


Lecture Notes in Artificial Intelligence 5113
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science



Peter Eklund Ollivier Haemmerlé (Eds.)

Conceptual Structures:
KnowledgeVisualization
and Reasoning

16th International Conference
on Conceptual Structures, ICCS 2008
Toulouse, France, July 7-11, 2008
Proceedings

13



Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Peter Eklund
University of Wollongong
School of Information Systems and Technology
Northfields Avenue, Wollongong, NSW 2522 , Australia
E-mail: peklund@uow.edu.au

Ollivier Haemmerlé
Institut de Recherche en Informatique de Toulouse (IRIT)
Université de Toulouse II - Le Mirail
Département de Mathématiques-Informatique
5 allées Antonio Machado, 31058 Toulouse CEDEX, France
E-mail: ollivier.haemmerle@univ-tlse2.fr

Library of Congress Control Number: 2008930415

CR Subject Classification (1998): I.2, G.2.2, F.4.1, F.2.1, H.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-70595-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-70595-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12322800 06/3180 5 4 3 2 1 0



Preface

This volume contains the proceedings of ICCS 2008, the 16th International Con-
ference on Conceptual Structures (ICCS). The focus of the ICCS conference is
the representation and analysis of conceptual knowledge. ICCS brings together
researchers to explore novel ways that Conceptual Structures can be used.

Conceptual Structures are motivated by C.S. Peirce’s Existential Graphs and
were popularized by J.F. Sowa in the 1980s. Over 16 years ICCS has increased
its scope to include innovations from a range of theories and related Conceptual
Structure practices, among them formal concept analysis and ontologies. There-
fore, ICCS presents a family of Conceptual Structure approaches that build on
techniques derived from artificial intelligence, knowledge representation, applied
mathematics and lattice theory, computational linguistics, conceptual modeling,
intelligent systems and knowledge management.

This volume’s title – Knowledge Visualization and Reasoning – is intended to
highlight the shared origins of Conceptual Structures with other visual forms of
reasoning. J. Howse’s invited survey paper “Diagrammatic Reasoning Systems”
sets the scene for this theme, and several other papers in the volume extend and
reinforce these connections.

The regular papers in this LNAI volume are split between theoretical and
applied contributions. ICCS has traditions in practical systems so the conference
includes the one-day Conceptual Structures Tool Interoperability Workshop (CS-
TIW 2008) – published as a separate proceedings in the CEUR-WS. Both ICCS
2008 workshop and conference program highlight results achieved with a variety
of Conceptual Structures-based software.

The conference also included four invited lectures from distinguished speak-
ers in the field. Three of the four invited speakers submitted accompanying
papers which were peer reviewed and are included in this volume. The invited
lecture by J.F. Sowa is accompanied by a paper “Pursuing the Goal of Lan-
guage Understanding,” which highlights the computational linguistic aspect of
the community and the invited paper “Web, Graphs and Semantics” by O. Corby
reports on the implementation of graph theoretical aspects of conceptual graphs,
particularly their application to the Semantic Web.

More than 70 papers were submitted to ICCS 2008 for peer review. All papers
were assessed by at least three referees one of whom was an Editorial Board
member who managed any necessary revisions. The top-ranked 19 papers were
selected competitively for this volume. A further 20 papers were published as
supplementary proceedings in CEUR-WS.

We wish to thank the Organizing Committee individually: Nathalie Hernan-
dez, Cathy Comparot, Patrice Buche, Lydie Soler, Sophie Ebersold, Jean-Michel
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Inglebert, Véronique Debats, Rémi Cavallo, and collectively the Editorial Board
and Program Committee members whose input underwrites the scientific quality
of these proceedings.

July 2008 Peter Eklund
Ollivier Haemmerlé
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Diagrammatic Reasoning Systems

John Howse

Visual Modelling Group, University of Brighton, Brighton, UK
John.Howse@brighton.ac.uk

http://www.cmis.brighton.ac.uk/research/vmg/

Abstract. Euler diagrams have been used for centuries as a means for
conveying logical statements in a simple, intuitive way. They form the
basis of many diagrammatic notations used to represent set-theoretic
relationships in a wide range of contexts including software modelling,
logical reasoning systems, statistical data representation, database search
queries and file system management. In this paper we consider some
notations based on Euler diagrams, in particular Spider Diagrams and
Constraint Diagrams, with particular emphasis on the development of
reasoning systems.

Keywords: Visual formalisms, diagrammatic reasoning, automated rea-
soning, software specification, information visualization.

1 Introduction

Euler diagrams [7] are a simple and familiar visual language for expressing logical
or set-theoretic statements. They exploit topological properties of enclosure,
exclusion and intersection to represent subset, disjoint sets and set intersection
respectively. For example, the Euler diagram d1 in figure 1 asserts that C is a
subset of A and that B and C are disjoint.

� �

�

� �

�

� � � �

Fig. 1. Euler and Venn diagrams

An Euler diagram consists of a collection of contours (closed curves, usually
considered to be simple). A zone (sometimes called a minimal region) is a set of
points in the plane that can be described by a two-way partition of the contour
set. For example, in d1 in figure 1, the set of points in the plane inside A and C

P. Eklund and O. Haemmerlé (Eds.): ICCS 2008, LNAI 5113, pp. 1–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 J. Howse

but outside B is a zone. Zones in Euler diagrams represent sets and the union
of all the sets represented by the zones in a diagram is the universal set. A
“missing” zone represents the empty set. For example, in d1 in figure 1 the zone
that is inside B and C but outside A is missing and hence no element is in B
and C but not in A. Some semantic interpretations of Euler diagrams specify
that each zone in a diagram represents a non-empty set [38], whereas others do
not impose this restriction [24].

Venn diagrams [65] are a special case of Euler diagrams. However, instead of
using missing zones to express that a set is empty, shading is used. All possible
set intersections are represented in Venn diagrams. The Venn diagram d2 in
figure 1 represents the same information as the Euler diagram d1 in figure 1. A
survey of work on Venn diagrams can be found at [47].

Given certain well-formedness conditions on Euler diagrams (such as contours
must be simple), there are statements involving set intersections that Euler dia-
grams cannot express, identified in [37,66], because there is no drawable diagram
with a specified zone set; the proof is based on Kuratowski’s theorem for planar
graphs [36]. Venn proposed a constructive method for drawing any Venn diagram
on n contours which More proved to be valid [39].

Work on reasoning about diagrams expressing logical or set-theoretical prop-
erties has a long history, which has been reinvigorated in the last decade or so.
In seminal work, Shin [51] demonstrated that diagrammatic reasoning systems
could be provided with the logical status of sentential systems. Many other di-
agrammatic reasoning systems have since been developed and in section 2 we
discuss some of them.

Euler diagrams form the basis of many diagrammatic notations used to rep-
resent set-theoretic relationships in a wide range of contexts including software
modelling, logical reasoning systems, statistical data representation, database
search queries, file system management and representing ontologies. They can
be used to express logical information. Figure 2 shows a nice example explaining
the complexities of the British Isles. This diagram is actually a spider diagram,
see section 2. Spider diagrams have also been used in hardware specification [4];
an example related to the safety of power supply components of boiler systems
can be seen in figure 3.

Euler diagrams are used in visualizing data of all sorts, particularly data
associated with medical experiments or biological processes, for example figure 4
shows output from the GoMiner system visualizing Genetic Set Relations in a
Gene Ontology Database [35]. To enable the visualization of statistical data,
area-proportional Venn or Euler diagrams [2,3] may be used, where the area of
a region is proportional to the size of the set it represents. Figure 5 shows an
area-proportional Venn diagram representing heart disease data.

Euler diagrams have been used to represent non-hierarchical directories, re-
placing the traditional hierarchical structure of file-systems with an Euler dia-
gram based approach [5,6]. An example from the VENNFS system may be seen
in figure 6, where the dots placed within a region of overlap of the contours
represent files that are in more than one directory.
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Fig. 2. The British Isles ( c©Sam Hughes)

BridgeFailure

RegulatorFailure

ResistorFailure

PoweredOn

IncorrectVoltage
ACOnly

Mains

NormalOperation

Fig. 3. Safety critical boiler systems

Fig. 4. Visualizing genetic set relations

Euler-based diagrams have been used to represent ontologies in semantic web
applications [45,25]. Figure 7 shows an example representing specified values in
OWL, the Web Ontology Language. This diagram is a variant of a constraint
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Fig. 5. Heart Disease Data

Fig. 6. VennFS2

diagram. Another example can be seen in figure 8 from a new environment COE,
the Collaborative Ontology Environment, for capturing and formally represent-
ing expert knowledge for use in the Semantic Web [25].

In section 2, we consider some diagrammatic reasoning systems based on Euler
diagrams, including spider diagrams and constraint diagrams. In section 3, we
discuss diagrammatic reasoning by considering reasoning with spider diagrams.
Computer-aided tools are essential for the effective use of diagrammatic nota-
tions for practical applications and in section 3 we discuss the tools that have
been developed for Euler diagram-based notations and reasoning systems.

2 Reasoning Systems

In this section, we consider some of the notations developed from Euler and Venn
diagrams. Reasoning systems have been developed for many of these systems and
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Fig. 7. Web ontology language example

Fig. 8. Collaborative Ontology Environment example

in some cases expressiveness results have been obtained. A survey of reasoning
systems based on Euler diagrams can be found at [52].

Basic Euler diagrams. A simple sound, complete and decidable reasoning
system based on Euler diagrams is given by Hammer in [24]. The system has just
three reasoning rules: the rule of erasure (of a contour), the rule of introduction of
a new contour and the rule of weakening (which introduces a zone). A discussion
of such reasoning rules is given in section 3

Extensions of Venn diagrams. Venn diagrams cannot assert the existence of
elements nor express disjunctive information. To overcome this, Peirce modified
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Venn diagrams by introducing the symbol x into the system to represent the
existence of an element in a set and o to represent emptiness instead of shad-
ing [43]. Peirce also uses lines to connect x’s and o’s, to represent disjunctive
information.

Shin [51] adapted Venn-Peirce diagrams by reverting back to Venn’s shading to
represent the emptiness of a set rather than using o-sequences, making her Venn-
I language less expressive than the Venn-Peirce language. The Venn-I diagram
d1 in figure 9 asserts that there is an element that is a student or a teacher but
not both, and the set of Teachers is empty. Shin defines six sound reasoning
rules for Venn-I and proves completeness. Venn-I cannot express statements of
the form A ⊆ B ∨ A � C, so Shin extends it to a more expressive system,
called Venn-II, by allowing Venn-I diagrams to be connected by straight lines
to represent disjunction. Shin defines ten reasoning rules for Venn-II and shows
that they form a sound and complete set. The Venn-II system is equivalent to
monadic first order logic (without equality) [51]. Recently the Venn-II system
has been extended to include constants [1].

� 	 
 � � � 	  � � � � � � � 

�
�

� 	 
 � � � 	  � � � � � � � 

�
�

� � � � � �

� 	 
 � � � 	  � � � � � � � 

�
�

Fig. 9. Venn-I, Euler/Venn and spider diagrams

Euler/Venn Diagrams. Euler/Venn diagrams [60] are similar to Venn-I dia-
grams but are based on Euler diagrams rather than Venn diagrams, and constant
sequences are used instead of ⊗-sequences. The Euler/Venn diagram d2 in fig-
ure 9 asserts that bob is a student or a teacher but not both and that there are
no teachers. In [60], Swoboda gives a set of sound reasoning rules for Euler/Venn
diagrams. These rules are extensions of those given by Shin and Hammer [24,51].
In [61] Swoboda and Allwein give an algorithm that determines if a given Eu-
ler/Venn monadic first order formula is ‘observable’ from a given diagram [63].
Information is observable from a diagram if it is explicitly represented in the
diagram. Observable formulae are consequence of the information contained in
the diagram. Swoboda and Allwein have developed a heterogeneous Euler/Venn
diagram and first order logic reasoning system [62].

Spider diagrams. Euler diagrams form the basis of spider diagrams
[21,29,30,31,33]. Spiders are used to represent the existence of elements and
distinct spiders represent the existence of distinct elements. Thus spider dia-
grams allow finite lower bounds to be placed on the cardinalities of sets. In a
shaded region, all of the elements are represented by spiders. So shading, to-
gether with spiders, allows finite upper bounds to be placed on the cardinalities
of the sets. The spider diagram d3 in figure 9 asserts that there is an element
that is a student or a teacher but not both, and there are no other teachers.
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The expressiveness of spider diagrams has been determined to be equivalent
to that of monadic first order logic with equality (MFOLe) [55,59]. To show this
equivalence in one direction, for each diagram a semantically equivalent MFOLe
sentence is constructed. For the significantly more challenging converse it can
be shown that for any MFOL sentence S there exists a finite set of models that
can be used to classify all the models for S. Using these classifying models,
a diagram expressing the same information as S can be constructed. Spider
diagrams are, therefore, more expressive than Shin’s Venn-II system which is
equivalent to monadic first order logic (without equality) [51]. Augmenting the
spider diagram language with constants does not increase expressiveness [57].

Several sound,completeanddecidable reasoning systems [26,29,27,33]havebeen
developed for spider diagrams. The strategy for proving soundness is straightfor-
ward: individual reasoning rules are proved to be valid and then a simple induction
argument shows that the applicationof anyfinite sequenceof rules isvalid;however,
proving that individual rules are valid is, in some cases, hard. The proof strategy for
completeness is to convert the premise and conclusion diagrams to a normal form
and then reason about that normal form. This proof strategy can be used for other
reasoning systems based on Euler diagrams. An algorithm can be easily extracted
from the completeness proof to prove the decidability of the proof.

Constraint diagrams. Constraint diagrams [20,22,34] extend spider diagrams
by incorporating additional syntax to represent relations and explicit universal
quantification. Figure 10 shows an example of a constraint diagram [32], from
which one can infer that “a member cannot both rent and reserve the same
title”.

� � 	 � �
� � � � � �

� � � 	 � �

� �  � � � � 	 � � �

�

Fig. 10. Modelling with Constraint diagrams

The standard notation for modelling software systems is the Unified Modelling
Language (UML) [41]. Diagrammatic notations pervade the UML. Some of these
notations are based on Euler diagrams such as Class diagrams and State dia-
grams. The principal tool for the UML modeller to add constraints to a model is
the Object Constraint Language (OCL) [67]. However, OCL is a fusion of nav-
igation expressions and traditional logical notation, rendered in textual form.
Constraint diagrams were designed to be a formal diagrammatic alternative to
the OCL and can also be used to specify software systems independently of the
UML. In [32] a case study is developed which uses a schema notation, devel-
oped from a Z -like notation [48,49], to specify operations. Constraint diagrams
are used within this schema notation, showing that they can handle dynamic
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constraints. An event (a state-changing operation) is specified in terms of a pre-
condition (above the double line) and a post-condition (below the double line).
The following schema specifies the addition of a new member m with associated
information i:

NewMember (m, i)

�

�

;

� � � �

�

�

� � � � � � � � � �

� �

The pre-condition ensures that argument i has type I, and that argument m
has type M and is not in Memb (is not already a member). The semi-colon is
a separator; the two diagrams in the pre-condition are conjoined. In the post-
condition, dashed names denote entities that are changed. The post-condition
ensures that m is now in Memb and has associated information i.

Constraint diagrams have been formalized [10]. The semantics are defined by
translating them into first order predicate logic (FOPL) sentences. Constraint
diagrams contain explicit existential quantification and universal quantification;
it is not always possible to determine the order in which to read the quantifiers,
sometimes rendering a diagram ambiguous. This ordering problem was solved
by augmenting the language with reading trees, essentially a partial order on the
quantifiers, to disambiguate the diagrams [9,10]. The tree provides additional
information that is essential for the construction of the FOPL sentence deter-
mining where the brackets are placed and, in conjunction with the diagram, the
scope of the quantifiers. Figure 11 shows two augmented diagrams with the two
interpretations: “For each teacher there is a student who attends only courses
taught by that teacher” and “There is a student who attends only courses taught
by all teachers”, respectively.

� � � � � � � 
� 	 
 � � � 	 

� � 
 �  � 

	 � � � � �  � 	 	 � � � 

�� 

� � � � � � � 
� 	 
 � � � 	 

� � 
 �  � 

	 � � � � �  � 	 	 � � � 

�� 

� �
 � �

� � 
 � �

Fig. 11. Augmented constraint diagrams
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A constraint diagram may have many reading trees, which can be automati-
cally generated [11]. A set of sound rules for constraint diagrams augmented with
reading trees has been developed [8] and a default reading has been proposed [12]
and tested [13].

Two sound, complete and decidable fragments of the constraint diagram lan-
guage have been defined [53,54]. The diagrams in these fragments do not require
reading trees, but still include arrows (representing two-place predicates) and
one of them includes explicit universal quantification [53]. Some of the reasoning
rules for these two systems extend those defined for spider diagrams and addi-
tional rules are also defined to give complete systems. The proofs of completeness
for these systems are complex.

Abstract syntax. In reasoning systems based on spider diagrams and con-
straint diagrams a distinction is made between the concrete syntax (the drawn
diagrams) and the abstract syntax (a mathematical abstraction of concrete di-
agrams) [28]; this distinction is not evident in purely textual logics. Reasoning
takes place at the abstract level; a motivation for this is that well-formedness
conditions may cause problems with the applications of some of the rules at the
concrete level; see [50] for an example of this from Shin’s Venn II system. Using
an abstract syntax brings with it, importantly, a level of precision and rigour
that is not always present in diagrammatic systems.

3 Reasoning

In this section we discuss diagrammatic reasoning, by considering reasoning with
spider diagrams. There are many ways in which we can reason with diagrams.
One way is to interpret a diagram and then make inferences from the information
obtained. For example, in figure 12 we can deduce from the diagram that there
is an element in A and then infer that there is an element in A ∪B.

��

� �

Fig. 12. Deducing information from a diagram

We can also reason about diagrams by comparing them. In figure 13 we can
deduce that the two diagrams contain the same information. The diagram d1

asserts that A and B are disjoint, because these contours do not overlap. The
diagram d2 expresses this same information rather differently; the region inside
both contours A and B is shaded, so we can deduce that the sets are disjoint.
Thus the two diagrams are semantically equivalent.
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��

� �

��

� �

Fig. 13. Equivalent diagrams

In these styles of reasoning, we directly consider the informational content of
the diagrams and make inferences about that information. However, we need to
be careful when reasoning in this way. Consider the diagram in figure 14. This

� � 	  ! � " 

� � � � � � 

Fig. 14. Cats and dogs

diagram asserts that cats and dogs are animals and that there is an animal that
is a cat. From this assertion we might be tempted to infer that there is an animal
that is not a dog. However, this is not a valid inference from the diagram; to
make this ‘inference’ we are using knowledge about cats and dogs that is not
asserted by the diagram. We are assuming that if an animal is a cat, then it is
not a dog; the diagram does not make this assertion.

In order not to make this kind of reasoning error, we can reason with spi-
der diagrams by manipulating the diagrams themselves, using reasoning rules
which transform one diagram into another. Reasoning rules act on a diagram
by introducing, deleting or changing pieces of syntax. For the reasoning rule
to be sound the interpretation of the resulting diagram must be derivable from
the interpretation of the original diagram. The following examples will illustrate
some of the rules, concentrating on those that transform a unitary diagram into
another unitary diagram.

� �

� � � �

Fig. 15. Removing shading
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Example 1. We can remove shading from any zone. In figure 15, d1 is transformed
into d2 by removing shading. The diagram d1 expresses that A has exactly two
elements, while d2 expresses that A has at least two elements. The reasoning
step allows us to deduce that |A| ≥ 2 from |A| = 2; this deduction is obviously
sound. ��
Example 2. We can add a foot to a spider. The new foot can be placed in any
zone not already containing a foot of the spider. In figure 16, d1 is transformed

��

� �

��

� �

Fig. 16. Adding a foot to a spider

into d2 by adding a foot, placed in the zone that is inside contour B but outside
contour A. The diagram d1 expresses that there is an element in A, while d2

expresses that there there is an element in A ∪B, providing us with a diagram-
matic version of the reasoning step concerning figure 12 with which we began
this section. ��
Example 3. We can remove a spider. In figure 17, d1 is transformed into d2 by

��

� �

��

� �

Fig. 17. Removing a spider

removing one of the spiders. The diagram d1 asserts that there is an element in
A and a different element in A ∪B, while d2 asserts that there is an element in
A ∪B; we have lost information, but the inference is obviously sound. ��
However, we have to be careful when applying the remove spider rule. Consider
figure 17, in which removing the spider from d1 would produce d2. The diagram
d1 asserts that A has exactly one element, while d2 asserts that A is empty; we
obviously cannot infer d2 from d1. We cannot remove a spider from a shaded
region.

Some rules, such as the three described above, weaken the informational con-
tent of a diagram. The next rule does not weaken information, so the two di-
agrams (the original diagram and the diagram produce as a result of applying
the rule) have the same meaning.
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�

� �

�

� �

Fig. 18. Removing a spider is sometimes invalid

Example 4. A diagram containing a missing zone can be replaced with a diagram
in which that zone is present but shaded. In d1 in figure 19, the contours A and

��

� �

��

� �

Fig. 19. Adding a shaded zone

B do not overlap and hence the zone that is inside both A and B is missing; in
d2 that zone has been added and is shaded. Both diagrams assert that the sets
A and B are disjoint. Thus add shaded zone is a diagrammatic reasoning rule
for the reasoning step considered in figure 13. ��

As the two diagrams in figure 19 contain the same information, it seems
reasonable to suggest a rule that removes a shaded zone, reversing the process
of adding a zone. Figure 20 is an example of such a rule; it is the reverse of the

��

� �

��

� �

Fig. 20. Removing a shaded zone

application of the rule to add a shaded zone illustrated in figure 19. However, we
must be careful when we apply the rule to remove a shaded zone. Consider the
diagrams d1 and d2 of figure 21. The diagram d1 asserts that there is at most
one element in A∩B, while d2 asserts that A and B are disjoint and hence that
A∩B is empty; we therefore cannot deduce d2 from d1. We have to restrict the
conditions under which we can apply a rule to remove a shaded zone.
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��

� �

��

� �

Fig. 21. Removing a shaded zone is not valid in this case

��

� �

�

�

� �

Fig. 22. Removing a shaded zone

Example 5. A shaded zone that is untouched by any spider can be removed.
Figure 22 shows another (legitimate) application of this rule. The shaded zone
of d1 has been removed to produce d2. In d2, contour B is contained within
contour A. The spider is unaffected, in that its habitat remains the same. Both
diagrams assert that B is a subset of A and that there is an element in A. This
rule does not weaken information. It is interesting to note that d2 bears little
structural similarity to d1.

The diagram d1 in figure 23 asserts that A is not empty and there is exactly
one element that is in B but not in A. Now consider d2. It asserts that A is not
empty and there is exactly one element that is in B but not in A and nothing
else. The two diagrams have exactly the same informational content. The extra
contour C in d2 has no effect on the meaning of the diagram. This suggests that
there should be a rule to add a contour to a diagram in such a way that it does
not affect the information in the diagram.

�� ��

�

� � � �

Fig. 23. Adding a contour

Consider now the diagrams in figure 24. A contour has been added to d1 to
produce d2. However, d2 asserts that A − B is not empty, while d1 asserts the
weaker statement that A is not empty. Hence, we cannot infer d2 from d1.
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�

� �

��

� �

Fig. 24. Adding a contour that introduces new information

Example 6. We can add a contour to a diagram. When we add a contour to a
diagram we must do so in a way that does not introduce new information. This
is achieved by introducing a contour in such a way that it splits each zone into
two zones, each shaded zone into two zones, and each foot of a spider is replaced
by a connected pair of feet, one foot in each zone. Figure 25 shows an example
of the rule to add a contour; it “fixes” the invalid example given in figure 24. ��

�

� �

��

� �

Fig. 25. Adding a contour

Example 7. We can remove a contour from a diagram. When a contour is re-
moved, two feet of the same spider can be placed in the same zone, so we some-
times need to tidy the diagram up a bit, as in figure 26. ��

�� ���

� � � �

Fig. 26. Removing a contour

We can use sequences of diagrams to obtain further inferences. We conclude this
section with an example of a theorem both stated and proved diagrammatically.

Theorem

�� ��



Diagrammatic Reasoning Systems 15

Proof

We assume the premiss diagram:

��

From the premiss diagram we remove the spider in B:

��

We remove contour B:

�

We add a new contour C:

��

We extend the spider into the zone contained in C but not in A, to obtain the
conclusion diagram:

��

��

4 Software Tools

Work on spider diagrams and constraint diagrams is part of an ongoing project
to develop formal visual notations and associated tool support. The effective
use of diagrammatic notations for practical applications requires computer-aided
support tools. An open source tool for drawing and manipulating Euler diagrams
and their extensions can be downloaded from SourceForge.net and at [44]. The
editor provides diagram drawing facilities such as editing, cut and paste, and
zooming functionality. Diagrams can be laid out automatically and stored in
XML format. Associated software tools produced include diagrammatic theorem
provers, translators and automatic diagram generators.

Users can access the reasoning functionality from the editor. The interface
provides access to theorem provers and allows users to write their own proofs.
Tableaux [42] give users a way of visualizing the meaning of a particular dia-
gram, by showing the ways that a diagram can be satisfied. In particular tableaux
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provide decision procedures for diagram satisfiability and validity. In order to
support this varied functionality the software provides sophisticated support for
representing and modifying both abstract diagrams (without layout informa-
tion) and concrete diagrams (with layout information). In addition, translations
between diagrammatic and textual representations have been implemented.

The layout of diagrams is of fundamental importance todiagrammatic reasoning
systems. Their automatic layout poses several non-trivial challenges. For example,
the problem of automatically generating concreteEuler diagrams fromabstract de-
scriptions is hard. Algorithm exist to generate concrete diagrams subject to some
well-formedness conditions [14,3]. The mechanisms have been integrated to pro-
duce an enhanced diagram generation framework [44,64]. The theory developed
on nested diagrams [15] has been integrated into this framework.

Automatically generated Euler diagrams are typically not very readable and
can be visually unattractive. A function has been implemented to make the dia-
grams more usable by modifying their layout, whilst maintaining their abstract
syntax [18]. Further work introduced a force based method for laying out graphs
in Euler diagrams [40], enabling the drawing of spider and constraint diagrams.
Furthermore, a key application of the layout work is to visualize sequences of
diagrams, such as proofs. For this application (and others), it is desirable to
make subsequent diagrams look as similar as possible to previous diagrams. A
mechanism to achieve this has been implemented [46].

Gil and Sorkin have also developed an effective but slightly limited editor for
drawing and manipulating constraint diagrams [23].

Automated theorem proving. An automated theorem prover has been im-
plemented and evaluated that uses four different Euler diagram reasoning sys-
tems [56]. It uses heuristics to guide it through the search space to find shortest
proofs. The theorem prover has been empirically evaluated in terms of time taken
to find a shortest proof, using each of the four rule sets. The conclusion from this
evaluation is that in order to find a shortest proof most quickly, the rule set used is
dependent on the proof task [56]. This work on automated reasoning lays the foun-
dations for efficient proof searches to be conducted in manydiagrammatic systems.

For spider diagrams, a direct proof writing algorithm can be extracted from
the completeness proof strategy given in [33]. An improved version of this algo-
rithm includes functionality to produce counter examples whenever there is no
proof [19]. The proofs produced by this algorithm can sometimes be unnecessar-
ily long. In [17] the A∗ search algorithm is utilized to produce shortest proofs in
a fragment of the spider diagram language and the work has been extended to
the full spider diagram language [16].

5 Conclusion

This paper has reviewed and discussed some of the diagrammatic reasoning sys-
tems based on Euler diagrams that have been developed recently. Whilst we have
not given an exhaustive review, due to space constraints, we have presented an
informative overview of current Euler diagrams research. We have concentrated
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on notations that have been formalized and tried to give a flavour of the applica-
tions of these notations which include data representation and database search
queries. A growing application area which will become increasingly important is
the application of Euler diagrams to visualize information in the context of the
semantic web, including OWL and description logic.

Euler diagram based modelling notations have been developed that are suf-
ficiently expressive to be used in software specification on an industrial scale.
The development of good software tools, some of which has been described in
this paper, is a major advance towards providing sufficient support for the use
of these notations in industry.

Research into Euler diagram based notations could be beneficial in other areas.
For example, the investigation of decidable fragments of the constraint diagram
notation may well deliver previously unknown decidable fragments of first order
predicate logic, because “natural” fragments of the diagrammatic notation may
not coincide with “natural” fragments of traditional logic.
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Pursuing the Goal of Language Understanding 
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Abstract. No human being can understand every text or dialog in his or her 
native language, and no one should expect a computer to do so. However, people 
have a remarkable ability to learn and to extend their understanding without 
explicit training. Fundamental to human understanding is the ability to learn and 
use language in social interactions that Wittgenstein called language games. 
Those language games use and extend prelinguistic knowledge learned through 
perception, action, and social interactions. This article surveys the technology 
that has been developed for natural language processing and the successes and 
failures of various attempts. Although many useful applications have been 
implemented, the original goal of language understanding seems as remote as 
ever. Fundamental to understanding is the ability to recognize an utterance as a 
move in a social game and to respond in terms of a mental model of the game, 
the players, and the environment. Those models use and extend the prelinguistic 
models learned through perception, action, and social interactions. Secondary 
uses of language, such as reading a book, are derivative processes that elaborate 
and extend the mental models originally acquired by interacting with people and 
the environment. A computer system that relates language to virtual models 
might mimic some aspects of understanding, but full understanding requires the 
ability to learn and use new knowledge in social and sensory-motor interactions. 
These issues are illustrated with an analysis of some NLP systems and a 
recommended strategy for the future. None of the systems available today can 
understand language at the level of a child, but with a shift in strategy there is 
hope of designing more robust and usable systems in the future.  

1   The Goal of Language Understanding 

Some early successes of artificial intelligence led to exaggerated expectations. One 
example was the theorem prover by Hao Wang (1960), which proved the first 378 
theorems of the Principia Mathematica in 7 minutes — an average of 1.1 seconds per 
theorem on the IBM 704, a vacuum-tube machine with 144K bytes of storage. Since 
that speed was much faster than the two brilliant logicians who wrote the book, many 
pioneers in AI thought that the possibility of exceeding human intelligence was within 
reach. Good (1965) predicted “It is more probable than not that, within the twentieth 
century, an ultraintelligent machine will be built and that it will be the last invention 
that man need make.” The movie 2001, which appeared in 1968, featured the HAL 
9000, an intelligent computer that could carry on a conversation in flawless English 
and even read lips when the humans were trying to communicate in secret. Marvin 
Minsky, a technical advisor on that movie, claimed it was a “conservative” estimate 
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of AI technology at the end of the 20th century. Yet intellectual tasks, such as proving 
theorems or playing chess, turned out to be far easier to process by computer than 
simulating the language skills of a three-year-old child.  

In chess or mathematics, a computer can exceed human abilities without simulating 
human thought. But language is so intimately tied to thought that a computer probably 
cannot understand language without simulating human thinking at some level. That 
point raises many serious questions:  At what level? With what theory of thinking? 
With what kinds of internal mechanisms? And with what theories and mechanisms for 
relating the internal processes via the sensory-motor systems to other agents and the 
world? Several kinds of theories have been proposed, analyzed, and discussed since 
antiquity:  thoughts are images, thoughts are feelings, thoughts are propositions, and 
thoughts are multimodal combinations of images, feelings, and propositions.  

The propositional theory has been the most popular in AI, partly because it’s 
compatible with a large body of work in logic and partly because it’s the easiest to 
implement on a digital computer. Figure 1 illustrates the classical paradigm for 
natural language processing. At the top is a lexicon that maps the vocabulary to 
speech sounds, word forms, grammar, and word senses. The arrows from left to right 
link each stage of processing:  phonology maps the speech sounds to phonemes; 
morphology relates the phonemes to meaningful units or morphemes; syntax analyzes 
a string of morphemes according to grammar rules; and semantics interprets the 
grammatical patterns to generate propositions stated in some version of logic.  

  

Fig. 1. Classical stages in natural language processing 

  

Fig. 2. A more realistic diagram of interconnections 
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Psycholinguistic evidence since the 1960s has shown that Figure 1 is unrealistic. 
All the one-way arrows should be double headed, because feedback from later stages 
has a major influence on processing at earlier stages. Even the arrows from the 
lexicon should be double headed, because people are constantly learning and coining 
new words, new word senses, and new variations in syntax and pronunciation. The 
output labeled logic is also unrealistic, because logicians have not reached a 
consensus on an ideal logical form and many linguists doubt that logic is an ideal 
representation for semantics. Furthermore, Figure 1 omits everything about how 
language is used by people who interact with each other and the world. Figure 2 is a 
more realistic diagram of the interconnections among the modules.  

Yet Figure 2 also embodies questionable assumptions. The box labeled perception, 
action, and emotion, for example, blurs all the levels of cognition from fish to 
chimpanzees. Furthermore, the boxes of Figure 2 correspond to traditional academic 
fields, but there is no evidence that those fields have a one-to-one mapping to 
modules for processing language in the brain. In particular, the box labeled knowledge 
should be subdivided in at least three ways:  language-independent knowledge stored 
in image-like form; conceptual knowledge related to language, but independent of any 
specific language; and knowledge of the phonology, vocabulary, and syntax of 
specific languages. The box labeled pragmatics deals with the use of language in 
human activities. Wittgenstein (1953) proposed a reorganization in language games, 
according to the open-ended variety of ways language is used in social interactions. 
That subdivision would cause a similar partitioning of the other boxes, especially 
semantics, knowledge, and the lexicon. It would also affect the variations of syntax 
and phonology in casual speech, professional jargon, or “baby talk” with an infant.  

In his first book, Wittgenstein (1922) presented a theory of language and logic 
based on principles proposed by his mentors, Frege and Russell. Believing he had 
solved all the problems of philosophy, Wittgenstein retired to an Austrian mountain 
village, where he taught elementary schoolchildren. Unfortunately, the children did 
not learn, think, or speak according to those principles. In his second book, 
Wittgenstein (1953) systematically analyzed the “grave errors” (schwere Irrtümer) in 
the framework he had adopted. One of the worst was the view that logic is superior to 
natural languages and should replace them for scientific purposes. Frege (1879), for 
example, hoped “to break the domination of the word over the human spirit by laying 
bare the misconceptions that through the use of language often almost unavoidably 
arise concerning the relations between concepts.” Russell shared Frege’s low opinion 
of natural language, and both of them inspired Carnap, the Vienna Circle, and most of 
analytic philosophy.  

Many linguists and logicians who work within the paradigm of Figure 1 admit that 
it’s oversimplified, but they claim that simplification is necessary to enable researchers 
to address solvable subproblems. Yet Richard Montague and his followers have spent 
forty years working in that paradigm, and computational linguists have been working 
on it for half a century. But the goal of designing a system at the level of HAL 9000 
seems more remote today than in 1968. Even pioneers in the logic-based approach 
have begun to doubt its adequacy. Kamp (2001), for example, claimed “that the basic 
concepts of linguistics — and especially those of semantics — have to be thought 
through anew” and “that many more distinctions have to be drawn than are dreamt of 
in current semantic theory.”  



24 A. Majumdar, J. Sowa, and J. Stewart 

This article emphasizes the distinctions that were dreamt of and developed by 
cognitive scientists who corrected or rejected the assumptions by Frege, Russell, and 
their followers. Section 2 begins with the semeiotic by Charles Sanders Peirce, who 
had invented the algebraic notation for logic, but who placed it in a broader 
framework than the 20th-century logicians who used it. Section 3 discusses the 
ubiquitous pattern matching in every aspect of cognition and its use in logical and 
analogical reasoning. Section 4 presents Wittgenstein’s language games and the social 
interactions in which language is learned, used, and understood. Section 5 introduces 
Minsky’s Society of Mind as a method of supporting the interactions illustrated in 
Figure 2. Section 6 summarizes the lessons learned from work with two earlier 
language processors. The concluding Section 7 outlines a multilevel approach to 
language processing that can support more robust and flexible systems.  

2   Semeiotic and Biosemiotics 

Peirce claimed that the primary characteristic of life is the ability to recognize, 
interpret, and respond to signs. Signs are even more fundamental than neurons 
because every neuron is itself a semiotic system:  it receives signs and interprets them 
by generating more signs, which it passes to other neurons or muscle cells. Every cell, 
even an independent bacterium, is a semiotic system that recognizes chemical, 
electrical, or tactile signs and interprets them by generating other signs. Those signs 
can cause the walls of a bacterial cell to contract or expand and move the cell toward 
nutrients and away from toxins. The brain is a large colony of neural cells, whose 
signs coordinate a symbiotic relationship within an organism of many kinds of cells. 
The neural system supports rapid, long-distance communication by electrical signs, 
but all cells can communicate locally by chemical signs. By secreting chemicals into 
the blood stream, cells can broadcast signs by a slower, but more pervasive method. 
At every level from a single cell to a multicellular organism to a society of organisms, 
signs support and direct all vital processes. Semeiotic is Peirce’s term for the theory of 
signs. The modern term biosemiotics emphasizes Peirce’s point that sign processing is 
more general than human language and cognition.  

Deacon (1997), a professional neuroscientist, used Peirce’s theories as a guide for 
relating neurons to language. Figure 3 illustrates his view that the language modules 
of the brain are a recent addition and extension of a much older ape-like architecture. 
Deacon used Peirce’s categories of icon, index, and symbol to analyze the signs that 
animals recognize or produce. The calls a hunter utters to control the dogs are 
indexes, the vocal equivalent of a pointing finger. Vervet monkeys have three types of 
warning calls:  one for eagles, another for snakes, and a third for leopards. Some 
people suggested that those calls are symbols of different types of animals, but 
vervets never use them in the absence of the stimulus. More likely, the vervet that 
sees the stimulus uses the call as an index to tell other vervets to look up, look down, 
or look around. An early step from index to symbol probably occurred when some 
hominin proposed a hunt by uttering an index for prey, even before the prey was 
present. After symbols became common, they would enable planning and organized 
activities in every aspect of life. The result would be a rapid increase in vocabulary, 
which would promote the co-evolution of language, brain, vocal tract, and culture.  
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Fig. 3. An evolutionary view of the language modules 

Like Frege, Peirce was a logician who independently developed a complete 
notation for first-order logic. Unlike Frege, Peirce had a high regard for the power and 
flexibility of language, and he had worked as an associate editor of the Century 
Dictionary, for which he wrote, revised, or reviewed over 16,000 definitions. Peirce 
never rejected language or logic, but he situated both within the broader theory of 
signs. In his semeiotic, every sign is a triad that relates a perceptible mark (1), to 
another sign called its interpretant (2), which determines an existing or intended 
object (3). Following is one of Peirce’s most often quoted definitions:  

A sign, or representamen, is something which stands to somebody for 
something in some respect or capacity. It addresses somebody, that is, 
creates in the mind of that person an equivalent sign, or perhaps a more 
developed sign. That sign which it creates I call the interpretant of the 
first sign. The sign stands for something, its object. It stands for that 
object, not in all respects, but in reference to a sort of idea, which I have 
sometimes called the ground of the representamen. (CP 2.228)  

A pattern of green and yellow in the lawn, for example, is a mark, and the 
interpretant is some type, such as Plant, Weed, Flower, SaladGreen, or Dandelion. 
The guiding idea that determines the interpretant depends on the context and the 
intentions of the observer. The interpretant determines the word the observer chooses 
to express the experience. The listener who hears that word uses background 
knowledge to derive an equivalent interpretant.  

As Peirce noted, an expert with a richer background can sometimes derive a more 
developed interpretant than the original observer. Communication in which both sides 
have identical interpretants is possible with computer systems. Formal languages are 
precise, but they are rigid and fragile. The slightest error can and frequently does 
cause a total breakdown, such as the notorious “blue screen of death.”  

On the surface, Peirce’s triads seem similar to the meaning triangles by Aristotle, 
Frege, or Ogden and Richards (1923). The crucial difference is that Peirce analyzed 
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the underlying relationships among the vertices and sides of the triangle. By analyzing 
the relation between the mark and its object, Peirce (1867) derived the triad of icon, 
index and symbol:  an icon refers by some similarity to the object; an index refers by a 
physical effect or connection; and a symbol refers by a law, habit, or convention. 
Figure 4 shows this relational triad in the middle row.  

 

Fig. 4. Peirce’s triple trichotomy 

Later, Peirce added the first row or material triad, which signifies by the nature of 
the mark itself. The third row or formal triad signifies by a formal rule that relates all 
three vertices — the mark, interpretant, and object. The basic units of language are 
characterized by the formal triad:  a word serves as a rheme; a sentence, as a dicent 
sign; and a paragraph or other sequence, as an argument. The labels at the top of 
Figure 4 indicate how the sign directs attention to the object:  by some quality of the 
mark, by some causal or pointing effect, or by some mediating law, habit, or 
convention. The following examples illustrate nine types of signs:  

1. Qualisign (material quality).  A ringing sound as an uninterpreted sensation.  
2. Sinsign (material indexicality).  A ringing sound that is recognized as 

coming from a telephone.  
3. Legisign (material mediation).  The convention that a ringing telephone 

means someone is trying to call.  
4. Icon (relational quality).  An image that resembles a telephone when used to 

indicate a telephone.  
5. Index (relational indexicality).  A finger pointing toward a telephone.  
6. Symbol (relational mediation).  A ringing sound on the radio that is used to 

suggest a telephone call.  
7. Rheme (formal quality).  A word, such as telephone, which can represent 

any telephone, real or imagined.  
8. Dicent Sign (formal indexicality).  A sentence that asserts an actual existence 

of some object or event:  “You have a phone call from your mother.”  
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9. Argument (formal mediation).  A sequence of dicent signs that expresses a 
lawlike connection:  “It may be an emergency. Therefore, you should answer 
the phone.”  

The nine categories in Figure 4 are more finely differentiated than most definitions 
of signs, and they cover a broader range of phenomena. Anything that exists can be a 
sign of itself (sinsign), if it is interpreted by an observer. But Peirce (1911:33) did not 
limit his definition to human minds or even to signs that exist in our universe:  

A sign, then, is anything whatsoever — whether an Actual or a May-be 
or a Would-be — which affects a mind, its Interpreter, and draws that 
interpreter’s attention to some Object (whether Actual, May-be, or 
Would-be) which has already come within the sphere of his experience.  

The mind or quasi-mind that interprets a sign need not be human. In various 
examples, Peirce mentioned dogs, parrots, and bees. Higher animals typically 
recognize icons and indexes, and some might recognize symbols. A language of some 
kind is a prerequisite for signs at the formal level of rhemes, dicent signs, and 
arguments.  In general, Peirce’s theory of signs provides a more nuanced basis for 
analysis than the all-or-nothing question of whether animals have language. Unlike 
the static meaning triangles of Aristotle or Frege, the most important aspect of 
Peirce’s triangles is their dynamic nature:  any vertex can spawn another triad to show 
three different perspectives on the entity represented by that vertex. During the course 
of a conversation, the motives of the participants lead the thread of themes and topics 
from triangle to triangle.  

3   Perception, Cognition, and Reasoning 

Language affects and is affected by every aspect of cognition. Only one topic is more 
pervasive than language:  signs in general. Every cell of every organism is a semiotic 
system, which receives signs from the environment, including other cells, and 
interprets them by generating more signs, both to control its own inner workings and 
to communicate with other cells of the same organism or different organisms. The 
brain is a large colony of neural cells, which receives, generates, and transmits signs 
to other cells of the organism, which is an even larger colony. Every publication in 
neuroscience describes brains and neurons as systems that receive signs, process 
signs, and generate signs. Every attempt to understand those signs relates them to 
other signs from the environment, to signs generated by the organism, and to theories 
of those signs in other branches of cognitive science. The meaning of the neural signs 
can only be determined by situating neuroscience within a more complete theory that 
encompasses every aspect of cognitive science.  

By Peirce’s definition of sign, all life processes, especially cognition, involve 
receiving, interpreting, generating, storing, and transmitting signs and patterns of 
signs. Experimental evidence is necessary to determine the nature of the signs and the 
kinds of patterns generated by the interpretation. Perceptual signs are icons derived 
from sensory stimulation caused by the outside world or caused by internal bodily 
processes. Recognition consists of interpreting a newly received icon by matching it 
to previously classified icons called percepts and patterns of percepts called Gestalts. 
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The interpretation of an icon is the pattern formed by the percepts, Gestalts, and other 
associated signs. The interpreting signs may be image-like percepts or imageless 
concepts, which are similar to percepts, but without the sensory connections.  

Analogy is a method of reasoning based on pattern matching, and every method of 
logic is a constrained use of analogy. As an example, consider the rule of deduction 
called modus ponens:  

   Premise:     If P then Q. 
   Assertion:   P′. 
   Conclusion:  Q′. 
This rule depends on the most basic form of pattern matching:  a comparison of P 

and P′ to determine whether they are identical. If P in the premise is not identical to P′ 
in the assertion, then a pattern-matching process called unification specializes P by 
some transformation S that makes S(P) identical to P′. By applying the same 
specialization S to Q, the conclusion Q′ is derived as S(Q). Each of the following 
three methods of logic constrain the pattern matching to specialization, generalization, 
or identity.  

1. Deduction.  Specialize a general principle.  
   Known:  Every bird flies. 
   Given:  Tweety is a bird. 
   Infer:  Tweety flies. 

2. Induction.  Generalize multiple special cases:  
   Given:  Tweety, Polly, and Hooty are birds. 
           Tweety, Polly, and Hooty fly. 

   Assume: Every bird flies. 
3. Abduction.  Given a special case and a known generalization, make a guess 

that explains the special case.  
   Given:  Tweety flies. 
   Known:  Every bird flies. 
   Guess:  Tweety is a bird. 

These three methods of logic depend on the ability to use symbols. In deduction, 
the general term every bird is replaced by the name of a specific bird Tweety. 
Induction generalizes a property of multiple individuals — Tweety, Polly, and Hooty 
— to the category Bird, which subsumes all the instances. Abduction guesses the new 
proposition Tweety is a bird to explain one or more observations. According to 
Deacon’s hypothesis that symbols are uniquely human, these three reasoning methods 
could not be used by nonhuman mammals.  

According to Peirce (1902), “Besides these three types of reasoning there is a 
fourth, analogy, which combines the characters of the three, yet cannot be adequately 
represented as composite.” Its only prerequisite is stimulus generalization — the 
ability to classify similar patterns of stimuli as signs of similar objects or events. 
Unlike the more constrained operations of generalization and specialization, similarity 
may involve a generalization of one part and a specialization of another part of the 
same pattern. Analogy is more primitive than logic because it does not require 
language or symbols. In Peirce’s terms, logic requires symbols, but analogy can also 
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be performed on image-like icons. Case-based reasoning (CBR) is an informal 
method of reasoning, which uses analogy to find and compare cases that may be 
relevant to a given problem or question.  

Whether the medium consists of discrete words or continuous images, CBR 
methods start with a question or goal Q about some current problem or situation P. By 
analogy, previous cases that resemble P are recalled from long-term memory and 
ranked according to their similarity to P. The case with the greatest similarity (i.e., 
smallest semantic distance) is the most likely to answer the question Q. When a 
similar case is found, the part of the case that matches Q is the predicted answer. If 
two or more cases are equally similar, they may or may not predict the same answer. 
If they do, that answer can be accepted with a high degree of confidence. If not, the 
answer is a disjunction of alternatives:  Q1 or Q2.  

For highly regular data, induction can generalize many cases to rules of the form If 
P, then Q. For such data, CBR would derive the same conclusions as a method of 
deduction called backward chaining:  a goal Q′ is unified to the conclusion Q of some 
if-then rule by means of a specialization S; the application of S to P produces the 
pattern P′, which is a generalization of one or more cases. Formal deduction is best 
suited to thoroughly analyzed areas of science, for which induction can reduce a large 
number of cases to a small number of rules. CBR is generally used for subjects with 
highly varied or frequently changing cases, for which any axioms would have a long 
list of exceptions. Legal reasoning is a typical example:  both the list of laws and the 
list of cases are enormous, and most generalizations have as many exceptions as 
applications. Both logic and CBR have a large overlap on which they’re compatible:  
they would generate consistent responses to the same questions.  

The world is continuous, all physical motions are continuous, feelings and 
sensations vary continuously, but every natural language has a discrete, finite set of 
meaningful units or morphemes. No discrete set of symbols can faithfully represent a 
continuous world, but the two systems must be related by a mapping between 
language and the world. Wildgen (1982, 1994) maintained that continuous fields are 
the primary basis for perception and cognition, and he adopted René Thom’s 
catastrophe-theoretic semantics for identifying the patterns that map to the discrete 
units of language. Those ideas are still controversial, but the principle of mapping 
discrete structures such as conceptual graphs (CGs) to continuous fields has proved to 
be valuable for developing efficient methods for indexing CGs and computing the 
semantic distance between them (Sowa & Majumdar 2003). Those methods were 
used for finding analogies in the VivoMind Analogy Engine (VAE), and more precise 
and flexible mappings have been implemented in a new system called Cognitive 
Memory™.  

4   Language Games 

The first language game may have evolved about four million years ago as a system 
of sounds and gestures for organizing a hunt. At that time, chimpanzees lived in the 
forests of west Africa, while our ancestor, Australopithecus, lived in the grasslands to 
the east. With fewer trees to climb, the Australopithecines began to walk upright. 
Chimps supplement their diet by catching and eating small game, but in lands with 
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sparser vegetation, Australopithecines required more meat. Since they weren’t as fast 
as their prey, they had to hunt in organized parties, which require communication. 
The calls and gestures of the chimps were adequate for occasional hunting, but when 
hunting became a necessity, any improvement in communication would be an 
enormous advantage. Vocal calls are convenient because they leave the hands free, 
and they can be spoken and heard while eyes are focused on the prey. The earliest 
protowords were probably a few dozen indexical signs, of the sort that modern 
hunters and shepherds use to control their dogs. The first step from index to symbol 
likely occurred when some hominin proposed a hunt by uttering the index for prey, 
even before the prey was present. After symbols were invented, language games 
could be integrated with every social activity that involved cooperation, negotiation, 
persuasion, planning, or play.  

Wittgenstein’s theory of language games has major implications for both semantic 
theory and computational linguistics. It implies that the ambiguities of natural 
language are not the result of careless speech by uneducated people. Instead, they 
result from the fundamental nature of language and the way it relates to the world:  
each language uses and reuses a finite number of words to represent an unlimited 
number of topics. A closed semantic basis along classical lines is not possible for any 
natural language. Instead of assigning a single meaning or even a fixed set of 
meanings to each word, a theory of semantics must permit an open-ended number of 
meanings:  

• Words are like playing pieces that may be used and reused in different 
language games.  

• Associated with each word is a limited number of lexical patterns that are 
common to all the language games that use the word.  

• Meanings are deeper conceptual patterns that change from one language 
game to another.  

• Metaphor and conceptual refinement are techniques for transferring the 
lexical patterns of a word to a new language game and thereby creating new 
conceptual patterns for that game.  

Once a lexical pattern is established for a concrete domain, it can be transferred by 
metaphor to create similar patterns in more abstract domains. By this process, an 
initial set of lexical patterns can be built up; later, they can be generalized and 
extended to form new conceptual patterns for more abstract subjects. The possibility 
of transferring patterns from one domain to another increases flexibility, but it leads 
to an inevitable increase in ambiguity.  

If the world were simpler, less varied, and less changeable, natural languages 
might be unambiguous. But the complexity of the world causes the meanings of 
words to shift subtly from one domain to the next. If a word is used in widely 
different domains, its multiple meanings may have little or nothing in common. As an 
example, the word invest, which originally meant to put on clothing, has come to 
mean either to surround a fortress or to make a certain kind of financial transaction. In 
Italian, the related word investmento has all the senses of the English investment, but 
with the added sense of traffic accident. As these examples illustrate, the mechanisms 
of natural languages not only permit, but actually facilitate arbitrarily large shifts in 
meaning. They have enabled isolated tribes using stone-age tools to adapt to  
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21st-century cultures within the lifetime of a single generation, while continuing to 
speak what is called “the same language.”  

Although Wittgenstein’s theory of language games has been highly influential, 
some linguists and philosophers have raised criticisms and proposed alternative, but 
related hypotheses. Hattiangadi (1987) proposed that the meaning of a word is the set 
of all possible theories in which it may be used, but that term sounds too formal to 
cover everyday speech. Kittredge and Lehrberger (1982) used the term sublanguage 
for any specialized language used in any context for any purpose. Whatever it’s 
called, a language game or any related variation must involve an organized system of 
language patterns and practices that are intimately bound to a system of behavior — 
or, as Wittgenstein called it, a way of life. Language can only be understood in terms 
of the social activities of its speakers. Full understanding of the language would 
require a person or robot to participate in the activity in a way that other participants 
would consider appropriate. This requirement, which is a variant of the Turing test, is 
a necessary condition for a single language game. A sufficient condition for general 
understanding would require the ability to learn, use, and invent a wide range of 
language games under the same kinds of conditions as native speakers.  

By those criteria, the bonobo Kanzi is a nonhuman person who has reached a level 
of language understanding that is beyond the ability of any computer system yet 
devised (Savage-Rumbaugh & Lewin 1994). On a test of spoken English with 
sentences such as “Get the rubber band that’s in the bathroom,” Kanzi responded with 
the correct action to 72% of the sentences; Alia, a two-year-old girl, responded 
correctly to 66% of them. Even more impressive are the reports by Stuart Shanker, a 
skeptical Wittgensteinian philosopher who became a believer after visiting Kanzi and 
his teacher, Sue Savage-Rumbaugh. On Shanker’s first visit, Sue asked Kanzi, “I’m 
going to take Stuart around the lab. Could you please water the tomato plants for me 
while we’re doing this?” Following is Shanker’s description of what Kanzi did:  

And sure enough, I watched as he trundled over to an outdoor water 
faucet, picked up a bucket that was lying beside it, turned on the spigot 
and filled the bucket, turned off the faucet himself, and then walked 
down to a vegetable patch at the far end of the compound, carrying the 
bucket in one hand. When he reached the vegetables, I watched as he 
poured the water on a small patch of tomato plants growing in the 
corner of the vegetable patch. (Greenbaum & Shanker 2004:107).  

There is no evidence of which words of the request Kanzi understood. But he was 
undoubtedly familiar with the task of watering the tomatoes, and he understood the 
language games related to that task. Linguists have claimed that the inability to 
produce detailed syntax indicates that apes have not learned a truly natural language. 
Yet apes and two-year-old children satisfy the criteria of learning, using, and 
inventing language games integrated with their behavior. If Kanzi were human, he 
would be diagnosed as having a language deficit, but no one would doubt his 
understanding of the language associated with the activities in which he participated.  

Current natural language processors have been used in many valuable applications, 
such as translating languages, finding and extracting information from text, 
summarizing texts, answering questions, and checking and correcting syntax errors. 
Some of them have been used to control robots, but none of them have been able to 
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learn, play, and invent language games at the level of Kanzi and other apes. 
Furthermore, none of them have been able to learn, use, and generate language at the 
level of a three-year-old child. The following sentences were uttered by a child named 
Laura at 2 years, 10 months (Limber 1973):  

Here’s a seat. It must be mine if it’s a little one.  
I went to the aquarium and saw the fish.  
I want this doll because she’s big.  
When I was a little girl, I could go “geek geek” like that,  
but now I can go “This is a chair.”  

Forty years ago, the goal of AI was to meet or exceed all human intellectual 
abilities. Today, reaching the level of Laura or Kanzi would be a major achievement.  

Laura’s sentences contain implications (if), causal connections (because), modal 
auxiliaries (can and must), contrast between past and present tenses, metalanguage 
about her own language at different times, and parallel stylistic structure. Combining 
modal, temporal, causal, and metalevel logic and reasoning in a single formalism and 
using it to interpret and generate natural language is still a major research topic. Even 
though she couldn’t prove theorems as fast as Wang’s program, Laura used all those 
operators before the age of three. The assumption that formal logic is the foundation 
or prerequisite for language understanding seems unlikely.  

Some linguists and philosophers have been searching for an elusive “natural logic” 
that underlies language. Yet there is no sharp boundary between ordinary language 
and any formal logic. When two logicians talk on the telephone, they can convey the 
most abstruse ideas with a few words added to ordinary language. A better 
assumption is that formal logic is a language game played with symbols and patterns 
abstracted from natural languages. Formal logic may sound unnatural to the 
uninitiated, but that is true of the language games of any specialized field. Sailors, 
plumbers, chefs, and computer hackers scorn the “book learning” of novices who try 
to use their jargon without mastering the associated skills. Book learning is useful, but 
computer systems must relate it to action in order to demonstrate understanding at the 
level of Laura or Kanzi.  

Some language games involve a disciplined use of syntax, semantics, and 
vocabulary in a controlled natural language that a computer can process without full 
understanding. An example is the METEO system for translating weather reports to 
and from English and French (Thouin 1982). For routine reports about the 
temperature and precipitation, METEO does the translation without human assistance, 
but for unusual conditions outside the controlled subset, it sends the reports to a 
human translator. Speech recognition systems for handling telephone calls frustrate 
people who need to discuss situations that fall outside the controlled subset. More 
research is necessary to broaden the controlled subsets and determine when to transfer 
the call to a human being.  

5   Society of Mind 

In computer systems, the linear flow of Figure 1 is easy to implement:  each stage 
analyzes some data, passes the results to the next stage, and never sees the same data 
again. But the more complex interconnections of Figure 2 allow other modules, even 
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later stages, to request or propose different interpretations of previously analyzed 
data. In recordings of the following sentences, for example, Warren (1970) spliced a 
patch of white noise at each point marked ¿:  

The ¿eel is on the shoe.  
The ¿eel is on the car.  
The ¿eel is on the table.  
The ¿eel is on the orange. 

Although the sound was identical in each of the four sentences, the listeners who 
heard the recordings interpreted the four words as heel, wheel, meal, and peel, 
respectively. Apparently, feedback from the semantic stage caused a reinterpretation 
of the phonology of an earlier word in the sentence. Furthermore, the listeners were 
not aware of hearing anything unusual. Many similar studies indicate a great deal of 
parallel processing in the brain with feedback from later stages to earlier stages, 
usually at a level beneath conscious awareness. To support parallel processing with 
feedback, a computer system would require a more complicated control structure than 
a linear flow.  

An early AI model of parallel reasoning was Pandemonium (Selfridge 1959), 
which consisted of a collection of autonomous agents called demons. Each demon 
could observe aspects of the current situation or workspace, perform some 
computation, and put its results back into the workspace. In effect, Pandemonium was 
a parallel forward-chaining reasoner, whose major drawback was that the demons 
generated large volumes of mostly useless data that overflowed available storage. For 
a more disciplined method of passing messages among the linguistic modules, Hahn 
et al. (1994) designed ParseTalk as a distributed, concurrent, object-oriented parser. In 
discussing the advantages of ParseTalk, the authors noted that it replaces “the static 
global-control paradigm” of Figure 1 with “a dynamic, local-control model” that 
supports “a balanced treatment of both declarative and procedural constructs within a 
single formal framework.” Although ParseTalk is a promising approach, Figure 3 
suggests that the language modules use a much older and more pervasive system that 
supports all aspects of perception, cognition, and action. Therefore, the large box at 
the bottom of Figure 3 should also be subdivided in modules that operate in parallel 
and communicate by message passing.  

The integration of language games with social activity implies that the language 
modules should be further subdivided and interconnected with other cognitive 
modules in dynamically changing ways. The modules for reading, for example, would 
connect visual perception to the syntactic and semantic mechanisms. Psycholinguistic 
studies with Japanese syllabic kana symbols and character-based kanji, indicates that 
they use different neural mechanisms even for reading. Singing integrates language 
and music in ways that make both the words and the melodies easier to recognize and 
reproduce. Singing is also connected to dancing, marching, and various kinds of 
rhythmic work and play. Some linguists claimed that music was based on the 
syntactic mechanisms of language, but Mithen (2006) presented detailed evidence to 
show that music is older and independent of language. In fact, syntax may have 
evolved with or from the music of prosody. Whatever the basis, the number of 
modules is probably far greater than the eight boxes of Figures 2 and 3. Perhaps there 
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is no limit to the number of modules, and every language game and mode of behavior 
has its own module or even a collection of interacting modules.  

The diversity of mechanisms associated with language is a subset of the even 
greater diversity involved in all aspects of cognition. In his book The Society of Mind, 
Minsky (1987) surveyed that diversity and proposed an organization of active agents 
as a computational model that could simulate the complexity:  

What magical trick makes us intelligent? The trick is that there is no 
trick. The power of intelligence stems from our vast diversity, not from 
any single, perfect principle. Our species has evolved many effective 
although imperfect methods, and each of us individually develops more 
on our own. Eventually, very few of our actions and decisions come to 
depend on any single mechanism. Instead, they emerge from conflicts 
and negotiations among societies of processes that constantly challenge 
one another. (Section 30.8)  

This view is radically different from the assumption of a unified formal logic that 
cannot tolerate a single inconsistency. Unlike the ParseTalk goal of “a single formal 
framework,” Minsky’s goal is to build a flexible, fault-tolerant system out of 
imperfect, possibly fallible components. Such a system can support logic, just as the 
flexible, fault tolerant, and fallible human brain supports logic. More recently, Minsky 
(2006) emphasized the role of emotions in driving an engine composed of multiple 
agents. Without emotions to set the goals, a logic-based theorem prover would have 
no reason to do anything.  

Minsky’s proposal for a society of interacting agents could be implemented in a 
variety of ways. The Flexible Modular Framework™ (FMF) proposed by Sowa 
(2002, 2004) is an architecture for intelligent systems that was inspired by Minsky’s 
society of agents, by McCarthy’s proposal for the logic-based language Elephant 
2000, and by Peirce’s semeiotic. As in Minsky’s society, each module in the FMF is 
an autonomous agent that communicates with other agents by passing messages. As in 
McCarthy’s Elephant, each message specifies a speech act that indicates its purpose, 
and the messages may be expressed in logic. As in Peirce’s semeiotic, each message 
is a sign at any level of complexity, each agent is a “quasi-mind” that interprets signs 
by generating other signs, and many agents use the Peirce-inspired system of logic 
called conceptual graphs. An agent that knows another agent’s identity can send it a 
message directly, but any agent can post a message to a Linda blackboard, and any 
other agent that can process that type of message can respond to it (Gelernter 1985). 
Unlike ParseTalk, the FMF does not require a single formal framework, but it can 
support the π-calculus, which is a generalization of Petri nets that allows new agents 
and communication paths to be created or destroyed dynamically (Milner 1999). 
Several variations of the FMF have been implemented, and all of them use a 
lightweight protocol that can be implemented in 8K bytes per agent. Thousands of 
agents can run simultaneously on a laptop computer, but they can communicate with 
other agents anywhere across the Internet.  

An interactive system of agents that can change their configuration dynamically is 
strictly more expressive than a conventional Turing machine, and it can compute 
functions that are not Turing computable (Eberbach et al. 2004). The π-calculus is one 
such system. Another is the $-calculus, which has the same operators as the  
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π-calculus, but adds a cost measure for each computation. A cost measure based on 
space and time requirements can constrain the excesses of systems like Pandemonium 
by rewarding agents that produce good results with more resources and reducing the 
resources of agents that produce useless data.  

At VivoMind, the authors have developed a learning method called Market-Driven 
Learning (MDL), which uses a version of $-calculus. The basic idea is that the system 
of agents is organized in a managerial hierarchy with one agent called the CEO at the 
top. The CEO is responsible for producing results that earn rewards, measured in units 
of space and time, in order to keep the society of agents in business. At the bottom of 
the hierarchy are agents that find data, combine data, or propose hypotheses. Some of 
them are freelance agents who sell data or hypotheses by advertising them on the Linda 
blackboards. Other agents are hired by some agent that serves as a manager. Each 
manager has one or more agents as employees, and every manager except the CEO is 
allocated resources by a higher-level manager. The managers can use their resources to 
hire employees, reward employees for good performance, or buy data and hypotheses 
from freelance agents or from other managers. The managers may combine the data 
and hypotheses themselves, assign their employees the task of doing the combination, 
or serve on a committee with other managers to produce a combined report.  

The MDL society learns by reorganizing itself to produce consistently good results, 
which humans are willing to buy. The rewards pass through the hierarchy from 
manager to employee and create an effect of backward propagation similar to the 
learning methods of a neural network. But unlike the simple switches and numeric 
functions of a neural network, the MDL agents can be arbitrarily complex programs 
or reasoning systems, they can hire or fire other agents, and the messages can be 
propositions or even large documents stated in some version of logic. Also unlike a 
neural network, the messages that pass through the MDL can be translated to 
Common Logic Controlled English (CLCE) in order to provide humanly readable 
explanations about the way any agent derived its data, hypotheses, or reports. By 
simulating a variety of business methods, the MDL approach has produced good 
results, and it is used in the VivoMind Language Processor described in Section 7.  

6   Experience with Intellitex and CLCE 

The theoretical issues discussed in the previous sections influenced the design of two 
language processors developed and used by the authors:  the Intellitex parser, which 
produced an approximate translation from English to conceptual graphs, and the 
CLCE parser, which translated the formally defined subset of Common Logic 
Controlled English to precisely defined conceptual graphs. The two parsers had 
complementary strengths and weaknesses:  

• Intellitex was a fast, but shallow parser that used a version of link grammar 
(Sleator & Temberley 1993) to translate English sentences to conceptual graphs. 
Intellitex always generated some conceptual graph as an approximation to the 
semantics of an English sentence, but its grammar and semantics were not 
sufficiently detailed to generate an accurate logical form for complex sentences. 
Its approximations, however, were useful for many applications, such as 
analogical reasoning and question answering (Sowa & Majumdar 2003). The 
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VivoMind Analogy Engine (VAE) could enhance and correct the approximate 
CGs generated by Intellitex, but only if a large knowledge base of precisely 
defined CGs happened to be available. For an important application, such 
knowledge enabled Intellitex to perform amazingly well.  

• The CLCE parser was a traditional syntax-directed parser, which processed 
character strings written in Common Logic Controlled English (Sowa 2004). 
It followed the stages from morphology to semantics in Figure 1 to generate 
a logical form in the Conceptual Graph Interchange Format (CGIF), as 
defined by the ISO/IEC 24707 standard for Common Logic. But the CLCE 
subset of English is a formal language, and the CLCE parser was as rigid and 
unforgiving as a parser for any formal language. Making it more user 
friendly or extending it to a broader range of English constructions would 
require a large number of grammar rules. Furthermore, each grammar rule 
would require a corresponding semantic rule to generate the correct CG.  

