
Web, Graphs and Semantics

Olivier Corby

INRIA Edelweiss Team
2004 route des lucioles - BP 93

FR-06902 Sophia Antipolis cedex
olivier.corby@sophia.inria.fr

Abstract. In this paper we show how Conceptual Graphs (CG) are a
powerful metaphor for identifying and understanding the W3C Resource
Description Framework. We also presents CG as a target language and
graph homomorphism as an abstract machine to interpret/implement
RDF/S, SPARQL and Rules. We show that CG components can be used
to implement such notions as named graphs and properties as resources.

In brief, we think that CG are an excellent framework to progress in
the Semantic Web because the W3C now considers that RDF graphs
are– along with XML trees – one of the two standard formats for the
Web.

1 Introduction

Conceptual Graphs were introduced by John F. Sowa in 1976 when he was at
IBM [32] and were popularized in his foundational book of 1984 [33].

The Semantic Web was introduced in 1998 by W3C along with the Resource
Description Framework (RDF) that enables the description of graphs. Recently,
the SPARQL Query Language for RDF was published as a Recommendation
by W3C. Further, Tim Berners-Lee informally reformulated his vision of the
Semantic Web as a “Web of Data” and also as a “Giant Global Graph”1 (GGG).
This thinking lead to a dramatic change in the architecture of WWW: RDF
graphs and XML trees were both considered as data structures for information
sharing on the Web according by the W3C2.

In this paper our presentation follows as an exercise of storytelling about the
work done in the Edelweiss/Acacia team from INRIA with CG for RDF Se-
mantic Web. We show how Conceptual Graphs (CG) were a powerful metaphor
for identifying, understanding and implementing the W3C Resource Description
Framework. We also present CG as a target language and graph homomorphism
and as an abstract machine to interpret/implement RDF/S, SPARQL and Rules.
In particular, we would like to show that CG components can be used to imple-
ment such notions as named graphs and properties as resources.

In short, we believe that CG are a good framework to progress in the Semantic
Web because the W3C now considers that RDF graphs are – with XML trees –
one of the two standard formats of the Web.
1 http://dig.csail.mit.edu/breadcrumbs/node/215
2 http://www.w3.org/Consortium/technology

P. Eklund and O. Haemmerlé (Eds.): ICCS 2008, LNAI 5113, pp. 43–61, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

44 O. Corby

2 History

The Acacia team previously worked on Information Retrieval through Knowl-
edge Models with CG (PhD Thesis of Philippe Martin [26]) and KADS. We
evolved from Knowledge Based Systems to Knowledge Engineering for Corpo-
rate Memory Management. We were interested in mixing Knowledge Enginering
(KE) and Structured Documents and then KE on the Web.

In 1998 we were interested in and studied XML and XSLT for Structured Web
documents. In 1999, RDF was published and, thanks to our CG background, we
understood that it could be used to implements graphs (CG/RDF) for documents
(XML) and we worked on a first mock-up based on Notio [31,23] in Java. This first
mock-up, calledCorese forCOnceptualREsource SearchEngine [10], implemented
the first translator from RDF/S to the CG model. In 2000 we had the pleasure to
collaborate with Peter Eklund and Philippe Martin on RDF and CG [27].

Then we focussed on Corporate Semantic Web, a mix between Corporate Mem-
oryManagement and Semantic Web Technologies.We were involved in a European
project called Comma for Corporate Memory Management through Agents [18]
within which we started to leverage the mock-up into a research prototype.

Tenyears later,we havemore than20 running applications usingCG/RDFand5
generic systems based on the technology.We can now acknowledge that CGs were a
goodmetaphor and enabledus to understand and foresee the SemanticWebproject
and enable us to participate. Itwas our chance to bemembers of theCGcommunity
and members of INRIA, one of the the founding members of the W3C.

3 CG for RDF

We have proposed a mapping between RDF and CG and extensions to the simple
conceptual graph model in order to implement RDF and SPARQL features such
as property variables, named graphs, filters and optional parts.

3.1 RDF Schema

We have designed a mapping between RDF and CG, and RDF Schema and CG
support. RDF triples are mapped to relations and resources are mapped to con-
cepts. RDFS classes are mapped to concept types, RDF properties are mapped
to relation types, domain and range are mapped to relation signature. SubClassOf
and subPropertyOfaremapped to concept and property type subsumption respec-
tively. We have designed the type inference algorithm that enables us to create well
typed concepts according to their rdf:typeand to the signatures of their relations.
We have implemented some properties of relations such as symmetry, inverse and
transitivity.

An interesting feature of RDF Schema is that it follows RDF syntax, i.e. triples
made of a resource, a property and a value. Hence, an RDF Schema statement can
be understood as a relation in a graph. For example the RDFS triples below:

Human subClassOf Primate
Human label ’human’@en

Web, Graphs and Semantics 45

can be translated into the graph relations:

[Class:Human]
-(subClassOf)-[Class:Primate]
-(label)-[Literal:’human’@en]

RDF Schema statements loaded in the graph can be seen as annotations. They
are related to the instances via the rdf:type relation.

[Human:Jules]-(rdf:type)-[Class:Human]-(subClassOf)-[Class:Primate]

Once present in the graph, the RDFS statements represent (reify) the real types
that are present in the support. There is no semantics attached to these relations,
the semantics comes from the CG support as usual. They are used as proxies for
querying purpose. Two occurrences of the same identifier may represent two differ-
ent entities according to the context, e.g. Human identifies a class and an instance.

