutionary
Algorithms (EA) or Evolutionary Computation (EC), we find the domains of ge-
netic algorithms [43, 35], evolution strategies [8], evolutionary programming [32],
genetic programming [57], and learning classifier systems [15]. They all share a
common conceptual base of simulating the evolution of individual structures via
processes of selection, mutation, and reproduction. The processes depend on the
perceived performance of the individual structures as defined by the environment
(problem).

EAs deal with parameters of finite length, which are coded using a finite
alphabet, rather than directly manipulating the parameters themselves. This
means that the search is unconstrained neither by the continuity of the function
under investigation, nor the existence of a derivative function.

Genetic Algorithm (GA) is assumed that a potential solution to a problem
may be represented as a set of parameters. These parameters (known as genes)
are joined together to form a string of values (known as a chromosome). A gene
(also referred to a feature, character or detector) refers to a specific attribute that
is encoded in the chromosome. The particular values the genes can take are called
its alleles. The position of the gene in the chromosome is its locus. Encoding
issues deal with representing a solution in a chromosome and unfortunately, no
one technique works best for all problems. A fitness function must be devised for
each problem to be solved. Given a particular chromosome, the fitness function
returns a single numerical fitness or figure of merit, which will determine the
ability of the individual, which that chromosome represents. Reproduction is
the second critical attribute of GAs where two individuals selected from the
population are allowed to mate to produce offspring, which will comprise the
next generation. Having selected two parents, their chromosomes are recombined,
typically using the mechanisms of crossover and mutation.

There are many ways in which crossover can be implemented. In a single point
crossover two chromosome strings are cut at some randomly chosen position,
to produce two ‘head’ segments, and two ‘tail’ segments. The tail segments are
then swapped over to produce two new full-length chromosomes. Crossover is not
usually applied to all pairs of individuals selected for mating. Another genetic
operation is mutation, which is an asexual operation that only operates on one
individual. It randomly alters each gene with a small probability. Traditional
view is that crossover is the more important of the two techniques for rapidly
exploring a search space. Mutation provides a small amount of random search,
and helps ensure that no point in the search space has a zero probability of being
examined.

If the GA has been correctly implemented, the population will evolve over
successive generations so that the fitness of the best and the average individual
in each generation increases towards the global optimum. Selection is the sur-
vival of the fittest within GAs. It determines which individuals are to survive to
the next generation. The selection phase consists of three parts. The first part
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involves determination of the individual’s fitness by the fitness function. A fitness
function must be devised for each problem; given a particular chromosome, the
fitness function returns a single numerical fitness value, which is proportional
to the ability, or utility, of the individual represented by that chromosome. For
many problems, deciding upon the fitness function is very straightforward, for
example, for a function optimization search; the fitness is simply the value of
the function. Ideally, the fitness function should be smooth and regular so that
chromosomes with reasonable fitness are close in the search space, to chromo-
somes with slightly better fitness. However, it is not always possible to construct
such ideal fitness functions. The second part involves converting the fitness func-
tion into an expected value followed by the last part where the expected value
is then converted to a discrete number of offsprings. Some of the commonly
used selection techniques are roulette wheel and stochastic universal sampling.
Genetic programming applies the GA concept to the generation of computer pro-
grams. Evolution programming uses mutations to evolve populations. Evolution
strategies incorporate many features of the GA but use real-valued parameters
in place of binary-valued parameters. Learning classifier systems use GAs in
machine learning to evolve populations of condition/action rules.

1.2.5 Particle Swarm Optimization (PSO)

Swarm intelligence [54] is a collective behavior of intelligent agents in decen-
tralized systems. Although there is typically no centralized control dictating the
behavior of the agents, local interactions among them often cause a global pat-
tern to emerge. Most of the basic ideas are derived from real swarms in the nature
including ant colonies, bird flocking, honeybees, bacteria and microorganisms,
etc. Ant Colony Optimization (ACO), have already been applied successfully to
solve several engineering optimization problems. Swarm models are population-
based and the population is initialized with a set of potential solutions. These
individuals are then manipulated (optimized) over many iterations using several
heuristics inspired from the social behavior of insects in an effort to find the
optimal solution. Ant colony algorithms are inspired by the behavior of natu-
ral ant colonies, which solve their problems by multi agent cooperation using
indirect communication through modifications in the environment. Ants release
a certain amount of pheromone (hormone) while walking, and each ant prefers
(probabilistically) to follow a direction, which is rich of pheromone. This simple
behavior explains why ants are able to adjust to changes in the environment,
such as optimizing shortest path to a food source or a nest. In ACO, ants use
information collected during past simulations to direct their search and this in-
formation is available and modified through the environment. Recently ACO
algorithms have also been used for clustering data sets [51].

The concept of particle swarms, although initially introduced for simulating
human social behaviors, has become very popular these days as an efficient search
and optimization technique. The Particle Swarm Optimization (PSO) [53], as
it is called now, does not require any gradient information of the function to
be optimized, uses only primitive mathematical operators, and is conceptually
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very simple. Since its advent in 1995, PSO has attracted the attention of many
researchers all over the world resulting in a huge number of variants of the basic
algorithm and many parameter automation strategies.

The canonical PSO model consists of a swarm of particles, which are initialized
with a population of random candidate solutions [53]. They move iteratively
through the d-dimension problem space to search for new solutions, where the
fitness, f , can be calculated as the certain qualities measure. Each particle has a
position represented by a position-vector xi (i is the index of the particle), and
a velocity represented by a velocity-vector vi. Each particle remembers its own
best position so far in a vector x#

i , and its j-th dimensional value is x#
ij . The

best position-vector among the swarm so far is then stored in a vector x∗, and
its j-th dimensional value is x∗

j . During the iteration time t, the update of the
velocity from the previous velocity to the new velocity is determined by (1.2).
The new position is then determined by the sum of the previous position and
the new velocity by (1.3).

vij(t + 1) = wvij(t) + c1r1(x
#
ij(t) − xij(t)) + c2r2(x∗

j (t) − xij(t)). (1.2)

xij(t + 1) = xij(t) + vij(t + 1). (1.3)

where w is called as the inertia factor, r1 and r2 are the random numbers, which
are used to maintain the diversity of the population, and are uniformly dis-
tributed in the interval [0,1] for the j-th dimension of the i-th particle. c1 is a
positive constant, called the coefficient of the self-recognition component, c2 is
a positive constant, called the coefficient of the social component. From (1.2), a
particle decides where to move next, considering its own experience, which is the
memory of its best past position, and the experience of its most successful parti-
cle in the swarm. In the particle swarm model, the particle searches the solutions
in the problem space with a range [−s, s] (If the range is not symmetrical, it
can be translated to a corresponding symmetrical range.) In order to guide the
particles effectively in the search space, the maximum moving distance during
one iteration must be clamped in between the maximum velocity [−vmax, vmax]
given in (1.4):

vij = sign(vij)min(|vij | , vmax). (1.4)

The value of vmax is p × s, with 0.1 ≤ p ≤ 1.0 and is usually chosen to be s, i.e.
p = 1. The end criteria are usually one of the following:

• Maximum number of iterations: the optimization process is terminated after
a fixed number of iterations.

• Number of iterations without improvement: the optimization process is ter-
minated after a fixed number of iterations without any improvement.

• Minimum objective function error: the error between the obtained objective
function value and the best fitness value is less than a pre-fixed anticipated
threshold.
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1.3 CI in Gene Expression

Gene expression refers to a process through which the coded information of a
gene is converted into structures operating in the cell. It provides the physical
evidence that a gene has been turned on or activated. Expressed genes include
those that are transcribed into mRNA and then translated into protein and those
that are transcribed into RNA but not translated into protein (e.g., transfer and
ribosomal RNAs) [64, 71]. The expression levels of thousands of genes can be
measured at the same time using the modern microarray technology [87, 127].
DNA microarrays usually consist of thin glass or nylon substrates containing
specific DNA gene samples spotted in an array by a robotic printing device.
Researchers spread fluorescently labeled mRNA from an experimental condition
onto the DNA gene samples in the array. This mRNA binds (hybridizes) strongly
with some DNA gene samples and weakly with others, depending on the inherent
double helical characteristics. A laser scans the array and sensors to detect the
fluorescence levels (using red and green dyes), indicating the strength with which
the sample expresses each gene. The logarithmic ratio between the two intensities
of each dye is used as the gene expression data.

In this section, we provide a substantial review of the state of the art research,
which focuses on the application of computational intelligence to different bioin-
formatics related Gene Expression problems. We also discuss some represen-
tative methods to provide inspiring examples to illustrate how CI could be ap-
plied to resolve bioinformatics Gene Expression problems and how Gene Expres-
sion problems could be analyzed, processed, and characterized by computational
intelligence.

1.3.1 Gene Expression Data Clustering

In the field of pattern recognition, clustering [48] refers to the process of par-
titioning a dataset into a finite number of groups according to some similarity
measure. Currently, it has become a widely used process in microarray engi-
neering for understanding the functional relationship between groups of genes.
Clustering was used, for example, to understand the functional differences in
cultured primary epatocytes relative to the intact liver [9]. In another study,
clustering techniques were used on gene expression data for tumor and normal
colon tissue probed by oligonucleotide arrays [4].

A number of clustering algorithms, including hierarchical clustering [113, 97],
Principle Component Analysis (PCA) [119, 89], genetic algorithms [59], and ar-
tificial neural networks [42, 101, 107], have been used to cluster gene expression
data. However, in 2002, Yuhui et al. [120] proposed a new approach to analysis
of gene expression data using Associative Clustering Neural Network (ACNN).
ACNN dynamically evaluates similarity between any two gene samples through
the interactions of a group of gene samples. It exhibits more robust perfor-
mance than the methods with similarities evaluated by direct distances, which
has been tested on the leukemia data set. The experimental results demonstrate
that ACNN is superior in dealing with high dimensional data (7,129 genes).
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The performance can be further enhanced when some useful feature selection
methodologies are incorporated. The study has shown ACNN can achieve 98.61%
accuracy on clustering the Leukemias data set with correlation analysis.

Herrero et al. [42] used the Self-Organizing Tree Algorithm (SOTA) for anal-
ysis of gene expression data coming from DNA array experiments, using an
unsupervised neural network. DNA array technologies allow monitoring thou-
sands of genes rapidly and efficiently. One of the interests of these studies is the
search for correlated gene expression patterns, and this is usually achieved by
clustering them. The result of the algorithm is a hierarchical cluster obtained
with the accuracy and robustness of a neural network. SOTA clustering confers
several advantages over classical hierarchical clustering methods. The clustering
process is performed from top to bottom, i.e. the highest hierarchical levels are
resolved before going to the details of the lowest levels. The growing can be
stopped at the desired hierarchical level. Moreover, a criterion to stop the grow-
ing of the tree, based on the approximate distribution of probability obtained
by randomisation of the original data set, is provided. In addition, obtaining
average gene expression patterns is a built-in feature of the algorithm. Different
neurons defining the different hierarchical levels represent the averages of the
gene expression patterns contained in the clusters.

Xiao et al. [116] proposed a new clustering approach based on the synergism
of the PSO and Self Organizing Maps (SOM). The authors achieved promising
results by applying the hybrid SOM-PSO algorithm over the gene expression
data of yeast and rat hepatocytes. We will briefly discuss their approach in the
following paragraphs. The idea of the SOM [56] stems from the orderly mapping
of information in the cerebral cortex. With SOMs, high dimensional datasets
are projected onto a one- or two-dimensional space. Typically, a SOM has a two
dimensional lattice of neurons and each neuron represents a cluster. The learning
process of a SOM is unsupervised. All neurons compete for each input pattern
and the neuron that is chosen for the input pattern wins.

In the approach proposed by Xiao et al., PSO is used to evolve the weights for
the SOM. In the first stage of the hybrid SOM/PSO algorithm, a SOM is used to
cluster the dataset. Authors used a SOM with conscience at this step. Conscience
directs each component that takes part in competitive learning toward having
the same probability to win. Conscience is added to the SOM by assigning each
output neuron a bias. The output neuron must overcome its own bias to win. The
objective is to obtain a better approximation of pattern distribution. The SOM
normally runs for 100 iterations and generates a group of weights. In the second
stage, PSO is initialized with the weights produced by the SOM in the first stage.
Then a gbest PSO is used to refine the clustering process. Each particle consists
of a complete set of weights for the SOM. The dimension of each particle is the
number of input neurons of the SOM times the number of output neurons of the
SOM. The objective of PSO is to improve the clustering result by evolving the
population of particles.

Microarrays have recently made it possible to monitor the activity of thou-
sands of genes simultaneously. They offer new insights into the biology of a cell.
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However, the data produced by microarrays poses several challenges to over-
come. One major task in the analysis of microarray data is to reveal structures
despite a large noise component in the data. Futschik and Kasabov [33] used
Fuzzy C-Means (FCM) clustering to achieve a robust analysis of gene expression
time-series. Authors address the issues of parameter selection and cluster valid-
ity. Using statistical models to simulate gene expression data, they show that
FCM can detect genes belonging to different classes.

Chinatsu and Hanai [7] applied the Fuzzy Adaptive Resonance Theory (Fuzzy
ART) [106] to gene clustering of DNA microarray data and their result indicate
that the methodology may be more suitable for biological applications than
most other methods including hierarchical clustering, k-means clustering, and
SOM. In addition, the authors compared their technique with the fuzzy c-means
clustering method and obtained comparable results.

Okada et al. [79] point out that although hierarchical clustering has been
extensively used in analyzing patterns in microarray gene expression data, its
biological interpretation is not easy. The authors propose a novel algorithm that
automatically finds biologically interpretable cluster boundaries in hierarchical
clustering by referring to gene annotations stored in public genome databases.
In addition, the proposed algorithm has a new function of generating a set of
clusters that are independent of each other with respect to the distributions of
gene functions. The authors claim that this function would enable investigators
to efficiently identify non-redundant and biologically-independent clusters.

An Evolutionary Rough C-Means Clustering

Cluster analysis [104] is one key step in understanding how the activity of genes
varies during biological processes and is affected by disease states and cellular
environments. In particular, clustering can be used either to identify sets of
genes according to their expression in a set of samples [26, 113], or to cluster
samples into homogeneous groups that may correspond to particular macroscopic
phenotypes [36]. The latter is in general more difficult, but is very valuable in
clinical practice.

Several clustering algorithms have been developed and applied in bioinformat-
ics problems, however, most of them cannot process objects in hybrid numeri-
cal/nominal feature space or with missing values. In most of them, the number
of clusters should be manually determined and the clustering results are sensi-
tive to the input order of the objects to be clustered. These limit applicability
of the clustering and reduce the quality of clustering. To solve this problem,
an improved clustering algorithm based on rough set and entropy theory was
presented by Chun-Bao et al. [19]. The approach aims at avoiding the need to
pre-specify the number of clusters, and clustering in both numerical and nominal
feature space with the similarity introduced to replace the distance index.

At the same time, rough sets are used to represent clusters in terms of upper
and lower approximations. However, the relative importance of these approxi-
mation parameters, as well as a threshold parameter, need to be tuned for good
partitioning. The evolutionary rough c-means algorithm employs GAs to tune
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these parameters. The Davies-Bouldin index is used as the fitness function to
be minimized. Various values of c are used to generate different sets of clusters,
and GA is employed to generate the optimal partitioning [100].

Lingras [62] argued that incorporation of rough sets into k-means clustering
requires the addition of the concept of lower and upper bounds. Calculation of the
centroids of clusters from conventional k-means needs to be modified to include
the effects of lower as well as upper bounds. The modified centroid calculations
for rough sets are then given by:

cenj = Wlow ×
∑

v∈R(x)

|R(x)| + wup ×
∑

v∈(BNR(x))

|BNR(x)| (1.5)

Where 1 ≤ j ≤ m. The parameters wlow and wup correspond to the relative
importance of lower and upper bounds, and wlow +wup = 1. If the upper bound
of each cluster were equal to its lower bound, the clusters would be conventional
clusters. Therefore, the boundary region BNR(x) will be empty, and the second
term in the equation will be ignored. Thus, the above equation will reduce to
conventional centroid calculations. The next step in the modification of the k-
means algorithms for rough sets is to design criteria to determine whether an
object belongs to the upper or lower bound of a cluster, for more details refer
to [62]. The main steps of the algorithm are provided below.

Algorithm 1. Rough C-Means Algorithm
1: Set xi as an initial means for the c clusters.
2: Initialize the population of particles encoding parameters threshold and wlow

3: Initialize each data object xk to the lower approximation or upper approximation
of clusters ci by computing the difference in its distance by:

diff = d(xk, ceni) − d(xk, cenj), (1.6)

Where ceni and cenj are the cluster centroid pairs.
4: if diff < δ then
5: xk ∈ the upper approximation of the ceni and cenj clusters and can not be in

any lower approximation.
6: Else
7: xk ∈ lower approximation of the cluster ci such that distance d(xk, ceni) is is

minimum over the c clusters.
8: end if
9: Compute a new mean using equation (1.5)

10: repeat
11: statements 3–9
12: until convergence i.e. there is no more new assignments

1.3.2 Rough Sets and DNA Microarray Technology

Biological research is currently undergoing a revolution. With the advent of
microarray technology the behavior of thousands of genes can be measured si-
multaneously. This capability opens a wide range of research opportunities in
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Fig. 1.3. Microarray production process:Microarrays provide the gene expression data.
A sample of 9 experiments from Synovial Sarcoma data is illustrated, n=5,520 genes
in this data set [37, 96].

biology, but the technology generates a vast amount of data that cannot be
handled manually. Computational analysis is thus a prerequisite for the suc-
cess of this technology, and research and development of computational tools
for microarray analysis are of great importance [68]. The DNA microarray tech-
nology provides enormous quantities of biological information about genetically
conditioned susceptibility to diseases [11]. The data sets acquired from microar-
rays refer to genes via their expression levels. Microarray production starts with
preparing two samples of mRNA, as illustrated by Figure 1.3. The sample of in-
terest is paired with a healthy control sample. The fluorescent red/green labels
are applied to both samples. The procedure of samples mixing is repeated for
each of thousands of genes on the slide. Fluorescence of red/green colors indi-
cates to what extent the genes are expressed. The gene expressions can be then
stored in numeric attributes, coupled with, e.g., clinical information about the
patients [11].

One application of microarray technology is cancer studies, where supervised
learning may be used for predicting tumor subtypes and clinical parameters.
Herman et al. [68] present a general rough set approach for classification of
tumor samples analyzed with microarrays. This approach is tested on a data
set of gastric tumors, and authors develop classifiers for six clinical parameters.
This research included only 2,504 genes out of a total of at least 30,000 genes
in the human genome. Some of the genes that were not included in their study
may have a connection to the parameters. In addition, their results show that
it is possible to develop classifiers with a small number of tumor samples, and
that rough set based methods may be well suited for this task. They believe
that rough set based learning combined with feature selection may become an
important tool for microarray analysis.

Rough Discretization

Microarray measurements are real numbers that have to be discretized before
a learning algorithm can be applied on the them. It has been shown that the
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quality of a learning algorithm is dependent on the selected strategy used for
real data discritization [25]. Discretization uses a data transformation procedure
that involves finding cuts which divide the data values into intervals. Values lying
within an interval are then mapped to the same ‘label’ value. Performing this pro-
cess will lead to reduction in the size of the attributes value set and ensure that
the rules that are mined are not too specific. Lots of discretization algorithms
have been developed and applied in bioinformatics problems [68]. Examples of
utilized discretization algorithms include frequency binning, näıve discretization,
entropy-based discretization, discriminant discretization, and Boolean reason-
ing/rough set based discretization [68].

Here we demonstrate some reported examples of using discretization tech-
niques in bioinformatics problems. Many successful work towards this issue has
been addressed and discussed. For example, the rough sets with Boolean rea-
soning (RSBR) algorithm proposed by Zhong et al. [124, 40] was used for dis-
cretization of continuous-valued attributes. The main advantage of RSBR is that
it combines discretization of real valued attributes and classification. The main
steps of the RSBR discretization algorithm are provided below.

Algorithm 2. RSBR Discretization Algorithm
Input: Information system table (S) with real valued attributes Aij and n is the number
of inter values for each attribute.
Output: Information table (ST ) with discretized real valued attribute
1: for Aij ∈ S do
2: Define a set of Boolean variables as follows:

B = {
n∑

i=1

Cai,
n∑

i=1

Cbi

n∑

i=1

Cci, ...,
n∑

i=1

Cni} (1.7)

3: end for
Where

∑n
i=1 Cai corresponds to a set of intervals defined on the variables of

attributes a
4: Create a new information table Snew by using the set of intervals Cai

5: Find the minimal subset of Cai that discerns all the objects in the decision class
D using the following formula:

Υ u = ∧{Φ(i, j) : d(xi �= d(xj)} (1.8)

Where Φ(i, j) is the number of minimal cuts that must be used to discern two
different instances xi and xj in the information table.

Among further research directions, there is hybridization of rough set reduc-
tion framework with gene clustering. For example, in [37] authors used self-
organizing maps to calculate the entropy distance for roughly discretized data.
In another example, Ślȩzak and Wróblewski [95] adapt the rough set-based ap-
proach to deal with gene expression data, where the problem is a huge amount
of genes (attributes) a ∈ A versus small amount of experiments (objects) u ∈ U .
They perform gene reduction using standard rough set methodology based on



1 Computational Intelligence in Solving Bioinformatics Problems 19

approximate decision reducts applied against specially prepared data. In addi-
tion, the authors used rough discretization algorithm - Every pair of objects
(x, y) ∈ U × U yields a new object, which takes values “≥ a(x)” if and only if
a(y) ≥ a(x); and “≤ a(x)” otherwise; over original genes-attributes a ∈ A. In
this way: 1) They work with desired, larger number of objects improving credi-
bility of the obtained reducts; 2) They produce more decision rules, which vote
during classification of new observations; 3) They avoid an issue of discretization
of real-valued attributes, difficult and leading to unpredictable results in case of
any data sets having much more attributes than objects. The authors illustrated
their method by analysis of gene expression data related to breast cancer.

Another example given by Ślȩzak and Wróblewski [96] extends the standard
rough set-based approach to deal with huge amounts of numeric attributes ver-
sus a small amount of available objects. The authors transform the training data
using a novel way of non-parametric discretization, called roughfication (in con-
trast to fuzzification known from fuzzy logic). Given roughfied data, they apply
standard rough set attribute reduction and then classify the testing data by
voting among the obtained decision rules. Roughfication enables to search for
reducts and rules in the tables with the original number of attributes and far
larger number of objects. It does not require expert knowledge or any kind of
parameter tuning or learning. The authors illustrate it by analysis of gene ex-
pression data, where the number of genes (attributes) is enormously large with
respect to the number of experiments (objects).

Given thousands of attributes against hundreds of objects, we face a few-
objects-many-attributes problem, recognized as one of the main data mining
challenges [118]. Moreover, in the case of gene expression, rough set based meth-
ods usually require discretization (cf. [76])–replacing the original values with the
codes of intervals defined over attribute ranges. This additionally increases the
amount of possible solutions of the optimization problem, now reformulated as
searching for optimal subsets of attributes (genes) coupled with their optimal
interval settings. Such a huge space of parameters, given too small samples of ob-
jects, leads to data overfitting (cf. [118]) and yields a kind of unreliability of the
rough set techniques applied so far (cf. [109]). Ślȩzak and Wróblewski [96] report
an alternative method, illustrated by Figure 1.4. They call it rough discretization
(or roughfication, compared to fuzzification).

As has been reported, e.g., [68], some discretization methods seem to work bet-
ter than others for the problem of gene expression classification. Frequency bin-
ning and entropy-based discretization gave good results. Discretization based on
linear discriminant analysis was also useful. The entropy-based method appeared
to handle skewed class distributions better than the other methods. Boolean rea-
soning discretization had often a poor performance and behaved differently from
the rest of the discretization methods. The AUC had a tendency to increase with
additional genes. It is likely that this is due to the global nature of this method.
The method considers all attributes at once when it creates cuts. The feature
selection method, on the other hand, selects genes individually such that each
selected gene may be a good classifier in itself. So, it is more appropriate to
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Fig. 1.4. Rough discretization [96]. Top: A sample with 3 numeric attributes and 3
decision classes. Right: Its roughfied version. Middle: Some positive regions for the
roughfied table. Bottom: Rules induced by reduct a∗, b∗.

make cuts individually for each gene. The Boolean reasoning approach is con-
sequently less suited for this problem, but it may yield a good performance in
other situations.

1.4 CI in Protein Sequence Classification

The problem of protein sequence classification is a crucial task in the interpre-
tation of genomic data. Many high-throughput systems were developed with the
aim of categorizing proteins based only on their sequences. However, modeling
how proteins have evolved can also help in the classification task of sequenced
data. Hence the phylogenetic analysis has gained importance in the field of pro-
tein classification. Busa-Fekete et al. [16] provide an overview about the problem
of protein sequence classification area and propose two algorithms that are well
suited to this scope. The two algorithms are based on a weighted binary tree
representation of protein similarity data. The first one is called TreeInsert which
assigns the class label to the query by determining a minimum cost necessary
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to insert the query in the (precomputed) trees representing the various classes.
Then the TreeNN algorithm assigns the label to the query based on an analysis of
the query’s neighborhood within a binary tree containing members of the known
classes. The two algorithms were tested in combination with various sequence
similarity scoring methods (BLAST, Smith-Waterman, Local Alignment Kernel
as well as various compression-based distance scores) using a large number of
classification tasks representing various degrees of difficulty. They reported that,
at the expense of a small computational overhead, both TreeNN and TreeInsert
exceed the performance of simple similarity search (1NN) as determined by ROC
analysis, at the expense of a modest computational overhead. Combined with
a fast tree-building method, both algorithms are suitable for web-based server
applications.

Mapping the pathways that give rise to metastasis is one of the key challenges
of breast cancer research. Recently, several large-scale studies have shed light on
this problem through analysis of gene expression profiles to identify markers
correlated with metastasis. Han-Yu Chuang et al. [21] apply a protein-network-
based approach that identifies markers not as individual genes but as subnet-
works extracted from protein interaction databases. The resulting subnetworks
provide novel hypotheses for pathways involved in tumor progression. Although
genes with known breast cancer mutations are typically not detected through
analysis of differential expression, they play a central role in the protein net-
work by interconnecting many differentially expressed genes. Authors find that
the subnetwork markers are more reproducible than individual marker genes se-
lected without network information, and that they achieve higher accuracy in
classification of metastatic versus non-metastatic tumors.

As shown in Figure 1.5, the subnetwork markers were significantly more re-
producible between data sets than were individual marker genes selected without
network information (12.7 versus 1.3%). In terms of biological function, extra-
cellular signal-regulated kinase 1 (MAPK3) was reproducible as a central node
in subnetworks identified from both data sets (Figure 1.5C versus Figure 1.5D.
Figure 1.5E and 1.5F illustrate two other subnetworks that were discriminative
in both data sets, although there was less consistency in the expression levels
of genes comprising these subnetworks. For instance, PKMYT1 is significantly
differentially expressed in van de Vijver et al [110] but not in Wang et al. [112]
(Figure 1.5E; diamond versus circle), whereas CD44 is significantly differentially
expressed in Wang et al. [112] but not in van de Vijver et al. [110] (Figure 1.5F).
However, by aggregating the expression ratios of these genes with their network
neighbors, the subnetworks containing these genes are found to be significant in
both data sets.

Classification of protein sequences into families is an important tool in the
annotation of structural and functional properties to newly discovered proteins.
Mohamed et al [72] present a classification system using pattern recognition
techniques to create a numerical vector representation of a protein sequence and
then classify the sequence into a number of given families. Authors introduce the
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Fig. 1.5. Subnetwork markers across data sets [21]

use of fuzzy ARTMAP classifiers and show that coupled with a genetic algorithm
based feature subset selection, the system is able to classify protein sequences
with an accuracy of 93%. This accuracy is compared with numerous other clas-
sification tools and demonstrates that the fuzzy ARTMAP is suitable due to its
high accuracy, quick training times, and ability for incremental learning.

Building improved intelligent protein sequence classification systems for ef-
fectively searching large biological database is significant for developing com-
petitive pharmacological products. Wang et al [111] describe a methodology for
constructing a neural protein classifier with various input features, rather than
to train a neural classifier based on a given neural network architecture and some
available data. A set of fuzzy classification rules with confidence factors can be
extracted directly from the generalized radial basis function (GRBF) networks.
The initial fuzzy rule set is refined using a new objective function, which com-
promises between misclassification rate and generalization capability, and GA
programming. Their results compared favorably with other standard machine
learning techniques.
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1.5 CI in Gene Selection

Selecting informative and discriminative genes from huge microarray gene ex-
pression data is an important and challenging bioinformatics research topic.
There have been many successful projects in this area reported in the literature.
For example, Fernando et al. [29] demonstrate how a supervised fuzzy pattern
algorithm can be used to perform DNA microarray data reduction over real
data. The benefits of their method can be employed to find biologically signifi-
cant insights relating to meaningful genes in order to improve previous successful
techniques. Experimental results on acute myeloid leukemia diagnosis show the
effectiveness of the proposed approach.

A new method combining correlation based clustering and rough sets attribute
reduction for gene selection from gene expression data is proposed by Lijun et
al [99]. Correlation based clustering is used as a filter to eliminate the redun-
dant attributes, then the minimal reduct of the filtered attribute set is reduced
by rough sets. Three different classification algorithms are employed to evaluate
the performance of the proposed method. High classification accuracies achieved
on two public gene expression data sets show that the introduced method is
successful for selecting high discriminative genes for classification task. The ex-
perimental results indicate that rough sets based methods have the potential to
become a useful tool in bioinformatics.

The approach to cancer classification based on selected gene expression data,
rather than all the genes in the dataset, is important for efficient cancer di-
agnosis. Dingfang et al. [58] present a gene selection method, called RMIMR,
which searches for the subset through maximum relevance and maximum posi-
tive interaction of genes. Compared to the classical methods based on statistics,
information theory, and regression, this method led to significantly improved
classification in experiments on 4 gene expression datasets.

Banerjee et al. [12] used an evolutionary rough feature selection algorithm for
classifying microarray gene expression patterns. Since the data typically consist
of a large number of redundant features, an initial reduction of the attributes
is done to enable faster convergence. Rough set theory is employed to generate
reducts, which represent the minimal sets of nonredundant features capable of
discerning between all objects, in a multiobjective framework. The effectiveness
of the algorithm is demonstrated on three cancer datasets.

Zhang et al. [123] present recent Support Vector Machine (SVM) classification
approaches for gene selection, cancer classification, and functional gene classifi-
cation, followed by analysis on the advantages and limitations of SVM on these
applications.

Li et al. [59] introduced a multivariate approach that selects a subset of predic-
tive genes jointly for sample classification based on expression data. They tested
the algorithm on colon and leukemia data sets. The authors examined the sen-
sitivity, reproducibility and stability of gene selection/sample classification to
the choice of parameters of the algorithm. They used hybrid method that uses
a genetic algorithms and the K-Nearest Neighbor (KNN) to identify genes that
can jointly discriminate between different classes of samples (e.g. normal versus
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tumor). The genes identified are subsequently used to classify independent test
set samples. The authors reported that the GA/KNN method is capable of se-
lecting a subset of predictive genes from a large noisy data set for sample classi-
fication. It is a multivariate approach that can capture the correlated structure
in the data.

Yuanchen et al. [41] proposed a fuzzy-granular method for the gene selection
task. Firstly, genes are grouped into different function granules with the fuzzy c-
means algorithm (FCM). And then informative genes in each cluster are selected
with the signal-to-noise metric (S2N). With fuzzy granulation, information loss
in the process of gene selection is decreased. As a result, more informative genes
for cancer classification are selected and more accurate classifiers can be modeled.
The simulation results on two publicly available microarray expression datasets
show that the proposed method is more accurate than traditional algorithms for
cancer classification.

Gene Selection Using Neural Networks

Accurate diagnosis and classification are the key issues for the optimal treatment
of cancer patients. Several studies demonstrate that cancer classification can be
estimated with high accuracy, sensitivity, and specificity from microarray-based
gene expression profiling using artificial neural networks.

Huang and Liao [45] introduced a comprehensive study to investigate the ca-
pability of the probabilistic neural networks (PNN) associated with a feature se-
lection method, the so-called signal-to-noise statistic, in cancer classification. The
signal-to-noise statistic, which represents the correlation with the class distinc-
tion, is used to select the marker genes and trim the dimension of data samples
for the PNN. The experimental results show that the association of the prob-
abilistic neural network with the signal-to-noise statistic can achieve superior
classification results for two types of acute leukemias and five categories of em-
bryonal tumors of central nervous system with satisfactory computation speed.
Furthermore, the signal-to-noise statistic analysis provides candidate genes for
future study in understanding the disease process and the identification of po-
tential targets for therapeutic intervention.

Fogel [31] highlights recent advancements in the coupling evolutionary com-
putation with artificial neural networks for microarray class prediction and dis-
covery. The combination of these methods holds great promise for automated
feature selection and data analysis. Neural networks have been noted elsewhere
in the literature as particularly useful for microarray data clustering and classi-
fication. For instance, Khan et al. [55] developed a method of classifying cancers
to specific diagnostic categories based on their gene expression signatures using
artificial neural networks. The authors trained the ANNs using a small, round
blue-cell tumors (SRBCTs) as a model. These cancers belong to four distinct
diagnostic categories and often present diagnostic dilemmas in clinical practice.
The ANNs correctly classified all samples and identified genes most relevant to
the classification. Expression of several of these genes has been reported in SR-
BCTs, but most have not been associated with these cancers. To test the ability
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Fig. 1.6. Classification and diagnostic prediction of cancers using gene expression
profiling and artificial neural networks [55]

of the trained ANN models to recognize SRBCTs, they analyzed additional blind
samples that were not previously used for training, and correctly classified them
in all cases. This study demonstrates the potential applications of these methods
for tumor diagnosis and the identification of candidate targets for therapy.

As an illustrated in Figure 1.6a, the entire data-set of all 88 experiments
was first quality filtered (1) and then the dimensionality was further reduced by
principal component analysis (PCA) to 10 PC projections (2), from the original
6,567 expression values. Next, the 25 test experiments were set aside and the 63
training experiments were randomly partitioned into 3 groups (3). One of these
groups was reserved for validation and the remaining 2 groups for calibration
(4). ANN models were then calibrated using for each sample the 10 PC values
as input and the cancer category as output (5). For each model, the calibration
was optimized with 100 iterative cycles (epochs). This was repeated using each
of the 3 groups for validation (6). The samples were again randomly partitioned
and the entire training process repeated (7). For each selection of a validation
group one model was calibrated, resulting in a total of 3750 trained models. Once
the models were calibrated they were used to rank the genes according to their
importance for the classification (8). The entire process (2–7) was repeated using
only top ranked genes (9). The 25 test experiments were subsequently classified
using all the calibrated models. Figure 1.6b presents monitoring of the calibration



26 A.-E. Hassanien et al.

of the models. The average classification error per sample (using a summed
square error function) is plotted during the training iterations (epochs) for both
the training and the validation samples. A pair of lines, dark (training) and light
(validation), represents one model. The decrease in the classification errors with
increasing epochs demonstrates the learning of the models to distinguish these
cancers. The results shown are for 200 different models, each corresponding to a
random partitioning of the data. All the models performed well for both training
and validation as demonstrated by the parallel decrease (with increasing epochs)
of the average summed square classification error per sample. In addition, there
was no sign of over-training: if the models begin to learn features in the training
set, which are not present in the validation set, this would result in an increase
in the error for the validation at that point and the curves would no longer
remain parallel. Figure 1.6c shows minimizing the number of genes. The average
number of misclassified samples for all 3,750 models is plotted against increasing
number of used genes. The misclassifications were minimized to zero using the
96 highest ranked genes [31, 55].

While it is clear that neural network methods are well suited to microarray
analysis, their proper training and optimization is a prerequisite for superior
performance. A standard approach to neural network training is the use of back-
propagation to optimize the weight assignments for a fixed neural network topol-
ogy. This approach generally forces the user to choose the appropriate number
of features to use and a fixed neural network topology. Backpropagation itself
can also lead to suboptimal weight assignment if there are many local optima
in the search space. Optimizing neural networks with stochastic optimization
methods such as evolutionary computation, however, can outperform these clas-
sic methods by avoiding local optima and simultaneously identifying the most
appropriate features to use for prediction [31].

In another study, Hwang et al. [47] applied neural networks in classification of
patient samples using gene expressions levels. Here all gene expression levels are
fed to the neural tree as input and the output is a binary classification. Through a
structural learning process, essential genes for cancer classification are included
into the neural tree and less important genes are weeded out automatically.
In neural tree learning, all gene expression levels were linearly scaled into the
interval [0.01, 0.99]. For the output value of neural tree learning, one was set to
0.01 and the other one to 0.99. Using this setup, their predicted accuracy was
86% and the number of genes selected was 16. Gene selection using Feed Forward
Back Propagation Neural Network as a classifier is illustrated in Figure 1.7.

Francesca et al. [92] proposed a new gene selection method for analyzing mi-
croarray experiments pertaining to two classes of tissues and for determining
relevant genes characterizing differences between the two classes. The new tech-
nique is based on Switching Neural Networks (SNN), learning machines that
assign a relevance value to each input variable, and adopts Recursive Feature
Addition (RFA) for performing gene selection. The performances of SNN-RFA
are evaluated by considering its application on two real and two artificial gene
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Fig. 1.7. Gene selection using Neural Network as classifere [81]

expression datasets generated according to a proper mathematical model that
possesses biological and statistical plausibility.

Gene selection algorithms for cancer classification, based on the expression
of a small number of biomarker genes, have been the subject of considerable
research in recent years [81]. For instance, Feng et al. [20] use a t- test-based
feature selection method to choose some important genes from thousands of
genes. After that, authors classify the microarray data sets with a Fuzzy Neural
Network (FNN). The FNN combines important features of initial fuzzy model
self-generation, parameter optimization, and rule-base simplification. They ap-
plied the FNN to three well-known gene expression data sets, i.e., the lymphoma
data set (with 3 sub-types), small round blue cell tumor (SRBCT) data set (with
4 sub-types), and the liver cancer data set (with 2 classes, i.e., non-tumor and
hepatocellular carcinoma (HCC)). Their results in all the three data sets show
that the FNN can obtain 100% accuracy with a much smaller number of genes
in comparison with previously published methods. They reported that in view of
the smaller number of genes required by the FNN and its high accuracy,the FNN
classifier not only helps biological researchers differentiate cancers that are diffi-
cult to be classified using traditional clinical methods, but also helps biological
researchers focus on a small number of important genes to find the relationships
between those important genes and the development of cancers (see also [117]).

1.6 CI in DNA Fragment Assembly (FA)

The fragment assembly problem (FAP) deals with sequencing of DNA. Currently
strands of DNA, longer than approximately 500 base pairs, cannot be sequenced
very accurately. As a consequence, in order to sequence larger strands of DNA,
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they are first broken into smaller pieces. The FAP is then to reconstruct the orig-
inal molecule’s sequence from the smaller fragment sequences. FAP is basically
a permutation problem, similar in spirit to the TSP, but with some important
differences (circular tours, noise, and special relationships between entities) [94].
Meksangsouy and Chaiyaratana [67] attempted to solve the DNA fragment re-
ordering problem with the ant colony system. The authors investigated two
types of assembly problems: single-contig and multiple-contig problems. The
simulation results indicate that the ant colony system algorithm outperforms
the nearest neighbor heuristic algorithm when multiple-contig problems are
considered.

The DNA fragment assembly is a problem to be solved in the early phases of
the genome project and thus is critical since the other steps depend on its accu-
racy. This is an NP-hard combinatorial optimization problem which is growing
in importance and complexity as more research centers become involved on se-
quencing new genomes. Various heuristics, including computational intelligence
algorithms, have been designed for solving the fragment assembly problem, but
since this problem is a crucial part of any sequencing project, better assem-
blers are needed. Here we demonstrated some reported examples of using the CI
techniques in DNA Fragment Assembly problem.

Wannasak et al. [114] present the use of a combined ant colony system (ACS)
and nearest neighbour heuristic (NNH) algorithm in DNA fragment assembly.
The assembly process can be treated as combinatorial optimization where the
aim is to find the right order of each fragment in the ordering sequence that
leads to the formation of a consensus sequence that truly reflects the original
DNA strands. The assembly procedure proposed is composed of two stages:
fragment assembly and contiguous sequence (contig) assembly. In the fragment
assembly stage, a possible alignment between fragments is determined where the
fragment ordering sequence is created using the ACS algorithm. The resulting
contigs are then assembled together using the NNH rule. Their results indicate
that in overall the performance of the combined ACS/NNH technique is superior
to that of a standard sequence assembly program (CAP3), which is widely used
by many genomic institutions.

Angeler et al. [6] describes an alternative approach to the fragment assembly
problem. The key idea is to train a recurrent neural network (RNN) to track a
sequence of bases constituting a given fragment and to assign to the same cluster
all sequences which are well tracked by this network. The authors make use of
a 3-layer Recurrent Perceptron and examine both edited sequences from an ftp
site and artificial fragments from a common simulation software. The clusters
they obtain exhibit interesting properties in terms of error filtering, stability and
self consistency; they define as well, with a certain degree of approximation, a
metric on the fragment set. The proposed assembly algorithm is susceptible to
becoming an alternative method with the following properties: (i) high quality of
the rebuilt genomic sequences, (ii) high parallelizability of the computing process
with consequent drastic reduction of the running time.
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1.7 CI in Multiple Sequence Alignment (MSA)

Sequence Alignment (SA) refers to the process of arranging the primary se-
quences of DNA, RNA, or protein to identify regions of similarity that may be
a consequence of functional, structural, or evolutionary relationships between
the sequences. Given two sequences X and Y , a pair-wise alignment indicates
positions of each sequence that are considered to be functionally or evolution-
arily related. From a family S = (S0, S1, . . . , SN−1) of N sequences, we would
like to find out common patterns of this family. Since aligning each pair of se-
quences from S separately often does not reveal the common information, it is
necessary to perform multiple sequence alignment (MSA). A multiple sequence
alignment (MSA) is a sequence alignment of three or more biological sequences,
generally protein, DNA, or RNA. In general, the input set of query sequences
are assumed to have an evolutionary relationship by which they share a linkage
and are descended from a common ancestor.

To evaluate the quality of an alignment, a popular choice is to use the SP
(sum-of-pairs) score method [63]. The SP score basically sums the substitution
scores of all possible pair-wise combinations of sequence characters in one column
of a multiple sequence alignment. Assuming ci representing the ith character of a
given column in the sequence matrix and match (ci, cj) denoting the comparing
score between characters ci and cj , the score of a column may be computed using
the formula:

SP = (c1, c2, . . . , cN ) =
N−1∑

i=1

N∑

j=i+1

match(ci, cj) (1.9)

Progressive alignment is a heuristic widely used in MSA, but it does not guar-
antee optimality [28]. ClustalW [105] is another popular program that improved
the algorithm presented by Feng and Doolittle [28]. The main shortcoming of
ClustalW is that once a sequence has been aligned, that alignment can never be
modified even if it conflicts with sequences added later.

Recently, Chen et al. [18] took a serious attempt to solve the classicalMSA prob-
lem by using a partitioning approach coupled with the Ant Colony Optimization
(ACO) algorithm. The algorithm consists of three stages. At first, a genetic algo-
rithm is employed to find out the near optimal cut-off points in the original se-
quences from where they must be partitioned vertically. In this way a partitioning
method is continued recursively to reduce the original problem to multiple smaller
MSA problems until the lengths of the subsequences are all less than an accept-
able threshold. Next, an ant colony system is used to align each small subsection
derived from the previous step. The ant system consists of N ants each of which
represents a solution of alignment. Each ant searches for an alignment by mov-
ing on the sequences to choose the matching characters. Let the N sequences be
S = S0, S1, . . . , SN−1. In that case an artificial ant starts from S0[0], the first char-
acter of S0, and selects one character from each of the sequences of S1, . . . , SN−1
matching with S0[0]. From the sequence Si, i = 1, 2, . . . , n1,the ant selects a char-
acter Si[j] by a probability determined by the matching score with S0[0], deviation
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of its location from S0[0] and pheromones trail on the logical edge between Si[j]
and S0[0].In addition, an ant may choose to insert an empty space according to a
predetermined probability. Next, the ant starts from S0[1], selects the characters
of S1, . . . , SN−1 matching with S0[1] to form the second path. Similarly, starting
from S0[2], . . . , S0[|S0| − 1], the ant can form other paths. Here |S0| indicates the
number of characters in the sequence |S0|.

To evaluate an alignment represented by a set of paths, the positions of char-
acters not selected by the ants are calculated first by aligning them to the right
and adding gaps to the left. Next their SP (sum-of-pairs) score is using relation
(1.9). Finally, a solution to the MSA is obtained by concatenating the results
from smaller sub-alignments. The Divide-Ant-MSA algorithm outperformed the
SAGA [78], a leading MSA program based on genetic algorithms, in terms of
both speed and accuracy especially for longer sequences.

Rasmussen and Krink [88] focussed on a new PSO based training method
for Hidden Markov Models (HMMs) in order to solve the MSA problem. The
authors showed how a combination of PSO and evolutionary algorithms can
generate better protein sequence alignments than with more traditional HMM
training methods, such as Baum-Welch [98] and simulated annealing [39].

Genetic algorithm is one of the important and successful approaches in MSA.
Zhang and Huang [122] propose an improved GA method, multiple small-popsize
initialization strategy (MSPIS) and hybrid one-point crossover scheme (HOPCS)
based GA, which can search the solution space in a very efficient manner. The
experimental results show that this improved approach can obtain a better result
compared with traditional GA approach in aligning multiple protein sequences
problem.

DNA matching is a crucial step in sequence alignment. Since sequence align-
ment is an approximate matching process there is a need for good approximation
algorithms. The process of matching in sequence alignment is generally find-
ing longest common subsequences. However, finding the longest common subse-
quence may not be the best solution for either a database match or an assembly.
An optimal alignment of subsequences is based on several factors, such as quality
of bases, length of overlap, etc. Factors such as quality indicate if the data is an
actual read or an experimental error. Fuzzy logic allows tolerance of inexactness
or errors in sub sequence matching. Nasser et al. [75] propose fuzzy logic for ap-
proximate matching of subsequences. Fuzzy characteristic functions are derived
for parameters that influence a match. Authors develop a prototype for a fuzzy
assembler. The assembler is designed to work with low quality data, which is
generally rejected by most of the existing techniques. Authors test the assem-
bler on sequences from two genome projects, namely Drosophila melanogaster
and Arabidopsis thaliana. Their results are compared with other assemblers. The
fuzzy assembler successfully assembled sequences and performed similar and in
some cases better than existing techniques.

In multiple DNA sequence alignment, some researchers used divide-and-
conquer techniques to cut the sequences for the sake of decreasing complexity.
Because the cutting points of sequences of the existing methods are fixed at
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the middle or near-middle points, the performance of sequence alignment of the
existing methods is not good enough. Chen et al. [17] present a new method
for multiple DNA sequence alignment using genetic algorithms and divide-and-
conquer techniques to choose optimal cut points of multiple DNA sequences.
Their experimental results show that the proposed method is better than the
existing methods for dealing with multiple DNA sequence alignment.

The similarity judgement of two sequences is often decomposed in similar-
ity judgements of the sequence events with an alignment process. However, in
some domains like speech or music, sequences have an internal structure which is
important for intelligent processing like similarity judgements. In an alignment
task, this structure can be reflected more appropriately by using two levels in-
stead of aligning event by event. This idea is related to the structural alignment
framework by Markman and Gentner [34]. Weyde and Klaus [115] introduce a
method to align sequences by modeling the segmenting and matching of groups
in an input sequence in relation to a target sequence, detecting variations or
errors. This is realized as an integrated process, using a neuro-fuzzy system. The
selection of segmentations and alignments is based on fuzzy rules which allow
the integration of expert knowledge via feature definitions, rule structure, and
rule weights. The rule weights can be optimized effectively with an algorithm
adapted from neural networks. Thus the results from the optimization process
are still interpretable. The system has been implemented and tested successfully
in a sample application for the recognition of musical rhythm patterns.

Hiroshi [66] proposes a new method for efficient finding of the biologically
optimal alignment of multiple sequences. A key technique used in his method
is deterministic annealing that attempts to find the global optimum in a pa-
rameter space through the annealing process. The author proposes a new simple
probabilistic model for the usually time-consuming iterative process of determin-
istic annealing. Probabilistic parameters of his model are trained from a given
sequences based on the deterministic annealing and Expectation Maximization
algorithm. When a new sequence is given, this sequence is aligned by parsing it
using the trained model. Experimental results show that the proposed method
gives a better performance than other competing methods, like a profile hidden
markov models, and is time-efficient.

1.8 CI in Protein Structure Prediction (PSP)

Protein Structure Prediction (PSP) is one of the most important goals pursued
by bioinformatics and theoretical chemistry. Its aim is prediction of the three-
dimensional structure of proteins from their amino acid sequences, sometimes
including additional relevant information such as the structures of related pro-
teins [128]. In other words, it deals with the prediction of a protein’s tertiary
structure from its primary structure. Protein structure prediction is of high im-
portance in medicine (e.g., in drug design) and biotechnology (e.g., in the design
of novel enzymes). There have been many successful research projects focusing
on this problem. For example, Tang et al. [102] address a problem of predicting
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protein homology between given two proteins. They propose a learning method
that combines the idea of association rules with their previous method called
Granular Support Vector Machines (GSVM), which systematically combines a
SVM with granular computing. The method, called GSVM-AR, uses associa-
tion rules with high enough confidence and significant support to find suitable
granules to build a GSVM with good performance. The authors compared their
method with SVM by KDDCUP04 protein homology prediction data. From the
experimental results, GSVM-AR showed significant improvement compared to
a single SVM.

The interface between combinatorial optimization and fuzzy sets-based
methodologies is the subject of a very active and increasing research. In this con-
text, Balnco et al. [14] describe a fuzzy adaptive neighborhood search (FANS)
optimization heuristic that uses a fuzzy valuation to qualify solutions and adapts
its behavior as a function of the search state. FANS may also be regarded as
a local search framework. The authors show an application of this fuzzy sets-
based heuristic to the protein structure prediction problem in two aspects: (1)
to analyze how the codification of the solutions affects the results and (2) to
confirm that FANS is able to obtain as good results as a genetic algorithm. Both
results shed some light on the application of heuristics to the protein structure
prediction problem and show the benefits and power of combining basic fuzzy
sets ideas with heuristic techniques.

Solving the structure prediction problem for complex proteins is difficult and
computationally expensive. Tantar et al. [103] propose a bicriterion parallel hy-
brid genetic algorithm in order to efficiently deal with the problem using a com-
putational grid. The use of a near-optimal metaheuristic, such as a GA, allows
a significant reduction in the number of explored potential structures. However,
the complexity of the problem remains prohibitive as far as large proteins are
concerned, making the use of parallel computing on the computational grid es-
sential for its efficient resolution. A conjugated gradient-based Hill Climbing local
search is combined with the GA in order to intensify the search in the neighbor-
hood of its provided configurations. Authors consider two molecular complexes:
(1) the tryptophan-cage protein (Brookhaven Protein Data Bank ID 1L2Y) and
(2) a-cyclodextrin. The experimentation results obtained on a computational
grid show the effectiveness of their approach.

Predicting the three-dimensional structure of proteins from their linear se-
quence is one of the major challenges in modern biology. It is widely recog-
nized that one of the major obstacles in addressing this question is that the
standard computational approaches are not powerful enough to search for the
correct structure in the huge conformational space. Genetic algorithms, a coop-
erative computational method, have been successful in many difficult computa-
tional tasks. Thus it is not surprising that in recent years several studies were
performed to explore the possibility of using genetic algorithms to address the
protein structure prediction problem. Ron Roger [108] reviewed a general frame-
work of how genetic algorithms can be used for structure prediction problem.
Using this framework, significant studies that were published in recent years
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are discussed and compared. Applications of genetic algorithms to the related
question of protein alignments are also mentioned. The rationale of why genetic
algorithms are suitable for protein structure prediction is presented, and future
improvements that are still needed are discussed.

The understanding of protein structures is vital to determine the function of
a protein and its interaction with DNA, RNA, and enzymes. The information
about its conformation can provide essential information for drug design and pro-
tein engineering. While there are over a million known protein sequences, only a
limited number of protein structures are experimentally determined. Hence, pre-
diction of protein structures from protein sequences using computer programs
is an important step to unveil proteins’ three dimensional conformation and
functions. As a result, prediction of protein structures has profound theoretical
and practical influence over biological study. Pan [80] shows how to use ma-
chine learning methods with various advanced encoding schemes and classifiers
improve the accuracy of protein structure prediction. The explanation of how
a decision is made is also important for improving protein structure prediction.
The reasonable interpretation is not only useful to guide the “wet experiments,”
but also the extracted rules are helpful to integrate computational intelligence
with symbolic AI systems for advanced deduction. The author also presents
some preliminary results using SVM and decision tree for rule extraction and
prediction interpretation.

1.9 CI in Human Genetics

One goal of genetic epidemiology is to identify genes associated with common,
complex multifactorial diseases. Success in achieving this goal will depend on a
research strategy that recognizes and addresses the importance of interactions
among multiple genetic and environmental factors in the etiology of diseases
such as essential hypertension [50, 73, 91]. The identification of genes that influ-
ence the risk of common, complex disease primarily through interactions with
other genes and environmental factors remains a statistical and computational
challenge in genetic epidemiology. This challenge is partly due to the limitations
of parametric statistical methods for detecting genetic effects that are depen-
dent solely or partially on interactions. Recently, Marylyn et al. [74] took a
serious attempt to introduce a genetic programming neural network (GPNN)
as a method for optimizing the architecture of a neural network to improve
the identification of genetic and gene-environment combinations associated with
a disease risk. This empirical studies suggest GPNN has excellent power for
identifying gene-gene and gene-environment interactions. In [91] Marylyn et al.
continued their study to compare the power of GPNN to stepwise logistic regres-
sion (SLR) and classification and regression trees (CART) for identifying gene-
gene and gene-environment interactions. SLR and CARTare standard methods
of analysis for genetic association studies. Using simulated data,authors show
that GPNN has higher power to identify gene-gene and gene-environment inter-
actions than SLR and CART. These results indicate that GPNN may be a useful
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Fig. 1.8. The steps of the GPNN algorithm [91]

pattern recognition approach for detecting gene-gene and gene-environment in-
teractions in studies of human disease. We will briefly discuss their approach in
the following paragraphs. Their method contains six steps as shown in Figure 1.8
and described in brief as follows.

• Step-1: Set of GPNN parameters. GPNN has a set of parameters that must
be initialized before beginning the evolution of NN models. These include
an independent variable input set, a list of mathematical functions, a fitness
function, and finally the operating parameters of the GP. These operating pa-
rameters include number of demes (or populations), population size, number
of generations, reproduction rate, crossover rate, mutation rate, and migra-
tion [90].

• Step-2: Divide the data based on cross validation. The data are divided into
10 equal parts for 10-fold cross-validation. Here, we will train the GPNN on
9/10 of the data to develop an NN model. They test this model on the 1/10
of the data left out to evaluate the predictive ability of the model.

• Step-3: Generate an initial population. Training of the GPNN begins by gen-
erating an initial population of random solutions. Each solution is a binary
expression tree representation of an NN.

• Step-4:GPNN evaluation. Each GPNN is evaluated on the training set and
its fitness recorded.

• Step-5: The best solutions selection. The best solutions are selected for
crossover and reproduction using a fitness-proportionate selection technique,
called roulette wheel selection, based on the classification error of the training
data.

• Step-6: Classification and prediction error. Classification error is defined as the
proportion of individuals where the disease status was incorrectly
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specified. A predefined proportion of the best solutions are directly copied (re-
produced) into the new generation. Another proportion of the solutions is used
for crossover with other best solutions. The new generation, which is equal in
size to the original population, begins the cycle again. T‘his continues until
some criterion is met at which point the GPNN stops.

Another work introduced by Alison et al [74] which developed a grammatical
evolution neural network (GENN) approach that accounts for the drawbacks of
GPNN. In this study, they show that this new method has high power to detect
gene-gene interactions in simulated data. They also, compare the performance of
GENN to GPNN, a traditional Back-Propagation Neural Network (BPNN) and
a random search algorithm. GENN outperforms both BPNN and the random
search, and performs at least as well as GPNN. This study demonstrates the
utility of using GE to evolve NN in studies of complex human disease.

1.10 CI in Microarray Classification

A DNA microarray (also commonly known as DNA chip or gene array) is a
collection of microscopic DNA spots attached to a solid surface, such as glass,
plastic, or silicon chip, forming an array for the purpose of expression profiling,
monitoring expression levels for thousands of genes simultaneously. Microarrays
provide a powerful basis to monitor the expression of thousands of genes, in order
to identify mechanisms that govern the activation of genes in an organism. Short
DNA patterns (or binding sites near the genes) serve as switches that control
gene expression. Therefore, similar patterns of expression correspond to similar
binding site patterns. A major cause of coexpression of genes is their sharing
of the regulation mechanism (coregulation) at the sequence level. Clustering of
coexpressed genes into biologically meaningful groups helps in inferring the bio-
logical role of an unknown gene that is coexpressed with a known gene(s). Cluster
validation is essential, from both the biological and statistical perspectives, in
order to biologically validate and objectively compare the results generated by
different clustering algorithms.

Microarray classification has a broad variety of biomedical applications. Sup-
port Vector Machines (SVM) have emerged as a powerful and popular classifier
for microarray data. At the same time, there is increasing interest in the devel-
opment of methods for identifying important features in microarray data. Many
of these methods use SVM classifiers either directly in the search for good fea-
tures or indirectly as a measure of dissociating classes of microarray samples.
Peterson and Thaut [85] present study that describes empirical results in model
selection for SVM classification of DNA microarray data. Authors demonstrate
that classifier performance is very sensitive to the SVM’s kernel and model pa-
rameters. They also demonstrate that the optimal model parameters depend on
the cardinality of feature subsets and can influence the evolution of a genetic
search for good feature subsets. Their results suggest that application of SVM
classifiers to microarray data should include careful consideration of the space of
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possible SVM parameters. The results also suggest that feature selection search
and model selection should be conducted jointly rather than independently.

Tasoulis et al. [104] study and compare various computational intelligence
approaches such as neural networks, evolutionary algorithms, and clustering al-
gorithms, then they demonstrate their applicability as well as their weaknesses
and shortcomings to efficient DNA microarray data analysis.

Heterogeneous types of gene expressions may provide a better insight into
the biological role of gene interaction with the environment, disease develop-
ment, and drug effect at the molecular level. Liang and Kelemen [60] proposed a
Time Lagged Recurrent Neural Network with trajectory learning for identifying
and classifying the gene functional patterns from the heterogeneous nonlinear
time series microarray experiments. The proposed procedures identify gene func-
tional patterns from the dynamics of a state-trajectory learned in the heteroge-
neous time series and the gradient information over time. Also, the trajectory
learning with back-propagation through time algorithm can recognize gene ex-
pression patterns varying over time. This may reveal much more information
about the regulatory network underlying gene expressions. The analyzed data
were extracted from spotted DNA microarrays in the budding yeast expression
measurements, produced by Eisen et al. [26]. The gene matrix contained 79 ex-
periments over a variety of heterogeneous experiment conditions. The number
of recognized gene patterns in our study ranged from two to ten and were di-
vided into three cases. Optimal network architectures with different memory
structures were selected based on Akaike and Bayesian information criteria us-
ing two-way factorial design. The optimal model performance was compared to
other popular gene classification algorithms, such as nearest neighbor, support
vector machine, and self-organized maps. The reliability of the performance was
verified with multiple iterated runs.

Efficient and reliable methods that can find a small sample of informative
genes amongst thousands are of great importance. In this area, much research
is devoted to combining advanced search strategies (to find subsets of features),
and classification methods [44]. Juliusdottir et al. [49] investigate a simple evo-
lutionary algorithm/classifier combination on two microarray cancer datasets,
where this combination is applied twice–once for feature selection, and once for
further selection and classification. Their contribution are: (further) demonstra-
tion that a simple EA/classifier combination is capable of good feature discovery
and classification performance with no initial dimensionality reduction; demon-
stration that a simple repeated EA/K-NN approach is capable of competitive or
better performance than methods using more sophisticated preprocessing and
classifier methods; new and challenging results on two public datasets with clear
explanation of experimental setup; review material on the EA/K-NN area; and
specific identification of genes that their work suggests are significant regarding
colon cancer and prostate cancer.

Lin et al. [61] propose a genetic algorithm with silhouette statistics as discrim-
inant function (GASS) for gene selection and pattern recognition. The proposed
method evaluates gene expression patterns for discriminating heterogeneous
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cancers. Distance metrics and classification rules have also been analyzed to de-
sign a GASS with high classification accuracy. Moreover, the proposed method
is compared to previously published methods. Various experimental results show
that their method is effective for classifying the NCI60, the GCM and the SR-
BCTs datasets. Moreover, GASS outperforms other existing methods in both
the leave-one-out cross-validations and the independent test for novel data.

Identification of the short DNA sequence motifs that serve as binding targets
for transcription factors is an important challenge in bioinformatics. Unsuper-
vised techniques from the statistical learning theory literature have often been
applied to motif discovery, but effective solutions for large genomic datasets have
yet to be found. Mahonya et al. [65] present three self-organizing neural networks
that have applicability to the motif-finding problem. The core system in this
study is a previously described SOM-based otif-finder named SOMBRERO. The
motif-finder is integrated in this work with a SOM-based method that automati-
cally constructs generalized models for structurally related motifs and initializes
SOMBRERO with relevant biological knowledge. A self-organizing tree method
that displays the relationships between various motifs is also presented in this
work, and it is shown that such a method can act as an effective structural
classifier of novel motifs. The performance of the three self-organizing neural
networks is evaluated and analyzed using various datasets.

1.11 Conclusions, Challenges, and Future Directions

Computational Intelligence (CI) has increasingly gained attention in bioinfor-
matics research and computational biology. With the availability of different
types of CI algorithms, it has become common for researchers to apply the
off-shelf systems to classify and mine their databases. At present, with various
intelligent methods available in the literature, scientists are facing difficulties in
choosing the best method that could be applied to a specific data set. Researchers
need tools, which present the data in a comprehensible fashion, annotated with
context, estimates of accuracy, and explanation. The terms bioinformatics and
computational biology mean about the same. Recently, however, the US National
Institutes of Health (NIH) [126] came up with slightly different definitions, which
for the convenience of the reader are repeated below. Bioinformatics: Research,
development, or application of computational tools and approaches for expand-
ing the use of biological, medical, behavioral, or health data, including those
to acquire, store, organize, archive, analyze, or visualize such data. Computa-
tional biology: The development and application of data-analytical and theoret-
ical methods, mathematical modeling, and computational simulation techniques
to the study of biological, behavioral, and social systems.

The goal of motif finding is to detect novel, over-represented unknown signals
in a set of sequences. Most widely used algorithms for finding motifs obtain a
generative probabilistic representation of the over-represented signals and try to
discover profiles that maximize information content score. The major difficulty
for these algorithms arises from the fact that the best motif corresponds to the
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global maximum of a non-convex continuous function. Algorithms like Expec-
tation Maximization (EM) and Gibbs sampling are very sensitive to the initial
guesses and only converge to the nearest local maximum. A challenge here is to
develop a novel optimization framework that searches the neighborhood regions
of the initial alignments in a systematic manner to explore the neighborhood
profiles. Algorithms like PSO could lead to new and interesting avenues of re-
search.

The problem of cancer classification is another challenge. It has been divided
into two related but separate challenges: class prediction and class discovery [31].
Class prediction refers the assignment of samples to one of several previously de-
fined classes. Class discovery refers to defining a previously unrecognized tumor
subtype(s) in expression data. Both of these tasks are challenging and require
computational assistance. Class prediction via cluster analysis is typically used
to infer the function of novel genes by grouping them with genes of well-known
functionality in gene expression profiling. Genes that show similar activity pat-
terns are often related functionally and are controlled by the same mechanisms
of regulation. A major obstacle to the eventual utility of microarrays is the lack
of efficient methods for cataloging the data into coexpressed groups. A new way
of processing numeric data with large number of attributes versus low number
of objects turns out to be well-suited to the gene expression data. Furthermore,
tumors are not identical–even when they occur in the same organ, and patients
may need different treatments depending on their particular subtype of cancer.
Identification of tumor subgroups is therefore important for diagnosis and de-
sign of medical treatment. Most medical classification systems for tumors are
currently based on clinical observations and the microscopical appearance of the
tumors. These observations are not informative with regard to the molecular
characteristics of the cancer. The genes, whose expression levels are associated
with the tumor subtypes, are largely unknown. A better understanding of the
cancer could be achieved if these genes were identified. Furthermore, the disease
may manifest itself earlier on the molecular level than on a clinical level. Hence,
gene expression data from microarrays may enable prediction of tumor subtype
and outcome at an earlier stage than clinical examination. Thus microarray anal-
ysis may allow earlier detection and treatment of the disease, which again may
increase the survival rate.

Most universities and companies have the same reasons for pursuing biomarker
research: better diagnosis and better treatment for patients. According to Lynn
Rutkowski, co-leader of clinical translational medicine at Wyeth Company (a
global leader in pharmaceuticals, consumer health care products, and animal
health care products), “You need a strategy in place, so you have time to do the
research you need to fill in gaps and get biomarkers you have confidence in. There
are so many technologies emerging. The moment you commit to one, there is an-
other right behind it.” Both companies and researchers have already considered a
new approach of combining imaging technology text mining and biomarkers dis-
covery as a possible solution in future biometric research. For example, Wyeth
Company is investing almost $86 million for biomarker discovery, including ten in
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cardiovascular and metabolic disease, four in inflammation and seven in neuro-
science. This company has developed new markers using the ‘combine’ approach.
In stroke, for example, in addition to imaging technology, Wyeth has used re-
habilitation tools to measure patients’ responses. A robotic instrumentation has
been used for therapy that can also provide a quantitative assessment of motor-
function recovery. Another example includes Alzheimer’s disease (AD). AD has 11
compounds in development. One of these compounds is FK962. The company’s
long-term strategy involves molecular markets, structural and functional brain
imaging, and physiological, behavioral, and associative learning tests.

Another challenge is to combine gene expression research with noninvasive
imaging techniques. Eran Segal [93] and his collaborators hypothesized that the
global gene expression patterns of human cancers may systematically correlate
with their dynamic imaging features [93]. To address the challenges of relating
gene expression to imaging, the researches followed a three step methodology
and created an association map between imaging features on tree-phase contrast
enhanced CT scans and gene expression patterns of 28 human hepatocellular
carcinomas (HCC). First, the researchers defined and quantified 138 units of
distinctiveness named traits present in one or more HCCs. Second, the module
networks algorithm was implemented. The algorithm systematically search for
associations between expression levels of 6,732 well-measured genes determined
by mycroarary analysis and combinations of imaging traits. Third, the statistical
significance of the association map was validated by comparison with permuted
data sets, and by testing the prediction of the association map in an independent
set of tumors.

Paralleling the diversity of genetic and protein activities pathologic human tis-
sues also exhibit diverse radiographic features. It is proven that dynamic imaging
trails in noninvasive computer tomography (CT) systematically correlate with
the global gene expression profiles. For example: the association map of imaging
traits and gene expression revealed that a large fraction of the gene expression
program can be reconstructed from a small number of image trails. The expres-
sion variation in 6,732 genes was captured by 116 gene modules, each of which
was associated with specific combination of imaging trails. For each module, the
presence or absence of combination of imaging traits explained the aggregate ex-
pression level of genes within the module. The combinations of relevant imaging
trials are depicted in decision trees: each split in the tree is specified by variation
of an imaging trait, each terminal leaf in the tree is a cluster of samples that
share a similar expression pattern of module genes. Thus the association map al-
lowed the user to reconstruct the relative expression level of a gene (by mapping
it to a module) in a given HCC sample (by mapping it to a cluster) Across all
116 gene modules capturing 6,732 genes in the presented model, the difference
in the level of expression of member genes from their cognate module averages is
1.36- 1.33 fold. Thus the expression level of individual genes can be reconstructed
from imaging features with an average deviation of about twofold, within the ex-
perimental determination level allowed by microarray analysis. The experiment
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shows that only 8 imaging traits are sufficient to reconstruct the variation of all
116 gene modules [93].

The term cyber-infrastracture has been established by US National Science
Foundation (NSF) to address the needs for new mechanisms of information han-
dling and exchange. Eric Neumann, Director of Clinical Semantics Group at
MIT, has presented the following project as an example of text mining research:
NeuroCommons is a project within Science Commons at MIT. This project is
using text mining to extract neuro-molecular relations from text mining, repre-
senting them as RDF (Resource Description Framework). SWAN (Semantic Web
Applications in Neuromedicine) is an NIH-funded project that allows scientists
to directly annotate knowledge onto findings using RDF. The user interface
consists of a SPARQL–a query page that permits a wide variety of questions
regarding genes, neurological diseases, microanatomy, and publications. Exam-
ples include: “Find all publications with neural dendrites in their description;”
“Show all genes expressed in brain region CA1 involved in signal transduction;”
“Find all papers on Parkinson’s disease that involve gene products localized in
the nucleus;” etc. Results can be formatted as tables. In RDF additional tools
can process the data for enhanced scientific view. Tool such as Google can also
be applied to the output from a query. The future of cyberinfrastarcture for
bioinformatics and biomedical research is becoming a reality: a connected re-
search community more effectively utilizing data and computational resources
from different areas.

Also, intelligent support is essential for managing and interpreting this great
amount of information. One of the well-known constraints specifically related
to microarray data is the large number of genes in comparison with the small
number of available experiments. In this context, the ability of design methods
capable of overcoming current limitations of state-of-the-art algorithms is crucial
to the development of successful applications.

A combination of computational intelligence techniques in application to
bioinformatics and computational biology has become one of the most important
areas of research in intelligent information processing [24]. Neural networks show
their strong ability to solve complex problems for many bioinformatics problems.
From the perspective of specific rough sets approaches that can be applied, explo-
ration into possible applications of hybridizing rough sets with other intelligent
systems like neural networks, genetic algorithms, fuzzy logic, etc. to bioinfor-
matics and computational biology could lead to new and interesting avenues of
research. Moreover, algorithms like PSO or ACO and their variants involve a
large degree of randomness and different runs of the same program may yield
different results; so it is necessary to incorporate problem specific domain knowl-
edge in the Swarm Intelligence tools to reduce randomness and computational
time and current research should progress in this direction as well.

The main purpose of this chapter was to present to the CI and bioinformatics
and computational biology research communities the state of the art in CI applica-
tions to bioinformatics and computational biology, and to inspire further research
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and development on new applications and new concepts in new trend-setting
directions and in exploiting computational intelligence.
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Summary. The amount of biological and biomedical data being accumulated contin-
ues to grow at incredible rates. Having tools that can search through these enormous
databases is of critical importance to the advancement of research. Data mining is a
field of research in Computer Science that specializes in examining large collections of
data and extracting patterns that occur within the data. One useful technique for per-
forming data mining is through a genetic algorithm, a process that mimics evolution.
This chapter highlights data mining and the genetic algorithm technique, and it also
lists many applications where data mining tools have been beneficial to biological and
biomedical researchers, and lists some of the available data mining tools.

2.1 Introduction

Before 1994, predicting premature births was something of a shot in the dark.
It involved a lot of manual techniques and guess work, and the results were ac-
curate only about 38% of the time–less accurate than flipping a coin. However,
a paper published in 1994 [42] improved the accuracy of these predictions to a
colossal 88%, shattering the predictive power of earlier methods. This astounding
accuracy did not result from any new medical discoveries—in fact, no additional
laboratory work or testing of any kind was performed. Instead, the researchers
gathered data from three different large databases representing a mix of high-
risk and low-risk pregnant women in the United States. The data contained 214
pieces of information on 18,890 patients. Using this collection of patient infor-
mation and the known results of each pregnancy, the researchers then employed
a technique known as Data Mining to search the data and find patterns.

Data Mining offers a fresh perspective to research problems. Where most
research is done with a hypothesis-driven approach, data mining approaches the
problem from a different direction. Rather than test a hypothesis developed by
an expert, data mining derives hypotheses from the data itself, letting the data
essentially play the role of the expert. Sometimes human experts form opinions,
whether consciously or not, about the cause of a problem and their opinions drive
research and the development of predictive models. Sometimes these opinions
are erroneous or flawed and can lead research down the wrong path, resulting in
inaccurate predictive models. Data mining offers researchers the opportunity to
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examine data to see what insights the data might provide. By letting the data
speak for itself, new strides are being made in numerous research fields.

This chapter will provide an overview of data mining and genetic algorithms.
First, some basic concepts of Set Theory are provided to help readers understand
how data mining techniques describe patterns that lie within data. Some metrics
are then introduced to measure the quality of the patterns found in the data.
A portion of this chapter is dedicated to genetic algorithms and their ability at
finding solutions to very complicated problems, such as data mining. Toward the
end of the chapter, several examples of how data mining has benefited research in
biology are highlighted. The chapter concludes with a list of several data mining
tools that can benefit researchers.

2.2 Data Mining

Data mining is the process of finding patterns that lie within large collections
of data. Data mining is discovery-driven rather than assumption-driven [30]. As
the process searches through the data, patterns are automatically extracted.

In general, data mining objectives can be placed into two categories: descrip-
tive and predictive [11]. The goal of descriptive data mining is to find general
patterns or properties that lie within the data set. This often involves aggregate
functions such as mean, variance, count, sum, etc. In other words, descriptive
data mining reports patterns about the data itself. Predictive data mining, how-
ever, attempts to infer meaning from the data in order to create a model that
can be used to predict future data. This is often done by using data with known
results, and analyzing the properties those data elements have in common. The
common properties should be a reasonable predictor for the given result.

Another important concept is the difference between supervised and unsuper-
vised learning. Supervised learning takes place when data has been pre-classified.
In other words, the items in the data have already been placed into groups or
been assigned some value or result. For example, in a database about house
values, each item in the database will contain values such as the number of
bedrooms, square footage, etc. In supervised learning, each house will also be
assigned a monetary value, either by an expert or by the amount for which the
house actually sold. The goal of the data mining process is then to find the
patterns that result in a given value. Unsupervised learning, on the other hand,
occurs when data is not pre-classified. In these cases, the data mining process
cannot make value judgments. It can find correlations within data, but it is not
able to make any inferences about what those patterns might mean. Thus, unsu-
pervised learning is descriptive while supervised learning is predictive. In order
to make predictions, data must be classified, or given value, by some outside
source. In many cases, data can be classified using experimental or observable
results, such as which patients had a recurrence of cancer. In other cases, data
are classified by an expert, such as data using appraised property values for
houses.
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Some of the difficulties involved in data mining are problems with the data it-
self. When collecting data from various sources, they often have different formats,
collect different pieces of information, and have different protocols regarding the
data. For example, one set of records might contain a person’s age, while a similar
set of records from another source might not. Further compounding the problem,
even within the same source, data can be erroneous or even missing. Perhaps
the ages for some, but not all, of the people are recorded in the database. This
can make finding patterns in the data very difficult when records are incomplete
or inconsistent. Thus, a major task in data mining is in how to handle these
anomalies that occur within data.

There are many different approaches to data mining, and the different tech-
niques vary as widely as the data they are used to analyze. There are data mining
techniques implementing neural networks [26], clustering algorithms [7], genetic
algorithms [37], data visualization [40], and even hybrid approaches that attempt
to utilize the strengths of multiple techniques, such as combining neural networks
with genetic algorithms [38]. Rather than describe the various approaches, this
chapter will present the important concepts, applications, and tools, with a focus
on genetics algorithms.

2.3 Concepts

Several key concepts are essential to the field of data mining.

2.3.1 Set Theory

One fundamental concept is that of Set Theory. Set Theory can be defined as the
mathematical science of the infinite [20]. It studies the properties of sets, which
are then used to formalize all the concepts of mathematics. An important notion
of Set Theory is membership. For example, if a is a member of A (denoted as
a ∈ A), then the set A contains a as one of its members. A member is also referred
to as an element. All members of a set share similar properties as defined by the
set. For example, if set A is defined as the set of all mammals, then for any a, if
a is a mammal, then a is an element of A. Thus, a dog would be a member of A,
but a worm would not. All elements of A would share the properties that define
a thing as being a mammal, such as using lungs to breathe air. Other properties
do not necessarily hold, however. While some members of A live on land, it is
not reasonable to conclude that all members of A are land-dwellers. Thus, the
definition for any particular set is very important because the definition of the
set describes the common properties of its members. The term cardinality refers
to the number of elements in a set. If a set contains six elements, then that set
has the cardinality of six.

Another important concept of Set Theory is that of the subset. For a set A,
if all members of A are also members of set B, then A is a subset of B (denoted
as A ⊂ B). Every set can be broken into smaller sets, even if the smaller set
contains no elements. The set without any elements is called the “empty set.”
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If set B is the set of all living things, then set B could be broken into subsets
of animals and plants. The animals set could be further divided into mammals,
birds, reptiles, etc. The set mammals could be divided into subsets of dogs, cats,
humans, etc. Depending on how these sets were defined, the same element could
actually be a member of several different sets. For example, a dog could be a
member of the sets mammals, dogs, pets, and canines. A cat could also be a
member of the sets mammals and pets but that would not make it as a dog. It
would mean that cats and dogs do have some common properties.

Anything that is not a member of a set is said to be in the compliment of the
set. For any c such that c is not a member of A (c /∈ A), then c is a member
of the compliment of A (c ∈ A). This concept can also be referred to as not or
negation. Thus, if a is not a member of A then it is a member of A.

There are some important operations that can occur between sets to define a
new set, namely, intersection and union. These operations can also be thought
of as logical and and or, respectively. The intersection of two sets is the set of
elements that are common to both sets. Set C is the intersection of sets A and B
if all elements of C are also elements of A and B (denoted as A∩B). For example,
if A is the set of people who wear glasses and B is the set of people under age
20, the the intersection of the two sets would be the set of people under age 20
who wear glasses. The intersection of two sets can be empty, meaning that there
are no elements that occur in both sets. The intersection can also be referred to
as the AND operator.

The union of two sets is the set of elements that occur in at least one of the
sets. Set C is the union of sets A and B if all elements of C are also elements of
A or B (denoted as A∪B). The union operation is an inclusive or, meaning that
the elements of C must occur in A, or B, or both. There is another operation
called an exclusive or in which the elements must occur in one or the other set,
but cannot occur in both (sometimes expressed as A⊕ B). If A is defined as the
set of all canines and B is defined as the set of all pets, the the set A ∪ B would
include cats (which are pets), dogs (which are pets and canines), and wolves
(which are canines). The set A⊕B would include cats and wolves, but not dogs.
The union is also referred to as the OR operator and exclusive or is referred to
as the XOR operator.

Crisp Sets

The sets used in classical set theory are often called crisp sets. This is because
the size of the sets, the number of elements, and the identity of the individual
elements are all very well defined. An example of a crisp set could be the number
of books on a specific bookshelf. Membership in the set is easily determined—if
a book is on the bookshelf, then it is in the set; books not on the shelf are not in
the set. The cardinality (number of elements in the set) can be easily calculated
by counting the books on the shelf. Questions about membership are also easily
answered (e.g., Does the set contain War and Peace? or What are the titles of
all books in the set?). However, there are many real-world situations which are
difficult to define in terms of crisp sets.



2 Data Mining and Genetic Algorithms 53

Rough Sets

Because crisp sets are sometimes difficult to represent precisely, they are some-
times defined using two rough sets. A rough set approximates the upper and
lower bounds of a set, also known as its upper and lower approximation, that
is otherwise difficult to define precisely. The upper and lower bounds are sets
themselves. If X is a set that is difficult to define as a crisp set, then set A can
be the lower bound for set X ; and set B can be the upper bound for set X . The
definition for set A would be such that all elements of A are definitely elements
of set X . In other words, A ⊆ X . Set B is given a much broader definition so
that it contains at least some of the elements in X so that B ∩ X �= ∅ [27].

Rough sets are useful when dealing with uncertainty or ambiguity. For exam-
ple, if it is unclear as to which set a particular element should belong, a rough
set can be created to include the unknown element. Rough sets can also be used
to make space for elements which do not fit well into a crisp set, but must be
placed into a single set. For example, considering two bookshelves where one
is comprised entirely of books about mathematics and the other only contains
philosophical texts, if a history book has just been purchased and must be placed
on a shelf, with which books should it be included? It does not belong on either
shelf according to their current definitions. Regardless of which shelf it is placed
on, the definition for the books on that shelf becomes a rough set (either math
and history books, or philosophy and history books).

Fuzzy Sets

Sometimes there are elements that only partially belong to a set and the defini-
tion of membership becomes a little blurry, which is where fuzzy sets are useful.
Fuzzy sets allow an individual element to partially belong to multiple sets at the
same time, a concept that cannot be handled with crisp sets. Each element in a
fuzzy set is given a membership value indicating the degree to which the element
belongs in the set [34]. For example, if A is the set of weekdays and B is the set
of weekend days, the to which set does Friday belong? In crisp sets, Friday is a
weekday because the weekend only consists of Saturday and Sunday. However,
to many people Friday is part of the weekend. Using fuzzy sets, Friday could be
assigned to set A with 60% membership and to set B with 40% membership.
Thus, fuzzy sets allow for partial membership and can even be used to make
claims such as element x is more of a member of the set than element y.

2.3.2 Decision Tables

Decision tables are similar to tables in a database. Each row in the table is called
a tuple and represents one specific item such as a house, an employee, a business,
a car, etc. Each column in the table is an attribute and is used to describe each
tuple in the table. What distinguishes a decision table from a database table
is that the decision table has some decision (or classification) associated with
each tuple. The attributes can be thought of as a condition, with the decision



54 C.M. Taylor and A. Agah

Table 2.1. Decision table indicating conditions for reimbursement from insurance

Tuple Deductible Type of Participating Reimbursement
# Met Visit Physician
1 yes office yes 90
2 yes office no 50
3 yes hospital no 80
4 yes kab no 70
5 no office yes 0
6 no office no 0
7 no hospital no 0
8 no lab no 0

being associated with that condition. Table 2.1 is an example of a decision table
indicating the conditions for which a patient will receive different percentages of
reimbursement from their health insurance provider.

