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Indistinguishability

Nick Huggett and Tom Imbo

In the considerable physical and philosophical literature,1 ‘indistinguishability’, and
the related concept of ‘identicality’, are used in many ways, and in the resulting

1 See [1] for a cross section of the philosophical literature, and a comprehensive bibliography of
the subject.
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confusion the logical relations between the various notions are often obscured, with
unfortunate consequences. This article will use them in the following senses, which
are most useful and (likely) common:

Particles are identical if they share in common all their constant properties, such as mass,
charge, spin and so on: that is, if they agree in all their state-independent or intrinsic prop-
erties. Particles are indistinguishable if they satisfy the indistinguishability postulate (IP).
This postulate states that all observables O must commute with all particle permutations
P : [O,P ] = 0. Put informally, the IP is the requirement that no expectation value of any
observable is affected by particle permutations.

The IP presupposes the following formal structure: assume that we have a system
of n identical quantum particles, and that if n were equal to 1 then the state space
of the system would be H1. The natural assumption for n > 1 is that the state space
H describing the system is a subspace of the tensor product, Hn, of n copies of H1.
That is,

H ⊆ Hn ≡
n⊗

i=1

H1. (1)

We assume that H is closed under the action of arbitrary permutations, P , which
permute the n factors of Hn. Any such operator is a product of ‘particle exchange
operators’ Pij (1 � i, j � n). Pij interchanges the ith and j th copies of H1 in Hn:
for instance (for n = 2),

P12(|φ〉 ⊗ |ψ〉) = |ψ〉 ⊗ |φ〉. (2)

For example, if the particles are either bosons or fermions then the appropriate state
spaces are the symmetric (Pij |�〉 = |�〉) and antisymmetric (Pij |�〉 = −|�〉) sub-
spaces of Hn respectively. Operators that commute with all permutations are called
symmetric. The IP says that only symmetric Hermitian operators are observables;
any non-symmetric Hermitian operators onH do not correspond to observable quan-
tities if the IP holds.

Logical Relations

Oftentimes (e.g., [2], 275–6) an attempt is made to connect identicality and indistin-
guishability by appeal to the fact that in quantum mechanics (QM), unlike classical
mechanics, particles cannot have varying continuous trajectories. Even if a parti-
cle has a definite location at some times, its position will be indefinite at times in
between. Why? States of definite position – eigenstates of position – are neces-
sarily orthogonal, and it is impossible for a system to occupy a continuous series
of orthogonal states. (Any unitary evolution between such states will take a finite
time, and under measurement the probability of collapse to an orthogonal state is
zero.) And of course there is nothing special about position in this regard: even if
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the spectrum of an operator is continuous, no quantum evolution corresponds to a
continuous trajectory through the spectrum.

This line of thought is supposed to lead directly to the conclusion that identical
quantum particles (unlike classical particles) cannot be distinguished by continuous
trajectories (through space or the spectrum of any observable). So there are two
questions: (i) Does this conclusion – call it trajectory indistinguishability – actually
follow? (ii) What do these considerations have to do with indistinguishability as
defined earlier?

Trajectory Indistinguishability

First (i). This argument is supposed to show that quantum particles are trajectory
indistinguishable, without appeal to the IP (from which it follows immediately,
as discussed below). The idea behind the argument is that quantum particles can
only be distinguished by continuous trajectories that are constant – because, as we
just saw, varying continuous trajectories are impossible. But the identicality of the
particles is supposed to preclude their being distinguished by constant properties.
However, there is a fallacy in this line of thought. A property is ‘intrinsic’ if it is
independent of any possible state of the system, not simply if it is a constant of
some particular evolution; so identical particles can be distinguished by constant
trajectories.

For instance, let H1 be a 2-dimensional � Hilbert space spanned by {|λ1〉, |λ2〉},
eigenstates of the time-independent observable A with eigenvalues λ1 and λ2, re-
spectively. Further suppose that H = H1 ⊗ H1, and that all Hermitian operators
are observables and indeed allowed � Hamiltonian operators. Then one possible
evolution of the system is �(t) = |λ1〉 ⊗ |λ2〉 (for all t), in which the particles
are distinguished by their constant ‘trajectories’ – the first always has the value λ1
for A and the other λ2.2 But the values of A are not state independent: there are
states in H in which the value of A for the first particle is not λ1, for instance
(|λ2〉⊗ |λ1〉), and states in which the particles have no definite A value, for instance
(a|λ1〉 ⊗ |λ2〉 + b|λ2〉 ⊗ |λ1〉). So A is not intrinsic, and indeed (supposing the
particles do share their truly intrinsic properties) the example shows that identical
particles can, after all, be trajectory distinguishable.