For example, the query below retrieves instances of classes whose English label
contains the string ’human’ and hence finds Jules:

?x r ?y . ?y rdf:type ?class .
?class rdfs:label ?l
filter(regex(str(?l), ’human’) && lang(?l) = ’en’)

This feature happens to be extremely useful in real applications where we can
query the graph and its schema within the same formalism. Once again, the oper-
ational semantics w.r.t. graph projection is carried out by the support.

3.2 Type Intersection

One main difference between RDF and CG is that in RDF a resourcemay have sev-
eral types whereas in CG a given concept has but one type. We solved this problem
by assigning as a concept type the intersection of the types. Hence, we had to design
an algorithm that computes, on the fly, the intersection of two types.

x rdf:type T1 p1 domain T1
x rdf:type T2 p2 domain T2
=> x p1 y
[T1 AND T2 : x] x p2 z

=>
[T1 AND T2 : x]

The algorithm maintains the consistency in the type hierarchy. Which means
that subtypes of types for which we compute an intersection must then be sub-
types of this intersection. In the example below, Aircraft must be a subclass of the
intersection of Mobile and Object:

46 O. Corby

Flying subClassOf Mobile Aircraft subClassOf Flying
Artefact subClassOf Object Aircraft subClassOf Artefact

Mobile_AND_Object subClassOf Mobile
Mobile_AND_Object subClassOf Object
=>
Aircraft subClassOf Mobile_AND_Object

The intersection algorithm also takes into account disjoint types that cannot
generate intersections in their descendants.

3.3 Datatype Values

In order to implement RDF we had to design a datatype extension. Some nodes
in the graph carry datatype values such as (integer, 45) or (string, ’Garfield’).
Datatype values are implemented as Java objects whose classes implement op-
erators, such as equal, greater than, etc., through method overloading. Markers of
literal nodes contain such Java objects.

Two input strings may lead to the same datatype value:
’01’xsd:integer and ’1’xsd:integer represent the same value. Hence they

must be mapped to the same marker containing the same value.
Operators are implemented through method overloading that realizes type

checking, i.e. numbers can compare with numbers, strings with strings, etc. We de-
cided for efficiency reasons to rely on Java polymorphism to tackle type
checking.

3.4 Property Concept

In a standard query graph, theremaybe genericmarkers associated to concepts but
not with relations. Property variables enable the use a variable in a query in place
of a property (relation). For example in the query below we search two concepts,
?x and ?y, related by any property, denoted by variable ?p.

?x ?p ?y

The advantage of using a variable is that we can retrieve the property in the
result by getting the value of variable ?p just as any other variable (e.g. ?x). In
addition, we can search for concepts that are related by the same property by using
the same variable.

?x ?p ?y . ?y ?p ?z

Eventually, we can express constraints on the property by means of the variable.
For example, we can look for transitive properties:

?x ?p ?y . ?p rdf:type owl:TransitiveProperty

Or we can search for properties from a specific ontology:

Web, Graphs and Semantics 47

?x ?p ?y
filter(regex(str(?p), ’http://www.inria.fr/edelweiss/schema#’))

In order to implement the processing of property variablewithin standard graph
projection, we have proposed to reify the property by an additional concept. This
concept is of type rdf:Property and its marker is the name of property. Each
occurrence of relation in a graph contains the additional concept that represents
(reify) the property.

x1 r y1 -> r(x1, y1, r)
x2 q y2 -> q(x2, y2, q)

Hence we manage hyperarcs, i.e. arcs that relate more that two nodes. It is re-
markable that several authors [3,14,22] propose the same extension from a theo-
retical point of view.

In our extension, a query relation may or may not use a property variable. If not,
the property concept is invisible and is not processed during graph projection.

3.5 Named Graph

Following the same design pattern, we have implemented a second extension for
named graph. A named graph is a graph which is associated a name by means of
a URI. This URI is a standard resource that can itself be annotated by means of
properties.

In the example below, g1 is the name of a graph:

g1 { cat on mat . cat name ’Garfield’ }
g1 author James

The name of the graph (the URI) is reified as an additional concept and each
relation of a given graph contains this additional concept. With the example above,
and with std as the URI of the standard graph (the graph with no name):

on(cat, mat, on, g1)
name(cat, ’Garfield’, name, g1)
author(g1, James, author, std)

Note that name (resp. author) appears once as the name of the relation and
once as the concept that reifies the relation, according to the hyperarc point of
view explained above. Hence, the same name is used for different entities.

