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Abstract. In the rapidly expanding fields of cellular and molecular biology, 
fluorescence illumination and observation is becoming one of the techniques of 
choice to study the localization and dynamics of proteins, organelles, and other 
cellular compartments, as well as a tracer of intracellular protein trafficking. 
The automatic analysis of these images and signals in medicine, biotechnology, 
and chemistry is a challenging and demanding field. Signal-producing 
procedures by microscopes, spectrometers and other sensors have found their 
way into wide fields of medicine, biotechnology, industrial and environmental 
analysis. With this arises the problem of the automatic mass analysis of signal 
information. Signal-interpreting systems which automatically generate the 
desired target statements from the signals are therefore of compelling necessity. 
The continuation of mass analysis on the basis of the classical procedures leads 
to investments of proportions that are not feasible. New procedures and system 
architectures are therefore required. We will present, based on our flexible 
image analysis and interpretation system Cell_Interpret, new intelligent and 
automatic image analysis and interpretation procedures. We will demonstrate it 
in the application of the HEp-2 cell pattern analysis. 

Keywords: Image Analysis and Interpretation, High-Content Analysis of Images 
HCA, Automation and Standardization of Visual Inspection Tasks, Image-
Mining, Systems for Knowledge Discovery and Interpretation, Microscopic Cell 
Image Analysis. 

1   Introduction 

In the rapidly expanding fields of cellular and molecular biology, fluorescence 
illumination and observation is becoming one of the techniques of choice to study the 
localization and dynamics of proteins, organelles, and other cellular compartments, as 
well as a tracer of intracellular protein trafficking.  

Quantitative imaging of fluorescent proteins and patterns is accomplished with a 
variety of techniques, including wide-field, confocal and multiphoton microscopy, 
ultrafast low-light level digital cameras and multitracking laser control systems. These 
microscopic images can be of 2-dimensional or 3-dimensional nature, or even videos 
recording the life cycle of a cell. 
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Currently the interpretation of the resulting pattern in these digital images is usually 
done manually. However the huge amount of data created and the growing use of these 
techniques in industry for pharmacological aspects or diagnostic purposes in medicine 
require automatic image interpretation procedures. These image interpretation 
procedures should allow to interpret these images automatically, and also to detect 
automatically new knowledge to study the cellular and molecular processes. 

The continuation of mass image analyses on the basis of the classical procedures 
leads to investments of proportions that are not feasible. New procedures based on 
image mining and case-based reasoning are therefore required.  

We are developing methods that allow the automatic analysis of these images for 
the discovery of patterns, new knowledge and relations. The present work is applied 
to 2-dimensional microscopic fluorescent images, but will be continued with 3-d-
image and video analysis. The aim of our work is to provide the system with image-
analysis, feature-extraction and knowledge-discovery functions that are suited for 
mining a set of microscopic cell images for the automatic detection of image-
interpretation knowledge and then applying this knowledge within the same system 
for automatic image interpretation of the HEp-2 cell images. At the end the system 
can work on-line in a pharmaceutical drug discovery process or in a medical 
laboratory process and automatically interpret the patterns on the cells in the image 
and calculate quantitative information about the cell pattern. 

The developed processing functions should make the system flexible enough to 
deal with different kinds of cell-images and different image qualities and require a 
minimal number of interactions with the user for knowledge mining. The image-
interpretation process is running fully automatically, based on the image-analysis and 
feature-extraction procedures developed for this kind of image analysis and the 
learned interpretation knowledge by the developed knowledge-mining procedures. 

2   Challenges and Requirements to the Systems 

Application-oriented systems that can only solve one specific task are very costly and 
it takes time to develop them. The success of automatic image-interpretation systems 
can only be guaranteed when the development effort is as low as possible and when 
they can be adapted quickly to different needs and tasks. 

It is preferable that the automatic system not only calculates image features from 
the images but also maps the measurements to the desired information the user wants 
to obtain with his experiment. This views High-Content Image Analysis as a pattern 
recognition and image interpretation problem rather than as an image measurement 
problem where all possible image features are extracted from the images for further 
analysis. The pattern or the final information, such as e.g. “do the bacteria co-localize 
with the lysosomes”, is the central focus of the image analysis and the system should 
provide all functions that are necessary to achieve this result. 

That requires developing systems that can run on a class of applications such as 
microscopic fluorescent images. Such systems should have functions that are able to: 

 automatically detect single cells in the image regardless of the image quality 
with high accuracy, robustness, the ability for reproduction, and flexibility, 
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 automatically describe the properties of the cell nucleus and the cytoplasm by 
image features (numerical and symbolical), 

 automatically interpret the images into cell patterns or other decisions 
(prediction),  

 automatically detect new knowledge from image data and apply it to automatic 
interpretation. 