Over time, incremental improvements were made to both of these processors, but 
their methods for parsing English and generating CGs were so different that no 
synergism between them was possible. Intellitex was more robust and forgiving than 
the CLCE parser, but it could not detect and correct errors in the input that would 
cause the CLCE parser to fail. The CLCE parser generated more precise CGs, but it 
could not improve the output generated by Intellitex. A survey of these two systems 
can provide some insight into the issues.  

The largest and most impressive application combined Intellitex with VAE for a 
legacy reengineering project that analyzed and related the software and English 
documentation for a large corporation. The software was written in formal languages:  
1.5 million lines of COBOL with embedded SQL statements and several hundred 
scripts in the IBM Job Control Language (JCL). The documentation consisted of 100 
megabytes of English reports, manuals, e-mails, web pages, memos, notes, and 
comments in the COBOL and JCL code. Some of the documentation and programs 
were up to 40 years old and still in daily use.  

The first goal was to analyze the programs to derive a data dictionary, data flow 
diagrams, process architecture diagrams, and system context diagrams for all the 
software. That task could be done with programming-language parsers and 
conventional methods of analysis. The second and more challenging goal was to 
analyze the English, detect any errors or discrepancies between the software and the 
documentation, and generate a humanly readable glossary of terminology for the 
software and data, including all the variations over the period of 40 years. A major 
consulting firm estimated that analyzing all the documentation and relating it to the 
software would require 40 people for 2 years.  

By using Intellitex and VAE, two programmers, Arun Majumdar and André 
LeClerc, accomplished both goals in less than two months, a total of 15 person weeks 
instead of 80 person years (LeClerc & Majumdar 2002). The results of first analyzing 
the computer languages and translating them to conceptual graphs were essential for 
analyzing the English. The names of every program, file, and data element were 
added to the dictionary used for parsing English. Furthermore, those items were also 
classified in an ontology of the computer terms that supplemented the ontology 
derived from WordNet, CoreLex, and other resources. Each term added to the lexicon 
was associated with one or more conceptual graphs that showed the expected 
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relations:  for example, variables occur in programs, programs process files, and files 
contain data. When parsing English, Intellitex translated every phrase or sentence to a 
conceptual graph. Those CGs that did not refer to anything in the software were 
discarded, and the others were used to update a knowledge base of information about 
the software. The results of the analysis were presented in one CD-ROM:  software 
diagrams, data dictionary, English glossary, and a list of inconsistencies between the 
software and the documentation.  

The reason why Intellitex and VAE succeeded where many natural language 
processors failed is that it did not attempt to translate informal language to formal 
logic. Instead, it used the formal CGs derived from COBOL, SQL, and JCL as the 
background knowledge for interpreting English text and resolving ambiguities. In 
short, the results were generated by joining formal CGs according to formal rules in 
order to create a pattern that had a close match to the approximate CGs derived from 
the English sentences. As an example, the following paragraph is taken from the 
English documentation:  

The input file that is used to create this piece of the Billing Interface for 
the General Ledger is an extract from the 61 byte file that is created by 
the COBOL program BILLCRUA in the Billing History production 
run. This file is used instead of the history file for time efficiency. This 
file contains the billing transaction codes (types of records) that are to 
be interfaced to General Ledger for the given month. For this process 
the following transaction codes are used: 32 — loss on unbilled, 72 — 
gain on uncollected, and 85 — loss on uncollected. Any of these 
records that are actually taxes are bypassed. Only client types 01 — 
Mar, 05 — Internal Non/Billable, 06 — Internal Billable, and 08 — 
BAS are selected. This is determined by a GETBDATA call to the 
client file. The unit that the gain or loss is assigned to is supplied at the 
time of its creation in EBT.  

The common words in this paragraph were found in the dictionary derived from 
WordNet. Other words such as BILLCRUA, GETBDATA, and EBT were derived 
from the previous analysis of the software. Those words caused VAE to bring 
associated CGs from the background knowledge.  

The sample paragraph also illustrates how Intellitex can process a wide range of 
syntactic constructions with a rather simple grammar. A phrase such as “32 — loss on 
unbilled” is not part of any published grammar of English. When Intellitex found that 
pattern, it translated it to a rudimentary conceptual graph of the following form:  

[Number: 32]→(Next)→[Punctuation: "—"] 
     →(Next)→[Loss]→(On)→[Unbilled] 
This graph was stored as a tentative interpretation with a low weight of evidence. 

But Intellitex found two more graphs, which VAE matched to this graph with a high 
weight of evidence. Therefore, this syntactic pattern became, in effect, a newly 
learned grammar rule with a familiar semantic pattern. Although that pattern is not 
common in the full English language, it is important for the analysis of at least one 
document.  The uninformative relations labeled Next were supplemented with 
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background knowledge derived from previously analyzed CGs that formed the best 
match to those rudimentary graphs.  

This discussion illustrates one of the most important lessons learned from Intellitex 
and VAE:  A formal representation is easier to derive by joining conceptual graphs 
from background knowledge than by limiting the analysis to the details found in the 
input sentences. In fact, the background knowledge can often correct typos and other 
careless mistakes in the input text. That process illustrates Peirce’s point that the 
listener may derive “a more developed sign” than the speaker intended. It is 
colloquially called “reading between the lines.” This principle was applied in another 
application of Intellitex for scoring and correcting student answers to examination 
questions. Instead of trying to understand every detail of the students’ often cryptic 
and ungrammatical prose, VAE would match the approximate CGs derived from the 
student answers to previously derived CGs that were known to be correct or incorrect. 
The results had a high correlation with the scores assigned by experienced teachers.  

For applications that require a precise representation in logic, a traditional syntax-
directed parser was used to translate Common Logic Controlled English to logic in 
the Conceptual Graph Interchange Format (ISO/IEC 24707). Following is an example 
of medical English, as it was written by a physician:  

Exclude patients with a history of Asthma, COPD3, Hypotension, 
Bradycardia (heart block > 1st degree or sinus bradycardia) or 
prescription of inhaled corticosteroids.  

No system available today can accurately translate this kind of language to any 
version of logic. But a person with medical expertise and some training in writing 
controlled English can learn to translate this text to the following CLCE statements:  

Define "x is bradycardia" as "either x is sinus bradycardia or (x is a 
heart block and x has a degree greater than 1)".  

If a patient x has a history of asthma, or x has a history of COPD3, or x 
has a history of hypotension, or x has a history of bradycardia, or (x is 
prescribed a drug y, and y is inhaled, and y is a corticosteroid), then x is 
excluded.  

Although these statements can be read as if they were English, CLCE is actually a 
formal language that has a direct mapping to first-order logic. For somebody who 
knows the subject matter, reading CLCE requires little or no training. Learning to 
write CLCE, however, requires training, especially for people who have never taken a 
course in logic.  

To make CLCE more “user friendly,” additional grammar rules were added to 
catch typical errors and to introduce more natural ways of expressing various logical 
combinations. But as we continued to add rules and inferences, we ran into 
maintenance problems and interactions between the inferences that resulted in 
confusing, but consistent readings. Since we were already implementing a new parser 
to replace Intellitex, we decided to design the new parser to handle CLCE as one kind 
of language game that could be played with English. The new parser would translate 
CLCE sentences directly to logic. But instead of rejecting sentences outside the CLCE 
subset, it would use the methods designed to handle unrestricted English. Then it 
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would translate any CG that was generated back to CLCE as an echo and ask for a 
confirmation of its accuracy. In effect, CLCE was no longer defined as the language 
accepted by the parser, but as the language generated as an echo.  

7   Designing Robust and Flexible Systems 

A computer system that truly understands language would have to address all the 
issues discussed in this article, perhaps with others that are still unknown. Following 
is a brief summary:  

1. Language learning, by the individual or the species, is grounded in social 
interactions, and full language understanding must be integrated with social 
behavior and all the supporting mechanisms of perception, action, 
knowledge, and reasoning.  

2. Wittgenstein was correct in rejecting his early view, as influenced by his 
mentors Frege and Russell, that logic is the foundation for language. As he 
said in his notebooks (Zettel), language is “an extension of primitive 
behavior. (For our language game is behavior.)”  

3. Instead of being the foundation for language, logic is one among many 
important games that can be played with the words and syntax of a natural 
language. Formal logic is an abstraction from those language games, not a 
prerequisite for them.  

4. The elegant syntax of well-edited prose is another important language game, 
which is used in large libraries of valuable knowledge. But focusing on that 
game as the prototype of “language competence” is as misguided as 
privileging any other language game, such as poetry, prayer, casual gossip, 
technical jargon, or text messaging.  

5. Syntactic parsers can be useful for many practical applications, but a rigid 
linkage of syntactic rules to semantic rules is too inflexible and fragile to 
support natural languages. The appropriate semantics cannot be determined 
without knowledge of the context and subject matter.  

6. The information needed to understand a sentence can rarely be derived from 
just its words and syntax. Even when the syntax is unambiguous, background 
knowledge of the context and subject matter must be added to determine the 
referents, the exact word senses, and the speaker’s intentions.  

The new VivoMind Language Processor (VLP) is a modular, open-ended system 
designed to accommodate the features discussed in this article and others that remain to 
be invented. The processing is handled by a society of agents, which can dynamically 
reconfigure their interactions by the market-driven learning methods described in 
Section 5. New features can be handled by adding new agents to the society, and a 
failure of one or more agents causes a fail-soft degradation in capability, rather than a 
hard crash. The syntactic component of VLP generates conceptual graphs as 
dependency structures by techniques similar to a link-grammar parser (Temperley & 
Sleator 1993), but with an approach that is similar to the parallel and concurrent 
ParseTalk (Hahn et al. 1994). Instead of the object-oriented methods of ParseTalk, in 
which the calling program determines how an object is supposed to respond, the VLP 
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agents have more freedom to make their own decisions. Many of the decisions use a 
consensus-based approach that combines the results of several agents.  

The first major application of VLP was to analyze 79 documents in the geosciences 
domain. The articles, which ranged in size from 1 to 50 pages, described various sites 
of interest for oil and gas exploration. The documents were not tagged or annotated in 
any way, except for the usual formatting tags intended for human readability. The 
VLP system translated the texts to conceptual graphs, used the new Cognitive 
Memory system to index and store the graphs, and searched for analogies among the 
graphs that described various sites. When two sites were found to be similar, the 
system would state in English which aspects of one site corresponded to which 
aspects of the other site. A domain expert who examined the output found these side-
by-side comparisons to be especially informative and useful.  

Several different resources were used to provide lexical knowledge, but no attempt 
was made to merge all the information in a single lexicon. Such a merger was rejected 
for several reasons. First, many resources, such as WordNet, CoreLex, and Roget's 
Thesaurus, are so different in kind, in level of coverage, and in organization that the 
merger would be difficult to do and difficult to undo, if one resource or the other were 
inappropriate for a particular application or even a particular sentence. Second, 
resources are revised and updated at different times, and the constant need to update a 
large, merged resource would be inconvenient and error prone. Third, there is no need 
to merge the resources in advance, since the society of agents makes it easy to assign 
one agent to each resource, and that agent can contribute any relevant information from 
its resource whenever it seems useful. A voting mechanism among the agents enables 
them to accept or reject any contribution, depending on the current task and context.  

To illustrate the operations of the agents, the following sentence was taken from 
one of the geoscience articles (Sullivan et al. 2005):  

The Diana field is situated in the western Gulf of Mexico 260 km (160 
mi) south of Galveston in approximately 1430 m (4700 ft) of water.  

In the first stage, agents for the lexical resources contribute information about the 
part of speech of each word, its associated concept type, and various formats for 
measures and other typical qualifiers. Any conflicts among the agents are resolved by 
voting. The result is  

entity(1, “Diana Field”) prep(“in the”) loc(1, western) loc(2, “Gulf of 
Mexico”) measure(1, “260 kilometers”) measure(2, “160 miles”) 
loc(3,south) prep(“of”) loc(4,“Galveston”) prep(“in”) 
qualifier(approximately) measure(3,“1430 meters”) measure(4,“4700 
feet”) prep(“of”) entity(2, water).  

Lexical information, context, and heuristics determine that “ft” is “feet”. Unknown 
words or word groups, such as “Diana field” are assumed to be geophysical entities 
because they are not in the basic lexicons. Other agents specialized for the geoscience 
domain would later determine that Diana Field is a reservoir and add the information 
entity([1],reservoir). For this sentence, the syntax is sufficient to determine that Diana 
field must be in the western part of the Gulf of Mexico, but other attachments are 
syntactically ambiguous. To prune away unlikely options, some agents use a domain 
ontology for geoscience, which includes information about reservoirs, bodies of 
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water, and cities. After pruning, the remaining links correctly show that Diana field is 
south of Galveston and in the water. 

The VLP parser is still in an early stage of development, but it has already 
produced useful results. The market-driven learning methods have proved to be 
successful on another project, but they haven't yet been extensively tested on VLP. 
The semantic distance measures of the old VAE were highly efficient for analogy 
finding, and variations were applied to knowledge capture (Majumdar et al. 2007). 
More research and testing is necessary, but the new VLP already appears to be more 
robust and scalable than the old Intellitex.  
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Abstract. In this paper we show how Conceptual Graphs (CG) are a
powerful metaphor for identifying and understanding the W3C Resource
Description Framework. We also presents CG as a target language and
graph homomorphism as an abstract machine to interpret/implement
RDF/S, SPARQL and Rules. We show that CG components can be used
to implement such notions as named graphs and properties as resources.

In brief, we think that CG are an excellent framework to progress in
the Semantic Web because the W3C now considers that RDF graphs
are– along with XML trees – one of the two standard formats for the
Web.

1 Introduction

Conceptual Graphs were introduced by John F. Sowa in 1976 when he was at
IBM [32] and were popularized in his foundational book of 1984 [33].

The Semantic Web was introduced in 1998 by W3C along with the Resource
Description Framework (RDF) that enables the description of graphs. Recently,
the SPARQL Query Language for RDF was published as a Recommendation
by W3C. Further, Tim Berners-Lee informally reformulated his vision of the
Semantic Web as a “Web of Data” and also as a “Giant Global Graph”1 (GGG).
This thinking lead to a dramatic change in the architecture of WWW: RDF
graphs and XML trees were both considered as data structures for information
sharing on the Web according by the W3C2.

In this paper our presentation follows as an exercise of storytelling about the
work done in the Edelweiss/Acacia team from INRIA with CG for RDF Se-
mantic Web. We show how Conceptual Graphs (CG) were a powerful metaphor
for identifying, understanding and implementing the W3C Resource Description
Framework. We also present CG as a target language and graph homomorphism
and as an abstract machine to interpret/implement RDF/S, SPARQL and Rules.
In particular, we would like to show that CG components can be used to imple-
ment such notions as named graphs and properties as resources.

In short, we believe that CG are a good framework to progress in the Semantic
Web because the W3C now considers that RDF graphs are – with XML trees –
one of the two standard formats of the Web.
1 http://dig.csail.mit.edu/breadcrumbs/node/215
2 http://www.w3.org/Consortium/technology
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2 History

The Acacia team previously worked on Information Retrieval through Knowl-
edge Models with CG (PhD Thesis of Philippe Martin [26]) and KADS. We
evolved from Knowledge Based Systems to Knowledge Engineering for Corpo-
rate Memory Management. We were interested in mixing Knowledge Enginering
(KE) and Structured Documents and then KE on the Web.

In 1998 we were interested in and studied XML and XSLT for Structured Web
documents. In 1999, RDF was published and, thanks to our CG background, we
understood that it could be used to implements graphs (CG/RDF) for documents
(XML) and we worked on a first mock-up based on Notio [31,23] in Java. This first
mock-up, calledCorese forCOnceptualREsourceSearchEngine [10], implemented
the first translator from RDF/S to the CG model. In 2000 we had the pleasure to
collaborate with Peter Eklund and Philippe Martin on RDF and CG [27].

Then we focussed on Corporate Semantic Web, a mix between Corporate Mem-
oryManagement and Semantic Web Technologies.We were involved in a European
project called Comma for Corporate Memory Management through Agents [18]
within which we started to leverage the mock-up into a research prototype.

Tenyears later, we havemore than20 running applications usingCG/RDF and 5
generic systems based on the technology.We can now acknowledge that CGs were a
goodmetaphor and enabledus tounderstandand foresee theSemanticWebproject
and enable us toparticipate. Itwas our chance tobemembers of theCGcommunity
and members of INRIA, one of the the founding members of the W3C.

3 CG for RDF

We have proposed a mapping between RDF and CG and extensions to the simple
conceptual graph model in order to implement RDF and SPARQL features such
as property variables, named graphs, filters and optional parts.

3.1 RDF Schema

We have designed a mapping between RDF and CG, and RDF Schema and CG
support. RDF triples are mapped to relations and resources are mapped to con-
cepts. RDFS classes are mapped to concept types, RDF properties are mapped
to relation types, domain and range are mapped to relation signature. SubClassOf
and subPropertyOfaremapped to concept and property type subsumption respec-
tively. We have designed the type inference algorithm that enables us to create well
typed concepts according to their rdf:typeand to the signaturesof their relations.
We have implemented some properties of relations such as symmetry, inverse and
transitivity.

An interesting feature of RDF Schema is that it follows RDF syntax, i.e. triples
made of a resource, a property and a value. Hence, an RDF Schema statement can
be understood as a relation in a graph. For example the RDFS triples below:

Human subClassOf Primate
Human label ’human’@en
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can be translated into the graph relations:

[Class:Human]
-(subClassOf)-[Class:Primate]
-(label)-[Literal:’human’@en]

RDF Schema statements loaded in the graph can be seen as annotations. They
are related to the instances via the rdf:type relation.

[Human:Jules]-(rdf:type)-[Class:Human]-(subClassOf)-[Class:Primate]

Once present in the graph, the RDFS statements represent (reify) the real types
that are present in the support. There is no semantics attached to these relations,
the semantics comes from the CG support as usual. They are used as proxies for
querying purpose. Two occurrences of the same identifier may represent two differ-
ent entities according to the context, e.g. Human identifies a class and an instance.

For example, the query below retrieves instances of classes whose English label
contains the string ’human’ and hence finds Jules:

?x r ?y . ?y rdf:type ?class .
?class rdfs:label ?l
filter(regex(str(?l), ’human’ ) && lang(?l) = ’en’ )

This feature happens to be extremely useful in real applications where we can
query the graph and its schema within the same formalism. Once again, the oper-
ational semantics w.r.t. graph projection is carried out by the support.

3.2 Type Intersection

One main difference between RDF and CG is that in RDF a resourcemay have sev-
eral types whereas in CG a given concept has but one type. We solved this problem
by assigning as a concept type the intersection of the types. Hence, we had to design
an algorithm that computes, on the fly, the intersection of two types.

x rdf:type T1 p1 domain T1
x rdf:type T2 p2 domain T2
=> x p1 y
[T1 AND T2 : x] x p2 z

=>
[T1 AND T2 : x]

The algorithm maintains the consistency in the type hierarchy. Which means
that subtypes of types for which we compute an intersection must then be sub-
types of this intersection. In the example below, Aircraft must be a subclass of the
intersection of Mobile and Object:
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Flying subClassOf Mobile Aircraft subClassOf Flying
Artefact subClassOf Object Aircraft subClassOf Artefact

Mobile_AND_Object subClassOf Mobile
Mobile_AND_Object subClassOf Object
=>
Aircraft subClassOf Mobile_AND_Object

The intersection algorithm also takes into account disjoint types that cannot
generate intersections in their descendants.

3.3 Datatype Values

In order to implement RDF we had to design a datatype extension. Some nodes
in the graph carry datatype values such as (integer, 45) or (string, ’Garfield’).
Datatype values are implemented as Java objects whose classes implement op-
erators, such as equal, greater than, etc., through method overloading. Markers of
literal nodes contain such Java objects.

Two input strings may lead to the same datatype value:
’01’xsd:integer and ’1’xsd:integer represent the same value. Hence they

must be mapped to the same marker containing the same value.
Operators are implemented through method overloading that realizes type

checking, i.e. numbers can compare with numbers, strings with strings, etc. We de-
cided for efficiency reasons to rely on Java polymorphism to tackle type
checking.

3.4 Property Concept

In a standardquery graph, theremaybe genericmarkers associated to concepts but
not with relations. Property variables enable the use a variable in a query in place
of a property (relation). For example in the query below we search two concepts,
?x and ?y, related by any property, denoted by variable ?p.

?x ?p ?y

The advantage of using a variable is that we can retrieve the property in the
result by getting the value of variable ?p just as any other variable (e.g. ?x). In
addition, we can search for concepts that are related by the same property by using
the same variable.

?x ?p ?y . ?y ?p ?z

Eventually, we can express constraints on the property by means of the variable.
For example, we can look for transitive properties:

?x ?p ?y . ?p rdf:type owl:TransitiveProperty

Or we can search for properties from a specific ontology:
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?x ?p ?y
filter(regex(str(?p), ’http://www.inria.fr/edelweiss/schema#’))

In order to implement the processing of property variablewithin standard graph
projection, we have proposed to reify the property by an additional concept. This
concept is of type rdf:Property and its marker is the name of property. Each
occurrence of relation in a graph contains the additional concept that represents
(reify) the property.

x1 r y1 -> r(x1, y1, r)
x2 q y2 -> q(x2, y2, q)

Hence we manage hyperarcs, i.e. arcs that relate more that two nodes. It is re-
markable that several authors [3,14,22] propose the same extension from a theo-
retical point of view.

In our extension, a query relation may or may not use a property variable. If not,
the property concept is invisible and is not processed during graph projection.

3.5 Named Graph

Following the same design pattern, we have implemented a second extension for
named graph. A named graph is a graph which is associated a name by means of
a URI. This URI is a standard resource that can itself be annotated by means of
properties.

In the example below, g1 is the name of a graph:

g1 { cat on mat . cat name ’Garfield’ }
g1 author James

The name of the graph (the URI) is reified as an additional concept and each
relation of a given graph contains this additional concept. With the example above,
and with std as the URI of the standard graph (the graph with no name):

on(cat, mat, on, g1)
name(cat, ’Garfield’, name, g1)
author(g1, James, author, std)

Note that name (resp. author) appears once as the name of the relation and
once as the concept that reifies the relation, according to the hyperarc point of
view explained above. Hence, the same name is used for different entities.

We are then able to process queries with graph patterns by matching the graph
URI with the additional argument carried by the hyperarcs:

select * where {
graph ?g { cat on ?place }
}

This query is translated into the following hyperarcwhere :b represents a query
blank which means that we don’t care about the property concept:
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on(cat, ?place, _:b, ?g)

We obtain as result:

?g = g1 ; ?place = mat

It is remarkable that this very simple idea, implementing named graphs with
an additional argument, solves the problem of representing and querying named
graphs. This is what we mean by considering CG as a valuable target abstract ma-
chine to implement RDF processing. The SPARQL from and from named clauses
are implemented by adding appropriate filters on the graph variables.

select *
from <g1> on(?cat, ?place, on, ?g)
where { ?cat on ?place } filter(?g = <g1>)

3.6 Inference Rules

We have designed a forward chaining graph rule language with an RDF/SPARQL
syntax.This language is inspired by Salvat and Mugnier [30]. The syntax of the rule
condition and conclusion patterns is that of SPARQL patterns (i.e. collections of
triples). We have included the graph pattern in the syntax, hence it is possible to
take named graphs into account.

graph ?g { ?x ?p ?y . ?y rdf:type owl:SymmetricProperty }
=>
graph ?g { ?y ?p ?x }

3.7 Projection

We have designed and implemented an hypergraph homomorphism algorithm
based on relation enumerations following heuristics to optimize the search. The
order in which the query relations are considered is compiled according to heuris-
tics such as the relation’s cardinality (number of occurrences), connexity, presence
of filters, etc. In addition to compiling the order of query relations, the algorithm is
able to backjump in case of a failure due to the absence of a target relation or due to
the failure of a constraint. By backjump we mean that it is able to backtrack – not
systematically to the preceding query relation – but to a preceding query relation
that may solve the failure. The index of where to backjump is determined statically
and compiled.

In addition to property variables and graph patterns for named graphs, the al-
gorithm is able to process optional query parts. If an optional part fails, the query
does not fail. If it succeeds, the answer contains additional information.

Example: retrieve resources which have a name (mandatory) and which may
have an age (optional).

[?x]-(name)-[?name]
optional { [?x]-(age)-[?age] }
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An optional part may contain several relations, in which case it succeeds if all
relations succeed. It may contain filters in which case it succeeds if the filters eval-
uate to true. It may contain nested optional parts which are processed only if the
current optionalpart succeeds. Hence, the processing of querieswith optional parts
imply the introduction of scopes surrounding the optional parts.

Eventually, the algorithm has been adapted to interpret SPARQL queries with
select, distinct, order by and limit operations. The distinct operation is an inter-
esting constraint that ensures that two answers do not contain the same variable
bindings, e.g.selectdistinct?x ?y ensures that the bindings of ?x, ?y differ in all
answers. Hence, we need to manage a list of current answers to the homomorphism
and check that the current answer that is computed is distinct from all previous an-
swers. An optimization computes the distinct set as soon as all variables are bound
in the partial result. If it is not the case, the graph homomorphism backtracks and
searches for other bindings. In practice, the algorithm backjumps to a new binding.

In addition, we have added a group by operation that enables us to group results
that share same variable binding for some variables and count() that enables to
count the number of values of a variable after grouping. We have also added the
possibility of returning the result of an expression in the result (in the select clause).
For example, the query below retrieves persons that are the authors of documents,
groups the results by person, counts the documents of each author and returns the
counter in the result.

select ?person count(?doc) as ?count
where { ?person :author ?doc }
group by ?person

These operations fits smoothly within graph homomorphism but the SPARQL
union operation does not fit well into this paradigm. It needs to be implemented
as an operator of an interpreter that would implement AND, UNION and OP-
TIONAL operations applied to elementary graph homomorphisms.

3.8 Constraints

Another originality of our homomorphism algorithm is that it is able to take ad-
ditional constraints on node values into account. Example of constraints are: ?x
!= ?y, ?date <= ’2008-01-01’and fun:foo(?x, ?y)where ?x, ?y, ?date repre-
sent the value of the target nodes associated by homomorphism to the query nodes
denoted by the variables.

A query graph with constraint matches a target subgraph found by homomor-
phism if the constraint evaluates to true when applied to the appropriate nodes of
the target graph. Constraints are prefixed by the filter keyword.

Examples:

[?x]-(r)-[?z]-(p)-[?y] filter(?x != ?y)

[?x]-(birth)-[?date] filter(?date <= ’2008-01-01’)
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We have designed a constraint language that has been extended to process
SPARQL filters. The language enables us to define simple operations such as com-
parisons between node values: ?x != ?y, boolean expressions such as: ?x != ?y &&
?z <= ’2004-01-01’ and function calls such as: xsd:datatype(?x).

The atomic entities of the language are constants and variables. Constants are
values carried by the nodes of the target graph. They may be URIs of resources
or literal values such as strings, integers, booleans and dates. Variables represent
the values of target nodes found by graph homomorphism. Values of target nodes
are datatype objects, similar to the constants, that implement polymorphic oper-
ators according to type checking rules (integers do not compare with strings, floats
compare with doubles, etc.).

Constraint expressions (EXP) are built on top of the atomic entities (CST, VAR)
with function calls (FUN) and terms (TERM). Terms are recursively build with ex-
pressions related by operators. An abstract syntax of the constraint language is
given below:

EXP ::= CST | VAR | FUN | TERM
FUN ::= NAME ( EXP* )
TERM ::= EXP and EXP | EXP or EXP | not EXP |

( EXP ) | EXP OPER EXP
OPER ::= < <= = != >= > + - * /

The projection algorithm cooperates with a constraint evaluator that is able to
evaluate partial constraints according to a current partial binding. As soon as the
variables of a constraint are bound by target nodes, the constraint is evaluated.
If the expression evaluates to true, the projection continues (the current partial
projection is successful). If it fails, the projection algorithm backtracks in order to
find another binding for the variables. In fact, the algorithm backjumps in order to
effectively change the binding.

The evaluator is a recursive function that has two arguments: an expression of
the constraint language and an environment that contains variable bindings. Vari-
able bindings are computed by the projection and are the values of the targetnodes
corresponding to the query node variables, e.g. ?x = 12 ; ?y = ’2007-01-01’; ?z =
URI. The evaluator returns values of the same domains as the constants. The final
result of a constraint evaluation must evaluate to true.

A scheme of the constraint evaluator is given below where exp is the constraint
expression and env is the variable binding environment.

eval(exp, env){
switch(exp){
case constant : return exp;
case variable : return env.get(exp);
case funcall : values = for all arg(exp) : eval(arg, env);

return apply(fun(exp), values);
case not :return ! eval(arg(exp), env);
default : return apply(operator(exp), eval(arg1(exp), env),

eval(arg2(exp), env));}}
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Complex constraint expressions are decomposed into smaller ones which are as-
sociated to subpart of the query where their variables are bound and they are eval-
uated as soon as possible in order to cut the search tree.

It must be noted that – as in SPARQL – it is possible to test a negation as failure
query using an optional pattern and a ! bound() constraint. As an example, the
query below searches persons that are not author of a document. The query search
for an optional author relation. If it is not found, the query succeeds; if it is found,
the constraint fails because the ?doc variable is bound and hence the query fails.

select * where {
?x rdf:type :Person
optional { ?x :author ?doc }
filter(! bound(?doc))
}

3.9 Type Relaxation

Ourprojection algorithm is able toperformapproximate searchwrt types. It is pos-
sible to relax type checking according to subsumption. For example, when search-
ing for a person author of an article, we may return a research team author of a
report. We relax the type Person by Team and the type Article by Report. We
compute a semantic distance between concept types which decreases with depth
like in [35] and try to minimize the sum of the distances.

This idea happens tobe quite interesting and we have generalized this relaxation
process. It is now possible to design and program a new distance algorithm and
specify such a user defined algorithm in a query. Hence, the user can try different
relaxation algorithms according to the domain and/or the query. The syntax is the
following where the more keyword authorizes relaxation, the prefix specifies where
to fin the Java package of the user defined distance algorithm and the relax by
statement requires the user defined distance.

prefix dd: <fun://fr.inria.edelweiss.Distance>
select more * where { PATTERN }
relax by dd:distance

3.10 Graph Path

We implemented an extension to SPARQL to process path queries, inspired by
[25,1]. The path algorithm avoids cycles. Using a path variable in place of the prop-
erty is done by introducing a $ prefixed variable, which means find a path of one or
more relations that links a and b:

a $path b

It is possible to test the length of the target path:

pathLength($path) >= 2 && pathLength($path) <= 8
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It is possible to associate a regular expression that must be matched by the types
of the relations of the target path. In the following case, we want the properties to
be either p1 or p2. By default, we also accept subproperties.

match($path, star(p1 || p2))

We have designed and implemented the following original extension in order to
match the target relations that have been found in the path. The target relations
of the path are grouped in a transient named graph whose name is given by the
path variable. Hence this named graph is accessible by means of a graph pattern
on the path variable. It has for effect to enumerate the target path relations as
shown below, where $path is the path variable:

graph $path { ?x ?p ?y }

Thepurpose of this pattern, in addition to enumerate the path relations in the re-
sult, is to enable us to specify additional constraints such as in the examples shown
below. For instance, to go through a specific resource within the path:

graph $path { ?x ?p ?y filter(?x = a || ?y = a) }

Or not to go through a specific resource:

graph $path {
optional { ?x ?p ?y filter(?x = a || ?y = a) }
filter (! bound(?p))
}

Or to find a specific pattern within the path:

graph $path { ?x p a . a q ?z }

This path algorithm has been applied to the Insee RDF base that describes
French territory3 with 500,000 relations and a version which computes shortest
path was able to find a shortest path between Nice and Grenoble in 0.3 sec.

Another extension of the path algorithm for navigating through recursively
nested contexts is explained below.

4 Context

Recently, we have been working on contexts using named graphs. A named graph
is a graph which has a name given by a URI and which is accessible by means of a
graph pattern in a query. In addition, this URI is itself a resource that can be part
of graphs.

3 http://rdf.insee.fr/geo/
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Two named graphs, g1 and g2, are shown below:

g1 { a p b . b q c} g2 { a r d }

A query with a graph pattern to retrieve relations in named graphs:

select *
from named <g1>
from named <g2>
where {
graph ?g { ?x ?p ?y }
}

A special case of named graphs enables us to describe nested graphs such as
nested Conceptual Graphs.

:Alice c:tell :story
:story { :Cat :on :Mat }

Named graphs and graph patterns are simple but powerful notions that enable
us to model contextual metadata where a context is a named graph and is denoted
by its name.

4.1 Hierarchy of Type of Context

It is possible to model a hierarchy of class of context and to type the URI of the
named graphs. Hence we can retrieve contextual metadata according to context
types and exploit subsumption.

Past subClassOf Context
Prehistory subClassOf Past
Paleolithic subClassOf Prehistory
Neolithic subClassOf Prehistory
Present subClassOf Context
Future subClassOf Context

g1 rdf:type :Paleolithic
g1 { :man :practice :hunting }

g2 rdf:type :Neolithic
g2 { :man :practice :agriculture }

A query that retrieves activities in contexts of type Prehistory, i.e. Paleolithic
and Neolithic:

graph ?g { :man :practice ?activity }
?g rdf:type :Prehistory
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4.2 Annotation of Context

Thanks to its uniform nature, it is possible to annotate context by means of its
name which is a URI.

g1 rdf:type :Paleolithic g2 rdf:type :Neolithic
g1 :start -2500000 g2 :start -10000
g1 :location :Europe g2 :location :MiddleEast

Note that it is possible to have several contexts of type Neolithic that start at
different dates according to the location. We can then query contextual metadata:

graph ?g { ?x :practice ?activity }
?g :start ?date filter(?date <= -10000)

4.3 Contextual Relations
We can now model semantic relations between contexts such as temporal relations.
It is possible to define spatio/temporal relations, linguistic relations such as those
used in rhetorical structure theory (RST), logical relations, etc. Note that contex-
tual relations can themselves be contextualized. For example, g1 sequence g2 is
true in context state1:

g1 { ... } state1 { g1 sequence g2 }
g2 { ... } state2 { g3 sequence g4 }
g3 { ... } state3 { state1 parallel state2 }
g4 { ... }

We can then query what happens in a context ?g2 after a given context ?g1:

graph ?g1 { ?x ?p ?y }
graph ?g2 { ?z ?q ?t }
?g1 sequence ?g2

It is of course desirable to specify the algebraic properties of the contextual rela-
tions, e.g. parallel is symmetric and transitive, sequence is transitive, etc. This can
be done using OWL light statements that are interpreted in Corese. More complex
algebraic properties of relations can be modeled by rules.

parallel rdf:type owl:SymmetricProperty
parallel rdf:type owl:TransitiveProperty
sequence rdf:type owl:TransitiveProperty

4.4 Rec Graph Pattern

In order to enable querying contextual relations, we have designed a generalized
version of the path algorithm dedicated to nested contexts.

In the example above, suppose that we want to search/retrieve triples recur-
sively nested within the state3 context, i.e. the triples in state1, state2, g1 and g2.
We need to know the exact relations between the nested context to retrieve these
triples. It may be impossible to be aware of the whole structure. To solve this, we
propose a new query pattern called rec graph (recursive graph) as follows:
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rec graph state3 { ?x ?p ?y }

The result of the query will be the triples from the state3 graph and the triples
fromthe recursively nested graphs, e.g. state1 and g1.This is computed by the path
algorithm described above. Instead of searching for path from ?x to ?y (first and
second arguments), the algorithm searches for path from state3 to ?x, (i.e. from
graph name argument to first argument). An example of such a path of length 3 is:
(state3, state1), (state1, g1), (g1, a) as shown below:

(1) state3 { state1 parallel state2 }
(2) state1 { g1 sequence g2 }
(3) g1 { a p b }

Another path would be: (state3, state2), (state2, g4), (g4, b). This
query pattern also enables to search if several triples are recursively related by
an embedding context:

rec graph ?g { a p b . c q d }

It is also possible to specify a regular expression on the relations that link the
nested contexts as shown below:

rec graph ?g {
?x ?p ?y
filter(match(?p, star(log:property)))
}

4.5 Defining a Resource Using a Named Graph

The named graph statement enables to assign a name (a URI) to a graph. We pro-
pose to use this statement in a slightly different way in order to assign a definition
(a graph) to a URI (it’s name). This enables to define composite objects made of
atomic objects where none of the sub objects plays a special role. Hence we assign
a URI to a composite structure made of several related objects. The URI can then
be used in other composite structures.

For example, we define the H2O molecule as a named graph containing a de-
scription of two hydrogens related to one oxygen. The cos:graph attribute is a
syntactic extension to RDF/XML, (W3C member submission [19]), that enables
to define the URI of a named graph. Note that in the example below, there are two
differentHydrogens (two blank nodes) related to the same Oxygen (one blank node
with ’o’ ID).

<c:Hydrogen cos:graph=’&c;H2O’ >
<c:related><c:Oxygen rdf:nodeID=’o’/></c:related>
</c:Hydrogen>
<c:Hydrogen cos:graph=’&c;H2O’ >
<c:related><c:Oxygen rdf:nodeID=’o’/></c:related>
</c:Hydrogen>
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This RDF description is equivalent to the named graph:

H2O { [H]-(r)->[O]<-(r)-[H] }

Then we define the CH4 molecule as a named graph containing a description of
one carbon related to four hydrogens.

<c:Carbon cos:graph=’&c;CH4’ >
<c:related><c:Hydrogen/></c:related>
<c:related><c:Hydrogen/></c:related>
<c:related><c:Hydrogen/></c:related>
<c:related><c:Hydrogen/></c:related>
</c:Carbon>

We can now query the structure of a molecule using a named graph pattern.

select ?atom countItem(?at) as ?count where {
graph c:H2O { ?at rdf:type ?atom }
}
group by ?atom

atom = H ; count = 2
atom = O ; count = 1

We can then define a product Prod as a named graph containing two molecules,
one instance of H2O and one instance of CH4. Note that molecules are now con-
sidered as classes that are instantiated. We could also use a property to relate a
molecule to its definition as H2O, e.g. :b :definition c:H2O.

<c:H2O cos:graph=’&c;Prod’ />
<c:CH4 cos:graph=’&c;Prod’ />

Then we define an instance of Prod that will hence contain one H2O and one
CH4.

<c:Prod cos:graph=’&c;exp’ />

Queries

We cannowwrite queries to check the structure of the product and of themolecules.
The graph pattern query below destructures the named graph in order to retrieve
the molecules that compose the product c:Prod. The c:isTypeOf property is the
inverse of rdf:type.

select ?part countItem(?p) as ?count where {
graph c:Prod { ?part c:isTypeOf ?p }
}
group by ?part
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The result is:

part = H2O ; count = 1
part = CH4 ; count = 1

The recursive graph pattern query below (rec graph) recursively destructures
the named graphs in order to retrieve the molecules and the atoms that compose
the product c:Prod. Note that the query is the same as the one above except that
we have added the keyword rec.

select ?part countItem(?p) as ?count where {
rec graph c:Prod { ?part c:isTypeOf ?p }
}
group by ?part

The result is:

part = H2O ; count = 1 part = H ; count = 6
part = CH4 ; count = 1 part = O ; count = 1

part = C ; count = 1

This example shows the power of representing a composite object through aURI
of named graphs as we have the inverse operation that enables us to walk through
the internal structure recursively by means of the rec graph pattern.

5 Applications

In this section we show that the couple CG/RDF has proved to be a very fruitful
idea in term of systems and applications.

5.1 Generic Systems

There are now several generic CG/RDF based systems that have been designed
and developed in the Edelweiss team:

Corese4 is a generic RDF/S, SPARQL & Rules Semantic Factory that is entirely
based on CGs and where CGs are the abstract machine which implements RDF
graph operations by means of graph homomorphism.

Sewese5 is a Semantic Web Server Platform based on Tomcat and Java Taglib
[17]. Sewese is built on the Corese engine and provides a set of primitives to build
interfaces for queries, edition and navigation, and for the management of the trans-
verse functions of a portal (presentation, internationalization, security, etc.). An
ontology editor, a generic annotation editor and a basic rule editor are parts of the
Seweseplatform.ThemainpurposeofSewese is to integrate recurrent semanticweb
operations (e.g. perform a SPARQL Query, transform a result binding in a given
view) within a classic web technology framework (e.g. JSP pages, servlet calls).
4 http://www-sop.inria.fr/edelweiss/wiki/wakka.php?wiki=Corese
5 http://www-sop.inria.fr/edelweiss/wiki/wakka.php?wiki=Sewese
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SweetWiki6 is a wiki built around a semantic web server that uses semantic web
technologies to support and ease the life cycle ofwikis [4]. It implements folksonomy
based navigation into the wiki pages.

Ecco is a Cooperative Ontology Editor dedicated to support end-users with dif-
ferent profiles (domain expert, engineer, ontologist, ...) in a cooperative process
of ontology construction and evolution. The Ontology is managed by the Corese
Factory.

SemAnnot is Generic platform for annotation extraction from text using NLP
parsers and ontologies [24], the ontology and annotation processor is also Corese.

5.2 Applications

We have been involved in more than 20 applications that use the RDF/CG
mapping.

SevenPro7 is an European project on Semantic Virtual Engineering Environ-
ment for Product Design. Corese is used as Semantic Engine for Text mining and
Virtual Reality annotation.

e-WOK8 is a french ANR project that aims at designing a Semantic Web Plat-
form for Geo Sciences. It aims at building a set of communicating portals (called
e-WOK Hubs), offering both: (a) web applications accessible to end-users through
online interfaces, and (b) web services accessible to applications through program-
matic interfaces As applicative objectives, e-WOK aims at enabling the manage-
ment of the memory of several projects on CO2 capture and storage, with use of
results of technological watch on the domain.

Two projects focus on semantic text mining of scientific literature in biology.
SeaLife9 is an European project on “A Semantic Grid Browser for the Life Sci-
ences Applied to the Study of Infectious Diseases”. ImmunoSearch10 is a French
project on searching biomarkers for controlling and maintaining the harmlessness
of molecules used in perfumes, aromatics and cosmetics.

The Palette11 European project is about “Pedagogically sustained Adaptative
LEarning Through the exploitation of Tacit and Explicit Knowledge”. It aims at
designing semantic web services to help communities of practice communicate and
share knowledge.

In the past we have also worked on Knowledge Management Platforms[21]
(KMP and KM2) and on Corporate Memory Management through Agents (Com-
ma). There are also projects that we are not members of and that make use of
Corese. For example, Neurolog12 is an ANR Funded project on Medical Imaging
with Software technologies for integration of process, data and knowledge in med-
ical imaging.

6 http://www-sop.inria.fr/edelweiss/wiki/wakka.php?wiki=SweetWiki
7 http://www.sevenpro.org
8 http://www-sop.inria.fr/edelweiss/projects/ewok
9 http://www.biotec.tu-dresden.de/sealife

10 http://www-sop.inria.fr/edelweiss/wiki/wakka.php?wiki=Projects
11 http://palette.ercim.org
12 http://neurolog.polytech.unice.fr/doku.php
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6 Conclusion

Semantic Web and RDF provide a unique opportunity to use CGs in large scale
applications. The basic idea is to consider RDF/S as an input format to build CGs
and hence test CG algorithms on large scale real applications. In effect, it is now
possible to load schema and data from all over the world as more and more RDF
Schema and RDF metadata are available online.

We have shown that it is possible to mix several languages – among which are
RDF/S, SPARQL and its XML Result format, RDF Rule language and CGs. In
addition, XSLT can be used for interoperation and presentation. Our work demon-
strates that CG technology can be integrated into a complex software system. The
system itself can then be used to build various applications such as Semantic Wikis,
Semantic engine for an ontology based natural language processing platform or a
Virtual Reality semantic engine. The point is to rely on standard languages for
input/output, to focus on information and knowledge retrieval and not on presen-
tation or editing issues within the semantic engine itself. Presentation is delegated
to external processors such as XSLT engines and web servers. CG were highly suc-
cessful for understanding and implementing RDF and SPARQL. The only hard
problem that we encountered was the SPARQL UNION operator. We have also
shown that interesting performance can be obtained – we answer in less than half
a second to queries to a graph with 500,000 relations (the insee RDF base13).

Further, we identify open problems that would be interesting to tackle within
a mix CG/RDF viewpoint: library of semantic distances, scaling to graphs with
some giga-relations, indexing such giant graphs, processing queries by distributed
graph homomorphism.

To finish, it has always been a great surprise that so little work on the Semantic
Web makes use of CGs.
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Abstract. The term “transdisciplinarity” applies to forms of research
which are used by disciplines with the effect that their ways of think-
ing are rationally understandable, available, and can be activated be-
yond their boundaries for being able especially to contribute to solutions
of problems which cannot be mastered purely disciplinary. This paper
elaborates the thesis that the disciplines can fulfill best the request for
transdisciplinarity if they develop, maintain, and activate their part of
generalistic sciences and humanities in the largest possible breath. For
the transdisciplinary border crossing in the sense of generalistic sciences
and humanities, it has been proven efficient to search for general inter-
pretations of disciplinary concepts, propositions, and theories which can
be made understandable (possibly in standard language). Examples are
given by applications of Formal Concept Analysis.
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1 Multi-, Inter-, and Transdisciplinarity

Since more than two hundred years the science develops “into the form of an
increasing and differentiating system of sciences and humanities, of scientific
departments and disciplines” ([Ko87]; p.7). Disciplinarity therefore constitutes
the kernel of university science today. However, the increasing specialization and
division of scientific disciplines cause that it becomes more and more difficult to
say what at all a discipline is. In his article “unity of the world - multitude in
the science” [Kr87], L. Krüger examines by the four aspects “objects”, “meth-
ods”, “interest in discovery”, and “theories and their systematic and historic
connections” to what extent disciplines can be characterized. In spite of quite
considerable difficulties of demarcation, Krüger views the identity of disciplines
founded by their paradigms in the sense of Th. Kuhn (cf. [Ku73]), which comprise
the four named aspects, and derives from that:

� This paper is an English version of the German publication [Wi02].
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“Disciplines are historic units; they are neither in their internal subdisci-
plinary structure nor in their inter- and supra-disciplinary external rela-
tionships to be determined once and for all. They are individuals which

 arise in the history of the sciences and humanities,

 stand to each other in genealogical relationships,

 form families or drift apart, and

 can enter into new connections with different luck.” ([Kr87]; p.116f.)

The great significance of disciplines, which make possible substance, connec-
tion, and continuity, has as reverse side that disciplines have to limit themselves
in their objects, methods, interest in discovery, and theories. These limitations
cause that many important problems cannot be disciplinarily mastered (for ex-
ample in areas of environment and consequences of technics). For enabling the
scientific treatment of such problems, the opening to multi-, inter-, and transdis-
ciplinarity becomes more and more demanded (see, for instance, [Mi87], [Mi89]).

Since the terms “multi”-, “inter”-, and “trans”-disciplinarity are not always
used with the same meanings, we have to clarify first how these terms should be
understood in the scope of this paper.

A form of research shall be called “multidisciplinary” if several disciplines
combine additively in such a form and if each discipline contributes with its
own way of thinking. Multidisciplinarity which does not aim to aggregate forms
of thinking of different disciplines are often criticized without good reason (cf.
[Mi98], p.32). Many problems are quite solved multidisciplinarily without coming
to ways of aggregate thinking. As an example we have first of all the successful
collaboration of physics and mathematics; for instance, in the second half of
the 20th century, physicists discovered and explored the so-called quasi-crystals
whose quasi-symmetries could later be made understandable by the mathemati-
cian N. G. de Bruijn in a way that it was not necessary to integrate the used
mathematical patterns of thinking into the physical theory of quasi-crystals (cf.
[Br81]). The multidisciplinary cooperation of physics and mathematics usually
succeeds on the reason that many physical connections are described by math-
ematical concepts which can be used as bridges to different theories of mathe-
matics. In many cases of multidisciplinarity the successful connection between
disciplines is already produced by the practice of the considered field of prob-
lems. As an example for this, the research about “pure intonation” in the scope
of the Darmstadt research project “Mathematical Music Theory” shall be men-
tioned: For this research the experimental instrument MUTABOR was developed
[GHW85] for which primarily music-theoretical and electrotechnical competences
were necessary which could be successfully combined on the basis of the existing
practice of constructing musical instruments.

A form of research shall be called “interdisciplinary” if, in such a form, sev-
eral disciplines combine integratively , if each discipline contributes with its
way of thinking, and if it aims together with the other disciplines at ways of
problem-related, aggregated research which still satisfies general claims of scien-
tific rationality. Interdisciplinarity therefore represents a form of research which
demands from the participating disciplines integration efforts to a high degree
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for which most of the scientists today are not well prepared. Nevertheless, con-
vincing interdisciplinary research projects have already been performed in great
plenty which merely prove the research projects supported by the Darmstadt
“Zentrum für Interdisziplinäre Technikforschung” (ZIT). A concrete example
shall briefly illustrate how it may come in an interdisciplinary research coopera-
tion to ways of problem-related, aggregated thinking: For a text of introduction
to a volume of case studies about regimes in international relations [Ko89], the
politician B. Kohler-Koch (one of the first members of the ZIT-board) wanted
a comprehensive analysis of a data-table in which 18 regimes were classified by
a larger number of attributes; she therefore asked for support the “Research
Group on Formal Concept Analysis” in the department of mathematics of the
TU Darmstadt. The principal item of the initiated interdisciplinary coopera-
tion was the aggregation of mathematical and political ways of thinking in more
than 100 concept structures (derived from the data-table) in which interesting
connections could be uncovered and examined (cf. [Ko89], [VWW91], [KV00]).
The success of this cooperation had rececently in its train a further interdisci-
plinary cooperation project (supported by ZIT) in which the data of more than
90 regimes were analyzed (see [WW01]).

A form of research shall be called “transdisciplinary” if, in such a form, dis-
ciplines have an effect thereupon that their ways of thinking are rationally un-
derstandable, available, and can be activated beyond their boundaries for being
able especially to contribute to solutions of problems which cannot be mastered
purely disciplinary. Such forms of research allow to exceed disciplinary and spe-
cializing limitations to the advantage of an - as J. Mittelstraß formulates it in
[Mi96] - “extension of scientific perception abilities and problem solving compe-
tences”. Mittelstraß however goes on in his determination of transdisciplinarity
by seeing in the transdisciplinarity the “real interdisciplinarity” which set aside
disciplinary and specializing parcellations and views the original unity of science
and humanities as the unity of scientific rationality in the practical-operational
sense (see [Mi98], p.44f.). This extensive concept of transdisciplinarity shall not
be taken over because this concept would finally expire the already introduced
concepts of multidisciplinarity and interdisciplinarity which have proven useful
in a manifold and convincing practice. The more limited concept of transdis-
ciplinarity, proposed in this paper, seems in addition to be more fruitful with
respect to research methodology. For instance, with this concept, one can clarify
that each increase of transdisciplinarity produces better presumptions not only
for transdisiplinarity, but in general for a more practical relationship of disci-
plinarity to reality. How such an increase of transdisciplinarity can be reached
methodologically shall be explained in the following in the frame work of “gen-
eralistic sciences and humanities”.

2 Generalistic Sciences and Humanities, and “Good”
Disciplinarity

The conception of “generalistic sciences and humanities” arose in the last twenty-
five years out of efforts for a “good” disciplinarity. “Good” disciplinarity can be
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adjudicated to a science and a humanity, respectively, if they are conscious of
their social tasks, productively acting for that, and making their actions access-
able for general critics by suitable imparting. How “good” disciplinarity can be
realized, this was described by H. von Hentig in his book “Magician or master?
On the unity of sciences and humanities in the process of understanding” as
follows: The individual sciences and humanities must examine

“their disciplinarity, and this means: to uncover their unconscious pur-
poses, to declare their conscious purposes, to select and adjust their
means, to explain publicly and understandably their justification and
their possible consequences and, for that, to make accessible their path
of findings and their results via the common language.” ([He74], p.136f.)

The question is: by which way a science or humanity may reach “good” disci-
plinarity. In any case, it has to examine its conception of oneself, its relationship
to the world, and questions about sense, meaning, and connection of its actions.
In particular, sciences and humanities must comprehend the general imparting
of their scientific ideas as their task, which is still not enough understood. To
that, Hentig shall be quoted again:

“The restructuring of sciences and humanities in themselves - to make
them better learnable, mutually accessible, and more generally (i.e. also
beyond the disciplinary competence) criticizable - may and must be un-
dertaken by patterns which are drawn from the general forms of percep-
tion, thought, and actions.” ([He74], p.33f.)

About thirty years ago professors, assistants, and students of the Darmstadt
department of mathematics tried to seriously fulfill Hentig’s charges and to reach
a more general understanding of mathematics [DW82]. They have approached the
required restructuring of sciences and humanities for different parts of mathemat-
ics which has been proven eminently fruitful for teaching as well as for research
(cf. [Wi01]). However, critical reactions and discussions showed that the restruc-
turing should be seen in the frame work of the larger conception of generalistic
sciences and humanities. What is understood by “generalistic sciences and hu-
manities” has been first carried out 1987 by a contribution to a lecture series on
“responsibility in sciences and humanities” at Darmstadt University of Technol-
ogy (see [Wi88]). According to this lecture, the conception of generalistic sciences
and humanities cover all efforts to disclose and to make accessible sciences and
humanities so that the general public may, in particular, discuss possible conse-
quences and results of scientific doings. Thus, generalistic science and generalistic
humanity are not understood as autonomous scientific discipline, respectively, but
as part of each scientific discipline and subdiscipline too. What does now charac-
terize such part of a scientific discipline? According to [Wi88], that is

– the attitude to open the scientific discipline for the general public and to
principally make the discipline learnable and criticizable,

– the presentation of scientific developments in their sense, meanings, and
conditions,
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– the imparting of the scientific discipline in its lifeworld connections even
across the borders of subjects,

– the discussion about goals, procedures, value representations, and validity
claims of the discipline.

What causes often difficulties is to bring such an understanding of generalis-
tic sciences and humanities into correspondence with usual standards of “good”
disciplinarity. A central reason for this lies in the often dominating instrumental
understanding of rationality. J. Habermas therefore pleads in his “theory of com-
municative action” for subordinating the cognitive-instrumental rationality under
a concept of “communicative rationality” which refers to more older logos ideas:

“This concept of communicative rationality carries with it connotations
which finally goes back to the central experience of the unconstrainedly
unifying, argumentative discource, in which the different participants
overcome their first only subjective views and ascertain, thanks to the
common ground of reasonably motivated convictions, simultaneously the
unity of the objective world and the intersubjectivity of their continuity
of life.” ([Ha81]; p.28)

As K.-O. Apel made clear in [Ap76], not only the subjective and the objec-
tive, but also the intersubjective is - in the transcendental-philosophical sense -
constitutive for the human thinking and acting. Therefore the validity of propo-
sitions about the world can only be assured by rational argumentation in the
scope of the intersubjective community of communication. Therefore “good” dis-
ciplinarity basically depends on understanding and communicative rationality,
what also takes in account the mentioned historical conditionality of disciplines.
Hence “good” disciplinarity for the sciences and humanities means that they
are capable and willing to impart their discipline and its impacts to the general
public and, therewith, to take on the social discussion, or differently phrased:
that they develop, maintain, and activate their part in the generalistic sciences
and humanities in the largest possible breath (cf. [Wi97]).

3 Transdisciplinarity by Generalistic Sciences and
Humanities

My thesis is:

The disciplines can fulfill best the request for transdisciplinarity if they
develop, maintain, and activate their part of generalistic sciences and
humanities in the largest possible breath.

According to the expositions in Section 2, this thesis can also be brought into
the short form: transdisciplinarity by “good” disciplinarity. Our thesis obtains
support by H. von Hentig’s critical evaluation of interdisciplinarity which he
presented to the programmatic discussion about the foundation of the University
of Bielefeld (Germany):
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“Interdisciplinarity has become a problem because disciplinarity is mis-
understood and misused. One has to discipline the disciplines and not
to create new interdisciplinary institutes. The communication and co-
operation, the convertibility and the mobility between sciences and hu-
manities, respectively, do not need as much interdisciplinary bridging
as rather the development of certain pre-disciplinary learning processes
and continued trans-disciplinary problem tasks. The real problem is: how
do basic sciences and humanities, which are always specialized in some
form, come into a practicable relationship to a practice which is almost
never restricted disciplinarily and to a preparation which must be general
by many reasons, but above all for the sake of sciences and humanities
themselves.” ([He74], p.33)

For Hentig, real interdisciplinarity cannot be realized without transdisciplinary
competence of the participating disciplines which can be activated because, with-
out those competences, it cannot come to interdisciplinarily aggregated ways of
thinking. For successful transdisciplinarity it is decisive that disciplinary think-
ing and results are made accessable and understandable across the borders of the
disciplines (even by the standard language). This opens the possibility for an inte-
gration below or before the step to disciplinary specialization. Interdisciplinarity
is therefore realizable, as a rule, on a pre-disciplinary step which allows so much
common understanding that the necessary aggregations of disciplinary ways of
thinking and results can be achieved.

Buthowdoesonecometo theevidentlynecessary transdisciplinarycompetenceof
the participating disciplines? As the Darmstadt efforts about generalistic sciences
and humanities have shown, such efforts can lead to the development of transdis-
ciplinary competence of considerable extent. An example concerning transdisci-
plinary border crossing of mathematics shall be described in more detail:

Hentig’s required restructuring in patternsof general perception, thought and
actions, to make disciplines more learnable, accessible, and criticizable, is any-
thing but self-evident in mathematics ([Wi01]). A fruitful question, which deci-
sively accelerated the process of restructuring, was the question concerning the
“interfaces” between mathematics and reality. To our surprise we found out that
there is obviously one dominating type of interface between mathematics and
reality: the data table! In its most simple form: the cross table, in which a cross
indicates that an object has an attribute, respectively, the data table corresponds
to what is called an incidence structure in mathematics and is defined as binary
set structure (G, M, I) with I ⊆ G ×M ; the set G corresponds to the whole of
objects listed in the data table, the set M corresponds to the whole of attributes
listed in the data table, and the binary relation I corresponds to the whole of
object-attribute-pairs indicated by the crosses in the data table. If a data table
indicates more generally that an object has an attribute value with respect to
a (many-valued) attribute, respectively, then such a data table corresponds to
a set structure (G, M, W, I) with I ⊆ G ×M ×W . This more general case can
be led back to the more elementary case of a cross table by methods which are
adapted to the contents, respectively (see [GW99], chapter 1).
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For the process of restructuring the effort for suitable mathematizations of
basic forms of rational thinking was particularly supporting. In this case the
decisive breakthrough was the mathematization of concept and concept hierar-
chy in the sense of a philosophical understanding which underlies the standards
DIN2330 “Begriffe und Benennungen” and DIN2331 “Begriffssysteme und ihre
Darstellungen”. It has been approved that this mathematization was founded
on the set structure (G, M, I) which corresponds to a cross table and is named
“formal context”. Concepts have been mathematically modeled in a formal con-
text (G, M, I) as pairs (A, B) of sets A ⊆ G and B ⊆ M ; the “concept extent” A
contains exactly those objects of G which have all attributes of B, and the “con-
cept intent” B contains exactly those attributes of M which apply to all objects
of A. The “formal concepts” (A, B) of (G, M, I) always form with respect to
the ordering “subconcept-superconcept” the mathematical structure of a com-
plete lattice which is called the concept lattice of the formal context (G, M, I)
[Wi82]. What makes concept lattices in the sense of transdisciplinarity so valu-
able lies, according to many years of experiences, in the fact that the conceptual
relationships inherent in data tables become transparent and can be activated;
in particular, suitable representations of concept lattices contribute to that by
labelled line diagrams (see for more details in [GW99]).

For the transdisciplinary border crossing in the sense of generalistic sciences
and humanities, it has been proven efficient to search for general interpretations
of disciplinary concepts, propositions, and theories which can be made under-
standable (possibly in standard language). With the approach of a restructuring
of mathematics as described up to now, we obtain, for example, for the math-
ematical term “set” the general interpretation “concept extent” and “concept
intent”, respectively, and for “lattice” the interpretation “concept hierarchy”.
The mathematical lattice theory could even be interpreted altogether as formal
theory of concept hierarchies. This has not only stimulated new applications of
lattice theory to a surprising extent, but also inspired considerably the further
elaboration of lattice theory. All four aspects of generalistic sciences and human-
ities and with them the transdisciplinary competence are gaining by the general
interpretations and by the extensions of research animated by those interpreta-
tions: The general interpretations are the expression of a disciplinary opening
and support in this way a positive attitude to border crossing, they deliver a basis
for the presentation of disciplinary developments in their sense and meanings,
they facilitate the imparting across the borders of subjects, and they strengthen
convictions which enable the discussion about goals, value representations, and
validity claims of the discipline.

Transdisciplinary competence can also be increased by working out for the dis-
cipline concerned in which way and with which effect general actions of thinking
can be supported by the discipline. For the described approach of restructuring,
this is carried out in the article “Begriffliche Wissensverarbeitung: Theorie und
Praxis” [Wi00]: There it is explained by examples of application how actions of
thinking are supported mathematically and concept-analytically, in particular:
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1. Exploring by concept lattices constructed by experts for orientating processes
of learning,

2. Searching by conceptual retrieval structures in the form of combinative con-
cept lattices,

3. Recognizing by transparence of conceptual connections in line diagrams of
concept lattices,

4. Identifying by gradual specialization in classifying concept lattices,
5. Investigating by systematic elaboration of relationships in data contexts,
6. Analyzing by purpose- and theory-accompanying examination of data con-

texts and their concept lattices,
7. Making aware by interpreting communication guided by concept lattices,
8. Deciding by transparence of the concept-analytically represented

alternatives,
9. Improving by making understandable structural connection concept-

analytically,
10. Restructuring by disclosing substructures and subsystems concept-

analytically,
11. Memorizing by representations in data contexts and conceptual retrieval

structures,
12. Informing by concept-analytically conceived knowledge and information

systems.

Transdisciplinary competence obtains promotion naturally by concrete project
work in non-disciplinary problem fields which however presupposes certain ca-
pabilities concerning transdisciplinarity. Thus, it has needed altogether years of
efforts toward generalistic sciences and humanities and the restructuring of math-
ematics before the Darmstadt group came to serious transdisciplinary project
work. But then a development started which became more and more intensive
so that finally the Darmstadt group alone were involved in more than 200 ap-
plication projects. This development even led in 1994/95 to a the firm “Navicon
Gesellschaft für Begriffliche Wissensverarbeitung”, founded by four members of
the Darmstadt group, which offers its clients systems of exploring and analyz-
ing data and knowledge based on concept lattices. The application projects of
the Darmstadt group are concerned with an extremely wide spectrum of special
subjects and problem fields which shall here become distinct only by the follow-
ing twelve projects, by which, in [Wi00], the above described general actions of
thinking are explained (same sequence!):

1. TOSCANA-exploration-system for the search of literature of the library of
the “Center of Interdisciplinary Technology Research” of the TU Darmstadt
[RW00],

2. TOSCANA-retrieval-system about the laws and technics concerning build-
ings developed for the ministry of building and residing in Nordrhein-
Westfalen (Germany) [EKSW00],

3. Application of the program TOSCANA in the data warehouse domain for
supporting database marketing activities of a combine for retail trade and
real estate in Swizzerland [Hr00],
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4. Computer program for identifying symmetry types of plane ornaments and
their presentation at the symmetry exhibition in Darmstadt 1986 [Ga86],

5. Investigation of a data context about norm- and rule-guided international
cooperations (regimes) [KV00],

6. TOSCANA-system for analyzing speech act verbs of German performed at
the “Institut für deutsche Sprache” in Mannheim [GH00],

7. Concept-analytical evaluation of repertory grid interviews of anorectic pa-
tients at the psychosomatic clinic of the University Gießen [Sp90],

8. Analysis of data about the pollution of Lake Ontario from the National
Research Water Institute in Burlington (Ontario) [SW92],

9. Optimization of a chip-production with methods of formal concept analysis
[WS93],

10. Formal concept analysis in software engineering: restructuring and reengi-
neering of software [LS00],

11. TOSCANA-system applied in a PhD-thesis about “Simplicity. Reconstruc-
tion of a conceptual landscape in the music esthetics of the 18th century”
[MW99], [Ma00],

12. Interactive information maps about flight connections in Austria and Aus-
tralia [EGSW00].

Among the application projects, there were quite a larger number of projects
for which no multi- or inter-disciplinary cooperation were necessary. For instance,
the already mentioned project for the symmetry exhibition needed transdisci-
plinarity with regard to the general understandability for the visitors of the ex-
hibition, but otherwise the mathematical competence together with elementary
knowledge about programming were sufficient. For the most application projects
the existing transdisciplinary competence were however the decisive presump-
tion for an effective interdisciplinary cooperation. An impressive example for it
is the mentioned project of the concept-analytical evaluation of repertory grid
interviews of anorectic patients at which the physician N. Spangenberg and the
mathematician K. E. Wolff productively cooperated over many years; during this
time, each one learned from year to year more from the other to reach ways of
aggregated thinking and by that to be successful. Especially, they benefited from
the transdisciplinary competence which continuously grew during the project.
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disziplinarität und Wissen in einer Leibniz-Welt. Konstanzer Blätter für
Hochschulfragen 26, 97–115 (1989)

[Mi96] Mittelstraß, J.: Transdisziplinarität. In: Mittelstra, J. (Hrsg.) Enzyk-
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Abstract. Jacob Lorhard published his ontology in 1606. In this work the term 
ontologia ‘ontology’ was used for the first time ever. In this paper, it is argued 
that Lorhard’s ontology provides a useful key to the understanding of the early 
17th-century world view in Protestant Europe. Among other things, Lorhard’s 
ontology reflects how the relations between scientific investigation and 
religious belief were seen. It is also argued that several of the conceptual 
choices which Lorhard made in order to establish his ontology may still be 
relevant for modern makers of ontological systems. In particular, Lorhard’s 
considerations on the notions of reality and time deserve modern reflections. 
Also his assumption of the educational value of diagrammatical ontology 
deserves a modern discussion. Along with this paper an online hypertext 
version of Lorhard’s ontology has been presented in order to create a useful  
tool for historical research in early 17th-century thought and in order to illus-
trate the problems, which characterized the early attempt at establishing a dia-
grammatical approach to ontology. 