We are then able to process queries with graph patterns by matching the graph
URI with the additional argument carried by the hyperarcs:

select * where {
graph ?g { cat on ?place }
}

This query is translated into the following hyperarcwhere :b represents a query
blank which means that we don’t care about the property concept:

48 O. Corby

on(cat, ?place, _:b, ?g)

We obtain as result:

?g = g1 ; ?place = mat

It is remarkable that this very simple idea, implementing named graphs with
an additional argument, solves the problem of representing and querying named
graphs. This is what we mean by considering CG as a valuable target abstract ma-
chine to implement RDF processing. The SPARQL from and from named clauses
are implemented by adding appropriate filters on the graph variables.

select *
from <g1> on(?cat, ?place, on, ?g)
where { ?cat on ?place } filter(?g = <g1>)

3.6 Inference Rules

We have designed a forward chaining graph rule language with an RDF/SPARQL
syntax.This language is inspired by Salvat and Mugnier [30]. The syntax of the rule
condition and conclusion patterns is that of SPARQL patterns (i.e. collections of
triples). We have included the graph pattern in the syntax, hence it is possible to
take named graphs into account.

graph ?g { ?x ?p ?y . ?y rdf:type owl:SymmetricProperty }
=>
graph ?g { ?y ?p ?x }

3.7 Projection

We have designed and implemented an hypergraph homomorphism algorithm
based on relation enumerations following heuristics to optimize the search. The
order in which the query relations are considered is compiled according to heuris-
tics such as the relation’s cardinality (number of occurrences), connexity, presence
of filters, etc. In addition to compiling the order of query relations, the algorithm is
able to backjump in case of a failure due to the absence of a target relation or due to
the failure of a constraint. By backjump we mean that it is able to backtrack – not
systematically to the preceding query relation – but to a preceding query relation
that may solve the failure. The index of where to backjump is determined statically
and compiled.

In addition to property variables and graph patterns for named graphs, the al-
gorithm is able to process optional query parts. If an optional part fails, the query
does not fail. If it succeeds, the answer contains additional information.

Example: retrieve resources which have a name (mandatory) and which may
have an age (optional).

[?x]-(name)-[?name]
optional { [?x]-(age)-[?age] }

Web, Graphs and Semantics 49

An optional part may contain several relations, in which case it succeeds if all
relations succeed. It may contain filters in which case it succeeds if the filters eval-
uate to true. It may contain nested optional parts which are processed only if the
current optional part succeeds.Hence, the processing of querieswith optional parts
imply the introduction of scopes surrounding the optional parts.

Eventually, the algorithm has been adapted to interpret SPARQL queries with
select, distinct, order by and limit operations. The distinct operation is an inter-
esting constraint that ensures that two answers do not contain the same variable
bindings, e.g.selectdistinct?x ?y ensures that the bindings of ?x, ?y differ in all
answers. Hence, we need to manage a list of current answers to the homomorphism
and check that the current answer that is computed is distinct from all previous an-
swers. An optimization computes the distinct set as soon as all variables are bound
in the partial result. If it is not the case, the graph homomorphism backtracks and
searches for other bindings. In practice, the algorithm backjumps to a new binding.

In addition, we have added a group by operation that enables us to group results
that share same variable binding for some variables and count() that enables to
count the number of values of a variable after grouping. We have also added the
possibility of returning the result of an expression in the result (in the select clause).
For example, the query below retrieves persons that are the authors of documents,
groups the results by person, counts the documents of each author and returns the
counter in the result.

select ?person count(?doc) as ?count
where { ?person :author ?doc }
group by ?person

These operations fits smoothly within graph homomorphism but the SPARQL
union operation does not fit well into this paradigm. It needs to be implemented
as an operator of an interpreter that would implement AND, UNION and OP-
TIONAL operations applied to elementary graph homomorphisms.

3.8 Constraints

Another originality of our homomorphism algorithm is that it is able to take ad-
ditional constraints on node values into account. Example of constraints are: ?x
!= ?y, ?date <= ’2008-01-01’and fun:foo(?x, ?y)where ?x, ?y, ?date repre-
sent the value of the target nodes associated by homomorphism to the query nodes
denoted by the variables.

A query graph with constraint matches a target subgraph found by homomor-
phism if the constraint evaluates to true when applied to the appropriate nodes of
the target graph. Constraints are prefixed by the filter keyword.

Examples:

[?x]-(r)-[?z]-(p)-[?y] filter(?x != ?y)

[?x]-(birth)-[?date] filter(?date <= ’2008-01-01’)

50 O. Corby

We have designed a constraint language that has been extended to process
SPARQL filters. The language enables us to define simple operations such as com-
parisons between node values: ?x != ?y, boolean expressions such as: ?x != ?y &&
?z <= ’2004-01-01’ and function calls such as: xsd:datatype(?x).

The atomic entities of the language are constants and variables. Constants are
values carried by the nodes of the target graph. They may be URIs of resources
or literal values such as strings, integers, booleans and dates. Variables represent
the values of target nodes found by graph homomorphism. Values of target nodes
are datatype objects, similar to the constants, that implement polymorphic oper-
ators according to type checking rules (integers do not compare with strings, floats
compare with doubles, etc.).

Constraint expressions (EXP) are built on top of the atomic entities (CST, VAR)
with function calls (FUN) and terms (TERM). Terms are recursively build with ex-
pressions related by operators. An abstract syntax of the constraint language is
given below:

EXP ::= CST | VAR | FUN | TERM
FUN ::= NAME (EXP*)
TERM ::= EXP and EXP | EXP or EXP | not EXP |

(EXP) | EXP OPER EXP
OPER ::= < <= = != >= > + - * /

The projection algorithm cooperates with a constraint evaluator that is able to
evaluate partial constraints according to a current partial binding. As soon as the
variables of a constraint are bound by target nodes, the constraint is evaluated.
If the expression evaluates to true, the projection continues (the current partial
projection is successful). If it fails, the projection algorithm backtracks in order to
find another binding for the variables. In fact, the algorithm backjumps in order to
effectively change the binding.

