
18

Towards Robust Distant-Talking Automatic
Speech Recognition in Reverberant
Environments

Armin Sehr and Walter Kellermann

Multimedia Communications and Signal Processing
University of Erlangen-Nuremberg, Germany

In distant-talking scenarios, automatic speech recognition (ASR) is hampered
by background noise, competing speakers and room reverberation. Unlike
background noise and competing speakers, reverberation cannot be captured
by an additive or multiplicative term in the feature domain because rever-
beration has a dispersive effect on the speech feature sequences. Therefore,
traditional acoustic modeling techniques and conventional methods to increase
robustness to additive distortions provide only limited performance in rever-
berant environments.

Based on a thorough analysis of the effect of room reverberation on speech
feature sequences, this contribution gives a concise overview of the state of
the art in reverberant speech recognition. The methods for achieving robust-
ness are classified into three groups: Signal dereverberation and beamforming
as preprocessing, robust feature extraction, and adjustment of the acoustic
models to reverberation. Finally, a novel concept called reverberation model-
ing for speech recognition, which combines advantages of all three classes, is
described.

18.1 Introduction

Even for difficult tasks, current state-of-the-art ASR systems achieve impres-
sive recognition rates if a clean speech signal recorded by a close-talking mi-
crophone is used as input [51, 52]. In many applications however, using a
close-talking microphone is either impossible or unacceptable for the user.

As an example, for the automatic transcription of meetings or lectures
[2,11], equipping each speaker with a close-talking microphone would be very
inconvenient. Instead, distant microphones, e. g., placed at the meeting ta-
ble, are used. Voice control of medical systems allows a surgeon to work with
both hands while controlling diagnostic instruments or assistance devices.
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Telephone-based speech dialogue systems for information retrieval or trans-
actions, like telephone-based flight information desks or telephone banking
systems, need to cope with users calling from hands-free telephones. Further
applications of distant-talking ASR are dictation systems, information termi-
nals, and voice-control of consumer electronics, like television sets or set-top
boxes.

In all these scenarios, the distance between speaker and microphone is
in the range of one to several meters. Therefore, the microphone does not
only pick up the desired signal, but also additive distortions like background
noise or competing speakers, and reverberation of the desired signal. While
significant progress has been achieved over the last decades in improving
the robustness of ASR to additive noise and interferences, the research on
reverberation-robust ASR is still in its infancy. This contribution focuses on
robust ASR in reverberant environments.

The chapter is structured as follows: The distant-talking ASR scenario is
discussed in Sec. 18.2 and the different properties of additive distortions and
reverberation are emphasized. Sec. 18.3 outlines how the measures for increas-
ing robustness to reverberation are embedded into ASR systems and explains
the basics of ASR which will be needed for describing these measures. The
effect of reverberation on speech feature sequences is investigated in Sec. 18.4.
The known approaches to achieve robust ASR in reverberant environments
are classified into three groups:

• first, signal dereverberation and beamforming as preprocessing (Sec. 18.5),
• second, usage of robust features which are insensitive to reverberation or

feature-domain compensation of reverberation (Sec. 18.6),
• third, adjustment of the acoustic models of the recognizer to reverberation

by training or adaptation (Sec. 18.7).

A novel approach called reverberation modeling for speech recognition, which
combines advantages of all three classes, is discussed in Sec. 18.8. It uses
a statistical reverberation model to perform feature-domain dereverberation
within the recognizer. Sec. 18.9 summarizes and concludes this contribution.

18.2 The Distant-Talking ASR Scenario

Fig. 18.1 shows a typical distant-talking ASR scenario. Compared to the close-
talking scenario, the gain of the microphone amplifier has to be increased be-
cause of the greater distance between the desired speaker and the microphone.
Therefore, the microphone does not only pick up the desired signal but also
background noise, interfering speakers and the reverberation of the desired
signal. The reverberation results from the fact that the desired signal does
not only travel along the direct path from the speaker to the microphone, but
is also reflected by walls and other obstacles in the enclosure. Therefore, the
microphone picks up many delayed and attenuated copies of the desired signal
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Fig. 18.1. Distant-talking ASR scenario.

which are perceived as reverberation. In the time domain, reverberation can
be very well modeled by convolving the signal s(n) of the desired speaker with
the impulse response h(n) describing the acoustic path between speaker and
microphone [37]. Additive distortions, like background noise and interfering
speakers, are modeled by the signal b(n) so that the microphone signal y(n)
is given as

y(n) = h(n) ∗ s(n) + b(n) . (18.1)

The corresponding block diagram for the distant-talking signal capture is
depicted in Fig. 18.2.

s(n)
h(n)

b(n)

y(n)

Fig. 18.2. Block diagram of distant-talking signal capture.

As the additive distortions b(n) and the desired speech signal s(n) result
from different sources, they can be modeled as statistically independent ran-
dom processes. Therefore, very effective methods for reducing additive dis-
tortions in the microphone signal, and for adjusting speech recognizers to
additive distortions have been developed in the last decades. See [7, 8, 24, 26]
and [33,35] for overviews.

In contrast to that, the reverberation is strongly correlated to the desired
signal and cannot be described by an additive term. Therefore, the approaches
developed for additive distortions are not appropriate to increase robustness
against reverberation.
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As we will focus on reverberation in this chapter, we neglect the signal
b(n) in the following treatment so that the microphone signal is given as

y(n) = h(n) ∗ s(n) . (18.2)

Fig. 18.3 shows a typical room impulse response (RIR) measured in a lec-
ture room. After an initial delay of approximately 12.5 ms, which is caused by
the time the sound waves need to travel from the speaker to the microphone
(here roughly 4 m), the first peak in the RIR is caused by the direct sound.
Following the direct sound, several distinct peaks corresponding to prominent
reflections can be observed. With increasing delay, more and more reflections
overlap so that no distinct peaks but rather an exponentially decaying enve-
lope characterizes the last part of the RIR.
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Fig. 18.3. RIR h(n) of a lecture room in the time domain, a) complete RIR, b)
first section of RIR.

The time needed for a 60 dB decay in sound energy is called the reverber-
ation time T60. Typical reverberation times are in the range of 20-100 ms in
cars and 200-800 ms in offices or living rooms. In large lecture rooms, concert
halls or churches, the reverberation time is often significantly longer than 1 s.

The signal-to-reverberation ratio (SRR) compares the energy of the direct
sound to the energy of the reverberation and is defined as
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SRR = 10 log10

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Nd−1∑
n=0

h2(n)

Nh−1∑
n=Nd

h2(n)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

where the first part of the RIR from 0 . . . Nd − 1 is considered as direct sound
and the second part of the RIR from Nd . . . Nh − 1 is considered as reverbera-
tion. The RIR is strongly time-variant. Already small changes in the position
of the speaker or the microphone, movements of other objects, like doors, win-
dows or persons, or variations in temperature change the details of the RIR
significantly. However, its overall characteristics, like the reverberation time,
the SRR and even the envelope of the time-frequency pattern corresponding
to the RIR, are hardly affected by such changes.

Please note the distinction between reverberation and acoustic echoes. In
this contribution, reverberation is used for multiple delayed copies of the de-
sired signal, while in acoustic echo cancellation [9], the term echo is used to
describe multiple delayed copies of interfering signals originating from loud-
speakers.

18.3 How to Deal with Reverberation in ASR Systems?

This section discusses how the different approaches to increase robustness
against reverberation can be embedded into an ASR system. For this purpose,
the general task of ASR is formulated first, and the options for increasing
robustness to reverberation are explained using a generic ASR block diagram.

The task of a speech recognizer can be formulated as finding the best
estimate Ŵ of the true word sequence Wt corresponding to a certain utterance,
given the respective speech signal s(n). Usually, the recognizer does not use
the speech signal itself but rather speech feature vectors s(k) derived from the
speech signal. Denoting the sequence of all observed speech feature vectors
s(1) . . . s(K) as S, where K is the length of the sequence, the recognition
problem can be expressed as maximizing the posterior probability P (W |S)
over all possible word sequences W

Ŵ = argmax
W

{
P (W |S)

}
. (18.3)

Equivalently, the product of the likelihood and the prior probability can be
maximized

Ŵ = argmax
W

{
P (S|W ) · P (W )

}
. (18.4)

The exact determination of both P (S|W ) and P (W ) is very difficult in real-
world systems. Therefore, the likelihood P (S|W ) of observing the feature
sequence S given the word sequence W is approximated by some acoustic
score A(S|W ), which is modeled by the acoustic model. The prior probability
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P (W ) of the word sequence is approximated by some language score L(W )
and is modeled by a language model so that the recognition problem can be
expressed as

Ŵ = argmax
W

{
A(S|W ) · L(W )

}
. (18.5)

In a distant-talking scenario, the clean-speech feature sequence S is not avail-
able. Instead, the feature sequence Y derived from the reverberant microphone
signal y(n) has to be used so that the distant-talking recognition problem is
given as

Ŵ = argmax
W

{
A(Y |W ) · L(W )

}
. (18.6)

Robustness to reverberation is achieved, if the solution to the problem de-
scribed in Eq. 18.6 is approaching the solution to the problem of Eq. 18.5.
That is, the accuracy of the transcription determined from the reverberant
sequence Y approaches the accuracy determined from the clean-speech se-
quence S.

Fig. 18.4 shows a generic block diagram of an ASR system which is used to
solve the problem described in Eq. 18.5. The speech signal is preprocessed in
order to reduce distortions and then transformed into speech feature vectors.
Before the recognizer can be used to determine the word sequence or tran-
scription of unknown utterances, both its acoustic model and its language
model have to be trained using training data with known transcriptions.

The function blocks where measures to increase robustness against rever-
beration can be embedded into the ASR system so that it can effectively
solve problem 18.6 are marked by areas shaded in dark gray in Fig. 18.4. The
attached labels point out the section where these measures are discussed.

Training Transcription

Transcription

Feature
extraction

Speech
signal model

Recog−
nition

model
AcousticPre−

processing
Language

Sec. 18.5

Sec. 18.6

Sec. 18.7

Sec. 18.8

Fig. 18.4. Block diagram of a speech recognition system.

The novel concept of reverberation modeling for speech recognition im-
plements the idea of preprocessing directly in the feature domain using an
improved acoustic model to dereverberate the speech features during recog-
nition (Sec. 18.8). In this way, robustness is achieved by utilizing four main
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function blocks instead of only one as indicated by the area shaded in light
gray. Therefore, the advantages of all three classes of approaches are utilized
by the novel concept.

In the following, the blocks of the speech recognition system according to
Fig. 18.4 are explained in more detail. The goal of the feature extraction is
to reduce the dimension of the input data roughly by one order of magnitude
(e. g., from 256 samples to 25 features). The features should concentrate all
information of the speech signal which is necessary for the classification of dif-
ferent phones and words and all information irrelevant for speech recognition
should be removed.