The challenges are: 

 New strategies are necessary that are able to adapt the system to changing 
environmental conditions during image capture, user needs and process 
requirements.  

 Introduction of Case-Based-Reasoning (CBR) strategies and Data-Mining 
strategies [1] into image-interpretation systems on both the low-level and high-
level to satisfy these requirements. 

3   The Architecture 

Our answer to this problem is a system architecture [2] named Cell_Interpret (see 
Figure 1 ) that is comprised of two main parts:  

 the on-line part that is comprised of the image analysis and the image 
interpretation part.  

 the off-line part that is comprised of the database and the data mining and 
knowledge discovery part. 

These two units communicate over a database of image descriptions, which is created 
in the frame of the image-processing unit. This database is the basis for the image-
mining unit. 

The on-line part can automatically detect objects, extract image features from the 
objects and classify the recognized objects into the respective classes based on the 
prior stored decision rules. The interface between the off-line and the on-line part is 
the database where images and calculated image features are stored. The off-line part 
can mine the images for a prediction model or discover new groups of objects, 
features or relations. These similar groups can be used for learning the classification 
model or just for understanding the domain. In the later case the discovered 
information is displayed on the terminal of the system to the user. Once a new 
prediction model has been learnt the rules are inputted into the image interpretation 
part for further automatic interpretation after approval of the user. 

Besides that there is an archiving and management part that controls the whole 
system and stores information for long-term archiving.  

Images can be processed automatically or semi-automatically. In the first case, a set 
of images specified by the expert is automatically segmented into background and 
objects of interest and the feature extraction procedures installed in the image analysis 
system are used for each object to automatically calculate all features. All features are 
extracted regardless of their applicability for the specific application. This requires 
executing feature subset selection methods later on. For semi-automatic processing, an 
image from the image archive is selected by the expert and then is it displayed on the 
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monitor. To perform image processing an expert communicates with a computer. In 
this mode he has the option to calculate features based on the feature extraction 
procedures and/or record symbolic features based on his expert knowledge. This 
procedure ensures that also complicated image features, which are difficult to name, 
articulate or develop automatic feature extraction procedures, can also be taken into 
account and further evaluated by image mining. After the feature has been established 
by evaluating the acquired data base, the proper automatic feature extraction procedure 
can be developed and included into the system and made available for High-Content 
Analysis. The intelligence of the system will therefore incrementally improve. 

p
On-line Part

 prediction_1

Off-line Part  

Fig. 1. Architecture of Cell_Interpret 

4   Case-Based Image Segmentation 

Image segmentation is a process of dividing an image into a number of different 
regions such that each region is homogeneous with respect to a given property, but the 
union of any two adjacent regions is not.  

Image thresholding is a well-known technique for image segmentation. Because of 
its wide applicability to many areas of digital image processing, a large number of 
thresholding methods have been proposed over the years (see, e.g., [3-5]). Image 
thresholding has low computational complexity, which makes it an attractive method, 
but does not take into account spatial information and is mostly suitable for images 
where the gray-levels constitute well defined peaks, separated by not too broad and 
flat valleys.  
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Another common approach to image segmentation is based on feature space 
clustering, which has sometimes been regarded as the multidimensional extension of 
the concept of thresholding. Clustering schemes using different kinds of features 
(multi-spectral information, mean/variation of gray-level, texture, color) have been 
suggested (see, e.g., [6-8]). This approach can be successfully used if each perceived 
region of the image constitutes an individual cluster in the feature space. This requires 
a careful selection of the proper features, which depends on image domain. 

Segmentation can also be accomplished by using region-based methods, or edge-
detection-based methods, or methods based on a combination of those two approaches 
(see, e.g., [9-11]). Region-based methods imply the selection of suitable seeds from 
which to perform a growing process. In general, region merging and region splitting 
are accomplished to obtain a meaningful number of homogeneous regions. Seed 
selection and homogeneity criterion play a critical role for the quality of the obtained 
results. Edge-detection-based methods follow the way in which human observers 
perceive objects, as they take into account the difference in contrast between adjacent 
regions. Edge detection does not work well if the image is not well contrasted, or in 
the presence of ill-defined or too many edges. 

Watershed-based segmentation (see, e.g., [12]) exploits both region-based and 
edge-detection-based methods. The basic idea of watershed-based segmentation is to 
identify in the gray-level image a suitable set of seeds from which to perform a 
growing process. If the main feature taken into account is gray-level distribution, the 
seeds are mostly detected as the sets of pixels with locally minimal gray-level (called 
regional minima). The growing process groups each seed with all pixels that are 
closer to that seed than to any other seed, provided that a certain homogeneity in gray-
level is satisfied. Thus, watershed-based segmentation limits the drawbacks of region-
based and edge-detection-based methods.  