The evaluator is a recursive function that has two arguments: an expression of
the constraint language and an environment that contains variable bindings. Vari-
able bindings are computed by the projection and are the values of the target nodes
corresponding to the query node variables, e.g. ?x = 12 ; ?y = ’2007-01-01’; ?z =
URI. The evaluator returns values of the same domains as the constants. The final
result of a constraint evaluation must evaluate to true.

A scheme of the constraint evaluator is given below where exp is the constraint
expression and env is the variable binding environment.

eval(exp, env){
switch(exp){
case constant : return exp;
case variable : return env.get(exp);
case funcall : values = for all arg(exp) : eval(arg, env);

return apply(fun(exp), values);
case not :return ! eval(arg(exp), env);
default : return apply(operator(exp), eval(arg1(exp), env),

eval(arg2(exp), env));}}

Web, Graphs and Semantics 51

Complex constraint expressions are decomposed into smaller ones which are as-
sociated to subpart of the query where their variables are bound and they are eval-
uated as soon as possible in order to cut the search tree.

It must be noted that – as in SPARQL – it is possible to test a negation as failure
query using an optional pattern and a ! bound() constraint. As an example, the
query below searches persons that are not author of a document. The query search
for an optional author relation. If it is not found, the query succeeds; if it is found,
the constraint fails because the ?doc variable is bound and hence the query fails.

select * where {
?x rdf:type :Person
optional { ?x :author ?doc }
filter(! bound(?doc))
}

3.9 Type Relaxation

Ourprojection algorithm is able to performapproximate searchwrt types. It is pos-
sible to relax type checking according to subsumption. For example, when search-
ing for a person author of an article, we may return a research team author of a
report. We relax the type Person by Team and the type Article by Report. We
compute a semantic distance between concept types which decreases with depth
like in [35] and try to minimize the sum of the distances.

This idea happens to be quite interesting and wehave generalized this relaxation
process. It is now possible to design and program a new distance algorithm and
specify such a user defined algorithm in a query. Hence, the user can try different
relaxation algorithms according to the domain and/or the query. The syntax is the
following where the more keyword authorizes relaxation, the prefix specifies where
to fin the Java package of the user defined distance algorithm and the relax by
statement requires the user defined distance.

prefix dd: <fun://fr.inria.edelweiss.Distance>
select more * where { PATTERN }
relax by dd:distance

3.10 Graph Path

We implemented an extension to SPARQL to process path queries, inspired by
[25,1]. The path algorithm avoids cycles. Using a path variable in place of the prop-
erty is done by introducing a $ prefixed variable, which means find a path of one or
more relations that links a and b:

a $path b

It is possible to test the length of the target path:

pathLength($path) >= 2 && pathLength($path) <= 8

52 O. Corby

It is possible to associate a regular expression that must be matched by the types
of the relations of the target path. In the following case, we want the properties to
be either p1 or p2. By default, we also accept subproperties.

match($path, star(p1 || p2))

We have designed and implemented the following original extension in order to
match the target relations that have been found in the path. The target relations
of the path are grouped in a transient named graph whose name is given by the
path variable. Hence this named graph is accessible by means of a graph pattern
on the path variable. It has for effect to enumerate the target path relations as
shown below, where $path is the path variable:

graph $path { ?x ?p ?y }

Thepurpose of this pattern, in addition to enumerate the path relations in the re-
sult, is to enable us to specify additional constraints such as in the examples shown
below. For instance, to go through a specific resource within the path:

graph $path { ?x ?p ?y filter(?x = a || ?y = a) }

Or not to go through a specific resource:

graph $path {
optional { ?x ?p ?y filter(?x = a || ?y = a) }
filter (! bound(?p))
}

Or to find a specific pattern within the path:

graph $path { ?x p a . a q ?z }

This path algorithm has been applied to the Insee RDF base that describes
French territory3 with 500,000 relations and a version which computes shortest
path was able to find a shortest path between Nice and Grenoble in 0.3 sec.

Another extension of the path algorithm for navigating through recursively
nested contexts is explained below.

4 Context

Recently, we have been working on contexts using named graphs. A named graph
is a graph which has a name given by a URI and which is accessible by means of a
graph pattern in a query. In addition, this URI is itself a resource that can be part
of graphs.

3 http://rdf.insee.fr/geo/

Web, Graphs and Semantics 53

Two named graphs, g1 and g2, are shown below:

g1 { a p b . b q c} g2 { a r d }

A query with a graph pattern to retrieve relations in named graphs:

select *
from named <g1>
from named <g2>
where {
graph ?g { ?x ?p ?y }
}

A special case of named graphs enables us to describe nested graphs such as
nested Conceptual Graphs.

:Alice c:tell :story
:story { :Cat :on :Mat }

Named graphs and graph patterns are simple but powerful notions that enable
us to model contextual metadata where a context is a named graph and is denoted
by its name.

4.1 Hierarchy of Type of Context

It is possible to model a hierarchy of class of context and to type the URI of the
named graphs. Hence we can retrieve contextual metadata according to context
types and exploit subsumption.