DFT

DCT Log
Mel

Hamming
window

filtering

s(n)

sm(k)sl(k)sc(k)

|()|2

MFCCs Logmelspec

coefficients coefficients

Melspec

Fig. 18.5. Block diagram of the feature extraction for MFCCs.

Currently, the most popular speech features are the so-called mel-frequency
cepstral coefficients (MFCCs) [12]. Their calculation is illustrated in Fig. 18.5.
In the first step of the feature extraction, a short-time spectrum analysis
is performed by windowing overlapping frames of the speech signal with a
Hamming window w(n) and applying an F -point discrete Fourier transform
(DFT)

S(f, k) =
F−1∑
n=0

w(n) s(kN + n) e−j 2π
F n f , (18.7)

where f is the index of the DFT bin, k is the frame index and N ≤ F is the
frame shift. The magnitude square of the DFT coefficients S(f, k) is filtered
by a mel filter bank C(l, f) to obtain the mel-spectral (melspec) coefficients

sm(l, k) =
F/2∑
f=0

C(l, f)
∣∣S(f, k)

∣∣2 , (18.8)

where the subscript m denotes “melspec domain” and l is the index of the mel
channels. Due to the symmetry of the DFT, it is sufficient to calculate the
sum over f = 0 . . . F/2. Like the human auditory system, the mel filter bank
has a better frequency resolution for low frequencies than for high frequencies.
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This is commonly realized by triangular weighting functions C(l, f) for the
mel channels as depicted in Fig. 18.6. The widths of these weighting functions
increase with the channel number [33] and approximate a logarithmic spectral
resolution similar to the human hearing. The feature vector sm(k) holds all
melspec coefficients of frame k

sm(k) =
[
sm(1, k), . . . , sm(L, k)

]T
,

where T denotes matrix transpose and L is the number of mel channels.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

C
(l

,f
)

f

l = 1 l = 2 l = 6. . .

Fig. 18.6. Triangular weighting functions C(l, f) of the mel filter bank for F = 512,
L = 6.

Calculating the logarithm of the melspec coefficients, the logarithmic mel-
spec (logmelspec) coefficients are obtained

sl(k) = log
{
sm(k)

}
, (18.9)

where the logarithm is performed element-wise and the subscript l denotes
“logmelspec domain”.

Due to the spectral overlap of the channels in the mel filter bank, both
melspec and logmelspec coefficients are strongly correlated. Performing a dis-
crete cosine transform (DCT) on the logmelspec features, the elements of the
feature vectors are largely decorrelated and the MFCCs are obtained. For
speech recognition, only the first I ≤ L MFCCs are important, and we have

sc(k) = B A sl(k) , (18.10)

where the subscript c denotes “cepstral domain” (MFCC),

A = {ail} with ail =
√

2/L · cos
(
π/L · i · (l + 0.5)

)
is the L×L DCT matrix, and the I×L selection matrix B = [1I×I 0I×(L−I)]
selects the first I elements of a L× 1 vector by left multiplication. 1I×I is the
I × I identity matrix, and 0I×(L−I) is an I × (L − I) matrix of zeros.
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Note that s(k) is used in the following to denote the current clean-speech
vector for relationships that hold regardless of the feature kind. Whenever we
want to describe relations which are only valid for a certain feature kind, s(k)
is replaced by sm(k), sl(k), or sc(k). The corresponding reverberant feature
vector y(k) is derived in the same way using the reverberant speech signal
y(n).

Most state-of-the-art recognizers use hidden Markov models (HMMs) to de-
scribe the acoustic score A(S|W ). The reasons for the prevalent use of HMMs
are the efficient training and recognition algorithms available for HMMs and
their ability to model both temporal and spectral variations. See [33, 34, 55]
for comprehensive introductions to HMMs.

HMMs can be considered as finite state machines controlled by two ran-
dom experiments. Fig. 18.7 shows a typical HMM topology used in speech
recognition consisting of five states. The first random experiment controls the
transition from the previous state q(k− 1) to the current state q(k) according
to the state transition probabilities

aij = P
(
q(k) = j|q(k − 1) = i

)
.

In this way, different phoneme durations can be modeled. Only transitions
from left to right are allowed, and we assume that the HMM starts in state
1 at frame 1 and ends in the last state J at the final frame K. The second
random experiment determines the output feature vector according to the
output density fλ(q(k), s(k)) of the current HMM state q(k) so that spectral
variations in the pronunciation can be captured. In summary, an HMM λ is
defined by its transition probabilities aij , its output densities fλ(q(k), s(k))
and the initial state probabilities. Since we always assume that the HMM
starts in state 1 at frame 1, the initial state probabilities will be neglected in
the following.
The HMM is based on two fundamental assumptions [33]:

• The (first-order) Markov assumption implies that the current state q(k)
depends only on the previous state q(k − 1).

• The conditional independence assumption implies that the current output
feature vector s(k) depends only on the current state q(k) and not on
previous states or previous output feature vectors.

Based on these two assumptions, very effective algorithms for training and
recognition could be derived [4, 5].

The clean-speech feature sequence s(k) can be considered as a realization
of the vector-valued random process S(k). The HMM λ models this random
process as a non-stationary random process. Because of the conditional inde-
pendence assumption, two statistically independent random vectors Sk1 and
Sk2 are obtained if S(k) is observed at different frames k1 	= k2. Since in the
real world, neighboring feature vectors of a clean-speech feature sequence ex-
hibit some statistical dependence, the conditional independence assumption
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Fig. 18.7. Typical HMM topology used in ASR.

is already a simplification if the HMM is used to model clean-speech feature
sequences. In practice however, it has turned out that HMM-based recognizers
achieve remarkable recognition rates for clean speech despite this simplifica-
tion. If HMMs are used to model reverberant feature sequences with much
stronger statistical dependencies between frames (see Sec. 18.4), the condi-
tional independence assumption becomes a severe limitation of the model’s
capability to describe A(Y |W ).

The output density fλ(q(k), s(k)) of the current HMM state describes the
conditional density of the random process S(k) given the current state q(k)

fλ

(
q(k), s(k)

)
= fS(k)|q(k)

(
s(k)

)
. (18.11)

The task of determining the parameters of an HMM given a set of utterances
with known transcription is called training. The parameters of the HMM
are chosen so that the probability of observing the feature sequences corre-
sponding to the training utterances is maximized. Usually the Baum-Welch
algorithm is used to solve this maximization problem (see e. g. [33,55]).

To describe the probability P (S|W ) or the acoustic score A(S|W ) by
HMMs, the sequence of words W has to be split into smaller units. For each
of these units an HMM is trained. The complexity of this acoustic-phonetic
modeling depends on the vocabulary size of the recognition task. For small
vocabularies, like e. g., in digit recognition, it is possible to model each word
with its own word-level HMM. For large vocabularies, it is more efficient to
model subword units like phonemes with HMMs. Due to coarticulation phe-
nomena, the pronunciation of subword units strongly depends on their con-
texts. Therefore, training different HMMs for the same phoneme with different
contexts increases the accuracy of the acoustic-phonetic modeling. Triphones
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which consider both the previous and the following phoneme are often used
in large-vocabulary recognizers (see e. g. [33]).

For continuous speech recognition, HMM networks are constructed incor-
porating the grammar of the recognition task (see Fig. 18.8) and the pronun-
ciation dictionaries, specifying the subword units which make up a word (see
e. g. [78]).

Start

’Zero’

’One’

’Nine’

End

Fig. 18.8. Task grammar for connected digit recognition, ’start’ and ’end’ is asso-
ciated with start and end of the utterance.

The information given by a language model can also be included. These
recognition networks can be considered as large HMMs. Fig. 18.9 shows a
very simple HMM network Nλ for connected digit recognition which can be
considered as one of the simplest examples of continuous speech recognition.

Given the feature sequence of the utterance to be recognized, the recog-
nizer searches for the most likely path through the recognition network and
records the words along this path so that the most likely transcription can be
determined. The Viterbi algorithm can be used to find the most likely path
through the HMM network.

As we will focus on the determination of the acoustic score, we use a no-
tation similar to [49] to separate the acoustic score and the language score. A
large number of search algorithms exists for solving the resulting search prob-
lem 18.5, see [33, 49] for overviews. To simplify the search, the acoustic score
A(S|W ) approximates the probability P (S|W ) by only considering the most
likely state sequence through the HMM sequence Λ describing W . If, for ex-
ample, the recognition task is connected digit recognition based on word-level
HMMs and the word sequence W is “three, five, nine”, the HMM sequence
Λ corresponding to W is the concatenation of the word-level HMMs λ‘three’,
λ‘five’, and λ‘nine’. Then, the acoustic score A(S|W ) can be expressed as

A(S|W ) = max
Q

{
P (S, Q|Λ)

}
, (18.12)
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λ’zero’: HMM for ’zero’

λ’one’: HMM for ’one’

λ’nine’: HMM for ’nine’

Start End

Fig. 18.9. HMM network Nλ for connected digit recognition.

where the maximization is performed over all allowed state sequences Q
through Λ.

To calculate the acoustic score A(S|W ) = A(S|Λ), the Viterbi algorithm,
defined by the following equations, is commonly used. Note that it is assumed
that the HMM starts in state 1 and ends in the last state J at the final frame
K of the sequence S.

Initialization:

γ1(1) = fΛ

(
1, s(1)

)
,

γj(1) = 0 ∀j = 2 . . . J ,

ψj(1) = 0 ∀j = 1 . . . J .

Recursion:

γj(k) = max
i

{γi(k − 1) · aij} · fΛ(j, s(k)) , (18.13)

ψj(k) = argmax
i

{γi(k − 1) · aij} .

Termination:
A(S|W ) = γJ(K), q(K) = J .

Backtracking:

q(k) = ψq(k+1)(k + 1) ∀k = K − 1, . . . , 1 .

Here, i indexes all considered previous states leading to the current state
j, γj(k) is the Viterbi metric for state j at frame k. The greater the Viterbi
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metric γj(k), the more likely is the corresponding partial sequence up to frame
k ending in state j. fΛ(j, s(k)) is the output density of state j of the HMM
sequence Λ describing W evaluated for the clean-speech vector s(k). The
backtracking pointer ψj(k) refers to the previous state and allows backtracking
of the most likely state sequence.

The Viterbi algorithm can be illustrated by a trellis diagram as depicted
in Fig. 18.10 for the HMM of Fig. 18.7. The vertical axis represents the states
(from 1 to 5 in the given example) and the horizontal axis represents the
frames. Each dot in the diagram corresponds to the Viterbi metric γj(k) of
state j for frame k and each arc between the dots illustrates the non-zero
transition probability between the respective states. The Viterbi scores are
calculated from left to right by multiplying the score of the possible pre-
decessor states with the corresponding transition probability, selecting the
maximum over all predecessors, and then multiplying the output density of
the current state for the current feature vector as given in Eq. 18.13.