To overcome the drawbacks of the algorithms mentioned above, learning methods 
are applied to image segmentation. These learning methods are applied to learn the 
mapping between image features and semantically meaningful parts, to learn the 
parameters of the segmentation algorithm or to learn the mapping between rank 
performance of the segmentation algorithm and the image features. 

There are statistical learning methods, machine learning methods, neural-net-based 
learning methods, and learning methods using a combination of different techniques. 
The main drawbacks of these methods are: 1) the need of a sufficiently large training 
set, and 2) the need of training again the whole model, when new data come in. 
Therefore, it seems to be useful to use Case-based Reasoning (CBR) for a flexible 
image segmentation system, since CBR can be used as a reasoning approach as well 
as an incremental knowledge-acquisition approach.  

We propose a novel image-segmentation scheme based on case-based reasoning. 
We use CBR for meta-learning of the segmentation parameters (see Section 4.1) and 
for case-based object recognition (see Section 4.2). 

4.1   CBR Meta Learning for Image Segmentation 

The case-based reasoning unit for meta learning of image segmentation parameters 
[13] consists of a case base in which formerly processed cases are stored. A case is 
comprised of image information, non-image information (e.g. image-acquisition 
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parameters, object characteristics and so on), and image-segmentation parameters. 
The task is now to find the best segmentation for the current image by looking up the 
case base for similar cases. Similarity determination is done based on non-image 
information and image information. The evaluation unit will take the case with the 
highest similarity score for further processing. In case there are two or more cases 
with the same similarity score, the case appearing first will be taken. After the closest 
case has been chosen, the image-segmentation parameters associated with the selected 
case will be given to the image-segmentation unit and the current image will be 
segmented (see Figure 2). It is assumed that images having similar image 
characteristics will show similar good segmentation results when the same 
segmentation parameters are applied to these images. The image segmentation 
algorithm is in our case a histogram-based image-segmentation algorithm [13] and a 
watershed-based image-segmentation algorithm [14]. 

Image 
Features

Case 
Selection

Image
Segmentation

Evaluation of
Segmentation

Result

Case Base 
Management

Image

Case Base

Case EvaluationIndexing

Case Retrieval

Segmented Image

 

Fig. 2. CBR Image Segmentation Unit 

The result of the segmentation process can be observed by the user or an automatic 
evaluation procedure. When the evaluation is done by the user, he compares the 
original image with the labeled image on display. If he detects deviations of the 
marked areas in the segmented image from the object area in the original image, 
which should be labeled, then he will evaluate the result as incorrect and case-base 
management will start. This will also be done if no similar case is available in the 
case-base. The proposed method is close to the critique-modify framework described 
by Grimnes et al. [15]. 

The evaluation procedure can also be done automatically. However, the drawback 
is that there is no general procedure available. It can only be done in a domain-
dependent fashion.  

Once the chosen evaluation procedure observes a bad result, the respective case is 
tagged as bad case. The tag describes the critique in more detail.  

In an off-line phase, the best segmentation parameters for the image are determined 
by an optimization procedure and the attributes/features, which are necessary for 
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similarity determination, are calculated from the image. Both, the segmentation 
parameters and the attributes calculated from the image, are stored into the case-base 
as a new case. In addition to that the non-image information is extracted from the file 
header and stored together with the other information in the case-base. During 
storage, case generalization will be done to ensure that the case base will not become 
too large. 

4.2   Case-Based Object Recognition 

We propose our case-based object recognition method to recognize objects by their 
shape. In contrast to traditional object recognition methods [16] our method is 
comprised of a case mining part and the object recognition part [17]. The case mining 
part can learn the desired contour of the object and the number of contours necessary 
for recognizing a particular class of objects. The learnt contours make up the case 
base and are the basis for the case-based object-recognition method. 

The objects in the image may be occluded, touching, or overlapping. It can also 
happen that only part of the object appears in the image.  