Past subClassOf Context
Prehistory subClassOf Past
Paleolithic subClassOf Prehistory
Neolithic subClassOf Prehistory
Present subClassOf Context
Future subClassOf Context

g1 rdf:type :Paleolithic
g1 { :man :practice :hunting }

g2 rdf:type :Neolithic
g2 { :man :practice :agriculture }

A query that retrieves activities in contexts of type Prehistory, i.e. Paleolithic
and Neolithic:

graph ?g { :man :practice ?activity }
?g rdf:type :Prehistory

54 O. Corby

4.2 Annotation of Context

Thanks to its uniform nature, it is possible to annotate context by means of its
name which is a URI.

g1 rdf:type :Paleolithic g2 rdf:type :Neolithic
g1 :start -2500000 g2 :start -10000
g1 :location :Europe g2 :location :MiddleEast

Note that it is possible to have several contexts of type Neolithic that start at
different dates according to the location. We can then query contextual metadata:

graph ?g { ?x :practice ?activity }
?g :start ?date filter(?date <= -10000)

4.3 Contextual Relations
We can now model semantic relations between contexts such as temporal relations.
It is possible to define spatio/temporal relations, linguistic relations such as those
used in rhetorical structure theory (RST), logical relations, etc. Note that contex-
tual relations can themselves be contextualized. For example, g1 sequence g2 is
true in context state1:

g1 { ... } state1 { g1 sequence g2 }
g2 { ... } state2 { g3 sequence g4 }
g3 { ... } state3 { state1 parallel state2 }
g4 { ... }

We can then query what happens in a context ?g2 after a given context ?g1:

graph ?g1 { ?x ?p ?y }
graph ?g2 { ?z ?q ?t }
?g1 sequence ?g2

It is of course desirable to specify the algebraic properties of the contextual rela-
tions, e.g. parallel is symmetric and transitive, sequence is transitive, etc. This can
be done using OWL light statements that are interpreted in Corese. More complex
algebraic properties of relations can be modeled by rules.

parallel rdf:type owl:SymmetricProperty
parallel rdf:type owl:TransitiveProperty
sequence rdf:type owl:TransitiveProperty

4.4 Rec Graph Pattern

In order to enable querying contextual relations, we have designed a generalized
version of the path algorithm dedicated to nested contexts.

In the example above, suppose that we want to search/retrieve triples recur-
sively nested within the state3 context, i.e. the triples in state1, state2, g1 and g2.
We need to know the exact relations between the nested context to retrieve these
triples. It may be impossible to be aware of the whole structure. To solve this, we
propose a new query pattern called rec graph (recursive graph) as follows:

Web, Graphs and Semantics 55

rec graph state3 { ?x ?p ?y }

The result of the query will be the triples from the state3 graph and the triples
from the recursivelynested graphs, e.g. state1 and g1.This is computed by the path
algorithm described above. Instead of searching for path from ?x to ?y (first and
second arguments), the algorithm searches for path from state3 to ?x, (i.e. from
graph name argument to first argument). An example of such a path of length 3 is:
(state3, state1), (state1, g1), (g1, a) as shown below:

(1) state3 { state1 parallel state2 }
(2) state1 { g1 sequence g2 }
(3) g1 { a p b }

Another path would be: (state3, state2), (state2, g4), (g4, b). This
query pattern also enables to search if several triples are recursively related by
an embedding context:

rec graph ?g { a p b . c q d }

It is also possible to specify a regular expression on the relations that link the
nested contexts as shown below:

rec graph ?g {
?x ?p ?y
filter(match(?p, star(log:property)))
}

4.5 Defining a Resource Using a Named Graph

The named graph statement enables to assign a name (a URI) to a graph. We pro-
pose to use this statement in a slightly different way in order to assign a definition
(a graph) to a URI (it’s name). This enables to define composite objects made of
atomic objects where none of the sub objects plays a special role. Hence we assign
a URI to a composite structure made of several related objects. The URI can then
be used in other composite structures.

For example, we define the H2O molecule as a named graph containing a de-
scription of two hydrogens related to one oxygen. The cos:graph attribute is a
syntactic extension to RDF/XML, (W3C member submission [19]), that enables
to define the URI of a named graph. Note that in the example below, there are two
differentHydrogens (two blank nodes) related to the same Oxygen (one blank node
with ’o’ ID).

<c:Hydrogen cos:graph=’&c;H2O’ >
<c:related><c:Oxygen rdf:nodeID=’o’/></c:related>
</c:Hydrogen>
<c:Hydrogen cos:graph=’&c;H2O’ >
<c:related><c:Oxygen rdf:nodeID=’o’/></c:related>
</c:Hydrogen>

56 O. Corby

This RDF description is equivalent to the named graph:

H2O { [H]-(r)->[O]<-(r)-[H] }

Then we define the CH4 molecule as a named graph containing a description of
one carbon related to four hydrogens.

<c:Carbon cos:graph=’&c;CH4’ >
<c:related><c:Hydrogen/></c:related>
<c:related><c:Hydrogen/></c:related>
<c:related><c:Hydrogen/></c:related>
<c:related><c:Hydrogen/></c:related>
</c:Carbon>

We can now query the structure of a molecule using a named graph pattern.

select ?atom countItem(?at) as ?count where {
graph c:H2O { ?at rdf:type ?atom }
}
group by ?atom

atom = H ; count = 2
atom = O ; count = 1

We can then define a product Prod as a named graph containing two molecules,
one instance of H2O and one instance of CH4. Note that molecules are now con-
sidered as classes that are instantiated. We could also use a property to relate a
molecule to its definition as H2O, e.g. :b :definition c:H2O.