Frame k

State j
Matrix of Viterbi scores

Fig. 18.10. Trellis diagram for the HMM of Fig. 18.7.

In this way, the Viterbi algorithm fills the matrix of Viterbi scores (see
Fig. 18.11) with the elements γj(k). At the same time, the backtracking matrix
is filled with elements ψj(k). As we assume that the HMM ends in the last state
J , the final acoustic score is obtained by reading the Viterbi score γJ(K) of
the dot in the upper right corner of the trellis diagram. Using the backtracking
matrix, the most likely path through the HMM as indicated by the large dots
in Fig. 18.10 for the current utterance is reconstructed.

18.4 Effect of Reverberation in the Feature Domain

This section investigates the effect of reverberation on the speech feature
sequences used in ASR. Based on the exact description in the time domain
(see Sec. 18.2), an approximative relationship between clean and reverberant
feature vectors is derived.

The time-domain convolution of Eq. 18.2 is transformed to a multiplication
in the frequency domain if the discrete-time Fourier transform is employed
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Fig. 18.11. Illustration of the Viterbi algorithm.
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(
ejΩ
)

= H
(
ejΩ
)
· S
(
ejΩ
)

, (18.14)

were Y
(
ejΩ
)
, H
(
ejΩ
)

and S
(
ejΩ
)

are the discrete-time Fourier transforms of
the complete sequences y(n), h(n), and s(n), respectively. However, common
feature extraction schemes as described in Sec. 18.3 use short-time spectral
analysis, like the DFT, performing the transform on short windows of the
time-domain signal. If these time windows are shorter than the sequences to
be convolved, the time-domain linear convolution cannot be expressed as a
multiplication in the frequency domain anymore. The overlap-save or overlap-
add methods [53] can be used to perform the linear convolution in the short-
time spectral domain, if the DFT length is larger than the length of the
impulse response.

In most environments, the length of the impulse response (200-800 ms in
offices or living-rooms) is significantly longer than the DFT length used for
feature extraction (typically 10-40 ms). In this case, partitioned convolution
methods can be used. These methods were first introduced in [67] and are
successfully used for the implementation of long adaptive filters (e. g. [63,
64]) and the efficient convolution of very long sequences [71]. We use the
partitioned overlap-save method to describe the effect of reverberation on
speech features.

For feature calculation, the reverberant speech signal y(n) is split into over-
lapping frames which are weighted with a suitable window function w(n). By
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calculating an F -point DFT, the short-time frequency-domain representation

Y (f, k) =
F−1∑
n=0

w(n) y(kN + n) e−j 2π
F n f (18.15)

of the reverberant speech signal is obtained. Note that for the following anal-
ysis, the frame shift N between neighboring frames needs to fulfill N ≤ F/2.
The RIR h(n) is partitioned into M non-overlapping partitions of length N .
These partitions are zero-padded to length F so that an F-point DFT yields
the short-time frequency-domain representation

H(f, k) =
F−1∑
n=0

wh(n)h(kN + n) e−j 2π
F n f (18.16)

of the RIR, where wh(n) = 1 ∀ 0 ≤ n < N ; wh(n) = 0 ∀ N ≤ n < F is the win-
dow function used for the impulse response. Using the short-time frequency-
domain representation S(f, k) of the clean speech signal s(n) (see Eq. 18.7), we
obtain

Y (f, k) =
M−1∑
m=0

constraint
{
H(f,m) · S(f, k − m)

}
, (18.17)

where the constraint-operation removes the time-aliasing effects due to the
circular convolution performed by the multiplication of two DFT sequences
(see e. g. [53]). A common constraint operation foresees an inverse DFT, set-
ting the first F − N points in the time domain to zero, and performing a
DFT [65].

If the constraint operation is neglected, the relationship between S(f, k)
and Y (f, k) is given as

Y (f, k) ≈
M−1∑
m=0

H(f,m) · S(f, k − m) . (18.18)

Applying the mel filter bank to the magnitude square of Y (f, k), we obtain
the melspec representation

ym(l, k) =
F/2∑
f=0

C(l, f)
∣∣Y (f, k)

∣∣2 (18.19)

≈
F/2∑
f=0

C(l, f)

∣∣∣∣∣
M−1∑
m=0

H(f,m) · S(f, k − m)

∣∣∣∣∣
2

(18.20)

of the reverberant microphone signal. A simpler approximation is obtained if
we exchange the order of the mel-filtering operation and the convolution
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ym(l, k) ≈
M−1∑
m=0

⎛⎝F/2∑
f=0

C(l, f)
∣∣H(f, m)

∣∣2⎞⎠ ·

⎛⎝F/2∑
f=0

C(l, f)
∣∣S(f, k − m)

∣∣2⎞⎠(18.21)

=

M−1∑
m=0

hm(l, m) · sm(l, k − m) . (18.22)

Note that the squared magnitude of the sum in Eq. 18.20 is replaced by the
sum of squared magnitudes in Eq. 18.21. In vector notation, Eq. 18.22 reads

ym(k) ≈
M−1∑
m=0

hm(m) � sm(k − m) , (18.23)

where � denotes element-wise multiplication. The melspec convolution (as
described in Eq. 18.23) will be used throughout this contribution to describe
the relationship between the clean feature sequence s(k) and the reverberant
feature sequence y(k). The approximations included in Eq. 18.23 compared to
the exact relationship according to Eq. 18.17 can be summarized as follows:

• The constraint which had to be applied to realize an exact linear convolu-
tion by the overlap-save method [53] is neglected.

• Due to the squared magnitude operation in the feature extraction, the
phase is ignored.

• Because of the mel-filtering, the frequency resolution is reduced.
• Since the order of convolution and feature extraction is reversed, the

squared magnitude of a sum is replaced by a sum of squared magnitudes.

Fig. 18.12 shows that Eq. 18.23 is nevertheless a good approximation of
Eq. 18.17. The figure compares three different melspec feature sequences cor-
responding to the utterance “four, two, seven”. The clean sequence (subfigure
a)), exhibits a short period of silence before the plosive /t/ in “two” (around
frame 52) and a region of low energy for the lower frequencies at the frica-
tive /s/ in “seven” (around frame 78). These are filled with energy from the
preceding frames in the reverberant case (subfigure b)). This illustrates that
the reverberation has a dispersive effect on the feature sequences: the features
are smeared along the time axis so that the current feature vector depends
strongly on the previous feature vectors. We believe that this contradiction
to the conditional independence assumption of HMMs (compare Sec. 18.3),
namely that the current feature vector depends only on the current state, im-
plies a major performance limitation of HMM-based recognizers in reverberant
environments.

Comparing the true reverberant feature sequence in subfigure b) and the
approximated reverberant feature sequence according to Eq. 18.23 in subfigure
c) reveals that the approximation does not capture the exact texture of the
time-frequency pattern (time-mel-channel pattern) of the original sequence.
However, the envelope of the time-frequency pattern is very well approxi-
mated.
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Fig. 18.12. Melspec feature sequences of the utterance “four, two, seven” in dB
gray scale a) clean utterance, recorded by a close-talking microphone, b) reverber-
ant utterance, recorded by a microphone four meters away from the speaker, c)
approximation of the reverberant utterance by melspec convolution.

Fig. 18.13 b) illustrates the melspec representation of the RIR (frame shift
10ms) for a very short RIR with a length of only 100 ms and the relationship
to its time-domain representation. This picture underlines that even a short
RIR extends over several frames in the feature domain. Therefore, the effect
of reverberation cannot be modeled by a simple multiplication or addition in
the feature domain. A much more accurate approximation is obtained by the
melspec convolution of Eq. 18.23.

18.5 Signal Dereverberation and Beamforming

Robust distant-talking ASR can be achieved by dereverberating the speech
signal before the feature vectors are calculated. For dereverberation, the con-
volution of the clean speech signal with the RIR has to be undone by inverse
filtering. Since RIRs are in general non minimum-phase, an exact causal in-
verse filter is not stable [48]. Therefore, only approximations of inverse filters
can be determined. As many zeros of the RIR are located close to the unit
circle, the inverse of the RIR is usually even longer than the RIR itself so that
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an extremely large number of coefficients is necessary to model the inverse by
an FIR filter.

Miyoshi and Kaneda show in [42] that multi-channel recordings allow for
an exact realization of the inverse filter if the RIRs of all channels are known
and do not exhibit common zeros (multiple input/output inverse theorem,
MINT). The inverse filters are obtained by inverting the multi-channel con-
volution matrix which describes the single-input multiple-output system be-
tween speaker and microphones. The lengths of the resulting inverse filters
are smaller than those of the RIRs. If the RIRs can only be estimated, small
deviations from the true RIRs lead to large deviations from the optimum so-
lution [54] so that, in practice, it is still very difficult to implement robust
dereverberation algorithms based on MINT.

In [14], Furuya et al. suggest to use the inverse of an estimated correlation
matrix of the reverberant speech signal for the calculation of the inverse filters.
This approach is equivalent to MINT if

a) it is known which of the microphones is closest to the speaker,
b) the estimation of the correlation matrix is sufficiently accurate, and
c) the source signal is white.
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Therefore, whitening filters are applied to the microphone signals to remove
the correlation introduced by the speech production from the correlation ma-
trix. A recursive time-averaging is suggested in [15] for the estimation of the
correlation matrix in order to track changes of the RIRs between speaker and
microphones.

Eigenvector-based multi-channel blind system identification [6,22] to esti-
mate the RIRs and subsequent inversion based on the MINT theorem is used
in [29]. A major problem of this approach is that the order of the RIRs is usu-
ally not known. Therefore, an appropriate size of the correlation matrix can
hardly be determined, and the accuracy of the blind system identification is
significantly reduced. Hikichi et al. suggest in [29] to overestimate the lengths
of the RIRs and to employ a post-processing scheme to compensate for the
common part which is introduced into the RIRs because of the overestimation.

An alternative approach to estimating the RIRs by blind system identi-
fication and subsequent inversion by MINT is to estimate the inverse filters
directly. In [10], a versatile framework for multi-channel blind signal process-
ing is proposed, which can be used for blind dereverberation. In a second-order
version of the approach, multi-channel filters are adapted to obtain a desired
correlation matrix, where the entries along the main diagonal and close to the
main diagonal are unchanged while all other elements are minimized. In this
way, the clean speech signal is hardly distorted, since the correlation caused by
the vocal tract is concentrated around the main diagonal. In contrast, the cor-
relation due to room reverberation extends across the entire autocorrelation
matrix. In this way, partial dereverberation can be achieved.

Single-channel approximate dereverberation of the microphone signal can
be accomplished by modifying the linear prediction residual. Yegnanarayana
et al. show in [75] that the residual of clean speech exhibits one distinct phona-
tion impulse per pitch period in voiced segments, while the residual of rever-
berant speech exhibits many impulses. By attenuation of the impulses due
to reflections compared to the phonation impulse, a dereverberation effect is
achieved. In [75], a weighting factor for the residual based on the entropy and
the short-time energy contour is suggested. In [76], the approach is extended
to multi-channel recordings by coherent summation over the residuals of the
individual microphone channels. Further approaches aiming at speech derever-
beration by enhancement of the prediction residual are described in [17,18,20].

