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experimental verdict and wrote to Fowler that “there is nothing else to do than to
give our revolutionary efforts as honourable a funeral as possible.”

In spite of its short lifetime, the BKS theory was singularly important. For one
thing, its radically new approach paved the way for a greater understanding that
methods and concepts of classical physics could not be carried over in a future
quantum mechanics. For another thing, the theory provided the point of depar-
ture of Kramers’ theory of dispersion of 1924 and its further development into the
Kramers–Heisenberg dispersion theory of 1925, the final step before Heisenberg’s
formulation of quantum or � matrix mechanics.
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3. W. Bothe, H. Geiger: Über das Wesen des Comptoneffekts; ein experimenteller Beitrag zur

Theorie der Strahlung. Zeitschrift für Physik 32, 639–663 (1925)

Secondary Literature

4. J. Hendry: Bohr-Kramers-Slater: A Virtual Theory of Virtual Oscillators and its Role in the
History of Quantum Mechanics. Centaurus 25, 189–221 (1981)

5. K. Stolzenburg ed.: Niels Bohr. Collected Works. Volume 5 (North-Holland, Amsterdam
1984, 3–218)

6. O. Darrigol: From c-Numbers to q-Numbers: The Classical Analogy in the History of Quantum
Theory (University of California Press, Berkeley 1992, 214–224)

Born Rule and its Interpretation

N.P. Landsman

The Born rule provides a link between the mathematical formalism of quantum
theory and experiment, and as such is almost single-handedly responsible for prac-
tically all predictions of quantum physics. In the history of science, on a par with
the � Heisenberg uncertainty relations, the � Born rule is often seen as a turning
point where � indeterminism entered fundamental physics. For these two reasons,
its importance for the practice and philosophy of science cannot be overestimated.

The Born rule was first stated by Max Born (1882–1970) in the context of scat-
tering theory [1], following a slightly earlier paper in which he famously omitted
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the absolute value squared signs (though he corrected this is a footnote added in
proof). The application to the position operator (cf. (5) below) is due to Pauli, who
mentioned it to Heisenberg and Jordan, the latter publishing Pauli’s suggestion with
acknowledgment [6] even before Pauli himself spent a footnote on it [8]. The general
formulation (6) below is due to von Neumann (see §III.1 of [7]), following earlier
contributions by Dirac [2] and Jordan [5, 6].

Both Born and Heisenberg acknowledge the profound influence of Einstein on
the probabilistic formulation of quantum mechanics. However, Born and Heisen-
berg as well as Bohr, Dirac, Jordan, Pauli and von Neumann differed with Einstein
about the (allegedly) fundamental nature of the Born probabilities and hence on the
issue of determinism. Indeed, whereas Born and the others just listed after him be-
lieved the outcome of any individual quantum measurement to be unpredictable in
principle, Einstein felt this unpredictability was just caused by the incompleteness
of quantum mechanics (as he saw it). See, for example, the invaluable source [3].
Mehra & Rechenberg [20] provide a very detailed reconstruction of the historical
origin of the Born rule within the context of quantum mechanics, whereas von Plato
[22] embeds a briefer historical treatment of it into the more general setting of the
emergence of modern probability theory and probabilistic thinking.

Let a be a quantum-mechanical � observable, mathematically represented by a� self-adjoint operator on a � Hilbert space H with inner product denoted by ( , ).
For the simplest formulation of the Born rule, assume that a has non-degenerate
discrete spectrum: this means that a has an � orthonormal basis of eigenvectors
(ei) with corresponding eigenvalues λi , i.e. aei = λiei . A fundamental assumption
underlying the Born rule is that a � measurement of the observable a will produce
one of its eigenvalues λi as a result. In what follows, � ∈ H is a unit vector and
hence a (pure) state in the usual sense. Then the Born rule states:

If the system is in a state �, then the probability P (a = λi | �) that the eigenvalue λi of a
is found when a is measured is

P(a = λi | �) = |(ei,�)|2. (1)