<c:H2O cos:graph=’&c;Prod’ />
<c:CH4 cos:graph=’&c;Prod’ />

Then we define an instance of Prod that will hence contain one H2O and one
CH4.

<c:Prod cos:graph=’&c;exp’ />

Queries

Wecannowwrite queries to check the structure of the product andof themolecules.
The graph pattern query below destructures the named graph in order to retrieve
the molecules that compose the product c:Prod. The c:isTypeOf property is the
inverse of rdf:type.

select ?part countItem(?p) as ?count where {
graph c:Prod { ?part c:isTypeOf ?p }
}
group by ?part

Web, Graphs and Semantics 57

The result is:

part = H2O ; count = 1
part = CH4 ; count = 1

The recursive graph pattern query below (rec graph) recursively destructures
the named graphs in order to retrieve the molecules and the atoms that compose
the product c:Prod. Note that the query is the same as the one above except that
we have added the keyword rec.

select ?part countItem(?p) as ?count where {
rec graph c:Prod { ?part c:isTypeOf ?p }
}
group by ?part

The result is:

part = H2O ; count = 1 part = H ; count = 6
part = CH4 ; count = 1 part = O ; count = 1

part = C ; count = 1

This example shows the power of representing a composite object through aURI
of named graphs as we have the inverse operation that enables us to walk through
the internal structure recursively by means of the rec graph pattern.

5 Applications

In this section we show that the couple CG/RDF has proved to be a very fruitful
idea in term of systems and applications.

5.1 Generic Systems

There are now several generic CG/RDF based systems that have been designed
and developed in the Edelweiss team:

Corese4 is a generic RDF/S, SPARQL & Rules Semantic Factory that is entirely
based on CGs and where CGs are the abstract machine which implements RDF
graph operations by means of graph homomorphism.

Sewese5 is a Semantic Web Server Platform based on Tomcat and Java Taglib
[17]. Sewese is built on the Corese engine and provides a set of primitives to build
interfaces for queries, edition and navigation, and for the management of the trans-
verse functions of a portal (presentation, internationalization, security, etc.). An
ontology editor, a generic annotation editor and a basic rule editor are parts of the
Seweseplatform.Themainpurpose ofSewese is to integrate recurrent semanticweb
operations (e.g. perform a SPARQL Query, transform a result binding in a given
view) within a classic web technology framework (e.g. JSP pages, servlet calls).
4 http://www-sop.inria.fr/edelweiss/wiki/wakka.php?wiki=Corese
5 http://www-sop.inria.fr/edelweiss/wiki/wakka.php?wiki=Sewese

58 O. Corby

SweetWiki6 is a wiki built around a semantic web server that uses semantic web
technologies to support and ease the life cycle ofwikis [4]. It implements folksonomy
based navigation into the wiki pages.

Ecco is a Cooperative Ontology Editor dedicated to support end-users with dif-
ferent profiles (domain expert, engineer, ontologist, ...) in a cooperative process
of ontology construction and evolution. The Ontology is managed by the Corese
Factory.

SemAnnot is Generic platform for annotation extraction from text using NLP
parsers and ontologies [24], the ontology and annotation processor is also Corese.

5.2 Applications

We have been involved in more than 20 applications that use the RDF/CG
mapping.

SevenPro7 is an European project on Semantic Virtual Engineering Environ-
ment for Product Design. Corese is used as Semantic Engine for Text mining and
Virtual Reality annotation.

e-WOK8 is a french ANR project that aims at designing a Semantic Web Plat-
form for Geo Sciences. It aims at building a set of communicating portals (called
e-WOK Hubs), offering both: (a) web applications accessible to end-users through
online interfaces, and (b) web services accessible to applications through program-
matic interfaces As applicative objectives, e-WOK aims at enabling the manage-
ment of the memory of several projects on CO2 capture and storage, with use of
results of technological watch on the domain.

Two projects focus on semantic text mining of scientific literature in biology.
SeaLife9 is an European project on “A Semantic Grid Browser for the Life Sci-
ences Applied to the Study of Infectious Diseases”. ImmunoSearch10 is a French
project on searching biomarkers for controlling and maintaining the harmlessness
of molecules used in perfumes, aromatics and cosmetics.

The Palette11 European project is about “Pedagogically sustained Adaptative
LEarning Through the exploitation of Tacit and Explicit Knowledge”. It aims at
designing semantic web services to help communities of practice communicate and
share knowledge.

In the past we have also worked on Knowledge Management Platforms[21]
(KMP and KM2) and on Corporate Memory Management through Agents (Com-
ma). There are also projects that we are not members of and that make use of
Corese. For example, Neurolog12 is an ANR Funded project on Medical Imaging
with Software technologies for integration of process, data and knowledge in med-
ical imaging.

6 http://www-sop.inria.fr/edelweiss/wiki/wakka.php?wiki=SweetWiki
7 http://www.sevenpro.org
8 http://www-sop.inria.fr/edelweiss/projects/ewok
9 http://www.biotec.tu-dresden.de/sealife

10 http://www-sop.inria.fr/edelweiss/wiki/wakka.php?wiki=Projects
11 http://palette.ercim.org
12 http://neurolog.polytech.unice.fr/doku.php

Web, Graphs and Semantics 59

6 Conclusion

Semantic Web and RDF provide a unique opportunity to use CGs in large scale
applications. The basic idea is to consider RDF/S as an input format to build CGs
and hence test CG algorithms on large scale real applications. In effect, it is now
possible to load schema and data from all over the world as more and more RDF
Schema and RDF metadata are available online.

