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It is relatively easy for a human listener to attend to a particular speaker at
a cocktail party in the presence of other speakers, music and environmental
sounds. To perform this task, the human listener needs to separate the tar-
get speech from a mixture of multiple concurrent sources reflected by various
surfaces. This process is referred to as auditory scene analysis. While humans
excel at this task using only two ears, machine separation based on two-
microphone recordings has proven to be extremely challenging. By incorpo-
rating the mechanisms underlying the perception of sound by human listeners,
computational auditory scene analysis (CASA) offers a new approach to sound
segregation. Binaural hearing – hearing with two ears – employs the difference
in sound source locations to improve sound segregation. In this chapter, we
describe the principles of binaural processing and review the state-of-the-art
in binaural CASA, particularly for speech segregation.

14.1 Introduction

Human listeners are able to effectively process the multitude of acoustic events
that surrounds them at all times. Each acoustic source generates a vibration
of the medium (air) and our hearing is confronted by the superposition of
all vibrations impinging on our eardrums. As Helmholtz noted in 1863, the
final waveform is “complicated beyond conception” [26]. Nonetheless, at a
cocktail party, we are able to attend to and understand a particular talker.
This perceptual ability is known as the “cocktail-party effect” – a term intro-
duced by Cherry in 1953 [15]. Cherry’s original experiments have triggered
research in widely different areas including speech perception in noise, selec-
tive attention, neural modeling, speech enhancement and source separation.
Of special interest is a machine solution to the problem of sound separation
in realistic environments, which is essential to many important applications
including automatic speech and speaker recognition, hearing aid design and
audio information retrieval. The field of automatic speech recognition (ASR),



526 N. Roman, D.L. Wang

for example, has seen much progress in recent years. However, the performance
of current recognition systems degrades rapidly in the presence of noise and
reverberation and the degradation is much faster compared to human perfor-
mance in similar conditions [30,33].

The sound separation problem has been investigated in the signal processing
field for many years for both one-microphone recordings and multi-microphone
ones (for recent reviews see [8,19]). One-microphone speech enhancement tech-
niques include spectral subtraction [40], Kalman filtering [38], subspace anal-
ysis [20] and autoregressive modeling [5]. While requiring only one sensor
benefits many applications, these algorithms make strong assumptions about
interference and thus have difficulty in dealing with general acoustic mix-
tures. Microphone array algorithms include beamforming [8] and blind source
separation (BSS) through independent component analysis (ICA) [31]. To sep-
arate multiple sound sources, beamforming takes advantage of their different
directions of arrival while ICA relies on their statistical independence. The
main drawback of these approaches is that they generally require the num-
ber of microphones equal or exceed the number of sound sources. In the case
of two-microphone recordings typically only one wideband interfering source
can be canceled out by steering a null towards its location. To address this
problem, it has been proposed in [35] a subband adaptive beamformer which
steers independent nulls in each time-frequency (T-F) unit to suppress the
strongest interference. Another approach to this underdetermined problem –
more sources than sensors – is sparse signal representation based ICA [64].
The performance of these approaches is still limited in realistic multi-source
reverberant conditions.

Since the natural solution provided by human hearing is robust to noise
and reverberation, one can expect that a solution to the sound separation
problem can be devised using up to two microphones. While human listeners
can separate speech monaurally, binaural hearing adds to this ability when
sources are spatially separated [10]. A coherent theory on the human abil-
ity to segregate signals from noisy mixtures was presented by Bregman in
1990 [9]. He argues that humans perform an auditory scene analysis (ASA) of
the acoustic input in order to form perceptual representations of individual
sources called streams. ASA takes place in two stages: the first stage decom-
poses the input into a collection of sensory elements while the second stage se-
lectively groups the elements into streams that correspond to individual sound
sources. According to Bregman, stream segregation is guided by a variety of
grouping cues including proximity in frequency and time, pitch, onset/offset,
and spatial location. The ASA account has inspired a series of computational
ASA (CASA) systems that have significantly advanced the state-of-the-art
performance in monaural separation as well as binaural separation [12,28,60].
Mirroring the ASA processing described above, CASA systems generally em-
ploy two stages: segmentation (analysis) and grouping (synthesis).

In segmentation, the acoustic input is decomposed into sensory segments,
or contiguous T-F regions, each of which mainly originates from a single
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source. In grouping, segments that are likely to come from the same source are
put together. Most monaural segregation algorithms rely on pitch as the main
grouping cue and therefore can operate only on voiced speech or other periodic
sounds (e.g., [27]; see also [29] for an exception). On the other hand, binaural
algorithms employ location cues which are independent of signal content and
thus can be used to track both voiced and unvoiced speech. Compared with
signal processing techniques, CASA systems make relatively few assumptions
about the acoustic properties of the interference and the environment.

CASA systems typically employ T-F masking to segregate target signal
from mixture signal [11,59,60]. Specifically, T-F units in the acoustic mixture
are selectively weighted in order to enhance the desired signal. The weights
can be binary or real [53]. T-F binary masking is motivated by the mask-
ing phenomenon in human audition, in which a weaker signal is masked by
a stronger one in the same critical band [41]. Subsequently, the computa-
tional goal of a CASA system has been argued to be an ideal T-F binary
mask, which selects the target if it is stronger than the interference in a local
T-F unit [47, 49, 58]. Speech extracted from such masks has been shown to
be highly intelligible in multi-source mixtures [14, 49], as well as to produce
substantial improvements in robust speech recognition [17,49]. Following the
ASA account, the binary mask is estimated in a CASA system by grouping
T-F units using various perceptual cues. This binary masking framework has
recently become popular in the underdetermined BSS field as well, as it has
been observed that different speech signals can be approximately orthogonal
in a high-resolution T-F representation [3,44,62]. In [44] for example, ICA is
combined with T-F binary masking to iteratively extract speech signals from
underdetermined anechoic mixtures.