In other words, if � =∑i ciei (with
∑

i |ci |2 = 1), then P(a = λi | �) = |ci |2.
The general formulation of the Born rule (which is necessary, for example, to

discuss � observables with continuous spectrum such as the position operator x on
H = L2(R) for a particle moving in one dimension) relies on the spectral theo-
rem for self-adjoint operators on Hilbert space (see, e.g., [21]). According to this
theorem, a self-adjoint operator a defines a so-called spectral measure (alternatively
called a projection-valued measure or PVM)B �→ p(a)(B) on R. Here B is a (Borel)
subset of R and p(a)(B) is a projection on H . (Recall that a projection on a Hilbert
space H is a bounded operator p : H → H satisfying p2 = p∗ = p; such opera-
tors correspond bijectively to their images pH , which are closed subspaces of H .)
The spectral measure p(a) turns out to be concentrated on the spectrum σ(a) ⊂ R

of a in the sense that if B ∩ σ(a) = ∅, then p(a)(B) = 0 (hence p(a) is often
defined on σ(a) instead of R). The map B �→ p(a)(B) satisfies properties such as
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p(a)(A ∪ B) = p(a)(A) + p(a)(B) when A ∩ B = ∅ (and a similar property for
a countable family of disjoint sets) and p(a)(R) = 1 (i.e. the unit operator on H ).
Consequently, a self-adjoint operator a and a unit vector � ∈ H jointly define a
probability measure P (a)

� on R by

P
(a)
� (B) := (�, p(a)(B)�) = ‖p(a)(B)�‖2, (2)

where ‖ · ‖ is the norm derived from the inner product on H . The properties of p(a)

just mentioned then guarantee that P (a)
� indeed has the properties of a probability

measure, such as P
(a)
� (A ∪ B) = P

(a)
� (A) + P

(a)
� (B) when A ∩ B = ∅ (and a

similar property for a countable family of disjoint sets) and P
(a)
� (R) = 1. Again,

the probability measure P (a)
� is concentrated on σ(a).

For example, if a has discrete spectrum, then σ(a) = {λ1, λ2, . . .} and p(a)(B)

projects onto the space spanned by all eigenvectors whose eigenvalues lie in B.
In particular, if � = ∑

i ciei as above, then P
(a)
� ({λi}) = |ci |2. In the case of

the position operator x as above, σ(x) = R and p(x)(B) equals the characteristic
function χB , seen as a multiplication operator on L2(R). The image of p(x)(B)

consists of functions vanishing (almost everywhere) outside B, and the measure
P
(x)
� is given by

P
(x)
� (B) =

∫
R

dx χB(x)|�(x)|2 =
∫
B

dx |�(x)|2. (3)

The general statement of the Born rule, then, is as follows:

If the system is in a state � ∈ H , then the probability P (a ∈ B | �) that a result in B ⊂ R

is found when a is measured equals

P(a ∈ B | �) = P
(a)
� (B). (4)

For discrete non-degenerate spectrum this reduces to (1). For the position opera-
tor in one dimension, (4) yields

P(x ∈ B | �) =
∫
B

dx |�(x)|2 (5)

for the probability that the particle is found in the region B.
Note that it follows from the general Born rule (4) that with probability one a

measurement of a will lead to a result contained in its spectrum, since P (a)
� (B) = 0

whenever B ∩ σ(a) = ∅. Curiously, however, the probability P(a = λ | �) of
finding any specific number λ in the continuous spectrum of a is zero! As a case
in point, the probability P(x = x0 | �) of finding the particle at any given point
x0 vanishes. Of course, this phenomenon also occurs in classical probability theory
(e.g., the probability of any given infinite sequence of results of a coin flip is zero).
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The rule (4) is easily extended to n commuting self-adjoint operators
a1, . . . , an [7]:

The probability that the observables a1, . . . , an simultaneously take some value in a subset
B1 × · · · × Bn ⊂ R

n upon measurement in a state � is

P�(a1 ∈ B1, . . . , an ∈ Bn) = ‖p(a1)(B1) · · ·p(an)(Bn)�‖2. (6)

This version of the Born rule is needed, for example, in order to generalize (5) to
three dimensions. Indeed, the ensuing formula is practically the same, this time with
B ⊂ R3 and x replaced by (x, y, z).