We have shown that it is possible to mix several languages – among which are
RDF/S, SPARQL and its XML Result format, RDF Rule language and CGs. In
addition, XSLT can be used for interoperation and presentation. Our work demon-
strates that CG technology can be integrated into a complex software system. The
system itself can then be used to build various applications such as Semantic Wikis,
Semantic engine for an ontology based natural language processing platform or a
Virtual Reality semantic engine. The point is to rely on standard languages for
input/output, to focus on information and knowledge retrieval and not on presen-
tation or editing issues within the semantic engine itself. Presentation is delegated
to external processors such as XSLT engines and web servers. CG were highly suc-
cessful for understanding and implementing RDF and SPARQL. The only hard
problem that we encountered was the SPARQL UNION operator. We have also
shown that interesting performance can be obtained – we answer in less than half
a second to queries to a graph with 500,000 relations (the insee RDF base13).

Further, we identify open problems that would be interesting to tackle within
a mix CG/RDF viewpoint: library of semantic distances, scaling to graphs with
some giga-relations, indexing such giant graphs, processing queries by distributed
graph homomorphism.

To finish, it has always been a great surprise that so little work on the Semantic
Web makes use of CGs.

Acknowledgement

This work was performed in the Edelweiss (formerly Acacia) team at the INRIA
Sophia Antipolis - Méditerranée. We would like to thank all our colleagues, among
whom: Rose Dieng-Kuntz, Alain Giboin, Fabien Gandon, Jean-François Baget,
PriscilleDurville,KhaledKhelif,HacèneCherfi,VirginieBottollier,Olivier Savoie,
Francis Avnaim as well as Catherine Faron-Zucker and Michel Buffa from Univer-
sity of Nice-Sophia Antipolis and Philippe Martin.

References

1. Alkhateeb, F., Baget, J.-F., Euzenat, J.: RDF with Regular xpressions. Technical
Report RR-6191, http://hal.inria.fr/inria-00144922/en

2. Anyanwu, M., Maduko, A., Sheth, A.: SPARQL2L: Towards Support for Sub-
graph Extraction Queries in RDF Databases. In: Proc. WWW 2007, Banff, Alberta,
Canada (May 2007)

13 http://rdf.insee.fr/geo/

http://hal.inria.fr/inria-00144922/en

60 O. Corby

3. Baget, J.-F.: RDF Entailment as a Graph Homomorphism. In: Gil, Y., Motta, E.,
Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 82–96.
Springer, Heidelberg (2005)

4. Buffa, M., Gandon, F., Erto, G.: A Wiki on the Semantic Web. In: Rech, J., Decker,
B., Ras, E. (eds.) Emerging Technologies for Semantic Web Environments: Tech-
niques, Methods and Applications, Fraunhofer Institute for Experimental Software
Engineering (IESE), Germany (July 2007)

5. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named Graphs, Provenance and Trust.
In: Proc. of WWW 2005, Chiba, Japan (2005)

6. Chein, M., Mugnier, M.-L.: Conceptual Graphs: Fundamental Notions. Revue
d’Intelligence Artificielle 6(4), 365–406 (1992)

7. Corby, O., Dieng-Kuntz, R., Faron-Zucker, C.: Querying the semantic web with
corese search engine. In: Lopez de Mantaras, R., Saitta, L. (eds.) Proc. of the 16th Eu-
ropean Conference on Artificial Intelligence (ECAI 2004), Prestigious Applications
of Intelligent Systems, Valencia, Spain, August 22-27, pp. 705–709 (2004)

8. Corby, O., Dieng-Kuntz, R., Faron-Zucker, C., Gandon, F.: Ontology-based Approx-
imate Query Processing for Searching the Semantic Web with Corese. INRIA Re-
search Report RR-5621, INRIA (July 2005)

9. Corby, O., Dieng-Kuntz, R., Faron-Zucker, C., Gandon, F.: Searching the Semantic
Web: Approximate Query Processing based on Ontologies. IEEE Intelligent Systems
& their Applications 21(1), 20–27 (2006)

10. Corby, O., Dieng-Kuntz, R., Hebert, C.: A Conceptual Graph Model for W3C Re-
source Description Framework. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000.
LNCS (LNAI), vol. 1867, pp. 468–482. Springer, Heidelberg (2000)

11. Corby, O., Faron-Zucker, C.: Corese: A corporate semantic web engine. In: Proceed-
ings of the International Workshop on Real World RDF and Semantic Web Applica-
tions, 11th International World Wide Web Conference, Hawai, USA, May 7 (2002)

12. Corby, O., Faron-Zucker, C.: Implementation of SPARQL Query Language based on
Graph Homomorphism. In: Proc. of the 15th ICCS, Sheffield, UK, pp. 472–475 (July
2007)

13. Corby, O., Faron-Zucker, C.: RDF/SPARQL Design Pattern for Contextual Meta-
data. In: Proc. of IEEE/WIC/ACM International Conference on Web Intelligence,
Silicon Valley, USA (November 2007)