A case-based object-recognition method uses cases that generalize the original 
objects and matches them against the objects in the image, see Fig. 3. During this 
procedure a score is calculated that describes the quality of the fit between the object 
and the case. The case can be an object model which describes the inner appearance of 
the object as well as its contour. In our case the appearance of the whole object can be 
very diverse. The shape seems to be the feature that generalizes the objects. Therefore, 
we decided to use contour models. We do not use the gray values of the model, but 
instead use the object’s edges. For the score of the match between the contour of the 
object and the case we use a similarity measure based on the scalar product. It 
measures the average angle between the vectors of the template and the object. 
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Fig. 3. Principle of case-based object-recognition architecture 
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The acquisition of the case is done semi-automatically. Prototypical images are 
shown to an expert. The expert manually traces the contour of the object with the help 
of the cursor of the computer. Afterwards the number of contour points is reduced for 
data-reduction purposes by interpolating the marked contour by a first-order polynom. 
The marked object shapes are then aligned by the Procrustes Algorithm [18]. From the 
sample points the direction vector is calculated. From a set of shapes general groups of 
shapes are learnt by conceptual clustering which is a hierarchical incremental 
clustering method [19]. The prototype of each cluster is calculated by estimating the 
mean shape [19] of the set of shapes in the cluster and is taken as a case model. 

5   Automatic and Symbolic Feature Extraction 

The system can now, based on the feature-extraction procedure installed in the 
system, calculate image features for the labeled objects. These features are composed 
of statistical gray-level features, the object contour, square, diameter, shape, [20] and 
a novel texture feature  based on random sets [21] that is flexible enough to describe 
different textures of cells. The system evaluates or calculates image features and 
stores their values in a database of image features. Each entry in the database presents 
features of the object of interest. These features can be numerical (calculated on the 
image) and symbolical (determined by the expert as a result of image reading by the 
expert). In the latter case the expert evaluates object features according to the attribute 
list, which has to be specified in advance for object description, or is based on a visual 
ontology available for visual content description. Then the user feeds these values into 
the database. When the expert has evaluated a sufficient number of images, the 
resulting database can be used for the image-mining process.  

6   Image Mining and Knowledge Discovery 

The image mining part should allow extracting knowledge or making observations 
from different perspectives. Therefore, we have included methods for predictions and 
methods for knowledge discovery [1]. Knowledge discovery methods allow us to 
summarize data into groups and patterns or observe relations among groups. Usually 
they are prior to prediction. We prefer conceptual clustering [1] for this task since the 
discovery process is incremental and therefore fits perfectly to case-based reasoning 
and decision tree induction as prediction methods. 

6.1   Decision Tree Induction 

Decision tree induction allows one to learn from a set of data samples a set of rules 
and basic features necessary for decision-making in a specified diagnostic task, see 
Figure 4. The induction process does not only act as a knowledge discovery process, 
it also works as a feature selector, discovering a subset of features that is the most 
relevant to the problem solution. 

Decision trees partition decision space recursively into sub-regions based on the 
sample set. 
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In this way the decision trees recursively break down the complexity of the 
decision space. The outcome has a format which naturally presents a cognitive 
strategy that can be used for the human decision-making process. The rules contained 
in the tree can be understood by human. Therefore a decision tree is a representation 
form that has explanation capability.  

For any tree all paths lead to a terminal node, corresponding to a decision rule that 
is a conjunction (AND) of various tests. If there are multiple paths for a given class, 
then the paths represent disjunctions (ORs). 

The developed tool allows choosing different kinds of methods for feature 
selection, feature discretization, pruning of the decision tree and evaluation of the 
error rate. It provides an entropy-based measure, a gini-index, gain-ratio and chi 
square method for feature selection [1]. 

The following methods for feature discretization are provided: cut-point strategy, 
chi-merge discretization, minimum description length, principal based discretization 
method and lvq-based method [1]. These methods allow one to make discretization of 
the feature values into two and more intervals during the process of decision-tree 
building. Depending on the chosen method for attribute discretization, the result will 
be a binary or n-ary tree. The later will lead to more accurate and compact trees.  

The tool allows one to chose between cost-complexity pruning, error-reduction-
based methods and pruning by confidence-interval prediction. The tool also provides 
functions for outlier detections. 

To evaluate the obtained error rate one can choose test-and-train and n-fold cross 
validation. Missed values can be handled by different strategies [1]. 

The user selects the preferred method for each step of the decision tree induction 
process. After that the induction experiment can start on the acquired database. A 
resulting decision tree will be displayed to the user. He/she can evaluate the tree by 
checking the features used in each node of the tree and comparing them with his/her 
domain knowledge.  