The binaural cues used by the auditory system for source localization are
interaural time difference (ITD) and interaural intensity difference (IID) be-
tween the two ears [6]. While filtering produced by head, torso and external ear
introduce only a weak frequency dependency for ITD [39], IID varies widely
across frequencies ranging from 0.5-1 dB at low frequencies to as much as
30 dB at high frequencies. Consequently, while ITD is the main localization
cue employed by the auditory system at lower frequencies (<1.5 kHz), both
binaural cues are used at higher frequencies. A series of psychoacoustically in-
spired binaural processors have shown that these location cues can be used to
substantially enhance target speech in binaural mixtures [7,37] [61]. Recently,
binaural CASA systems have employed supervised learning in the ITD-IID
feature space to optimally extract the target signal [13, 49, 53]. The main ob-
servation is that, in a given T-F unit, there exists a systematic relationship
between the a priori local SNR and the deviation of ITD/IID features [49].
Moreover, in the case of multiple concurrent sources, there exists a character-
istic clustering in the ITD/IID space which can be used to estimate the ideal
T-F binary mask. Systematic evaluations have shown that systems developed
based on these observations perform very well under multi-source anechoic
conditions [49,53].
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Reverberation presents an additional challenge to a binaural system as it
introduces potentially an infinite number of additional sources due to reflec-
tions from hard surfaces. This smears considerably the ITD/IID statistics. As
a result, the performance of the above location-based segregation systems de-
grades as reverberation level increases. Inspired by psychoacoustical studies,
many systems use a model of precedence effect prior to binaural processing
to emphasize the cues in the direct wavefront over the cues in the later reflec-
tions [13,43]. Alternatively, we have proposed to replace the anechoic modeling
of ITD/IID with an adaptive filter to better characterize the target location
in reverberant conditions [50]. The system in [50] performs target cancella-
tion through adaptive filtering followed by an analysis of the output-to-input
attenuation level to estimate the ideal binary mask. A systematic evaluation
shows that the system results in large SNR gains and it outperforms stan-
dard two-microphone beamforming algorithms as well as a recent binaural
processor.

The rest of the chapter is organized as follows. The next section de-
scribes T-F masks for CASA systems. Sec. 14.3 describes a binaural system
for multi-source anechoic conditions. Sec. 14.4 describes a binaural system for
multi-source reverberant conditions. Sec. 14.5 gives evaluation data for the
systems described in Sec. 14.3 and Sec. 14.4. The last section concludes the
chapter.

14.2 T–F Masks for CASA

The first stage of a CASA system is usually a T-F analysis of the input
signal using either a physiologically motivated filterbank that mimics cochlear
filtering [16] or a short-time Fourier transform (STFT). In this paper, we
use an STFT representation to illustrate the concepts of T-F masking and
binaural processing (see also the next two sections) but a similar description
can be made using an auditory filterbank. Given a T-F decomposition of the
acoustic mixture, the target source can be recovered by applying independent
weights to individual T-F units. This type of T-F masking can be viewed
as a nonstationary Wiener filter. The authors in [21] have shown that the
minimum mean-square error estimate of the target signal amplitude in a T-F
unit is related to the a priori local SNR. Hence, we define an ideal ratio mask
using the a priori energy ratio as follows:

R(Ω, t) =

∣∣∣S (ejΩ, t
)∣∣∣2∣∣∣S (ejΩ, t)

∣∣∣2 +
∣∣∣N (ejΩ, t)

∣∣∣2 , (14.1)

where S(ejΩ, t) is the spectral value for the target signal and N(ejΩ, t) is the
spectral value for the interference at frequency Ω and frame index t.

As described previously, a number of researchers have shown the potential
of binary T-F masking in speech segregation. The upper limit for a CASA
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system that uses binary masking is an ideal binary mask, which selects the
T-F units where the target energy is stronger than the interference energy.
Formally, this ideal binary mask is defined as follows:

MIBM(Ω, t) =

{
1, if

∣∣∣S (ejΩ, t
)∣∣∣ > ∣∣∣N (ejΩ, t

)∣∣∣,
0, otherwise.

(14.2)

This is equivalent to applying a threshold of 0.5 on the energy ratio R(Ω, t).
By selecting the T-F units where the target is stronger than the interference,
this definition results in the optimal SNR gain among all possible binary
masks because the SNR in each T-F unit is positive if the unit is retained
and negative if the unit is discarded [27]. Although an ideal ratio mask will
outperform an ideal binary mask [53], the estimation of an ideal ratio mask
has turned out to be more sensitive to corruptions by noise and reverberation
than estimating the ideal binary mask. This chapter will therefore focus on
the estimation of an ideal binary mask.

An important application for CASA systems is to provide a robust front-
end for ASR. Given a T-F mask (binary or ratio), the target signal can be
reconstructed using the element-wise multiplication of the mask and the spec-
tral energy of the mixture. While the signal obtained from a ratio mask can
be used directly as input to a speech recognizer, conventional ASR systems
are highly sensitive to the distortions introduced by binary masks. Cooke
et al. [17] have proposed a missing-data approach to ASR which performs
recognition using only the reliable (clean) components. Hence, a binary mask
which labels the T-F units where target dominates interference is therefore an
ideal front-end for this approach. A number of authors have shown that the
ideal binary masks used as front-ends to a missing-data ASR provide impres-
sive results even under very low SNR conditions [17, 49]. Alternatively, Raj
et al. [46] have proposed a spectral reconstruction method for the T-F units
dominated by noise to alleviate the mismatch introduced by binary masking.
The reconstructed signal is then used as input to a conventional ASR system.
While the missing-data ASR requires spectral features, a conventional ASR
usually employs cepstral features which are known to be more effective than
the spectral ones.