The statement that the expectation value of an observable a in a state � equals
(�, a�) is equivalent to the Born rule. To see this, we identify projections with
yes-no questions [7], identifying the answer ‘yes’ with eigenvalue 1 and ‘no’ with
eigenvalue 0. The expectation value (�, p�) = ‖p�‖2 of a projection then simply
becomes the probability of the answer ‘yes’. Taking p = p(a)(B) then repro-
duces (4), since the probability of ‘yes’ to the question p(a)(B) is nothing but
P(a ∈ B | �). In this fashion, the Born rule may be generalized from pure states
to mixed ones (i.e. � density matrices in the standard formalism we are consider-
ing here), by stipulating that the expectation value of a in a state ρ (i.e. a positive
trace-class operator with � trace one) is Tr(ρa). For a further generalization in this
direction see � Algebraic quantum mechanics.

Finally, another formulation of the Born rule is as follows:

The transition probability P (�,�) from a state � to a state �, or, in other words, the
probability of a ‘quantum jump’ from � to �, is

P(�,�) = |(�,�)|2. (7)

This related to the first formulation above, in that in standard measurement theory
one assumes a � ‘wave function collapse’ in the sense that � changes to ei after a
measurement of a yielding λi . The transition probability P(�, ei ) is then precisely
equal to P(a = λi | �) as stated above.

The Born interpretation of quantum mechanics is usually taken to be the state-
ment that the empirical content of the theory (and particularly of the quantum state)
is given by the Born rule. However, this is not really an interpretation at all until it
is specified what the notions of measurement and probability mean. The pragmatic
attitude taken by most physicists is that measurements are what experimentalists
perform in the laboratory and that probability is given the frequency interpreta-
tion [15, 17] (which is neutral with respect to the issue whether the probabilities
are fundamental or due to ignorance). Given that firstly the notion of a quantum
measurement is quite subtle and hard to define, and that secondly the frequency
interpretation is held in rather low regard in the philosophy of probability [17,
18], it is amazing how successful this attitude has been! Going beyond pragma-
tism requires a mature interpretation of quantum mechanics, however. Each such
interpretation hinges on some interpretation of probability and will contain its own
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perspective on the Born rule. See Ignorance interpretation, Ithaca Interpretation,
Many Worlds Interpretation, Modal Interpretation, Orthodox Interpretation, Trans-
actional Interpretation.

The nature of the Born rule comes out particularly well in the Copenhagen
interpretation, � Consistent Histories; Metaphysics in Quantum Mechanics; Non-
locality; Orthodox Interpretation; Schrödinger’s Cat; Transactional Interpretation,
especially if this approach is combined with � Algebraic quantum mechanics. In the
algebraic approach, a quantum system is modeled by a non-commutativeC∗-algebra
of observables. The simplest illustration of this is the algebra Mn of all complex
n × n matrices. This contains the commutative C∗-algebra Dn of all diagonal ma-
trices as a subalgebra. A unit vector � ∈ Cn determines a pure state ψ on Mn in the
algebraic sense by ψ(a) = (�, a�). The latter may be restricted to a state ψ|Dn on
Dn, which turns out to be mixed: if � = ∑n

i=1 ciei and dλ = diag(λ1, . . . , λn) is
the diagonal matrix with entries (λ1, . . . , λn), then

ψ|Dn(dλ) =
n∑

i=1

|ci |2λi (8)

yields the expectation value of dλ in the state ψ . In particular, if pi ∈ Dn is the
projection pi = diag(0, . . . , 1, . . . , 0) having 1 on the i’th diagonal entry and zeros
elsewhere, then ψ|Dn(pi) = |ci |2 yields the Born probability of obtaining λi upon
measuring Dλ.

Similarly, one may regard a � wave function � ∈ L2(R) as an algebraic state ψ
on the C∗-algebra B(L2(R)) of all bounded operators on the Hilbert space L2(R).
This C∗-algebra contains the commutative subalgebra C0(R) given by all multipli-
cation operators on L2(R) defined by continuous functions of x ∈ R that vanish at
infinity (roughly speaking, this is the C∗-algebra generated by the position opera-
tor). The restriction ψ|C0(R) of ψ to C0(R) is given by

ψ|C0(R)(f ) =
∫

R

dx |�(x)|2f (x). (9)

The probability measure Pψ|C0 (R)
on R associated to the functional ψ|C0(R) by the