There are eight tuples in Table 2.1, each representing a different condition
under which a patient might apply for a reimbursement from the insurance
company. Each tuple can take on a different value for each attribute. As seen in
the table, there are three types of visits: office, hospital, and lab. The other two
attributes only have two possible values of yes or no. Thus, each tuple can be
described by using the values of the attributes. The decision in this table is the
reimbursement attribute. The combination of an attribute with a value is called
a feature [22]. For example, (type of visit, office) is a feature—it specifies that
the type of visit was an office visit.

Some of the combinations of attributes in Table 2.1 are missing, such as a
hospital visit that is also a participating physician. In order to cover all possible
combinations of features in the first three attributes of the table, only 12 tuples
would be required. Real world data, however, can have millions or even billions
of tuples.

2.3.3 Rule Induction

Rule induction is the process of taking the data and searching for meaningful
patterns that can be described in terms of features. The result is a set of rules
that describe the patterns in the data. Each rule consists of two parts: the
antecedent, and the consequent [33]. The antecedent, or left-hand side, of the
rule is the condition that must be met for the rule to be applicable. It is the if
part of the rule. The consequent, or right-hand side, of the rule is the action or
decision that follows if the antecedent is true. If the antecedent is true, then the
consequent follows. A sample rule from Table 2.1 is:

(deductible met, no) → (reimbursement, 0%)

This rule can be read as “if the deductible is not met then there is 0% re-
imbursement.” If the antecedent of (deductible met, no) is true, then the con-
sequent of (reimbursement, 0%) is true. This does not hold when reversed,
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however—the antecedent does not follow from the consequent—receiving 0% re-
imbursement does not necessarily mean that the deductible was not met because
there are other conditions when a 0% reimbursement might result. The example
rule describes tuples 5, 6, 7, and 8 as to how those conditions are reimbursed.
It does not cover tuples 1 through 4 because they have (deductible met, yes).
More rules need to be induced to cover the first four tuples. Thus, by creating a
suitable set of rules, all of the patterns in the decision table can be described.

A consequent can be described by a single set in the antecedent, i.e., one
feature can be used to describe a result. However, this occurs very rarely in
the real-world data. It usually requires a combination of sets to provide an ad-
equate classification that does not include members from other consequents.
These sets have to be separated by set operators. The set operators describe how
the sets relate to one another. Without set operators, the meaning of the rule
is ambiguous. For example: (deductible met, yes) (participating physician, yes)
→ (reimbursement, 90%) does not have a set operator. From Table 2.1, it is ap-
parent that for the consequent to be true, a tuple must be a member of both sets
in the antecedent, requiring that an AND operator be placed between the two
sets. If an OR operator had been used then tuples 1 through 5 would be mem-
bers of the antecedent. Tuples 1 through 4 are members of (deductible met, yes)
and tuple 5 is a member of (participating physician, yes). Regardless of the
antecedent, only tuple 1 would be a member of the consequent. The AND oper-
ator makes the rule correct. The OR operator would make the rule correct only
one-fifth of the time. However, there are times when the OR operator is more
appropriate: (age, 15)OR(age, 17) → (age group, teen) Changing this OR to an
AND would mean that there must be a tuple that has ages of both 15 and 17 in
order to be a teen.

The four most common set operators used in data mining are:

• Y AND Z: must be a member of both sets Y and Z.
• Y OR Z: is a member of at least one of the sets Y and Z.
• Y XOR Z: is a member of only one of the sets Y and Z.
• NOT Z: is not a member of Z.

Using sets and set operators, complex statements can be constructed about
the data. This is necessary because the patterns within the data rarely allow for a
single set to be used as the antecedent for a rule. Statements can be constructed
with sets and set operators that allow rules to make unique classifications.

2.3.4 Confusion Matrices and Quality Metrics

When discussing the results of a data mining model, the two common measures
are sensitivity and specificity. Sensitivity (often called the true positive rate)
measures the percentage correctly identified as positive out of the total num-
ber of positives. Specificity (often called the true negative rate) measures the
percentage correctly identified as negative out of the total number of negatives.
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A method to discuss sensitivity and specificity is to use a confusion matrix [41].
A confusion matrix is an L × L matrix, where L is the number of different label
values. Table 2.2 is an example of a confusion matrix.

In the confusion matrix, quadrant a denotes those tuples that were predicted
as negative and were actually negative. Quadrant b is composed of those tuples
that were predicted as positive but were actually negative, also known as false
positives. Quadrant c is those tuples which were classified as negative but were
actually positive, also known as false negatives. Quadrant d contains the tuples
that were classified as positive and were actually positive [22]. Thus, using the
confusion matrix, it is easier to define a few metrics:

Accuracy = (a + d)/(a + b + c + d)

Sensitivity(TruePositiveRate) = d/(c + d)

Specificity(TrueNegativeRate) = a/(a + b)

Precision = d/(b + d)

FalsePositiveRate = b/(a + b) = 1 − Specificity

FalseNegativeRate = c/(c + d) = 1 − Sensitivity

• Accuracy is the percentage of tuples that are correctly classified out of all
the tuples that are given a classification.

• Sensitivity (sometimes called recall) is the percentage of positive
classification.

• Specificity is the percentage of negative classification.
• Precision indicates the number of exceptions to a rule. For example, a preci-

sion of 4/5 indicates that there is 1 exception to the rule.
• False Positive Rate is the percentage of tuples that are classified as positive

but in reality are negative.
• False Negative Rate is the percentage of tuples that are classified as negative

but in reality are positive.

There is one more metric which is useful when discussing the quality of a data
mining model, and that is coverage. The coverage of a model is the proportion
of the data for which there is a rule. Thus, a model which has 90% coverage

Table 2.2. A 2 × 2 confusion matrix

Predicted Negative Predicted Positive
Actual Negative a b

Actual Positive c d
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provides rules which classify 90% of the tuples. Coverage only means that a
classification is made. It does not measure the accuracy of the classification.

Using these seven metrics, the results of a data mining model can be evaluated.
This allows for reasonable comparisons to be made between different models.

One popular method of comparing the quality of different models is the Re-
ceiver Operating Characteristics curve, also known as the ROC curve [15]. The
vertical axis of the ROC curve represents the sensitivity of the model, and the
horizontal axis represents the false positive rate. The ROC curve is useful for
determining cutoff points in testing so that true positive results are maximized
while the false positive results are minimized. The ROC curve illustrates a chal-
lenge shared by researchers and data miners—the more sensitive a test or model
becomes, more false positives are also likely to result.

2.4 Genetic Algorithms

Genetic algorithms, or GAs, are based upon evolutionary principles of natural
selection, mutation, and survival of the fittest [12]. GAs are different from most
computer algorithms, which have well-defined techniques for coming up with
solutions to problems. The genetic algorithm approach is to randomly generate
a large number of potential solutions in a search space and then evolve a solution
that is suitable for the problem. Genetic algorithms are a useful technique for
performing data mining. However, GAs are not the only technique used for data
mining, nor are they exclusive to data mining, having been applied to numerous
other problems as well.

2.4.1 Genetic Algorithm Techniques

One of the big keys to a successful genetic algorithm is in the development of a
good fitness function. The fitness function determines how the algorithm evalu-
ates each potential solution and defines the problem to be solved. For example, if
the purpose of the genetic algorithm is to design a car, then the fitness function
will provide a means for evaluating the fitness of a car design.

When developing a genetic algorithm, one must decide how each solution will
be represented in the algorithm. For simplicity, a string of bits is most often
used. The bits can be used to represent any part of the solution. Taking the car
example, some of the bits might represent the color of the car, others the size
of the wheels, and others the gas mileage of the car. It is the responsibility of
the fitness function to understand what the bits mean and how to use them to
evaluate the fitness of each potential solution.

During the first iteration of a GA, it generates an initial population of poten-
tial solutions. Usually this is done randomly. Each member of the population is
then examined and its fitness is evaluated and recorded. Once each member of
the population has been evaluated, then the next generation is produced from the
current generation. There are many ways of creating the next generation, but the
two most popular techniques involve “crossover” and “mutation.” In crossover,
two members of the population are chosen at random with higher probability
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given to the more fit members of the population. These two members are then
combined to produce two offsprings. This is usually performed by selecting a
position in the bit sequence and exchanging the two sequences after that posi-
tion, which is called the crossover point. For example, given the following two
members of a population: 111010100 and 100101000, if these were crossed over
at position 4, the resulting offsprings would be: 111001000 and 100110100.

This process results in two new members in the next generation. In theory,
these two new members should be reasonably more fit because they likely came
from fit members in the previous population. Each member of the population is
assigned a biased probability of selection. Because of this increased probability
of selection, the most fit members of a population are more likely to be selected
for crossover. However, there is always a possibility that a less fit member will
be selected instead.

Usually, the crossover process continues until the size of the next generation
is the same as the population size of the previous generation. After crossover has
taken place, mutation is then applied to each member of the population. A typical
mutation function is to assign a probability for flipping each bit. Thus, if a 10%
value for mutation is assigned, then each bit of each member of the population
has a 10% chance of being flipped, i.e., a 0 becomes a 1, and a 1 becomes a 0.
After mutation is completed, each member of the new generation is evaluated for
fitness and the process repeats for another generation. This process of evolving
new populations continues until some stopping criterion is met. The stopping
criteria could be when: (a) the overall fitness of the population reaches a certain
value, (b) the overall fitness over several generations fails to change more than a
specified threshold, or (c) a certain number of generations have been evaluated.

There are different ways to perform crossover and mutation. Genetic opera-
tors can also differ between GAs. The choice of genetic operators depends on
the problem to be solved and the fitness function used to evaluate potential
solutions. The genetic operators should reflect ways in which a member of the
population could potentially become more fit; and thus a better solution to the
problem. Regardless of the approach, the overall process remains the same: gen-
erate an initial population, evaluate the members of the population, generate a
new population based upon the more fit members of the previous generation,
and repeat the process until a certain stop criteria is achieved.

2.4.2 Applications of Genetic Algorithms

Genetic algorithms are powerful search tools. By search it is meant that GAs are
capable of pouring through a large number of potential solutions to find good
solutions. Scheduling has been an area where genetic algorithms have proven
very useful. The GA searches the space of potential schedules and finds those
schedules which are most effective, and maximize the desired criteria, such as
minimizing idle time. For example, GAs are used by some airlines to sched-
ule their flights [12]. It was reported that an application of GAs to a financial
problem—tactical asset allocation and international equity strategies—resulted
in an 82% improvement in portfolio value over a passive benchmark model, and
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a 48% improvement over a non-GA model used to improve the passive bench-
mark [12]. GAs have also been applied to problems such as protein motif dis-
covery through multiple sequence alignment [23], and obtaining neural network
topologies [36]. More information on genetic algorithms can be found in [19].

2.4.3 Genetic Algorithms for Data Mining

There are currently two different approaches to rule discovery in data mining
using genetic algorithms, namely, the Michigan approach and the Pittsburg ap-
proach [2]. The Michigan approach represents a rule set by the entire population,
with each member of the population representing a single rule. The Pittsburg
approach represents an entire rule set with a single representation, thus each
member of the population represents an entire set of potential rules for describ-
ing the data.

Data sets are either single-class or multi-class. This refers to the number of
possible values for the decision class. If there is only one decision value, all of
the rules will describe that value—thus it is a single-class set. In a multi-class
set, there are multiple decision values in the data (but each rule describes a
single value). Table 2.1 is a multi-class set because there are multiple values for
the “reimbursement” decision. The Michigan method is useful for multi-class
problems, but it suffers in that there is no way to ensure a high coverage of the
data by evaluating a single rule at a time. The Pittsburg approach has been used
to learn rules for a single class. In order to induce rules for multiple classes, the
algorithm needs to be run multiple times.

In their experiments, [2] used the Pittsburg approach to great success. They
compared the results of their data mining model, DMEL, developed by a genetic
algorithm, to the results developed by C4.5, a very popular and well-known data
mining algorithm that uses decision trees [29]. The experiment included seven
different data sets that were diverse in nature. In each instance, the genetic
algorithm produced more accurate results than C4.5, ranging from as little as
0.3% up to a 13% improvement in accuracy [2].

In their work, [16] concluded that genetic algorithms are well suited to undi-
rected data mining, but can also be used for directed data mining. Undirected
data mining is the most common form, where the program looks for patterns
and describes them. In directed data mining, the user specifies the type of infor-
mation in which they are interested. Using the Michigan approach, GA-MINER
was able to find interesting, non-trivial rules within the data sets used for the
experiment. They also posed an idea for “hypothesis refinement” in which the
user could “seed” the genetic algorithm with a rule or set of rules which the
GA can use as an initial population. In this way, the GA can refine the initial
hypotheses to produce a better model for the data.

Thus, genetic algorithms can be extremely useful in data mining. They can
start with a random set of hypotheses about the patterns within the data. They
can then evolve these hypotheses and refine them until they reflect the real pat-
terns that lie within the data. They can even start with a given set of hypotheses
and attempt to refine them to reflect the patterns within the data.
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2.5 Data Mining in Biology

There are numerous examples where data mining has benefited research in bi-
ology. Several of them are included in this section. The first two examples show
how generating a common database has helped open the door for data mining
and how it has helped research in those areas. Examples three through eight
show how data mining has helped in the study of genomics and proteomics.
Lastly, example nine shows how data mining can be used with many diverse
data sets to find patterns within the data and hopefully give researchers new
insights.

2.5.1 Measuring Biodiversity

Researchers with the Global Mountain Biodiversity Assessment GMBA [18] are
encouraging the data mining of the various geo-referenced archive databases
on mountain organisms. These databases contain geographical coordinates and
altitude specifications with respect to where each organism was observed or
collected. Using this geo-referenced data, biological and geophysical information
can be linked together and used to test evolutionary and ecological theories
across the worlds mountain ranges. The ability to separate global from regional
geographic features offers new perspectives in how species adapt. In June 2006,
GBMA held a meeting to promote data mining by bringing together database
experts with biological experts.

2.5.2 Analysis of Protein Expression

A large number of proteins expressed in bacterial hosts form inclusion bodies,
where proteins interact with each other, making it necessary for researchers to
be able to isolate proteins for study. This process involves separating out the
proteins in the inclusion body and then refolding the protein of interest back
into its correct form. Thus, there is a need for highly efficient methods of protein
folding that minimize miss-folding and other reactions that limit research [8].

Typically, refolding experiments are done on an individual protein basis and
are published in a non-standardized fashion, making data mining for a particular
method practically impossible. Instead, researchers have had to perform exhaus-
tive manual searches through the literature. This led [8] to create a relational
database for protein refolding methods. The REFOLD database encourages a
standard for reporting methods, and establishes a central repository that can be
easily searched. Researchers can deposit new methodologies into the database,
thus allowing for dissemination of their results quickly throughout the scientific
community.

By creating a standard for reporting of methods and results, as well as a
central repository for those methods and results, researchers can now quickly gain
access to the information they need. This also opens the door for opportunities in
further data mining to see what successful refolding techniques have in common
and could perhaps also assist in the prediction of protein structure.
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2.5.3 Genome Annotation

Following the significant contributions of genome sequencing projects, there has
been an increasing need for applications capable of examining these incredibly
long sequences for biological data. There is an abundance of genomic informa-
tion, but gathering knowledge from that information is a major challenge for
bioinformatics today. In order to address this challenge, [6] developed a hy-
brid Bayesian statistical method to supply protein functional annotation in the
yeast Saccharomyces cerevisiae. Their method involves an integration of micro-
array profiles, protein complexes, and large-scale biological data such as yeast
two-hybrid data, a method used to test for protein interaction [17]. Their ap-
proach quantified the relationship between functional similarity and the actual
sequences themselves. This was done through a functional linkage graph, where
each node of the graph represents a protein, with links to other proteins. Each
link has a weight associated with the Bayesian probability that the two proteins
have similar functionality. Their predictions also included evolution information
and protein subcellular localization information. This technique was able to as-
sign function to 1,802 out of 2,280 (79%) unannotated proteins in yeast.

2.5.4 Analysis of Gene Expression

Analyzing micro-array data is a critical task for many researchers. Often, the
most important goal is to identify small sets of genes that share coherent expres-
sion (all similarly up-regulated or down-regulated) across a limited number of
the tested conditions. It is also important to discover which conditions are the
ones related to the expression of these gene sets, and how these conditions re-
late to conditional covariates such as disease diagnosis or prognosis. Researchers
have developed a data analysis package that facilitates visualization and subse-
quent data mining of the independent sources of significant variation present in
gene micro-array expression datasets [32]. They applied their work to two public
datasets, highlighting sets of genes most affected by specific subsets of conditions
(e.g. tissues, treatments, samples, etc.). Statistically significant associations for
highlighted gene sets were shown via global analysis for Gene Ontology term
enrichment. Together with covariate associations, the tool provides a basis for
building testable hypotheses about the biological or experimental causes of ob-
served variation.

This resulted in an unsupervised data mining technique for diverse micro-
array expression datasets that is distinct from major methods now in routine
use. Test cases, based on publicly available gene annotations, appear to identify
numerous sets of biologically relevant genes. In instances where there are many
diverse conditions (tens to hundreds of different tissues or cell types), a difficult
situation for many clustering and ordering algorithms, this technique has proven
especially effective. This approach also shows promise in other domains such as
multi-spectral imaging datasets.
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2.5.5 Analysis of Regulation

Micro-array experimentation often yields thousands of results that need to be
analyzed. It is difficult for biologists to interpret and assimilate these results due
to the sheer volume of measurements taken per experiment. A different type
of micro-array, called a yeast deletion array, allows researchers to examine the
effects of some reporter system when each of the approximately 5,000 genes on
the array is knocked out [10]. The Aryl Hydrocarbon Receptor (AHR) is a protein
that can act as a transcription factor. When a cell is exposed to various toxic
chemicals, the AHR system turns on the expression of certain genes. One of the
tasks of the KDD Cup Challenge in 2002 was to discover which genes played a
role in the performance of the AHR signaling pathway. Data miners were given a
large volume of information, including the known function of proteins expressed
by many of the genes, the interaction between proteins, and over 15,000 journal
abstracts with annotations to the genes associated with the abstracts. None of
the teams entered in the competition had better than 70% accuracy, indicating
that this is a very difficult problem for data mining, but an impossible problem
without it, given the sheer volume of information involved.

2.5.6 Analysis of Mutations in Cancer

It is believed that there is a link between a family history of cancer and various
genetic mutations. In research performed by [13], data mining was used to see if
there was a correlation between specific mutations and related forms of cancer.
They examined patients who had undergone gene testing and tested positive for
mutations associated with cancer and who also had a family history of cancer.
The features they chose to examine were:

1. Itemized cancers among the patients relatives
2. Relationship of cancer-affected relatives to the patient
3. Age of onset of cancers
4. Evidence of vertical transmission
5. Evidence of cancer in same generation
6. Repetition of identical cancers in the family
7. Level of overall cancer occurrences

Their data set of patients focused on those with confirmed mutations in genes
associated with breast or ovarian cancers. The rules that resulted from data
mining all showed an early age of onset for the cancers. Nearly all of the rules
showed an intense family tree of cancer, with three or more cases of cancer within
one generation of each other.

While this approach did not yield any new scientific knowledge (there was al-
ready research that established a link between these mutations and the cancers),
the fact that the results are supported by the existing literature gives validity
to the use of data mining in establishing links between specific mutations and
hereditary forms of cancer. Thus, data mining has the potential to tremendously
improve the treatment of cancer by finding more correlations that can be used
in genetic screening for cancer mutations.
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2.5.7 Prediction of Protein Structure

Analyzing proteins based upon their amino acid sequences has been the focus of
many research efforts. The function of a protein is determined by its structure,
which is determined by the amino acids that comprise the protein. Thus, by
being able to predict the structure of an amino acid sequence, the function of
the protein can then be inferred by comparing it to other proteins with similar
structure.

[5] used a data mining algorithm called LEM2 (”Learning by Examples Mod-
ule”) to examine protein families for motifs (amino acid sequences that char-
acterize a family of proteins). They examined ten different families of proteins,
using 40 examples of each protein from different species. The proteins were then
broken down into overlapping subsequences containing three amino acids each.
Ignoring the order of the sequences, LEM2 was able to induce rules that could
uniquely classify proteins into the correct families. The resulting model was 96%
accurate but was only able to make predictions for 74% of the data. Thus, it
found potential motifs for the families, but there was a gap in the coverage of the
model—it was unable to make a decision for 26% of the proteins investigated.
Further work is being done to see if the predictive model could be improved by
taking into account the order of the amino acid subsequences.

2.5.8 Comparative Genomics

The entire genomes of many organisms have been sequenced. By using data min-
ing techniques on these sequences, different kingdoms of life can be compared
and contrasted, potentially giving insight into how the organisms evolved differ-
ently. In a study by [24] data mining tools were used to compare the kingdoms
of archaea, eubacteria, and eukaryota. The results showed common features and
different patterns in the protein evolution of the organisms. The researchers
used principle component analysis of the various proteins and discovered that
a majority of the proteins clustered closely together, with only a few outliers.
Within these outlying proteins are the likely reasons for difference between these
organisms.

2.5.9 Analysis of Data Sets

At the heart of data mining is the idea that patterns lie within data, and
that by uncovering these patterns that lie within previously collected data, new
knowledge can be acquired. The number of medical records residing in hospi-
tal databases is astronomical, with a wealth of information that remains largely
untapped. This is the driving force behind Arcanum [37], a data mining system
that uses genetic algorithms to manipulate rules that can be used to describe
patterns within any set of data. Arcanum has been used to examine the recur-
rence of breast cancer after different kinds of treatment and to develop rules for
predicting the malignancy of cancer tumors. Future tasks for Arcanum include
mining large databases of patient records in hopes of discovering causes and/or
treatments for particular forms of illness.
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2.6 Data Mining Tools

There are numerous data mining tools and resources available on the Internet,
including many which specialize in bioinformatics applications. A few of these
tools are highlighted in this section. Because there are many different domains
and problems within biological and biomedical research, the tools used to analyze
these problems are also very different from one another.

2.6.1 Protein Prospector

The Protein Prospector [28] is a data mining tool that allows users to search
protein databases using mass spectrometry data. With the numerous pre-filters,
users can limit searches to within a particular species, a series of accession num-
bers, or can even pre-filter the searches based upon protein names.

2.6.2 BLAST

The Basic Local Alignment Search Tool (BLAST) [3] is used for comparing ge-
nomic or proteomic sequences against public databases in order to find matches.
It is very useful for helping researchers to identify a protein or a genetic sequence,
or to find similar sequences in other organisms, thus giving the researcher insight
into potential functions for the protein sequence. There are several different ver-
sions of BLAST which allow for different kinds of searches, such as matching a
protein to the DNA sequence that codes the protein.

2.6.3 Fasta

Fasta [14] is a sequence search program similar to BLAST that allows researchers
to match proteins to proteins, DNA to DNA, or even to match protein se-
quences with the DNA sequence that codes for the protein. Fasta is able to
perform matches quickly because it uses many customizable parameters to limit
the number of potential matches upfront.

2.6.4 CDART

The Conserved Domain Architecture Retrieval Tool (CDART) [4] allows the
users to enter a protein sequence or accession number. It then lists the func-
tional domains that comprise the protein and searches for other proteins with
similar domain structures. Unlike BLAST and Fasta, CDART does not perform
a direct sequence similarity search. Instead, it looks at functional annotations
and retrieves proteins that have similar conserved domains.

2.6.5 VAST

The VAST Search [39] tool performs a structure to structure similarity search.
It compares actual 3D coordinates of a protein structure to the 3D structure of
other proteins. The results are shown graphically, so that the users can compare
the images of the structures and even superimpose one structure on the other
to examine similarities and differences.
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2.6.6 Tanagra

Tanagra [35] is a free data mining software package. It is open source, so users can
add their own algorithms or modules to it. The source code is written in Delphi
6. It implements construction of decision trees, clustering, factorial analysis,
feature selection, and many other algorithms of use.

2.6.7 Other Resources

Other Websites offer free tools, or links to tools, including [1] which contains an
extensive list of tools ranging from sequence analysis to phylogeny and protein
splicing, [25] which includes a list of data mining tools available from the Na-
tional Center of Biotechnology Information (NCBI), and [9] where their Gene
Workbench is a free software download that provides data management and
analysis tools.

2.7 Conclusion

This chapter has provided an overview of data mining and genetic algorithms and
how they pertain to biological and biomedical research. Data mining is unlike
traditional forms of research in that it is data-driven rather than hypothesis-
driven. It searches through data to find the hidden knowledge buried within. As
such, data mining is domain independent—it can be used in many different fields
using many different types of data. Because it is data-driven, data mining does
not require expertise within the field from whence the data originate. However,
for the results to be useful, experts must examine the outcomes of data mining
to determine if any useful knowledge has been gained. Thus, data mining encour-
ages interdisciplinary studies between data miners and experts of the field being
studied. As the amount of biological data continues to grow, it is increasingly
important for researchers to have access to the tools that data mining provides.

The examples of data mining applications in biology show the importance of
generating central repositories for biological data so that data mining can be
performed. Collecting the diverse forms of data together into a standardized for-
mat can be a difficult task, but researchers are seeing the benefits that can result
when the vast data available is gathered and mined. Other examples showed the
success of data mining in genomics and proteomics, where there are tremendous
amounts of high-throughput data that require analysis.

Because data mining is proving to be very valuable to researchers, and because
there is such a vast amount of information needing to be mined, there are many
data mining tools available. Some tools are very specialized, while others are
generalized. A select list of some of the data mining tools relating to biology have
been provided, including some Web sites that contain links to large numbers of
such tools.

The amount of data available to researchers is enormous and continues to
grow. In fact, biological data is growing at an exponential rate as more and more
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researchers contribute their findings. Data mining is currently one of the best
hopes for handling such vast amounts of information. There is also tremendous
potential to find patterns and to make discoveries that have gone overlooked
in this wealth of information. Data need to be collected and mined and then
presented to the experts to see if perhaps some new discovery or lead can be
uncovered. It is possible that the secrets to curing some of the world’s diseases
already lie within the data currently accumulated, just like the secret to helping
prevent premature births was waiting in the information previously collected.
Through data mining, it is entirely possible that more can be learned from what
is already known.
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Summary. The Rough Sets methodology has great potential for mining experimental
data. Since its introduction by Pawlak, it has received a lot of attention in the comput-
ing community. However, due to the mathematical nature of the Rough Sets method-
ology, many experimental scientists lacking sufficient mathematical background have
been hesitant to use it. The goal of this chapter is twofold: (1) to introduce “Rough
Sets” methodology (along with one of its derivatives, “Modified Rough Sets”) in a
non-mathematical fashion hoping to share the potentials of this approach with a larger
group of non-computationally-oriented scientists (Mining of one specific form of im-
plicit data within a bio-dataset is also discussed), and (2) to apply this methodology
to a dataset of children with and without Attention Deficit/Hyperactivity Disorder
(ADHD), to demonstrate the usefulness of the approach in patient differentiation. Dis-
criminant Analysis statistical approach as well as the ID3 approach were also applied to
the same dataset for comparison purposes to find out which approach is most effective.

3.1 Introduction

Data Mining provides methodologies for finding patterns of interest in a given
dataset, experimental bio-dataset or otherwise. There are six general types of
patterns of interest and they are discovered from a given dataset by Association
Analysis, Classification and Prediction, Cluster Analysis, Outlier Analysis, Evo-
lution Analysis, and Data Dependency Analysis [1]. In this chapter, the focus
will be on Classification and Prediction. Classification is the process of finding
a model (or function) that is able to describe and distinguish data classes or
concepts within the dataset. Prediction is the process of using such a model to
predict the class of those objects that are new to the dataset and whose class
labels are unknown [2, 3, 4].

There are many methodologies that can be used to find a classification model
for a dataset. Some of these methodologies are: Rough Sets [5], Neural Networks
[6, 7, 8, 9], Genetic Algorithms [10, 11, 12], Fuzzy Logic [13, 14], Decision trees
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[15, 16], Statistical Methods [17, 18], and many different Hybrid methodologies
[11, 14, 19, 20, 21, 22, 23, 24]. For all of these methods, the goal is to mine a
dataset for “implicit” data . By implicit data, it is meant that the data that are
hidden in the semantics of the observations. One specific type of “implicit” data is
the relationship between “cause” and “effect” in some clinical and experimental
studies. For example, it is desirable to mine datasets to determine a model
that captures the relationship(s) between the toxic effect of a chemical agent
(a dependent variable) and the conditions under which the subject was exposed
to the toxic agent (independent variable). This specific type of implicit data
provides the basis for building diagnostic, extrapolative, pedagogical, and many
other predictive systems with a variety of applications.

Based on previous observations it is clear that the Rough Sets approach has
great potential for helping to find relationships between “cause” and “effect” in
empirical datasets. This potential stems from two facts: (1) a bio-dataset may
be presented as a special type of information system founded on Rough Sets
methodology; and (2) the results of data mining using this approach can be
expressed in the form of ‘If .... Then’ statements or rules such that they have
tangible meaning(s).

Since the Rough Sets approach was introduced by Pawlak [5], it has received a
lot of attention in the computing community [21, 23, 25, 26, 27, 28, 29, 30, 31, 32,
33]. However, due to the mathematical nature of the Rough Sets approach, many
experimental scientists lacking sufficient mathematical background have been re-
luctant to use it. In this chapter, the Rough Sets methodology (along with one
of its derivatives, “Modified Rough Sets”) is described in a non-mathematical
fashion in the hopes that non-computationally-oriented scientists can also benefit
from its capabilities. In addition, the usefulness of the approach and its effective-
ness are compared with the more familiar statistical approach of Discriminant
Analysis and ID3.

3.2 Literature Review

There is a larg number of articles about Rough Sets in the literature. The articles
cover a vast spectrum of research about different aspects of Rough Sets. One end
of the spectrum deals with the basic foundation of Rough sets and the other end
deals with hybridization of Rough sets with other soft computing models such as
Fuzzy Sets, Neural Networks, and Evolutionary algorithms [34, 35, 36, 37, 38].
Invariably, the articles within the two ends use mathematical language in order
to explain Rough Sets and its features, abilities, and shortcommings. Should an
article delve into the paths of a particular aspect of Rough Sets, the mathematical
language used become substantially heavier. The authors searched the existing
literature in the hope of finding some articles that have explained Rouh Sets
and its characteristics in a non-matematical language, but no such articles were
found.
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3.3 The Rough Sets Methodology

Suppose a group of human subjects have been tested with a variety of behavioral
tasks [39]. In addition, suppose that the IQ of each subject has been measured
independently. As a result, each subject’s record will be composed of a set of
behavioral task results (Conditional attributes, or simply Conditions) and IQ
score (Decision attribute, or simply Decision). Figure 3.1 shows an example of
such a record for which the set of conditions are: Short-term memory task [De-
layed Matching-to-Sample (DMTS) task] Accuracy, Learning task [Incremental
Repeated Acquisition (IRA) task] Accuracy, Motivation task [Progressive Ra-
tio (PR) task] Response Rate, and Time Estimation task [Temporal Response
Differentiation (TRD) task] Response Rate. The decision is IQ. Each condition
may have the possible values of “Above Average”, “Average”, or “Below aver-
age” and the possible values for the decision are “High”, “Average”, and “Low”.

Fig. 3.1. An example of a subject’s record

Suppose a set of behavioral task results and IQ data are collected from a
variety of subjects. This dataset can be visualized as shown in Figure 3.2-a
(the large rectangle represents the entire dataset that is composed of records
from 42 subjects, the small rectangles). The goals here are (a) to establish the
relationships (if any) between the behavioral task results and IQ (i.e., between
the set of conditions and the decision), and (b) to express the relationships in the
form of ‘If .... Then’ rules. To meet these goals, the “Rough Sets” methodology
is introduced in a non-mathematical fashion.

Depending on what the intention is, the subjects can be categorized into
classes or partitions. All of the subjects who have the same values for their
conditions constitute a class. Suppose that, after the classification process is
completed, there are four classes in the dataset, class 1 to class 4. The classes of
the dataset are visualized in Figure 3.2-b: the rectangles with the same shaded
patterns collectively represent one class. The four classes 1, 2, 3, and 4 con-
tain data for 26, 9, 5, and 2 subjects, respectively. Since each subject’s record
represents a data summary for that subject, the word “subject” and the term
“subject’s record” are used interchangeably in this chapter.

All partition subjects are the ones about whom the same decsions are made.
Since there are only three possible values for the decision, the number of partitions
could be three. For example, all the subjects with IQ = “High” constitute one
partition. And let the subjects surrounded by the thick solid lines, Figure 3.2-c,
represent this partition. The number of subjects in this partition is 20.

A closer look at this partition reveals that not all subjects in class 3 (dark black
rectangles), for example, are contained within this partition. That is, the subjects
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Fig. 3.2. Visualization of a dataset: (a) subjects, (b) classes and (c) a partition which
includes only subjects with High IQ

in class 3 have the same conditions’ values, but not all of them have the same IQ
values. This kind of observation is often made throughout experimental sciences:
in any given study within a class of subjects that share similar characteristics
(conditions), a group of subjects that behaves differently from the rest of the
subjects in the class can often be identified. As observed here, one subject in
class 3 does not have the same IQ value as the rest of the subjects in that class.

In general, a class may be “totally”, “partially”, or “not-at-all” contained in
a specific partition. Here, Class 4 is “totally” contained in the partition while
Class 1 and 3 are “partially” contained in the partition and class 2 is “not-at-all”
contained in the partition. The subjects of those classes that are totally contained
within the partition are said to constitute the lower approximation space of the
High IQ partition. These subjects exhibit a strong relationship between their
conditions and their decision. The subjects in class 4, thus, define the lower
approximation space of the High IQ partition, Figure 3.3-a. The subjects of all
the classes that are either “totally” or “partially” contained in the partition
make the upper approximation space of the High IQ partition, Figure 3.3-b.

3.3.1 Rough Sets

A mathematical set, which we refer to as a “traditional” set, is a well-defined
collection of objects called members or elements. A well-defined set means that,
for any given object, it either belongs to the set or it does not belong to the set.
In other words, a given object has only two choices: being “inside” or “outside”
of the set. With this in mind, let us look at the High IQ partition as a traditional
set and let us look at each class as an object. Except for object 4 (class 4) that
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Fig. 3.3. Visualization of the approximation spaces for high IQ: (a) The lower approx-
imation space and (b) the upper approximation space

is inside the set, objects 1 and 3 (classes 1 and 3) are partially inside the set
and object 2 (class 2) is outside of the set. Thus, in reference to the High IQ set,
objects can either be “inside”, “outside”, or “partially inside” of the set. These
three possibilities (instead of the traditional two) contradict the definition of a
traditional set. Therefore, the High IQ set is not a traditional set and it is called
a “Rough” set. To be more precise, we may say that the High IQ partition is
represented by a Rough Set.

A Rough Set has two boarders, Figure 3.4-a. The inner boarder signifies the
lower approximation space and the outer boarder signifies the upper approxima-
tion space of the Rough Set. The classes that are partially in the Rough Set make
the boundary of the Rough Set. Any subject of the classes that make the boundary
possibly resides inside the Rough Set. But any subject of the classes in the lower
approximation space of the Rough Set certainly resides inside the Rough Set. For
the High IQ Rough Set the inner and outer boarders are shown in Figure 3.4-b.

Fig. 3.4. Visualization of the High IQ Rough Set: (a) a Rough Set and its boarders
and (b) the inner and outer boarders for High IQ Rough Set
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It must be remembered that, just as the High IQ partition is a Rough Set, so
are the partitions for the other two values of IQ (Average IQ partition and Low
IQ partition.) Thus, here we are dealing with three Rough Sets and this is the
reason that the methodology is called “Rough Sets” (plural).

3.3.2 Rule Generation

Suppose one of the subjects in the lower approximation space of the High IQ
Rough Set is represented by the data shown in Figure 3.1. A rule in the form
of If...Then... can be generated from this subject. The If clause of the rule is
composed of the conditions’ values of the record and because the subject belongs
to the lower approximation space of the “High” IQ Rough Set the Then clause
is IQ = “High”, (see Figure 3.5).

Fig. 3.5. A local certain rule for High IQ subjects

A rule generated from a subject that belongs to the lower approximation
space of the High IQ Rough Set is called a local certain rule. The term “local”
means that the rule is generated from one subject’s record. The term “certain”
means that the subject belongs to the lower approximation spce. That is, any
new subject that satisfies the If clause of a local certain rule, will certainly be
categorized as a subject with the IQ value of the Then clause. If a rule is derived
from a subject in the boundary of the High IQ Rough Set, then the rule will
be called a local possible rule. Again, the “If” clause of a local possible rule is
borrowed from the conditions’ values of the subject in the boundary, while the
“Then” clause is the IQ value that belongs to the Rough Set. A new subject
that satisfies the If clause of a local possible rule, will possibly be categorized as
a subject with the IQ value of the Then clause. There is a chance that the IQ
value in the Then clause of the rule can be different from the actual IQ value of
the subject. This is not the case with the local certain rules.

A large rule set may contain some rules that are not appropriate for prediction
of objects in a test set. This is a problem that may be rectified by calculating
every rule’s significance level and removing those rules for which the significance
level is less than a threshold value. There are many algorithms for calculating a
significance level for individual rules. These algorithms are based on the quality
of approximation, statistics, or both. However, the details of such approaches
are beyond the scope of this chapter but can be obtained from [29, 40, 41, 42].
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Fig. 3.6. Visualization of classes and partitions: (a) classes and High IQ Partition and
(b) Low IQ Partition

Fig. 3.7. The tabular presentation of a set of local certain and possible rules

3.3.3 Globalization of Rules

A copy of Figure 3.3-c is shown in Figure 3.6-a. To refresh the reader’s memory,
Figure 3.6-a shows four different classes (each class is shaded differently) and a
partition for IQ = “High” (the realm of the partition is shown with a thick line.)
A new partition for IQ = “Low” along with the High IQ partition is shown in
Figure 3.6-b using a thick broken line.

Let us concentrate on the subjects of class 3. Since the subjects of this class
are partially in the High IQ partition, all the subjects are in the boundary of
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the High IQ Rough Set. By the same analogy, all the subjects of class 3 are also
in the boundary of the Low IQ Rough Set.

Since all the subjects in class 3 have the same decision values, and they belong
to both boundaries of Low and High IQ values, two local possible rules can be
generated. Both local possible rules have the same conditions’ values but different
IQ values. Such a case is never true for a set of local certain rules.

An example of a set of local certain and local possible rules generated from a
new dataset in which each record has only three conditional attributes of IRA
Accuracy, PR Response Rate, and TRD Response Rate, is shown in tabular form
in Figure 3.7. The first row of this table is read as follows: “If (IRA Accuracy =
“Below Average” & PR Response Rate = “Below Average” & TRD Response
Rate = “Average”) Then IQ = “Low”. Concentrating only on the conditions,
Figure 3.8, reveals that there are no duplications of the conditions’ values among
the local certain rules, but there exist such duplications among the local possi-
ble rules. As part of the process of globalization, the local possible rules with
duplicated conditions’ values are collapsed into one rule, Figure 3.9.

Close inspection of the rule set in Figure 3.9 reveals that none of the rules
have a value of “Below Average” for the PR Response Rate condition and a

Fig. 3.8. The tabular presentation of the rules without the decision attribute

Fig. 3.9. The collapsed local possible rules



3 The Use of Rough Sets as a Data Mining Tool 77

Fig. 3.10. The dropped conditions from Figure 3.9

Fig. 3.11. Expansion of Figure 3.10 to include the decision attribute and duplicated
local possible rules

value of “Average” for the TRD Response Rate condition except for the first
rule. In other words, the first rule may be differentiated from the rest of the rules
by using only the PR Response Rate and the TRD Response Rate conditions’
values and, thus, the first condition is “dropped”. Therefore, the first rule may
be expressed as: If (PR Response Rate = “Below Average” & TRD Response
Rate = “Average”) Then IQ = “Low”. The new form of the local certain rule is
called a global certain rule. The term “global” means that the minimum number
of conditions for the given rule is kept while preserving its uniquness within the
rule set. The adopted method for generating global rules using the local rules is
called the dropping condition [43]. Figure 3.10 illustrates the dropped conditions
and they are shown by a dash (-) symbol. Now, Figure 3.10 can be expanded to
include the decision attribute and duplicated local possible rules, Figure 3.11,
from which the final set of Global certain and possible rules are generated and
displayed in Figure 3.12.

Before we leave this section, an important point needs to be discussed. Let
us look at the local certain rule number four in Figure 3.9 one more time. This
rule is globalized in Figure 3.10 by keeping the conditions PR Response Rate
and TRD Response Rate. Keeping the PR Response Rate and TRD Response
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Fig. 3.12. The list of global certain and possible rules for the rule set of Figure 3.7

Rate is but one of the possible choices. Another choice is keeping IRA Accuracy
and TRD Response Rate. Therefore, the local certain rule number four will be
transformed into two following global certain rules:

• If (PR Response Rate = “Average” & TRD Response Rate = “Below Aver-
age”) Then IQ = “High”

• If (IRA Accuracy = “Above Average” & TRD Response Rate = “Below
Average”) Then IQ = “High”

The domain expert may dismiss none or one of these rules. The point is that
for every local certain and possible rule, there may exist more than one global
rule and Figure 3.10 does not show all of these global rules.

3.3.4 Information Systems

In Rough Set nomenclature, an information system is a set of records for a num-
ber of subjects. Each record in this system is described with a set of attributes.
Data for the attributes are discrete. That is, data are represented in categorical
values such as “1”, “2”, . . . and/or linguistic values such as “high”, “low”, etc.
No limitation is placed on the number of discrete values that can be used for a
given attribute. To use the information system in a bio-data mining process, one
may name the attributes that represent dependent variables as conditions and
the independent variable as decision. Doing so, technically, turns the information
system into a decision table in which each record has two parts: Conditions part
and Decision part, Figure 3.13. However, we continue using the term information
system thorughout the chapter. An information system may be representative
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Fig. 3.13. An Information System

of a typical dataset obtained from experimentation. Three following questions
are needed to be answered in reference to this decision table:

1- Is there any redundant condition in the system?
2- What are the local certain and local possible rules for the system?
3- What are the global certain and global possible rules for the system?

The answers to these questions are discussed below.

Reduction of Information Systems

Let us concentrate on only the conditions of the above information system. In
this system, subjects s1, s8, and s11 have the same conditions’ values. Also,
subjects s2 and s10 have the same values for their conditions. In addition, the
conditions’ values for subjects s3 and s4 are the same. In other words, s1, s8, and
s11 make one class, s2 and s10 make another class, s3 and s4 make a third class
and each remaining subject in the system makes a class by itself, for a total of
7 classes. The number of classes, along with their contents is referred to, in this
chapter, as the internal structure of the system.

If we remove a condition from the information system and the information
system’s internal structure remains the same, then the removed condition is a
redundant condition. For example, the DMTS Accuracy is a redundant condi-
tion, but the TRD Response Rate is not. To explain further, when the TRD
Response Rate condition is removed, subjects s1, s8, s11, and s9 will have the
same conditions’ values, whereas prior to removal of this condition, only s1, s8,
and s11 had the same conditions’ values. Therefore, the internal structure of the
information system changed with the removal of the TRD Response Rate condi-
tion because the TRD Response Rate is not redundant. Using the same analogy,
it can be seen that the DMTS Accuracy condition is redundant. In addition, the
conditions PR Response Rate and IRA Accuracy are likewise redundant.

Checking for condition redundancy takes place in the presence of all conditions
except the condition whose redundancy is being assessed. After all redundant
conditions are identified, one of the redundant conditions is selected randomly
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and permanently removed from the information system. In this manner, the
system becomes a new information system. For this new information system,
the process of identifying all redundant conditions is repeated, followed by the
random removal of one of the newly identified redundant conditions, and, thus,
the creation of a new information system. This process is repeated until an in-
formation system is obtained whose set of conditions can not be reduced further.
This final set of conditions is referred to as a reduct of the original set of con-
ditions. Since redundant conditions are randomly selected for removal from the
information system, the condition set of an information system may have more
than one possible reduct. Reducts enable researchers to identify the minimum
set of independent variables for a given study.

For the conditions of the information system shown in Figure 3.13, there are
three reducts:

• Reduct 1 includes conditions (IRA Accuracy, PR Response Rate, TRD Re-
sponse Rate)

• Reduct 2 includes conditions (DMTS Accuracy, PR Response Rate, TRD
Response Rate)

• Reduct 3 includes conditions (DMTS Accuracy, IRA Accuracy, TRD Re-
sponse Rate)

The information system composed of the first reduct is shown in Figure 3.14.
The analysis of all the possible reducts, for a given information system, will reveal
and quantify the significance of each individual independent variable (condition)
in the system. For example, the condition TRD Response Rate is the most
significant condition in the information system, because it appears in all three
reducts. Analysis of reducts is beyond the scope of this chapter. However, a
thorogh discussion of the topic may be found in [44, 45].

The reader needs to be reminded that there are other algorithms for finding
the reducts of an information system including but not limited to the algorithms
based on Boolean reasoning [46] and the attributes’ significance [47].

Finding a reduct of an information system is significant because reducing the
number of independent variables may shorten the length of data analysis and
minimize the presence of artifacts in the outcome of such analysis. In addition, if
the experiment is to be conducted again or by another group, then the length of
the experiment may be shortened and the introduction of noise into the dataset
and the cost may be reduced. Furthermore, the rules generated from a reduct
are shorter and usually easier to interpret.

Deriving the Local Certain and Local Possible Rules from a Reduct

The reduced information system, Figure 3.14, is ready for classification and par-
titioning. The reader needs to be reminded that all the subjects in one class have
the same conditions’ values and all the subjects in one partition have the same
decision value. The number of classes for the reduced information system remains
the same as the number of classes in the original information system, seven. The
subjects in each class are as follow: class 1: (s1, s8, and s11), class 2: (s2 and s10),
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Fig. 3.14. A reduct of the information system of Figure 3.13

class 3: (s3 and s4), class 4: (s5), class 5: (s6), class 6: (s7), and class 7: (s9). The
number of partitions for the reduced information system is three, because the
IQ has three possible values. Partitions 1, 2, and 3 represent IQ values of “Low”,
“Average” and “High”, respectively. The subjects in each partition are as follow:

Partition 1: (s1, s8, and s9),
Partition 2: (s3, s5, s6, s10, and s11), and
Partition 3: (s2, s4, and s7).

To build the lower approximation space, the upper approximation space, and
the boundary for the above partitions, the reader needs to be reminded again
that the following rules are used:

• If the subjects of a class are totally in a given partition, then the subjects of
the class become a part of the lower approximation space of that partition.

• If the subjects of a class are totally or partially in a given partition, then the
subjects of that class become a part of the upper approximation space of the
partition.

• If the subjects of a class are partially in a given partition, then the subjects
of that class become a part of the boundary of the partition.

The application of the above rules may generate an empty lower approxima-
tion space, an empty upper approximation space, or an empty boundary for a
given partition. Following the above rules, the lower approximation space, upper
approximation space, and boundary for each partition of the reduced information
system are displayed in Figure 3.15.

The local certain and local possible rules for partition 1 (Low IQ) are derived
from the subjects in the lower approximation space and boundary of the partition
1, respectively. These rules are:

Local certain rule:

If (IRA Accuracy = “Below Average” & PR Response Rate = “Below
Average” & TRD Response Rate = “Average”) Then IQ = “Low”
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Fig. 3.15. Subjects in the lower approximation space, upper approximation space, and
boundary for the three partitions of the reduct of Figure 3.14

Local possible rule:

If (IRA Accuracy = “Below Average” & PR Response Rate = “Below
Average” & TRD Response Rate = “Below Average”) Then IQ = “Low

Following the same analogy the local certain rules for “Low”, “Average” and
“High” values of IQ are shown in Figure 3.16.

Deriving the Global Rules

The globalization of the local certain and possible rules takes place as described
in section 3.3. The set of local certain and possible rules of Figure 3.16, in tabular
format, is the same as the rule set in Figure 3.7. Therefore, the final set of Global
certain and possible rules for the information system of Figure 3.14 is the same
as the rule set displayed in Figure 3.12.

Considering the nature of the local and global possible rules, one may choose
to dismiss them all together and only use the local and global certain rules to
classify the new subjects.

Discussion

Let us look at Figure 3.6 one more time and concentrate again on subjects of
class 3. It was previously concluded that the subjects of this class are in the
boundaries of both High and Low IQ Rough Sets, thus, two local possible rules
can be generated. Both local possible rules have the same conditions’ values but
different IQ values. These local possible rules would not seem to have a lot of
use in real life unless we logically dismiss one of them. The main question is
which one of the two rules is a candidate for dismissal? It is logical to dismiss
the local possible rule with decision IQ = “Low” because only one subject of
the class is in the partition Low IQ and 4 out of 5 subjects of class 3 are within
the partition High IQ. The influence of the dismissed rule on the surviving rule
manifests itsel in form of a probability (4/5 = 0.8) that will be assigned to the
decision value of the surviving rule and the surviving rule will no longer be a
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Fig. 3.16. Local certain and local possible rules for “Low”, “Average”, and “High”
values of IQ

local possible rule. This method of handling local possible rules forms the basis
of a new concept, Modified Rough Sets, that is introduced in [12] and described
in the following subsection.

3.3.5 Modified Rough Sets

In reference to the reduced information system of Figure 3.14, one can examine
all of the classes of the information system and identify those classes in which
the subjects of the class do not all share the same decision values (these classes
end up in the boundaries of more than one Rough Sets.) For each class, one
of the decision values in that class is designated as the dominant decision of
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Fig. 3.17. The dominant decision for the classes 1, 2, and 3 of Figure 3.14

Fig. 3.18. The information system of Figure 3.14 after enforcing dominant decisions

that class. Although the Bayes’ theorem [12] is used to designate a dominant
decision for a given class and identify a probability for the dominant decision, the
dominant decision is, practically, the most common decision among the subjects
of the class. If there is a tie between two or more than two decision values, then
the dominant decision is either chosen randomly or a domain expert makes the
choice. The ratio of the number of subjects with the dominant decision in the
class to the total number of subjects in the class defines the probability for the
dominant decision. After the dominant decision is identified, the decision values
for all the subjects in that class are then changed to the dominant decision. By
taking this action, the lower and upper approximation spaces for each Rough
Set become the same and, thus, boundary of the set becomes empty.

For our example, the classes 1, 2, and 3 participate in the boundaries of the
IQ Rough Sets. Therefore, the dominant decisions for these classes are identified
and shown in Figure 3.17. The reader needs to be reminded that for those classes
in which all the subjects have the same decision values, the dominant decision
is the shared value and the probability of the dominant decision is 1.

Enforcing the dominant decisions causes the subjects of class 1, for example, to
become exactly the same because they have the same conditions’ values and the
same dominant decision. Therefore, extra copies have to be removed from Figure
3.14 (Figure 3.18). As a result, the classes for the information system of Figure
3.18 are as follow: class 1: (s1), class 2: (s2), class 3: (s3), class 4: (s5), class 5:
(s6), class 6: (s7), and class 7: (s9). The partitions and their lower approximation
spaces are shown in Figure 3.19. (The upper approximation spaces are the same
as the lower approximation spaces and, thus, the boundaries of the partitions
are always empty.)
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Fig. 3.19. The partitions and lower approximation spaces for the information system
of Figure 3.18

Fig. 3.20. The local and global approximation rules for the information system of
Figure 3.18

The rules that are generated for the information system of Figure 3.18 are
called local approximate rules. Each local approximate rule has a certainty factor
(CF) that is the same as the probability assigned to its decision value. If the
dropping condition approach is applied to a set of local approximate rules, then
the results obtained are referred to as global approximate rules. The local and
global approximate rules for the information system of Figure 3.18 are shown in
Figure 3.20. If a new subject satisfies the conditions’ values of the first global
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approximate rule 1, for example, then the decision value for the new subject is
“Low” with 66% certainty.

In creation of the Modified Rough Sets the inner and outer boarders of every
Rough Set overlay each other. One may say that a Modified Rough Set becomes a
traditional set because the set now has only one boarder. This is partially correct.
There is still a difference between a traditional set and a Modified Rough Set
and the difference lies in the fact that each subject in a Modified Rough Set is
assigned a probability that may be different from the next subject. This is not the
case for a traditional set. (However, there are similarities between the Modified
Rough Set and the Fuzzy Set, but the comparison of these two approaches is
beyond the scope of this chapter.)

To establish the usefulness of the Rough Sets and Modified Rough Sets ap-
proaches, a real dataset containing the results of an actual experiment with
children diagnosed with or without Attention Deficit/Hyperactivity Disorder
(ADHD) was used. The more traditional statistical approach of Discriminant
Analysis was also applied to the same dataset to provide a comparison of the
effectiveness of the Rough Sets and Modified Rough Sets approach.

3.4 Experimental Results and Discussion

A set of five behavioral tasks was performed by a group of 73 children at a
large children hospital. The age range of the subjects was from 6 to 9 years.
The number of conditions for each subject was 20 and these included subject
gender and 19 different measures for the five behavioral tasks. The tasks uti-
lized (and the cognitive functions they are thought to model) were: Conditioned
Position Responding (color and position discrimination); Progressive Ratio
(motivation); Temporal Response Differentiation (time estimation); Delayed
Matching-to-Sample (short-term memory); and Incremental Repeated Acquisi-
tion (learning/indexlearning). The decision for each subject was either “positive
ADHD” or “negative ADHD”. The main objective of the experiment was to
first establish the relationships or lack there of, between diagnosis of ADHD and
the outcome of behavioral tests expressed in the form of rules and then predict
the diagnosis of the subjects in the test set. The objective was attained using
Cross-Validation process [48] that is explained below.

The number of subjects described as “positive ADHD” and “negative ADHD”
were 34 and 39 respectively. The process of conditions reduction was applied to
the information system and the resulting reduct had 9 conditions. From both
the “positive ADHD” and “negative ADHD” groups, 15% of the subjects were
randomly chosen for inclusion in a testing set (a total of 11 subjects). The
remainder of the subjects (i.e., 62 subjects or 85% of the total subjects in the
dataset) comprised a training set.

For the training set, the local and global certain rules were generated using
the Rough Sets methodology. (The local and global possible rules were not gen-
erated.) Also, the local, and global approximate rules were generated using the
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Fig. 3.21. Number of different types of rules generated from the training set

Fig. 3.22. Diagnostic accuracy for Rough Sets (using local and global certain rules),
Modified Rough Sets (using local and global approximate rules) compared to discrim-
inant analysis and ID3 on (a) the original dataset, and (b) random files generated by
use of a resampling technique

Modified Rough Sets methodology. The number of certain and approximate rules
along with the number of classes and partitions are shown in Figure 3.21.

The resulting rules were then used for the corresponding testing set to cate-
gorize subjects as either ADHD or not. The results are shown in Figure 3.22-a.
To show the effectiveness of the approach we also used two approaches of Dis-
criminant analysis and ID3 to perform the same task. The results are depicted
also in Figure 3.22-a.

Since the dataset was small, 10 pairs of training and testing sets were gener-
ated from the original training and testing sets using the Random Resampling
approach [49]. For each pair, the Cross-Validation process was repeated and the
average of the results are shown in Figure 3.22-b.

The results indicate that Rough Sets and Modified Rough Sets can accom-
modate records for subjects whose conditions values are the same but whose
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decision values are different. Such capability is of a great import because in clin-
ical situations, for example, there are (a) patients with the same symptoms but
are diagnosed differently or (b) there are patients who react differently to the
same drug despite the controlled experimental environment.

Where statistical models remove such conflicting records from bio-datasets,
Rough sets and Modified Rough Sets fully analyze them. This ability is particu-
larly valuable in biological data regarding both human and non-human (primate)
subjects because when the number of available data points from an experiment
is small, retaining every one of them is crucial and Modified Rough sets do, in
fact, retain them.

3.5 Conclusion

The Rough Sets and Modified Rough Sets methodologies were fully introduced in
a non-mathematical fashion so that researchers of non-mathematical backgrounds
can also benefit from their capabilities. A comparison was then conducted among
Rough Sets, Modified Rough Sets, Discriminant Analysis, and ID3. A dataset
of children diagnosed with or without Attention Deficit/Hyperactivity Disorder
(ADHD) was used for the comparison. The conclusion drawn from the analysis of
the dataset is that first, the global rules have better predictive ability than do the
local rules. Second, the performance of Modified Rough Sets is better than that
of Discriminant Analysis, ID3, and Rough Sets. Third, the performance of Rough
sets using global certain rules, is better or as good as that of Discriminant analysis
and ID3.
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Summary. A novel ontology based decision support framework and a development platform 
are described, which allow for the creation of global knowledge representation for local and 
personalised modelling and decision support. The main modules are: an ontology module; and a 
machine learning module. Both modules evolve through continuous learning from new data. 
Results from the machine learning procedures can be entered back to the ontology thus enrich-
ing its knowledge base and facilitating new discoveries. This framework supports global, local 
and personalised modelling. The latter is a process of model creation for a single person, based 
on their personal data and the information available in the ontology. Several methods for local 
and personalised modelling, both traditional and new, are described. A case study is presented 
on brain-gene-disease ontology, where a set of 12 genes related to central nervous system can-
cer are revealed from existing data and local profiles of patients are derived. Through ontology 
analysis, these genes are found to be related to different functions, areas, and other diseases of 
the brain. Two other case studies discussed in the paper are chronic disease ontology and risk 
evaluation, and cancer gene ontology and prognosis. 

4.1   Introduction 

With the accumulation of both data and knowledge in the biomedical area and bioin-
formatics, it becomes eminent that these data and knowledge need to be organized in 
a more global knowledge repository and used in their complexity and richness for an 
efficient profiling, prognosis, diagnosis and decision support for every individual 
person who needs that. This task requires both adaptive, evolving knowledge reposi-
tory systems and methods for local and personalised modeling in their integration and 
dynamic interaction.  

To illustrate the problem above, let us take for example the brain in its multiple as-
pects of functioning and disease. The brain evolves its structure and functionality at 
different levels – Fig. 4.1: quantum-, molecular (genetic)-, single neuron-, ensemble 
of neurons-, cognitive-, evolutionary.  

At the quantum level, particles (atoms, ions, electrons, etc.), that make every mole-
cule in the material world, are moving continuously, being in several states at the 
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same time that are characterized by probability, phase, frequency, energy. At a mo-
lecular level, RNA and protein molecules evolve in a cell and interact in a continuous 
way, based on the stored information in the DNA and on external factors, and affect 
the functioning of a cell (neuron) under certain conditions. At the level of a neuron, 
the internal information processes and the external stimuli cause the neuron to pro-
duce a signal that carries information to be transferred to other neurons. At the level 
of neuronal ensembles, all neurons operate in a “concert”, defining the function of the 
ensemble, for instance perception of a spoken word. At the level of the whole brain, 
cognitive processes take place, such as language and reasoning, and global informa-
tion processes are manifested, such as consciousness. At the level of a population of 
individuals, species evolve through evolution, changing the genetic DNA code for a 
better adaptation.  

The processes at each level from Fig.4.1 are very complex and difficult to under-
stand, but much more difficult to understand is the interaction between the different 
levels, e.g. gene- brain function-disease (Benuskova and Kasabov 2007). It may be 
that understanding the interaction through its modeling would be a key to understand-
ing each level of processing and perhaps the brain as a whole. 

 

 

Fig. 4.1. Levels of information processing in the brain and the interaction between the levels 
(from Kasabov 2002, 2007a) 

The enormous amount of information so far related to the brain processes at the 
different levels from Fig.4.1 need to be globally structured and made accessible for 
the purpose of a better decision support for every individual person and for the pur-
pose of new knowledge discovery and a better understanding.   

Similar problems relate to cancer diseases; to chronic diseases, such as diabetes, 
and to many more unsolved medical and health problems.   

This chapter suggests integrating local and personalised modelling methods with a 
global ontology knowledge and data repository for a better personalised decision 
support, for new knowledge discovery and for a better understanding. Section 4.2 
presents several methods for local and personalised modelling. Section 4.3 contains 
an introduction to the Ontology systems. Sections 4.4, 4.5, 4.6 and 4.7 contain case 
studies on brain-gene-disease ontology and inference; chronic disease ontology and 
risk analysis; cancer gene ontology and profiling. 

6.  Evolutionary (population/generation) processes  
_______________________________________________ 
5. Brain cognitive processes   

 ______________________________________________ 
4. System information processing (e.g. neural ensemble)  
_______________________________________________ 
3. Information processing in a cell (neuron)  
_______________________________________________ 
2. Molecular information processing (genes, proteins) 
_______________________________________________  
1. Quantum information processing 
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4.2   Local and Personalised Modelling  

Contemporary medical and bioinformatics decision support systems use both induc-
tive and transductive reasoning to derive global, local, and personalised models for 
the prediction of a person’s risk or outcome of disease (Kasabov 2007a, b). While 
inductive modelling results in the incremental creation of a global model where new, 
unlabeled data is “mapped” through a recall procedure, transductive inference meth-
ods estimate the value of a potential model (function) only in a single point of the 
space (the new data vector) utilizing additional information related to this point (Vap-
niak 1998). This approach seems to be more appropriate for clinical and medical 
applications of learning systems, where the focus is not on the model, but on the indi-
vidual patient. And it is not so important what the global error of a global model over 
the whole problem space is, but rather the accuracy of prediction for any individual 
patient. Each individual data vector (e.g. a patient in the medical area) may need an 
individual, local model that best fits the new data, rather than a global model, where 
new data are matched without taking into account any specific information about 
these data.       

In transductive modelling, for every new input vector xi that needs to be processed 
for a prognostic task, the closest Ni examples, that form a data set Di, are derived from 
an existing data set D. A new model Mi is dynamically created from these samples to 
approximate the function in the point xi. The system is then used to calculate the out-
put value yi for this input vector xi.   

A simple transductive inference method is the k-nearest neighbour method (k-NN), 
where the output value yi for the new vector xi is calculated as the average of the out-
put values of the k-nearest samples from the data set Di. In a weighted k-NN method 
(WKNN) the output yi is calculated based on the distance of the k-NN samples to xi: 
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Where: yj is the output value for the sample xj from Di and wj is its weight measured 
as: 

wj = max(d) – [dj – min(d)] (4.2) 

In Eq. (4.2), the vector d = [d1, d2, … dNi] is defined as the distances between the 
new input vector xi and the input vectors of the nearest samples (xj, yj) for j = 1 to Ni; 
max(d) and min(d) are the maximum and minimum values in d respectively. 

In the WWKNN method (Kasabov 2007a, b) not only the nearest samples are 
weighted based on their distance to the new sample, but the contribution of each of 
the variables is weighted based on their importance for the local area where the new 
sample belongs.  The WWKNN algorithm is given in Appendix A. 

Recently, two other methods for personalised modelling were proposed: Transduc-
tive Neural Fuzzy Inference System – NFI (Song and Kasabov 2005) and Transductive 
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Neural Fuzzy Inference System with Weighted Data Normalization – TWNFI (Song 
and Kasabov 2006).  

NFI is a dynamic neural-fuzzy inference system with a local generalization, in 
which, either Zadeh-Mamdani or Takagi-Sugeno type fuzzy inference engine is used. 
Gaussian fuzzy membership functions are applied in each fuzzy rule for both the 
antecedent and the consequent parts (Zadeh-Mamdani type) or for antecedent part 
only (Takagi-Sugeno type). A back-propagation learning algorithm is used for opti-
mizing the parameters of the fuzzy membership functions. An additional learning 
function is derived for the Takagi-Sugeno model. The distance between vectors x and 
y is measured in NFI as the normalized Euclidean distance defined as follows: 
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To partition the input space for creating fuzzy rules and obtaining initial values of 
fuzzy rules, the ECM (Evolving Clustering Method) is applied (Kasabov and Song 
2002) and the cluster centres and cluster radiuses are respectively taken as initial 
values of the centres and widths of the Gaussian membership functions (for both 
Zadeh-Mamdani and Takagi-Sugeno types). The data in a cluster are used for creating 
a linear function (Takagi-Sugeno type fuzzy inference).  

TWNFI (Song and Kasabov 2006) is a transductive weighted data neuro-fuzzy infer-
ence method, similar to NFI, but the input variables in the Eq.(4.3) are weighted based 
on their importance for the problem, derived through the back-propagation or an evolu-
tionary optimization algorithm. The TWNFI algorithm is given in Appendix B. 

Transductive, personalised modelling is suitable when small data bases are avail-
able for a problem. In case of large data bases, a global model, which consists of 
many local models, may be more appropriate to derive and update on new data and to 
use for a personalised profiling and prognosis. This is called here local modelling.  

Evolving connectionist systems (ECOS) are neural network models that develop, 
evolve their structure - nodes (neurons) and connections between them, through su-
pervised or un-supervised incremental learning from data samples (Kasabov 2001, 
2002, 2007a). One of the ECOS models – DENFIS, a dynamic evolving neuro-fuzzy 
inference system is a fuzzy inference system that first evolves fuzzy rules from data 
through the evolving clustering algorithm ECM, and then incrementally modifies a 
local function to approximate the data in this cluster (Kasabov and Song 2002). The 
cluster and the function associated with it form a Takagi-Sugeno fuzzy rule. For every 
test input vector xi, several neighbouring fuzzy rules are activated together to infer the 
output value yi. Different fuzzy membership functions can be used in the rules. ECM 
is a connectionist clustering algorithm, where the evolved nodes represent cluster 
centres of samples in the input space. The number of the centres is not specified or 
fixed and depends on a maximum radius of the clusters, which is either defined or 
derived from the data. In the clustering procedure, data samples are allocated to rule 
nodes based on the similarity between the samples and the nodes calculated in the 
input space. 

The distance between samples and rule nodes can be measured in different ways. 
The most popular measurement is the normalized Euclidean distance. In case of miss-
ing values for some of the input variables, a partial normalized Euclidean distance can 
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be used which means that only the existing values for the variables in a current sam-
ple (x, y) are used for the distance measure between this sample and an existing rule 
node N (W1N): 
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For all P input variables xi that have a defined value in the input vector x and in an 
already established connection W1N(j) to the cluster node N. 

At any time of an ECOS’ continuous, incremental learning from data, fuzzy infer-
ence rules can be derived from the ECOS structure. Each rule associates a cluster area 
from the input variable space to a local output function applied to the data in this 
cluster, for example,  

IF [an input vector x is in cluster Ncj (cluster center Nj and a cluster radius Rj)]  
THEN [the local output function is fc, with Njex samples in the cluster approxi-

mated by this function]. 
In case of DENFIS, first order local fuzzy rule models are derived incrementally 

from data, for example: 
IF  [the value of x1 is in the area defined by a Gaussian membership function with a 

center at 0.2, and a deviation of 0.12) AND (the value of x2 is in the area defined  
by a Gaussian membership function with a center at 0.7, and a deviation of 0.20  
respectively]  

THEN [the output value y is calculated by the formula y= 0.51+ 3.9 x1+ 1.45 x2].   
In another ECOS model – EFuNN (Kasabov 2001, 2002, 2007a) the following lo-

cal rules are derived to represent a cluster of data: 
IF [an input vector x is in an input cluster NIcj (cluster center NIj; cluster radius Rj)] 
THEN [the output y is in output cluster NOcj (cluster center NOj; cluster radius 

Ej)], with Njex samples approximated by this rule]. 
The Evolving Classification Model (ECF) is a simplified version of EFuNN, where 

the local rules are of the following form: 
IF [an input vector x is in an input cluster NIcj (cluster center NIj; cluster radius Rj)]  
THEN [the output belongs to class NOcj], with Njex samples approximated by this 

rule]. 
The above described techniques for local and personalised modelling are part of a 

modelling environment NeuCom (www.theneucom.com) and have been widely used 
so far (Kasabov 2007a). Here, we apply them on ontology structured data to derive 
local and personalised profiles, where the results are entered back to the ontology to 
enrich its knowledge repository and to facilitate new discoveries.    

4.3   An Introduction to Ontology Systems for Information and 
Knowledge Representation  

In modern computer science, ontology is a data model that represents a set of con-
cepts, information and data within a domain, for example the domain of brain (see 
Fig.4.1), and the relationships between those concepts. Ontology is used to reason and 
make inferences about the objects within that domain (Gruber 1993).   
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Ontology is generally written as a set of definitions of formal vocabulary of objects 
and relationships in the given domain. It supports the sharing and reuse of formally 
represented knowledge among systems (Chandrasekaran et al 1999; Fensel 2004). In 
recent years, ontologies have been adopted in many business and scientific communi-
ties as a way to share, reuse and process domain knowledge (Fensel 2004). As a  
database technology, ontologies are commonly coded as triple stores (subject, rela-
tionship, object), where a network of objects is formed by relationship linkages, as a 
way of storing semantic information (Owens 2005; Berners Lee et al 2001). 

Several medical ontologies (Pisanelli 2004), including Open Bio-medical Ontology 
OBO (http://www.bioontology.org/) and the Gene Ontology have been created 
(http://www.geneontology.org/) (Ashburner et al 2000). The goal of a Biomedical 
Ontology is to allow scientists to create, disseminate, and manage biomedical infor-
mation and knowledge in machine-processable form for accessing and using this 
biomedical information in research.  

The Gene Ontology (GO) project provides a controlled vocabulary to describe 
gene and gene product attributes in any organism. The GO project is an effort to ad-
dress the need for consistent descriptions of gene products in different databases. The 
project began as collaboration between three model organism databases, FlyBase 
(Drosophila), the Saccharomyces Genome Database (SGD), and the Mouse Genome 
Database (MGD), in 1998. Since then, the GO Consortium has grown to include 
many databases, including several of the world's major repositories for plant, animal 
(mouse, rat), human, and microbial genomes. But this is still not all. According to the 
2007 update of the world-wide molecular database collection, there are 968 freely 
available gene/protein related databases (Galperin 2007).  Since 2004, a total of 110-
170 databases have been added each year (Galperin 2005, 2006, 2007).  Therefore 
intelligent integration of relevant knowledge needs to be embodied in any biodata 
ontology that deals with personalised decision support.  

Disease Ontology is a controlled medical vocabulary designed to facilitate the 
mapping of diseases and associated conditions to particular medical codes such as 
ICD9CM, SNOMED and others (http://diseaseontology.sourceforge.net/). The Dis-
ease Ontology can also be used to associate model organism phenotypes to human 
disease as well as medical record mining.  

Simultaneously with the emerging need for standardized nomenclatures and con-
cept ontologies for biosciences, the new science of systems biology has emerged. It is 
needed for the grand unification of biological (and medical) knowledge for basic and 
applied research. Importantly, systems biology is the ultimate tool for describing 
metabolic and genetic networks interacting with environmental variables to produce 
phenotypes of all organisms, including health and disease in individuals. Systems 
biology knowledge is essential for both personalised medicine and molecular epide-
miology studies of human diseases in stratified populations (Nicholson 2006). In such 
systems, biological knowledge needs to be represented, stored and analyzed in a stan-
dardized ontological framework, so that data from different domains of biology and 
medicine can be properly integrated.  

A standardized ontology framework makes data easily available for advanced meth-
ods of analysis, including artificial intelligence algorithms, that can tackle the multitude 
of large and complex datasets for clustering, classification, and rule inference for  
biomedical and bioinformatics applications.  
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The challenge is to create computational platforms that dynamically integrate on-
tology and a set of efficient machine learning methods, including new methods for 
personalised modelling that would manifest a better accuracy at a personal level and 
facilitate new discoveries.   

4.4   An Integrated Famework and a Platform for Ontology-Based 
Local and Personalised Modelling and Knowledge Discovery  

The framework and a software platform presented here bring together ontology 
knowledge repository and machine learning techniques to facilitate sophisticated 
adaptive data and information storage, retrieval, modelling, and knowledge discovery.  

The framework utilizes ontology based data, as well as new knowledge inferred 
from the data embedded in the ontology. The platform allows for the adaptation of an 
existing knowledge base to new data sources and through entering results from ma-
chine learning and reasoning models. A generic diagram of the framework is shown 
in Fig. 4.2. It consists of two main modules: an ontology knowledge and data reposi-
tory module; and a machine learning module. There is an interface module between 
the two modules that is specific for every application. 

 

Fig. 4.2. The ontology-based personalised decision support framework consists of two inter-
connected parts: (1) An ontology/data base sub-system; (2) Machine learning sub-system 

The general framework from Fig. 4.2 is implemented as a software platform char-
acterized by the following characteristics: 

• Protégé ontology development environment (http://protege.stanford.edu/) 
• Data import module to enter external multimodal data into ontology 
• Data retrieval module to search and retrieve relevant data from an ontology  
• Machine inference module that includes local and personalised techniques such as 

the described in Section 4.2, included for example in a decision support environ-
ment NeuCom (www.theneucom.com). 

• User-friendly interface modules that can be tailored to specific applications in 
different knowledge domains. 

• A module for updating the ontology, based on classification and clustering results 
from the machine inference module. 

A sample implementation schema of an ontology-based personalised decision  
support system in biomedicine is shown in Fig. 4.3 (Gottgtroy et al 2006). 
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Fig. 4.3. A sample ontology-based decision support system. The inference engine at the top 
utilized data retrieved from Ontology in Protégé (from Gottgtroy 2006). 

The system from Fig. 4.3 is able to combine data from numerous sources to pro-
vide individualized person/case reports and recommendations on actions/interventions 
to help modify the outcome in a desired direction based on previously accumulated 
information on input variables and outcomes in the database.  

In keeping with our overall vision of bringing together machine learning and on-
tologies into a single integrated environment, we propose to use the patterns produced 
by the machine learning module to refine the structure of the existing ontology. One 
way to do that is to extract relevant features from a database that resides in an ontol-
ogy, to create local profiles, and then to enter the extracted features and profiles back 
into the ontology in order to enrich it and to discover new relationships. Feature selec-
tion has long been known to be a key success factor in improving the accuracy of the 
classification/prediction process in machine learning (Witten and Frank 2000; Ka-
sabov 2002, 2007a). Since ontologies link related concepts together, they can be used 
to extract a set of related features of different kind (e.g. clinical, genetic, cognitive, 
etc.) for a particular machine learning model. For example, in classifying whether 
patients are at high risk or low risk of contracting a heart disease, an ontology such as 
the Chronic Disease Ontology (CDO), described later in this chapter, can be used to 
determine all the currently known risk factors (encompassing the clinical, genomic 
and demographic data types). Since the predictors used are acknowledged to be the 
best that are currently known, we could expect performance to improve over unin-
formed or ad-hoc methods of feature selection only from a single database.  

A major challenge is how to use the newly discovered knowledge to further evolve 
existing ontologies. In general, the knowledge extracted from machine learning  
methods can fall into three distinct categories; those that refer to: 

1. concepts that already exist in the ontology 
2. concepts not covered by the existing ontology 
3. changes in  the nature of existing concepts in the ontology 
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In terms of category 1, no changes need to be made to the existing ontology. Cate-
gories 2 and 3 pose significant challenges as they could represent knowledge hitherto 
unknown to the knowledge engineer. A naïve approach of immediately refining the 
ontology may not be desirable, given that an ontology represents the collective wis-
dom and knowledge of world-class domain experts gained through their life experi-
ences. A more prudent approach would be to monitor such knowledge over a period 
of time and only update the ontology when a clear and consistent trend emerges that 
shows that such knowledge persistently improves the accuracy of predictions on 
newly arriving data. The rank aggregation technique proposed by Domshlak 
(Domshlak, Gal and Roitman 2007) and the knowledge pattern technique proposed by 
Clark et al. (Clark, Thompson and Porter 2004) provides us with the right  tools for 
assessing when changes should be made to the existing ontology. 

The problem of linking ontologies with machine learning systems requires building 
a specific interface. To enable a machine learning workbench to automatically obtain 
the right data, there should be shared contextual “understanding” between the learning 
system and the ontology itself, as each of them may have their own contextual mean-
ing which may differ from one another. Thus the integration of these local contexts is 
yet another challenging issue, and as discussed by Maamar et al (2006) and Satyana-
rayanan (2001), should address the following issues: how can changes in a concept be 
detected; how should the context be found and stored within the systems/data; how 
should the context be taken into account; how should an inference engine obtain suf-
ficient information to act in a context-aware manner. A further issue is the mutual 
trust between the system and user / data source; and whether the system retrieves 
accurate and relevant information.  

Local and Transductive inference methods focus only on a small area of data space 
and its relevant information (Song and Kasabov 2006; Kasabov 2007a, b). Thus new 
incoming data will dynamically change the contextual meaning of the information 
within the database; especially when new data point is being introduced near the area 
of interest. This can lead to changes in how the data are being clustered, or the new 
data might strengthen a particular cluster. Either way, the changes will affect the on-
tology, because as the data change, the representation depicted by the ontology will 
need to be updated. Therefore, to accommodate the dynamics of the data, the ontol-
ogy must be able to evolve. Evolving the ontology involves modifying the originally 
designed ontology based on the knowledge and new clustering discovered during the 
inference (Gottgtroy et al 2006).  

In general, the ontology evolution process can be classified as conceptual changes 
and explication changes (Lenzerini, Milano and Poggi 2004). Conceptual changes 
deal and includes new concepts or relationships which are emerging, or flagging al-
ready existing concepts which display a diminishing level of support from new data 
streaming in ; while explication changes focus on the modifications in the description 
of the concepts, such as adding a new description or property of a concept. As a gen-
eral guide, Uschold and Maedche offer good frameworks for ontology building and 
learning (Maedche 2002; Uschold and Grüninger 1996). However, in our case, we are 
mainly interested in the evaluation and refining of the frameworks; due to our concern 
in assuring that the evolved ontology will still reflect the real world which it  
represents, as well as the refining process in order to support its evolving nature. 
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In its early stage, the ontology evolution focuses on the ontology learning process 
by proving from the machine learning process. In its subsequent stages, the system 
will grow and further evolve. This includes the ability of the machine learning module 
to automatically select appropriate data from the database and for the ontology to 
detect newly emerging concepts or relationships. For instance, the patient’s health and 
medical data stored in the database might be stored in several separate tables, thus the 
ontology and context mediation system will help the machine learning module (e.g. 
NeuCom) to collect data from relevant columns and tables based on the information 
and relationship described in the ontology. For example, if the user wants to perform 
chronic disease analysis, a context mediation system can be used to ensure that the 
system will collect all of the right information about chronic diseases, but not about 
kidney functions. 

After the machine learning has performed its analysis on a given data set, and iden-
tified new relationships, these new findings will be fed back into the ontology and 
will be noted. However, this doesn’t mean that this new relationship will be immedi-
ately acknowledged as new concepts. It will be noted as possible discovery but con-
firmed by further evidence to establish its status.  

Sometimes, when we analyze a set of data using one methodology, for example 
numerical prediction, it may not show any new findings, but if we combine it with the 
result of some other methodology, such as pattern recognition or clustering on the 
same data set, the combined results may reveal new insights. These new insights can 
then be used to update and/or evolve the ontology. Therefore, the capability of the 
system to evolve is not just limited to a certain learning method, or findings. 

The implementation of this technique will raise the issue of how one can be sure 
that the particular concepts or relationships already have enough evidence to be 
claimed as new findings. As we are using the rank and weighting methods to over-
come this issue, we believe that by adopting the rank aggregation technique proposed 
by Domshlak (Domshlak, Gal and Roitman 2007) will help us ensure that the ontol-
ogy evolution process will not go amiss. We also will adopt the knowledge pattern 
technique proposed by Clark et al. (Clark, Thompson and Porter 2004), to help us 
ascertain that the emerging concepts fit with certain knowledge patterns and are  
reliable new findings. 

The platform described above can be used to create ontology and simulation sys-
tems for various bioinformatics and biomedical applications, such as: 

• Brain-gene-disease repository and disease risk simulation (illustrated in section 
4.5);  

• Chronic disease (e.g. heart disease, obesity, diabetes) personal risk evaluation  
(illustrated in section 4.6); 

• Diagnosis and risk assessment of multiple types of cancer on a genomic scale  
(illustrated in section 4.7); 

• Kidney function prediction system (Marshal et al 2005); 
• Longevity prediction for patients on haemodialysis (Song et al 2005); 
• Environmental monitoring and prognostic systems (Kasabov 2007a); 
• Many more. 
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4.5   Brain-Gene-Disease Ontology and Brain Cancer Gene 
Profiling 

It is a long term goal to develop a global ontology and simulation system covering all 
functional levels in the brain from Fig. 4.1. Here we describe a smaller–scale brain-
gene-disease ontology (BGO) and a simulation system developed with the use of the 
framework and the platform from Section 4.3.  

The system supports computational neurogenetic modelling (CNGM), that is con-
cerned with modelling and understanding the influence of genes upon brain functions 
(Anon 2005; Kasabov and Benuskova 2004; Benuskova and Kasabov 2007). The BGO 
and the CNGM simulation system integrates knowledge that comes from different  
 

    

                                                                             
 

GENES NEURONS BRAIN 

  

Fig. 4.4. CNGM is concerned with simulating complex relationships between genes, and their 
influence upon neurons and the brain, encompassed in a comprehensive ontology integrating 
hierarchical levels of organization from genes to neurons to neural networks to specific brain 
tissues (the pictures are snapshots from the BGO). 

 

Fig. 4.5. The 12 genes selected as top discriminating genes from the Central Nervous System 
(CNS) cancer data that discriminates two classes – responders and non- responders to treatment 
(Pomeroy, Tamayo et al 2002). The NeuCom software system was used for the analysis using 
the Signal-to-Noise Ratio method. 
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disciplinary domains such as neuroscience, bioinformatics, genetics, computer and 
information sciences (Benuskova and Kasabov 2007). The scope of the phenomena 
included in the developed BGO is shown in Figure 4.4 (see www.kedri.info). 