Class SepalLeng SepalWi PetalLen PetalWi

Setosa 5,1 3,5 1,4 0,2

Setosa 4,9 3,0 1,4 0,2

Setosa 4,7 3,2 1,3 0,2

Setosa 4,6 3,1 1,5 0,2

Setosa 5,0 3,6 1,4 0,2

Versicolor 7,0 3,2 4,7 1,4

Versicolor 6,4 3,2 4,5 1,5

Versicolor 6,9 3,1 4,9 1,5

Versicolor 5,5 2,3 4,0 1,3

... ... ... ... ...
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Fig. 4. Basic Principle of Decision Tree Induction 
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Once the diagnosis knowledge has been learnt, the rules are provided either in txt-
format or XML format for further use in the image interpretation part or the expert 
can use the diagnosis component of the tool for interactive work. It has a user-friendly 
interface and is set up in such a way that non-computer specialists can handle it very 
easily. 

6.2   Case-Based Reasoning for Image Interpretation 

It is difficult to apply decision trees in domains where generalized knowledge is 
lacking. But often there is a need for a prediction system, even though there is not 
enough generalized knowledge. Such a system should a) solve problems using the 
already stored knowledge and b) capture new knowledge, making it immediately 
available to solve the next problem. To accomplish these tasks case-based reasoning 
is useful. Case-based reasoning explicitly uses past cases from the domain expert´s 
successful or failing experience.  

Therefore, case-based reasoning can be seen as a method for problem-solving as 
well as a method to capture new experience in an incremental fashion and make it 
immediately available for problem-solving. It can be seen as a learning and 
knowledge-discovery approach, since it can capture from new experience some 
general knowledge such as case classes, prototypes and some higher-level concepts. 
We find these methods especially applicable for inspection and diagnosis tasks. In the 
case of these applications people store prototypical images into a digital image 
catalogue rather than a large set of different images [22]. 

We have developed a unit for Cell_Interpret that can perform similarity 
determination between cases, as well as prototype selection [23] and feature 

weighting [24]. We call { }nn xxxx ,...,, 21
` ∈ a nearest-neighbor to x  if 

( ) ( )xxdxxd ni ´,,min = , where .,...,2,1 ni =  The instance x  is classified into 

category nC , if nx is the nearest neighbor to x  and nx belongs to class nC . 

In the case of the k-nearest neighbor we require k-samples of the same class to 
fulfill the decision rule. As a distance measure we use the Euclidean distance. 
Prototype Selection from a set of samples is done by Chang`s Algorithm [23]. 
Suppose a training set T  is given as { }mttT ,...,1= . The idea of the algorithm is as 

follows: We start with every point in T as a prototype. We then successively merge 
any two closest prototypes 1p and 2p of the same class by a new prototype p , if the 

merging will not downgrade the classification of its patterns in T . The new prototype 

p  may simply be the average vector of 1p and 2p . We continue the merging process 

until the number of incorrect classifications of the patterns in T starts to increase.  
The wrapper approach is used for selecting a feature subset from the whole set of 

features. This approach conducts a search for a good feature subset by using the k-NN 
classifier itself as an evaluation function. The 1-fold cross-validation method is used 
for estimating the classification accuracy and the best-first search strategy is used for 
the search over the state space of possible feature combination.  The algorithm 
terminates if we have not found an improved accuracy over the last k search states. 
The feature combination that gave the best classification accuracy is the remaining 
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feature subset. After we have found the best feature subset for our problem, we try to 
further improve our classifier by applying a feature-weighting technique. 

The weights of each feature iw  are changed by a constant value δ : :i iw w δ= ± . 

If the new weight causes an improvement of the classification accuracy, the weight 
will be updated accordingly; if not, the weight will remain as it is. After the last 
weight has been tested the constantδ will be divided into half and the procedure 

repeats. The procedure terminates if the difference between the classification accuracy 

of two iterations is less than a predefined threshold.  

6.3   Conceptual Clustering 

The intention of clustering as another image mining function is to find groups of 
similar cases among the data according to the observation. This can be done based on 
one feature or a feature combination. The resulting groups give an idea how data fit 
together and how they can be classified into interesting categories. 

Classical clustering methods only create clusters but do not explain why a cluster 
has been established. Conceptual clustering methods build clusters and explain why a 
set of objects confirm a cluster. Thus, conceptual clustering is a type of learning by 
observation and it is a way of summarizing data in an understandable manner [1]. In 
contrast to hierarchical clustering methods, conceptual clustering methods build the 
classification hierarchy not only based on merging two groups. The algorithmic 
properties are flexible enough to dynamically fit the hierarchy to the data. This allows 
incremental incorporation of new instances into the existing hierarchy and updating 
this hierarchy according to the new instance. 

A concept hierarchy is a directed graph in which the root node represents the set of 
all input instances and the terminal nodes represent individual instances. Internal 
nodes stand for sets of instances attached to the nodes and represent a super-concept. 
The super-concept can be represented by a generalized representation of this set of 
instances such as the prototype, the mediod or a user selected instance. Therefore a 
concept C, called a class, in the concept hierarchy is represented by an abstract 
concept description and a list of pointers to each child concept M(C)={C1, C2, ..., Ci, 
..., Cn}, where Ci is the child concept, called subclass of concept C. 