Note: References with just a page number (e.g. [p.17]) refer to the English 
translation of Lorhard’s Ontology [7]. 

1   Introduction 

The term ontologia (‘ontology’) was coined by Jacob Lorhard (1561--1609), who used 
this new term for the first time in his volume of eight books Ogdoas Scholastica (1606), 
in which he demonstrated how ontology could be presented in a diagrammatical manner 
(see [8] and [7, 9]). Lorhard’s way of presenting his ontology makes it natural, from a 
modern perspective, to read it as a hypertext. This makes it straightforward to 
implement Lorhard’s ontology as a modern hypertext (see [7]). 

Lorhard’s ontology is relevant for contemporary historians as a semi-formal key to 
a 17th-century world-view. The creation of such world-views was typical within 
academic circles of early 17th century Protestantism, so Lorhard's work provides us 
with a snapshot of the framework within which scientifc study was carried out in the 
17th century. Moreover, we argue that several of Lorhard’s considerations regarding 
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the organization of his ontological system also warrant consideration by modern 
makers of ontological systems. The two considerations that we focus on in most detail 
are the concepts of reality and time. The first concept, in particular, is of central 
importance, both in Lorhard's ontology and in modern ontologies. 

We begin in section 2 with some historical and conceptual background to Lorhard's 
ontology, providing a cultural and philosophical setting against which his views on 
time and reality should be evaluated. In section 3 we discuss Lorhard’s concept of 
reality as it is manifested both in beings and attributes, using the reality of moral 
qualities and of structures or orders in the world as specific examples. In section 4 we 
consider Lorhard’s treatment of the temporal aspects of beings. In section 5 we 
comment on Lorhard’s presentation of his ontology. We show that an implementation 
of the system provides a useful tool for research in the history of science and 
philosophy. It turns out that Lorhard’s ontology can be represented as a hypertext 
dealing with aspects of reality and time which are essential for the understanding of 
the world.  We make some concluding remarks in section 6. 

2   Some Comments on the Historical Setting 

In order to understand Lorhard's approach to ontology, and the effect that this had on his 
approach to doing science, we must understand the philosophical and social milieu 
within which he worked. Lorhard's Ogdoas Scholastica was designed as a grammar 
school text-book. As such, it was meant to introduce essential parts of the scientific and 
religious aspects of the world to the students. Lorhard was influenced by the tradition 
from Peter Ramus (1515--72), who wanted to transform dialectical reasoning into a 
single method of pedagogical logic partly by using diagrammatical tools (see [9]). 
Lorhard sees diagrammatical ontology in this context, believing that the students will 
benefit from a deeper understanding of the ontological truths. This view on education 
became very influential in Europe. This is evident, for instance, in the writings of the 
Danish professor Jens Kraft (1720--1756) who, in organizing a school for young people 
expected to become national leaders, insisted on making ontology an essential part of 
the curriculum. Kraft clearly believed that a deeper understanding of the ontological 
truths would help the students not only in obtaining a better understanding of the world 
but also in becoming better people ethically speaking (see [8]). 

Book 8 of Lorhard's Ogdoas is devoted to metaphysics or, in the new word that he 
introduces, ontology. At the end of the 16th century, the predominant view of 
metaphysics was that found in Suárez's Disputationes metaphysicae (which was 
published in Mainz in 1605 [4]).  On Suárez's view, the primary subject matter of 
metaphysics is being: "the concept of the real being which is the subject of 
metaphysics..." [p.614]. Suárez's text "fixed the method of instruction in metaphysics 
for centuries, not only in Catholic schools, but also in Protestant academies and 
universities" [p.615] and "by the end of the [16th] century, Fonseca, Pereira, and 
Suárez were standard references in the newly founded Protestant universities'' [p.621]. 
His view was, however, rejected by Clemens Timpler of Heidelberg, whose 
Metaphysicae systema methodium was published in Steinfurt in 1604 and in Hanau in 
1606 [6]. (That Timpler knew of Suárez's views is clear from the fact that he 
references him in bk. 1, cap. 1, q. 7.) Timpler "proposed that the subject-matter of 
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metaphysics is not being, but rather the intelligible, παν νοητον" [p.635]. He says that 
metaphysica est ars contemplatiua, quae tractact de omni intelligibili, quatenus ab 
homine naturali rationis lumine sine ullo materiae conceptu est intelligibile 
(metaphysics is a contemplative art which treats of every intelligible, to the extent that 
it is intelligible by men through the natural light of reason without any concept of 
matter) [bk. 1, cap. 1]. 

Timpler's work was enormously influential on Lorhard's ontology. Timpler's 
Metaphysicae is written in a more traditional style than Lorhard's textbook: it is 
divided in to five books, of which each chapter presents an aspect or a part of his 
metaphysical views, followed by a number of questions and answers dealing with the 
philosophical issues arising from the distinctions offered at the beginning of each 
chapter.  (For example, q. 5 of bk. 1, cap. 1 is 'what is the proper and adequate subject 
matter of Metaphysics?' to which the answer, naturally, is omne intelligibile 'every 
intelligible thing'.) The divisions and distinctions in Timpler's work can be found 
almost universally without change in Lorhard's ontology, with the exception that 
Lorhard's text omits all the philosophical commentary (for a comparative taxonomy, 
see [3]).  What is interesting is that in many places where Timpler raises questions 
about his classification and characterization, Lorhard adopts his distinctions without 
indicating that they might be questionable. 

Following Timpler, Lorhard defined ontology as “the knowledge of the intelligible 
by which it is intelligible” [p.1]. His ontology is hence a description of the world of 
intelligibles, i.e., the items, concepts, or objects which are understandable or 
conceivable from a human perspective. The emphasis on the intelligibility of the 
world is essential in Timpler’s and Lorhard’s ontology. When Lorhard followed 
Timpler's lead and adopted this new proposal about the subject matter of metaphysics, 
or ontology, he agreed with the idea that we in formulating ontology are concentrating 
on the knowledge by means of which we can conceive or understand the world. In 
this way ontology is seen as a description of the very foundation of scientific activity 
as such. 

Lorhard holds that the human rationality must function on basis of what he and 
Timpler both call 'the natural light of reason' [p.1]. Ontology captures this 
fundamental understanding of the basic features of the world. Based on this 
knowledge everything else – to the extent that it is intelligible at all – becomes 
conceivable. This approach presupposes that there is in fact only one true ontology – 
the one that reflects to the world as it truly is. The belief was in fact very important 
for the rise of modern science in the early 17th century. According to J. Needham [5], 
the confidence that an order or code of nature can in fact be read and understood by 
human beings was one of the important cornerstones for the rise of modern science in 
Europe. This strong belief was absent in Eastern civilizations in the early 17th century. 

Lorhard, again following Timpler, divides the world of intelligibles into two parts: 
the universals and the particulars. The set of universals can be further divided into two 
parts: the set of basic objects, and the set of attributes [p.1]. As mentioned in [9] it 
should be noted that Lorhard’s ontology does not begin with a distinction between 
physical and abstract, as many modern ontologies do. As we shall see, however, there 
is a similar distinction integrated in his ontology based on his notion of reality, which 
he uses several times in the ontology.  As a result, a number of important concepts in 
Lorhard’s ontology are mentioned more than once. 
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The notion of reality is essential when it comes to ontology. The distinction of 
what is real (realis) as opposed what is not real is used no less than 16 times in 
chapter 8 of Ogdoas Scholastica. However, in his book Lorhard uses the term in a 
rather complex manner, which is apparent from the fact that it contrasted with three 
different concepts in the text: rational (rationalis), imaginary (imaginaria), and verbal 
(verbalis). In the following section, we discuss Lorhard’s use of the term ‘real’ as it is 
introduced in various parts of the text. As we shall see, the term ‘real’ mainly refers to 
‘mind-independent’ or ‘belonging to the external world’. 

3   The Reality of Beings and Attributes 

According to Lorhard, the essence of a being (ens) is that “by which a being is what it 
is” [p.2]. Some beings are real in the sense that they exist independently of human 
cognition, whereas other beings depend on human cognition, i.e., they are beings of 
reason or rationality. The essence of a being of the first kind relates to the external 
world, whereas the essence of a being of the second kind belongs to the internal (or 
mental) world of human cognition. According to Lorhard, there is an important 
duality between the beings themselves and our rational discussion of these being. It 
appears that he insisted on the necessity of this duality, in the sense that each time we 
discuss the beings in the world wanting classify them we also have to reflect on the 
concepts we are using in doing so. Such reflections at the meta-level turn out to form 
an essential part of Lorhard’s work. 

3.1   The Reality of Simple Attributes   

Lorhard identifies two simple and ‘most common’ attributes of intelligibles or beings: 
existence and duration [p.4]. This means that for every intelligible it is correct at least 
to say that it exists in the world, and in some cases we may be able to say more about 
the duration of its existence.  However, with respect to both existence and time, we 
make use of the real/imaginary distinction (realis/imaginaria). An existent intelligible 
might be something real in the sense that it exists independently of all human minds 
(although it is conceivable by the human rationality) or it might be imaginary (i.e., 
something imagined by the human mind). Also the duration of an intelligible might 
depend on a single human mind, in which case it is “imaginary”, or it might be real, 
i.e., independent of the human mind as it is a consequence of the properties of the 
external world. However, even if a duration is real in this sense, it may still have to be 
determined or measured in relation to human decisions regarding temporal units [p.5]. 

3.2   The Reality of Beings and Complex Attributes 

Real beings, beings which exist "in fact through [their] own essence[s], and further [are] 
suited to exist apart from cogitation of the mind" [p.3], are distributed across five 
different classes, each of which are further divided by a positive and a negative 
characteristic, such as "complex" and "uncomplex", "immaterial" and "material", and so 
on. This same type of positive/negative division is seen in his classification of 
conjunctive (non-simple) attributes. He divides conjunctive attributes into eight classes 
of opposing pairs: Every conjunctive attribute is either a principle/a principiate; a 
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cause/of cause; a subject/an adjunct; a signifier/signified; a whole/a part; the 
same/diverse; ordered/disordered; prior/posterior [p.17].  In each of these 16 subclasses, 
Lorhard makes a distinction between real (i.e., mind-independent) attributes and non-
real or imaginary attributes which depend on the rationality of the human mind. 

We give two specific examples of the reality of complex attributes. As noted 
above, every conjunctive attribute is either a ‘signifier’ or a ‘signified’ [p.17]. If the 
attribute is in fact a sign, then it is either a natural or an arbitrary sign. If the former, 
then the reason for the sign relation is something in order of nature [p.28]; if the latter, 
then the reason is a human decision [p.30]. According to Lorhard, an arbitrary sign is 
called real if it is manifest in society, e.g., through some institution. Alternatively, an 
arbitrary sign may just be verbal, i.e., an idea of an individual human being expressed 
in speech or in writing [p.31]. 

Another particularly interesting example of the reality of attributes comes up in his 
discussion of the reality of moral qualities. It seems to have been essential for him to 
make his students aware of the nature of ethics. This is evident from the fact that not 
only did he deal in his ontology with the nature of morality, he also has a separate 
book devoted wholly to ethics in his collection of eight schoolbooks. 

O. Goodness
is an actuality
of good,
because it is
good; or it
is a quality,
through
which a
Being is
denominated
good. It is
either

Apparent, which is an imaginary quality, through which a Being is seen to be
good, but in truth is not good.

True, which
is a real 
quality,
through
which a 
Being
is good in
reality, when
it is seen [to
be good]. It
is either

Infinite, or
primary which is 
in the sole 
uncreated Being. 
It is the source of 
every finite good.

Finite or
secondary,
which is in a
created Being,
[which<is good] 
as much as the 
same
things are
Impressed in the 
image of the first
good
through
participation.
It is either

Absolute, 
through
which a 
Being
in truth is 
good in itself
without
respect to 
anything. It 
is either

Respective. 
See P.

Natural, which is
the agreement in a 
being with the rule of 
creation, or of a 
generating Nature. 
[…]

Moral which is an 
agreement of a Being
with moral law: […]

Artificial which is an 
agreement of a Being
with the rule of art. 
[…]

Excerpt from p. 15 
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In the book on ontology, Lorhard claims that in some cases moral qualities are just 
apparent (he calls these apparent qualities 'imaginary'). In other cases, however, a 
being or an intelligible is in fact “good in reality” [p.15]. Here, however, he does not 
use his standard opposition of imaginaria with realis but instead contrasts apparens 
with verus 'true'. In this way, Lorhard claims that goodness is in fact true in itself, if it 
is a real (i.e. mind-independent) quality. He treats 'malice' (the contrastive of 
'goodness') in a similar way. Malice is in some cases true and in other cases it is 
merely apparent. If malice is true, then it is truly bad in itself and without respect to 
anything else. [p.16] 

It is worth noting that according to Lorhard there is in fact something which is 
good in itself and also something which is bad in itself. This means that he accepted 
the idea of an absolute ethics, which is not a construction of human rationality, but 
which on the other hand can be understood or realized by humans. The claim is that 
goodness in the finite world in fact comes from the infinite or eternal good, and the 
goodness not only occurs in the relations between human beings, but that goodness 
also may be integrated in the physical world as an important aspect of it. 

3.3   The Reality of Structures in the World 

Dealing with the more complex attributes of intelligibles, Lorhard used the notion of 
reality in relation to determinations like ‘identity’ [p.35]. He points out that there are 
two different kinds of identity. In some cases the idea of something being identical 
with something else is just a rational construction, but in other cases a claim of 
identity between two beings is based on external, mind-independent properties of the 
beings in question. In these cases the identity is there objectively speaking, and 
Lorhard refers to it as a 'third thing'. 

Similarly, the order of beings in the world may according to Lorhard be real or 
rational (i.e. just a product of human rationality) [p.39]. If it is real it does not depend 
on human cognition, but is there independently of human observation and cognition. 
A purely rational order, on the other hand, is mind-dependent, i.e., it is there as a 
result of human reason. Lorhard’s ontology contains rather elaborate description of 
the various kinds of order of beings. 

Lorhard believed in an essential ‘order of nature’ related to the origin or creation of 
the world. This order is structural. It is, however, important to emphasize that the 
order should not be understood as something static or inescapable. As we shall see, 
the order should be understood in the perspective of time.   

This basic belief in an ordered or structured world was very important for the rise 
of modern science in the same period. It is, however, just as important with respect to 
the scientific project that the order of the world can in fact be studied, investigated, 
and learned by the human mind. This is probably why Lorhard emphasized the 
importance of the duality between on the one hand the real or external order of the 
beings in the world and on the other hand the rational order of beings as it can be 
captured by the human mind. Indeed, he says we obtain a theoretical, rational order of 
beings, i.e., a theoretical order corresponding to order of the external world, through 
our “cognition of things” [p.40]. 
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CC. Order
Order is the 
disposition of 
diverse beings
according to 
prior and 
posterius. It is 
either

Real, which without 
regard to an 
operation
of the mind exists 
between diverse
beings. It is either

Rational, which
depends on the 
correct
judgment and 
institution of the 
mind. It is either

Primary is either

Secondary is either

Of origin, of them, of which one is 
prior in origin to the other. It is 
called order of nature, or order of 
being.
Of time, of them, of which one is 
prior to the other in time.

Of position, which is of them of which
one through itself maintains superior
position over the over.

Of dignity, which is of them of which
one through itself is more deserving
and more excellent than the other.

Of natural enumeration, which is of 
them of which one through itself is in 
enumeration prior to the other.

Artificial, which are in our cognizing and acting directs. See ♃.

Arbitrary, which something without regard to the prescription of 
art establishes out of consideration of reason and circumstances. 
Indeed it is called order of prudence.

 

Extract from p. 39 

3.4   The Reality of Privation 

One of the most philosophically interesting distinctions that occur in Lorhard's 
ontology is that between being nothing and being negative.  In his very first division of 
intelligibles, he says that an intelligible is either "Nothing: This is simply not 
something" or "Something: Whatever is simply not nothing" [p.1]. The remaining 57 
pages of Lorhard's book on ontology are devoted to the intelligibles which are 
something; of the intelligibles which are nothing, nothing further is said. This 
distinction between being nothing and being something is copied directly from Timpler 
[bk.1, cap. 2]. Timpler says that an intelligible is anything which is able to be 
perceived and comprehended in the intellect, and that an intelligible is either something 
or nothing. In contrast to Lorhard, before continuing Timpler raises a number of 
questions whose answering seems to be required and which Lorhard doesn't mention at 
all. The first is "whether 'nothing' can be an intelligible" [q.1]. Timpler gives a positive 
answer to this question, but it is interesting that he feels the need to argue for it (and 
indeed gives a number of different arguments), whereas Lorhard simply takes it for 
granted that 'nothing' is something intelligible. Timpler also asks "whether 'something' 
and 'nothing' are equivalent to 'being' and 'non being'" [q.3]. He gives a negative 
answer to this question ("'being' is not always contradictorily opposed to 'non being'" 
whereas the answer to q.2 is that between 'something' and 'nothing' no middle ground 
can be attributed), and as an example he says that "privation is called 'non being', and 
nevertheless is still not nothing". 
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It is in the discussion of privation that Lorhard diverges from Timpler's 
metaphysical presentation. Both divide intelligibles which are something into those 
which are positive and those which are negative. Lorhard describes "something 
negative" as a privation "which is a negative habit in a being, of which then it is either 
able or required to be in" [p.58] In contrast, Timpler's discussion of privation is 
separate from his comments on intelligibles which are something negative. He 
classifies privation as an accident, namely, something which can be positively 
attributed to a being. While privation is a removal of something from a being, it can 
still be affirmed that the removal is present in the being.  When Lorhard says that a 
privation is something negative, he is taking a symmetric view: We do not affirm that 
a privation is present in a being, but instead we deny that some habit or other is 
present in a being. For both Timpler and Lorhard, privations, like other types of 
intelligibles, are divided into those which are mind-independent and those which are 
mind-dependent. It is interesting here that the choice of words that both Lorhard and 
Timpler use is not the usual pair of realis/rationalis or realis/imaginaria but 
verus/ficta ‘true/fictional’ (though Lorhard does add that fictional privation is also 
called rational or imaginary, because it "is attributed solely through a fashioning on 
the mind" [p.58]). The only other time that Lorhard uses 'true' to describe the mind-
independent intelligibles instead of 'real' is when he discusses goodness and malice, 
which we discussed above. There is thus a clear connection between the reality of 
something negative/privation and the reality of the moral qualities, a status which is 
not shared with any of the other intelligibles. 

4   The Temporal Aspects of Beings 

Lorhard’s conceptual framework is basically Aristotelian. Following this tradition 
Lorhard believes that understanding causality is essential for understanding the world.  

This point was formulated by Aristotle himself in the following manner: 

Knowledge is the object of our inquiry, and men do not think they know a thing 
till they have grasped the 'why' of (which is to grasp its primary cause). [1] 

In order to establish a theoretical framework corresponding to the structure of the 
world including its temporal relation he classifies effects based on the four 
Aristotelian causes [p.23]. An effect will always be one of the following: 

Caused by reason of efficiency 
Caused by reason of matter 
Caused by reason of form 
Caused by reason of finality 

For some reason Lorhard has chosen to list these four causes in a different order from 
the one used by Aristotle himself in Physics Book II, Part 3 [1]. In fact, the four 
causes are listed in the same order later in Lorhard’s ontology when de discusses 
causes of real identity [p.35]. In his book on logic in the Ogdoas, Lorhard has also 
used the Aristotelian order of the four causes. In his logic it is even indicated that the 
four causes should be conceived as two pairs: efficient and material causes on the one 
hand, and formal and final causes on the other hand.  
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From a modern perspective the most controversial part of Lorhard’s treatment of 
causality is probably his reference to final causes. A final cause (telos) implies an 
assumption of a purpose. However, according to Lorhard ‘purpose’ does not have to 
refer to human intent. Teleological causes may also be found in nature. There can be 
little doubt that this approach to purpose (telos) in nature should be interpreted in light 
of the religious assumptions incoporated in Lorhard’s ontology. 

The temporal aspects of Lorhard’s ontology can be found not only in his emphasis 
on the importance of causality, they are also evident from the fact that the essence of a 
being introduced in terms of positive characteristics is, according to Lorhard [p.2], an 
actuality or performance (actus). If a being is real, the actuality or performance 
constituting its essence will reflect features in the external world taking place 
independently of human cognition. If the being is not real, the actuality or 
performance in question will depend on human cognition. In both cases the reference 
to ‘actus’ must involve some kind of process. This clearly means that there is an 
aspect of temporality involved in the essence of beings. 

 

 
 

Excerpt from p. 44 

It should be noted that according to Lorhard the world as such can also be seen as a 
result of a number of divine actions, some of which are eternal and some of which are 
temporal. This is due to Lorhard’s religious approach to ontology according which the 
world as a whole from the very beginning has been under divine supervision and 
according to which worldly things have been permanently under divine management. 
The view is that there is “common and usual order of nature” [p.44], which represents 

General, 
external 
actions 
of God 
these 
either 

Eternal ,& 
either 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Temporal ; 
as in 

Preordination, which is an external action, by which he from eternity 
has determined, for his liberty and good will, what, in his time, might 
be future, and indeed he has ordained a fixed means because of it. 

 
Precognition, is an external act of God, by which he foreknows from 
eternity all future things before they exist. 

Creation, which is an 
external act of God, by 
which in the beginning of 
time he had produced the 
world and all species of 
things sustained in him by 
a hyperphysical mode, & 
to this point in his time he 
does not produce an 
indivisible out of no 
things. 

 
Management of things, is 
an external action of God 
by which the world is 
made in itself, [and by 
which] he administers and 
conserves wisely and 
competently all things 
which are in it. It is either 

Ordinary, by which God according to usual 
and common arrangement and course of 
nature by his own sanctification, 
administers and conserves worldly things. 

 
Extraordinary, is that by which God 
contrary to the common and usual order of 
nature and by his own sanctification 
administers and conserves certain things in 
the world. 
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God’s management (or actions) most of the time. This order of nature will naturally 
be the object for scientific investigation. Sometimes, however, God’s actions are 
extraordinarily different (i.e., miraculous).  

Lorhard divides God’s eternal actions into preordination (i.e., the determination of 
the general plan for the temporal world) and precognition (i.e., the act by which God 
knows anything that is going to happen in the future whether it is necessary or 
contingent) [p.44]. These actions are carried out from a standpoint outside the 
temporal world. The idea seems to be that there is a non-temporal dimension of 
existence logically prior to time from which God can relate to the temporal world. 
From this non-temporal (or eternal) dimension God can either act in eternity by 
planning the course of events (preordination) or by seeing it (precognition).  

The distinction between eternal and temporal is essential in Lorhard’s ontology. 
This distinction may also be referred to as ‘uncreated/created’ or ‘infinite/finite’. 
Together with ‘real/rational’, the ‘eternal/temporal’-distinction is the most 
fundamental concept in Lorhard’s ontology. In short: it may be held that key concepts 
in Lorhard’s approach to the world of intelligibles are real (as opposed to rational) 
and temporal (as opposed to eternal). 

5   Lorhard’s Ontology as a Hypertext on Reality and Temporality 
of the World 

It turns out that Lorhard’s ontology can be represented as a hypertext on important 
aspects of reality and time which are essential for the understanding of the world. As 
mentioned in the introduction, it is easy to see how Lorhard’s textbook can be 
represented as a modern hypertext because it relies so heavily on cross references. A 
large number of the pages (especially in the beginning of the text) list sections of the 
ontology that will be dealt with later. By choosing a graphical style of representation, 
Lorhard was able to not just present the concepts of his system, but also the structure 
that connects the concepts. This gives the obvious advantage that a single glance at a 
page reveals for instance how many subdivisions a given concept has. But the 
graphical representation also comes at a cost, namely that some of the strands of 
relations introduced in the early parts must ‘wait’ for many pages before being 
charted out. In this respect, it is remarkable that Lorhard throughout the ontology 
maintains such a close correspondence with Timpler’s work, as shown by Lamanna 
[3]. It would not have been surprising if the diagrammatical style resulted in a 
different ordering of the material, but this is not the case. This observation adds to the 
important question of how the diagrams should in fact be read. An analysis of this 
question may pave the road for designing systems equipped to deal with such 
complex representations. 

5.1   The Didactic Nature of the Representation  

As mentioned above, the Ogdoas is intended to function as a textbook, and it seems 
reasonable to assume that it was used as lecture notes by Lorhard and his students. As 
such, it would be incorrect to view the text exclusively as a hierarchy of concepts or 
types. Rather, the diagrams take on form as didactic aids suited to address the 
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questions at hand. In support of this view is should be noted that not only the 
ontology, but all the eight books are written in this style.  

It is still an open question how much of the actual layout of the ontology was due to 
printer's constraints, and how much influence Lorhard had on the questions of layout. 
For example, the entire section on "Goodness" has been forced onto one page, 
whereas "Malice", which is structurally simpler, is divided up into multiple lettered 
sections over more than one page.  In the absence of the original manuscript, we 
cannot say for certain whether such formatting differences have any underlying 
signification.  

5.2   The Nature of Repetitions  

An important feature in Lorhard’s work is, as we have demonstrated, the use of 
repetitions. In [9] we mention the extensive use meta comments (or notes) within the 
ontology, which from a modern point of view cannot be seen as part of the actual 
hierarchy. Even more pertinent is the repeated divisions into dichotomies such as: 
created / uncreated (which occur 10 times), generic / specific (9 times), complex / 
uncomplex (6 times); and as pointed out above, the crucial distinctions of the real, 
which occurs no less than 15 times, contrasted with rational (7 times), imaginary (6 
times), verbal (once), and ‘of reason’ (once). Quite obviously these terms function not 
as types in a hierarchy, but closer to the modern notion of metaproperties often 
discussed in contemporary research, see for example [2]. The use of repeated 
distinctions adds to the number of steps one has to go through in order to grasp a 
given concept. In our opinion, the repetitions also add to the difficulty of mentally 
navigating the ontology. But this solution does address another fundamental problem 
in ontology engineering, namely the critical problem of the top distinctions. It turns 
out that the entire structure is affected by these repetitions, and it seems therefore at 
least reasonable to suggest that the top distinctions de facto chosen by Lorhard (the 
subject / predicate structure distributed over the universal and the particular) should 
be seen as balanced by other important top distinctions. Thus, if the entire structure is 
rearranged according to whether elements are dependent on human cognition or not, 
the entire ontology could be ‘turned upside down’, whereby the subject / predicate 
distinction would be needed as metaproperties. Large portions of the ontology could 
be treated in the same way if Lorhard’s use of created / uncreated was employed as a 
top distinction, etc.  

5.3   Hypertext Arrangements 

A contemporary version of Lorhard’s text could be a simple hypertext as suggested in 
[7]. This implementation remains true to the original and preserves the structure in a 
very direct manner. Possible non-invasive additions could include more navigational 
aids such as a bi-directional link structure to help maintain the awareness of the big 
picture. It would also be desirable to have the actual book pages shown alongside the 
translation. See the sample page here below. 

More advanced solutions could take on the challenge of dynamically rearranging 
the ontology according to the metaproperties discussed above. Such a system should 
be able to lift specific distinctions from the structure and rearrange the hierarchy  
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Page 8 containing one of the realis iterations. (Vadianische Sammlung, St. Gallen, 
Switzerland)  

based on all these occurrences. The central idea is to designate a given division as the 
privileged distinction by means of which the remaining ontology is organized. 
Important criteria for selecting the privileged distinction is how often it is used, and to 
what effect, e.g., how big a portion of the original structure is affected by the 
distinction. Any such selection (except the actual top distinction) would carve up the 
ontology in two parts: One part consisting of concepts directly affected by the 
selection, and one part consisting of concepts outside the scope of the current 
selection. The former of these would consist of fragments to be rearranged and if 
possible, also merged. The second part should also be listed thereby making the scope 
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of the selection visible. The result would be a dynamic arrangement of original 
structure that takes the faceted style of representation seriously.  

6   Conclusion 

We have seen that Lorhard, following Timpler, defined ontology as the fundamental 
study of the intelligible world. In this way ontology is presented as the very 
foundation of scientific activity– including the important relations between scientific 
and religious concepts. We have also pointed out that Lorhard does not use the 
distinction between ‘abstract’ and ‘concrete’ which has become very common in 
modern ontology as an upper-level distinction. Instead, Lorhard makes an important 
distinction between what is mind-dependent (what Lorhard calls ‘rational’) and with 
is not mind-dependent (what Lorhard calls ‘real’). In addition he distinguishes 
between time, where natural intelligibles exist, and eternity, by which the relations 
between the scientific and religious matters are understood. In short: The key 
distinctions in Lorhard’s ontology and his approach to the world of intelligibles are 
rational/real and temporal/eternal. 

Lorhard’s ontology is a schoolbook using a diagrammatical approach in the 
tradition after Peter of Ramus. Lorhard accepted the view that ontology was essential 
as the foundation of science and knowledge in general. In this way ontology in not 
only about being, but it is about the broader world of intelligibility. Lorhard’s work 
may be seen as a typical representation of the philosophical ideas behind the rise of 
modern science. And in addition, Lorhard’s ontology serves as an example of 
inspiration to contemporary faceted knowledge representation. 
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Abstract. Countless archives around the world, including C.S. Peirce's 
manuscripts at Harvard, wait for an infrastructure that makes possible the 
collaborative work to re-create them as "e-resources." Meanwhile, the U.S. 
National Science Foundation's new Cyberinfrastructure Initiative, calls for 
deeper understanding of infrastructure, enabling the engagement of researchers 
as participants in sustained e-resource development. Revelator is a game 
conceived as a methodology for that collaborative participation, in an evolving 
infrastructure of Conceptual Structures technology. Our conception of 
Revelator's game context derives from C. S. Peirce's theory of knowledge 
evolution in semeosis and his pragmatic methodology for inquiry, and 
incorporates J.H. Holland’s complex adaptive systems modeling.  Revelator’s 
role is to engage participants in “the game of inquiry,” which reveals significant 
patterns and paths structured by complex logical relations among the conditional 
propositions that represent players’ conjectures as plays in the game. Revelator 
offers a general methodology for building trustworthy collaborative research, in 
an evolving infrastructure of knowledge technology and e-resources.  

1   Introduction 

Peirce's late manuscripts (written during his last decade, 1903-1914) hold remarkable 
evidence that his ideas anticipated major 20th century developments, including game 
and model theory [Keeler 2007; Pietarinen], and the more recent advancements of 
evolutionary epistemology and self-organizing complex adaptive systems. 
Unfortunately, these manuscripts are largely inaccessible (for complicated reasons 
briefly explained here) archived in the Houghton Library at Harvard University. In spite 
of its severely limited access, this mature theoretical work in “semeotic” (his preferred 
spelling [CP 8.377]), metaphysics, and pragmatic methodology has suggested fruitful 
directions to researchers in cognitive and neuroscience, machine intelligence, and 
complexity theory [Deacon 2004; Sowa 2006]. Revelator is conceived to apply Peirce's 
comprehensive ideas in a methodology for collaborative inquiry that incorporates 
advancing technology, not only for access to such archives in the form of “e-resources,” 
but for building a new infrastructure to sustain their continued effective use and 
evolution. Key motivations and elements in the design of Revelator are explained in this 
paper, leaving implementation design features for the next effort. 
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Encouragingly, the new Cyberinfrastructure Initiative at the U.S. National Science 
Foundation extends previous knowledge engineering initiatives, but now recognizes 
the need for a deeper understanding of infrastructure that would enable its developers 
to "think strategically and act opportunistically" in creating information that "builds 
synergy among learning, research, and societal issues."  The Initiative further stresses 
that resources in the new cyberinfrastructure must be more than merely PDFs; they 
must involve ongoing participation that calls for “more sophisticated mutual-
stakeholder consortia and more metrics for e-resource development testbeds to assess 
impacts and guide iterative design in e-research communities" [Atkins].  
Infrastructure developers, in partnership with users, as human actors must become 
architectural elements within the system, rather than entities outside its boundary, as 
in the traditional UML use-case approach. 

Harvard historian Mario Biagioli compares 20th century computer-network 
infrastructure and emerging e-resources to the period before published books and 
institutionalized libraries in the 15th century. Many network-based resources are now 
being created, across all disciplines, without the functional infrastructure to support 
collaboration and continuing innovation based upon them. Biagioli observes that the 
values of scientific community historically were formed and progressed with the evolution 
of an infrastructure that created “interdependence by peer-based allocation of resources." 
He concludes: "distrust is maximum when infrastructure is minimum” [in Kahin]. 

Resource archives around the world are waiting for an infrastructure that makes 
possible: the collaborative work to re-create them as e-resources, to keep them 
perpetually viable as technology evolves, and to ensure their use in the responsible 
intellectual evolution of research communities. Revelator is a general methodology for 
building trustworthy collaborative research, in an evolving infrastructure of e-resources 
and advancing technology. Revelator's design combines C. S. Peirce's theory of 
knowledge evolution with his work on improving the economy of inquiry in a game 
format that somewhat resembles familiar intellectual games, such as bridge, chess, and 
crossword puzzles [Keeler 2007]. Revelator's purpose is to reveal complex relations 
among conditional propositions (in the form of "if-then" rules) by which players 
represent their conjectures as plays in the game, and to enforce their dynamic validation 
and the verification of evidence they entail.  Its game conception provides a framework 
for conceptual structures technology (including Semantic Web, Conceptual Graphs, 
Formal Concept Analysis, ISO Common Logic, and other approaches) to evolve in 
iterative cycles of innovation, testing, and advancement. 

The strategic challenge of the game is to construct hypotheses collaboratively, 
aided by logical processing and diligent evidence checking. Evidence checking cannot 
be founded on belief based methods, such as Bayesian techniques, but must derive 
from methods such as Dempster-Shafer based evidential assessment. Structured 
“plays” in Revelator become players' "logical agents," which must adapt to promote 
the emergence of model-driven multi-agents that represent collaboratively formulated 
robust hypotheses. J.H. Holland's models of complex adaptive systems and the 
emergent behavior of agent-based mechanisms are translated into Peirce's logical 
mechanisms, to model the logical behavior of complex adaptive reasoning among 
conditional propositions.  

This paper explains the conception of Revelator as a context that can demonstrate 
the value of Peirce’s mature dynamic logic in a methodology that will enable 
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collaborators to build the self-organizing complex adaptive infrastructure required for 
e-resource creation and continuity. Revelator’s methodology can then serve in the 
evolution of conceptual structuring tools, toward the Cyberinfrastructure vision of 
"more sophisticated mutual-stakeholder consortia" with the "metrics for e-resource 
development testbeds to assess impacts and guide iterative design," for mutual 
reliance among "players in the game."  

2   A Resource for an Evolving Infrastructure 

Perhaps no more that than 20 percent of Peirce’s estimated 100,000-page archive at 
Harvard has been published anywhere, in spite of three multi-volume editions 
appearing in the last century. Especially Peirce’s writings from his final years (1903-
1914, some 40,000 pages, or nearly half the collection archived at Harvard) have 
never been at all well represented in any print edition. Since their high-acid paper is in 
delicate condition, the curator of this collection at Harvard’s Houghton Library 
estimates that these manuscripts may not survive beyond the next two decades. 
Scholars, who already have severely limited access to this material, may never be able 
to study his most intensive theoretical work in semeosis, metaphysics, and pragmatic 
methodology, including his advanced systems of graphical notation for the study of 
logic, less than 10 percent of which has ever been published [Clark, Roberts, and 
Zellweger have described some of these in detail and indicated the significance of the 
“gold mine” that remains in his later work, 1997].  

These manuscript pages clearly exhibit the difficulties of representing Peirce’s 
work in traditional print media, most obviously in their progressively more graphical 
and colorful features. They are full of invented symbols and complicated graphics 
with crucially meaningful color, in both text and diagrams [see a more extensive 
account in Keeler & Kloesel: 1997]. These pages also become progressively more 
difficult to decipher, as his handwriting deteriorated with age. Peirce’s prolific 
editorial marginalia indicate his own recognition that traditional publishing would 
severely limit effective availability of his work. Its representational complexity 
includes text enclosed in graphical figures, graphics embedded in text, text contoured 
around graphics, whole pages of graphics with no text at all, and graphical figures 
with as many as four colors, "since four tinctures are necessary to break the continuity 
between any two parts of any ordinary surface" [CSP-MS 295: 44].  

Those who have experienced the effort of scholarly research of his manuscript 
collection have become aware of other difficulties due to Peirce's compositional style 
and the fate of his corpus after his death. His writings cannot conveniently be 
arranged usefully in topical order, as the first editors presented a small selection of 
them in the Collected Papers of Charles Sanders Peirce. This edition represents fewer 
than 150 of his unpublished works (and only one-fifth of these are complete), but is 
still the most complete portion of this material in print. The misleadingly named 
collection includes fragments of some manuscripts that are separated among at least 
three of the eight volumes, and some series of papers are scattered through seven, to 
accord with the editors’ topics rather than with Peirce’s originally intended sequence.  

Because of his broadly polymathic training and abilities, Peirce's work in 
mathematics, logic, and experimental science intricately influenced his work in 
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philosophy and the humanities, which in turn shaped his views on scientific inquiry.  
Scholars can never be sure where, in the entire collection, Peirce will mention a 
particular topic and weave it into an unexpected context, such as in the imaginary 
dialogues he often invents, to play the part of his own critics as a strategy to explore 
the implications of an idea thoroughly. During his final years, he forecasts in a letter 
to one of his many correspondents what he imagines will be the fate of his own work, 
and why print media are inappropriate.  

Much of my work will never be published. If I can before I die, get so much 
made accessible as others may have a difficulty in discovering, I shall feel that I 
can be excused from more. My aversion to publishing anything has not been due 
to want of interest in others but to the thought that after all a philosophy can 
only be passed from mouth to mouth, where there is opportunity to object & 
cross-question & that printing is not publishing unless the matter be pretty 
frivolous. (SS 44: 1904) 

Perhaps the most significant challenge in creating any useful resource, of his work 
is that the Houghton archive contains several thousand "lost pages," pages separated 
from their original manuscript context. When the collection was moved to Harvard, 
shortly after Peirce’s death, they were not properly stored for several years, during 
which they fell into disarray (apparently, some even distributed as scratch paper in 
war-time paper shortages). The available (but incomplete) monochrome microfilm 
copies offer little aid in their proper replacement which, along with careful 
consideration of their content, depends on careful matching of any discriminating 
features that might be clues as to where they belong (features such as color and width 
of ruled lines, shade and type of paper, watermark, pattern of torn edges, weathering 
effects, and so on).  

M. Keeler’s previous work [2005], presents a hypothetical scenario of Peirce 
scholars in collaboration, trying to find the proper placement for a "lost page," and 
suggests a game as an effective context for this process.  Keeler [2006] proposed 
Revelator as the game context for conceptual structures tool evolution; and [2007] 
introduced Holland’s modeling of complex adaptive systems (cas) in terms of multi-
agent mechanisms as a framework for the operation of Revelator as game of 
pragmatic inquiry. The following sections of this paper further relate Revelator’s 
conception to Peirce’s ideas, which have emerged in current methodological trends, to 
bring its game methodology closer to implementation.  

Clearly, the full value of Peirce's surviving writings cannot be revealed by the 
traditional methods in print media, and his writings challenge us to construct a new 
sort of e-resource that can continue to evolve through collaborative inquiry: 

… All that you can find in print of my work on logic are simply scattered 
outcroppings here and there of a rich vein which remains unpublished. Most of 
it I suppose has been written down; but no human being could ever put together 
the fragments. I could not myself do so. [MS 302 (1903)] 

3   Peirce’s Ideas Toward an Evolutionary Infrastructure 

We are, according to Peirce, primally creatures who can form hypotheses, which he 
considered to be "spontaneous conjectures of instinctive reason" [CP 6.475 (1908)]. 
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His theory of inquiry (or logic in semeosis) attempts to explain how instinct evolves 
into intellect and to examine our reasoning capability from its most vague to its most 
precise. He hoped to build the logical instruments by which to examine how this 
conceptual growth occurs. His theory of continuity in reasoning and communication 
(as semeosis) implies that without pragmatic inquiry, which progressively resolves the 
diversity of views among inquirers, “knowledge” will be established by dogmatic 
authority or popular opinion. His pragmatic methodology was to clarify how our 
necessarily fallible knowledge can progress resourcefully (with increasing validity 
and verifiability), in the “bootstrapping operation of inquiry,” and to justify its 
application: “as we remain disposed to self-criticism and to further inquiry, we have 
in this disposition an assurance that if the truth of any question can ever be got at, we 
shall eventually get at it” [CSP-MS 83: 4-5 (1900); also Hookway 2002; and see Note 
1: Peirce's fallibilism is not Popper's falsificationism].  

D. Anderson adeptly explicates Peirce's analysis of his methodology: 

A hypothesis must explain the phenomena in question. An analysis of its logical 
purport, of its would-bes, allows an inquirer to determine this. Deduction then 
develops the implications of the would-bes, and induction tests for the reality of 
the generality that is the hypothesis or, more accurately, the object of the 
hypothesis, and thus "gives us the only approach to certainty concerning the real 
that we can have. [56; CP 8.209 (1905)]  

By 1893, after two decades of intensive development of his logic, Peirce could 
respond to the question: “How do concepts evolve?”  

We can answer for ourselves after having worked a while in the logic of 
relatives. It is not by a simple mental stare, or strain of mental vision. It is by 
manipulating on paper, or in the fancy, formulæ or other diagrams -- 
experimenting on them, experiencing the thing. Such experience alone evolves 
the reason hidden within us and as utterly hidden as gold ten feet below ground -
- and this experience only differs from what usually carries that name in that it 
brings out the reason hidden within and not the reason of Nature, as do the 
chemist’s or the physicist’s experiments. [CP 4.86] 

In his 1902 manuscript, (which the CP editors named) the “Minute Logic,” he 
maintained that the Greek notion of episteme, or “comprehension,” as “the ability to 
define a thing in such a manner that all its properties shall be corollaries from its 
definition,” which is the notion that “all deduction is corollarial deduction,” had 
misguided scientific inquiry [CP 1.232]. The living process of inquiry, he insisted, “is 
busied mainly with conjectures, which are either getting framed or getting tested.” In 
referring to his earlier intensive biological studies, he remarked on the amazing 
chemical complexity of protoplasm and, thereafter, began to use the metaphor of 
protoplasm for inquiry, which “has to be in a liquid state in order that the operations 
of metabolism may go on,” concluding: “in all its growth and reproduction, it 
preserves its specific characters” [CP 2.198]. Peirce eventually came to regard the 
most marked characteristic of genuine inquiry as “an incessant state of metabolism 
and growth,” in contrast to systematized classifications of knowledge as “nothing but 
the exudation of living science.” In 1903, he made the following addition to his early 
article, “How to Make Our Ideas Clear,” published in 1878. 
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Pragmatism makes thinking to consist in the living inferential metaboly of 
symbols whose purport lies in conditional resolutions to act.  As for the ultimate 
purpose of thought, which must be the purpose of everything, it is beyond human 
comprehension; but according to the stage of approach which my thought has 
made to it … [with the aid of many others listed] it is by the indefinite replication 
of self-control upon self-control … [CP 5.402]  

Peirce's mature theory of logic-in-semeosis accommodates conceptual relativity, 
and recognizes that our ultimate concern is not to establish consensus that would 
simply resolve diverse opinions, but to reach consensus about interpretations that 
could then continue to be tested and modified in further, concerted experience of the 
(always hypothetical) existential conditions. "There would not be any such thing as 
truth unless there were something which is as it is independently of how we may think 
it to be" [CP 7.659 (1903)]. The effect of his pragmatic methodology is, he stressed, 
“simply to open our minds to receiving any evidence" [CP 8.259 (1904)].  A 
significant implication for software engineering is to abandon the traditional Church-
Turing computation models and the associated closed-world proof theoretic concepts 
in favor of interactionism and iterations of approximate or speculative computations 
in an open-world paradigm [see Note 2].  

Of the many works Peirce never completed but returned to in later years is “Lessons 
from the History of Science” (c. 1896), in which he identifies three main theories of 
evolution: “Darwin’s (‘purely fortuitous and insensible variations in reproduction’); 
Lamarck’s: (successive minute variations, or force of habit-taking, accomplished by 
striving individuals), and cataclysmal evolution: sudden changes in the environment 
lead to disadvantages in established ways, and sporting to find new ways to adapt” [CP 
1.104]. He concludes that all three modes have acted in organic evolution, the last 
being the most efficient, and the way that scientific inquiry mainly evolves. 

It advances by leaps; and the impulse for each leap is either some new 
observational resource, or some novel way of reasoning about the observations. 
Such novel way of reasoning might, perhaps, be considered as a new 
observational means, since it draws attention to relations between facts which 
would previously have been passed by unperceived. [CP 1.109] 

Nevertheless, he finds a better account of the evolution of consciousness in 
Lamarckian theory, which can explain a mediation between the other two theoretical 
modes. 

Thus, the first step in the Lamarckian evolution of mind is the putting of sundry 
thoughts into situations in which they are free to play. As to growth by exercise, 
… it consists of the flying asunder of molecules, and the reparation of the parts 
by new matter. It is, thus, a sort of reproduction. It takes place only during 
exercise, because the activity of protoplasm consists in the molecular 
disturbance which is its necessary condition. Growth by exercise takes place 
also in the mind. Indeed, that is what it is to learn. But the most perfect 
illustration is the development of a philosophical idea by being put into practice. 
The conception which appeared, at first, as unitary splits up into special cases; 
and into each of these new thought must enter to make a practicable idea. This 
new thought, however, follows pretty closely the model of the parent 
conception; and thus a homogeneous development takes place. The parallel 
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between this and the course of molecular occurrences is apparent. Patient 
attention will be able to trace all these elements in the transaction called 
learning. 

Though not explicitly, Peirce’s work has influenced Holland’s, whose publication 
of his research on induction [1986] was partially dedicated to Peirce, and whose 
research group at the University of Michigan includes Arthur Burks, one of the 
editors of the Collected Papers edition.  Peirce’s pragmatic view of habit-taking as 
learning in the evolution of mind [Keeler 2000, 2003] foreshadows Holland’s models 
of adaptation and emergence.  

Holland’s models of emergent behavior are based on a conjecture that: “the 
mechanisms of selection in the creative process are akin to those of evolutionary 
selection, simply running on a faster time-scale.” Recent studies in “evolutionary 
epistemology” have further developed this conjecture into theoretical accounts of 
scientific inquiry as “the cutting edge of the self-organizing adaptive processes that 
have been developing (no doubt irregularly and riskily) over evolutionary time” 
[Hooker: 42].  Holland’s work joins what these theorists call a “fundamental revolution 
in the conceptual foundations of all the sciences, one with important consequences also 
for the professions: the shift from linear, reversible, and compositionally reducible 
mathematical models of dynamics to nonlinear, irreversible, and functionally 
irreducible complex dynamic systems models, especially for complex adaptive 
systems.” Unfortunately, as Hooker assesses, the value and conceptual importance of 
the ideas deriving from this revolution have as yet scarcely touched those who “still 
model rational agents (explicitly or by tacit presumption) in terms of simple logical 
structure,” as in most of current science [Hooker: 3].  

As Holland and many evolutionary epistemologists point out, the explicit pattern of 
incrementally revising hypotheses (of hypothesize, test, and revise), which ideally 
abstracts inquiry’s process, fails to account for the need to identify a target to start 
with, which in actual inquiry is identified as an unexplained phenomenon, 
controversial question or complex issue. In Revelator, this is a wholly human 
component, engineered into the system, outside the Church-Turing computation model 
but within the agent interaction model [Wegner, Goldin ]. A game begins when human 
players are registered into the Revelator space, and meet the conditions of interacting 
through structured dialogs within the system language (a Common Logic Controlled 
English for rules based on the ISO 24707) for engaging in inquiry in the first place.  

4   Revelator’s Context for Complex Adaptive Reasoning 

Revelator is to be played by any group of inquirers who collaborate to construct 
robust hypotheses from their individual conjectures, which might solve some puzzling 
question. Like the game of bridge, Revelator resembles a laboratory experiment in 
which experts carry out a dialogic, goal-directed, and limited but intellectually 
complex activity, using lean vocabulary and rigid bidding conventions. Formal, 
collaborative inquiry is conducted to improve ordinary solitary inquiry, constrained 
by the individual’s sensory and cognitive restrictions and often limited commitment to 
investigation [Haack 2003].  
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Hypotheses become robust as they improve our anticipation: when consequences 
we expect appear to follow from certain conditions, as we guessed they would. In the 
game of Revelator, players express their guesses as explicit conjectures, by 
formulating each as a conditional proposition whose antecedent specifies a course of 
action to be performed and whose consequent describes certain consequences to be 
expected. This “IF … THEN” form specifies what conditions a player thinks should 
justify each conjecture, as a rule. In using the conditional form for conjectures, 
players consciously distinguish the possibility that something is in fact true from how 
they think they know it is true.  Inquiry does not select which conjectures are true, but 
constructs knowledge of how justified a conjecture is: represented “facts” are 
conditionally dependent on how we perceive and conceive them [Haack 1993]. In 
expressing this conditional dependency, players become responsible for their 
conjectures, the significance of which together with that of other conjectures that are 
found justified, must wait to be revealed in the evolution of further inquiry.  

Players (and their software agents) keep track of the interactions among conjectures 
as the game evolves, especially those that are revealed to be inferentially or 
interpretationally incompatible, indicating that more investigation is needed. Unlike 
classic game players, Revelator players dynamically develop new strategies, in the 
form of more general conjectures calculated to incorporate other players' conjectures. 
Determining progress in a game of inquiry is like determining the reasonableness of 
entries in a crossword puzzle, established by their pervasive, nonlinear, interconnected 
mutual support without vicious circularity.  An especially successful Revelator play 
resembles a long central crossword entry that makes other entries significantly easier to 
fill-in; but it must also score well with experiential anchoring (verified conditions of 
evidence) and be supported by other conjectures also anchored in evidence as 
integrated components. Such a “breakthrough” may even make further breakthroughs 
feasible, generalizing over many dependent conjectures. Conversely, discovering a 
wrong conjecture that supports many dependent conjectures may lead to a 
“breakdown” in the game of inquiry: when a key conjecture is confirmed unverifiable 
or unreliable by all players. A conjecture is more justified, the more jointly supported it 
is by other conjectures and their evidence, and the more independently secure is its 
evidence, but also the more comprehensively relevant evidence it takes into account. 
Devastating evidence (unnoticed because of failures to look closely enough, to check 
from different angle, etc.) can “wipe-out” an entire construct of conjectures (without 
creating a breakdown) [further explained in Keeler 2007].  

Relations among conjectures in collaborative inquiry are far more complex than 
relations among entries in a crossword puzzle, and justification for conjectures must 
be ascertained in stages, by degrees, not categorically.  Revelator’s reasoning context 
distinguishes error- from ignorance-related aspects of fallibility, as inference- and 
evidence-related interactions, to reveal their pervasive interdependence.  As do game 
players, researchers in collaborative inquiry often jointly uncover possibilities 
unsuspected by any one participant, and even begin to recognize certain kinds of 
conceptual patterns that become “building blocks” for longer-term, subtle strategies 
(something like “forks,” “pins,” and “discovered attacks” in chess), which are reliable 
enough to serve as stable strategies in the evolution of further inquiry. Within 
Revelator’s game context, conjectures behave as players' agent-strategies in what 
Holland identifies as complex adaptive systems (cas) [1995].  The building blocks for 
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evolving the stable strategies in cas are interacting agents, and any agent must adapt 
to other adaptive agents, just as a player's contributed conjectures must adapt to other 
conjectures in a game of complex adaptive reasoning (car).   

In cas agents adapt their behavior by changing their rules as experience 
accumulates; in the same way, complex conjectures must change as inferences and 
evidence accumulate. Similarly in Revelator, agents have persistent behavioral 
identities, with internal state spaces whose future reactions and interactions influence 
the external state-space of Revelator, which itself will correspondingly feedback to 
the agents, influencing their internal state-space through iterative cycles of 
interactions. This highly dynamical model suggests physical metaphors (such as, 
damping the feedback) to guide agents.  Fallibility, then, serves as gravity does in 
physical systems of building blocks, driving the strategic “dynamics” of inferential 
and evidential constraints [see Note 1].  Players can explore possible future trends and 
continually bring the state of their multi-agent conceptual model up to date as new 
conjectures are contributed, to improve its faithfulness.  Because Revelator is 
explicitly a game of inquiry, players remain aware that: “uncertainty lies in the 
model's interpretation, the mapping between the model and the world” [Holland 
1998: 44].  They continually test that mapping, as valid inferences and verified 
evidence accumulate in agent-rules, within their private state spaces, that must adapt 
to their changing conceptual environment of other agent-rules, in harmony with the 
external system state-space.  

The conception of Revelator institutes Peirce’s dialogic structure of semeosis in 
the dynamic context of a game, where players model their collaborative interpretation 
process as car, with the goal of revealing the “emergent phenomena of knowledge.” 
According to Holland, emergent phenomena are recognizable and recurring, or 
regular, in a flux of interactions, and the point of modeling complex systems is to 
understand the origin of these regularities and relate them to one another.  He cautions 
that even when the underpinning laws of dynamics are known, the crucial step of 
extracting the regularities from incidental and irrelevant details may be difficult 
(recognizing the patterns of play in chess took centuries of study); but he encourages 
that computers now make possible more complex and dynamic models, mathematical 
descriptions help to discern patterns in the process of modeling, and computer-
generated games and maps can reveal patterns and regularities once inaccessible for 
exploration. Holland observes: “In both evolutionary and creative exploration we 
encounter patterns and lines of development (strategies) that emerge under selection, 
in a flux of change.  And in both cases emergent building blocks, which he calls 
constrained generating procedures (cgp’s), propagate their effect in cumulative ways, 
through recombination and interaction” [1998: 218]. He even speculates that there 
could be a “game” with the rigor of a cgp that permits insightful combinations of the 
powerful symbols: “a vision that has held me since the days when I first read Hesse’s 
masterpiece” [220].  Peirce’s logic has this role in the semeosis of inquiry. 

5   Knowledge Emergence in CAR 

Holland’s methodology entails building models of cas, to study the nature of the 
mechanisms and interactions required for emergence. Revelator appropriates the same 
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framework as a methodology for building models of car, to study the emergence of 
robust hypotheses (or possible knowledge). Holland summarizes his understanding of 
emergence. 

Emergence is above all a product of coupled, context-dependent interactions. 
Technically these interactions, and the resulting system are nonlinear. The 
behavior of the overall system cannot be obtained by summing the behaviors of 
its constituent parts. We can no more truly understand strategies in a board 
game by compiling statistics of the movements of its pieces than we can 
understand the behavior of an ant colony in terms of averages. Under these 
conditions, the whole is indeed more than the sum of its parts. However, we can 
reduce the behavior of the whole to the lawful behavior of its parts, if we take 
the nonlinear interactions into account. [1998: 122] 

Holland’s framework covers two major steps: “(a) discovery of relevant building 
blocks, and (b) construction of coherent, relevant combinations of those building 
blocks” [1998: 217]. He compares these to the “standard building blocks of 
language,” where the creative challenge is to find the “salient patterns in the tree of 
combinations” [1998: 218]. In Revelator, players' sets of conjecture-agents (as 
mechanisms) are the building blocks and their combinations (as generators) are the 
potentially selected candidates for robust hypotheses. Such pools of agents correspond 
to Peirces notion of an organic and fluid metabolic system, rather than to rigid 
workflow of processes, which treat the “human” like a “hardwired” component, using 
business process languages, such BPML, and BPEL workflows that never “evolve,” 
since the human is considered static (with fixed inputs, outputs and capabilities). 

In the study of emergent phenomena, Holland identifies a minimum of three levels 
(mechanisms, agents, and aggregates) to be “more revealing and more productive as a 
first step,” but suggests that when only two levels are formally considered the higher 
levels can be treated as recursions of these basic relations [1998: 239].  In Revelator 
the corresponding levels are: conjecture components (antecedent and consequent), 
conjectures (rules as agents), and hypotheses (aggregates of tested rules as multi-
agents). Notice that these are generatively related: conjectures must have the 
mechanism of components, and hypotheses must have the agency of conjectures. 

Holland’s cas are models of complex adaptive systems, with cgp’s as mechanisms 
for adaptation and cgp-v’s (variable constrained generating procedures, with 
embedded genetic algorithms) as strategic mechanisms for anticipatory (or improved) 
adaptation.  In Revelator, collaborative reasoning (considered as a complex adaptive 
system) is modeled in car, with language and logic supplying the mechanisms: the 
cpg's for strategic structuring in adaptation, and the v-cpg's, motivated by support, 
security, and relevance relations among agent conjecture mechanisms, for improving 
the adaptive reasoning process. 

When players create rules in a game of Revelator, with each responsible and legal 
play in the form of a conditional proposition, these rule-mechanisms may be logically 
structured to become the agents from which players must select and construct 
generators (cgp’s) as "winning combinations," and as these multiagent-rules become 
more secure with validation and verification, they take on dynamic (pragmatic) 
“trajectories” (operating as cgp-v’s). In playing Revelator (as in conducting any 
inquiry) players create their game environment by the conjectures (rules) they 
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contribute. Winning involves strategically selecting and combining those conjectures-
mechanisms that reveal adaptive, higher-order behavior hidden in the complexity of 
their conceptual environment. These emerge as robust hypotheses explaining the 
successful inferences and evidence. 

The selective exploration of different possible combinations is quite like finding the 
strategies in playing any other game. Like good plays in chess, sophisticated actions in 
complex adaptive reasoning depend on crediting foresight (or pragmatic anticipation). 
Players (with naturally limited capacity for negotiating logical complexities) must 
manage to identify possible generators of higher-level organization, because these are 
the "levers" that make "breakthroughs" possible.  

Under Holland’s framework, the car process would start with a complex pattern of 
related conjectures (in rule form) from which players may have no idea what might 
emerge. In the “mechanism selection process,” induction must "mediate,” as Holland 
says, in players’ choice of patterns of interest from those that emerge from deductive 
processing. Knowing what details to ignore is not a matter of derivation or deduction; 
it is a matter of the experience and discipline of any artistic or creative endeavor. 
When deduction and induction work effectively together, they reveal repeated 
elements and symmetries that suggest higher-level mechanisms (which are higher 
level rules) [230]. 

Conveniently, Holland’s methodology conforms to the evolutionary epistemological 
view of rules as hypotheses that must undergo testing and confirmation. Instead of 
viewing rules as a set of facts and implications which must be kept consistent with one 
another by consistency checking, as he says, “the object is to provide contradictions 
rather than to avoid them ... [and] rules amount to alternative, competing hypotheses. 
When one hypothesis fails, competing rules are waiting in the wings to be tried" [53]. 
Revelator takes this view one step back, in viewing the reasoning process itself, with 
its conjecture-rules serving as the competing predecessors to any surviving hypotheses. 
Its game context, then, is a generative context for the abductive, deductive, and 
inductive stages of reasoning.  

Holland’s technique for resolving the competition among rules is experience-based 
(closely related to the concept of building confirmation statistically): a rule's winning 
ability depends on its usefulness in the past.  Each rule is assigned credit strength that 
over time comes to reflect the rule's usefulness to the system, which changes the 
system's performance as it gains experience (for adaptation, by credit assignment). 
Revelator’s technique is the same, except that credit strength is represented in player 
scoring, which measures the survival value of contributions, not by simply summing 
each player’s conjectures but, ultimately, by counting only those that survive 
breakthroughs, breakdowns, and wipe-outs. 

Holland stresses that an agent-rule's value is then based on its interactions rather 
than on some predetermined fitness function [1995: 97].  The goal is the improvement 
of relations among rules, not some pre-determined optimality [1998: 216]. Ultimately, 
"Only persistent patterns will have directly traceable influence on future 
configurations in generated systems. The rules of the system, of course, assure causal 
relations among all configurations that occur, but the persistent patterns are the only 
ones that lend themselves to a consistent observable ontogeny" [1998: 225]. The goal 
in the game of Revelator is also improvement of relations among rules (as conjecture-
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agents), but because these are inferences that entail evidential references, they remain 
“tethered” to causal relations beyond the game itself, as signs in semeosis. 

6   Conclusions: Complex Adaptive Infrastructure? 

Revelator’s complex adaptive reasoning context for inquiry resembles in several ways 
the “skills-building” features of familiar intellectual games, and each feature is a 
candidate for automated evidential reasoning support. First, the game would formalize 
the strategic process of inquiry, explicitly and engagingly.  With conceptual structures 
tool support for both input of conjecture-rules and output of graphical representation 
of results at each stage, the user’s cognitive burden in complex reasoning could be 
greatly reduced. Second, it would encourage collaborators to engage in the conceptual 
discipline of formulating model hypotheses. Rarely, in traditional research, do 
inquirers express their ideas in the clear, pragmatic form that is inferentially relatable 
to other ideas, and that explicitly refers to evidence for justification.  Again, the 
conceptual-structures tool mode of interaction could enforce this convention, and by 
means of ontological search could increase the efficiency of finding, representing, and 
checking evidence on the Web. Third, Revelator’s context would induce responsible 
conduct among players in the orderly succession of plays, which could also be 
enforced by tool control that would not allow one play to follow another until the first 
has completed an attempted adaptive process, and its tentative implications are 
observed by all players (promoting global common knowledge sharing). 

Finally, the game context would encourage competition within a stable pattern of 
cooperation (as described by game theory [Axelrod]).  Scores representing all 
contributions would constitute an objective evaluation of each player’s provenance in 
the collaborative construction process.  Revelator would delegate to automated 
conceptual processing the burden of inferring intricate logical relations, which would 
create an automatic credit path (perhaps represented in an ontology) that promotes fair 
competition among inquiring players.   Furthermore, an extensive attribution system 
would result, so that players interested in similar aspects of the target question could 
easily find and keep track of one another’s ideas. 

We have identified some basic evaluation measures for Revelator’s automated 
operations, as well as new metrics for technology evaluation [Majumdar 2007]. The 
key software requirements are: 

1) To accept highly controlled and constrained English propositions, as plays;  
2) To provide an evidential measurement system that is homogenous for humans 

and agents in order to enable interoperable active knowledge capture based on 
quantitative evidential assessments; and 

3) To provide an environment that co-evolves a space of emerging hypotheses. 

Requirements (1) and (2) form the core of the Revelator environment, while 
requirement (3) represents the need for car, combining Holland’s model with a 
biochemical model for evolutionary computation to satisfy the Peircean metabolic 
view of inquiry. Many functions, for example, persistence of various hypotheses and 
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data can be handled by wrapping and encapsulating other tools, such as knowledge 
base systems (e.g., WebKB [Martin]), within the Revelator architecture [see Note 3]. 

Evolutionary epistemologists typically agree that classical logic has been the 
epistemic paradigm for 20th century science, which still generally prevents 
philosophers and scientists, alike, from conceiving the role of intelligence in the 
complex process of adaptation (as adaptive adaptivity, or strategic methods of 
adapting).  Some observe that Holland's methodology replaces “the established static, 
narrowly logical/AI models with a more dynamic process.” In their view, the essence 
of science (exemplifying its open-endedness) has been the co-evolution of method, 
theory, and technology. The dynamics of this co-evolution form a set of "generic 
positive feedback/feedforward loops," in which methods are conjectural, risk-taking, 
resource-distributing strategies [Hooker 30-33]. In this sense, Revelator's architecture 
recognizes the need to integrate traditional e-resource tools, such as common RDBM 
systems, while extending new technologies, such as agents and more recent 
computational metaphors (leading to methods) such as biochemical calculi to 
implement Revelator in successive, evolutions by spiral iterations of development 
(starting at the beginning of the spiral, and not its end). 

Peirce’s pragmatic methodology, also in contrast to the classical view, conceives 
logic as “the art of devising methods of research — the method of methods,” which 
will not tell you what experiments you ought to make … but it tells you how to 
proceed to form a plan of experimentation,” to reduce risk and cost [CP 7.59 (1882)].  
How does this strategic procedure evolve?  

We can answer for ourselves after having worked a while in the logic of 
relatives.  It is not by a simple mental stare, or strain of mental vision.  It is by 
manipulating on paper, or in the fancy, formulæ or other diagrams -- 
experimenting on them, experiencing the thing. Such experience alone evolves 
the reason hidden within us and as utterly hidden as gold ten feet below ground -- 
and this experience only differs from what usually carries that name in that it 
brings out the reason hidden within and not the reason of Nature, as do the 
chemist’s or the physicist’s experiments. [CP 4.86 (1882)] 

We intend Revelator to be an evolving implementation of Peirce’s methodology, 
which demonstrates logic's proper role in dynamic complex adaptive reasoning. The 
creation of e-resources from resources such as Peirce's manuscripts requires complex 
collaborative operations, including optical scanning, digitization, annotating and 
encoding the minutae of language and other forms of expression, which must conform 
to current evolving technology, digital preservation, intellectual property, and many 
other standardizing management constraints. The infrastructure required for this 
continuous strategic planning process would be most usefully modeled, itself, as a 
dynamic self-organizing complex adaptive reasoning system with an embedded 
technological complex adaptive system. Revelator brings Peirce’s ideas to that task, 
with the hope of eventually building the complex adaptive e-resource to pursue study 
of his later work, which will continue to advance its methodology in support of 
improving knowledge technology research, as has been urged [Hovy 2005; Keeler 
2006]. In that effort, A.-V. Pietarinen predicts that we will realize the value of 
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graphical systems of logic when we see their "dynamic and dialogical character 
revealed in the apparatus of extensive games" [171]. 

In anticipating an evolving new infrastructure, we might recall what Peirce observed 
as he looked back to the 18th century: “But Kant had not the slightest suspicion of the 
inexhaustible intricacy of the fabric of conceptions, which is such that I do not flatter 
myself that I have ever analyzed a single idea into its constituent elements” [6.523 
(1908)]. Knowledge must be conceptually constructed by intricate collaborative 
inquiry, in an evolving fabric of e-resources — not merely found on the Web.  

Notes 

General Note: "MS" references are to Peirce's manuscripts archived at the Houghton Library, 
Harvard; for CP references, Collected Papers of Charles Sanders Peirce, 8 vols., ed. Arthur W. 
Burks, Charles Hartshorne, and Paul Weiss (Cambridge: Harvard University Press, 1931-58). 