Riesz representation theorem [21] is just Pψ|C0 (R)
= P

(x)
� , cf. (3). Hence the re-

stricted state ψ|C0(R)precisely yields the Born–Pauli probability (5).
Finally, to recover (4) (assuming for simplicity that the operator a : H → H is

bounded), one considers the commutative C∗-algebra C∗(a) of B(H) generated by
a and the unit operator. It can be shown [21] that C∗(a) ∼= C(σ(a)). Hence a unit
vector � ∈ H defines a state ψ on B(H), whose restriction ψ|C∗(a) to C∗(a) yields
a probability measure Pψ|C∗(a) on the spectrum σ(a) of a. It easily follows that

Pψ|C∗(a) = P
(a)
� , (10)

which reproduces (2).
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The physical relevance of these constructions derives from Bohr’s doctrine of
classical concepts, which is an essential ingredient of the Copenhagen interpretation
[24]. In particular, if it is to serve its function, a measurement apparatus has to be de-
scribed as if it were classical. This implies that if it is used as a measuring device, the
apparatus (which a priori is quantum mechanical) has to be described by a commu-
tative subalgebra D of its full non-commutative algebra A of quantum-mechanical
observables. Upon the identifications explained above, the Born probability measure
then comes out to be just the restriction of the total state on A to the ‘classical’
subalgebra D thereof that Bohr calls for.

This account does not provide a derivation of the Born rule from first princi-
ples, but it does clarify its mathematical and physical origin. In particular, in the
Copenhagen interpretation probabilities arise because we look at the quantum world
through classical glasses:

“One may call these uncertainties [i.e. the Born probabilities] objective, in that they are
simply a consequence of the fact that we describe the experiment in terms of classical
physics; they do not depend in detail on the observer. One may call them subjective, in that
they reflect our incomplete knowledge of the world.” (Heisenberg [4], pp. 53–54)

In other words, one cannot say that the Born probabilities are either subjective (i.e.
Bayesian, or due to ignorance) or objective (i.e. fundamentally ingrained in nature
and independent of the observer). Instead, the situation is more subtle and has no
counterpart in classical physics or probability theory: the choice of a particular clas-
sical description is subjective, but once it has been made the ensuing probabilities
are objective and the particular outcome of an experiment compatible with the cho-
sen classical context is unpredictable. Or so Bohr and Heisenberg say. . .

In most interpretations of quantum mechanics, some version of the Born rule is
simply postulated. This is the case, for example, in the � Consistent histories inter-
pretation, the � Modal interpretation and the � Orthodox interpretation. Attempts
to derive the Born rule from more basic postulates of quantum theory go back to
Finkelstein [16] and Hartle [19], whose work was corrected and extended in [14].
These authors study infinite sequences of measurements and prove that the ensuing
relative frequencies automatically satisfy the Born rule. It is controversial, however,
to what extent this argument really derives the Born rule or is eventually circular
[11, 12]. In the version of the � Many worlds interpretation developed by Deutsch
[13] and his followers [23, 26], the authors claim to derive the Born rule using argu-
ments from decision theory, but once again the charge of circularity has been raised
[9, 10]. See also [27, 25] for a similar debate in the context of � decoherence. The
conclusion seems to be that no generally accepted derivation of the Born rule has
been given to date, but this does not imply that such a derivation is impossible in
principle.
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11. A. Cassinello & J.L. Sánchez-Gómez: On the probabilistic postulate of quantum mechanics.
Found. Phys. 26, 1357–1374 (1996).

12. C. Caves & R. Schack: Properties of the frequency operator do not imply the quantum proba-
bility postuate. Ann. Phys. (N.Y.) 315, 123–146 (2005).

13. D. Deutsch: Quantum theory of probability and decisions. Proc. R. Soc. Lond. A455, 3129–
3137 (1999).

14. E. Farhi, J. Goldstone & S. Gutmann: How probability arises in quantum mechanics. Ann.
Phys. (N.Y.) 192, 368–382 (1989).

15. T.L. Fine: Theories of Probability (Academic, New York, 1978).
16. D. Finkelstein: The logic of quantum physics. Trans. N. Y. Acad. Sci. 25, 621–637 (1965).
17. D. Gillies: Philosophical Theories of Probability (Cambridge University Press, Cambridge

2000).
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