Table 4.1. The 12 selected most informative genes discriminating responders from non-
responders in the treatment of the CNS cancer (dataset of Pomeroy et al (2002)), based on 
Signal-to-Noise Ratio method using NeuCom software 

------------------------------------------------------------------------------------------------------- 
G1320  = FBN1 Fibrillin 1 (Marfan syndrome)  
G2496  = NTRK3 Neurotrophic tyrosine kinase, receptor, type 3 (TrkC) 

   - (one of the 50 markers of survival identified by Pomeroy et al. 
   2002) 

G348  = probable ubiquitin carboxyl-terminal hydrolase 
G327  = Unknown product 
G2695  = TAR RNA binding protein (TRBP) mRNA 
G2196  = polyposis locus protein 1 
G3320  = Leukotriene C4 synthase (LTC4S) gene 
G5812  = Elastin, Alt. Splice 2  
G1352  = High mobility group protein (HMG-I(Y)) gene exons 1-8 
G2032  = MMP2 Matrix metalloproteinase 2 (gelatinase A, 72kD gelatinase, 

   72kD type IV collagenase)  
G1478  = PCOLCE Procollagen C-endopeptidase enhancer  
G1054  = APOD Apolipoprotein D  
------------------------------------------------------------------------------------------------------- 
 

 

Fig. 4.6. A leave-one-out cross validation method is applied on the selected 12 genes (Table 4.1) 
to validate an ECF ECOS model on the 60 CNS cancer samples (Pomeroy and Tamayo et al 
2002), where 60 models are created – each one trained on 59 samples and tested on the left out 
sample. The average accuracy over all 60 examples is 82%, where 49 samples are classified accu-
rately and 11 incorrectly. 
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The BGO contains data, information, and knowledge about several levels of the 
functioning of the brain, including: molecular and gene information; 500 genes re-
lated to brain functions and diseases such as Epilepsy, Alzheimer, Mental retardation, 
Cancer; single neuron functions; functions of different areas of the brain.  

How this information can be used to derive personalised profiles and new knowl-
edge is illustrated on gene expression data of 60 samples of central nervous system 
(CNS) cancer (medulloblastoma) representing 39 child patients who survived the 
cancer after treatment, and 21 patients who did not respond to the treatment (Pomeroy 
et al 2002).  

Fig. 4.5 and Table 4.1 show the selection of the top 12 genes out of 7129, as num-
bered in the original publication (Pomeroy et al 2002), based on 60 samples, using a 
signal to noise ratio method (SNR) in the software environment NeuCom. The selected 
 

 
a 

 
b 

 

Fig. 4.7. For each class (1-not responding, and 2 – survive) 11 profiles are extracted that repre-
sent different expression patterns of the 12 genes from table 1 for each cluster of data consisting 
of one or more samples (individuals). Different profiles point to the heterogeneity of the gene 
expressions in the CNS cancer samples due to their different interaction for an individual or a 
group of persons (data from (Pomeroy, Tamayo et al. 2002)). (a) Class 1 – profiles of not re-
sponding to treatment individuals and groups; (b) Class 2 – profiles of survival individuals and 
groups. The analysis was done using a proprietary software system SIFTWARE 
(www.peblnz.com).  Red indicates a highly expressed gene and green – low expressed on the 
scale of normalised values [1,-1]. 



106 N. Kasabov et al. 

small number of genes, out of thousands, can be further analyzed and modelled in terms 
of their interactions and relations to the functioning of neurons, neural networks, the 
brain and the CNS. 

Local and personalised modelling on the extracted 12 genes using ECOS is illus-
trated in Figures 4.6 and 4.7, where a classification system is evolved using ECF and 
the local cluster profiles, 11 of them for each of the two classes, are shown. The pro-
files capture the interaction between genes for an individual person or for a group of 
per-sons clustered together. This suggests that an interesting interaction between 
genes defines survival of the CNS cancer, rather than a single gene alone. 

Before the final classifier is evolved, leave-one-out cross-validation method is  
applied to validate the ECF model on the 60 samples, where 60 models are created – 
each one trained on 59 samples and tested on the left-out sample. The average accu-
racy over all 60 examples is 82% as shown in Fig. 4.6. A total of 49 samples are  
classified accurately, out of 60. 

A final ECF ECOS classifier is trained on all 60 samples and local cluster profiles are 
extracted for each class – Fig.4.7. We can see that the profiles are different, which 
points to the heterogeneity of the CNS cancer across the population in the data set. 

A new input vector will be mapped into a trained ECOS model recalling the closest 
local rules (profiles) and the class output will be calculated. 

The extracted 12 genes and 22 patterns of their expression related to the two 
classes constitute new information, which can be entered back to the BGO. After that 
an analysis of both old and new information in the BGO can be done, that may further 
reveal new information, such as some of the genes from Table 4.1 and gene patterns 
from Fig. 4.7 being involved in some other diseases (multiple disease genes/patterns). 

4.6   Ontology-Based Personalised Risk Evaluation of Chronic 
Disease 

As another case study, a Protégé-based ontology is being developed for entering and 
linking concepts and data for various chronic diseases (Type 2 Diabetes; Cardio Vas-
cular Disease; Obesity) and related genes and mutations, as well as health, diet and 
life history data. Fig. 4.8 shows the general network structure of main concept link-
ages in our prototype ontology. Fig. 4.9 shows a more detailed snapshot of a portion 
of the developed ontology, depicting diabetes related genes linked to specific types of 
mutations. 

Health-related data from surveys of New Zealand individuals are being imported 
into the ontology. Examples of suitable data to include are in Table 4.2. These health 
related data can be used in the machine learning module to evaluate a patient’s risk 
towards chronic diseases. 

This is the framework into which information on individual patients for their dis-
ease symptoms, genetic mutations, diet, and life history details can be inputted, and 
risks, profiles, and recommendations derived.   
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Fig. 4.8. Protégé display of the general ontological network for chronic disease concepts link-
ing diseases, symptoms, genes, proteins etc 

 

Fig. 4.9. Protégé ontology structure for genes and mutation types related to one chronic disease 
(Type 2 diabetes) 
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Table 4.2. National Nutrition Survey 1997 (NNS97) dataset variables used in the ontology for 
health risk prediction: 

Personal Clinical Nutrition 
Age 
Gender 
Ethnicity 
Immigration  
Social economic 
status 
Geographic location – 
rural – urban 
Occupation 

Body mass index 
Waist 
Blood pressure 
Pulse 
Blood: 
Total & HDL choles-
terol 
Haemoglobin 
Measures of inflam-
mation: 
Serum ferritin 
C reactive protein 
White blood cell 
count 

Nutrients including Energy 
Protein 
Fat – saturated fat 
Carbohydrates complex and 
free sugar Fibre 
Cholesterol 
Salt 
Supplements 
Dietary pattern:  
Energy and nutrition re-
quirements based on activity 
pattern 

4.7   Ontology-Based Personalised Cancer Prognosis – Work in 
Progress 

Cancer arises owing to the DNA damages resulting in the mutations in the genes that 
regulate DNA repair and apoptosis. These mutated genes, which are causally impli-
cated cancer development, are known as cancer genes, and so far, more than 350 of 
them have been discovered (Greenman et al 2007). The remarkable progress achieved 
in human genome project research has made it possible to systematically resequence 
cancer genomes, which will reveal more information to identify other cancer genes. In 
recent years, gene expression profiling with DNA microarray has provided a revolu-
tionary approach to study the pathology of cancer. Owing to the ability to profile 
differential gene expression, DNA microarray data have been extensively used for 
diagnosing and predicting the clinical outcomes in response to cancer treatment 
(Schena 2002). 

Coupled with the discovery of cancer genes, a substantial number of approaches 
for cancer diagnosis and prognosis have been proposed. However, cancer heterogene-
ity prevents many published approaches and models from working properly on indi-
vidual cancer patient’s treatment. Cancer is a complex disease that patients need to be 
individually treated. Many models for clinical decision support based on various 
computational techniques have been published (Alizadeh, Eisen, Davis, Ma and et al 
2000; Cho, Kim, Wee, Jeon and Lee 2003; Golub et al 1999; van't Veer et al 2002).  
However, most of these models do not have the ability to provide reliable and precise 
information to the patients who require individual therapy schemes (Navins et al 
2003). 

There have been several attempts to use ontology for cancer research. The National 
Cancer Institute Thesaurus (NCIT) is a biomedical ontology that provides consistent, 
unambiguous definitions for concepts and terminologies in cancer research domain 
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(Ceusters et al 2005). It opens a way to integrate various types of information through 
semantic relationships, including cancer related disease, findings, gene data, drugs, 
etc. NCI is also linked to other internal or external information resources, such as 
caCore, caBIO and Gene Ontology (GO). In the study proposed by Dameron et al 
(2006), it has been demonstrated that ontology is capable of automatically analyzing 
the grading of lung cancer. 

One of the research goals in this project is to create an ontology for cancer data 
analysis that can be used to assist personalised cancer diagnosis and risk measurement 
based on gene data analysis. Such cancer diagnosis and prognosis ontology will be 
beneficial to both the business and research communities. This is based on the high 
financial cost and available data resources for cancer research using gene data analy-
sis (Hermida et al 2006; Shipp et al 2006). The cancer diagnosis and prognosis  
ontology will help the scientists in providing the relationships, either evidential or 
predicted, between genes; therefore, the scientists can target their research appropri-
ately. The other benefit is to avoid repeatedly re-discovering any relationships that 
have been already been made by other researchers. 

The main advantage of this system is the evolving ontology and the use of a multi-
model machine learning module. This module will have a personalised modelling 
system, which has been demonstrated to be efficient for clinical and medical applica-
tions of learning systems. It is efficient because it focuses not on the model, but on the 
individual samples (Nevins et al 2003; Song and Kasabov 2006; Song, Ma, and Ka-
sabov 2005).  To solve the cancer heterogeneity issue, the implementation of person-
alised modelling can efficiently diagnose cancers and predict clinical outcomes for 
cancer patients (see for example Fig. 4.7). Ultimately, the results of the personalised 
modelling will be used to evolve the ontology in such a way that it will be able to find 
any emerging patterns, as well as strengthening the existing ones. 

The cancer diagnosis and prognosis ontology can also be a sophisticated platform 
to store, manage, and to share the large amount of data and insight collected from the 
last two decades of advances in cancer research. Moreover, with such a system, the 
disparate datasets and distinct computational models for cancer research can be inte-
grated. Furthermore, such data can serve as a good base for our machine learning 
module to make its predictions and analysis. 

One of the main notions in this research is to develop a model that can accurately 
diagnose cancer samples and predict clinical outcome based on gene data for future 
individual patients. A personalised cancer diagnosis and risk management system will 
be built based on gene data expression analysis. Novel personalised neuro-fuzzy in-
ference techniques will be incorporated specifically for constructing the system for 
cancer diagnosis and prognosis. Based on the model obtained from learning proce-
dure, an individual model (personalised model) will be created and used for every 
new input data vector (real cancer tissue samples) from clinical sources. 

4.8   Conclusions and Directions for Further Research 

This chapter presented a framework and a software platform for the integration of 
local and personalised modelling techniques with ontology information bases to 
achieve: 
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1. A better personal data processing, resulting in personalised models, profiles, risk 
evaluations, treatment. 

2. New information creation 
3. A better understanding of complex, unsolved so far problems in their multivariate 

interaction at different levels of the functioning a biological system 

The presented framework needs to be developed further in terms of: 

1. Efficient integration of old and new concepts and information in the ontology  
2. Automated search for relevant data to a new person’s data 
3. Novel, more efficient methods for personalised feature selection and model  

optimization. 
4. Multiple model creation for a single person and cross model analysis for the dis-

covery of new interactions between variables from different models, e.g. genes re-
lated to different types of cancer.     

The presented case studies will be further developed in terms of: 

1. A continuous update of the BGO with new information made available related to 
any of the functional levels from Fig.1, including quantum and evolutionary level. 

2. A continuous update of the chronic disease ontology. 
3. The creation and the continuous update of a cancer ontology and prognostic per-

sonalised modelling system, to incorporate all available data related to all types of 
cancer for a cross model creation and new information discovery.     
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Appendix A: The WWKNN Algorithm (from Kasabov, 2007 a,b) 

Using the ranking of the variables in terms of a discriminative power within the 
neighborhood of K vectors, when calculating the output for the new input vector, is 
the main idea behind the WWKNN algorithm (Kasabov, 2007a,b), which includes 
one more weight vector to weigh the importance of the variables. 

The Euclidean distance dj between a new vector xi and a neighboring one xj   is cal-
culated now as: 

dj = sqr [ sum  l = 1 to v ( ci,l  (xi,l  -    xj,l ) )
2 ] (A1) 

where: ci,l is the coefficient weighing variable xl  for in neighbourhood of  xi . It can be 
calculated using a Signal-to-Noise Ratio (SNR) procedure that ranks each variable 
across all vectors in the neighborhood set Di of Ni vectors: 

Ci= (ci,1, ci,2,…..,ci,v ) (A2) 

ci,l =  Sl /sum (Sl),    for: l =1,2,…,v, where: 

                  Sl = abs (Ml 
(class 1) – Ml 

(class 2) ) / ( Stdl 
(class 1) + Stdl 

(class2)  )     (A3) 

Here Ml
(class 1) and Stdl

(class 1)  are respectively the mean value and the standard devia-
tion of variable xl for all vectors in Di that belong to class 1. 

The new distance measure, that weighs all variables according to their importance 
as discriminating factors in the neighborhood area Di, is the new element in the 
WWKNN algorithm when compared to the WKNN.          

Using the WWKNN algorithm, a “personalised” profile of the variable importance 
can be derived for any new input vector, which represents a new piece of “personal-
ised’ information.     

Weighted variables in personalized models is used in the TWNFI models  (Trans-
ductive Weighted Neuro-Fuzzy Inference ) in (Song and Kasabov 2006), where a 
back propagation or an evolutionary optimization algorithm is applied.  

There are several open problems related to transductive learning and reasoning, 
e.g. how to choose the optimal number of vectors in a neighborhood and the optimal 
number of variables, which for different new vectors may be different. 
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Appendix B: TWNFI – Neural Fuzzy Inference System with 
Weighted Data Normalization (from Song and Kasabov 2006) 

The distance between vectors x and y is measured in TWNFI in weighted normalized 
Euclidean distance defined as follows (the values are between 0 and 1):    
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Where:  x, y ∈ RP and wj are weights. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. B1. A block diagram of the TWNFI 

For each new data vector xq an individual model is created with the application of 
the following steps: 

1. Normalize the training data set and the new data vector xq (the values are between 
0 and 1) with value 1 as the initial input variable weights. 

2. Search in the training data set in the input space to find Nq training examples that 
are closest to xq using weighted normalized Euclidean distance defined as Eq. B1.  

3. Calculate the distances di, i = 1, 2, …, Nq,  between each of these data samples and 
xq. Calculate the vector weights vi = 1 – (di – min(d)), i = 1, 2, …, Nq,  min(d) is 
the minimum value in the distance vector d = [d1, d2, … , dNq].  

4. Use a clustering algorithm to cluster and partition the input sub-space that consists 
of Nq selected training samples.  
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5. Create fuzzy rules and set their initial parameter values according to the clustering 
procedure results; for each cluster, the cluster centre is taken as the centre of a 
fuzzy membership function (Gaussian function) and the cluster radius is taken as 
the width.  

6. Apply the steepest descent method (back-propagation) to optimize the weights and 
parameters of the fuzzy rules in the local model Mq following Eq. (B6 – B13). 

7. Search in the training data set to find Nq samples (the same to Step 2); if the same 
samples are found as the last search, the algorithm goes to Step 8, otherwise, to 
Step 3.  

8. Calculate the output value yq for the input vector xq applying fuzzy inference over 
the set of fuzzy rules that constitute the local model Mq. 

9. End of the procedure. 
The weight and parameter optimization procedure is described below: 
Consider the system having P inputs, one output and M fuzzy rules defined initially 

through the ECM clustering procedure, the l -th rule has the form of: 
 

Rl : If x1 is Fl1 and x2 is Fl2 and … xP is FlP, then y is Gl . (B2) 

Here, Flj are fuzzy sets defined by the following Gaussian type membership function: 
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and Gl are of a similar type as Flj and are defined as 
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Using the Modified Centre Average defuzzification procedure the output value of 
the system can be calculated for an input vector xi = [x1, x2, …, xP] as  follows: 
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Here, wj are weights of the input variables. 
Suppose the TWNFI is given a training input-output data pair [xi, ti], the system 

minimizes the following objective function (a weighted error function): 
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(vi are defined in Step 3)   
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The steepest descent algorithm (BP) is used then to obtain the formulas for the op-
timization of the parameters Gl, δl, αlj, mlj, σlj and wj such that the value of E from Eq. 
(B6) is minimized: 
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where Gη , δη , αη , mη , ση  wη and are learning rates for updating the parameters 

Gl, δl, αlj, mlj, σlj  and wj respectively. 
In the TWNFI training–simulating algorithm, the following indexes are used: 

• Training data samples:   i = 1, 2, … , N; 
• Input variables:   j = 1, 2, … , P; 
• Fuzzy rules:    l = 1, 2, …, M; 
• Training epochs:  k = 1, 2, …. 
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Summary. Spike-wave and polyspike-wave activity in electroencephalogram are wave-
forms typical of certain epileptic states. Automated detection of such patterns would be
desirable for automated seizure detection in both experimental and clinical venues. We
have developed a time-domain algorithm denominated SPUD to facilitate data-mining
of large electroencephalogram/electrocorticogram datasets to identify the occurrence
of spike-wave or other activity patterns. This algorithm feeds into our enhanced Neu-
ral Query System [2, 12] database application to facilitate data-mining. We have used
our algorithm to identify and classify activity from both simulated and experimental
seizures.

5.1 Introduction

There are vast databases of existing neural data which are growing in number
and size at an ever increasing rate. The data is of clinical and research signif-
icance, but without the proper tools to sift through it, it is of limited use [2].
Custom search, interpretation, and quantification methods are needed to op-
timize the use of the data. These methods and search tools should allow the
investigator to visualize the available information in a clear and comprehensi-
ble manner, and allow him/her to find patterns that would be difficult to see
without the aid of a computer. These types of methods come under the heading
data-mining, informally defined as user-guided analysis of large datasets using
automated techniques. Ideally, data-mining methods should be general enough
to work for different types of neural data, i.e., simulated in software, in vivo, and
in vitro recordings, yet allow customizable options to find relevant and particular
patterns.

We have developed an algorithm, named SPUD (mnemonic for slice, peak,
up, down — explained below), which successfully extracts useful features from
disparate types of neural data. It operates on signals in the time-domain, and
the features it extracts remain in the time-domain, providing exact timing in-
formation for events of interest. This is in contrast to many popular signal anal-
ysis algorithms, such as wavelets [1] or FFT (Fast Fourier transform [5]), which

T.G. Smolinski et al. (Eds.): Comp. Intel. in Biomed. & Bioinform., SCI 151, pp. 119–140, 2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008
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operate mainly in the frequency-domain, and therefore, lack precise timing in-
formation. For the detection of spike-wave (SW), algorithms operating in the
frequency-domain may have difficulty, because the timing of SWs is extremely
precise. For example, a population spike, which is very brief, may be followed by
a wave, which is considerably longer-lasting. This type of pattern may provide
conflicting information in the frequency-domain because spikes and waves are so
close together in time.

The SPUD algorithm feeds the extracted features directly into the previously
developed Neural Query System (NQS) [12]. We enhanced NQS to allow for
standard structured query language (SQL [4]) queries by incorporating the open
source database MySQL (http://www.mysql.com). The versatile search capabil-
ities already provided by NQS, together with standard SQL, provides for highly
efficient and customizable search directly from the NEURON simulation envi-
ronment [10, 3]. This makes it convenient for a researcher to run simulations
and analyze their results all in one familiar environment. Using the developed
techniques, we were able to find SW and polyspike-wave (PSW) patterns in both
simulated and in vivo recordings from Sprague Dawley rats.

5.2 Methods

5.2.1 Data-Mining Architecture

Database setup

The data of interest may either be read in directly to the database system or
run through a feature extraction algorithm. The feature extraction algorithm
simplifies the data by pulling out properties deemed to be useful for the partic-
ular application. It allows viewing of the data at a higher level of abstraction
by ignoring irrelevant details and giving structure to the data. The feature ex-
traction algorithm we used, SPUD, is described below. Other feature extraction
algorithms fit into this pipeline and may be used in SPUD’s place.

Performing queries

Once the database is set up, the user can perform searches/queries on the data.
The query syntax is described below. The results returned by the database sys-
tem can be displayed visually with NQS’s (described below) graphical output
system and/or read into data structures of the hoc programming language that
is available with the NEURON simulation environment. This allows for a bidi-
rectional flow of information between the user and the database. Fig. 5.1 shows
the data-mining architecture developed.

5.2.2 SPUD Feature Extraction Algorithm

SPUD is a general algorithm for extracting information from signals in the time-
domain. It works on both noisy and clean data. It was originally intended to
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Fig. 5.1. Schematic of data-mining architecture. Arrows represent flow of information
in a given direction. Bi-directional information transfer occurs between the user and
the database (DB) system.

work on signals obtained from simulations in the NEURON environment, but
performed equally well on experimental data obtained from in vivo recordings of
rats with electrocorticographic leads. One key design goal was the ability of the
algorithm to extract the information characterizing the morphology and precise
time properties of an arbitrary signal.

Steps of the algorithm

The SPUD algorithm is used to build a database of bump characteristics in the
time domain, where a bump is any deviation with return to the baseline.

The algorithm proceeds as follows:

1. Slice the EEG/ECoG trace horizontally at logarithmically spaced voltage
levels. These levels are more finely spaced at lower voltage levels to capture
small bumps.

2. Iterate over slice positions in the horizontal direction to find matched upward
and downward crossing points.

3. Find peaks between crossing points to define slice traces as a triad: upward
crossing; peak; downward crossing.

4. Group slices with common peaks to define individual bumps.
5. Extract information about each bump. Information may include e.g., first

derivative of upstroke, first derivative of downstroke, amplitude, duration,
sharpness (defined below), start time, and others.

Fig. 5.2 shows bumps extracted from a sample trace.
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10ms
50uV

Fig. 5.2. Schematic showing different steps of SPUD feature extraction algorithm on
recording from rat right occipital cortex. Horizontal lines are threshold locations. Open
triangles, circles, and squares represent left/upward crossing position, peak position,
and right/downward crossing position of bumps respectively. Note: some bumps start-
ing and ending points are at the same time location and therefore a square and triangle
marks them.

Bumps

The information extracted from the signal, which is defined as the sequence of
sampled time-ordered pairs (ti, si), takes the form of bumps. A bump, b, is a
section of the signal containing a deviation from the baseline value, Lm ∈ L (set
of threshold lines), followed by a return to that value. Given a series of samples
in the signal, si, si+1, si+2, . . . si+n , occurring at times ti, ti+1, ti+2, . . . ti+n ,
and a fixed horizontal baseline, Lm, a bump begins at the first time signal pair,
(tf , sf ), such that sf ≥ Lm. The bump consists of the time-ordered set of pairs
(tk, sk) such that sk ≥ Lm. The last pair, (tl, sl), where sl ≥ Lm but sl+1 < Lm,
defines the end of the bump. The next bump in the set may begin at the next
time the signal crosses Lm. For a bump b, ∀(tk, sk) ∈ b, tk ≥ tf , tk ≤ tl, sk ≥ Lm.
For notational convenience (tf , sf) , (tl, sl) , and (tp, sp) denote the first, last,
and peak time/signal pairs in a bump. A given bump Bi ∈ B ’s start, end, and
peak time will be denoted Bitf

, Bitl
, and Bitp respectively.

Bumps have properties associated with them which may include width (tl−tf),
height from baseline (max(si−L) ), absolute peak value (max(si), first derivative
( si−si−1

ti−ti−1
) at arbitrary positions within the bump, number of nested bumps, etc.

The properties may be easily extended and determined algorithmically once
the extents of the bump have been determined with the default algorithm. The



5 Data-Mining of Time-Domain Features from Neural Field Data 123

shape of the bumps can be anything from a single action potential to the complex
spiking patterns from extracellular recordings.

Thresholding

In order to extract only the significant bumps, a set of horizontal threshold
lines, L, is used to define the baselines where bumps deviate from. This set of
horizontal lines may be selected interactively by the user as it becomes apparent
where significant bumps occur. Initially it can be set to either linear spacing,
or logarithmic spacing. Further work needs to be done to algorithmically space
the threshold lines in an optimal way depending on a given signal. The linear
and logarithmic spacings allow for more control of bump extraction for different
types of signals. For example, use of logarithmic spacing allows finer spacing
at lower values of the signal, allowing for the extraction of smaller bumps. In
general, the minimum value of the signal determines a value above which the
first horizontal threshold line is placed and the maximum value determines a
location below which the last threshold line is placed. These threshold lines
must be monotonically increasing.

Varying threshold lines

There are several options for specifying how to space the threshold lines. De-
pending on the option chosen, the extracted bumps can be somewhat different.
The default option is to space the lines logarithmically from 0.05 of the maxi-
mum amplitude in the trace to 0.95 of the maximum amplitude. This generally
picks out the most significant bumps and smaller bumps that are placed near
the bottom of the trace due to the finer spacing there. Another option which can
yield better performance when the user’s focus is on the middle of a trace, allows
a fan-out logarithmic spacing whereby the start of a logarithmically spaced set
of threshold lines extends upward and downward from 0.5 of the maximum am-
plitude of the trace. The most simple option, which does not allow for focusing
in on any particular region is to space the threshold lines linearly. In general,
logarithmic spacing starting at a certain vertical position will extract finer de-
tails in the surrounding region. The user is also given the option of specifying his
own threshold lines to narrow in on activity of interest. Figure 5.3(A,B) shows
the differences in resulting bumps using 2 different sets of threshold slices.

Bump finding

Once the threshold lines, L, have been determined, they are traversed from the
lowest threshold line to the highest threshold line. Each threshold line, Lm, is
traversed in the horizontal direction from the start of the signal, (t0, s0), to the
end of the signal, (tn, sn), in a search for matched upward, peak, and downward
crossing points. To start the search for upward crossing points, a point in the
signal below the current threshold line (si < Lm) is found. This point is the
starting position for the search. The horizontal position is incremented until
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the signal crosses the threshold (si ≥ Lm) line in an upward direction. This
horizontal point is then noted as the left-most point of the first bump. The
search then continues until a maxima is reached. This point is noted. Once
again, the search continues until the signal passes the current threshold line in a
downward direction (si ≤ Lm) and the point noted as the right-most position of
the current bump. In this fashion, each threshold line is traversed with a triad
of upward, peak, and downward crossing points being extracted as the initial
bumps.

Overlapping bumps

Since multiple threshold lines are used, the set of bumps found from the previous
step, B, may be overlapping. This occurs with two bumps, Bi and Bj , when
Bitf

≥ Bjtf
and Bitl

≤ Bjtl
. This means that Bi is entirely contained within the

time bounds of Bj . Overlapping also occurs when Bitf
≥ Bjtf

, Bitf
≤ Bjtl

, and
Bitl

> Bjtl
. There are two options for dealing with these types of inevitabilities.

The first, and simplest, is to allow overlapping bumps. Though this is not the
default behavior of the algorithm, for certain situations, this is the desired result,
i.e., determining the # of nested bumps in a signal/time interval. Overlapping
bumps may also help determine the bounds of low frequency, long duration
bumps in the presence of high frequency components. For example, in fig. 5.2,
the first 6 low amplitude bumps are high frequency fluctuations on a longer
low frequency deflection. In other situations, overlapping bumps can have their
starting and ending times adjusted. This is done by grouping threshold slices
with common peaks to define individual bumps. First, the bumps are traversed
in increasing time order and checked for overlaps on the left or right sides. A left
overlap is defined as the start of the current bump, being between the start and
the peak time of the previous bump (Bctf

> Bc−1tf
and Bctf

< Bc−1tp
). In such

a case, the threshold lines are traversed from min(L) to max(L) to find the lowest
threshold containing a bump with the same peak time as the current bump’s peak
time and containing a starting time greater than the previous bump’s ending
time (all threshold lines have their associated bumps stored during initial bump
extraction). The current bump’s starting time is set as this threshold line’s peak
time. The same idea is used to check for and correct overlaps on the right side.

Creeping

At this point there is a non-default option allowing a bump Bi ∈ B ’s Bitf

and Bitl
and associated signal values to creep to a local minima. This means

decreasing the starting time until it is a local minima, i.e., having a signal value
less than the surrounding signal values (si < si−1, si < si+1), and increasing
the starting time in a similar fashion. In certain situations, this helps get a more
accurate estimate of a bump’s time bounds, i.e., if a threshold line is much higher
than the local minima found by creeping.



5 Data-Mining of Time-Domain Features from Neural Field Data 125

A

B

C

25uV
20ms

25uV
20ms

20ms
25uV

Fig. 5.3. Traces obtained by averaging all triplets of photic responses across 25 trials.
Spacing the threshold slices (horizontal lines) differently may result in different bumps
being extracted. Bump peaks represented as circles. Differences in extracted bumps
between sets in A and B slices highlighted by rectangles. (A) Logarithmic spacing
starting near bottom of trace. (B) Logarithmic spacing centered at middle (fan-out).
(C) Dips extracted as bumps by flipping trace over x-axis.
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Bump properties

Once the time bounds of the bumps have been set, the other properties of a
bump are extracted. The values we had the algorithm extract were: start time,
peak voltage amplitude, peak time location, time from start to finish (width),
sharpness, and when overlapping is allowed, the number of other bumps nested
within each bump’s start and end times. Others features can be readily added.
The sharpness was defined as (si−si−4)−(si+4 −si) , where si is the sample cor-
responding to the given bump’s peak time location. This measure approximates
the discretized 2nd derivative, but takes into account more information from the
surrounding values. It can easily be modified depending on the intended usage.
We also extracted the base voltage level of the bump on its left and/or right
side and as a result we were able to query for the height of the bump, which is
defined as peak voltage level minus base voltage level.

Extracting upside-down bumps

Since extracellular field recordings have different properties when they are dis-
played upside-down vs. right-side up, it is desirable to allow the user to extract
bumps from both the original trace and the inverted trace. This allows for the
extraction of dips, or inverted bumps, which will yield additional information.
Figure 5.3 shows the two possible sets of bumps extracted using the normal, and
the upside down version of the trace. Note that SPUD can automatically extract
both sets of bumps by setting a parameter.

Run-time complexity

A typical trace of neural data in our data set was sampled with a frequency on
the order of milliseconds and was recorded for at least a few seconds, typically
9. This results in a vector of 9000 time points and corresponding voltage levels.
The main portion of the SPUD algorithm is the traversal through each point
in a given trace, once for each threshold line, in the search for bumps. There
are typically 10 or so threshold lines, a number significantly smaller than the
number of points in a trace.

The extraction of a bump feature is taken to be approximately constant. The
number of bumps in a trace is also significantly less than the number of points
in a trace, usually by a 30-fold reduction or more (e.g., 300 bumps in a 9000
millisecond trace).

The main steps of the algorithm consist of iterating over the threshold lines
for each time point and extracting bumps. Then for each bump, features are
extracted which has a constant cost. The time complexity of the algorithm can
therefore be approximated as |L|×|B|×|S| where |L| is the number of threshold
lines, |B| is the number of bumps found, and |S| is the number of sampled points
in a trace. When removing overlapping bumps, additional terms proportional to
|B|2 may be added to the run-time complexity. This is because, for a single
given bump, b ∈ B, overlapping with another bump, the search for the modified
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starting/ending time is linear in |B| in the worst case (the average will be far
less). Since there are |B| bumps, this results in an additional cost of |B|2. The
total run-time complexity will then be |L|×|S|×|B|+|B|2 , with the dominating
term being |S|. As a consequence the algorithm will have an o(|S|) run-time.
The results of a signal may be analyzed many times in a data-mining framework
and consequently, the run time cost of bump extraction can be viewed as an
amortized payment which has returns each time a query is performed by the
user.

In runtime complexity, SPUD is competitive with FFT which is θ
(|S| × log (|S|)) [11], and with the the fast wavelet transform using the lifting
scheme, which is o(|S|) when using finite filters [15].

5.2.3 NQS and MySQL

Overview

The next step in our data-mining pipeline was storing the extracted bumps and
their associated information into the Neural Query System database as well as
a MySQL table to allow data-mining of features.

NQS

The Neural Query System (NQS) is a relational database system built into the
NEURON simulation environment. It allows storage of structured records and a
flexible search syntax on these records. It works seamlessly with NEURON’s data
types, including Vectors, Lists, strings, scalars and neural or network models. It
also allows storage of sub-tables within tables. This is very handy for storage of
complex data types. NQS also provides for graphical display of data, aiding in
finding patterns in the data. Using NEURON with NQS, it is possible to run
large simulations and store partially analyzed data quickly and easily from one
environment.

MySQL

The MySQL database system (http://www.mysql.com/) has been in use for
over a decade and is open-source. It has a large user base familiar with Struc-
tured Query Language (SQL). Though NQS has an intuitive syntax and much
in common with SQL, there are differences in the details of the two query lan-
guages. Requiring users who already know SQL to learn NQS syntax is a possible
hindrance to fast learning of the data-mining system. Although NQS has a con-
venient front-end and runs quickly on fast machines, it does not have the benefit
of more than a decade of open source contributions from a wide community of
programmers. For these reasons, we decided to create an interface between NQS
and MySQL that would maintain the strengths of both systems — maintain-
ing the ease of use of NQS and SQL, as well as the optimizations available in
MySQL.
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NQS/MySQL Interface

The interface we created enhances NQS with the ability to perform standard
SQL queries using MySQL’s version of SQL. The interface was written with the
MySQL C application programmer interface (API) being translated into blocks
in NEURON’s NMODL language [9]. NMODL allows C code to be compiled
into the NEURON environment and then called once it is running. The API
we wrote connects directly to a MySQL database server from within NEURON.
This allows conversion of NQS databases to MySQL databases and vice versa. It
also allows for SQL queries to be performed on MySQL databases and then read-
ing the returned data into NEURON data types. Exchanging data and queries
between NQS and a MySQL server becomes quite easy. Once the queries are
done, the user may retrieve their results into an NQS table.

Function overview

The main interface consists of functions for connecting to the MySQL server as
well as performing queries. Once the queries have been made, their results may
be obtained with helper functions. These functions read the data directly into
NEURON data structures. There are other helper functions made to help search
tables in the database. A typical session in NEURON will consist of connecting
to the MySQL server and exchanging queries and data back and forth. We also
added some functions written in NEURON’s scripting language, hoc, to allow
for the conversion between NQS tables and MySQL tables easily, as well as a
function to help create MySQL tables programmatically. These functions make
it very easy to use MySQL and NQS together efficiently.

5.2.4 Simulation Setup

The simulations were run in NEURON using tonic-clonic simulation networks
previously described [13]. The networks consisted of 1350 neurons comprising
three types of cells: spontaneously active cells (drivers), inhibitory cells, and ex-
pressors (main excitatory cell population). 138,240 traces of extracellular field
potentials were produced. Realistic patterns of activity, such as SW, were present
(a sample trace with SW activity is shown in figure 5.4). The traces were then
stored in the NQS system along with the 8,205,557 bumps and corresponding
features extracted with the SPUD algorithm. The enhanced NQS system also
converted the resulting database into a MySQL database and indexed each col-
umn to allow for real-time/interactive searching of the full dataset. Having to
sift through such a massive set of data without the aid of a flexible data-mining
tool would have prohibitive time costs and most likely introduce errors.

5.2.5 Rat Data Recording Setup

Materials

Data was acquired from normal adult Sprague Dawley rats using BrainWare
(TDT), which employs an electrode channel window for electrophysiological
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100ms

Fig. 5.4. Single trace from simulation. In this and following traces derived from sim-
ulation, voltage is in arbitrary units.

125ms

200uV

1st PSW1st strobe

Fig. 5.5. ECoG response from photically-sensitized rat in response to a train of stro-
boscopic flashes presented at 8 Hz. Vertical lines represent occurrence of strobe flashes.
The first flashes in the strobe train elicited a photic driving response that morphed
into PSW activity.

125ms

200uV
single
sw

Fig. 5.6. ECoG recording from right occipital cortex during a PTZ-induced seizure
with SW discharges

recording. We recorded the electrocorticogram (ECoG) at a sampling rate of
25kHz from a stainless steel wire placed on the dural surface over right occip-
ital cortex; a second lead located over the cerebellum served as the differential
reference [16].

Experimental conditions

There were two experimental conditions used for recording. In all recordings, the
rat was awake and moving freely.
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Epileptiform behavior via photic-induced sensitization. The first experimental
condition involved photic-induced sensitization following repeated exposure to
trains of stroboscopic flashes [16]. One strobe train consisted of 17 flashes pre-
sented at 8Hz. Trains were presented every 30 seconds and 30-40 trains were
presented during a daily recording session. On initial train presentations, the
responses were small, showing at most an entrained sinusoidal driving response.
However, over the course of three sessions of strobe exposure, the response
grew in magnitude and acquired epileptiform characteristics like SW morphology
(Fig. 5.5).

Chemically-induced seizures. The rat was injected with 24 mg/kg of pentylenete-
trazol (PTZ), a convulsant agent [7]. We started recording as soon as the rat
was injected. SW seizures appeared within 2-7 min of PTZ injection (Fig. 5.6).

Artifact rejection. In some of the recorded traces there were artifacts introduced
by the recording equipment or sudden animal movement. These artifacts were
generally a voltage value of 0 or amplifier maximal value. Therefore, before
running our algorithms on these traces, we preprocessed them by setting out-
liers/artifacts to an average of the surrounding voltage levels programmatically.
Outliers were considered as any value that differed from the median voltage level
of that trace by a predetermined threshold. Our algorithms and tools were then
tested on several hundred of these preprocessed traces.

5.3 Results

5.3.1 Simulated Data

Data-mining for SWs

Once the bumps and their corresponding information were stored in the database,
we were able to data-mine for patterns of interest. We were able to use bump
properties to classify the simulated EEG traces shown in figure 5.7A. A simple
search looked for all traces with bumps having height above the 95th percentile,
and sharpness above the 30th percentile. This was done by first creating a ta-
ble in NQS storing the percentile values of several properties of interest such as
height, sharpness, and number of bumps in a trace. Percentile tables were then
created with a few function calls. Then the following NQS query was used to
select all traces having more than 3 bumps above the 95th percentile of height,
and 3 bumps above the 30th percentile of sharpness:

sq.select("HE95" , ">" ,3, "SH30", ">" ,3, "NUM", "<" ,10)

This query returned traces with spike-wave activity. Some results are shown
in figure 5.7. If it is most important to identify all seizures, a liberal criteria is
used in the search which will result in a potentially higher number of false pos-
itives. On the other hand, a more conservative select is used in order to collect
a few clear seizures,
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A

B

1000ms

Fig. 5.7. Simulation traces. (A) 100 traces of 1000ms duration each, from tonic-clonic
simulation described in methods section. There are many different types of patterns
in these traces, including SW activity. (B) Some of the traces returned with the NQS
percentile-based select described. These traces were selected from the data set of 138,240
simulation traces, some of which are shown in A.
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100ms

spike

wave

Fig. 5.8. This figure shows that all 6 SWs in the simulated EEG trace were returned
with the SQL select mentioned below. All spike peaks returned by the SQL select are
marked with open circles. All wave peaks are marked with open squares. As shown, all
of the SWs in the trace are found.

SQL SW select

An alternative approach to finding SW activity was to produce an enhanced
NQS/SQL query that returned times of spikes and times of waves. This was
done by selecting all bumps from a given trace having two consecutive bumps,
a and b, where a is a sharp, high amplitude spike, and b is a blunt, wide, and
relatively low amplitude bump. The following SQL query was used to find all
the spike and wave bumps satisfying these properties from a particular trace:

select b1.id, b2.id from bumps as b1, bumps as b2
where b1.peak > 1.33 * b2.peak and
b2.sharp < 200 and b2.width >= 15 and
b1.trace=6 and b2.trace=6 and
b1.id < b2.id and
abs(b1.id-b2.id) < 2 and
b1.sharp > 3312*1.5 and
b2.sharp < 3312/2 and
b1.sharp > 30*b2.sharp;

This query returns all 6 of the SWs from the given trace shown above in
figure 5.8.

System performance

Using the SQL query above, the data-mining system was able to search through
the entire bump database, which is on the order of 8e6 bumps, and return results
in less than 1ms. This performance level is useful for a fast back and forth
between investigator and the data-mining system.
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5.3.2 Rat Data

Classification algorithms

To help find different types of activity patterns in the in vivo electrocorticogram
recordings of rat epileptiform activity several types of classification algorithms
were used on the bumps. One such application was in determining whether a
PSW occurred during a PPR response. This involved clustering the time intervals
based on their bump content. We also developed an algorithm to determine the
time bounds of the PTZ induced seizures by analyzing the bump properties in
a trace.

Clustering with k-means

Classifying time windows in traces into background activity vs. PSW is useful
for detecting the onset and duration of seizures and/or epileptiform activity. We
were able to use k-means clustering [14, 8] to classify intervals into two classes.
K-means used 4-D vectors consisting of the un-normalized maximal bump width,
height, peak, and sharpness from the bumps of a given interval. The time inter-
vals were cut to be 125ms, which is the time between successive strobe flashes.
Although PSWs typically occur in between strobe flashes, we did not limit the
clustering solely to those intervals so that we would obtain accurate background
vs. PSW activity. When we only used the time intervals between strobe flashes,
the false positive/negative rates increased. Once the k-means clustering was per-
formed, there were two classes - one with a high amplitude width, height, peak,
and sharpness, and one with a significantly lower amplitude of these values.
Though k-means has an element of randomness in it, running it thousands of
times helps ensure an accurate result. This is done by choosing the cluster cen-
troids that occur the majority of the time as the final cluster centroids. All time
intervals are classified accordingly. The final centroids of the two classes came
out with these ratios for the PSW/non-PSW values : peak 1.67, width 2.75,
sharpness 1.77, height 3.3. It is clear from these ratios that the PSW intervals
have significantly higher values of all the properties used for classification. This
difference in magnitude of the properties allowed the algorithm to determine
which class had PSWs and which did not.

The resultant clusters, shown in fig. 5.9, separating between PSW and non-
PSW intervals correlated well with the results of the algorithm described below,
providing a measure of cross-validation. The results were also visually inspected
for accuracy. Though certain intervals are mis-classified, overall the method does
well. Since the distinction between PSW and driving activity is sometimes blurry,
errors may be reduced by thresholding the results of a fuzzy k-means algorithm
[6]. However, there are certain sharp borders in this classification scheme: based
on visual inspection, PSWs detected outside of the strobing windows are always
false positives. An NQS select shows that there are 21 PSW cycles detected
outside of this time interval (before 3000ms or after 5000ms) out of a total of
243 total PSW cycles detected. That is an approximately 8.6% false positive
rate. False negative rates are more difficult to obtain due to the blurry border
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first strobe last strobe

Fig. 5.9. K-means clustering on strobe data traces. Vertical lines indicate time windows
for bump analysis. Each time window is 125ms. Thick, dark lines represent PSW type
activity. Thinner lines indicate absence of PSWs. Length of each trace is 9000ms. PSW
activity begins shortly after onset of strobing. Vertical solid lines represent time interval
borders for clustering and 8Hz strobe times (between first and last strobe only). (A)
Full set of results. (B) Zoom in of portion of traces.

between PSW and non-PSW responses (see discussion). More generally, the clus-
tering of the time intervals may be viewed as another step in the data-mining
pipeline, where the researcher filters the data sets to find ever more particular
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information. Though this method has the additional information of optimal time
window length, it may be possible to dynamically determine this based on bump
properties for other types of traces.

Detecting time bounds of seizures

To detect the time bounds of the PTZ-induced seizures, we could not rely on a
clustering algorithm like k-means, because there were no predefined time win-
dows that would be guaranteed to work. Therefore we used a strategy based on
the fact that in general, the seizure regions of the trace consisted of tall and
wide bumps with other small bumps in intermediate positions. The presence of
seizures could then be indicated by positive deviations from the mean width and
height of the bumps in a trace by a certain factor. The first step in detecting
the seizure was iterating over the set of bumps and searching for tall and wide
bumps. These bumps were designated as seed bumps. The qualifications for a
seed bump that worked well for the PTZ seizures were that the height be greater
than 4.5× the mean height and the width be greater than 3× the mean width.
Once the seed bumps were found, we had a rough estimate of where seizure ac-
tivity was likely to occur. We next had to find the extent of the seizure. To find
where the seizure started and ended, we determined positions to the left and

100ms

200uV

Fig. 5.10. Recordings from the rat’s right occipital cortex after PTZ administration.
Solid, bold black lines indicate extents of seizures detected algorithmically. Each trace
is 9000ms.
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100ms
200uV

Fig. 5.11. Recordings from the rat’s right occipital cortex during strobing trials. Dark
black regions indicate extents of epileptiform activity detected algorithmically. Each
trace is 9000ms. Note high correlation between epileptiform activity detected here and
PSWs detected with k-means clustering (same data as Fig. 5.9).

right of the seed bump where the bumps returned to baseline size for a selected
time duration (50 ms in the current analysis). This prevents misclassification
due to small bumps occurring within a seizure. To avoid false positives, we also
had an option of excluding very short seizures. This method was able to extract
all of the significant seizures from our initial data set. A few sample results are
shown in fig. 5.10.

This algorithm performed well on the photic-induced epileptiform activity as
well (results shown in fig. 5.11), but we had to specify different parameters to
the algorithm, such as the deviation from mean bump width and height required
for a bump to qualify as a seed bump, as well as the minimum time span required
for baseline activity, which was reduced to 12.5 ms. The fact that the algorithm
performed well on various types of traces shows it has usefulness as a general
detection algorithm for epileptiform activity. The results of this algorithm on
the photic-induced epileptiform activity also correlated highly with the results
of the k-means clustering. This lends support to both methods and to the feature
extraction algorithm’s robustness. The run-time complexity of this algorithm is
essentially linear in the number of bumps in the time interval being analyzed,
since it essentially traverses the bumps in order.
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Data-mining seizure properties

Once we had the PTZ seizures extracted we used data-mining to look for different
types of correlations between properties of bumps and properties of seizures. For
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Fig. 5.12. Correlations between bump properties during a PTZ-induced seizure and
the seizure properties. (A) Correlation between maximum bump height in a PTZ-
induced seizure vs. that seizure’s duration. Computed correlation coefficient was 0.856.
(B) Correlation between maximum bump width in a PTZ-induced seizure vs. that
seizure’s duration. Computed correlation coefficient was 0.819.
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example, we found that the maximum bump height and width of a PTZ-induced
seizure had a positive correlation with the duration of the seizure, with values
of 0.856 and 0.819 respectively. This is shown in a scatter plot in fig. 5.12.

5.4 Discussion

Data-mining system

The combination of the feature extraction algorithm and the NQS search soft-
ware, provides a powerful data-mining tool for finding patterns of interest. The
SPUD algorithm we developed is able to efficiently extract features of interest
in the time-domain. We have shown that more complicated frequency-domain
methods are not always needed. We have also shown that the data-mining frame-
work can be used with various ad hoc techniques to interact with the feature
database and pull out interesting and physiologically complex patterns. This
was done with simple algorithms as well as with intuitive, easy to use NQS/SQL
selects. Once patterns were pulled out, it was possible to find interesting corre-
lations between different properties of the data sets.

Quantification of neural data

One of the goals of our quantitative analysis is to provide measures that could
be used to define what is to be considered a seizure and what is not. There is no
gold standard for seizure definition since there is a continuum of electrographic
activity appearance resulting in a large grey area where abnormal activity might
or might not be defined as epileptiform depending on the criteria used. In order
to estimate classification accuracy and error rates in the future we would like
to develop several criteria-sets that operate along different dimensions and use
these for cross validation.

Applications using extracted features

Using the features extracted with the SPUD algorithm it was also possible to
determine the time bounds of several different classes of activity including PTZ-
induced seizures and photic-induced epileptiform activity. This will have both
research and clinical usefulness. Clinical applications may involve a real-time
seizure detector that extracts features from recordings of an epileptic patient
and detects when they begin with algorithms similar to those here developed.
Research applications include searching for the underlying features of bumps
occurring pre, post, and during seizures. This may shed light on network and
neuronal dynamics leading to seizure genesis. Future work will involve the com-
parison of different classes of epileptiform activity, i.e., PTZ vs. photic-induced,
by quantifying differences in the bumps and their associated properties. We also
plan on quantifying and tracking seizure genesis by watching how bump prop-
erties change spatio-temporally.
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Another future direction is extending the seizure detection algorithms devel-
oped to cover a wide class of seizures. Other types of neural activity may also be
analyzed using the feature extraction algorithms developed. Future work may
entail analyzing the correlations between activity properties in different brain
regions as well as spatio-temporal patterns during specific behaviors. This may
help uncover the interplay between different brain regions. More generally, the
feature extraction methods developed will help organize the vast amounts of
neuronal information currently available.

Frequency-domain measures

Frequency-domain measures from wavelet or Fourier analysis can be readily
added to the databases to provide a still richer information matrix for pattern
extraction. This added information may help in understanding neuronal data. It
may also reduce false positive/negative rates in pattern extraction algorithms.
Note that some of the attributes that we pull out in the time-domain, partic-
ularly bump duration and sharpness, are correlates of frequency. This is not a
problem in data-mining: we have no need to eliminate redundancy and simply
seek to include as many features as may be useful.

Compression

Due to the large size of raw trace databases, and potentially limited storage
space, it may be desirable to store extracted features in place of full traces for
some applications. Corresponding segmental traces could be stored with bump
features to minimize loss of information. This can result in an order of magnitude
compression in addition to permitting arbitrary activity-pattern searches to be
done across large amounts of physiological data. Researchers will be more likely
to store their data in central repositories if they can be readily stored and easily
accessed.

5.5 Download

The software discussed is available at ModelDB:
http://senselab.med.yale.edu/ModelDB
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Summary. Clinical proteomics based on mass spectrometry has gained tremendous
visibility in the scientific and clinical community. Machine learning methods are keys
for efficient processing of the complex data. One major class are prototype based
algorithms. Prototype based vector quantizers or classifiers are intuitive approaches
realizing the principle of characteristic representatives for data subsets or decision re-
gions between them. Examples for such tools are Support Vector Machines (SVM) [1],
Kohonens Learning Vector Quantization (LVQ) [2], Self-Organizing Map (SOMs) [2],
Supervised Relevance Neural Gas (SRNG) [3] and respective variants. Depending on
the task one can distinguish between unsupervised methods for data representation
and supervised methods for classification. New developments include the utilization of
non-standard metrics (functional norms, scaled Euclidean) and task-dependent auto-
matic metric adaptation (feature selection), fuzzy classification, and similarity based
visualization of data. These properties offer new possibilities for analysis of mass spec-
trometric data. In this contribution we concentrate on recent extensions of SOMs as
universal tools in the light of clinical proteomics. We focus on non-standard metrics
and biomarker patterns discovery. We consider extensions of the standard SOM and
LVQ for handling of more general metrics. In particular, we demonstrate applications
of the weighted Euclidean metric and the weighted functional norm (based on weighted
Lp-norm) or kernelized metrics taking the specific nature of mass-spectra into account.
This allows an efficient feature selection, which may be used for biomarker identifica-
tion. The adaptation of the algorithms to these specific requirements leads to effective
tools for knowledge discovery keeping the robustness of the original simple approaches.
Further we consider fuzzy classification and regression within the determination of clin-
ical proteomics models. This topic deals with the widely ranged problem of uncertainty
of data. Particularly in medicine, the classification of mass spectra may be subject of
individual human assessment (based on some expert knowledge), multi-impairment
diseases, and incomplete patient/proband information. This leads to the problem of
uncertainty of training data in machine learning data bases. We developed a semi-
supervised approach based on SOM to process such data. As a result the algorithm

T.G. Smolinski et al. (Eds.): Comp. Intel. in Biomed. & Bioinform., SCI 151, pp. 141–167, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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provides a fuzzy classification scheme based on prototypes for classification of spectra
(Fuzzy Labeled SOM - FLSOM).

We demonstrate the usefulness of the above extensions of the basic prototype based
data analysis by SOMs to the analysis of mass spectra in proteomics and related knowl-
edge discovery. In particular, we give application examples for biomarker detection
based on feature selection and fuzzy classification of spectra combined with similarity
based class visualization.

6.1 Introduction

Analysis and visualization of clinical proteomic spectra obtained from mass spec-
trometric measurements is a complicated issue [4] and has been studied by mul-
tiple researchers [5, 6, 7, 8, 9, 10, 11]. One major objective is the search for
potential biomarkers in complex body fluids like serum, plasma, urine, saliva,
or cerebral spinal fluid [12, 13, 14, 15]. Typically the spectra are given as
high-dimensional vectors. Thus, from a mathematical point of view, an efficient
analysis and visualization of high-dimensional data sets is required. Moreover,
the amount of available data is restricted: usually patient cohorts are small in
comparison to data dimension. A further problem is that uncertainty in the data
may occur. For example, the clinical diagnosis of a patient may be uncertain
(fuzzy). Yet, most of machine learning classification models assume strict (crisp)
decisions for training data. All these aspects show that classification learning is
a crucial task.

The self-organizing map (SOM) constitutes one of the most popular
unsupervised approaches for clustering, visualization and data mining of high-
dimensional data [2]. SOMs belong to the prototype based methods of data rep-
resentation. Due to its inherent regularization abilities SOMs are also applicable

(a) Cancer Spectrum (b) Control Spectrum

Fig. 6.1. (a) MALDI-TOF spectrum of a colorectal cancer patient and (b) a healthy
subject after peptide isolation with C8 magnetic beads. On the Y-axis the relative
intensity is shown. The mass to charge ratio (m/z) is demonstrated on the X-axis in
Dalton. The spectra are already preprocessed (baseline correction,recalibration) using
ClinProTools 2.1.
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in case of sparse data sets. Basically, SOMs map the data nonlinearly onto a
low-dimensional regular lattice of neurons in a topology-preserving fashion by
means of prototype matching, i.e. similar data points are mapped onto nearby
or identical neurons under certain conditions [16]. Adaptation takes place as
an unsupervised prototype learning. Recently, a semi-supervised counterpart is
developed [17]. It allows the determination of a prototype based fuzzy classifi-
cation model (FLSOM). While the application of (fuzzy) clustering techniques
in bioinformatics is not new see e.g. [18] for micoarray analysis or [19] in the
field of gene expression an integrated semi-supervised approach like FLSOM has
not much been considered in clinical proteomics so far. Especially, in contrast
to the widely applied multilayer perceptron [20], prototype based classification
allows an easy interpretation, which is of particular interest for many (clinical)
applications. Therefore here we focus on prototype based classifiers such as the
FLSOM, SRNG and SVM whose final models are (much) easier to interpret in
the field of clinical proteomics. Beside of a classification model one major ob-
jectiv is the identification of relevant features in the original data, to allow the
search for potential biomarkers. From a theoretical point of view this problem
refers to feature selection for which a wide range of methods have been prosed
(see e.g. [21, 22] or [23] for a current overview). Here two types, namely inherent
feature selection and some kind of wrapper methods can be identified. The first
one tries to identify discriminate features within the model generation process
with all data at hand, while the second one tries an indirect identification consid-
ering multiple subsets of the features in multiple model generating steps. In this
contribution we only consider approaches of the first type with the additional
restriction on methods, modifing the metric such that a ranking or weighting of
the data features is obtained. This rankings again, allows an easy interpretation
of these specific attributes and is sufficiently fast avoiding a large number of
model generation step which is a further requirement in the analysis of large
data cohorts in the clinical domain.

FLSOM leads to a robust fuzzy classifier where efficient learning of fuzzy la-
beled or partially contradictory data is possible. Additionally, FLSOM gives the
possibility to assess and to visualize class similarity by inspection of the gener-
ated class map, which represents the label distribution according to the FLSOM
lattice structure and the learned class information. However, FLSOM differs from
existing extensions of SOM for classification tasks like counterpropagation [24]
or Fuzzy SOM [25] fundamentally: In contradiction to these models, for FLSOM
the prototype adaptation is also influenced by the class information of the given
data such that optimization according to class information is incorporated into
the adaptation scheme.

In this contribution, after an introduction of the FLSOM approach and its
theory, we apply the algorithm to the problem of classification of mass spectra
in case of cancer disease. We show for a data set of colorectal cancer patients
and controls, which was also used in a previous study, the successful application
of our approach.
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6.2 Data Analysis by FLSOM

The fuzzy labeled self-organizing map (FLSOM) is a prototype based classifica-
tion model, which is able to handle fuzzy labeled data (uncertain class decision)
during training and which return fuzzy class decisions during recall. FLSOM is
an extension of the unsupervised self-organizing map (SOM). Therefore, we first
shortly introduce the SOM and thereafter we develop the FLSOM scheme.

6.2.1 The Self-organizing Map

As mentioned above, SOMs can be taken as unsupervised learning of topographic
vector quantization with a topological structure (grid) within the set of pro-
totypes (codebook vectors). Roughly speaking, topology preservation thereby
means that similar data points v ∈V are mapped onto identical or neighbored
grid locations which have pointers into the data space (weight vectors). The
principle is depicted in Figure 6.2.

An exact mathematical definition is given in [16]. The weight vectors also are
called prototypes, because they represent parts of the data space.

There exists a wide range of applications in pattern recognition ranging
from spectral image processing to bioinformatics. The mathematics behind the

Fig. 6.2. The figure shows a mapping of a vector space (V ) on a rectangular grid
(A). Prototypes are associated with the rectangular grid by arrows. Multiple points in
the vector space maybe represented by a single prototype which is associated with a
grid position. In case of topological preservation interpretation of the mapping can be
transfered to the potential high dimensional vector space.
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original SOM model as proposed by Kohonen is rather complicated. In partic-
ular, the training process does not follow a gradient descent on any cost function
for continuous data distributions [26]. However, Heskes proposed a variant of
the original algorithm which, in practice, leads to at least very similar or identical
results as the original SOM but for which a cost function can be established [27].
We will base our model on this formulation:

Assume that data v ∈ V ⊆R
d are given distributed according to an underly-

ing distribution P (V ). A SOM is determined by a set A of neurons r equipped
with weight vectors (prototypes) wr ∈ R

d. The neurons are arranged on a lat-
tice structure, which determines the neighborhood relation N(r, r′) between the
neurons r and r′. Denote the set of prototypes by W = {wr}r∈A. The mapping
description of a trained SOM defines a function

ΨV →A : v �→ s (v) = argmin
r∈A

le (r) (6.1)

where
le (r) =

∑

r′∈A

hσ(r, r′)ξ (v,wr′) (6.2)

is the local neighborhood weighted error of distances ξ (v,wr′). ξ (v,w) is an
appropriate distance measure, usually the quadratic Euclidean norm ξ (v,wr) =
(v − wr)

2. However, here we only suppose ξ (v,w) to be arbitrary assuming
differentiability, symmetry and assessing some dissimilarity. The function

hσ(r, r′) = exp
(

N(r, r′)
2σ2

)

(6.3)

determines the neighborhood cooperation with range σ > 0. Large values of σ
also correspond to high regularization whereas low values ignore this feature. In
this formulation, an input stimulus v is mapped onto that position r ∈ A of the
SOM, the local error le (r) of which is minimum, whereby the average over all
neurons according to the neighborhood is taken. We refer to this neuron s(v) as
the winner.

During the adaptation process a sequence of data points v ∈ V is presented to
the map representative for the data distribution P (V). Each time the currently
most proximate neuron s(v) according to (6.1) is determined. All prototypes
are gradually adapted according to the neighborhood degree of the respective
neuron to the winning one by

�wr = −εhσ (r, s(v))
∂ξ (v,wr)

∂wr
(6.4)

with a small learning rate ε > 0. This adaptation follows a stochastic gradient
descent of the cost function introduced by Heskes [27]:

ESOM =
1

2C(σ)

∫

P (v)
∑

r

δs(v)
r

∑

r′

hσ(r, r′)ξ( v,wr′)dv (6.5)
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were C (σ) is a constant which we will drop in the following, and δr′

r is the usual
Kronecker symbol checking the identity of r and r′.

One main aspect of SOMs is the visualization ability of the resulting map due
to its topological structure. Under certain conditions the resulting non-linear
projection ΨV →A generates a continuous mapping from the data space V onto
the grid structure on A. This mapping can mathematically be interpreted as an
approximation of the principal curve or its higher-dimensional equivalents [28].
Thus, as pointed out above, similar data points are projected on prototypes
which are neighbored in the grid space A. Further, prototypes neighbored in
the lattice space should code similar data properties, i.e. their weight vectors
should be close together in the data space according to the dissimilarity mea-
sure ξ. This property of SOMs is called topology preserving (or topographic)
mapping realizing the mathematical concept of continuity. For a detailed and
mathematical exact consideration of this topic we refer to [16]. Successful tools
for assessing this map property are the topographic function and the topographic
product [16], [29].

6.2.2 Fuzzy Labeled SOM (FLSOM)

SOM is a well-established model for nonlinear data visualization which, due to
its above mentioned topology preserving properties, can also serve as an ad-
equate preprocessing step for data completion, representation or interpolation.
The formulation of the adaptation scheme in terms of a gradient descent of a cost
function allows an extension to a semi-supervised learning scheme which leads to
a classification model. The resulting FLSOM is able to handle uncertainty in class
assignments of training data as well as to return fuzzy classification decision in
the recall phase. It differs from simple post labeling or separate post-learning of
prototype labels as it takes place in counter propagation [24] or Fuzzy-SOM [25]
in this way that in FLSOM the prototype adaptation is influenced by the class
information. We now explain the model in detail.

Let N(c) be the number of possible data classes. We assume that each training
point v now is equipped with a label vector x ∈ R

N(c) whereby each component
xi ∈ [0, 1] determines the soft assignment of v to class i for i = 1, . . . , N(c).
Hence, we can interpret the label vector as probabilistic or possibilistic fuzzy
class memberships. Accordingly, we enlarge each prototype vector wr of the
map by a label vector yr ∈ [0, 1]N(c) which determines the portion of neuron r
assigned to the respective classes. During training, prototype locations wr and
label vectors yr are adapted according to the given labeled training data. For
this purpose, we extend the cost function of the SOM as defined in (6.5) to a cost
function for fuzzy-labeled SOM (FLSOM) by a term EFL assessing classification
accuracy. Thus the cost function becomes

EFLSOM = (1 − β)ESOM + βEFL (6.6)

where the factor β ∈ [0, 1] is a balance factor, which determines the influence
of both aspects, the data representation by usual SOM and the classification
accuracy. For the classification accuracy term we chose
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EFL =
1
2

∑

r

∫

P (v) · ce (v, r) dv (6.7)

with local, weighted classification errors

ce (v, r) = gγ (v,wr) · ϑ (x (v) ,yr) . (6.8)

gγ (v,wr) is a Gaussian kernel defining a neighborhood range in the data space:

gγ (v,wr) = exp
(

−ξ (v,wr)
2γ2

)

. (6.9)

The value ϑ (x (v) ,yr) describes the dissimilarity of the label vectors x and
yr. Usually, the squared Euclidean distance ϑ (x (v) ,yr) = (x − yr)

2 is chosen.
However, as in the case for the dissimilarity in the data space, other definitions
are possible.

This choice of the classification accuracy term EFL as a sum of weighted data
space distances is based on the assumption that data points, close to a prototype
wr, determine the corresponding label, if the underlying class distribution is
sufficiently smooth. Note that the kernel gγ (v,wr) depends on the prototype
locations, such that the classification term EFL is influenced by both wr and yr.
Hence, the gradient of EFL with respect to wr is non-vanishing and yields

∂EFL

∂wr
= − 1

4γ2

∫

P (v) · gγ (v,wr) · ∂ξ (v,wr)
∂wr

· ϑ (x (v) ,yr) dv (6.10)

which contribute to the overall gradient by

∂EFLSOM

∂wr
= (1 − β) · ∂ESOM

∂wr
+ β · ∂EFL

∂wr
(6.11)

Thus the complete prototype update becomes

� wr = −ε(1 − β) · hσ (r, s(v))
∂ξ (v,wr)

∂wr
(6.12)

+εβ
1

4γ2 · gγ (v,wr) · ∂ξ (v,wr)
∂wr

· ϑ (x (v) ,yr) .

The gradient of EFLSOM with respect to the label determines the adaptation
rule for the prototype labels. Because ESOM is independent on the prototype
labels the respective derivative vanishes. We obtain the update rules by taking
the derivatives: Labels are only influenced by the second part EFL, which yields

∂EFLSOM

∂yr
=

∂EFL

∂yr
(6.13)

and the corresponding learning rule therefore is

�yr = εlβ · gγ (v,wr) (x − yr) (6.14)

with learning rate εl > 0. This learning scheme can be seen as a weighted average
of the data fuzzy labels of those data v close to the associated prototype wr.
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6.2.3 Topography and Label Distribution in FLSOM

As mentioned above, unsupervised SOMs generate a topographic mapping from
the data space onto the prototype grid under specific conditions. If the classes
are consistently determined with respect to the varying data, one can expect for
supervised topographic FLSOMs that the labels become ordered within the grid
structure of the prototype lattice. In this case the topological order of the proto-
types should be transferred to the topological order of prototype labels such that
we have a smooth change of the fuzzy class label vectors between neighbored grid
positions r. This is the consequence of following fact: the neighborhood function
hσ (r, s) of the usual SOM learning (6.4) forces the topological ordering of the
prototypes. In FLSOM, this ordering is further influenced by the weighted clas-
sification error ce (v, r) (6.8). This classification error term contains the kernel
gγ (v,wr), eq. (6.9). Hence, the prototype learning and ordering (6.12) receives
information of both data and class distribution. For high value of the balancing
parameter β the latter term becomes dominant. Otherwise, the kernel gγ (v,wr)
also triggers the label learning (6.14), which is, of course, also dependent on
the underlying learned prototype distribution and ordering. Thus, a consistent
ordering of the labels is obtained in FLSOM.

Hence, the evaluation of the similarities between the prototype label vectors
yields suggestions for the similarity of classes, i.e. similar classes are represented
by prototypes in a local spatial area of the SOM lattice. In case of overlapping
class distributions this topographic class processing leads to prototypes with un-
clear decision, located between prototypes with clear vote. Further, if classes are
not distinguishable, there will exist prototypes responsive to those data which
have class label vectors containing approximately the same degree of class mem-
bership for the respective classes. In this way FLSOM may be used for class
similarity detection.

6.3 Data Preprocessing by Wavelet Analysis

The analysis of functional data, is a common task in bioinformatics. Spectral
data as obtained from mass spectrometric measurements in clinical proteomics
are such functional data leading to new challenges for an appropriate analysis.
Here we focus on the determination of classification models for such data. In
general the available approaches for this task initially transform the spectra into
a vector space followed by training a classifier. Hereby the functional nature of
the data is typically lost, which may lead to suboptimal classifier models. Taking
this into account a wavelet encoding is applied onto the spectral data leading
to a compact functional representation. Thus, a functional representation of the
data with respect to the used metric and a weighting or pruning of especially
(priory not known) irrelevant function parts of the inputs, would be desirable.
Further feature selection is applied based on a statistical pre-analysis of the
data. Hereby a discriminative data representation is necessary. The extraction
of such discriminant features is crucial for spectral data and typically done by a
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parametric peak picking procedure. This peak picking is often focus of criticism
because peaks may be insufficiently detected and the functional nature of the
data is partially lost. To avoid this difficulties we focus on the approach as given
in [30] and apply a wavelet encoding to the spectral data to get discrimina-
tive features. The obtained wavelet coefficients are sufficient to reconstruct the
signal, still containing all relevant information of the spectra. However this bet-
ter discriminating set of features is typically more complex and hence a robust
approach to determine the desired classification model is needed.

The classification of mass spectra involves in general the two steps peak pick-
ing to locate and quantify positions of peaks within the spectrum and feature
extraction from the obtained peak list. In the first step a number of procedures as
baseline correction, optional denoising, noise estimation and normalization must
be applied [31, 32]. Upon these prepared spectra the peaks have to be identified
by scanning all local maxima and the associated peak endpoints followed by a
S/N thresholding such that one obtains the desired peak list.

The procedure of baseline correction and recalibration (alignment) of multiple
spectra is standard, and has been done using ClinProTools in this paper (details
in [31])1. Here we propose an alternative feature extraction procedure preserv-
ing all (potentially small) peaks containing relevant information by use of the
discrete wavelet transformation (DWT). The feature extraction has been done
by Wavelet analysis using the Matlab Wavelet-Toolbox2. Wavelet Analysis is a
effective tool in signal processing to encoded and analyse functional signals. The
signal is encoded (analysis step) and reconstructed (synthesis step) by a series of
parametrized basis functions (daughter wavelets) which are derived from a spe-
cific type of function (mother wavelet), with specific mathematical constrains.
The principle is described e.g. in [33, 34, 35]. A simple example of a wavelet
based signal reconstruction using the Haar wavelet and a more advanced type
of wavelet is given in Figure 6.3. As explained in [35] the wavelet analysis allows
the respresentation of the signal at multiple resolutions. The signal is encoded on
different scalings of the wavelets leading to a fine or more sparse representation
of the signal. The sparser the encoding the less information of the original signal
is preserved. This can be considered as some kind of compression realized by a
low- and high-pass filter approach. Similar like in the classic Fourier analysis the
high frequencies encode detail information and the lower frequencies encode the
raw structure of the signal.

The usage of wavelet analysis for feature extraction on MS data is a new
growing field of research in the bioinformatics domain [36] and offers interesting
alternatives to former approaches. Vannucci et al [9] used wavelet analysis to
get a discriminant set of features from SELDI-TOF measurements. They used
Daubechies wavelets with four vanishing moments (db4) to extract wavelet com-
ponents from the measurements. In their procedure the large number of features
was reduced using probit models with Bayesian methods as a special kind of
combined feature selection and classification. They applied the method in the
1 Biomarker software available at http://www.bdal.de
2 The Matlab Wavelet-Toolbox can be obtained from www.mathworks.com
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(a) Zoom into spectrum with peak
integration. Dashed line: Haar
scaling function. Dotted line: bi-
orthogonal bior3.7 scaling function
as a weighting function of a gener-
alized quadrature formula.
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(b) Reconstruction low-pass filter
of Haar(top) and bior3.7(bottom)
scaling function.

Fig. 6.3.

classification of ovarian cancer data taken from SELDI-TOF measurements and
obtained an almost perfect prediction model. Morris et al [8] used the wavelet
analysis to denoise spectra taken from MALDI-TOF cancer measurements with a
subsequent peak picking on the average spectrum. Thus they used wavelet anal-
ysis in a more classical way for denoising and a subsequently feature extraction
upon the prepared spectra.

For the second step of feature extraction they applied a peak detection al-
gorithm on the average spectrum of the wavelet-denoised spectra. The final
features were defined as the maximum log intensity of the determined peaks
and used for further analysis. Another approach using discrete wavelet trans-
formation (DWT) on MS data for two class experiments was recently proposed
by Yu et al [10]. They applied a DWT (using a db4 wavelet) on SELDI-TOF
ovarian cancer data and used a binning algorithm for an initial reduction of the
calculated approximation coefficients (ac). To obtain a further reduction of the
coefficients they tuned their classification model incorporating the Kolmogorov-
Smirnov-Test with cross-validation by use of a Support Vector Machine classifier
(SVM). A similar approach was already taken by Zhu et al [37] where the DWT
(with db4) has been applied on MS data followed by a simple feature selection
criterion to reduce the number of obtained wavelet coefficients. The statistically
motivated criterion considers the between class distance of the obtained wavelet
coefficients which gives a rank for each feature and can be used for thresholding.
Finally they used a tree based classifier to obtain the final classification model.

Approaches published so far were mainly applied to SELDI-TOF data, are
applicable mostly for two classes only and lack a detailed explanation of the un-
derlying processing steps as a whole and the derivation of the process parameters
in detail. Especially data pre-treatment is a crucial issue since it may effect all
subsequent process steps.
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Due to the local analysis property of wavelet analysis the features can still
be related back to original mass position in the spectral data which is essential
for further biomarker analysis. This effect and the good encoding properties of
wavelets makes them preferable in encoding of spectral data. This is especially
true with respect to standard alternatives such as the (windowed) Fourier Anal-
ysis (FT) which does not or in case of windowed FT not sufficiently allow for a
back tracking of the features in the original data. In a first step a feature selection
procedure using the Kolmogorov-Smirnoff test (KS-test) was applied. The test
was used to identify features which show a significant (p < 0.01) discrimination
between the two groups (cancer,control). This is done in accordance to [38] were
also a generation to a multiclass experiment is given.

6.3.1 Feature Extraction and Denoising by Bi-orthogonal Discrete
Wavelet Transform

Wavelets have been developed as powerful tools [35, 39] used for noise removal
and data compression. The discrete version of the continuous wavelet transform
leads to the concept of a multiresolution analysis (MRA). This allows a fast
and stable wavelet analysis and synthesis. The analysis becomes more precise
if the wavelet shape is adapted to the signal to be analyzed. For this reason
one can apply the so called bi-orthogonal wavelet transform [40] which uses two
pairs of scaling and wavelet functions. One is for the decomposition/analysis and
the other one for reconstruction/synthesis. The advantage of the bi-orthogonal
wavelet transform is the higher degree of freedom for the shape of the scaling and
wavelet function. In our analysis such a smooth synthesis pair was chosen to avoid
artifacts. It can be expected that a signal in the time domain can be represented
by a small number of a relatively large set of coefficients from the wavelet domain.
The spectra are reconstructed in dependence of a certain approximation level
L of the MRA which can be considered as a hard-thresholding. The denoised
spectrum looks similar to the reconstruction as depicted in Figure 6.4. The
starting point for an argumentation is the simplest example of a MRA which
can be defined by the characteristic function χ[0,1). The corresponding wavelet
is the so-called Haar wavelet. Assume that the denoised spectrum f ∈ L2(R)
has a peak with endpoints 2jk and 2j(k + 1), the integral of the peak can be
written as ∫ 2j(k+1)

2jk

f(t)dt =
∫

R

f(t)χ[2jk,2j(k+1))(t)dt

Obviously the right hand side is the Haar DWT scaling coefficient cj,k = 〈f, ψj,k〉
at scale a = 2j and translation b = 2jk. One obtains approximation- and detail-
coefficients [40]. The approximation coefficients describe a generalized peak list
of the denoised spectrum encoding primal spectral information and depend on
the level L which is determined with respect to the measurement procedure. For
linear MALDI-TOF spectra a device resolution of 500−800Da can be expected.
This implies limits to the minimal peak width in the spectrum and hence, the
reconstruction level of the Wavelet-Analysis should be able to model correspond-
ing peaks. Another point is the typical mass range used in clinical proteomics
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(a) Wavelet reconstruction L = 6

(b) Wavelet reconstructionL = 8

Fig. 6.4. Wavelet reconstruction of the spectra with L = 6, 8, x measurement positions,
y-arbitrary unit. The original signal is plotted with the interrupted line (blue) and the
reconstruction with the solid with a white band inside. One observes that a wavelet
analysis with L = 8 (and 7 as well) is to rough to approximate the sharp peaks.

studies. In general the measurements for linear MALDI-TOF measurements are
given in a range of 1 − 10kDa such that extremly low or heavy molecules are
not present. In case of this mass range the generic change of the peak width,
which is increasing with higher masses can be sufficiently modeled by a single
wavelet approximation level. A level L = 4 is typically sufficient for a linear
measured spectrum with ≈ 20000 measurement points, a level of L = 6 has been
used for the data with ≈ 65000 measurement points. (see Figure 6.4). The level
L can be automatically determined by considering expected peak width in Da
and the reconstruction capabilities of wavelet analysis at a given level. Alterna-
tively multiple levels can be tried and a standard peak picking approach can be
applied on both, the original and the reconstructed spectrum. If the obtained
peak lists are sufficiently similar, by means, that at least peaks with good S/N
values in the original spectrum are sufficiently recovered in the reconstruction
the taken level can be considered as acceptable for the experiment. Applying
this procedure including the KS-test on the spectra with an initial number of



6 Analysis of Spectral Data in Clinical Proteomics 153

Fig. 6.5. Reconstructed region of some spectra of the two classes top control, bottom
cancer. The straight lines indicate the reconstruction of the spectra by use of the chosen
Wavlet approximation level upon approximation coefficients. The dotted line indicates
the same reconstruction but with pruned coefficients which did not pass the statistical
test. One observes that regions which are clearly non informative (near to the noise
spectrum) are removed but also non-discriminating peaks (by means of the statistical
test) are pruned.

≈ 65000 measurement points per spectrum one obtains 1036 wavelet coefficients
used as representative features per spectrum, still allowing a reliable functional
representation of the data. An application of the KS-Test still keeps 199 coeffi-
cients for the final analysis. The effect of the KS-Test selection on the wavelet
encoded spectra is shown in Figure 6.5.

6.4 Classification Dependent Metric Adaptation -
Relevance Learning

As mentioned above, the general dissimilarity measure ξ (v,wr) for the data
space V is often chosen as squared Euclidean metric such that the derivative
∂ξ(v,wr)

∂wr
simply becomes −2(v − wr). Yet, other measures also can be applied,

for example correlation measures [41]. However, more flexibility is obtained if
ξ (v,wr) is parametrized and the parameters are also subject of optimization
according to the given classification task [42], [3].

Generally, we consider a parametrized distance measure ξλ(v,w) with a pa-
rameter vector λ =(λ1, . . . , λM ) with λi ≥ 0 and normalization

∑
i λi = 1. Then

classification task depending parameter optimization is achieved by gradient de-
scent, i.e. by consideration of ∂EFLSOM

∂λl
. Formal derivation yields
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∂EFLSOM

∂λl
= (1 − β)

∂ESOM

∂λl
+ β

∂EFL

∂λl
(6.15)

with

∂ESOM

∂λl
=

1
2

∑

r

∫

P (v) · δs(v)
r

∑

r′

hσ(r, r′) · ∂ξλ(v,wr)
∂λl

dv (6.16)

and

∂EFL

∂λl
= − 1

4γ2

∑

r

∫

P (v) · gγ(v,wr) · ∂ξλ(v,wr)
∂λl

· ϑ (x (v) ,yr) dv (6.17)

for the respective parameter adaptation.

6.4.1 Scaled Euclidean Metric

In case of ξλ(v,w) being the scaled squared Euclidean metric

ξλ(v,w) =
∑

i

λi(vi − wi)2 (6.18)

(with λi ≥ 0 and
∑

i λi = 1) the derivative becomes ∂ξ(v,wi)
∂wi

= −2 · Λ · (v − wi)
with Λ is a diagonal matrix and its i-th diagonal entry is λi. The corresponding
learning rule for the metric parameter λl has the form

� λl = −ελ
1 − β

2

∑

r

hσ(s(v), r) · (vl − (wr)l)2 (6.19)

+ελ
β

4γ2

∑

r

gγ(v,wr) · (vl − (wr)l)2 · ϑ (x (v) ,yr) (6.20)

(subscript l denoting the component l of a vector) with learning rate ελ > 0.
This update is followed by normalization to ensure λi ≥ 0 and

∑
i λi = 1.

The parameter optimization of the scaled squared Euclidean metric allows a
useful interpretation. The parameter λi is weighting the dimensions of the data
space. Hence, optimization of these parameters in dependence on the classifi-
cation problem leads to a ranking of the input dimensions according to their
classification decision relevance. Therefore, metric parameter adaptation of the
scaled Euclidean metric is called relevance learning. In case of zero-valued λi

this can also be seen as feature selection.

6.4.2 Generalized Lp-Norm

As pointed out before, the similarity measure dλ (v,w) is only required to be
differentiable with respect to λ and w. The triangle inequality has not to be ful-
filled necessarily. This leads to a great freedom in the choice of suitable measures
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(a) Two functions: Euclidean = Lp-norm (b) Two functions: Euclidean �= Lp-norm

Fig. 6.6. Schematical ilustration of the Lp-norm. The first plot (a) indicates the case
where the distance between two functions is equal considering Euclidean or Lp-norm. In
the plot (b) parts of the functions are interchanging (crossings) whereby the distances
using Euclidean distance is still the same as within plot (a) but for the Lp-norm another
distance is obtained which indeed gives a more realistic measure of the distances of the
two functions.

and allows the usage of non-standard metrics in a natural way. We now review
the functional metric as given in [43], the obtained derivations can be plugged
into the above equations leading to FLSOM with a functional metric, whereby
the data are functions represented by vectors and, hence, the vector dimensions
are spatially correlated.

Common vector processing does not take the spatial order of the coordinates
into account. As a consequence, the functional aspect of spectral data is lost. For
proteome spectra the order of signal features (peaks) is due to the nature of the
underlying biological samples and the measurement procedure. The masses of
measured chemical compounds are given ascending and peaks encoding chemical
structures with a higher mass follows chemical structures with lower masses. In
addition multiple peaks with different masses may encode parts of the same
chemical structure and hence are correlated.

Lee proposed a distance measure taking the functional structure into account
by involving the previous and next values of xi in the i-th term of the sum,
instead of xi alone. Assuming a constant sampling period τ , the proposed norm
is:

Lfc
p (v) =

(
D∑

k=1

(Ak−1 (v) + Ak+1 (v))p

) 1
p

(6.21)

with

Ak (v) =

{
τ
2 |vk| if 0 ≤ vkvk−1
τ
2

v2
k

|vk|+|vk−1| if 0 > vkvk−1
Bk (v) =

{
τ
2 |vk| if 0 ≤ vkvk+1
τ
2

v2
k

|vk|+|vk+1| if 0 > vkvk+1
(6.22)

are respectively of the triangles on the left and right sides of xi. Just as for Lp,
the value of p is assumed to be a positive integer. At the left and right ends of
the sequence, x0 and xD are assumed to be equal to zero. The concept of the
Lp-norm is shown in Figure 6.6.