14.3 Anechoic Binaural Segregation

Under anechoic conditions, the signal emitted by an acoustic source arrives at
the ear further away from the source at a later time and attenuated compared
to the signal arriving at the ear closer to the emitting source. Inspired by psy-
choacoustical studies of sound localization, binaural sound separation systems
have typically employed the binaural cues of ITD and IID for localization and
further segregation of target source [6, 7, 49, 53]. Specifically, the filtering due
to head, pinna and torso introduces at each frequency natural combinations
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of ITD and IID which are location dependent. When the target source dom-
inates a particular frequency bin, the observed ITD and IID correspond to
the target values. When an interfering source overlaps with the target one in
the same frequency bin, the observed ITD and IID undergo systematic shifts
as the energy ratio between the two sources changes [49]. This relationship
is used to estimate the weights independently in each T-F unit in order to
extract target signal from noisy mixture.

The presentation here is based on the binaural system proposed in [53].
The ITD and IID estimates are computed based on the spectral ratio at the
left and right ears:

(
ÎTD, ÎID

)
(Ω, t) =

[
− 1

Ω
A

(
XL

(
ejΩ, t

)
XR (ejΩ, t)

)
,

∣∣∣∣∣XL

(
ejΩ, t

)
XR (ejΩ, t)

∣∣∣∣∣
]

(14.3)

where XL(ejΩ, t) and XR(ejΩ, t) are the left and right ear spectral values of
the mixture signal at frequency Ω and frame t and A(rejφ)=φ, -π < φ < π.
The function A computes the phase angle, in radians, of a complex number
with magnitude r and phase angle φ. The phase is ambiguous corresponding to
integer multiples of 2π. We therefore consider ITD in the range 2π/Ω centered
at zero delay.

A corpus of 10 speech signals from the TIMIT3 database [23] is used
for training. Five sentences correspond to the target location set and the
rest belong to the interference location set. Binaural signals are obtained by
convolving monaural signals with measured head-related impulse responses
(HRIRs) corresponding to the direction of sound incidence. The responses to
multiple sources are added at each ear. The HRIR measurements consist of
left/right responses of a KEMAR4 manikin from a distance of 1.4 m in the
horizontal plane, resulting in 128 point impulse responses at a sampling rate
of 44.1 kHz [22].

Fig. 14.1 shows empirical results from the above corpus for a two-source
configuration: target source in the median plane and interference at 30◦. The
T-F resolution is 512 discrete Fourier transform (DFT) coefficients extracted
every 20 ms with a 10 ms overlap. ITD/IID and energy ratio estimates are
computed every frame using the formulas in Eqs. 14.1 and 14.3. The scatter
plot in Fig. 14.1(a) shows samples of ÎTD(Ω, t) and R(Ω, t) for a frequency bin
at 1 kHz. Similarly, Fig. 14.1(b) shows the results that describe the variation
of ÎID(Ω, t) and R(Ω, t) for a frequency bin at 3.4 kHz. Note that the scatter
plots in Fig. 14.1 exhibit a systematic shift of the estimated ITD and IID
with respect to R. Moreover, a location-based clustering is observed in the
joint ITD-IID space as shown in Fig. 14.1(c). Each peak in the histogram
corresponds to a distinct active source.

3 The term TIMIT results from Texas Instruments (TI) and Massachusetts Institute
of Technology (MIT).

4 KEMAR abbreviates Knowles electronic manikin for acoustic research.
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Fig. 14.1. Relationship between ITD/IID and the energy ratio R (from [53]). Statis-
tics are obtained with target in the median plane and interference on the right side
at 30◦. (a) The top panel shows the scatter plot for the distribution of R with respect
to ITD for a frequency bin at 1 kHz. The solid white curve shows the mean curve
fitted to the data. The vertical bars represent the standard deviation. The bottom
panel shows the histogram of ITD samples. (b) Corresponding results for IID for a
frequency bin at 3.4 kHz. (c) Histogram of ITD and IID samples for a frequency bin
at 2 kHz.

To estimate the ideal binary maskMIBM(Ω, t) we employ a non-parametric
classification in the joint ITD-IID feature space. There are two hypotheses for
the binary decision:

• H1 – target is stronger or R(Ω, t) ≥ 0.5 and
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• H2 – interference is stronger or R(Ω, t) < 0.5.

The estimated binary mask, M̂IBM(Ω, t), is obtained using the maximum a
posteriori (MAP) decision rule:

M̂IBM(Ω, t) =

{
1, if p(H1)p(x|H1) > p(H2)p(x|H2),
0, otherwise,

(14.4)

where x corresponds to the ITD and IID estimates. The prior probabilities,
p(Hi), are computed as the ratio of the number of samples in each class
to the total number of samples. The conditional probabilities, p(x|Hi) are
estimated from the training data using the kernel density estimation method
(see also [49]). Alternatively, the ITD/IID statistics can be used to derive
ratio/soft masks [13,53]. In [53] for example, the empirical mean curves shown
in Fig. 14.1 are used to estimate the energy ratio from the observed ITD/IID.
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Fig. 14.2. Comparison between estimated and ideal T-F binary masks for a mix-
ture of speech utterance presented in the median plane and an interference signal
presented at 30◦ (redrawn from [53]). (a) Spectrogram of the clean speech utter-
ance. (b) Spectrogram of the mixture. (c) The ideal binary mask. (d) The estimated
binary mask.
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Fig. 14.2 shows a comparison between an ideal and an estimated T-F bi-
nary mask. Figs. 14.2(a) and (b) show the spectrograms of a clean speech
utterance and the noisy mixture, respectively. The mixture is obtained using
the spatial configuration in Fig. 14.1 and a factory noise as interference. The
SNR is 0 dB. The algorithm described above is applied and the T-F binary
mask obtained is shown in Fig. 14.2(d). Fig. 14.2(c) shows the correspond-
ing ideal binary mask. As seen in Sec. 14.5, evaluations across a range of
SNRs show that the estimated masks approximate very well the ideal binary
mask under noisy but anechoic conditions. Similar results are obtained in [49]
where the processing of ITD/IID statistics follows the description above but
an auditory filterbank is used for frequency decomposition.