Note 1: In Peirce’s theory of inquiry, inductive fallibility is a metaphysical condition, not to be 
confused with Popper's falsification, which is strictly a deductive procedure (see Haack, 
Evidence and Inquiry, p. 131).  

Note 2: A non-Turing model renders statistical methods, which rely on analyzing known data 
sets, useless; the goal of Revelator is to discover and reveal the unknown by incremental 
development of stable structures, formed as hypotheses during the runtime of Revelator.  For a 
recent more detailed explanation of interactionism and a refutation of the traditional computing 
paradigms see Goldin and Wegner, and also Wegner and Goldin. 

Note 3: For a formal theory to support the requirements of a cas environment, see the recent 
works of Regev and Shapiro [e.g., "Cellular Abstractions: Cells as Computation," Nature (2002)], 
which develop biochemical computational models based on the concurrent pi-calculus that are 
particularly well suited as a formal basis for Revelator; and also Parrow's, "An Introduction to p-
Calculus" in Handbook of Process Algebra (2001), and also Regev, Panina, Silverman, Cardelli, 
and Shapiro's "BioAmbients: An Abstraction for Biological Compartments," in Theoretical 
Computer Science (Special Issue on Computational Methods in Systems Biology, 2004). 
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Abstract. Conceptual Graphs are a common knowledge representation
system which are used in conjunction with an explicit type hierarchy of
the domain. However, this means the interpretation of information ex-
pressed in conceptual graphs requires the combined use of information
from different sources, which is not always an easy cognitive task. Though
it is possible to explicitly represent the type hierarchy with Conceptual
Graphs with Cuts, this less natural expression of the type hierarchy infor-
mation is not as easy to interpret and soon takes up a lot of space. Now,
one of the main advantages of Euler diagram-based notations like Spi-
der diagrams is the natural diagrammatic representation of hierarchies.
However, Spider diagrams lack facilities such as the ability to represent
general relationships between objects which is necessary for knowledge
representation tasks. We bring together the most pertinent features of
both of these notations, creating a new hybrid notation called Concep-
tual Spider Diagrams. We provide formal syntax and semantics of this
new notation, together with examples demonstrating its capabilities.

1 Introduction

Contemporary knowledge processing systems that include inferential abilities are
typically based on some variant of formal logic where the information is internally
stored in a particular format according to the sentences of the logic used. Such
formal logics and their reasoning mechanisms have been thoroughly investigated
and form a solid background for knowledge processing systems. However, the
representation of knowledge as formulae has drawbacks if they are to be used for
communication: in particular, they can be hard to comprehend by readers who
are untrained in mathematics.

In contrast with the usual formal logics, human reasoning is often multi-
modal, involving information obtained from sentences, diagrams, sound, nuance
or moving pictures for instance. The research field of diagrammatic reasoning
investigates all forms of human reasoning and argumentation wherever diagrams
are involved. Diagrams are often deemed to be easier to comprehend than sym-
bolic notations [20, 23, 25], especially when they make good use of spatial rela-
tionships which are not utilized in symbolic notations; in particular it has been
argued that they are useful for knowledge representation systems [8, 19].
� Funded by UK EPSRC grant EP/E011160: Visualisation with Euler Diagrams.
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There are two major families of mathematically well-elaborated diagrammatic
reasoning systems, called conceptual graphs (CGs) and spider/constraint dia-
grams (SDs/CDs), which both have their roots in the works of Charles Sanders
Peirce. Firstly, Sowa’s CGs are based on Peirce’s Existential Graphs. Various
fragments of Sowa’s CGs have been developed in a precise manner based on
graph theory (see [2] for an overview), and in these it is possible to represent
and carry out reasoning with relations of arbitrary arity. Secondly, SDs and
CDs are based on Euler diagrams which are closely related to Euler circles and
Venn-Peirce diagrams, and provide explicit means to easily represent certain re-
lationships between sets (such as subset and disjointness). Various systems of
SDs and CDs have been developed and formalized using algebraic means.

Now, although SDs and CDs are effective at expressing and reasoning with the
relationships between sets, since the spatial relationships which encode them are
well-matched [10], their usefulness in representing and reasoning with arbitrary
relations is not so clear. On the other hand, CGs use a convenient representation
of relations, which were in fact designed for this purpose, but their only means
to express relationships between sets is to employ an underlying type-hierarchy.
This has the drawbacks that: it only allows the expression of subset-superset
relationships; it is a different representation of information, formally separated
from the conceptual graphs and is often not even displayed with the CGs. This
paper provides a step towards unifying these two diagrammatic systems, draw-
ing on the specific advantages of each system and overcoming some of their
disadvantages. We will use the underlying notation of SDs in order to make
the type-hierarchy1 of CGs both more explicit and more expressive, and we will
augment this notation with relations of arbitrary arity as is done in CGs. The
resulting notation will be called conceptual spider diagrams.

Due to limited space, we will assume that the reader is familiar with CGs; see
[2, 26] for details. In section 2 we provide an exposition of the Euler diagram
variants with a particular emphasis on SDs. We compare features of the SD
and CG notations in section 3, identifying good and bad properties, as they
relate to knowledge representation. An introduction to our hybrid notation via a
collection of simple examples is provided in section 4, where the usefulness of the
combined features becomes clear. A formalisation of the syntax and semantics of
Conceptual Spider Diagrams is given in section 5. This opens up many interesting
avenues of future research, and some of these are mentioned, together with our
concluding remarks, in section 6.

2 Euler Diagram Based Systems

In seminal work [24], Shin produced a sound and complete formal diagrammatic
reasoning system based on an extension of Venn diagrams, and logical reason-
ing systems based on Euler diagrams are now commonplace [4, 11, 15, 29, 31].
1 To be more precise: this paper tackles the type-hierarchy of the concepts; relations

are not addressed yet since a convenient way for diagrammatically depicting subset-
superset relationships between relations goes beyond the abilities of SDs.
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Spider diagrams (SDs) and constraint diagrams (CDs) are diagrammatic reason-
ing systems based on Euler diagrams which are applied in a multitude of areas
including: file-information systems, library systems, statistical data representa-
tion and for logical software specification and reasoning systems. In this section
we give a brief review of this family of diagrams, starting from Euler diagrams,
passing through Venn-Peirce diagrams and arriving at SDs and CDs.

Euler first introduced Euler circles [3] in which sets are depicted by circles, and
the spatial relationships between the circles mimic the set-theoretic relationships.
The modern variant of these which we describe are called Euler diagrams: they
use simple closed curves in the plane to represents sets. Two curves do not overlap
(or more precisely, the interiors of the discs bounded by the curves are disjoint)
if and only if the corresponding sets are disjoint, and if one circle is contained in
another circle (or, more precisely, the interior of one is contained in the interior
of the other) then we have a subset relationship between the corresponding sets.
An example of an Euler diagram is shown on the left of Fig. 1. The interpretation
is that there are three sets A, B and C such that B is a subset of A and that B
and C are disjoint; note that no information about the relationship between A
and C is provided.

A
B C

A
C

B

A
C

B

o
o

o

X X

X

X

Fig. 1. An Euler diagram, a Venn diagram, and a Venn-Peirce diagram

There are collections of set intersections that cannot be represented using
simple closed curves due to natural topological constraints [21], and so shading
in a region is used in order to express emptiness. Then, even restricting to Venn
diagrams [32], which are a subclass of Euler diagrams in which all possible set
intersections are represented, one can depict any collection of set intersections.
The middle diagram in Fig. 1 is a Venn diagram with exactly the same meaning
as the Euler diagram. Using shading within the Euler diagram system allows a
greater flexibility of representation than just using Venn diagrams with shading,
but it is still not possible to express that sets are non-empty.

Peirce augmented Venn diagrams by X-sequences, which denote an element
of the set corresponding to the region in which the sequence is placed. In his
system, the shading of Venn diagrams is replaced by placing an ‘o’ in the region.
The righthand diagram of Fig. 1 is a Venn-Peirce diagram which again expresses
that B ⊆ A and B ∩ C = ∅ holds by the use of the o’s; it also expresses that
there is an element in A\(A ∩ B ∩ C), depicted by the X-sequence with three
Xs, and that there is an element in C\(A ∪B).
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Since the first paper on SDs [9] appeared, several elaborations and variations
of the ideas have been published [33]. Two examples of SDs are shown below.

BA BA C

By convention a bounding rectangle is used to depict the universe of dis-

course, which is the ground set of the respective models in which the diagrams
are evaluated; the letter U is used to denote this universe. The lefthand diagram
above has two contours – the curves labeled A and B – representing the sets
A and B, and four zones representing all possible set intersections involving
A and B. The diagram contains two spiders, and the shaded zone representing
A − B is the habitat of the first spider, whilst the habitat of the second spi-
der is the region representing B which is composed of two zones representing
A ∩ B and B − A. The interpretation is that there are two sets A and B, the
set A − B contains exactly one element, and the set B contains at least one
element.

So, there are two important differences between the semantics of Venn-Peirce
diagrams and those of SDs: for SDs different spiders necessarily denote different
objects, whilst the objects represented by different X-sequences in Venn-Peirce
diagrams are not necessarily distinct; the shading in SDs means that a region
does not contain more elements than the elements represented by the spiders
touching that region, whilst for Venn-Peirce diagrams the ‘o’ indicates emptiness
independently of any impinging X ’s. Now, in the righthand diagram there is
another contour representing a set C and it does not overlap with the contours
representing A and B and so C and A∪B are disjoint. Moreover, there are three
distinct elements u, v and w (represented by the spiders) such that u, v ∈ A and
w ∈ U − (A − B). Due to the shading the set A − B contains exactly u and v,
and A ∩B either contains no elements or exactly w.

The above diagrams are called unary SDs, but spider diagrams can also be
propositionally combined using the logical operators � (‘and’) and � (‘or’): an
example which uses these conjunctors is shown below.

BA BA C
BA

D
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Similar to CGs, an important facet of SDs is that they are not only diagram-
matic representation languages, but that they also facilitate diagrammatic rea-
soning. The system of SDs [16] is equipped with a sound and complete calculus.
Automatic theorem provers for Euler diagrams and SDs have been developed and
implemented [7, 28], with the goal of aiding the user’s understanding of proofs.
A tableaux system for SDs has also been implemented by Patrascoiu [22].

Finally, CDs were first proposed by Kent [18] as a notation for visualizing
object-oriented invariants in software modelling and they can be used to express
operation pre-conditions and post-conditions for modelling purposes [14]. They
extend SDs, allowing the explicit representation of universal quantification via
an extra type of spiders, called universal spiders which are indicated by asterisks,
and arrows which provide information about binary relations. An example of a
CD is shown below, where the core information expressed is that “every person
can only borrow books that are in the collections of libraries they have joined”.

Person Books

Libary

canBorrow

joined collection

*

Since Kent’s informal idea was proposed, several papers have provided var-
ious levels of mathematical formalism for Kent’s vision. Problems such as the
ambiguities in ordering of quantifiers have been solved by augmenting with an
explicit reading tree in [5] where formal syntax and semantics for constraint di-
agrams are provided. Although some rules have been developed [4], a sound and
complete calculus has not yet been developed for this system. However, for cer-
tain restricted fragments of the system, sound and complete calculi have been
developed (e.g. in [27] no universal quantifiers were allowed as well as severe
restrictions on the allowable relations and in [30] the restriction to order all of
the universal quantifiers after all of the existential ones was imposed).

We elaborate briefly on the definition of relations between spiders in these
systems. Arrows place restrictions on the relations determined by their labels.
In particular if an arrow labelled R has source a spider s and target a spider t
then the semantic phrase “S.R = T ” is associated with this arrow (where S is
the object represented by s and similarly for T , and S.R := {x | (S, x) ∈ R}).

BA

*

r

t

C

s
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Using the semantics in [5], but adopting one of the conventions of [30] of reading
the universal spiders after the existential ones (removing the need for an explicit
depiction of a reading tree), a reading of the diagram is given by:

Euler notation
︷ ︸︸ ︷

C ∩ (A ∪B) = ∅∧
objects denoted by (existential) spiders

︷ ︸︸ ︷

∃u ∈ U − (A ∪B ∪ C). ∃b ∈ B. ∃c1, c2 ∈ C :

(c1 �= c2 ∧ u.R = A ∧ c1S = b ∧ ∀x ∈ A−B : x.T = {c2}
︸ ︷︷ ︸

reading the arrows

).

3 Desirable Features of a Hybrid Notation

We investigate the advantages and disadvantages of some features of CGs and
SDs that are useful for knowledge representation reasoning system with the aim
of building a hybrid notation using the most pertinent features.

CGs are based on an underlying type hierarchy, which is usually a partially or-
dered set that indicates the subtype/supertype relationships between the types.
This type hierarchy is handled as some sort of background information, not ex-
plicitly appearing in the actual CGs, but it is used for reasoning purposes.2 This
separation of information can make reasoning more difficult for humans. On the
other hand, SDs provide an effective method for expressing the relationships
between sets, since they are based on Euler diagrams. Thus if one combined the
Euler diagrams features with a CG then one could make the type hierarchy of
CGs explicit thereby making it visible to the user and aiding them in reasoning
tasks; since SDs depict relationships between sets in a very iconic manner, the
user will not only read off only the information which was needed to construct
the type hierarchy, but other information which can be deduced from the type
hierarchy can often easily been read of the SDs as well. This advantage of icons
is described by Peirce in [12], 2.279, where he writes that “a great distinguishing
property of the icon is that by the direct observation of it other truths concerning
its object can be discovered than those which suffice to determine its construc-
tion.” In the modern research field of diagrammatic reasoning, Shimojima coined
the term free ride for this property of iconic representation [23].

Another advantage of bringing the type hierarchy to the foreground, using SDs
is that we extend the expressiveness of the type hierarchies. Whilst the existing
type hierarchies used only express subtype/supertype relationships between the
types, taxonomies often contain disjointness information as well, and since dis-
jointness constraints as well as subset relations can be naturally expressed with
SDs, we can overcome this limitation.

When building a hybrid system, it pays to consider the semantic options
carefully. The choice of shading over o’s increases the expressiveness by allowing

2 If projections are chosen for reasoning, we have appropriate conditions for the pro-
jections which reflect the type hierarchy. If transformation rules are used instead, we
usually have type-generalization rules among these transformation rules.
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the expression of upper bounds on the cardinality of sets. The choice of us-
ing spiders over X-sequences is an interesting choice, with the spider semantics
adhering closely to diagrammatic design principles (distinct spiders meaning dis-
tinct objects) whilst the use of X-sequences closely matches the usual symbolic
logic rules. We will actually investigate both options for the semantics of spi-
ders (hereafter we will refer to the SD-semantics or the VP-semantics of spiders
instead of spiders versus X-sequences).

When considering relations between objects, we notice that in CDs, the se-
mantics for arrows is significantly different to the semantics for binary relations
in FOL or CGs. For example, if we have two spiders standing for objects u and
v, an arrow between these two spiders does not mean that the corresponding
objects stand in relation R (i.e. uRv). Instead, we have the stronger condition
u.R = {v} (i.e. uRv and there is no object w �= v with uRw). Moreover, con-
straint diagrams do not allow relations with an arity > 2 (although this could be
addressed by using multi-sourced or targetted arrows). Thus we choose to aug-
ment SDs with a different means to express relations between objects, adapted
from the handling of relations in CGs.

4 Hybrid System Examples

Before we come to the formalization, we will exemplify our approach with the
following well known toy example from the CG-community:

:*MatCat : * on1 2Cat

The meaning of this CG is ‘there is a cat and there is a mat, and the cat is on
the mat’; according to the usual semantics of CGs, it is not guaranteed that the
cat and the mat are different objects. We assume that we have an underlying type
hierarchy, with types �, Animal, Cat, Thing, Mat, and Rug. The type-hierarchy
is a partially ordered set, indicating only the supertype/subtype relations, and
is shown on the left of Fig. 2. On the right of the figure an extension of this
type-hierarchy is depicted, where disjointness-constraints are added.

Animal

Cat

Thing

Mat Rug

disjoint

disjointMat Rug

Animal Thing

Cat

Fig. 2. The underlying type hierarchy: without, and then with disjointness constraint

Now, if one wished to explicitly display this type hierarchy in CGs, we need the
facility to express supertype-subtype relations and disjointness constraints. This
can be done with CGs with cuts, as shown in Figure 3, but obviously this CG
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: *
21 : *Thing21 : *Animal: *

: *Animal 21 Cat : *Cat

: *Thing

: *Thing 21 : *Animal

21: *Thing :*Mat

:*Rug

:*Mat :*Rug

21

21

Fig. 3. The underlying type hierarchy with disjointness constraints as a CG with Cuts

Animal Thing

Cat
Rug

Mat

Fig. 4. The type hierarchy with disjointness constraints as an Euler Diagram

suffers from readability problems. Alternatively, we can depict the type hierarchy
with an Euler Diagram, as shown in Fig. 4. The �-concept corresponds to the
universe of discourse, so there is no need to have a contour for it (although one
could think of the rectangular bounding box for the diagram as signifying this
concept). This diagram is significantly more readable than the CG of Fig. 3, and
this may be partly due to free rides: some information which is only implicitly
given in the CG in Fig. 3 or from the diagram in Fig. 2 (e.g. that the types Cat
and Mat are disjoint) can immediately be read off from the Euler diagram.

We now demonstrate our proposed hybrid notation for the cat-on-mat exam-
ple. In the lefthand diagram of Fig. 5, the Euler diagram of Fig. 4 is augmented
with two spiders, denoting a cat and a mat, and the relationship ‘on’ between
them. This diagram contains the complete type hierarchy plus the information
that there is a cat on a mat. In the righthand diagram, we show only the frag-
ment of the type hierarchy that is necessary to express the ‘there is a cat on a
mat’ statement (in real-life scenarios, it will be a choice of the knowledge engi-
neer which part of the type-hierarchy is actually displayed). This diagram is still
strictly more expressive than the initial CG of this section: since the contours
for cat and for mat do not overlap, this diagram also contains the information
that the cat and the mat are different. We note that in contrast to the spiders,
the location of the relation-symbol ‘on’ is not semantically important.

The next diagram shown in Fig. 6 is more sophisticated, and since it involves
distinct spiders touching the same region, we consider both the SD-semantics
and the VP-semantics. As well as the hierarchy information, it expresses that
Yoyo is a cat, there is an unnamed cat (which is different from Yoyo in the SD-
semantics, but possibly the same as Yoyo in the VP-semantics), and there exist
no other cat (this holds for both semantics given the interpretation of shading),
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on 21

Animal Thing

Cat
Rug

Mat

MatCat
on 21

Fig. 5. Two hybrid diagrams for ‘a cat is on a mat’

Yoyo is on a mat, and the unnamed cat is either on a rug or a mat (which is
different from Yoyo’s mat in the SD-semantics, but possibly the same in the
VP-semantics).

on 21

on 21

Animal Thing

Cat
Rug

MatYoyo

Fig. 6. A more sophisticated hybrid diagram

If we express this information by means of a CG with cuts, even without
expressing the type-hierarchy information, then the outcome is significantly less
readable. The diagram below shows this, using the SD-semantics; the corre-
sponding CG for the VP-semantics can be obtained by removing the two verti-
cal, negated identity edges in the middle of the CG making the diagram only
slightly more comprehensible.

:*

:*Rug

:*Mat

:*Mat

Cat : *Cat on1 2

on1 2Cat:Yoyo

Cat : *Cat

5 Formalisation

When considering the formalization of diagrammatic logic systems, it is essential
to realize that there are two levels of notation. Certain graphical features of the
diagram may be varied without changing the meaning of the diagram. For exam-
ple, the shape of the contours in Euler diagrams or the shape of cuts in CGs with
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cuts is not semantically important; nor does the positioning of the boxes of a CG
matter. Thus we have to deal with an abstract syntax which prescinds the mean-
ingful information from such graphical properties, and a concrete syntax, which
corresponds to the actual drawings of diagrams. This vital distinction has been
discussed in the CG-community [1] as well as in the SD- and CD-community
[13]; both papers argue that it is essential to elaborate the abstract syntax in
a formal manner, but differ in their opinions concerning the concrete syntax.
In [1] diagrammatic systems like existential or conceptual graphs are considered,
where every diagram at the abstract level has a graphical representation (i.e. a
corresponding concrete diagram), and argues that a mathematical formalization
of the concrete syntax is not needed. However, for Euler diagrams the situation
is different, since not all collections of sets intersections can be graphically repre-
sented without introducing some extra set intersections (or zones). That is, there
are abstract Euler diagrams which are not drawable using simple closed curves,
without introducing shaded zones, and although this introduction is not par-
ticularly problematic in logical reasoning systems it might be very undesirable
in information display systems. So unsurprisingly, [13] argues that the concrete
syntax as well as the relationship between the abstract and concrete syntax has
to be mathematically formalized as well.

The methodology usually employed is to build Euler diagram based reason-
ing systems at the abstract level and then generate concrete diagrams (under
various sets of wellformedness conditions) when it is possible to do so. On the
positive side, from a human interaction point of view, the automatic generation
of concrete Euler diagrams from abstract Euler diagrams for a strict set of well-
formedness conditions is possible [6]. When extending to spider and constraint
diagrams no extra substantial representational difficulties occur. The conceptual
spider diagrams that we introduce are also extensions of spider diagrams and so
they have to cope with these same difficulties, but the augmentation to express
relations does not add any complexity to this issue either. For this reason, we in-
troduce only the abstract syntax of conceptual spider diagrams (although there
is no real problem in also defining the concrete syntax formalization).

5.1 Conceptual Spider Diagrams

Definition 1 (Alphabet). An alphabet is a triple A := (O, C,P) of dis-
joint sets O, C, P of object names, concept names and predicate names,
respectively. To each predicate name P , we assign its arity ar(P ). Let ∗ be
another sign, the generic marker. We set O∗ := O

.
∪ {∗}.

In the examples provided earlier, object names or the generic marker ∗ were
used as the labels of spiders, concept names were the labels of contours, and
predicate names were the labels of predicate edges. An abstract zone represents
a particular set intersection, and as such it will be defined to be a pair of disjoint,
finite sets (a, b), where the set of contour labels a are those of the containing sets
and the set of contour labels b are the excluding sets (i.e. the rest of the contour
labels). In a unary diagram specifying the containing set a is sufficient (since
a and b form a partition of the set of concept names C), but when considering
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non-unary diagrams, or when reasoning with diagrams, the contour label sets
may vary and so the pair of sets is required. Let Z and R := P(Z) denote the
sets of all zones and regions respectively, where P denotes the power set.

Definition 2 (Conceptual Spider Diagram). An unitary conceptual

spider diagram (abbreviated unitary CSD), d, over an alphabet A is a tuple
(L, Z, Z∗, S, η, E, ν, κ) whose components are as follows:
1. L := L(d) ⊆ C is a finite set of concept names.
2. Z := Z(d) := {(a, L− a) : a ⊆ L} (with Z(d) ⊆ Z) is a set of zones s.t.

(i) ∀l ∈ L ∃(a, b) ∈ Z : l ∈ a and (ii) (∅, L(d)) ∈ Z .

We define R(d) = P(Z)− {∅} to be the set of regions in d.
3. Z∗ := Z∗(d) ⊆ Z is a set of shaded zones. We define R∗(d) = P(Z∗)−{∅}

to be the set of shaded regions in d.
4. S := S(d) is a finite set of spiders with S(d) ∩ (C ∪ Z ∪R) = ∅.
5. A function, η := ηd : S(d)→ R(d) which returns the habitat of each spider.
6. E := E(d) is a finite set of predicate edges with E(d)∩ (C ∪Z ∪R) = ∅.
7. A function, ν := νd : E(d) →

⋃

n∈N(S(d))n which returns for each edge an
n-tuple (n ∈ N) of spiders. Let En := En(d) := {e ∈ E(d) | ν(e) ∈ (S(d))n}.

8. A function, κ := κd : S(d) ∪ E(d) → O∗ ∪ P which returns for each spider
s ∈ S(d) its label κ(s) ∈ O∗, and which returns for each predicate edge
e ∈ E(d) its label κ(e) ∈ P, where we have ar(κ(e)) = n for e ∈ En(d) (i.e.,
κ(e) has the appropriate arity).

Define conceptual spider diagrams (CSD) as follows:
– Every unitary conceptual spider diagrams is a conceptual spider diagram.
– if D1 and D2 are finite bags (multisets) of conceptual spider diagrams, then
∨(D1 � D2) and ∧(D1 � D2) are conceptual spider diagrams, where � is the
union for bags.

Note that there is an empty CSD, ⊥ := (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅). To provide an ex-
ample for Def. 2, we return to the diagram of Fig. 6. For the types, we use to
following abbreviations: A(nimal), C(at), T(hing), M(at), R(ug). The abstract
syntax of the concrete diagram of Fig. 6 is given by:

L(d) := {A, C, T, M, R}
Z(d) := {({A}, {C, T, M, R}), ({A, C}, {T, M, R}), ({T }, {A, C, M, R}),

({T, M}, {A, C, R}), ({T, R}, {A, C, M}), ({}, {A, C, T ; M ; R})}
Z∗(d) := {({A, C}, {T, M, R})}
S(d) := {s1, s2, s3, s4}

ηd(s1) := ηd(s2) := {({A, C}, {T, M, R})}
ηd(s3) := {({T, M}, {A, C, R}), ({T, R}, {A, C, M})}
ηd(s4) := {({T, M}, {A, C, R})}
E(d) := {e1, e2}

νd(e1) := (s1, s3) and νd(e2) = (s2, s4)
κd(s1) :=κd(s3) := κd(s4) := ∗, κd(s2) := Yoyo, κd(e1) := κd(e2) := on.
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The semantics is based on classical Tarski-style interpretations.

Definition 3 (Interpretation). An interpretation is a pair I := (U, I)
consisting of an universe and an interpretation mapping I which maps
object names to elements of U , concept names to subsets of U , and predicate
names of arity n to subsets of Un.

A point to note is that we are conforming to the general semantics of SDs,
but contrasting to the usual semantics of FOL and CGs, by allowing empty
universes. We are now prepared to provide the semantics for CSDs, and in fact
we provide two slightly different readings of CSDs: the SD-semantics, where
different spiders denote different objects; and the VP-semantics, where different
spiders might denote the same object.

Definition 4 (Semantics). Let a unary CSD d := (L, Z, Z∗, S, E, ν, κ) over
an alphabet A := (O, C,P) and an interpretation I := (U, I) be given.

– First, we canonically extend I to zones (a, b) and regions r by setting

I(a, b) :=
⋂

C∈a

I(C) ∩
⋂

C∈b

I(C) and I(r) :=
⋃

z∈r

I(z)

– We say that the plane tiling condition holds iff we have
⋃

z∈Z I(z) = U
(this condition reflects the Euler diagram features of CSDs).

– Any mapping val : S → U with val(s) = I(κ(s)) for κ(s) �= ∗ is called
valuation (of the spiders). If we have val(s) ∈ I(η(s)) for each spider
s ∈ S, we say that val satisfies the spiders condition. If val is injective,
we say that val satisfies the strangers condition. If for each edge e ∈ E
with ν(e) = (s1, . . . , sn), we have (val(s1), . . . , val(sn)) ∈ I(κ(e)) we say that
val satisfies the predicates condition.

– We say that I satisfies d in the VP-sense iff the plane tiling condition
holds and if there exists a valuation which satisfies the spiders condition and
the predicates condition. We write I |=V P d. If the valuation additionally
satisfies the strangers condition then I satisfies d in the SD-sense, and
we write I |=SD d.

6 Conclusion

We have provided a novel formal diagrammatic system called conceptual spider
diagrams which utilizes useful features from CGs and SDs. A demonstration
of its potential has also been provided via examples. This is a step towards a
unification of CGs and SDs, and this “best of breed” approach looks promising.
It also raises many interesting avenues of future research.

Firstly, the usability of the system of CSDs has to be thoroughly compared to
SDs and to CGs. Although the examples in section 4 give an indication that that
CSDs are easier to read than CGs, this benefit might get lost if we have type
hierarchies with many overlapping concepts, since this could lead to underlying
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Euler diagrams where the contours are mutually intersecting to a large extent
(thereby rendering the diagrams more cluttered [17] and hence more difficult to
read). One would imagine that the more disjointness-constraints a type-hierarchy
has the easier the corresponding Euler diagram is to read, but the associated
tradeoff needs to be scrutinized carefully.

Secondly, it should be investigated if the CSD representation can be extended
so that not only the type-hierarchy of concepts but also the type-hierarchy of
relations can be diagrammatically depicted in a convenient way.

Thirdly, sound and complete calculi for the system have to be developed. Since
we have two different semantics, we will require two slightly different calculi:
these calculi should have many rules in common, differentiating only in rules
which reflect the difference between the two semantics. Since CSDs are a hybrid
of SDs and CGs, it is desirable that the calculi do not differ too much from
the existing calculi for SDs and CGs.3 Furthermore, if CSDs are to be used in
practice it is likely that only limited subsets of all the concepts in a given type-
hierarchy are going to used at any one time (as we have shown in the righthand
diagram of Fig. 5). As an example of the types of rules for CSDs, recall that in the
calculi for SDs, there are rules which allow the addition or removal of contours;
it would be reasonable to have rules in the CSD calculi which allow the addition
or removal of contours with respect to a given type-hierarchy. Another thing to
keep in mind is that a set of rules designed with proving completeness of the
system in mind might differ dramatically from a set of rules designed for human
interaction. Trying to capture all of these features means that the rules for the
calculi will have to designed very carefully.

In the long term the intention is to develop CSDs as a fully fledged, formal,
diagrammatic reasoning system, unifying the existing systems of SDs, CDs and
CGs, utilising the most appropriate features of each notation.

References

[1] Dau, F.: Types and tokens for logic with diagrams: A mathematical approach.
In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI),
vol. 3127, pp. 62–93. Springer, Heidelberg (2004)

[2] Dau, F.: Formal, diagrammatic logic with conceptual graphs. In: Hitzler, P.,
Scharfe, H. (eds.) Conceptual tructures in Practice. CRC Press (Chapman and
Hall/Taylor & Francis Group (2008)

[3] Euler, L.: Lettres a une princesse dallemagne sur divers sujets de physique et de
philosophie. Letters 2, 102–108 (1775) (Berne, Socit Typographique)

[4] Fish, A., Flower, J.: Investigating reasoning with constraint diagrams. In: Visual
Language and Formal Methods 2004, Rome, Italy. ENTCS, vol. 127, pp. 53–69.
Elsevier, Amsterdam (2005)

3 For the semantics in the SD-sense, a promising approach is to take one of the existing
adequate calculi for SDs, and augment it with rules which allow us to generalize or
even remove relations (such rules usually appear in calculi for simple CGs, as they
have been developed by Prediger, Dau, or Chein and Mugnier).



Conceptual Spider Diagrams 117

[5] Fish, A., Flower, J., Howse, J.: The semantics of augmented constraint diagrams.
Journal of Visual Languages and Computing 16, 541–573 (2005)

[6] Flower, J., Fish, A., Howse, J.: Euler diagram generation. Journal of Visual Lan-
guages and Computing (accepted, 2007)

[7] Flower, J., Masthoff, J., Stapleton, G.: Generating readable proofs: A heuristic
approach to theorem proving with spider diagrams. In: Blackwell, A.F., Marriott,
K., Shimojima, A. (eds.) Diagrams 2004. LNCS (LNAI), vol. 2980, pp. 166–181.
Springer, Heidelberg (2004)

[8] Gaines, B.R.: An interactive visual language for term subsumption languages.
IJCAI, 817–823 (1991)

[9] Gil, J., Howse, J., Kent, S.: Formalizing spider diagrams. In: IEEE Symposium
on Visual Languages, pp. 130–137 (1999)

[10] Gurr, C.: Effective diagrammatic communication: Syntactic, semantic and prag-
matic issues. Journal of Visual Languages and Computing 10(4), 317–342 (1999)

[11] Hammer, E., Shin, S.J.: Euler’s visual logic. History and Philosophy of Logic,
1–29 (1998)

[12] Hartshorne, W., Burks(eds.): Collected Papers of Charles Sanders Peirce, Cam-
bridge, Massachusetts, pp. 1931–1935. Harvard University Press

[13] Howse, J., Molina, F., Shin, S.-J., Taylor, J.: On diagram tokens and types. In:
Proceedings of 2nd International Conference on the Theory and Application of
Diagrams, Georgia, USA, April 2002, pp. 146–160. Springer, Heidelberg (2002)

[14] Howse, J., Schuman, S.: Precise visual modelling. Journal of Software and Systems
Modeling 4, 310–325 (2005)

[15] Howse, J., Stapleton, G., Taylor, J.: Spider diagrams. LMS Journal of Computa-
tion and Mathematics 8, 145–194 (2005)

[16] Howse, J., Stapleton, G., Taylor, J.: Spider diagrams. LMS Journal of Computa-
tion and Mathematics 8, 145–194 (2005)

[17] John, C., Fish, A., Howse, J., Taylor, J.: Exploring the notion of clutter in Euler
diagrams. In: 4th International Conference on the Theory and Application of
Diagrams, Stanford, USA, pp. 267–282. Springer, Heidelberg (2006)

[18] Kent, S.: Constraint diagrams: Visualizing assertions in object-oriented models.
In: OOPSLA, pp. 327–341. ACM Press, New York (1997)

[19] Kremer, R.: Visual languages for konwledge representation. In: Proc. of 11th
Workshop on Knowledge Acquisition, Modeling and Management (KAW 1998),
Banff, Alberta, Canada, Morgan Kaufmann, San Francisco (1998)

[20] Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science 11(1), 65–100 (1987)

[21] Lemon, O., Pratt, I.: Spatial logic and the complexity of diagrammatic reasoning.
Machine GRAPHICS and VISION 6(1), 89–108 (1997)

[22] Patrascoiu, O., Thompson, S., Rodgers, P.: Tableaux for diagrammatic reasoning.
In: Cox, P., Smedley, T. (eds.) Proceedings of the 2005 International Workshop
on Visual Languages and Computing, September 2005, pp. 279–286 (2005)

[23] Shimojima, A.: On the Efficacy of Representation. PhD thesis, The Department
of Philosophy, Indiana University (1996)

[24] Shin, S.-J.: The Logical Status of Diagrams. Cambridge University Press, Cam-
bridge (1994)

[25] Shin, S.-J.: The Iconic Logic of Peirce’s Graphs. Bradford Book, Massachusetts
(2002)

[26] Sowa, J.F.: Conceptual structures: information processing in mind and machine.
Addison-Wesley, Reading, Mass (1984)



118 F. Dau and A. Fish

[27] Stapleton, G., Howse, J., Taylor, J.: A decidable constraint diagram reasoning
system. Journal of Logic and Computation 15(6), 975–1008 (2005)

[28] Stapleton, G., Masthoff, J., Flower, J., Fish, A., Southern, J.: Automated theorem
proving in Euler diagrams systems. Journal of Automated Reasoning (2007)

[29] Stapleton, G., Thompson, S., Howse, J., Taylor, J.: The expressiveness of spider
diagrams. Journal of Logic and Computation 14(6), 857–880 (2004)

[30] Stapleton, G.: Reasoning with Constraint Diagrams. PhD thesis, Visual Modelling
Group, Department of Mathematical Sciences, University of Brighton (2004)

[31] Swoboda, N., Allwein, G.: Using DAG transformations to verify Euler/Venn ho-
mogeneous and Euler/Venn FOL heterogeneous rules of inference. Journal on
Software and System Modeling 3(2), 136–149 (2004)

[32] Venn, J.: On the diagrammatic and mechanical representation of propositions and
reasonings. Phil. Mag (1880)

[33] VMG. The visual modeling group homepage, university of brighton,
http://www.cmis.brighton.ac.uk/Research/vmg/

http://www.cmis.brighton.ac.uk/Research/vmg/


An Algorithmic Study of Deduction in Simple

Conceptual Graphs with Classical Negation

Michel Leclère and Marie-Laure Mugnier

LIRMM, CNRS - Université Montpellier 2,
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Abstract. Polarized conceptual graphs (PGs) are simple conceptual
graphs added with a restricted form of negation, namely negation on re-
lations. Classical deduction with PGs (in short PG-Deduction) is highly
intractable; it is indeed Π2

P complete. In [LM06] a brute-force algorithm
for solving PG-Deduction was outlined. In the present paper, we ex-
tend previous work with two kinds of results. First, we exhibit particular
cases of PGs for which the complexity of PG-Deduction decreases and
becomes not more difficult than in simple conceptual graphs. Secondly,
we improve the brute-force algorithm with several kinds of techniques
based on properties concerning the graph structure and the labels.

1 Introduction

Simple conceptual graphs (SGs) [CM92] constitute the kernel of conceptual
graphs (CGs) [Sow84]. They can be used as such, to represent facts or queries.
They are also basic bricks for more complex constructs, corresponding to more
expressive conceptual graphs, for instance rules or constraints [BM02]. Full
conceptual graphs are obtained when negation is added to SGs without re-
striction. Several works inspired from Peirce’s existential graphs, a diagram-
matical system for logics, have studied full conceptual graphs, in particular
[Sow84, WL94, Dau03]. Full conceptual graphs have the expressive power of
FOL. We think that they are too complicated at the end-user level, for model-
ing applications, building knowledge-based systems and understanding how they
work; they are also too complex from a computational viewpoint since deduc-
tion becomes non decidable. We thus prefer to add a limited form of negation
to SGs, namely atomic negation (i.e. negation whose scope is an atom). Atomic
negation allows us to express knowledge of form “this kind of relation does not
hold between these entities”, “this entity does not have that property” or “this
entity is not of that type”.

Polarized Graphs. SGs plus atomic negation yield polarized graphs1 (PGs),
which are equivalent to the FOL fragment of existentially closed conjunctions

1 This name is borrowed to [Ker01].
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of positive and negative literals. Several works have pointed out difficulties in-
troduced by atomic negation (and inequality) in classical FOL [Mug00, Ker01,
Kli05]. In [LM06, ML07], we discussed several semantics of negation in relation
with deduction checking but also with querying PGs: negation with closed-world
assumption, negation in classical FOL, and negation in intuitionistic logic. In the
first and in the third case, negation can be processed without complexity over-
head. In the classical case, deduction checking in PGs (PG-Deduction) becomes
highly intractable: indeed, it is Π2

P -complete (Π2
p is co-NPNP ), whereas deduc-

tion in SGs is NP-complete (see f.i. [Mug07] for a proof of Π2
P -completeness).

Contribution. In [LM06, ML07], we proposed a brute-force algorithm for (clas-
sical) PG-Deduction. In the present paper, we extend this previous work with
two kinds of results. First, we exhibit particular cases of PGs for which the com-
plexity of PG-Deduction decreases and becomes not more difficult than in SGs.
These particular cases rely on the notion of pair of exchangeable relation nodes
(that appear in the graph to be deduced). Secondly, we improve the brute-force
algorithm with several kinds of techniques based on properties concerning the
graph structure and the labels. Finally, let us mention that this paper extends
another work of ours on the containment problem of conjunctive queries with
negation, in the context of databases [LM07]. Indeed, this problem can be seen
as a particular case of PG-Deduction, where relation types are not partially
ordered. Furthermore, the notion of exchangeable relation nodes defined here
generalizes that of opposite literals in [LM07].

The sequel of this paper is organized as follows. Section 2 is devoted to prelim-
inary definitions and results. Exchangeable pairs of relation nodes and related
special cases are studied in section 3 and algorithmic improvments in section 4.
These improvements are based first on a limitation of the “completion vocabu-
lary”, and secondly on a specific exploration of the search space.

2 Polarized Graphs

In this section, we define notations and recall some definitions and results of
[LM06] about polarized conceptual graphs. We assume that the reader is familiar
with the basics of conceptual graphs (cf. for instance [ML07] for definitions
consistent with the present paper).

Basic notations and results. A conceptual graph vocabulary contains at least
a poset (partially ordered set) of concept types, a poset of relation types and a set
of individual markers. We denote by V a vocabulary, and by TR its set of relation
types. Φ is the classical translation from conceptual graphs (and vocabularies)
to first-order logic (FOL). Φ(G) denotes the logical formula assigned by Φ to
a graph G, and Φ(V) denotes the set of formulas translating the concept and
relation type posets. We use the symbol � to denote both the logical entailment
and the deduction (as both notions are equivalent in FOL). Projection is the
fundamental mechanism to reason with simple conceptual graphs (SGs). Since
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it is indeed a graph homomorphism, and the term “projection” can be misleading
because of the operation with the same name in databases, we prefer to call it SG
homomorphism, or simply homomorphism if there is no ambiguity. If there is a
homomorphism from G to H , we say that G can be mapped to H . A SG is normal
if it does not possess two concept nodes with the same individual marker. Under
natural assumptions, every SG has a unique normal form. SG homomorphism is
sound and complete with respect to Φ, i.e.: for all SGs G and H on a vocabulary
V , if there is a homomorphism from G to H then Φ(V), Φ(H) |= Φ(G) (soundness,
[Sow84]) and if Φ(V), Φ(H) |= Φ(G) then there is a homomorphism from G to
the normal form of H (completeness, [CM92]).

Polarized conceptual Graphs (PGs). PGs are built from SGs by “polariz-
ing” their relation nodes. Beside positive relation nodes, there are now negative
relation nodes.

Definition 1 (Polarized Graph (PG)). A polarized graph (PG) is defined
similarly to a SG except that relation nodes are labeled not only by a type but
also by a polarity (denoted + or −). A positive (resp. negative) relation node is
labeled by +r (resp. −r), where r is a relation type. +r can also be noted r.

A negative relation node with label −r and arguments (c1, ..., ck) expresses that
“there is no relation of type r between c1, ..., ck” (or if k = 1, “c1 does not possess
the property r”); it is logically translated by Φ into the literal ¬r(e1, ..., ek),
where ei is the term assigned to ci. PGs are equivalent to the FOL fragment
composed of existentially closed conjunctions of (positive and negative) literals
(without functions). In the following, we note +r(c1, ..., ck) (resp. −r(c1, ..., ck)),
a relation node with label +r (resp. −r) and argument list c1, ..., ck, where the
c1, ..., ck are not necessarily distinct nodes.

Definition 2 (inconsistent PG). A PG is said to be inconsistent if its normal
form contains two relation nodes +r(c1, ..., ck) and −s(c1, ..., ck) with contradic-
tory labels, i.e. with r ≤ s. Otherwise it is said to be consistent.

It can be immediately checked that any PG G on a vocabulary V is inconsistent
iff2 Φ(V) ∪ {Φ(G)} is inconsistent. The order on relation labels is extended as
follows: we set −r1 ≤ −r2 if r2 ≤ r1.

Definition 3 (Extended order on relation labels). Given two relation la-
bels l1 and l2, l1 ≤ l2 if, either l1 and l2 are both positive labels, say l1 = (r1)
and l2 = (r2), and r1 ≤ r2, or l1 and l2 are both negative labels, say l1 = (−r1)
and l2 = (−r2), and r2 ≤ r1.

Given this extended order on relation labels, homomorphism can be used with-
out changing its definition. Recall that homomorphism is logically sound and
complete for SGs. For PGs, one part of the property still holds:

2 If and only if.
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Property 1. Given two PGs G and H on a vocabulary V , if there is a homomor-
phism from G to H then Φ(V), Φ(H) |= Φ(G).

Thus, homomorphism remains sound. But it is no longer complete. Indeed, we
might have Φ(V), Φ(H) |= Φ(G) and no homomorphism from G to H , as il-
lustrated by Fig. 1. The formulas assigned to G and H by Φ (here we ignore
the atoms associated with concept nodes) are respectively Φ(G) = ∃x∃y(p(x) ∧
¬p(y)∧r(x, y)) and Φ(H) = p(a)∧r(a, b)∧r(b, c)∧¬p(c). Φ(G) can be deduced
from Φ(H) using the tautology p(b)∨¬p(b) (indeed, every model of Φ(H) satis-
fies either p(b) or ¬p(b); if it satisfies p(b), then x and y are interpreted as b and
c; in the opposite case, x and y are interpreted as a and b; thus every model of
Φ(H) is a model of Φ(G)).

T T

−p

r rr

−p

T:bT:a T:c
2121

+p

21

+p

c1 d1
G H

Fig. 1. Atomic negation and homomorphism

More generally, negation introduces disguised disjunctive information that
cannot be taken into account by homomorphism. This disjunctive information is
related to the law of the excluded-middle which holds in classical logic: given a
proposition P , either P is true, or ¬P is true. This leads to reasoning by cases: if
a relation is not asserted in a fact, either it is true or its negation is true. We thus
have to consider all ways of completing the knowledge asserted by a PG. Let us
look again at the example in Fig. 1. H does not say whether the unary relation p
holds for b. We thus have to consider two cases : either a relation node with label
+p or a relation node with label −p can be attached to b. Let H1 and H2 be the
graphs respectively obtained from H (Fig. 2). There is a homomorphism from
G to H1 and there is a homomorphism from G to H2. From the homomorphism
soundness, we conclude that G can be logically deduced from H .

The next definition specifies the notion of completion of a PG.

Definition 4 (Complete PG). A complete PG on a vocabulary V with rela-
tion type set TR is a consistent (normal) PG satisfying the following completion
condition: for each relation type r of arity k in TR, for each k-tuple of concept
nodes (c1, . . . , ck), where c1, . . . , ck are not necessarily distinct nodes, there is a
relation +s(c1, . . . , ck) with s ≤ r or (exclusive) there is a relation −s(c1, . . . , ck)
with r ≤ s. A PG is complete w.r.t. a subset of relation types T ⊆ TR if the com-
pletion condition considers only elements of T . If a PG Gc that is complete w.r.t.
T is obtained by adding relation nodes to a graph G, it is called a T -completion
of G (or simply a completion of G if T is implicit).
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Fig. 2. When the law of the excluded-middle intervenes

Property 2. If a relation node is added to a complete PG, either this relation
node is redundant (there is already a relation node with the same argument list
and a label less or equal to it) or it makes the PG inconsistent.

A complete PG is obtained from a consistent PG G by repeatedly adding positive
and negative relation nodes as long as adding a relation brings new information
and does not yield an inconsistency. Since a PG is a finite graph defined over
a finite vocabulary, the number of different complete PGs that can be obtained
from it is finite. Let us now define deduction on PGs.

Definition 5 (PG-Deduction problem). The PG-Deduction problem takes
two PGs G and H as input, with H being consistent, and asks whether G can be
PG-deduced from H, i.e. whether for each complete PG Hc obtained from H,
there is a homomorphism from G to Hc.

Theorem 1. Let G and H be two PGs on a vocabulary V, with H being consis-
tent and normal. Then G can be PG-deduced from H iff Φ(V), Φ(H) � Φ(G).

Proof. See [ML07] (Appendix B). ��
From now on, we can thus identify PG-deduction and logical deduction on the
associated formulas, and we will sometimes simply say “deduction” (in this case,
it is assumed that H is normal). Note that each completion of H is normal if
(and only if) H is normal. Algorithm 1 is a brute-force algorithmic schema for
checking deduction (see Sect. 4 for algorithmic improvements). An immediate
observation for generating the completions Hc is that we do not need to consider
all relation types but only those appearing in G. The algorithm generates all
complete PGs relative to this set of types and for each of them checks whether
G can be mapped to it. A complete graph to which G cannot be mapped can be
seen as a counter-example to the assertion that G is deducible from H .

3 Special Cases with Lower Complexity for PG-Deduction

The existence of a PG homomorphism from G to H is a sufficient condition for G
to be deducible from H . However it is not a necessary condition, as we have seen
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Algorithm 1. PG-Deduction
Data: PGs G and H , s.t. H is consistent (and normal)
Result: true if G can be PG-deduced from H , false otherwise
begin

Compute H the set of complete PG obtained from H w.r.t. relation types in
G;
forall Hc ∈ H do

if there is no homomorphism from G to Hc then
return false ; // Hc is a counter-example

return true;
end

before. In this section, we study the question “when is a homomorphism from
G to H a necessary condition for G to be deducible from H?”. Answers to this
question yield particular cases where the theoretical complexity of PG-Deduction
decreases. We shall also identify special subgraphs of G for which there must be
a homomorphism to H when G is deducible from H . These subgraphs can be
used as filters or guides during the completion algorithm.

Let us first identify relation nodes in G which might play a role in the problem
complexity, in the sense that they may lead to use the law of the excluded-middle.

Definition 6 (Opposite relation labels and nodes). Two relation labels are
said to be opposite if they have opposite polarities and the type s of the negative
label is less than the type r of the positive label (i.e. s ≤ r). By extension, two
relation nodes are said to be opposite if they have opposite labels +r and −s.

Opposite and contradictory relation nodes should not be confused. Let us con-
sider for instance the binary relation types relativeOf (“x is a relative of y”)
and motherOf (“x is the mother of y”). One has motherOf ≤ relativeOf . Re-
lation nodes labeled −relativeOf and +motherOf are contradictory, since for
all x and y, if x is the mother of y then x is a relative of y. Relation nodes la-
beled +relativeOf and −motherOf are opposite. The intuitive idea behind this
notion is that, if one considers one of the types relativeOf or motherOf (let us
call it t), +relativeOf ≥ +t and −motherOf ≥ −t. The notion of exchangeable
relation nodes generalizes this idea: two opposite relation nodes in G are “ex-
changeable” if their arguments can have the same images by homomorphisms to
(necessarily distinct) completions of H . More precisely:

Definition 7 (Exchangeable relation nodes). Two relation nodes +r(c1, ...,
ck) and −s(d1, ..., dk) in G are exchangeable with respect to H if (1) they are
opposite, (2) there are two completions of H, say H1 and H2, and two homo-
morphisms h1 and h2, respectively from G to H1 and from G to H2, such that
for all i : 1, ..., k, h1(ci) = h2(di).

See, for instance, the PG G in Fig. 1. Let us consider the opposite relation nodes
r1 = p(c1) and r2 = −p(d1). These nodes are exchangeable, as can be seen
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in Fig. 2: there is a homomorphism h1 from G to a completion H1 of H and
there is a homomorphism h2 from G to another completion H2 of H , such that
h1(c1) = h2(d1) (and is the concept node in H with marker b). It can be checked
that the definition of exchangeable relation nodes is strictly more restrictive than
the definition of opposite relation nodes.

The following property will be used to prove other properties:

Property 3. Let G and H be two PGs, where H is consistent and G is PG-
deducible from H . Let G′ be a subgraph of G without pair of exchangeable
relation nodes. Then there are a completion Hc of H and a homomorphism
from G to Hc that maps G′ entirely to H .

Proof. Consider any Hc maximal completion of H (for each n-ary type p and
each n-tuple u of concept nodes in H , either one has +p(u) or one has −p(u)).
Assume that there is no homomorphism from G to Hc that maps G′ to H . For
each homomorphism from G to Hc, there is at least one added relation ∼p(u)
in Hc which is the image of a relation in G′ and such that H does not contain a
node ∼q(u) with ∼p ≥∼q. Let R be the set of all such relation nodes in Hc \H
for all homomorphisms from G to Hc. Let us inverse the polarity of the nodes
in R. The graph obtained cannot be inconsistent3 and it is of max size: thus
it is again a maximal completion of H . Let Hc′

be this maximal completion.
As G′ does not possess exchangeable relation nodes, there is no homomorphism
from G to Hc′

that maps a relation node in G′ to a node in R. If there is no
homomorphism from G to Hc′

that maps G′ entirely to H , let R′ be the set of
all relation nodes ∼p(u) in Hc′ \H which are images of a node in G′ and such
that H does not contain a node ∼q(u) with ∼p ≥∼q. As previously, reverse the
polarity of all nodes in R′, which yields the graph Hc′′

. Add the nodes of R′ to
R. We thus build a sequence of maximal completions of H and a set R of relation
nodes of these completions not belonging to H (nor redundant with nodes of H).
As R grows strictly from one completion to another, this sequence is finite. The
last graph of this sequence is a completion satisfying the property. ��

The next property can be seen as a corollary of Prop. 3 (however, its direct
proof is simpler; in particular, instead of any maximal completion of H , one can
consider a maximal completion obtained by adding only positive relation nodes):

Property 4. Let G and H be two PGs, where H is consistent and G has no pair
of exchangeable relation nodes w.r.t. H . If G is PG-deducible from H , then there
is a homomorphism from G to H .

We thus obtain a case for which PG-Deduction has the same complexity as
homomorphism checking (and is NP-complete):
3 Indeed, assume we obtain two contradictory relation nodes −q(u) and p(u), with

q ≥ p. One of these nodes does not belong to R, otherwise G would have exchangeable
nodes. Let x be this node and y be the node that belongs to R. The label of x in
Hc is necessarily more general than the label of y in Hc (note that both nodes were
comparable and had the same polarity in Hc). Thus, by inverting the label of y, it
is impossible to obtain an inconsistency.
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Property 5. Let G and H be two PGs, where H is consistent and G has no pair
of exchangeable relation nodes w.r.t. H . G is PG-deducible from H iff there is
a homomorphism from G to H .

Note also that G is deducible from H iff each connected component of G is
deducible from H . Thus in previous property, the condition on G can be re-
placed by “each connected component of G has no pair of exchangeable relation
nodes”. If G is acyclic (and more generally has bounded treewidth, or bounded
hypertreewidth when seen as a hypergraph) then homomorphism checking is
polynomial ([MC92] for acyclicity, and f.i. [GLS01] for more general notions),
hence PG-Deduction.

A desirable property is that recognizing exchangeable relation nodes is not
difficult compared to checking PG-deduction. It is indeed the case: checking
whether G has exchangeable relation nodes, or checking whether a pair of relation
nodes in G is exchangeable, is NP-complete [Tho07]. More precisely, it has the
same complexity as homomorphism checking (from G to H), and is polynomial
when G is acyclic.

If G is PG-deducible from H , for each subgraph of G without exchangeable
relation nodes, there must be a homomorphism from this subgraph to H . More-
over, there must be such a homomorphism that is potentially extensible to a
homomorphism from the entire G to a completion of H . We call it a compatible
homomorphism. See Fig. 3: all concept nodes are assumed to have the same la-
bel (�, ∗) and relation types are incomparable. There are three homomorphisms
from G− to H : h1 = {x → t, y → u, z → w}, h2 = {x → t, y → w, z → v},
h3 = {x → u, y → w, z → v}. To check the compatibility, we have to consider
s(y, x) and r(x, z). h1 is not compatible because it cannot be extended to r(x, z)
due to the presence of −r(t, w) in H .

Definition 8 (compatible homomorphism). Given two PGs G and H, and
G′ any subgraph of G, a homomorphism h from G′ to H is said to be compatible
(w.r.t. G) if for each relation node x of G that does not belong to G′ but has all
its arguments in G′, say c1, ..., ck, there is no relation node y with argument list
h(c1), ..., h(ck) in H and with a label contradictory to that of x (i.e. with label
−r if the label of x is +s, or with label +s if the label of x is −r, s.t. s ≤ r).

Property 6. If G is PG-deducible from H , then there is a compatible homomor-
phism from every subgraph of G without exchangeable relation nodes to H .

Proof. Let G′ be any subgraph of G without exchangeable relation nodes. From
property 3, there is a homomorphism from G to a completion of H which maps
G′ entirely to H . By restricting the domain of this homomorphism to G′, we
have a homomorphism from G′ to H which is compatible w.r.t. G. ��

One can remark some easily identifiable subgraphs without exchangeable relation
nodes: the positive subgraph of G, denoted G+, is the subgraph obtained from G
by selecting all concept nodes and only the positive relation nodes. The negative
subgraph G− of G is the dual notion, i.e. the subgraph obtained from G by
selecting all concept nodes and only the negative relation nodes. Negative and
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Fig. 3. Special subgraphs of G (G is deducible from H)

positive subgraphs are particular cases of subgraphs without opposite relation
labels. A subgraph of G without opposite relation nodes and maximal for the
inclusion is easily built by selecting, for each relation type r appearing in G,
either all its positive occurrences or all its negative occurrences, while satisfying
the following constraint: if one selects the positive (resp. negative) occurrences of
r, then the same choice must be done for all subtypes (resp. supertypes) of r. F.i.
in Fig. 3, several subgraphs without opposite relation nodes of G are pictured.
G+ and G− are respectively the positive and negative subgraphs of G. G has
two subgraphs without opposite nodes maximal for inclusion: G+ and GM .

4 Algorithmic Improvements

Let us say that a concept or relation label lx occurring in G has a support in H if
there is a label ly in H with ly ≤ lx (and ly is said to support lx). By extension,
we say that a node x in G has a support in H if there is a node y in H s.t. the
label of x is supported by the label of y (and y is said to support x). A first
observation is that if a node in G has no support in H then G is not deducible
from H . This is trivial for concept nodes. For relation nodes, if this node is
negative (resp. positive), consider the positive (resp. negative) completion of H .
There is no homomorphism from G to this completion.

4.1 Limitation of the Completion Vocabulary

Let us call “completion vocabulary” the set of relation types used to build com-
pletions of G. The size of the completion vocabulary determines the number of
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completions of G. The number of completions of G is itself a key element in
the complexity of deduction checking. It is thus essential to decrease as much as
possible the number of relation types involved in completion. One can observe
that the completion vocabulary can be restricted to the relation types occurring
in G, and furthermore to the relation types occurring in opposite relation nodes:

Property 7. G is PG-deducible from H iff G can be mapped to each completion
of H w.r.t. relation types occurring in opposite relation nodes of G (i.e. r and s
such that there are nodes in G with labels +r and −s and s ≤ r).

Proof. Let TR be the set of relation types in the vocabulary, and let T be the
set of relation types occurring in opposite relation nodes in G. (⇐) We prove
that if G can be mapped to each T -completion of H then it can be mapped to
each TR-completion of H . Indeed, let Hc be any TR-completion of H . Let Hc′

be
the graph obtained from Hc by replacing all relation nodes with types outside
T with a set of relation nodes built as follows: let r be a node labeled by +t
(resp. −t) such that t �∈ T . Let {t1, ..., tn} be the types in T greater than t (resp.
less than t). If r is positive, consider the minimal elements of this set, otherwise
consider the maximal elements of this set. Let S be the obtained set. Replace r
with |S| relation nodes, each labeled by a type in S, with the same polarity and
the same arguments as r. Hc′

is a T -completion of H . By construction, there
is a homomorphism, say h1, from Hc′

to Hc (which is the identity on concept
nodes). By hypothesis, there is a homomorphism, say h, from G to Hc′

. The
composition of these homomorphisms h1 ◦ h is a homomorphism from G to Hc.

(⇒) Let G be deducible from H and assume that Hc is a T -completion of H
such that there is no homomorphism from G to Hc. We show that this assump-
tion leads to a contradiction. From Hc, we build the following TR-completion of
H , say Hc′

. For all types t in TR \T , let us add only (+t) nodes if (+t) does not
support any node in G; otherwise, add only (−t) nodes if (−t) does not support
any node in G (if neither (+t) nor (−t) support nodes in G, relation nodes typed
t can be added with any polarity); if both (+t) and (−t) support nodes in G,
there are opposite nodes in G with label (+r) and (−s) and r ≥ t ≥ s, thus r
and s belong to T , and nodes labeled T would be redundant in Hc′

thus are not
needed to obtain a completion. In all cases, nodes are added only if they do not
lead to an inconsistency. Since G is deducible from H , there is a homomorphism
from G to Hc′

. By construction, no node in G can be mapped to an added node.
Thus this homomorphism is a homomorphism from G to Hc, which contradicts
the hypothesis on Hc. ��

We can even restrict the completion vocabulary to the types of exchangeable
relation nodes in G.

Theorem 2. G is PG-deducible from H iff G can be mapped to each completion
of H w.r.t. relation types occurring in exchangeable relation nodes of G w.r.t. H
(i.e. relation types r such that there is a pair of exchangeable relation nodes in
G with one of the two labeled +r or −r).
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Proof. Let exchangeable(G) denote the types occurring in exchangeable rela-
tion nodes in G. (⇐) Same as in the proof of Prop. 7, where T is replaced
by exchangeable(G). (⇒) Let Hc be a completion of H w.r.t. exchangeable(G)
such that there is no homomorphism from G to it. As in the proof of Prop. 7, we
build a completion of H , say Hc′

, as follows: for any type t occurring in G but
not in exchangeable(G), let us add only (−t) nodes if t supports only positive
nodes, (+t) nodes if t supports only negative nodes. Let us add it positively if
it supports both forms. A homomorphism from G to Hc′

is a homomorphism
to Hc plus the nodes added positively for types supporting both forms. Let us
now inverse the polarity of these latter nodes if they are images of nodes in G.
No node in G can be mapped to these nodes, otherwise their type would be in
exchangeable(G). Thus, we have a homomorphism from G to Hc, which contra-
dicts the hypothesis on Hc. ��

4.2 Space Algorithm

Consider the space of consistent graphs obtained from H by adding relation
nodes (with types in the completion vocabulary). This space is ordered4 as fol-
lows: given two graphs H1 and H2 in this space, H2 ≤ H1 if for each relation
node x in H1, there is a relation node with the same list of arguments in H2

and a label less than or equal to the label of x. H is the greatest element of
this space, and the smallest elements are (necessarily) completions of H . The
question “is there a homomorphism from G to each completion Hc” can be re-
formulated as “is there a covering set of all Hc, i.e. a subset of incomparable
graphs of this space {H1, ..., Hk} such that (1) there is a homomorphism from
G to each Hi ; (2) for each Hc, there is a Hi with Hc ≤ Hi”. The brute-force
algorithm (Algorithm 1) takes the set of all completions of H as covering set.
The next algorithm (Algorithm 2) searches the space in a top-down way starting
from H and tries to build a covering set with partial completions of H . Reason-
ing by cases is applied at each step: for a given relation type r with arity k and
a tuple (t1, ..., tk) of concept nodes such that neither +r nor −r is supported by
the label of a relation node on (t1, ..., tk) in the current partial completion, two
graphs are generated according to each case. Note that if +r or −r is supported
by a ∼ s in the current completion, then adding +r(t1, ..., tk) or −r(t1, ..., tk) to
it would lead to a redundancy or an inconsistency.

The algorithm is justified by the following property:

Theorem 3. G is PG-deducible from H iff:
1. There is a homomorphism h from G to H or
2. G is PG-deducible from H ′ and H ′′ where H ′ (resp. H ′′) is obtained from
H by adding the positive relation node +r(t1, ..., tk) (resp. the negative relation
node −r(t1, ..., tk)) where r is a relation type of arity k occurring in G (and more
specifically r belongs to the completion vocabulary) and t1, ..., tk are concept nodes
of H such that neither +r nor −r is supported by the label of a relation node on
(t1, ..., tk) in H.
4 Or preordered, if redundant relations can be added.
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Proof. (sketch) (⇒) Any completion of H ′ or H ′′ is a completion of H . (⇐)
Condition 1 corresponds to property 1. For condition 2, check that {H ′, H ′′} is
a covering set (of completions of H). ��

Subalgorithm 3 is supposed to have direct access to data available in the main
algorithm 2. The choice of r and t1, ..., tk, in Algorithm 3, can be guided by a
compatible homomorphism from a special subgraph of G.

Algorithm 2. Check by space exploration
Data: PGs H and G, with H being consistent
Result: true if G is PG-deducible from H , false otherwise
begin

Result ← Filtering();
if (Result �= undetermined) then

return Result
Let R be the completion vocabulary;
return RecCheck(H); // See Algorithm 3

end

The Filtering subalgorithm performs “simple” tests corresponding to neces-
sary or sufficient conditions of deduction that would allow us to conclude without
entering the completion steps:

1. If a concept or relation node of G has no support in H , then return false.
2. If there is a homomorphism from G to H , then return true.
3. Compute some subgraphs of G without exchangeable relation nodes (for

instance a subgraph without opposite relation nodes maximal for the inclu-
sion). If one of these subgraphs cannot be mapped to H by a compatible
homomorphism then return false.

The following property ensures that Algorithm 3 does not generate the same
graph several times, which is a crucial point for complexity. Otherwise the algo-
rithm could be worse than the brute-force algorithm in the worst-case.

Property 8. The subspace explored by Algorithm 3 is a (binary) tree.

Indeed, at each recursive call, {H ′, H ′′} is a covering set inducing a bipartition of
the covered space: each PG in this space is below exactly one of these two PGs.

Property 9. The timecomplexity ofAlgorithm2 is inO(2(nG)k×|R|×hom(G, Hc)),
where nG is the number of concept nodes in G, k is the maximum arity of a rela-
tion,R is the completion vocabulary and hom(G, Hc) is the complexity of check-
ing the existence of a homomorphism from G to Hc. Its space complexity is in
O(max(size(G), size(H), (nG)k × |R|)).

Proof. The size of a completion of H is bounded by 2(nG)k×|R|. Property 8 ensures
that the number of graphs generated is at most twice the number of completions
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Algorithm 3. RecCheck(H)
Data: Consistent PG H Access: G, R
Result: true if G is PG-deducible from H , false otherwise
begin

if there is a homomorphism from G to H then
return true

if H is complete w.r.t. R then
return false

(r, t1, ..., tk) ← ChooseRelationTypeToAdd;
/* r is a relation type of R, t1, ..., tk are concept nodes in H and

neither +r nor −r is supported by the label of a relation node
on (t1, ..., tk) in H */

Let H ′ be obtained from H by adding the relation node r(t1, ..., tk);
Let H ′′ be obtained from H by adding the relation node −r(t1, ..., tk);
return (RecCheck(H ′) and RecCheck(H ′′))

end

of H (in the worst case, all leaves of the generated tree of graphs correspond to
complete graphs). If the relation types are not ordered, all completions have the
same size, which is

∑

r∈R(nG)arity(r) ; checking whether a graph is complete can
then be done in constant time if the number of relation nodes in the graph is in-
crementally maintained. When relation types are ordered, the size of completions
varies according to the order in which relation types are considered. One solution
is to count the addition of a relation node ∼ r(t1, ..., tk) not for one, but for n,
where n is the number of types s inR, such that∼s is supported by the new node
and was not before. Computing n at each node addition can be roughly bound
by |R|2, which can be reasonably considered as less than hom(G, Hc). For space
complexity, see that the tree is explored in depth-first way. ��

5 Further Work

The proposed algorithm for checking deduction on PGs is simple to describe and
to implement. Its theoretical worst-case complexity is not better than that of the
brute-force algorithm but, not surprisingly, first experiments show that its run-
ning time is much better. Further work will involve an experimental comparison
of several heuristics. These heuristics concern in particular the choice of special
subgraphs without exchangeable relation nodes in the filtering phase and the
choice of the next relation to add in the completion phase (cf. the ChooseRela-
tionTypeToAdd subalgorithm).
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Abstract. This paper presents a flexible querying system of fuzzy RDF
annotations which consists in translating fuzzy RDF annotations into
fuzzy conceptual graphs and using an “approximate”-projection oper-
ation in order to compare fuzzy query graphs with fuzzy annotation
graphs. The fuzzy sets in the query graphs having a semantic of prefer-
ences are compared with the fuzzy sets in the annotation graphs having a
semantic of similarity or imprecision. These comparisons deliver several
scores which are used by our flexible querying system to sort the answers
according to a total order even if these scores are not commensurable.