Nakatani et al. propose to use the short-term harmonicity of voiced speech
segments for dereverberation (Harmonicity-based dEReverBeration, HERB)
[45]. Based on an estimate of the pitch period, the harmonic part of speech is
extracted by adaptive filtering and used as initial estimate of the dereverber-
ated speech signal. Averaging the quotient of the Fourier transforms of the
harmonic part and the reverberant part, respectively, over numerous training
utterances, a dereverberation filter is determined which reduces reverberation
both in voiced and unvoiced speech segments.

An implementation of HERB for the dereverberation of single-word utter-
ances achieves a significant reduction of reverberation [47] as indicated by the
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resulting reverberation curves. Using HERB as preprocessing for a speaker-
dependent isolated word recognition system which employs HMMs trained on
clean speech, a decisive increase in word accuracy is achieved. However, the
recognition rate is still significantly lower than the clean-speech performance
because of changes in the spectral shapes of the dereverberated signals [47].
Using HMMs trained on utterances dereverberated by HERB to recognize
dereverberated speech, recognition rates which are very close to the clean-
speech performance are achieved even for strongly reverberant speech signals
(T60 = 1 s).

The main problems for the implementation of the approach are the large
DFT length required (10.9 seconds in [47]) and the averaging operation neces-
sary for the calculation of the inverse filter. However, the number of utterances
needed for the averaging operation has been decreased considerably by several
improvements of the approach [36,46].

Beamforming methods, which use microphone arrays to achieve spatial se-
lectivity, are also potential candidates for signal dereverberation. Steering the
main lobe of the beamformer towards the direct sound of the desired source
and attenuating reflections arriving from different directions, a dereverberat-
ing effect can be achieved. However, several aspects limit the dereverberation
capability of beamformers.

By compensating for the delays due to different sound propagation times,
the delay-and-sum-beamformer achieves a coherent addition of the signals ar-
riving from the desired direction and an incoherent addition of the signals
arriving from other directions. In this way, a relative attenuation of the un-
desired signals in relation to the desired signals is achieved. The delay-and-
sum-beamformer is very robust, but due to the limited spatial selectivity of
the apertures of typical microphone arrays, only limited dereverberation can
be achieved. Nevertheless, slight improvements of the recognition rates are
reported in [50] when delay-and-sum-beamformers are used as preprocessing
unit for ASR systems.

Adaptive beamformers [73] are established as powerful approaches for at-
tenuating distortions which are uncorrelated to the desired signal. An adap-
tive filter is used for each sensor signal and is adapted according to some
optimization criterion. For example, the variance of the output signal can be
minimized subject to the constraint that the signal arriving from the desired
direction passes the filter undistorted (minimum variance distortionless re-
sponse (MVDR) beamformer). For implementing adaptive beamformers, the
structure of the generalized sidelobe canceler (GSC) [21] has turned out to be
very advantageous. To achieve a robust GSC implementation for broad-band
speech signals, restrictions of the filter coefficients have to be enforced [31].
The performance of the GSC for speech signals can be further improved by
controlling the adaptation in individual DFT bins instead of using a single
broad-band control [26,27].

A remaining problem for the use of adaptive beamformers in signal dere-
verberation is the correlation between the desired signal and its reverberation.
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Therefore, it is very difficult to completely avoid cancellation of the desired
signal and the gain of adaptive beamformers compared to a fixed delay-and-
sum-beamformer is reduced.

In [61], Seltzer proposes to integrate beamforming and speech recognition
into one unit. The coefficients of a filter-and-sum-beamformer are adapted in
order to maximize the probability of the correct transcription, which is esti-
mated by an initial recognition iteration (unsupervised version) or is known
for an initial training utterance (supervised version). The probability is de-
termined based on the HMMs of the speech recognizer.

Using the speech features and the acoustic model of the ASR system for
the adaptation of the filter coefficients ensures that those speech properties
are emphasized which are crucial for recognition. In [61], a noticeable increase
of the recognition performance compared to using only a single microphone
or using a delay-and-sum-beamformer is reported for both additive noise and
moderate reverberation. For strong reverberation, a subband version of the
approach [62] is more suitable. The performance of the supervised version is
limited if the RIRs change significantly between calibration and test. The per-
formance of the unsupervised version is limited by the accuracy of the initial
transcription estimate. In strongly reverberant environments, this initial esti-
mate can be very inaccurate so that, then, hardly any gain can be achieved
with the approach.

The adaptation of the filter coefficients is very challenging. Because of the
nonlinear relationship between the filter coefficients and the cost function,
in general, the error surface exhibits local minima so that the convergence
to a satisfying solution is not assured. The reduced data rate of the speech
features compared to the speech signal samples (see Sec. 18.3) implies that a
large number of filter coefficients has to be adapted with only little training
data. Thus, for a given duration of the utterance used for adaptation, the
number of adjustable filter coefficients is limited or the optimum coefficients
cannot be identified.

18.6 Robust Features

A simple way to alleviate the limitations of the conditional independence as-
sumption (see Sec. 18.3) is to extend the speech feature vector by so-called
dynamic features like ∆ and ∆∆ coefficients [13, 25]. These features can be
considered as the first (∆) and second (∆∆) derivative of the static features
and are usually approximated by simple differences or by linear regression
calculations. In this way, the dynamic features capture the temporal changes
in the spectra across several frames (2 to 10 frames) and thus enlarge the tem-
poral coverage of each feature vector. Nevertheless, for strongly reverberant
environments, the limited reach of the ∆ and ∆∆ features is not sufficient
to cover the dispersive character of the reverberation so that the recognition
performance is still limited.
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RASTA (RelAtiveSpecTrA)-based speech features [28] are largely insensi-
tive to a convolution with a short time-invariant impulse response. The key
steps in calculating RASTA-based features are the following: The speech signal
is divided into sub-bands (e. g., similar to the critical bands) and a nonlinear
compressing transform is performed on each sub-band signal. Each compressed
sub-band signal is then filtered by a bandpass filter (passband from 0.26 Hz
to 12.8 Hz) which removes the very low and high modulation frequencies.

If a logarithmic transform is used, the convolution in the signal domain,
which approximately corresponds to a multiplication in the sub-band domain,
is transformed into an addition in the compressed sub-band domain so that
the impulse response is represented by an additive constant in each sub-band,
which is removed by the respective bandpass filters. Therefore, a convolution
of the time-domain signal with a short time-invariant impulse response has
hardly any influence on RASTA-based speech features.

In virtually all reverberant environments, the RIR is significantly longer
than the frames used for feature calculation. Therefore, the time-domain con-
volution (Eq. 18.2) cannot be represented by a multiplication in the sub-band
domain, but rather by a convolution in each sub-band as discussed in Sec. 18.4.
Consequently, the time-domain convolution cannot be represented by additive
constants in the compressed sub-band domain and will not be removed by the
bandpass filters. Therefore, the RASTA-based features are not insensitive to
long reverberation.

Cepstral mean subtraction (CMS) (see, e. g., [3] and [33], Sec. 10.6.4) is
another way of alleviating convolutional distortions. A convolution with an
impulse response in the time domain is transformed into an addition of the
cepstral representation of the impulse response in the cepstral domain, if
the frame length of the analysis window is long compared to the length of
the impulse response. Thus, convolutive effects characterized by a short im-
pulse response result in an addition of the cepstral representation of the im-
pulse response. This representation of the impulse response can be estimated
by calculation of the linear mean across the utterance and can be removed
by subtraction. If the utterances are long enough so that the cepstral repre-
sentation of the impulse response can be estimated reliably, the robustness
of the recognizer to short convolutional effects can be significantly increased.
For long reverberation with a typical duration from 200 to 800 ms in offices
and living-rooms compared to the cepstral analysis window length of typically
10 to 40 ms, CMS yields only limited gains.

18.7 Model Training and Adaptation

ASR systems perform best if the acoustical conditions of the environment
where the training data have been recorded match the acoustical conditions
of the environment where the recognizer is applied. Therefore, using training
data recorded in the application environment results in models which are well
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suited for the application environment. However, recording a complete set of
training data for each application environment requires tremendous effort and
is therefore unattractive for most real-world applications.

Giuliani et al. [19] generate reverberant training data by convolving
clean-speech training utterances with RIRs measured in the application
environment. In this way, the data collection effort is considerably reduced.
In [66], Stahl et al. show that the performance of HMMs trained on artificially
reverberated training data is significantly degraded relative to that of HMMs
trained on data recorded in the application environment. On the other hand,
the recognition performance based on artificial reverberation is significantly
improved compared to models trained on clean speech. However, training the
recognizer for each application environment still implies a huge computational
load and is quite inflexible.

Therefore, Haderlein et al. [23] use RIRs recorded at different loudspeaker
and microphone positions in the application environment to generate artifi-
cially reverberated data which allow the training of HMMs suitable for differ-
ent speaker and microphone positions in the application environment. These
HMMs show good performance also in different rooms with similar reverber-
ation characteristics.

To reduce the effort required by a complete training with reverberant
data, well-trained clean-speech models can be used as starting point for model
adaptation. Using only a few utterances recorded in the target environment,
the clean-speech models are adapted to the acoustic conditions in the appli-
cation environment. Numerous adaptation schemes have been proposed for
adaptation to additive distortions (e. g. background noise) and channel effects
characterized by impulse responses shorter than the frame length of the fea-
ture extraction analysis window (e. g. to compensate for different frequency
responses of the microphones used for training and test): Maximum a poste-
riori estimation [38, 39], parallel model combination [16], vector Taylor series
(VTS) [43], and HMM composition [44,68,69].

These approaches rely on the assumption that the observed features result
from the addition of the clean features and a noise term or a channel distortion
term, respectively. In the case of room reverberation, the relation between
clean-speech features and the feature-domain representation of the RIR is
not additive as shown in Sec. 18.4. Therefore, the above-mentioned model
adaptation approaches are not appropriate for reverberant environments.

In [56] and [30], two model adaptation techniques tailored to long reverber-
ation are proposed. Based on information of the reverberation characteristics
of the application environment, the means of the output density of the current
state are adapted taking into account the means of the previous states. This
adaptation is performed for all states in the HMM network before recognition.
Therefore, the average time of remaining in each state has to be considered. In
this way, a performance approaching that of reverberant training is achieved
for isolated digit recognition in [56] and for connected digit recognition in [30].
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However, both the model adaptation approaches [30, 56] and the training
with reverberant data [19, 23, 66] suffer from the conditional independence
assumption which limits the capability of the HMMs to accurately model
reverberant feature vector sequences.