The derivatives for the functional metric taking p = 2 are given in [43]. Now
we consider the scaled functional norm where each dimension vi is scaled by a
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parameter λi > 0 λi ∈ (0, 1] and
∑

i λi = 1. Then the scaled functional norm
is:

Lfc
p (λv) =

(
D∑

k=1

(Ak−1 (λv) + Ak+1 (λv))p

) 1
p

(6.23)

with

Ak (λv) =

{
τ
2λk |vk| if 0 ≤ vkvk−1
τ
2

λ2
kv2

k

λk|vk|+λk−1|vk−1| else
Bk (λv) =

{
τ
2λk |vk| if 0 ≤ vkvk+1
τ
2

λ2
kv2

k

λk|vk|+λk+1|vk+1|else
(6.24)

The prototype update for p = 2 changes to:

∂δ2
2 (x,y, λ)

∂xk
=

τ2

2
(2 − Uk−1 − Uk+1) (Vk−1 + Vk+1)�k (6.25)

with

Uk−1 =

⎧
⎨

⎩

0 if 0 ≤ �k�k−1
(

λk−1�k−1
λk|�k|+λk−1|�k−1|

)2
else

, Uk+1 =

⎧
⎨

⎩

0 if 0 ≤ �k�k+1
(

λk+1�k+1
λk|�k|+λk+1|�k+1|

)2
else

Vk−1 =

{
λk if 0 ≤ �k�k−1

λk|�k|
λk|�k|+λk−1|�k−1| else

, Vk+1 =

{
1λk if 0 ≤ �k�k+1

λk|�k|
λk|�k|+λk+1|�k+1| else

and �k = xk − yk For the λ-update one observes:

∂Lfc
p (λv)
∂λk

=
∂
(∑D

k=1 (Ak (λv) + Bk (λv))p
) 1

p

∂λk

= p

(
D∑

k=1

(Ak−1 (λv) + Ak+1 (λv))p

) 1−p
p ∂

[∑D
k=1 (Ak (λv) + Bk (λv))p

]

∂λk

= Cp

∂
[∑D

k=1 (Ak (λv) + Bk (λv))p
]

∂λk

= Cp

∑D
k=1 ∂ [(Ak (λv) + Bk (λv))p]

∂λk

= Cp
∂ [(Ak−1 (λv) + Bk−1 (λv))p + (Ak (λv) + Bk (λv))p + (Ak+1 (λv) + Bk+1 (λv))p]

∂λk

= Cp

(

ck−1
p

∂ [Ak−1 (λv) + Bk−1 (λv)]
∂λk

+ ck
p

∂ [Ak (λv) + Bk (λv)]
∂λk

+ ∗
)

∗ = ck+1
p

∂ [Ak+1 (λv) + Bk+1 (λv)]
∂λk

with the following expressions

cj
p = p · (Aj (λv) + Bj (λv))p−1

= p ·

⎛

⎜
⎜
⎜
⎜
⎝

{
τ
2λj |vj | if 0 ≤ vjvj−1

τ
2

λ2
j v2

j

λj |vj |+λj−1|vj−1| if 0 > vjvj−1

+

{
τ
2λj |vj | if 0 ≤ vjvj+1

τ
2

λ2
jv2

j

λj |vj |+λj+1|vj+1| if 0 > vjvj+1

⎞

⎟
⎟
⎟
⎟
⎠

p−1
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putting all together and with some minor mathematical transformations one
obtains:

∂Lfc
p (λv)
∂λk

= Cp

⎧
⎨

⎩

0 + ck
p

(
τ
2 |vk|) if 0 ≤ vk−1vk

1
2τ

λ2
kck

pv2
k|vk|−ck−1

p |vk|v2
k−1λ2

k−1+2λkck
pv2

k|vk−1|λk−1

(λk|vk|+|vk−1|λk−1)2
if 0 > vk−1vk

+Cp

⎧
⎨

⎩

ck
p

(
τ
2 |vk|) + 0 if 0 ≤ vk+1vk

1
2τ

λ2
kck

pv2
k|vk|−ck+1

p |vk|v2
k+1λ2

k+1+2λkck
pv2

k|vk+1|λk+1

(λk|vk|+|vk+1|λk+1)2
if 0 > vk+1vk

Using this parametrization one can emphasize/neglect different parts of the
function for classification. This distance measure can be put into FLSOM as
shown above and has been applied subsequently in the analysis of clinical pro-
teome spectra.

6.4.3 Matrix Approach

The metric becomes even more powerful by assigning an individual weight vector
λj to each prototype wj (see e.g. [44])

Recently, we have extended the weighted euclidean metric dλ by introducing
a full matrix Λ ∈ Rn×n of relevance factors in the distance measure [45]. The
metric has the form

dΛ(w,v) = (v − w)T Λ (v − w)

This approach allows to account for correlations between different input features.
A set of points equidistant from a prototype can have the shape of a rotated
ellipsoidal, whereas the relevance vector λ in FLSOM only results in a scaling
parallel to the coordinate axis.

For the distance measure dΛ to be well defined, the matrix Λ has to be positive
(semi-) definite. For this reason, Λ is substituted by Λ = ΩΩT with Ω ∈ Rn×n.
The adaptation formula for w and Ω in vector notation is given as:

∂ξ (v,wr)
∂wr

= −Λ(v − w)

∂ξ (v,wr)
∂λ

= (Λ(v − w)(v − w)T )T + Λ(v − w)(v − w)T )

Note that we can assume Ω� = Ω without loss of generality and that the
symmetry is preserved under the above update. After each update step Λ has
to be normalized to prevent the algorithm from degeneration. It is enforced that∑

i Λii = 1 by dividing all elements of Λ by the raw value of
∑

i Λii. In this way
the sum of diagonal elements is fixed which coincides with the sum of eigenvalues
here. Due to the huge number of parameters it is in general useful to consider
a band matrix in the training procedure. This extension of FLSOM is named
Matrix FLSOM (MFLSOM).

By attaching local matrices Λj to the individual prototypes wj, ellipsoidal
isodistances with different widths and orientations can be obtained. The algo-
rithm based on this more general distance measure is called Localized MFLSOM
(LFLSOM).
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6.5 Clinical Data

Serum protein profiling is a promising approach for classification of cancer versus
non-cancer samples. The data used in this paper are taken from a colorectal
cancer (CRC) study. It contains of measurements taken from cancer patients
and healthy individuals [11].

The standardized circumstances for sample collection and the data set are
described in detail in [11]. Here it should be mentioned only that for each profile
a mass spectrum is obtained within a mass-to-charge-ratio of 1000 to 11000Da.
Two sample spectra are depicted in 6.1. The data have been preprocessed as
explained before using the approach published in [30]. The spectra are encoded
by ≈ 200 wavelet-coefficients which leads to a data reduction of ≈ 99.9% using
the rawdata and is twice the number of peaks as obtained by the standard peak
picking approach as proposed in [31]. The preprocessing stage has to be included
in the crossvalidation procedure to avoid overfitting, for the considered data set
it could be observed that the discriminating wavelet coefficients (with respect
to the ks-test) at p ≤ 0.01 remain the same in a 5−fold cross validation. The
wavelet method was used as mentioned in the previous section with L = 6.

The data set consist of 123 samples whereby 73 are taken from patients suf-
fering from colorectal cancer and the remaining 50 samples are taken from a
matched healthy control group3. Colorectal cancer is among the most common
malignancies and remains a leading cause of cancer-related morbidity and mor-
tality. It is well recognized that CRC arises from a multistep sequence of genetic
alerations that result in the transformation of normal mucosa to aprecursor
adenoma and ultimately to carcinoma. Given the natural history of CRC, early
diagnosis appears to be the most appropriate tool to reduce disease-related mor-
tality. Currently, there is no early diagnostic test with sufficient diagnostic qual-
ity, which can be used as a routine screening tool. Therefore, there is a need for
new biomarkers for colorectal cancer that can improve early diagnosis, monitor-
ing of disease progression and therapeutic response and detect disease recurrence.
Furthermore, these markers may give indications for targets for novel therapeu-
tic strategies. In addition to potential markers validated by further post analysis
on identified masses, generic classification models with high validity maybe of
value as well.

6.6 Experiments

The available data set for investigation consists of overall 123 proteomic expres-
sion profiles generated by MALDI-TOF mass spectrometry (MS) labeled into
two classes. We consider a data set which is measured in the correct context
of MALDI-MS and clinical proteomics and which is generated in accordance to
proven best clinical practices [11]. This data set takes also recent research re-
sults on data collection and standardization in clinical proteomics [46, 12] into
3 In the article of [11] some additional selections with respect to the cancer group has

been done - here we work on the whole data set.
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account, which stengthens the validity of the analyzed data in contrast to some
other public available data sets4.

Single parts of the priorly presented processing e.g. the FLSOM method on
its own, have been applied on other data sets already [41]. This has been done
also in case of multiple classes [41, 48], which are currently not easily available
in clinical proteomics, although multiple class experiments are more and more
evolving.

In [11] an experimental setting was shown focusing on Fishers Linear Discrim-
inant Analysis (LDA) combined with a principal component (PCA) approach to
reduce the dimensionality of the underlying problem with promising results.
Here, the peak picking was avoided by a simple binning approach and the PCA
was used to get a sufficient reduction of the dimensionality of the feature space.
PCA is focusing on maximal explained variance in the data [49], this however
is typically not a good criteria in the analysis of clinical proteome spectra be-
cause the group separations are in general not indicated by large variations in
the intensities [32]. Hence a PCA approach will in general fail to give sufficient
results. Although the PCA got sufficient results in [11] a more generic approach
for the analysis of clinical proteome spectra taken form MALDI-MS is desirable.

Such an approach is to determine the decision plane with respect to the known
class label information which is pointed out by multiple authors e.g. [50, 51].
Taking these into account we focus on a supervised data analysis and reduce
the dimensionality of the data by use of a problem specific wavelet analysis
combined with a statistical selection criterium. we avoid statistical assumptions
with respect to the underlying data sets, but take only measurement specific
knowledge into account.

Hence we have a 199-dimensional space of wavelet coefficients and we use
multiple algorithms and metrics to determine classification models. We focus
of the presented FLSOM algorithm which beside a classification model leads
to a (under some constraints) topological preserving visualization of these high
dimensional data.

To be comparable with the study in [11], we trained in a first investigation
a FLSOM with data only of the groups A and B. We used a 7 × 3 FLSOM
lattice, the size of which is determined by a growing SOM (GSOM) [52]. GSOM
generates optimum hyper-cubical SOM lattice structures obtained by evaluation
of the local receptive fields of the prototypes to achieve a topologic preserving
SOM mapping [53]. GSOMs seems to be more robust than the alternative of e.g.
ART networks [54] which sensitively depends on a proper choice of the vigilance
parameter to be estimated by the user. The balancing parameter was declared
as β = 0.85, which emphasizes the classification term in (6.12) but prevents
instabilities for higher values [55]. To be generalizing and regularizing we used the
inherent regularization abilities of SOMs by non-vanishing neighborhood range
σ in the neighborhood function hσ in (6.3). To do so and to prevent violations
in topology preservation the remaining value was chosen as σ = 0.5 [56]. In case

4 There is an ongoing discussion on that topic and on former obtained results and
data sets see e.g. [7, 47].
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of a topogical preserving map clear class separations can be identified by a clear
labeling and potential empty fields between different groups on the map. Due
to the class similarity attribute of the FLSOM sub groups of the data can be
identified in this way and data with unclear class assignment are made visible
by a similar fuzzy class labeling and a corresponding identifiable region on the
map.

6.7 Results

A typical FLSOM obtained from multiple runs is depicted in Figure 6.9. One
observes a clear separation between cancer and control data. The overlapping
region between the classes is rather small which is also supported by the relative
good crossvalidation results for the linear classification models. For this data
set the obtained FLSOM using different metrics are topological preserving. The
FLSOM approaches obtained ≈ 86% cross validation accuracy in a 5-fold cross-
validation, using scaled Euclidean metric which is a similar good accuracy as
in [11]. In addition to the good classification accuracy a ranking of individual
features as well as a planar visualization of the high dimensional data is obtained.
The latter one allows for interpretation of similarities between sub groups of
patients (see Figure 6.9)

The relevance parameters λi of the scaled Euclidean metric are adapted par-
allely. This leads to a ranking of the input dimensions according to their im-
portance for classification. A typical relevance profile using scaled Euclidean
metric is depicted in Figure 6.7. The most important frequencies are indicated
by straight arrows in Fig. 6.8, dashed arrows refer to further highly relevant
frequencies. The depicted frequencies contribute substantially to classification
accuracy and, therefore, are important for distinction of the classes.

Fig. 6.7. Visualization of a typical relevance profile obtained by FLSOM using scaled
Euclidean metric. Peaks with larger values indicate higher relevance with respect to the
classification task. The x-axis indicates the relative mass position of the corresponding
wavelet coefficient in the original spectrum. The y-axis is a relevance measure ∈ [0, 1].
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A comparison of the FLSOM results using the different metrics and alternative
algorithms is given in Table 6.1. It should be noted, that in [11] a part of the
cancer class spectra has been removed from the model generation due to quality
constraints, while in our analysis all spectra have been used. The lower three rows
of the table contain results obtained on alternative data preparations, namely
peaklists (CPT results) and the preparation as given in [11]. In [11] a leave one
out (LOO) cross validation has been used to determine the generalization ability
of the approach, LOO is a restriction which is typical for small data sets. LOO
however has some drawbacks as pointed out in [57, 58, 59]. We used a 5-fold CV
in accordance to the suggestions in [57] because the number of sample is not so
small and they are reliable homogeneous per group as depicted in Figure 6.8.

One observes that the results are competitive with respect to other classifiers
but it should be mentioned again that FLSOM is not focusing on classification
but equally on visualization and interpretability of the given high dimensional
data sets. In that way classification accuracy as well as a modeling of the data
distribution is optimized. In average the different methods obtain a cross vali-
dation accuracy of ≈ 89% using the presented generic preprocessing approach.
The wavelet prepared data perform similar than a standardized peak picking
approach with other parameters fixed. The approach in [11] obtained slightly
better results in the LOO cross validation but is too much focused on explained
variance which can not be generalized to other clinical proteomics problems in
general. Considering the cross validation results in Table 6.1 it can be observed,
that similar results were obtained using the different metrics. However the met-
rics itself show different properties. The relevance profile of the scaled Euclidean
metric indicates most important data features in a univariate interpretation
whereas the generalized Lp norm takes local neighborhoods or correlations in the
data space into account while keeping the functional nature of the MS spectra.
Therefore also descents in the function and not just peaks as well as correlative

Fig. 6.8. A gel view of the two classes with the cancer class (region A) and control
class (region B). The relevant mass positions are indicated by arrows (bottom) using
the relevance profile of FLSOM with scaled Euclidean metric.
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Fig. 6.9. Visualization of the FLSOM using the Lp metric. The FLSOM consists of
7 × 3 cells with each cell containing two bars indicating a fuzzy labeling. The first bar
is responsible for the cancer class, while the second for control. A high bar for cancer
indicates that spectra which are mapped to the considered cell are more likely to belong
to cancer than to control. A clear separation of the two classes with a small overlap
region can be observed. For each spectrum in the data set an associated cell on the grid
by the SOM mapping can be identified. A raw analysis shows three sets of spectra. Set
1, 2 contains quite homogenous spectra of the corresponding classes while the spectra
in set 3 show multiple inhomogenities e.g. some of the cancer spectra show a bad S/N
ratio for peaks and are in overall more noisy. There are also some spectra which show
strong fluctuation in the intensities. Considering the mapping as well as the fuzzy label
of the corresponding map a specific clustering of the high dimensional data is obtained.
In case of multiple classes this further leads to a similarity highlighting of the different
classes.

effects can be interpreted as relevant features. The Matrix approach is the most
generic used metric and is able to highlight the relevance of single dimensions as
well as local correlations. In 6.1 results are shown using the matrix metric with a
limited bandwidth. The primal diagonal has been weighted by 1, the direct neigh-
bors by 0.5 and the remaining diagonals are pruned out. The functional metric
has indicated alternative regions with similar separation capability. Relatively
small peaks are identified which, combined with the neighborhood are indeed
informative. Characteristic for those regions identified in the considered data
is, that not a single peak has been identified but a trace of a local biochemical
pattern. Here the pattern typically consists of a peak with moderate intensi-
ties and small but not perfect differences between the two classes and a valley
close to the peak with a quite clear (but also not perfect) missing of mass in-
formation for one class. This valley could not be identified as a peak by a peak
picking procedure because the region has no peak characteristic, nevertheless it
could be observed that for one class at this valley mass intensities has been mea-
sured whereas for the other class the intensities are zero or very low. This trace
of information can be further analysed by e.g. MS/MS techniques to test if a
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Table 6.1. Recognition and cross validation accuracies for FLSOM using different
similarity measures in comparison to alternative standard approaches. The results for
LDA/PCA are taken from the article [11]. It should be noted, that in [11] a part of
the cancer class spectra has been removed from the model generation due to quality
constraints, while in our analysis all spectra have been used. The lower three rows of
the table contain results obtained on alternative data preparations, namely peaklists
(CPT results) and the preparation as given in [11]. The approach available in CPT
with SVM+kNN first determines a ranking of the peaks by interpretation of the weight
vector of a linear SVM. In a second step a kNN classifier is trained on the best peaks.

Method Rec. CV - 5 fold
FLSOM-EUC 89.62% 86.12%
FLSOM-Lp 89.23% 86.17%
FLSOM-M 83.74% 87.94%
SRNG-EUC 100% 90.24%
SVM-Linear 96.75% 89.43%
SVM-kNN (CPT)-LOO 96.58% 92.52%
SVM-kNN (CPT)-5CV 96.58% 87.84%
LDA+PCA -LOO 92.9% 92.6%

potential useful pattern can be observed which in the current linear measurement
has not been sufficiently resolved so far.

The respective learned data distribution using FLSOM with the Lp-norm is
depicted in Fig.6.9 Each square represents a label vector yr of a prototype wr.
The position is according localization r in the grid. The height of the bars reflects
the fuzzy amount for the respective class as indicated above. These findings
are in agreement with clinical expectations. We observe the fine conformity of
the detected class similarities with the clinical expectations. Hence, FLSOM
successfully discovered the underlying class structure. It should be noted, that
the FLSOM gives a similar but a bit worse predicition rate in comparison to
the other algorithms using a 5-fold CV, but in addition to a prediction model
a topology of the data has been obtained and could be interpreted. This is not
directly possible by use of SRNG or SVM. Another point is that in case of
SVM the model consists of extreme cases or data points which describe the class
boundaries whereas for SRNG and FLSOM the model is given by prototypes
which forms local classifier models considering there receptive field. This allows
a fine granular interpretation of patient data with respect to the model and, in
case of FLSOM, additionally with respect to the map.

6.8 Conclusions

We presented an extension of the SOM for supervised classification tasks, which
takes classification task explicitly into account for prototype adaptation dur-
ing the gradient descent based adaptation process. Each prototype dynamically
adapt its assigned class label depending on the balancing between clustering and
classification in the FLSOM model. In this way the statistical as well as label
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properties of the data influence prototype positions and fuzzy label learning.
The visualization abilities of SOMs based on the topology preservation property
of unsupervised SOMs then can be used for visual inspection of the class labels
of the prototypes which may allow a better understanding of the underlying
classification decision scheme. Further, the FLSOM is able to detect class or sub
group similarities as shown in the experimental section.

The FLSOM has been applied to the classification of mass spectrometric data
(profiles) of cancer disease and controls. Beside a comparable classification accu-
racy the model automatically discovered the class similarities in good agreement
to clinical expectations. Thereby it could be recovered that the data labeled as
cancer and control do not form dense sets for each group but are overlapping.
The overlapping region forms in fact a new sub group of the data. Samples be-
longing to this group has been manually reanalyzed with respect to the original
spectra and found to be of either bad quality or somehow specific with respect
to the anamnesis data.

Hence, the FLSOM allows a more specific interpretation of the classification
models, by interpreting clinical or patient specific findings with respect to its
representing prototype of the FLSOM. Thus, FLSOM can be used not only for
classification and visualization but also for detection of class dependencies. This
effect becomes even more apparent for multi class data sets as already shown
in [41]. Further, if only partially labeled data are available, FLSOM can be taken
as a semi-supervised learning approach.
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Summary. A variety of computational intelligence approaches to nuclei segmentation
in the microscope images of fine needle biopsy material is presented in this chapter.
The segmentation is one of the most important steps of the automatic medical diagno-
sis based on the analysis of the microscopic images, and is crucial to making a correct
diagnostic decision. Due to complex nature of biological images, standard segmenta-
tion methods are not effective enough. In this chapter we present and discuss some
modified versions of watershed algorithm, active contours, cellular automata, Grow-
Cut technique, as well as new approaches like fuzzy sets of I and II type, and the
sonar-like method.

7.1 Introduction

Segmentation of the object of interest is one of the most critical tasks in image anal-
ysis and therefore it has been the subject of considerable research activity over the
last four decades. During all this time we have witnessed a tremendous develop-
ment of new, powerful instruments for detecting, storing, transmitting, and dis-
playing images but automatic segmentation still remained a challenging problem.

This fact is easy to notice in medical applications, where image segmentation is
particularly difficult due to restrictions imposed by image acquisition, pathology
and biological variation. Biomedical image segmentation is a sufficiently complex
problem that no single strategy has proven to be completely effective. Due to
a complex nature of biomedical images, it is practically impossible to select
or develop automatic segmentation methods of generic nature, that could be
applied for any type of these images, e.g. for either micro- and macroscopic
images, cytological and histological ones, MRI and X-ray, and so on.

In this chapter we are focused on the microscopic images of the Fine Needle
Biopsy (FNB) material taken from the breast cancer. In the last decade we have
been observing a dynamic growth in the number of research works conducted
in the area of breast cancer diagnosis. Many university centers and commercial
institutions [18] are focused on this issue because of the fact that breast cancer is
becoming the most common form of cancer disease of today’s female population.
The attention covers not only curing the external effects of the disease [2, 43]
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but also its fast detection in the early stadium. Thus, the construction of a fully
automatic cancer diagnosis system supporting a human expert has became a
challenging task.

Many nowadays camera-based automatic breast cancer diagnosis systems have
to face the problem of cells and their nuclei separation form the rest of the image
content [19, 35, 38, 48]. This process is very important because the nucleus of the
cell is the place where breast cancer malignancy can be observed. Thus, much
attention in the construction of the expert supporting diagnosis system have to
be paid to the segmentation stage.

The main difficulty of the segmentation process is due to incompleteness and
uncertainty of the information contained in the image. Imperfection of the data
acquisition process in the form of noise, chromatic distortion and deformity of
the cytological material caused by its preparation additionally increases the com-
plicity of the problem. The nature of the image acquisition (3D to 2D transfor-
mation) and the method of scene illumination also affects the image’s luminance
and sharpness. In many cases one must also deal with a low-cost CCD sensor
whose quality and resolution capabilities are rather small.

Until now many segmentation methods have been proposed [3, 4, 16, 33, 47,
42] but, unfortunately, each of them introduces different kinds of additional
problems and usually works in practice under given assumptions and/or needs
the end-user’s interaction/co-operation [19, 41, 48, 49]. Since many nowadays
cytological projects assume full automation and real-time operation with a high
degree of efficacy, a method free of drawbacks of the already known approaches
has to be constructed.

The aim of this chapter is presentation a variety of computational intelli-
gence approaches to nuclei segmentation in the microscope images of fine nee-
dle biopsy material. Some of them are modified versions of cytological image
segmentation methods adopted for fine needle biopsy images, that is the wa-
tershed algorithm [10], active contours [11], cellular automata [27], GrowCut
technique [9], and decision three technique [29]. Some of them exemplify quite
new proposals of segmentation techniques: sets of I and II type approach [7], the
sonar-like method [28]. One can also find here a description of the denoising and
contrast enhancement techniques, pre-segmentation and a fully automatic nuclei
localization mechanism used in our approaches. The quality and applicability of
described segmentation methods are still investigated by our team. The final
judgement can be precised after finishing the next steps of automatical breast
cancer diagnosis, i.e. morphometric parameters calculating and classification.
The quality of classification will be testimony of the applied segmentation.

7.2 Image Segmentation of Cytological FNB Microscope
Images

7.2.1 Segmentation within Image Analysis

Image segmentation consists in subdividing an image into its constituent regions
that hopefully correspond to structural units in the scene or distinguish objects
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Fig. 7.1. An automatic vision system

of interest. The level to which this subdivision is carried depends on the problem
being solved and applied approach. In the Fig.7.1 one can notice that segmenta-
tion is a crucial and a central step in whole image analysis system. The dashed
lines in the picture illustrate vagueness of the definitions adopted in literature (see
e.g. [26, 36]). Some of them are deliberately restrictive and assume that no contex-
tual information is utilized in the segmentation [36]. In this approach segmentation
does not involve identifying and isolating segments. The process consists in sub-
dividing an image according to some homogeneity criteria defined for individual
pixels; it does not attempt to recognize the individual segments nor their relation-
ships to one another. In the most opposite approach, segmentation is defined as a
process of isolation of components that correspond to the physical objects in the
scene. In this case, a feedback from the subsequent steps is taken into account, i.e.
analysis outcomes and relations between isolated image regions are important fac-
tors constituting the segmentation criteria. In life-crucial applications (e.g.medical
diagnosis) even the intervention of a human operator is required.Different patterns
of such interaction can be found in [14, 26, 32].

As a consequence of application-driven approach in defining the process of
segmentation, no single standard methodology has emerged. In principle, there
is no general theory of image segmentation, though some attempts to build a
functional model have been made (see for example [50]). Moreover, the prob-
lem of segmentation is ill-defined and can be perceived as one of psychophysical
perception and therefore not susceptible to a purely analytical solution [8]. As a
consequence, no single standard method of image segmentation has been elabo-
rated, although there are methods that have received some degree of popularity.
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7.2.2 Testing Database of Images

What we have on input is the cytological images database of the Fine Needle
Biopsy material gained in a cooperation with experts from the Zielona Góra’s
Onkomed medical center [21, 22]. The database consists of 750 images of 75
clinical cases, including 25 images of benign tumour, 25 of malignant tumour and
25 of fibroadenoma. There are 10 images for every case - one of them is magnified
by 100 and 9 magnified by 400. Photographs x400 where selected in such a way
as to contain at least 10 nucleus suitable for the morphometric analysis. As a
result, the set of images for one case contains at least 90 nucleuses to analyze.
The image itself is coded using the RGB colorspace and is not subject to any
kind of lossy compression (a raw color bitmap format), and with a resolution of
704 × 578 pixels and 24-bit color depth (16.7M colors). The number of distinct
colors in images varies from about 10 to 60 thousands.

What we expect on output is a binary segmentation mask with one pixel sep-
aration rule which will allow more robust morphometric parameters estimation
in our future work. Additionally, the proposed segmentation algorithm should
be insensitive to colors of contrasting pigments used for preparation of the cy-
tological material (see an example in Fig. 7.2).

(a) (b)

Fig. 7.2. Exemplary fragment of: (a) cytological image, (b) appropriate segmentation
mask

7.2.3 Image Filtering and Preparation

The quantity of information contained in a color image is surplus at the early
stage of image processing. The color components do not carry as important in-
formation as luminosity so they can be removed to reduce processing complexity.
An RGB color image can be converted to greyscale by calculating a luminance
value in the same way as it is calculated for YCbCr color space [37].

Since a great deal of images have a low contrast, an enhancement technique
is needed to improve theirs quality. In our research we use a simple histogram
processing with the linear transform of images levels of intensities, namely a
cumulated sum approach [36].
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(a) (b)

Fig. 7.3. Examplary fragment of cytological image with circular nuclei
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Fig. 7.4. Gradient masks used in our experiments

If we look closely at the nuclei we have to segment, we notice that they all
have an elliptical shape (Fig. 7.3). Most of them resemble an ellipse but, unfor-
tunately, detection of the ellipse is computationally expensive. The shape of the
ellipse can be approximated by a given number of circles (as shown in Fig. 7.3b).
The detection of circles is much simpler in the sense of the required computations
because we have only one parameter, which is the radius R. These observations
and simplifications constitute grounding for a nucleus pre-segmentation algo-
rithm – in our approach we try to find such circles with different radii in a given
feature space.

The Hough transform [1, 6, 51] can be easily adopted for the purpose of circle
detection. The transform in a discrete space can be defined by:

HTdiscr(R, i0, j0) =
i0+R∑

i=i0−R

j0+R∑

j=j0−R

g(i, j)δ
(
(i − i0)2 + (j − j0)2 − R2

)
, (7.1)

where g is a two-dimensional feature image and δ is Kronecker’s delta (equal to
unity at zero). HTdiscr plays the role of an accumulator which accumulates the
levels of feature image g similarity to the circle placed at the (i0, j0) position
and defined by the radius R.

The feature space g can be created by many different ways. In our approach
we use a gradient image as the feature indicating the occurrence or absence of
the nucleus in a given fragment of the cytological image. The gradient image is a
saturated sum of gradients estimated in eight directions on the greyscale image
prepared in the pre-processing stage. The base gradients can be calculated using,
e.g., Prewitt’s, Sobel’s mask methods [12, 44] or their heavy or light versions
(Fig. 7.4).

Thresholding the values in the accumulator by a given θ value we can obtain a
very good pre-segmentation mechanism with a lower threshold strategy (see, for
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(a) (b)

Fig. 7.5. Exemplary results of the pre-segmentation stage for two different θ threshold
strategies: (a) high and (b) low

(a) (b) (c)

Fig. 7.6. Exemplary fragment of: (a) cytological image, (b) Euclidian distance to the
mean background color, (c) smoothed out version of (b)

instance, Fig. 7.5). Since the threshold value strongly depends on the database
and the feature image g, the method can only be used as a pre-segmentation
stage. A smaller value of the threshold causes fast removal of unimportant in-
formation from the background, and what we achieve is a mask, which approx-
imately defines the places where are the objects we have to segment (nuclei in
this case) and where is the background. Such a mask can constitute a base for
more sophisticated and detail-oriented algorithms.

The results obtained from the pre-segmentation stage can lead us to the esti-
mation of an average background color. Such information can be used to model
the nuclei as a color distance between the background and the objects, which ful-
fils the requirements of the lack of any color dependency in the imaged material
(the color of contrasting pigments may change in the future). In our research we
tried few distance metrics: Manhattan’s, Chebyshev’s, the absolute Hue value
from the HSV colorspace, but the Euclidian one gives us visually the best results
(Fig. 7.6ab):

Deuclid =
√

(IR − BR)2 + (IG − BG)2 + (IB − BB)2, (7.2)

where B is the average background color estimated for the I input image.
Since the modeling distance can vary in the local neighborhood (see Fig. 7.6b),

mostly because of camera sensor simplifications, a smoothing technique is needed
to reconstruct the nuclei shape. The smoothing operation in our approach relies
on the fact that this sort of 2D signal can be modeled as a sum of sinusoids [20]
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with defined amplitudes, phase shifts and frequencies. Cutting all low amplitude
frequencies off (leaving only a few significant ones with the highest amplitude)
will result in a signal deprived of our problematic local noise effect (Fig. 7.6c).
What we finally achieve is a three-dimensional modeled terrain where hills
correspond to nuclei.

The localization of objects on a modeled map of nuclei can be performed
locally using various methods. In our approach we have chosen an evolutionary
(1+1) search strategy [25, 30, 31] mostly because it is simple, quite fast despite
appearances, can be easily parallelized due to its nature and settles very well in
local extrema, which is very important in our case.

The search in our approach can be conducted in two versions: single-point
and multi-point. In the single-point version it is only allowed to have only one
marker pointing a nucleus while in the multi-point one it is allowed to have more
than one marker pointing the same nucleus.

The used watershed algorithm as a final segmentation method forced us to
create two population of individuals. The first population localizes the back-
ground. Specimens are moved through the mutation stage Y t

i = Xt
i + rtNi(0, 1)

with a constant movement step (rt = 1) preferably to places with a smaller
density of population to maximize background coverage. The second popula-
tion localizes the nuclei. Specimens are moved with a decreasing movement step
(rt = Rmax(1/Rmax)t/tmax) to group very fast the population near local ex-
tremum in the first few epochs and to finally work on details in the ending ones.
The movement of individuals is preferred to be directed towards places with a
higher population density to create the effect of nuclei localization.

The fitness function φ calculates the average height of the terrain in a given
position including the nearest neighborhood defined by the smallest radius de-
tected by the Hough transform in the pre-segmentation stage. Such a definition
of the fitness function avoids a possible split of the population, localized near
a nucleus with multimodal character of its shape, giving only one marker for a
nucleus (Fig. 7.7b).

Finally, the nucleus is localized in the place where the density of the popula-
tion searching for hilltops in the modeled terrain is locally maximal. As we have

(a) (b)

Fig. 7.7. Exemplary single-point localization: (a) screenshot after 8 epochs, (b) final
result (localization points are marked with red asterisks)
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(a) (b)

Fig. 7.8. Exemplary multi-point localization: (a) screenshot after few epochs, (b) final
result

mentioned earlier, the method is quite fast and just a few epochs are needed
to observe a visible progress in nuclei localization and background coverage
(Fig. 7.7a).

The algorithms that do not have such tight requirements concerning only
one single marker per nucleus, that is they allow multiple markers pointing the
same one, not optimal or even false localization points and can take information
about the background location from the pre-segmentation mask [9], can use
much simplified version of the above presented (1 + 1) search strategy. In such
cases we can use only one population, that is the one searching for nuclei and
the fitness function is simply the terrain height at an individuals position. The
number of iterations of the algorithm can also be reduced, because we need only
an approximate localization of nuclei (Fig. 7.8). Thus, the algorithm is the same
and the only difference with the one described above is the fitness function φ
and reduced number of epochs.

7.2.4 Watershed Segmentation

Method description

The watershed segmentation algorithm is inspired by natural observations, such
as a rainy day in the mountains [12, 36, 37]. A given image can be defined as a
terrain on which nuclei correspond to valleys (upside down the terrain modeled
in previous steps). The terrain is flooded by rainwater and arising puddles are
starting to turn into basins. When the water from one basin begins to pour away
to another, a separating watershed is created.

The flooding operation has to be stopped when the water level reaches a given
θ threshold. The threshold should preferably be placed somewhere in the mid-
dle between the background and a nucleus localization point. In our approach
the nuclei are flooded to the half of the altitude between the nucleus localiza-
tion point and the average height of the background in the local neighborhood.
Since the images we have to deal with are spot illuminated during the imaging
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// For each basin
∀p ∈ P assign a label (i + 1)

for θ ∈ 0 : Δ : 1
for ∀p ∈ P

color p to the level � θ ∗ Ψ(p)
2

end
end

Algorithm 1. The simplified version of the watershed algorithm

operation (resulting in a modeled terrain higher in the center of the image and
much lower in the corners), this mechanism protects the basins from being over-
flooded and, in consequence, nuclei from being undersegmented.

The simplified version of the watershed algorithm is given in Alg. 1. The
coloring to the level of θ implements the flooding operation. It also considers a
possible situation of watershed building when there is a neighbor nearby with
another label. Δ defines water level increase in each iteration of the algorithm
and Ψ defines the difference between the p valley’s depth and the background’s
height in its local neighborhood.

Typical results for cytological images

Exemplary results of the presented watershed segmentation method and common
errors observed in our hand-prepared benchmark database can be divided into
four classes:

• class 1 : good quality images with only small irregularities and rarely gener-
ated subbasins (a basin in another basin) (Fig. 7.9ab),

• class 2 : errors caused by fake circles created by spots of fat (Fig. 7.9cd),
• class 3 : mixed nucleus types: red and purple in this case and those reds

which are more purple than yellow (background) are also segmented, which
is erroneous (Fig. 7.9ef),

• class 4 : poor quality image with a bunch of nuclei glued together, which causes
basin overflooding and, in consequence, undersegmentation (Fig. 7.9gh).

The conducted experiments show that the watershed algorithm gives a 68.74%,
on average, agreement with the hand-prepared templates using a simple XOR
metric. Most errors are located at boundaries (see, for instance, Fig. 7.13a) of
nuclei where the average distance between the edges of segmented and reference
objects is about 3.28 pixels. The XOR metric is underestimated as a consequence
of not very high level of water flooding the modeled terrain, but the shape of
the nuclei seems to be preserved, which is important in our future work – the
estimation of morphometric parameters of segmented nuclei.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7.9. Exemplary results of the watershed segmentation

7.2.5 Active Contour Technique

Method description

The active contouring technique can be considered as a more advanced region
growing method [44]. The algorithm groups neighboring pixels when a given
homogeneity and similarity criteria is met. All joined pixels create a segment,
which boundary spreads in all directions until another segment is met or the new
candidates for joining introduce not acceptable error. The algorithm is stopped
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Fig. 7.10. Illustration of the contour merging operation

when all pixels get a label, that is the object in the image is separated from the
background.

The images we are dealing with can contain more than a single object per
image. Additionally, the assumption of the project is that the segmentation
process have to be fully automatic (there is no human operator which manually
initializes the method). This two factors forces us to modify the algorithm to
meet the stated requirements. Thus, the algorithm, which in our case is based
on fast marching method (FMM) [39], must have multilabel extension [40] and
the seeding process has to be done without end-user’s interaction.

In the proposed approach the multilabel FMM is initialized with a pre-
segmentation mask and the results obtained from the multi-point nuclei local-
ization stage. The background-object boundary from the pre-segmentation mask
is the initial seed for the background segment. The nuclei localization points, on
the other hand, are initial seeds for the object segments. The most important in
this method is that the initialization mask and the nuclei localization points do
not have to be perfect – all fake initial markers are fully acceptable and they do
not have any influence on the final segmentation result and its quality.

The contour expansion speed of the multilabel FMM is governed globally by
the function [11]:

F =
1

|g(x, y) − ḡ(i)|3 + 1
, (7.3)
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Fig. 7.11. Illustration of the contour pushing operation

where g(x, y) is the color under the contour and ḡ(i) is the mean color under the i-
th segment. Such a definition of the expansion speed slows down the contour near
object (nucleus) boundary. Two very close to each other spreading segments can
meet while the algorithm execution. The two meeting segments can be merged
(the smaller one into the bigger) when their mean color difference is below certain
threshold (Fig. 7.10). The segments not classified to be merged can bush back
the segment with the lower difference between considered pixel and mean color
of each segment (Fig. 7.11). The pushing operation can be performed only once
to reduce contour oscillation known from the classical approach and the pushed
back segment can not move father at this place.

Typical results for cytological images

The conducted experiments show that the modified multilabel FMM algorithm
is very stable and robust to initialization errors. Visually, segmentation quality
is promising and gives good detection of even small objects (Fig. 7.12). Unfor-
tunately, the algorithm has problems with connected nuclei and detect them as
a one single object, which is erroneous. The average XOR metric score with the
hand-prepared templates is only 22.32% and the average distance between the
edges of segmented and reference objects is about 4.1 pixels.

Despite the mentioned problems the shape of segmented nuclei seems to be
represented accurately and most errors are located at the boundaries of the
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(a) (b)

(c) (d)

Fig. 7.12. Exemplary results of the active contouring segmentation

(a) (b)

Fig. 7.13. Exemplary XOR results with a fragment of the hand-prepared segmentation
mask for: (a) watershed algorithm, (b) active contouring technique

segmented objects (see, for instance, Fig. 7.13b). This illustrates that the proper
selection of merging threshold and detection of overlapping nuclei is still a chal-
lenge and has to be improved in the future works.

7.2.6 GrowCut Cellular Automata Segmentation

Method description

The next technique inspired by natural observations is the GrowCut cellular
automata segmentation algorithm [46]. It imitates growth and struggle for dom-
ination of rivalry bacteria colonies. Each type of bacteria represents a single
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type of objects used in segmentation. The GrowCut algorithm was originally
developed for multi-label intelligent scissors tasks for photo-editing tools. It
requires manual initialization of the seed pixels, but concatenated with a
proper pre-segmentation method gives a fully automated hybrid segmentation
technique.

The GrowCut algorithm defines a cellular space P as k×m array, where k and
m are dimensions of the image. Each of the array cells is an automaton described
by the state triplet (lp, θp,Cp), where lp is the label of the cell, θp is the strength
of the cell and Cp is the feature vector of the cell defined by associated image
pixel. An unlabeled image may be then considered as particular configuration
state of cellular automata, where initial states for ∀p ∈ P are set to:

lp = 0, θp = 0, Cp = RGBp, (7.4)

where RGBp is the three dimensional vector of pixel p color in RGB space. The
final goal of the segmentation is to assign each pixel to one of the K possible
labels. As stated before, we use two labels in segmentation of cytological images –
the nuclei and the background.

In a single evolution step each cell (the bacteria) tries to attack all its neigh-
bors. The evolution goal is to occupy all image area starting from a group of
previously initialized pixels. Cell neighbors are defined by neighborhood system.
In our approach the Moore neighborhood system was used:

N(p) =
{

q ∈ Zn :‖ p − q ‖∞:= max
i=1,...,n

|pi − qi| = 1
}
. (7.5)

The attack power is defined as a function of attacker q and defender p strengths
and the distance between their feature vectors: Cq and Cp. The basic rule of

// For each cell
for ∀p ∈ P

// copy previous state
lt+1
p = ltp
θt+1

p = θt
p

// neighbors try to attack
// current cell
for ∀q ∈ N(p)

if g(‖ Cp − Cq ‖2) · θt
q > θt

p

lt+1
p = ltq
θt+1

p = g(‖ Cp − Cq ‖2) · θt
q

end
end

end

Algorithm 2. The GrowCut algorithm
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(a) (b) (c) (d) (e)

Fig. 7.14. Exemplary segmentation of a FNB image with the GrowCut algorithm.
White – nucleus labeled cells, black – background labeled cells: (a) the seed, (b) step
2, (c) step 4, (d) step 6, (e) final 19-th step.

(a) (b) (c)

Fig. 7.15. Exemplary segmentation with the GrowCut algorithm initialized with
thresholding result: (a) exemplary image, (b) thresholding result, (c) GrowCut result

automaton state change at time t + 1 is shown in Alg. 2. The g function is
monotonous, decreasing and bounded to [0, 1]. For the purpose of this work,
simple g function was used, as proposed in [46]:

g(x) = 1 − x

max ‖ C ‖2
, (7.6)

where max ‖ C ‖2 is calculated as a feature vector length for white pixel (RGB
= [255, 255, 255]). As the strength of each cell is increasing and bounded, so the
method is guaranteed to converge. Thus for any seed configuration of the image,
after finite number of evolution steps, all cells are labeled and their states seize
to change. Fig. 7.14 shows subsequent steps of the GrowCut segmentation for a
manually initialized cytological image.

The GrowCut algorithm requires initialization of a number of cells with proper
labels for each separate, consistent group of pixels (segment seed). To allow for
application of the algorithm to the automated diagnostic system we employ the
information from the pre-segmentation and the nuclei localization stage to ini-
tialize the seed pixels. At this point almost any rough segmentation technique
(e.g. thresholding) can be also applied as the pre-segmentation (Fig. 7.15), how-
ever our research shows that initialization which leaves unclassified pixels at
objects boundaries performs better. One of the techniques, which results can be
utilized at the GrowCut algorithm initialization stage is the pre-segmentation
mask obtained using the Hough transform. The transform result is a set of circles
covering regions of the image, where nuclei are located. Pixels enclosed inside
these regions are initially labeled as the nucleus pixels. Remaining pixels of the
image are labeled as the background. For this type of initialization, all the image
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pixels are classified before the first GrowCut evolution step. The goal of the
algorithm application is only to adjust the segments edges to real boundaries of
objects. Therefore, to enforce the proper direction and the range of label changes
within following evolution steps, associating suitable values of initial strength for
both of the pixel classes is necessary.

The appropriate direction of label changes depends on the θ threshold value,
used at pre-segmentation stage. For lower values of threshold, Hough transform
results in a number of background pixels located in boundaries of regions labeled
as nucleus. These pixels should change their labels do background in process of
actual segmentation. Thus, the initial strength value of nucleus labeled pixels
has to be less than strength of the background pixels. For higher values of the θ
threshold a number of the nucleus pixels are incorrectly labeled as background.
In this case labels of boundary pixels should be changed to nucleus. Therefore,
initial strength of the nucleus pixels has to be greater than the background pixels.

The GrowCut algorithm can be also initialized with the result obtained from
the multi-point nuclei localization stage described above. Due to only few ini-
tialized pixels of each segment, strengths of the cells can be set to equal values
for both classes. It allows for automation of the segmentation process. How-
ever, more uninitialized pixels results in more evolution steps and so greater
computational cost.

Typical results for cytological images

Typical results of the GrowCut cellular automata, initialized with the result
obtained from the multi-point nuclei localization stage, can be seen in Fig. 7.16.
For the exemplary image the proportion of incorrectly labeled pixels was about
6%. However, the shape of the identified nuclei segments is too ragged (due
to camera sensor interlace), so additional smoothing post-segmentation stage is
needed for this combination of techniques.

The problem with the Hough transform and the GrowCut cellular automata
hybrid is that the optimum proportion of the initial nucleus pixels strength
should be estimated to achieve good segmentation quality. The proportion
strongly depends on the analyzed image contrast and the pigment used, so a

(a) (b)

Fig. 7.16. Exemplary result of the segmentation (b) with the GrowCut cellular au-
tomata, initialized with multi-point nuclei localization points (a)
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potential automated diagnostic system should be learned beforehand. The sec-
ond hybrid – the GrowCut cellular automata initialized with multi-point nuclei
searching algorithm, can be applied with fixed initial strength values for the nu-
cleus and the background seed pixels. However it is much more computationally
expensive due to more cellular automata iterations required.

7.2.7 Fuzzy Sets of Type I and II in Thresholding

The technique used in this subsection belongs to object attribute-based methods
and is based on a type-1 fuzzy thresholding technique. However type-1 fuzzy sets
still have some inherent uncertainties. There are (at least) four different sources
of uncertainties in type-1 fuzzy logic systems [23]: uncertainty about meanings
of the words that are used (words mean different things to different people),
uncertainty about consequents, uncertainty about measurements, which may be
noisy and uncertainty about the data that is used to tune parameters. Thus,
to address this problem type-2 fuzzy sets (T2FSs) have been formulated, which
let us model and minimize the effects of this uncertainties. Such sets are fuzzy
sets whose membership grades themselves are T1FSs; they are very useful in
circumstances where it is difficult to determine an exact membership function
for a fuzzy set; therefore, they are useful for incorporating uncertainties [15].

Nevertheless a general T2FSs computational complexity is severe and it is very
difficult to justify the use of any other kind of secondary membership functions
(e.g. right now there is no best choice for a T1FS, therefore secondary membership
functions only complicate the matter). Thus interval T2FSs were introduced —
when the T2FSs are interval T2FSs, all secondary grades equal one [23].

Another drawback of the thresholding techniques is that they are, in general,
monochrome techniques. Compared to gray scale, color provides information in
addition to the intensity. Color is useful or even necessary for pattern recognition
and computer vision. Thus the other part of this paper is concerned with the adap-
tation of this monochrome technique to use extra information of color images.

Interval type-2 fuzzy sets

An interval type-2 fuzzy set (IT2 FS) Ã is characterized as [24]

Ã =
∫

x∈X

∫

u∈Jx⊆[0,1]

dudx

ux
=

∫

x∈X

(∫

u∈Jx⊆[0,1]

du

u

)

dx
/

x (7.7)

where x, the primary variable, has domain X ; u ∈ U , the secondary variable,
has domain Jx at each x ∈ X ; Jx is called the primary membership of x and
is defined in (7.11); and, the secondary grades of all Ã equal 1. Note that (7.7)
means: Ã : X → {[a, b] : 0 � a � b � 1}. Uncertainty about Ã is conveyed
by the union of all the primary memberships, which is called the footprint of
uncertainty (FOU) of Ã (see Fig. 7.17), i.e.

FOU(Ã) =
⋃

∀x∈X

Jx = {(x, u) : u ∈ Jx ⊆ [0, 1]} (7.8)
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Fig. 7.17. FOU (shaded), LMF (dashed), UMF (solid) and an embedded FS (wavy
line) for IT2 FS Ã

The upper membership function (UMF) and lower membership function (LMF)
of Ã are two type-1 membership functions that bound the FOU (Fig. 7.17). The
UMF is associated with the upper bound of FOU(Ã) and is denoted μÃ(x), ∀x ∈
X , and the LMF is associated with the lower bound of FOU(Ã) and is denoted
μ

Ã
(x), ∀x ∈ X , i.e.

μÃ(x) ≡ FOU(Ã) ∀x ∈ X (7.9)

μ
Ã
(x) ≡ FOU(Ã) ∀x ∈ X (7.10)

Note that Jx is an interval set, i.e.

Jx =
{
(x, u) : u ∈

[
μ

Ã
(x), μÃ(x)

]}
(7.11)

so that FOU(Ã) in (7.8) can also be expressed as

FOU(Ã) =
⋃

∀x∈X

[
μ

Ã
(x), μÃ(x)

]
(7.12)

The upper and lower membership degrees μÃ and μ
Ã

can also be defined by
means of linguistic hedges like dilation and concentration on a principle member-
ship function μA. Because hedges are usually available as pairs, that represent
diagonally different modifications of the basic term, so it seems practical to use
linguistic hedge and its reciprocal value to draw the FOU. Thus, upper and lower
membership values can be defined as follows [45]:

μÃ(x) = [μA(x)]1/α, (7.13)

μ
Ã
(x) = [μA(x)]α . (7.14)

where α ∈ (1, ∞). However, according to [45] α � 2 is usually not meaningful
for image data.

Image thresholding with type-2 fuzzy sets

Measures of the fuzziness estimate the average vagueness in fuzzy sets. Intu-
itively, one should expect that if the set is maximally ambiguous then the



7 CI Techniques in Image Segmentation for Cytopathology 187

fuzziness measure should be maximum. On the other hand, the fuzziness of
the crisp set using any measure should be zero, as there is no ambiguity about
whether an element belongs to the set or not. When the membership value ap-
proaches either 0 or 1, vagueness in the set decreases. Thus a fuzzy set is the
most vague when μA(x) = 0.5 ∀x [34].

The most common measure of fuzziness, introduced by [17], is the linear index
of fuzziness. For an M ×N image subset A ⊆ X with L gray levels g ∈ [0, L−1],
the histogram h(g) and the membership function μA(g), the linear index of
fuzziness γl can be defined as follows:

γl(A) =
2

MN

L−1∑

g=0

h(g) × min[μA(g), 1 − μA(g)]. (7.15)

But if images or thresholds are to be interpreted as T2FSs then there is a
need for a new measurement. In this case one can ask how ultrafuzzy is a fuzzy
set? If the degrees of the membership can be defined without any uncertainty
(T1FSs), then clearly the ultrafuzziness should be minimum (=0). For the case
that individual membership values can only be indicated as an interval, the
amount of the ultrafuzziness should increase. And while absolutely nothing is
known about the nature of membership degrees of the problem at hand, then
the ultrafuzziness should be maximal (=1). With respect to these thoughts and
the way a T2FS is defined, a measure of ultrafuzziness γ̃ for an M × N image
subset Ã ⊆ X with L gray levels g ∈ [0, L − 1], histogram h(g) and membership
function μ̃A(g) can be defined as follows [45]:

γ̃(Ã) =
1

MN

L−1∑

g=0

h(g) × [μÃ(g) − μ
Ã
(g)], (7.16)

where μÃ(g) = [μA(g)]1/α and μ
Ã
(g) = [μA(g)]α, α ∈ (1, 2]. This basic definition

relies on the assumption that singletons sitting on the FOU are all equal in height
(which is the reason why the IT2 FS is used). Thus, only the variation in the
length of the FOU can be measured.

The general algorithm for the image thresholding based on type II fuzzy sets
and measures of the ultrafuzziness can be formulated as follows: 1) Select the
shape of the principle (skeleton) membership function μA(g) and initialize α;
2) Calculate the image histogram; 3) Initialize the position of the membership
function; 4) Shift the membership function along the gray-level range; 5) Cal-
culate in each position upper and lower membership values μÃ(g) and μ

Ã
(g);

6) Calculate in each position the amount of the ultrafuzziness, using Eq. 7.16;
7) Locate the position gopt with the maximum ultrafuzziness; 8) Threshold the
image with T = gopt.

For the thresholding algorithm to be complete, there is a need to define a
suitable principle membership function. In this paper we are using following
membership functions.
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Function defined by [13] as follows:

μA(g) =

⎧
⎨

⎩

1
1+|g−μ0|/C , g � T,

1
1+|g−μ1|/C , g > T,

(7.17)

where C is a constant value such that 0.5 � μA(g) � 1, e.g. C = gmax − gmin;
the average gray levels of the background μ0 =

∑T
g=0 gh(g)

/∑T
g=0 h(g) and the

object μ1 =
∑L−1

g=T gh(g)
/∑L−1

g=T h(g), for a certain threshold T .

Color quantization

In the case of a widespread 24 bit color image representation, the number of
possible colors is over 16 millon and exhaustive searching is computationally
expensive or even unfeasible. However, in most cases images do not occupy the
entire color gamut, and the number of colors used is much lower. Thus quanti-
zation of the color space is a viable choice.

A quantized image M × N may be regarded as a mapping defined by

q : M × N → R ⊆ Ψ (7.18)

where Ψ = (r, g, b)|0 � r, g, b � 255 is the RGB color space, R = {r̄1, r̄2, . . . , r̄k}
is a set of representative colors used in the quantized image [5].

Hence, the color quantization can be divided into two parts: color palette
design, in which a desirable number of colors (usually 8–256) is specified, and
pixel mapping, in which each pixel is assigned to one of the colors in the designed
palette. The goal is to achieve the lowest perceivable difference between the
quantized image and the original one.

The color palette design can be obtained by simply dividing a color cube into
a smaller cube, but the result is usually poor. Better results are achieved by
means of clustering algorithms such as K-means or fuzzy c-means. However, a
major drawback of these algorithms is a high computational time. On the other
hand, there are still fast quantization algorithms characterized by high quality
performance and time efficiency.

When a palette has been designed, what remains is to assign the original
color of each pixel in the input image to their best match in the color palette.
The simplest way is to compute the distances between the original color vectors
and all color vectors of the new palette, then choose the one with the minimum
distance. However, faster methods can be used, such as binary tree search or k-d
tree search.

Of course, quantization of the color space alone is not enough to be appropriate
for the image segmentation. One of the reasons is that the new color palette is
disordered, and therefore the histogram of the image is also chaotic and not
useful for thresholding. One of the way to deal with that problem is to sort the
new color palette. When sorted, the palette, and therefore the histogram, should
consist of the organized data, that visually resembles the original image. In this
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approach the color information (palette) is discarded and the image is treated
like a monochrome one, by using only the frequency of the color occurrence.

This technique requires a definition of the distance measure, such as the Eu-
clidean distance, in order to correctly sort color vectors. However, the RGB color
space is non-uniform and thus it is hard to measure color differences. Hence, other
color space, like the CIE L∗a∗b∗ which is perceptually uniform and efficient in
measuring a small color difference, can be used to sort the color palette, or even
as a substitute of the RGB space for the entire color quantization process. This
approach can be considered as a nonlinear projection of 3-D space onto a lower
dimensional 1-D space. Also the big advantage of this method is that it can be
used for any type of monochrome segmentation techniques.

Exemplary results

RGB images were converted to gray levels, for the non-fuzzy reference the Otsu
technique was employed. Exemplary results obtained for techniques can be seen
on Fig. 7.18. For the recursive thresholding the best results were achieved by F1
with HW MF followed closely by F2 and Otsu techniques.

Afterwards, the color quantization approach, described in Sec. 7.2.7 was uti-
lized in order to quantize color cell images. Color images were quantized using

(a) (b)

(c) (d)

Fig. 7.18. The comparison of different methods of conversion from RGB images to
gray levels: original image (a), Otsu method (b), Fuzzy-1 method with HW MF (c)
and Fuzzy-2 method with HW MF
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(a) (b)

(c) (d)

Fig. 7.19. Color quantization approach: L∗a∗b∗, L∗a∗b∗ sorted (a), Otsu method (b),
Fuzzy-1 method with HW MF (c) and Fuzzy-2 method with HW MF

a minimum variance quantization method, using L∗a∗b∗ color spaces. Sub-
sequently, the resulted monochrome images were thresholded using recursive
thresholding techniques. The results were significantly improved over normal
gray images used in previous example. Otsu technique and fuzzy based tech-
niques, with the HW membership function, achieved comparable score with mi-
nor differences. Exemplary results obtained for this techniques can be seen on
Fig. 7.19.

The exact results can be seen in [7].

7.2.8 The Sonar-Like Segmentation Method

The sonar-like segmentation is a novel method developed by the authors for the
cytological image segmentation purpose. The method consists in classification of
image pixels based on spatial analysis of a pixel feature variance. Each class rep-
resents a visual artefact (e.g. edges, uniform inner regions, etc.). Artefact classes
are distinguished by comparison with a number of feature variance templates.
The result of pixel classification is a set of regions which after proper merging
allows for identification of actual objects. The name of the method originates
from a similarity of the feature variance analysis mechanism to the physical
phenomenon of a sonar sound wave speed alternation between water regions of
different physical condition (temperature, pressure, etc.).
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(a) (b)

Fig. 7.20. Sonar neighborhood model for s = 8, r = 4 and θ = 0 (a) and its discrete
realization for range R = 8 (b)

The base concept for the feature variance analysis is the sonar pixel neighbor-
hood. It is defined as a set of concentrically situated rings of pixels. All of the
rings have the same width and together they cover a circle, which centre is in
the examined pixel. The circle is then partitioned into a number of slices along
concentrically located bearings. Intersections of the rings and the slices are the
neighborhood sectors. The number of sectors in each ring is the same, and it
equals to the number of the neighborhood bearings.

Formally, the sonar neighborhood Nsonar can be defined as quadruplet:

Nsonar = (R, r, s, θ) (7.19)

where R is the neighborhood range, r is the number of rings, s is the number
of bearings (sectors in each ring) and θ is the angle between the zero-sector
axis and the ‘north’ bearing. The neighborhood bearings are numbered from
0 and rings are numbered from 1. The zero-ring is the examined pixel itself.
Figure 7.20 shows a visual model of the sonar neighborhood for s = 8 , r = 4
and θ = 0 (a) and its discrete realization for R = 8 (b).

The sonar neighborhood applied to an actual pixel allows for calculation of
the sonar vector σ. The length of the vector equals to the number of bearings, so
each of the vector values represents the variance of the examined feature along
single bearing. The values bounded to [0, 1] are calculated on the basis of a set of
differences of the feature statistics between subsequent sectors along the bearing.
The statistics used in the presented application of the method was arithmetic
mean of the luma component of the YCbCr color model.

Figure 7.20(b) shows a scheme of a sonar vector value calculation for a single
bearing. The value can be seen as the energy of the sound wave signal after
passing from the central point through subsequent sectors along bearing. Passage
through each boundary between two adjacent sectors decreases the signal energy
by Δsi value, which is calculated as a weighted function of the sectors feature
statistics difference:

Δsi = δ(|fs,i − fs,i−1|)wi (7.20)
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where fs,i is the feature statistics of the sector at s-bearing of the i-th ring, and
wi is the weight for the boundary between i − 1-th and i-th ring. The function
δ is a monotonous nondecreasing function, bounded to [0, 1]. The function can
be defined as follows:

δ(t) =
{

t
d if t ≤ d,
1 if t > d,

(7.21)

where d > 0 is the sensitivity parameter defining the threshold value of the
statistics difference over which the value of δ function remains 1. If the feature
variance in the neighborhood is high enough, the value can reach zero just after
subtracting only few of the delta values. If so, subsequent feature differences are
ignored and the value remains zero.

The weights for subsequent boundaries are inversely proportional to the dis-
tance of the boundary to the central point, so differences between sectors closest
to the neighborhood centre have the greatest impact on the sonar vector value.
The weights sequence can be arbitrarily chosen or defined as a function of the
ring number, for example:

wi =
1

2iw
(7.22)

where w is the arbitrary weighting factor.
The calculated sonar vector can be visualized with a radar plot. A shape of the

plot expresses the feature variance in the neighborhood of the examined pixel.
Later in this section, the sonar vectors visualizations are stated as sonar views.

The sonar vector matrix representing the image, prepared as described above,
is used for a classification of the image pixels. The classification is performed by
the comparison of the pixel sonar vector with a number of template vectors. The
template vectors can be prepared manually or calculated automatically by the
evaluation of average sonar vectors for a set of images classified with reference
segmentation masks.

Some of the searched artifacts, like edges, have a number of same-shaped,
but rotated sonar vectors. To reduce computational cost regarding introduction
of a number of sub-classes for single artefact, a normalization of sonar vectors
can be performed beforehand. The normalization process is a cyclic rotation
of the vector values, until the lowest value is at the zero-bearing. After such
an operation, each of the artefact sub-class sonar vectors equals the vector of
the unrotated artefact with lowest value at the zero-bearing. So, a single class
template can be produced. Figure 7.21 shows sonar views and normalized sonar
views for pixels located at differently aligned nucleus edges.

Actual classification of the image pixels is preformed by finding the minimal
mean squared error between the pixel sonar vector and each of the template
vectors. The mean squared error MSE of the sonar vector compared to the C-
class template vector is defined as follows:

MSEC(σ) = E((σ − σC)2) =
1
s

s∑

i=0

(σi − σCi)2 (7.23)
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(a) (b) (c)

(d) (e) (f)

Fig. 7.21. Sonar views and normalized sonar views for pixels located at differently
aligned nucleus edges: (a), (d) - location of pixels; (b), (e) - sonar views; (c), (f) -
normalized sonar views

(a) (b)

Fig. 7.22. Cytological image (a) and the result of the pixel classification with Sonar (b)

where σ is the sonar vector, σC is the sonar vector template of the class C,
and s is the number of bearings. The pixel is labeled with the label of the class
with the minimal mean squared error. Figure 7.22 shows a sample cytological
image and the result of the pixel classification with Sonar. For the ’edge’ class
the saved number of the rotation steps is marked with the greyscale, from white
color for the bearing 0 to dark grey for the bearing 7.

At this stage all artifacts are identified and located. For cytological FNB
images the expected result is an identification and location of nuclei. Each of the
nuclei consists of a single interior and a number of adjacent edge-artifacts. To
achieve the proper segmentation, an additional step of artifacts merging needs
to be performed.
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Fig. 7.23. Result segmentation of the cytological image

As can be observed in the Figure 7.22, actual edges of objects are surrounded
from both sides with the edge segments. One side is the nucleus boundary, and
the other is the background boundary. Adjacent segments of the actual edge
have opposite rotation, so it can be distinguished which neighboring interior
segment should be merged with the edge segment. Along a single boundary, the
edge segments should be merged if the distance between their rotations equals
1. The segments should be also merged with the interior segment located below
the ’north’ edge. The result of the segment merging process is the segmentation
of the image along actual edges of objects (Fig. 7.23).

7.2.9 Decision Tree Method

Another algorithm of the pixel-based segmentation area is the decision tree-
based method of pixel classification. The primary mechanism of the method is
classification of image pixels with a decision tree, which input is the pixel color,
and the output is the probability of the pixel membership in each of the applied
object-classes. It is assumed that the numerical information on a pixel color (e.g.
RGB color components) is sufficient to identify the pixel as a member of one of
a number of object-classes.

For the purpose of nuclei segmentation in cytological images, three classes are
introduced: the nucleus (N), the background (B) and the inter-nucleus (I) class.
The last of the three classes represents all objects which cannot be unambigu-
ously labeled as a member of one of the former classes. These pixels are elements
of erythrocytes and cytoplasm.

The decision tree training process is based on a set of manually prepared
three-color image masks along with regarding training images. All image masks
classify a set of pixels to the three classes. Classified pixels of all the training
images together are used as the information for the decision tree training process.
The result of the process is a decision tree, which assigns probabilities of the pixel
being a member of each class. Due to no spatial information is used in the training
process there is no requirement for the masks of images to be completed. Some of
the mask pixel can be left unlabeled. It allows excluding ambiguous pixels from
the decision tree training process. Figure 7.24 shows a sample training image (a)
with regarding mask (b).
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(a) (b)

Fig. 7.24. Sample training image (a) with regarding mask (b). Red - the nucleus
pixels; green - the background pixels; blue - inter-nucleus pixels; black - unclassified
(ambiguous) pixels

Fig. 7.25. Sample decision tree with 3 leaves

As stated before, the output of the decision tree for a pixel is a set of prob-
abilities of the pixel membership in each class. Figure 7.25 presents a sample
decision tree with 3 leaves.

The output of the decision tree can be visualized by rendering the image
with pixel color components proportional to the respective probabilities. Using
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the same components for classes as in mask images, one can get output images
similar to the masks, however there will be no unlabeled pixels left. Actual values
of color components for pixels can be calculated as follows:

C = P (O)Cmax (7.24)

where C is the color component, C ∈ {R, G, B}, P (O) is the probability of the
class O membership, O ∈ {N, I, B}, Cmax is the maximum value of a single
color component (255 for 24-bit color RGB images). Figure 7.26 shows a sample
output image.

(a) (b)

Fig. 7.26. Sample result of the decision tree application: input image (a), output
image (b)

The number of combinations of class-membership probabilities in the decision
tree output is much lower than the number of RGB color components in the pro-
cessed image. Output images have the maximum number of distinct colors equal
to the number of probability combinations. So the application of the decision
tree can be perceived as the problem complexity reduction technique for another
segmentation algorithm. Due to the output of the method are rendered images
along with probability matrices, almost any segmentation technique can be ap-
plied on the actual segmentation stage. For example the thresholding with 3D
homograms can be applied for the actual segmentation. In the authors’ research
the decision tree prepared with the SAS Enterprize Miner had 21 to 56 leaves.
The number of leaves equals the number of bins of a homogram needed to per-
form the segmentation, so the decision tree can play the role of color quantizer
based on the information on the image color characteristics.

7.3 Conclusions

In this chapter we bring together the latest results from researchers involved in
state-of-the-art work in cytological image segmentation, providing both a survey
on segmentation well-known techniques supporting such processes as measure-
ment, visualization, registration and reconstruction of image and a collection of
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new approaches elaborated for the case of cytopathologic scans. A wide variety
of new methods is presented, including solutions based on fuzzy sets of types I
and II, clustering, decision trees, shape detection, active contours and many oth-
ers as well as they hybrids. Issues of automated segmentation of cell nuclei are
broadly described on the examples of microscopic cytological images obtained
via fine needle biopsy technique. Although some of the predictions would prob-
ably be shared by many people working in this field, this presentation still will
be subjective and personal. In our opinion, perspectives for further development
of cytological image segmentation are closely connected with computational in-
telligence, closer interaction between system and a human operator as well as
semantic image interpretation.
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40. Steć, P., Domański, M.: Video Frame Segmentation Using Competitive Contours.

In: Proc. 13th European Signal Processing Conference, Antalya, Turkey (2005)
41. Street, W.: Xcyt: A system for remote cytological diagnosis and prognosis of breast

cancer. In: Jain, L. (ed.) Soft Computing Techniques in Breast Cancer Prognosis
and Diagnosis, pp. 297–322. World Scientific Publishing, Singapore (2000)

42. Su, M., Chou, C.: A modified version of the K-means algorithm with a distance
based on cluster symmetry. IEEE Trans. Pattern Analysis and Machine Intelli-
gence 23(6), 674–680 (2001)
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Summary. Computerized Tomography (CT) colonography is an emerging noninva-
sive technique for screening and diagnosing colon cancers. Since colonic polyps grow
outward from the colon wall, they are modeled as protrusion shapes. In this chapter,
we propose a novel anisotropic 3D surface evolution model for detecting protrusion
shape based colonic polyp on the curved surface. The important feature of the pro-
posed model is that it can detect protrusions with both convex and concave shapes.
Protrusion shapes are defined as the extension beyond the usual limits or above a plane
surface. Based on Gaussian and mean curvature flows, the approach works by locally
deforming the convex or concave surface until the second principal curvature goes to
zero. The diffusion directions are changed to prevent convex surfaces from converting
into concave shapes, and vice versa. The deformation field quantitatively measures the
amount of protrudeness. We also designed a new color coding scheme for better visu-
alization of the detected polyps. The proposed method has been evaluated by using
synthetic phantoms and real colon datasets.

8.1 Introduction

Colorectal cancer is the second leading cause of death caused by cancers and
the third most common form of cancer in the United States [1]. Most colorectal
cancers begin as a polyp, which is a small, harmless growth on the colon wall.
As a polyp gets larger, it can develop into a cancer.

Since colorectal cancer is largely preventable, several screening tests such
as digital rectal exam, fecal occult blood test, flexible sigmoidoscopy, double-
contrast barium enema, and colonoscopy are recommended for all people age
50 and above. Although the optical colonoscopy is currently the gold standard
for colorectal cancer screening, it is invasive, uncomfortable and inconvenient.

T.G. Smolinski et al. (Eds.): Comp. Intel. in Biomed. & Bioinform., SCI 151, pp. 201–222, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Computer tomographic colonography (CTC), also known as virtual colonoscopy
(VC), is a minimally invasive technique and rapidly evolving diagnostic tool for
the location, detection and identification of benign polyps in the early stage
before their malignant transformation.

Since colonic polyps generally grow from the colon wall into the lumen like
dome structures, they are normally modeled as protrusion shapes in the litera-
ture [20]- [28]. Different differential geometry-based algorithms were proposed for
protrusion shaped-based polyp detection. Yoshida and Näppi [20] used the curva-
ture analysis to characterize polyps, folds and colon walls in the extracted colon.
Summers et al. [21] investigated the feasibility of geometric features-based shape
analysis for polyp detection. Huang et al. [22] investigated three surface patch fit-
ting methods for curvature estimation, which include Cubic B-spline, paraboloid,
and quadratic polynomials. Napel et al. [24] attempted to develop an algorithm
to classify the output of CTC. They aimed at eliminating false positives (FPs)
and increasing specificity without sacrificing sensitivity. Yao et al. [25] presented
an automatic method to segment colonic polyps, which was based on a combi-
nation of knowledge-based intensity adjustment, fuzzy c-mean (FCM) clustering
and deformable models. In [26], two major improvements were made to extend to
a 3D polyp segmentation. The two improvements were summarized as follows:
1) knowledge-guided intensity adjustment was extended to 3D, and 2) active
contour models for 2D cases were replaced with 3D dynamic deformable sur-
faces. As a result, Yao et. al. [27] proposed their entire framework for colonic
polyp segmentation based on fuzzy clustering and deformable models. Once the
2D polyp segmentation finished one slice, the procedure was propagated to the
neighboring slices. Finally, all 2D segmentations were stacked up to generate a
3D segmentation for the whole volumetric dataset.

Although most of the current methods modeled the polyp as an approximately
spherical or elliptical polypoid shape, real polyps have irregular shapes.

Curvature flow-based curve and surface evolution methods have been widely
used in computer vision, pattern recognition and medical image analysis [2].
A famous application of curve or surface evolution is the deformable model
which mainly includes the explicit deformable models (e.g. snake [10], balloon
force model [12] and gradient vector flow (GVF) model [11]) and the implicit
deformable models (e.g. level sets [14, 13, 3], geodesic active contour [17], and
prior shapes based model [15, 16]).

To our knowledge, there are few models which apply curve or surface evolution
methods for protrusion shape detection.

In [18], a 2D object border was divided into a set of local and global inden-
tation and protrusion segments by extending the classic curvature scale-space
filtering method. Then, the object shape was represented by arranging the re-
sultant segments in hierarchical structure.

Recently, Wijk et al. [29] proposed an idea on surface evolution for protrusion
detection. The points on convex parts of the protrusion iteratively moved inward
and finally the protrusion was flattened. Protrudeness was quantitatively mea-
sured by the displacement amount, and protrusion candidates were detected by
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thresholding the displacement field. The method can locate the convex protru-
sion shapes with constraint κ2 > 0, where κ2 is the minimum principal curvature.
However, only protrusions with convex shapes were detected by the constraint.

In [19], change detection was used in shape representation. Compared with
convex changes with equal magnitude, concave shape had a dramatic advan-
tage. Concavity introduced or removed from an object contour were more easily
observed.

In this chapter, we present a comprehensive framework for colonic polyp detec-
tion and visualization. Based on Gaussian and mean curvature flows, we propose
a novel anisotropic algorithm for 3D surface evolution to detect protrusion shape
based colonic polyps. We have validated the proposed method using simulated
phantom containing convex and concave synthetic polyps with different shapes
and sizes. We also present the results using real colon datasets to demonstrate
the effectiveness of the new surface evolution algorithm.

The rest of the chapter is organized as follows. Section 8.2 presents the surface
parametric formulation and the mathematical fundamental of surface evolution
and protrusion shape detection by this method. Section 8.3 introduces the pro-
posed new surface evolution function based on the Gaussian and mean curvature
flows. Section 8.4 discusses a new color coding scheme to highlight the detected
protrusion shape based colonic polyps. The proposed method is validated by two
synthetic phantoms and real colon datasets in Section 8.5. Section 8.6 concludes
the paper.

8.2 Mathematical Background

8.2.1 Surface Parametric Formulation

Accurate protrusion shape representation and detection on the curved surface
are important in computer vision, psychology and medical image analysis. The
protrusion is defined as follows:

Definition 1. Extension beyond the usual limits, or above a plane surface [7].

A more formal presentation follows from the description of the surface shape
using the principal curvatures. The definitions of convex and concave protrusions
are given in Definition 2 and Definition 3, respectively.

Definition 2. Convex protrusions are those regions on the surface where the
minimum principal curvatures are larger than zero, which implies that the max-
imum principal curvatures are definitely larger than zero [29].

Definition 3. Concave protrusions are those regions on the surface where the
minimum principal curvatures are less than zero, which implies that the maxi-
mum principal curvatures are less than zero as well.

In this chapter, we use S to denote a compact 3D surface which is regular,
orientable in R3. The definitions of compact, regular and orientable are defined
as follows [4, 5, 6].
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Definition 4. Compact: The set K is compact if and only if it is bounded and
closed.

A compact surface has a triangulation with a finite number of triangles.

Definition 5. Regular: A subset M ⊂ R3 is called a regular surface if for each
point p ∈ M , there exists a neighborhood V of p in R3, and a map X : U → R2

onto V
⋂

R2, such that

1. X is differentiable;
2. X : U → V

⋂
M is homeomorphic; and

3. Each map X : U → M is a regular patch.

where, U is an open set.

Definition 6. Orientable: A regular surface M ⊂ R3 is called orientable, if each
tangent space Mp has a complex structure Jp : Mp → Mp, such that p → Jp is a
continuous function.

8.2.2 Surface and Three Dimensional Differential Geometry

Considering a regular surface represented as S(u, v) : R2 → R3, where (u, v) ∈
[0, 1] × [0, 1] and it can be expressed in the vector form as S(u, v) = [x(u, v),
y(u, v), z(u, v)]T as shown in Figure 8.1.

The surface is assumed to have the derivatives as follows:

∂

∂P
S =

⎛

⎝
xu xv

yu yv

zu zv

⎞

⎠ (8.1)

where, P = [u, v]T .
Let us define Su = (xu, yu, zu) and Sv = (xv, yv, zv) as the first partial deriva-

tives, Suu = (xuu, yuu, zuu), Suv = (xuv , yuv, zuv) and Svv = (xvv , yvv, zvv) as
the second partial derivatives on the tangent plane of S, such that the first
fundamental forms E, F and G can be expressed as follows.

E = Su • Su

F = Su • Sv

G = Sv • Sv

where, • denotes the dot product.
The unit surface normal N̂ can be calculated as:

N̂ =
Su × Sv

‖Su × Sv‖
(8.2)

where,× denotes the cross product, and ‖•‖ is the norm operator.
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Fig. 8.1. 3D surface example parameterized by (u, v) ∈ [0, 1] × [0, 1] and its surface
patch for demo

The second fundamental forms L, M and N of S are expressed as follows.

L = Suu • N̂

M = Suv • N̂

N = Svv • N̂

8.2.3 Curvature Formulation

Given the first fundamental forms E, F and G, and the second fundamental
forms L, M and N of surface S, the maximum principal curvature κ1 and the
minimum principal curvature κ2 are defined as the two roots λ1 and λ2, which
satisfy the following identity:

∣
∣
∣
∣

Eλ − L Fλ − M
Fλ − M Gλ − N

∣
∣
∣
∣ = 0 (8.3)

Simplifying Equation 8.3, we can get

(EG − F 2)λ2 + (2FM − EN − GL)λ + (LN − M2) = 0 (8.4)

As a result, Gaussian curvature K and mean curvature H can be defined as

K = κ1κ2 = λ1λ2 =
LN − M2

EG − F 2 (8.5)

H =
1
2
(κ1 + κ2) =

1
2
(λ1 + λ2) =

EN − 2FM + GL

2(EG − F 2)
(8.6)

Then the two principal curvatures can be computed as

κ1 = H +
√

H2 − K (8.7)

κ2 = H −
√

H2 − K (8.8)
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Unfortunately, some problems exist for computing the principal curvatures as
follows: 1) under discrete cases, H2−K in Equations (8.7) and (8.8) is not always
guaranteed to be greater than or equal to zero; 2) κ1 and κ2 computed in this way
can not provide any information about direction; and 3) large neighborhood for
the high accuracy of principal curvature increases the computational complexity.

We solve the above problems using accurate curvature estimation addressed
by Taubin. Please see [33] for details.

8.2.4 Surface Representation and Evolution

In terms of the two principal curvatures, 3D surface shapes are represented in
Table 8.1. Figure 8.2 shows some examples of 3D shape mesh surfaces.

Table 8.1. Surface shape representation by curvature analysis

κ1 < 0 κ1 = 0 κ1 > 0
κ2 < 0 elliptic concave (H < 0) parabolic surface hyperbolic surface (H �= 0)
κ2 = 0 parabolic surface plane (H = 0) parabolic surface
κ2 > 0 hyperbolic surface (H �= 0) parabolic surface elliptic convex (H > 0)
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Fig. 8.2. Examples of 3D surface shape by curvature analysis, (a) Hyperbolic surface
(K< 0 & H �= 0), (b) Elliptic convex surface (K> 0 & H> 0) and (c) Elliptic concave
surface (K> 0 & H< 0)

8.2.5 Mathematical Background on Surface Evolution

Let S(X, t) : R2 × [0, T ) → R3 denote a family of closed surfaces, where t
parameterizes the family and X = (x, y, z) parameterizes the surface. Assume
that this family of surfaces complies with the following partial different equation
(PDE).

∂S(X, t)
∂t

= α(X, t)
−→
T(X, t) + β(X, t)

−→
N(X, t) (8.9)

with S(X, 0) as the initial condition, and N representing the inward unit normal.
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Lemma 1. The geometry of the deformation of S(X, t) is only dependent of the
normal component of the velocity field.

Proof. Let us use the implicit format Φ(X, t) of the family of close surfaces
S(X, t): Φ(X, t) = 0.

Taking derivative of Φ(X, t) = 0 , we can get

∂Φ(X, t)
∂t

= 0 (8.10)

In terms of chain rule, the above equation can be written as follows.

∂Φ

∂t
+

∂Φ

∂X
• ∂X

∂t
= 0 (8.11)

Φt + �Φ • −→
V =

−→
0 (8.12)

where, �Φ and
−→
V represent gradient of Φ and velocity field, respectively.

If
−→
V is denoted by

−→
V = α(v)

−→
T +β(v)

−→
N, where α(v) and β(v) are the velocity

components in the tangent and normal direction, respectively, then

Φt = − � Φ • (α(v)
−→
T + β(v)

−→
N) (8.13)

Φt = −α(v) � Φ • −→
T − β(v) � Φ • −→

N (8.14)

Since �Φ • −→
T =

−→
0 ,

Φt = −β(v) � Φ • −→
N = β

−→
N. (8.15)

Following Lemma 1, the most general geometric deformation for a family of
surface S : R2 → R3 is given by

∂S
∂t

= β
−→
N (8.16)

where the geometric velocity is in the direction of the 3D normal
−→
N.

8.2.6 Laplacian Method Based Surface Evolution

In [34], the diffusion equation controls the evolution process of a 3D surface

∂S
∂t

= �2S (8.17)

where, �2 is the Laplacian operator and S represents a given 3D surface.
Equation 8.17 could be solved by the following finite difference approach.

St+1 = St + λ �2 St (8.18)

where, λ is the regularization parameter governing the iterative process, and t
is the iteration time.
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Under discrete case, the diffusion equation at mesh vertex i, is expressed

∂Xi

∂t
= λL

(
Xi

)
(8.19)

with L
(
Xi

)
=

( 1
N1

∑

j∈1−ring

Xj

)
− Xi

where, λ is the regularization parameter. Xi is the position of the mesh point i,
N1 is the total number of vertices inside the 1-ring neighborhood of Xi, which
includes all the neighboring vertices directly connecting with i on the mesh
surface.

Equation 8.19 could be solved by the bi-conjugate gradient method.
(
I − λdtL

)
Xt+1

i = Xt
i (8.20)

where, I is the identity matrix.

8.2.7 Curvature Flow Based Surface Evolution

Desbrun et al. [35] proposed to use mean curvature flow to replace the Laplacian
diffusion, thus the surface evolution becomes:

∂Xi

∂t
= −Hi

−→n i (8.21)

where, Hi and −→n i are the mean curvature and the unit normal vector at Xi,
respectively.

In [35], the diffusion was applied to all mesh vertices. The surface moved along
the normal vector direction at a speed proportional to the mean curvature, and
finally achieved the desired smooth result with respect to the shape. The surface
evolution did not depend on the choice of external coordinate system, thus it
was dependent on the intrinsic properties of mesh surface.

Wijk et al. [29] used Gaussian curvature flow for colonic polyp detection.
Their method only diffused on a limited number of mesh points with κ2 > 0,
instead of the entire mesh surface, to reduce the computational complexity.

They introduced a ′force′ term by minimizing the second principal curvature
κ2. The resulting equation becomes

L
(
Xi

)
= Fi(κ2) (8.22)

The ′force′ field initially balanced the displacement prescribed by the Laplacian
and was updated by solving Equation 8.23:

F t+1
i = F t

i − κt
2
A1−ring

2π
−→n i with F t=0

i = L
(
Xi

)
(8.23)

where, A1−ring is the surface area of the 1-ring neighborhood around i.
Since the minimum principal curvature κ2 > 0, was considered, the method

only worked for convex protrusion shape polyps. We change the main constraint
κ2 > 0 to the Gaussian curvature K > 0 for both convex and concave protrusion
shapes.
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8.3 A New 3D Surface Evolution Model

In this section, we propose an anisotropic formula for surface evolution to detect
the general protrusions with elliptic convex, concave and irregular shapes.