1 Introduction

The aim of the “Semantic Web” is to obtain a more pertinent querying of the do-
cuments available on the Web using semantic annotations associated with them.
Previous works (see for example [1]) have proposed to translate XML/RDF anno-
tations, RDFbeing the standard language to express annotations recommended by
the W3C, into conceptual graphs (CGs). Thanks to this translation, the querying
and inferencing capabilities enabled by the CG formalism can be used to query an
XML/RDF database. Our paper proposes to extend this kind of work to support
flexible querying of fuzzy annotations. The context of our proposal is the design
of a data warehouse opened on the Web in which local databases, including struc-
tured and semi-structured sources of information represented respectively as re-
lational and CG databases, are completed by data sources retrieved from the Web
and stored in anXMLdatabase. Adedicatedflexible querying systemhas beenpro-
posed in [2] to query simultaneously those sources using a given domain ontology.
This ontology is a central element of the querying system because, in order to per-
mit a unified querying of the sources, it is previously used: (i) to index manually the
data stored in the local databases and (ii) to compute automatically fuzzy annota-
tions of Web data tables (see [3]) which are stored in an XML database. The aim
of this paper is to use the CG formalism in order to query the XML database that
contains fuzzy annotations. The main originality of our proposal is the support of
(i) fuzzy annotation graphs representing similarity and imprecision and (ii) fuzzy
querygraphs representinguser’s preferences.Moreover, our querying system is able
to maintain a total order of the answers using not commensurable scores. In section
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2, we present briefly the ontology and the fuzzy semantic annotationprocess ofWeb
data tables. In section 3, we present the fuzzy CG base corresponding to fuzzy RDF
annotations. In section 4, we propose a flexible querying of this fuzzy CG base.

2 Semantic Annotation of Data Tables

We have proposed in [3] a method to annotate automatically data tables from
the Web according to a given domain ontology. The annotation process consists
in identifying the relations represented by the Web data tables according to the
relations given in the ontology. Examples presented in this paper correspond to
our current application domain in food microbiology. In the following, we present
successively the structure of the ontology and the fuzzy annotations which are
generated using the ontology.

2.1 Structure of the Ontology

The ontology has been structured in a generic way such as being applicable
in many application domains. It is composed of datatypes -numeric types and
symbolic types- and of relations that allow datatypes to be linked. Numeric types
are used to define the numeric data. A numeric type is described by the name
of the type, the units in which data of this type is usually expressed, and the
interval of possible values for this type. For example, the type Temperature can
be expressed in the units {◦C, ◦F} and has no restriction on values while the type
pH has no unit and has a range of [0, 14]. Symbolic types are used when the data
of interest are represented as a string. A symbolic type is described by the name
of the type and the type hierarchy (which is the set of possible values for the
type, partially ordered by the subsumption relation). For example, Food Product
and Microorganism are symbolic types. Relations are used to represent semantic
links between datatypes. A relation is described by the name of the relation
and its signature. For example, the relation GrowthParameterAw represents the
growth limits of a microorganism concerning water activity1 of any food product.
This relation has for domain the symbolic type Microorganism and for range the
numeric type aw. Figure 1 shows the simplified structure of our domain ontology.

This ontology has been expressed in OWL distinguishing two types of knowl-
edge: (i) generic knowledge, expressed as OWL classes and properties, which
define the structure of the ontology: for instance, the class numericalType (resp.
the class Relation) which is the superclass of all numerical types (resp. relations);
(ii) domain-dependant knowledge, expressed as classes and constraints : for in-
stance, the class GrowthParameterAw is a subclass of the class relation and the
class aw is a subclass of the class numericalType.

1 noted aw and which corresponds to an index of the water, comprised in the interval
[0, 1], that is available in the food to be used by microorganisms.
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Micro-
organism

Food
Product

Clostridium
botulinum Salmonella

Gram-

UHT milk pasteurized
milk

milk

pasteurized
UHT milk

pH:
no unit,  

[0,14]

Temperature:
°C or °F, 

no 
value interval

relations

Symbolic types

Numeric types

Gram+

Staphylococcus
Spp.

Fig. 1. Structure of the domain ontology

2.2 Fuzzy Semantic Annotations

The semantic annotation process takes as inputs an OWL ontology structured
as expressed in section 2.1 and a Web data table expressed in an XML docu-
ment using XHTML tags. The aim of the annotation process is to annotate the
semantic relations represented by the rows of the Web data table with relations
of the ontology. Each row of the Web data table is associated with the XHTML
tag tr. A unique identifier is associated with each row and is represented as the
XML attribute URI of the tag tr. Figure 2 presents an example of a Web data
table in which the semantic relation GrowthParameterAw has been identified.
The first line of the Web data table indicates that Clostridium has a growing
range between 0.943 and 0.97 which is optimal in the range [0.95, 0.96].

0.9910.990.94Salmonella

0.990.980.88Staphylococcus

0.970.95-0.960.943Clostridium

aw maximumaw optimumaw minimumOrganism

Table 1: Cardinal values

Fig. 2. Example of a Web data table

The annotation process generates RDF descriptions which represent the se-
mantic relations of the ontology recognized in each row. Some of these RDF
descriptions include values expressed as fuzzy sets. We use the representation of
fuzzy sets proposed in [4,5].

Definition 1. A fuzzy set f on a definition domain Dom(f) is defined by
a membership function μf from Dom(f) to [0, 1] that associates the degree
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to which x belongs to f with each element x of Dom(f). We call kernel (resp.
support) of the fuzzy set, the set of elements x with μf (x) = 1 (resp. μf (x) �= 0).

We distinguish two kinds of fuzzy sets: (i) discrete fuzzy sets and (ii) continuous
fuzzy sets.

Definition 2. A discrete fuzzy set f is a fuzzy set associated with a symbolic
type of the ontology. Its definition domain is the type hierarchy. It is represented
in RDF as a resource typed by the OWL class DFS.

Definition 3. A continuous fuzzy set f is a trapezoidal fuzzy set associated
with a numeric type of the ontology. A trapezoidal fuzzy set is defined by its
four characteristic points which correspond to min(support(f)), min(kernel(f)),
max(kernel(f)) and max(support(f)). Its definition domain is the interval of pos-
sible values of the type. It is represented in RDF as a resource typed by the
OWL class CFS.

The fuzzy values used to annotate Web data tables may express two of the
three classical semantics of fuzzy sets (see [6]): similarity or imprecision. For
each resource typed DFS or CFS, the OWL property HasForSemantic defines
the semantic of the fuzzy set. In the current version of the annotation process,
a fuzzy set having a semantic of similarity is associated with each cell belonging
to a symbolic column. It represents the ordered list of the most similar values
of the ontology associated with the value present in the cell. A fuzzy set having
a semantic of imprecision may be associated with cells belonging to numeri-
cal columns. It represents an ordered disjunction of exclusive possible values.
Figure 3 presents a part of the RDF descriptions corresponding to the recog-
nition of the relation GrowthParameterAw in the first row of the table shown
in figure 2. The first description expresses that the first row (having the URI
uriRow1 in the XML document) is an instance of the GrowthParameterAw rela-
tion recognized with a pertinence score of 1.0. This pertinence score is computed
by the annotation process and expresses the degree of certainty associated with
the relation recognition. The domain of the relation, which is an instance of the
symbolic type Microorganism, is annotated by a discrete fuzzy set. This fuzzy
set, typed by the OWL class DFS, has a semantic of similarity and indicates the
list of closest values of the ontology compared to the value Clostridium. Two val-
ues (Clostridium Perfringens and Clostridium Botulinum) belong to this fuzzy
set with a membership degree of 0.5. The range of the relation, which is an
instance of the numeric type aw, is annotated by a continuous fuzzy set. This
fuzzy set, typed by the OWL class CFS, has a trapezoidal form and a semantic
of imprecision. It indicates the possible growth limits ([0.943, 0.97]) and the pos-
sible optimal growth limits ([0.95, 0.96]) represented respectively as the support
and the kernel of the fuzzy set.

We have presented in this section the fuzzy semantic annotation process of
Web data tables according to a given ontology. The output of this process are
RDF descriptions which represent the semantic relations that have been identi-
fied in the Web data tables according to the relations of the ontology. We are
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<onto:GrowthParameterAw rdf:about="uriRow1"> 
<onto:HasForScore>1.0</onto:HasForScore>
<onto:AssociatedDomain rdf:resource="uriRow1/Micro:1" />
<onto:AssociatedRange rdf:resource="uriRow1/Aw:1" /> 

</onto:GrowthParameterAw> 
<onto:Microorganism rdf:about="uriRow1/Micro:1"> 

<onto:IsAnnotatedBy rdf:resource="uriRow1/Micro:1/DFS:1" />
</onto:Microorganism>
<onto:DFS rdf:about="uriRow1/Micro:1/DFS:1"> 

<onto:HasForSemantic>similarity</onto:HasForSemantic>
<onto:HasForElement rdf:resource="uriRow1/Micro:1/DFS:1/elt:1"/>
<onto:HasForElement rdf:resource="uriRow1/Micro:1/DFS:1/elt:2"/>

</onto:DFS>
<onto:ClostridiumPerfringens rdf:about="uriRow1/Micro:1/DFS:1/elt:1">

<onto:HasForMembershipDegree>0.5</onto:HasForMembershipDegree>
</onto:ClostridiumPerfringens> 
<onto:ClostridiumBotulinum rdf:about="uriRow1/Micro:1/DFS:1/elt:2">

<onto:HasForMembershipDegree>0.5</onto:HasForMembershipDegree>
</onto:ClostridiumBotulinum> 
<onto:Aw rdf:about="uriRow1/Aw:1">

<onto:IsAnnotatedBy rdf:resource="uriRow1/Aw:1/CFS:1" />
</onto:Aw>
<onto:CFS rdf:about="uriRow1/Aw:1/CFS:1"> 

<onto:HasForUnit>NONE</onto:HasForUnit>
<onto:HasForSemantic>imprecision</onto:HasForSemantic>
<onto:HasForMinSupport>0.943</onto:HasForMinSupport>
<onto:HasForMaxSupport>0.97</onto:HasForMaxSupport>
<onto:HasForMinKernel>0.95</onto:HasForMinKernel>
<onto:HasForMaxKernel>0.96</onto:HasForMaxKernel> 

</onto:CFS>

Fig. 3. Example of RDF annotations generated from the Web data table of figure 2

now interested in querying these RDF annotations that contain fuzzy values. For
that, we propose to extend the flexible query processing on fuzzy CGs defined
in [2]. We first present the fuzzy CG base obtained from the RDF annotations
and then the query processing of such a base.

3 The Fuzzy CG Base Corresponding to RDF
Annotations

The model of CG we use [7] relies on (i) a support made of a concept type lattice,
a relation type set possibly organized in hierarchy, a set of individual markers
enabling the designation of instances and a conformity relation between markers
and types, (ii) a base of CGs built on this support.

In a querying perspective, we propose to translate the fuzzy RDF annotations
presented in section 2 into fuzzy CGs. A previous work has already proposed a
mapping from RDF to CG [1]. It proposes to translate i) the RDF descriptions
into a base of CGs, ii) the hierarchy of classes appearing in an RDF schema
or an OWL ontology into a concept type hierarchy, and iii) the hierarchy of
properties appearing in a RDF schema or an OWL ontology into a relation type
set of the CG model. In this section, our aim is to extend the translation rules
proposed in [1] in order to be able to translate fuzzy RDF descriptions into fuzzy
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CGs. We first recall the main rules defined in [1], then we propose extensions to
translate fuzzy values from RDF descriptions into CGs and finally we present
the terminological knowledge generated by these rules.

3.1 Translation Rules from RDF Descriptions into CGs

A RDF description is a triple of the form <Resource, Property, Value>. For
example, the RDF description which says that the resource having for URI
uriRow1 has a score of 1.0 can be written in XML/RDF syntax as:

<rdf:Description about=’uriRow1’>
<onto:HasForScore>1.0</onto:HasForScore>

</rdf:Description>

The translation from RDF into CG consists in considering a RDF description as
an instance of a Resource concept type and the associated properties as relations
of this concept. The individual marker of a Resource concept is the URI of
the resource itself. Literal values are instances of the Literal concept type. For
example, the previous example can be translated into the following CG:

[Resource:uriRow1] - { -> (HasForScore) -> [Literal: 1.0]}

RDF descriptions can be typed according to a predefined ontology called a RDF
schema or an OWL ontology. For example, if we want to type the previous RDF
description as an instance of the GrowthParameterAw class defined in a RDF
schema or an OWL ontology, the XML/RDF syntax becomes:

<onto:GrowthParameterAw about=’uriRow1’>
<onto:HasForScore>1.0</onto:HasForScore>

</onto:GrowthParameterAw>

Remark 1. In the previous examples, each markup is prefixed with an XML
namespace in order to identify what is RDF-related (“rdf” prefix) and what is
domain ontology specific (“onto” prefix). For the sake of readability, we skip these
prefixes for CG in the paper, but they are mandatory in the implementation.

When the RDF description is typed with a class defined in a RDF schema or an
OWL ontology, a corresponding concept type must be created in the concept type
lattice. For example, a GrowthParameterAw subtype of the Resource concept
type is created and the corresponding CG is:

[GrowthParameterAw:uriRow1] - { -> (HasForScore) -> [Literal: 1.0]}

3.2 Translation Rules from RDF Fuzzy Values into Fuzzy CGs

In this section, we focus on the translation of the RDF descriptions representing
fuzzy values. We have seen in section 2.2 that they are typed with the OWL
classes DFS and CFS. The class DFS corresponds to fuzzy sets defined on a
symbolic definition domain which is a type hierarchy. The class CFS corresponds
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to fuzzy sets defined on a numerical definition domain. In [8], where comparison
to previous works can be found, we have proposed an extension of the CG model
to represent and compare fuzzy values. A fuzzy set can appear in two ways in a
concept vertex: (i) as a fuzzy type when the definition domain of the fuzzy set
is hierarchized; a fuzzy type is a fuzzy set defined on a subset of the concept
type set; (ii) as a fuzzy marker when the definition domain of the fuzzy set
is numerical; a fuzzy marker is a fuzzy set defined on a subset of the set of
individual markers. In order to translate the RDF descriptions representing fuzzy
values into fuzzy CGs using the formalism of [8], we introduce the two following
translation rules:

Rule 1. A RDF description typed with the class DFS and all its associated
descriptions typed with the property HasForElement are translated into a generic
concept vertex with a fuzzy type.

Rule 2. A RDF description typed with the class CFS and its associated de-
scriptions typed with the properties HasForMinSupport, HasForMaxSupport,
HasForMinKernel, HasForMaxKernel are translated into an individual concept
vertex with a fuzzy marker.

Moreover, we propose, in the translation, to replace the Literal concept type
presented in section 3.1 by the Numval concept type because we are only con-
cerned by crisp or fuzzy numerical values. For example, the fuzzy CG of figure 4
corresponds to the translation of the fuzzy RDF annotations of figure 3.

GrowthParameterAw:uriRow1
HasForScore

NumVal:1.0

AssociatedDomain

MicroOrg:uriMicro1

AssociatedRange

Aw:uriAw1

IsAnnotatedBy

1.0

Clost.Perf. Clost.Botu.

0.5 :*

HasForSemantic

Similarity:*

IsAnnotatedBy

1.0

0.943
0.97

0.5

NumVal:

0.95
0.96

HasForSemantic

Imprecision:*

HasForUnit

NONE:*

Fig. 4. Translation of the RDF annotations of figure 3 into a fuzzy CG
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3.3 The Terminological Knowledge

We now briefly present the support corresponding to the ontology described in
section 2. This support has been generated using the translation rules presented
above. The concept type set is used to represent the main part of the ontology,
since it is a partially ordered set designed to contain the concepts of a given ap-
plication. It is built as follows. A concept type ta is associated with each type a
of the ontology. If a is a symbolic type, then a concept type tvi is associated with
each element vi of the definition domain of a. The ta’s and tvi ’s are inserted into
the concept type set, w.r.t. the partial order of the definition domain. Further-
more, a concept type tr is associated with each relation r of the ontology. The
set of individual markers is used to store the definition domain of each type
a that is numerical. It is assumed to be IR (see [8]) and contains the numerical
values associated with the concept type Numval. The set of relation types is
used to represent the generic relations of the ontology (HasForScore, Associat-
edkey, AssociatedResult, IsAnnotatedBy, HasForSemantic, HasForUnit). In the
following section, we present the querying of the fuzzy CGs corresponding to the
fuzzy RDF annotations.

4 Flexible Query Processing of a Fuzzy CG Base

In this section, we propose to extend the query processing presented in [2] in or-
der to be able to manage fuzzy CGs including similarity data and imprecise data.
Such an extension allows the end-user to query simultaneously and uniformly each
source of information (relational, CG and XML) of a data warehouse opened on
the Web (as described in [2]) using a given domain ontology. The query processing
proposed in [2] is done through the MIEL query language. It relies on the vocab-
ulary defined in an ontology (as the one defined in 2.1) and proposes a mecha-
nism of query enlargement by means of expression of preferences- represented by
fuzzy sets- in the values of the selection attributes. We present the notion of views,
queries and answers used in the MIEL query language and then the query process-
ing of the fuzzy CG base corresponding to the fuzzy RDF annotations.

4.1 The Views

In the MIEL query language, a query is asked in a view which corresponds
to a given relation of the ontology. A view is a pre-written query allowing the
system to hide the complexity of the database schema. A view is characterized
by its set of queryable attributes and by its actual definition. Each queryable
attribute corresponds to a type of the relation associated with the view. In the
CG querying system, a view is defined by means of a view graph. A view graph
is a pre-defined query graph which has to be instantiated in order to become an
actual query graph.

Definition 4. A view graph V G associated with a view V having n queryable
attributes a1, . . . , an is a couple {G, C} where G is an acyclic conceptual graph
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materializing the view and C={ ca1 , . . . , can} a set of distinct generic concept
vertices corresponding to the queryable attributes of V . The type of each generic
concept vertex cai must correspond to the type associated with the attribute ai.

4.2 The Queries

In the MIEL query language, a query is an instanciation of a given view by
the end-user, by specifying, among the set of queryable attributes of the view,
which are the selection attributes and their corresponding searched values, and
which are the projection attributes. Since the CG base contains fuzzy values
generated by the annotation process, the query processing has to deal with two
new problems (compared with the query processing presented in [2]): taking into
account the pertinence score associated with the semantic relations identified in
Web data tables (see section 2.2) and comparing a fuzzy set expressing querying
preferences to a fuzzy set, generated by the annotation process, having a semantic
of similarity or imprecision. For the first problem, the end-user may specify a
threshold which determines the minimum acceptable pertinence score to retrieve
the data. The second problem is studied in section 4.3.

Definition 5. A MIEL query Q asked on a view V defined on n attributes
{a1, . . . , an} is defined by Q = {V, P, S, thresh} where P ⊆ {a1, . . . , an} is the
set of projection attributes, S = {s1, . . . , sm} is the set of conjunctive selection
attributes and thresh is the minimum acceptable pertinence score for the relation
represented by the view V . Each selection attribute si is associated with an
approximative equality (ai ≈ vi) between an attribute ai ∈ {a1, . . . , an} and its
searched value vi which can be crisp or fuzzy and must be defined on a subset
of the definition domain of ai.

Example 1. The query Q is expressed in the view GrowthParameterAw : Q =
{Microorganism, aw|(GrowthParameterAw(Microorganism, aw) ∧ (Micro−
organism ≈ MicroPreferences) ∧ (aw ≈ awPreferences) ∧ (thresh ≥ 0.5)}.
The fuzzy set MicroPreferences, which is equal to {1.0/Gram+, 0.5/Gram-},
means that the end-user is firstly interested in microorganisms which are Gram+
and secondly Gram-. The fuzzy set awPreferences, which is equal to [0.9, 0.94,
0.97, 0.99], means that the end-user is first interested in aw values in the interval
[0.94, 0.97] which corresponds to the kernel of the fuzzy set. But he/she accepts to
enlarge the querying till the interval [0.9, 0.99] which corresponds to the support
of the fuzzy set. GrowthParameterAw relations having a pertinence score inferior
to 0.5 are discarded.

When a MIEL query Q is asked in the CG system, the view graph associated
with the view V of Q is specialized by instantiating some of its concept vertices
in order to take into account the selection attributes. The result is a query graph
defined as follows:

Definition 6. Let Q = {V , P , S, thresh} be a MIEL query and V G = {G, C}
the view graph associated with V . Let (a ≈ v) be a selection attribute of Q. Let
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cr be the generic concept vertex associated with the relation r represented by
the view V in G. Let ca be the generic concept vertex associated with a in G and
cv the concept vertex linked to ca by the relation vertex IsAnnotatedBy. The
query graph is obtained by a specialisation of G as follows: (i) if a is a numerical
type, cv is an individual concept vertex of type NumVal of which the crisp or
fuzzy individual marker corresponds to v; (ii) if a is a symbolic type, cv is a
generic concept vertex of which the crisp or fuzzy type corresponds to v; (iii)
moreover, an individual concept vertex of type Numval and of fuzzy individual
marker [thresh, 1] is linked to cr by the relation vertex HasForScore.

Example 2. A query graph corresponding to the query of example 1 is presented
in figure 5.

GrowthParameterAw:*
HasForScore

AssociatedKey

MicroOrg:*

AssociatedResult

Aw:*

IsAnnotatedBy

1.0

Gram+ Gram-

0.5 :*

HasForSemantic

SemanticType:*

IsAnnotatedBy

HasForSemantic

SemanticType :*

HasForUnit

UnitType:*

1.0

0.9
0.99

0.5

NumVal:

0.94 0.97

1.0

0.5

NumVal:
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Fig. 5. The selection/projection attributes are framed in bold. One of the selection
attribute values is expressed by a generic concept vertex with a fuzzy type, the second
one is expressed by an individual concept vertex with a numerical fuzzy marker.

4.3 The Answers

An answer to a MIEL query Q must (1) satisfy the minimal acceptable perti-
nence score of Q; (2) satisfy all the selection attributes of Q in the meaning of
definition 7 which is presented below and (3) associate a constant value with each
projection attribute of Q. To measure the satisfaction of a selection attribute, we
have to consider the two semantics -imprecision and similarity- associated with
fuzzy values of the CG base. On the one hand, a fuzzy set having a semantic of
imprecision is a normalized fuzzy set (its kernel is not empty) representing an or-
dered disjunction of exclusive possible values. In the framework of the possibility
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theory (see [9]), two classical measures have been proposed to compare a fuzzy
set representing preferences to a fuzzy set representing an imprecise datum: a
possibility degree of matching and a necessity degree of matching. On the other
hand, a fuzzy set having a semantic of similarity represents an ordered conjunc-
tion of similar values. The comparison of a fuzzy set representing preferences
to a fuzzy set representing similarity is not a classical problem studied in the
bibliography. We propose to use the measure proposed in [10] to make such a
comparison.

Remark 2. When the fuzzy value of a selection attribute has a hierarchized
symbolic definition domain, it is represented by a fuzzy set defined on a subset
of its definition domain. Such a fuzzy set defines degrees implicitly on the whole
definition domain of the selection attribute. In order to take those implicit degrees
into account, the fuzzy set closure has been defined in [11].

Definition 7. Let (a ≈ v) be a selection attribute, v′ a value of the attribute a
stored in the CG base, semv′ the semantic of v′ (similarity or imprecision), μv

and μv′ being their respective membership functions defined on the domain Dom
and cl the function which corresponds to the fuzzy set closure. The comparison
result depends on the semantic of the fuzzy set: If semv′ = imprecision, the com-
parison result is given by the possibility degree of matching between cl(v)
and cl(v′) noted Π(cl(v), cl(v′)) = supx∈Dom(min(μcl(v)(x), μcl(v′)(x))) and the
necessity degree of matching between cl(v) and cl(v′) noted N(cl(v), cl(v′))
= infx∈Dom(max(μcl(v)(x), 1 − μcl(v′)(x))). If semv′ = similarity, the compar-
ison result is given by the adequation degree between cl(v) and cl(v′) noted
ad(cl(v), cl(v′)) = supx∈Dom(min(μcl(v)(x), μcl(v′)(x))).

As the comparison results associated with the selection attributes are not com-
mensurable, it is not possible to aggregate them in order to deliver a total order
of the anwers. A partial order could be defined, but we consider that it is not easy
to be interpreted by the end-user. So, we propose to aggregate, using the min
operator (which is classically used to interpret the conjunction), the comparison
results which correspond to fuzzy sets having the same semantic (similarity or
imprecision). Therefore, each answer is associated with four scores: a pertinence
score psr associated with the relation r, a global adequation score adg associ-
ated with the comparison results having a semantic of similarity and two global
matching scores Πg and Ng associated with the comparison results having a se-
mantic of imprecision. Based on those scores, we propose to define a total order
on the answers which gives greater importance to the most pertinent answers
compared with the ontology. Thus, the answers are successively sorted accord-
ing to: firstly, psr the pertinence score associated with the relation; secondly,
adg which indicates in which extend the terms of the data cells are similar to
the terms of the ontology (see section 2.2); and thirdly a total order defined on
Πg and Ng. In order to obtain a total order on the comparison results having
a semantic of imprecision, we consider, as proposed in [12], that the necessity
degree is of greater importance than the possibility degree (Πg). Indeed, when
the necessity degree (Ng) is positive, we are (more or less) certain that the item
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matches the requirement. So, the answers are first sorted on the values of their
Ng and then on their Πg in case the Ng values are equal.

Definition 8. An answer to a MIEL query Q = {V, P, S, thresh} is a set of
tuples, each of the form {psr, adg, Πg, Ng, v1, . . ., vl}, where psr is the pertinence
score associated with the relation r represented by the view V ; adg the global
adequation score (see definition 9) associated with the comparison results having
a semantic of similarity; Πg and Ng the global matching scores (see definition
9) associated with the comparison results having a semantic of imprecision; and
where v1, . . ., vl correspond to the crisp or fuzzy values associated with each
projection attribute ai ∈ P .

Example 3. The answer to the query of example 1 (corresponding to the query
graph of figure 5) considering the content of the Web data table of figure 2 is
: {{psr = 1, adg = 0.5, Ng = 1, Πg = 1, Microorg=(0.5/Clostridium Perfrin-
gens+0.5/Clostridium Botulinum), aw=[0.943, 0.95, 0.96, 0.97]}, { psr = 1,
adg = 0.5, Ng = 0.5, Πg = 0.68, Microorg=(0.5/Staphylococcus spp.+0.5/Sta-
phylococcus aureus), aw=[0.88, 0.98, 0.98, 0.99]}, { psr = 1, adg = 0.5, Ng = 0,
Πg = 0.965, Microorg=(1.0/Salmonella), aw=[0.94, 0.99, 0.99, 0.991]}}.

4.4 The CG Query Processing

The query processing of a MIEL query Q consists in selecting the view graph
associated with the view V of Q, building the corresponding query graph G,
and “approximate”-projecting G into the CG base. As a matter of fact, the
query processing in the CG system consists in searching for CGs which con-
tain a more precise information than the information contained in the query
(we search for specializations of the query graph) or, at least, for CGs which
contain “approximate” answers. In order to find such CGs, we propose to use
the “approximate”-projection operation which is a flexible mapping operation
between two CGs. The “approximate”-projection is adapted from the classic
projection operation using the comparison results presented in definition 7.

Definition 9. An “approximate”-projection AP from a conceptual graph G into
a CG G′ is a tuple (f, g, adg, Ng, Πg), f (resp. g) being a mapping from the re-
lation (resp. concept) vertices of G into the relation (resp. concept) vertices
of G′ such that: (i) the edges and their labels are preserved; (ii) the labels
of the relation vertices can be specialized; (iii) each concept vertex ci of G
has an image g(ci) such that if g(ci) is linked to a generic concept vertex of
type Imprecision (resp. Similarity) by a relation vertex of type HasForSeman-
tic, then g(ci) satisfies ci with the degrees N(ci, g(ci)) and Π(ci, g(ci)) (resp.
the degree ad(ci, g(ci))) of Definition 7. The global matching scores (Ng, Πg)
and the global adequation score adg between G and G′ are computed as fol-
lows: Ng = mini(N(ci, g(ci))) and Πg = mini(Π(ci, g(ci))), with 1 ≤ i ≤ nbimp

(nbimp being the number of concept vertices in G which have an image in G′

having a semantic of imprecision); adg = mini(ad(ci, g(ci))), with 1 ≤ i ≤ nbsim

(nbsim being the number of concept vertices in G which have an image in G′

having a semantic of similarity).
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The “approximate”-projection allows one to retrieve from the CG base a set of
answer graphs which must satisfy the threshold thresh defined in the query.

Definition 10. Let G be a query graph associated with a MIEL query Q=
{V , P , S, thresh}. Let AP be an “approximate”-projection from G into a CG
base H and AG a partial subgraph of H . Let cr be the generic concept vertex
associated with the relation r represented by the view V in G. AG is an answer
graph to the query graph G if there exists a surjective “approximate”-projection
AP ′ from G into AG such that AP ′ ⊆ AP , N(c, g(c)) = 1 and Π(c, g(c)) = 1
where c is the fuzzy individual concept vertex of type Numval associated with
cr by the relation vertex HasForScore and g(c)2 its image by AP ′.

An answer to a query Q is then a set of tuples, each tuple being built from an
answer graph AG of the query graph G associated with Q as defined below.

Definition 11. Let Q = {V , P , S, thresh} be a MIEL query and G the query
graph associated with Q. Let AG be an answer graph of G. An answer to the
query Q is a set of tuples, each of the form {psr, adg, Πg, Ng, v1, . . ., vl} where:

– psr is the pertinence score associated with the relation r represented by
the view V of Q. Let cr be the generic concept vertex associated with the
relation r in G and c′r be the generic concept vertex image of cr in AG. The
pertinence score is the individual marker of the individual concept vertex of
type Numval linked to c′r by the relation vertex HasForScore in AG;

– adg, Πg and Ng are the global scores associated with the “approximate”-
projection AP from G into AG as defined in definition 9.

– v1, . . ., vl correspond to the values associated with each projection attribute
ai ∈ P . Let cai be the generic concept vertex associated with ai in G. Let c′ai

be the generic concept vertex image of cai in AG and c′vi
the concept vertex

linked to c′ai
by the relation vertex IsAnnotatedBy. The value vi associated

with the projection attribute ai is: (i) if ai is a symbolic type, vi is the fuzzy
type of the generic concept vertex c′vi

; (ii) if ai is a numerical type, vi is the
marker of the individual concept vertex c′vi

of type NumVal;

Example 4. The answer to the query graph of figure 5 asked on the CG of fig-
ure 4 is: { psr=1.0, adg = 0.5 , Πg = 1.0, Ng = 0.0, Microorg=(0.5/Clostridium
Perfringens+0.5/Clostridium Botulinum), aw=[0.943, 0.95, 0.96, 0.97] }.

5 Conclusion

In this paper, we have proposed a flexible querying system of fuzzy RDF anno-
tations based on (i) translation rules of fuzzy RDF annotations into fuzzy CGs
and (ii) an “approximate”-projection operation which is able to compare fuzzy
CG queries with fuzzy CG annotations. A very next step will be to experiment
2 g(c) is considered as a particular case of a fuzzy individual concept vertex of type

Numval having a semantic of imprecision.
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the performances and to test the genericity of this system using different corpus
of annotated Web data tables (risk in food and aeronautics). This work is done
in the framework of the WebContent project financed by the French National
Research Agency (ANR). In this project, the flexible querying system will be
incorporated in a decision support system in the field of risk in food. Its added
value will be to complement data retrieved from local databases unsufficient for
statistical analysis with additional data retrieved from the Web.
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Abstract. Conceptual graphs are a good choice for constructing and
exploiting a knowledge base. In several of our projects (semantic portal
for e-tourism, exploitation of digital object corpus, etc.), we have to
query such bases. So it is natural to consider queries and bases as simple
graphs and to compute the set of all projections from a query to a base.
However, there is a problem of the return of this set of projections to
the user. More generally, the main issue is about the definition of the
notion of answers in an query-answering system made of knowledge bases
formalized by graphs (Conceptual Graphs, RDF (Resource Description
Framework) , Topic Maps, etc.). In this paper, we study several notions
of answers and some of their characterizations. We distinguish between
notions of answers by subgraphs of the base and answers by creation
of result graphs. For the last type of answers, we define completeness,
non-redundancy and minimality criteria of the answer sets and propose
several notions of answers w.r.t these criteria.

1 Introduction

Many knowledge applications involve the elaboration and use of knowledge bases.
Some examples are document management, digital object corpus management,
enterprise knowledge repositories, construction of semantic portals, teaching aid
management, the semantic web, etc. Two general contexts for using such bases
can be noted, whereby use of these bases presupposes a query Q specifying the
knowledge to be searched:

– Annotation context: resources are annotated by “descriptions” characteriz-
ing it; in this case, the exploitation is based on a search of resources whose
annotations contain specific knowledge (e.g. [1,2,3]). This type of exploita-
tion only requires a definition of a deduction notion allowing selection of
descriptions D (and thus the resources R linked to these descriptions) which
are deductions of the searched knowledge Q. The set of answers to a query
Q on an annotation base B is {R | (R, D) ∈ B ∧ D |= Q};

– Knowledge base context: some unstructured data that comply with a formal
vocabulary defined by an ontology are stored in a base of assertions [4];
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a querying system allows extraction of knowledge from the base (moreover,
this type of exploitation could be used in the annotation context, considering
descriptions of a subset of resources). This type of exploitation also needs
a deduction notion to characterize the existence of an answer, but it also
requires a definition of what should be returned to a query Q on such a
knowledge base.

In this paper, we propose a preliminary answer to this question in the framework
of knowledge bases formalized by conceptual graphs [5]. The long-term goal of
this work is to define a query language for conceptual graphs and to implant it
as a knowledge server over the CoGITaNT framework [6]. This first approach is
a study of different notions of answers constructed from projections of a query
graph Q to a graph base B.

In a knowledge base querying system with a formal semantic, answers are
built upon “pre-answers” that are logical consequences of the base proving the
existence of answers. A query is often composed of two parts: an head which
specifies how answers are constructed from the “pre-answers”, and a body which
details how to select these “pre-answers”. In the case of a base only made of
conjunctive assertions, these “pre-answers” are the “smallest parts” of the base
which has the body of the query as a logical consequence.

In this work, we only consider such simple bases (i.e. without rules) formal-
ized by conceptual graphs [7], although our results could be directly applied to
other labeled graph formalisms, particularly to RDF/S knowledge bases of the
semantic web [8] (cf. [9] for an equivalence of the two formalisms).

Unlike relational databases, these formalisms allow the introduction of an or-
der relation over relations permitting the representation of a simple ontology
and, more importantly, the use of variables in the base. In the querying mecha-
nism, this leads to the problem of “pre-answer” equivalence and thus the problem
of the definition of the answer notion.

We consider queries whose body is a conceptual graph and focus on the defi-
nition of several “pre-answer” notions. The main goal of this preliminary work is
to study redundancy problems of these “pre-answers” which arise regardless of
following operations applied to these “pre-answers” (e.g. specifyingthe concepts
to keep by a lambda, or constructing a new graph with these answers).

As far as we know, this topic has not yet been studied. Several proposals have
been made on querying relational databases with conceptual graphs [10,11,12].
Many studies have been conducted in an annotation context (e.g. [13,2]). An adap-
tation of relational algebra to the context of conceptual graph knowledge bases has
been studied by S. Coulondre [14]. The relational bias limits answers to tuples of
individuals over which several relational algebra operators are used (moreover,
this author did not seem to consider variable-free knowledge bases). The most
similar works were carried out by C. Gutierrez et al. [15], who studied querying of
knowledge bases of the semantic web formalized by RDF/S, but the set of “pre-
answers” is not fully detailed, particularly the problem of answer redundancies.

The following section briefly introduces the main notions of the conceptual
graph formalism upon which our work is based. Section 3 defines the querying
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model. Section 4 proposes several notions of answers and answer criteria based
on the answers redundancy problem. Finally, the conclusion proposes some ideas
for other types of answers.

2 SG Formalism

The CG formalism we use in this paper has been developed at LIRMM over the
last 15 years [7]. The main difference with respect to the initial general model
of Sowa [5] is that only representation primitives allowing graph-based reason-
ing are accepted. Several extensions that preserve this link with graph theory
have been introduced (rules, constraints, conjunctive types, nested graphs, etc.),
however, for the sake of clarity and presentation, we only present the simplest
model in this paper.

Simple graphs (SGs) are built upon a support, which is a structure S =
(TC , TR, I, σ) where TC is the set of concept types, TR is the set of rela-
tions with any arity (arity is the number of arguments of the relation). TC and
TR are partially ordered sets. The partial order represents a specialization re-
lation ( t′ ≤ t is read as “t′ is a specialization of t”). I is a set of individual
markers. The mapping σ assigns a signature to each relation specifying its arity
and the maximal type for each of its arguments.

SGs are labeled bipartite graphs denoted by G = (CG, RG, EG, lG) where CG

and RG are the concept and relation node sets respectively, EG is the set of edges
and lG is the mapping labeling nodes and edges. Concept nodes are labeled by a
couple t : m where t is a concept type and m is a marker. If the node represents
an unspecified entity, its marker is the generic marker, denoted ∗, and the node
is called a generic node, otherwise its marker is an element of I, and the node
is called an individual node. Relation nodes are labeled by a relation r and, if n
is the arity of r, it is incidental to n totally ordered edges.

A graph G = (CG, RG, EG, lG) is consistent w.r.t. a support S = (TC , TR, I, σ)
if :

– the labels of the concept nodes (resp. relation nodes) belong to (TC×(I∪{∗}))
(resp. TR);

– the relation nodes satisfy their signatures defined by σ.
– for each individual marker i of G, types of concept nodes with this marker

have a greatest lower bound. This condition can differ if one considers a
conformity relation in the support, if one imposes a lattice structure to the
ordered set of concept types, if banned types are considered (a disjointness
type axiom), etc.

A specialization/generalization relation corresponding to a deduction notion is
defined over SGs and can be easily characterized by a graph homomorphism
called projection. When there is a projection π from G to H , H is considered to
be more specialized than G, denoted H ≤ G. More specifically, a projection π
from G to H is a mapping from CG to CH and from RG to RH , which preserves
edges (if there is an edge numbered i between r and c in G then there is an edge
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numbered i between π(r) and π(c) in H) and may specialize labels (by observing
type orders and allow substitution of a generic marker by an individual one).

Conceptual graphs are provided with a first-order-logic semantics, defined by
a mapping denoted Φ.

The fundamental result of projection soundness and completeness establishes
the equivalence between projection and deduction on formulas assigned to SGs:
given two SGs G and H on a support S, there is a projection from G to H if and
only if Φ(G) can be deduced from Φ(H) and Φ(S). Completeness is obtained up
to a condition on H : H has to be in a normal form, so any individual marker
must appear at most once in it (i.e. a specific entity cannot be represented by two
nodes). An SG consistent w.r.t. a support can be easily normalized by joining
concept nodes with a same individual marker. The normal form of a consistent
graph G is denoted norm(G).

Two notions of equivalence can be defined over SGs: a syntactic equivalence,
and a semantic one. The syntactic equivalence is characterized by the existence of
an isomorphism between two graphs (which is a bijective mapping from nodes of
one of the graphs to nodes of the other preserving edges and without label special-
ization). The semantic equivalence is characterizedby the existence of a projection
from the first graph to the normal form of the second, and from the second to the
normal form of the first and corresponds to a logic equivalence between formula
associated with graphs: Φ(S) |= Φ(G) ↔ Φ(H) iff there is a projection from G to
norm(H) and a projection from H to norm(G) (denoted G ≡ H).

This equivalence relation defines classes of equivalent SGs. SGs in figure 1
are from the same equivalence class. In each class, some graphs contain useless
knowledge repetitions (redundancies) and there is a sole smallest graph with no
redundancy, called the irredundant graph of the class (cf. [16]). A graph that is
not in normal form contains redundancies (if two concept nodes have the same
individual marker).

A subSG H = (CH , RH , EH , lH) of an SG G = (CG, RG, EG, lG) is an SG,
where :

– CH ⊆ CG and RH ⊆ RG

– EH is a restriction of EG to elements of CH ×RH

– lH is a restriction of lG to elements of H .

A strict sub-SG of G is a sub-SG with a strictly inferior number of nodes.

Characterization: An SG is said to be redundant if it is not in normal form or if it
is equivalent to one of its strict sub-SGs. Otherwise, it is said to be irredundant,1.

Property: [16] An equivalence class contains one and only one irredundant SG,
which is the graph (single up to isomorphism) with the smallest set of nodes.

An algorithm to compute the irredundant form of an SG, whose complexity
is polynomially related to the complexity of the projection algorithm, has been
described in [17].

1 Note that our irredundant definition is stricter than that given in [7].
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Fig. 1. Three equivalent SGs built on a support

3 Studied Querying Model

The chosen context is a knowledge base composed of assertions of entity exis-
tences and relations over these entities, called facts, and stored in a single graph
(not necessarily connected) consistent w.r.t. a given support. A support can be
seen as a basic ontology. This framework does not put forward hypotheses on
how facts have been collected and does not prohibit the existence of metadata
(date, etc.) on facts composing the base (e.g. a selection mechanism of facts to
be queried based on metadata). The only important hypothesis put forward is
that all of the facts of the base to be queried are consistent relative to each other
(with respect to individual markers) and consistent w.r.t. the support. Figure
1(a) presents the support used in the following examples of the paper.

The SG base is assumed to be normalized. The base can be redundant because
the irredundancy of the base does not solve the problem of answer redundancies,
and computation of the irredundant form is expensive as the base can be large.
Computation of the normal form is linear in the size of the base. Moreover, it
is easy to write an incremental algorithm (called for each addition of knowledge
in the base and whose complexity depends only on the size of the addition) for
the normalization, whereas it seems difficult to find such an efficient algorithm
for computation of the irredundant form.

From propositions of querying languages proposed for such knowledge base
(e.g. SPARQL [18]), their definitions are clearly based on several mechanisms:

1. Adaptation of the base to the query, which consists of computing a base D′

from a base D by application of a set of updating operations P (e.g. rule
applications).
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2. Selection of relevant parts of the base that respond to the query. This se-
lection is made of “patterns” which specify selection criteria of base parts
useful for contruction of the answer. These patterns have the same formal-
ism as the base or indirectly of the same formalism because of the addition
of variables. Thus these patterns are used like filters to select relevant base
parts.

3. Verification of properties allowing to impose complementary selection criteria
differing from a simple assertion of relations between entities : path existence,
constraints (not present in the representation language) on the entity linked
to a variable.

4. Construction of an answer from these parts, which is a specification of the
type of answer to return (tuples of values associated with query variables, a
graph built from all parts, the number of answers, etc.).

The second point is the core of the querying mechanism. Constructing a query
boils down to making assertions with unknown values (variables) which is infor-
mation to be retrieved. When the formalism allows the introduction of variables
in the base, it is important to know what to do when these variables are linked
with query variables.

In our formalism, the selection criterion is a given SG Q, called the query
SG. There is no constraint on the query (in terms of relevance, normalization or
irredundancy). However, it seems natural to verify the consistency of the query
w.r.t. the support of the base to avoid queries with no links to the base. One can
consider to compute the irredundant form of the query as the size of the query
is generally small. One can consider an unconnected query as several queries.

Therefore as one considers formalisms provided with a formal semantic, one
can define “relevant parts” as “the smallest subgraphs” of the base whose query
graph is a logical consequence; such subgraphs are called pre-answers in [15]. In
conceptual graph formalism, the existence of an answer is directly linked with the
existence of a projection and a pre-answer is just the query image of a projection.

Definition 1 (Proofs of answers). Let B be an SG base and Q an SG query,
a proof of answer is a projection π from Q to B. The set of proofs of answers
from Q to B is denoted Π(Q, B): Π(Q, B) = {πi | πi : Q −→ B is a projection}.

Definition 2 (Images of proofs). An image of a proof (or pre-answer), de-
noted π(Q), is a sub-SG of B, image of the proof of answer π from Q to B.
The images of proofs sequence from a query Q to a base B, denoted IP (Q, B),
is IP (Q, B) = 〈π1(Q), ..., πn(Q)〉, where n is the size of Π(Q, B).

All examples of the paper are from base and query of figure 2. Base is the SG of
the figure 1(d). There are six projections of the query to the base, and thus six
images of proofs. We have named some vertices (c1, r2, etc.) of graphs to refer
directly to one vertex or to distinguish different subgraphs (see figure 3).

Therefore answers are based on images of proofs, one may have to return the
same subgraph of B several times. In the example of figure 2, projections πi =
{(ca, c1), (rb, r2), (cb, c3), (rc, r3), (cc, c4)} and πj = {(ca, c1), (rb, r3), (cb, c4),
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Fig. 2. Base and query (with named vertices)

(rc, r2), (cc, c3)} define the same subgraph (R5 on figure 3). One can choose two
ways to solve this problem:

– Considering it as the same answer (several proofs for the answer)
– Differentiating answers by representing the projection in answer graphs (e.g.

by adding id of query vertices to their images vertices in answers).

We consider only the first case, as we want to express answers in the same
language (structure and vocabulary) as the base and query.

4 Different Notions of Answers

In this section we study several kinds of answers. The first type of notion is to
keep base subgraphs, similary to images of proofs.

4.1 Answering by Base Subgraphs

The most basic answer that can be returned is the set of images of proofs.

Definition 3 (Answer by image subgraphs). The set of images of proofs of
a query Q in a base B, noted RIP (Q, B), is RIP (Q, B) = {π(Q) | π ∈ Π(Q, B)}.

This answer notion can be used to select exploration start points of the base
(by focusing a subgraph of B), to explore the base or to be a first step of base-
updating queries. Figure 3 shows all of the five subgraphs answering the query.

4.2 Answering by Base-Independent Graphs

In many cases, the query language should allow knowledge extraction rather than
“pinpointing” knowledge in the base. Answers are “copies” of base subgraphs.
Thus, answers result from the construction of isomorphic graphs of images of
proofs.

Since answer graphs are constructed up to an isomorphism, two isomorphic
graphs should be considered equal. The set of answers is no longer a set of sub-
graphs of B, but rather a set of graphs isomorphic to images of proofs subgraphs
of B. In such a set of answer graphs there are no two isomorphic graphs.
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Fig. 3. The five subgraphs composing RIP (Q, B)

Definition 4 (Graph set (iso-set)). A graph (iso-)set {G1, ..., Gn} is a set
of graphs in which, for all i, j with i �= j, Gi is not isomorphic to Gj.

Hereafter, the term “set of graphs” is short for the preceding iso-set notion (a
set has no more two isomorphic graphs)2.

An iso-answer is an answer notion corresponding to computation of all iso-
morphic graphs to images of proofs. On the example, RISO(Q, B) is equal to
graphs in figure 4.
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Fig. 4. Graphs composing RISO(Q,B)

Definition 5 (Iso-answer). An iso-answer from Q to B is an isomorphic
graph corresponding to an image of a proof from Q to B. The set of iso-answers
is RISO(Q, B) = {G | where Gi ∈ RIP (Q, B) with Gi isomorphic to G}

With this answer notion, the link with the base is lost (particularly when the
answer has no individual marker) since it is unknown which nodes of the base
corresponds to a generic node of an answer, or even how many images of proofs
correspond to the same answer graph 3. Only the proof of the existence of a
2 The images of proofs sets can contain isomorphic subgraphs (if they are not the

same subgraph of the base).
3 The open world assumption of knowledge bases does not indicate whether two dif-

ferent but isomorphic images of proofs represent the same “situation” of the world,
or two similar “situations”.
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particular knowledge in the base is preserved with this notion. Thus, one can
question the relevance of only considering isomorphism (i.e. a syntactic equiva-
lence) as an equivalence criterion. In our example, graphs Rb and Rc in figure 4
both state that “there is a cube on top of a cube”.

It seems advisable to detect equivalent answers (in terms of semantics) and
to only keep one graph of each equivalent class. We define a criterion of such a
set of answers :

Definition 6 (Without equivalence criterion). A set of answers R(Q, B) ⊆
RISO(Q, B) is “without equivalence” iff ∀Gi ∈ R(Q, B), �Gj ∈ R(Q, B) with
Gj �= Gi with Gi ≡ Gj .

Two types of equivalences arise. The first is from the implicit relation of equal-
ity of two nodes having the same individual marker. This type of equivalence is
avoided by the base normalization; therefore all images of proofs are in normal
form (even if the query is not normalized). The second comes from the intrinsic
redundancies of the language, and cannot be handled previously, because even
if the base and query are irredundant, proof subgraphs are not necessarily irre-
dundant (in the example, image of a proof R5 is redundant despite that base
and query are irredundant).

In each equivalence class, there is a single graph (up to isomorphism) that is
the smallest graph of his class: it is the irredundant form. It seems natural to
choose this graph to represent one equivalence class of images of proofs. In the
example, RIRR(Q, B) is equal to graphs Ra and Rc in figure 4.

Definition 7 (Irredundant answers). The set of irredundant forms of images
of proofs from Q to B is RIRR(Q, B) = {Irr(G) | G ∈ RISO(Q, B)}.

This notion of irredundant answers may seem strange because one may think that
an answer could not be isomorphic to an image of a proof. The following property
holds that the irredundant form of each image of a proof is itself an answer (up
to isomorphism) and that the set RIRR(Q, B) does not have equivalent answers.

Proposition 1. RIRR(Q, B) ⊆ RISO(Q, B) is “without equivalence”.

Proof. For all G ∈ RIRR(Q, B), there is G′ ∈ RIP (Q, B) such that G is isomor-
phic to Irr(G′). So there is a projection π′ from Q to B such that π′(Q) = G′.
There is also, by definition of the irredundant form, a projection πr from G′ to
B such that πr(G′) = Irr(G′). Thus there is a projection π = πr ◦ π′ from Q to
B such that π(Q) = Irr(G′) and so isomorphic copy of Irr(G′) is an answer of
RISO(Q, B). The unicity property of the irredundant form (up to isomorphism)
in each equivalence class and our notion of graphs defined up to an isomorphism
lead to the conclusion that RIRR(Q, B) is without equivalence.

The notion of answers without equivalence is not sufficient because, as one does
not want to keep two equivalent answers, only answers that add new knowledge
compared to other answers should be conserved. In the example, answer Ra

states that “there is a cube that touches cube A and that is on top of a cube”
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and answer Rb states that “there is a cube on top of a cube”, so knowledge of
Rb is expressed by Ra. So we introduce a new incomparability criterion in the
next section.

4.3 Sets of Incomparable Answers

Two answers are comparable if knowledge stated by the first is deducible 4 from
the other. Once there are comparable answers in a set of answers, there is re-
dundancy between them. The idea is to eliminate this redundancy by keeping
only incomparable answers.

Definition 8 (Incomparability criterion). A set of answers R(Q, B) ⊆
RISO(Q, B) is “without redundancy” when all of its answers are incomparable:
∀Gi, Gj ∈ R(Q, B) with Gj �= Gi, Gi � Gj.

Given a set of answers RISO(Q, B) there is not a single subset “without redun-
dancy” (e.g. {Ra} or {Rb}). A natural constraint is to make such a subset to
not remove too many answers, i.e it has to be maximal by inclusion.

Definition 9 (Maximality criterion). A set of incomparable answers R(Q,
B) ⊆ RISO(Q, B) is “maximal” when no other answer can be added without
adding redundancy: ∀G ∈ RISO(Q, B) \R(Q, B), ∃G′ ∈ R(Q, B) such that G′ ≤
G or G ≤ G′.

This notion still does not ensure unicity of such a subset. One can want to con-
strain a bit more the notion of maximality by forcing the subset of answers R to
be complete, as one wishes that all of the answers of RISO(Q, B) can be deduced
from answers of the subset. We thus extend the logical interpretation operator Φ
from SGs to sets of SGs by taking the conjunction of logical formula associated
with each graph of the set : so if R = {r1, ...rn}, Φ(R) = Φ(r1) ∧ ... ∧ Φ(rn).

Definition 10 (Completeness criterion). A set of answers R(Q, B) ⊆ RISO

(Q, B) is complete iff Φ(S), Φ(R(Q, B)) |= Φ(RISO(Q, B)).

We call the normalized disjoint union (NormalizedDisjointUnion) of a set of
graphs E, the normal form of the graph resulting from the join of nodes and
edges (and labeling functions) of graphs of E.

Proposition 2. A set of answers R(Q, B) ⊆ RISO(Q, B) is complete iff the nor-
malized disjoint union of R(Q, B) is more specialized than all of the answers of
RISO(Q, B), i.e. ∀G ∈ RISO(Q, B), NormalizedDisjointUnion(R(Q, B)) ≤ G.

The proof is trivial, note that Φ(NormalizedDisjointUnion(R(Q, B)) ≡ Φ
(R(Q, B)).

4 One could distinguish cases of a simple knowledge inclusion from cases of general de-
duction by using ontology knowledge, depending on the level of ontology knowledge
appropriation by the user.
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Corollary 1. A set of complete incomparable answers is maximal.

The completeness criterion still does not ensure unicity of a subset of answers
(because of equivalent answers). A natural choice is to take the smallest set of
answers. This leads to the definition of a minimality criterion based on a notion
of answer size and equivalence of answers sets.

Definition 11 (Answer size). The size of a set of answers R(Q, B) is the sum
of the number of nodes of all answers: Σg∈R(Q,B)card(g).

Definition 12 (Answers sets equivalence). Two sets of answers R(Q, B)
and R′(Q, B) of a query Q on base B and consistent w.r.t. a support S are
equivalent iff Φ(S) |= Φ(R(Q, B)) ↔ Φ(R′(Q, B)).

Definition 13 (Minimality criterion). A set of answers R(Q, B) ⊆ RISO(Q,
B) is minimal iff there is not an equivalent set of answers with a strictly smaller
size.

Proposition 3. R(Q, B) is minimal iff R(Q, B) ⊆ RIRR(Q, B).

Corollary 2. Each minimal set is unique (up to isomorphism).

The previous proposal and its corollary can be easily deduced from irredundant
graph properties.

Completeness and minimality constraints define a notion of answer that seems
more appropriate when one searches to retrieve knowledge stored in a knowledge
base.

Definition 14 (Most specific answers). The set of the most specific irre-
dundant answers is RMIN (Q, B) = {G ∈ RIRR(Q, B) | �G′ �= G ∈ RIRR(Q, B)
with G′ ≤ G}.

On the example, RMIN (Q, B) is equal to graph Ra in figure 4.

Theorem 1. RMIN (Q, B) is the only complete minimal and incomparable sub-
set of answers of RISO(Q, B).

Proof. • Incomparability: RMIN (Q, B) is by definition composed of the most
specific elements of RIRR(Q, B), and as two elements of RIRR(Q, B) are not
equivalent, all of the answers of RMIN (Q, B) are incomparable. • Complete-
ness: RIRR(Q, B) is complete because each answer of RISO(Q, B) is equivalent
to a graph of RIRR(Q, B). By the definition of RMIN (Q, B), one deletes in
RIRR(Q, B) only Gi which is more general than another graph of RIRR(Q, B).
Thus, RMIN (Q, B) is complete. • Minimality and unicity: RMIN (Q, B) is a
subset of RIRR(Q, B), thus it is minimal and unique w.r.t. corollary 2. ��

One can define an answer notion like that on the most specific element, but this
time with the most general ones. This notion is like a “summary” of the set of
answers: not all of the answers are returned, but a minimal subset generalizing
all of the answers.
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Definition 15 (Summary). A set of answers R(Q, B) ⊆ RISO(Q, B) is a
summary iff it is minimal and it generalizes all of the answers of RISO(Q, B),
that is ∀G ∈ RISO(Q, B), ∃G′ ∈ R(Q, B) such that G′ ≥ G.

Definition 16 (Maximal answer). The set of all of the most general irredun-
dant answers is RMAX(Q, B) = {G ∈ RIRR(Q, B) | �G′ �= G ∈ RIRR(Q, B)
with G′ ≥ G}.

Property 1. RMAX(Q, B) is the sole minimal and maximal subset of incompa-
rable answers of RISO(Q, B).

The proof is similar to the proof of property 1. In the example, RMAX(Q, B) is
equal to graph Rc in figure 4.

4.4 Case of Bases Composed of (Only) Individual Concepts

A special case is when a knowledge base does not contain any variables (cor-
responding to relational databases). In such bases, there is only a kind of re-
dundancy from redundant relations between concepts (relations whose type is
comparable and with the same ordered set of neighbors). Computation of the
irredundant form is thus linear and incremental.

Proposition 4. In an irredundant base whose concepts are all individual, all of
the images of proofs of any query on this base are non-isomorphic and
irredundant.

Proof. A base in normal form and which only contains concepts that are indi-
viduals does not contain concept nodes with the same label (nor comparable
concept nodes in terms of specialization/generalization). Moreover, as the base
is irredundant, it does not contain redundant relations between concepts (all the
more with the same label). So there is not any isomorphism (or projection) from
a subgraph of the base to another (except identity relation). Images of proofs
are base subgraphs so they are non-isomorphic. They are irredundant because
none of the base subgraph can be projected in one of its strict subgraphs (since
there is no projection from a base subgraph in another, except identity). ��

Corollary 3. If B is irredundant, for any query Q there is a bijection from the
set of images of proofs RIP (Q, B) to their copies RISO(Q, B), and RISO(Q, B) =
RIRR(Q, B).

5 Conclusion

In this paper we define two main notions of answers to a query in the knowledge
base querying framework: the first is composed of base subgraphs that can allow
browsing in the knowledge base or that can be used as a first step to update
queries; the second consists of graphs independent of the base. We define several
good criteria for this last notion: the non-equivalence of answers, the incompa-
rability of answers, the completeness of a set of answers, and the minimality (in
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terms of size) of a set of answers. The most interesting notion of answer w.r.t.
these criteria is the set of the most specific irredundant answers. However, in
one of our projects, we need the notion of answers of the set of most general
irredundant answers, as these answers are used as the body of new queries in
another knowledge base.

An another answer notion, not developed in this paper is the construction of
a graph resulting from the disjoint sum of all answers. the definition of such a
notion gives a closed querying system (query, knowledge base and answer are in
the same formalism) and allows us to reuse the result of a query as a knowledge
base (nested queries).

Finally, in this paper, we overcome redundancies between answers by deleting
answers. Another possibility is to overcome redundancies (when it is not a re-
dundancy of the knowledge base itself) by completing answers by the addition
of knowledge from the base allowing to differentiate redundant answers. We are
currently working on a definition of such an answer contextualization mechanism.
This kind of mechanism seems relevant for such knowledge bases because, contrary
to relational databases in which a hypothesis is put forward that the creator of the
request knows the schema of the database, they are by definition weekly structured
and the only reasonable hypothesis put forward is that the creator can verify that
his query is correct w.r.t. the ontology. A contextualization mechanism thus al-
lows to respond to queries of the type: “What knowledge can I have on animals
owned by Mary?” with a set of such answers : { “Mary owns a pedigree animal”,
“Mary owns a cat offered by her father”,“The preferred animal that Mary owns is
a cat”} rather than the only answer “Mary owns a cat”.
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Abstract. We propose a variation of the attribute exploration algo-
rithm. Instead of implications with pseudo-intents as premises our ap-
proach uses implications with proper premises. It is known that the set
of implications with proper premises is complete, but in general it is
not minimal in size. This variation will allow us to calculate all impli-
cations of a formal context with premise size at most n, for some fixed
n ∈ N. This is of interest if the attribute set is large and the user requests
valid implications with small premises. Other applications can be seen
for formal contexts where the maximal premise size of an implication
with proper premise is known, for example multivalued contexts scaled
by multiordinal scales only.

1 Introduction

The procedure of attribute exploration is an algorithm developed by B. Ganter
in [GW86, G87, G99] to build up an expert system on a certain domain. Im-
plementations are available for instance in ConImp

1 by P. Burmeister and in
ConExp

2 by S. Yevtushenko.
In the following, the elements of the domain G are called objects. These objects

can be classified with the help of attributes. The set of all attributes will be called
M . The natural relation “object g has attribute m” will be encoded by g I m.
We use notions of formal concept analysis, the triple K = (G, M, I) will be called
formal context. The following definitions can be found in [GW99].

For building up the expert system, the exploration algorithm gives questions
to answer. These questions always have the form of implications, that is:

Is it true, that if an object has attributes p1 and p2 . . . and pk1 then it
also has attributes c1, c2, . . . , and ck2 ?

We will focus on finite sets of attributes and hence k1 and k2 are natural numbers
less or equal to the size of M .

1 http://www.mathematik.tu-darmstadt.de/∼burmeister/
2 http://conexp.sourceforge.net/
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Formally, the questions are given in pairs of sets of attributes and often they
are written as P → C, with P, C ⊆ M . The set P is called premise, C is called
conclusion, and the pair is called implication. A set A of attributes respects an
implication P → C if P �⊆ A or C ⊆ A. A set A of attributes respects a set
L of implications if it respects every element of L. The set of all implications
respected by all all object intents {g′ | g ∈ G} is denoted by Imp(K). Additionally
for n ∈ N we denote by

Impn(K) = {A→ B ∈ Imp(K) | |A| ≤ n}

the set of implications with at most n-element premise.
An implication A → B follows (semantically) from a set of implications L if

each subset of M respecting L also respects A → B. A set L of implications is
called complete if every implication of Imp(K) follows from L.

If we consider a set of implications L, then a larger set of implications 〈L〉 ⊇ L
can be deduced from this set according to the three Armstrong rules [A74]:
for X, Y, Z, W ⊆ M

1. X → X ∈ 〈L〉,
2. if X → Y ∈ 〈L〉, then X ∪ Z → Y ∈ 〈L〉, and
3. if X → Y ∈ 〈L〉 and Y ∪ Z →W ∈ 〈L〉, then X ∪ Z →W ∈ 〈L〉.

The set 〈L〉 is then the smallest set containing L which is closed with respect
to all three rules. It turns out that all implications of Imp(K) can be deduced
from a complete set L in this way, and hence 〈L〉 = Imp(K). Moreover 〈·〉 is a
closure operator on Imp(K) [GW99].

Eventually, the role of an expert is to verify or reject an implication P → C
questioned by the exploration algorithm. The verification formally needs a proof.
The rejection is done by entering a counterexample. Hence, a counterexample is
an object g ∈ G with P ⊆ g′ but C � g′. The implemented algorithms of
attribute exploration use implications, where the premise has a special form.
They are pseudo-intents:

Definition 1. [GW99] P is called pseudo-intent of K = (G, M, I) if and only
if P ⊆M , P �= P ′′, and Q′′ ⊆ P holds for all pseudo-intents Q � P . The set of
implications {P → P ′′ \ P | P ⊆M pseudo-intent} is called stem base of K. ♦

The following theorem summarises Theorem 8 and Proposition 25 of [GW99].

Theorem 1. [GW99] The stem base of a formal context K = (G, M, I) is non-
redundant and complete. Moreover, every complete set of implications contains
an implication A → B with A ⊆ P and A′′ = P ′′ for every pseudo-intent P .

Consequently, we cannot find a complete set of implications containing fewer
elements than the stem base. Beside the stem base other complete set of impli-
cations are known. One of them is the set of implications with proper premises.
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Definition 2. [GW99] For an attribute set A ⊆ M of a context (G, M, I) we
denote by

A◦ := A ∪
⋃

a∈A

(A \ {a})′′ and by

A• := A′′ \A◦.

Hence, the latter is the set of those attributes contained in A′′ but not in A or
in the closure of any proper subset of A. We call A a proper premise if A• �= ∅,
i.e., if A′′ �= A◦. ♦

The notions ◦ and • are borrowed from convex geometry, where for a convex
set C the set C◦ denotes the set of boundary points and C• denotes the set of
interior points. In our setting, we have:

∅◦ = ∅,
∀m ∈ M : {m}◦ = {m} ∪ ∅′′, and

∀A ⊆ M, |A| ≥ 2 : A◦ =
⋃

B�A

B′′.

In particular, ∅ is a proper premise if ∅′′ �= ∅. Moreover, Definition 2 states that
A◦ and A• are disjoint sets with A′′ = A◦ ∪A• holds for all A ⊆ M . Moreover,
the following proposition is satisfied.

Proposition 1. [GW99] If T is a finite subset of M , then

T ′′ = T ∪
⋃

{A• | A is a proper premise with A ⊆ T }.

The set of all implications of the form

A→ A•, A• �= ∅,

of a formal context with finite attribute set is complete.

By Theorem 1 we already know that for every pseudo-intent P , there is a subset
A ⊆ P with A → A•, which is an implication with proper premise and with
P ′′ = A′′ = A◦ ∪ A•. The following proposition shows the relation of pseudo-
intents and the proper premises that they contain.

Proposition 2. Let K = (G, M, I) be a formal context with finite attribute set.
Let P ⊆ M be a pseudo-intent, and A ⊆ P be a proper premise for A•, then:

1. A◦ ⊆ P and
2. A′′ = P ′′ implies A◦ = P .

Proof. For the first part consider B � A ⊆ P . Then every implication B → B′′

follows from the stem base of K. Hence there is a sequence of pseudo-intents Qk,
1 ≤ k ≤ n with Q1 ⊆ B, Ql+1 ⊆ B ∪Q′′

l , for 1 ≤ l ≤ k − 1, such that B → B′′

follows from {Qi → Q′′
i | 1 ≤ k ≤ n}. Inductively we see that all pseudo-intents
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Qk are properly contained in P , thus their closures and B′′ are contained in P
and finally A◦ =

⋃

a∈A(A \ {a})′′ ⊆ P .
For the second part it suffices to show A• ⊆ P ′′ \ P . Consider an attribute

x ∈ A• ∩ P . Then the implication A → {x} follows as in the proof above from
elements of the stem base, and hence pseudo-intents properly contained in P .
Since x is an element of A• but not contained in any proper subset of A, we find
a pseudo-intent Q � P such that A ⊆ Q and x ∈ Q′′ \Q. This is a contradiction
as P ′′ = A′′ ⊆ Q′′ and P pseudo-closed, hence Q′′ ⊆ P �= P ′′. �

Proposition 3. Let K = (G, M, I) be a formal context, n ∈ N a nonnegative
integer, and Ln = {A→ A• | A ⊆ M, |A| ≤ n, A• �= ∅}. Then:

〈Ln〉 = 〈Impn(K)〉.