Our conceptual clustering algorithm presented here is based on similarities, 
because we do not consider logical but numerical concepts [19].  

The output of our algorithm for applying eight exemplary shape cases of fungal 
strain Ulocladium Botrytis is shown in Figure 5. On top level the root node is shown 
which comprises the set of all input cases. Successively the tree is partitioned into 
nodes until each input case forms its own cluster. 

The main advantage of our conceptual clustering algorithm is that it brings along a 
concept description. Thus, in comparison to agglomerative clustering methods, it is 
easy to understand why a set of cases forms a cluster. During the clustering process 
the representative case, and also the variances and maximum distances in relation to 
this representative case, are calculated, since they are part of the concept description. 
The algorithm is of incremental fashion, because it is possible to incorporate new 
cases into the existing learnt hierarchy. 
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Fig. 5. Output of the Conceptual Clustering Algorithm for 2-D Shapes obtained from Fungal 
Spores 

7   Results 

The kinds of cells that are considered in this application are HEp-2 cells, which are 
used for the identification of antinuclear autoantibodies (ANA). ANA testing for the 
assessment of systemic and organ-specific autoimmune diseases has increased 
progressively since immunofluorescence techniques were first used to demonstrate 
antinuclear antibodies in 1957. HEp-2 cells allow for recognition of over 30 different 
nuclear and cytoplasmic patterns, which are given by upwards of 100 different 
autoantibodies.  

The identification of the patterns has up to now been done manually by a human 
inspecting the slides with the help of a microscope. The lacking automation of this 
technique has resulted in the development of alternative techniques based on chemical 
reactions, which do not have the discrimination power of the ANA testing. An 
automatic system would pave the way for a wider use of ANA testing. 

Prototypical images of HEp-2 cell patterns for six different classes are shown in 
Figure 6. The images were taken by an image-acquisition unit consisting of a 
microscope AXIOSKOP from Carl Zeiss Jena, coupled with a video camera. 

In a knowledge-acquisition process [25] with a human operator, using an interview 
technique and a repertory grid method, we acquired the knowledge of this operator, 
while classifying the different cell types. Some of this knowledge is shown in table 1. 
The symbolic terms show that a mixture of different image information is necessary 
for classification. The operator uses the intensity as well as some texture information. 
In addition, the appearances of the cell parts within the cells are of importance, like 
“dark nucleoi”, which also requires spatial information.  
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Class 1 Class 2 Class 3

Class 4 Class 5 Class 6  

Fig. 6. Prototypical Images of Six Classes 

Each image is processed by the image-analysis procedure described in the previous 
section. The color image is transformed into a gray-level image. The image is 
normalized to the mean and standard gray level calculated from all images to avoid 
invariance caused by the inter-slice staining variations. Automatic thresholding has 
been performed by the algorithm described in Section 4.1. For the objects in each slice, 
features based on the texture descriptor described in Section 5 are calculated for 
classification [26]. The first one is a simple Boolean feature which expresses the 
occurrence or non-occurrence of objects in the slice image. Then the number of objects 
in the slice image is calculated. From the objects, the area, a shape factor, and the 
length of the contour are calculated. The mean value for each feature is calculated over 
all the objects in the slice image. This is done in order to reduce the dimension of the 
feature vector. Since the quantization of the gray level was done in equal steps and 
without considering the real nature, we also calculated for each class the mean value of 
the gray level and the variance of the gray level. A total of 192 features were calculated 
that make up a very intelligent structure and texture descriptor for cells [26]. The data 
base created from 7-10 images per class which made up 200 cells per class is given to 
our decision tree unit. This unit learns the classification knowledge based on decision 
tree induction. Finally, the system was evaluated based on cross validation. The final 
result is shown in table 2. The overall classification accuracy is 92.73%. The class 
specific classification accuracy [1] is shown for each class in table 2 on the right side 
of the table and the classification quality for each class in the bottom line of the table. 
In most of the classes we achieved good classification accuracy. There are only few 
classes where the classification accuracy is not as good as the other ones. It is 
interesting to note that in case of class_5 four cases got misclassified as class_14 “U1-
RNP” but when checking with the expert it tended out that the classifier put these 
samples in the right class. The case was that the expert mislabeled the cases as class_5  
 



152 P. Perner 

Table 1. Some knowledge about the class description given by a human operator 

Class ClassName Description 
Homogeneous 
nuclei 
fluorescence 

Class_1 Smooth and uniform fluorescence of the 
nuclei. 
Nuclei appear sometimes dark. 
The chromosome fluorescence is from weak  
to very intense  

Fine speckled 
nuclei 
fluorescence 

Class_2 Dense fine speckled fluorescence 

... ... ... 
Nuclei 
fluorescence 

Class_9 Nuclei are weakly homogenous or fine-
grained and can hardly be discerned from the 
background 

 
while the automatic system recognized that these samples belong not to class_5 but to 
class_14. This example shows nicely that an automatic system can lead to 
standardization of cell image classification. It provides objective results, it works 
constantly without getting tired and the results are reproducible. 