In [70] a frame-by-frame adaptation method is suggested which overcomes
the limitation of the conditional independence assumption. The reverberation
of the previous feature vectors is modeled by a first-order linear prediction
and is added to the means of the clean-speech HMM at decoding time. This
implies an approximation of the reverberation by a strictly exponentially de-
caying function and achieves slightly lower recognition rates than matched
reverberant training [70].

18.8 Reverberation Modeling for Speech Recognition

A novel concept for robust distant-talking ASR in reverberant environments,
called REverberation MOdeling for Speech recognition (REMOS), is dis-
cussed in this section. The concept was first introduced in [57] and has been
extended in [58–60]. The acoustic model of a REMOS-based recognizer is a
combination of a clean-speech HMM network Nλ and a statistical reverbera-
tion model η as depicted in Fig. 18.14. This combined acoustic model allows for
very accurate and flexible modeling of reverberant feature sequences without
the limitations of the conditional independence assumption.

Viterbi
algorithm

extraction
Feature Extended Transcription

ηNλ

y(n) y(k)

Fig. 18.14. Block diagram of the REMOS concept.

During the recognition process, the improved acoustic model is used to
estimate the most likely clean-speech feature sequence directly in the fea-
ture domain. This kind of dereverberation follows the idea of preprocess-
ing. Performing the dereverberation directly in the feature domain makes
the approach less sensitive to variations of the spectro-temporal details of the
acoustic path between speaker and microphone and allows for a more effi-
cient implementation. The calculation of the acoustic score is based on this
clean-speech feature estimate. In this way, the REMOS concept combines ad-
vantages of all three previously described classes of robust approaches: signal
preprocessing, feature compensation and improved acoustical modeling (see
Fig. 18.4).
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We introduce the REMOS concept from the perspective of feature produc-
tion. In particular, we show how the combination of the clean-speech HMM
network and the statistical reverberation model describes the reverberant fea-
ture sequence. For the actual speech recognition, however, the combined model
will be employed to find the most likely transcription for a given reverberant
input feature sequence. Before deriving a solution for the decoding of the com-
bined model, a detailed description of the reverberation model and its training
is given.

18.8.1 Feature Production Model

The idea of modeling reverberation directly in the feature domain is based
on the following observation: While the spectro-temporal details of the acous-
tic path between speaker and microphone are very sensitive to changes like
small movements of the speaker, the spectro-temporal envelopes are hardly
affected by such changes (see also Sec. 18.4). As the speech features used for
ASR only capture the envelopes, a good feature-domain model for describing
reverberation in a certain room can be obtained without detailed information
on speaker and microphone positions.

We assume that the sequence of reverberant speech feature vectors y(k) is
produced by a combination of a network Nλ of word-level HMMs λ describing
the clean-speech and a reverberation model η as illustrated in Fig. 18.15. The
word-level HMMs λ may be composed of subword HMMs. The task grammar
and the language model can be embedded into the network of HMMs to
represent the actual recognition task.

The reverberation model is completely independent of the recognition task
and describes the reverberation of the room where the recognizer will be used.
The strict separation of the task information incorporated into the network of
HMMs and the information about the acoustic environment reflected by the
reverberation model yields a high degree of flexibility when the recognition
system has to be adapted to new tasks or new acoustic environments.

The REMOS concept can be applied to any kind of speech features which
allow the formulation of an appropriate relation between the sequence s(k)
of output feature vectors of the HMM network, the sequence H(k) of the
reverberation model output matrices (see Sec. 18.8.2) and the sequence y(k)
of reverberant speech feature vectors.

Based on the melspec convolution described in Eq. 18.23, the feature-
dependent combination operator in Fig. 18.15 is given in generic form and then
for melspec features ym(k), logmelspec features yl(k), and MFCC features
yc(k) in the following:
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η

Nλ
s(k)

y(k)

H(k)

◦
◦ denotes the appropriate

operator for combining

s(k) and H(k)

Fig. 18.15. Feature production model of the REMOS concept.

y(k) = H(k) ◦ s(k) ∀ k = 1 . . . K + M − 1 , (18.24)

ym(k) =
M−1∑
m=0

hm(m, k) � sm(k − m) , (18.25)

yl(k) = log

(
M−1∑
m=0

exp
(
hl(m, k)

)
� exp

(
sl(k − m)

))
, (18.26)

yc(k) = B A · log

(
M−1∑
m=0

exp
(
A−1BThc(m, k)

)
� exp

(
A−1BTsc(k − m)

))
. (18.27)

Here, � denotes element-wise multiplication, the vector h(m, k) is a realiza-
tion of the reverberation model for frame delay m and frame k, while M and
K are the lengths of the reverberation model and the clean utterance, respec-
tively. The matrices A and B were introduced in Eq. 18.10. The logarithm
and the exponential function are applied element-wise. The dependency of
h(m, k) on the current frame k results from fact that the reverberation model
allows the feature-domain representation of the RIR to change each frame
(see Sec. 18.8.2). Note that all combination operators (Eqs. 18.25, 18.26, and
18.27) are equivalent, since they use the same model of reverberation, namely
the feature vector convolution in the melspec domain (Eq. 18.23).

The reverberant features sequence y(k) can be considered as a realization
of the vector-valued random process Y(k). The combined acoustic model ac-
cording to Fig. 18.15 describes Y(k) as a non-stationary random process with
statistical dependencies between neighboring frames characterized by the re-
verberation model η.

18.8.2 Reverberation Model

The reverberation model represents the acoustic path between speaker and
microphone in the feature domain. As the acoustic path can be modeled suffi-
ciently well by an RIR, the reverberation model basically represents the RIR
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in the feature domain. As shown in Fig. 18.13 b), the feature-domain rep-
resentation of the RIR can be considered as a matrix, where each column
corresponds to a certain frame and each row corresponds to a certain mel
channel. Each matrix element in Fig. 18.13 b) has a fixed value as illustrated
by the gray level in the image.

Since the exact RIR is usually not known and since the combination op-
eration provides only an approximation of the exact relationship between
the clean and the reverberant feature sequences (see Sec. 18.4), we do not
use a fixed feature-domain representation of a single RIR as the reverbera-
tion model. Instead, we use a statistical model where each matrix element is
modeled by an independent identically distributed (IID) random process. For
simplification, each element of the matrix is assumed to be statistically inde-
pendent from all other elements and is modeled by a shift-invariant Gaussian
density. Therefore, the reverberation model is completely described by the
matrices of the means and variances of the Gaussian distributions. Fig. 18.16
illustrates the reverberation model.

Mel channel l

Frame m

Fig. 18.16. Reverberation model η.

In summary, the reverberation model describes an IID matrix-valued
Gaussian random process H(k). The sequence of the feature-domain RIR
representations H(k) is a realization of this random process as illustrated
in Fig. 18.17. The IID property of the random process implies that all ele-
ments of the random process at frame k1 are statistically independent from
all elements of the random process at frame k2 as long as k1 	= k2. Because
the random process H(k) is strict-sense stationary, its probability density is
not time-dependent and is denoted as fH(k)(H(k)) = fη(H(k)).

18.8.3 Training of the Reverberation Model

The training of the reverberation model is based on a number of measured
or hypothesized feature-domain RIR representations Ĥ(k). Using these RIR
representations, the mean matrix µη and the variance matrix σ2

η of the rever-
beration model η are estimated
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h(l = 1, m = 0, k = 1)

h(m = 3, k = 1)

H(k = 3)

Mel channel l

Frame delay m

Frame k

Fig. 18.17. Sequence of feature-domain RIR representations H(k) as a realization
of the random process H(k) described by the reverberation model η.

µη =
1
P

P∑
k=1

Ĥ(k) , (18.28)

σ2
η =

1
P − 1

P∑
k=1

(
Ĥ(k) − µη

)2

, (18.29)

where P is the number of RIR representations Ĥ(k).
There are two ways of obtaining a set of RIR representations Ĥ(k): Ei-

ther time-domain RIRs are transformed to the feature domain, or Ĥ(k) is
estimated directly in the feature domain.

Training of the Reverberation Model using Time-Domain RIRs

A set of time-domain RIRs for different microphone and loudspeaker positions
of the room where the ASR system will be applied can be used for calculating
a set of realizations Ĥ(k). These RIRs can either be measured before using the
recognizer, estimated by blind system identification approaches or modeled,
e. g., using the image method as described in [1]. To train the reverberation
model, the RIRs are time-aligned so that the direct path of all RIRs appears
at the same delay. Calculation of the features yields a set of realizations Ĥ(k)
which are used to estimate the means and the variances of the reverberation
model according to Eq. 18.28 and Eq. 18.29. A block diagram of the training
based on time-domain RIRs is given in Fig. 18.18.
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Feature−domain
representations

of RIRs

CalculateSet of alignedSet of

RIRs of the rever−
beration model

variances
Means andEstimate

means and 
variances

feature−domain
representationalignment

Time
RIRs

Fig. 18.18. Training of the reverberation model using time-domain RIRs.

Estimation in the Feature Domain

The realizations Ĥ(k) can also be obtained directly in the feature domain. For
example, maximum likelihood (ML) estimation based on a few training ut-
terances with known transcription as depicted in Fig. 18.19 can be employed.
Using the reverberant feature sequence y(k), a set of clean-speech HMMs, and
the correct transcription of the training utterance corresponding to y(k), the
optimum state sequence through the HMM representing the correct transcrip-
tion is obtained by forced alignment [78]. Using this state sequence and the
clean-speech HMMs, a joint density of the clean-speech feature sequence fS(S)
is estimated.

sequence

Optimum state

Set of HMMs

for clean speech

transcription

Correct
Means and
variances

of the rever−
beration model

Estimate
means and 
variances

representationML−
estimation

Feature−domain

of RIRsstate sequence
Find optimum

y(k)

Fig. 18.19. Block diagram for the feature-domain training of the reverberation
model based on maximum likelihood estimation.

To obtain the corresponding conditional Gaussian density fY|H(k)(Y ) of
the reverberant feature sequence given H(k), the means µS(k) are combined
with H(k) to get the means µY(k)|H(k)

µY(k)|H(k) = H(k) ◦ µS(k) .
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For simplification, the variances σ2
Y(k)|H(k) are assumed to be equal to the

clean-speech variances σ2
S(k) as suggested in [56]. The ML estimate ĤML(k)

is obtained by maximizing the conditional density of the reverberant feature
sequence with respect to H(k)

ĤML(k) = argmax
H(k)

{
fY|H(k)(Y )

}
.

A more detailed description of this approach including the derivation of the
ML estimate in the melspec domain and corresponding experimental results
can be found in [60].

18.8.4 Decoding

So far, we introduced the REMOS concept from the perspective of feature
production, describing how reverberant speech features are generated given
the model. For speech recognition, however, the opposite task has to be solved.
Given a reverberant utterance, a recognition network of clean-speech HMMs
and a reverberation model, the task of the recognizer is to find the path
through the network yielding the highest probability for the given feature
sequence in connection with the reverberation model.