Proof. Because of Ln ⊆ Impn(K), it follows 〈Ln〉 ⊆ 〈Impn〉. By Impn(K) ⊆ 〈Ln〉
we have the reverse direction. �

As one might expect, the set 〈Impn(K)〉 may contain implications with proper
premises of size larger than n. An example for this is the Fano plane.

Example 1. The Fano plane is the projective geometry with seven points and
seven lines, each line containing three points. Given two points there is exactly
one line connecting them. We can understand this structure as a context, were
the objects are the points and the attributes are the lines. The incidence relation
is given by “point g belongs to line l”.

The stem base of this structure consists of 21 implications. All of them have a
two-element proper premise and 21 is exactly the number of all two-element sub-
sets of the set of lines. Hence all implications can be deduced from Imp2(K), but
there are further implications with proper premises. Namely all three-element
subsets of the set of lines which have no common point. These are all three-
element subsets of the seven-element set of lines, except those meeting in a point.
All together we receive 28 implications with a three-element proper premise.

The next example demonstrates that reducible implications with proper premises
of size n occasionally follow only from implications with proper premises of larger
size.

Example 2. Let us consider the formal context shown in Figure 1. The concept
lattice of this context contains 24 elements. We are interested in the implications
of this formal context. Figure 1 shows the stem base, containing 8 elements, the
set of implications with proper premise contains three implications more. We
see, that the two sets do not differ, if we restrict to the subsets with 1-element
premise.

Of course, the sizes of proper premises are relatively small compared to the
pseudo-intents. Actually, it is their characteristic to contain no redundant ele-
ments, i.e. elements with a ∈ A ⊆M and A′′ = (A \ {a}).

Having a proper premise, the implication {a, b} → {g} is centre of the fol-
lowing consideration. Both complete sets of implications of Figure 1 contain



Attribute Exploration Using Implications with Proper Premises 165

a b c d e f g

1 × × × ×
2 × × × ×
3 × × × × ×
4 × × × ×
5 × × × ×
6 × × ×

stem base

{a} → {c, d},
{b} → {e, f},
{g} → {c, e},
{c, d, e, g} → {f},
{c, e, f, g} → {d},
{c, d, e, f} → {g},
{a, c, d, e, f, g} → {b},
{b, c, d, e, f, g} → {a}

implications with proper premises

{a} → {c, d}, {b} → {e, f},
{g} → {c, e},
{a, b} → {g}, {a, g} → {b, f},
{b, g} → {a, d}, {d, g} → {f},
{f, g} → {d},
{a, e, f} → {g},
{b, c, d} → {g},
{c, d, e, f} → {g}

Fig. 1. We see a formal context on the left. Its set of concepts contains 24 elements.
Additionally we listed the stem base as well as the set of implications with proper
premises of this context. Both sets are ordered by the size of the premise.

{a} → {c, d}, {b} → {e, f}, and {c, d, e, f} → {g}. Obviously, the implication
{a, b} → {g} can be deduced from the latter mentioned and either of three
would be eliminated {a, b} → {g} would become non-redundant. This explains
that not alone the set of implications with proper premises is a redundant set,
but also redundant implications with proper premises of size n need not follow
from implications with proper premises with premise size smaller or equal to n.

Similar to {c, d, e, f} → {g}, the redundant implications with proper premises
of size 3 which are {a, e, f} → {g} and {b, c, d} → {g} are not contained in
Imp2(K). The closure system respecting all implications of stem base with size
2 or smaller is distributive in this example, while the closure system respecting
Imp2(K) is not.

Remark 1. The fact that all implications with pseudo-intent of size 0 and 1
are contained in every complete set of families (contingently split into several
implications) was shown in [GN06].

2 Attribute Exploration with the Stem Base

The stem base of a formal context is a complete set of implications minimal in
size. It can be computed via the next-closure algorithm. Without going into its
details we explain its basic idea. In the beginning L = ∅. The set L will gather
all implications of the stem base that come up during the procedure.

The subsets of M are translated by the next closure algorithm into binary
vectors of dimension |M | and thereby ordered. The algorithm begins with the
0-vector encoding the empty set and increases the last bit in the next step. The
algorithm computes all intents and pseudo-intents and asks the expert to verify
that a set is a pseudo-intent. Every number corresponds to a subset A of M .

The empty set is either intent or pseudo-intent, hence the algorithm can start.
For an intent or pseudo-intent A the next set B is computed such that in between
the corresponding numbers no further number exits corresponding to an intent or
pseudo-intent. The set B is additionally closed with respect to the implications
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of L. If the set B is an intent of the context the algorithm proceeds otherwise
the expert has to state the nature of this set.

This approach makes the algorithm fast when it comes to compute all intents
and pseudo-intents of a formal context. Nevertheless, this procedure is time
consuming especially when the set of attributes is large.

The algorithm is hardly adaptable to our task of computing all implications
with small premises. The strategy of the algorithm does not pay attention to the
premise size at all. Even though a pseudo-intent is very large indeed it may be
reducible to a small proper premise, while certain implications of the stem base
which are large in size already have a proper premise.

2.1 Attribute Exploration for Large Sets M

More precisely, we set up a scenario, when it is over-ambitious to compute a
complete set of implications. We have in mind a formal context consisting of a
very large set of objects G (it may be infinite) and a very large but finite set of
attributes M .

Facing a very large attribute set, a data analyst is interested in general concepts,
that means frequent closed itemset. The top part of the concept lattice, i.e. con-
cepts with many objects on the extent side, reveals some dependencies between
attributes. This is done in the analysis of iceberg lattices. When it comes to deter-
mine implications, the expert is interested in small premises since they are easier
to understand. In contrast to the approach of Titanic [S02], we want to determine
all implications with restricted premise size, not depending on the support.

When it comes to build up an expert system that provides a formal context
( ˜G, M, ˜I), with ˜G ⊆ G and ˜I = I ∩ ˜G ×M one could ask for choosing ˜G in a
way that

Impn( ˜G, M, ˜I) = Impn(G, M, I)

is satisfied. In this case the number of concepts of ( ˜G, M, ˜I) may be strictly
smaller than the number of concepts of (G, M, I). This is due to the fact that
every intent of ( ˜G, M, ˜I) is an intent of (G, M, I). Thus, up to n-element subsets
of M the closures are the same without regard to the context.

We draw attention to the well known fact that if L1, L2 are sets of implications
and HLi is the closure system containing all sets respecting Li, i ∈ {1, 2} then

L1 ⊆ L2 =⇒ HL1 ⊇ HL2 .

As we have Imp1(K) ⊆ Imp2(K) ⊆ · · · ⊆ Impk(K) we conclude HImp1(K) ⊇
HImp2(K) ⊇ · · · ⊇ HImpk(K). In [GR07] it was shown that if Impk(K) � Impl(K)
then HImpl(K) is not a sublattice of HImpk(K).

2.2 Multiordinal Scaled Multivalued Contexts

We have seen in Example 1 in some cases it is sufficient to know the implications
of Impn, respectively those with proper premise, to compute every implication of
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Imp(K). This in not only true for geometric incidence relations but for practical
examples as well.

One way of transforming a multivalued data table into a formal context is scal-
ing. Thereby a column of the original data table is mapped to a set of columns.
The preferred way is by standardised scales, which are special formal contexts.
One of them is the multiordinal scale which is defined as follows.

Definition 3. [GW99] For a natural number n we define the set n = {1, 2, . . . , n}
and call the formal contexts of the form On = (n,n,≤) (one-dimensional) ordinal
scales. For natural numbers n1, n2, . . . , nk we define the multiordinal scale as the
formal context

Mn1,...,nk
= (n1,n1,≤) ∪̇ . . . ∪̇ (nk,nk,≤)

in an analogous way. ♦
The biordinal scale is a special case of multiordinal scales. Here we face two
opposing values of an attribute, which can appear in different graduations. For
instance either of the attributes warm and cold appears, when describing todays
temperature, but additionally we have graduations like {very warm, warm, cold,
very cold}. If we describe colours and their intensity we have more values and
at the same time graduation, this is an example of a multiordinal scale.

A corollary of [R07, Theorem 5] is the following proposition.

Proposition 4. Let (G, M, W, I) a multivalued context with |M | = n and by
scaling of the multivalued attributes with multiordinal scales we receive the formal
context K = (G, N, J), then A ⊆ N , A• �= ∅ implies |A| ≤ n.

Proof. Let A be a k-element subset of N with k > n. Hence, A contains two
values of one multivalued attribute m ∈ M . For those attributes a, b holds that
either they are comparable in the scale belonging to m or they are incomparable.

In the first case we can choose the value of m with the larger intent and reduce
A by the other. Still, the closure of the reduced set is the same. Thus A is no
proper premise.

In the second case the closure of A′′ = N , but N is the closure of the two-
element set {a, b}. Thus A was no proper premise. �

These contexts give a class of examples, where we only have to consider im-
plications of a certain size. In other words, we have:

Imp(K) = 〈Impn(K)〉 = 〈{A→ A• | A ⊆ M, A• �= ∅}〉.

3 Naive Approach

The first idea is to do an attribute exploration in three steps. We begin with an
empty set of implicationsL. If an expert has verified an implication it will be added
to this set. Firstly, the expert has to verify the implication ∅ → ∅′′, if ∅ �= ∅′′. This
is done in the classical attribute exploration as the first step as well.

The second step is to verify the attribute order !. This is the quasi order,
which is defined as follows.



168 H. Reppe

Definition 4. [GW99] Let K = (G, M, I) be a formal context. We define a quasi
order ! on the set M by

m ! n : ⇐⇒ m ∈ {n}′′.

By ≈ we denote the largest subset of ! which is an equivalence relation, i.e.

m ≈ n : ⇐⇒ m′ = n′

A formal context is called attribute clarified if ! is an order relation. ♦

Thus, in the second step, the expert has to verify all implications of the form:

{m} → {m}• if {m}• �= ∅.

By [GN06] these implications belong to every complete set of implications. Hence
the expert has to verify them in the classical attribute exploration. In our ap-
proach we bring this forward. On the contrary to the classical version, if the
exploration has started with a small collection of examples of the domain, the
expert has to provide a large amount of counterexamples during this step.

As M is a large set we advise to use a clarified attribute set and additionally
disregard the elements of ∅′′ for the forthcoming. However, by ≤l we denote a
linear extension of !/≈, that we will use from now on.

The third step works in a common manner for all k with 2 ≤ k ≤ max, where
max is the limit of interest or the largest possible number, which is |M | − 1. In
the latter case the expert would perform the whole exploration, but then the
classical approach would be a better choice.

Suppose, k = n which means the expert has to verify implications with proper
premises with an n-element premise. We calculate the n-element subsets of M
with respect to the order ≤l. If A is such a subset of M with A• �= ∅ and A→ A•

does not follow from L, then verify A→ A•.
With regard to the order ≤l we reduce the number of questions, the expert

has to answer. For example, if the expert accepts an implication X → X•, and
for some x ∈ X there is an element y �= x with x ∈ {y}′′ then implication
(X \ {x}) ∪ {y} → X• holds in the context as well. If ((X \ {x}) ∪ {y})• = X•

there is no need to verify this implication with proper premise and the algorithm
can skip it automatically. If the questions came up in reverse order, the expert
had to answer both question.

Instead of considering all n-element subsets of M we want to present a way to
reduce the number of sets. Naturally, in the worst case all of them have to be consid-
ered. Our algorithm makes use of one of the arrow relations in the formal context.

4 Arrow Relations of a Formal Context

Provided that the attribute set of the formal context is finite we can use its arrow
relation ↙ ⊆ (G×M)\ I to recognise implications with proper premises. This
relation denotes that an object g does not have the attribute m, but moreover
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for all concepts strictly below the object concept γg it holds that m is contained
in their intent. Hence this arrow “points at” irreducible objects. Formally, the
definition of this relation is as follows.

Definition 5. [GW99] Let (G, M, I) be a formal context, g ∈ G an object, and
m ∈M ab attribute. We denote by

g ↙ m :⇐⇒ g �I� m and if g′ � h′ then h I m.

Furthermore we denote by

m↙ := {g ∈ G | g ↙ m} and

g↙ := {m ∈M | g ↙ m}. ♦

Definition 6. Let K = (G, M, I) be a formal context. A non-empty set of at-
tributes A ⊆ M is called independent in B, for some B ⊆ G, if there exists an
injective map f : A→ B such that for all g ∈ f(A) and all m ∈ A

g I m ⇐⇒ g �= f(m). ♦

Of course, if A is independent in B, then it is independent in G as well. The
closure system of intents of a formal context K = (G, M, I) equals the power-set
of M if and only if M is independent in G.

With the help of the relation↙, one can rephrase the definition of A• for some
set A ⊆ M and thereby the definition of an implication with proper premise. The
Proposition 5 restates [GW99, Proposition 23] for an n-element attribute set A.

Proposition 5. Let (G, M, I) be a formal context with finite set of attributes,
n ∈ N0, and A = {m1, m2, . . . , mn} ⊆ M a n-element set then:

for n �= 1

A• = {m ∈M | m↙ ⊆ G \A′ and A is independent in m↙},
for n = 1

A• = {m ∈M | ∅ �= m↙ ⊆ G \ {m1}′} \ {m1}.

Corollary 1. Let K = (G, M, I) be a formal context and ˜K = ( ˜G, M, ˜I) be a
subcontext, i.e. ˜G ⊆ G and ˜I = I ∩ ( ˜G ×M). If A → A• is an implication with
proper premise in ˜K and g ∈ G \ ˜G is a counterexample, then

A ∪A• ⊆ g′ ∪ g↙ = B,

where B is determined in the context ˜K with additional row g.

Proof. Since g is a counterexample for A → A•, we deduce that A◦ ⊆ g′. By the
definition of ↙ the set g↙ contains all m ∈ A•, which do not belong to g′. �
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m . . . m1 m2 m3 . . .

g1 ↙ × ×
g2 ↙ × ×
g3 ↙ × ×
g4 ↙ × ×
g5 ↙ ×
...

m . . . m1 m2 m3 . . .

g1 ? × ×
g2 ? × ×
g3 ? × ×
g4 ? × ×
g5 ? ×
...

c ↙ × × ×

Fig. 2. The formal context on the left shows the implication with proper premise
{m1, m2, m3} → {m} if m↙ = {g1, g2, g3, g4, g5}. The premise is independent in m↙.
On the right a counterexample g for this implication was added to the context.

Corollary 2. Let K = (G, M, I) be a formal context and ˜K = ( ˜G, M, ˜I) be a
subcontext, i.e. ˜G ⊆ G and ˜I = I ∩ ( ˜G × M). If A → A• is an implication
with proper premise in K, then there is an implication with proper premise in
B → B• in ˜K such that

B ⊆ A and A• ⊆ B•.

Proof. We denote A• with C, as this in not determined in ˜K. Observe, that
C � A and A → C ∈ Imp(K) ⊆ Imp(˜K). In the context ˜K the set A might not
be a proper premise for the set C. By the finiteness of M it can be reduced to
a set U such that C ⊆ U ′′ and U is a proper premise. �

5 Proposed Algorithm

Tracing implications with proper premises by arrows in the formal context offers
two strategies. Suppose, we have checked all subsets of M with at most n − 1
elements. To find an implication with an n-element proper premise, we have to
make sure that there are attributes with at least n down-arrows per column. If
such an attribute does not exist, then we have determined all implications with
proper premises already. Hence we determined a complete set of implications in
that case.

If on the other hand there is an implication with proper premise of size n
or larger in the context (G, M, I), then by Corollary 2 there is an implication
A → B with proper premise of the context ( ˜G, M, ˜I), |A| < n, that we rejected
in the (n−1)-th step. Therefore, we find attributes with n or more down-arrows.
And of course we can make advantage of the implications that were rejected in
the previous step. There, we already had determined the (n−1)-element set A of
attributes which was independent in m↙, for some m ∈ B. Moreover, we added
a counterexample g such that g I a holds for all a ∈ A.

In the simplest case we face exactly n down-arrows. Not only all attributes
contained in (M \ g′) ∩ (m↙ \ {g})′ fulfil Proposition 5 and hence have to be
considered now as a possible extension of the premise, but also, only these have
to be checked.
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In the case that more than n down-arrows appear in the column n an attribute
a that may extent a set A has to be non-incident with all objects contained in
A′ ∩m↙. Additionally, (m↙ \ A′) ∩ {a}′ is at least an n − 1-element set. These
conditions are necessary but not sufficient. Nevertheless they help to reduce the
number of set that have to be considered in the succeeding step by a great amount.

Our algorithm will not consider all (n−1)-element subsets of M . Thus, we have
an additional case to consider. As we did in the naive approach we will start with
the verification of ∅′′ and !. Hereafter, all implications with proper premise valid
in the actual context ˜K are calculated. Hence, there are implications calculated
in the begining, but they will be checked in later steps of the procedure or if the
premise size exceeds max they will not be check at all.

The expert has to verify A → A′′ \ A〈L〉, where (·)′′ denotes the closure in
the actual context ( ˜G, M, ˜I) and A〈L〉 is the closure of A with respect to all
implications that were verified already. Again, he will only be consulted only
if A′′ \ A〈L〉 is nonempty. By this we see that background knowledge can be
added naturally to the algorithm to speed up the algorithm. In the following we
represent this algorithm chronologically in a very short manner.

We included a reduction of the attribute set to each step which filters the
reducible attributes and selects one element of each class if the case that the
attribute set is not clarified. Hence the attribute set gets smaller and we mark
this by an index. We can assume that the the object set is clarified. Reducible
objects will not influence the procedure at all (↙ occur only in irreducible rows).

Initialisation
If the set of attributes M �= ∅ is entered the expert may provide additional
information on the domain by entering some objects and all their attributes or
by providing background knowledge, i.e. implications, which will be gathered
in the set L. If neither objects nor implications were added the sets G and L
are initialised with ∅ and {∅ → ∅} respectively. As above we denote by (·)′′ the
closure in the actual formal context and by (·)〈L〉 the closure with respect to the
verified implications.

First step – Verification of ∅′′ for n = 0
For ∅ ⊆ M compute the set ∅′′ \ ∅〈L〉. As long as this set is nonempty consult
the expert to confirm ∅ → ∅′′ \ ∅〈L〉.
Rejection: Add a counterexample and recalculate ∅′′ \ ∅〈L〉.
Confirmation: Add ∅ → ∅′′ \ ∅〈L〉 to the set L.
If ∅′′ \ ∅〈L〉 = ∅ we define M1 := M \ ∅〈L〉 and proceed with the second step if
M1 �= ∅ otherwise stop.

Second step – Verification of ! for n = 1
For all m ∈M1 and as long as {m}′′ \ {m}〈L〉 �= ∅ consult the expert to confirm
{m} → {m}′′ \ {m}〈L〉.
Rejection: Add a counterexample and recalculate {m}′′ \ {m}〈L〉.
Confirmation: Add {m} → {m}′′ \ {m}〈L〉 to the set L.
If M1 is exploited then check first that there is an attribute with at least two ↙
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per column. If this condition holds proceed with the intermediate step otherwise
stop.

Intermediate step – Rearranging M and Initialisation
By g ! h :⇐⇒ g ∈ h′′ a quasi order is defined on the set M1, which splits into
an equivalence relation ≈ and an order relation on the equivalence classes. We
can choose one element for each class. Thereby we define the set M2. Additionally
we arrange M2 along a linear extension of ≤, which is called ≤l, such that we
are forced to begin with the smallest element in each step.

Hereafter, we calculate all implications with proper premises with size at least
2 in the smaller context ( ˜G, M2, ˜I) and split them into the set of implications with
two-element premises L+ and everything else L− in ascending order according
to the premises with respect to size first and sets of the same size with respect
to ≤l.

Third step – for 2 ≤ n ≤ max
Until L+ = ∅ extract the implication with the smallest premise A → B and
recalculate A′′ \ A〈L〉 =: B. If the latter is nonempty consult the expert to
confirm A→ A′′ \A〈L〉.
Rejection: Add a counterexample and recalculate A′′ \A〈L〉.
Confirmation: Add A→ A′′ \A〈L〉 to the set L.
If all counterexamples are added after some iterations and A′′ \ A〈L〉 = ∅ holds
then we add A → B \ A〈L〉 to the list L−. That is the list of implications
considered in the following initialisation of L+. Afterwards we proceed with the
next set contained in L+.
If on the other hand A′′ \A〈L〉 = ∅ and no counterexamples were added we just
proceed with the next set.
If L+ = ∅ determine an attribute m ∈ Mn with at least n ↙ per column and
check that L− is nonempty. If both conditions hold, then we determine Mn+1

and initialise L+ again otherwise stop.
We determine the set Mn+1 by testing all verified implications with proper

premises of size n. If A → A• is such an implication and A ⊆ m′ holds for
some m ∈ A•, then m is reducible. We can omit this attribute for further con-
siderations and thus we exclude all implications of L− containing m in their
premise.

For initialising L+ determine for an implication A → B ∈ L− with |A| = n
the attributes m ∈ M that fulfil: for all g ∈ A′ holds g �I� m and there is an
attribute b ∈ B with

b↙ ∩A′ �= ∅ and |(b↙ \A′) ∩m′| ≥ n− 1.

We add A ∪ {m} → B to the set L+ and unify the conclusions if A ∪ {m} is a
premise already contained in L+. At last fill L+ with all implications that are
contained in L− with premise size n.
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6 Conclusion

We proposed an algorithm for attribute exploration using a different set of impli-
cations then the implemented versions of attribute exploration use. We focused
on implications with proper premises. Their advantage is the reduced size of
the premise and they can be read from a formal context including the arrow
relation ↙.

We think that the algorithm is applicable if the attribute set is very large and
especially, when the users are not interested in all implications, but only those
with small premises. We concentrated on reducing the number of sets that were
considered in this process. Therefore we rearranged the set of attributes and we
eliminated all attributes that are reducible.

A disadvantage of this algorithm is that the expert has to state all attributes
for every counterexample. This turns out to be a difficulty if the attribute set is
large. Burmeister and Holzer described a method that overcomes this problem,
see [BH00]. To combine these strategies is less promising since the relation ↙
relies on the incidence relation I of the formal context.

The complexity of our algorithm depends on the task. If the user determines
a complete set of implication, then the usual attribute exploration should be
preferred. There the expert has to answer less questions. Our attribute explo-
ration is appropriate as a start off for an exploration with the stem base. All
questions that arise in the first and second step will arise in the original attribute
exploration as well.
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Abstract. Formal concept analysis is a powerful tool for conceptual
modeling and knowledge discovery. As size of a concept lattice can easily
get very large, there is a need for presenting information in the lattice in a
more compressed form. We propose a novel method MONOCLE for this
task that is based on the theory of monotone systems. The result of our
method is a sequence of concepts, sorted by “goodness” thus enabling us
to select a subset and a corresponding sub-lattice of desired size. That
is achieved by defining a weight function that is monotone, correlated
with area of data table covered and inversely correlated to overlaps of
concepts. We can also use monotone systems theory of “kernels” to detect
good cut-off points in the concept sequence. We apply our method to
social and economic data of two Estonian islands and show that results
are compact and useful.

1 Introduction

Knowledge discovery is the search of patterns in potentially large volumes of
data. Clustering methods group similar objects together without providing ex-
plicit definitions for clusters. Concepts in formal concept analysis combine the
group of objects (extent of the concept) with the set of attributes shared by those
objects (intent of the concept). The number of concepts generated even from a
small data table, however, can easily overwhelm an analyst. Several methods
already exist for reducing analytical overload like iceberg concept lattices (see
[8]), blocks (see [4]) and nested line diagrams. In this article we propose a novel
method called MONOCLE for this task and demonstrate that its results are use-
ful and interesting by applying it to social and economic data of two Estonian
islands.

2 Formal Concept Analysis

Here we provide a short introduction into formal concept analysis (FCA). A
detailed exposition is given in “Formal Concept Analysis, Mathematical foun-
dation” by Ganter and Wille [4] or “Formal Concept Analysis: Foundations and
Applications” by Wille, Stumme and Ganter [11]. For the following definitions
we use “Introduction to Lattices and Order” by Davey and Priestley [2].
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Definition 1. A context is a triple (G, M, I) where G and M are sets and
I ⊆ G×M . The elements of G and M are called objects and attributes
respectively.

We can say less formally that a context is a binary data table.

Definition 2. For A ⊆ G and B ⊆M , define

A′ =
{

m ∈ M | (∀g ∈ A), (g, m) ∈ I
}

, (1)

B′ =
{

g ∈ G | (∀m ∈ B), (g, m) ∈ I
}

; (2)

so A′ is the set of attributes common to all the objects in A and B′ is the set of
objects possessing the attributes in B.

Definition 3. A formal concept is any pair (A, B) where A ⊆ G and B ⊆ M ,
A′ = B and B′ = A. The extent of the concept (A, B) is A while its intent is B.

We can say less formally that a concept is a set of objects together with the
attributes these objects have in common under the restriction that we cannot
add an additional attribute without removing an object and we cannot add an
additional object without removing an attribute. The special concept � has the
extent G and the special concept ⊥ has the intent M .

Algorithms for efficiently generating concepts from the context are described
in [4], [11] and [2].

Subset relations A1 ⊆ A2 and B2 ⊆ B1 define an order on the set of all formal
concepts and it can be shown [2] that they form a complete lattice, known as
the concept lattice of the context. Concept lattices are commonly visualized as
line diagrams1 where concepts are shown as nodes, and subset relations between
their extents (and inverse subset relations between their intents) are shown by
lines. More general concepts are drawn above less general concepts.

Let us consider the example from Figure 1 which describes sizes of various
watercourses. Object set G and attribute set M are abbreviated as follows: G =
{Channel, Brook, Stream, River}, M = {very small, small, large, very large}.
The set of concepts for the context is {x1, x2, x3, x4} where x1 = ({C, B}, {s}),
x2 = ({S, R}, {l}), x3 = ({C}, {vs, s}) and x4 = ({R}, {l, vl}). The correspond-
ing concept lattice is then drawn. As the extent of x1 contains that of x3 and
the extent of x2 contains that of x4 these concepts are connected with lines and
the more general concepts are placed higher in the diagram.

Concept lattices can become large for quite a small contexts. For example,
a 488× 234 sparse binary data table with economic data about settlements in
Estonian island Saaremaa contained 1823 concepts. It is obvious that such a
number of concepts is too large for the unaided human analysis. Several methods
try to mitigate that problem. A full comparative review could be a topic for
another article, here we give only a short review.
1 For this article we used GaLicia Platform [3], [9] for the generation of complex

concept lattice diagrams.



Sorting Concepts by Priority Using the Theory of Monotone Systems 177

x1

x2

x3

x4

x1 x2

x3 x4

T

T

Fig. 1. A context as a binary data table, same context with the concepts marked inside
the table by borders and labeled outside the table by their extents and the correspond-
ing concept lattice. Taken from Davey and Priestley [2]. There is no requirement that
attributes and objects in the concepts should be adjacent, we use such data tables only
for the ease of illustration.

Blocks [4] introduce additional ones into the binary data table, generating bigger
and fewer concepts. Our method sorts original concepts, without modifying them.

Nested line diagrams [4] summarize parallel lines and display them as just
one line. Inner nodes contain sub-lattices. No concepts are removed, however,
number of lines in the lattice is reduced.

Iceberg view, described by Stumme et al. [8], is based on selecting only the con-
cepts that have extent of certain minimum size k, that is, cover at least k objects.
Connecting this method with our theme, it can be described as sorting concepts
by size of their extent and selecting those above some suitable cut-off point. Size
of extent is intuitive and easy-to-calculate weight function. It does, however, elim-
inate concepts with few objects and many attributes. For some types of data, in
our case economic data of settlements, these concepts are of great importance as
they represent, for example, important regional centers. Our method takes into
account both extent and intent sizes. But before describing our method, we need
to give some background into the theory of monotone systems.

One measure for concepts goodness is stability index, proposed by Kuznetsov
[6]. Stability measures independence of hypotheses on particular pieces of data
that can be random, similar to the way scientific hypotheses are evaluated. Cal-
culation of the stability index is, however, computationally more complex than
our proposal.

Closure operators, described for example by Bělohlávek and Vychodil [1],
represent a class of operators that constrain the lattice; retained concepts are
guaranteed to form a complete lattice. Iceberg view method belongs into this
general class.

3 Theory of Monotone Systems

The theory of monotone systems was developed in Tallinn University of Tech-
nology and introduced in 1976 in the article by Mullat [7]. A monotone system
is a set of elements and a weight function. The weight function measures which
elements are important for the system.



178 A. Torim and K. Lindroos

Definition 4. A monotone system is a pair (W, w) where W is a finite set
of elements, w(x, H) is a weight for element x ∈ H for any H ⊆W and the
codomain of w is a linearly ordered set. Following property of monotonicity should
hold for all x ∈ H and for all y ∈ H where x �= y:

w(x, H) ≥ w(x, H \ {y}) . (3)

That is, weights of the elements should decrease monotonically if any one ele-
ment is removed from the system. There is a dual definition for monotonically
increasing weights and a more general case where the removal of an element is
replaced by an “operation” but for this article, these are not needed. Different
weight functions and monotone systems algorithms are described in [10].

We want to measure the weight or “goodness” of subsytems of W . We use the
weakest link principle and define the function Fmin as:

Fmin(H) = min
(

{w(x, H) | ∀x ∈ H}
)

. (4)

We call the subsystems with the greatest value of Fmin kernels.

Definition 5. A subsystem K ⊆W is called the kernel of the system W if
Fmin(K) ≥ Fmin(H) for any H ⊆ W .

Minus technique means removing an element with the smallest weight from
the monotone system and repeating this step until the system is empty. A minus
technique sequence can therefore be found by a greedy algorithm, see [10]. Formal
definition follows:

Definition 6. We denote n-th element from the minus technique sequence for
the system W by xn. Let H1 = W and Hn = (...((W \ {x1}) \ {x2})... \ {xn−1}).

xn = x ∈ Hn where w(x, Hn) ≤ w(y, Hn) for all y ∈ Hn (5)

The minus technique sorts the elements by their worth for the system. If we
want to eliminate the k least interesting elements from the system we can apply
minus technique and deal only with the set Hk+1. Thus we can use the minus
technique to substitute arbitrary sized subset for the entire system. We can also
use the kernels to suggest us good cut-off points. The following theorem deals
with the relationship between the kernels and the minus technique.

Theorem 1 (Kernel as the global maximum). 2 Let w(xk , Hk) = Fmin(Hk)
be the maximal weight in the minus technique sequence x1, x2, .., xn for the mono-
tone system W. That is,

Fmin(Hk) ≥ Fmin(Hi) for all i ∈ {1...n} . (6)

Then the subsystem Hk is a kernel for the system W.
2 This theorem was proven independently by A. Torim. Equivalent theorem, albeit

with a longer proof, appeared in [7].
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Proof. For all A ⊆ H1 where x1 ∈ A we know that Fmin(A) ≤ Fmin(H1) because
of the property of monotonicity from the Equation 3. Therefore, either H1 is a
kernel or there is some kernel K ⊆ H2 .

If we know that K ⊆ Hi for i ∈ {1...n} then for all A ⊆ Hi where xi ∈ A
we know that Fmin(A) ≤ Fmin(Hi). Therefore, either Hi is the kernel K, or
K ⊆ Hi+1 .

By induction, there is some kernel K ∈ {H1, H2, ..., Hk, ..., Hn} . As w(xk , Hk)
= Fmin(Hk) is the maximal weight in the minus technique sequence, Hk is the
kernel for the system W . ��

The kernel as the global maximum provides a good cut-off point in the minus
technique sequence. For practical purposes we often want more cut-off points to
study either smaller or larger subsystems. Therefore we will also introduce the
notion of local kernels that correspond to local maxima in the minus technique
sequence.

Definition 7. Let sequence H1, H2, ..., Hn be the sequence of subsets correspond-
ing to the minus technique sequence x1, x2, .., xn. Then Hk ∈ {H1, H2, ..., Hn} is
a local kernel if Fmin(Hk−1) ≤ Fmin(Hk) ≥ Fmin(Hk+1) .

Figure 2 shows an example of simple graph-based monotone system before and
after the removal of an element.

F  = 1 F  = 2

Fig. 2. A monotone system whose elements are vertices of the graph and the weight
for the element is the number of adjacent vertices. Weights are shown inside the vertex
circles. In this example, after removal of the element with the smallest weight, we have
the kernel.

4 MONOCLE Method for Knowledge Discovery

We now introduce our MONOCLE (MONOtone Concept Lattice Elimination)
method for knowledge discovery in binary data tables. We treat concepts as
elements of the monotone system and we define an appropriate MONOCLE
weight function. Generally, the MONOCLE data analysis process is as follows:

1. Concept generation.
2. Generation of minus technique sequence of concepts using MONOCLE weight

function.
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3. Data analysis using subsets of suitable size from the top of the minus tech-
nique sequence and possibly using global and local kernels to suggest good
cut-off points.

The MONOCLE weight function is monotone and is correlated with the concept
area. By concept area we mean the product of extent size and intent size |A| · |B|
of a concept (A, B). We modify the weight of each attribute and object in our
area calculation by its “rareness”. Finally, we show that a certain invariance
property holds for the MONOCLE weight function.

Definition 8. Let W be the set of all concepts for some context and H ⊆ W . We
denote the number of all concepts in H not containing the object g as NG(g, H)
and define it formally as

NG(g, H) =
∣

∣

∣

∣

{

(A, B) | (A, B) ∈ H, g /∈ A
}

∣

∣

∣

∣
. (7)

We denote the number of all concepts in H not containing the attribute m as
NM (m, H) and define it formally as

NM (m, H) =
∣

∣

∣

∣

{

(A, B) | (A, B) ∈ H, m /∈ B
}

∣

∣

∣

∣
. (8)

Definition 9. Let W be the set of all concepts for some context and H ⊆W .
Let the concept x ∈ H have extent A and intent B. We define the MONOCLE
weight function w(x, H) as

w(x, H) =
(

|A|+
∑

g∈A

NG(g, H)
)

·
(

|B|+
∑

m∈B

NM (m, H)
)

. (9)

We illustrate MONOCLE weight function by examples from the Figure 3.
Each object and attribute of the concepts in the set H = {a1, a2} for the con-

text (a) is not contained in exactly one concept, so NG(g, H) = 1 and
NM (m, H) = 1 for any object g or attribute m in the context (a). Weights for
the concepts in the context (a) are

w(a1, {a1, a2}) = w(a2, {a1, a2})
=

(

(1 + 1) + (1 + 1)
)

·
(

(1 + 1) + (1 + 1)
)

= 16 .
(10)

b2

b1

b3

a1

a2

(a) (b)

Fig. 3. Two sample contexts with the concepts marked inside the table by borders and
labeled outside the table by their extents
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Both a1, a2 and a2, a1 are correct minus technique sequences,

w(a1, {a1}) = w(a2, {a2}) =
(

(0 + 1) + (0 + 1)
)

·
(

(0 + 1) + (0 + 1)
)

= 4 . (11)

so the corresponding sequence of Fmin is 16, 4 ; {a1, a2} is a kernel.
For the context (b):

w(b1, {b1, b2, b3}) = (3 + 3 + 3) · (3 + 3 + 3) = 81 ; (12)

w(b2, {b1, b2, b3}) = w(b3, {b1, b2, b3}) = (2 + 2 + 2) · (2 + 2 + 2 + 3) = 54 . (13)

Two minus technique sequences are b2, b1, b3 and b3, b1, b2 and the correspond-
ing sequence of Fmin is 54, 36, 12 ; thus kernel is {b1, b2, b3}. Here, minus
technique sequence is clearly different from the simple area calculation |A| · |B|
where b1 would be the first element removed from the system.

4.1 Invariance Property

We now demonstrate that we can change certain contexts in certain ways that
preserve the weights of corresponding concepts in the old and new contexts.

Let us consider the three pairs of contexts, where concepts do not overlap,
shown in Figure 4.

The set of objects G and the set of attributes M are unchanged for the
pairs. For each concept in the upper contexts, we create r concepts in the lower
contexts, leaving extent and intent size ratios between the concepts unchanged.
For the pair (a) r = 3/2, for the pair (b) r = 3 and for the pair (c) r = 2 . We
can see that the weights of corresponding concepts are equal, for example:

w(a1, {a1, a2}) = w(a′
1, {a′

1, a
′
2, a

′
3}) = 36 (14)

w(b1, {b1}) = w(b′1, {b′1, b′2, b′3}) = 18 (15)

w(c1, {c1, c2, c3}) = w(c′1, {c′1, c′2, c′3, c′4.c′5, c′6}) = 144 (16)

w(c2, {c1, c2, c3}) = w(c′3, {c′1, c′2, c′3, c′4.c′5, c′6}) = 36 (17)

Fmin({a1, a2}) = Fmin({a′
1, a

′
2, a

′
3}) = 36 (18)

Fmin({b1}) = Fmin({b′1, b′2, b′3}) = 18 (19)

Fmin({c1, c2, c3}) = Fmin({c′1, c′2, c′3, c′4.c′5, c′6}) = 36 . (20)

We now demonstrate that property formally.

Theorem 2 (Invariance property). Let W be the system of non-overlapping
concepts with set of objects G and set of attributes M . Let W ′ be another system
of non-overlapping concepts with set of objects G′ and set of attributes M ′ so
that |G| = |G′| and |M | = |M ′| . Let r be a rational number so that for the sets
of concepts defined by any pair of natural numbers n, m

H =
{

(A, B)
∣

∣ |A| = n, |B| = m, (A, B) ∈W
}

(21)
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(b)

c'6
c'5
c'4
c'3

c'2

c'1

c1

c2

c3

(c)

b1

b'1

b'2

a'1

a'2

a'3

a1

a2

(a)

b'3

Fig. 4. Three pairs of contexts with non-overlapping concepts. The concepts are marked
inside the table by borders and labeled outside the table by their extents.

H ′ =
{

(A′, B′)
∣

∣ |A′| = n

r
, |B′| = m

r
, (A′, B′) ∈W ′} (22)

it holds that
|H ′| = r · |H |. (23)

Then for any c = (A, B) ∈ H and c′ = (A′, B′) ∈ H ′

w(c, W ) = w(c′, W ′). (24)

Proof. We can see that for non-overlapping concepts

|A|+
∑

g∈A

NG(g, W ) = |W | · |A| (25)

|B|+
∑

m∈B

NM (m, W ) = |W | · |B| . (26)

We also know that

|W ′| · |A′| = r · |W | · |A|
r

= |W | · |A| (27)

|W ′| · |B′| = r · |W | · |B|
r

= |W | · |B| . (28)

Thus

w(c′, W ′) = (|W ′| · |A′|) · (|W ′| · |B′|) = (|W | · |A|) · (|W | · |B|) = w(c, W ) . (29)

��
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5 Application for Analysis of Social and Economic Data

We now apply MONOCLE method to social and economic data of two largest
Estonian islands: Saaremaa and Hiiumaa 3. Our previous, non-FCA related re-
sults are documented in [5].

Our set of objects consists of settlements and the set of attributes consists
of various social and economic characteristics like the presence of a school, a
kindergarten, shops or certain types of industry. We excluded demographic at-
tributes (number of children, workers and elderly) that were included in our
research presented in [5] as these would tend to dominate the results and infor-
mation provided by these attributes is somewhat less interesting than that from
the more qualitative attributes. We have also applied the MONOCLE method
to data with all the attributes present and results were generally consistent with
those from [5] and in a more explicit and easier to interpret form. For Hiiumaa
|G| = 184 and |M | = 206; for Saaremaa |G| = 488 and |M | = 234. The attribute
sets are mostly similar, however some attributes are present for only one island,
hence some differences.

The set of concepts for Hiiumaa contained 380 concepts, the set of concepts for
Saaremaa contained 1823 concepts. The weights of minus technique sequences
are presented in Figure 5.

As we can see from the Figure 5, the global kernels HG and SG are quite large.
Smallest local kernel for Hiiumaa is HL that is still pretty large. Smallest local
kernel for Saaremaa S1 contains 17 concepts, pretty good size for the general
overview of the system. For Hiiumaa we select “almost” a local kernel H2 that
contains 10 concepts instead of the too large HL. We also select subset H2 that
is equal in size to S2 and S1 that is equal in size to H1 for comparison.

We present the concept lattices for Hiiumaa corresponding to H1 and H2 as
the Figure 6. Note that concepts corresponding to intersections of extents and
intents are also added. Lattices were generated from data tables that contained
only concepts in H1 or H2 , using Galicia [3]. Markings for concepts in H1 or
H2 were added later.

The following list is the tail of the minus technique sequence, numbered back-
wards: concepts in H1 (all 17) and H2 (first ten). Numbering corresponds to
Figure 6. If extent or intent is large, we provide only its size. We use the format:
Weight w(xn, Hn); {extent}, {intent}.

1. Weight 116; {Kärdla, Käina}, (58 attributes)
2. Weight 250; (68 settlements), {summer cabins}
3. Weight 382; {Käina}, (83 attributes)
4. Weight 574; {Kärdla}, (101 attributes)
5. Weight 625; {Emmaste}, (41 attributes)
3 Saaremaa is the largest island (2,673 km2) belonging to Estonia, Hiiumaa is the

second largest (989 km2). They are located in the Baltic Sea. The capital of Saaremaa
is Kuressaare, which has about 15,000 inhabitants; the whole island has about 40,000
inhabitants. The capital of Hiiumaa is Kärdla, which has about 3,700 inhabitants;
the whole island has about 10,000 inhabitants.
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Fig. 5. Minus technique sequences for Hiiumaa and Saaremaa. Tails of sequences, con-
taining most interesting concepts, are presented separately below main sequence. Sev-
eral kernels and cut-off points used for following analysis HG, HL, H1, H2, SG, S1, S2

are marked with dashed lines.

6. Weight 747; (17 settlements), {summer cabins, beach}
7. Weight 1050; {Kärdla, Käina, Emmaste}, (25 attributes)
8. Weight 1352; (22 settlements), {agriculture}
9. Weight 1536; (32 settlements), {housing}

10. Weight 1974; {Käina, Emmaste}, (27 attributes)
11. Weight 1976; {Kärdla, Emmaste}, (28 attributes)
12. Weight 2277; {Kärdla, Kõrgessaare, Käina}, (16 attributes)
13. Weight 2717; {Nõmme}, (22 attributes)
14. Weight 3000; {Kõrgessaare, Käina}, (19 attributes)
15. Weight 3620; (15 settlements), {summer cabins, housing}
16. Weight 4130; (22 settlements), {beach}
17. Weight 4444; {Kassari, Käina}, (17 attributes)

We present the concept lattices for Saaremaa corresponding to S1 and S2 as
the Figure 7.

Following is the list of concepts for Saaremaa.

1. Weight 179; {Kuressaare}, (179 attributes)
2. Weight 272; (68 settlements), {landing places for fishing boats}
3. Weight 456; (87 settlements), {summer cabins}
4. Weight 936; {Kuressaare, Orissaare}, (52 attributes)
5. Weight 1204; {Kuressaare, Nasva}, (47 attributes)



Sorting Concepts by Priority Using the Theory of Monotone Systems 185

(H1) (H2)

Fig. 6. Lattices H1 and H2 for Hiiumaa. Concepts in H1 and H2 are marked with big
numbered circles.

6. Weight 1878; (55 settlements), {agriculture}
7. Weight 2007; {Kuressaare, Kärla}, (44 attributes)
8. Weight 2409; {Kuressaare, Valjala}, (39 attributes)
9. Weight 3330; (32 settlements), {landing places for fishing boats, summer

cabins}
10. Weight 3582; {Nasva}, (54 attributes)
11. Weight 4448; {Kuressaare, Liiva}, (35 attributes)
12. Weight 4910; {Orissaare}, (58 attributes)
13. Weight 5681; {Kuressaare, Kudjape}, (30 attributes)
14. Weight 6534; (56 settlements), {housing}
15. Weight 7449; (41 settlements), {sights}
16. Weight 8085; {Kuressaare, Orissaare, Liiva}, (24 attributes)
17. Weight 8550; {Kuressaare, Valjala, Tornimäe, Kärla}, (17 attributes)

There is a clear division between concepts describing small monofunctional
settlements (agriculture, summer cabins) and larger regional centres (Kärdla,
Käina, Kuressaare). That divison is fundamental to the data and not the ar-
tifact of MONOCLE method - there are very few settlements that are neither
monofunctional nor regional centres. The division seems to be clearer in the
case of Saaremaa where larger centers, represented by the “artificial” concept
in the upper right corner of lattices S1 and S2 do not have attributes common
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(S1) (S2)

Fig. 7. Lattices S1 and S2 for Saaremaa. Concepts in S1 and S2 are marked with big
numbered circles
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Fig. 8. Three minus technique sequences for random data tables where size and fre-
quency of ones were same as that of Hiiumaa. Sawteeth correspond to different simple
concept areas.
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with concepts describing monofunctional settlements. Upper right “artificial”
concept for S1 has value {several enterprises with turnover over million crowns},
{Kudjape, Nasva, Kuressaare, Kärla, Liiva, Orissaare, Tornimäe, Valjala}. Role
of Saaremaa’s capital Kuressaare seems to be more important as that of Kärdla
for Hiiumaa as {Kuressaare} is the extent of the last concept in the minus tech-
nique sequence.

We finally compare graphs presented in Figure 5 to that of random data,
having same frequency of ones and size as the data table for Hiiumaa. Figure
8 shows graph for random data and we can see that graph for minus technique
sequence is heavily influenced by the internal structure of data.

Running speeds for building the lattice and finding the minus technique se-
quence ranged from couple of seconds for Hiiumaa without demographic data to
couple of minutes for Saaremaa with demographic data. Hardware was ordinary
desktop computer and the program was written in Python. Detailed discussion
of speed and complexity issues is outside the scope of this article.

6 Conclusions

We proposed and studied an interesting method for knowledge discovery that
combines the elements from formal concept analysis and from the theory of
monotone systems. We proved that we can find kernels from the minus technique
sequence, we defined a monotone weight function that forms the heart of our
MONOCLE method and showed that it has certain invariance property. We
demonstrated the usefulness of our method by applying it to the social and
economic data of two islands. Issues of speed and very large data tables were
not dealt with in this article. Several methods like selecting only about 1000
concepts with greatest weights for the minus technique sequence calculation may
be promising. Different weight functions, study of the stability of results with
regard to weight function and with regard to selection of the minimal element
when there are several candidates, are all fields that need further study.
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INRIA Nancy - LORIA, BP 239, 54506 Vandœuvre-Lès-Nancy, France
{messai,devignes,napoli,malika}@loria.fr

http://www.loria.fr/∼messai

Abstract. In this paper we study dependencies of attributes in the con-
text of Formal Concept Analysis. These dependencies allow to define a
hierarchy of attributes reflecting the importance or interest in attributes.
A hierarchy of attributes is a set of attributes partially ordered with re-
spect to their importance. It represents domain knowledge used to im-
prove lattice-based querying and navigation. Actually, in lattice-based
querying, hierarchies of attributes are used to define complex queries
containing attributes with different levels of importance: more impor-
tant attributes define the focus of the retrieval while less important ones
define secondary information whose presence is desirable in the answers.
Furthermore, the relation between attributes in a complex query repre-
sents implicit or explicit knowledge units that must be considered while
computing answers. Similarly, in lattice-based navigation, the choice of
moving to a particular concept rather than to another is influenced by
the higher importance of the attributes in the concept intent. Hence, the
design and use of a hierarchy of attributes leads to a navigation guided
by domain knowledge.

1 Introduction

Formal Concept Analysis (FCA) [12] allows to build in a proper way the set of
all formal concepts from a formal context i.e. a table with rows corresponding
to objects and columns corresponding to attributes describing a relationship
between objects and attributes. Formal concepts are maximal sets of objects
sharing maximal sets of attributes. They are organized into a concept lattice.
This particular way of reorganizing data makes FCA very useful for numerous
data analysis and knowledge discovery tasks such as clustering, classification,
ontology building, information retrieval (IR), etc.

In this paper we are particularly interested in the application of FCA in in-
formation retrieval. The basic ideas of lattice-based IR exist since the beginning
of FCA i.e. improving information retrieval using a concept lattice [13,2,18,11].
They were mainly motivated by navigation (browsing) capabilities offered by
concept lattices: formal concepts correspond to classes of relevant objects match-
ing a given query, and moving to the upper-neighbors (respectively to the lower-
neighbors) in the lattice hierarchy allows to consider more general (respectively

P. Eklund and O. Haemmerlé (Eds.): ICCS 2008, LNAI 5113, pp. 189–202, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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more specific) queries [13]. Since then, many research works have successfully
expanded lattice-based IR to a wide range of IR applications including Web
document retrieval [5,4,19,14], and domain specific retrieval such as multimedia
retrieval [9,17], file system retrieval [11], and biological database retrieval [16].
The success of these approaches is mainly due to two complementary factors.
The first one is the use of concept lattices which naturally support multiple hy-
brid retrieval strategies including browsing, querying, query reformulation, etc.
The second one is the effort being made in the FCA community to provide ad-
ditional features such as lattice visualization and zooming –iceberg lattices and
nested line diagrams–, semantic relationships highlighting –throughout merging
thesaurus in concept lattices–, data and text mining techniques, etc. A detailed
study of the the search functionalities allowed by FCA as well as references to
their corresponding research works can be found in [6].

In lattice-based IR, a query is defined as a set of attributes considered to-
gether to characterize the objects to be retrieved. This representation does not
allow the expression of semantic relationships between attributes. However, in
many cases, there is a need for defining such relationships to allow a better un-
derstanding of the attribute meanings which improves the retrieval of relevant
answers. Semantic relationships between query attributes also express the way
a query must be interpreted and in which order attributes must be considered
for the retrieval. Then it becomes possible to consider queries such as “Italian
restaurants with a “dehors” near the Louvre Museum” as mentioned in [6]. The
objects looked for here are restaurants and the query attributes are “Italian”,
“with a dehors”, and “near the Louvre Museum”. A restaurant fulfilling all the
query attributes constitutes the ideal answer but if there is no such restaurant,
it has to be possible for the user to express some preferences or priorities, i.e.
which attributes must be considered in priority: for example [6], geographical
proximity first (near the Louvre Museum), then the type of cuisine (Italian),
and lastly possession of an open-air space (with a dehors).

In this paper, we propose a method for considering semantic relationships
between attributes for lattice-based querying and navigation. This method is
based on and extends the Attribute Dependency Formulas (ADFs) introduced
in [1]. The extension is firstly due to the ability of defining arbitrary expres-
sions representing the attribute dependencies and secondly to the application
of extended ADFs to lattice-based querying and navigation. Moreover, taking
into account semantic relationships between attributes leads to the definition of
complex queries with attribute hierarchies reflecting preferences on attributes.
In addition, a hierarchy of attributes can be seen as a guideline showing how at-
tributes must be considered during retrieval sessions in adequation with domain
knowledge. This extension of ADFs is quite general and can be applied to any
lattice-based query answering or navigation.

The paper is organized as follows. Section 2 briefly presents FCA basics. Sec-
tion 3 presents the formalization of hierarchically ordered attributes. Section 4
details the way hierarchies of attributes are taken into account in lattice-based
IR and provides examples. Section 5 gives an overview of the implementation
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of hierarchies of attributes in the BR-Explorer system and shows preliminary
results. Finally section 6 concludes the paper and gives some perspectives of the
current work.

2 Background

2.1 Formal Concept Analysis

Formal Concept Analysis [12] starts from a given input data represented as a
formal context to provide the set of all the formal concepts which form a concept
lattice. A formal context is denoted by K = (G, M, I) where G is a set of objects,
M is a set of attributes, and I is a binary relation between G and M (I ⊆ G×M).
(g, m) ∈ I denotes the fact that the object g ∈ G has the attribute m ∈ M or
that g is in relation with m through I.

Table 1 shows the running example of a formal context (taken from the
BioRegistry corpus used for BR-Explorer testing [21,16]). The objects are bi-
ological databases (DB1, DB2, ... DB8) and the attributes are metadata of
three types: organisms concerned by the information in the database (mammals,
birds, amphibians and fish), quality of database content (updated, complete)
and reference ontologies (Gene Ontology GO, NCBI taxonomy). The relation I
expresses whether a database is annotated by a metadata (in which case there is
a cross “×” in the corresponding row and column) or not. Consider for example
the database DB1. The content of DB1 has the following characteristics: it deals
with amphibians and fish, it is complete and uses NCBI taxonomy as reference
ontology.

Table 1. The formal context K = (G, M, I) where Ma, Bi, Am and Fi are respectively
the abbreviations of Mammals, Birds, Amphibians, and Fish

Organisms Content quality Ontologies
Ma Bi Am Fi Updated Complete GO NCBI

DB1 × × × ×
DB2 × × × × ×
DB3 × × ×
DB4 × × ×
DB5 × × × ×
DB6 × × × ×
DB7 × × × × × ×
DB8 × × ×

The formal concepts (or simply concepts) are maximal sets of objects having
in common maximal sets of attributes. Formally, a concept is represented by a
pair (A, B) such that:

A = {g ∈ G|∀m ∈ B : (g, m) ∈ I}
B = {m ∈ M |∀g ∈ A : (g, m) ∈ I}
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A is the extent and B is the intent of the concept. The concepts are computed
by means of a Galois connection defined by two derivation operators:

′ : G→M | A′ = {m ∈ M |∀g ∈ A : (g, m) ∈ I}
′ : M → G | B′ = {g ∈ G|∀m ∈ B : (g, m) ∈ I}

For any concept (A, B), it holds that: A′ = B, B′ = A, A′′ = A and B′′ = B.
The set of all concepts in a formal context is denoted by B(G, M, I). A concept
(A1, B1) is called a sub-concept of (A2, B2) when A1 ⊆ A2 (or equivalently
B2 ⊆ B1). In this case, (A2, B2) is called super-concept of (A1, B1) and we
write (A1, B1) ≤ (A1, B1). The set of concepts in B(G, M, I) ordered using the
partial order “≤” forms the concept lattice of the context (G, M, I) denoted by
B(G, M, I). The concept lattice of the context given in table 1 is represented by
the so-called line diagram (or Hasse diagram) shown in figure 1.

Fig. 1. The concept lattice B(G, M, I) corresponding to the formal context K =
(G, M, I) shown in table 1

2.2 Queries in Lattice-Based IR

In lattice-based IR, queries are defined as sets of attributes describing the objects
to be retrieved. We recall here the definition of query concept, introduced in [15],
which will be used in the rest of this paper.

Definition 1 (Query concept). A query concept Q is a pair (A, B) where B
is the set of attributes describing the objects to be retrieved and A denotes the set
of objects satisfying all the attributes in B. Initially, A contains only a dummy
object x used to guarantee the existence of a concept having B as intent once Q
is inserted in the concept lattice.

A retrieval process starts by inserting the query concept into the concept lattice
representing the data corpus. Then, depending on the approach, a particular
exploration of the neighbors of the query concept provides a ranked set of relevant
objects as an answer [3]. In BR-Explorer [15], only upper-neighbors of the query
are considered. This choice is justified by the fact that the intents of these
concepts are always part of the query intent.
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In the current example of biological databases, consider a query for retrieving
databases dealing with Mammals, having Complete and updated contents. The
corresponding query concept is Q = ({x},{Mammals, Complete, Updated}). The
concept lattice resulting from the insertion of Q into B(G, M, I) and the steps
performed by BR-Explorer to compute the answer are shown in figure 2. The

Fig. 2. Steps of BR-Explorer for the query Q = ({x},{Mammals, Complete, Updated})
on the concept lattice B(G, M, I)

answer is the following:

1- DB5, DB7 : Mammals, Complete, Updated
2- DB4 : Mammals, Updated

DB6 : Mammals, Complete
DB2 : Complete, Updated

3- DB3, DB8 : Mammals
DB1 : Complete

In the answer, the database DB2 appears at rank 2 although being not rele-
vant since it does not contain any information about Mammals. This irrelevancy
is caused by the fact that nothing in the query Q asserts that the attribute
Mammals is a main objective of the retrieval and should be present. In the fol-
lowing, we consider and solve this problem by defining the hierarchically ordered
attributes in queries.

3 Hierarchically Ordered Attributes

3.1 Motivation

Considering Semantic Relationships in Queries. In lattice-based querying
and navigation, semantic relationships between attributes are often needed in the
queries as well as in the concept lattices. These relationships are not expressed by
the lattice structure. Some research works were interested in extending concept
lattices by integrating thesaurus ordering relation [2,19]. The main advantage of
such approaches is to allow the definition of new meaningful queries (with respect
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to the thesaurus ordering relation) [6]. This concept reorganization improves
browsing according to the thesaurus ordering relation.

However, in many cases, there is a need for local preferences on attributes (e.g.
depending on a given point of view on attributes). In this case, the ordering of
the lattice has not to be changed for integrating additional information. This
is the purpose of the present research work to propose a method for extending
the query and navigation capabilities of FCA in taking into account complex
attribute dependencies.

Defining Priority Between Query Attributes. Consider again the example
of biological databases. When looking for databases containing recent informa-
tion about mammals, the query to be formulated must contain the attribute
mammals. Then, among the set of databases in the answer, those that were re-
cently updated will be preferred. Hence the attribute mammals is more important
than the attribute updated.

Let us suppose now that the objective is to carry out statistical studies based
on the recent contents of biological databases on the web. Thus the attribute
updated has to be considered first. In the same way, secondary information such
as the organisms (e.g. mammals) can also be useful. In this case, the attribute
updated is more important than mammals.

These examples show that depending on the focus of a query, the attributes in
a formal context may be considered at different levels of importance. Attributes
chosen as most important define the main goal of the retrieval while less impor-
tant attributes give secondary information. The definition of levels of importance
reflects the priority of the attributes in a query.

3.2 Formalization

We recall the definition of Attribute Dependency Formulas introduced in [1] since
the present formalization of attribute hierarchy is built upon this definition.

Definition 2 (Attribute Dependency Formulas). Consider m, m1, ... , mn

∈ M . An Attribute Dependency Formula ϕ is in the form: m ! m1 �m2 � ... �
mn, where m1, ... , mn are called primary attributes and m is called secondary
attribute.

In [1], ADFs are mainly used for category forming. Primary attributes are used
to form large categories whereas secondary attributes are used to make a finer
categorization within these categories. Applied to concept lattices, ADFs pro-
duce a reduced hierarchy which highlights the obtained categorization. In the
following, we generalize the previous definition to deal with attribute priority in
lattice-based querying.

Definition 3 (Attribute dependency). (1) An attribute m2 depends on an
attribute m1 whenever the presence of m2 is not significant without the presence
of m1. We denote this dependency by m1 # m2.
(2) More generally, an attribute dependency has the form e1 # e2 where e1 and
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e2 may be atomic attributes, or “conjunction” of attributes, or “disjunction” of
attributes.

In an attribute dependency e1 # e2, the attributes in e2 are less important
than the ones in e1 and the presence of e2 is meaningful only when associated
with e1. Figure 3 gives a graphical representation of basic examples of attribute
dependencies.

Fig. 3. Graphical representation of the following attribute dependency examples: (a)-
m1 � m2, (b)- m1 � (m2  m3) (equivalent to (m1 � m2) � (m1 � m3)), (c)- (m1 �
m2) � m3 (equivalent to (m1 � m3) � (m2 � m3)), (d)- (m1 � m2) � (m3  m4)
(equivalent to (m1 � m3) � (m2 � m3) � (m1 � m4) � (m2 � m4))

The attribute dependency operator “#” defines a partial order on given sets
of attributes. Considering this partial order, attributes can be classified into
hierarchies defined as follows.

Definition 4 (Hierarchy of attributes). A hierarchy of attributes, denoted
by HA, is a set of attributes partially ordered according to a dependency relation.

Figure 4 shows two examples of hierarchies of attributes corresponding to queries
detailed in the previous sections.

Fig. 4. A graphical representation of two examples of hierarchy of attributes. (a) cor-
responds to the hierarchy of attributes given with the query aiming to retrieve Italian
restaurants with a “dehors” near the Louvre Museum [6]. (b) corresponds to the hier-
archy of attributes given with the query aiming to retrieve biological databases which
deal with mammals, and have complete, and updated contents.
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3.3 Applying Hierarchies of Attributes to Concept Lattices

The application of a hierarchy of attributes to a concept lattice consists in re-
moving the set of concepts which are incoherent with respect to the dependencies
expressed in the attribute hierarchy. The coherence of a formal concept with re-
spect to a hierarchy of attributes is defined as follows (in the same way as for
ADFs [1]).

Definition 5 (Coherence of formal concepts). (1) A formal concept (A, B)
is said to be coherent with respect to an attribute dependency if there is no
dependant attribute m in B without the attribute on which it depends.
(2) A formal concept (A, B) is said to be coherent with respect to a hierarchy of
attributesHA if and only if (A, B) is coherent with respect to all the dependencies
in HA.

Depending on the form of e1 and e2 in an attribute dependency “e1 # e2”, we
distinguish the following cases for concept coherence:

– case of dependency in the form “m1 # m2”: (A, B) is coherent whenever
m2 ∈ B then m1 ∈ B.

– case of dependency in the form “m1 � ... �mn # mm”: (A, B) is coherent
whenever mm ∈ B then ∃i ∈ {1, ..., n} such that mi ∈ B.

– case of dependency in the form “m1 � ... �mn # mm”: (A, B) is coherent
whenever mm ∈ B then ∀i ∈ {1, ..., n} mi ∈ B.

These cases are easily generalized to dependencies where e2 is a conjunction or
a disjunction of attributes.

To illustrate the definition above, consider the concept lattice shown in figure 1
and suppose that we are interested in databases containing information about
species living outside water. The attributes to be considered first (as focus) are
Mammals and Birds. Attributes related to ontologies and content quality give
secondary information on these species. This leads to the hierarchy of attributes:

HA1 : (Mammals �Birds) # (Updated � Complete �NCBI �GO)

An example of coherent concept with respect toHA1 is C1 = ({DB5, DB6, DB7},
{Mammals, Complete}) because Mammals with Complete are both present in the
intent of C1. The concept C2 = ({DB1, DB2, DB5, DB6, DB7}, {Complete}) is
incoherent, due to the presence of Complete without any of the attributes in which
it depends i.e. Mammals and Birds. The interpretation of the incoherence of C2

may be the following: the attribute Complete means that the returned databases
have complete information about the subjects they deal with without knowing
whether such subjects are species living outside water (i.e. Mammals and Birds)
or not. This makes the concept C2 less informative.

The set of formal concepts coherent with respect to a hierarchy of attributes
HA is denoted by BHA(G, M, I) and the hierarchy of these concepts is denoted
by BHA(G, M, I). The structure of a hierarchy of coherent concepts (with respect
to ADFs) is discussed in [1]. There, it has been proved that such hierarchy is a
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∨

-sublattice. This result is also valid for BHA(G, M, I). In addition, if the top
of B(G, M, I) is coherent with respect to HA then BHA(G, M, I) is a complete
lattice. This is the case of BHA1

(G, M, I) in the previous example. The concept
lattice BHA1

(G, M, I) is shown in figure 5.

Fig. 5. The concept lattice BHA1
(G, M, I)

There are two possible ways of computing BHA(G, M, I). The first one (the
“naive” way) consists first in computing the whole concept lattice B(G, M, I)
and then in deleting the incoherent concepts with respect to HA. The second
way consists in directly computing BHA(G, M, I). For that purpose, a way is to
generalize the algorithm detailed in [1] (which is an adaptation of the AddIntent
incremental algorithm [8]) and consider hierarchies of attributes instead of ADFs.

4 Lattice-Based Querying and Navigation with Respect
to Hierarchies of Attributes

In this section, we detail the way hierarchies of attributes are used to improve
lattice-based querying and navigation. In the case of lattice-based navigation,
the reorganization of formal concepts in accordance with dependencies expressed
in a hierarchy of attributes reduces the navigation space to the set of concepts
which are coherent with respect to these dependencies. This reorganization can
be seen as a preparation of the lattice for further navigation guided by domain
knowledge expressed throughout the attribute dependencies.

In the case of lattice-based querying, the hierarchies of attributes are ei-
ther query-dependent or query-independent. Query-dependent hierarchies of at-
tributes are defined for a query and do not directly affect the concept lattice
whereas query-independent hierarchies of attributes are applied to the concept
lattice and can be reused for many other queries. In the following, we detail both
ways of considering hierarchies of attributes.

4.1 Query-Dependent Hierarchies of Attributes

A query-dependent hierarchy of attributes represents a set of dependencies be-
tween the attributes of a given query. It gives the priority of each attribute in
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the query and, consequently, defines the way the query attributes must be con-
sidered during the retrieval process. The query is first inserted into the concept
lattice. Then, at each step of the retrieval algorithm, the retrieved concepts are
checked wether they are coherent or not with respect to the defined hierarchy of
attributes. In the case of incoherence of a concept, there is no need to consider its
super-concepts. In fact, as stated in the definition of coherence of formal concepts,
the intent of an incoherent concept contains attributes without the attributes they
depend on. And since the intents of super-concepts of a concept C are included
in the intent of C, the super-concepts are either incoherent or irrelevant (i.e. their
intents do not contain any query attribute) whenever C is incoherent.