We consider constraints mainly on elliptic and hyperbolic points by simpli-
fying the idea proposed in [36]. It aims to determine the appropriate moving
direction of the velocity vector depending on two principal curvatures κ1 and
κ2. The velocity diffusion directions are summarized in Table 8.2. The proposed
algorithm deforms the local colon wall until the protrusions are flattened and
the diffusion directions are changed to prevent convex surface from converting
into concave shape, and vice versa. This idea is illustrated in Figure 8.3.

To achieve the above goal, we introduce the following diffusion equation:

∂S
∂t

=

⎧
⎨

⎩

sgn(H)K−→n if K > 0 and H �= 0
αK−→n if K < 0 and H �= 0

0 if K = 0 or H = 0
(8.24)

where, sgn is the sign function with

sgn(H) =
{

1 if H ≥0
-1 if H <0

where, K and H are the Gaussian and mean curvatures, respectively.

Table 8.2. Gaussian and mean curvature flows based velocity diffusion direction

Surface Shape Representation Evolution Direction
Elliptic Convex (K > 0, H > 0) Moving Inward: -−→n
Elliptic Concave (K > 0, H < 0) Moving Outward: −→n

Hyperbolic Surface (K < 0, H �= 0) Moving Inward(or Outward): -−→n (or −→n )
Parabolic (K = 0) Not Moving

Others (K �= 0, H = 0) Not Moving

(a)convex shape (b) concave shape

Fig. 8.3. Typical polypoid shape surface evolution
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As we know, H could be zero under the discrete case even if H �= 0 under the
continuous case. In order to avoid this instability, the Equation 8.24 takes the
following format by adding a strict constraint.

∂S
∂t

=

⎧
⎨

⎩

sgn(H)K−→n if K > 0 and | H |≥ ε
αK−→n if K < 0 and | H |≥ ε

0 if else
(8.25)

where, | α |< 1 and ε > 0.
Considering Equation 8.19 and Equation 8.25, at each i, we propose a new

anisotropic diffusion function for surface evolution in term of κ1 and κ2.

∂Xi

∂t
= −β(κ1, κ2)−→n i (8.26)

with,

βi(κ1, κ2) =

⎧
⎨

⎩

e−(1+Kγ
i )sgn(H)Ki ifKi > 0, | Hi |≥ ε

e−(1+Kγ
i )αKi ifKi < 0, | Hi |≥ ε

0 else

(8.27)

where, 1 ≤ γ < ∞.
After we introduce the new ′force′ term, Equation 8.22 becomes

L
(
Xi

)
= Fi(κ1, κ2) (8.28)

By substituting κ2 in Equation 8.23 by βi(κ1, κ2), we can get the resulting
equation.

F
t+1
i = F

t

i − A1−ring

2π
βi(κ1, κ2)−→n i with F

t=0
i = L

(
Xi

)
(8.29)

After mesh surface deformation, the displacement value is estimated by the fol-
lowing equation.

dispi =
∣
∣(Pfinal)i − (Pinitial)i

∣
∣ (8.30)

where, (Pinitial)i and (Pfinal)i denote the positions of mesh vertex i before and
after mesh deformation, respectively. Protrusion objects are located by thresh-
olding the displacement field.

The algorithm implementation is summarized as follows.

1. Create triangulated mesh surface.
2. Compute κ1, κ2 and normal vector −→n at each vertex i.
3. In term of K, and H, search the satisfied vertices:

1) if K > 0 and H > 0, corresponding to the elliptic convex points.
2) if K > 0 and H < 0, corresponding to the elliptic concave points.
3) if K < 0 and H < 0, corresponding to the hyperbolic points.

4. Compute β(κ1, κ2) using Equation 8.27.
5. Compute F

t=0
i using F

t=0
i = L

(
Xi

)
.

6. Update F
t+1
i iteratively using Equation 8.29.
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7. Recompute κ1, κ2 and −→n at each vertex i, until obtain new positions of all
satisfied points.

8. Detect polyp candidates by thresholding the displacement field by using
Equation 8.30.

8.4 Color Coding Scheme for Visualization

8.4.1 Background

In virtual colonoscopy examination, image display formats can change the visi-
bility and accuracy of the detected colonic polyps with protrusion shapes.

Index color coding is one of the important methods for improving the visu-
alization effect of data. The main idea behind index color can be summarized
as follows. First, 3D datasets are fed to the geometric features or statistical
features criteria for protrusion shape based polyp detection. Second, protrusion
candidates are typically assigned a color using their values indicated in a lookup
table. Finally, the protrusion candidates are highlighted and distinguished from
other colonic structures by the assigned colors. Summers et al. [21] used elliptic
curvature as the primary shape criterion and three more strict shape criteria to
detect colonic polyps. The results of synthetic polyp detection were visualized
by coloring the colon using curvature analysis of the colon inner surface.

However, the lookup table is sensitive to the proper values of hue, saturation,
value and alpha opacity (HSVA). Since it is not easy to balance the HSVA values,
it is hard to understand and manipulate all the associated parameters.

Näppi et al. [37] presented a shape-scale color mapping approach for colon
coloring. Characteristic signatures of the shape-scale signature were determined
for different type lesions. Once the characteristic signature was determined, a
unique color was assigned to a given type lesion. Since the RGB color space
of the characteristic signatures may generate false colors, the Y CrCb was used
to perform the color interpolation. This scheme was somewhat complicated and
difficult to implement.

8.4.2 A New Color Coding Scheme

In this section, we propose a new color coding scheme. It is mainly based on
creating an isosurface of 3D colon object, generating two polygonal datasets and
assigning different colors to the two datasets to distinguish polyps from other
tissues. This color coding denomination is analogous to placing two different
things in two separated rooms and assigning different colors in order to visualize
one from the other easily. The algorithm implementation is summarized as shown
in Figure 8.4.

Algorithm (An Easy Color Coding Scheme)

1. Reconstructing 3D colon object;
2. Computing continuous curve skeleton of the 3D volumetric colon object and

performing fly-through navigation using [38, 39];
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3. Creating isosurface of the 3D colon object using the standard marching cubes
(MC) algorithm proposed in [40];

4. Generating the first polygonal dataset of triangle mesh on the isosurface;
5. Creating the second polygonal dataset with the same topology and geomet-

ric properties as the one in Step 4, but void at each point address. (Here, the
topology is the set of properties invariant under certain geometric transfor-
mations, and geometry is the instantiation of the topology, the specification
of position in 3D space. In this chapter, the topology of the polygonal dataset
is triangle mesh, and we specify their geometric properties as providing voxel
coordinates).

6. LOOP: Checking each triangle vertex of the first dataset:
1) if it is a polyp candidate, insert the scalar values of the vertex and its
neighboring vertices at the same location in the second polygonal dataset;
2) if not, keep the vertex at the same location in the second polygonal dataset
void;
3) go back to LOOP, until all points in the first dataset are finished;

7. Assigning background color to the first colon polygonal dataset (contain-
ing colon inner wall and haustral folds) and foreground color to the second
polygonal dataset (only containing polyp candidates).

Compared with other existing color coding methods, our algorithm differs in Step
5 and Step 6. It creates a second polygonal dataset with the same geometry and
topology structures of the original 3D CT colon object, then associates polyp and
non-polyp candidates with different datasets, finally assigns foreground color to
the polyp candidates, and background color to the non-polyp tissues.

8.5 Validation, Result and Discussion

8.5.1 Validation

In this section, we validate the proposed 3D anisotropic surface evolution algo-
rithm using different synthetic cylindrical phantoms with voxel size 1.0 × 1.0 ×
1.0mm3. In this chapter, we assume that the surface normal is pointing into the
cylinder phantoms and real colons. If the orientation of the entire isosurface is con-
sistently defined, we can find three convex and one concave protrusions inserted at
different locations as shown in Figure 8.5. The second convex protrusion shape is
created as a ellipse-like protrusion with size 10×12×8mm3, while the other three
spherical shapes are of sizes 20mm, 30mm and 10mm, respectively. The proposed
algorithm runs iteratively until all the protrusion shapes become nearly flat, which
means all Gaussian curvatures of those the vertices go to zeros.

Figure 8.6 shows that the proposed 3D surface evolution algorithm works
on convex protrusion shape. The results of the first convex protrusion shape
shown in Figure 8.5 after 20, 50 and 100 iterations are shown in (b) through
(d). The results of the concave protrusion shape are shown in (a) through (d) in
Figure 8.7.
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convex protrusion 1

convex protrusion 2
convex protrusion 3

concave protrusion

(a)

(b) (c)

Fig. 8.5. The synthetic phantom I (a) consisting of three convex and one concave
protrusion shapes, (b) local mesh surface of protrusion shape 1, and (c) local mesh
surface of the concave protrusion shape

(a) (b) (c) (d)

Fig. 8.6. Deformity of the first convex protrusion shape shown in Figure 8.5, (a)
original protrusion shape, (b) after 20 iterations, (c) after 50 iterations and (d) after
100 iterations
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(a) (b) (c) (d)

Fig. 8.7. Deformity of the concave protrusion shape shown in Figure 8.5, (a) original
protrusion shape, after (b) 20, (c) 50 and (d) 100 iterations

(a) (b) (c) (d)

Fig. 8.8. Four synthetic polyps (1, 2, 3 and 4) as shown from (a) to (d) on the first
row. The second row shows the ’flattened’ protrusion shapes, while the third row shows
the results detected by the method proposed in this paper.

The final results for the whole phantom are illustrated in Figure 8.8. The
four original synthetic protrusions are shown individually on the first row. After
the iteration completes, the protrusion shape is flattened, which is shown on
the second rows. The detection results are shown on the third row. Since the
proposed method considers K > 0 (equivalently,

∣
∣κ1

∣
∣ >

∣
∣κ2

∣
∣ > 0) instead of

κ2 > 0 only, it can work for concave and convex protrusions unlike the method
proposed in [29] (see Fig. 8.9). Since the fourth concave protrusion, with small
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(a) (b)

Fig. 8.9. (a) One example detected and (b) the one missed by he method proposed
in [29]

protrusion 1

protrusion 2

protrusion 3

protrusion 4

protrusion 5

(a)

(b)

Fig. 8.10. A more complicated synthetic phantom II (a) consisting five protrusion
shapes either on or between the folds, and (b) local mesh surface of protrusion 5
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(a) (b) (c) (d)

Fig. 8.11. Deform of the fifth convex protrusion shape shown in Figure 8.10, (a)
original protrusion shape, after (b) 20, (c) 50 and (d) 100 iterations

(a) (b) (c)

(d) (e)

Fig. 8.12. Detection results of five protrusion shapes by the proposed method, and
they are shown from (a) to (e) corresponding to the protrusion 1 to 5 in phantom II

size, is created to simulate the true concavity as a part of polyp surface, we find
that the concavity is detected and highlighted.

A more complicated phantom is generated to test the performance of the pro-
posed algorithm. Five thick folds with diameters ranging from 15mm to 60mm
are simulated in the phantom as shown in Figure 8.10. Five protrusion shapes
are created and inserted as shown on the folds or between two folds.

Figure 8.11 shows the proposed algorithm iteratively deforms the protrusion 5
in phantom II. Even though the protrusion is located between two folds and the
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(a) (b) (c)

Fig. 8.13. Polyp modeled as protrusion shapes, (a) a colon CT slice, (b) sessile polyp
model, and (c) pedunculated polyp model

geometry property is more complicated than those in phantom I, the proposed
method works well and detects all of them as shown in Figure 8.12.

8.5.2 Result and Discussion

We have applied the proposed algorithm in CT colonoscopy for colorectal cancer
screening. The colonic polyps are modeled as protrusion shapes [20, 21, 22, 23,
24, 30, 28, 31, 32], and the models are shown in Figure 8.13.

We validated the proposed method on 3 real colon datasets acquired by
Siemens Sensation CT scanner [8]. The dataset volume is 512 × 512 × 580 with
voxel size 0.74 × 0.74 × 0.75mm3. Our experiments have been carried out on
a computer with 8G Memory and two AMD Opteron (TM) 252 CPUs at 2.6
GHz each. For each dataset, it always takes 20 minutes to generate the detection
results.

Three real polyps are circled and shown in Figure 8.14(a) from top to bot-
tom. They range from large sizes on the first and second rows to the medium
size on the third row. The pictures in the middle show the deformed sur-
face after the polyps are flattened. The detected results are highlighted in red
and generated by thresholding the displacement fields. They are illustrated in
Figure 8.14(c).

The proposed model is mainly controlled by three parameters α, γ and ε
in Equation 8.27. Theoretically, α is used to control the hyperbolic surface.
However, there are only a few colonic polyps having such shapes, hence, a very
small value for α between (0, 0.0005) is selected based on the real experiment
results.

γ controls the shape of anisotropic filter, which is important for smoothing
the local shape to avoid the abrupt changes. Normally, when γ is larger than 4,
the size of the designed anisotropic filter is small, which is not recommended.
Experimental results showed that γ = 3 provides the reasonable smooth shape.

As we know that under the discrete case, H could be zero even if H �= 0 under
the continuous case, which is controlled by ε introduced in this paper. If ε is too
small, such as ε < 0.01, this instability could not be avoided.
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(a) (b) (c)

Fig. 8.14. (a) Three real colonic polyps as shown on three rows, (b) deformed mesh
rendering, which shows that how the colon looks like after the polyp is ‘removed′, and
(c) detection results using the proposed method in this paper

8.6 Conclusion

In this chapter, we have presented a novel anisotropic 3D surface evolution
formula for protrusion shape-based colonic polyp detection and a color coding
scheme for visualization. The surface evolution algorithm incorporates Gaussian
and mean curvature flows. The proposed 3D surface evolution model works on
detecting the protrusion shapes with convex or concave shapes.

The polyp detection and visualization framework has been validated by the
synthetic polyps and real colon datasets. For the synthetic polyps with different
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size and shapes at various locations, the sensitivity is 100, and false positive is 0.
Future work mainly includes using more real colon datasets to test its robustness
and evaluate its false positive.
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35. Desbrun, M., Meyer, M., Schröder, P., Barr, A.: Implicit Fairing of Irregular Meshes
Using Diffusion and Curvature Flow. In: Proc. SIGGRAPH 1999, pp. 317–324
(1999)

36. Zhao, H., Xu, G.: Triangular Surface Mesh Fairing via Gaussian Curvature Flow.
Journal of Computational and Applied Mathematics 195(1), 300–311 (2006)
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Summary. Cancer diagnosis from huge microarray gene expression data is an impor-
tant and challenging bioinformatics research topic. We used a fuzzy neural network
(FNN) proposed earlier for cancer classification. This FNN contains three valuable as-
pects i.e., automatically generating fuzzy membership functions, parameter optimiza-
tion, and rule-base simplification. One major obstacle in microarray data set classifier
is that the number of features (genes) is much larger than the number of objects. We
therefore used a feature selection method based on t-test to select more significant genes
before applying the FNN. In this work we used three well-known microarray databases,
i.e., the lymphoma data set, the small round blue cell tumor (SRBCT) data set, and
the ovarian cancer data set. In all cases we obtained 100% accuracy with fewer genes in
comparison with previously published results. Our result shows the FNN classifier not
only improves the accuracy of cancer classification problem but also helps biologists to
find a better relationship between important genes and development of cancers.

9.1 Introduction

The advent of DNA microarray datasets has opened a new research area for
biologists and data mining experts. An experiment with DNA microarray chips
can measure the expression level of thousands of genes in different tissues and
samples simultaneously. It gives a global understanding into the molecular level
of the living organism [1, 2]. This new technology provides biologists with a
snapshot of the whole genome. Although it has improved traditional diagnostic
problems, there still are many issues that should be addressed. However, the
discovery of genes which are involved in a particular disease, including cancer, is
a challenging task. Accurate and precise diagnosis is critical for future treatment.

The abundance of data has led to an unalterable demand for data mining
in order to perform classification. Hence, analyses of this kind require hybrid
knowledge of biology and data mining.

The difference in the structure of this kind of datasets, i.e., a huge number
of genes (or features) and the scarcity of samples, gives rise to the need for
new classification methods specifically designed to suit this particular applica-
tion. There are small number of relevant and non-redundant genes from thou-
sands which actually play a part in differentiating the samples. Feature selection

T.G. Smolinski et al. (Eds.): Comp. Intel. in Biomed. & Bioinform., SCI 151, pp. 223–235, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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becomes crucial in this field for both computational efficiency and accuracy is-
sues. Here we have chosen the t-test statistic for feature ranking.

Machine learning methods are used for classification of huge volumes of data.
Many machine learning approaches have been proposed in the literature which
give good results, including neural networks [3], support vector machines [4],
nearest shrunken centroids [5], and so on.

In this chapter, we discuss a hybrid of feature ranking and neural network
to obtain higher accuracy for cancer diagnosis. At first, we obtain the most
significant genes by applying a t-test. Next, we classify samples using a fuzzy
neural network (FNN) proposed earlier by Frayman and Wang [12, 13, 5].

9.1.1 Structure of the Chapter

The chapter is organized as follows. Section 9.2 summarizes the basics of t-
test based gene importance ranking method. In Section 9.3, the basic princi-
ples behind the structure and algorithm of the FNN proposed by Frayman and
Wang [12, 13] are outlined. Section 9.4 shows the potential of the FNN on classi-
fying three important microarray data sets, namely, the lymphoma data set, the
SRBCT data set, and the ovarian cancer data set. We discuss our results and
draw some conclusions in the last section. Some of the results in this chapter
have been presented at conferences [14, 15].

9.2 Gene Importance Ranking

One major problem with microarray dataset classification is that the number of
features (genes) is much larger than the number of data instances. Also most
genes may be irrelevant or redundant for cancer identification. One can use
feature selection algorithms to get the most significant genes related to the diag-
nosis. Here we have used t-test feature selection which is outperformed Principle
Component Analysis(PCA). In the lymphoma data set the best testing accuracy
using PCA as a feature selector was 92.31 % when 6 genes were input to the
classifier comparing to 100 % accuracy achieve with t-test.

At first, we ranked the genes according to their T-score (TS). Then, we se-
lected the genes with the highest ranking. We used a threshold to find a group
of the genes with the largest TS values. This threshold can be experimentally
decided. For example, we first select TS=0.3. If we found the result looks OK
and not much noise is included, we enlarge the threshold a little bit to include
more genes, e.g., TS=0.4. If obviously a lot of noise included, then stop. These
most important genes are fed to the FNN classifier as input, as described in the
next section.

The TS of a gene i is defined as follows [16, 17]:

TSi = max{|xik − xi

mksi
|, k = 1, 2, ...K} (9.1)
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xik =
∑

j∈Ck

xij/nk (9.2)

xi =
n∑

j=1

xij/n (9.3)

s2
i =

1
n − K

∑

k

∑

j∈Ck

(xij − xik)2 (9.4)

mk =
√

1/nk + 1/n (9.5)

where K is the number of classes. Ck refers to class k that includes nk samples.
xij is the expression value of gene i in sample j. xik is the mean expression value
in class k for gene i. n is the total number of samples. xi is the general mean
expression value for gene i. si is the pooled within-class standard deviation for
gene i. In fact, the TS used here is a t-statistic between a specific class and the
overall centroid of all classes [16].

9.3 The FNN

In this section, we review the basic principles behind the structure and algorithm
of the FNN proposed by Frayman and Wang [12, 13].

Fig. 9.1 represents the structure of generation and the learning algorithm of
the FNN. In the following subsections, we provide more details of the FNN and
its mechanism. First the basic structure of the FNN will be explained, and then
the training algorithm of the FNN will be represented. Finally, we will present
a rule base modification method for improving the accuracy of our network.

9.3.1 FNN Structure

The FNN structure is designed as shown in Fig. 9.2 which is composed of four
layers.

Let xj (j = 1, 2, .., n), and yl (l = 1, 2, .., m) be the input and output vectors
respectively. The first layer of the FNN represents input variables, meaning that
there are n nodes in the first layer. The second layer represents the input mem-
bership function. Here we use two equally spaced triangular membership functions
along the operating range of each input variable. In a such way these membership
functions will satisfy ε − completeness, which means that for a given value of x of
one of the inputs in the operating range we can always find a linguistic label A such
that μA(x) ≥ ε. If ε−completeness is not satisfied, there may be no rule applicable
for a new data input. Piecewise-linear triangularmembership function is chosen for
computational efficiency [18] as shown in Fig. 9.3.

μ(x) =

⎧
⎨

⎩

x−l
c−l , l ≤ x ≤ c
x−r
c−r , c ≤ x ≤ r

0, otherwise
(9.6)
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No

Start

FNN initialization

Supervised learning

Add/Combine MFs

Rule elimination

Is the result good?

No

Is the result good?

Yes

Stop

Yes

Fig. 9.1. The structure generation and the learning algorithm of the FNN

x x x

y y y

Fig. 9.2. The structure of the FNN

The leftmost and rightmost membership functions are threshold to cover for
the whole operating range of each input.

The third layer is the rule layer which is initially empty since at the beginning,
there are no rules in the rule set. The last layer of the FNN represents target
variables (class labels), meaning that there are m nodes in the output layer.
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Fig. 9.3. The triangular Membership Function

Each rule node is connected to each input membership function node and each
output node. The input membership functions are encoded as fuzzy connection
weights between the input layer and the rule layer.

The initial rule i is expressed in the input terms, such as,

Rule i: if x1 is Ai
x1, · · · , and xn is Ai

xn, then y1 = ωi
l , · · · , ym = ωi

m,

where ωj
l is a real number and Ai

q (q = x1, x2, · · · , xn) is the membership func-
tion of the antecedent part of rule i for node q in the input layer [19].

Each rule performs a product of its inputs. Membership value μi of the premise
of the i-th rule is calculated as a fuzzy AND using the product operator as
follows,

μi = Ai
x1(x1) × Ai

x2(x2) × · · · × Ai
xn(xn) (9.7)

Finally, output yl of the FNN is obtained using the weighted average [20]:

yl =
∑

i μi × ωi
l∑

i μi
(9.8)

9.3.2 FNN Training

The FNN uses general learning rule for training the network [21]:

yi
l (k + 1) = yi

l(k) − η
∂εl

∂yi
l

(9.9)

The learning rules for ωi
l and Ai

q are:

ωi
l(k + 1) = ωi

l (k) − η
∂εl

∂ωi
l

(9.10)

Ai
q(k + 1) = Ai

q(k) − η
∂εl

∂Ai
q

(9.11)
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where η is the learning rate. The objective is to minimize the error function:

εl =
1
2

× (yl − ydl)2 (9.12)

where yl is the current output, and ydl is the target output.
An adaptive learning rate provides the network with higher convergence speed

and learning performance, i.e., accuracy. Here we use a heuristic for tuning the
learning rate η:

1. If the error undergoes five consecutive reductions, increase η by 5%.
2. If the error undergoes three consecutive combinations of one increase and

one reduction, decrease η by 5%.
3. Otherwise, keep η unchanged.

Since we dynamically update the learning rate, initial value for η becomes in-
significant as long as it is not too large.

The learning error εl is reduced toward zero or a pre-specified small value
εdef > 0 as the iteration number k increases.

9.3.3 Rule Base Modification

In this part we present some post processing routines to obtain a better model.
Initially, we add a new membership function to each input at the point of the
maximum output error, following Higgins and Goodman [18]. Each triangular
membership function is represented by 3 points. One point with unity mem-
bership function is placed at the point of the maximum output error. Other
two points with zero membership value are placed at the centers of the two
neighboring regions, respectively.

As the output of the network is not a binary 0 or 1, but a number ranging
from 0 to 1, we can speed up the convergence of the network substantially by
eliminating the error whose deviation from the target value is the greatest.

Next, If the degree of overlapping of membership functions is greater than a
pre-specified threshold, we combine those membership functions. We used the
following fuzzy similarity measure [23]

Degree(A1 = A2) = E(A1, A2) =
M(A1 ∩ A2)
M(A1 ∪ A2)

, (9.13)

where ∩ and ∪ denote the intersection and the union of two fuzzy sets A1 and
A2, respectively. M(.) is the size of fuzzy set, and 0 ≤ E(A1, A2) ≤ 1. We can
delete irrelevant inputs if an input variable ends up with only one membership
function. We can thus reduce the size of the rule base.

Finally, we evaluate the rules on the basis of accuracy and simplicity. For
handling the tradeoff between accuracy and simplicity, we use a weighting pa-
rameter, namely, the compatibility grade (CG) of each fuzzy rule. CG for the
rule j is calculated by the product operator as follows,
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μj(x) = μj1(x1) × μj2(x2) × · · · × μjn(xn) (9.14)

when the system provides correct classification results.
We eliminate those rules which have a CG less than a threshold and when

a rule node is eliminated, all connection links and its input membership nodes
are deleted as well. By varying CG threshold a user is able to specify the degree
of rule compactness. The size of the rule base can thus be kept minimal. If
eliminating rules causes less accuracy than required, we add another rule into
the rule set as described above. Otherwise we stop the procedure of generating
classification rules.

The FNN combines three valuable aspects, namely, automatically generat-
ing fuzzy membership functions [19], parameter optimization [21], and rule-base
simplification to achieve good performance. We have applied the FNN to some
well-known microarray datasets. The results are presented in the next section.

9.4 Experimental Results

9.4.1 Lymphoma Data

The lymphoma data set (http://llmpp.nih.gov/lymphoma) [7] contains 42 sam-
ples derived from diffuse large B-cell lymphoma (DLBCL), 9 samples from fol-
licular lymphoma (FL), and 11 samples from chronic lymphocytic leukaemia
(CLL). The entire data set includes the expression data of 4026 genes. In this
data set, a small part of data is missing. For handling missing attribute values,
we used a k-nearest neighbor algorithm [22]. We randomly divided the data set
into 2 parts with 31 samples as the training set and 31 samples as the test set.

At first, we chose 174 most significant genes with highest TSs from all 4026
genes using our training set (Table 9.1). Then, we chose the best subset of genes
from this 174 gene collection which yield the highest accuracy of classification
applying the FNN.

We applied the FNN into all possible subsets of genes as follows. We used an
expanding window to choose different subsets of genes. Let gi be a gene with
the TS ranking i, and w be the size of the window. Here the window size is

Fig. 9.4. Subset features selection as input for the FNN using expanding window
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Table 9.1. Lymphoma gene importance ranking : 174 genes with the highest TSs, in
the order of decreasing TSs (Gene ID is defined in [7])

Rank Gene ID Gene Description

1 GENE2307X (CD23A=low affinity II receptor for Fc fragment of IgE;
Clone=1352822)

2 GENE3320X (Similar to HuEMAP=homolog of echinoderm microtubule
associated protein EMAP; Clone=1354294)

3 GENE708X *Ki67 (long type); Clone=100
4 GENE2393X *MDA-7=melanoma differentiation-associated 7=anti-

proliferative; Clone=267158
5 GENE1622X *CD63 antigen (melanoma 1 antigen); Clone=769861
6 GENE1641X *Fibronectin 1; Clone=139009
7 GENE2391X (Unknown; Clone=1340277)
8 GENE1636X *Fibronectin 1; Clone=139009
9 GENE1644X (cathepsin L; Clone=345538)
10 GENE1610X *Mig=Humig=chemokine targeting T cells; Clone=8
11 GENE707X (Topoisomerase II alpha (170kD); Clone=195630)
12 GENE689X *lamin B1; Clone=1357243
13 GENE695X *mitotic feedback control protein Madp2 homolog;

Clone=814701
14 GENE1647X *cathepsin B; Clone=261517
15 GENE537X (B-actin,1099-1372; Clone=143)
. . . . . . . . .
165 GENE1539X *lysophospholipase homolog (HU-K5); Clone=347403
166 GENE2385X *Unknown UG Hs.124382 ESTs; Clone=1356466
167 GENE719X (Myt1 kinase; Clone=739511)
168 GENE2415X (Unknown; Clone=1289937)
169 GENE527X *glutathione-S-transferase homolog; Clone=1355339
170 GENE1598X *Similar to ferritin H chain; Clone=1306027
171 GENE1192X *Interferon-induced guanylate-binding protein 2;

Clone=545038
172 GENE731X *Chromatin assembly factor-I p150; Clone=1334875
173 GENE769X *14-3-3 epsilon; Clone=266106
174 GENE724X (Hyaluronan-mediated motility receptor (RHAMM);

Clone=756037)

changed from 1 to 174. With expanding the window inside the genes we get a
new subset of genes where the starting point of the window is fixed, i.e., it always
starts from the gene with the highest ranking (Fig. 9.4). For each window size
we trained the FNN with all genes inside the window and evaluated it with the
test set. Finally, we chose the best subset of genes which had the lowest testing
and training error.

The training and testing results are shown in Fig. 9.5. The FNN performs
very well. Training and testing error becomes 0 with applying only the first 9
genes in Table 9.1 as the input to the FNN.
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Fig. 9.5. The training (a) and the testing (b) results for the lymphoma data

Fig. 9.6. The training (a) and the testing (b)results for the SRBCT data

9.4.2 SRBCT Data

The SRBCT data (http://research.nhgri.nih.gov/microarray/Supplement/) [3]
contains the expression data of 2308 genes. There are total of 63 training samples
and 25 testing samples preprovided i.e., the splie has been done as a part of the
problem, 5 of the testing samples are not SRBCTs. The 63 training samples
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contain 23 Ewing family of tumors (EWS), 20 rhabdomyosarcoma (RMS), 12
neuroblastoma (NB) and 8 Burkitt lymphomas (BL). And the 20 SRBCT testing
samples contain 6 EWS, 5 RMS, 6 NB and 3 BL.

We followed the same procedure as in the lymphoma dataset. We initially
ranked the entire 2308 genes according to their TSs using training samples.
Then we picked out the 96 genes with the highest TSs. Here the window size
is changed from 1 to 96. We applied the FNN to all possible subsets of genes.
Fig. 9.6 presents the training and the testing errors of the classification. Both
the training error and the testing error decreases to 0 when the top 8 genes are
chosen as the input of the FNN.

9.4.3 Ovarian Data

The ovarian data (http://genome-www.stanford.edu/ovarian cancer/) [11] con-
tains 125 samples, including 68 samples derived from breast cancer and 57 sam-
ples derived from ovarian cancer. The entire data set includes the expression
data of 3363 genes.

Similarly, we randomly divided the data into 2 parts at the beginning, with
75 samples as the training set, and 50 samples as the test set. We picked out
100 genes with the highest TS from the training sample. Here the window size
is changed from 1 to 100. By applying the FNN to all possible subsets of genes,
training and testing errors decreased to 0 with only 3 genes. The training and
the testing results are presented in Fig.9.7.

Fig. 9.7. The training (a) and the testing (b) results for the Ovarian data
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9.5 Conclusion

We compared our method with 3 well-known methods proposed earlier, i.e., MLP
neural network [3], Nearest shrunken centroids [5] and SVM [9].

Tables 9.2, 9.3, and 9.4 present the comparison between methods.We obtained
9 genes with 100% accuracy for the lymphoma dataset using the FNN compared
to the 48 genes required by nearest shrunken centroids.

For the SRBCT data, the FNN needs only 8 genes to obtain the same accuracy,
i.e., 100%, while the well-known evolutionary algorithm reported by Deutsch [8]
used 12 genes.

Schaner et al. [11] used at least 61 genes to classify the ovarian cancer and
the breast cancer data sets to obtain 100% accuracy while the FNN needed only
4 genes to obtain the same accuracy.

Comparing our results with results from other existing methods, our proposed
method noticeably improves the accuracy of microarray classification with much
smaller numbers of genes. It can help biologists to classify huge volumes of data,
difficult to classify with traditional clinical methods. The smaller number of genes
required by the FNN along with high accuracy helps biologists in focusing on
a small number of significant genes to discover the relationships between those
genes which are involved in the development of cancers.

Table 9.2. Comparisons of results all with 100% accuracy for the SRBCT data

Method Number of genes required

MLP neural network [3] 96
Nearest shrunken centroids [5] 43
SVM [9] 20
Evolutionary algorithm [8] 12
Our FNN 8

Table 9.3. Comparisons of results all with 100% accuracy for the Ovarian data

Method Number of genes required

Hierarchical clustering [11] 61
Our FNN 4

Table 9.4. Comparisons of results all with 100% accuracy for the Lymphoma data

Method Number of genes required

Nearest shrunken centroids [5] 48
Our FNN 9
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Summary. In this chapter, we present a retrospective clinical study where the adop-
tion of computational intelligence approaches for performing knowledge extraction from
gene expression data enabled an improved oncological clinical analysis. This study
focuses on a survival analysis of estrogen receptor (ER) positive breast cancer pa-
tients treated with tamoxifen. The chapter describes each step of the gene expression
data analysis procedure, from the quality control of data to the final validation going
through normalization, feature transformation, feature selection, and model building.
Each section proposes a set of guidelines and motivates the specific choice made for
this particular study. Finally, the main guidelines that emerged from this study are the
use of simple and effective techniques rather than complex non-linear models, the use
of interpretable methods and the use of scalable computational solutions able to deal
with multiplatform and multisource data.

10.1 Introduction

Recent advances in biomedical measurement technologies, such as gene expres-
sion profiling, expose clinicians to an exponential increase of complex data. Ma-
jor challenges on the computational side arise from the huge dimensionality of
the data, the relatively low number of samples, the high redundancy of input
variables, the heterogeneity of the data sources and the high level of noise. This
is why traditional clinical analysis needs the help of computational intelligence
approaches to manage the complexity of the analysis task, without being over-
whelmed by the massive amount of data or mislead by spurious patterns [1].

In this chapter, we present a retrospective clinical study in which the adoption
of computational intelligence approach for performing knowledge extraction from
gene expression data enabled an improved oncological clinical analysis. We focus
on a survival analysis of estrogen receptor (ER) positive breast cancer (BC)
patients treated with tamoxifen, a well-known treatment in BC therapy. The
patients included in the study are heterogeneous with respect to their clinical

T.G. Smolinski et al. (Eds.): Comp. Intel. in Biomed. & Bioinform., SCI 151, pp. 237–268, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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behavior and response to tamoxifen therapy. It is known that current biomarkers
(e.g. expression levels of ER) give little insight into tumor biology and potential
response to treatment. Indeed 30-40% of women with ER-positive disease develop
distant metastases and die despite tamoxifen treatment, illustrating the urgent
clinical need for new biomarkers that can predict which women with ER-positive
BC are at high risk of relapse despite the use of tamoxifen. These patients would
benefit from new therapies such as the aromatase inhibitors [2, 3].

Gene expression profiling of tumors appears to be a promising new strategy for
predicting clinical outcome in BC patients. According to recent studies [4, 5, 6, 7]
the heterogeneity of clinical response can be correlated with different molecular
”portraits”. Additionally, gene classifiers have been developed that can distin-
guish subgroups of patients with different prognoses or responses to therapies [8].
Due to the pressing clinical need, several other investigators have also developed
gene classifiers for ER-positive BC patients treated with tamoxifen [9, 10, 11, 12].
After an initial period of enthusiasm about the potentiality of computational
techniques, problematic issues about the design of the analysis and the perfor-
mance assessment of gene classifiers were raised [13, 14]. Moreover, skepticism
about the robustness of the approach arose in the medical community because of
the small overlap of genes in signatures (i.e. set of highly discriminating genes)
derived from different clinical studies on similar cohorts of BC patients [15]. In
this chapter, we address these open questions and describe the entire compu-
tational procedure leading to the development of a model which predicts the
risk of recurrence in tamoxifen treated patients. Thereby we also investigate the
potential of this model to reveal new biological processes associated with the
clinical outcome of these patients.

The chapter is organized as a set of sections, each serving as illustration of
a single step of the clinical study (entirely represented in Figure 10.1). Each
section introduces the issue, refers to existing reviews on the topic and discusses
the most relevant methodological aspects. A subsection called Tamoxifen Study
details the methodological choices made during the study, the motivations behind
them and the related results. The section terminates with a subsection called
Lessons Learned where we summarize the main lessons to be retained by the
reader.

In particular, Section 10.1 introduces the clinical problem and emphasizes
the need of computational intelligence techniques. Section 10.2 illustrates the
properties of gene expression data collected in large clinical studies. Section 10.3
serves as an introduction to survival data and the related statistical methods.
Sections 10.4 and 10.5 discuss the preprocessing of gene expression data, in par-
ticular quality controls and normalization. Sections 10.6 and 10.7 emphasize the
importance of dimension reduction and the issue of stability in feature selection.
Section 10.8 details the model building procedure. Sections 10.9 and 10.10 sum-
marizes the accuracy assessment of the model in a cross-validation framework
and an independent validation set respectively. Section 10.11 gives biological
interpretation of the model. Conclusions are drawn in Section 10.12.
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Fig. 10.1. Design of the survival analysis of tamoxifen treated BC patients from gene
expression data. Each step is delimited by a dashed red box with the corresponding
section number in this chapter.
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It is worth to mention that the present chapter complies with the research
reproducibility guidelines proposed in [16] in terms of availability of the code
and reproducibility of results and figures1.

Notations

N Number of samples or patients.
n Number of input variables.
X Set of input variables, i.e. gene expressions.
G Indicator variable for class (G = 0 for the low-risk class

and G = 1 for the high-risk class).
S Scoring function.
X, Y, . . . Upper case letters represent random variables (except

N).
x, y, . . . Lower case letters represent the realization of random

variables (except n).
x,X, β, . . . Bold letters represents vectors or matrices.
Ti Time of occurrence/censoring for the sample i, i ∈

{1, . . . , N}.
β Coefficients of a linear regression model.
β̂ Estimated coefficients.
S(t) Survivor function depending on time t.
λ(t) Hazard function depending on time t.

10.2 Data Collection

Clinical studies involving gene expression profiling include usually very few pa-
tients due to the limited number of clinical records and the high costs of biological
experiments. In this context investigators need to develop partnerships with sev-
eral institutions in order to collect clinical information and biological samples for
sufficiently large cohorts of patients. A basic requirement is that protocols for the
management of biological samples and clinical information must be well-defined
to reduce heterogeneity between data sources. In spite of these precautions,
some heterogeneity remains and this will have to be taken into account during
the analysis (see Sections 10.3 and 10.5).

A typical dataset is composed of two types of data, clinical and gene expression
data. Clinical data include traditional clinical variables (e.g. age, tumor size,
nodal status, . . . ) as well as survival data (see Section 10.3). Gene expression
data represent expression values for a large number of genes.

There exist several gene expression profiling technologies to simultaneously
measure the expression of a large number of genes. They differ by two main
characteristics, the gene expression measurement and the manufacturing. Some
1 Raw gene expression and clinical data are publicly available in the GEO public

database [17] and the Sweave version of the chapter including the standalone R
code [18] is available at http://www.ulb.ac.be/di/map/bhaibeka/cichapter/.

http://www.ulb.ac.be/di/map/bhaibeka/cichapter/
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technologies use two channels to measure relative gene expressions, i.e. the ratio
between the gene expressions from a control (also called reference) and a target
biological sample. Other technologies use only one single channel and therefore
measure absolute gene expressions. The manufacturing of the chips dedicated to
gene expression profiling differs, some technology using cDNA sequences while
others synthesizing directly sequences of oligonucleotides on the chips. An in-
depth description of different gene expression technologies is given in [19].

The choice of technology is not obvious since all technologies have advantages
and limitations. The single-channel technology allows for exchange of raw data
between different laboratories whereas the dual-channel technologies requires
the laboratories to use the same reference. At the same time, systematic biases
(see Section 10.5) are typically lower in dual-channel technology. In terms of
manufacturing process, the use of short oligonucelotide sequences improves the
robustness at the cost of a reduced specificity of the probes. For a full comparison
we refer the reader to [19].

10.2.1 Tamoxifen Study

The dataset collected for our retrospective clinical study consists of 414 early-
stage BC patients, diagnosed between 1980 and 1995. Samples came from three
different institutions, Guy Hospital (London, United Kingdom), Uppsala Univer-
sity Hospital (Uppsala, Sweden) and John Radcliffe Hospital (London, United
Kingdom). These institutions are henceforth referred to as GUY, KI and OXF
respectively. Among the patients, 137 were untreated (labeled by U) and 277
were treated by tamoxifen (labeled by T). For the sake of simplicity, in the fol-
lowing we will use an abridged cohort notation where the first letters denotes the
hospital and the last one the absence/presence of treatment (e.g. GUYT stands
for the cohort of tamoxifen treated patients from the Guy hospital). Note that
all the patients from GUY were treated (no GUYU cohort).

We used the Affymetrix technology for the gene expression profiling of our
tumor samples. This technology measures absolute gene expressions (single-
channel) and uses short sequences of oligonucletides. The choice was motivated
by the renown of the Affymetrix technology and the need of sharing experiments
between different laboratories.

Samples from OXFU, OXFT and GUYT were shipped to the Institut Jules
Bordet (Brussels, Belgium) where RNA was extracted and samples were hy-
bridized. In KIU and KIT samples RNA was extracted at the Karolinska
Institute (Stockholm, Sweden) and samples hybridized at the Genome Insti-
tute of Singapore (Singapore). In OXF and KI samples gene expression pro-
filing was performed with Affymetrix HG-U133A and HG-U133B Genechips.
HG-U133PLUS2 Genechips were used for GUY samples. Note that there are
≈ 45000 common probes between the HG-U133A/B and HG-U133PLUS2 chips.
Raw data are publicly available at the Gene Expression Omnibus (GEO)
database2 [17] with accession number GSE6532.

2 http://www.ncbi.nlm.nih.gov/geo/

http://www.ncbi.nlm.nih.gov/geo/
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Since data came fromdifferent institutions and experiments were made in differ-
ent laboratories, special care need to be taken todetect and todealwithheterogene-
ity in clinical data (see Section 10.3) and gene expression data (see Section 10.5).

Lessons Learned

In large gene expression profiling studies, the collected data are often
heterogeneous since they are usually generated by different laboratories
using different technologies. Methods to detect and to deal with this
heterogeneity are essential in order to allow the samples to be considered
in the same analysis.

10.3 Survival Data

Unlike conventional computational intelligence tasks, most clinical studies rely
on censored survival data characterized by event or discontinued observa-
tions [20]. Consider for instance a five-years follow-up of a group of BC patients
after the surgical operation. In this case what is relevant is the dependence be-
tween occurrence and timing of the first metastasis and a set of explanatory
variables (aka features). If we narrow our focus to a binary dependent variable
(i.e. presence or absence of metastasis) conventional classification methods (e.g.
logistic regression, linear discriminant analysis, support vector machines) [21]
would serve our purpose. However, the analysis would ignore the information
related to the timing of the event. For instance, it is intuitive to suppose that
the aggressiveness of the tumor is related to the time of metastasis appearance
during the follow-up. A possible solution to this problem could come from the
adoption of a conventional regression strategy where the time to metastasis plays
the role of dependent variable. In this case the problem would be how to deal
with patients where no metastasis appeared during the five years follow-up. Such
cases are referred to as censored. Note that by simply discarding these cases or
setting them to a constant value we would introduce a large bias in our analysis.

Survival analysis combines the information of censored and uncensored data
by statistical modeling. The occurring times of events are assumed to be real-
izations of some random variable T . Two functions are widely used to describe
the probability distribution of T :

• The survivor function S(t) = Pr{T > t} (S(0) = 1) measuring the probabil-
ity for an individual to survive until time t.

• The hazard function λ(t) = lim
Δt→0

Pr{t ≤ T < t + Δt | T ≥ t}
Δt

measuring the

instantaneous risk3 that an event will occur in the interval [t, t + Δt]. Note
that the probability term is conditional to a survival up to time t.

3 Although it may be helpful to think of the hazard as the instantaneous probability of
an event at time t, this quantity is not a probability and may be greater than 1. This
is due to the division by Δt. Although the hazard has no upper bound, it cannot be
smaller than 0.
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The survivor function and the hazard function are equivalent ways of describ-
ing a continuous probability distribution [20]. The Kaplan-Meier (KM) estimator
(also known as the product-limit estimator) returns a non-parametric maximum
likelihood estimation of the survivor function [22]. Semi-parametric regression
models [23] use the hazard function to model the relationship between the sur-
vival outcome and a set of explanatory variables x. A well known example is the
Cox regression model [24] which represents the hazard of a patient i as

λi(t) = λ0(t) exp (β1x1i + · · · + βnxni) (10.1)

The hazard for individual i at time t is the product of two factors :

• A baseline hazard function λ0(t) ≥ 0 which represents the hazard function
of an individual where all the explanatory variables are set to zero.

• An exponential function where the argument is a linear function of the ex-
planatory variables. This linear function is also denoted as the linear predic-
tor or the risk score in literature.

Note that while the estimation of the β term is obtained by maximizing a partial
likelihood function [24], the estimation of the baseline term is not required. In
fact, model 10.1 is often used in the proportional hazard form to compute the
ratio

λi(t)
λj(t)

= exp {β1(x1i − x1j) + · · · + βn(xni − xnj)}

of the hazards between an individual i and an individual j for i, j ∈ {1, . . . , N}.
An extension of the Cox model allows for multiple strata where patients are

classed into disjoint groups, each sharing the estimation of the coefficient β but
with a distinct baseline hazard function. This is useful in multicenter clinical
studies where it is is reasonable to assume that different cohorts of patients are
characterized by different baseline survival curves.

10.3.1 Tamoxifen Study

In our retrospective clinical study the event was defined as the appearance of
the first distant metastasis. In the following we will use the acronym DMFS
(which stands for Distant Metastasis Free Survival) to denote the time to event
occurrence.

The survival dataset was collected during a follow-up period longer than 10
years. Note that 21 patients were not considered due to missing survival data
and that only few events were observed (27% of the patients). Also, 82% (70%)
of the patients did not experience any event till the first 5 (10) years.

In spite of well defined criteria for patient inclusion, we observed differences
between cohorts in terms of demographics (e.g. age) and survival. This is well
illustrated by Figure 10.2 which shows the KM survival curves for each single
cohort. We observe here that patients from KIT tend to have distant metastasis
earlier than patients from other institutions. This fact suggested the use of cohort
labels as strata indicator in the Cox model (see Sections 10.7 and 10.8).
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Lessons Learned

In large retrospective clinical studies, we usually observe heterogeneity
in population sampling (pool of several cohorts of patients). In survival
analysis, stratification in Cox model addresses efficiently this issue.
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OXFT 99 92 74 42 25 9 2 1 1

ALL 255 228 186 144 113 65 42 21 6

Fig. 10.2. Survival curves stratified by patient cohort. ALL stands for the global
cohort including GUYT, KIT and OXFT. The ”+” symbol represents the censoring.

10.4 Quality Controls

Profiling gene expression in biological samples is an expensive, time consuming
and highly noisy process. As a consequence, it is essential to make the best use
of the information contained in the gene expression data and to ascertain its
quality. Before starting the data analysis, preliminary checks are suggested in
order to raise evidence of quality problems. In some cases, chips could appear
beyond correction and the only recommended solution would be to discard them.
For a review on existing methods for quality control we refer the reader to [25].

Here we will focus on the quality guidelines issued for the Affymetrix tech-
nology by [26].



10 Computational Intelligence in Clinical Oncology 245

Two types of quality controls for Affymetrix chips are adopted :

• Single-chip quality controls : These controls concern one chip at a time. An
example is the use of raw image analysis to detect hybridization artifacts like
large areas of low intensity due to air bubbles.

• Multi-chip quality controls : These controls [25] target a set of quantities
whose “values should be comparable over all chips of a dataset” [26], like
scale factors, background intensities and percentage of present calls. Scale
factors is a robust measure of the mean level of intensities on a chip. Back-
ground intensity is the intensity measured in an empty area (with no hy-
bridization) and returns a measure of the background level. Percentage of
present calls measures the proportion of genes being expressed (intensity sig-
nificantly higher than background) on the chip. Once these quality controls
have been carried out, the identification and the consequent discard of the
anomalous chips is done.

Note that single-chip controls are well standardized and can be easily per-
formed by the technicians in charge for the hybridizations. This is not the case
for multi-chip quality controls which are more complex and would benefit from
the availability of standardized support tools. Unfortunately such tools are cur-
rently missing though initiatives like the MicroArray Quality Control project4

(MAQC) are expected to provide solutions in the coming years.

10.4.1 Tamoxifen Study

Once single-chip quality controls were performed by the laboratory technicians,
we focused on multi-chip quality controls. We defined a simple acceptance crite-
rion which relies on three conditions: the scale factor must lie within 3-fold to a
median chip, the average background intensity must lie within 3-fold to a median
chip, and the percentage of present calls must lie within 1.5-fold to a median
chip. In order to account for the technology variability (e.g. probes on HG-U133B
are related to genes that are typically less expressed than those on HG-U133A),
we separately applied the criterion to each Affymetrix platform. Moreover, the
untreated and the tamoxifen treated datasets were treated separately given their
different role in the following analysis.

We obtained the following results. While no untreated chips were discarded,
25 treated chips were removed. For instance, the HG-U133B chip of patient
OXFT 1173 was not retained in the study because of an average background
intensity equal to 234 (admitted range was [36, 111]) and a percentage of present
calls equal to 8% (admitted range was [27%, 43%]).

Lessons Learned

Quality controls for gene expression profiling are complex and need au-
tomatic procedures to help the detection of poor quality chips in large
datasets. Although single-chip quality controls are well standardized,
multi-chip quality controls still require an ad-hoc procedure.

4 http://edkb.fda.gov/MAQC/

http://edkb.fda.gov/MAQC/
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10.5 Normalization

Normalization deals with systematic variations between experimental conditions
(technical variation) which are not related to effective biological differences. Nor-
malization methods aim to compensate for systematic technical differences be-
tween chips in order to enhance the analysis of biological differences between
samples. Plenty of normalization methods specific to existing gene expression
profiling technologies have been proposed in literature. Similarly to quality
controls, they can be grouped in two main classes:

• Single-chip normalization methods : These are low complexity methods which
use only one single chip to define the normalization transformation (e.g. mean
scaling). A widely used single-chip normalization for Affymetrix technology
is the Microarray Suite 5 (MAS5) [26].

• Multi-chip normalization methods : These methods use a set of chips to
fit a (possibly) complex normalization transformation. This class of meth-
ods is sometimes referred to as model-based normalization methods. Widely
used multi-chip normalization methods for Affymetrix technology are the
Robust Multichip Average (RMA) [27], RMA using sequence information
(GCRMA) [28], DNA-Chip Analyzer (dChip) [29] and Variance Stabiliza-
tion Normalization (VSN) [30].

An overview of these normalization methods is given in [25]. Several studies
addressed the question about the impact of normalization methods on gene ex-
pression analysis [31, 32, 33], but no gold-standard exists for normalization of
Affymetrix data.

Two aspects of clinical studies should drive the choice of a normalization
method :

• Data sources are usually heterogeneous (see Section 10.2) which could reduce
the efficacy of normalization methods. It follows that special care needs to
be taken in assessing the quality of a multi-source gene expression dataset.
In the next subsection, we will sketch a computational intelligence method
we adopted to detect heterogeneity in our study.

• The integration of a data-driven predictive tool (e.g. a gene classifier built
from a gene expression dataset) in daily clinical routine is not a trivial task.
Since the tool is expected to be used with patients who did not take part
in the original study, methods to transform the new patient expression data
into the normalized data space used for training the tool should be taken into
account. Until now, most multi-chip normalization methods do not provide
the possibility to save the fitted model for normalization transformation in
order to apply it to new patients. This can be detrimental to the effectiveness
of the approach in a real setting (e.g. need for a re-training, bias related to
the laboratory, . . . ). For these reasons, nowadays single-chip normalization
methods are still largely preferred in clinical studies.
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10.5.1 Tamoxifen Study

We first normalized raw probe intensities with the MAS5 algorithm, a single-chip
normalization method. The choice was justified by the reduced complexity and
memory requirements of the method. Then, in order to account for the hetero-
geneity of sources, we developed a computational intelligence method to detect
systematic variations in chips. The method relies on a preliminary clustering
analysis to detect hidden structure in gene expression data and a subsequent
contigency analysis to test the presence of a systematic effect related to the data
sources.

Table 10.1. Contingency table between the cohorts of patients in columns and the
five main clusters of patients in rows. Hierarchical clustering was performed on gene
expression data after MAS5 normalization.

GUYT KIT KIU OXFT OXFU
cluster.1 0 0 0 0 68
cluster.2 0 61 52 0 1
cluster.3 0 18 16 0 0
cluster.4 0 0 0 87 0
cluster.5 86 0 0 0 0

Table 10.2. Contingency table between the cohorts of patients (in columns) and the
five main clusters of patients (in rows). Hierarchical clustering was performed on gene
expression data after MAS5 normalization and after robust standardization for probes.

GUYT KIT KIU OXFT OXFU
cluster.1 14 15 13 9 9
cluster.2 21 18 20 25 25
cluster.3 22 20 16 22 14
cluster.4 18 16 14 17 16
cluster.5 11 10 5 14 5

The clustering step was performed by a hierarchical clustering algorithm [34,
35]. The algorithm allows an easy partition of the dataset in a number of clusters
equal to the number of cohorts (five). Two-way contingency tables reporting the
observed frequencies of patients within cohorts (in columns) and within clusters
(in rows), were used to test the association between cohorts and clusters (χ2

test [36]). We used the Cramer’s V statistic [37] to quantify the strength of
association. The values range from 0 to 1, with 0 indicating independence and
1 indicating a perfect association. Traditionally, values of 0.36 to 0.49 indicate a
substantial association, and values of 0.50 or more indicate a strong association.

The obtained results (see Table 10.1) revealed a strong association between
clusters and cohorts (Cramer’s V of 0.86, χ2 test p-value of 0) and supported the
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fact that the use of single-chip techniques alone may not be sufficient to remove
systematic variation related to heterogenous data sources.

In order to correct the bias, we went through a second round of normalization
by performing a robust standardization (x−median(x)

iqr(x)
where iqr is the interquar-

tile range of x) for probes in each cohort separately. The resulting clustering
exhibited a low association with cohorts, as shown in Table 10.2 (Cramer’s V of
0.08, χ2 test p-value of 8.30E-01).

Lessons Learned

Normalization methods may suffer from high heterogeneity of data
sources. Single-chip normalization methods are less effective but easier
to apply in real clinical studies as each new patient can be normalized
separately. Unsupervised methods allow for the detection of systematic
associations between gene expressions and sources.

10.6 Feature Transformation

Feature transformation is the data analysis step which aims to transform the
original input space into a lower dimension space (called feature space) preserving
most of the information available within the data. Dimensionality reduction is
particularly important in gene expression analysis because of the following data
characteristics :

• High feature-to-sample ratio (several thousands of genes and only few hun-
dreds of samples).

• High correlation (co-expressed genes may be involved in common metabolic
pathways).

• High noise due to the complex technology of gene expression profiling.

Feature transformation is expected to be beneficial in terms of better visualiza-
tion, understanding and representation of the data. At the same time it is worth
to mention that feature transformation in gene expression datasets exposes the
procedure to a risk of overfitting and selection bias [38].

This section will focus on the use of unsupervised techniques for feature trans-
formation. Three main methods are available for unsupervised feature transfor-
mation : compression, kernel and clustering methods. Compression and kernel
methods transform the original input space into a new one whose dimensions
are a linear combination of the original variables. These new variables are dif-
ficult to interpret from a biological and medical point of view. However, recent
advances [39] were made to mitigate this problem in computing the gene ex-
pression deviations from normal tissues in order to build new features that are
disease-specific. Unfortunately, such a database of normal breast tissues is very
rare and did not exist for Affymetrix technology.. Overview of compression and
kernel methods are given in [40]. Clustering methods rely on the fact that many
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genes are co-expressed and that their expression is highly correlated. The ap-
proach consists in finding clusters of highly correlated probes and in summariz-
ing each set of clustered genes by the centroid (or prototype) of the cluster [41].
The transformed features are expected to have lower variance than the origi-
nal ones, yet remaining easy to interpret from a biological and medical point
of view. Another advantage of the approach is that the procedure is robust to
missing genes, making then easier to map the transformed variables to different
microarray platforms.

10.6.1 Tamoxifen Study

We performed an unsupervised clustering on the untreated dataset (OXFU and
KIU cohorts) in order to avoid any correlation between the transformation step

Fig. 10.3. Heatmap of probe clusters identified using OXFU and KIU cohorts. Color
bars above the heatmap represent the untreated patients (OXFU and KIU cohorts,
in blue) and the tamoxifen treated patients (OXFT, KIT and GUYT cohorts, in red).
Color bars at left represent the different clusters. For clarity, only the 15 largest clusters
are represented.
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Fig. 10.4. Histogram of pairwise Spearman’s correlations for the tamoxifen treated
and untreated datasets

and the survival model fitting. This allowed to obtain dimensionality reduction
without increasing the risk of potential overfitting. After removing a large pro-
portion (80%) of low variance probes, we performed a hierarchical clustering
using Spearman’s correlation similarity metric and complete linkage. The gener-
ated dendrogram was then cut at the upper quartile of all heights. Clusters were
discarded if there were less than 5 known Entrez gene ids5 per cluster, 117 clus-
ters remaining for further analysis. We represented the gene expressions of the
largest clusters using a heatmap, i.e. a graphical display of the gene expressions
(green to red for low to high level of gene expression) in two dimensions, where
the rows denote the probes and the columns denote the patients. Figure 10.3
shows the heatmap of the largest clusters in all the cohorts.

The clustering computed on the untreated dataset was then used to com-
pute the centroids in the tamoxifen treated dataset, then obtaining the set of
5 http://www.ncbi.nlm.nih.gov/Entrez/index.html

http://www.ncbi.nlm.nih.gov/Entrez/index.html
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transformed variables (called pclust). Note that unlike components in Principal
Components Analysis (PCA), the pclust features are not orthogonal by con-
struction, as shown by the histogram of pairwise Spearman’s correlations in
Figure 10.4. In particular it is possible to observe that some of them are highly
correlated (maximum absolute pairwise correlation of 0.83 for untreated and ta-
moxifen treated datasets). Note that we were unable to perform a disease-specific
genomic analysis (DSGA [39]) as we did not have any dataset of normal breast
tissues.

Lessons Learned

Dimension reduction by feature transformation is an important step in
order to reduce the noise and the complexity of the data. At the same
time, keeping the new features interpretable is essential since the aim
of clinical studies is not only to build efficient tools but also to bring
new insights into biology and medicine. A combination of hierarchical
clustering and simple average is well suited for this type of analysis.

10.7 Feature Selection

While the role of feature transformation is to reduce the dimensionality of the
data, feature selection [41, 42] seeks which features, among the available ones,
provide the largest amount of information about the survival of the patients.
There are three main categories of feature selection methods : filter, wrapper
and embedded methods. Filter methods assess the relevance of features ignoring
the effects of the selected feature subset on the accuracy of the model. Wrapper
methods assess subsets of features according to their relevance for a given model.
The method conducts a search for a good subset using the model itself as part of
the evaluation function (e.g. forward, backward and stepwise feature selections).
Embedded methods perform feature selection as part of the model fitting and
are usually specific to given models (e.g. classification trees and regularization
techniques).

This section will focus on a specific filter method : variable ranking. First, vari-
able ranking assesses the relevance of each individual feature xj , j = {1, 2, . . . , n}
according to a univariate scoring function S(j) supposed to be proportional to
the relevance of the variable xj with respect to the prediction tasks. Second, it
sorts all the features in a decreasing order according to the value of S(j). Even-
tually it selects the number of features to be selected according to some specific
criterion.

Variable ranking is an intuitive technique which enjoys two interesting
properties :

• Computational scalability : It is computationally efficient since it requires
only the computation of the n scores and the consequent sorting.

• Statistical scalability : variable ranking, like many filter methods, avoids the
estimation of multivariate models to account for the relevance of a set of
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variables. If on one hand, this exposes the technique to some redundancy
(large bias), on the other hand it preserves the approach from overfitting
risks (low variance) [43]. This property is particularly appealing in a gene
expression study context where the noise is high and the number of features
is huge, even after feature transformation.

Any variable ranking technique requires the definition of a criterion to select the
optimal number of features. This is particularly important in a clinical study
involving gene expression profiling since this determines the size of the gene sig-
nature which is distinctive of the phenomenon under examination. At the same
time the task is extremely difficult given the reduced number of samples and the
need of using the same dataset for both feature selection and model building.
Cross-validation criteria have been proposed in literature [44] to select the num-
ber of variables. Although a cross-validation strategy relies on a multiple fold
training and test strategy, it is important to remark that it is still prone to over-
fitting if it is not kept independent with respect to the model building procedure.
For instance re-using a dataset already employed to select a feature set (e.g. by
cross-validation) in order to assess the quality of a predictive model (e.g. again
by cross-validation) would return over-optimistic results about the quality of the
modeling procedure. A way to minimize the covariance between the selection and
the model building procedure would be not to rely on supervised criteria but
rather on unsupervised measures. Another limitation of cross-validation criteria
is due to the fact that, like other sampling frameworks (e.g. bootstrap), it gener-
ates different subsets of features for each fold or repetition. This is particularly
annoying in a clinical setting where the variability of the selection reduces the
confidence of the doctors in the computational intelligence tool and casts doubts
about the efficacy of the approaches.

As an alternative to sampling approaches, recent studies [45, 46] introduced
criteria for feature selection stability in gene expression data. Although sta-
bility reduces only the variance component of the prediction error (expressed
conventionally as a bias/variance sum) the large amount of noise and the high
dimensionality of the input space suggest that this term could be the most im-
portant to address in the bias-variance trade-off. The second advantage deriving
from the use of stability measures would be a reinforced confidence of doctors
in the gene signature outcomes of clinical studies.

10.7.1 Tamoxifen Study

We used a univariate variable ranking where the scoring function S is based
on the likelihood ratio (LR) statistic of the univariate Cox regression. The LR
statistic is

LR = 2(l(β̂) − l(0))

where l(β̂) is the log partial likelihood of the model with coefficient β̂. The null
hypothesis distribution of the LR statistic is a χ2 with one degree of freedom.
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Fig. 10.5. Evolution of Stabadj with respect to the signature size k in M10FOLDCV.
The vertical dashed line (in green) represents the signature size k = 4.

The selection of the signature size was performed according to a stability
criterion inspired to [46]. This criterion assesses the stability of the ranking
for different signature size and selects the most stable size. Let X be the set
of features and freq(xj) be the number of sampling steps in which a feature
xj ∈ X has been selected out of m sampling steps. The set X is sorted by
frequency into the set x(1), x(2), . . . , x(n) where freq(x(i)) ≥ freq(x(j)) if i < j
where i, j ∈ {1, 2, . . . , n}. A first measure of stability for a given signature size
k is returned by

Stab(k) =
∑k

i=1 freq(x(i))
km

This statistic is equal to 1 if the same signature is always selected over sampling

steps. In the case of no overlap, Stab is equal to
1
m

if k > 0 and 0 otherwise.
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Fig. 10.6. Frequency of each feature during feature selection in M10FOLDCV. The
vertical dashed line (in green) represents the limit for the first 4 pclusts. For clarity,
only the 15 most selected features are shown.

However, since the Stab statistic can be made artificially high by simply increas-
ing k, we formulated an adjusted statistic

Stabadj(k) = max
{

0, Stab(k) − α
k

n

}

where α is a penalty factor depending on the number of selected features. In our
study the penalty factor α was fixed to 1 in order to facilitate the selection of
the trade-off between signature size and stability. Indeed, the Stabadj criterion
is equal to 0 for the two extreme cases, i.e. when either no feature or all ones are
selected.

We used two types of cross-validation to assess the stability of the fea-
ture selection : leave-one-out (LOOCV) and multiple ten fold cross-validation
(M10FOLDCV). The M10FOLDCV consists in randomizing the order of patients
each time a new ten fold cross-validation is performed.
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Figure 10.5 sketches the evolution of Stabadj with respect to the signature size
k. We observed a global maximum at k = 4 and a local maximum at k = 16. We
selected the size k = 4 according to the stability criterion. Interestingly enough,
this size appeared at the end of the study to be sufficiently large to allow for a
biological interpretation of the results.

Figure 10.6 sketches the frequency of selection over all sampling steps for
each pclust in the signature of size k = 4. Over the 19 different pclusts that
were selected at least once, the 4 first pclusts were selected more than half of the
times.

Lessons Learned

Feature selection is computationally intensive and prone to overfitting.
A low complexity and high stability filter method, like variable ranking
may have a positive effect on final accuracy by reducing the variance of
the feature selection step.

10.8 Model Building

Building a survival model from expression data is a complex task which put
the data analyst in front of several alternatives. Here we enumerate some of the
hardest dilemmas to be solved :

• Linear v.s. non-linear : Linear models are simpler, more stable than non-linear
models but not capable of dealing with complex dependencies. On the other
hand, the higher complexity of non-linear models reduces the prediction bias
at the cost of an increased variance.

• Univariate v.s. multivariate : Multivariate models deal more effectively with
redundancies than univariate ones but demand ill-conditioned and computa-
tionally intensive estimation procedures.

The nature of gene expression data (very large dimensionality, few samples and
high noise) evokes the potential risks of a non-linear and multivariate approach.
At the same time, a simple univariate model would not be able to account for
the multiple interactions underlying the cancer phenomenon.

The demand for a multivariate model which should be able at the same time to
return accurate prediction and to avoid instability may have an effective answer
in the adoption of additive modeling schemes [47]. The interest of an additive
approach lies in the fact that the linear combination of several univariate models
returns a model which is simple, yet able to address multivariate tasks. What is
less attractive in a survival context is the need of iterative algorithm to fit the
additive weights. A simple method to fit additive weights is provided by combi-
nation schemes, commonly used in computational intelligence literature [48], to
combine several models in an effective manner. The following section presents
the additive solution adopted in the context of our study.
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10.8.1 Tamoxifen Study

The model building step started by comparing a multivariate Cox approach with
an additive combination of univariate Cox models. The multivariate approach
appeared to be more computationally intensive and less accurate. We decided
then to develop an additive predictor which combines a set of univariate Cox
models. In this model, the contribution log λj(t) of each single univariate Cox
model is weighted according to its accuracy, measured by the likelihood ratio
statistic (see Section 10.7). The outcome of the model for a given patient is
given by the risk score

RS =
k∑

j=1

wjpj

where the signature size k = 4, pj = βjXj is the output of the jth linear
predictor and wj is the normalized likelihood ratio statistic of the jth univariate
Cox model such that

∑k
j=1 wj = 1.

Although the risk score is a quantity that sheds light on the degree of risk
of a patient, doctors find often more convenient (and more intelligible) to be
provided with a crisp attribution of a patient to a low or high-risk class. In order
to transform the risk score into a Boolean class we relied on existing medical
expertise according to which there is an a priori 30% probability for a treated
patient to belong to the high risk class. On the basis of a 70:30 partition we
transformed the continuous model in the classifier

RG = I(RS)

where I is an indicator function which takes the value 1 if RS is included in the
upper 30% of the risk scores and 0 otherwise.

Lessons Learned

Because of low variance, additive combination of univariate models guar-
antees robustness and accuracy in gene expression survival analysis.

10.9 Accuracy Assessment

Once a survival model is built, it is time to assess its accuracy. This section
will discuss three accuracy criteria commonly used in survival analysis : the
concordance index (C-index), the logrank test for KM survival curves and the
hazard ratio (HR).

10.9.1 Concordance Index

The C-index [49] estimates the probability that, for a pair of randomly chosen
comparable patients, the patient with the higher score will experience an event
within a shorter time than the other patient.
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The C-index takes the form

C-index =

∑
i,j∈Ω I (RSi, RSj)

|Ω|
where

I (RSi, RSj) =
{

1 if RSi > RSj

0 if RSi ≤ RSj
.

and RSi and RSj are the risk scores for the ith and the jth patient, respectively.
Here Ω consists of all the pairs of patients {i, j} who meet one of the following
conditions :

1. Both patients i and j experienced event and time ti of patient i is shorter
than time tj of patient j.

2. Only patient i experienced event and time ti is shorter than time tj of
patient j.

Confidence intervals and p-values for this statistic are computed making an
assumption of asymptotic normality [50].

10.9.2 Logrank Test

The logrank test, also known as the Mantel-Haenzel test, is widely used to test
the null hypothesis that the survivor functions (see Section 10.3) are the same
in a group 0 and a group 1, i.e. H0 : S0(t) = S1(t) ∀t > 0.

This statistic quantifies how the observed timing of events diverges from the
expected one according to the null hypothesis. Note that the logrank test is
purely a test of significance and as such it does return neither estimate of the
size of the difference between the groups nor a confidence interval.

10.9.3 Hazard Ratio

The hazard ratio is a summary of the risk difference between two survival curves.
Proportional hazards regression model assumes that the relative risk of event
between two groups is constant at each interval of time (see Section 10.3).

Let G be an indicator variable, which takes the value zero if an individual
is in the first group and unity if an individual is in the second group. If gi is
the value of G for the ith individual in the study, the hazard function for this
individual can be written as

λi(t) = λ0(t) exp(βgi)

where gi = 1 if the ith individual is in the second group or zero otherwise.
Because of the type of the indicator variable G, λ0(t) is the hazard function for
an individual in the first group. Moreover, the hazard function for any individual
in the second group is ψλ0(t) (proportional hazards), so ψ is the hazard ratio
with ψ = exp(β).

The above mentioned criteria return measures of accuracy for a given survival
model once a suitable test set is provided. However, the availability of only a
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limited amount of samples together with the complexity of the analysis raise a
concern about how to obtain these measures without any excess of optimism
about the accuracy of the modeling. This is particularly dangerous if undetected
correlation between the model choices and the test set are established [13]. In
order to avoid over-optimistic assessment the validation procedure (e.g. cross-
validation) should include the entire modeling process and specifically the feature
selection [51].

10.9.4 Tamoxifen Study

We used the same cross-validation procedures than in Section 10.7 to assess
the performance of the entire modeling procedure : leave-one-out (LOOCV) and
multiple ten fold cross-validation (M10FOLDCV).

Figure 10.7 sketches the survival curves for the low and high-risk groups of
patients computed in LOOCV. The two curves were significantly different ac-
cording to the logrank test (p-value of 1.64E-03). The proportions of patients
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Fig. 10.7. Survival curves of the low and high-risk classes as defined by the method
using a signature size k = 4 in LOOCV. The “+” symbol represents the censoring.
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Table 10.3. Proportions of patients who did not experience any event at 3, 5 and 10
years

3.years 5.years 10.years
low.risk 0.91 0.89 0.76
high.risk 0.80 0.67 0.56

who did not experience any event at 3, 5 and 10 years for the low and high-risk
groups are given in Table 10.3.

The hazard ratio between these two groups of patients was estimated by
Cox regression stratified by cohorts (see “ALL” symbol in the forestplot of
Figure 10.8). It was equal to 2.26 with 95% CI [1.35,3.80] and was significant
according to the LR test (p-value of 1.96E-03). In order to visualize the vari-
ability of hazard ratios between the different cohorts, a forestplot is drawn in
Figure 10.8. The method performed better (higher hazard ratio) in the OXFT
cohort than in the KIT and the GUYT cohorts. According to a test of hetero-
geneity [52] (p-value of 3.29E-01), there was not enough evidence in the data
to show that variability in hazard ratio estimation between cohorts was due to
other factors than sampling error alone.

In summary all the accuracy assessments supported the effectiveness of the
approach. In order to complete our analysis we performed also a specific study
about the effectiveness of the stability criterion adopted to choose the signature
size equal to k = 4.

Figure 10.9 shows the evolution of the LOOCV and M10FOLDCV perfor-
mance (log2 hazard ratio with 95% CI) with respect to the signature size. We
observed, as for stability criterion, that signature sizes k from 2 to 5 and k ≥ 16
have reasonable performance. Additionally, we observed a relationship between
feature selection stability and performance (see Figures 10.5 and 10.9 respec-
tively) : models with stable signatures exhibited higher performance than models
with unstable signatures in agreement with the bias-variance trade-off.

OXFT
KIT
GUYT

ALL

1.67E−02
3.80E−02
2.78E−01

1.96E−03

−0.5 0 0.5 1 1.5 2 2.5 3

log2 hazard ratio

Fig. 10.8. Forestplot of log2 hazard ratios between low and high-risk classes as defined
by the method using a signature size k = 4 in LOOCV. Each line represents a cohort
of patients with the last one, labeled “ALL”, representing all the cohorts together.
Horizontal blue lines represent the 95% CI and the squares represent the point estimate
of HR.
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Fig. 10.9. Evolution of the log2 hazard ratio and its 95% confidence interval with
respect to the signature size k in LOOCV and M10FOLDCV. For clarity, only the
signature sizes k ≤ 35 are shown, the performance being stable for larger k.

Lessons Learned

The weighted combination of univariate linear models allows the imple-
mentation of a multivariate predictor which has low sensitivity to noise
in the data and enables model interpretation. There is a relationship be-
tween feature selection stability and accuracy : stable signatures exhibit
higher performance than unstable ones.

10.10 Validation

Once the modeling procedure has been positively assessed, it comes the time
of testing the obtained model in real settings and for new patients. It should
be evident that only this phase may give a reliable and thorough answer to the
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expectations of the doctors. Unfortunately a new and independent dataset is
not always affordable in a clinical study because of the difficulty and cost of
adding more patients. As a result most bioinformatics studies do not go beyond
some cross-validated study, as the one presented in the previous section. Now, as
said before, the complexity of the analysis, the noise in the data, the scarcity of
samples and the large number of variables cast doubts on the reliability of cross-
validation results, mainly if the data analyst has not been sufficiently cautious
in avoiding (indirect) correlation between the training and the test set. It is
therefore recommended to claim the success of a clinical genomic study only
when a final validation step has been accomplished.

10.10.1 Tamoxifen Study

In order to provide a more convincing assessment of the quality of the proposed
approach, our clinical study relied on an independent validation dataset provided
by 77 patients diagnosed between 1980 and 1995 at the Guy Hospital (London,
United Kingdom). This new cohort of samples, called GUYT2, were hybridized
one year after the first three cohorts of tamoxifen treated patients, i.e. GUYT,
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Fig. 10.11. Survival curves of the low and high-risk groups as defined by the TAMCOX
model. The “+” symbol represents the censoring.

KIT and OXFT. Gene expression profiling was performed with Affymetrix HG-
U133PLUS2 Genechips. This dataset was collected during a follow-up period
longer than 10 years. Few events were observed (13% of the patients) and 92%
(86%) of the patients did not experience any event till the first 5 (10) years.
Figure 10.10 sketches the survival curves for the four cohorts of tamoxifen
treated patients. GUYT2 cohort had a better survival compared to the other
cohorts.

To build the final model (referred to as TAMCOX), we used all the patients
of the original dataset and we repeated the whole modeling procedure in using
a signature size of k = 4.

Quality controls described in Section 10.4, were applied on this new dataset
and no chip was identified as being of poor quality. After having performed
the normalization described in Section 10.5, risk scores were computed using
the TAMCOX model. Binary classification was then computed using the cutoff
previously defined.

The concordance index of the TAMCOX risk score was equal to 0.74 with
95% CI [0.60,0.89] and one-tailed p-value of 5.57E-04.

TAMCOX classified 52 patients in the low-risk class and 25 patients in the
high-risk class. Figure 10.11 sketches the survival curves of the low and high-
risk groups of patients. The two curves were significantly different according to
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Table 10.4. Proportions of patients who did not experience any event at 3, 5 and 10
years

3.years 5.years 10.years
low.risk 0.98 0.96 0.94
high.risk 0.84 0.75 0.70

the logrank test (p-value of 4.78E-03). The proportions of patients who did not
experience any event at 3, 5 and 10 years for the low and high-risk classes are
given in Table 10.4.

The hazard ratio between these two classes of patients was equal to 5.63 with
95% CI [1.45,21.79] and was significant according to the LR test (p-value of
8.02E-03).

Since the validation cohort was different in terms of survival, we could have
expected lower performance of the model compared to previous results. Notwith-
standing, TAMCOX model classified with success this set of new patients.

The success of the validation step would suggest the adoption of the TAM-
COX model in clinical routine. However, this is not still a reality because of the
complexity and the price of gene expression profiling technology for daily clinic
use. A more affordable usage of the model might consist in replacing each pclust
by a specific probe and design a low-cost test relying on a cheaper technology
like the real-time polymerase chain reaction (RT-PCR) [53].

Lessons Learned

Validation set is mandatory to honestly assess the accuracy of the out-
come of a survival analysis. The passage from research prototype to daily
clinic tool is still made difficult by the large cost of the gene expression
profiling technology.

10.11 Biological Interpretation

The biological interpretation of gene expression analysis results is made difficult
by the possibly large number of genes in the signature. However, bioinformatics
tools based gene ontologies [54], i.e. a structured vocabulary for the annotation of
genes, can help biologists and doctors to retrieve useful statistical and biological
information from the gene signatures.

10.11.1 Tamoxifen Study

The biological functions of each of the 4 clusters were analyzed in the context of a
curated list of published molecular interactions by Ingenuity Pathway Analysis6.
Table 10.5 lists the high level functions with statistically significant enrichment
6 http://www.ingenuity.com/products/pathways analysis.html

http://www.ingenuity.com/products/pathways_analysis.html
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Table 10.5. Biological interpretation for each cluster of probes used in the final model

Probes cluster Nr of probes Top high-level function overall Top network functions

pclust.274 9 Cancer, Cell cycle, Cellular
growth and proliferation, DNA
replication, recombination and
repair

DNA replication, re-
combination and re-
pair, Cell cycle

pclust.313 13 Cancer, Cell cycle Cancer, Tumor Mor-
phology, Cell cycle

pclust.420 9 Amino acid metabolism, Small
molecule biochemistry

Cellular development,
Cellular growth

pclust.687 6 Cellular growth and prolifera-
tion, Cancer, Cell Morphology,
Small molecule

Cancer, Cell cycle

for each cluster. Three out of the four clusters are related to cell cycle func-
tion, supporting our previously reported finding that cell cycle and proliferation
genes may help to define two subgroups of ER-positive BC tumors associated
with statistically distinct clinical outcome [7]. For the fourth cluster, no definite
conclusion can be drawn since only 2 genes could be used for functional and
network analysis. However, when looking individually at these genes one can no-
tice that CDK4 is also involved in the cell cycle. However, the presence of genes
in the predictor that allude to other biological pathways apart from cell cycle
function, such as DNA replication, recombination and repair or small molecule
biochemistry, may facilitate further understanding of the upstream mechanisms
behind tamoxifen resistance.

Lessons Learned

An interpretable model makes possible a biological characterization of
the gene signature. The related biological insights adds value to the
clinical genomic study.

10.12 Conclusion

Modeling the relationship between gene expression and clinical data, such as
survival data, on the basis of a small number of samples is a big challenge for
computational intelligence techniques. In this chapter, we discussed the main is-
sues that arise in a retrospective clinical study aiming to transform raw data into
useful medical information. In particular we focused on the automatic quality
control, the normalization in presence of data heterogeneity, the feature trans-
formation and the feature selection, the model building, the accuracy assessment
and the external validation. We could summarize the guidelines that emerged
from our real experience in the following points :

• Heterogeneity, noise, large dimensionality and scarcity of samples suggest
that simple and effective techniques should be preferred to complex nonlinear
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models. The rationale is that the gain in robustness and stability would
largely compensate for the lack of complexity.

• Interpretability matters in clinical study and should be always be taken into
consideration when choosing a methodology.

• Large clinical studies ask for computational solutions able to deal with mul-
tiplatform and multisource configurations.

The importance of these recommendations is still more evident when we think
that the near future of bioinformatics and biomedicine will be characterized
by the need of integrating more and more sources of high dimensional data
(integrative bioinformatics). High dimensional data will be generated by new
gene expression profiling technologies, single nucleotide polymorphism (SNP),
and comparative genomic hybridization (CGH) at a continuously growing rate.
In front of this overwhelming amount the data, the doctors will be more and
more demanding of effective, interpretable and robust computational techniques
able to return exploitable information from genomic data.
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Summary. Artificial Immune Systems (AIS) represent one of the most recent and
promising approaches in the branch of bio-inspired techniques. Although this open
field of research is still in its infancy, several relevant results have been achieved by
using the AIS paradigm in demanding tasks such as the ones coming from computa-
tional biology and biochemistry. The chapter will show how AIS have been successfully
used in computational biology problems and will give readers further hints about pos-
sible implementations in unexplored fields. The main goal of the contribution lays in
providing both theoretical foundations and hands-on experience that allow researchers
to figure out novel applications of AIS in bioinformatics and, at the same time, pro-
viding researchers with necessary insights for implementation in daily research. The
contribution will be organised in 5 sections.

11.1 Introduction

Artificial Immune Systems (AIS) represent one of the most recent and promising
approaches in the branch of bio-inspired techniques. Although this open field of
research is still in its infancy, several relevant results have been achieved by using
the AIS paradigm in demanding tasks such as the ones coming from computa-
tional biology and biochemistry. Artificial immune systems (AIS) can be defined
as computational systems inspired by theoretical immunology, observed immune
functions, principles and mechanisms in order to solve problems. Their devel-
opment and application domains follow those of soft computing paradigms such
as artificial neural networks (ANN), evolutionary algorithms (EA) and fuzzy
systems (FS). Soft computing was the term coined to address a new trend of co-
existence and integration that reflects a high degree of interaction among several
computational intelligence approaches like artificial neural network, evolutionary
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algorithms and fuzzy systems. The idea of integrating different computational
intelligence paradigms in order to create hybrids combining the strengths of dif-
ferent approaches is not new. Following the previous concepts when in 2002 de
Castro and Timmis introduced AIS as a new soft computing paradigm they gave
birth to a new challenge to a have a great potential to interact the new born
technique with the other previously existing. Strictly speaking evolution and im-
mune system are biologically very correlated to each other in fact the process of
natural selection can be seen to act the immune system at two levels. First recall
that lymphocytes multiply based on their affinity with a pathogen. The higher
affinity lymphocytes are selected to reproduce, a process usually named immune
microevolution. The mechanism of immune microevolution is very important.
The clonal selection principle presupposes that a very large number of B-cells
containing antigenic receptors is constantly circulating throughout the organism.
The great diversity of this repertoire is a result of the random genetic recom-
bination of gene fragments from different libraries plus the random insertion of
gene sequences during cell development. This availability of different solutions
guarantees that at least one cell will produce an antibody capable of recognizing,
thus binding with, any antigen that invades the organism. The antigen-antibody
binding stimulate the production of clones of the selected cells, where successive
generations result in exponential growth of the selected antibody type. Some of
these antibodies remain in circulation even after the immune response ceases,
constituting a sort of immune memory. Other cells differentiate in plasma cells,
producing antibodies in high rates. Finally during reproduction, some clones
suffer an affinity maturation process, where somatic mutations are inserted with
high rates (hypermutation) and, combined with a strong selective mechanism,
improve the capability (Ag-Ab affinity and clone size) of these antibodies to
recognize and respond to the selective antigens. Secondly, there is surely an im-
mune contribution to natural selection, which acts by allowing the multiplication
of those people carrying genes that are most able to provide maximal defense
against infectious diseases coupled with minimal risk of autoimmune diseases.
At this time the majority of the immune algorithms currently developed have
an evolutionary like type of learning of embodied process and several techniques
from one strategy have been used to enhance another. I-PAES presented and
discussed in the section 11.3.1 is an example of hybridization between a particu-
lar class of evolutionary algorithms called multi-objective and immune inspired
operators namely cloning and hypermutaion.