Note that in this example, the � operators corresponding to the value of A for
the two particles violate the IP, and hence their values would not constitute physi-
cal trajectories if the IP held. Indeed, although identical quantum particles are not
necessarily trajectory indistinguishable, they will be if they are indistinguishable.3

2 A is not an operator on H, so what is meant here is that �(t) is an eigenstate of A ⊗ I with
eigenvalue λ1, and of I ⊗A with eigenvalue λ2. That is, following the standard understanding, the
operator ‘corresponding’ to A for the first particle is A⊗ I , and so on.
3 It is often assumed that all single particle observables have the form I ⊗ . . . ⊗ I ⊗A⊗ I . . . ⊗ I

(which violates the IP), but one might imagine a more general conception. What is essential, how-
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Indistinguishability

In answer to (ii), the impossibility of continuously varying trajectories does not
support indistinguishability in the sense of the IP. The IP is a constraint on which
operators can be observables, but the impossibility of continuously varying trajec-
tories is a fact about all Hermitian operators, whether or not they satisfy the IP.
Hence this impossibility places absolutely no restriction on observables at all, once
we adopt the quantum formalism.

Indeed, there are consistent (though hypothetical) quantum systems of identi-
cal particles that violate the IP: for instance, a collection of identical ‘quantum
Maxwell–Boltzmann’ particles. For n such particles the state space is the full Hilbert
space Hn of (1) – i.e., H = Hn – and every (sufficiently well-behaved) Hermitian
operator is an observable (as in the example above). Note that while this formalism
is commonly used for non-identical particles, a system of n identical particles can
also have Hn as its state space. Such particles are said to obey quantum Maxwell–
Boltzmann or ‘infinite’ statistics.4 This system clearly violates the IP, because some
observables are non-symmetric: [O,P ] �= 0. In this sense then, the particles are
‘distinguishable’.

While it is widely known, at least implicitly, that identicality does not imply the
indistinguishability postulate, it seems rarely to be explicitly acknowledged, with
certain resultant confusions about the nature of identical particles.5 For example,
it seems that the ‘problem of identical particles’ is often taken to be the problem of
understanding how the symmetrization postulate (SP) – that all particles are either
bosons or fermions – can be shown to follow from the indistinguishability pos-
tulate, as if the latter were more secure than the former (e.g., [4]). But there are
no first principle grounds for holding indistinguishability either; certainly not as a
logical consequence of quantum identicality. Thus both the symmetrization and in-
distinguishability postulates are on a very similar footing. As a matter of empirical
fact, all known particles satisfy both, but no purely logical grounds exist for either.
Indeed, the situation is that the SP entails the IP, but not the converse.6 Thus, if

ever, is that an observable representing a property of one particle be related by permutation to the
observable representing the same property of another particle: as A ⊗ I and I ⊗ A are. But the
IP means that permutations leave observables unchanged, in which case there cannot be a pair of
distinct observables representing the same property for a pair of particles: hence no such pair of
particles can have distinct trajectories.
4 Such a system has second-quantized realizations whose particles are known as ‘quons’. See [3]
and references therein.
5 Part of the confusion arises because ‘identicality’ is often used to mean indistinguishability. Al-
though logically unproblematic, this usage obscures the possibility of particles that share their
intrinsic properties, but violate the IP.
6 An operator on Hn leaves the subspace of bosonic states, H+, invariant iff its action on H+ is
the same as that of its projection onto H+; this latter operator necessarily satisfies the IP. Now,
observables for a system of identical bosons must leave H+ invariant, else measurement collapses
will not be well-defined. So not all Hermitian operators on Hn can be bosonic observables, only
those whose action on H+ is the same as that of a symmetric operator; similarly for fermions,
hence SP implies IP.
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one principle explains the other (and if entailment is a form of explanation), it is
symmetrization that explains indistinguishability, not the other way around!

Of course, the fact that all known species of elementary particles are either
bosons or fermions suggests that there may be some reason, some important princi-
ple, explaining why nature does not explore the many other options. Much work has
been devoted to showing which additional principles are necessary to prove the IP
or SP; but none of these principles seem more natural or secure than what is meant
to be shown.

To summarize: It is important to keep clear the relations between the concepts
of identicality, trajectory indistinguishability and indistinguishability (and sym-
metrization). First, identicality entails neither trajectory indistinguishability nor
indistinguishability (though the former follows from the latter); the impossibility
of continuously varying trajectories in QM is nothing but a red herring. Second, the
SP implies the IP, but not the converse. So, to summarize the summary,

SP⇒ IP⇒ Trajectory Indistinguishability

but none of these follow from identicality.

Approximate Distinguishability

It is important to note that one can sometimes treat indistinguishable particles as
‘approximately’ distinguishable.