Independently of the acoustic-phonetic modeling, the distant-talking speech
recognition search problem has been formulated in Sec. 18.3 as finding the word
sequence Ŵ maximizing the product of the acoustic score A(Y |W ) of Y given
the word sequence W and the language score L(W )

Ŵ = argmax
W

{
A(Y |W ) · L(W )

}
. (18.30)

For conventional HMMs, the acoustic score based on the most likely state
sequence is given as (see Sec. 18.3)

A(Y |W ) = max
Q

{
P (Y , Q|Λ)

}
.

For the combined acoustic model consisting of a clean-speech HMM network
and the reverberation model according to Fig. 18.15, the acoustic score is
given as

A(Y |W ) = max
Q,S,H

{
P (Q,S,H|Λ, η)

}
subject to Eq. 18.24

= max
Q

{
P (Q|Λ) · max

S,H

{
P (S,H|Λ, η,Q)

}}
subject to Eq. 18.24 .

As only the calculation of the acoustic score is different in the REMOS concept
compared to conventional HMMs, the same search algorithms as for conven-
tional HMMs can be used to solve the problem described in Eq. 18.30 by the
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REMOS concept if a few extensions are added which account for the modified
acoustic score calculations. These extensions will be derived in the following.

In the proposed approach, the acoustic score A(Y |W ) can be calculated
iteratively by an extended version of the Viterbi algorithm, where we assume
that the HMM starts in state 1 and ends in state J .



710 A. Sehr, W. Kellermann

Initialization:

γ1(1) = max
s(1),h(0,1)

{
fΛ

(
1, s(1)

)
· fη

(
h(0, 1)

)}
,

subject to x(1) = s(1) ◦ h(0, 1)
γj(1) = 0 ∀j = 2 . . . J ,

ψj(1) = 0 ∀j = 1 . . . J .

Recursion:

γj(k) = max
i

{
γi(k − 1) · aij · Oij(k)

}
, (18.31)

ψj(k) = argmax
i

{
γi(k − 1) · aij · Oij(k)

}
,

Oij(k) = max
s(k),H(k)

{
fΛ

(
j, s(k)

)
· fη

(
H(k)

)}
, (18.32)

subject to y(k) = H(m, k) ◦ s(k) , (18.33)

∀j = 1 . . . J, k = 2 . . . K + M − 1, .

Termination:

A(Y |W ) = γJ(K + M − 1), q(K + M − 1) = J .

Backtracking:

q(k) = ψq(k+1)(k + 1) ∀k = K + M − 2, . . . , 1 .

As in the conventional Viterbi algorithm, i indexes all considered previous
states leading to the current state j, γj(k) is the Viterbi metric for state j
at frame k. fΛ(j, s(k)) is the output density of state j of the HMM sequence
Λ describing W evaluated for the clean-speech vector s(k). fη(H(k)) is the
probability density of the reverberation model η evaluated for the feature-
domain representation H(k) of the RIR (see Sec. 18.8.2). The backtracking
pointer ψj(k) refers to the previous state and allows backtracking of the most
likely state sequence.

The result Oij(k) of the optimization in Eq. 18.32, which is referred to
as inner optimization, is obtained by varying the vector of the current clean-
speech frame s(k) and the matrix of the current feature-domain RIR repre-
sentation H(k) in order to maximize the product of their probability densities
subject to the constraint described in Eq. 18.33. That is, the combination of
H(k) and s(k) needs to be equal to the current reverberant feature vector
y(k). The subscript ij in Oij(k) indicates that this term is based on the op-
timum partial state sequence Q̂ij(k) from frame k − M + 1 to frame k with
current state j and previous state i (see Fig. 18.21) given by
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Q̂ij(k) = q̂ij(k − M + 1), . . . , q̂ij(k − 2), q̂ij(k − 1) = i, q̂ij(k) = j .

Comparing the update equation 18.13 of the conventional Viterbi algorithm to
the update equation 18.31 of the extended Viterbi algorithm, we observe two
differences. The first difference is that the output density fΛ(j, s(k)) of the
current HMM state in (18.13) is replaced by the term Oij(k) in Eq. 18.31.
This term can be considered as the output density of the combined model
according to Fig. 18.15 and is calculated by solving the inner optimiza-
tion problem (Eq. 18.32) subject to Eq. 18.33. The second difference is that
Oij(k) is included in the maximization over all possible state sequences Q in
Eq. 18.31 while fΛ(j, s(k)) is not included in the corresponding maximiza-
tion in Eq. 18.13. Therefore, the inner optimization has to be performed for
each frame k, each state j and each possible predecessor state i. The inner
optimization is the main extension compared to the conventional Viterbi al-
gorithm and will be discussed in more detail in the following section.

Reverberation
model

clean speech HMMs
Network of

Find previous
clean speech

vectors

score

Viterbi

Calculate

opitimization
Inner

Backtracking matrix

Viterbi score matrix

vectors (3D tensor)
Matrix of clean speech

k

k

k j

j
j

l

y(k)

η

Nλ

šij(k − 1)

šij(k − M + 1)

ŝij(k)

Ĥij(k)

aij

Oij(k)

γi(k − 1)

γj(k)

ψj(k)

ŝj(k)

fη(H(k))

fΛ(j, s(k))

(18.32)
(18.31)

Fig. 18.20. Illustration of the extended Viterbi algorithm.

Fig. 18.20 illustrates the extended Viterbi algorithm. To calculate the cur-
rent Viterbi score γj(k), the previous Viterbi score γi(k − 1), the transition
probability aij and the output density Oij(k) of the combined model have
to be maximized according to Eq. 18.31. In order to obtain Oij(k), the inner
optimization according to Eq. 18.32 has to be solved. Therefore, the optimum
contributions ŝij(k) and Ĥij(k) of the current HMM state and the reverber-
ation model to the current reverberant observation vector y(k) are estimated
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by maximizing the product of the HMM output density fΛ(j, s(k)) and the
reverberation model output density fη(H(k)) subject to the constraint that
the combination of s(k) and H(k) yields y(k). In this way, Oij(k), ŝij(k), and
Ĥij(k) are obtained.

To solve the inner optimization based on one of the combination oper-
ators described in Eqs. 18.25, 18.26, or 18.27, all clean-speech feature vec-
tors s(k − M + 1) . . . s(k − 1) are necessary. These true clean-speech feature
vectors are replaced by estimates determined in previous iterations of the
extended Viterbi algorithm for the frames k′ < k and the states j′. The clean-
speech feature vector estimates are calculated as follows.

The inner optimization for frame k′, state j′, and each possible predecessor
state i′ yields a clean-speech feature estimate ŝi′j′(k′) for each i′. By maxi-
mizing over i′ in the Viterbi recursion (Eq. 18.31), the most likely predecessor
state

î′ = argmax
i′

{
γi′(k′ − 1) · ai′j′ · Oi′j′(k′)

}
(18.34)

is determined. Using, î′, the most likely clean-speech feature estimate among
all estimates ŝi′j′(k′) is selected according to

ŝj′(k′) = ŝî′j′(k
′) . (18.35)

For each frame k′ and each state j′, the most likely clean-speech feature
estimate ŝj′(k′) is stored in a matrix of clean-speech vectors (3D tensor) as
depicted in Fig. 18.20.

Since the matrix of clean-speech vectors is filled up to column k − 1 by
the previous iterations, before the recursions for frame k start, the estimated
clean-speech vectors can be obtained from this matrix using the optimum
partial path Q̂ij(k). The states corresponding to Q̂ij(k) are determined by
tracing back the path from frame k − 1 and state i using the backtracking
pointers ψ as follows

q̂ij(k) = j , (18.36)
q̂ij(k − 1) = i , (18.37)

q̂ij(κ) = ψq̂ij(κ+1)(κ + 1) ∀ κ = k − 2, . . . , k − M + 1 . (18.38)

Fig. 18.21 illustrates the two optimum partial paths Q̂i1j(k) and Q̂i2j(k) for
frame k, state j and the two possible predecessor states i1 and i2 for the HMM
topology according to Fig. 18.7.

Now the clean-speech feature estimates corresponding to Q̂ij(k) are deter-
mined by selecting the corresponding vectors from the matrix of clean-speech
vectors as follows

šij(κ) = ŝq̂ij(κ)(κ) ∀ κ = k − 1, . . . , k − M + 1 . (18.39)

Note that the clean-speech estimate šij(κ) extracted from the matrix of clean-
speech vectors is in general different from the initial clean-speech estimate



Robust Distant-Talking ASR in Reverberant Environments 713

ŝij(κ) obtained from the inner optimization. Now, all input data required for
the inner optimization are available, and Eq. 18.32 can be solved.

Frame

State

k − M + 1 k − 1 k

ji1 i2

Fig. 18.21. Illustration of two optimum partial paths Q̂i1j(k) (indicated by the
large dots) and Q̂i2j(k) (indicated by the squares) corresponding to the two possible
predecessor states i1 and i2 in the trellis diagram of the HMM according to Fig. 18.7
for k = 10, j = 4, i1 = 3, i2 = 4, M = 6.

After each iteration, the Viterbi score γj(k) and the backtracking pointer
ψj(k) are stored in the corresponding matrices. After all iterations are finished,
these two matrices are used to determine the final acoustic score and to find the
optimum path through the HMM network which enables the reconstruction
of the most likely word sequence W corresponding to the feature sequence Y .

Note that the decoding of the combined acoustic model described above ex-
hibits some similarities to the HMM decomposition approach proposed in [72]
for additive noise. Indeed, REMOS can be considered as a generalization of
the HMM decomposition approach to a convolutive combination of the model
outputs if the reverberation model is considered as a one-state HMM with
matrix-valued output. However, there is a significant difference in the evalua-
tion of the output density of the combined model. The HMM decomposition
approach proposes to integrate over all possible combinations of the outputs
of the individual models to calculate the output probability of the combined
feature vector. We propose to search for the most likely combination to calcu-
late the probability of the reverberant feature vector. While both approaches
are feasible for simple combinations like addition, the method proposed here
provides significant computational savings for more complex combinations like
convolution.

18.8.5 Inner Optimization

To find the best combination of the HMM output and the reverberation model
output, the extended Viterbi algorithm performs an inner optimization in each
iteration. In this inner optimization, the joint density of the current HMM
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state and the reverberation model has to be maximized subject to the con-
straint that the combination of s(k) and H(k) yields the current reverberant
feature vector y(k) as described by Eq. 18.32 and Eq. 18.33.

Instead of maximizing the objective function

fΛη = fΛ

(
j, s(k)

)
· fη

(
H(k)

)
directly, equivalently, the logarithm of the objective function log (fΛη) can be
maximized, since the logarithm is a monotone function. Therefore, the inner
optimization problem can be expressed as

Õij(k) = max
s(k),H(k)

{
log{fΛη}

}
subject to Eq. 18.33 . (18.40)

The objective function fΛη of the inner optimization problem depends on the
output density of the current HMM state fΛ(j, s(k)) and the output density
of the reverberation model fη(H(k)). If single Gaussian densities are used
both in the HMM and in the reverberation model, log{fΛη} is a quadratic
function with a single global maximum. If mixtures of Gaussians are used in
the HMMs and/or in the reverberation model, log{(fΛη} is a sum of weighted
quadratic functions and, in general, exhibits several local maxima.