For illustration, consider again the query concept Q = ({x},{Mammals, Com-
plete, Updated}) in the current example (table 1). An example of a query-
dependent hierarchy of attributes defined on this query is HAQ: Mammals #
(Complete � Updated). It corresponds to the following interpretation: “Q aims
at retrieving databases dealing with mammals (the focus), and having a com-
plete and updated content (secondary information)”. Figure 6 shows the steps
for retrieving relevant databases for Q with respect to HAQ. At the second step

Fig. 6. Retrieval steps for the query Q = ({x},{Mammals,Complete,Updated}) with
respect to the query-dependent hierarchy HAQ: Mammals � (Complete  Updated)

of the retrieval algorithm, an incoherent concept with respect to the dependen-
cies in HA is reached (the concept corresponding to the node marked by a bold
cross). This concept is ignored and its super-concepts are not considered in the
following steps. The resulting answer is the following:

1- DB5, DB7 : Mammals, Complete, Updated
2- DB4 : Mammals, Updated

DB6 : Mammals, Complete
3- DB3, DB8 : Mammals

Compared to the answer produced for the same query without considering
hierarchies of attributes (section 2.2), the present answer does not contain the
databases DB1 and DB2. They do not appear since the formal concepts to
which they belong are incoherent with respect to HAQ.
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4.2 Query-Independent Hierarchies of Attributes

A query-independent hierarchy of attributes represents a set of attribute depen-
dencies applied to the concept lattice before query sessions. These dependencies
are not necessarily related to one specific query. They rather express global
knowledge that must be considered when querying data in the concept lattice.
Hence, querying a concept lattice with respect to a query-independent hierarchy
of attributes HA consists firstly in applying HA to the concept lattice to reduce
the retrieval space to coherent concepts. Then, once BHA(G, M, I) is obtained,
query sessions can be performed. It can be noticed here that each query concept
to be satisfied must be coherent with respect to HA.

For illustration, consider the biological databases context (table 1) and sup-
pose that we are interested in querying only databases dealing with species
living outside water. Then, it is more efficient to query a reduced retrieval space
(i.e. databases dealing with species living outside water) rather than query-
ing the concept lattice B(G, M, I) representing all the biological databases.
The query-independent hierarchy of attributes corresponding to this example
is HA1: (Mammals �Birds) # (Updated � Complete �NCBI �GO) detailed
in section 3.3 and the corresponding concept lattice is BHA1

(G, M, I) shown in
figure 5. Figure 7 shows the retrieval steps for the query Q = ({x}, {Mammals,
Complete, Updated}) on the concept lattice BHA1

(G, M, I). As the dependencies
expressed in HAQ are also included in HA1, the returned answer is the same as
in the previous section.

Fig. 7. Retrieval steps for the query Q = ({x},{Mammals, Complete, Updated}) on the
concept lattice BHA1

(G, M, I)

5 Implementation

The idea of lattice-based querying and navigation with respect to hierarchies of
attributes detailed above is implemented in the BR-Explorer [16,15] system run-
ning on the BioRegistry corpus [21]. The general architecture of BR-Explorer
is given in figure 8. The left part (Annotation Collection and BR Construc-
tion) corresponds to the data preparation task and is detailed in [21]. The ex-
tracted formal context contains 729 biological databases and 231 attributes. The
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corresponding concept lattice contains 638 formal concepts. The main part of
BR-Explorer is based on the BR-Explorer retrieval algorithm detailed in [15].
The user interface of BR-Explorer has been designed to facilitate the definition
of queries and hierarchies of attributes. In the current version of BR-Explorer,
only query-dependant hierarchies of attributes module is implemented. The visu-
alization of detailed answers as well as their neighborhood in the concept lattice
have been designed for query refinement (from ontologies as detailed in [16] or
simply by considering more adapted attributes), attribute dependency redefini-
tion, and direct access to the Web sites of relevant databases. The screenshots
of a detailed query session in BR-Explorer can be found at BR-Explorer Web
page http://www.loria.fr/∼messai/BR-Explorer.

Fig. 8. Global architecture of BR-Explorer system

To experimentally evaluate the usefulness of hierarchies of attributes, a do-
main expert has defined a set of queries firstly without hierarchies of attributes
and secondly with hierarchies of attributes, and submitted the queries to BR-
Explorer. The comparison between answers of both cases has shown that the
use of hierarchies of attributes considerably reduces the irrelevant databases es-
pecially in the case of queries containing “generic” attributes (indexing a large
number of databases).

6 Conclusion and Perspectives

Taking into account the dependencies between attributes of a formal context
allows to efficiently explore information contained in the lattice. Indeed, naviga-
tion in the corresponding concept lattice is done in accordance with a particular
way of considering attributes. The definition of hierarchies of attributes expresses
which attributes are to be preferred. The lattice-based IR extension consisting
in combining a concept lattice and an attribute hierarchy significantly improves
the precision and accuracy of lattice-based IR approaches by removing noisy
answers. Furthermore, considering hierarchies of attributes allows to guide the
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navigation to relevant objects and can be seen as a knowledge-based navigation
in the concept lattice.

In the future, the formalization of hierarchies of attributes will be extended
to the definition of viewpoints [10,7] in concept lattices. This perspective is
motivated by native common characteristics between both formalisms. Indeed
considering the definition of viewpoints in [20], attributes in the top level of
a hierarchy of attributes can be seen as focus and attributes below them can
be seen as view angles refining the focus. Furthermore, coherent concepts with
respect to a hierarchy of attributes match perfectly the perspective viewpoints.
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Abstract. PACTOLE stands for “Property And Class characterization
from Text for OntoLogy Enrichment” and is a semi-automatic methodol-
ogy for enriching an initial ontology from a collection of texts in a given
domain. PACTOLE is also the name of the associated system relying
on Formal Concept Analysis (FCA). In this way, PACTOLE is able to
derive a concept lattice from a formal context, consisting of a binary ta-
ble describing a set of individuals with their properties. Given a domain
ontology and a set of objects with their properties (extracted from a col-
lection of texts), the PACTOLE system builds two concept lattices: the
first corresponding to the restriction of the ontology schema to the con-
sidered objects and the second to the extracted pairs (object, property).
As they are based on the same set of individuals, the two ontologies are
merged using context apposition. The resulting final concept lattice is
analyzed and a number of knowledge units can be extracted and further-
more used for enriching the initial ontology. Finally, the final concept
lattice is mapped within the FLE KR formalism. The paper introduces
and explains in details the PACTOLE methodology with the help of an
example in the domain of astronomy.

1 Introduction

1.1 Motivation and Context

Ontologies are the backbone of Semantic Web. They help software and human
agents to communicate by providing shared and common domain knowledge, and
by supporting various tasks, e.g. problem-solving and information retrieval [11].
An ontology is usually based on a concept hierarchy and a set of relations be-
tween the concepts. In turn, a concept hierarchy structures domain knowledge
into a set of hierarchically organized classes, making easier information search
and reuse. However, the design and the enrichment of an ontology are hard and
time-expensive tasks. Indeed, the knowledge acquisition bottleneck is one major
factor slowing down ontology-driven applications [3]. This point is illustrated
hereafter by an example taken from the domain of astronomy and used in the
whole paper (this research work is carried out in the context of a project done
in collaboration with researchers in astronomy). In this application domain, the
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design of a concept hierarchy and the identification/classification of celestial bod-
ies, i.e. assigning a class to a given celestial body, are very difficult tasks, because
of the growing number of discovered celestial bodies and the need of new classes
to be defined. Traditionally, the classification task is performed “manually”, ac-
cording to the object properties appearing in the astronomy documents. The
task consists in firstly reading scientific articles holding on the celestial object
under study and secondly finding a possible class for that object. At present,
more than three millions of celestial objects are classified in this way and made
available in the Simbad database1. The Simbad database is one of the most im-
portant databases in astronomy memorizing the properties of celestial objects.
But the Simbad database remains a database and has not the architecture of an
ontology: no definition, no explicit representation of relations, no classification
procedures built-in, and a considerable work has to be done for classifying the
billion of remaining celestial objects. The task is tedious for human experts, who
are not always confident with their own classification, mainly because classes lack
precise and unambiguous definitions. Thus, the design of an ontology for guid-
ing the classification of celestial bodies would be of great help for astronomy
practitioners.

In this way, this paper presents a methodology and a system for designing
an ontology from a collection of astronomical texts. One originality is that the
resulting ontology is completed with the help of domain resources, e.g. domain
ontology, database, or thesaurus. Accordingly, and this is the case in this paper,
the methodology can be used for enriching the knowledge included in an existing
resource, here a domain ontology based on the Simbad database. This approach
can be used for partly solving the knowledge acquisition bottleneck. Moreover,
it can be noticed that the methodology is not dependent on the domain and
other experimentations have been carried out in the domain of biology. More
precisely, the PACTOLE methodology –PACTOLE stands for “Property And
Class Characterization from Text to OntoLogy Enrichment”– takes as input a
collection of texts in astronomy and a domain resource, i.e. an ontology based on
the Simbad database, and gives as output a set of new concepts and instances
to be inserted in the initial ontology. The enrichment process is based on Formal
Concept Analysis (FCA) [7]. In addition, for being inserted in the ontology, all
knowledge units are represented within the Description Logics (DL) language
FLE where the following constructors are available: conjunction (�), universal
quantification (∀), and existential quantification (∃). The description logics FLE
is used for representing concepts and relations in the ontology and has a sufficient
power of representation for that task.

Actually, the PACTOLE system implements the PACTOLE methodology and
builds two concept hierarchies using FCA: one concept hierarchy derives from the
collection of texts and one concept hierarchy derives from the Simbad database
(mentioned here before as the ontology based on the Simbad database). Af-
ter that, the two concept hierarchies are merged by the operation of context
apposition as introduced and discussed in [7].

1 http://simbad.u-strasbg.fr/simbad/sim-fid

http://simbad.u-strasbg.fr/simbad/sim-fid
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Applying in this way the FCA process for the enrichment of an ontology is
an original design operation that brings forward two main benefits. Firstly, a
FCA-based concept hierarchy provides a formal basis and specification for the
resulting ontology. Moreover, many efficient FCA-based operations are designed
for extending, maintaining, and managing a concept hierarchy, such as perform-
ing an incremental update of the hierarchy by adding either an object or an
attribute (property), or assembling a concept lattice from parts. Secondly, as
the concept hierarchy changes (because texts are changing for example), the on-
tology evolves in a correct and consistent way. The transformation of the concept
lattice into a DL knowledge base (KB) allows then to query the KB with the
help of a DL reasoner and to ask complex expert questions.

1.2 An Introductory Example

Let us consider the problem of detecting why two celestial objects are in the same
class. To answer the question, the set of properties shared by both objects has
to be characterized. The extraction of such set of common properties relies on a
search in astronomical texts of elements that can be considered as properties for
identifying the class of an object. For example, in a sentence such as “We report
the discovery of strong flaring of the object HR2517”, it is asserted that the object
HR2517 can flare, i.e. showing an eruption of plasma at the surface of the object.
The fact of flaring means for a celestial object, here HR2517, that the object is a
particular type of star. In another sentence such as “NGC 1818 contains almost
as many Be stars as the slightly younger SMC cluster NGC 330 ”, it is asserted
that the object NGC 1818 contains something. The fact of containing means that
this celestial object is not a star.

In these sentences, the property of an object is given by a verb. A similar
approach has been used in [6] and is based on Harris hypothesis [10], stat-
ing that terms in sentences are similar if they share similar linguistic contexts,
here the similarity of verb-argument dependencies. In this way, individuals and
their properties are extracted from a collection of texts using Natural language
processing (NLP) tools. Then, the FCA process is used for building a concept
hierarchy from a formal context, composed of a set of individuals, e.g. SMC, T,
Tauri, a set of properties, e.g. contains, flaring, and a binary relation defined
on the Cartesian product of both sets stating that an object has or has not a
given property.

Given a concept hierarchy and the derived ontology represented in the FLE
DL, complex expert questions can be answered. The questions are first given in
natural language and then represented as DL queries. Such expert questions can
be read as the following: do the celestial objects 3C 273 and SMC belong to the
same class? or What is the class of the celestial object V773 Tau?.

1.3 Organization of the Paper

The following sections of this paper are organized as follows. The next section
introduces the definitions of ontology enrichment and the basics of FCA. In
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the Section 3, the PACTOLE methodology is presented and the operations of
knowledge extraction from texts, concept hierarchy design and representation (in
FLE), and ontology enrichment, are explained and illustrated. In Section 4, an
evaluation of each step of the PACTOLE methodology system is given followed
by a discussion and a synthesis of the present research work. Section 5 briefly
presents related works on ontology design and enrichment. Finally, the Section 6
concludes the paper and shows future works.

2 Ontologies Enrichment and Formal Concept Analysis

In this section, the background definitions for the PACTOLE methodology are
given. According to the general and commonly admitted statement in [9], an
ontology is an explicit specification of a domain conceptualization. Moreover,
an ontology is usually developed for the purposes of domain knowledge sharing
and reuse. Following this way, the objective of the PACTOLE methodology is to
enrich an existing domain ontology from a collection of texts, to solve a particular
problem, e.g. expert question answering.

2.1 The Enrichment of an Ontology

The following definition of ontology enrichment is based on the work of Faatz
and Steinmetz [5]. This enrichment operation is based on a so-called “set of
formulas” for each concept of the initial ontology, including new concepts, new
properties, and new instances.

Definition 1 (Ontology Enrichment). Let Texts be a collection of written
texts and Exp(Texts) a set of expressions that have been extracted from Texts
by NLP tools. Expressions may be nouns or pairs (subject, verb). An algorithm
for ontology enrichment from text denoted hereafter by AOET takes as input an
ontology Ω and a set Exp(Texts), and returns as output an enriched ontology
Ω∪ P, where P is a set of formulas represented within the same representation
formalism as Ω and obtained as follows. For each element e ∈ Exp(Texts), AOET
returns a formula f(e) that can be either an individual, a concept, or a role,
involving e, and depending on the status of e in Exp(Texts), as explained in the
following.

2.2 Formal Concept Analysis

Formal concept analysis (FCA) [7] is a mathematical formalism allowing to de-
rive a concept lattice (to be defined later) from a formal context � constituted
of a set of objects G, a set of attributes M , and a binary relation I defined on
the Cartesian product G×M (in the binary table representing G×M , the rows
correspond to objects and the columns to attributes or properties). FCA can
be used for a number of purposes among which knowledge formalization and
acquisition, ontology design, and data mining. The concept lattice is composed
of formal concepts, or simply concepts, organized into a hierarchy by a partial
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ordering (a subsumption relation allowing to compare concepts). Intuitively, a
concept is a pair (A, B) where A ⊆ G, B ⊆ M , and A is the maximal set of
objects sharing the whole set of attributes in B and vice-versa. The concepts in
a concept lattice are computed on the basis of a Galois connection defined by
two derivation operators denoted by ′:

′ : G→M ; A′ = {m ∈ M ; ∀g ∈ A : (g, m) ∈ I}
′ : M → G; B′ = {g ∈ G; ∀m ∈ B : (g, m) ∈ I}

Formally, a concept (A, B) verifies A′ = B and B′ = A. The set A is called
the extent and the set B the intent of the concept (A, B). The subsumption
(or subconcept–superconcept) relation between concepts is defined as follows:
(A1, B1) ! (A2, B2) ⇔ A1 ⊆ A2 (or B2 ⊆ B1). Relying on this subsumption
relation !, the set of all concepts extracted from a context � = (G, M, I) is
organized within a complete lattice, that means that for any set of concepts
there is a smallest superconcept and a largest subconcept, called the concept
lattice of � and denoted by B(G, M, I).

3 The PACTOLE Methodology

PACTOLE is a methodology for enriching in a semi-automatic way an initial
ontology based on a domain resources (thesaurus, database,...) with knowledge
extracted from texts. PACTOLE is inspired from two methodologies, namely
“Methontology” [8] and “SENSUS” [14]. From “Methontology”, PACTOLE bor-
rows the idea of keeping an expert in the loop to validate operations such as
building from a set of terms extracted from resources defining a set of DL con-
cepts. From “SENSUS”, PACTOLE borrows the idea of being based on an ex-
isting ontology and enriching this initial ontology with resources such as texts.
The PACTOLE process is based on five steps presented in Figure 1, each step
in PACTOLE involves the experts validation.

The first step involves NLP processing for extracting from texts objects of the
domain and their properties. The expressions that are considered areverb/subject,

Fig. 1. PACTOLE Methodology
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verb/object, verb/complement, and verb/prepositional phrase dependencies.
They are good syntactic hints for assigning a property to an object. Each of these
hints provides a pair (object, property). In the second step, FCA is used for build-
ing a concept lattice from the pairs (object, property). A concept in the hierarchy
is composed of a maximal set of individuals sharing a maximal set of attributes
(or properties) and vice-versa. The third step converts the existing knowledge re-
sources into a lattice structure using FCA. During the fourth step, the two lattices
are merged. The idea here is that the concept hierarchy from the initial knowledge
resources can be partially enriched by the concept lattice resulting extracted from
texts. During step five, the final (merged) lattice is represented with the FLE DL
formalism. The following subsections give details on each step.

3.1 Text Analysis

This step aims at extracting from the texts a list of pairs (object, property). A
preliminary task identifies celestial objects in the texts. Then, texts are parsed
to extract syntactic dependencies, and some syntactic dependencies involving ce-
lestial objects are selected and translated into pairs of the form (celestial object,
property).

Detection of celestial objects. There is no normalization process for naming
a celestial object in astronomy. Thus, identifying the names of the objects in the
texts requires two complementary strategies which are suggested by the Simbad

database: some names are already known (such as “Orion”) and the string can
be used to locate them in the texts. Some other names such as “NGC 6994” are
described by a pattern “NGC NNNN” where NNNN is a number.

The system has extracted 1382 celestial objects from the collection of texts,
this number representing 90% of the whole set of objects in the texts (as eval-
uated by the experts). Three new objects were identified: they were not in the
Simbad database: HH 24MMS, S140 IRS3, M33 X-9. However, a few detected
objects were not celestial objects. Three main failures in object identification
have been pointed out:

– Underspecified patterns: some objects having the same pattern as celestial
objects are not celestial objects: The IRA X pattern in Simbad covers IRAS
16293 which is a celestial object but also IRAM 30 which is a telescope,

– Abbreviations in texts: some authors use short ways to name objects in the
texts, e.g. S 180 instead of Sand 180 as registered in Simbad,

– Typing errors in Simbad: some errors were made while typing the name of
objects in Simbad, e.g. Name Lupus 2 instead of Lupus 2.

Extraction of properties. The properties are extracted by parsing the texts
with the shallow “Stanford Parser”2 [4]. The Stanford Parser parses texts and
extracts syntactic dependencies between a verb and its subjects, objects, com-
plements, and preposition phrases. For example: “NGC 1818 contains almost
2 http://nlp.stanford.edu/software/lex-parser.shtml
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as many Be stars as the slightly younger SMC cluster NGC 330”. The list of
dependencies is the following:

– subject(contains-2,NGC 1818-1), direct object(contains-2,Be stars-6)

Only verb dependencies are kept to build the pairs (celestial object, property).
The pair (contains, NGC 1818) is derived from the dependency subject(cont-
ains-2, NGC 1818-1), meaning that NGC 1818 is able to contain. The pair (Be
star, contained) is derived from dependency direct object(contains-2, Be stars-
6), meaning that Be stars can be contained.

Among the set of pairs (object, property), some are pure linguistic artefacts.
They are not relevant to astronomy and should be filtered before the classifica-
tion process. Firstly, properties which occurs only once are considered as noise
and deleted. Secondly, the system deals with synonymy (consists, contains
and includes. . . ) for reducing dispersion. These properties are grouped and
considered as the same property. Finally, for each remaining pair, an astronomer
decides whether it is meaningful to keep the pair for the classification process.
For example, properties such as performing or oscillating have been consid-
ered of low interest, while some others pairs such as rotating were considered
as interesting.

This step allows the system to discover some properties which were previously
unknown, in the sense that no correlation was known between celestial types of
objects and properties. For example, the objects “59 Aurigae, V1208 Aql” can
pulse, the object “MM Herculis” can eclipse or the objects “AB Dor, OJ 287”
can flare.

3.2 Classifying Celestial Objects from the Texts Using FCA

The set of pairs extracted from the text are then transformed under the form of
a binary table objects × properties leading to a formal context �1=(G, M1, I1)
to which FCA method will be applied. Here G is a set of the celestial objects
identified in the texts, M1 is the set of properties extracted from texts and
modified as described above, and I1 is the relaion and I1(g, m1) is a statement,
that g has the property m1. An example of such a lattice is given in Figure 2.

observed expanding flaring emits includes

3C 273 X X X

TWA X X

SMC X X

T Tauri X X X

V773
Tau

X X X

Fig. 2. The context �� = (G, M1, I1) and the lattice of this context
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QuasarAssociation
of Stars

Galaxy Star T Tau
type Star

3C 273 X X

TWA X

SMC X

T Tauri X X

V773 Tau X X

Fig. 3. The context �2=(G, M2, I2) and the lattice of this context

3.3 Classifying Celestial Objects from Simbad Database Using FCA

The hierarchical structure defined in Simbad is encoded into a concept lattice so
that both hierarchical structures – from Simbad and from texts – are expressed
in the same formalism namely a concept lattice. The context related to Simbad

is �2=(G, M2, I2) where G is a set of celestial objects identified in the texts, M2

is the set of Simbad classes, and I2(g, m2) is the relation stating that g has or
has not the class m2. An example of concept lattice extracted from Simbad is
given on Figure 3.

3.4 Merging the Two Lattices

The PACTOLE system proposes to enrich the lattice resulting from Simbad

with the concept lattice of celestial objects built from the texts. Merging these
two concept lattices relies on the apposition operation as defined in [7]:

Definition 2. Let �1=(G1, M1, I1), and �2=(G2, M2, I2) be formal contexts. If
G = G1 = G2 and M1 ∪M2 = ∅ then: � := �1|�2 := (G, M1 ∪M2, I1 ∪ I2) is
the apposition of the two contexts �1 and �2.

The two contexts are respectively �1=(G, M1, I1) (presented in Figure 2) and
�2=(G, M2, I2) (presented in the Figure 3). The apposition context � = (G, M, I)
is presented in the Table 1 where G is the same set of objects for �1 and �2,
M := M1 ∪ M2 where M1 is the set of properties extracted from the texts and
M2 is a set of the classes of Simbad, and I := I1 ∪ I2. The resulting concept
lattice is presented in Figure 4.

Table 1. The context � = (G, M, I)

Quasar Association
of Stars

Galaxy Star T Tau
type Star

observed expanding flaring emits includes

3C 273 X X X X X

TWA X X X

SMC X X X

T Tauri X X X X X

V773 Tau X X X X X
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Fig. 4. Lattice of the context � = (G, M, I)

3.5 Representing the Concepts with FLE

The last step in PACTOLE is aimed at transforming the final lattice into an
ontology represented in FLE .

This transformation called α is based on a set of elementary transformations
defined as follows: α : � = (G, M, I) → TBox � ABox, where: � is a formal
context, TBox and ABox being the bases of the ontology. The elementary trans-
formations are the following:

1. A formal attribute m2 ∈ M2 is transformed in the TBox as an atomic con-
cept c ≡ α(m2) ≡ m2. A class in Simbad is represented as a concept, e.g.
α(quasar)=quasar,

2. A formal attribute m1 ∈ M1 is transformed in the TBox as a defined concept c
≡ α(m1) ≡ ∃m1.�. Formal attributes are used as roles for defined concepts, e.g.
α(observed) ≡ ∃observed.�,

3. A formal concept c = (X, Y ) ∈ C is transformed in the TBox as defined concept
α(c), i.e. α(c) ≡ �m∈Y α(m) where α(m) are either atomic or defined concepts, e.g.
α(C4) ≡ Star � T Tau type Star � ∃observed.� � ∃emits.� � ∃flaring.�,

4. A subsumption relation between formal concepts C and D is transformed in the
TBox as a general concept inclusion α(C) � α(D̄), e.g. α(C4) � α(C1),

5. A formal object g ∈ G is transformed in the ABox as an instance α(g), e.g.
α(T Tauri) = T Tauri is an instance.

Table 2. Definition of each concept of the final lattice

N◦ in the lattice Definition

C0 ∃observed.�
C1 ∃observed.� � ∃emits.�
C2 Association of Stars � ∃observed.� � ∃expanding.�
C3 Galaxy � ∃observed.� � ∃emits.�
C4 Star � T Tau type Star � ∃observed.� � ∃emits.� � ∃flaring.�
C5 The bottom : ⊥
C6 Galaxy � Quasar � ∃observed.� � ∃emits.� � ∃includes.�



212 R. Bendaoud, Y. Toussaint, and A. Napoli

Fig. 5. Final ontology

The definition of each concept of the final lattice in Figure 4 is presented in
Table 2. The resulting ontology shown in Figure 5 can be used for two kinds of
tasks:

1. Instantiation of concepts. Let o1 be a celestial object having the properties
{a,b} and belonging to classes {C1,C2} in Simbad. A first task is instan-
tiation, i.e. finding the class of an object such as o1. The class of o1 is a
most general class X in the final ontology such that X ! ∃a.��∃b.��C1�
C2. When there exists more than one candidate class for being the class of
an object o1 say D1 and D2, the conjonction D1 � D2 becomes the class of
o1. For example, let us consider the question ”What is the class of the object
V773 Tau, having the properties {observed,flaring,emits} and belong-
ing to the classes {Star,T Tau Star} in Simbad? The answer is the most
general class X ! ∃observed.��∃flaring.��∃emits.��Star�T Tau Star, here
the concept C4 in the ontology.

2. Comparison of celestial objects. Let us consider two objects o1 and o2. A
second task consists in comparing o1 and o2 and determining whether o1

and o2 are in the same class. One way for checking that is to find the class
of o1, then the class of o2, and then to test whether the two classes are
identical. For example, let us consider the two objects named 3C 273 and
SMC. The object 3C 273 is an instance of the class C6 and the object SMC is
an instance of the class C3. As C6 � C3 = C6, the objects 3C 273 and SMC
are not in the same class.

4 Evaluation

In this section, the PACTOLE methodology is evaluated, mainly by comparing
the concept hierarchy associated to the resulting ontology and the initial existing
hierarchy, here the Simbad database. The PACTOLE system has been applied
on 11591 abstracts from the A&A ”Astronomy and Astrophysics” journal for
the years 1994 to 2002.

4.1 Evaluation of the Process

The Stanford Parser analyzes 68.5% of the sentences in the texts, where the
maximum size of the parsed sentences is between 31 and 36 words. The sys-
tem extracts three different sets of syntactic dependencies between verb and
arguments, namely SO, SOC, and SOCP (detailed in Table 3) where:
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Table 3. The results of the parser

SO SOC SOCP
Pairs Obj. Prop. Conc. Pairs Obj. Prop. Conc. Pairs Obj. Prop. Conc.

11591 abstracts 384 209 14 30 401 211 14 30 1709 470 23 70

– SO: subject(object,verb) + object(object,verb),
– SOC: SO + complement(object,verb),
– SOCP: SOC + preposition X(object,verb), where X can be (in, of, ....).

A concept lattice with 94 concepts has been built from the Simbad database,
where 470 objects and 92 properties have been considered in the formal context.

The lattice resulting from apposition was presented to the astronomers. Ac-
tually, new concepts have been discovered such as the concept ({Orion, TWA},
{Association of stars, expanding, observed}). This concept represents the
Association of stars than can expand. The concept is considered as interesting
by domain experts, and labelled as the Association of Young Stars.

4.2 Evaluation of Hierarchy Correspondence

The correspondence between the concept hierarchy extracted from the collec-
tion of texts and the concept hierarchy extracted from Simbad database has
to be checked. Here the objective is to check whether the PACTOLE system
has defined each class of the concept hierarchy resulting from Simbad (valida-
tion classes) as a class with properties extracted from the collection of texts
(experimentation classes). This correspondence relies on similarity between sets
of instances. In order to do so, the measures of precision and recall have been
used. The precision and the recall are calculated for each experimentation classes
with respect to one of the closest class in verification class using the Euclidean
distance. The global precision (Precision F) and the global recall (Recall F) are
the average of all precisions (respectively of all recalls).

Calculate the global precision and recall. The precision is the number of
common instances between CEi (experimentation class i) and CVj (validation
class j ) divided by the number of instances in CEi . The recall is the number of
common instances between CEi and CVj divided by the number of instances in
CVj . N is the number of classes in CE .

Precisioni =
CEi ∩ CVj

CEi

, Recalli =
CEi ∩CVj

CVj

Precision F =
∑

i=1..N (Precisioni)
N

, Recall F =
∑

i=1..N (Recalli)
N

Detection of the closest class. For each class has been searched for one of
the closest class in the classes of Simbad using the Euclidian distance, if we find
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two closest classes, one of them is taken. Let G be the set of objects, E the set
of experimentation classes, and V a set of validation classes. For each class CEi

∈ E, and for each class CVj ∈ V , vector VEi and VVj are defined as:
∀g ∈ G : if g is an instance of CEi then VEi [g] = 1 else VEi [g] = 0
∀g ∈ G : if g is an instance of CVi then VVi [g] = 1 else VVi [g] = 0,
then:

Distance(VEi, VVj ) = (
N

∑

k=0

(VEi [g]− VVj [g])2)1/2

CVj is one of the closest class of CEi iff ∀VVp ∈ V −{VVj} Distance (VEi , VVp) �
Distance (VEi , VVj ).

For example, let G be the set of objects G = {3C 273, TWA, SMC, T Tauri,
V773 Tau} (see the Figures 2 and 3). One of the closest class for CE1 with in-
stances {3C 273, SMC, T Tauri, V773 Tau} (Figure 2) is class CV1 in Simbad

with instances {3C 273, SMC} (Figure 3). The distance between the vector as-
sociated to CE1 that is VE1 = [1,0,1,1,1] and the vector associated to CV1 that
is VV1 = [1,0,1,0,0] is the minimal distance.

Distance(VE1 , VV1) =
√

2, Precision1 = CE1∩CV1
CE1

=0.5, Recall1 = CE1∩CV1
CV1

=1.

4.3 Discussion

The PACTOLE system allows to extract new knowledge units in the astronomy
domain and to enrich an ontology associated to the Simbad database. These
knowledge units can be divided in three kinds. The first kind is related to the
identification of new celestial objects (see the subsection 3.1). The second kind
is related to the discovery of new correlations between celestial objects and their
properties (see the subsection 3.1). The third kind is related to the proposition
of new classes in Simbad (see the subsection 4.1). The experiment in astronomy
shows also that using all syntactic dependencies (SOCP) leads to better results.

The SOCP set allows the extraction of more pairs, more properties and more
classes (see Table 3). This set also offers a better precision and a better recall
(see Table 4). The score of precision is high (74.71%) meaning that objects
are classified in adequate classes. The score of recall is low for several reasons.
The first reason is that the number of properties associated with objects is not
sufficient. Sometimes, the system extracts only one or two properties for an
object and this is too small for classification. The second reason is that verbs are
not the sole properties for defining a class, considering for example adjectives,
adverbs, measures, etc. The third reason is that some properties are implicit and
they cannot be extracted by any analyzer.

Table 4. Resulting measures of precision and recall for differents set of dependencies

SO SOC SOCP
Final Precision Final Recall Final Precision Final Recall Final Precision Final Recall

FCA 58.33% 05.03% 58.91% 05.94% 74.71% 30.22%
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5 Related Work

Buitelaar et al. [1] is a reference book on ontologies extracted from texts. The dif-
ferent aspects of ontology development are presented: methods, evaluation, and
applications. Some approaches aim at building ontologies starting from scratch.
For example, Faure et al. [6] use a syntactic structure to describe an object by
the verb with which it appears and then statistic measures are used to build
a concept hierarchy. Cimiano in [3] use a similar approach but use FCA for
building a concept hierarchy. With respect to Cimiano our method proposes a
formalization for the resulting ontology, adding defined concepts and we involve
knowledge expert.

In the scientific domain, it is important to integrate expert knowledge because
some knowledge units are implicit in texts. Stumme et al. [13] merge two ontolo-
gies for building a new one. The proposed method takes as input a set of natural
language documents. NLP techniques are used to capture two formal contexts
encoding the relationships between documents and concepts in each ontology.
This method combines the knowledge of the collection of texts and the expert
knowledge. In comparaison with our approach, the approach of Stumme et al.
uses the texts for merging and not for enriching the two ontologies. Navigli et
al. [12] propose to enrich an existing ontology using on-line glossaries. They use
natural language definitions of each class and convert them into formal (OWL)
definitions, compliant with the core ontology property specifications. Castano
et al. [2] also propose to enrich an existing ontology by matching the existing
ontology and new knowledge extracted from data. Regarding this methodology,
PACTOLE uses a similar idea for evaluating the resulting ontology by similarity
between existing and new concepts. This method is called ”shallow similarity”
by the authors. A difference is that they compare the set of properties while we
compare the set of instances.

6 Conclusion and Future Work

In this paper, we have presented a methodology for semi-automatically enrich-
ing an ontology from a collection of texts. This methodology merges a concept
hierarchy extracted from a collection of texts with text mining method and a
concept hierarchy representing domain knowledge. We have shown how the re-
sulting concept hierarchy can be represented within the DL language FLE . The
proposed methodology was applied to astronomy for extracting knowledge units
about celestial objects for problem-solving purposes such as celestial object clas-
sification and comparison. We also evaluated the PACTOLE methodology in
this context and proposed a definition for precision and recall for evaluating the
hierarchy correspondence.

One future work consists in improving the PACTOLE system for the classifi-
cation of objects annotated “Object of unknown nature” in Simbad and sugges-
tion of classes for these objects. Another work consists in integrating relations
between the celestial objects in the definition of classes. It is also planned to test
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the PACTOLE methodology and system in the domain of microbiology domain
for the classification of bacteria.
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Abstract. In academia, many decisions are taken in committee, for ex-
ample to hire people or to allocate resources. Genuine people often leave
such meetings quite frustrated. Indeed, it is intrinsically hard to make
multi-criteria decisions, selection criteria are hard to express and the
global picture is too large for participants to embrace it fully. In this
article, we describe a recruiting process where logical concept analysis
and formal concept analysis are used to address the above problems. We
do not pretend to totally eliminate the arbitrary side of the decision. We
claim, however, that, thanks to concept analysis, genuine people have the
possibility to 1) be fair with the candidates, 2) make a decision adapted
to the circumstances, 3) smoothly express the rationales of decisions,
4) be consistent in their judgements during the whole meeting, 5) vote
(or be arbitrary) only when all possibilities for consensus have been ex-
hausted, and 6) make sure that the result, in general a total order, is
consistent with the partial orders resulting from the multiple criteria.

1 Introduction

There are numerous situations in academic life where decisions are taken in com-
mittee, for example to hire people or to allocate resources. The problem is to put
a total order in partially ordered sets. For example, the applicants for a job have
different qualities that are not necessarily comparable. Assume that a committee
has to decide between two persons, if one is systematically better than the other
one for all the criteria, the decision is easy to take. In general, however, the can-
didates are numerous (more than 100 in some cases), and some are the best with
respect to some criteria and only average with respect to other criteria.

The final decisions of such committee meetings are necessarily arbitrary, at
least partially. While some people may enjoy the opportunity to intrigue, our
experience is that most participants have a genuine approach and try to be as
honest as possible. This article is dedicated to such honest participants who want
the process to be as rational as possible.

We conjecture that the frustrations felt by genuine people come mainly from
the fact that the selection criteria are hard to express and that the global picture
is too large for participants to embrace it fully.

P. Eklund and O. Haemmerlé (Eds.): ICCS 2008, LNAI 5113, pp. 217–230, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In this article, we propose a decision process where Logical Concept Analysis
(LCA) [4] and Formal Concept Analysis (FCA) [5] are used to address the above
two problems. We do not pretend to totally eliminate the arbitrary side of the
decision. After all, a committee is in general set up when it has been recognised
that there is no obvious best solution. The role of the committee is therefore to
make a decision and collectively take the responsibilities for it. We claim, however,
that, with our approach, genuine people have the possibility to : 1) be fair with
the candidates, 2) make a decision adapted to the circumstances, 3) smoothly ex-
press the rationales of a decision, 4) be consistent in their judgements during the
whole meeting, 5) vote (or be arbitrary) only when all possibilities for consensus
have been exhausted, and 6) make sure that the result, in general a total order, is
consistent with the partial orders resulting from the multiple criteria.

In the following we illustrate our approach with an example which reconsti-
tutes a committee meeting which had to choose among 43 job applicants. At the
original meeting, the only tool which had been used was a spreadsheet. The ac-
tual arguments which had been put forward during the discussions are explicited
a posteriori in this article.

Two tools are used, Camelis and Conexp. Camelis1[3] is a concept-based in-
formation system. It relies on concept analysis to support the organizing and
browsing of a collection of objects. One specificity w.r.t other (pure) FCA based
systems [7,1,2] is the use of logics to represent and reason on object descrip-
tions, queries and navigation links. This allows typed attributes to be used, for
instance, date intervals, string patterns, and Boolean connectives and, or, not.
Conexp2, developed by Sergey A. Yevtushenko, enables, among other features,
to edit a Formal Concept Analysis context and to display concept lattices.

The example illustrates how two formal concept analysis tools can help alle-
viate frustrations and explain a decision. We show that the taken decision has
a rationale behind it and argue that had the tools been used the discussions
would have been much more serene. Regarding FCA and LCA, this case study
also shows that both local navigation, such as advocated by Camelis, and global
formal concept lattices are needed.

2 Running Example

The example which is used throughout the article reconstitutes a committee
meeting which had to produce a sorted list of five candidates in order to fulfil a
two-year position3. The application was open either to PhD or to PhD students
about to defend. There were 43 candidates.

In the French academic system, before hiring people, reports must be written.
At the computer science department of the INSA of Rennes, besides a qualitative
free style report, referees also fill in a spreadsheet file where a number of objective
criteria are assessed. This is somehow a many valued context.
1 http://www.irisa.fr/LIS/ferre/camelis
2 http://conexp.sourceforge.net/
3 called “Attaché Temporaire d’Enseignement et de Recherche”
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For this article we have straightforwardly used the actual spreadsheet file
used in the recollected meeting as a formal context for Camelis. We have only
replaced the names of the candidates (resp. the names of the research teams) by
three (resp two) letter codes. The attributes are : the number of publications in
international and national conferences as well as in journals, the location of the
thesis, the expected date of the end of the thesis, whether the candidates have
a computer science education, whether they have teaching experience, whether
they have practical (programming) experience, whether there is a pedagogical
project in the application file, whether they could integrate a research team of
the laboratory. Two attributes, “bonus” and “malus”, were meant to capture
information which had not been anticipated.

3 Advocated Decision Process

The decision process that we advocate has three stages : firstly an analysis of
the context driven by the attributes/criteria which eliminates obviously out of
scope candidates, secondly an analysis of the context driven by the candidates,
thirdly a discussion to make partial orders into a total order, this includes votes.

Indeed, it is not tractable to examine all the attributes of each candidate in a
detailed way. This would require at least 5mn per candidate. With more than 40
candidates, doing this for all candidates means several hours of analysis, people
are not ready to do that for candidates who are obviously out of scope. Starting
by an analysis driven by the attributes helps to speed up the process in a fair
way and to spend time on valuable candidates.

3.1 Context Analysis Driven by the Attributes

In the first stage the analysis of the context is driven by the attributes. The
attributes are investigated in turn. For each one the committee decides how
relevant the attribute is for this particular decision. In particular it is decided
whether a given attribute is

selective: the committee decides that it is mandatory. The candidates who do
not fulfil them are eliminated.

selective but counterbalanced: the committee decides that, in the absolute,
the attribute would be mandatory, but in this context another attribute
exhibited by some candidates could counterbalance the lack of this attribute.
The counterbalancing attributes are specified. The candidates who do not
fulfil either the selective or the counterbalancing attribute are eliminated.

relevant: the committee decides that the attribute is relevant but not manda-
tory. It is kept to later differentiate the candidates.

irrelevant: the committee decides that the attribute is not relevant for this
particular decision.

Furthermore, new attributes may be identified, and the context is subsequently
updated on the fly. Attributes that contain interesting information but which
are not totally accurate can be restated.
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Fig. 1. Snapshot of Camelis during the attribute driven context analysis
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In our example, this first stage is done under Camelis. A snapshot taken
during the attribute driven stage is given Figure 1. The upper area contains the
list of buttons and menus which are not detailed here.

The query area contains the selection criteria that the committee has specified
so far. Namely on the figure this can be read as the selected candidates must have
a Computer science education AND (they should have an experience abroad OR
a teaching experience) AND their integration in the research laboratory should be
granted AND they should have at least a publication in an international conference.

The bottom right-hand side window is the “object” window. It contains the
name codes of the candidates who fulfil the criteria of the query area. One can
see that, out of the initial 43 candidates, only 18 are left with the above query.

The bottom left-hand side window contains the taxonomy of all the attributes.
The number on the left tells how many of the selected candidates have the
attribute. One can see, for example, that only 11 candidates, out of the remaining
18, have a bonus. Starting from the top of the window, here is the information
contained in the attribute window. One can read that the number of publications
in journals, international conferences and national conferences are numbers (they
can match “O.OOe3”).

The committee has decided that having a “teaching experience” was a selec-
tive but counterbalanced attribute. Indeed, while everybody agreed that it is a
very important criterion, somebody pointed out that it would not be fair that
one of the candidates was eliminated because he had not enough teaching expe-
rience. He was doing a PhD partly in the USA and has not been able to teach.
The group decided that having an “experience abroad” is very interesting for
the department and that it can counterbalance not enough teaching experience.
This is the echo of the second line of the query area. At that moment of the
meeting, the context did not yet contain the information about an experience
abroad. It had been easily updated on the fly. All candidates with an experience
abroad were identified by their respective referee. A new attribute was added
and associated to them.

The “date of the end of the thesis” has not been considered yet. The attribute
is therefore not yet sorted. This also applies to whether candidates have “practical
experience”, and to which “research team” the candidates might join. “Other at-
tributes” is folded, it contains attributes that the committee has already assessed
as irrelevant for this decision. The committee has decided that “Bonus”, “Malus”,
“other publications” and the presence of a “pedagogical project” in the file were
interesting properties but that they should not yet be used for the selection. The
four attributes have therefore been put under “Relevant attributes”. The “Com-
puter science education” and the “research integration” have been used in the
query. The two attributes have therefore been put under “Selective attributes”.

The snapshot has been taken when the committee had just realized that “date
end thesis” and “thesis location” could not be used as such. It had been decided
that the candidates should either have submitted their thesis or that their thesis
location should be close enough to Rennes to give them a better chance to
complete their thesis. Therefore, instead of the precise thesis location, it is more
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accurate to know whether the thesis is done in a laboratory close enough to
Rennes. With Camelis, it is easy to fix that: select all the thesis locations that
are close enough to Rennes, then select the candidates associated with these
locations and add a new attribute to those candidates. Similarly, instead of the
estimated date of the PhD defence, it is better to know whether the thesis is
already submitted. The context had therefore been extended on the fly by two
new attributes, “Submitted thesis” and “Thesis location close enough”, as well
as their associations to candidates.

The figure illustrates how the two new attributes will be taken into account
in the query. Namely, the committee would like to select only candidates with
a “submitted thesis” or a “thesis location close enough” to Rennes. The two
attributes have been clicked. Camelis has greyed them. It has also greyed the
candidates not fulfilling one or the other. The committee can therefore see who is
going to be eliminated if the disjunction of the two attributes is judged selective.
“ARI”, “DES”, “GUX” and two other candidates hidden by the pop-up window
might disappear. Each referee has a chance to tell if a candidate that he considers
valuable might be lost. At the actual meeting, the committee had decided that
the selection was fine. A right-click opens the pop-up window. The user is about
to click on “<query> AND <selection>” which will add “AND (Submitted
thesis’ OR ’Thesis location close enough’)” to the query.

3.2 Context Analysis Driven by the Objects/Candidates

At some point, the number of remaining candidates becomes small enough so
that it becomes tractable to examine candidates in a detailed way. The com-
mittee analyzes all the attributes of each candidate in turn. In so doing, the
committee can, of course, still decide that an attribute should be “selective” or
“selective but counterbalanced”.

During the first, attribute-driven, stage the committee checks that the candi-
dates who are about to be eliminated indeed miss a required selective attribute.
During the second, candidate-driven, stage the committee checks that the remain-
ing candidates indeed have the attributes that their referees associated to them,
in particular the selective ones. The committee also checks that no important at-
tribute association is missing. It is most likely that new attributes emerge.

Figure 2 illustrates the investigation of a candidate assessment. The “CAL”
candidate has been clicked in the right-hand side “object” window. His attribute
values are shown, in two different ways, in the left-hand side attribute window as
well as in the query window. The committee has just detected that the research
team associated to this candidate is not “ic+tx” but “ic”. It is about to select
“Paste not” in the pop-up window to remove the attribute from the intent of
“CAL”. The next step will then be to “Paste” candidate “CAL” to attribute
“Research team is ”ic””.

In the actual session, the remaining of the second, candidate-driven, stage
went as follows. Fourteen candidates were still in competition at the begin-
ning of the second stage. While examining each candidate in turn, the com-
mittee questioned the potential integration into the research laboratory of two
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Fig. 2. Snapshot of Camelis during the candidate driven context analysis

candidates. After discussion, it was agreed that the referees may have been a bit
overoptimistic. The two candidates were said not to be easily integrated in the
lab. The context was therefore updated and there were 12 candidates left.

Investigating the “malus” attribute, the committee decided that one of the
candidates, currently working in the laboratory, might never complete his thesis.
His long term integration into the research laboratory was therefore questioned
and the related attribute negated.

Among the remaining candidates, somebody pointed out that one of them was
having a “major contribution in teaching”. This would be interesting to keep.
An attribute was added.

As there were still numerous good candidates in the list, the committee tested
whether there would be enough good candidates to reinforce research teams
already present at INSA. A new attribute had been introduced and six good
candidates fulfil it. The committee decided that the attribute could be selective.
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Fig. 3. The concept lattice with six remaining candidates and relevant attributes

3.3 Making Partial Orders into a Total Order

At some point, the committee is confident that the context is valid and that the
selection query is relevant for the current decision process. Furthermore, no more
objective selection can be done with general consensus. We conjecture that, at
this point, the formal concept lattice could be useful as it gives a global picture
of all the partial orders. The task of the committee is to rank 5 candidates, hence
making the partial orders into a total order.

Figure 3 shows the lattice related to the six candidates coming out of the
second stage. From Camelis, we exported into Conexp a context containing the
remaining 6 candidates and attributes which had been identified “relevant”. In
order to see the partial orders on numerical attributes, the context had been
completed. Namely a candidate exhibiting “#int. confs=3” has also be credited
by “#int. confs=2” and by “#int. confs=1”. We can see that research teams
“ic” and “ps” still have two candidates. From the informal information given
by the two teams, the committee decides that, for “ic”, “ROU” is better than
“CAL”, and it, therefore, keeps “ROU” and eliminates “CAL”. Similarly, for
“ps”, “BUN” is kept and “SOZ” is eliminated. These decisions use information
not yet in the formal context. At this stage of the process, there are few remaining
candidates, the decisions start to become arbitrary, it is not so crucial to update
the context. The eliminated candidates are simply removed from the display.

Figure 4 shows the lattice related to the remaining four candidates on the
left-hand side. Using, again, informal information, the committee reckoned that
“MOC” and “BUN” were stronger with respect to research and that “ROU” and
“BOL” were stronger with respect to teaching. Furthermore, it had been decided



Fair(er) and (Almost) Serene Committee Meetings 225

Fig. 4. The concept lattices with four remaining candidates and with the two finalists

that “BUN” was stronger than “MOC” considering the number and the quality
of the publications. It had also been decided that “BOL” was stronger than
“ROU” considering the teaching contribution. This resulted in the lattice shown
on the right-hand side of Figure 4. The lattice shows the attributes common
to the two candidates at the top. The attributes that neither of them has are
displayed at the bottom. The specific attributes are attached to each candidate.
At that point, the committee can vote.

4 Discussion

In this section we discuss the benefits of our method to make decisions. We argue
1) that the process is fair to the candidates, 2) that the decision is adapted to
the circumstances, 3) that committee members can be (relatively) serene, 4) that
the process requires LCA/FCA tools and 5) that using a fully automatic tools
would be unwise.

4.1 The Process is Fair to the Candidates

This process is fair to the candidates. Until the last “political” stage, no candi-
date can be eliminated without an explicit reason and the reason is applied to all
candidates. The selection criteria are explicitly specified. All candidates fulfiling
a given criterion are treated equally. When the committee thinks that a candi-
date quality could counterbalance a required criterion, all candidates exhibiting
this very quality will be considered equally. In general, every time the context is
updated, all candidates are concerned. Reports of candidates eliminated by the
current selection are also updated. Indeed, if the committee has second thoughts
and relaxes some of the selective attributes, some candidates may no longer be
eliminated by the relaxed attributes. They may therefore re-appear in the se-
lection. As their attributes have been updated, they will benefit from all the
decisions that have been taken after their initial elimination.
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4.2 The Decision is Adapted to the Circumstances

The process allows the decision to be adapted to the circumstances. Indeed, even if
a committee uses more or less the same criteria for different meetings, the context
is every time different, even if only slightly. For example, for a given recruitment
there may be very few candidates, the committee can decide either not to fulfil a
position or to adapt the selective criteria. It can also happen that the set of can-
didates is especially strong and that for a given recruitment the selective criteria
can be tightened. It can also happen that some candidates exhibit special quali-
ties not yet identified. For all the cases, the formal context can be easily updated,
the selection query can be easily refined, constraints can be easily relaxed. The
approach has all the required flexibility to adapt to the situation.

4.3 Committee Members Can be (Relatively) Serene

It is always hard to take multi-criteria decisions. The discussion below takes the
point of view of honest committee members who sincerely want that the decision
benefits to the institution.

The process is consistent, flexible and backtrackable. The underlying concept lat-
tice ensures that the process is consistent through out the meeting and that the re-
sult, in general a total order, is consistent with the, easy to express, partial orders.
Flexibility and consistency are the basis of the fairness discussed in the above sec-
tion. For example, with our approach, it cannot happen that a candidate is elim-
inated whereas he has an attribute that enabled another candidate to be given
a second chance. Furthermore, without support it is easy to be inconsistent even
genuinely. With our approach, if a criterion is said crucial at the beginning of the
discussion and if the chosen candidates do not fulfil it, then at the very least it will
be visible and the committee can discuss whether this is acceptable on the spot.
Last but not least the result of the selection is independent of the order in which
the atomic decisions are taken. As a result, every partial decision can always be
questioned, the process is backtrackable. There is no need to be always on edge,
no fatal decision is taken until the last minute.

The process is transparent and traceable. Some committee meetings sometimes
feel like a “Three card trick” game. Our process is transparent and traceable.
The context can be easily extended on the fly with new attributes and their as-
sociations to candidates. Every member of the committee can follow the updates
and can raise an objection at any time. The new context is easy to check. The
selection decisions are visible in the query area. It expresses the rationale of the
final decision.

The end result comes from many small and (relatively) easy decisions. Anybody
can propose a new attribute or a new association, or suggest that an attribute
should be selective. If the committee agrees by consensus, it is fine. If no con-
sensus emerges the committee can vote to decide whether a new attribute is
relevant or selective. It can also vote to decide whether a given candidate has
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an attribute. Those are small decisions, relatively easy to take. Furthermore, if
the committee decides that the attribute is not selective but only relevant, it
is fine that the context is anyway updated. It will be taken into account later
when people will vote. It is also fine that a criterion is labeled relevant even if
only one person in the committee judges it so. Consensus is only mandatory for
selective criteria. This can save a lot of fruitless discussions.

Intriguing is not so easy. At such meetings, there are often people who are only
there to “push” their own candidate regardless of the means. For example, we
have seen situations where a candidate who had never been discussed comes out
of the votes because a sub-part of the committee had plotted beforehand. With
our approach the candidates who are voted upon must have been examined in
depth, their attributes must have been validated. They must satisfy a number
of required properties. It is not so easy to manipulate a group on small con-
crete decisions. It is therefore most likely that candidates who do not fulfil the
required properties will have been eliminated. Sometimes it also happens that a
new criterion comes out at the end of the meeting and that it gives a decisive
advantage to the very candidate who is supported by the referee who expresses
the criterion. As this is bad practice, genuine referees can refrain from specifying
an important criterion only because it is somehow too late. With our approach
if somebody wants to defend a candidate, it is fine at any time because all candi-
dates with the same attributes will be treated equally. Last but not least, voting
occurs only when all possibilities for consensus have been exhausted. At that
moment, any result is fair as the whole rational is fulfilled.

4.4 LCA/FCA Tools Are Relevant

The overall process is very hard to achieve without appropriate tools. When
we started using a spreadsheet it was already a big improvement over oral or
written reports even if structured. However, selecting criteria and candidates in
the spreadsheet is very error prone. It is hard to be 100% sure that the process is
consistent. Furthermore adding attributes and stating in the table who has them
is very tedious and again error prone. Even worse, keeping track of the selection
process is almost impossible, especially when it is a combination of a logical
AND, OR and NOT connectors. In Camelis, everything that was so hard to do
with a spreadsheet can be done naturally. Furthermore the global consistency is
guaranteed and the query keeps the history of decisions.

At the actual meeting, neither Camelis nor the lattices were available. The
decisions were, nevertheless, taken mostly with respect to the criteria displayed
in the previous section. People had to keep the picture in their mind and it took
a lot of time. The same arguments had to be repeated again and again, every
time we needed them somebody had forgotten them.

It is not straightforward to get the initial context, especially when no for-
mal reports are required. However, our experience shows that people are more
keen to write them once they understand the potential gain. We are actually
considering to use Camelis to fill in the initial reports, skipping the spreadsheet
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altogether. Indeed, updating the associations attributes-candidates is very easy.
If the attributes already exist it is just a matter of drag and drop. Adding a new
attribute is also straightforward. A verbose report would be easy to generate
automatically from the final context. Furthermore, the criteria resulting from a
meeting could be used to initialize the next recruitment.

4.5 Using a Fully Automatic Tools Would be Unwise

The context must be updated and validated. It is important to note that even
with a large experience of committee sessions there is no way the formal context
can be filled and not been questioned. The formal context has to be updated and
validated. Firstly, it is impossible to guarantee that all the important criteria
have been foreseen and anticipated. Secondly, the context depends of the set of
candidates: it is possible that not enough candidates fulfil the selection crite-
ria that have been used in previous meetings. Thirdly, some of the candidates
can show interesting features that had not been previously identified. Fourthly,
referees may make mistake while filling in the context. Lastly, referees make
judgements that the remaining of the committee may want to question. Some
people are too kind and other are too strict, it is also easy to miss an important
feature in a CV. As a consequence, it is out of question that the decision is
taken automatically using the context as it is at the beginning of the meeting.
One of the objectives of the process described so far is, on the contrary, that
the members of committee collectively agree both on a set of attributes/criteria
and on who satisfy them. Namely the context is revised and updated during the
process and is as much a result of the meeting as the resulting ranked list of
candidates.

No magical number. Once the context is agreed upon by the committee, we
still do not advocate to build a program that would compute magical numbers.
Numbers have the nice feature to be naturally ordered. However, the committee
has to take full responsibility for the final decision. With our process, all the
attributes are identified. All the selective attributes have been agreed upon. The
weights and priority among the attributes which have been labelled relevant
depend of each committee member who takes them into account while voting.
This makes it easier for committee members to shoulder the final decision.

5 Related Work

Concept analysis has been applied to numerous social contexts, such as social net-
works [8] and computer-mediated communication [6]. Most of those applications
are intended to be applied a posteriori, in order to get some understanding of the
studied social phenomena. On the contrary, we propose to use LCA and FCA in
the course and as a support of the phenomena itself. In our case, the purpose is
to support a social/committee decision process. Our approach is to other social
applications, what information retrieval is to data-mining. Whereas data-mining
automatically computes a global and static view on a posteriori data, information
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Fig. 5. Concept lattice for the 43 candidates and 40 attributes out of 62

retrieval (i.e. navigation in the concept lattice) presents the user with a local and
dynamic view on live data, and only guides users in their choice.

A reason for not showing the global concept lattice is that it is too large to
be managed by hand. Figure 5 shows the resulting concept lattice. Even in the
case of our small context reduced to the 43 candidates and 40 attributes (out
of 62), the number of concepts is 1239. Indeed, that formal context is dense.
All candidates have many attributes, hence the large number of concepts. Local
views such as proposed by Camelis or other FCA-based tools in the domain of
information retrieval [2] are better suited for the first two stages described in
this article than global lattices.

A specificity of Camelis is the use of logics. This has consequences both on the
queries that can be expressed, i.e. on the set of candidates that can be selected,
and on the attribute taxonomy, i.e. on the presentation of the criteria occur-
ring in the selected candidates. The use of logics allows to express inequalities
on numerical attributes (e.g., number of publications), disjunctions and nega-
tions in queries. In pure FCA, only conjunctions of Boolean attributes can be
expressed. Previous sections have shown how disjunction is important to take
into account counterbalanced selection criteria. In the taxonomy, criteria are or-
ganized according to the logical subsumption relation between them (e.g., “nb.
papers = 2” is placed under “nb. papers 1..”). In pure FCA, criteria would be
presented as a long flat list. Logics helps to make the taxonomy more concise and
readable by grouping and hierarchizing together similar criteria. The taxonomy
can be updated dynamically, making it possible to group together all irrelevant
attributes. In this way, irrelevant attributes are displayed in one line, instead of
many, but they are still accessible, and can be moved back as relevant attributes.

6 Conclusion

There are numerous situations similar to the one recollected in this article. Every
time a scarce resource has to be assigned by a group which wants to put rationale
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into its decision, our approach could be used. We have illustrated that with our
approach genuine people have the possibility to smoothly express the rationales
of a decision. The resulting query gives an explanation of the selection. The
committee can take the responsibility of its decision. The committee can be
consistent in their judgements during the whole meeting and can be fair with
the candidates. It can make a decision adapted to the circumstances. Voting
can be postponed to the moment when all possibilities for consensus have been
exhausted. The result, in general a total order, is consistent with the expressed
partial orders.
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Abstract. The model of cognitive maps introduced by Tolman [1] pro-
vides a representation of an influence network between notions. A cogni-
tive map can contain a lot of influences that makes difficult its exploitation.
Moreover these influences arenot always relevant fordifferentuses of amap.
This paper extends the cognitive map model by describing the validity con-
text of each influencewith a conceptual graph. Afiltering mechanism of the
influences according to a use context is provided so as to obtain a simpler
and more adjusted map for a user. A prototype that implements this model
of contextual cognitive map has been developed.

1 Introduction

A cognitive map is a graphical representation of an influence network between
notions. A notion is described by a text. An influence is a causality relation
from a notion to another. The effect of the influence can be represented by a
numeric or a symbolic value often + or − [2][3][4]. A cognitive map provides a
communication medium for humans making the analysis of a complex system.
Cognitive maps have been used in many fields such as in biology [1][5], ecology
[6][7], management [2][8][4]. Some systems [2][9] associate an inference mecha-
nism to cognitive maps which uses the influences to compute new influences,
called propagated influences between any pair of notions.

Large cognitive maps are difficult to understand and exploit. Lot of notions
and influences are not always appropriate for a specific use. Irrelevant influ-
ences decrease the quality of inferences made with a cognitive map because the
propagated influences are often incoherent or ambiguous.

The model of contextual cognitive maps presented in this paper provides a
mean to express the validity context of each influence of a map. The validity
context of an influence represents the different cases in which this influence is
relevant. For each category of user, a use context is defined. Using the validity
contexts, a filtering mechanism extracts the notions and the influences that are
relevant for any use context. So for a user, using its use context, the obtained
cognitive map is simpler than the initial cognitive map and allows to compute
propagated influences that are more adjusted to him.

Conceptual graphs are graphical representations of knowledge like cognitive
maps. In this paper, we propose to use them for representing contexts. A concep-
tual graph is associated to each influence of a map. A use context of a cognitive
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map is also described by a conceptual graph. The projection from the validity
context of an influence to the use context is used in the filtering mechanism.

In the section 2, conceptual graph basic definitions are reminded. Section
3 presents our new model of contextual cognitive map. Section 4 presents the
filtering mechanism according to a use context. The influence propagation mech-
anism is presented in the section 5. Section 6 presents the prototype that we have
developed using this model.

2 Conceptual Graphs Model

The conceptual graph model presented here is a simplified version of the model
defined in [10]. Any conceptual graph is defined on a support which organizes,
using the relation “a kind of”, a vocabulary composed of concept types and
relation types.

Definition 1 (Support). A support S is a pair (TC , TR) where TC is a set of
concept types, TR is a set of relation types. TC and TR are partially ordered by
a “is a kind of” relation noted ≤.

Example 1. The support described in figure 1 defines concepts types like pedes-
trian (which is a sort of person) and relations types like agent.

Fig. 1. A support

A conceptual graph serves as a graphic representation of a fact.

Definition 2 (Conceptual graph). A conceptual graph G = (C, R, E, label)
defined on a support (TC , TR), is a non oriented bipartite multigraph where:

– C is a set of concept nodes and R is a set of relation nodes.
– E ⊆ C × R is a set of edges.
– Each node has a type given by the label function: if r ∈ R, label(r) ∈ TR, if

c ∈ C, label(c) ∈ TC. Edges adjacent to a relation node r are totally ordered.
They are numbered by the label function from 1 to the degree of r.
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The main operation of this model is the projection from a conceptual graph to
another.

Definition 3 (Projection). A projection from a conceptual graph G =
(C, R, E, label) to a conceptual graph H = (C′, R′, E′, label′) defined to the same
support, is a mapping � from C to C′ and from R to R′ such that:

– the edges and labels are preserved : ∀(r, c) ∈ E, (�(r),�(c)) ∈ E′ and
label((r, c)) = label′((�(r),�(c))).

– the nodes labels can be decreased : ∀x ∈ C ∪R, label(�(x)) ≤ label(x).

We consider that there is a projection from an empty conceptual graph to any
conceptual graph.

A logical semantics has been proposed for conceptual graphs in first order
logic [11].

3 Contextual Cognitive Maps Model

A contextual cognitive map is an oriented multigraph where nodes are labeled by
notions. Arcs represent influences. An influence is a relation of possible causality
between notions. The effect of an influence is represented by a symbol. A context
is associated to each influence by the designer. All contexts are described by
conceptual graphs defined on a same support.

Definition 4 (Context). A context is a conceptual graph defined on a support
TK.

Definition 5 (Contextual cognitive map). Let N be a set of notions. Let
S be a set of symbols. Let K be a set of contexts defined on a support TK .
A contextual cognitive map defined on N , S, TK, K, is an oriented labelled
multigraph (V, labelV , I, labelI) where:

– V is a set of nodes.
– labelV : V &→ N is a labeling function. It associates to each notion of N a

node of V .
– I ⊆ V × V ×K is a set of arcs. An arc (v1, v2, k) of I means that a notion

labelV (v1) influences a notion labelV (v2) and k is the validity context of this
influence.

– labelI : I &→ S is a labeling function. It associates to each arc of I a symbol
of S.

Example 2. The contextual cognitive map of figure 2 is inspired from road safety
problems. This map is defined on the symbol set {+,−}. The effect of an influ-
ence can be positive or negative. For example, if we consider the notions Human
errors and fatal accident, the fact of doing human error increases the risks of
having a fatal accident. Each influence of figure 2 is associated to a context of
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Fig. 2. Cognitive map

Fig. 3. Set of contexts of the map

figure 3. These contexts are defined on the support of figure 1. The letters near
arcs of the figure 2 are not part of the contextual cognitive map model. The
selection of an arc in a user interface makes appear the associated context. Some
influences like the Tiredness which influences Human errors are always relevant
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whatever the use context of the map. In this case the empty conceptual graph
(A) is associated to these influences. The influence of the notion Forget its lights
on the Good visibility is relevant for a vehicle driver (B). For a pedestrian (C ),
the notion Dark clothing negatively influences To be visible. Some notions are
connected by two influences that are associated to different contexts. For exam-
ple, Time of the day negatively (resp. positively) influences Good visibility if the
context is Night (E ) (resp. Day (F )).

4 Filtering Mechanism According to a Use Context

Once the map is built, the map can be used. To do that the user specifies the
context in which he uses it.

Definition 6 (Use context). Let N be a set of notions. Let S be a set
of symbols. Let K be a set of contexts defined on a support TK. Let M =
(V, labelV , I, labelI) be a contextual cognitive map defined on N , S, TK, K. A
use context use cont of M is a conceptual graph defined on TK describing the
context in which M is used.

A set of use contexts can be provided in which the user can select one or he can
build a new conceptual graph to describe its use context.

Example 3. The figure 4 shows a set of use contexts provided to the user.

To obtain a map that fits with the use context, influences that are valid for this
context are determined.

Definition 7 (Valid arcs). Let N be a set of notions. Let S be a set of sym-
bols. Let K be a set of contexts defined on a support TK . Let M =

Fig. 4. Use contexts
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(V, labelV , I, labelI) be a contextual cognitive map defined on N , S, TK , K. We
define V alidArcs(I, use cont) the subset of I as :
V alidArcs(I, use cont) = {(v1, v2, k) ∈ I | ∃ a projection from k to use cont}
A notion is considered interesting for the user if it is connected to a valid
influence.

Definition 8 (Valid nodes). Let N be a set of notions. Let S be a set
of symbols. Let K be a set of contexts defined on a support TK. Let M =
(V, labelV , I, labelI) be a contextual cognitive map defined on N , S, TK , K. We
define V alidNodes(V, use cont) the subset of V as :
V alidNodes(V, use cont) = {v ∈ V | ∃ (v1, v2, k) ∈ V alidArcs(I, use cont)
such as v1 = v ∨ v2 = v}.

Once valid influences and valid notions are determined using the use context,
they form a new map, simpler and that fits more for the user.

Definition 9 (Restricted map). Let N be a set of notions. Let S be a
set of symbols. Let K be a set of contexts defined on a support TK . Let M =
(V, labelV , I, labelI) be a contextual cognitive map defined on N , S, TK, K. Let
use cont be a use context of M .
The restricted map of M for use cont is the contextual cognitive map
(V alidNodes(V, use cont), labelV , V alidArcs(I, use cont), labelI).

Example 4. The purpose of the cognitive map of figure 5 is to increase pedestri-
ans’s awareness of road problems. This restricted map is obtained by masking
the influences for which there is no projection from their associated conceptual
graph to the use context: “A pedestrian in a town during the night“. Notice
that there is only a projection from the contexts A, C, E, G to “A pedestrian
in a town during the night“. In a context of sensitizing pedestrians to the road
problems, notions and influences that are related to the use of vehicles as for
example the influence of the Speed on the Fatal accident are masked. The map
is then simpler, and more adjusted to this use. The figure 6 shows the restricted
map for “A motorist on a motorway during the day“. There is a projection from
each context A, B, F, H to the use context “A motorist on a motorway during
the day“.