In reverberant conditions, the anechoic modeling of time delayed and at-
tenuated mixtures is inadequate. Since the binaural cues of ITD and IID are
smeared by reflections, the system performance of ITD/IID based binaural
systems degrades considerably. A model of precedence effect is typically em-
ployed to improve the robustness against these smearing effects. The system
proposed in [43] includes a delayed inhibition circuit which gives more weight
to the onset of a sound in order to detect reliable spectral regions that are not
contaminated by interfering noise or echoes. Speech recognition is then per-
formed in the log spectral domain by employing missing data ASR. In order
to account for the reverberant environment, a spectral energy normalization
is employed before recognition. Similarly, the system proposed in [13] uses
the interaural coherence to identify the T-F regions that are dominated by
the direct sound. Soft masks are derived using probability distributions esti-
mated from histograms of ITD/ILD estimates. The soft masks are then used
as front-ends to a modified missing-data ASR. Under mildly reverberant con-
ditions, the authors show that these techniques can improve ASR performance
considerably.

14.4 Reverberant Binaural Segregation

We present here an alternative strategy to the binaural processors described
previously which can deal more effectively with multiple interfering sources
under reverberant conditions. The system proposed is a two-stage model that
combines target cancellation with a nonlinear processing stage in order to
estimate the ideal binary mask [50]. As seen in Fig. 14.3, an adaptive filter is
applied in the first stage to the mixture signal, which contains both target and
interference, in order to cancel the target signal. The adaptive filter is trained
for simplification in the absence of noise. In the second stage, the system labels
1 only the T-F units that have been largely attenuated in the first stage since
those units are likely to have originated from the target source; and labels 0
the other units.

The signal model in Fig. 14.3 assumes that a desired speech source s(n) has
been produced in a reverberant enclosure and recorded by two microphones
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Fig. 14.3. Schematic diagram of the proposed model. The input signal is a mixture
of reverberant target sound and acoustic interference. At the core of the system is
an adaptive filter for target cancellation. The output of the system is an estimate of
the ideal binary mask.

to produce the signal pair [x1(n), x2(n)]. . The transmission path from target
location to microphones is a linear system and is modeled as:

x1(n) = h1(n) ∗ s(n), (14.5)
x2(n) = h2(n) ∗ s(n), (14.6)

where hi(n) corresponds to the room impulse response for the i’th microphone.
The challenge of source separation arises when an unwanted interference pair
[n1(n), n2(n)] is also present at the input of the microphones resulting in a
pair of mixtures [y1(n), y2(n)]:

y1(n) = x1(n) + n1(n), (14.7)
y2(n) = x2(n) + n2(n). (14.8)

The interference is a combination of multiple reverberant sources and ad-
ditional background noise. Here, the target is assumed to be fixed but no
restrictions are imposed on the number, location, or content of the interfer-
ing sources. In realistic conditions, the interference can suddenly change its
location and may also contain impulsive sounds. Under these conditions, it is
hard to localize each individual source in the scene. The goal is therefore to
remove or attenuate the noisy background and recover the reverberant target
speech based only on target source location.

In the classical adaptive beamforming approach with two microphones
[24], the filter learns to identify the differential acoustic transfer function of
a particular noise source and thus perfectly cancels only one directional noise
source. Systems of this type, however, are unable to cope well with multiple
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noise sources or diffuse background noise. As an alternative, the adaptive
filter is used here for target cancellation. The noise reference is then used in
a nonlinear scheme to estimate the ideal binary mask. This approach offers a
potential solution to the multiple interference problem in reverberation.

In the experiments reported here, we assume a fixed target location and
the filter w(n) in the target cancellation module (TCM) is trained in the
absence of interference. A white noise sequence of 10 s duration is used
to calibrate the filter. We implement the adaptation using the Fast-Block
Least Mean Square algorithm [25] with an impulse response of 375 ms length
(6000 samples at 16 kHz sampling rate). After the training phase, the filters
parameters are fixed and the system is allowed to operate in the presence of in-
terference. Both the TCM output z(n) and the noisy mixture at the primary
microphone y1(n) are analyzed using a short time-frequency analysis. The
time-frequency resolution is 20-ms time frames with a 10-ms frame shift and
257 DFT coefficients. Frames are extracted by applying a running Hamming
window to the signal.

As a measure of signal suppression at the output of the TCM unit, we
define the output-to-input energy ratio as follows:

OIR(Ω, t) =

∣∣∣Z (ejΩ, t
)∣∣∣2∣∣∣Y1 (ejΩ, t)
∣∣∣2 , (14.9)

where Y1(ejΩ, t) and Z(ejΩ, t) are the corresponding Fourier transforms of
y1(n) and z(n), respectively.

Consider a T-F unit in which the noise signal is zero. Ideally, the TCM
module cancels perfectly the target source resulting in zero output and there-
fore OIR(Ω, t) → 0. On the other hand, T-F units dominated by noise are not
suppressed by the TCM and thus OIR(Ω, t) � 0. Hence, a simple binary de-
cision can be implemented by imposing a decision threshold on the estimated
output-to-input energy ratio. The estimated binary mask M̂IBM(Ω, t) is 1 in
those T-F units where OIR(Ω, t) > θ(Ω) and 0 in all the other units.