The success of the AIS paradigm is based on two key properties of its theo-
retical foundations: recognition and adaptation/optimisation. When an animal
is exposed to an antigen, some subpopulation of its bone marrow derived cells
(B lymphocytes) respond by producing antibodies (Ab). Each cell secretes a sin-
gle type of antibody, which is relatively specific for the antigen. By binding to
these antibodies (cell receptors), and with a second signal from accessory cells,
such as the T-helper cell, the antigen stimulates the B cell to proliferate (divide)
and mature into terminal (non-dividing) antibody secreting cells, called plasma
cells. The process of cell division (mitosis) generates a clone, i.e., a cell or set
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of cells that are the progenies of a single cell. While plasma cells are the most
active antibody secretors, large B lymphocytes, which divide rapidly, also se-
crete antibodies, albeit at a lower rate. On the other hand, T cells play a central
role in the regulation of the B cell response and are preeminent in cell medi-
ated immune responses, but will not be explicitly accounted for the development
of our model. Lymphocytes, in addition to proliferating and/or differentiating
into plasma cells, can differentiate into long-lived B memory cells. Memory cells
circulate through the blood, lymph and tissues, and when exposed to a second
antigenic stimulus commence to differentiate into large lymphocytes capable of
producing high affinity antibodies, pre-selected for the specific antigen that had
stimulated the primary response. Fig 11.1 depicts the clonal selection principle.

Fig. 11.1. Clonal selection principle in natural immune systems

The clonal selection and affinity maturation principles are used to explain
how the immune system reacts to pathogens and how it improves its capability
of recognizing and eliminating pathogens [1]. In a simple form, clonal selection
states that when a pathogen invades the organism, a number of immune cells
that recognize these pathogens will proliferate; some of them will become effector
cells, while others will be maintained as memory cells. The effector cells secrete
antibodies in large numbers, and the memory cells have long life spans so as
to act faster and more effectively in future exposures to the same or a similar
pathogen. During the cellular reproduction, the cells suffer somatic mutations
with high rates and, together with a selective force, the higher affinity cells in
relation to the invading pathogen differentiate into memory cells. This whole
process of somatic mutation plus selection is known as affinity maturation. To a
reader familiar with evolutionary biology, these two processes of clonal selection
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and affinity maturation are much akin to the (macro-)evolution of species. There
are a few basic differences however, between these immune processes and the
evolution of species. Within the immune system, somatic cells reproduce in an
asexual form (there is no crossover of genetic material during cell mitosis), the
mutation suffered by an immune cell is proportional to its affinity with the
selective pathogen (the higher the affinity, the smaller the mutation rate), and
the number of progenies of each cell is also proportional to its affinity with the
selective pathogen (the higher the affinity, the higher the number of progenies).
Evolution in the immune system occurs within the organism and, thus it can
be viewed as a micro-evolutionary process. As we know, in fact, immunology
suggests that the natural Immune System (IS) has to assure recognition of each
potentially dangerous molecule or substance, generically called antigen (Ag), by
antibodies (Ab). The IS first recognises an antigen as “dangerous” or external
invaders and then adapts (by affinity maturation) its response to eliminate the
threat. To detect an antigen, the IS activates a recognition process. In vertebrate
organisms, this task is accomplished by the complex machinery made by cellular
interactions and molecular productions. The main features of the clonal selection
theory that will be explored in this chapter are [1]]:

• Proliferation and differentiation on stimulation of cells with antigens;
• Generation of new random genetic changes, subsequently expressed as diverse

antibody patterns, by a form of accelerated somatic mutation (a process
called affinity maturation);

• Elimination of newly differentiated lymphocytes carrying low affinity anti-
genic receptors.

To illustrate the adaptive immune learning mechanism, consider that an anti-
gen Ag1 is introduced at time zero and it finds a few specific antibodies within
the animal (see Fig. 11.2. After a lag phase, the antibody against antigen Ag1
appears and its concentration rises up to a certain level, and then starts to de-
cline (primary response). When another antigen Ag2 is introduced, no antibody
is present, showing the specificity of the antibody response [1]. On the other
hand, one important characteristic of the immune memory is that it is associa-
tive: B cells adapted to a certain type of antigen Ag1 presents a faster and more
efficient secondary response not only to Ag1, but also to any structurally related
antigen Ag1 + Ag2. This phenomenon is called immunological cross-reaction, or
cross-reactive response. This associative memory is contained in the process of
vaccination and is called generalization capability, or simply generalization, in
other artificial intelligence fields, like neural networks [1].

Receptor editing offers the ability to escape from local optima on an affin-
ity landscape. Fig 11.3 illustrates this idea by considering all possible antigen-
binding sites depicted in the x-axis, with the most similar ones adjacent to each
other. The Ag-Ab affinity is shown on the y-axis. If it is taken a particular an-
tibody (Ab1 ) selected during a primary response, then point mutations allow
the immune system to explore local areas around Ab1 by making small steps
towards an antibody with higher affinity, leading to a local optima (Ab1 * ).
Because mutations with lower affinity are lost, the antibodies can not go down
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Fig. 11.2. Immune response plotted as antibody concentration over time

Fig. 11.3. Antibody affinity as function of the specific antigen binding site

the hill. Receptor editing allows an antibody to take large steps through the
landscape, landing in a locale where the affinity might be lower (Ab2 ). How-
ever, occasionally the leap will lead to an antibody on the side of a hill where
the climbing region is more promising (Ab3 ), reaching the global optimum. From
this locale, point mutations can drive the antibody to the top of the hill (Ab3 * ).
In conclusion, point mutations are good for exploring local regions, while editing
may rescue immune responses stuck on unsatisfactory local optima.

Computational immunology is the research field that attempts to reproduce
in silico the behavior of the natural IS. From this approach, the new field of
Artificial Immune Systems (AIS) attempts to use theories, principles, and con-
cepts of modern immunology to design immunity-based system applications in
science and engineering [1]. AIS are adaptive systems in which learning takes
place by evolutionary mechanisms similar to biological evolution. These differ-
ent research areas are tied together: the more we learn from in silico modelling of
natural systems, the better we are able to exploit ideas for computer science and
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engineering applications. Thus one wants, first, to understand the dynamics of
such complex behavior when they face antigenic attack, and second, one wishes
to develop new algorithms that mimic the natural IS under study. Thus the
final system may have a good ability to solve computational problems otherwise
difficult to be solved by conventional specialised algorithms. The computational
and predictive power of AIS offers researchers a promising approach for trying
to solve well known and challenging problems like knowledge discovery from
huge biological databases (e.g. coming from high throughput platforms) as well
as protein folding or function prediction and multiple sequence alignment. The
chapter will show how AIS have been successfully used in computational biology
problems and will give readers further hints about possible implementations
in unexplored fields. The main goal of the contribution lays in providing both
theoretical foundations and hands-on experience that allow researchers to figure
out novel applications of AIS in bioinformatics and, at the same time, providing
researchers with necessary insights for implementation in daily research.

11.2 Immunity-Based Data Mining Systems in
Bioinformatics

Recent advances in active fields of research like biotechnology and electronics
allowed biomedical research to make a significant step forward in the acquisi-
tion of fundamental tools for the elucidation of complex bio-processes like the
ones behind cancer or Alzheimer disease. The advent of High-Throughput (HT)
platforms has revolutionized the way researchers working in life sciences thought
at their role in experiments. HT devices allowed researchers to concentrate on
higher tasks like experimental design and results interpretation at the same time
avoiding him minding of hundreds when not thousands of repeats of the same
protocols for the different patients or mRNA sequences for instance. Microarrays
are, probably, one of the most evident examples of this change of perspectives:
gene expression evaluation for a panel of even only a few tens of genes took several
days to be completed before their introduction, now we are able to obtain gene
expression level for thousands of genes in the time of an overnight hybridization.
Together with expression microarrays we can mention copy number monitoring
microarrays (commonly referred to as aCGH technique), High-Throughput Se-
quencers, and Mass Spectrometers. In the next sections we will go through a brief
analysis of the main open problems in bioinformatics and will discuss about how
they can be addressed using immunity based data mining algorithms. A short
introduction on data mining principles and potentialities is given in order to
help unexperienced readers understanding concepts behind statements.

11.2.1 Data Bases and Information Retrieval in Biology

Devices coming from the integration of experiences gained in diverse fields like
physics, chemistry, biology and engineering, in this way helped researchers in
boosting their work and in quickly obtaining results of their experiments. The
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capabilities of these different kinds of approach pushed the interest for the es-
tablishment of data repositories for newly generated results. Data-bases entered
the world of biology. Larger and larger amounts of data started to fill pub-
lic databases (leaving apart literature databases which, of course, need a sepa-
rated analysis) giving rise to what we can rename “Moore’s law in biology” [2]
(that just like the original Moore’s law in electronics, models future progress in
biotechnology [3]). However the main advantages provided by novel devices soon
revealed to be their main weak point. The availability of large amount of data as
results didn not yield of information drawn from these data; this phenomenon
characterized both early and more recent years in life sciences research bringing
to the so-called “gap”. Roughly speaking, researchers indicate, with this term, an
estimate of the difference between the amount of available data and the amount
of these data that have been sufficiently interpreted [4]. In the recent years we
have observed a worrying widening in this gap: this means that we are making
quite large investments with a ROI (return on investments) that still keeps low.
In order to maximize the information yield of each experiment several alterna-
tive solutions have been proposed being probably data warehousing the most
successful. Data warehouses are the natural evolution of data bases; described
for the first time by William Immon [5] they are integrated, subject-oriented,
time-variant and non-volatile data collection processes implemented with the
precise aim to build a unique decision support system. The distinction between
data bases and data warehouses is clear: as advanced data bases, data ware-
house provide data analysis functionalities that ease the process of knowledge
extraction from highly dense data repository. In this context grew significant
experiences like the GEO (Gene Expression for Omnibus, [7]), SMD (Stanford
Microarray Database, [8]) and ArrayExpress [9]. This is the evident that data
warehouse can greatly help researchers in reducing the gap providing a valu-
able aid in filling the last real hole in experimental processes automation: results
interpretation.

11.2.2 Mining the Data: Converting Data to Knowledge

Data mining, also known as Knowledge Discovery in Data-bases (KDD), has
been defined as “The nontrivial extraction of implicit, previously unknown, and
potentially useful information from data” [6] (a more practical definition of data
mining will be given in the following section); it uses machine learning, statistical
and visualization techniques to discover and present knowledge in a form easily
comprehensible to humans. Data mining grew at the border line among statis-
tics, computer science and artificial intelligence and soon became a golden tool to
solve problems spacing from Customer Relationship Management (CRM, [10])
to Decision Making Support in medicine [15]. Data mining in bioinformatics,
then, can be considered as a useful tool for modelling complex processes allow-
ing researchers speeding the pace towards treatments for diseases like cancer:
for instance several works have successfully tried to exploit the potentialities
of rule induction systems in breast cancer associated survival [56, 57] and can-
cer evolution modelling [58]. It can be argued that data mining was born from
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several diverse disciplines, in the effort of overcoming intrinsic limitations of the
single approaches. It is particularly evident if we compare the expressive power
of typical statistical inference approaches and propositional or first order logic
on the other hand. Huge efforts have been spent, in the recent past, in order
to speed up one of the central tasks in current research in bioinformatics, that
is the transformation process that converts data in knowledge passing through
information [16]. Data mining software, then, became more and more common:
researchers soon realized the valuable aid algorithms could have given to their
researchers and the amount of paper describing algorithms for information ex-
traction grew faster and faster [40, 41, 45]. Comprehensive software suites for
data mining purposes are currently largely used in bioinformatics and include
both open-source and proprietary solutions. Among commercial packages we can
list SPSS, SAS, Clementine and E-Miner. Open source suites are well represented
by:

• Weka [18]
• Rapid Miner (formerly YALE) [19]
• Orange [20]

In particular Weka has gained a relevant success in the field of data mining
due to its flexibility and versatility. Thanks to these characteristics Weka has
been customized and redistributed in several different flavours (BioWeka [21]
devoted to biological sequences mining and Weka4WS [22], the GRID-enable
Weka implementation). Due to a simple but efficient modular organization Weka
allowed third-party developers to add functionalities to the core package. It is the
case of “Weka Classification Algorithms” project managed by Jason Brownlee
who has implemented several bioinspired [11, 12, 13] data mining algorithm in
a customized version of Weka [14]. One of the most interesting aspects of this
implementation consists in the presence of a wide variety of Artificial Immune
System based data mining algorithms. Both the black and white box flavours
are represented in the set of proposed algorithms. The distinction between black
and white box algorithms will be described in the following paragraph, however
it can be argued that white box approaches provide the user with tools to easily
interpret the way it reached a certain results, on the contrary to what happens
with black box algorithms (think at how complex is the interpretation of neural
network predictions and how simple is interpreting rules induced from a dataset).
Among black box Immunity based algorithm we can mention:

Clonalg. The Clonal Selection Algorithm, originally called CSA in [55], and re-
named to CLONALG in [61] is said to be inspired by the following elements of
the clonal selection theory:

• Maintenance of a specific memory set
• Selection and cloning of most stimulated antibodies
• Death of non-stimulated antibodies
• Affinity maturation (mutation)
• Re-selection of clones proportional to affinity with antigen
• Generation and maintenance of diversity
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The goal of the algorithm is to develop a memory pool of antibodies that
represents a solution to an engineering problem. In this case, an antibody repre-
sents an element of a solution or a single solution to the problem, and an antigen
represents an element or evaluation of the problem space.

CSCA. The Clonal Selection Classifier Algorithm is an evolution of the concept
behind Clonalg since it tries to maximise classification accuracy and minimise
misclassification accuracy still using clonal selection paradigms.

Immunos. The Immunos [54] algorithm has been mentioned a number of times
in AIS literature [37, 38, 39]. It is claimed as being one of the first immune-
inspired classification systems. Immunos tries to mimic in a very precise way the
mechanisms underlying immune response to antigen attacks and this has led to
a quite complex classification system still under discussion.

AIRS. The Artificial Immune Recognition System [42] algorithm was one of the
first AIS technique designed specifically and applied to classification problems.
After an initialisation phase the algorithm cycles through each antigen (record
in the dataset) in order to select best fitting memory cells through a powerful
resource competition stage.

On the other hand white box AIS based paradigms can be found in:

• IFRAIS
• AIS based rule induction with boosting

These approaches will be deeply discussed in the next section.

11.2.3 Algorithmic Approaches to Data-Mining in Biology

As previously stated data mining is an interdisciplinary research field, involving
areas such as machine learning, statistics, databases, expert systems and data
visualization, whose main goal is to extract knowledge (or patterns) from real-
world data sets [17, 18]. This section focuses on the classification (supervised
learning) task of data mining. In essence, the goal of the classification task is
to assign each example (data instance or record) to a class, out of a prede-
fined set of classes, based on the values of attributes describing that example.
In the context of bioinformatics an example could be, for instance, a protein;
the classes could be protein functions; and the attributes describing the pro-
tein could be, say, physico-chemical properties of the amino acids composing the
protein. It is important that the attributes describing an example are relevant
for predicting its class. Hence, it would be a mistake to use a clearly irrelevant
attribute, say the name of the patient, as an attribute to predict whether or not
a patient will get a certain disease. In bioinformatics, ideally, the classification
model should satisfy two requirements. First, it should have a high predictive ac-
curacy, or generalization ability, correctly predicting the class of new examples
unseen during the training of the system. Second, it should be comprehensi-
ble to users (biologists), so that it can be interpreted in the context of existing
biological knowledge and potentially further validated through new biological ex-
periments. Concerning the issue of comprehensibility of the classification model
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discovered from the data, it should be noted that some classification algorithms
are designed to maximize only predictive accuracy, representing the classification
model in a way that cannot be understood by the user - therefore ignoring the
comprehensibility requirement. Typical examples of algorithms in this category
are support vector machines [24] and neural networks [25]. In this case the clas-
sification model is a “black box”, which does not give the user any insight about
the data or explanations about the classification of new examples. By contrast,
some classification algorithms use a representation which is comprehensible to
the user, therefore returning “knowledge” to the user. In this section we focus
on one popular kind of comprehensible representation, namely IF-THEN classi-
fication rules, and algorithms that use this kind of representation are called rule
induction algorithms [23]. In rule induction algorithms the classification model
is represented by a set of classification rules. These rules are of the form: “IF
antecedent THEN consequent”, where the antecedent represents a conjunction
of conditions and the consequent represents the class predicted for all examples
(data instances, records) that satisfy the antecedent. Each condition in the an-
tecedent typically specifies a value or a range of values for a given attribute of
the data being mined - e.g., “gender = female”, “age < 21”.

The first AIS for rule induction in the classification task of data mining was
proposed in [27], and named IFRAIS (Induction of Fuzzy Rules with an Artificial
Immune System). IFRAIS will be discussed in the next section. In this section
we just highlight that this system discovers fuzzy classification rules. Fuzzy rules
are in general more natural and more comprehensible to human beings than crisp
rules, and the fuzzy rule representation also has the ability of coping well with the
uncertainties frequently associated with data in biological databases [28]. Other
algorithms based on AIS for rule induction are discussed in detail in [66, 67].

Current Models

Artificial Immune Systems in Bio-medical Data Mining: IFRAIS Study Case As
mentioned earlier, IFRAIS is an AIS that discovers fuzzy classification rules from
data. Recall that the rule antecedent is formed by a conjunction of conditions.
Each attribute can be either continuous (real-valued, e.g. the molecular weight
of a protein) or categorical (nominal, e.g. the name of a species), as usual in data
mining. Categorical attributes are inherently crisp, but continuous attributes are
fuzzified by using a set of three linguistic terms (low, medium, high). Hence, in
the case of conti-nuous attributes, IFRAIS discovers fuzzy rules having condi-
tions such as: “molecular weight is large”. IFRAIS discovers fuzzy classification
rules by using the sequential covering approach for rule induction algorithms [18].
This is an iterative process which starts with an empty set of rules and the full
training set (containing all training examples). At each iteration, IFRAIS is run
to discover the best possible classification rule for the current training set, which
is then added to the set of discovered rules. Then the examples correctly covered
by the discovered rule (i.e. the examples satisfying the antecedent of that rule
and having the class predicted by the rule) are removed from the training set,
so that a smaller training set is available for the next iteration. This process is
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repeated until all (or a large part of the) training examples have been covered
by the discovered rules. In order to discover classification rules, IFRAIS uses
essentially clonal selection and hypermutation procedures. The basic ideas are
as follows. Each antibody corresponds to a candidate fuzzy classification rule.
During an IFRAIS run, the better the classification accuracy of an antibody,
the more likely it is to be selected for cloning. In addition, once an antibody is
cloned, the rate of mutation of a clone is inversely proportional to the classi-
fication accuracy of the antibody. Hence, the principles of clonal selection and
hypermutation drive the evolution of the population of antibody towards better
and better classification rules. In [34] [35] IFRAIS was successfully employed to
discover fuzzy classification rules for female breast cancer familiarity profiling.
IFRAIS’ results were validated using statistical driven approaches using Gene
Ontology through GO Miner [40]. Competitive results obtained by IFRAIS seem
to encourage new efforts in this field. A biological interpretation of the results
carried out using Gene Ontology is currently under investigation.

11.2.4 Application of AIS based Data Mining in Bioinformatics

As we previously stated several examples of application of AIS based data min-
ing systems in bioinformatics can be retrieved in literature. Artificial Immune
Systems-derived algorithms have been employed in familiarity profiling [34],
prognosis prediction [58] and estrogen receptor modelling [59] in breast cancer.
For a brief comparative overview of the performances of these kinds of systems
in the context of aCGH data analysis the reader is referred to [60]. Previously
de Castro and colleagues focused on the use of Hierarchical Artificial Immune
Network paradigm for the problem of gene expression clustering [63, 64] and
for rearrangement study of gene expression [62]. AIS/K-NNK-NN hybrid data
mining algorithm have been tested for cancer classification in [43]. Tsanakova
and colleagues, instead, focused on the problem of gene signature finding in the
context of diffuse large B-Cell lymphoma [44]. A similar perspective has been
reported by Ando and colleagues in [65] for the problem of acute leukemia classi-
fication. PCA-AIRS hybrid systems have been employed in the diagnosis of lung
cancer [46] and [47]. A hybrid system based on fuzzy weighting pre-processing
and AIRS has been described and employed in the diagnosis of heart, hepatitis
and thyroid diseases in [48, 49, 50] respectively. Research currently being carried
out by Alves and colleagues is mainly focused on the application of a multi-label
AIS based data mining system to the problem of protein function prediction [36].

11.3 Immune Algorithms in Structural Bioinformatics
and Proteomics

11.3.1 The Multi-objective Immunological Algorithm

Central to the field of protein structural biology is a set of observations, hypoth-
esis and so-called paradoxes. The Thermodynamic hypothesis postulates that the
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native state of a protein is the state of lowest free energy of the protein system
under physiological conditions.

The free energy of a protein can be modelled as function of the different
interactions within the protein. These interactions (local, non-local, hydrophobic,
entropic effects, hydrogen bonding) depend on the positions of the atoms of the
protein. The set of atomic coordinates providing the minimum possible value of
the free energy corresponds to the native conformation of the protein. Since the
interactions comprising the energy function are highly non-convex, the protein
structure prediction (PSP) problem must be tackled as a global optimization
problem.

For the past fifty years, the PSP problem has been defined as a large single-
objective optimization problem, with researchers employing Molecular Dynamics,
Monte Carlo methods and Evolutionary Algorithms [71, 69, 72, 73, 70]. In this
section, we reason by computational experiments that it would be more suitable
to model the PSP problem as a multi-objective optimization problem. The goal of
the research is to find a set of equivalent three-dimensional folded conformations,
relying on the observation that the folded state is one of only a small ensemble of
all possible conformations [74]. We adopt a multi-objective approach in order to
obtain “good” non-dominated compact solutions near or inside the folded state.

PAES is a multi-objective optimizer which uses a simple (1+1) local search
evolution strategy. Nonetheless, it is capable of finding diverse solutions in the
Pareto optimal set because it maintains an archive of non-dominated solutions
which it exploits to accurately estimate the quality of new candidate solutions.
At each iteration t, a candidate solution ct and a mutated solution mt must
be compared for dominance. Acceptance is simple if one solution dominates the
other. If neither solution dominates the other, the new candidate solution is
compared with the reference population of previously archived non-dominated
solutions. If the comparison fails to favor one solution over the other, the chosen
solution is the one which resides in the least crowded region of the space. A
maximum size of the archive is always maintained. The crowding procedure is
based on recursively dividing up the M -dimensional objective space in 2d equal-
sized hypercubes, where d is a user defined depth parameter. The algorithm
continues until a given, fixed number of iterations is reached.

PAES by itself has proved to be a very useful MOEA with successful ap-
plication in many different fields. However, when applied to the PSP problem,
we have observed poor performance both in terms of energy function and final
structure obtained. The complexity of the funnel landscape of the PSP problem,
which is characterized by a huge number of local minima, coupled with the goal
of producing a “good” conformation from a structural point of view (RMSD
and DME), clearly poses many problems (e.g., premature convergence, trapping
in local minima, etc).

I-PAES [76] is a modified version of PAES with a different solution repre-
sentation (polypeptide chain) and immune inspired (cloning and hypermutation)
operators. The algorithm starts by initializing a random conformation. The tor-
sion angles (φ, ψ, χi) are generated randomly from the constraint regions. Next,
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I-PAES(depth, archive size, objectives)
1. t := 0;
2. Initialize(c); /*Generate initial random solution*/
3. Evaluate(c); /*Evaluation of initial solution*/
4. AddToArchive(c); /*Add c to archive*/
5. while(not(Termination()))

/*Start Immune phase*/
6. (cclo

1 , cclo
2 ) := Cloning(c); /*Clonal expansion phase*/

7. (chyp
1 , chyp

2 ) := Hypermutation(cclo
1 , cclo

2 ); /*Affinity maturation phase*/
8. Evaluate(chyp

1 , chyp
2 ); /*Evaluation phase*/

10. if(chyp
1 dominates chyp

2 ) m := chyp
1 ;

10. else if(chyp
2 dominates chyp

1 ) m := chyp
2 ;

10. else m := Best(chyp
1 , chyp

2 ); /*min Echarmm selection*/
12. AddToArchive(Worst(chyp

1 , chyp
2 )); /*max Echarmm selection*/

/*End Immune phase*/
/*Start (1+1)-PAES*/

10. if(c dominates m) discard m;
11. else if(m dominates c)
12. AddToArchive(m);
13. c := m;
14. else if(m is dominated by any member of the archive) discard m;
15. else test(c, m, archive size, depth);
16. t := t + 1;
17. endwhile

Fig. 11.4. Pseudo-code of I-PAES

the energy of the conformation (a point in the landscape) is evaluated. The pro-
tein structure in internal coordinates (torsion angles) is transformed in Cartesian
coordinates. The CHARMM energy potential of the structure is then computed
using routines from TINKER Molecular Modeling Package1.

Figure 11.4 shows the pseudo-code of the algorithm.

11.3.2 Open Questions in Proteomics

Given a protein with unknown biological function, its function(s) can be deter-
mined in a biological laboratory or via theoretical/computational methods. In a
biological laboratory, the determination of protein functions is usually performed
by experimental methods such as X-ray, crystallography or nuclear magnetic res-
onance. Theoretical/computational methods include homology modelling (based
on previous knowledge) or ab-initio methods [29]. The problem of protein func-
tion prediction can be naturally cast as a classification problem. In this context,
a protein is considered as an example (record) to be classified, and a list of pre-
defined protein functions that can be assigned to each protein are the classes
1 http://dasher.wustl.edu/tinker/
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to be predicted by the classification algorithm. The ultimate goal is to predict
the functions of proteins whose function is not yet known, based on attributes
describing characteristics of the proteins. Protein function prediction is a very
active research area for several reasons, such as the urgent and crucial need for a
better understanding of proteins related to diseases, developing of more effective
medical drugs, preventive medicine, etc. In any case, the very large volume of
data stored in biological databases makes it infeasible to manually determine
the function of each protein in those databases. Hence, several bioinformatics
studies have been performed with the aim of developing computational meth-
ods for predicting protein function [26]. At present, the biological functions that
can be performed by proteins are defined in a structured, standardized dictio-
nary of terms called the Gene Ontology [30]. The GO consists of a dictionary
that defines gene products independent from species. GO actually consists of
3 separate “domains” (very different types of GO terms): molecular function,
biological process and cellular component. The GO is structurally organized in
the form of a direct acyclic graph (DAG), where each GO term represents a node
of the hierarchical structure. The inter-node relationships are of the type “is a”
or “part of”. A “child” node can have one or more parent nodes in the DAG.
Several other works have been proposed for predicting the biological functions
of proteins according to the GO [31, 32, 33].

Current Models

Towards Protein Function Prediction with AIS for Hierarchical Classification
The vast majority of classification algorithms assign just one class to an exam-
ple (a protein, in the case of protein function prediction). Such classification
algorithms solve a so-called single-label classification problem. However, in the
context of protein function prediction, it is often necessary that the algorithm
be flexible enough to be able to assign multiple classes (functions) to a protein,
characterizing a multi-label classification problem [51]. In addition, protein func-
tions are often defined in a hierarchical fashion, such as the functions included
in the Gene Ontology (GO) - briefly discussed earlier. IFRAIS is a single-label,
“flat” (non-hierarchical) classification algorithm. Work is ongoing in modifying
IFRAIS to be a multi-label hierarchical classification algorithm [36]. One of the
extensions being incorporated in the algorithm is to make it consistent with the
semantics of the protein function hierarchy in GO. More precisely, when a protein
is annotated with a GO term, this means that it contains not only the function
specified by that term, but also the functions specified by all other terms which
are ancestors of the former term in the GO’s function hierarchy. IFRAIS [27] is
being modified to guarantee that such hierarchical semantics is preserved in the
candidate classification rules throughout the training of the algorithm. Another
modification being implemented is to allow the algorithm to solve a multi-label
classification problem, so that a single classification rule can predict one or more
classes at once. Another research direction being pursued is the development
of an AIS for the hierarchical prediction of GPCR (G protein coupled recep-
tors) functions [52]. The AIS being developed in this project is a hierarchical
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classification system, but not a multi-label one, since the GPCR classes being
predicted are mutually exclusive at each level of the class hierarchy. A distinctive
characteristic of this project is that it uses a novel methodology for designing
an AIS where, instead of just using the natural immune system as a source of
inspiration at a high level of abstraction (as usual in the field of AIS), the design
of the AIS is influenced by the computational modelling of some aspect of the
natural immune system. Hence, this project tries to achieve a much closer in-
tegration between computer science and biology than in previous AIS projects.
More precisely, the key aspect of the natural immune system being modelled
in the above project is the concept of antigen receptor degeneracy, which, ac-
cording to [53], is essentially the capacity of a single antigen receptor to bind
and recognize many different ligands. Cohen’s theory is based on the idea that
the degeneracy of different receptors is combined in order to achieve immune
specificity. Mendao et al in [52] developed an agent-based computational model
of immune degeneracy, and derived from it a high-level degeneracy-based clonal
selection algorithm. This algorithm is currently being refined and extended in
order to produce a degeneracy-based AIS for hierarchical classification [78].

11.3.3 Results

In the first set of experiments, we apply the approach to six proteins sequences,
five extracted from reference [73] and one from [77]: 1ZDD, 1ROP, 1CRN, 1UTG,
1R69 and 1CTF.

Discussion is as follows. First we compare the performance of different versions
of the PAES and I-PAES algorithms on the first protein set. Then we study the
stability of the approach with respect to the native and predicted secondary
structure constraints. Finally, we show specific results for each protein in terms
of the obtained observed Pareto optimal sets at different time steps, P∗,t

obs, and
various dynamics of the algorithm during the evolution.

Four different versions of the PAES algorithm have been used [76] featuring
dynamic (exponential decay)

The best conformation obtained with I-PAES has DME = 0.77Å and
RMSD = 1.92Å (see figure 11.5).

Fig. 11.5. Native (left plot) and predicted (right plot) for 2MLT protein (DME =
0.77Å, RMSD = 1.92Å)
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Table 11.1. Comparative results between I-PAESs, I-PAESm, (1+1)-PAES1 and
(1+1)-PAES2. For each protein we report the Protein Data Bank (PDB) identifier,
the length (number of residues), the approximate class (α-helix, β-sheet), and the
energy values of the native structures. The last three columns show the best results
obtained for each protein on 10 independent runs. The DME and RMSD values are
measured on Cα atoms from the native structure. Energy values are calculated using
the ANALYZE routine from TINKER.

Protein Algorithm DMEmin (Å) RMSDmin (Å) Min energy (kcal/mol)

1ROP(56 aa) I-PAESs 2.01 4.11 −661.48
class: α I-PAESm 1.684 3.70 −902.36
energy: -667.05 kcal/mol (1+1)-PAES1 4.91 6.31 2640.77

(1+1)-PAES2 5.99 8.665 −409.95

1UTG(70 aa) I-PAESs 4.49 5.11 282.24
class: α I-PAESm 3.79 4.60 573.89
energy: -142.46 kcal/mol (1+1)-PAES1 4.71 6.04 7563.07

(1+1)-PAES2 4.82 5.56 397.12

1CRN(46 aa) I-PAESs 4.13 4.73 232.29
class: α + β I-PAESm 3.72 4.31 509.09
energy: 202.73 kcal/mol (1+1)-PAES1 4.67 6.18 1653.93

(1+1)-PAES2 6.05 7.89 509.52

1R69(63 aa) I-PAESs 5.93 8.42 211.26
class: α I-PAESm 4.91 5.05 264.56
energy: -676.53 kcal/mol (1+1)-PAES1 5.16 7.59 9037.89

(1+1)-PAES2 6.88 8.52 659.49

1CTF(68 aa) I-PAESs 8.08 10.69 71.55
class: α + β I-PAESm 6.82 10.12 218.99
energy: 230.08 kcal/mol (1+1)-PAES1 9.61 12.09 1424.33

(1+1)-PAES2 8.84 10.21 617.69

11.4 Proteomic Multiple Sequence Alignments:
Refinement Using an Immunological Local Search

11.4.1 Proteomics Multiple Sequence Alignments

The Multiple Sequence Alignment (MSA) of proteins plays a central role in
molecular biology, as it can reveal the constraints imposed by structure and
function on the evolution of whole protein families [78]. MSA has been used for
building phylogenetic trees, for the identification of conserved motifs, to find
diagnostic patterns families, and for predicting secondary and tertiary struc-
tures of RNA and protein sequences. In order to be able to align a set of bio-
sequences, a reliable objective function for the measurement of an alignment
in terms of its biological plausibility through an analytical or computational
function is needed.

One of the most important and popular computational sequence analysis prob-
lem is to determine if two, or more, biological sequences have common sub-
sequences. However, to check the similarities between two or more sequences,
there are two primary issues that need to be faced: the choice of an objec-
tive function that assesses the biological alignment quality and the design of an
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effective algorithm to optimize the given objective function. The alignment qual-
ity is often the limiting factor in biological analyses of amino-acid sequences;
defining a proper objective function is a crucial task.

The classical objective function used to measure the biological alignment qual-
ity is the weighted sums-of-pairs with affine gap penalties [79]: each sequence
receives a weight proportional to the amount of independent information that it
contains [80] and the cost of the multiple alignment is equal to the sum of the
costs of all the weighted pairwise substitutions:

max
Ŝ

(
n−1∑

i=1

n∑

j=i+1

WSS(Ŝi, Ŝj) +
n∑

i=1

AGPS(Ŝi)

)

. (11.1)

Sequence weights are determined by constructing a guide tree from known se-
quences.

11.4.2 IMSA, an Immunological Algorithm

In this chapter we present an immunological algorithm, IMSA, to tackle the
multiple sequence alignment problem. It incorporates two different strategies to
create the initial population, as well as new hypermutation operators, specific
operators for solving MSA, which insert or remove gaps in the sequences. Gap
columns which have been matched are moved to the end of the sequence. The
remaining elements (amino acids in this work) and existing gaps are shifted into
the freed space.

IMSA considers antigens (Ags) and B cells. The Ag is a given MSA instance,
and B cells a set of alignments, that have solved (or approximated) the initial
problem. In tackling the MSA Ags and B cells are represented by a sequence
matrix. In particular, let

Σ = {A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V } (11.2)

be the twenty amino acid alphabet, and let S = {S1, S2, . . . , Sn} be the set of
n ≥ 2 sequences with length {�1, �2, . . . , �n}, such that Si ∈ Σ∗,. Then an Ag is
represented by a matrix of n rows and max{�1, . . . , �n} columns, whereas each B
cell is represented by an (n× �) matrix, with � = (3

2 ·max{�1, . . . , �n}). By using
such a representation IMSA was able to develop more compact alignments.

11.4.3 Results and Conclusions

To evaluate the biological alignment quality produced by IMSA, we tested it
using the classical benchmark BAliBASE.

The obtained results showed in the next tables were obtained using a robust
experimental protocol : d = 10, dup = 1, τB = 33, Tmax = 2 × 105 and 50
independent runs. Moreover, we used the following substitution matrices:

• BLOSUM45 for Ref1v1 and Ref 3, with GOP = 14, GEP = 2;
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Table 11.2. Pseudo-code of the proposed hybrid immune algorithm for the MSA

IMSA (d, dup, τB , Tmax)
t ← 0;
FFE ← 0;
Nc ← d × dup;
P (t) ← Initialize Population(d);
Strip Gaps(P (t));
Evaluate(P (t));
FFE ← FFE + d;
while (FFE < Tmax)do

P (clo) ← Cloning (P (t), dup);
P (gap) ← Gap operators (P (clo));
Strip Gaps(P (gap));
Evaluate(P (gap));
FFE ← FFE + Nc;
P (block) ← BlockShuffling operators (P (clo));
Compute Weights();
Normalize Weights();
Strip Gaps(P (block));
Evaluate(P (block));
FFE ← FFE + Nc;
(P (t)

a , P (gap)
a , P (block)

a ) = Elitist-Aging(P (t), P (gap), P (block), τB);
P (t+1) ← (μ + λ)-Selection(P (t)

a , P (gap)
a , P (block)

a );
t ← t + 1;

end while

Table 11.3. SP values given by several methods on the BAliBase v.1.0 benchmark

Aligner Ref 1 Ref 2 Ref 3 Ref 4 Ref 5 Overall
(82) (23) (12) (12) (12) (141)

IMSA 80.7 88.6 77.4 70.2 82.0 79.7
DIALIGN [89] 77.7 38.4 28.8 85.2 83.6 62.7
CLUSTALX [83] 85.3 58.3 40.8 36.0 70.6 58.2
PILEUP8 [82] 82.2 42.8 33.3 59.1 63.8 56.2
ML PIMA [86] 80.1 37.1 34.0 70.4 57.2 55.7
PRRP [91] 86.6 54.0 48.7 13.4 70.0 54.5
SAGA [94] 70.3 58.6 46.2 28.8 64.1 53.6
SB PIMA [86] 81.1 37.9 24.4 72.6 50.7 53.3
MULTALIGN [81] 82.3 51.6 27.6 29.2 62.7 50.6

• BLOSUM62 for Ref1v2, Ref 2, Ref 4 and Ref 5, with GOP = 11, GEP = 1;
• BLOSUM80 for Ref1v3, with GOP = 10, GEP = 1.

Table 11.3 shows the average SP score obtained by the described alignment
tools on every instance set of BAliBASE v.1.0. As it can be seen in the table,
IMSA performs well on the Reference 2 and Reference 3 sets. The values obtained
aid to raise the overall score, which is higher compared to the results published
by the Bioinformatic platform of Strasbourg.
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11.5 Conclusions and Open Questions

In this chapter we have analysed some applications of Artificial Immune System
based algorithms in bioinformatics. Of course this is only a partial outlook on the
world of AIS based approaches: interested readers can check references in order
to obtain more detailed information about specific aspects of the proposed topics.
Furthermore, given their infancy, AIS are currently undergoing very fast changes
resulting in a very dynamical field of reasearch where tens of novel and promising
projects are proposed in the time of some months. These aspects forced the
authors to select a set of significant experiences to be used as examples of how the
algorithms described herein can be successfully used in the field of bioinfomatics.
This led to exclude interesting projects like BIAS-PROFS coordinated by Freitas
and colleagues; even in this case interested readers can find useful information in
the references. After these necessary statements some conclusions. In this chapter
we have learned how novel bio-inspired computational intelligence paradigms can
be used in very diverse field of research in bioinformatics. As previously stated
AIS are considered a novel paradigm but they have been already able to reach
significant results in highly complex contexst like Knowledge Discovery in Data
bases (section 11.2) and Protein Structure Prediction (section 11.1). Even if
immune-inspired algorithms have been successfully employed in several diverse
problems, there are still some strategic fields of research in which solutions seem
to be far from being reached, just to name few:

• Large molecules folding prediction;
• Gene networks inference;
• Disease profiling and evolution modelling.

These are only some of the most active areas of AIS based research in bioinfor-
matics. From a theoretical point of view it should be noted that some areas like
danger theory and hybrid systems have been exploited with a limited system-
atic approach in bioinformatics: these areas deserve a comprehensive analytic
approach. Readers interested in these promising aspects of the AIS research in
bioinformatics can find useful information in [43, 49].
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12.1 Introduction

Proteins are complex macromolecules that perform vital functions in all living
beings. They are composed of a chain of amino acids. The biological function
of a protein is determined by the way it is folded into a specific tri-dimensional
structure, known as native conformation. Understanding how proteins fold is of
great importance to Biology, Biochemistry and Medicine. Considering the full
analytic atomic model of a protein, it is still not possible to determine the exact
tri-dimensional structure of real-world proteins, even with the most powerful
computational resources. To reduce the computational complexity of the analytic
model, many simplified models have been proposed. Even the simplest one, the
bi-dimensional Hydrophobic-Polar (2D-HP) model (see Sect. 12.2.2), was proved
to be intractable due to its NP-completeness. The current approach for studying
the structure of proteins is the use of heuristic methods that, however, do not
guarantee the optimal solution. Evolutionary computation techniques have been
proved to be efficient for many engineering and computer science problems. This
is also the case of unveiling the structure of proteins using simple lattice models.

In this work the nature of the models used for the protein folding problem
is reviewed, with special emphasis on discrete models. Also, we analyze how
evolutionary computation techniques have been applied to solve it. Amongst
these techniques, there are many different variants of genetic algorithms, besides
ant colony optimization, differential evolution and artificial immune systems.

This chapter is structured as follows: the remaining of this section introduces
some basic aspects of amino acids and proteins, and presents the protein folding
problem. Sect. 12.2 presents the several models for protein folding with special
emphasis on a specific discrete model: the hydrophobic-polar. Sect. 12.3 is ded-
icated to the several computational approaches for the protein folding problem,
from molecular dynamics and approximation algorithms to several evolutionary
computation algorithms. Next, Sect. 12.4 presents challenging issues that limit
current research. Finally, in Sect. 12.5 current trends for future research and the
conclusion are presented.

T.G. Smolinski et al. (Eds.): Comp. Intel. in Biomed. & Bioinform., SCI 151, pp. 297–315, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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12.1.1 Amino Acids and Proteins

The basic structure of an amino acid consists of a carbon atom (Cα) connected
with an amino group (NH2), a carboxyl group (COOH) and a side-chain. The
only difference between amino acids is due to the composition of their side-
chain. There are 20 standard amino acids. According to the physical properties
of the side-chain, amino acids can be classified according its polarity and acid-
ity/basicity. Such classification leads to a hydrophilic (polar) or hydrophobic
(nonpolar) character of the amino acid. The distribution of hydrophilic and hy-
drophobic amino acids along the protein ultimately determines structure of the
protein.

The sequence of amino group, Cα and carboxyl group of an amino acid
bounded with the following is known as backbone of a protein. There are three
main levels of organization of the structure of a protein: primary, secondary and
tertiary structures. The primary structure of a protein or polypeptide chain is its
linear sequence of amino acids, represented by a string of letters. Some specific
regions of the primary structure can fold into known tri-dimensional structures,
such as α-helices or β-sheets. These structures are known as secondary struc-
tures. The spatial representation of the protein is called tertiary structure. The
shape into which a protein naturally folds is known as its native state, or native
conformation. For some particular proteins, tertiary structures can be combined
to form a super-structure known as quaternary structure.

The tertiary structure of a protein, or the quaternary structure of its com-
plexes, is of particular interest, since it defines the biological function of the
protein. The most effective method for unveiling the structure of real proteins
is using nuclear magnetic resonance spectroscopy or X-ray crystallography. It
is estimated that the human body has around 100,000 different proteins, but a
only a small portion of them have its structure known. The Protein Data Bank
(PDB) [7] (http : //www.pdb.org) is the repository for structural data of pro-
teins. Currently, it holds structural information of almost 50,000 proteins. How-
ever, the amount of known proteins which structure is unknown is much larger,
thus justifying the use of computational methods for this purpose. Therefore, this
is an important research area in Bioinformatics and Computational Biology.

12.1.2 Protein Folding

The Protein Structure Prediction (PSP) problem can be defined as determining
the final tri-dimensional structure of a protein by using only the information
about its primary structure. On the other hand, the Protein Folding Problem
(PFP) is understood as being the discovery of the pathways by which a protein
is folded into its natural conformation, during its synthesis [34]. However, in the
current literature those two terms are frequently used with no distinction, usually
meaning only the first issue. A computational approach to predict the structure
of a protein demands a model that represents it abstractly, in a given level of
details. Basing on well-established thermodynamical laws, the prediction of the
structure of a protein is modelled as the minimization of the corresponding free-
energy with respect to the possible conformations that a protein is able to attain.
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The minimization of this free-energy is the most important factor that drives
the construction of the structure of a protein. Formally, the native conformation
of a protein is defined as that in which the free-energy is minimal. According
to [61], a computational model that obeys this principle must have the following
features:

• A model of the protein, defined by a set of entities representing atoms and
connections among them;

• A set of rules defining the possible conformations of the protein;
• A computationally feasible function for evaluating the free-energy of each

possible conformation.

The amount of details of the structure modelled depends on the choices done
about the model (see Sect. 12.2). For instance, a protein could a have a spatial
representation of all its atoms, all all its atoms but hydrogen, only the backbone
without the side-chain, or as simple hydrophobic-polar elements embedded in a
lattice.

12.2 Free-Energy Models

12.2.1 Analytical Models

An analytical model has a detailed description of the tri-dimensional structure
of a protein, including information about all its individual atoms [61]. A protein
can be viewed as a collection of atoms connected each other. Therefore, to specify
the tertiary structure of a protein, it is possible to establish values for angles,
lengths and torsions of the connections among atoms in the structure. To reduce
the inherent complexity of this model, some atoms could be disregarded or even
grouped into larger elements, and treated as equivalent single atoms by the
model. Obviously, such reduction decreases the visual equivalence between the
model and a real protein, for a given conformation.

The free-energy function in an analytical model is frequently specified by
parameters representing the individual contributions of atoms. For atoms con-
nected each other, such parameters depend on the length, angles and torsions of
the connection. For those atoms that are not directly connected each other, the
parameters depend on physical forces (i.e., Coulomb and van der Walls forces) or
statistical information inferred from known structures. However, using a detailed
description of the structure of a protein and many parameters in the free-energy
function, it is computationally hard to find an optimized solution for the predic-
tion of the structure of a protein. For instance, analytical models were presented
by [10, 25, 56, 57].

12.2.2 Discrete Models

The difficulty in using analytical models motivated researchers to develop simpler
discrete models that allow a large number of computational simulations necessary
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to find optimal or quasi-optimal solutions for the PFP [10, 23]. The easiest way to
limit the complexity of an analytical model is to limit the range of lengths, angles
and torsions allowed in the model, and use predefined sets of values. Usually,
these allowed values are obtained from known real-world structures [60, 61].
The simplest class of models for the PFP is known as lattice models. In these
models, a protein is modelled as a sequence of simple elements, representing the
amino acids, embedded in a lattice. The connection angles between amino acids
are restricted by the lattice structure in the plane (2D) or in the space (3D).
In a valid conformation, a given position in the lattice can be occupied by, at
most, one amino acid, and adjacent amino acids in the sequence must occupy
adjacent positions in the lattice. The free-energy of a conformation is defined
as a function of the number of adjacent amino acids in the structure which are
non-adjacent in the sequence. This is known as non-local bonds [22, 61] or H-H
contacts. Although square and cubic lattices are the most popular, there are
implementations that use other type of lattices, such as triangular [46, 63] and
hexagonal [37].

Despite the simplicity of lattice models, both 2D and 3D HP models have some
behavioral equivalency with real-world proteins [22, 23, 24, 61]. Also, the com-
putational treatment of such models are much more convenient, when compared
with analytical models and, for some instances, the exhaustive enumeration of
the possible conformations can be done. These properties have made lattice mod-
els very popular. However, the main drawback of lattice models (and, in special,
of HP models - see Sect. 12.2.2) is the difficulty in representing clear secondary
structures in the folding [33].

The Hydrophobic-Polar Model

This model was introduced by [42] and it is the most known and studied dis-
crete model for the PFP. The Hydrophobic-Polar (HP) model is the simplest
possible model and, in most cases, uses a square (2D) or cubic (3D) lattice.
Notwithstanding, even being simple, the PSP was proved to be NP-hard using
this model, that is, there is no polynomial-time algorithm to solve it, either the
2D version [16, 55, 57, 73] or the 3D one [3, 6]. This fact has motivated the
development of many heuristic approaches, such as in [8, 10, 22, 50, 52, 61, 70].

The HP model is based on the assumption that the major contribution to
the free-energy of the native conformation of a protein is due to interactions
between hydrophobic amino acids, which tend to be grouped in the inner part
of the spatial structure, while the hydrophilic (polar) amino acids tend to stand
more outside, thus protecting the hydrophobic amino acids from contact with
the environmental solvent. For simplicity, the 20 standard amino acids are di-
vided in either hydrophobic (H) or polar (P), based on experimental results [45].
Therefore, the primary structure of a protein is a string defined over the binary
alphabet {H, P}. Although several different hydrophobicity scales can be found
in the current literature, there is still no consensus about a standard transla-
tion table between the 20-letters amino acids into a simple {H, P} alphabet. To
circumvent this problem, some studies suggest the use of extended alphabets,
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Fig. 12.1. A hypothetical conformation of 15 amino acids using the 2D-HP model

in which amino acids are converted to symbols more properly related to their
physical and chemical properties [5, 48].

The {H, P} string representing a protein is then embedded in a 2D or 3D
lattice. Adjacent amino acids of the sequence are also adjacent in the lattice
and, for a valid conformation, no point of the lattice can be occupied by more
than one amino acid. The free-energy of a conformation is inversely proportional
to the number of non-local bonds, as defined before. It is worth to mention that
a non-local bond only takes place when a pair non-adjacent amino acids of
the sequence lie in adjacent positions in the lattice. Consequently, minimizing
the free-energy is equivalent to maximize the number of hydrophobic non-local
bonds.

Figure 12.1 presents a conformation of polypeptide with 15 amino acids using
the 2D-HP model. Black and white dots represent, respectively, the hydropho-
bic and hydrophilic amino acids. The square dot is the first amino acid of the
sequence. The chain is connected by solid lines, and the bonds are represented
by dotted lines. For this conformation there are 4 H-H contacts.

A simple free-energy function of a conformation, suggested by [44], is repre-
sented in Eq. (12.1):

E =
∑

i<j

erirj Δ(ri − rj) (12.1)

where: Δ(ri − rk) = 1 , if amino acids ri and rj have a non-local bond, or
Δ(ri − rk) = 0, otherwise. Depending on the type of contact between amino
acids, the energy will be eHH , eHP or ePP , corresponding to H-H, H-P or P-
P contacts, respectively. According to [44], these energy parameters satisfy the
following physical constraints:

1. Compact conformations have energy levels smaller than any other non-
compact conformations;
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2. Hydrophobic amino acids tend to be buried as inside as possible in the
conformation. This is expressed by the relation ePP > eHP > eHH that
decreases the energy of conformations in which the hydrophobic amino acids
are hidden from the water solvent;

3. Amino acids of different types tend to get apart. This is expressed by the
relation 2eHP > ePP + eHH .

In the standard HP model, values for those parameters are: eHH = −1.0, eHP =
0 and ePP = 0 [42]. However, [44] suggested eHH = −2.3, eHP = −1 and
ePP = 0, since they satisfy the above conditions. According to them, results are
not too sensitive to values of eHH , provided those conditions are satisfied.

Other Discrete Models

Besides the popular HP model, there are other discrete models for the PFP in
which particular biological properties were explored:

• Lattice Polymer Embedding (LPE): this model was proposed by [73] and
is based in a cubic lattice, similarly to the HP model. Each pair of amino
acids have an affinity coefficient and the energy function to be minimized is
the sum, over all possible pairs of amino acids, of the product of the affinity
coefficient by the distance between amino acids.

• Charged Graph Embedding (CGE): This model was proposed by [27] and
later used by [10]. It uses a 3D lattice and incorporates charges to the amino
acids. Conformations allowed are not very realist because it considers bonds
between every pair of amino acids in the chain and bonds are allowed to
cross each other. On the other hand, the influence of a given amino acid on
another one disappears when the Euclidean distance between them exceeds
a critical value.

• Perturbed Homopolymer (PH): this model was suggested by [64] and re-
viewed by [67], and later used by [22]. This model does not take into account
only the interactions between hydrophobic amino acids, but favors connec-
tions between amino acids of the same type (that is, H-H and P-P).

• Helical-HP model: it was presented by [72] and reviewed by [22]. This model
considers only a 2D lattice and includes two types of interactions: non local
interactions between hydrophobic amino acids, and local interactions repre-
sented by a propensity to form helices (helical propensity). [11] has extended
this model taking into consideration the effect of hydrogen bonds in regular
secondary structures (in both α-helices and β-sheets).

• Tangent Spheres Side Chain model (HP-TSSC): introduced by [31], it uses the
basic HP model, but does not embed amino acids in a lattice. In this model,
a protein is represented by a graph that is transformed in a set of tangent
spheres with equal radius, for both the backbone and the side chains. This
model is an important contribution to off-lattice models for protein folding.

• HPNX model: this is a variation of the HP model in which the alphabet
is extended to more letters [5, 9]. For instance, polar amino acids can be
divided into three categories: positive charge (P), negative charge (N) and
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neutral (X). Therefore, the standard 20 amino acids is translated into the
{H, P, N, X} alphabet according to their physical and chemical properties
and the energy of a conformation is computed using a matrix of energy
potentials between every pair of contacts. Usually, eHH = −4.0, ePP =
eNN = 1.0, eNP = −1.0 and for the remaining type of contacts the energy is
null.

12.3 Computational Approaches for the PFP

12.3.1 Molecular Dynamics

This method, also known as ab initio [29, 58], seems to be the most realistic ap-
proach to simulate the folding of real proteins. The term ab initio means to start
”from the beginning”, without using previous knowledge about the structure of
the protein. To do so, the basic idea is to simulate the movements of each atom
of a protein, as well as of the water that surrounds it, as a function of time.
The initial thermal energy of the system is established and atoms are enabled
to move according to the rules of classical mechanics. The energy of a confor-
mation is adapted to take into account all forces, accelerations and velocities
to which each atom is submitted along time. Aiming at making the movement
of the atoms the more realistic as possible, a very small time step is defined,
such as 10−15 sec. For each time step the energy function is recomputed [75].
Even using supercomputers, the number of mathematical operations necessary
to simulate the folding is so high that makes this methodology unfeasible even
for very of small proteins. This type of simulation can be useful only for studying
the behavior of the folding during very short periods of time, several orders of
magnitude smaller than the time necessary to fold a real-world protein. How-
ever, it is believed that this method is potentially powerful to produce results
according to the dynamic properties observed during the folding of real-world
proteins [4], although it cannot be assured that it will converge to the native
conformation. A full review of this methodology can be found in [43].

12.3.2 Approximation Algorithms

An approximation algorithm is a computational procedure capable of finding
quasi-optimal solutions for specific problems (or specific instances), with a given
predefined warranty of performance (regarding the optimal solution). Accord-
ing to [57], such class of algorithms can be useful for the PFP since they can
find valid conformations somewhat near to the native conformation of a protein
(provided the guaranteed maximum error is small). In a further step, the free-
energy value of this approximated solution can be used as an upper-bound for
another algorithm focused on local search. The main drawback of approximation
algorithms is the need for a formal proof of its lower-bound performance.

Possibly, the first approximation algorithms devised for the PFP were proposed
by [30, 31] using 2D- and 3D-HP models. Later, many other algorithms were pro-
posed for different energy models and geometry of lattices [31, 32, 53, 54].
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12.3.3 Genetic Algorithms

The minimization of the free-energy in discrete models frequently leads to a
hard optimization problem. Despite the simplicity the usual free-energy func-
tion, based on the maximization of non-local H-H bonds, it leads to a multi-
modal search space. This search space is characterized by a large number of
invalid solutions (corresponding to conformations in which more than an amino
acid occupy a position in the lattice) and many local minima (corresponding to
different conformations with the same number of non-local H-H bonds). These
characteristics of the search space make it a hard problem for conventional
optimization methods.

Amongst the many computational approaches for the PFP, certainly the most
used is the genetic algorithm (GA), possibly due to its simplicity and efficiency
in finding good solutions in large and complex search spaces. This of a GA in
combining local features into a global solution makes it particularly appealing
for the PFP.

A protein can have well-defined secondary structures, such as α-helices or β-
sheets. In most cases, important secondary structures can be identified in the
primary structure as motifs. Some motifs have structures independent of its
interaction with the remaining molecule, and they can be viewed as building
blocks. In a similar way, the crossover operator of a GA works by recombining
hopefully useful blocks to form solutions of increasing quality, thus providing a
way to recycle partial solutions.

There are two basic issues for applying a GA for a given optimization problem:
how the variables of the problem are encoded, and how the quality of a solu-
tion is measured. The first issue is the representation problem, and the latter,
the evaluation problem. All other issues raised in an implementation, although
important, are secondary.

Encoding

When using a GA for the PFP, the way conformations of the protein are repre-
sented has a great importance on the dynamics and efficiency of the algorithm.
Basically, one can devise three ways of representing a folding [40, 62]:

• Distance matrix: this encoding system describes a structure by means of a
square matrix in which cells represent the distance between amino acids. This
encoding system is rarely used in the literature [62].

• Cartesian coordinates: in this approach, a folding is described by a vector
of elements representing the position of the amino acids of a sequence in
the plane {xi, yi} or in the space {xi, yi, zi}. In general, this approach is not
the most adequate for population-based algorithms (such as the evolutionary
computation ones), since identical (or similar) structures can have completely
representing vectors.

• Internal coordinates: a given conformation is represented as a set of move-
ments of an amino acid relative to its predecessor in the chain. This is the
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most usual representation approach found in evolutionary algorithms for the
PFP, and two types of internal coordinates can be used:
– Absolute internal coordinates: they are based on the orientation of the

axes the lattice in which the folding is embedded (either 2D or 3D).
This encoding system is defined by the following set: {N, S, E, W, F, B},
corresponding to movements north, south, east and west (in the plane),
and forward and backward (in the space).

– Relative internal coordinates: this encoding system defines the position of
the next amino acid of the chain relative to the position of the preceding
one in the lattice. The possible set of movements are: {F, L, R, U, D},
corresponding to forward, left, right, up and down, always having the
previous position as reference. This encoding system has an important
drawback: the initial population of a GA is randomly generated and, as
a consequence, individuals will have an increased number of collisions in
the structure (invalid conformations). This is specially true for proteins
with an increased number of amino acids.

For instance, the conformation shown in figure 12.1 corresponds to the se-
quence {PHHPHPHPPHPHPPH} and can be represented using:

• Relative internal coordinates: {LRLLFLRLLRLRLL},
• Absolute internal coordinates: {WNWSSESENENENW},
• Cartesian coordinates: {(0,0);(-1,0);(-1,1);(-2,1);(-2,0);(-2,-1); (-1,-1);

(-1,-2);(0,-2);(0,-1);(1,-1);(1,0);(2,0);(2,1);(1,1)}.

A study of the two internal relative coordinates was done by [40], using differ-
ent types of lattices. They concluded that, for square and cubic lattices, relative
internal coordinates may lead a genetic algorithms to results much better than
those that could be obtained using absolute internal coordinates. However, there
are some authors who obtained satisfactory results using absolute coordinates
for small chains [17]. For a triangular lattice, both types of coordinates have the
same performance.

There are two restrictions to be satisfied for a valid conformation: there should
be no collisions (a given point in the lattice should be occupied by at most one
amino acid), and all adjacent amino acids of the sequence must be adjacent in
the lattice. This last restriction is implicit in the encoding when using internal
coordinates, but not when using Cartesian coordinates. To deal with the first
restriction using internal coordinates there are two basic approaches:

• Delete invalid conformations that appear during the evolutionary cycle. This
is the simplest way to deal with this issue, but, possibly, not the best one.
When a protein is folded in a valid (but not optimal) conformation, the path-
way to another valid conformation of smaller energy may be not achievable
unless some invalid conformations are permitted in intermediary steps.

• Allow invalid conformations in the population and apply penalties. This ap-
proach is usual when using evolutionary algorithms for constrained problems.
The genetic material present in some unfeasible solutions can be recombined
further in the evolutionary cycle so as to form feasible and, hopefully, better
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solutions. For the PFP there are two ways for applying penalties to invalid
conformations: considering the number of pairs of amino acids that stand on
the same point in the lattice, or considering the number of lattice points that
have more than one amino acid in it. To date, it is not clear which of the
two methods will give better results. Another somewhat different approach
is due to [59] who suggest that hydrophobic amino acids that are in lattice
points already occupied by other amino acids should not contribute to the
free-energy function. that have more than two amino acids. This is an indirect
way to apply a penalty to invalid conformations.

For off-lattice models, the encoding is somewhat straightforward. For instance,
[20] represented a protein by means of internal angular coordinates of the atoms
of the main chain. The torsion angles of the Cα (namely, φ and ψ) were restricted
to a small set of possible values, and were sufficient to represent the topology of
the main chain for a large number of proteins with known structure. Therefore,
using this kind of model, a chromosome can be encoded with integer [14] or
binary [20, 21, 60] values representing those angles. On the other hand, [66] used
a chromosome of real-valued genes for representing the same angles.

Fitness Function

There are many variations on the fitness function, and they are based on the
model used (see Sect. 12.2.2).

For instance, [11] has proposed the use of an extra term to the Eq. (12.1), named
secondary-structure-favored energy term, that considers the energy between hy-
drogen bonds formed by secondary structures. Also, [50] proposed a fitness func-
tion having three terms: the first is the regular free-energy function of the HP
model and the other two are based on the concept of radius of gyration. The ra-
dius of gyration is computed separately for hydrophobic and for polar amino acids.
Maximizing the radius of gyration of hydrophobic amino acids means that they are
pushed towards the inner part of the conformation, while maximizing the radius
of gyration of polar contacts means pushing them towards outside. This concept
was used to force more compact and globular-like conformations.

Other variations can be found: [17] used a weighted sum of the number of H-H
contacts, the number of H-P contacts and the number of hydrophobic-solvent
contacts. They argue that this fitness function is more natural from the biological
point of view, since it may be preferable for a hydrophobic amino acid to have
a contact with a polar amino acid than to be in direct contact with the solvent.

Most approaches in the literature use some fitness function based on the
number of H-H contacts, inherent to the HP model. However, the main criticism
of this simple approach is that hydrophobic iteration alone is not sufficient to
induce regular structures during folding, as pointed by [11].

Genetic Operators

For most implementations, the regular crossover and mutation operators have
been used as part of a larger set of specialized operators.
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Regarding the regular crossover, there are implementations using 1-point,
2-points and uniform variants. Although there is no consensus about which
crossover type gives the best results, the traditional 1-point crossover is less
disruptive and tends to keep larger schemata. Therefore, the more folded a con-
formation, the more the 1-point crossover seems to be appropriate. A different
approach, known as systematic crossover, was proposed by [38]. In this case the
best individual is always one of the parents selected for crossover and all possi-
ble crossover points are tried, generating a number of individuals. The two best
offsprings are maintained in the population.

Some special types of mutation were also proposed. For instance, [15, 68,
74] proposed in-plane rotation, snake, out-of-plane rotation, crank shaft, kink
and cornerchange, and [35] implemented diagonal move and tilt move. All these
mutation operators aimed at producing different conformations by means of
specific re-arrangement of the folding in the lattice.

Other researchers presented biologically-inspired operators such as the U-turn
and Make-loops by [51]. These operators were meant to simulate the construction
of stable secondary structures found in real folded proteins, such as α-helices and
β-sheets.

Two special genetic operators were proposed by [15]: duplicate predator and
brood selection. The first is aimed at maintaining diversity in the populations
throughout generations by means of deleting duplicate individuals and is sim-
ilar to the pioneer search strategy introduced by [38]. The latter generates a
brood of offsprings from two parents, and the best descendent is kept. This pro-
cedure is a kind of limited local search in the surrounding search space of the
parents.

In some cases the use of the regular and specialized genetic operators is not
sufficient to guarantee a proper fine-tuning of the conformation. This reflects the
general knowledge that genetic algorithms are efficient for global search but do
not display the same performance for local search. As a consequence, a number
of different methods for local search have been proposed for the PFP. Many of
such implementations are considered by authors as hybrid algorithms [51] or
memetic algorithms [63, 39]. Possibly, the most popular procedures are Monte
Carlo-based local search that has been used to improve solutions [15, 47, 74].
More sparsely, tabu search [36] and local hill-climbing [14, 71] are employed as
genetic operators.

Another different approach is due to [51], who have proposed a local search
procedure as a generalized version of the 2-opt method used for combinatorial
optimization problems. This procedure starts by randomly selecting two non-
consecutive amino acids in the chain and make their positions fixed in the lattice.
Then, all possible conformations are evaluated, keeping the connectivity of the
chain in the fixed points and changing the intermediate amino acids in between.
The best conformation found in the procedure is kept. Although this procedure
is computationally intensive (the number of possibilities increases exponentially
as the distance between fixed points increase), it is useful to find best local
conformation.
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12.3.4 Ant Colony Optimization

Ant Colony Optimization (ACO) is an evolutionary technique inspired on the
behavior of real ants searching for food. Possibly, [65] was the first to propose the
use of ACO for the PFP. Their algoritm is based on three phases: construction,
local search and pheromone updating. In the first phase, ants construct a folding
over the lattice starting at a random point. Next, a greedy local search procedure
is done, based on a long-range mutation method created by the authors. Then,
the pheromone matrix is updated by ants, using two basic mechanisms: uniform
evaporation ratio, and reinforcement of local folding motifs. They also used a
mechanism of normalization of the pheromone matrix to prevent stagnation of
the search. They have applied the ACO to several benchmark instances of using
2D and 3D-HP models, and results were compared with heuristic methods.

[26] also developed an ACO for the PFP using the 3D-HP model. The main
difference between this implementation an that of [65] is the location of the polar
amino acids, the form of the heuristic function that guides ant’s decisions, and
how the pheromone matrix is updated. Also, this implementation does not use
any local search strategy. According the author, the implementation has achieved
much better results than [65] and other heuristic methods.

Another implementation of ACO for the 3D-HP PFP is [69]. The differences of
this approach to others is the use of a rapid coordinate transfer system to reduce
computing time, as well a greedy local search procedure based on elementary
moves, similar to the mutation operators proposed in [15, 68]. They also have
devised a new method, inspired by Ethernet communication, for avoiding invalid
foldings when an ant constructs a path in the lattice.

[13] has implemented single and multiple colony approaches of the ACO
algorithm, with centralized and distributed processing. The main emphasis of
the work was on distributed processing of multiple colonies, and they devised
several methods for sharing information between evolving colonies. The several
versions were tested with benchmarks of the 2D and 3D HP models. They have
shown that the distributed multiple colony approach is scalable and has better
performance over single colony approaches.

12.3.5 Differential Evolution

To date, the only work using Differential Evolution (DE) for the PFP is [8],
using the 2D-HP model. Possibly, this is due to the fact that DE is a relatively
recent evolutionary algorithm, and has been invented for continuous optimiza-
tion problems. DE represents a possible solution for a problem using a vector
of real numbers. The central idea of the DE algorithm is the use of difference
vectors for generating perturbations in a population of vectors. This algorithm is
conceptually simple, has few parameters do be tuned and, most times, converges
fast to a good solution. In DE, the variables of the problem are encoded in a vec-
tor and, usually, the meaning of its elements to the real-world is straightforward.
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Consequently, the concept of genotype, as in genetic algorithms, is not applicable
to the original DE. However, for the PFP, authors devised an adaptation to
represent possible solutions to the PFP by establishing a genotype-phenotype
mapping. Individuals in DE are real-valued vectors which, in turn, are decoded
into a specific fold of an amino acid chain in a square lattice. They also used
special strategies for mixing vectors in DE and for initializing the population.
Authors applied the proposed DE algorithm to benchmark instances up to 85
amino acids and reported consistent results better than genetic algorithms and
other heuristic methods. Overall, the DE approach seems to be a promising
option for finding good and fast solutions for the PFP.

12.3.6 Other Evolutionary Computation Methods

Only recently that the PFP has driven the attention of researchers of the Arti-
ficial Immune Systems (AIS) area. An AIS for 2D and 3D versions of the PFP
using the lattice HP model was proposed by [18, 19]. In this work, they used two
entities: antigens and B cells. The search space of the problem was efficiently
partitioned by memory B cells with longer life span. Another work is due to [2]
who proposed an AIS hybridized with tabu search and a fuzzy inference sys-
tem. A fuzzy aging operator was introduced to decide which antibodies will be
deleted from the population after the selection procedure. Also, they defined a
mechanism of intensive affinity maturation that uses tabu search. The proposed
AIS was tested with instances of the 3D-HP model.

A hybrid approach using operators from AIS and Pareto Archived Evolution-
ary Strategy was used by [18] for the PFP with an all-atom model. They have
compared this approach with other evolutionary computation methods when
applied to a set of small proteins up to 68 amino acids.

[28] has used Evolution strategies (ES) for a sub-problem of PFP: the side-
chain packing problem. They used an all-atoms representation of the backbone
plus the carbon atom of the side-chain that is bonded with the central Cα. They
used as energy function a measure of the deviation from a known structure. The
encoding used was an array of integers representing the torsion angles for each
amino acid of the chain. The evolutionary model used was a (μ + λt)-ES, where
μ parents generate λt offsprings that compete with parents for survival.

12.3.7 Other Methods

There are several implementations of different neural network architectures for
the PFP. For instance, [76] uses a self-organizing map (SOM) and the 2D-HP
model. However, they obtained good results only for very small sequences, up to
36 amino acids. More traditional methods, such as the well-known branch-and-
bound, were applied by [12] to a benchmark of sequences of up to 100 amino
acids, using the 2D-HP model. Reported results were promising, but still lacks
scalability.
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12.4 Open Questions

12.4.1 Models and Implementations

As a matter of fact, the most studied models for protein folding are quite dis-
tant from reality, in special the HP model. However, as mentioned before, there
are still no algorithm to solve this problem in polynomially-bounded time using
simple lattice models. The more complex the models, certainly, the more diffi-
cult it will be to find an efficient computational algorithm for solving the PFP.
This fact suggests that there is many room for development of models that, at
the same time, have more realistic features and are computationally efficient.
Possibly, both hybrid and evolutionary computation methods will be of great
importance in this scenery.

Two basic issues come up when observing the implementations of evolutionary
computation methods for PFP, as follows:

First, the way amino acids are encoded as a possible solution may be a se-
rious drawback. If the encoding allows invalid conformations, the search space
in which the evolutionary algorithm will look for solutions will have a large
amount of invalid sites. Procedures for dealing with invalid conformations may
be useful. However, a more efficient search could be done if the encoding itself
did not allow invalid conformations. If so, the search space could be strongly
reduced and then evolutionary (or other non-exact algorithms) could be more
effective in searching for the optimal conformation. Also, with the current en-
coding methods it is possible that a very small change in a gene (that repre-
sents, for instance, a given move in the lattice) will cause a strong change in
the conformation, thus indirectly affecting the role of other genes in the en-
coding. This effect is known as epistasis. Those drawbacks suggest that more
studies are still necessary for finding less epistatic and intrinsically collision-free
encodings.

Second, the fitness function dictates the fitness landscape, that is, the shape
of the search space. Most models use the number of H-H contacts as the core of
the fitness function. Consequently, the corresponding fitness landscape has many
discontinuities and plateaus. The first is when the number of H-H contacts vary
from one conformation to the next one, and the latter, when the number of
H-H contacts is the same for many different neighbor conformations (possibly,
the difference between these conformations is the position of amino acids that
does not account for the number of H-H contacts). Due to the embedding in the
lattice, a given conformation can be rotated and/or mirrored. The same holds for
portions of the conformation that are not affected by the remaining amino acids.
As a consequence, it is possible to have a lot of conformations, very different each
other, that have the same number of H-H contacts.

The above-mentioned facts increase the difficulty of the PFP, thus leading to
an increasing loss of performance of evolutionary computation methods, as they
advance towards more realistic models and protein sizes.
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12.4.2 Computational Power

The NP-hardness of the PFP with lattice models was one of the main motivations
for using evolutionary computation, and other heuristic methods. To date, most
works have approached only small sequences, usually chains with less than 100
amino acids. It is clearly observable that evolutionary computation methods
display a decreasing performance as the number of amino acids increase. On
the other hand, real-world proteins have an average of 300 amino acids, and
some can have thousands. Since the number of possible solutions to the PFP
tend to increase exponentially as the number of amino acids increase, the use of
evolutionary computation methods for larger proteins seems to be unfeasible.

In the same way, simulations using all-atoms models (or some simplified ver-
sion) have been done using very small chains, far away from real-world proteins.

Apart from the intrinsic loss of performance of evolutionary algorithms for
the PFP, the main factor that has set bounds on their possible performances is
the available computational power. Although the memory capacity and process-
ing speed of modern desktop computers have increased extraordinarily in last
years, they are still limited for large instances of the PFP. As a consequence, re-
cent works have reported the use of distributed/grid computing [13, 21, 49, 71]
or hardware-based techniques [1] for circumventing the computational power
limitation. These seem to be the direction for future research to achieve the
scalability necessary for studying the folding of real-world proteins.

12.4.3 Benchmarks

All the evolutionary computation methods proposed for the PFP use a kind
of supervised learning procedure. In general, a set of amino acid sequences is
used as training/test cases. The results of the algorithms are compared with
some previous known results, regarding the free-energy of the conformation, the
compactness of the structure, the processing time, etc.

Since the lattice HP models are the most widely studied, it can be found in
the literature some sets of synthetically constructed amino acid chains (not real-
world proteins) ranging from 20 to 100 elements for 2D-HP and up to 64 elements
for 3D-HP [38, 40, 47, 59, 74]. For more realistic models, such as those that use
all-atoms approach, biological data of short length has been used, provided the
tri-dimensional structure is previously known.

However, there is a large gap between the available synthetic benchmarks and
real-world proteins (this is especially true for the HP models). Even consider-
ing the limited representativeness of the model, synthetic instances do not cap-
ture important peculiarities of real-world proteins. Only recently, more realistic
benchmarks were proposed, based on the translation of real-world proteins to the
HP model [51, 65]. There are some issues to be solved regarding the translation
procedure to construct such benchmarks, and they still do not have information
about the native conformation, such as minimum free-energy and tri-dimensional
structure. Notwithstanding, these benchmarks represent an important improve-
ment for this research area, offering new challenges to the existing algorithms
and methods.
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12.5 Conclusion

Despite the progress done using evolutionary algorithms for protein folding pre-
diction, this is still an open problem. To date, no technique has demonstrated
acceptable scalability and accuracy for problem sizes comparable to those of
real-world proteins. Notwithstanding, evolutionary computation methods have
been intensively used for the PSP and are the most promising.

As mentioned in Sec. 12.4, currently, there are some important questions to be
addressed in PFP. The most widely used models are far from reality, but, even
so, computationally complex. Further research is necessary for inventing more
adequate models, encodings and fitness functions for evolutionary computation
methods.

Regarding the evolutionary computation methods themselves, it seems that
genetic algorithms have achieved their limit of performance. More recent evo-
lutionary computation methods, such as AIS, ACO and DE, seem to be more
promising. However, the observation of the most successful evolutionary compu-
tation methods for PFP are those that use some kind of hybridism, mainly as a
local search technique, and, certainly, this is a future trend.

Another important issue to be addressed is scalability, as research moves to-
wards realistic models and the analysis of real-world proteins. The performance
of computational systems for the PFP have to increase, at least, two orders
of magnitude so as to deal efficiently with real-world problems. Therefore, fu-
ture trends include distributed/grid processing and specialized hardware-based
approaches.
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Summary. Protein structure prediction is one of the most challenging topics in bioin-
formatics. As the protein structure is found to be closely related to its functions,
predicting the folding structure of a protein to judge its functions is meaningful to
the humanity. This chapter proposes a flexible ant colony (FAC) algorithm for solving
protein folding problems (PFPs) based on the hydrophobic-polar (HP) square lattice
model. Different from the previous ant algorithms for PFPs, the pheromones in the
proposed algorithm are placed on the arcs connecting adjacent squares in the lattice.
Such pheromone placement model is similar to the one used in the traveling salesmen
problems (TSPs), where pheromones are released on the arcs connecting the cities.
Moreover, the collaboration of effective heuristic and pheromone strategies greatly
enhances the performance of the algorithm so that the algorithm can achieve good
results without local search methods. By testing some benchmark two-dimensional
hydrophobic-polar (2D-HP) protein sequences, the performance shows that the pro-
posed algorithm is quite competitive compared with some other well-known methods
for solving the same protein folding problems.

13.1 Introduction

With rapid development of bioinformatics, more and more about the molecular
world becomes known. Following the completion of the human genome project in
2000, genetic sequencing is now made feasible by current technology [1]. However,
there still exist challenges in analyzing relationships between protein structures
and their related functions. As different structures reflect specifically different
functions, predicting a protein structure to estimate its functions is one of the
major goals of bioinformatics [2]. In nature, proteins fold spontaneously to their
native structures very fast (on a time scale of milliseconds) when placed in
an aqueous solution [3]. However, traditional methods for predicting the struc-
tures of proteins, such as the X-ray crystallography and the nuclear magnetic
resonance (NMR) [4] [5] are expensive and time-consuming. More importantly,
reflections that are gained by these methods may be blurry and incomplete.
Since the remarkable discovery by Anfinsen et al [6] that many simple proteins
have a unique native structure, which appears to depend on the sequence only,
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experimental results [7] [8] [9] have subsequently emerged to support this discov-
ery. A commonly accepted hypothesis is that the protein sequence folds into the
structure with the equilibrium minimum free energy (MFE) state (the thermo-
dynamic hypothesis) [10] [11]. Given a two-dimensional square lattice board, the
protein folding problem (PFP) is to place the protein sequence in the lattice to
form a self-avoiding path. Thus, the aim of solving a PFP is to find the protein
folding conformation that satisfies the MFE state.

Based on this hypothesis, the critical mission is to find a way to predict a
protein structure fast and accurately from the protein sequence. The real struc-
tures of proteins are very complex for they are on the atomic level and in a
relatively large three dimensional search space. Various protein folding models
have been proposed to simplify the structure for better analysis. These models
include the protein structure prediction (PSP) model [12], the lattice polymer
embedding (LPE) model [10], the charged graph embedding (CGE) model [13],
and the hydrophobic-hydrophilic (or hydrophobic-polar, HP) model [14]- [23],
etc. In particular, the HP model can be further classified into three types - the
square lattice model [14]- [18], the triangle lattice model [19]- [21], and the toy
model [22] [23]. The algorithm proposed in this chapter is based on the HP
square lattice model.

Since a number of simplified models have been proposed, various methods have
been developed to solve the PFPs, such as the dynamic programming (DP), neural
network (NN) [23], Monte Carlo (MC) [24]- [28], genetic algorithm (GA) [29]- [36],
ant colony optimization (ACO) [37]- [41], particle swarm optimization (PSO) [22],
and immune algorithm (IA) [42] [43] methods. The PFPs have been proven to
be NP–complete [44], which cannot be solved by a deterministic polynomial al-
gorithm. As a paradigm of swarm computation, ant colony algorithms [45] have
shown great potential in solving NP-hard combinatorial problems.

This chapter develops a simple but effective ant algorithmto solvePFPs, termed
the ‘flexible ant colony (FAC) algorithm’. It has four special mechanisms, includ-
ing the path construction, the path retrieval, the pheromone attraction, and the
folding heuristics. These novel mechanisms make it behave differently from previ-
ous ant algorithms for solving PFPs with the HP square lattice model [37]- [41].

The ants of the FAC algorithm aim to find a ‘conformation path’ of protein
in the lattice. The pheromones are deposited on the virtual connections between
adjacent squares in the lattice. Such pheromone laying approach is similar to
those on the arcs connecting cities in a traveling salesman problem (TSP). How-
ever, it is different from existing ant algorithms proposed for solving PFPs, whose
pheromones are on three relative folding directions of the protein [37]- [41]. In
fact, if the pheromones only indicate the relative directions of the protein fold-
ing (as the ones in [37]- [41] do), the ants may not grasp the folding situations
entirely. On the contrary, if the pheromones guide the protein to fold on an ab-
solute lattice, as the proposed algorithm does, each ant can sense the solutions
which have been configured by the other ants.

A protein sequence in the HP square lattice model is a string of hydrophobic
(H) and polar (P) amino acids. The amino acids are placed one by one by artificial



13 Flexible Protein Folding by Ant Colony Optimization 319

ants. If the surrounding lattice squares of an amino acid are all occupied, the
next amino acid cannot be placed. Such situation is termed stagnation. Then
the path retrieving strategy should be applied. As all ants start to construct the
folding path from the center of the lattice, diversity for ants to choose alternative
squares to place the amino acid on the protein sequence is realized by decreasing
the pheromone value on the arc that the ant has just passed. Such pheromone
reduction method during solution construction is similar to the local pheromone
update method used in the ant colony system (ACS) algorithm [45] [46].

In the proposed FAC algorithm, the heuristics and the pheromones cooper-
ate to construct conformations. The heuristic information varies between the
hydrophobic amino acids and the polar amino acids. An added local search
method is optional and it is omitted in this chapter, as the performance of the
FAC without the local search is good enough in most of the experimental tests.
By comparing the performance with a genetic algorithm (GA), an immune algo-
rithm (IA), and an ant algorithm in the literature, the proposed algorithm does
present improvements.

The rest of this chapter is constructed as follows: Section 13.2 presents a brief
review on the PFPs with the HP model and discusses the features of protein fold-
ing conformations. Then the characteristics of the ACO are briefly introduced.
Section 13.3 details the ants’ construction behaviors in the proposed FAC algo-
rithm. Section 13.4 folds some benchmark protein sequences using the proposed
algorithm and compares the performances with other well-known algorithms. For
deeper analysis, this chapter also tests influences of the parameters of the FAC
algorithm and highlights some prospects for enhancements. Finally, conclusions
are drawn in Section 13.5.