The constraint of the inner optimization problem depends on the kind
of features used, since the combination operation of the HMM output fea-
tures and the reverberation model output features is feature-dependent and
is given for melspec features, logmelspec features, and MFCCs in Eqs. 18.25,
18.26, and 18.27. For all three kinds of features, the constraint is a non-
linear function. Note that the independent variables to be optimized are
s(k − 0),h(0, k), . . . ,h(M − 1, k). The terms s(k − M + 1), . . . , s(k − 1) are
known from previous iterations, since they are given by the clean-speech fea-
ture estimates šij(k − M + 1), . . . , šij(k − 1).

The discussion above shows that the complexity of the inner optimization
problem depends both on the output densities of the HMM and the rever-
beration model, and the kind of features used in the recognizer. In general,
numerical optimization methods have to be employed for the solution of the
inner optimization problem.

If single Gaussian densities are used and the constraint is linearized, a
closed-form solution of the inner optimization problem can be found in the
melspec domain. This solution is derived in the following section as an example
of how to solve the inner optimization problem.

18.8.6 Solution of the Inner Optimization Problem in the Melspec
Domain for Single Gaussian Densities

In the melspec domain, the inner optimization problem can be expressed as
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Õij(k) = max
sm(k),Hm(k)

{
log{fΛη}

}
(18.41)

subject to ym(k) = hm(0, k) � sm(k) +
M−1∑
m=1

hm(m, k) � šm,ij(k − m) .

(18.42)

Using single Gaussian densities both in the HMMs and the reverberation
model, the objective function log{fΛη} becomes a multivariate quadratic func-
tion. If the constraint in the melspec domain (Eq. 18.42) is linearized, an op-
timization problem with a quadratic cost function and a linear constraint is
obtained, which exhibits a single unique solution. The determination of this
solution using the method of Lagrange multipliers is described in the following.

We introduce a simplified notation which neglects the subscript m in-
dicating “melspec domain”, the dependencies on the frame index k and the
partial state sequence Qij(k) as follows: sm(k − 0) := s0, šm,ij(k − m) := šm,
ym(k) := y, hm(m, k) := hm. That is, y is the current reverberant feature
vector, s0 is the current clean-speech feature vector and šm is the estimated
clean-speech vector for frame k − m. hm is the m-th column of the current
melspec RIR representation (see Fig. 18.13 for illustration).

With this simplified notation, the constraint of Eq. 18.42 can be written
as

y = h0 � s0 +
M−1∑
m=1

hm � šm , (18.43)

where the underlined vectors are unknown realizations of multivariate Gaussian
random vectors with diagonal covariance matrix and the overlined vectors are
known from previous iterations.

To linearize the constraint, we approximate the generally non-Gaussian
random vector Ỹ0 = H0 � S0 describing the realizations ỹ0 = h0 � s0 by a
Gaussian random vector Y0 with the same mean and variance as Ỹ0. The real-
izations of Y0 are denoted y0. Thus we obtain the following linear constraint

y = y0 +
M−1∑
m=1

hm � šm . (18.44)

Based on this constraint, a two-step closed-form solution of the inner opti-
mization problem can be derived as follows:

First step: Find y0 and hm′ .

We apply the method of Lagrange multipliers (see e. g. [41], appendix B.2) to

max
y0,h1,...,hM−1

{
fY0(y0) · fη(h1) · . . . · fη(hM−1)

}
subject to Eq. 18.44 ,

(18.45)
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where fY0(y0) is the probability density of Y0 evaluated at y0, fη(hm) is
the probability density of the m-th column of the reverberation model evalu-
ated at hm. Since the columns of the reverberation model are assumed to be
statistically independent as described in Sec. 18.8.2,

fη(h0) · . . . · fη(hM−1) = fη

(
H(k)

)
.

Using the negative logarithm of the densities to be maximized and neglecting
irrelevant constants, the Lagrangian function L1 is obtained as

L1 =

(
y0 − µy0

)2
2σ2

y0

+
M−1∑
m=1

(hm − µhm
)2

2σ2
hm

+ ν1 ·
(

y − y0 −
M−1∑
m=1

hm � šm

)
, (18.46)

where the squaring and the division operations are performed element-wise
(as for the remainder of this section), ν1 is the Lagrange multiplier, and µhm

and σ2
hm

denote the mean and the variance vector of hm, respectively, and
likewise for the other variables.

Setting the derivatives of the Lagrangian L1 with respect to y0, h1, . . . ,
hM−1, and ν1 to zero and solving the resulting system of equations, we obtain
ŷ0 and ĥm′ , for m′ = 1, . . . , M − 1, as solutions

ŷ0 =

M−1∑
m=1

š2
m � σ2

hm

σ2
y0

+
M−1∑
m=1

š2
m � σ2

hm

� µy0

+
σ2

y0

σ2
y0

+
M−1∑
m=1

š2
m � σ2

hm

�
(

y −
M−1∑
m=1

šm � µhm

)
, (18.47)

ĥm′ =

σ2
y0

+
M−1∑
m=1

m �=m′

š2
m � σ2

hm

σ2
y0

+
M−1∑
m=1

š2
m � σ2

hm

� µhm′

+
š2

m′�σ2
hm′

σ2
y0

+
M−1∑
m=1

š2
m�σ2

hm

� 1
šm′

�

⎛⎜⎝y−µy0
−

M−1∑
m=1

m �=m′

šm�µhm

⎞⎟⎠ . (18.48)

Second step: Find h0 and s0 given ŷ0.
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Applying the method of Lagrange multipliers to

max
s0,h0

{
fΛ(j, s0) · fη(h0)

}
subject to ŷ0 = h0 � s0 , (18.49)

replacing the densities with their negative logarithm, and neglecting irrelevant
constants, we obtain the following Lagrangian function

L2 =
(s0 − µs0)

2

2σ2
s0

+
(h0 − µh0)

2

2σ2
h0

+ ν2 · (ŷ0 − h0 � s0) . (18.50)

Setting the derivatives of the Lagrangian L2 with respect to h0, s0, and ν2

to zero and solving the resulting system of equations, we obtain the following
fourth-order equation to be fulfilled by the desired vector h0

σ2
s0

� h4
0 − µh0 � σ2

s0
� h3

0 + µs0 � σ2
h0

� ŷ0 � h0 − ŷ2
0 � σ2

h0
= 0 , (18.51)

where the exponents denote element-wise powers. It can be shown that this
equation has a pair of complex conjugate solutions, one real-valued positive
and one real-valued negative solution. As only the real-valued positive solution
achieves the maximization of the desired probability, we obtain exactly one
vector ĥ0 and thus exactly one vector ŝ0

ŝ0 =
ŷ0

ĥ0

. (18.52)

In this way, ŝij(k) and Ĥij(k) are obtained so that Oij(k) can be calcu-
lated as

Oij(k) = fΛ

(
j, ŝij(k)

)
· fη

(
Ĥij(k)

)
.

18.8.7 Simulations

To investigate the effectiveness of the REMOS concept, simulations of a
connected digit recognition (CDR) task using melspec features and single
Gaussian densities are performed. The performance of the proposed approach
is compared to that of conventional HMM-based recognizers trained on clean
and reverberant speech, respectively.

The REMOS concept is implemented by extending the functionality of
HTK [32] with the inner optimization as described in Sec. 18.8.6. HTK
employs Viterbi beam search implemented by the so-called token passing
paradigm as continuous speech recognition search algorithm [77].

The CDR task is chosen for evaluation, since it can be considered as
one of the easiest examples of continuous speech recognition. Furthermore,
the probability of the current digit can be assumed to be independent of
the preceding digits so that a language model is not required. Therefore, the
recognition rate is solely determined by the quality of the acoustic model,
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making the CDR task well suited for the evaluation of the REMOS concept,
which aims at improving the acoustic model.

The simulations are performed using RIRs measured in three different
rooms. Room A is a lab environment, room B a studio environment and
room C a lecture room. The details of the room characteristics are summarized
in Tab. 18.1. Note that room A is a moderately reverberant environment while
room B and room C are highly reverberant environments. A set of RIRs is
measured for different loudspeaker and microphone positions in each room. In
room C, three RIR sets with different loudspeaker/microphone-distances are
measured which are denoted C1, C2 and C4, where the number corresponds to
the distance in meter. Each set of RIRs is split into two disjoint sets, one used
for training and the other used for test (see Tab. 18.1 for detailed numbers).
In this way, a strict separation of test and training data is achieved.

Table 18.1. Summary of room characteristics: T60 is the reverberation time, d the
distance between speaker and microphone and SRR is the signal-to-reverberation-
ratio.

Room A Room B Room C1 Room C2 Room C4

Type Lab Studio Lecture rooms

T60 300ms 700 ms 900ms 900 ms 900 ms

d 2.0 m 4.1 m 1.0 m 2.0 m 4.0 m

SRR 4.0 dB −4.5 dB 7.4 dB 2.9 dB −1.5 dB

Number of training RIRs 36 18 36 72 44

Number of test RIRs 18 6 18 36 22

Length of rev. model M 20 50 70 70 70

The used feature vectors are calculated in the following way: The speech
signal, sampled at 20 kHz, is decomposed into overlapping frames of length
25 ms with a frame shift of 10 ms. After applying a first-order pre-emphasis
(coefficient 0.97) and a Hamming window, a 512-point DFT is computed.
From the DFT representation, 24 melspec coefficients are calculated. Only
static features and no ∆ and ∆∆ coefficients are used.

A 16-state left-to-right model without skips over states is trained for each
of the 11 digits (‘0’-‘9’ and ‘oh’). Additionally, a three-state silence model
with a backward skip from state 3 to state 1 is trained. The output densi-
ties are single Gaussians with diagonal covariance matrices. All HMMs are
trained according to the following procedure: First, single Gaussian MFCC-
based HMMs are trained by 10 iterations of Baum-Welch re-estimation [33].
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Then the melspec HMMs are obtained from the MFCC HMMs by single-pass
retraining [74]. In this way, more reliable models are obtained than by training
melspec models from scratch.

For the training, 4579 connected digit utterances corresponding to 1.5 hours
of speech from the TI digits [40] training data are used. For the training with
reverberant speech, the clean training data are convolved with measured RIRs
randomly selected from the training set of the corresponding room. A uniform
distribution is employed for the random selection so that a balanced use of
all RIRs is ensured. The HMMs trained on clean data are denoted λclean, the
HMMs trained on data convolved with RIRs from room A are denoted λA and
so on. The corresponding HMM networks are denoted Nλclean

, NλA
and so

on. For the conventional HMM-based clean recognizer and for the REMOS-
based recognizer, identical HMM networks are used. The HMM network of the
conventional reverberant recognizers for each room shares the same structural
parameters and the same training procedure but differs with respect to the
training data.