Fig. 14.4 shows a scatter plot of R(Ω, t) and OIR(Ω, t) obtained for indi-
vidual T-F units corresponding to a frequency bin at 1 kHz. Similar results
are seen across all frequencies. The results are extracted from 100 mixtures
of reverberant target speech fixed at 0◦ azimuth mixed with four interfering
speakers at −135◦, −45◦, 45◦ and 135◦ azimuths. The room reverberation
time, T60, is 0.3 s (see Sec. 14.5 for simulation details); T60 is the time re-
quired for the sound level to drop by 60 dB following the sound offset. The
input SNR considering reverberant target as signal is 5 dB. Observe that there
exists a correlation between the amount of cancellation in the individual T-F
units and the relative strength between target and interference. In order to
simplify the estimation of the ideal binary mask we have used in our eval-
uations a frequency-independent threshold of −6 dB on the output-to-input
energy ratio. The −6 dB threshold is obtained when the reverberant target
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signal and the noise have equal energy in Eq. 14.1. Fig. 14.5 demonstrates the
performance of the proposed system for the following male target utterance:
“Bright sunshine shimmers on the ocean” mixed with four interfering speak-
ers at different locations. Observe that the estimated mask is able to estimate
well the ideal binary mask especially in the high target energy T-F regions.
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Fig. 14.4. Scatter plot of the output-to-input ratio with respect to the relative
strength of the target to the mixture for a frequency bin centered at 1 kHz (from
[50]). The mean and the standard deviation are shown as the dashed line and vertical
bars, respectively. The horizontal line corresponds to the -6 dB decision threshold
used in the binary mask estimation.

14.5 Evaluation

With the emergence of voice-based technologies, current ASR systems are
required to deal with adverse conditions including noisy background and re-
verberation. Conventional ASR systems are constructed as a classification
problem which involves the maximization of the posterior probability

p
(
W
∣∣∣Y sqr(t)

)
,

where Y sqr(t) is an observed short-term speech spectral power vector

Y sqr(t) =
[
Ysqr(Ω = 0, t), . . . , Ysqr(Ω = π, t)

]T
(14.10)
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Fig. 14.5. A comparison between the estimated mask and the ideal binary mask
for a five-source configuration (from [50]). (a) Spectrogram of the reverberant target
speech. (b) Spectrogram of the mixture of target speech presented at 0◦ and four
interfering speakers at locations −135◦, −45◦, 45◦ and 135◦. The SNR is 5 dB. (c)
The estimated T-F binary mask. (d) The ideal binary mask. (e) The mixture spec-
trogram overlaid by the estimated T-F binary mask. (f) The mixture spectrogram
overlaid by the ideal binary mask. The recordings correspond to the left microphone.
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with

Ysqr(Ω, t) =
∣∣∣Y (ejΩ, t

)∣∣∣2 (14.11)

and W is a valid word sequence. The classification is highly sensitive to distor-
tions in the spectral vector Y sqr(t). The standard approach to improving the
ASR robustness is to enhance the target speech in the acoustic input. Given
a T-F mask, the signal is resynthesized through the mask to reconstruct the
target speech and the output is then fed to a conventional ASR system.

An alternative approach is the missing-data ASR proposed by Cooke
et al. [17] which identifies the corrupted T-F spectral regions and treats them
as unreliable or missing. In this approach, the spectral vector Y sqr(t) is parti-
tioned into its reliable and unreliable components as Y sqr,r(t) and Y sqr,u(t),
where Y sqr(t) = Y sqr,r(t)∪Y sqr,u(t). The Bayesian decision is then sought us-
ing only the reliable components. In the marginalization method, the posterior
probability is computed by integrating over the unreliable ones. However, fur-
ther information about the mixing process can give lower and upper bounds
for these unreliable components which can be used in the integral involved
in marginalization. Under the assumption of additive and uncorrelated sound
sources, the true value of the speech energy in the unreliable parts can be con-
strained between 0 and the observed spectral energy Y sqr,u(t). The T-F units
indicated as 1 in the binary mask are the reliable units while those indicated
as 0 are the unreliable ones. It has been shown that this approach outperforms
conventional ASRs with input resynthesized from T-F binary masks. More-
over, ideal binary masks produce impressive recognition scores when applied
to the missing-data ASR for a variety of noise intrusions including multiple
interfering sources [17,49].

The binaural system presented in Sec. 14.3 has been evaluated under noisy
but anechoic conditions using the missing-data ASR. As in [17], the task
domain is speaker independent recognition of connected digits. Thirteen (the
number 1-9, a silence, very short pause between words, zero and oh) word-level
models are trained using an hidden Markov model (HMM) toolkit, HTK [63].
All except the short pause model have 8 emitting states. The short pause
model has a single emitting state, tied to the middle state of the silence model.
The output distribution in each state is modeled as a mixture of 10 Gaussians.
The grammar for this task allows for one or more repetitions of digits and all
digits are equally probable. Both training and testing are performed using the
male speaker dataset in the TIDigits database [34]. Specifically, the models
are trained using 4235 utterances in the training set of this database. Testing
is performed on a subset of the testing set consisting of 461 utterances from
6 speakers, comprising 1498 words. All test speakers are different from the
speakers in the training set. The signals are sampled at 20 kHz.

Fig. 14.6 shows recognition results for target source in the median plane
and one noise source on the right side at 30◦ for a range of SNRs from −5 to
10 dB. The noise source is the factory noise from the NOISEX corpus [57]. The
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factory noise is chosen as it has energy in the formant regions, therefore posing
challenging problems for recognition. The binaural mixtures are obtained by
convolving the original signals with the HRIRs of the corresponding sound
source locations. The binaural processing described in Sec. 14.3 is applied to
derive the corresponding T-F binary mask which is then fed to the missing-
data ASR. Feature vectors for the missing-data ASR are derived from the 512
DFT coefficients extracted in each time frame. Recognition is performed using
log-spectral energy bandlimited to 4 kHz. Hence only 98 spectral coefficients
along with delta coefficients in a two-frame delta-window are extracted in
each frame. As seen in Fig. 14.6, the estimated masks approximate very well
the ideal binary masks resulting in large recognition improvements over the
baseline. Similar results have been obtained in multispeaker conditions in [49].
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Fig. 14.6. Comparison between estimated and ideal binary masks as front-ends
to a missing-data ASR under anechoic conditions (redrawn from [53]). The target
source in the median plane is presented with a noise source on the right side at 30◦

for a range of SNRs from −5 to 10 dB. For comparison, the baseline performance is
shown.