First, which properties are to count as intrinsic is a system-relative matter. Con-
sider a system of two � electrons that are in distinct constant spin-z eigenstates,
one � spin up and the other spin down, so that the spins function as intrinsic
distinguishing properties for the particles. Now, this may seem surprising since the
particles in question are identical fermions at a fundamental level, and hence their
states are antisymmetric under the exchange operatorP12. Antisymmetrization (and,
similarly, symmetrization for identical bosons) implies that the z-spins can never
distinguish particle 1 – that is, the particle associated with the first ‘slot’ in the ten-
sor product space – from particle 2 – the one associated with the second slot. For
example, their state cannot be something like | ↑ 〉⊗ | ↓ 〉⊗ |ψ〉, in which particle 1
is the spin-up electron and particle 2 the spin-down electron, and |ψ〉 represents the
non-spin portion of the two particle state. Suppose, however, that the Hilbert space
of the system in question is spanned by states of the form

(| ↑ 〉 ⊗ |α〉)⊗ (| ↓ 〉 ⊗ |β〉)− (| ↓ 〉 ⊗ |β〉)⊗ (| ↑ 〉 ⊗ |α〉), (3)

The SP can be derived from the conjunction of the IP and the assumption that the representation
of the permutation group is 1-dimensional on H: P |�〉 = λ|�〉. The point is that there is no
independent justification for the latter conjunct, which can be consistently relaxed, as we shall see
the final section.
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(in which, for example, the first term assigns spin-up and the non-spin state |α〉 to
particle 1, and spin-down and the non-spin state |β〉 to particle 2). Then we can
‘distinguish’ a spin-up particle from a spin-down particle in the following sense. In
a state such as (3), |α〉 (|β〉) is associated with spin-up (spin-down) in both terms.
Hence we can simply denote the state by |α〉⊗ |β〉 in which it is understood that the
‘new’ particle 1 – that associated with the first slot in the new notation – is spin-up
and the new particle 2 – that associated with the second slot – is spin-down. So al-
though the state is antisymmetric at a fundamental level, in this effective description
we have two particles that are distinguished by their spins. Since the electrons are
identical in the fundamental sense, and distinguished by constant properties in the
effective description of this system, it would perhaps be more accurate to say, not
that the electrons are approximately distinguishable, but that they are approximately
non-identical.7

Second, while particles cannot be distinguished by continuously varying, exact
positions, they can by continuously varying approximate positions. In the classi-
cal limit, identical particles have � wave function that are peaked in space with
little overlap for some period; they are approximately trajectory distinguishable.
Quantum mechanics does allow such states to evolve in a continuous way, with
the peaks moving through space – as the existence of the classical limit demands.
(And of course similar points hold for other observables.) If the particles in question
are identical bosons or fermions, then these approximately distinct trajectories will
serve to distinguish in just the way that spins did for the two electrons: we will be
able to give an effective description of states in which the new ith slot is associated
with the ith spatial trajectory. This is exactly what goes on for instance when we
refer to an electron localized in a particular region of space, distinct from all other
electrons.8

Why It Matters

Carefully distinguishing the concepts discussed in this article reveals a wider range
of possibilities for multi-particle quantum systems, as is now briefly explained.

Messiah and Greenberg [6] were the first to exploit systematically the fact that
the IP (which they called ‘identicality’!) was not sufficient for the symmetrization
postulate. Specifically, they relaxed the latter postulate and considered more general
state spaces. Building on this work, Hartle, Stolt and Taylor (e.g., [7]) showed how
to classify all types of identical, indistinguishable quantum particle statistics (com-
patible with a principle of ‘cluster decomposition’) according to the transformation
properties of their state spaces under the action of particle permutations. However,
they considered only observables satisfying the IP, which we have just seen to be

7 Although the particles in the example of p. 313 are not fermions, they are – just for the evolution
described – non-identical in a similar sense.
8 Related issues in both classical and quantum mechanics are discussed in [5].
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an ad hoc restriction on observables. Thus, one may ask: ‘Does also relaxing the IP
allow an even richer classification of statistics by the transformation properties of
states and observables under the action of particle permutations?’

And indeed it does, as Espinoza et al. [8] have recently shown. Bose and Fermi
particles – what are usually called ‘quanta’ – are of course still examples of the types
now classified, as are parastatistical particles and quantum Maxwell–Boltzmann
particles, and a countable infinity of others. In every case categorized by Hartle,
Stolt and Taylor (except for bosons and fermions which necessarily satisfy the in-
distinguishability postulate) there is an associated distinguishable case now possible
in which non-symmetric observables are allowed. Any two systems with different
statistics – whether they differ in the transformation properties of their states or
observables or both – will have different partition functions and hence different
thermodynamic behaviors. In particular, whether the indistinguishability postulate
holds makes a real physical difference for a system of identical particles – or at least
it would were we to discover identical yet distinguishable particles in nature.
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Interaction-Free Measurements
(Elitzur–Vaidman, EV IFM)

Lev Vaidman

The interaction-free measurements proposed by Elitzur and Vaidman [1] (EV IFM)
is a quantum mechanical method to find an object that interacts with other systems
solely via its explosion without exploding it. In this method, an object can be found
without “touching it”, i.e. without any particle being at its vicinity.