For the recognition, a silence model is added in the beginning and at the
end of the HMM network consisting of the 11 digit-HMMs connected in a loop
similar to Fig. 18.9. As test data, 512 test utterances randomly selected from
the TI digits test set are used. To obtain the reverberant test data, the clean
test data are convolved with RIRs randomly selected from the test set of the
corresponding rooms.

To train the reverberation models for each room, the measured RIRs from
the corresponding training set are used according to the procedure described
in Sec. 18.8.3. The reverberation models are denoted according to the rooms
where the RIRs have been measured. E. g., the reverberation model of room A
is denoted ηA. In addition to the reverberation models ηC1, ηC2, ηC4, a univer-
sal model for room C is trained using all training RIRs measured in room C.
This model is denoted ηC124.

In a first test series, the performance of REMOS is compared to conven-
tional HMM-based recognizers. Tab. 18.2 shows the word accuracies achieved
with conventional HMM-based recognizers and with the REMOS concept for
the connected digit recognition task in the rooms described above. The rel-
atively low accuracy of 82 % achieved by applying the conventional HMM-
based recognizer using clean HMMs to the clean test data (clean-speech
performance) results from the fact that melspec features cannot be modeled
very accurately by single Gaussian densities. With increasing reverberation,
the accuracy decreases significantly if HMMs trained on clean speech are used
in the conventional HMM-based recognizers. The accuracy is improved to
some extent if HMMs trained with reverberant data from the corresponding
rooms are used.

The lower recognition rate in room B compared to room C4 for the clean
HMM-based recognizer can be explained by the strong low-pass characteristic
of the transfer functions corresponding to the RIRs measured in room B.
Therefore, the mismatch between the clean training data and the reverberant
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test data is larger in room B than in room C4. As the low-pass characteristic
can be modeled very well by the reverberant training, the performance increase
between clean and reverberant training is higher in room B than in room C4.

The word accuracy achieved by the REMOS concept is significantly higher
than that of the reverberant HMM-based recognizers in all three rooms. In
room A, the recognition rate of REMOS even approaches the clean-speech
performance. The performance gain compared to the reverberant training in-
creases with growing reverberation from 10.8 % absolute in room A to 21.6 %
absolute in room C4. These results confirm that the REMOS concept is much
more robust to reverberation than conventional HMM-based recognizers, even
if the latter use HMMs trained on reverberant data.

Table 18.2. Comparison of word accuracies of a conventional HMM-based rec-
ognizer and of the proposed REMOS concept in the melspec domain using single
Gaussian densities.

Recognizer

Test data Conventional HMM-based REMOS

Clean training Reverberant training concept

HMM Acc. HMM Acc. HMM Rev. model Acc.

Clean Nλclean
82.0 % - - - - -

Room A Nλclean
51.5 % NλA 66.8 % Nλclean

ηA 77.6 %

Room B Nλclean
13.4 % NλB 54.6 % Nλclean

ηB 71.6 %

Room C4 Nλclean
25.9 % NλC4 46. 0% Nλclean

ηC4 67.6 %

In a second test series, the sensitivity of the REMOS concept to a mismatch
between the set-up in the target environment and the reverberation model is
investigated. Therefore, the reverberation models ηC1, ηC2, ηC4, ηC124 are ap-
plied to the test data of the scenarios C1, C2 and C4. The word accuracies
for all possible combinations are summarized in Tab. 18.3. The results for
scenario C1 are similar for all reverberation models, while significant differ-
ences between different reverberation models are observed for the set-ups C2
and C4. For all of the tested loudspeaker/microphone-distances, the matched
model (e. g., ηC2 for scenario C2) achieves the best results among all mod-
els or is at least close to the best result. Using a reverberation model with
higher SRR than the test conditions (e. g., ηC1 for scenario C2), decreases the
recognition rate much more than using a reverberation model with lower SRR
(e. g., ηC4 for scenario C2).

The reverberation model ηC124 trained on RIRs with different loud-
speaker/microphone-distances performs very well for all scenarios C1, C2 and
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C4. For the test data with a loudspeaker/microphone-distance of 4 m (scenario
C4) it even outperforms the matched model. In summary, we can conclude
that using RIRs measured at various loudspeaker and microphone positions
with various distances in the target environment enables the training of a
reverberation model which achieves a good performance in the target envi-
ronment regardless of the loudspeaker/microphone-distance.

Table 18.3. Word accuracy of the REMOS concept for test data with different
loudspeaker/microphone-distances in room C and different reverberation models.

Test Reverberation model

data ηC1 ηC2 ηC4 ηC124

Room C1 73.9 % 74.5 % 73.0 % 73.2 %

Room C2 58.8 % 71.7 % 68.0 % 71.4 %

Room C4 45.6 % 46.9 % 67.6 % 70.2 %

The performance of the REMOS concept as a function of the reverberation
model length M is investigated in a third test series in room C4. Therefore,
the model ηC4 with an original length of M = 70, covering a reverberation
time of 700 ms is truncated to the lengths given in Tab. 18.4. For all tests in
this series, the test data of scenario C4 are used.

Table 18.4. Word accuracy of the REMOS concept for room C4 and different
lengths of the reverberation model ηC4.

Length M of rev. model 1 2 3 4 6 8 10

Accuracy 21.3 % 27.5 % 31.4 % 36.5 % 39.8 % 43.7 % 45.8 %

Length M of rev. model 15 20 30 40 50 60 70

Accuracy 48.3 % 51.1 % 58.7 % 62.5 % 66.4 % 67.5 % 67.5 %

Tab. 18.4 and Fig. 18.22 show that the word accuracy increases mono-
tonically with increasing length M of the reverberation model. At the first
glance, it might be surprising that for M = 1, the recognition rate of the
REMOS concept is slightly lower than that of the clean HMM-based recog-
nizer. Even with a one-frame reverberation model, REMOS can compensate
for differences in the transfer function of training and test data. However, the
energy of the reverberation model is reduced by the truncation so that the



722 A. Sehr, W. Kellermann

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

W
or

d 
ac

cu
ra

cy
 in

 %

REMOS
Clean HMM−based
Rev. HMM−based

M

Fig. 18.22. Word accuracy of REMOS in room C4 as a function of the length M
of the reverberation model ηC4.

resulting mismatch in the signal energy between the test sequence and the
model causes the slight decrease in recognition rate.

Already with a length of M = 10, the REMOS concept achieves the same
recognition rate as the conventional HMM-based recognizer trained on rever-
berant data. A further increase in the reverberation model length M leads to
further significant gains in the recognition rate until a saturation can be ob-
served for lengths larger than M = 60. This curve confirms that by modeling
the effect of reverberation not simply by a multiplication in the feature do-
main but rather by a feature-domain convolution, REMOS has the capability
to significantly outperform HMM-based recognizers, even if they are trained
on reverberant data. If context-dependent sub-word HMMs (e. g. triphones)
are used instead of word HMMs, the context of the HMMs is reduced and the
gain of REMOS compared to reverberantly trained HMM-based recognizers
is expected to increase further.

18.9 Summary and Conclusions

In this contribution, the progress towards robust distant-talking speech recog-
nition in reverberant environments has been reviewed and a novel concept has
been described. Since the length of the RIR describing the acoustic path be-
tween speaker and microphone is significantly larger than the frame length
used for short-time spectrum analysis in the ASR feature extraction, the RIR
extends over several frames. Therefore, reverberation has a dispersive effect
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on the feature vector sequences used for ASR so that the current feature
vector strongly depends on the previous feature vectors. This contradiction to
the conditional independence assumption of HMMs, which are state-of-the-art
in acoustic-phonetic modeling, has been identified as the main performance
limitation of HMM-based recognizers in reverberant environments.

The numerous approaches to improve the ASR performance in reverberant
environments have been classified into three groups according to the function
block of the ASR system they are applied to. Preprocessing algorithms like
blind dereverberation and beamforming aim at removing or at least reducing
the reverberation of the input signal before the feature vectors are calculated.
Robust speech features and feature-domain compensation techniques try to
remove the effect of reverberation at the feature level. Alternatively, the acous-
tic model of the ASR system can be adjusted to reverberation. This can be
performed either by training the HMMs with reverberant data or by adapting
well-trained clean-speech HMMs using a few calibration utterances recorded
in the target environment.

Finally, a novel concept based on reverberation modeling for speech recog-
nition (REMOS) has been discussed. A combination of an HMM network and
a feature-domain reverberation model is used to determine the acoustic score.
During recognition, an optimization problem is solved in each iteration of the
extended Viterbi algorithm to find the most likely contribution of the HMM
network and the reverberation model to the current reverberant observation
vector. The complexity of this inner optimization depends both on the kind
of features and the output densities used in the HMM and the reverberation
model. In general, it has to be solved by numerical optimization algorithms.

For melspec features and single Gaussian densities a closed form solution
is possible. Based on this solution, simulations of a connected digit recogni-
tion task have been performed in three different rooms. These simulations
confirm that the REMOS concept, which explicitely models the dispersive
character of reverberation, achieves significantly better recognition rates than
conventional HMM-based algorithms, even if the latter are trained on rever-
berant data. Future work on the REMOS concept includes incorporation of
more powerful speech features, like MFCCs, and more accurate output den-
sities, like mixtures of Gaussians, as well as the application of REMOS to
more complex tasks, such as large-vocabulary continuous speech recognition
for more natural human/machine speech interfaces.

References

1. J. B. Allen, D. A. Berkley: Image method for efficiently simulating small-room
acoustics, JASA, 65(4), 943–950, April 1979.

2. AMI project: “Webpage of the AMI project,” http://corpus.amiproject.org.
3. B. Atal: Effectiveness of linear prediction characteristics of the speech wave

for automatic speaker identification and verification, JASA, 55(6), 1304–1312,
1974.



724 A. Sehr, W. Kellermann

4. L. E. Baum, J. A. Eagon: An inequality with applications to statistical estima-
tion for probabilistic functions of Markov processes and to a model for ecology,
Bulletin of American Mathematical Society, 73, 360–363, 1967.

5. L. E. Baum, et al.: A maximization technique occurring in the statistical analysis
of probabilistic functions of Markov chains, Annals of Mathematical Statistics,
41, 164–171, 1970.

6. J. Benesty: Adaptive eigenvalue decomposition algorithm for passive acous-
tic source localization, Journal of the Acoustical Society of America, 107(1),
384–391, Jan. 2000.

7. J. Benesty, S. Makino, J. Chen (eds.): Speech Enhancement, Berlin, Germany:
Springer, 2005.

8. M. Brandstein, D. Ward (eds.): Microphone Arrays, Berlin, Germany: Springer,
2001.
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