To illustrate the binaural system described in Sec. 14.4, we present here
systematic recognition results under multi-source reverberant conditions. The
reverberation is generated using the room acoustic model described in [43].
The reflection paths of a particular sound source are obtained using the image
reverberation model for a small rectangular room (6 m× 4 m× 3 m) [1]. The
resulting impulse response is convolved with the same HRIRs as before in order
to produce the binaural input to our system. Specific room reverberation times
are obtained by varying the absorption characteristics of room boundaries.
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The position of the listener was fixed asymmetrically at (2.5 m× 2.5 m× 2 m)
to avoid obtaining near identical impulse responses at the two microphones
when the source is in the median plane. All sound sources are presented at
different angles at a distance of 1.5 m from the listener. For all our tests,
target is fixed at 0◦ azimuth unless otherwise specified. To test the robustness
of the system to various noise configurations we have performed the following
tests:

• an interference of rock music at 45◦ (scene 1);
• two concurrent speakers (one female and one male utterance) at azimuth

angles of −45◦ and 45◦ (scene 2); and
• four concurrent speakers (two female and two male utterances) at azimuth

angles of −135◦, −45◦, 45◦ and 135◦ (scene 3).

The initial and the last speech pauses in the interfering utterances have been
deleted in conditions scene 2 and scene 3 making them more comparable
with condition scene 1. The signals are upsampled to 44.1 kHz and convolved
with the corresponding left and right ear HRIRs to simulate the individual
sources for the above three testing conditions (scene 1 – scene 3). Finally,
the reverberated signals at each ear are summed and then downsampled to
16 kHz. In all our evaluations, the input SNR is calculated at the left ear
using reverberant target speech as signal. While in scene 2 and scene 3 the
SNR at the two ears is comparable, the left ear is the ‘better ear’ – the ear with
higher SNR – in the scene 1 condition. In the case of multiple interferences,
the interfering signals are scaled to have equal energy at the left ear.

While the missing-data approach has shown promising results with addi-
tive noise in anechoic conditions, an extension to reverberant conditions has
turned out to be problematic (see for example [43]). We therefore adapt here
the spectrogram reconstruction method proposed in [46] to reverberant con-
ditions which shows improved performance over the missing-data recognizer.
This approach has been suggested in the context of additive noise. In this
approach, a noisy spectral vector Y sqr(t) at a particular frame is partitioned
in its reliable Y sqr,r(t) and its unreliable Y sqr,u(t) components. The task is
to reconstruct the underlying true spectral vector Xsqr(t). Assuming that the
reliable features Y sqr,r(t) are approximating well the true ones Xsqr,r(t), a
Bayesian decision is then employed to estimate the remaining Xsqr,u(t) given
only the reliable component. Hence, this approach works seamlessly with the
T-F binary mask that our speech segregation system produces. Here, the re-
liable features are the T-F units labeled 1 in the mask while the unreliable
features are the ones labeled 0. Although the reliable data in our system
contains some reverberation, we train the prior speech model only on clean
data. This actually avoids the trouble of obtaining a prior for each deploy-
ment condition, and is desirable for robust speech recognition. The signals
reconstructed in this way are then used as input to a conventional ASR which
employs cepstral features.
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The speech prior is modeled empirically as a mixture of Gaussians and
trained on the clean database used for training the conventional ASR (see
below):

p
(
Xsqr(t)

)
=

M∑
k=1

p(k)p
(
Xsqr(t)

∣∣ k), (14.12)

where M = 1024 is the number of mixtures, k is the mixture index, p(k) is
the mixture weight and p(X|k) = N(X;µk;Σk).

Previous studies [17, 46] have shown that a good estimate of Xsqr,u(t) is
its mean conditioned on Xsqr,r(t):

E
{

Xsqr, u(t)
∣∣Xsqr,r(t), 0 ≤ Xsqr,u(t) ≤ Y sqr,u(t)

}
=

M∑
k=1

p
(
k
∣∣Xsqr,r(t), 0 ≤ Xsqr,u(t) ≤ Y sqr,u(t)

)

·
Y sqr,u(t)∫

0

X p
(
X
∣∣ k, 0 ≤ X ≤ Y sqr,u(t)

)
dX

︸ ︷︷ ︸
X̃sqr,u(t)

(14.13)

where p(k |Xsqr,r(t), ...) is the a posteriori probability of the k’th Gaussian
given the reliable data and the integral denotes the expectation X̃sqr,u(t)
corresponding to the k’th mixture. Note that under the additive noise condi-
tion, the unreliable parts may be constrained as 0 ≤ Xsqr,u(t) ≤ Y sqr,u(t) [17].
Here it is assumed that the prior can be modeled using a mixture of Gaus-
sians with diagonal covariance. Theoretically, this is a good approximation if
an adequate number of mixtures are used. Additionally, empirical evaluations
have shown that for the case of M = 1024 this approximation results in an
insignificant degradation in recognition performance while the computational
cost is greatly reduced. Hence, the expected value can now be computed as:

X̃sqr,u(t) =

⎧⎪⎪⎨⎪⎪⎩
µu,k , 0 ≤ µu,k ≤ Y sqr,u(t),

Y sqr,u(t) , µu,k > Y sqr,u(t),

0 , µu,k < 0.

(14.14)

The a posteriori probability of the k’th mixture given the reliable data is
estimated using the Bayesian rule from the simplified marginal distribution
p(Xsqr,r|k) = N(Xsqr,r;µr,k, σr,k) obtained without utilizing any bounds on
Xsqr,u. While this simplification results in a small decrease in accuracy, it
gives substantially faster computation of the marginal.