13.2 Protein Folding and the Ant Colony Optimization

13.2.1 Characteristics of the Protein Folding

Some benchmark instances of protein sequences in the 2-dimensional square
lattice HP (2D-HP) models are listed in Table 13.1, where l is the number
of amino acids and E∗ stands for the MFE level. The letter ‘H’ stands for
the hydrophobic amino acid and ‘P’ stands for the polar amino acid, which
is hydrophilic. There are 20 amino acids in nature. Using various classifications,
they can be divided into acid, alkaline or neutral; positively or negatively charged
or uncharged; and hydrophobic or hydrophilic, etc. To a globular protein in an
aqueous solution, the hydrophilic amino acids tend to be on the surface of the
globule as they are attracted to water molecules (note that the environment
inside cells is primarily water). The hydrophobic amino acids are repelled by
water so that most of them gather inside the globular protein to form a core
except for some special hydrophobic regions on the surface of the protein.

Some conformations of the 2D-HP folding structures of the same protein se-
quence with 48 amino acids are presented in Fig. 13.1. For the square lattice
HP model, the best conformation is judged by the number of hydrophobic-
hydrophobic (H-H) bonds that hydrophobic amino acids are adjacent on the
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Table 13.1. Standard HP benchmarks for 2-D square lattice

No. l E∗ Protein Sequence
1 18 -9 PHPPHPHHHPHHPHHHHH
2 18 -8 HPHPHHHPPPHHHHPPHH
3 20 -10 HHHPPHPHPHPPHPHPHPPH
4 20 -9 HPHPPHHPHPPHPHHPPHPH
5 24 -9 HHPPHPPHPPHPPHPPHPPHPPHH
6 25 -8 PPHPPHHPPPPHHPPPPHHPPPPHH

PPPHHPPHHPPPPPHHHHHHHPPHH7 36 -14
PPPPHHPPHPP
PPHPPHHPPHHPPPPPHHHHHHHHH8 48 -23
HPPPPPPHHPPHHPPHPPHHHHH

lattice, but not consecutive in the sequence. The number of the H-H bonds in
each conformation in Fig. 13.1 is 23 (e.g., the number of dashed lines in the first
conformation), which forms the MFE state with E∗ = −23. It can be seen that
the hydrophobic amino acids do form a core inside the protein conformation,
while the polar amino acids are surrounding the core and their placements are
quite flexible.

Although the square lattice model is highly abstracted from the real protein
folding model, some special conformations can reflect a possible secondary struc-
ture of a protein. Fig. 13.2 shows some special 2D-HP conformations and the
corresponding three-dimensional protein structures of an α-helix and β-sheets.
However, such a model is unsatisfactory to many biologists. The 3-dimensional
structure of a specific protein sequence is unique, but as we can see in Fig. 13.1,

0 0

0

0

0

0

0

denotes hydrophobic amino acids denotes polar amino acids

0

Fig. 13.1. Some conformations of sequence 8 (Length = 48)
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-helix

-sheet

-sheet

Fig. 13.2. Special HP conformations and the secondary structures of protein sequences

there may be several equivalent conformations by the same protein sequence.
Therefore, the HP model is too simple to reflect the real protein structure com-
pletely. However, it is already a very challenging computational model.

13.2.2 Characteristics of the Ant Colony Optimization

To solve the traveling salesman problem, the first ant algorithm – the ant sys-
tem (AS) – was proposed by Dorigo [45] [47] through stimulating the foraging
behavior of real ants. Following this, several variants of ant algorithms have
been developed, such as the elitist ant system (EAS), the max-min ant system
(MMAS), and the ant colony system (ACS) [45], etc. They have been success-
fully applied to a wide range of application problems, such as the vehicle routing
problem (VRP) [48], the job shop scheduling problem (JSP) [49], and the water
distribution system (WDS) [50], etc. The AS and its successors at last form a
kind of optimization paradigm termed the ‘ant colony optimization (ACO) al-
gorithms’. The basic framework for ACO includes:

Step 1: Construct ants’ solutions (utilizing pheromone and heuristic information)
Step 2: Apply local search (optional)
Step 3: Update pheromones

A group of m ants perform the above three steps to search for a better solution
iteration by iteration. Firstly, based on the current density of pheromone in the
environment and other heuristic information, each ant in the colony constructs
a solution. Secondly, local search method can be applied to enhance the solutions
found by the ants. Thirdly, the pheromone in the surrounding environment should
be updated to guide more ants to the potentially best solution in the next iteration.

The FAC algorithm proposed in this chapter is based on the basic framework
of the ant colony system (ACS) [45] [46], which includes mechanisms such as
local pheromone update and global pheromone update. The implementation of
these mechanisms is redefined in this chapter.

13.3 Ant Colony Search in Lattices

Given a two-dimensional square lattice board, the PFP is to place the protein
sequence in the lattice to form a self-avoiding path. The mission of an ant colony
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is to discover a path, which maximizes the number of H-H bonds by two adjacent
hydrophobic amino acids that are not consecutive in the protein sequence.

13.3.1 Path Construction

In order not to violate the region of the lattice, each ant starts building the
path from the middle of the protein sequence in the center of the lattice. For
a protein sequence with n amino acids, which are denoted as {s0, s1, · · · , sn−1}
(sj ∈ {P, H}, j = 0, · · · , n − 1), each ant starts from two horizontal squares in
the middle of an (n + 2) × (n + 2) lattice board as depicted in Fig. 13.3. The
squares in the lattice board are indexed from 0 to (n + 2)2 − 1, starting from
the top left corner to the bottom right corner. The two squares with indexes
(�n/2� + 1)(n + 2) + �n/2� and (�n/2� + 1)(n + 2) + �n/2� + 1 are termed the
‘left start square’ and the ‘right start square’ respectively. The two squares are
colored in the middle of the lattice shown in Fig. 13.3. The amino acid sn/2� is
placed in the left start square while the amino acid sn/2�+1 is placed in the right
start square. The sub-protein sequence {s0, · · · , sn/2�} that is built from the left
start square is denoted as the ‘left path’, while the {sn/2�+1, · · · , sn−1} is the
‘right path’. Then an ant randomly chooses to go a step on the left part or on
the right part of the protein sequence. After several construction steps, a protein
conformation is built, similar to the dashed lines in Fig. 13.3. The squares that
have been passed by the ant cannot be passed again by the same ant.

There are two advantages of indexing the squares in the lattice. One is that
the coordinates of the squares are now one-dimensional. The other is that the
four adjacent squares are convenient to obtain. For example, when an ant is now

0 n+1

n+2

1 2 43 ... ...

n+3

2 1 2 2 1n n n

2 1 2 2n n n

2
2 1n

2n+4

Left start square

Right start square

Fig. 13.3. Lattice board for a protein with n amino acids
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i i+1i-1

i-(n+2)

i+(n+2)

Sj+1

Sj+2 Sj+3

SjSj-1

Sj-1

Sj-1

Fig. 13.4. An ant chooses a step to go

in square i as shown in Fig. 13.4, which is not on the border of the lattice, its
four adjacent squares are i− (n+2) (going up (U)), i+(n+2) (down (D)), i−1
(left (L)), and i + 1 (right (R)). As the ant has passed the right square, it can
only choose one of the other three directions to go.

13.3.2 Path Retrieval

If the ant has passed all the adjacent squares when placing a non-ending amino
acid sj (j �= 0 or n − 1), the protein cannot fold any more. Such situation is
termed ‘stagnation’. In this case, the folding needs to be retrieved. Consider an
ant has constructed a sub-sequence {sleft, · · · , sstartL, sstartR, · · · , sright}, where
left is the index of the left most amino acid, right is the index of the right most
amino acid, startL =�n/2�, startR =�n/2� + 1. To a ‘right’ retrieval, a random
index j is selected as

j = rand%(right − startL − 1) + startL + 1 (13.1)

where rand is a random non-negative integer number. The amino acids from sj+1
to sright are released as not been constructed by the ant and the corresponding
squares in the lattice are set vacant. On the other hand, a ‘left’ retrieval point j
is selected as

j = rand%(startL − left) + left + 1 (13.2)

The amino acids from sleft to sj−1 are released and the corresponding squares
are thus set vacant.

Although stagnation occurs on the right side of the protein, it doesn’t mean
that the right side of the protein is to be retrieved, because some stagnation
situations cannot be cleared by simply retrieving the side where the stagnation
happens. Fig. 13.5 illustrates two stagnation situations on the right path. The
hollow beads stand for the left start amino acid and the right start amino acid,
whereas the triangles are amino acids on the right path. In the example presented
in Fig. 13.5(a), the stagnation can be released by the right retrieval when j = 21
and the ant is to go upward. However, in Fig. 13.5(b), the stagnation cannot
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Fig. 13.5. Examples of the stagnation

/* startL = / 2n , startR = / 2n +1  

left : the constructed left end, right: the constructed right end */

Procedure RightSideRetrieve({sleft, , sstartL, sstartR, , sright})

  If startR < right && RightRetrieveBool == false 

j = rand % (right – startL – 1) + startL +1; 

RightRetrieveSequence({sleft, , sstartL, sstartR, , sright}, j);
LeftRetrieveBool = false; 

RightRetrieveBool = true; 

  Else If startL != left
j = rand % (startL – left) + left +1; 

LeftRetrieveSequence({sleft, , sstartL, sstartR, , sright}, j);
RightRetrieveBool = false; 

  End 

Procedure LeftSideRetrieve({sleft, , sstartL, sstartR, , sright})

  If startL > left && LeftRetrieveBool == false 

j = rand % (startL – left) + left +1; 

LeftRetrieveSequence({sleft, , sstartL, sstartR, , sright}, j);
LeftRetrieveBool = true; 

RightRetrieveBool = false; 

  Else If (startL+1) < right
j = rand % (right – startL – 1) + startL +1; 

RightRetrieveSequence({sleft, , sstartL, sstartR, , sright}, j);  

LeftRetrieveBool = false;  

  End 

Fig. 13.6. Outline of the retrieval process

be released by performing the right retrieval but only the left retrieval. So the
Boolean values RightRetrieveBool and LeftRetrieveBool are used to judge
such situations to make sure that a retrieval in the same direction cannot be
performed twice consecutively for avoiding potential stagnation.

Whether to perform a right retrieval or a left retrieval is not only based on the
location of the stagnation, but also the two Boolean values RightRetrieveBool
and LeftRetrieveBool. If the stagnation happens on the right side of the protein,
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we term the retrieval procedure as ‘RightSideRetrieve’, while the procedure
for the left stagnation is termed ‘LeftSideRetrieve’. Fig. 13.6 illustrates the
pseudo-code of the above process. The functions ‘RightRetrieveSequence( )’
and ‘LeftRetrieveSequence( )’ perform the respectively right/left retrieval. Take
Fig. 13.5(b) as an example. The stagnation happens on the right path, so that
the ‘RightSideRetrieve’ procedure is invoked. As startR = 21, right = 24, and
RightRetrieveBool = false, a random integer j is generated by (13.1). Suppose
j = 22. Then the ‘RightRetrieveSequence’ function is invoked, so that the amino
acids from 23 to 24 are released. The ‘LeftRetrieveBool’ and the ‘RightRetrieve-
Bool’ are set as False and True respectively. It is known that this could not help
to clear the stagnation. The construction of the path continues, until the stag-
nation happens again. Suppose the sequence is changed to be 2 to 24. At that
time, the ‘RightSideRetrieve’ procedure is invoked again. As ‘RightRetrieveBool’
is true now, it can only perform ‘LeftRetrieveSequence( )’ to release some of the
left path. The stagnation can be cleared if j = 5 to 20.

13.3.3 Pheromone Attraction

Pheromones are released on the directed arcs connecting the adjacent squares,
which are denoted as τid, where i = 0, 1, 2, · · · , (n+2)2 −1 and d = {L, R, U, D}.
Note that the protein sequence cannot exceed the lattice board, as the width of
the board must be greater than the length of the protein.

1) Local Pheromone Update

As all ants start from the same left and right start squares in the lattice, an
effective method for avoiding early convergence is to remove some pheromones
between the two adjacent squares as (13.3)

τid ← δ × τid (13.3)

where d is the movement that the ant will go to place the next amino acid, i is
the index of the current square in which the ant locates. δ = (m − 1)/m < 1
is a ‘local evaporation rate’, and m is the number of ants. If the pheromone on
that arc is smaller than τmin, the pheromone is reset to τmin, which is the lower
boundary of the pheromone value.

2) Global Pheromone Update

Once all ants have constructed a protein folding path, the pheromones on all
arcs are ‘evaporated’ as defined by (13.4)

τid ← ρ × τid (13.4)

where ρ is a ‘global evaporation rate’. Then the best path found in the current
iteration is reinforced by increasing the amount of pheromone as described by
equation (13.5)

τi′d ← τi′d + ε/(−E∗
min) (13.5)
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where i′ ∈ {the squares that the iteration’s best ant has just passed}, d is
the movement that the ant went to the adjacent square from square i′, ε is
the maximum number of H-H bonds in the current iteration, E∗

min < 0 is the
approximation of the MFE of the protein in the square lattice HP model.

13.3.4 Heuristics for Folding

While pheromones are the means for keeping the historical memories, heuristics
are the strategies for current selection. Different from the heuristic information
in [37]- [41] where only hydrophobic amino acids are considered, this chapter
takes into account both the heuristic information for hydrophobic amino acids
and polar amino acids.

1) Heuristic for hydrophobic (H) amino acids

The goal for PFPs is to find the minimum energy conformation, which is reflected
by the number of H-H bonds. Hence, if a conformation can yield more H-H bonds,
it should have a higher probability to be constructed. Once the next amino acid
sj for an ant k to place is known as a hydrophobic (H) amino acid, the heuristic
for it is determined by

ηjd = hjd + 1 (13.6)

where hjd is the number of the new obtained H-H bonds by placing the amino
acid sj in the adjacent square, d is the ant’s movement.

Fig. 13.4 illustrates an ant that is currently locating in square i with an amino
acid sj . The next step it chooses is to place an amino acid sj−1. The slashed
squares are the possible locations. For each of the slashed squares, the potential
H-H bonds are the ones that connect the neighboring squares (shown as hollow
spots in Fig. 13.4) where a hydrophobic amino acid has been placed.

2) Heuristic for polar (P) amino acids

If the next amino acid sj to be placed is a polar amino acid, the heuristic value
is the sum of the vacant squares (i.e., the squares that have not been passed by
the ant) and polar amino acids (excluding consecutive polar amino acid) in the
neighborhood of the possible location of the next amino acid plus one as given
by

ηjd = vjd + h′
jd + 1 (13.7)

where vjd and h′
jd are the numbers of vacant squares and polar amino acids in

the neighborhood of the possible locations of the next amino acid repectively.
For a polar amino acid, more inclinations should be given to water molecules.

As the protein folds in an aqueous solution, the vacant squares can be regarded
as water molecules. The nearby polar amino acids imply that the edge of the
protein is near.
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13.3.5 Implementation of the Flexible Ant Colony Algorithm for
PFPs

The roulette wheel selection method is used for each ant in the colony to choose
the next step of path. If the ant currently locates in square i and the next amino
acid to be placed is sj , then the probability of selecting the feasible movement
d is given by

pd =
τjdηβ

jd
∑

q∈{feasible movements}(τjqη
β
jq)

(13.8)

where β is the reinforcement to heuristic values.

Fig. 13.7. Flowchart of the FAC algorithm
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The implementation of the FAC algorithm can be realized as follows:

Step 1: Read in the protein sequence and initialize the parameters.
Step 2: Place all ants in the left start square and the right start square in the
lattice.
Step 3: All ants construct feasible folding conformations to the input protein
sequence. The local pheromone update is performed after every movement of
ants.
Step 4: Evaluate the constructed folding paths and select the best ant in an
iteration.
Step 5: Perform a global pheromone update.
Step 6: If the terminate condition is not met, go to Step 2; else terminate the
algorithm.

A more detailed flowchart of the proposed algorithm is illustrated in Fig. 13.7.

13.4 Experiments and Discussions

The benchmark instances of HP protein folding are tabulated in Table 13.1. The
parameters’ settings for the proposed FAC algorithm are τ0 = 1/3, τmin = 0.05
and ρ = 0.9. For sequences No. 1–7, m = 10 and β = 2. For sequence No.
8, m = 100 and β = 3. Each group of parameters has been tested 30 times
independently for statistical significance. The CPU time of the FAC algorithm
was recorded on a 2.8 GHz Pentium IV PC.

13.4.1 Comparisons with Existing Algorithms

The performance of the proposed FAC algorithm is compared with that of exist-
ing algorithms presented in [36], [38] and [43], which are the conventional Monte
Carlo (EMC) algorithm, the genetic algorithm (GA) [36], the ant colony opti-
mization (ACO) algorithm in [38], and the immune algorithm (IA) [43]. The
reason for choosing these algorithms is that their models and tests are the same
as the ones used in this chapter. Table 13.2 compares the average performance of
the IA, the ACO and the proposed FAC algorithm, in terms of the average time
required (AvgT ), the average energy evaluations (A.E.E), and the success rate
(%ok). Table 13.3 compares the best time (BestT ), the best energy evaluations
(B.E.E), and the best number of iterations (B.N.I) among the FAC, the EMC,
the GA, and the IA.

In Table 13.2, the mean values in the bold denote the best results of the three
algorithms. Except for sequence 1, the average function evaluations of the FAC
are much smaller than those of the IA. Moreover, the FAC has successfully found
the best protein conformation in all the tests, while the IA has only managed
to solve sequence 8 with a 56.67% success rate. Compared with the ACO, the
average execution time of the FAC in obtaining the best protein for short pro-
tein sequences is not significantly longer, but it takes a shorter time for longer
sequences such as Nos. 7 and 8.
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Table 13.2. Comparison of the average performance in solving the 2D-HP problems

FAC IA ACONo. l E∗
AvgT (sec .) A.E.E %ok A.E.E %ok AvgT (sec .) %ok

1 18 -9 3.17703 115384 100 69210 100 – –
2 18 -8 0.0967667 3149 100 41724 100 – –
3 20 -10 0.264167 8107 100 18086 100 – –
4 20 -9 0.103667 2981 100 23710 100 <1 sec. 100
5 24 -9 1.28330 32159 100 69817 100 <1 sec. 100
6 25 -8 3.90027 93883 100 269514 100 <1 sec. 100
7 36 -14 1.25527 18683 100 2032504 100 4 sec. 100
8 48 -23 28.922 331103 100 6403985 56.67 1 min. 100

–The corresponding values are unavailable in the reference [38].

Table 13.3. Comparisons of the best performances in solving the 2D-HP problems

FAC EMC GA IA
No. l E∗

BestT (sec.) B.E.E B.N.I B.E.E B.E.E B.E.E

4 20 -9 0.015 169 17 9374 30492 1925
5 24 -9 0.078 1703 171 6929 30491 2479
6 25 -8 0.234 5463 547 7202 20400 4212
7 36 -14 0.031 234 24 12447 301339 43416
8 48 -23 0.797 9102 92 165791 126547 37269

In Table 13.3, among the best values of all algorithms, the FAC is seen much
faster than the EMC and the GA in solving the sequences listed. Only are the
best energy evaluations to sequence 6 slightly larger than that of the IA. It can
be seen that the FAC algorithm developed in this chapter can solve the given
protein folding problems in a very shortest period of time.

13.4.2 Analysis on Different Parameter Values

The influence of parameters in the FAC algorithm is also tested in order to as-
sess the best group of values of the parameters, including the number of ants m,
the heuristic reinforcement value β, and the global pheromone evaporation rate ρ.
Fig. 13.8 shows the trends of different parameter values for sequences No. 1 to 7.

1) The heuristic reinforcement value β

Fix the values of m and ρ. When β increases, the time needed to obtain solutions
becomes shorter to sequences 1 to 5. Note that sequence 6 is distinctive in the
sequences and it achieves the best result when β = 1.

2) The pheromone evaporation rate ρ

If the pheromone evaporation rate ρ is about 0.9, the performance of the FAC
is high in most test cases. Overall, the influence of ρ is not so significant as β.
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Fig. 13.8. Analysis of the FAC algorithm with various parameter values
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Fig. 13.8. (continue)
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Fig. 13.9. Convergence in 30 independent tests to Sequence 8

3) The number of ants m

A large number of ants provide a higher insurance of finding the best conformation,
but it slows down the algorithm. However, a small number of ants may induce
early convergence to sub-optima. A proper number of ants is generally dependent
upon the length of the protein sequence. For short protein sequences, m = 10 is
enough. However, for long sequences such as the one with 48 amino acids, more
ants (e.g., m = 100) are needed. Fig. 13.9 illustrates the convergent states in the
30 independent tests of sequence 8. Conformations with 12 or 13 H-H bonds are
always found in the first iteration. As the optimization continues, it takes more
time to improve. The fastest search for the optimum folding of sequence 8 in the
30 tests was 92 iterations, while the worst one needed more than 10,000 iterations.
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Table 13.4. Comparisons on whether using heuristic information to polar amino acids

FAC (use) FAC (not use)
No. l E∗

AvgT (sec .) A.E.E %ok AvgT (sec .) A.E.E %ok
1 18 -9 3.17703 115384 100 7.69107 272580 100
2 18 -8 0.0967667 3149 100 0.181733 5903 100
3 20 -10 0.264167 8107 100 0.3943 11820 100
4 20 -9 0.103667 2981 100 0.116833 3271 100
5 24 -9 1.2833 32159 100 1.5146 36870 100
6 25 -8 3.90027 93883 100 4.14727 95673 100
7 36 -14 1.25527 18683 100 2.3422 33789 100
8 48 -23 28.922 331103 100 334.755 3756947 100

13.4.3 Analysis of Heuristic Information to Polar Amino Acids

IIn the proposed FAC algorithm, there is heuristic information for folding polar
amino acids, which is different from that used in the ACO algorithm [38]. The
performance of the FAC algorithm is compared with or without heuristic infor-
mation to polar amino acids. The results are tabulated in Table 13.4. With the
same parameter settings, the algorithm without heuristic information to polar
amino acids is slower than the one with the heuristic information in all test cases.
The results demonstrate that the heuristic information proposed in this chapter
is effective.

13.5 Conclusions

This chapter has presented a flexible ant colony algorithm for the protein fold-
ing problem. This FAC algorithm is based on the 2-dimensional square lattice
hydrophobic-polar model, which is a highly abstract model for protein folding
structures. Ants in the FAC algorithm start from the middle of the lattice and
construct protein folding from the middle of the protein sequence. Pheromones
are released to the directed arcs connecting adjacent squares in the lattice.
Local pheromone update as well as global pheromone update mechanisms are
also implemented. By using effective heuristic and pheromone method for se-
lection, the proposed FAC algorithm can solve the PFP fast as shown by the
test cases. Comparison with some well-known PFPalgorithms has highlighted
superior performance of the proposed FAC algorithm.
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Summary. Several factors make stem-loops an attractive sequence signal for a struc-
tural RNA gene-finder. Structural RNAs are virtually obligated to form stem-loops
on their way to forming stable structures. Also, stem-loops can be identified along a
sequence of length n in O(n) time. We postulate that stem-loops found in structural
RNA genes may tend to be longer than those found in their genomic counterparts -
coding sequences and noncoding DNA. We also postulate that stem-loops may occur
in higher frequency in the structural RNA regions.

Methods: To examine these possibilities, rRNAs were selected as a test bed. An algo-
rithm was developed to identify stem-loops along a genomic sequence which are similar
to those found in rRNA secondary structures. This algorithm scanned the genomes in
our training set to establish average metric values observed in rRNA genes. These val-
ues were subsequently used in an effort to identify rRNA genes in genomes outside of
the training set.

Results: The values for the stem-loop metrics we tested are sensitive to G+C content.
Two of the metrics reported here are able to identify rRNA genes when there is a
marked difference in G+C content between rRNAs and their genomic counterparts.
Another metric has demonstrated an ability to roughly target rRNA genes when there
is a negligible difference in G+C content levels.

Conclusions: Our results are encouraging and demonstrate that stem-loops have the
potential to act as sequence signals to discover rRNA genes. Our results also suggest
that more study into stem-loops is warranted to further improve the performance of
our algorithm and to examine the application to a wider population of structural RNA
genes.

14.1 Background

Noncoding RNA (ncRNA) genes produce transcripts which function directly in
RNA form without the need to generate proteins. The pool of noncoding RNAs,
and microRNAs (miRNA) in particular, is growing at a brisk pace [1, 2]. A
review is provided by Eddy [3]. This paper describes an examination into stem-
loops as a sequence signal for identifying a subset of ncRNA genes - structural
RNAs.
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Inherent properties allow RNA sequences to form biological machinery with
exclusive capabilities [2, 3, 4]. They form base pairs which allow them to fold into
shapes capable of executing specialized catalytic processes [5, 6, 7]. RNAs are
known to mimic the structure of nucleic acids to block translation [8, 9]. RNA
gene products also interact with proteins to form complex structures [10]. The
architecture and mechanism underlying RNA telomerase activity is a testimony
to their complex ability [11, 12]. This diverse set of properties leads one to suspect
that a wave of unknown structural RNA gene products may await discovery. The
term ‘structural RNA’ explicitely refers to RNAs whose function is related to
structure and not simply their primary nucleotide sequence.

To date, an effective and efficient means to computationally find novel struc-
tural RNA genes has been elusive [13, 14]. The difficulty primarily results from
the lack of sequence conservation in RNA genes. Rather than scan genomes for
consensus sequences, researchers have had to resort to other methods.

Genomic segments which code for structural RNAs tend to favor high G+C
base compositions [15, 16, 17]. This is related to the structural integrity provided
by the 3 hydrogen bonds which couple G-C base pairs. Exploiting differences in
base composition between structural RNA genes and their genomic counterparts
(i.e. coding sequences (CDS) and non-coding DNA (NC)) is a simple and effective
means to locate structural RNA genes in many genomes [18, 19]. Unlike co-
variance methods, this approach does not require precise information detailing
the secondary structure of the structural RNA gene under pursuit [20, 21, 22, 23].
This is advantageous for pursuing novel structural RNA genes. However, the base
composition approach has one key weakness. This approach is not effective when
there is little disparity in the G+C content levels between the structural RNAs
and their genomic counterparts.

Other attempts to develop a structural RNA gene-finder have relied on RNA
folding algorithms to calculate the free energy (ΔG) of sequence segments or
windows along a given genomic sequence [24, 25, 26, 27]. Structural RNAs have
an inherent ability to form stable secondary structures. Therefore, researchers
suspected that windows which overlap with structural RNA genes may generate
statistically significant ΔG values, which could act as a sequence signal. The
effectiveness of applying ΔG to this problem has been brought into question
by Rivas et al [14]. Part of the problem pertains to the size of the ΔG win-
dows which have no biological justification or relevance. Instead, the window
size is an input parameter necessitated by and optimized for the RNA folding
algorithm [28, 29, 30]. The extraneous factors and complications brought about
by selecting an optimized window size have not been addressed. Notably, RNA
folding algorithms are burdened with a O(n3) computational complexity where
n is the length of the sequence to be folded. Hence, the ΔG sequence signal
has inherent constraints which limit its applicability to the RNA gene-finding
problem.

Herein we propose and examine an alternative sequence signal to pursue
structural RNAs: Stem-loops. There are a number of factors which make stem-
loops an intriguing sequence signal candidate worth studying. Pairing rules and
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sequence directionality (5’→3’) virtually obligate stable RNA structures to form
stem-loops. Therefore, it seems that stem-loops could be considered to RNA
structures what α-helices and β-sheets are to proteins. Another reason to focus
on stem-loops pertains to their conduciveness to being searched. A set of search
parameters can be tailored to pursue stem-loops which are characteristically
found in structural RNAs. This element of control is lost when calculating the
ΔG of arbitrarily sized windows. Lastly, scanning for stem-loops along a given
sequence according to our search parameters can be accomplished in O(n) time
and space complexity where n is the length of the sequence (see Sect. 14.2 for
details).

The phrase stem-loop metric refers to a quantified feature describing a given
stem-loop. In this work, stem-loop metrics are studied which measure the length
of a given stem-loop and the distance between neighboring stem-loops. With the
use of annotated genomic sequences, we can calculate and compare the average
stem-loop metric values across genomic domains - coding sequences (CDS), non-
coding DNA (NC), ribosomal RNA (rRNA), and transfer RNA (tRNA). The aim
is to study the potential for stem-loop metrics to provide a statistical signal which
sufficiently differentiates structural RNAs from their genomic counterparts -
CDS and NC - across the G+C content spectrum.

Our training set includes 58 microbial complete genomic sequences in order
to cover a wide range of G+C content levels. Details on the sequences and
accession numbers are available from [31]. The known ncRNAs in most microbes
are essentially limited to rRNA and tRNA. Several of the microbes in our test set
have other unknown structural RNAs. We chose to focus on rRNAs to establish
consistency in comparing the performance of stem-loop metrics between the
various bacterial genomes with different global G+C content levels. This decision
does create a bias. However, we suspect that the reported results reflect the
potential applicability and the possible pitfalls of using this approach on other
structural RNA gene families.

14.2 Methods

14.2.1 The Stem-Loop

A stem-loop is comprised of 2 elements - a hairpin loop and a stack or stem of
base pairs which close or stabilize the hairpin loop (Figure 14.1A). Importantly,
the base pairs in the stem are commonly interrupted by mismatched or unpaired
nucleotides.

Below, stem-loops are defined with the help of logical expressions. Suppose an
RNA sequence consists of n nucleotides. An indexed sequence can be denoted
from 5’ to 3’ as (0, 1, 2, 3, e, i, k, p, t, n) where, 0 < e < i < k < p < t < n.

Consider a stem-loop where the base pair on the end of the stem nearest the
hairpin loop includes nucleotides i and p, denoted (i, p) (Figure 14.1B). The base
pair, (e, t), is the furthest from the hairpin loop; it forms the outer boundary
of the stem-loop structure. The unpaired nucleotides in the hairpin loop are
denoted k; hence, ∀k i < k < p.
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Fig. 14.1. (A) The stem-loop is comprised of 2 components: a hairpin loop and a
stack or helix of base-pairs. (B) Annotated stem-loop. The (i,p) base pair lies nearest
the hairpin loop. The (e,t) base pair marks the outer boundary of the stem-loop. (C)
A pseudo-knot cannot be entirely comprised of nucleotides which lie between the (i,p)
and (e,t) base pairs. See text for a detailed description.

For any stem-loop, the nucleotides which lie between e and i cannot base pair
with one another nor can the nucleotides between p and t pair with one another
(Figure 14.1B). This rule can be expressed as follows. Suppose a stem-loop is
comprised of the following nucleotide sequence: (e, g, h, i, p, q, r, t). If the hairpin
is defined by (i, p) and the stem-loop is bound by (e, t) then ∀g∀h ¬(g, h) ∧
∀q∀r ¬(q, r).

Lastly, a pseudo-knot cannot be comprised entirely of nucleotides between
base pairs (i, p) and (e, t). Suppose a stem-loop is comprised of the follow-
ing nucleotide sequence: (e, f, g, h, i, p, q, r, s, t). If (e, t) ∧ (g, r) ∧ (i, p): then
∀f∀q ¬(f, q) ∧ ∀h∀s ¬(h, s). See Figure 14.1C.

14.2.2 Search Parameters

This research is based on an algorithm designed to find stem-loops along a
genomic sequence. The intent is to target stem-loops typically observed in RNA
secondary structures. A cursory analysis of several rRNA secondary structures
was performed to establish trends which could be used as search parameters. For
instance, the number of nucleotides which typically comprise a hairpin loop falls
within a certain range. Similarly, the minimum number of base pairs necessary to
form a stem-loop can be deduced. In this manner, a set of search parameters for
our algorithm was devised (Table 14.1). The secondary structures were obtained
through online databases [32, 33].

14.2.3 Stem-Loop Finding Algorithm

The algorithm begins its search for stem-loops by finding the base pair nearest
the hairpin loop (i.e. the (i, p) base pair in Figure 14.1B). It then attempts to
elongate the stem by finding adjacent base pairs as long as the search param-
eters are met. Suppose, the initial upstream and downstream nucleotides are
denoted i and p, respectively. The upstream nucleotide, i, acts as the anchor
which moves the search through the sequence from 5’ to 3’. The downstream
nucleotide, p, is initialized to p = i + (xmin + 1) where xmin is the minimum
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Table 14.1. This table presents the search parameters which guide the algorithm as it
scans an input sequence for stem-loops. The hairpin loop closure refers to the base pairs
which lie immediately below the hairpin loop. This parameter indicates that at least 3
adjacent base pairs must “close” the hairpin loop. Importantly, the search parameters
also require a stem-loop consisting of at least 4 base pairs overall. Suppose only 3
adjacent base pairs close a given hairpin loop. The parameters dictate that more base
pairs must exist after a bulge or internal loop to bring the total number of base pairs
to 4 or more.

Structural Element Min./Max.
Parameter

x nucleotides in hairpin loop 3 ≤ x ≤ 15
Max. bulge 6 nucleotides

Max. internal loop 6 nucleotides
Min. bulge or internal loop closure 3 base pairs

Min. GC Base Pair Content 30%
Max. GU Base Pair Content 34%

Min. hairpin loop closure 3 base pairs
Overall min. number of base pairs 4

hairpin loop size. The nucleotides which separate i and p make up the hair-
pin loop (Figure 14.1A). When a base pair is found, the algorithm decrements
i and concurrently increments p. Then, the algorithm checks to see whether
these nucleotides form a base pair. If they form a base pair, then the indices
are decremented/incremented again. Importantly, the elongation process of the
stem tolerates a certain number of unpaired or mismatched nucleotides in the
stem (Table 14.1). If a stem-loop starting at index i is found, it is stored and
i is incremented to i + 1. Suppose, a stem-loop is not found starting at index
i and p = i + xmin. The algorithm increases the size of the hairpin loop and
then attempts to elongate a stem starting with the nucleotides at indices i and
p = i + (xmin + 2). It will continue this until it reaches xmax - the maximum
number of nucleotides permitted in the hairpin loop. If xmax is surpassed, then
i is incremented and p = i + (xmin + 1); this moves the search along the se-
quence. At each iteration, the algorithm finds the stem-loop with the smallest
hairpin loop that meets the search parameters. Some additional simplistic rules
are applied to deal with the boundary regions close to the 5’ and 3’ ends.

14.2.4 Computational Complexity

As the algorithm scans along a genomic sequence of length n, it constructs the
longest possible stem-loop within the search parameters. While it is possible to
construct pathological artificial sequences where this could lead to a scan time
of O(n2) with a maximum stem-loop size of 1

2n, such sequences do not exist in
nature. For real sequences the length of the largest possible stem-loop is typically
negligible compared to the length of the sequence. Also, our search parameters
further restrict the size of the stems and loops. For all practical purposes this
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length can be considered constant and depends more on the G+C content of
the sequence than its length (for large enough sequences). In addition, at each
position i, once a stem-loop is found i is incremented by 1. This limits the
number of iterations to O(n). Considering the constant time to find a stem-loop
at position i, we can assume that the scan of a sequence of length n takes linear
or O(n) time. This was also confirmed in practical experiments (not presented
here) where the doubling of the length of an input sequence led to roughly
doubling the CPU time to scan the sequence assuming that the G+C content of
both sequences was the same.

14.2.5 Resource for Genomic Sequences

A thorough analysis to examine the signal capacity of stem-loop metrics requires
they be tested on sequences across the G+C content spectrum. Selecting a few
A+T rich sequences could misrepresent the ability of stem-loop metrics to dis-
tinguish structural RNA domains from their genomic counterparts. Therefore,
58 bacterial sequences were arbitrarily chosen. Their G+C base compositions
range from 25% to 68%. The genomic sequences were obtained from the NCBI
website [34].

14.2.6 Stem-Loop Metrics

In this body of work, 4 stem-loop metrics are examined. They relate to the
length of the stem-loops and to their frequency. The base pairs metric, denoted
bps, gauges the length of stem-loops by simply totaling the number of base
pairs present in a stem-loop. Two metrics measure the average distance from a
given stem-loop to its nearest upstream and downstream neighbours. Note, these
neighbouring stem-loops are not permitted to overlap (i.e. they cannot share

Fig. 14.2. The center-point spacing (cSpacing) metric is measured by averaging the
distance between neighbouring hairpin loops. The Foot Spacing (fSpacing) metric is
measured by averaging the distance between the paired nucleotides which are most
distal to the hairpin loop.
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nucleotides between them) (Figure 14.2). In the event that the immediate up-
stream/downstream neighbour overlaps with the center stem-loop, the algorithm
jumps to the next upstream/downstream stem-loop until a non-overlapping
neighbour is found. Two methods were used to measure the spacing between
a stem-loop and its 2 opposing neighbours (Figure 14.2). Center-point spacing,
denoted cSpacing, measures the spacing between stem-loops as the distance (in
nucleotides) between the center of their hairpin loops. The foot spacing metric,
denoted fSpacing, is measured from the nucleotides which make-up the “foot”
of the stem - the base pair most distal to the hairpin loop (Figure 14.2). Lastly,
the cSpacing and bps metrics were combined by multiplying them to create the
(cSpacing × bps) metric.

14.2.7 How Average Metric Values were Tabulated

Annotated sequences (from the NCBI website) are used to create a one dimen-
sional map of the sequence. This map is equal in length to the input sequence
and it labels each nucleotide in the sequence into 1 of 4 broad categories - CDS,
NC, rRNA, tRNA. This allows us to map each stem-loop to its genomic category.
As a result, the average stem-loop metric for each of the genomic domains can
be calculated and compared.

One of our goals is to study how changes to G+C content affect the average
stem-loop metric values in each genomic region - CDS, NC, rRNA, and tRNA.
This, in turn, provides an indication of how useful stem-loop metrics may be in
identifying structural RNAs along a given sequence.

14.2.8 Identifying rRNA Genes in Genomes Outside the Training
Set

The next experiments apply these average metric values in search of rRNAs
along bacterial genomes not included in our training set. Statistical inferences
are made using hypothesis tests which rely on Z Scores. This test determines
whether a given region along the sequence has a metric value which falls within
the 95% confidence interval (C.I.) of the mean rRNA value for the same metric.
The mean rRNA metric value is denoted μrRNA:

Z =
x − μrRNA
√

s2/N
(14.1)

Here, x denotes sample mean, μrRNA denotes the mean rRNA value derived
from our training set, N denotes sample size, and s2 denotes the standard
deviation.

The search for rRNAs considers all the stem-loops identified along the se-
quence. The algorithm moves through the list of stem-loops from 5’ to 3’. In
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doing so, it calculates the average metric value between groups of 30 to 500 stem-
loops. Changes to the sample size can affect the sample’s standard deviation.
This, in turn, affects the sensitivity of the statistical inference. Hence, the sample
size was sometimes modified between various genomes to reduce the number of
false positives. When the sample mean falls within the 95% C.I., we assume this
suggests the stem-loop at the center of the sample may fall within a region which
codes for rRNA.

The accuracy of the predictions is evaluated by comparing the location of
the rRNA genes to the statistically inferred “hits”. Ideally one would want to
compare these results to the ΔG method. However, the ΔG approach cannot
be practically applied to the sequences in the range of 500,000 to 5,000,000
nucleotides long [25, 26].

14.2.9 Hardware

The computer used to run this search algorithm is equipped with an Intel Pen-
tium 4 c© processor, 1.5 gigabytes of RAM, and a Linux operating system. The
algorithm is implemented in C++. Our program requires less than 10 seconds
to scan a million nucleotide sequence for stem-loops.

14.3 Results

14.3.1 G+C Content

It was noted that the base composition method is not effective when the dif-
ference in base composition between structural RNAs and their genomic coun-
terparts is negligible. This can be illustrated by plotting the G+C content of
the genomic domains against the global G+C content. Figure 14.3 depicts the
G+C content levels found in the various regions for each of the 58 sequences
in our training set. Note, each genome has only one global G+C content value.
Therefore, the local G+C values for the CDS, NC, rRNA, and tRNA domains
within a given genome are all aligned vertically. The opposing plots intersect
when their respective G+C content levels are equivalent. The proximity of the
opposing plots when the global G+C content is roughly 50% illustrates why
this method is at times ineffective at distinguishing structural RNAs from their
genomic counterparts.

What follows are the results obtained with each of the stem-loop metrics and
illustrated in a similar manner. It should be evident that a promising metric is
one where the values of structural RNAs do not merge with the values of their
genomic counterparts.

A Bezier curve has been drawn through the data points strictly to illustrate
trends which occur with changing G+C content. This curve is not intended to
act as a substitute for interpreting the actual data but rather as an interpretive
guide.
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14.3.2 bps Metric

The results attained with the bps metric are depicted in Figure 14.4. The aver-
age bps values in the CDS and NC regions appear strongly correlated to changes
in global G+C content. This observation makes sense given that the CDS and
NC regions comprise roughly 95% of the bacterial genome. At low global G+C
content levels, there is a lesser likelihood of finding long stem-loops which meet
the minimum GC base pair parameter. Conversely, at higher G+C content lev-
els, the reverse is true - there is a greater likelihood of finding long stem-loops.
Earlier, Figure 14.3 and Table 14.2 reveal that the G+C content is more stable
in rRNAs and tRNAs than their genomic counterparts. This helps to explain
the relatively consistent bps values observed in these structural RNAs across
the training set. However, the average bps values of these structural RNAs and
their genomic counterparts merge when their G+C content levels are equiva-
lent. This suggests average bps values will not be able to distinguish between
structural RNAs and their genomic counterparts across the entire G+C content
spectrum.

Table 14.2. Summary of data collected on 58 bacterial genomes spanning a wide
range of global G+C content levels. Note the values for the stem-loops metrics are
more stable in rRNAs than their genomic counterparts. This is also true for tRNAs
but to a lesser extent. This, presumably, is related to the relatively stable G+C content
levels in rRNAs and tRNAs.

Genomic G+C Avg. Avg. Avg. Avg.
Domain Content bps fSpacing cSpacing (cSpacing × bps)

CDS 0.45±0.12 9.64±3.92 34.84±25.30 62.81±21.05 591.81±231.68
NC 0.39±0.12 8.92±2.63 46.33±31.98 72.72±28.86 612.14±176.68

rRNA 0.53±0.043 9.44±1.27 16.39±3.16 44.48±1.90 437.05±70.17
tRNA 0.58±0.048 9.51±1.01 25.95±16.45 53.43±16.00 537.42±158.74

14.3.3 fSpacing Metric

The results obtained from the fSpacing metric are shown in Figure 14.5.
Changes in global G+C content result in a wide degree of variability in the
fSpacing values found in the CDS and NC regions (Table 14.2). In comparison,
the average fSpacing values found in the tRNAs are more stable. The average
fSpacing values in the rRNAs are even more stable. As with the previous metric,
the disparity between these rRNAs and tRNAs and their genomic counterparts
disappears as their respective G+C content levels approach uniformity.

The difference between rRNAs and tRNAs is noteworthy. It is presumably
related to how the search parameters of our stem-loop finding algorithm were
devised. The Methods Section describes how the search parameters were devel-
oped by studying rRNA secondary structures.
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Fig. 14.5. Average fSpacing values found in CDS, NC, rRNA, and tRNA regions
over 58 bacterial genomes with varying global G+C content levels

14.3.4 cSpacing Metric

The results obtained from the cSpacing metric are shown in Figure 14.6. There
are several noteworthy observations. The disparity between the rRNAs and tR-
NAs and their counterparts diminishes as the G+C content levels approach
uniformity. Like the fSpacing metric, the disparity in cSpacing values between
rRNAs and their counterparts is greater than the disparity observed between
tRNAs and their counterparts.

The average cSpacing metric values found in rRNA are remarkably more
stable than the values attained for tRNA, NC, and CDS (Table 14.2). Notably,
the rRNA values do not merge with the CDS and NC values. With regards to our
training set, this indicates that there is always a difference in cSpacing values
between the rRNAs and their genomic counterparts. This claim cannot be made
for the base composition approach on this training set in particular (compare
Figures 14.3 and 14.6). Importantly, when the global G+C content is roughly
40-60%, the disparity in the average cSpacing values between the rRNAs and
their genomic counterparts is insufficient for our statistical inference method to
distinguish rRNAs from their genomic counterparts.

14.3.5 (cSpacing × bps) Metric

The previous results illustrate the difficulty in finding a sequence signal capa-
ble of identifying rRNAs when there is a negligible difference in G+C content



348 K.M. Noël and K.C. Wiese

 40

 60

 80

 100

 120

 140

 160

 180

 0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65  0.7

A
vg

. c
S

pa
ci

ng

G+C Content

Average cSpacing vs. G+C Content

CDS
NC

rRNA
tRNA

Fig. 14.6. Average cSpacing values found in CDS, NC, rRNA, and tRNA regions over
58 bacterial genomes with varying global G+C content levels

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65  0.7

A
vg

. (
cS

pa
ci

ng
 *

 b
ps

)

G+C Content

Average (cSpacing * bps) vs. G+C Content

CDS
NC

rRNA
tRNA

Fig. 14.7. Average (cSpacing × bps) values found in CDS, NC, rRNA, and tRNA
regions over 58 bacterial genomes with varying global G+C content levels



14 Considering Stem-Loops as Sequence Signals 349

between opposing genomic regions. We postulated that combining multiple stem-
loop metrics could help to amplify their inherent differences. Figure 14.7 shows
the results obtained when the (cSpacing × bps) metric was employed. Like with
the previous metrics there are points along the G+C content spectrum where
the (cSpacing × bps) values merge. Furthermore, the CDS and NC regions dis-
play a high degree of variability in the (cSpacing × bps) values (Table 14.2). In
turn, this makes the metric ineffective across a wide portion of the G+C content
spectrum. However, there is a noteworthy advantage to this metric. The average
(cSpacing × bps) metric displays more disparity between rRNAs and their ge-
nomic counterparts when their G+C content levels are virtually equivalent (i.e.
G+C = 52-54%). The significance of this observation is substantiated in the
following experiments.

Our next task was designed to examine whether the information generated
from the 58 genome training set is helpful in finding ever-present structural
RNAs - namely rRNA genes - by using statistical inference. In several genomes,
the rRNAs were successfully identified. Notably, these genomes had not been
included in the training set.

Rickettsia typhi str. Wilmington, NC 006142, measures 1,111,496 base pairs
(bps) and has a global G+C content of 29%. We used the average rRNA cSpacing
value attained from our training set to identify the rRNA genes. Note the largest
hit returned by the statistical inference corresponds well with the rRNA gene
(Figure 14.8). Notably, the hit at index 609,030 corresponds with an RNA of
unknown type (as indicated by the NCBI annotated sequence). The other “hits”
do not correspond with other known structural RNAs and are presumed to be
false positives. In the interest of space, the figures which follow depict a 500,000
nucleotide segment of the tested genome. The results over the reported segment
are representative of the findings over the length of the entire sequence. As the
cSpacing metric is used on sequences with higher and higher G+C content levels,
an untenable number of false positives is eventually reached. This occurs when
the global G+C content is roughly 40-60%.

In an attempt to overcome this hurdle, we devised the (cSpacing × bps) met-
ric. The next 2 sequences convey what was commonly observed. Synechococcus
sp, NC 005070, is 2,434,428 bps long and has a global G+C content of 59%. In
this case the difference in G+C content between the opposing genomic domains
(i.e. rRNAs and CDS and NC) is roughly 5-7%. Interestingly, the statistical in-
ference is able to identify the rRNA genes (Figure 14.9). The number of false
positives appears reasonable.

Next, we attempted a more difficult task - to identify the rRNAs in a genome
when there is a negligible difference in the G+C content levels between rRNAs
and their genomic counterparts. Salmonella enterica, NC 006905, is 4,755,700
bps long and has a global G+C content of 52%. Notably the G+C content in
rRNA, tRNA, NC, and CDS is essentially equivalent. The results are depicted in
Figure 14.10. The prevalence of false positives is immediately evident. Roughly
30% of the sequence is flagged - including the rRNAs.
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Fig. 14.8. Rickettsia typhi str. Wilmington, complete genome. Accession No.
NC 006142. Sequence Length 1,111,496 bps. Global G+C is 29%. Metric cSpacing.
Sample size 31. The segment depicted is denoted by the x-axis and it includes nu-
cleotides 500,000 to 1,000,000. The y-axis outlines the annotated sequence and the
statistically inferred structural RNAs. The abbreviations are as follows: C= CDS, N
= NC, R = rRNA, T = tRNA, S = statistically inferred structural RNA. Ideally, the
“hits” should correspond with the locations of the rRNA genes. In this case, the hits
overlap with the rRNA gene. Also, there is a hit at index 609,030 which corresponds
with an RNA of unknown type per the NCBI annotated sequence.
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Fig. 14.9. Synechococcus sp. WH 8102, complete genome. Accession No. NC 005070.
Sequence Length 2,434,428 bps. Global G+C is 59%. Metric (cSpacing × bps). Sample
size 351. The segment depicted is denoted by the x-axis and it includes nucleotides
1,500,000 to 2,000,000. The y-axis outlines the annotated sequence and the statistically
inferred RNAs. The abbreviations are as follows: C = CDS, N = NC, R = rRNA, T
= tRNA, S = statistically inferred structural RNA. Note, the hits (S) correspond well
with the rRNAs located in the region surrounding indices 1,870,000 to 1,874,000.
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Fig. 14.10. Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67, com-
plete genome. Accession No. NC 006905. Sequence Length 4,755,700 bps. Global G+C
is 52%. Metric (cSpacing × bps). Sample size 501. The segment depicted is denoted by
the x-axis and it includes nucleotides 0 to 500,000. The y-axis outlines the annotated
sequence and the statistically inferred RNAs. The abbreviations are as follows: C =
CDS, N = NC, R = rRNA, T = tRNA, S = statistically inferred structural RNA.
Note, the hits surrounding index 287,000 overlaps with the rRNAs in this segment.
The other hits are presumed to be false positives.
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14.4 Discussion

At the outset, our intuition led us to suspect that stem-loops identified in re-
gions which code for structural RNAs would, on average, be longer than those
identified in their genomic counterparts. Our results indicate this is not always
true. Instead, the bps values are strongly related to G+C base composition (Fig-
ure 14.4). For instance, an increased G+C base composition is accompanied by a
higher bps value. As a result, the average bps value in structural RNA is greater
than those of their genomic counterparts only when the G+C content in the
structural RNAs is also greater. In comparing several genomes, it is clear that
the G+C base composition in the structural RNAs is more stable than the G+C
content in the CDS and NC domains (Figure 14.3). Consequently, the rRNA and
tRNA bps values are more stable from genome to genome than the average bps
values measured in the CDS and NC domains. In several genomes which make
up our test set, the rRNA and tRNA G+C content is essentially uniform across
the various genomic regions. In turn, the bps values calculated for structural
RNAs and their counterparts are indistinguishable.

Another initial suspicion led to the belief that stem-loops would occur more
frequently in regions which code for structural RNAs compared to their genomic
counterparts. To study this, two spacing metrics - fSpacing and cSpacing -
were devised. The following paragraphs explain to what extent our experiments
support our initial intuition.

Like the bps metric, the fSpacing and cSpacing metrics are affected by
changes to G+C content levels. Increases to G+C content are accompanied
by decreases to spacing values - i.e. a higher density of stem-loops. In A+T
rich genomes, the fSpacing and cSpacing values recorded for structural RNAs
differ significantly from those of their counterparts. This difference is largely
attributable to the notable disparity in their G+C content levels (Figure 14.3).
Recall that the search parameters require stem-loops to be comprised of at least
30% GC base pairs (Table 14.1). The probability of finding these base pairs
increases with increasing G+C content. As a result, the average spacing values
observed in A+T rich CDS and NC regions are significantly higher than those
recorded for structural RNAs.

There are some important differences in the fSpacing and cSpacing results.
When the G+C content levels between opposing genomic regions are equivalent,
the disparity in their fSpacing values is completely lost. This is conveyed by
the intersecting plots in Figure 14.5. In regards to cSpacing, only the tRNA
plot intersects with its counterparts when the G+C content levels are equivalent
(Figure 14.6). Notably, the rRNA cSpacing plot does not intersect with its
counterparts. However, the difference in the average cSpacing values between
the rRNAs and their counterparts is too small to distinguish between them
when the G+C content levels are roughly 45% to 55%.

One explanation why the rRNA cSpacing plot does not intersect with its
counterparts while the fSpacing metric does likely relates to inherent differ-
ences between these metrics. The fSpacing metric measures from the “foot” of
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the stem. As a result, it does not incorporate attributes related to the length
of the stem (i.e. the number of base pairs). In contrast, the cSpacing metric
incorporates length attributes since it measures the distance between hairpin
loop centers (Figure 14.2). Revisiting the results for the bps metrics we note
that increases to the G+C content in the CDS and NC domains correspond to
increases in the average stem length (Figure 14.4). This pattern, though more
subtle, is also seen in the cSpacing metric. When the G+C content is roughly
50% or more the average cSpacing value in the CDS and NC regions begin an
upward trend (Figure 14.6). This partially explains why the rRNA data points
do not merge with the NC, and CDS data points.

In A+T rich genomes, the average rRNA spacing values are more discrepant
from their counterparts - CDS and NC - than the average tRNA spacing values
are (Figures 14.5 and 14.6). Similarly, the average rRNA spacing values are
more stable relative to the tRNA spacing values. These differences are likely
related to the fact that the search parameters were devised by studying rRNA
secondary structures rather than tRNA structures. Notably, when our algorithm
was equipped with only the mean rRNA cSpacing value calculated from our
training set (Table 14.2), our approach attained a hit which overlapped with
an RNA of unknown type in the Rickettsia typhi genome (Figure 14.8). This
suggests that it would be advantageous to develop or model the stem-loop search
parameters over a wider variety of structural RNA gene families.

The stability observed in the cSpacing and fSpacing stem-loop metrics pro-
vides for some interesting speculation. Structural RNAs undergo evolutionary
pressures which strongly favour conserving base pairs rather than sequence mo-
tifs. Conserving base pairs allows RNA genes to conserve structure. The stability
observed in the cSpacing and fSpacing metrics is likely related to this tendency
to conserve structure. It might also be indicative of an equilibrium state. This
equilibrium, it is postulated, may foster an environment which promotes the
formation of the final structure. It seems plausible that RNA transcripts with
an overabundance of stem-loops would increase the likelihood that an obstruc-
tive amount of disassembly may be necessary before reaching their final RNA
structure. Conversely, RNA transcripts which resist folding may hinder distal
segments from coming into close proximity. Presumably, an environment be-
tween these two extremes may be most conducive to efficient RNA structure
folding. Cast in this light, stem-loops or base pair interactions which are not
observed in the final structure may not be mere coincidence.

The results obtained with the (cSpacing × bps) metric are noteworthy. In the
example of NC 006905, the difference between the opposing genomic regions is
negligible. The presence of numerous apparent false positives in Figure 14.10
should not overshadow the fact that this relatively simple metric and statisti-
cal inference approach perform with a marked degree of success. It eliminates
roughly two-thirds of the sequence which is not rRNA material without any
knowledge other than the average rRNA (cSpacing × bps) value reported in
Table 14.2. Although a direct comparison is not presented here, it is presumed
that a G+C content approach would not function as effectively when such
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negligible differences in G+C content are present. Perhaps (cSpacing × bps)
could be useful as a preliminary screen for rRNAs in large bacterial genomes.
This could be followed-up by more computationally taxing comparative methods
to more accurately pinpoint the location of the rRNA genes.

14.5 Conclusion

This research provides a consideration of stem-loop metrics as sequence signals
for uncovering structural RNA genes. An algorithm was developed to identify
stem-loops which share basic characteristics similar to those observed in rRNA
secondary structures. Initially, it was hypothesized that stem-loops identified
in regions which code for structural RNAs would, on average, consist of more
base pairs than stem-loops found in their genomic counterparts. In addition, it
was suspected that stem-loops would occur more frequently in structural RNA
regions in comparison to their genomic counterparts. Our hypotheses were tested
over 58 bacterial genomes encompassing a wide range of G+C content levels. The
results support the above hypotheses to some extend.

The values attained for the stem-loop metrics are strongly tied to G+C con-
tent. For instance, a high G+C content level correlates with a high number of
base pairs in a stem. Conversely, a low G+C content correlates with a lower
number of base pairs in a stem. Similar observations were made with respect to
the fSpacing metric. A high G+C content correlates with a higher frequency
of stem-loops. A low G+C content is linked to a lower frequency of stem-loops.
When the G+C content levels in structural RNAs and their genomic counter-
parts are equivalent, their bps and fSpacing metric values are also equivalent.
As a result, these metrics cannot distinguish between structural RNAs and their
counterparts based on their average metric valuations.

The cSpacing metric injects some promise into the possibilities embodied by
stem-loops as a sequence signal. The rRNA cSpacing values are less than those
of their genomic counterparts for all the genomes in our test set. However, the
cSpacing metric is not able to distinguish rRNAs from their genomic counter-
parts when their G+C content levels are essentially equivalent.

When encountered with genomes where the G+C content is essentially uni-
form across all the genomic domains we employed the (cSpacing × bps) metric.
Given the novelty of this approach, the results are very encouraging. Equipped
with only the average rRNA (cSpacing × bps) value established with our train-
ing set, we were able to correctly eliminate roughly two-thirds of the sequences
which do not code for rRNAs. This level of accuracy seems to suggest that the
(cSpacing × bps) metric could act as a preliminary screen for rRNAs before more
computationally taxing approaches are applied. In addition, in several instances
real and putative rRNA sites were identified.

This article has successfully introduced a unique approach to identifying ribo-
somal RNA genes. It relies on a sequence signal which is based on the stem-loop.
Stem-loops are an attractive target since RNA sequences are essentially obligated
to form them enroute to generating stable structures. This work also reports
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some of the limitations of this approach. Suggestions for future endeavors in-
clude designing and testing alternative metrics, combining multiple metrics, and
optimizing the search parameters.
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Summary. Genechip oligonucleotide microarrays have been used widely for transcriptional 
profiling of a large number of genes in a given paradigm. Gene expression estimation precedes 
biological inference and is given as a complex combination of atomic entities on the array 
called probes. These probe intensities are further classified into perfect-match (PM) and mis-
match (MM) probes. While former is a measure of specific binding, the latter is a measure of 
non-specific binding. The behavior of the MM probes has especially proven to be elusive. The 
present study investigates qualitative similarities in the distributional signatures and local corre-
lation structures/patchiness between the PM and MM probe intensities. These qualitative  
similarities are established on publicly available microarrays generated across laboratories in-
vestigating the same paradigm. Persistence of these similarities across raw as well as back-
ground subtracted probe intensities is also investigated. The results presented raise fundamental 
concerns in interpreting Genechip oligonucleotide microarray data. 

15.1   Introduction 

Oligonucleotide Genechip microarrays [1, 35, 36] have been used widely for tran-
scriptional profiling of large number of genes across distinct biological paradigms in-
cluding (i) stem cell differentiation [27, 47], (ii) molecular portraits and heterogeneity 
in tumors [43, 50], (iii) Aging and neurobiology [13], (iv) infectious disease research 
and environmental applications [31].  Prevalence of such high throughput assays can 
especially be attributed to the rapid sequencing of genomes [11]. A recent multiple-
laboratory and multi-platform study [26] established the superiority of oligonucleotide 
microarrays from accuracy and precision standpoints. Unlike classical biological ap-
proaches, microarrays can be used to model functional relationships between genes, 
hence provide system-level understanding [30] of the paradigm [14, 59]. There is also 
the possibility of oligonucleotide arrays being used as active screening tools in  
clinical settings in the near future [21].  

Developing suitable computational techniques for meaningful interpretation of oli-
gonucleotide gene expression data is one of the major challenges and precedes bio-
logical inference. Gene expression is estimated as a complex combination of atomic 
entities on the array called probes [45]. While several a1gorithms have been proposed 
for gene expression estimation and subsequent higher level analysis [2, 3, 24-26, 34, 
46, 48], understanding the qualitative behavior at the probe level is still incomplete. 
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Probes are broadly classified into perfect match (PM) and mismatch (MM). The for-
mer is a measure of specific binding whereas the latter is a measure of non-specific 
binding and used as an internal control (Sect. 15.1.1) [1, 35, 36]. While PM and MM 
probes are biologically distinct by very design they are spatially proximal on the ar-
ray. Several statistical techniques have been proposed for gene expression estimation 
and subsequent higher-level analysis. While some techniques use perfect as well as 
mismatch probes [2, 3, 34], others have encouraged using the perfect match probes 
only [24, 25] in the estimation procedure. The choice of the latter was possibly in-
spired by [38], which pointed out that arithmetic subtraction of (PM, MM) probe in-
tensities may not translate into biological subtraction. The qualitative behavior of the 
MM probes has especially proven to be elusive. 

The objective of the present study is to investigate qualitative similarities in the dis-
tributional signatures and local correlation structure across the perfect-match and mis-
match probe intensities. Qualitative similarities are demonstrated on the raw as well 
background subtracted (PM, MM) probe intensities in publicly available Genechip ar-
rays generated across laboratories investigating the same biological paradigm [26]. 
These qualitative similarities to our knowledge have never been reported and raise 
fundamental concerns in interpreting oligonucleotide gene expression data and higher 
level analyses such as (a) gene expression estimation and normalization [2, 3, 6, 24, 
25, 34, 46, 48, 58]. (b) inferring functional relationships and network structure [14, 59] 
(c) ontology [5] and (d) expression quantitative trait loci (eQTL) [28] The present 
study is especially encouraged by our (i) recent research on various aspects of microar-
ray gene expression analysis [39, 40] and growing evidence of (ii) hybridization  
interactions/multiple targeting of the probes [42, 57, 60]; (iii) spatial artifacts [52] and 
(iv) redefinition of probe-transcript relationship [16, 33] in oligonucleotide Genechip 
arrays. 

The chapter is organized as follows. In Sect. 15.1.1, a brief introduction to Ge-
nechip oligonucleotide microarrays along with the associated terminologies is pro-
vided. Qualitative similarities along with power-law and exponential approximations 
to the PM and MM probe intensity distributions is investigated in Sec. 15.2. Qualita-
tive similarities in local correlations/patchiness across PM and MM probe intensity 
matrices is investigated in Sec. 15.3. The choice of multiscale decomposition for ac-
complishing the same is also explored. The impact of the findings in the present study 
on gene expression estimation and subsequent higher level analyses is discussed in 
Sect. 15.4. 

15.1.1   Oligonucleotide Genechip Microarrays 

Oligonucleotide Genechip microarray [1, 35, 36] comprise of a large number of atomic 
entities called probes [45] arranged as a rectangular matrix. Each probe is an oligomer, 
i.e. around ~25 nucleotides long, (e.g. 5’-GTGATCGTTTACTTCGGTGCCACCT-3’). 
A set of (~16 to 20) probes also called a probeset, represents a particular transcript on 
the array. The term transcript is generic and can represent either a gene or an expressed 
sequence tag (EST). Probes can be broadly classified into perfect-match (PM) and mis-
match (MM) probes. PM probes correspond to a short region of the transcript and are 
designed to be complementary to the target sequence [1, 35, 36], hence ideally a meas-
ure of specific binding. The nucleotide content of an MM probe is the same as that of 
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the corresponding PM probe except for the middle most nucleotide, which is changed 
deliberately. Thus MM probes are used as an internal control to assess non-specific 
binding. Gene expression gt of a transcript t on the array is given as a complex combina-
tion of the corresponding (PM and MM) or PM only probe intensities [2, 3, 24, 25, 34, 
48]. An example of PM, MM and their target probe is shown below for clarity. 

 
Example. PM, MM and target probe: 

 
PM            (5’  G  T  G  A  T  C  G  T  T  T  A  C  T   T  C  G  G  T  G  C  C  A  C  C  T  3’) 
MM           (5’  G  T  G  A  T  C  G  T  T  T  A  C  T   C  C  G  G  T  G  C  C  A  C  C  T  3’) 
Target      (5’  C  A  C  T  A  G  C  A  A A  T  G  A   A  G  C  C  A  C  G  G  T  G  G  A  3’) 
 
Analysis of oligonucleotide microarrays begins by extracting the raw (PM, 

MM) probe intensities from the .CEL files [1] (Affymetrix Technical Manual, 
Santa Clara, CA). Subsequently, these are background subtracted [2, 3, 24-26,  
34, 48, 58] to minimize contributions of non-biological factors to the probe  
intensity/gene expression. In the present study, we investigate the qualitative  
similarities of the raw as well as background subtracted [3, 24, 25] (PM, MM)  
probe intensities. Such an approach is useful in rejecting the claim that the observed  
qualitative similarities are an outcome of not subtracting the background.  
Background subtraction is accomplished with Bioconductor [17] implement- 
tation of two popular algorithms namely: MAS 5.0 [3] and RMA [24, 25].  

Consider the PM pmtpmtpmt
201 ...: πππ and MM mmtmmtmmt

201 ...: πππ probe intensities 

corresponding to a transcript t. The gene expression of that transcript is a mapping  

of pmtπ and mmtπ onto a single value )( tg by a chosen estimation procedure f,  

represented by tfmmtpmt g⎯→⎯),( ππ .  

It is important to note that depending on the choice of the estimation procedure f, 

gene expression )( tg is either a linear or nonlinear combination 

of )20...1,,( =tmmtpmt ππ . An example of linear and a nonlinear estimation proce-

dures assuming two ),( mmtpmt ππ probes per transcript )( tg  and their impact on 

the distributions is shown below for clarity. 
 

Example. Mapping from probe intensity to gene expression 
 (a) Linear estimation procedure  

f: )5.0()32( 2121
mmtmmtpmtpmttg ππππ +−+=  

In (a), gene expression estimation is given as a difference of the corresponding PM 

and MM intensities. If ),( mmtpmt ππ are normally distributed then )( tg is nor-

mally distributed. 
 
(b) Nonlinear estimation procedure 

f: 21
2

1
1

21
2

1
1

1 )5.0()32( mmmmpmpmg ππππ +−+=  
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In (b), gene expression estimation is given as a difference of the square of corPM 

and MM intensities.  Unlike (a), even if ),( mmtpmt ππ are normally distributed 

)( tg  is not normally distributed in (b). 
 
Remark 1. From the above section we note the following important points: 

(i) Gene expression is estimated as a complex combination of (PM and MM 
or PM only) probe intensities using an estimation procedure f. Thus con-
clusions drawn about the statistical properties such as distributional pro-
files at the gene expression level are dependent on the assumptions behind 
that particular estimation procedure f. However, conclusions drawn at the 
probe intensity level is independent of the estimation procedure f. 

(ii) PM and MM probe intensities although biologically distinct are located 
physically adjacent to each other on the array (i.e. spatially proximal). 

(iii) Spatial information preserved at the probe intensity level is lost at the 
gene expression level. Since one of the objectives of the present study  
is to understand the qualitative similarities in local non-random struc-
ture/patchiness across the array, retaining the spatial information is  
crucial.  

A significant number of studies [22, 32, 56] have argued in favor of power-law dis-
tributional approximation to microarray gene expression data and attributed the same 
to biological factors governing gene expression. The authors in [22] demonstrated 
power-law (pareto-like) distribution in gene expression across genomes. They attrib-
uted such a behavior to common probabilistic mechanism in the gene expression 
process conserved in eukaryotic evolution. The authors in [32] claimed that gene ex-
pression distributions across several microarray platforms show close similarities to 
power-law behavior. Their findings also claimed that the variance of the log spot  
intensities were proportional to the genome size. In [56], the authors demonstrated 
persistence of power-law signatures in microarray gene expression from bacteria  
(Escherichia Coli) to humans (Homo Sapiens) across distinct biological conditions. 
Such a behavior was attributed to universality in transcriptional organization across  
genomes. 

In this section, we explore biological and non-biological factors that contribute to 
the distribution of probe intensities; hence gene expression estimates (Remark 1). A 
schematic diagram representing the microarray data acquisition process and subse-
quent higher level analysis is shown in Fig. 15.1 [41]. Specific details such as array  
layout, probe descriptions, hybridization protocols, laser scanning and image segmen-
tation are intentionally excluded in Fig. 15.1 and can be found elsewhere [1, 35, 36]. 
Oligonucleotide microarrays can be regarded as measurement devices or transducers 
that map the true transcriptional activity (i.e. mRNA expression) onto a measurement 
value (i.e. raw probe intensities). The data acquisition (Fig. 15.1) is accompanied by 

considerable noisiness ),( tt ∈η  and nonlinearities ),( ψϕ at the transcriptional and 

the measurement levels, Fig. 15.1. Transcriptional noise is coupled to the dynamics of 
the system, hence biological. It can be attributed to uncertainty in gene expression 
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Measurement device:

e.g. microarray 

Transcriptional level e.g. mRNA expres-

sion tm , 1( )t t tm m , where : nonlinear 

transcriptional mechanism and t : transcriptional 

noise coupled to the dynamics. 

Measurement level e.g. raw probe intensi-

ties t ttt m )( 1 where : transfer function 

of the measurement device (possibly nonlinear) and 

t : measurement noise added externally. 

Higher Level e.g. gene expression estimation, 

normalization, differential gene expression, cluster-

ing, genetic networks, ontology, expression QTL’s  

Pre-processing e.g. Background 

subtraction 

 

Fig. 15.1. Schematic diagram representing the contribution of various factors to probe intensity 
and gene expression estimates 

[12, 29, 53]. However, measurement noise is uncoupled to the dynamics of the bio-
logical system, hence non-biological. Biological systems by their very nature are 
nonlinear feedback systems [15, 18, 51]. An example of nonlinearity (ψ) in the case 
of gene expression is that of transcriptional cooperativity [15, 18], where promoters 
work in tandem to facilitate transcription. The actual mRNA expression and those 
output by a measurement device such as an oligonucleotide microarray need not nec-
essarily be linearly related. The measurement device is often accompanied by an as-
sociated transfer function (ϕ) possibly nonlinear, that maps the true biological activity 
(i.e. mRNA activity) onto the raw (PM, MM) probe intensities. It is important to  
appreciate the fact that (ψ) is biological whereas (ϕ) is non-biological. 
 
Remark 2. From the above section we note the following important points: 

(i) Biological as well as non-biological factors can contribute to the probe 
intensity/gene expression estimates, Fig. 15.1.  
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(ii) The distribution at the probe intensity is governed by the 

(a) distribution of the transcriptional and measurement noise ),( tt ∈η  
which can be Gaussian (i.e. additive process) or non-Gaussian (e.g. 
multiplicative process) 

and 
(b) nonlinearities at the transcriptional and measurement levels ),( ϕψ . 

Therefore, even if the true biological process (i.e. mRNA levels) is normally distrib-
uted, the distribution of the measured probe intensities (PM, MM) is likely to be 
skewed. The skew in the distribution of the probe intensities is also accentuated by 
their non-uniform nucleotide content which in turn governs the binding efficiencies, 
hence their expression [57, 58, 60]. Artifacts due to non-specific binding [16, 33, 42] 
and spatial gradients [52] also contribute to the probe intensity/gene expression esti-
mates. 
 
Remark 3. While the distribution of the raw probe intensities are governed by the fac-
tors listed under Remark 2, those of gene expression has significant contribution from 
the factors under Remark 2 as well as the estimation procedure f (Remark 1). There-
fore, the qualitative properties at the gene expression level need not reflect those at 
the probe intensity level.  
 
Data. The microarrays considered in the present study are publicly available and were 
generated in a recent study [26] (Affymetrix, Human Genome U133 set, i.e. 
HGU133A, 22283 transcripts) on comparing gene expression results across microar-
ray platforms and laboratories. The corresponding .CEL files [1] containing the PM 
and MM probe intensities is in the form of a rectangular matrix with dimensions 356 
x 712. All entries in this matrix which had zero intensity were forced with uncorre-
lated random numbers in order to reject any spurious correlation. Considering repli-
cate arrays across laboratories rejects the claim that the observed results are not an 
outcome of experimental protocols adopted by a particular laboratory.  

15.2   Power-Law Distributional Approximations to PM and MM 
Probe Intensities 

Array-wide gene expression has been widely reported to exhibit a significant skew 
towards lower expression values and a decaying trend with increasing magnitude of 
expression. Several parametric distributions can be used to model such a decaying 
trend [9]. Static nonlinear transforms such as Box-Cox normality trans-

forms λξ λ /)1()( −= xx  [8] have been used widely in statistical literature to argue 

in favor of near-normality assumptions. The log-transform in conjunction with 2-fold 
cut-off used widely in microarray community for identifying differential gene expres-

sion is the limiting case of classical Box-Cox normality transforms, i.e. )(lim
0

xξ
λ→

.  

This in turn implicitly assumes log-normal distribution of the gene expression  
values. Two popular distributions used widely to model decaying trends include the 
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exponential and power-law distributions. The parameters of both the distributions can 
be attuned so as to capture the decaying trend with increasing magnitude. However, 
these two classes of distributions have marked differences in their statistical proper-
ties. Unlike exponential distribution, the power-law distributions exhibit scale-
invariance, where the basic shape of the distribution does not alter with scaling. Let 

γ−kkp ~)( then we have )(.~).( kpkkp γγγ θθθ −−− =  i.e. the distribution of 

)(kp  resembles that of ).( kp θ  other than for a constant scaling factor. The con-

stant scaling factor can also be viewed as the global normalization of the microarray, 
which is used as an important pre-processing step to remove systematic bias between 
arrays prior to inferring differential gene expression [46, 48]. Unlike exponential dis-
tribution, scale-invariance of power-law distributions ensures non-negligible probabil-
ity of occurrence at large expression values (i.e. heavy tailed). In temporal data 
power-law distributions are associated with presence of memory whereas exponential 
distributions are deemed memoryless. These differences in the statistical properties 
between these two classes of distributions can have far-reaching consequences on  
biological interpretation. 

Power-law distributions as noted earlier have been observed at the gene expression 
level [22, 32, 44, 56]. In the present study, we investigate the validity of exponential 
and power-law distributional approximations at the probe PM as well as MM probe 
intensity levels using three different criteria, namely: R2, Akaike Information Crite-
rion (AIC) and Schwarz information criterion (SIC) [4, 7, 20, 23]. The term approxi-
mation is deliberately used to accommodate outliers, saturated intensities and finite 
sample effects inherent in microarray data. A more rigorous analysis using maximum-
likelihood approach [10] may provide further insight into the distributional signatures. 
It is important to note that model(s) with highest R2 is preferred whereas model(s) 
with lowest AIC and SIC are preferred. Using a combination of model validation  
criteria minimizes spurious conclusion that is an outcome of inherent assumptions  
behind a single validation criterion.  

 

Prior to model validation the distributions were log-transformed as follows: 

 (i) Transforming the exponential distribution k
e

eekP γα −=)( yields 

0,)(log)]([log 22 >−= kkkP ee γα   

 (ii)Transforming the power-law distribution pkkP p
γα −=)(  

0),(log)(log)]([log 222 >−= kkkP pp γα  

Preliminary inspection of the log-log (power-law) and semi-log (exponential) plots 
at the probe intensity and gene expression levels revealed significant distortions for 
values greater than (213). Given the dynamic range (0, 216-1) [1, 35, 36] of the probe 
intensities, it is likely that values greater than (213) may have significant contributions 
from saturated pixels. Therefore, gene expression and probe intensities above (> 213) 
were filtered prior to model validation. The exponential and power-law approxima-
tions were validated using the three different criteria (R2, AIC and BIC) on the filtered 
and background subtracted gene expression data generated across two different  
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Fig. 15.2. Validation metrics (R2, AIC and BIC) for the exponential (dotted lines) and power-
law approximations (solid lines) across the four different distributions (k = 1, 2, 3 and 4). The 
background subtracted gene expression data from two distinct laboratories (L1, L2) investigat-
ing the same paradigm [26] are represented by circles and squares respectively. While (k = 1, 3) 
correspond to MAS 5.0, (k =2, 4) correspond to RMA. The results across the three validation 
metrics argue in favor of power-law approximations over exponential approximations across 
laboratories.  

laboratories investigating the same paradigm generated in a recent study [26],  
Fig. 15.2. Background subtraction was accomplished by MAS 5.0 [3] and RMA [24] 
represented by (k = 1, 3) and (k = 2, 4) in Fig. 15.2. The two different laboratories are 
represented by (circles, k = 1, 2,) and (squares, k = 3, 4) in Fig. 15.2, respectively. The 
R2 values corresponding to the power-law approximation was relatively higher than 
that of the exponential approximation, Fig. 15.2a. The AIC and the BIC estimates 
were relatively lower for the power-law as opposed to exponential. These findings 
were consistent across arrays between laboratories and across background subtraction 
techniques. Thus power-law approximations seem to better explain the gene expres-
sion distribution as opposed to exponential approximation. These results conform to 
earlier findings [22, 32, 56]. 

A similar analysis was carried out for the raw and background subtracted πPM and 
πMM probe intensities obtained from the same arrays across the same laboratories [26], 
Fig. 15.3. The raw PM and MM intensities across laboratories (L1, L2) are represented 
by (k = 1 and 4), those obtained by background subtraction with MAS 5.0 and RMA are 
represented by (k = 2 and 5) and (k = 3 and 6) respectively, Fig. 15.3. The results ob-
tained across the three validation criteria were consistent and argued in favor of power-
law approximation over exponential approximations at the probe intensity levels.  

Remark 4. Power-law and exponential approximations exhibit significant difference 
in their statistical properties.  

(i) Analysis of the gene expression estimates across laboratories investigat-
ing the same paradigm using three validation criteria argued in favor of 
power-law over exponential approximations. 

 



 15   Power-Law Signatures and Patchiness in Genechip Oligonucleotide Microarrays 367 

2 4 6

0.85

0.9

0.95

1

R
2 (k

)

2 4 6
0.8

0.85

0.9

0.95

1

R
2 (k

)

2 4 6

-5

0

5

10

15

20

A
IC

(k
)

2 4 6

-5

0

5

10

15

20

(k)

A
IC

(k
)

2 4 6

-20

-15

-10

-5

0

5

S
IC

(k
)

2 4 6

-20

-15

-10

-5

0

5

S
IC

(k
)

(a) MM (b) MM (c) MM

(d) PM (e) PM (f) PM

 
Fig. 15.3. Validation metrics (R2, AIC and BIC) for the exponential (dotted lines) and power-
law approximations (solid lines) across the raw and background subtracted πMM (a, b, c) and 
πPM (d, e, f) probe intensity distributions (k = 1…6) obtained across two laboratories 
L1,(circles) and L2(squares) investigating the same paradigm [26]. The x-labels (k = 1 and 4) 
correspond to the raw PM and MM intensities across (L1, L2); (k = 2 and 5) correspond to the 
background subtracted (MAS 5.0) PM and MM intensities across (L1, L2); (k = 3 and 6) corre-
spond to background subtracted (RMA) PM and MM intensities across (L1, L2) respectively. 
The results across the three validation metrics argue in favor of power-law approximations over 
exponential approximations across PM as well as MM intensity distributions.  

(ii) Analysis of the raw and background subtracted PM and MM probe inten-
sities in arrays across laboratories investigating the same paradigm using 
three validation criteria argued in favor of power-law over exponential 
approximations. These qualitative similarities in the distributional prop-
erties across the PM as well as MM intensities is especially intriguing as 
the former is a measure of specific binding whereas the latter is a meas-
ure of non-specific binding. The persistence of power-law approximations 
across PM and MM intensities argue in favor of non-biological factors 
such as static nonlinear measurement function contributing the distribu-
tional signatures. 

(iii) Power-law distributions observed at the probe intensity levels may also 
imply inherent clustering/patchiness in the intensities [49]. 

15.3   Patchiness in PM and MM Probe Intensity Matrices 

Classical linear correlation coefficient is widely used for inferring statistically signifi-
cant linear dependencies between a given pair of variables. Correlation coefficient  
between the raw and background subtracted (RMA) πPM and πMM intensities across 
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Fig. 15.4. Scatter plot of the raw and background subtracted (RMA) πPM and πMM probe inten-
sities in arrays generated across laboratories L1 (a, b) and L2 (c, d) investigating the same  
paradigm [26] 

laboratories L1 (Figs. 15.4a and 15.4b) and L2 (Figs. 15.4c and 15.4d) were (r2 ~ 0.46, 
p-value < 0.05) and (r2 ~ 0.47, p-value < 0.05).respectively However, visual inspec-
tion of the scatter plots, Fig. 15.4 revealed considerable noisiness with no apparent 
linear trend. Thus direct estimation of the correlation coefficient may not provide suf-
ficient insight into their qualitative similarities and correlation structure. 

Techniques such as global singular-value decomposition (SVD) [19] have been 
used widely in interpreting microarray gene expression data [6, 59]. Global SVD of a 
matrix Γ is equivalent to eigen-decomposition of symmetric and ΓΤΓ and ΓΓΤ, hence 
a measure of linear correlation between the probe intensities. While Γ ΤΓ  is a meas-
ure of the row-wise correlation, ΓΓΤ is a measure of the column-wise correlation. 
However, they both yield the same eigen-spectrum, hence equivalent.  
 
Remark 5. Classical correlation coefficient and global SVD may be useful in estab-
lishing the non-random nature of the PM and MM probe intensity matrices. However, 
it is possible that only a subset of the probes on the array contribute to the observed 
correlation. Global assessment also does not provide insights into which probes on 
the array contribute significantly to the observed similarity in correlation signatures 
between the probe intensity matrices.  
 

In order to overcome some of the caveats listed under Remark 5, we chose local SVD 
as opposed to global SVD. The procedure to determine statistically significant 
patchiness using local SVD is described in the following section. 
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15.3.1   Local SVD of (PM, MM) Probe Intensity Matrices 

Algorithm I 
Step 1. Partition the PM probe intensity matrix PMR1xC1 into non-overlapping 

blocks each of size r x c. This maps PMR1xC1 into BR2xC2, such that, ⎣ ⎦R1/rR2 = , 

⎣ ⎦C1/cC2 =  where ⎣ ⎦y  stands for largest positive integer greater than or 

equal to y. 
 

Step 2. Choose a block B = BUV, U= 1…R2, V = 1…C2. Retrieve the eigen-spectra 
λK, K = 1…min(R2,C2). Subsequently, normalize the eigen-values to ob-

tain Ki
K

i
i

ii ...1

1

2

2

==
∑

=

λ

λδ . 