14. Dau, F.: RDF as Graph-based, Diagrammatic Logic. In: Esposito, F., Raś, Z.W.,
Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 332–337.
Springer, Heidelberg (2006)

15. Detwiler, T.: GLEEN: Regular Paths for ARQ SparQL. Technical report, University
of Washington, http://sig.biostr.washington.edu/projects/ontviews/gleen

16. Dieng-Kuntz, R., Corby, O.: Conceptual Graphs for Semantic Web Applications. In:
Dau, F., Mugnier, M.-L., Stumme, G. (eds.) ICCS 2005. LNCS (LNAI), vol. 3596,
pp. 19–50. Springer, Heidelberg (2005)

17. Durville, P., Gandon, F.: Sewese: Semantic Web Server. In: WWW 2007 Developers
track, Banff, Canada (2007)

18. Gandon, F.: Distributed Artificial Intelligence And Knowledge Management: On-
tologies and Multi-Agents Systems for a Corporate Semantic Web. PhD thesis, uni-
versity of Nice-Sophia Antipolis (November 2002)

19. Gandon, F., Bottollier, V., Corby, O., Durville, P.: RDF/XML Source Declaration,
W3C Member Submission (September 2007),
http://www.w3.org/Submission/rdfsource

http://sig.biostr.washington.edu/projects/ontviews/gleen
http://www.w3.org/Submission/rdfsource

Web, Graphs and Semantics 61

20. Gandon, F., Bottollier, V., Corby, O., Durville, P.: RDF/XML Source Declaration.
In: Proc. of IADIS International Conference WWW/Internet, Vila Real, Portugal
(October 2007)

21. Giboin, A., Gandon, F., Gronnier, N., Guigard, C., Corby, O.: Comment ne pas per-
dre de vue les usage(r)s dans la construction d’une application à base d’ontologies ?
retour d’expérience sur le projet KmP. In: Jaulent, M.C. (ed.) Actes des 16e Journées
francophones d’Ingénierie des connaissances (IC 2005), Grenoble. France, pp. 133–
144 (2005)

22. Hayes, J., Gutierrez, C.: Bipartite Graphs as Intermediate Model for RDF. In: Proc.
International Semantic Web Conference, ISWC (2004)

23. Hebert, C.: Modèle de traitement de RDF basé sur les graphes conceptuels. Master
thesis, I3S, University of Nice-Sophia Antipolis (1999)

24. Khelif, K., Dieng-Kuntz, R., Barbry, P.: An Ontology-based Approach to Support
Text Mining and Information Retrieval in the Biological Domain. Journal of Univer-
sal Computer Science (JUCS), Special Issue on Ontologies and their Applications
(2007)

25. Kochut, K.J., Janik, M.: SPARQLeR: Extended SPARQL for Semantic Association
Discovery. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519,
pp. 145–159. Springer, Heidelberg (2007)

26. Martin, P.: Exploitation de graphes conceptuels et de documents structurs et hyper-
textes pour l’acquisition de connaissances et la recherche d’informations. PhD thesis,
University of Nice-Sophia Antipolis (October 1996)

27. Martin, P., Eklund, P.: Conventions for Knowledge Representation via RDF. In:
Proc. of WebNet 2000, San Antonio, Texas, USA (November 2000)

28. Mugnier, M.-L., Chein, M.: Représenter des connaissances et raisonner avec des
graphes. Revue d’IA 10(1), 7–56 (1996)

29. Rudolph, S., Krtzsch, M., Hitzler, P.: Quo Vadis, CS? On the (non)-Impact of Con-
ceptual Structures on the Semantic Web. In: Conceptual Structures: Knowledge Ar-
chitectures for Smart Applications, Proc. of the 15th ICCS, Sheffield, UK. LNCS.
Springer, Heidelberg (2007)

30. Salvat, E., Mugnier, M.-L.: Sound and Complete Forward and Backward Chain-
ings of Graph Rules. In: Proc. of the 4th ICCS, Sydney, Australia. LNCS (LNAI),
vol. 1115, pp. 248–262. Springer, Heidelberg (1996)

31. Southey, F., Linders, J.G.: Notio - a java API for developing CG tools. In: Proc.
ICCS, pp. 262–271 (1999)

32. Sowa, J.: Conceptual Graphs for a Database Interface. IBM Journal of Research and
Development (4), 336–357 (1976)

33. Sowa, J.: Conceptual Structures - Information Processing in Mind and Machine.
Addison-Wesley, Reading (1984)

34. Stoermer, H., Palmisano, I., Redavid, D., Iannone, L., Bouquet, P., Semeraro, G.:
RDF and Contexts: Use of SPARQL and Named Graphs to Achieve Contextualiza-
tion. In: Proc. of the 1st Jena User Conference, Bristol, UK (2006)

35. Zhong, J., Zhu, H., Li, J., Yu, Y.: Conceptual graph matching for semantic search. In:
Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393,
pp. 92–106. Springer, Heidelberg (2002)

	Web, Graphs and Semantics
	Introduction
	History
	CG for RDF
	RDF Schema
	Type Intersection
	Datatype Values
	Property Concept
	Named Graph
	Inference Rules
	Projection
	Constraints
	Type Relaxation
	Graph Path

	Context
	Hierarchy of Type of Context
	Annotation of Context
	Contextual Relations
	Rec Graph Pattern
	Defining a Resource Using a Named Graph

	Applications
	Generic Systems
	Applications

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