The same recognition task is used as in the previous evaluation. Training
is performed using the 4235 clean signals from the male speaker dataset in the
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TIDigits database downsampled to 16 kHz to be consistent with the system
described in Sec. 14.4. The HMMs are trained with clean utterances from
the training data using feature vectors consisting of the 13 mel-frequency
cepstral coefficients (MFCC) including the zeroth order cepstral coefficient,
C0(n), as the energy term together with their first and second order temporal
derivatives. MFCCs are used as feature vectors as they are most commonly
used in state-of-the-art recognizers [45]. Cepstral mean normalization (CMN)
is applied to the cepstral features in order to improve the robustness of the
system under reverberant conditions [52]. Frames are extracted using 20 ms
windows with 10 ms overlap. A first-order preemphasis coefficient of 0.97 is
applied to the signal. The recognition result using clean test utterances is 99 %
accuracy. Using the reverberated test utterances, performance degrades to
94 % accuracy.

Testing is performed on a subset of the testing set containing 229 utter-
ances from 3 speakers which is similar to the test used in [43]. The test speak-
ers are different from the speakers in the training set. The test signals are
convolved with the corresponding left and right ear target impulse responses
and noise is added as described above to simulate the conditions of Scene 1
to Scene 3. Speech recognition results for the three conditions are reported
separately in Figs. 14.7, 14.8 and 14.9 at five SNR levels: −5 dB, 0 dB, 5 dB,
10 dB and 20 dB. Results are obtained using the same MFCC-based ASR as
the back-end for the following approaches:

• fixed beamforming (delay-and-sum),
• adaptive beamforming,
• target cancellation through adaptive filtering followed by spectral subtrac-

tion,
• our proposed front-end ASR using the estimated mask
• and finally our proposed front-end ASR using the ideal binary mask.

Note that the ASR performance depends on the interference type and we
obtain the best accuracy score in the two speaker interference. The baseline
results correspond to the unprocessed left ear signal. Observe that our system
achieves large improvements over the baseline performance across all condi-
tions.

The adaptive beamformer used in evaluations follows the two-stage adap-
tive filtering strategy described in [56] that improves the classic Griffiths-Jim
model [24] under reverberation. The first stage is identical to our target can-
cellation module and is used to obtain a good noise reference. The second
stage uses another adaptive filter to model the difference between the noise
reference and the noise portion in the primary microphone in order to extract
the target signal. Here, training for the second filter is done independently
for each noise condition in the absence of target signal using 10 s white noise
sequences presented at each location in the tested configuration. The length of
the filter is the same as the one used in the TCM (375 ms). As seen in Fig. 14.7,
the adaptive beamformer outperforms all the other algorithms in the case of
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Fig. 14.7. Recognition performance for Scene 1 at different SNR values for the
reverberant mixture (∗), a fixed beamformer (�), an adaptive beamformer (�), a
system that combines target cancellation and spectral subtraction (�), an ASR
front-end using the estimated binary mask (•), and an ASR front-end using the
ideal binary mask (�) (from [50]).

a single interference (scene 1). However, as the number of interferences in-
creases, the performance of the adaptive beamformer degrades rapidly and
approaches the performance of the fixed beamformer in scene 3. As proposed
in [2], we can combine the target cancellation stage with spectral subtrac-
tion to attenuate the interference. As illustrated by the recognition results
in Figs. 14.8 and 14.9, this approach outperforms the adaptive beamformer
in the case of multiple concurrent interferences. While spectral subtraction
improves the SNR gain in target-dominant T-F units, it does not produce
a good target signal estimate in noise-dominant regions. Note that our ASR
front-end employs a better estimation of the spectrum in these unreliable T-F
units and therefore results in large improvements over the spectral subtrac-
tion method. Although the results using our ASR front-end show substantial
performance gains, further improvement can be achieved as can be seen in the
results reported with the ideal binary mask.

14.6 Concluding Remarks

In anechoic conditions, there exists a systematic relationship between com-
puted ITD and IID values and local SNR within individual T-F units. This
relationship leads to characteristic clustering in the joint ITD-IID feature
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Fig. 14.8. Recognition performance for Scene 2 at different SNR values for the
reverberant mixture (∗), a fixed beamformer (�), an adaptive beamformer (�), a
system that combines target cancellation and spectral subtraction (�), an ASR
front-end using the estimated binary mask (•), and an ASR front-end using the
ideal binary mask (�) (from [50]).

space, which enables the effective use of supervised classification to estimate
the ideal binary mask. Estimated binary masks thus obtained from mixtures
of target speech and acoustic interference have been shown to match the ideal
ones very well.

In natural settings, reverberation alters many of the acoustical properties
of a sound source reaching our ears, including smearing the binaural cues due
to the presence of multiple reflections. This is especially detrimental when
multiple sound sources are present in the acoustic scene since the binaural
cues are now required to distinguish between the competing sources. Location
based algorithms that rely on the anechoic assumption of time delayed and
attenuated mixtures are highly affected by these distortions. In this chapter
we have described strategies to alleviate this problem as well as a system that
integrates target cancellation through adaptive filtering and T-F binary mask-
ing which is able to perform well under multi-source reverberant conditions.

Most work in binaural CASA assumes that sound sources remain fixed
throughout testing. The system proposed in Sec. 14.4 alleviates somehow the
problem; it is insensitive to interference location changes but assumes a fixed
target location. None of these are realistic situations since head movement as
well as source movement can occur. One way to approach the problem is to add
a source tracking component. For example, the system proposed in [48] is able
to track the azimuths of multiple acoustic sources using ITD/IID estimates.
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Fig. 14.9. Recognition performance for Scene 3 at different SNR values for the
reverberant mixture (∗), a fixed beamformer (�), an adaptive beamformer (�), a
system that combines target cancellation and spectral subtraction (�), an ASR
front-end using the estimated binary mask (•), and an ASR front-end using the
ideal binary mask (�) (from [50]).