 

Step 3. Complexity )( Bη  of block B is given by  

∑
=

−=
K

k

kkB

K 1

)log(
log

1 δδη  

 Complexity Bη is inversely proportional to the linear correlation in B. Al-

ternatively, increased redundancy/local correlation between neighboring 
probes in the block results in low complexity. Ideally, for a random structure 
the eigen-values will be uniformly distributed resulting in maximum com-
plexity.  

 
Step 4. Block B is deemed as significantly correlated if the estimate of the covari-
ance complexity on B is significantly different from those obtained on its random 

shuffled counterparts si niB ...1,* = of B. Random shuffled counterparts/matrices 

were constructed by bootstrapping the elements of B randomly without replace-
ment [54, 55]. Such constrained realizations retain the distribution of the probe in-
tensities in B in the shuffled counterparts whereas the spatial information between 
neighboring probes is destroyed. 
 

Step 5. In the presence of correlations, we expect the complexity of block B ( Bη ) 

to be lesser than that of its random shuffled counterparts )....1,( *
s

B
i ni =η  There-

fore, a one-side non-parametric test is sufficient to establish statistical signifi-
cance. i.e. the null hypothesis that the given block is not significantly correlated 

can be rejected at a significance level α = 1/(1+ns) if s
B
i

B ni ...1* =∀<ηη [54, 

55]. In the present study, we fix (ns = 99), which corresponds to α = 0.01 [54, 55]. 
Parametric approaches [54, 55] are less stringent. However, their conclusions 
 implicitly rely on implicit normality assumptions; hence can give rise to false  
positives when these assumptions are violated. 
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Step 6. For visualization a binary mask Φ is generated such that 
ΦUV = 1   for a significantly correlated block U= 1…R2,  
  V = 1…C2. 
       = 0  otherwise 

Repeat steps 2 to 5 for each of the block B = BUV, U= 1…R2, V = 1…C2 of the PM 
matrix. 
 
Step 7. Repeats Steps 1-6 independently for the (MM) probe intensity matrix.  

Global SVD is special case obtained by setting (r = 1, c = 1) in Step 1 of Algorithm 
I. As expected, complexity (η) obtained from global SVD of the PM and MM ma-
trices with and without background subtraction were significantly lower than those 

of their random shuffled surrogates ,s
iηη < i = 1… 99, indicative of non-random 

structure in the PM and MM matrices. This was verified across replicate arrays 
generated across laboratories (L1, L2) investigating the same given paradigm. 
However, from Remark 5, we note that the correlation across the probes in the PM 
and MM matrices need not necessarily be global, i.e. the statistical properties can 
vary considerably across the probe intensity matrices. This is to be expected as the 
binding efficiencies of the probes can vary considerably by their very design, also 
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Fig. 15.5. Binary masks generated (Step 6, Algorithm I) with (r x c = 21 x 21, ns = 99) across 
the raw (RAW) and background subtracted (RMA) PM and MM probe intensity matrices 
across laboratories (L1, L2) investigating the same paradigm [26]. Correlated patches (white 
pixels) across MM, i.e. Φ(MM), and PM, i.e. Φ(PM), probe intensity matrices are shown in  
the top two rows (a-d and e-h), whereas those common to PM as well as MM, i.e. Φ(PM+MM), 
are shown in the bottom row (i-l). The size of the probe intensity matrices are (356 x 712), 
hence the dimension of the binary masks are (356/21 x 712/21), i.e. (16 x 33). 
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Fig. 15.6. Binary mask (Φ*) generated by intersection of the binary masks in the last row of 
Fig. 5, i.e.5i- 5l. The correlated patches (white pixels) in the above binary mask were common 
across PM and MM probe intensity matrices, across raw and background subtracted intensities 
and across replicate arrays generated across laboratories (L1, L2) [26]. The size of the probe in-
tensity matrices are (356 x 712), hence the dimension of the masks are (356/21 x 712/21), i.e. 
(16 x 33). 

reflected by the skewed distribution of the probe intensity matrices (Sec. 15.2). In  
order to capture the local variation in correlation structure, we analyzed the probe 
intensity matrices using local SVD with block size (r x c = 21 x 21) and the num-
ber of surrogates (ns = 99), Fig. 15.5. It is important to note that there are several  
significantly correlated patches that persists across PM as well as MM probe inten-
sity matrices. This is especially interesting as the former is a measure of specific 
binding whereas the latter is a measure of non-specific binding. 

Interestingly, there were correlated patches (Φ*) Fig. 15.6, that persisted (i) across 
PM and MM probe intensity matrices, (ii) across replicate arrays from two distinct 
laboratories and (iii) across the raw and background subtracted intensities. These 
patches were generated as intersection of the binary masks in Figs. 15.5i to 15.5l. 

The probes on the Genechip microarrays are designated based on their sequence in-
formation (see Table 15.1 and [3]). A recent study [42], investigated the contributions 
of two specific probe designations (_s_at and _x_at) on hybridization interactions and 
spurious correlations. Probesets with suffix (_s_at) have the ability to target multiple 
transcripts (i.e. multiple targeting), on the other hand those with _x_at can contribute 
significantly to cross-hybridization and non-specific binding. Interestingly, ~70% of 
the probes comprising the patchy region, Fig. 15.6, were classified under _s_at 
whereas ~11% were classified as _x_at.  

 
Remark 6. Local SVD can be useful in identifying significantly correlated patches. 
Preliminary results indicated patchiness that persists across PM as well as MM probe 
intensity matrices with and without background subtraction. Probes that were  
common across the PM and MM intensity matrices, across laboratories, across raw  
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Table 15.1. Probe designations 

Suffix Description 

_f_at Represents polymorphic probes which share considerable similarity 

_s_at Represents probes common across several genes/transcripts, i.e. mul-

tiple targeting 

_g_at Represents probes chosen in a  region of overlap 

_r_at Represents probes picked comprising the selection rules. 

_i_at Represents transcripts with incomplete/fewer number of probes than 

required

_b_at Represents ambiguous probe sets 

_l_at Represents transcripts with more than 20 probe pairs 

_x_at Represents probe-sets which share probes, i.e. non-specific binding 
 

 
and background subtracted data consisted mainly of cross-hybridizing and multiple 
 targeting probes. 
 
It should be noted that (η) by definition is a measure of linear correlation, hence Al-
gorithm I can give rise to false-negatives in the presence of nonlinear correlations 
among the probe intensities. However, it cannot give rise to false-positives (i.e. it 
cannot indicate presence of correlation in a seemingly random patch). For the same 
reason, results obtained with (η) represent the lower limit in identifying locally corre-
lated regions. More sophisticated measures, possibly nonlinear may be used to gain 
further insight into the correlation structure. Algorithm I implicitly assumes a rectan-
gular geometry, however the locally correlated regions can be irregular. This in turn 
may result in the inclusion/exclusions of probes which are not a member of the locally 
correlated region. Overlapping blocks is a suitable alternative and may be used in 
order to obtain finer representation of the correlation structure and minimize edge ef-
fects (i.e. accommodate all the probes on the array). The choice of block size can also 
affect the conclusions. A large block size provide better statistical description and es-
pecially encouraged when the probe intensity matrices are homogeneous, i.e. not 
much variation in the correlation properties. Small block sizes are preferred when the 
correlation properties show marked variations. However, smaller the block size, 
lesser the statistical information. There is no straightforward way to determine the 
optimal block size. An exhaustive approach would be to repeat Algorithm I for vary-
ing block sizes. A more elegant approach would be to use multiscale decomposition 
techniques such as wavelets that provide both spatial and frequency resolution. 

15.3.2   Multiscale Decomposition of (PM, MM) Probe Intensity Matrices 

Multiscale approaches such as discrete wavelet transforms (DWT) are ideally suited 
for capturing varying statistical properties and correlation structure in 1D and 2D 
data. Unlike classical 2D Fourier transform (FT), DWT provides time/spatial as well 
as frequency resolution of the given data [37]. While high frequency components 
 require better time resolution, low frequency components require better frequency 
resolution. The delicate balance between time and frequency resolutions in DWTs is 
dictated by the Heisenberg’s uncertainty principle.  DWT is a linear transform 2D FT 
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and represents the given data as a linear combination of basis functions generated by 
dilating and shifting the scaling function and the mother wavelet. Dilating and shifting 
interrogates the correlation content in the 2D structure at various scales, hence termed 
as multiscale decomposition. This very aspect makes DWTs far more superior to 
techniques such as STFT and local SVD which captures the correlation structure at a 
single scale. DWT coefficients at lower-scales provide finer resolution (details) and 
high frequency (H) components in the given data. Those at higher-scales provide 
coarser resolution (approximations) or low-frequency (L) components in the given 
data. Since the objective of the proposed study is to understand local correlation struc-
tures and their variation across the (PM, MM) probe intensity matrices, the emphasis 
will be on the approximation coefficients in the DWTs. 

 
Example. A (k = 3) level hierarchical decomposition of X into details and approxima-
tions using 1D DWT is shown below. The details and the approximations correspond 
to high-frequency (H) and low-frequency (L) components respectively. Thus at each 
stage one encounters two possibilities (H and L). 
 

               X                                                (given data)  
      =   L1                        + H1       (k = 1, first level decomposition) 

                     L1    = L2             + H2        (k = 2, second level decomposition) 
                                     L2    = L3  + H3        (k = 3, third level decomposition) 
 

At each level (k), the relation Lk-1 = Lk + Hk holds. 2D DWT [37] is given as a ten-
sor product of row-wise and column-wise 1D (separable) DWTs of the given matrix.  
Row-wise and column-wise decompositions give rise to approximations and details 
along either directions resulting in four possible outcomes namely: (LL, LH, HL and 
HH) respectively. Similar to 1D DWT, 2D DWT decomposition at the level k satisfies 
the relation LLk-1 = LLk + LHk + HLk + HHk. The term LLk corresponds to the ap-
proximation (low frequency component) whereas (LHk, HLk and HHk) correspond to 
vertical, horizontal and diagonal details (high frequency components) respectively. 
The choice of a particular wavelet is dictated by important properties. These include 
(a) compact support (b) symmetry (c) orthogonality (d) regularity and (e) vanishing 
moments. A brief explanation of these terms are enclosed below. (a) compact support: 
wavelets with compact support correspond to FIR (finite impulse response) filters and 
useful in time localization. (b) symmetry: symmetric wavelets do not give rise to arti-
facts at the boundaries (c) orthogonality: orthogonality significantly reduces the com-
putational burden, hence results in faster implementation (d) regularity: governs the 
degree of smoothness and usually proportional to the order of the filters. (e) vanishing 
moments: the maximum polynomial degree representation that can be generated by 
the scaling function. From the perspective of the proposed study, emphasis will be on 
(a) compact support, (b) symmetry (d) regularity and (e) vanishing moments. As 
noted earlier, DWT represents the correlation structure in the given matrix as a hierar-
chical decomposition that satisfies the recursive relation LLk-1 = LLk + LHk + HLk + 
HHk at each level k.  

A three level hierarchical decomposition (DWT) of a portion of the raw MM and the 
corresponding PM probe intensity matrices using Biorthogonal wavelet 2.6 (i.e. order of 
reconstruction = 2 and order of decomposition = 6) is shown in Figs. 15.7a and 15.7b 
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LL1 LH1 HL1 HH1

LL2 LH2 HL2 HH2

LL3 LH3 HL3 HH3

(a) MM  

LL1 LH1 HL1 HH1

LL2 LH2 HL2 HH2

LL3 LH3 HL3 HH3

(b) PM  

Fig. 15.7. Three-level hierarchical decomposition (DWT) of a small portion of the raw MM 
probe intensity matrix (a) and raw PM intensity matrix (b) using biorthogonal wavelet 2.6. The 
details and the approximation coefficients are color coded for visualization.  

respectively. The choice of biorthogonal wavelet is encouraged by the fact that it is 
compact and symmetric. The approximations at the three levels are represented by  
LLi, i = 1, 2 and 3, the horizontal, vertical and diagonal details are represented by LHi, 
HLi and HHi respectively with i = 1, 2 and 3. The magnitudes of the coefficients are 
color coded to aid visualization of locally correlated regions. The corresponding color-
coefficient mapping is also included. Brighter colors correspond to probes which exhibit 
significant local correlation/patchy regions. From Figs. 15.4a and 15.4b, there is a clear 
overlap in local correlation structures between the PM and MM probe intensity  
matrices. In the following section, we propose an approach to determine whether the 
correlation structures are statistically significant. 

15.4   Discussion 

Gene expression estimation in Genechip microarrays are governed by the qualitative 
behavior of atomic entities on the arrays called probes. These probes can be broadly 
classified into perfect and mismatch probes. While the former is a measure of specific 
binding, the latter is used an internal control to assess non-specific binding. Under-
standing the qualitative behavior at the probe level can have significant impact on 
gene expression estimation, higher level analyses and subsequent biological inference. 
Classical techniques estimate gene expression as a complex combination of PM or 
PM and MM intensities. The behavior of the mismatch probes has especially proven 
to be elusive. The present study elucidates qualitative similarities in the distributional 
signatures and local correlation structure/patchiness of the perfect match and mis-
match probe intensity matrices. The results were established on publicly available mi-
croarray gene expression data generated across laboratories investigating the same 
biological paradigm. These results were also established on the raw and background 
subtracted PM and MM probe intensity data. Thus background subtraction using 
popular techniques seem to have negligible effect on the qualitative similarities  
between PM and MM probe intensities.  
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Power-law approximations attributed to inherent biological mechanisms were 
found to persist across the PM as well as MM probe intensities and across replicate 
arrays generated across laboratories investigating the same paradigm. These prelimi-
nary findings argue in favor of non-biological factors contributing to the observed 
power-law signatures including the transfer function of the measurement device (i.e. 
microarray) which maps the true biological phenomena onto the probe intensity value. 
Analysis of the PM and MM probe intensity matrices using local singular value de-
composition revealed statistically significant locally correlated patches reflecting in-
herent heterogeneity and variation in statistical properties. Patchiness persisted across 
the PM and MM probe intensity matrices. The results were established across the raw 
as well as background subtracted probe intensity data and across replicate arrays be-
tween laboratories investigating the same paradigm. Majority of the probes compris-
ing the patchy regions were found to be either multiple targeting or cross-hybridizing 
probes. The preliminary results reported in this study raise fundamental concerns in 
interpreting gene expression data and encourage possible exclusion of certain probes 
that are common to PM as well as MM probe intensity matrices from gene expression 
estimation and subsequent higher level analysis. A more detailed investigation using 
sophisticated approaches such as maximum likelihood and multiscale decomposition 
is necessary in order to completely understand the distributional signatures and local 
correlation structures at the probe intensities. 
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Summary. The post-genomic era has seen a significant increase in the use of com-
putational prediction methods to gain insights into structure and function of proteins.
Prediction tools are used to guide the experimental design to test various hypotheses
about structure and function of known proteins. However, these tools are particularly
useful when studying putative protein sequences with no known function. The genomic
era produced a large number of sequences that are described as either hypothetical
proteins or as proteins with unknown function. Current molecular biology techniques
are not adequate to efficiently study this vast reservoir of genetic information. However,
computer algorithms can process large amounts of sequence data to predict structure
and function. These knowledge-based computational tools use available experimental
data and are regularly updated to improve their predictive power. The simplest form
of function prediction is achieved by comparison of the query sequence to all available
sequences using BLAST. If the query sequence is highly similar to previously character-
ized proteins, then it is likely that the query sequence has similar functions. However, if
the query sequence does not have any homologous sequence with known function, then
more sophisticated computational tools are necessary to gain insight into structure and
function. Various methods have been developed to search for known domains, motifs,
patterns, or profiles. The quality of predictions is dependent on the type of tools used
and is limited to the closeness of the query sequence to known proteins.

In this chapter, we will describe and discuss methods and tools we used to predict
structure and function of a putative protein sequence (Msa) with unknown function.
We will address the advantages and limitations of all these approaches by using the
Msa protein from the human pathogen Staphylococcus aureus as a case study. Msa is
a novel protein that is involved in regulation of virulence. Since Msa has no known
homolog, computational tools are being used to predict its structure and mechanism
of action. These predictions are used to design experiments to study Msa and explore
its use as a therapeutic target to combat antibiotic-resistant infections.

16.1 Background

The post-genomic era has seen a significant increase in the use of computational
prediction methods designed to gain insights into structure and function of pro-
teins. Prediction tools are useful guide for experimental design. They can be

T.G. Smolinski et al. (Eds.): Comp. Intel. in Biomed. & Bioinform., SCI 151, pp. 379–395, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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used to test various hypotheses about structure and function of known proteins.
They are also particularly useful when studying protein sequences with no known
function.

16.1.1 Genomic Era

The genomic era produced a large number of sequences that are described as
either hypothetical proteins or as proteins with unknown function. Indeed, the
NCBI Gene database contains 571,064 bacterial genes with hypothetical function
(34.27% of known bacterial genes) and 180,062 bacterial genes with unknown
function (10.80% of known bacterial genes) (statistics as on June 28, 2007).
Knowledge of the functional properties of these unknown proteins would greatly
enhance our understanding of the molecular mechanisms of biology with great
payoffs in several areas of research such as medicine, agriculture, environment
and biotechnology.

Traditional techniques of molecular biology like mutation, cloning and over
expression are not adequate to efficiently study this vast reservoir of genetic
information. Therefore, reliance on computer algorithms which can process large
amounts of sequence data to predict structure and function is necessary to gain
knowledge. There are two types of prediction tools: knowledge-based and ab
initio. knowledge-based computational tools use available experimental data and
are regularly updated to improve their predictive power. On the other hand, ab
initio tools use only the physico-chemical properties of the biological molecules
to predict structure and function.

16.1.2 Function Prediction

Function prediction could be done based on a variety of aspects like physico-
chemical properties, sequence similarity, structure similarity, gene expression
data, biomolecular interaction information, gene ontology, phylogeny and text
mining. Depending on how much prior information we know about the query
sequence, one or more of these prediction methods could be used. The simplest
form of function prediction is done by comparison of a query sequence to all
available protein sequences and/or structures using a similarity search tool such
as BLAST [1]. If the query sequence is similar to sequences of characterized
proteins, then function is inferred from the known proteins. However, if the query
sequence does not have any homology (‘homology’ is defined as the similarity
that is inherited by virtue of common ancestry) with characterized proteins,
then the problem becomes more challenging. In the latter case, specialized and
more sophisticated computational tools are necessary to gain insights into the
structure and function of novel proteins. A wide variety of methods have been
developed to predict and search for known domains, motifs, patterns, or profiles.
The predictive quality of these methods depend on the type of tools used and
how close the query sequence is to known proteins.
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16.1.3 An Embarrassment of Prediction Tools

There is no shortage of prediction tools; in fact the large and growing number of
computational tools available makes it more difficult to keep up to date on the
latest algorithms in the field of Bioinformatics. This is particularly problematic
for “bench” scientists (like molecular biologists and microbiologists) who do not
use these tools on a regular basis. There are literally hundreds of online/offline
tools, packages, modules, scripts and automated pipelines for large scale predic-
tions. There are even operating systems (linux based) that comes preconfigured
with several open source Bioinformatics software. For a recent comprehensive
survey of protein function prediction tools see Gaurav et al. [2].

The efficiency and performance of these prediction tools are constantly en-
hanced; however, function assignment is still a daunting task. Indeed searching
NCBI protein database with the term “unknown function” returned about half
a million (431,070) protein sequences. We have faced the problem of function as-
signment after the discovery of a novel protein Msa, in Staphylococcus aureus [3].

16.1.4 Msa, a Case Study

Staphylococcus aureus is an important human pathogen causing several diseases
ranging from common skin infection to serious life-threatening diseases. The
emergence of antibiotic resistant strains of S. aureus necessitate discovery of
novel drugs to address this important public health problem. An important pre-
requisite to developing new treatment is the identification of novel therapeutic
target. We have discovered a novel protein (Msa) which plays a critical role in
regulation of virulence in S. aureus [3]. Since Msa has no homolog with known
function, we used computational tools to predict its structure and mechanism
of action [4]. These predictions allowed us to develop a hypothetical model for
Msa which served as the basis for our wet lab experimental design to study this
protein and explore its use as a therapeutic target.

In this chapter we will describe and discuss the methods and tools that we
used to study the Msa protein in silico. This chapter is not a comprehensive
review of all the available tools for function prediction, rather we focused on a
set of tools that we found most useful to study a protein with no known homolog.
This set of tools can be used, with some variations, to study other proteins.

16.2 The Starting Point: BLAST

Basic Local Alignment Search Tool (BLAST) [1] is the first tool that one could
start with in protein function prediction. BLAST is a powerful similarity search-
ing tool hosted by National Center for Biotechnology Information (NCBI). Given
a query sequence (either nucleotide or protein), BLAST searches for similarity
against several databases that contain sequence, structure, domain or expression
information.
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Fig. 16.1. The Overview of function prediction based on initial BLAST results

If the BLAST results contain sequences with statistically significant similarity
(high score and low E-value) to the query sequence, then one can infer func-
tion from homology. From this point additional sequence analysis can be done
such as multiple sequence alignment, conserved domain search, phylogeny etc.
(Figure 16.1). One can then proceed to experimental design to test the predic-
tions. In some cases however, no significant hits are produced using the default
parameters. This was the case of Msa. In this event one can change the BLAST
parameters such as by increasing the E-value threshold or using other version of
BLAST like PSI-BLAST to find distant similarities.

16.2.1 BLAST Results for Msa

Our simple BLAST search against the non-redundant protein database, using
the 133 amino acid length Msa protein sequence (Locus : Q7A5P4) did not return

Fig. 16.2. The BLAST similarity search result showing very few similar sequences.
Several low scoring segments are also found in the N-terminal region.
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any significant homolog. Searching additional databases that are not included in
the BLAST default setting also did not yield any significant homolog. We did
not find any homolog in the conserved domain database (CDD) or by using PSI-
BLAST. However, BLAST and PSI-BLAST gave us several hits that had low
scores and high E-values. The similarity of these low scoring hits were confined
to the N-terminal region (∼40 residues) (Figure 16.2). Interestingly, despite the
fact that these low scoring sequences came from a diverse group of organisms,
they were all integral membrane proteins.

16.3 The Next Step

Similarity searches that do not yield clear homologs can still produce some clues
that can help in deciding on the next step in analysis. Indeed, in the absence
of homologs one can utilize prediction tools that rely primarily on the physico-
chemical properties or structural properties (primary, secondary, or tertiary).
Tools that predict other properties like localization, solubility, or other features
could also be used. The decision of the most appropriate tool to use can be based
on the findings from the BLAST analysis.

In the case of Msa, BLAST results suggested that Msa might be a membrane
protein. Multiple sequence alignment and phylogeny at this point did not yield
any more useful information since Msa sequences from various strains of S. aureus
are highly conserved (∼98% similar). So, we started with sub-cellular localization
prediction tools to find out if Msa localizes to the membrane.

Several tools are available to predict protein sub-cellular localization [5]. These
tools make localization predictions for either prokaryotic or eukaryotic sequences.
They use a wide variety of methods from simple amino acid composition to
complex machine learning approach. Each tool has advantages and disadvantages
associated with it. The best way to approach these problems is by using as many
tools as possible with the hope to build a consensus.

16.3.1 Localization of Msa

When studying the localization of Msa, the first tool that we used was PRED-
CLASS [6], since it claimed to produce near 100% accuracy for classifying pro-
teins as membrane, fibrous, globular or mixed. PRED-CLASS predicted Msa to
be a membrane protein. We then used PSORT [7] for gram positive bacteria,
which also predicted Msa as a membrane protein, with significant “certainty”.
In addition, PSORT predicted the presence of a cleavable N-terminal signal se-
quence and two transmembrane regions. ProtCompB, which specializes in gram
positive bacteria also predicted Msa as an integral membrane protein with an
N-terminal signal sequence. We also used PSLpred [8] which predicted localiza-
tion for prokaryotic proteins, based on five different methods. Only two of the
PSLpred methods (the amino acid composition based method and the properties
based method) predicted Msa as a membrane protein. PSLpred however does
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not distinguish between gram positive and gram negative bacteria in its predic-
tions. CELLO [9] ; one of the recent tools also predicted Msa as a membrane
protein, with a significant score.

Finally, two other programs SVMProt [10] and ProtFun [11], both of which
predict the functional category of a protein sequence, also predicted Msa as
belonging to the membrane protein category. Results from most of the tools
used showed a consensus prediction of Msa as a membrane protein. The GRAVY
(grand average of hydropathicity) index [12] value of 1.021 also suggests that Msa
is probably an insoluble protein. This allowed us to focus our analysis on aspects
of Msa that pertain to integral membrane proteins.

16.4 Advanced Analyses of a Putative Membrane Protein

Given the fact that Msa was predicted to be a membrane protein by a variety
of localization tools, there is a number of analysis that could be done to further
study Msa in silico. For instance, we could search for a signal peptide, predict
the transmembrane topology, determine the hydropathy index as well as make
secondary structure predictions. Interestingly, two of the sub-cellular localization
tools predicted a cleavable signal sequence in the N-terminal region of Msa. This
prompted us to use specialized signal prediction tools.

16.4.1 Signal Peptide Prediction

Signal peptides are essential components for many membrane proteins. Several
tools are available to predict the presence and identity of a signal peptide in
a putative membrane protein. These tools can guide experimental design to
determine the mechanism of targeting of membrane proteins. One such tool is
SignalP [13] which predicts the presence of signal peptides as well as a putative
cleavage site, using a hidden Markov model (HMM) and a neural network (NN).

Both HMM and NN of SignalP showed a high probability for the presence of an
N-terminal signal peptide in the Msa protein. However, while HMM predicted
a cleavage site between 29th and 30th residue, NN predicted the cleavage site
between 30th and 31st residue. The HMM prediction had a higher probability
than the NN prediction. Another signal peptide prediction tool iPSORT [7]
predicted the presence of a signal peptide in the first 30 residues with a score
several fold higher than the threshold value (Figure 16.3). It is noteworthy to
state that PSORTb [14], a member of the PSORT family, failed to predict a signal
peptide for Msa, but the more generic version of PSORT [7] predicted a signal
peptide cleavage site at position 20. Indeed PSORTb is mainly recommended for
signal peptide predictions in gram negative organisms (those bacteria that fail
to retain the dye (crystal violet) during the Gram staining protocol).

Surprisingly SIG-Pred for gram positive organisms did not find a signal pep-
tide in Msa. In contrast, the eukaryotic version of the SIG-Pred predicted a
cleavable signal peptide in Msa at position 20. This could be due to the fact
that SIG-Pred has a false negative rate that is several fold higher in comparison
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Fig. 16.3. Signal peptide prediction results from A: SignalP-NN (with largest C-
score near the 30 th amino acid), B: SignalP-HMM (with highest cleavage probability
between 29th and 30th amino acid) and C: iPSORT (with first 30 amino acids showing
high probability for being the signal peptide sequence)
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to the other signal peptide prediction tools. Finally, another program that did
not find a signal peptide in Msa was SOSUIsignal [15]. This is probably due to
fact that SUIsignal does not perform well for prokaryotic sequences in compar-
ison to eukaryotic ones. Indeed, this is acknowledged by SOSUIsignal’s authors
who attribute this to the lack of enough data for prokaryotic signal anchors.
sigcleave [16] predicted the cleavage position at 20. Similarly, Phobius [17] also
predicted a cleavage site at position 20. Based on the preponderance of evidence
(predicted cleavage site by sigcleave, PSORT, Phobius and SIG-Pred), we drew
a consensus prediction that Msa has a putative signal peptide that is cleavable
at amino acid position 20.

16.4.2 Topology Prediction

Having made strong predictions that Msa is a putative membrane protein with
an N-terminal signal peptide, the next step in the analysis was the characteriza-
tion of the transmembrane topology. This will allow us to determine the number
and orientation of the transmembrane segments. Transmembrane topology which
is characterized by the number and orientation of the transmembrane segments,
is very important for determination of membrane protein’s function. We used
several transmembrane prediction tools to analyze Msa. For a review of trans-
membrane prediction tools refer to Ikeda et al., [18].

TMpred [19] is a knowledge-based tool that predicts topology of the query
sequence based on statistics derived from a database of membrane spanning
protein segments. TMpred predicted two set of possible transmembrane helices.
One of this set had “inside to outside” topology with three transmembrane
helices in the regions between the amino acid positions 29-47, 55-75 and 107-
123. The other set had “outside to inside” topology with three transmembrane
segments in the regions between 3-23, 27-47 and 107-125.

Since Msa is predicted to have a putative N-terminal signal peptide se-
quence, the “inside to outside” topology was considered plausible. It is also
noteworthy to mention that most of the transmembrane prediction tools have
the inherent property of predicting the signal peptide as a transmembrane seg-
ment [17]. To address this issue, we used another tool Phobius [17], which has
the ability to distinguish between the signal peptide and the transmembrane seg-
ments. As expected, Phobius predicted the N-terminal signal peptide followed by
three transmembrane segments. However, in contrast to our initial analysis, the
topology predicted by Phobius was “outside to inside”.

We then used several other transmembrane prediction tools to look for a con-
sensus topology for Msa. When we used the following programs, TMHMM [20],
SPLIT [21], HMMTOP [22], MEMSAT [23], DAS [24] and SEG [25], a consen-
sus topology emerged showing four transmembrane segments (Figure 16.4), with
“inside to outside” orientation. Based on previous analysis, we concluded that
the first transmembrane segment predicted by all these tools is probably the
signal peptide sequence (see Sec. 16.4.1). This prompted us to conclude that
the consensus topology actually consists of three transmembrane segments with
“inside to outside” orientation. We also tested the possibility of other models for
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Fig. 16.4. The transmembrane predictions by A: TMHMM (showing four transmem-
brane segments), B: Phobius (clearly showing three distinct transmembrane segments),
C: DAS (showing four transmembrane segments as four peaks above the cutoff line),
D: SPLIT (shows four transmembrane segments). The first segment in the TMHMM,
DAS and SPLIT predictions actually correspond to the signal peptide sequence.
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Fig. 16.5. The Positive-inside rule and Charge bias analysis for the possible topology
models of Msa. Our consensus topology model is also the most favored model according
to the positive-inside rule (Topology 1).

the Msa topology using the “Positive-inside rule and Charge bias” approach [26].
The charge bias analysis for the possible models (generated from the above men-
tioned topology predictions) is presented in the Figure 16.5. This analysis also
supports our consensus “inside to outside” topology (Topology 1 in Figure 16.5).

16.4.3 Secondary Structure Prediction

Transmembrane prediction tools also provide information about secondary struc-
ture. For instance, the three transmembrane segments in Msa were predicted to
be helices. To further analyze the secondary structure, we used the NPS (Net-
work Protein Sequence Assembly) [27] server. NPS uses results from several
different secondary structure prediction tools to derive at a consensus. NPS re-
sults confirmed the presence of three helices in Msa which corresponded to the
three transmembrane segments and one helix that corresponded to a cytoplasmic
segment (Figure 16.6).

Fig. 16.6. The Consensus secondary structure prediction. TMS - Transmembrane
Segment [4]

.
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16.4.4 Domains, Patterns, Motifs

Domains and Motifs are distinct structural and functional units which confer
specific function to a protein sequence. For example, presence of a DNA binding
domain in a protein sequence is suggestive of the proteins function as a tran-
scriptional factor or a polymerase enzyme . Domains, patterns and motifs are
important in assigning putative function to proteins. Several tools are available
to predict domains, patterns or motifs in protein sequences. A search against
the protein families and domains database Pfam [28] did not yield any known
functional domains for Msa. Search against another protein domain database
ProDom [29] also did not yield any known functional domain for Msa. Using
a meta-server InterProScan [30], an N-terminal signal peptide was the only
prediction made on Msa.

We then used SMART (a Simple Modular Architecture Research Tool) [31],
which predicted the presence of a PreATP-grasp domain in Msa. This PreATP-
grasp domain (Structural Classification of Proteins (SCOP) entry: d1gsa 1)
usually precedes the ATP-grasp domain and could contain a substrate-binding
function. SMART located this domain between the 85th and 116th residue. Inter-
estingly this location is predicted to be in a cytoplasmic loop region of Msa.

To search for patterns we used the PROSITE [32] database. We used differ-
ent pattern searching tools such as PPSearch, PSITE [33] and ScanProsite [34].
Predictions from all these tools showed the presence of four putative phospho-
rylation sites in Msa. These phosphorylation sites were located at residues 48
(Tyrosine Kinase), 49 and 99 (Casein Kinase II). Residue 99 was also predicted
to be a phosphorylation site for Protein Kinase C. Interestingly, two of the puta-
tive phosphorylation sites are located outside the membrane while one is located
in the cytoplasmic region. Moreover, multiple sequence alignment of the Msa
protein sequences from different strains of S. aureus showed that these putative

Fig. 16.7. The hypothesized model for Msa with three putative transmembrane re-
gions, phosphorylation sites (circled) and signal peptide cleavage site (diamond)
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phosphorylation sites are highly conserved. These predictions suggests that Msa
is phosphorylated by kinases in the cytoplasm as well as on the outside of the
membrane (e.g. from the host cells).

These findings led to the hypothesis that Msa functions as a signal trans-
ducer (Figure 16.7). However, Msa did not share homology with any known
transmembrane signal transducers. These predictions will be tested by mutage-
nesis experiments. If the hypothesis is true, then Msa will be considered as a
novel signal transducer.

16.5 3-D Structure Prediction and Analysis

Ultimately, tertiary structure of a protein is the most important determinant
of its function. Determination of tertiary structure of proteins can be difficult,
especially for membrane proteins. Several methods and tools are available for
the prediction of 3-Dimensional (3-D) tertiary structure. Tertiary structure can
be predicted using homology modeling, fold recognition or ab initio based meth-
ods. Once a tertiary structure is predicted, it could be used for structure based
function predictions.

16.5.1 Structure Quality

Since Msa did not have any homologous structures we were not able to use ho-
mology modeling. We used the fold-recognition-based tool Phyre [35] to predict
a 3-D structure for Msa. We visualized the predicted structure using Swiss-
PDB Viewer (SPDBV) [36]. Preliminary analysis showed that the predicted 3-D
structure, correlated with the predicted structural features of Msa. The 3-D
structure showed the three transmembrane helices in similar positions as pre-
dicted previously. We analyzed the quality of the structure using both SPDBV
as well as WHATIF [37] program. We refined the preliminary structure by en-
ergy minimization, side-chain fixing, removal of amino acid clashes, and fixing
the problematic loops under the SPDBV environment. The refined structure was
again checked for its quality using WHATIF and SPDBV. The refinement re-
duced the total energy of the structure slightly (Total energy of predicted model:
-2359.390, Total energy of energy minimized model: -3368.924) . We also exam-
ined the protein backbone structure using Ramachandran plot [38] (the plot is
used to visualize the dihedral angles of amino acid residues in proteins backbone
conformation) which suggested that the predicted structure did not need any
major improvement.

16.5.2 Structure Based Function Prediction

We used the 3-D model of Msa to predict properties like clefts and binding
sites. ProFunc [39], Q-SiteFinder [40], PINUP [41] and SuMo [42] are the tools
that we used to analyze the predicted tertiary structure of Msa. Three of them,
ProfFunc, PINUP and Q-SiteFinder predicted a putative binding site in the
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Fig. 16.8. The predicted tertiary structure of Msa protein, showing the three putative
transmembrane helices and the N-terminal signal peptide

cytoplasmic loop between the second and the third transmembrane segments.
This site also corresponds to the binding site previously predicted by SMART
(see 16.4.4) based on the sequence similarity. In addition, based on tertiary
structure, ProFunc predicted a “nest” (residues 47-50) in Msa. This nest showed
features of an anion-binding site and is characteristic of functional motifs found
in ATP or GTP binding proteins. The predicted tertiary structure strengthens
our hypothesis that Msa is a novel signal transducer.

16.6 Summary

Prediction tools are extremely valuable as a first step in building hypotheses and
designing experiments to study novel proteins. There is a wide variety of tools
that utilize different algorithms to draw predictions on protein function. The
best approach would be to become familiarized with as many tools as possible
with a good understanding of their features and use several of them for the
predictions. This might yield a consensus that strengthens the predictions. In
the end, these predictions have to be tested experimentally before drawing any
conclusions about the function of a protein.

16.7 URL’s of Tools and Applications Used

16.7.1 Sequence Analysis

BLAST: http://www.ncbi.nlm.nih.gov/BLAST/
NPS: http://npsa-pbil.ibcp.fr/
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16.7.2 Localization

PRED-CLASS http://athina.biol.uoa.gr/PRED-CLASS/
PSORT: http://psort.nibb.ac.jp/
ProtCompB: http://www.softberry.com
PSLpred: http://www.imtech.res.in/raghava/pslpred/
CELLO: http://cello.life.nctu.edu.tw/
SVMProt: http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi
ProtFun: http://www.cbs.dtu.dk/services/ProtFun-2.2/
ProtParam: http://ca.expasy.org/tools/protparam.html

16.7.3 Signal Peptide Prediction

SignalP: http://www.cbs.dtu.dk/services/SignalP/
iPSORT: http://hc.ims.u-tokyo.ac.jp/iPSORT/
psortB: http://www.psort.org/psortb/
SIG-Pred: http://www.bioinformatics.leeds.ac.uk/prot analysis/Signal.html
SOSUIsignal: http://bp.nuap.nagoya-u.ac.jp/sosui/

16.7.4 Topology Prediction

TMpred: http://www.ch.embnet.org/software/TMPRED form.html
Phobius: http://phobius.cgb.ki.se/
TMHMM: http://www.cbs.dtu.dk/services/TMHMM/
SPLIT: http://split.pmfst.hr
HMMTOP: http://www.enzim.hu/hmmtop
MEMSAT: http://saier-144-37.ucsd.edu/memsat.html
DAS: http://www.sbc.su.se/∼miklos/DAS/
SEG: http://www.genome.jp/SIT/tsegdir/

16.7.5 Domains/Patterns/Motifs

Pfam: http://www.sanger.ac.uk/Software/Pfam/
ProDom: http://prodom.prabi.fr/
InterProScan: http://www.ebi.ac.uk/InterProScan/
SMART: http://smart.embl-heidelberg.de/
PPSearch: http://www.ebi.ac.uk/ppsearch/
PSITE: http://www.softberry.com/
ScanProsite: http://www.expasy.ch/tools/scanprosite/

16.7.6 3-D Structure Prediction and Analysis

Phyre: http://www.sbg.bio.ic.ac.uk/∼phyre/
SWISS-MODEL: http://swissmodel.expasy.org
WHATIF: http://swift.cmbi.kun.nl/WIWWWI/
ProFunc: http://www.ebi.ac.uk/thornton-srv/databases/ProFunc/
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Q-SiteFinder: http://www.bioinformatics.leeds.ac.uk/qsitefinder/
PINUP: http://sparks.informatics.iupui.edu/PINUP/
SuMo: http://sumo-pbil.ibcp.fr/cgi-bin/sumo-welcome
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Summary. To date, more than 16 million citations of published articles in biomedical
domain are available in the MEDLINE database. These articles describe the new dis-
coveries which accompany a tremendous development in biomedicine during the last
decade. It is crucial for biomedical researchers to retrieve and mine some specific knowl-
edge from the huge quantity of published articles with high efficiency. Researchers have
been engaged in the development of text mining tools to find knowledge such as protein-
protein interactions, which are most relevant and useful for specific analysis tasks.
This chapter provides a road map to the various information extraction methods in
biomedical domain, such as protein name recognition and discovery of protein-protein
interactions. Disciplines involved in analyzing and processing unstructured-text are
summarized. Current work in biomedical information extracting is categorized. Chal-
lenges in the field are also presented and possible solutions are discussed.

17.1 Introduction

In post genomic science, proteins are recognized as elements in complex protein
interaction networks. Hence protein-protein interactions play a key role in various
aspects of the structural and functional organization of the cell. Knowledge about
them unveils the molecular mechanisms of biological processes. However, most of
this knowledge hides in published articles, scientific journals, books and techni-
cal reports. To date, more than 16 million citations of such articles are available
in the MEDLINE [1] database. In parallel with these plain text information
sources, many databases, such as DIP [2], BIND [3], IntAct [4] and STRING [5],
have been built to store various types of information about protein-protein in-
teractions. Nevertheless, data in these databases were mainly hand-curated to
ensure their correctness and thus limited the speed in transferring textual infor-
mation into searchable structure data. Retrieving and mining such information
from the literature is very complex due to the lack of formal structure in the
natural-language narrative in these documents. Thus, automatically extracting
information from biomedical text holds the promise of easily discovering large
amounts of biological knowledge in computer-accessible forms.

T.G. Smolinski et al. (Eds.): Comp. Intel. in Biomed. & Bioinform., SCI 151, pp. 397–421, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Table 17.1. Online databases, systems, tools relating to the extraction of protein-
protein interactions

Description URL
Online databases storing protein-protein interactions
BIND Biomolecular Interaction Network Database contains over 200,000 human-curated in-

teractions.
www.bind.ca/

DIP Database of Interacting Proteins catalogs experimentally determined interactions be-
tween proteins. Until now, it contains 55,732 interactions, combining information from
various sources to create a single, stable set of protein-protein interactions.

dip.doe-mbi.ucla.edu/

HPRD The Human Protein Reference Database [14] contains interaction networks for each pro-
tein in the human proteome. All the information in HPRD has been manually extracted
from the literature by expert biologists who read, interpret and analyze the published
data.

www.hprd.org/

HPID Human Protein Interaction Database integrates the protein interactions in BIND, DIP
and HPRD.

www.hpid.org/

IntAct IntAct consists of a open source database system and analysis tools for protein interac-
tion data. It now contains more than 100,000 curated binary molecular interactions.

www.ebi.ac.uk/intact/

MINT Molecular INTeraction database [15] is a database storing interactions between biolog-
ical molecules. It focuses on experimentally verified protein interactions with special
emphasis on proteomes from mammalian organisms.

mint.bio.uniroma2.it/mint/

STRING STRING, a database consisting of known and predicted protein-protein interactions,
quantitatively integrates interaction data from several sources for a large number of
organisms. It currently contains 736,429 proteins in 179 species.

string.embl.de/

Online protein-protein interaction information extraction systems
BioRAT BioRAT is a search engine and information extraction tool for biological research. bioinf.cs.ucl.ac.uk/biorat/
GeneWays GeneWays is a system for automatically extracting, analyzing, visualizing and inte-

grating molecular pathway data from the literature. It focuses on interactions between
molecular substances and actions, providing a graphical consensus view on these col-
lected information.

geneways.genomecenter
.columbia.edu/

MedScan MedScan is a commercial system based on natural language processing technology for
automatic extraction of biological facts from scientific literature such as MEDLINE
abstracts, and internal text documents.

www.ariadnegenomics.
com/products/medscan.html

Online tools for biomedical literature mining
iProLINK iProLINK is a resource to facilitate text mining in the area of literature-based database

curation, named entity recognition, and protein ontology development. It can be uti-
lized by computational and biomedical researchers to explore literature information on
proteins and their features or properties.

pir.georgetown.edu
/iprolink/

PreBIND PreBIND is a tool helping researchers locate biomolecular interaction information in the
scientific literature. It identifies papers describing interactions using a support vector
machine (SVM).

prebind.bind.ca/

PubGene PubGene is constructed to identify the relationships between genes and proteins, dis-
eases, cell processes, and so on based on their co-occurrences in the abstracts of scientific
papers, their sequence homology, and statistical probability of their co-occurrences.

www.pubgene.org/

Chilibot Chilibot [16] is a search software for the MEDLINE literature database to rapidly
identify relationships between genes, proteins, or any keywords that the user might be
interested.

www.chilibot.net/

iHOP Information Hyperlinked over Proteins [17] constructs a gene network by converting
the information in MEDLINE into one navigable resource using genes and proteins as
hyperlinks between sentences and abstracts.

www.ihop-
net.org/UniPub/iHOP/

Many systems [6, 7, 8, 9, 10], such as EDGAR [11], BioRAT [12], Ge-
neWays [13] and so on, have been developed to accomplish this goal, but with
limited success. Table 17.1 lists some popular online databases, systems, and
tools relating to the extraction of protein-protein interactions.

In general, to automatically extract protein-protein interactions, a system
needs to consist of three to four major modules [13, 18], which is illustrated in
Figure 17.1.

• Zoning module. It splits documents into basic building blocks for later anal-
ysis. Typical building blocks are phrases, sentences, and paragraphs. In spe-
cial cases, higher-level building blocks such as sections or chapters may be
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Fig. 17.1. A general architecture of an information extraction system for protein-
protein interactions

chosen. Ding [19] compared the results of employing different text units such
as phrases, sentences, and abstracts from MEDLINE to mine interactions
between biochemical entities based on co-occurrences. Experimental results
showed that abstracts, sentences, and phases all can produce comparative
extraction results. However, with respect to effectiveness, sentences are sig-
nificantly better than phrases and are about the same as abstracts.

• Protein name recognition module. Before the extraction of protein-protein
interactions, it is crucial to facilitate the identification of protein names,
which still remains a challenging problem [20]. Although experimental results
of high recall and precision rates have been reported, several obstacles to
further development are encountered while tagging protein names for the
conjunctive natural of the names [21]. Chen [22] and Leser [23] provided a
quantitative overview of the cause of gene-name ambiguity, and suggested
what researchers can do to minimize this problem.

• Protein-protein interaction extraction module. As the retrieval of protein-
protein interactions has attracted much attention in the field of biomedical
information extraction, plenty of approaches have been proposed. The solu-
tions range from simple statistical methods relying on co-occurrences of genes
or proteins to methods employing a deep syntactical or semantical analysis.

• Visualization module. This module is not as crucial as the aforementioned
three modules, but it provides a friendly interface for users to delve into the
generated knowledge [24]. Moreover, it allows users to interact with the sys-
tem for ease of updating the system’s knowledge base and eventually improve
its performance.

To evaluate the performance of an information extraction system, normally
recall and precision values are measured. Suppose a test dataset has T posi-
tive information (for example, protein-protein interactions), and an information
extraction system can extract I “positive” information. In I, only some infor-
mation is really positive which we denote as B and the remaining information
is negative, however the system falsely extracts as positive which we denote as
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Fig. 17.2. Venn Diagram of information extraction results

C. In T , some information is not extracted by the system which we denote as
A. The relationships of A, B, and C are illustrated in Figure 17.2.

Based on the above definitions, recall and precision can be defined as:

Precision =
‖B‖

‖B‖ + ‖C‖ (17.1)

Recall =
‖B‖

‖A‖ + ‖B‖ (17.2)

For example, a test dataset has 10 protein-protein interactions T . An information
extracting system extracts 11 protein-protein interactions I. In I, only 6 protein-
protein interactions (B) can be found in T , which are considered as true positive
(TP). The remaining 5 protein-protein interaction (C) can not be found in T ,
which are considered as false positive (FP). In T , 4 protein-protein interactions
(A) are not extracted by the system, which are considered as false negative
(FN). Thus, the recall of the system is 6/(6 + 4) = 60% and the precision is
6/(6 + 5) = 54.5%.

Obviously, an ideal information extracting system should fulfil ‖A‖ −→
0, ‖C‖ −→ 0. To reflect these two conditions, F-measure is defined by the har-
monic (weighted) average of precision and recall [25] as :

Fβ =
(1 + β2) · Precision · Recall

β2 · Precision + Recall

=
(1 + β2)‖B‖

(1 + β2)‖B‖ + β2‖A‖ + ‖C‖ (17.3)

where β indicates a relative weight of precision. For further details of the state
of the science in text mining evaluations, please refer to Hersh [26].

In this chapter, we focus on the protein name recognition and the protein-
protein interaction extraction module. A brief survey and classification on the
developed methodologies is provided. In general, the methods proposed so far
rely on the techniques from one or more areas [27, 28, 29, 30] including Informa-
tion Retrieval (IR) [25, 31], Machine Learning (ML) [32, 33], Natural Language
Processing (NLP) [34, 35, 36], Information Extraction (IE) [37, 38, 39, 40], and
Text Mining [41, 42, 43, 44, 45, 46, 47]. The surveyed work illustrates the progress
of the field and shows the increasing complexity of the proposed methodologies.

The rest of the chapter is organized as follows. Firstly, systems and meth-
ods implemented for protein name recognition are discussed in Section 17.2.
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Section 17.3 presents a survey of various methods applied in automatical
extraction of protein-protein interactions from literature. In succession, chal-
lenges are identified and possible solutions are suggested.

17.2 Protein Name Recognition

As mentioned in section 17.1, recognizing protein names in biomedical literature
is crucial for protein-protein interactions extraction. An example of a sentence
with its protein names in italic is given as follows:

Interleukin-2 (IL-2 ) rapidly activated Stat5 in fresh PBL, and Stat3 and
Stat5 in preactivated PBL. [PMID: 7719938]

There are various methods for recognizing protein name. Traditionally, these
methods canbedivided into four categories namely thedictionarybasedapproaches,
rule-based approaches, machine learning approaches, and hybrid approaches.

17.2.1 Dictionary Based Approaches

In dictionary based approaches, protein names are identified from text by using
a provided list of protein names. These names can be identified using substring
matching techniques such as exact matching and approximate string matching.

Egorov et al. [48] implemented a protein name identification system, ProtScan,
using a carefully constructed dictionary. This dictionary was built based on the
LocusLink database and enriched by the GenBank, GoldenPath and HUGO
database entries. The system was evaluated on a gold standard, which consists
of 1,000 randomly selected MEDLINE abstracts and achieved 88.6% recall and
98% precision. When evaluated on a more general set of biomedical documents
other than MEDLINE abstracts, 98.5% recall and 84% precision were reported.
Krauthammer et al. [49] proposed a dictionary-system based on BLAST [50], a
tool for DNA and protein sequence comparison. An exhaustive list of gene and
protein names was extracted from GenBank and translated into DNA sequences
to form a dictionary. Names in the dictionary and input texts were converted into
nucleotide sequences and then BLAST was implemented. The system achieved
a recall of 78.8% and precision of 71.7%, of which 4.4% of names not included
in the dictionary are fully recognized when evaluated on a gold standard review
article marked by 2 experts.

Dictionary-based approaches in general can not identify protein names that
are not listed in the pre-constructed dictionary. Their performance is highly
dependent on the quality of their base dictionaries.

17.2.2 Rule-Based Approaches

Rule-based approaches identify protein names based on a set of manually defined
rules. These rules usually employ surface clues and the syntactic and semantic
properties of the gene and protein names.
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Fukuda et al. [51] proposed a rule based system, PROPER, for identifying pro-
tein names using surface clues on character strings. These clues include capital
letters, numerical figures and non-alphabetical letters. Evaluation was conducted
based on 30 abstracts from MEDLINE in the SH3 protein domain and a recall
of 98.84% and a precision of 94.70% was achieved. The Yapex system, based on
hand-written rules was implemented by Franzen et al. [52]. Lexical analysis of
single word tokens, syntactic analysis of noun phrases was performed to iden-
tify new protein names. 99 abstracts were randomly selected from MEDLINE to
form the training corpus and 101 MEDLINE abstracts formed the test corpus.
Yapex achieved a recall of 66.4% and a precision of 67.8%. In GPmarkup [53],
abbreviations were first mapped to full names using a set of guidelines and pro-
tein symbols were mapped to the names by a set of pattern-matching rules. The
mappings were performed on 11 million MEDLINE records and the abbreviation-
name or symbol-name pairs were stored in a knowledge database. Non-protein
abbreviation-name pairs in the database were then filtered out based on a set
of heuristic rules. 50 abstracts from MEDLINE were randomly selected to form
the test set and it achieved a recall of 73% and a precision of 93%.

Rule-based systems have the advantage that rules are able to be defined and
extended when needed. However, the construction of rules has to be done man-
ually and can be very time-consuming.

17.2.3 Machine Learning Approaches

Machine Learning approaches use various algorithms to automatically identify
protein names. There are three commonly used approaches, Naive Bayes (NB),
Support Vector Machine (SVM), and Hidden Markov Model (HMM).

Naive Bayes

The NB Classifier is the most commonly used approach to identify protein names.
It is a simple probabilistic model based on the Bayes’ rule. It assumes that the
effect of one feature on a given class is independent from that of another feature.

Nobata et al. [54] developed a system by calculating the similarity between a
string and a class. NB was used to estimate the probability of a word occurring
in a particular class. 100 abstracts were tagged by a human expert using Genia
Ontology. Out of the 100 abstracts, 20 were used for testing and the remaining 80
were used for training. The system achieved an F-measure of 65.8%. Wilbur [55]
considered several approaches based on NB. As the NB algorithm assumes that
values are independent of each other and each term can be weighted separately
based on its distribution in the training set. Documents in the test set are then
scored by summing the weights of the terms they contain. The test set consisted
of 100 documents and the training set consisted of 3,021 documents. The pre-
cision obtained was 71.4%. The staged NB algorithm was also be implemented.
NB was first trained on the entire training set, then tested using both the train-
ing and test sets. A second training involved the positive examples and the
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negative ones that were unable to be separated in the first training. The preci-
sion achieved for this algorithm was 78.9%.

The main advantages of using the Naive Bayes approach is that it is fast to
train and evaluate.

Support Vector Machine

A support vector machine (SVM) is a supervised learning technique for clas-
sification and regression. Mika and Rost [56] proposed a system, NLProt, that
combines dictionary and rule-based filtering together with SVMs to tag protein
names. The system used two dictionaries to perform pre-filtering. The first dic-
tionary is a protein name dictionary with names generated from SWISS-PROT
and TrEMBL [57] and the second is a common dictionary containing non-protein
names. Input text is then tagged and run on four trained SVMs. When tested
on the Yapex corpus, the system achieved an F-measure of 75% compared to the
67.1% on the Yapex system. GAPSCORE [58] identifies protein names based on
their syntax, appearance, morphology, context and abbreviations. Features in it
were developed on a Yapex independent corpus in order to obtain an accurate
evaluation of the performance. A training set of 735 abstracts from MEDLINE
was used for training the NB, Maximum Entropy (ME), and SVM classifiers.
When evaluated on the Yapex training set, SVM outperformed the other two
classifiers with a recall, precision and F-measure of 79.3%, 77%, and 78.1% re-
spectively. When evaluated on the Yapex test set, SVM achieved a recall of
70.3%, a precision of 81.4%, and an F-measure of 75.4%. Hakenberg et al. [59]
developed a system to solve the Name Entity Recognition (NER) problem posed
by BioCreAtIve task 1A1. In the system, words are separated into tokens and
an SVM is used to identify features that describe gene and non-gene names.
Then, post-processing is performed by passing the tokens through a POS (Part-
of-Speech)-tagger to find complete gene phrases. On a given test corpus of 5,000
previously unseen and untagged sentences, the system attained a recall of 72.8%,
precision of 71.4% and an F-measure of 72.1% on the closed-division. The sys-
tem is later enhanced by performing Recursive Feature Elimination (RFE) where
features with the lowest weights are removed until 150 features remain. Post-
processing is then done. Recall and precision of 82.8% and 83.4% respectively
were achieved with this enhanced system.

SVM is an extremely powerful binary non-linear classifier. However, it is com-
putationally demanding to train and run when the dataset is very large. It is
also sensitive to noisy data and prone to overfitting, which in turn leads to
generalization failures.

Hidden Markov Model

A Hidden Markov Model (HMM) is a variant of a finite state machine where the
modelled system is assumed to be a Markov process with unknown parameters.
1 BioCreAtIvE task 1A [60] focuses on extracting gene names and participants in-

volved were given 10,000 MEDLINE sentences with tagged protein and gene names.
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It consists of a finite set of states, in which each state is associated with a
probability value. However, the states in an HMM are not directly visible to an
external observer, only the observations are visible.

Collier et al. [61] proposed a model to find the most probable class which a
word belongs to. A first-order HMM is used to implement the model. 1,000 MED-
LINE abstracts related to molecular biology were selected and marked up by an
expert. Out of these 1,000 abstracts, 800 were used for training and 200 were
used for testing. The system reported an F-measure of 72.8%. PowerBioNE [62]
is a system that is implemented using HMM and an HMM-based name entity
recognizer. A pattern-based post processing was also done to extract rules from
the training data so as to deal with the cascaded entity name phenomenon. The
GENIA Corpus v3.0 which contains 2,000 MEDLINE abstracts of 360 thousand
words was used. 200 abstracts were selected as the testing data and the remain-
ing 1800 formed the training data. On twenty-three classes of the GENIA corpus,
the system achieved an F-measure of 66.6%. On the “protein” class, the system
achieved an F-measure of 75.8%.

In general, machine learning methods are useful when the annotated training
set is available, as it requires experts to determine the protein names and this can
be very time-consuming. In addition, the training set must also contain enough
amounts of data in order to prevent the data sparseness problem.

17.2.4 Hybrid Approaches

Hybrid approaches use a combination of the above mentioned methods in the
extraction of protein and gene names.

Tanabe and Wilbur [63] presented a method that uses a combination of rules
and machine learning strategies. Rules are automatically generated by the Brill
POS Tagger and then augmented with hand-crafted rules. The Brill tagger is
trained on a corpus of 7,000 MEDLINE sentences to produce rules for tagging
the texts. Next, rule-based post-processing rules are applied to identify poten-
tial gene names and then NB learning is used to rank documents based on their
likelihood to contain a gene name. A test corpus of 56,469 MEDLINE abstracts
was used to identify gene and protein names and results showed that higher
performance can be achieved on documents with a higher Bayesian score. PRO-
TEX [64] is a system employing a set of heuristic rules, a probabilistic model and
a protein name dictionary to identify protein names. In the approach, heuristic
rules reported in [51, 52] were first used to detect protein names, and then a
probabilistic model was used to identify complete protein names. Finally, a dic-
tionary compiled from the SWISS-PROT and TrEMBL protein databases were
used to detect protein names that were not identified earlier. The Yapex gold
standard was used for training and testing respectively. The system was then
compared to the system by Franzen et al. [52]. Based on the exact matching eval-
uation criteria, PROTEX reported a recall, precision, and F-measure of 67.7%,
60.2%, and 63.7% respectively, outperforming Yapex.

A table summarizing the various algorithms and their performance is tabu-
lated in Table 17.2.
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Table 17.2. Performance of existing protein name recognition methods and the data
corpora used

Category
Result (%)

Corpus RefRecall Precision

Dictionary-based
88.6 98 1000 randomly selected abstracts from MEDLINE [48]
78.8 71.7 Gold standard review articles marked by 2 experts [49]

Heuristic rule-based
98.8 94.7 Test Set: 30 abstracts on the SH3 protein domain from MEDLINE [51]
66.4 67.8 Training Set: 99 random abstracts from MEDLINE; Test Set: 101 abstracts

from MEDLINE.
[52]

73 93 Test Set: 50 abstracts from MEDLINE [65]

Naive Bayes
- - Training Set: 80 abstracts; Test Set: 20 abstracts [54]
71.4 - Training Set: 3,021 documents; Test set: 100 documents [55]
78.9 - Training Set: 3,021 documents; Test set: 3,121 documents [55]

SVM
- - Training and Test Set: Yapex Corpus [56]
58.5 56.7 Training set: 735 abstracts from MEDLINE; Test Set: Yapex Test Set [58]
83.4 82.8 Training set: 10,000 sentences from MEDLINE. Test set: 5000 sentences [59]
74.2 75.7 Training Set: 1,600 abstracts from Genia Corpus; Test Set: 400 abstracts from

Genia Corpus
[66]

HMM
- - Training Set: 800 abstracts from MEDLINE; Test Set: 200 abstracts from

MEDLINE
[61]

- - Training Set: 1,800 abstracts from GENIA Corpus; Test Set: 200 abstracts
from GENIA Corpus

[62]

Hybrid Systems 67.7 60.2 Training and Test Set: Yapex Corpus [64]

17.2.5 Challenges

Despite the availability of many well-known nomenclatures for biomedical enti-
ties, there is no community-wide agreement on how a particular gene should be
named. One name can stand for a particular gene, may include homologue of
this gene in other organisms, may also encompass the protein the gene encodes.
As a consequence, recognition of protein names automatically in the biomedical
literature is not straightforward. In this section, we list the several open issues.

• Ambiguous Names. An ambiguous name denotes different entities. Some
protein names are not distinguished from common English words, such as
“white”, “shaggy” and son on. Some names may denote biomedical entities
of different classes. Other names may refer to certain entities before, but refer
to another entities now.

• Multi-word names. Multi-word names are names consisting of more than one
word (or token). For gene and protein names, multi-word names are rather
than an exception. Multi-word names are not only harder to find, but in
many cases there is no agreement on the exact borders of such names.

• Synonyms and acronyms. In synonymy relation, a protein name can be de-
noted by multiple names. Acronyms are abbreviation of names and are very
popular in scientific writing because they allow for shorter texts. However,
acronyms are difficult to resolve to their true names because they are often
homonyms.

• Names of newly discovered genes and proteins. The overwhelming growth
rate and the constant discovery of novel genes and proteins make protein
name recognition more complex. Methods based on dictionary can not figure
out these new names because registering the new names of genes and proteins
is time-consuming and occurs much later.
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17.3 Protein-Protein Interaction Extraction

This section presents a brief discussion on the existing techniques and methods
for extracting protein-protein interactions. In general, current approaches can
be divided into three categories:

• Computational linguistics-based methods. To discover knowledge from un-
structured text, it is natural to employ computational linguistics and phi-
losophy, such as syntactic parsing or semantic parsing to analyze sentence
structures. Methods of this category define grammars to describe sentence
structures and use parsers to extract syntactic information and internal de-
pendencies within individual sentences. Approaches in this category can be
applied to different knowledge domains after being carefully tuned to the spe-
cific problems. But, there is still no guarantee that the performance in the
field of biomedicine can achieve comparable performance after tuning. Until
recently, methods based on computational linguistics still could not generate
satisfactory results.

• Rule-based methods. Rule-based approaches define a set of rules for possi-
ble textual relationships, called patterns, which encode similar structures in
expressing relationships. When combined with statistical methods, scoring
schemes depending on the occurrences of patterns to describe the confidence
of the relationship are normally used. Similar to computational linguistics
methods, rule-based approaches can make use of syntactic information to
achieve better performance, although it can also work without prior parsing
and tagging of the text.

• Machine learning and statistical methods. Machine learning refers to the abil-
ity of a machine to learn from experience to extract knowledge from data
corpora. As opposed to the aforementioned two categories that need labori-
ous effort to define a set of rules or grammars, machine learning techniques
are able to extract protein-protein interaction patterns without human inter-
vention.
Statistical approaches are based on word occurrences in a large text corpus.
Significant features or patterns are detected and used to classify the ab-
stracts or sentences containing protein-protein interactions, and characterize
the corresponding relations among genes or proteins.

It has to be mentioned that many existing systems in fact adopt a hybrid
approach for better performance by combining methods from two or more of the
aforementioned categories.

Figure 17.3 illustrates the process of information extraction on an example
sentence by employing the typical methods in the above three categories.

17.3.1 Computational Linguistics-Based Methods

In general, computational linguistics-based methods employ linguistic technology
to grasp syntactic structures or semantic meanings from sentences.
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Fig. 17.3. General dataflow of information extraction system employing different
methodologies

Techniques for analyzing a sentence and determining its structure in com-
putational linguistics are called parsing techniques. Parsing the corpus firstly
to obtain the morphological and syntactic information for each sentence is ex-
tremely important, and probably only after that, it would be possible to fulfill
sophisticated tasks such as identifying the relationship between proteins and
gene products in a fully automatic way. However, it is well known that parsing
unrestricted texts, such as those in the biomedical domain, is extremely difficult.
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The methods in this category can be further divided into two types, based on
the complexity of the linguistics methods, as shallow (or partial) parsing or deep
(or full) parsing. Shallow parsing techniques aim to recover syntactic informa-
tion efficiently and reliably from unrestricted text, by sacrificing completeness
and depth of analysis, while deep parsing techniques analyze the entire sentence
structure, which normally achieve better performance but with increased com-
putational complexity.

Shallow Parsing Approaches

Shallow parsers [67, 68, 69, 70, 71] perform partial decomposition of a sentence
structure. They first break sentences into none-overlapping chunks, then extract
local dependencies among chunks without reconstructing the structure of an en-
tire sentence. Sekimizu used shallow parser, EngCG, to generate three kinds of
tags, such as syntactic, morphological, and boundary tags [67]. Based on the
tagging results, subjects and objects were recognized for the most frequently
used verbs in a collection of abstracts which were believed to express the inter-
actions between proteins, genes. Thomas [69] modified a preexisting parser based
on the cascaded finite state automata (FSA). Predefined templates were then
filled with information about protein interactions based on the parsing results
for three verbs: interact with, associate with, bind to. Pustejovsky [70] targeted
“inhibit” relations in the text and also built an FSA to recognize these relations.
Leroy [71] used a shallow parser to automatically capture the relationships be-
tween noun phrases in free text. The shallow parser is based on four FSAs to
structure the relations between individual entities and model generic relations
not limited to specific words. By elaborate design, the parser can also recog-
nize coordinating conjunctions and capture negation in text, a feature usually
ignored by others. The precision and recall rates reported for shallow parsing
approaches are estimated at 50-80% and 30-70%, respectively.

Deep Parsing Approaches

Systems based on deep parsing deal with the structure of an entire sentence and
therefore are potentially more accurate. Variations of the deep parsing-based
approach have been proposed [10, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81]. Based
on the way of constructing grammars, deep parsing-based approaches can be
divided into two types: rationalist methods and empiricist methods. Rational
methods define grammars by manual efforts, while empiricist methods automat-
ically generate the grammar by some observations.

Rationalist Methods

Yakushiji [75] used a general full parser with grammars for biomedical domain
to extract interaction events by filling sentences into slots of semantic frames.
Information extraction itself is done using pattern matching on the canonical
structure. Park [74] proposed bidirectional incremental parsing with combinatory
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categorial grammar (CCG). This method first localized target verbs, and then
scanned the left and right neighborhood of the verb respectively. The lexical and
grammatical rules of CCG are more complicated than those of a general context-
free grammar (CFG). The recall and precision rate of the system were reported
to be 48% and 80%. Temkin [78] introduced a lexical analyzer and a CFG to
extract protein, gene and small molecule interactions with a recall rate of 63.9%
and precision rate of 70.2%. Ding [79] investigated link grammar parsing for ex-
tracting biochemical interactions. It can handle many syntactic structures and is
computationally relatively efficient. A better overall performance was achieved
compared to those biomedical term co-occurrence based methods. Ahmed [10]
split complex sentences into simple clausal structures made up of syntactic roles
based on a link grammar. Complete interactions were then extracted by analyz-
ing the matching contents of syntactic roles and their linguistically significant
combinations. In GENIES [76], a parser and a semantic grammar consisting of a
large set of nested semantic patterns (incorporating some syntactic knowledge)
are used. Unlike other systems, GENIES is capable of extracting a wide variety
of different relations between biological molecules as well as nested chains of
relations. However, the downside of the semantic grammar-based systems such
as GENIES is that they may require complete redesign of the grammar in order
to be tuned for used in different domain.

Empiricist Methods

Many empiricist methods [77, 80] have been proposed to automatically generate
the language model to mimic the features of unstructured sentences. For exam-
ple, Seymore [72] used Hidden Markov Model (HMM) for extracting important
fields from the headers of computer science research papers. Following the trend,
Souyma [73] applied HMM to the biomedical domain to describe the structure of
sentences. More recently, Skounakis [82] proposed an approach that is based on
hierarchical HMMs to represent the grammatical structure of the sentences be-
ing processed. Firstly, shallow parser to construct a multi-level representation of
each sentence being processed was used. Then hierarchical HMMs to capture the
regularities of the parses for both positive and negative sentences were trained.
In [83], a broad-coverage probabilistic dependency parser was used to identify
sentence level syntactic relations between the heads of the chunks. The parser
used a hand-written grammar combined with a statistical language model that
calculates lexicalized attachment probabilities.

17.3.2 Rule-Based Approaches

In rule-based approaches [6, 7, 9, 12, 84, 85, 86, 87, 88, 89, 90, 91, 92], a set of
rules need to be defined which may be expressed in forms of regular expressions
over words or POS tags. Based on the rules, relations between entities that are
relevant to tasks such as proteins, can be recognized.

Ng [84] defined five rules based on the word form, such as <A> ... <fn> ...
<B> in which the symbols A, B refer to protein names while the symbol fn
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refers to the verb which describes the interaction relationship. Obviously, such
rules are too simple to produce satisfactory results. Ono [87] manually defined
a set of rules based on syntactic features to preprocess complex sentences, with
negation structures considered as well. It achieves good performance with a
recall rate of 85% and precision rate of 84% for Saccharomyces cerevisiae (yeast)
and Escherichia coli. Blaschke [7] induced a probability score to each predefined
rule depending on its reliability and used it as a clue to score the interaction
events. Sentence negations and the distance between two protein names were
also considered. In [89], gene-gene interactions were extracted by scenarios of
patterns which were constructed manually. For example, “gene product acts as a
modifier of gene” is a scenario of the predicate act, which can cover a sentence
such as: “Egl protein acts as a repressor of BicD”. Egl and BicD can be extracted as
an argument of an event for the predicate acts. Shatkay and Leroy [88] employed
preposition-based parsing to generate templates. It achieved a template precision
of 70% when processing literature abstracts.

Using predefined rules can generate nice results. It is however not feasible in
practical applications as it requires heavy manual processing to define patterns
when shifting to another domain.

Huang [90] tried to automatically construct the protein-protein interaction
patterns. At first, part-of-speech tagging was employed. Then dynamic pro-
gramming to automatically extract similar patterns from sentences based on
POS tags was used. Based on the automatically constructed patterns, protein-
protein interactions can be identified. Their results gave precision of 80.5% and
recall of 80.0%. Phuong [93] used some sample sentences, which were parsed by
a link grammar parser, to learn extraction rules automatically. By incorporating
heuristic rules based on morphological clues and domain specific knowledge, the
method can remove the interactions that are not between proteins.

Rule-based approaches have been found to be overall limiting in the set of
interactions that can be extracted by the extent of the recognition rules that
were implemented, and also by the complexity of sentences being processed.
Specifically, complicated cases such as interaction descriptions that span sev-
eral sentences of text are often missed by these approaches. The shortcoming
of such approaches is their inability to correctly process anything other than
short, straightforward statements, which are quite rare in information-saturated
biomedical literature. They also ignore many important aspects of sentence con-
struction such as mood, modality, and sometimes negation, which can signifi-
cantly alter or even reverse the meaning of the sentence.

17.3.3 Machine-Learning and Statistical Approaches

Many machine-learning (ML) methods have been proposed ranging from sim-
ple methods such as deducing relationship between two terms based on their
co-occurrences to complicated methods which employ NLP technologies. Ap-
proaches combing machine learning and NLP have been discussed in sec-
tion 17.3.1. Here we focus on the methods without employing NLP techniques.
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A variety of machine-learning and statistical techniques based on the discovery
of co-occurrence of protein names have been applied for protein-protein infor-
mation extraction [8, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106].
They can be further divided into different types based on the mining units, such
as abstracts, sentences and so on.

Approaches proposed in Miguel and Marcottle [94, 100] aim to extract protein-
protein interactions from a set of abstracts. Miguel [94] used a group of rele-
vant documents against a set of random documents to extract domain specific
information such as gene functions and interactions. Marcottle [100] was only
interested in retrieving a large number of documents that probably contained
information about protein-protein interactions.

The first machine-learning sentence-based information extraction system in
molecular biology was described in Craven and Kumlien [96]. They developed a
Bayesian classifier which, given a sentence containing mentions of two items of
interest, returns a probability that the sentence asserts some specific relations
between them. Later systems have applied other technologies, including hidden
Markov models and support vector machines, to identify sentences describing
protein-protein interactions.

Other approaches [8, 97, 98, 99] focus on a pair of proteins and detect the rela-
tions between them using probability scores. Stapley [97] used fixed lists of gene
names and detected relations between these genes by means of co-occurrences
in MEDLINE abstracts. A matrix that contains distance dissimilarity measure-
ment of every pair of genes based on their joint and individual occurrence statis-
tics was constructed based on a user-defined threshold. Stephens [98] furthered
the method to discover relationships using more complicated computation on
co-occurrences. Jenssen [99] used a similar approach to find relations between
human gene clusters obtained from DNA array experiments. Donaldson [8] con-
structed PreBIND and Textomy - an information extraction system that uses
support vector machines to evaluate the importance of protein-protein interac-
tions.

Simple statistical methods such as those based on protein co-occurrence infor-
mation can not precisely describe the relations between proteins and therefore
tend to generate high false negative error rate. On the contrary, complex statis-
tical models need a large amount of training data in order to reliably estimate
model parameters, which is usually difficult to obtain in practical applications.
To strike the balance, we applied the hidden vector state model (HVS) which
was previously used in spoken language understanding to extract protein interac-
tions [107]. Unlike other statistical parsers which need fully-annotated treebank
data for training, the HVS model explores the embedded sentence structures us-
ing only lightly annotated corpus. The details of how this is done can be found
in [108].

17.3.4 Discussion

The performance of the existing protein-protein interaction extraction methods
along with the data corpora they used are listed in Table 17.3.
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Table 17.3. Performance of existing protein-protein interaction extraction methods
and the data corpora used

Category
Result (%)

Corpus RefRecall Precision

Shallow Parsing

- 73 34343 sentences from abstracts retrieved from MEDLINE using keywords
“leucine zipper”, “zinc finger”, “helix loop helix motif”

[67]

29 69 2565 unseen abstracts extracted from MEDLINE with the keywords molecu-
lar, interaction and protein for year 1,998 (560k words)

[69]

57 90 Training set consists of 500 abstracts from MEDLINE. Evaluation set consists
of 56 abstracts collected using search strings “protein” and “inhibit”

[70]

62 89 26 abstracts [71]

Deep Parsing

48 80 492 sentences out of 250,000 abstracts on cytosine in MEDLINE [74]
63.9 70.2 The test corpus consists of 100 randomly selected scientific abstracts from

MEDLINE.
[78]

- 96 Articles from cell containing 7,790 words revealing 51 binary relations [76]
21 91 3.4 million sentences from approximately 3.5 million MEDLINE abstracts

dated after 1,988 containing at least one notation of a human protein
[80]

26.94 65.66 229 abstracts from MEDLINE correspond to 389 interactions from the DIP
database.

[10]

Rule Based

47 70 474 sentences from 50 abstracts retrieved using “E2F1” [88]
86.8
Yeast
82.5
Escherichia

94.3
Yeast
93.5
Escherichia

834 and 752 sentences containing at least two protein names and one relation
keyword for yeast and E.coli obtained by a MEDLINE search using the fol-
lowing keywords, “protein binding” as a MESH term and “yeast”, “E coli”,
“protein”, and “interaction”

[87]

39.7 44.9 Five different sets of abstracts were used:
1. 1,435 MEDLINE abstracts directly referenced from each of the Drosophila

Swiss-prot entries.
2. 4,109 MEDLINE abstracts referenced directly from Fly Base.
3. 111,747 abstracts retrieved by extending the set (2) with the Neighbors

utility.
4. 518 MEDLINE abstracts containing any of the protein names (related

with cell cycle control) and Drosophila in the MESH list of terms.
5. 6,278 MEDLINE abstracts by expanding set (4) using Neighbors to iden-

tify all related abstracts.

[7, 85]

60 87 3,343 abstracts were obtained by querying MEDLINE with the following
keywords: “Saccharomyces cerevisiae”, “protein”, and “interaction”. The ab-
stracts were filtered and 550 sentences were retained containing at least one
of four keywords “interact”, “bind”, “associate”, “complex” or one of their
inflections.

[93]

80.0 80.5 The top 50 biomedical papers were retrieved from the Internet by querying
using the keyword ”protein-protein interaction”. Full texts were segmented
into 65,536 sentences and the sentences with fewer than two protein names
were discarded. The final corpus consists of about 1,200 sentences.

[90]

As in the area of extracting information about protein-protein interactions,
competitive evaluations have played important roles in pushing the field of IE
and NLP. Several evaluations have been held in recent years. Procreative chal-
lenge (Critical Assessment of Information Extraction in Biology) [109] began in
2004 and provided two common evaluation tasks to assess the state of the art
methods for text mining applied to biological problems. The first task dealt with
extraction of gene or protein names from text, and their mappings into standard-
ized gene identifiers for three model organism databases (fly, mouse, yeast). The
second task [110] addressed issues of functional annotation, requiring systems
to identify specific text passages that supported Gene Ontology annotations
for specific proteins, given full text articles. Genic Interaction Extraction Chal-
lenge [111] was associated with Learning Language in Logic Workshop (LLL05).
The challenge focuses on information extraction of gene interactions in Bacillus
subtilin, a model bacterium. It was reported that the best F-measure achieved
with the balanced recall and precision is around 50%.
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Table 17.4. Online annotated corpora for the extraction of protein-protein interactions.

Corpus Name Description URL
GENA GENA corpus version 3.0 consists of 2,000 MED-

LINE abstracts with more than 400,000 words and
almost 100,000 annotations for biological terms.

www-tsujii.is.s.u-
tokyo.ac.jp/GENIA/

Apex It consists of two collections, training collec-
tion consisting of 99 abstracts with 1,745 protein
names, test collection consisting of 101 abstracts
with 1,966 protein names. The protein names in
all the abstracts were annotated manually.

www.sics.se/humle
/projects/prothalt/

Penninite The corpus consists of 2,258 MEDLINE abstracts
in two domains: 1) the molecular genetics of oncol-
ogy (1,158 abstracts); 2) the inhibition of enzymes
of the CYP450 class (1,100 abstracts).

bioie.ldc.upenn.edu/

LLL05 challenge
Corpus

There are 80 sentences in the training set, in-
cluding 106 examples of genic interactions with-
out coreferences and 165 examples of interactions
with coreferences.

genome.jouy.inra.fr
/texte/LLLchallenge/

As annotated corpora are important to the development as well as the eval-
uation of protein-protein extraction systems, some online available annotated
corpora are listed in Table 17.3.4.

17.4 Challenges and Possible Solutions

The continuing growth and diversification of the scientific literature, a prime
resource for accessing worldwide scientific knowledge, will require tremendous
systematic and automated efforts to utilize the underlying information. In the
near future, tools for knowledge discovery will play a pivotal role in systems
biology. The increasing fervor on the field of biomedical information extraction
gives the evidence. IE in biomedicine has been studied for approximately ten
years. Over these years, IE systems in biomedicine have grown from simple rule-
based pattern matcher to sophisticated, hybrid parser employing computational
linguistics technology. But, until now, there are still several severe obstacles to
overcome.

Firstly, biomedical IE methods generate poorer results compared with other
domains such as newswire. In general, biomedical IE methods are scored with
F-measure, with the best methods scoring about 0.85 without considering the
limitation of test corpus, which is still far from users’ satisfaction. The main rea-
son is that information from ontologies2 or terminologies is not well used. Until
2 Ontologies, structured lists of terms, are often used by NLP technologies to establish

the semantic function of a word in a document. The simplest form of ontology is a
lexicon or a list of terms that belong to a particular class. A lexicon usually consists
of specialized terms and (optionally) their definitions. Another form of ontology is
a thesaurus, a collection of terms and their synonyms which are of immense utility
for NLP. A popular ontology in biomedicine is Gene Ontology (GO) [112, 113].
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recently, most biomedical IE systems do not make use of information from on-
tologies or terminologies. Hence, ontologies together with terminological lexicons
are prerequisites for advanced biomedical IE. Since different ontologies are em-
ployed in different systems currently, unification seems necessary and impendent.
Also, biomedical text needs to be semantically annotated and actively linked to
ontologies.

Secondly, relations between biological entities, such as proteins or genes are
conditional and may change when the same entities are considered in a different
functional context. As a consequence, every relation between entities should be
linked with the functional context in which the relation was observed. Moreover,
without considering the observed context, it is meaningless and impossible to
make general statements whether a relation detected by literature mining is a
“yes” or a “no” relation. Obviously, to overcome this obstacle, in-depth analysis
based on more elaborately constructing grammars or rules in sentence or phrase
level is requisite. Hopefully, it will result in the increase of performance.

Thirdly, it seems to be crucial to the success of biomedical IE to bridge the
gap between biologists and computational scientists. Currently, this field is dom-
inated by researchers with computational background; however, the biomedical
knowledge is only possessed by biologists. That is crucial for defining standards
for evaluation; for identification of specific requirements, potential applications
and integrated information system for querying, visualization and analysis of
data on a large scale; for experimental verification to facilitate the understand-
ing of biological interactions. Hence, to attract more biologists into the field, it
is important to design simple and friendly user interfaces that make the tools
accessible to non-specialists.

Fourthly, the knowledge extracted from the literature may contradict itself
under different environment, conditions, or because of author’s errors, experi-
mental errors or other issues. Although the contradictory knowledge may occupy
minor part of the whole interaction network, it is worth more attention. To han-
dle this challenge, one way is to categorize the corpora and define the confidence
value for each category. For contradictory knowledge, the decision can be made
based on these confidence values. The solution can also be applied to handling
different parts of an article, such as the abstract, introduction, references and so
on, which obviously are of different confidences.

Fifthly, some problems exist not only in the field of biomedical IE, but also in
the field of NLP. Two of them are: (1) Dealing with negative sentences, which
constitutes a well-known problem in language understanding [114]. (2) Resolving
coreferences, the recognition of implicit information in a number of sentences
may contain key information, e.g. protein names, that later are used implicitly
in other sentences. Results in LLL challenge 05 show that F-measure can only
achieve 25% when considering coreferences.

Finally, the development of gold standard for evaluation systems is still under
way, far from maturity, which requires more concerted efforts. The experience
in the newswire domain shows that the construction of evaluation benchmarks
in the face of common challenges contribute greatly to the rapid development
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of IE. Thus it is crucial to attach importance to evaluate systems development
in biomedicine. Also, efforts will be required to focus on linking the knowledge
in the databases with text sources available. It is believed that in the future,
biomedical IE might provide new approaches for relation discovery that exploit
efficiently indirect relationships derived from bibliographic analysis of entities
contained in biological databases.
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