The computation time of an image for the Hep-2 application is 10 seconds by an 
image size of 1600x1200. This computation time is fast enough for the considered 
application and for most other applications. Users who like to have a faster 
computation time can easily speed up the computation time by parallelization. 
Parallelization can be done in the simplest case by using more than one computer. In 
the hardest case, the whole algorithm can be programmed in parallel fashion. 

The methods developed within the framework Cell_Interpret have been applied to 
many different applications of microscopic cell images including Hep-2 cell, Hela-
cells and Malaria diagnosis. They showed to be flexible enough for different kind of 
cell images diagnosis tasks and they efficiently enabled the mining of the relevant 
knowledge for the development of an automatic image interpretation system. 

The Hep-PAD version developed based on Cell_Interpret has been licensed to 
qualified industries and is meanwhile a commercial application in usage at different 
medical laboratories. 

We are currently further developing the framework of Cell_Interpret to video 
microscopy and developing more feature extraction and image mining procedure that 
can further support the image mining process. 

8   Expert Opinion 

Recent developments are highly application oriented. Often the system works only in 
a semi-automatic modus [27][28] that puts a lot of work to the user using the system. 
Standard image processing methods are applied to specific tasks combined with a lot 
of heuristics [31] to make the methods more or less automatically work on the 
specific images.  



 Novel Computerized Methods in System Biology 153 

Ex
am

pl
e:

 R
es

ul
t L

D
S6

 a
nd

 D
M

4 
 

  
1 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

11
 

12
 

13
 

14
 

15
 

  
C

la
ss

 S
pe

ci
fic

 Q
ua

lit
y

  
Am

aC
en

t 
Ac

tin
 

AM
A 

W
ho

 
C

en
tro

m
er

C
oa

rs
eS

p 
H

om
og

en
 

Jo
-1

 
N

uc
le

ol
ae

r
PM

SC
L 

SC
L7

0 
Sp

ec
kl

ed
SS

-A
 

SS
-B

 
U

1-
R

N
P 

Vi
m

en
tin

 
Su

m
 

CS
Q

 

Am
aC

en
t 

6 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
6 

10
0,

00
%

 

Ac
tin

 
  

7 
  

  
  

  
  

  
  

  
  

  
  

  
  

7 
10

0,
00

%
 

AM
A 

W
ho

 
  

  
7 

  
  

  
  

  
  

  
  

  
  

  
  

7 
10

0,
00

%
 

C
en

tro
m

er
 

  
  

  
7 

  
  

  
  

  
  

  
  

  
  

  
7 

10
0,

00
%

 

C
oa

rs
eS

p 
  

  
  

  
5 

  
  

  
  

  
2 

  
  

  
  

7 
71

,4
3%

 

H
om

og
en

 
  

  
  

  
  

8 
  

  
  

  
  

  
  

  
  

8 
10

0,
00

%
 

Jo
-1

 
  

  
  

  
  

  
6 

  
  

  
  

  
  

  
  

6 
10

0,
00

%
 

N
uc

le
ol

ae
r 

  
  

  
  

  
  

  
7 

  
  

  
  

  
  

  
7 

10
0,

00
%

 

PM
SC

L 
  

  
  

  
  

  
  

  
7 

  
  

  
  

  
  

7 
10

0,
00

%
 

SC
L7

0 
  

  
  

  
  

  
  

  
  

8 
  

  
  

  
  

8 
10

0,
00

%
 

Sp
ec

kl
ed

 
  

  
  

  
  

  
  

  
  

  
6 

  
  

  
  

6 
10

0,
00

%
 

SS
-A

 
  

  
  

  
  

  
1 

  
  

  
  

7 
  

  
  

8 
87

,5
0%

 

SS
-B

 
  

  
  

  
  

  
  

  
  

  
  

  
7 

  
  

7 
10

0,
00

%
 

U
1-

R
N

P 
  

  
  

  
4 

  
  

  
  

  
1 

  
  

7 
  

12
 

58
,3

3%
 

Vi
m

en
tin

 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
7 

7 
10

0,
00

%
 

Su
m

 
6 

7 
7 

7 
9 

8 
7 

7 
7 

8 
9 

7 
7 

7 
7 

11
0 

  

Cl
. Q

ua
l. 