Such a system could be coupled with a binaural processor to deal with mov-
ing sources. Nix and Hohmann [42] have recently proposed to simultaneously
track sound source locations and spectral envelopes using a non-Gaussian
multidimensional statistical filtering approach. This strategy could be used to
integrate in a robust way different acoustic cues even when they are corrupted
by noise, reverberation and motion. Other two-microphone algorithms com-
bine location cues and pitch information or other signal processing techniques
to improve system robustness [4, 36,51].

The computational goal of many CASA algorithms is the ideal binary T-F
mask which selects target-dominant spectrotemporal regions. Signals recon-
structed from such masks have been shown to be substantially more intelligible
for human listeners than the original mixtures [14,49]. However, conventional
ASR systems are extremely sensitive to the distortions produced during resyn-
thesis. Here, we have utilized two strategies that minimize these effects on
recognition:

• the missing-data ASR proposed by Cooke et al. [17] that utilizes only the
reliable target dominant features in the acoustic mixture

• and a target reconstruction method for the unreliable features proposed
by Raj et al. [46].

As seen in our evaluations, the proposed binaural CASA systems coupled with
these two strategies can produce substantial ASR improvements over baseline
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under both anechoic and reverberant multi-source conditions. Recently, a new
approach to robust speech recognition has been proposed to additionally take
into account the varied accuracy of features derived from front-end prepro-
cessing [18]. Srinivasan and Wang [55] convert binary uncertainty in the T-F
mask into real-valued uncertainty associated with cepstral features, which can
then be used by an uncertainty decoder during recognition. Such uncertainty-
based strategies can be utilized to further improve the performance of current
binaural CASA systems when applied to robust speech recognition [54].
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43. K. J. Palomäki, G. J. Brown, D. L. Wang: A binaural processor for missing
data speech recognition in the presence of noise and small-room reverberation,
Speech Commun., 43, 361–378, 2004.

44. M. S. Pedersen, D. L. Wang, J. Larsen, U. Kjems: Two-microphone separation
of speech mixtures,IEEE Trans. Neural Netw., in press, 2008.

45. L. R. Rabiner, B. H. Juang: Fundamentals of Speech Recognition, 2nd ed., En-
glewood Cliffs, NJ, USA: Prentice-Hall, 1993.

46. B. Raj, M. L. Seltzer, R. M. Stern: Reconstruction of missing features for robust
speech recognition, Speech Commun., 43, 275–296, 2004.

47. N. Roman, D. L. Wang, G. J. Brown: Speech segregation based on sound local-
ization, Proc. IJCNN ’01, 2861–2866, 2001.

48. N. Roman, D. L. Wang: Binaural tracking of multiple moving sources, Proc.
ICASSP ’03, 5, 149–152, 2003.

49. N. Roman, D. L. Wang, G. J. Brown: Speech segregation based on sound local-
ization, JASA, 114, 2236–2252, 2003.

50. N. Roman, S. Srinivasan, D. L. Wang: Binaural segregation in multisource re-
verberant environments, JASA, 120, 4040–4051, 2006.

51. A. Shamsoddini, P. N. Denbigh: A sound segregation algorithm for reverberant
conditions, Speech Commun., 33, 179–196, 2001.

52. M. L. Shire: Discriminant training of front-end and acoustic modeling stages to
heterogeneous acoustic environments for multi-stream automatic speech recog-
nition, Ph. D. dissertation, University of California, Berkeley, 2000.

53. S. Srinivasan, N. Roman, D. L. Wang: Binary and ratio time-frequency masks
for robust speech recognition, Speech Commun., 48, 1486–1501, 2006.

54. S. Srinivasan, N. Roman, D. L. Wang: Exploiting uncertainties for binaural
speech recognition, Proc. ICASSP ’07, 4, 789–792, 2007.



Binaural Speech Segregation 549

55. S. Srinivasan, D. L. Wang: Transforming binary uncertainties for robust speech
recognition, IEEE Trans. Audio, Speech, and Language Process., 15, 2130–2140,
2007.

56. D. Van Compernolle: Switching adaptive filters for enhancing noisy and rever-
berant speech from microphone array recordings, Proc. ICASSP ’90, 833–836,
1990.

57. A. P. Varga, H. J. M. Steeneken,M. Tomlinson, D. Jones: The NOISEX-92
study on the effect of additive noise on automatic speech recogonition, Technical
Report, Speech Research Unit, Defense Research Agency, Malvern, UK, 1992.

58. D. L. Wang: On ideal binary mask as the computational goal of auditory scene
analysis, in P. Divenyi (ed.), Speech Separation by Humans and Machines, Nor-
well, MA, USA: Kluwer Academic, 2005, 181–197.

59. D. L. Wang, G. J. Brown: Separation of speech from interfering sounds based
on oscillatory correlation, IEEE Trans. Neural Netw., 10, 684–697, 1999.

60. D. L. Wang, G. J. Brown (eds.): Computational auditory scene analysis: Prin-
ciples, algorithms and applications, IEEE Press/Wiley-Interscience, 2006.

61. T. Whittkop, V. Hohmann: Strategy-selective noise reduction for binaural dig-
ital hearing aids,Speech Commun., 39, 111–138, 2003.

62. O. Yilmaz, S. Rickard: Blind separation of speech mixtures via time-frequency
masking, IEEE Trans. Signal Process., 52(7), 1830–1847, 2004.

63. S. Young, D. Kershaw, J. Odell, V. Valtchev, P. Woodland: The HTK Book (for
HTK Version 3.0), Microsoft Corporation, 2000.

64. M. Zibulevsky, B. A. Pearlmutter, P. Bofill, P. Kisilev: Blind source separa-
tion by sparse decomposition, in S. J. Roberts, R. M. Everson (eds.), Indepen-
dent Component Analysis: Principles and Practice, Cambridge University Press,
2001.