10
0,

00
%

 
10

0,
00

%
 

10
0,

00
%

 
10

0,
00

%
 

55
,5

6%
 

10
0,

00
%

 
85

,7
1%

 
10

0,
00

%
 

10
0,

00
%

10
0,

00
%

66
,6

7%
 

10
0,

00
%

10
0,

00
%

 
10

0,
00

%
 

10
0,

00
%

 
  

94
,4

8%
 

C
la

ss
ifi

ca
tio

n 
Q

ua
lit

y 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

To
ta

l N
um

be
r o

f 
sa

m
pl

es
 

  
  

11
0 

 
11

0 
 

 
 

 
 

 
 

 
 

 
 

 
C

or
re

ct
 c

la
ss

ie
d 

sa
m

pl
es

 
  

  
10

2 
 

10
6 

 
 

 
 

 
 

 
 

 
 

 
 

C
or

re
ct

ne
ss

 
  

  
92

,7
3%

 
 

96
,3

6%
 

 
 

 
 

 
 

 
 

 
 

 
 

Er
ro

r r
at

e 
  

  
7,

27
%

 
 

3,
64

%
 

 
 

 
 

 
 

 

  

T
ab

le
 2

. R
es

ul
ts

 f
or

 H
ep

-2
 P

at
te

rn
 A

na
ly

si
s 



154 P. Perner 

One such method is the Watershed-Transformation (WT) for image segmentation 
[27-31]. We have developed a flexible and automatic Case-Based Watershed 
Transformation method where the WT can be adapted to the image characteristics of 
the image under consideration. 

Standard texture feature extraction procedures are used as well [32] but the random 
set approach as described here does have the flexibility to describe the different 
particles appearing in a cell and their randomness.  

Application-oriented systems that can only solve one specific task are very costly 
and it takes time to develop them. The success of automatic image-interpretation 
systems can only be guaranteed when the development effort is as low as possible and 
when they can be adapted quickly to different needs and tasks. The proposed 
architecture of Cell_Interpret will help to overcome this problem. 

There are commercial High-Content Analysis developments where data mining 
capabilities are included in the system. However, a better understanding of when and 
how to apply these methods and how to interpret the results are necessary for the user. 
Therefore we are constantly working on a methodology of data mining that is 
presented in our data mining tutorial (www.data-mining-tutorial.de) and copied in our 
data mining tools included in Cell_Interpret. 

Another interesting observation in high-content analysis is that of images are 
created by using different staining to make specific cell details/objects visible 
[33][34]. It is obvious that in the resulting images the specific object details/parts are 
most visible and the analysis of these images can be simply made. However for a 
computer vision expert arises the question if this approach is really necessary in all 
case studies or would it be better to consider the whole task as a pattern recognition 
problem as has been done in the HEp-2 cell application and study the different 
patterns that appear when treating the cells in different ways. This statement might be 
a bit provocative and we have to admit that we do not know all applications in HCA 
but we would be happy to further discuss this with experts from the domain. 

We also think that a better categorization of the different image analysis tasks is 
necessary to ensure a standardization of the image analysis procedures in HCA. A 
first study in that direction has been given in [35] [36]. Biologists, computer scientists 
and all other people involved in this field need to further discuss this and find a 
common basis of understanding.  

The case-based reasoning approach in our system architecture Cell_Interpret we 
are recently been further developing for cell-tracking and 3D image analysis. 

9   Conclusion 

In this paper we have presented our architecture, Cell_Interpret, for High-Content 
Image Analysis and the methods used for the different tasks such as image 
segmentation, feature extraction, image mining and classification and interpretation. 
Most of the methods are based on case-based reasoning.  CBR solves problems using 
already stored knowledge, and captures new knowledge, making it immediately 
available for solving the next problem. Therefore, case-based reasoning can be seen 
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as a method for problem solving, and also as a method to capture new experience and 
make it immediately available for problem solving. It can be seen as a learning and 
knowledge-discovery approach, since it can capture from new experience some 
general knowledge, such as case classes, prototypes and some higher-level concepts.  

The idea of case-based reasoning originally came from the cognitive science 
community which discovered that people are reasoning on formerly successfully 
solved cases rather than on general rules. Our interest is to build intelligent flexible 
and robust data-interpreting systems [37][38][39] that are inspired by the human case-
based reasoning process and by doing so to model the human reasoning process when 
interpreting the cell images. 
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