5 Influence Propagation in a Contextual Cognitive Map

An inference mechanism can be defined to determine the propagated influence
of any notion to another in a contextual cognitive map. Notice that these map
can be a restricted map of another for a use context. The propagated influence
from a notion to another is computed according to the paths existing between
the nodes labeled by these notions. We call them influence paths.

Definition 10 (Influence path). Let N be a set of notions. Let S be a
set of symbols. Let K be a set of contexts defined on a support TK . Let M =
(V, labelV , I, labelI) be a contextual cognitive map defined on N , S, TK, K. Let
n1, n2 be two notions of N .
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Fig. 5. Use of the map for a pedestrian in a town during the night

Fig. 6. Use of the map for a motorist during the day

– An influence path from n1 to n2 is a sequence (of length l) of arc (ui, vi, k) ∈
I such that u1 = label−1

V (n1), vl = label−1
V (n2) and ∀i ∈ [1..l− 1], vi = ui+1.



238 L. Chauvin, D. Genest, and S. Loiseau

– An influence path P from n1 to n2 is minimal iff there is no influence path
P ′ from n1 to n2 such that P ′ is a subsequence of P

– We note Pn1,n2 the set of minimal influence paths from n1 to n2.

So as to determine the effect of a notion on another, the propagated influence in
an influence path must be evaluated. To do that, symbols of each influence of an
influence path are aggregated. The set of symbols used in this paper is {+,−}.

Definition 11 (propagated influence for an influence path). Let N
be a set of notions. Let K be a set of contexts defined on a support TK. Let
M = (V, labelV , I, labelI) be a contextual cognitive map defined on N , {+,−},
TK, K.
The propagated influence for an influence path P is:

IP (P ) =
∧

i of P

labelI(i)

with
∧

a function defined on {+,−} × {+,−} &→ {+,−} represented by the
matrix:

∧

+ −
+ + −
− − +

The propagated influence mechanism between two notions aggregates propa-
gated influence of each minimal influence paths existing between these notions.
The value returned by this mechanism can be positive (noted +), negative (−),
null (0) or ambiguous (?).

Definition 12 (Propagated influence between two notions of a contex-
tual cognitive map). Let N be a set of notions. Let K be a set of contexts
defined on a support TK . Let M = (V, labelV , I, labelI) be a contextual cognitive
map defined on N , {+,−}, TK , K.
The propagated influence between two notions is a function I defined on N ×
N &→ {0, +,−, ?} such that:

I(n1, n2) = 0 if Pn1,n2 = ∅

I(n1, n2) =
∨

P∈Pn1,n2

IP (P ) if Pn1,n2 �= ∅

where
∨

is a function defined on {+,−, ?} × {+,−, ?} &→ {+,−, ?} represented
by the matrix:

∨

+ − ?

+ + ? ?

− ? − ?

? ? ? ?
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Fig. 7. Prototype : Use of a cognitive map

Example 5. In the map of figure 2 there is only one influence path between
Good visibility and Fatal accident. This influence path is composed of a negative
influence of the notion Good visibility on the notion Accident bad visibility and
a positive influence of the notion Accident bad visibility on the notion Fatal
accident. The propagated influence from the notion Good visibility to the notion
Fatal accident is then negative (-). It can be interpreted as: “A good visibility
decreases the risk of having a fatal accident”.

The filtering mechanism enables the propagated influence mechanism to be
more precise. For example, the propagated influence from Time of the day to
the Good visibility is ambiguous because there are two influences with different
symbols between these notions. By using the restriction of the map for the use
context “A pedestrian in a town during the night” (figure 5), only the negative
influence associated to the context E (Night) is taken account. The other influ-
ence is not used because there is no projection from the context F (Day) to the
use context. For this use context, the propagated influence from the Time of the
day to the Good visibility is then negative.

6 Prototype

We have developed a prototype1(figure 7) in Java that allows to build and han-
dle contextual cognitive maps. Various graphical components used to represent
1 This prototype is downloadable at:
http://forge.info.univ-angers.fr/∼lionelc/CCdeGCjava/

http://forge.info.univ-angers.fr/~lionelc/CCdeGCjava/
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cognitive maps, conceptual graphs and the support are implemented using
JGraph2, a graph visualization library. The user sees the notions and the in-
fluences which are activated according to the use context. The inactivated influ-
ences and notions are grayed. This functionality of filtering uses the operation of
projection efficiently implemented by Cogitant3. Cogitant is a library developed
in C++ specialized in operations on conceptual graphs. We implemented the
mechanism of influence propagation that enables the user to ask for the effect
from a notion to another. The results are presented in an ergonomic way with a
color code: green for a positive influence, red for a negative influence and orange
for an ambiguous influence. For a use context, the nodes and arcs that are not
valid are grayed.

7 Conclusion

The cognitive map model is improved in this paper by associating contexts to the
influences. A contextual cognitive map is simplified to present only the notions
and influences that are interesting for a use context. Inferences made are more
precise because influences that are not interesting for a use context are not taken
into account in the influence propagation mechanism.

In this paper, the choice has been made to represent symbolically the effect
of an influence by {+,−}. This choice enables a human to understand easily
the influence propagation mechanism. Some works define other means to propa-
gate influences. Their objective is often to solve automatically ambiguities. Some
works use fuzzy representation [12]. Kosko [9][13] has proposed a fuzzy cognitive
map model in which the influence effect is not represented with a symbol but
with a numerical value. The inference mechanism for fuzzy cognitive maps uses a
threshold fonction. Taber [14], Perushich [15] and Kosko [9] have experimented
different threshold fonctions in their works. Carvalho and Tomé [16] presents
an extension of fuzzy cognitive maps where the inference behaviour uses fuzzy
logic rules defined in each concept of the map. Liu and Zhang [17] provides a
comparaison of papers on fuzzy congitive maps. These mechanisms are interest-
ing when a cognitive map is used as an autonomous system but the model and
the results are difficult to understand by the user. Nevertheless our contextual
approach can be adapted to fuzzy cognitive maps.

The extension of cognitive maps presented in this paper can be associated
with the model of cognitive map of conceptual graphs [3][18]. In our model
the semantics of a notion is defined in natural language. Several persons could
have different interpretations of a same notion and consequently of the same
map. Contrary to our model, the model of cognitive map of conceptual graphs
do not focus on the influences but it specifies the semantic of the notions in
using conceptual graphs. In this model the projection provides other decision
mechanisms such as selection of notions semantically bound and an inference
mechanism between two sets of notions.
2 JGraph website: http://www.jgraph.com
3 Cogitant website: http://cogitant.sourceforge.net

http://www.jgraph.com
http://cogitant.sourceforge.net
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9. Kosko, B.: Neural networks and fuzzy systems: a dynamical systems approach to
mahine intelligence. Prentice-Hall, Engelwood Cliffs (1992)

10. Mugnier, M.L.: Knowledge representation and reasonings based on graph homo-
morphism. In: International Conference on Conceptual Structures, pp. 172–192
(2000)

11. Mugnier, M., Chein, M.: Représenter des connaissances et raisonner avec des
graphes. Revue d’intelligence artificielle 10, 7–56 (1996)

12. Zadeh, L.: Outline of a new approach to the analysis of of complex systems and
decision processes (1973)

13. Kosko, B.: Fuzzy cognitive maps. International Journal of ManMachines Studies 25
(1992)

14. Taber, R.: Knowledge processing with fuzzy cognitive maps. In: Expert systems
with application edn. vol. 2 (1991)

15. Perusich, K.: Fuzzy cognitive maps for policy analysis 10, 369–373 (1996)
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Abstract. Increasing the relevancy of Web search results has been a
major concern in research over the last years. Boolean search, meta-
data, natural language based processing and various other techniques
have been applied to improve the quality of search results sent to a user.
Ontology-based methods were proposed to refine the information ex-
traction process but they have not yet achieved wide adoption by search
engines. This is mainly due to the fact that the ontology building pro-
cess is time consuming. An all inclusive ontology for the entire World
Wide Web might be difficult if not impossible to construct, but a spe-
cific domain ontology can be automatically built using statistical and
machine learning techniques, as done with our tool: SeseiOnto. In this
paper, we describe how we adapted the SeseiOnto software to perform
Web search on the Wikipedia page on climate change. SeseiOnto, by
using conceptual graphs to represent natural language and an ontology
to extract links between concepts, manages to properly answer natural
language queries about climate change. Our tests show that SeseiOnto
has the potential to be used in domain specific Web search as well as in
corporate intranets.

1 Introduction

Succeeding in the management of information is nowadays all about coping with
the tremendous amount of available knowledge. Huge corporations, small orga-
nizations as well as individuals are all confronted to an overload of data. Infor-
mation retrieval is a young science and methods to extract documents from the
Web or from corpora are not flawless. Boolean search is still the preferred way
to retrieve data. This approach, although efficient, has the disadvantage of not
being easy to use for specific queries since the choice of logical operators most
relevant to the query is not straightforward [8].

To sort through the enormous amount of information available on the Web, re-
searchers proposed a semantic approach to the problem. Data on the Web and
in corporate intranets structured using HTML could be stored together with se-
mantic description of its content. That way, information retrieval would be greatly
facilitated [16]. Hence, a proposed solution is to rely on an ontology to extract

P. Eklund and O. Haemmerlé (Eds.): ICCS 2008, LNAI 5113, pp. 242–254, 2008.
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concepts and their relations from these pages. The construction of an ontology is
however time consuming, particularly with large document databases [5]. How-
ever for a restricted field of knowledge, it is possible to consider employing an on-
tology since the core concepts and relations of a small domain are usually more
constrained [4]. The use of an ontology allows the query language to accept natu-
ral language-based sentences. Moreover, the automatic creation and update of the
ontology could provide a way to manage the information in an evolving corpus as
well as improving domain restricted search done on the World Wide Web.

In this article, we present the SeseiOnto software, an information retrieval
tool that uses natural language processing (NLP) as its search interface and an
automatically generated ontology to obtain semantics about a domain. SeseiOnto
uses conceptual graphs to process natural language and to evaluate the relation
between a query and a document.

We applied this method in the context of the 2008 ICCS Challenge. The
goal of this challenge was to see how a tool that uses conceptual graphs could be
used to support research on climate change. Consequently, the challenge required
the tool to be evaluated using data taken from the Wikipedia page on climate
change. We found out that SeseiOnto can correctly pinpoint significant answers
to natural language queries about climate change.

Thus, Section 2,presents similar approaches to SeseiOnto. In Section 3,we detail
how the software works. In Section 4, we analyze the different results obtained by
SeseiOnto in the context of the ICCS Challenge. Section 5 is a review of SeseiOnto
main strengths and weaknesses, and provides an introduction on future work.

2 Similar Approaches

There already exist different semantic information retrieval methods and sys-
tems, each one having its own advantages and limitations. In this section, we
briefly present similar work to our own.

In [17], the authors presents a system that sorts documents returned by Google
using a dynamically created taxonomy. This taxonomy is built using the same
documents that are returned by Google for a specific user query. This relates
considerably to the method that was used by the Sesei software [15], the prede-
cessor of SeseiOnto. Therefore, this taxonomy is employed to improve the user’s
search experience by returning documents that are the most significant with
regard to his query. One of the drawbacks of this approach is that it may not
be necessary to build an ontology dynamically for every query. A domain on-
tology, although possibly less oriented towards the user’s query, could correctly
provide an appropriate answer. Furthermore, documents returned from the Web
will probably contain a lot of noise and information that is by no means related
to the topic. In our opinion, a domain ontology contains enough semantics to
cover a wide range of queries. Moreover, it needs to be updated only when the
document base evolves, which is much less frequently than with each query.

In [4], the author presents a method to build an ontology using “expert-
created” sources containing similar information. The source for this hierarchy
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construction process is made of tables coming from Web pages. The ontology
construction process presented in this work begins with a small human-built
ontology requiring a thorough knowledge of the domain. Nevertheless, an in-
teresting point made by this research is that a lot of emphasis seems to have
been put on evolutionary data, which is particularly important in the context of
corporate Intranets where the content constantly evolves.

Another method presented in [3] is focusing on building hierarchical repre-
sentation of natural language sentences using a set of rewrite rules. These rules
describe subsumption relations between various text representations. The hier-
archy is then employed to determine if the meaning of a given sentence entails
that of another. The main similarity of this work with ours is that their analysis
of text is based on a type of “transformation rules”. However, this approach
could be time consuming if large corpora of texts were used.

In [2], a sophisticated question answering system used for passage retrieval
is described. This approach employs a fuzzy relation matching technique to an-
swer queries. Similar grammatical relations are identified between queries and
passages to evaluate their degree of relevancy. This system was tested in the
context of the Text REtrieval Conference (TREC). Their results indicate that
sophisticated relation matching techniques seems to have a strong potential for
natural language question answering. The inclusion of fuzzy CGs in our algo-
rithm is to be explored

3 SeseiOnto

SeseiOnto [12][11] is a standalone application used to perform semantic search
on a corpus of textual documents. It aims at being an alternative to traditional
Boolean search engines by providing a mean of integrating NLP-based querying
and ontology extraction. Natural language is processed using the representation
power of conceptual graphs; and ontologies are automatically built using the
Text-To-Onto software.

Figure 1 shows SeseiOnto global process. Natural language-based queries as
well as the presumably relevant ones from the corpus are processed by the Con-
nexor syntactic analyzer [7]. Connexor’s output is converted to CGs using a set
of 76 ad hoc transformation rules [13]. The ontology is generated by the Text-To-
Onto software and applied on a subset of the documents from the corpus. Using
CGs that represent both the query and parts of the documents and employing
a domain ontology, SeseiOnto tries to identify potential matches1.

3.1 SeseiOnto’s Search Process

SeseiOnto is mainly based on the Sesei software [15]. Sesei was built to answer
natural language queries on the World Wide Web using an ontology specific
to the user’s query. Using definitions from WordNet [10], the user has to dis-
ambiguate words composing his query. A type hierarchy is created using the
definitions provided by the user and the concept hierarchy of WordNet.
1 This process will be explained in more details in the current section.



Employing a Domain Specific Ontology to Perform Semantic Search 245

Fig. 1. SeseiOnto’s global process

As for SeseiOnto, it initially takes a user query as input. This query is then
sent to the Connexor [7] syntactic analyzer. Prepositions and articles are removed
and words are lemmatized. Words are matched to the ontology, which is viewed
as a type hierarchy by SeseiOnto. If a word from the query is not identified in
the ontology, it is added to it. The query is then converted to CGs using the
set of 76 transformation rules. According to previous tests [14], this set of rules
is broad enough to represent a sufficient number of semantic phenomena. An
example of a rule is: when a noun(A) is the subject of a verb(B) at active voice
in a sentence, it should then be converted to a CG stating that a concept of type
A is the agent of concept of type B. Afterwards, sentences from the documents
in the corpus, that is our resource documents, are converted to CGs using the
same process as with the query.

The next step is identifying the quantity of information shared by the query
and the resource documents to know which documents are the most relevant.
This goal is achieved by calculating a semantic score between the query sentence
and sentences from the resource documents. To obtain this semantic score, a set
of generalizations of each concept and relation are created using the ontology.
To compare two concepts, or two relations, SeseiOnto will try to find the most
common generalization between them. The more specific the generalization, the
higher the semantic score will be. An example of this process can be seen in
Figure 2, extracted from [15]. The query is “Who offers a cure for cancer?” and
the resource sentence is “a big company will market a sedative”.

A generalization will only be evaluated by SeseiOnto if the concepts from the
query graph and the resource graph are linked by relations of the same type.
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Fig. 2. A query graph, a resource graph and their common generalization. The general-
ization of market and offer is market in the type hierarchy: � → trade,merchandise →
market → offer → . . . → ⊥. The generalization of company and � is company, per
definition.

Of course, the ontology needs to be extensive enough to make this common
generalization search process possible. For more details about this step, see [15].

Hence, every document from the corpus will be assigned a semantic score.
Documents and sentences deemed the most relevant, that is, sentences that seem
related to the user’s query, will then be returned by the system. Most relevant
sentences within documents are pinpointed, sorted by their semantic score and
returned to the user.

Additionally, SeseiOnto needs some sort of threshold to discriminate rele-
vant and irrelevant sentences from the resource documents. In SeseiOnto, this
threshold is influenced by the domain ontology and SeseiOnto must first set it.
Therefore, to define it, a set of queries already matched to relevant documents
in the corpus needs to be available. Such a matching can be obtained through
manual evaluation of queries and documents by domain experts. Queries are
sent to SeseiOnto which will assign a semantic score to each resource docu-
ments. Knowing the relevancy of each document, the precision and recall of the
output of SeseiOnto can be calculated for every query. This way, SeseiOnto can
determine the threshold in terms of the semantic score that maximizes, in aver-
age over all queries, the precision and recall. Using a training set and a test set,
together with K-Fold Cross Validation, a threshold is established and is used for
subsequent user queries. More details about SeseiOnto’s search method can be
found in and [11] and [12].

Such a process proved to be quite effective to compare similarity between
two sentences. The next step in our research was to replace the type hierarchy
dynamically created using words from the query by an ontology. If queries were
related to the same field of knowledge, the same ontology could probably be
reused to perform the query-document matching. Instead of creating our own
ontologies, we determined we could learn them automatically.
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3.2 Ontology Learning

Building an ontology from scratch can easily become a time consuming task. It
can require experts from a specific domain and thorough and extensive reasoning
to create concepts and relations describing the field. The broader the domain, the
harder it can get to assemble the initial ontology. Maintaining an ontology is also
a difficult task. A possible solution to ontology creation might be to construct
it automatically [8].

Researchers have employed different types of procedures to learn an ontology
automatically. Most of them rely on learning an ontology from structured infor-
mation such as databases, knowledge bases and dictionaries [17]. Others think
that unstructured information such as Web pages can provide a powerful mean
of creating ontologies from scratch. To be able to perform such a task, a system
needs to have strong natural language processing capabilities to create adequate
ontologies. A valuable starting point for an ontology containing different types of
relations between concepts is a taxonomy. A taxonomy is frequently defined as a
hierarchical structure comprised of “is a” links between concepts that describes
a specific environment.

The ontology is a crucial component of our search process. To build this ontol-
ogy automatically, we employ the Text-To-Onto software [9]. This ontology is con-
structed by using a text corpus containing documents pertaining to the same field
of knowledge. Text-To-Onto allows the knowledge engineer to use a general ontol-
ogy, like WordNet, and adapt it to the domain. Domain specific concepts will be
added to the ontology while superfluous ones will be pruned from it. To build this
ontology automatically, Text-To-Onto uses linguistic patterns and machine learn-
ing methods. Text-To-Onto also allows the building of an ontology from scratch by
using its TaxoBuilder module. TaxoBuilder also uses machine learning techniques
in conjunction with linguistic patterns to create the ontology.

The ontology building method depends mostly of what is favored by the
user between recall and precision. Deeper ontologies, i.e., with more general-
izations/specializations, usually require far more computing time and produce
a better recall. Shallow ontologies with many leaf nodes starting from the root
tends to generally produce better precision with a shorter processing time.

Using this ontology learning approach, we assumed that an ontology built
using documents from the corpus provided enough semantics to represent infor-
mation contained in unseen queries about the domain.

SeseiOnto typically uses seven types of ontologies:

1. FCA ontology with lexicographer classes : Ontology built using Formal Con-
cept Analysis and with the 15 WordNet verbal lexicographer classes [10] as
root nodes.

2. FCA ontology without lexicographer classes : Ontology built using Formal
Concept Analysis without any particular root nodes specified.

3. Vertical Relation Heuristics ontology: Ontology built using compound words
found in documents from the corpus.

4. Hearst patterns ontology: Ontology built using Hearst linguistic patterns [6]
to build “is a” relationships.
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5. Combination of Vertical Relation Heuristics and Hearst patterns ontology:
Ontology built using both previous methods.

6. Combination of Vertical Relation Heuristics, Hearst patterns and WordNet
ontology: Ontology built using Vertical Relation Heuristics, Hearst patterns
and WordNet to build the ontology.

7. Domain adapted WordNet : A modified version of WordNet where specific
concepts from the corpus have been added and concepts too general from
WordNet have been removed.

For more details about Text-To-Onto and TaxoBuilder ontology construction
methods, see [1].

After that our method was clearly defined, we then needed a proof-of-concept
in a real environment. We therefore had to develop a strategy to analyze the
potential of SeseiOnto.

3.3 Past Results

We had the oportunity to test SeseiOnto on one corpus in the past, the Cystic
Fibrosis Database (CF Database) [18]. The CF Database contains a set of 1,239
documents together with a set of 100 queries, each one individually matched to
corresponding relevant documents. These documents are all abstract of scientific
papers about research made on cystic fibrosis during the 1970’s. Domain experts
have performed the matching between queries and documents.

We managed to achieved interesting results, compared to the ones obtained
by a “classical” Boolean search engine, Coveo2. To evaluate SeseiOnto’s perfor-
mance, we used recall, precision and the F-Measure [19] as a combined metric
for that particular purpose. The following formula defines it:

F =
(β2 + 1) × Precision × Recall

β2Precision + Recall

The F-Measure can therefore be considered as the weighted harmonic mean of
precision and recall. The weight given to either recall or precision in the formula
is expressed with the β symbol. In the measure, a β lower than 1 gives more
importance to precision while a β higher than 1 gives more importance to recall.
In our tests, we used a β of 0.5 to emphasize the importance of precision over
recall in our type of application domain.

SeseiOnto managed to achieve a recall of 44% and a precision of 41%, which
gives an F-Measure of 42%. As for Coveo, the search engines manage to reach a
recall of 11% and a precision of 35%, yielding an F-Measure of 25%.

However, in terms of processing time, Coveo performs better than SeseiOnto.
Coveo can answer a query in milliseconds while SeseiOnto can take up to five
minutes. Nevertheless, SeseiOnto has the major advantage of being able to iden-
tify precise sentences within a document that indicate to the user where exactly
is the information he is looking for. SeseiOnto also remains a research prototype

2 www.coveo.com

www.coveo.com
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and we are convinced search time could easily be improved by using parallel
computing, search indexing and preprocessing of documents in the corpus.

Furthermore, SeseiOnto provides a natural language search interface which
is much more intuitive for a user than using keywords and Boolean operators.
SeseiOnto is able to link two different concepts without them necessarily be-
ing homographs, thus improving recall. A regular search will usually eliminate
a document if it does not contain one of the keyword contained in the initial
query. By taking into account the semantic structure of the sentences (through
Connexor and transformation rules), SeseiOnto manages to improve precision.
Having seen that that SeseiOnto had potential, we thereafter started experimen-
tations on other databases.

4 Tests and Results

To evaluate SeseiOnto in a new environment, we selected the 2008 ICCS Chal-
lenge as our test bed. We wanted to apply the SeseiOnto techniques on the
Wikipedia page on climate change3. All our tests were performed with the page
that was available on Wikipedia on November 28th, 2007.

The reader can see in Figure 3 the SeseiOnto’s workflow, in the context of
using the software in a restricted domain Web environment. Hence, the user must
initially start by sending a natural language query to SeseiOnto and selecting
an ontology to perform his search. Afterwards, the query sentence is parsed
using Connexor, query words are matched to the selected ontology and a CG
is obtained using the set of transformation rules of SeseiOnto. As for resource
CGs, documents are obtained from the appropriate Web page (in our case, the
Wikipedia page on climate change) and sentences are extracted from the resource
document. Resource CGs are built using the same process as with the query
CGs. Resource and query CGs are then compared using the method presented
in Section 3. Sentences with the highest semantic score are returned to the user.

To perform our tests, we applied an empirical approach. We used a set of finite
queries on climate change taken from the World Wide Web4and we manually
evaluated how SeseiOnto could answer them. We compared different ontologies
to see how they each individually performed at answering these specific queries.
We also wanted to compare the approach of manually disambiguating the words
from query using the definitions from WordNet, i.e., using the search approach
of Sesei, SeseiOnto’s “ancestor”.

We are showing below examples of how SeseiOnto performed at answering some
of these queries. For the question “How could climate change affect us in the fu-
ture?”, SeseiOnto gave the three following sentences as the first three answers:

– An October 29, 2006 report by former Chief Economist and Senior Vice-
President of the World Bank Nicholas Stern states that climate change could
affect growth, which could be cut by one-fifth unless drastic action is taken

3 http://en.wikipedia.org/wiki/Climate change
4 http://www.greenfacts.org/studies/climate change/index.htm
http://www.gcrio.org/ipcc/qa/index.htm

http://en.wikipedia.org/wiki/Climate_change
http://www.greenfacts.org/studies/climate_change/index.htm
http://www.gcrio.org/ipcc/qa/index.htm
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Fig. 3. Overview of SeseiOnto’s workflow

– A single eruption of the kind that occurs several times per century can affect
climate causing cooling for a period of a few years

– In short climate change can be a self-perpetuating process because different
aspects of the environment respond at different rates and in different ways
to the fluctuations that inevitably occur

It is possible to see that SeseiOnto correctly identified that climate change could
affect economical growth. To the question “How could greenhouse gas emissions
be reduced?”, SeseiOnto answered:

– According to a 2006 United Nations report, Livestock’s Long Shadow, live-
stock is responsible for 18% of the world’s greenhouse gas emissions as mea-
sured in CO2 equivalents

– Similarly rising temperatures caused for example by anthropogenic emis-
sions of greenhouse gases could lead to retreating snow lines revealing darker
ground underneath and consequently result in more absorption of sunlight

– These principals can be observed as bubbles which rise in a pot of water
heated on a stove or in a glass of cold beer allowed to sit at room temperature
gases dissolved in liquids are released under certain circumstances

One can deduce that livestock and human activity (“anthropogenic emis-
sions”) influenced greenhouse gas emissions. To the question “Why should a few
degrees of warming be a cause for concern?”, SeseiOnto answered:
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– According to these studies, the greenhouse effect, which is the warming pro-
duced as greenhouse gases trap heat, plays a key role in regulating Earth’s
temperature

– There are several examples of rapid changes in the concentrations of green-
house gases in the Earth’s atmosphere that do appear to correlate to strong
warming, including the PaleoceneEocene thermal maximum, the Permian-
Triassic extinction event, and the end of the Varangian snowball earth event

– The biggest factor of present concern is the increase in CO2 levels due to
emissions from fossil fuel combustion followed by aerosols matter in the which
exerts a cooling effect and cement manufacture

With the first answers, we understand that greenhouse gases play a key role
in regulating Earth’s temperature. To the question “How do we know that the
atmospheric build-up of greenhouse gases is due to human activity?”, SeseiOnto
answered:

– As far as is known the climate system is generally stable with respect to
these feedbacks positive feedbacks do not

– Similarly rising temperatures caused for example by anthropogenic emis-
sions of greenhouse gases could lead to retreating snow lines revealing darker
ground underneath and consequently result in more absorption of sunlight

– According to a 2006 United Nations report, Livestock’s Long Shadow, live-
stock is responsible for 18% of the world’s greenhouse gas emissions as mea-
sured in CO2 equivalents.

Once again, livestock and human activity is identified as a source of greenhouse
gases.

Thus we can see that SeseiOnto has the potential to answer natural language
queries that contain many different linguistic phenomena. The processing time
for each query varies between two to three minutes.

The answers presented here were produced using WordNet concept hierarchy.
Therefore, we had to disambiguate the words composing the query using Word-
Net’s definitions. We also did some tests using other ontologies generated by
Text-To-Onto and which were based on the Wikipedia page on climate change.
We obtained small differences by using these ontologies. Answers were similar to
the one presented here. The main difference was the order they were presented
to the user.

The primary advantage of using a Text-To-Onto ontology with SeseiOnto is
that the user does not need to disambiguate words composing his query. This
can be important because it eases the search process while at the same time
preventing the hassle of selecting the correct definitions from WordNet. The
difference between definitions is often subtle and different users could choose
separate definitions with the same concept meaning in mind. For that reason,
we would recommend using a Text-To-Onto generated ontology to perform this
type of Web search but thorough testing is necessary to prove this theory.

The ontology used by SeseiOnto, whether it be WordNet or Text-To-Onto,
should not be considered as a thorough representation of the knowledge con-
tained in the domain. It should be viewed as a sufficient semantic representation
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that allows the system to answer natural language queries. Certainly, an accu-
rate and extensive human-built ontology would provide more information about
the domain. However, we assumed that by using a WordNet or a Text-To-Onto
ontology, we could more rapidly test our system with different corpora without
needing to create an ontology by hand for each domain.

Consequently, we can suppose that SeseiOnto has the potential to be employed
in the context of Web searches done on a specific field of knowledge. SeseiOnto
is able to answer the user’s query by providing pointers to relevant sentences
within a document. Past results have shown that SeseiOnto could also be used
in the context of larger documents collections [11].

5 Conclusion

With this research, we provide a unique analysis on how SeseiOnto can answer
a query by selecting sentences within a relatively long document (more than
5,000 words), the Wikipedia page on climate change. This type of tests was
never done with SeseiOnto in the past. We found out that within the first three
answers given by our system, at least one is relevant to the query in most cases.

The main advantages of SeseiOnto are:

– It provides a natural language interface;
– it can pinpoint exact relevant sentences within a document to help the user

answer his query;
– it provides an automatic ontology construction mechanism that can adapt

to corpus updates;
– it seems to improve precision and recall for domain specific corpora or re-

stricted domain Web search;
– it does not require experts’ interventions;

Its main weaknesses are:

– Its processing time is relatively long (between two or three minutes);
– it needs to have a simple mechanism to select the correct ontology for a

particular corpus;
– when WordNet is used, the disambiguation process can be confusing for the

user.

Despite these drawbacks, we think that with additional testing and minor im-
provements, we could easily achieve even better results and apply the search
methods of SeseiOnto in a professional environment.

5.1 Future Work

For the time being, SeseiOnto only functions as a standalone application. In the
coming months, we intend to make it publicly available on the Web. We will
start by making a system that can answer any queries relating to the current
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Wikipedia page on climate change. The user will be able to select the method he
wants to use to perform his query, i.e., selecting a particular ontology or using
WordNet to disambiguate words from his question.

Although we think that SeseiOnto was up to task of the ICCS Challenge,
extensive testing is still necessary to assess its full potential. In the case of
Wikipedia, including sub-pages that are referenced by a link on the climate
change page could provide an interesting way of seeing if SeseiOnto still performs
well with additional documents. Testing SeseiOnto on new corpora would also
provide an interesting feedback about its possibilities.

Moreover, the development of Text-To-Onto is now stopped and has been
replaced by the new ontology creation framework, Text2Onto. It could be very
interesting to use SeseiOnto with this new environment.

Incorporating formal ontologies to our application could also be pertinent
since it would more easily permit the evaluation of the coherence of ontologies
generated with Text-To-Onto.

Improving SeseiOnto processing time is very important if we ever want it to
make it publicly available. To do so, indexing documents from the corpus and pre-
converting documents’ sentences to CGs would assuredly reduce its search time.

In conclusion, SeseiOnto shows that conceptual graphs have an immense po-
tential to represent natural language. Although completely hidden to the user in
our software, they are a key element to converting the syntactic representation
given by Connexor to a semantic one. The ontology used by SeseiOnto is either
automatically constructed with Text-To-Onto or taken from WordNet following
the user’s query words disambiguation. With this ontology, we obtain a simple
yet effective way of comparing a query with many sentences coming from the
corpus the search is being made on.

SeseiOnto was assembled using tools coming from the industry as well as the
open-source, research and CG communities. This software is a concrete exam-
ple on how conceptual structures can be used in an application and how their
representation power can be employed to process information. With additional
thorough testing, a tool such as SeseiOnto could probably be coupled to other
information retrieval and information extraction applications. Such a coupling
could provide a whole new range of possibilities in the Semantic Web context.
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Abstract. SearchSleuth is a program developed to experiment with the
automated local analysis of Web search using formal concept analysis.
SearchSleuth extends a standard search interface to include a conceptual
neighborhood centered on a formal concept derived from the initial query.
This neighborhood of the concept derived from the search terms is deco-
rated with its upper and lower neighbors representing more general and
specialized concepts respectively. In SearchSleuth, the notion of related
categories – which are themselves formal concepts – is also introduced.
This allows the retrieval focus to shift to a new formal concept called
a sibling. This movement across the concept lattice needs to relate one
formal concept to another in a principled way. This paper presents the
issues concerning exploring and ordering the space of related categories.

1 Introduction

There are several Formal Concept Analysis-based Web search applications which
provide automatic local analysis of search results for query refinement and la-
beled clustering [1,2,3]. These systems work via the creation of a conceptual space
from polled search results which are displayed in various ways. The method is
limited in that the systems fail to create a concept representing the query it-
self within the information space – meaning the space is representative of the
results returned from the query terms, but not to the query terms themselves.
SearchSleuth [4] overcomes this problem by creating a conceptual space as a
neighborhood of the search concept : the formal concept derived from the search
terms. The resulting neighborhood is comprised of generalisations (upper neigh-
bors), specializations (lower neighbors) and related categories (called siblings).
Fig. 1 shows the interface and these components.

By centering the conceptual space around the search concept, the resulting
query refinement operations are more closely coupled to the search terms used
in the creation of the space. SearchSleuth was first presented at the concept
lattice applications conference in October 2007 [4], in that paper we discussed
some of the preliminaries of search in the conceptual neighborhood of a query
and go on to differentiate SearchSleuth work from other FCA-based web search
tool such as CREDO [1] and FooCA[2,3]. In this paper, we re-iterate some of
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Fig. 1. SearchSleuth display, including top results, after a search for ‘formal concept
analysis’. Generalization/specialization formal concepts shown above/below the
search box resp. The related categories or siblings are to the right of search box.

the fundamentals of SearchSleuth, so that the paper is self-contained, however
our contribution is in terms of explorations of the category space: namely how
alternative formal concepts in the neighborhood of the current query concept
are derived. Our presentation includes the analysis of lattice-theoretic and set-
theoretic notions of proximity and we conclude that these two ideas are orthogo-
nal but complementary. The outcome is of the analysis is reflected in the design
of SearchSleuth.

2 Navigation and Conceptual Neighborhoods

Kim and Compton [5,6] presented a document navigation paradigm using FCA
and a neighborhood display. Their program, KANavigator uses annotated doc-
uments that can be browsed by keyword and displays the direct neighborhood
(in particular the lower neighbors) as its interface. Kim and Compton’s system
emphasised the use of textual labels as representations of single formal concepts
as opposed to a line diagram of the concept lattice.

ImageSleuth [7] used a similar interface design to allow exploration of image
collections. By showing upper and lower neighbors of the current concept and
allowing navigations to these concepts, users could refine or generalise their posi-
tion in the information space. This is aided by the use of pre-defined conceptual
scales that could be combined to define the attribute set of the lattice which
forms the information space (see Fig. 2 (left)).

ImageSleuth uses most of its interface (shown in Fig. 2) to show thumbnails
of images in the extent of the chosen concept. As a result the user never sees
the line diagram of a concept lattice. Instead, the lattice structure around the
current concept is represented through the list of upper and lower neighbors
that allow the user to move to super- or sub-concepts. For every upper neighbor
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(C, D) of the current concept (A, B) the user is offered to remove the set B \D
of attributes from the current intent. Dually, for every lower neighbor (E, F )
the user may include the set F \ B of attributes which takes her to this lower
neighbor. By offering the sets B \ D and F \ B dependencies between these
attributes are shown. Moving to the next concept not having a chosen attribute
in its intent may imply the removal of a whole set of attributes. ImageSleuth
was usability tested and results indicated that the approach aided navigation in
image collections [8,9].

SearchSleuth follows from ImageSleuth and employs the same conceptual neigh-
borhood paradigm for display purposes. Unlike ImageSleuth, SearchSleuth’s con-
text is not static, so the space is rebuilt with each navigation step. This is because
computing the entire domain, the Internet, as a conceptual neighborhood would
be computationally prohibitive.

3 Design Approach of SearchSleuth: Context Building

For the Web, result sets from search engines usually take the form of the lists
of URLs, each with the document title, a short summary of the document (or
snippet) and various details such as date last accessed. Formal Concept Analysis-
based Web search tools use the text-based components of the result set to create
a formal context of the results. This context is then the basis for the conceptual
space to be navigated. One problem with the transformation from Web search
results to formal context is that ranking information on the result set is lost. All
results are treated equally, this issue is usually addressed by re-introducing the
rank ordering from the search engine on any result set that is realized from the
concept lattice.

Fig. 2. ImageSleuth: the interface presents only the extent of the current concept as
thumbnails and generalizations/specializations by removal/addition of attributes to
reach the upper and lower neighbors (shown to the top/bottom of the thumbnails).
Pre-defined scales (perspectives) are displayed on the left.
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Another difficulty experiencedwithWeb searchusingFCAis that rankingmeth-
ods use techniques such as link structure, page popularity and analysis of referring
pages. As such, we cannot assume that all results of a multiple term query will con-
tain all the queried terms used. Even a single query term may yield a page that does
not contain the search term entered. This seems counter intuitive, but if there are
enough Web pages linked to the result page that do contain the search term, that
page’s rank may be inflated enough to feature in the result set.

SearchSleuth uses the ‘result has term’ representation to build a formal con-
text. The formal context for SearchSleuth is created on demand for each query;
this suits the dynamic nature of the Internet. The formal objects are the in-
dividual results, and the formal attributes are the terms contained in the title
and summary of each result. Terms are extracted from the title and summary
after stemming and stop-word filtering has been performed. Stemming reduces
words to their lexical root (e.g. jump, jumping and jumps are all reduced to
jump). Stop-word filtering removes words without individual semantic value, for
example a, the and another. Removing these words reduces the complexity of
the context without noticeable reduction in semantic quality.

The context is then reduced by removing attributes with low support. Every
attribute that has less than 5% of the objects in the incidence relation is removed.
This decreases the computational overhead of involved in computing the concept
lattice. Experience shows that this reduction rarely effects the computed concep-
tual neighborhood as the terms removed are scarce within the information.

Once the formal context is constructed, the search concept is created. This is
done by taking the provided query terms as attributes and deriving the formal
concept. The upper neighbors of this formal concept are then derived and used
to expand the context. This is done by querying the search engine with the
attributes of each upper neighbor and inserting the results into the context.
Results for these ancillary searches are limited to fewer results.

This process of building the context increases the number of terms in the infor-
mation space based on a single level of generalisation. It makes the information
space larger and richer.

4 Building the Information Space

Once the context is expanded, the search concept is recomputed as it may have
been invalidated by this process. The upper and lower neighbors are computed
next. A concept A is said to be the upper neighbor (or cover) of a iff we have
A > B, and/but there is no concept C with A > C > B. A concept A is said to
be the lower neighbor of (or covered by) a concept B iff we have A < B, and/but
there is no concept C with A < C < B. The DownSet (DS) and UpSet (US)
are defined as follows;

DS(X) := {y | y ≤ x for an x ∈ X} US(X) := {y | y ≥ x for an x ∈ X}

Upper and lower neighbors of a concept C are written as UN(C) and LN(C)
respectively. Consider now the set of concepts X , UN(X) is defined as the union
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of all upper neighbors of the concepts in X . Dually, consider the set of concepts
X , LN(X) is defined as the union of all lower neighbors of the concepts in X .

UN(X) :=
⋃

{UN(C) | C ∈ X} LN(X) :=
⋃

{LN(C) | C ∈ X}

The next step is to compute the related categories or sibling concepts. Sibling
concepts are then calculated by finding all of the lower neighbors of upper neigh-
bors which are upper neighbors of lower neighbors. Put another way, siblings
constitute formal concepts created by the removal of an attribute (or attributes)
that define an upper neighbor (UN), and the inclusion of an attribute (or at-
tributes) that defines a lower neighbor (LN). Child Siblings (CS) and Parent
siblings (PS) defined as: are defined:

CS(C) := UN(LN(C))\{C} PS(C) := LN(UN(C))\{C}

Exact Siblings (ES or Type I siblings) are those which are both Parent and Child
siblings, Since they represent a stricter version of the notion of siblings they are
referred to as Type I siblings and PS and CS are termed Type II siblings:

ES(C) := [LN(UN(C)) ∩ UN(LN(C))]\{C}

General Siblings (GS – Type III) define an even broader set of sibling concepts
and are defined:

GS(C) := [DS(UN(C)) ∩ US(LN(C))]\({C} ∪ UN(C) ∪ LN(C))

namely, anything strictly between some lower and some upper neighbor.
Child Siblings (CS), Parent Siblings (PS), and Exact Siblings (ES) form

anti-chains, but General Siblings (GS) do not.
An example is shown in Fig. 3; concepts with a grey backing are Exact Siblings

(ES) of the concept marked C.
Using the same labeling scheme as ImageSleuth for upper and lower neighbors

and using the full intent as labels of sibling concepts, a display is rendered for
the user (shown in Fig. 1).

Upper neighbors are shown above this text entry box, displayed as text labels
(shown in Fig. 1). The labels are the attributes which would be removed to
navigate to that upper neighbor. These labels are preceeded by a minus symbol
(-) to reinforce the notion of removal.

Lower neighbors are similarly displayed (also indicated with arrows in Fig. 1),
but placed below the text entry box. These labels are the attributes which would
be added to navigate to that lower neighbor. Like upper neighbor labels, these
labels are preceeded by a symbol to reinforce the labels meaning, namely the
plus symbol (+) and the notion of include.

The display order of the upper and lower neighbors is defined by extent size,
larger extents displayed first (left-most). Extent is representative of the impor-
tance or prominence within the current information space. Extent is also used
to aid in the coloring of the labels background. The higher the extent on a lower
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Fig. 3. Diagram demonstrating the Parent Sibling (PS), Child Siblings (CS), Exact
Sibling (ES) and General Siblings (GS) concepts of the concept labeled with a C in
two lattices

neighbor, the deeper the blue block shade behind that concepts label. Upper
neighbors are displayed with the same principle but with red block shade.

One method for dealing with the return of empty-extents from term-based
searching is to provide users with a list of the terms entered so that they can
incrementally remove terms to unconstrain the search. SearchSleuth explores an
approach based on variations on defined distance [10] and similarity [11] metrics
in the FCA literature in order to find similar relevant concepts.

Exact Siblings (ES) are shown to the right of the text entry box (indicated
with arrows in Fig. 1) and are indicative of related concepts. The complete
intent of these concepts is displayed within square brackets preceded by a tilde
(~[...]). This helps group the concept intents and aids distinguishing between
related concepts. Unlike upper and lower neighbors, Exact Siblings are ordered
by similarity. The similarity metric is based on work by Lengnink [10] and was
initially adapted for ImageSleuth. It uses the size of the common objects and
attributes of the concepts. For two concepts (A, B) and (C, D), we set:

s((A, B), (C, D)) :=
1
2

(

|A ∩ C|
|A ∪ C| +

|B ∩D|
|B ∪D|

)

. (1)

The similarity metric is used to order the exact sibling concepts, while high-
lighting remains based on extent size. Coloring on sibling labels is based on grey
block shades.

By clicking any of the possible concept labels, the query is set to the intent
of the selected concept and the query process is restarted. This is an important
restructuring step as a change in the query will change the result set, and in
order for the information to be valid it needs to be recomputed.

Looking back to Fig. 1, we see the search concept shown is based on the
query formal concept analysis. It shows a single upper neighbor analysis
which interestingly shows an implication that formal and concept are implied
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by analysis. The first of the lower neighbors is the acronym fca. This is fol-
lowed by terms such as lattice, mathematics and theory. These terms are
good examples of specialisation from the concept of Formal Concept Analysis.
This neighborhood is based on 115 formal objects. The initial number of formal
attributes for this example was 623, after reducing the context this was lowered
to 40. This offers a tremendous reduction in context complexity, and therefore
computation time but these numbers also reflect the need to search a subset of
conceptual neighborhood.

A main question in the design of SearchSleuth is whether the definition of
Exact Siblings provides sufficient space for proximity search of neighboring cat-
egories. The remainder of the paper addresses this issue in detail.

5 Distance, Similarity and Siblings

We have two measures to consider the proximity of formal concepts. In addition
to similarity (s) defined in Eqn. (1) we also have for two formal concepts (A, B),
(C, D),

d((A, B), (C, D)) :=
1
2

(

|A\C|+ |C\A|
|G| +

|B\D|+ |D\B|
|M |

)

where d the distance of the concepts (A, B), (C, D) [10]. To ease comparison
between the two measures, let

s′((A, B), (C, D)) := 1− s((A, B), (C, D))

Let us first note that s′ and d are metrics in the mathematical understanding.
That is, d satisfies for arbitrary concepts x, y, z: d(x, y) ≥ 0 and d(x, y) = 0 ⇔
x = y (non-negativity and identity of indiscernibles), d(x, y) = d(y, x) (symme-
try), and d(x, z) ≤ d(x, y)+d(y, z) (triangle inequality). The triangle inequalities
can easily be shown by straight-forward computations, and the remaining prop-
erties are easily to be seen.

Next, note that we have

s′((A, B), (C, D)) =
1
2

(

|A ∪ C| − |A ∩ C|
|A ∪ C| +

|B ∪D| − |B ∩D|
|B ∪D|

)

(2)

d((A, B), (C, D)) =
1
2

(

|A ∪ C| − |A ∩ C|
|G| +

|B ∪D| − |B ∩D|
|M |

)

(3)

Comparing Eqns. (2) and (3), we see that they differ in that in (2), we divide
through |A∪C| and |B∪D|, whereas in (3), we divide through |G| and |M |. There-
fore s′ is a local distance, focusing on the shared attributes and objects of the two
formal concepts being compared, and d is a global distance, using all the attributes
and objects in the context. The choice of measurement to use therefore depends
on the sensitivity of the proximity measure required. The preferred approach for
SearchSleuth is proximity in the conceptual neighborhood to the current formal
concept. Therefore the local measure is considered most suitable.
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One can however easily combine the two measures. Let l ∈ [0, 1], measuring
the desire of a local point of view (l = 0 means the user wants a purely global
point of view, and l = 1 means the user wants a purely local point of view).
Then the corresponding distance (dist) measure is,

dist((A, B), (C, D)) := l · s′((A, B), (C, D)) + (1− l) · d((A, B), (C, D)).

6 Relationship between Metric and Sibling Explored

The basic approach of SearchSleuth is to explore the ‘conceptual neighborhood’
of a given concept. To grasp this ‘conceptual neighborhood’, SearchSleuth takes
advantage of two fundamentally different notions of neighboorhood. On the one
hand, we use the lattice-theoretic notions of siblings, which do do not take the
sizes of the concept-extents or intents into account. On the other hand, we use the
notions of similarity and distance metrics are set-theoretic notions (they do not
take the lattice-order into account). In the next two pararaphs, we first investigate
the different types of siblings, and then the two kinds of similarity metrics.

The notions of siblings is more fine-grained divided into exact siblings (Type
I), parent- and child siblings (Type II), and general siblings (Type III). Obvi-
ously, this is a hierarchy of types: Each Type I sibling is a Type II sibling, and
each Type II sibling is a Type III sibling. Besides this inclusions, we cannot
provide any general estimations on the number of the different types of siblings.
To be more precise: If nI, nII, nIII ∈ N0 are three numbers with nI ≤ nII ≤ nIII

and nII �= 1, then there exists a lattice with an element c which has nI Type
I siblings, nII Type I siblings, and nIII Type I siblings. An example for such a
lattice is given below. In the diagram, for each sibling of c, the most special type
the sibling belongs to is inscribed into its node. That is in the diagram, nI nodes
are labelled with ‘I’, nII − nI nodes are labelled with ‘II’, and nIII − nII − nI

nodes are labelled with ‘III’.

c
III III

II II II

II

I I

For the notions of local (s′) and global (d) distance, a somewhat similar con-
sideration applies. Due to Eqns. (2) and (3), in each lattice, for any concepts
x, y, we have

s′(x, y) ≥ d(x, y) .

On the other hand, there are examples (one is given in the following subsection)
of lattices where there are two concepts c, n which are arbitrary close with
respect to the local, but arbitrary distant with respect to the global distance.
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The question remains whether there are dependencies between the lattice-
theoretic (i.e., siblings) and the set-theoretic (i.e., metrics) notions of conceptual
neighborhood. We will investigate some examples in the following sections. As
these examples will show, the two notions are somewhat orthogonal but comple-
mentary in determining the most appropriate related categories in SearchSleuth.

6.1 Exact Siblings (ES) and Proximity Metrics

We first consider an example where we have an exact sibling n of a concept
c, and we investigate whether we can draw some conclusions about the local
or global distance between c and n. The example we consider is the following
concept-lattice:

g4

m1
g1

m2
g2 g3

m3

m4

s n

In this diagram, g1, g2, g3, g4 resp. m1, m2, m3, m4 do not denote objects or
attributes, but the numbers of objects resp. attributes which generate the con-
cept. For example, for c = (G2, M2), we have g2 = |G2| − |G1|. That is, the gi

and mi are the numbers of objects and attributes in the common diagrams of
concept lattices. Two concepts are given names, namely c and n. We have:

s(c, n) =
1
2

(

g1

g1 + g2 + g3
+

m4

m2 + m3 + m4

)

d(c, n) =
1
2

(

g2 + g3

g1 + g2 + g3 + g4
+

m2 + m3

m1 + m2 + m3 + m4

)

For fixed g2, g3, g4, m1, m2, m3 (e.g., g2 = g3 = g4 = m1 = m2 = m3 = 1), we
have

lim
g1→∞
m4→∞

s′(c, n) = 1− 1
2
(1 + 1) = 0 and lim

g1→∞
m4→∞

d(c, n) =
1
2
(0 + 0) = 0

i.e., c and n can be arbitrarily similar with respect to both s′ and d.
On the other hand, for fixed g1, g3, m3, m4, we have

lim
g2→∞
m2→∞

s′(c, n) = 1− 1
2
(0 + 0) = 1 and lim

g2→∞
m2→∞

d(c, n) =
1
2
(1 + 1) = 1

(similar for g2, m3, and g3, m2, and g3, m3). That is, c and n can be arbitrarily
different (again with respect to s and to d).

Now let ε1, ε2 > 0. Let g3, g4, m1, m3 be fixed. By first choosing g2 and m2

sufficiently large, we can achieve s(x, n) < ε1, and by then choosing g1, m4

sufficiently large (which does not affect s(c, n)), we can achieve d(c, n) < ε2.
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That is, we can achieve that in a local understanding (i.e., w.r.t. s′), the concepts
c and n are very similar, whereas in a global understanding ((i.e., w.r.t. d), the
concepts c and n are very distant.

To summarize this example: even for the most special case of being an exact
sibling n of a given concept c, we cannot draw any conclusion about the local or
global distance between c and n.

6.2 The Proximity of Type I Siblings Versus Non Siblings

A concept n which is a sibling for a given concept c belongs, from a lattice-
theoretic point of view, to the conceptual neighborhood of c; a concept x which
is not a sibling of c does not belong to the conceptual neighborhood. Is this
property reflected by the distances s′ and d? We consider again an example
where n even is an exact sibling of c.

g4

m1
g1

m2
g2 g3

m3

m4

g5

m5

s n

x

In terms of similarity we have:

sn := s(c, n) =
1
2

(

g1

g1 + g2 + g3
+

m4 + m5

m2 + m3 + m4 + m5

)

sx := s(c, x) =
1
2

(

g1 + g2

g1 + g2 + g4 + g5
+

m5

m2 + m4 + m5

)

Note that we can have g1 = 0, m1 = 0, g4 = 0, and m5 = 0, but all other
numbers must be ≥ 1. Now, n could be more similar to c than x, equally similar,
or less similar, as the following examples show.

g1 g2 g3 g4 g5 m1 m2 m3 m4 m5 2 · sn = 2 · s(c, n) 2 · sx = 2 · s(c, x)
1 1 1 0 1 1 1 1 1 1 1/3 + 2/4 = 5/6 2/3 + 1/3 = 1
1 1 1 1 1 0 1 1 1 1 1/3 + 2/4 = 5/6 2/4 + 1/3 = 5/6
1 1 1 1 1 0 1 1 1 0 1/3 + 1/3 = 2/3 2/4 + 0/2 = 1/2

Running a computer-program checking all values for gi and mi with a thresh-
old of 8 yields:

s(c, n) > s(c, x) s(c, n) < s(c, x) s(c, n) = s(c, x)
804.068.208 913.112.127 2.746.449

Therefore the cases in which s(c, n) > s(c, x) and s(c, n) < s(c, x) do not
significantly differ and we cannot conclude (at least for this toy-example) that
siblings are generally more similar than non-siblings.
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Similarly, repeating the analysis in terms of the distance metric d, we have:

dn := s(c, n) =
1
2

(

g2 + g3

g1 + · · ·+ g5
+

m3 + m4

m1 + · · ·+ m5

)

dx := s(c, x) ==
1
2

(

g4 + g5

g1 + · · ·+ g5
+

m2 + m4

m1 + · · ·+ m5

)

g1g2g3g4g5 m1m2m3m4m5 2 · dn = 2 · d(c, n) 2 · dx = 2 · d(c, x) result
0 1 1 0 2 0 1 1 2 0 2/4 + 2/4 = 1 2/4 + 3/4 = 5/4 d1 < d2

0 1 1 1 1 0 1 1 1 0 2/4 + 2/3 = 7/6 2/4 + 2/3 = 7/6 d1 = d2

0 1 1 0 1 0 1 1 1 0 2/3 + 2/3 = 4/3 1/3 + 2/3 = 1 d1 > d2

d(c, n) > d(c, x) d(c, n) < d(c, x) d(c, n) = d(c, x)
908.328.121 788.136.280 23.462.383

Again the cases d(c, n) > d(c, x) and d(c, n) < d(c, x) do not significantly differ.
To summarize this example: even for the most special case of being an exact

sibling n of a given concept c, we cannot draw any conclusion that n is closer to
c compared to a non-sibling.

6.3 The Proximity of Type II Versus Type III Siblings

We have different strengths of being a sibling. We still could hope that this is
reflected by the metrics. In the following example, we consider Type II siblings
of a concept c with the more general Type III siblings and check whether the
Type II siblings are closer to c than the Type III siblings.

m1

g4

m4

g5

m5

m3

m6
g6

m2

n

n

n

g1

s

g31

g2 2

3

In terms of similarity we have:

s1 := s(c, n1) =
1
2

(

g1

g1 + g2 + g3
+

m6

m2 + m3 + m4 + m5 + m6

)

s2 := s(c, n2) =
1
2

(

g1

g1 + g2 + g3 + g4
+

m6

m2 + m4 + m5 + m6

)

s3 := s(c, n3) =
1
2

(

g1

g1 + g2 + g3 + g4 + g5
+

m6

m2 + m5 + m6

)

In this example, there is no order relationship between s1, s2, and s3. We can
have s1 < s2 < s3 or s3 < s1 < s2 or s1 = s2 < s3 etc. Any combination is
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possible. The following table shows examples for all possible strict orders of s1,
s2, s3 (examples for cases like s1 = s2 < s3 are left out due to space limitations).

g1g2g3g4g5g6 m1m2m3m4m5m6 2 · s1 2 · s2 2 · s3 result
1 1 1 1 1 1 1 1 2 1 1 2 1/3 + 2/7 1/4 + 2/5 1/5 + 2/4 s1 < s2 < s3

1 1 2 1 2 1 1 2 2 1 2 2 1/4 + 2/9 1/5 + 2/7 1/7 + 2/6 s1 < s3 < s2

1 1 1 1 1 1 1 1 1 1 1 2 1/3 + 2/6 1/4 + 2/5 1/5 + 2/4 s2 < s1 < s3

1 1 1 1 1 1 1 1 1 1 2 2 1/3 + 2/7 1/4 + 2/6 1/5 + 2/5 s2 < s3 < s1

2 2 2 1 2 1 1 1 2 1 2 1 2/6 + 1/7 2/7 + 1/5 2/9 + 1/4 s3 < s1 < s2

1 1 1 1 1 1 1 2 1 1 2 1 1/3 + 1/7 1/4 + 1/6 1/5 + 1/5 s3 < s2 < s1

Similarly, repeating the analysis in terms of the distance metric, we have:

d1 := d(c, n2) =
1
2

(

g2 + g3

g1 + · · ·+ g6
+

m2 + m3 + m4 + m5

m1 + · · ·+ m6

)

d2 := d(c, n2) =
1
2

(

g2 + g3 + g4

g1 + · · ·+ g6
+

m2 + m4 + m5

m1 + · · ·+ m6

)

d3 := d(c, n3) =
1
2

(

g2 + g3 + g4 + g5

g1 + · · ·+ g6
+

m2 + m5

m1 + · · ·+ m6

)

Again here is no relationship between d1, d2, and d3, and any combination is
possible, as the following table shows:
g1g2g3g4g5g6 m1m2m3m4m5m6 2 · d1 2 · d2 2 · d3 result
1 1 1 1 1 1 1 1 1 1 2 1 2/6 + 5/7 3/6 + 4/7 4/6 + 3/7 d1 <d2 <d3

1 1 1 1 1 1 1 2 1 2 2 2 2/6 + 7/10 3/6 + 6/10 4/6 + 4/10 d1 <d3 <d2

1 1 1 1 1 1 1 2 2 1 2 2 2/6 + 7/10 3/6 + 5/10 4/6 + 4/10 d2 <d1 <d3

1 1 1 1 1 1 1 1 2 1 1 1 2/6 + 5/7 3/6 + 3/7 4/6 + 2/7 d2 <d3 <d1

1 1 1 1 1 1 1 1 1 2 1 1 2/6 + 5/7 3/6 + 4/7 4/6 + 2/7 d3 <d1 <d2

1 1 1 1 1 1 1 1 2 2 1 1 2/6 + 6/8 3/6 + 4/8 4/6 + 2/8 d3 <d2 <d1

To summarize the analysis: we cannot draw any conclusion that Type II sib-
lings of a concept c are closer to c, using s′ or d, than the weaker Type III
siblings. That is, we cannot say that Type II siblings better represent related
categories than Type III siblings.

6.4 Type I Versus Type II Versus Type III Siblings

This example compares now all three types of siblings are now

m1

g4

m4

g5

m5

m3

m6
g6

m2 sg2 7g
m7

n

n

n

g1

g31

2

3

n
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In terms of similarity we have:

sn := s(c, n) =
1
2

(

g1

g1 + g2 + g7
+

m6

m2 + m6 + m7

)

s1 := s(c, n1) =
1
2

(

g1

g1 + g2 + g3
+

m6

m2 + m3 + m4 + m5 + m6

)

s2 := s(c, n2) =
1
2

(

g1

g1 + g2 + g3 + g4
+

m6

m2 + m4 + m5 + m6

)

s3 := s(c, n3) =
1
2

(

g1

g1 + g2 + g3 + g4 + g5
+

m6

m2 + m5 + m6

)

Note that changing g7 and m7 does not affect the similarity measures between
c and n1, n2, n3, resp. According to Section 6.1, for high values of g7 and m7, the
similarity between c and n (i.e., d) decreases. So we easily can use the values for
g1, . . . , g6, m1, . . . , m6 of the last example to get all possible orderings of s1, s2, s3,
and choose g7 and m7 such that d < s1, s2, s3. That is, Type II siblings)are not
necessarily more similar to c than Type III siblings.

In fact, we have again that for s, all 24 strict orders of s, n, s1, s2, s3 can appear.
And the same holds for d. (As we have both for s and d 24 such strict orders,
thus 48 examples, these examples are not provided due to space limitations). In
short, no general statements which render some preference for siblings used as
Related Categories in terms of similarity and distance.

7 Conclusion

The notion of Type I, II and II siblings is a purely lattice-theoretic notion,
whereas the notion of distance and similarity is a purely set-theoretic notion. As
our examples show, these notions are somewhat complementary. In order to find
similar concepts to a given concept (related categories), there is no hint that one
should start with the immediate sibling neighbors of that concept. This might
sound disappointing at a first glance, but in practice our observations lead to
an important design feature in SearchSleuth. Computationally, the neighboring
siblings to the current formal concept (whether of Type I, II or III) are the eas-
iest concepts to compute and therefore represent natural candidates for related
category search. In this case the search of the sibling space proceeds by consid-
ering related categories with the best distance and similarity stored in each of
the neighboring siblings concepts for the current concept.

SearchSleuth, extends current FCA Internet search engines by positioning the
user within the information space, rather than placing the user arbitrarily or pre-
senting the entire space. This allows generalisation and categorisation operations
to be performed against the current query concept. SearchSleuth overcomes a
number of practical difficulties in the use of FCA for Internet Search, namely a
practical approach to the construction of a sparse context and the categorisation
operation, where the conceptual focus is moved to a sibling concept of the search
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concept. These paper explains how related categories are derived using a combi-
nation of order-theoretic notions of neighborhood in combination of set-theoretic
definitions of concept similarity.
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Abstract. The ability to represent real-world objects is an important feature of a 
practical knowledge system. Most knowledge systems involve informal or ad-
hoc mappings from their internal symbols to objects and concepts in their 
environment. This work introduces a framework for formally associating 
symbols to their meanings, a process we call grounding. Two kinds of grounding 
are discussed with respect to conceptual graphs – active grounding, which 
involves actors to provide mappings to the environment, and terminological 
grounding, which involves actors that establish the basic elements of meaning 
with respect to a subject field’s agreed-upon terminology. The work incorporates 
active knowledge systems and international terminological standards. 

Keywords: active knowledge systems, grounding, logical interpretation, actors, 
terminology. 

1   Introduction 

In the broad field of knowledge representation, there have been many successes, one 
of which is the representation of conceptual graphs (CGs). Based on first-order logic, 
and now supported by a freely-available international standard [1], the strengths of 
CGs are well-known and familiar to most readers of these proceedings. (For 
additional details, see [2] [3]. 

This paper focuses on the use of knowledge representation for practical system 
development aimed at building solutions to real-world knowledge-intensive problems. 
The authors have pursued this effort for some years already, and we are beginning to 
understand some of the features needed for such development. 

The limitations of purely first-order logic systems for practical development are 
well-documented; for a summary, see [4]. Two of the limitations mentioned there will 
be specifically addressed by this paper: first, reasoners often operate with deductions 
that are context-dependent, and second, reasoners often need to seek additional 
information beyond what has already been represented (from [5] quoted in [4]), as 
opposed to merely drawing conclusions based on what is at hand. 

We propose using an Active Knowledge System (AKS) [6] to address these 
problems. It is our contention that an AKS can provide the foundation for the 
construction and communication of changeable knowledge driven by a user 
community. (A preliminary version of this work appears in [7].) 
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Our focus is on developing and maintaining domain knowledge models after the 
developer is already constrained by those items that are already represented in some 
form in a domain. The paper is neither concerned with restructuring knowledge by 
producing a global a priori ontology, nor with generating a collection of partial 
structures through soft techniques. Rather we are concerned about how to build 
knowledge systems that can support development in subject fields of interest. 

Knowledge is not a static collection of information, but a constantly changing 
collection that reflects new information and knowledge about the domain. An AKS 
provides “eyes" and “ears" for inter-acting (not just inter-face-ing) with external 
sources. Thus an AKS should provide two important capabilities:  

• An AKS should represent the domain and provide answers to queries that 
reflect what is known at the time of the query.  

• An AKS should provide grounded meaning where symbols are explicitly 
associated with the things they represent, the entities, relations and concepts in 
the world. 

There are at least three major issues involved in such systems:  

• How do different users of knowledge deal with their different terminologies, 
domains and purposes? 

• How does the knowledge base ensure that the acquired knowledge is 
consistent (e.g., does not render previous conclusions invalid)?  

• How does knowledge of the changing world become captured into the 
knowledge base’s representation?   

This paper explains one small step along the way to answering these questions, by 
describing how to ground conceptual graph models. 

2   Related Work 

This paper brings together three key ideas that support practical system development 
involving customers, users, and developers. System developers need formal models of 
software systems so that they can reason about the software’s behavior and properties 
beyond what is possible by inspection, reviews and conventional testing. The concept 
of grounding a formal model is important because software systems ultimately must 
meet the needs of real-world people with respect to their real-world objects and 
activities. System developers are often interested in standards in order to both 
leverage a community’s collective experience and to support interoperability among 
other systems. 

The formal models in this framework are represented by conceptual graphs [2] [3] 
and are intended to be supported by freely-available tools such as CharGer [8], 
CoGITaNT [9] and Amine [10]. The effort to describe grounding in conceptual 
graphs actually began with the notion of a demon [11], and has been expanded more 
recently into active knowledge systems [6] [7], an extension to conceptual graphs 
which will be explored further in this paper. Two relevant standards are the Common 
Logic standard [1] and two basic terminology standards [12] [13]; these are valuable 
because conceptual graphs are a standardized dialect of Common Logic (Annex B) 
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and the terminology standards are aimed at establishing a common vocabulary of 
concepts and terms in subject fields.  

The remainder of the paper describes a framework with which grounding can be 
accomplished. We concentrate our efforts on two kinds of grounding:  

Active grounding - Associating each symbol in a model with particular individuals 
or objects. 

Terminological grounding - Associating a concept in a model with previously 
accepted terminology, including its intension (definitions) and extension (included set 
of individuals). 

3   Active Grounding of a Knowledge Model 

Any formal system (including a computer system) is composed of symbols and a set 
of rules for manipulating them. The nature of the rules depends on what kind of 
system is being developed. In a logic system, the rules are logical rules governing 
conclusions that can be derived from assumptions about the original symbols. So if 
we have the premises (p ⊃ q) and p, we can conclude q by using a well-known rule 
called modus ponens.  

Even in this simple example, there is a serious difficulty for practical developers: 
how do they come to know that the premises are true?  The answer is: they don’t!  
The premises are initial assumptions, taken on faith as it were; sometimes they are 
called axioms. If we assume that p =  “Harry is a millionaire" and q = “Harry is 
happy", and we assume that Harry is a millionaire, we thereby infer that Harry is 
happy, but then there’s a fundamental practical problem: Harry isn’t a millionaire (at 
least the one writing this paper isn’t!). That practical problem is not a concern of the 
logic itself (which only considers symbols and rules), but it’s a major concern for the 
developers of a knowledge system. How ought the practical developer attach actual 
meaning to the premises, and hence to their conclusions?   

We propose an answer to this issue: a process we call active grounding, which 
logicians call interpretation. Active grounding can be conceptualized as a procedure 
that maps individual symbols in a model to actual individuals in some domain of 
discourse. It also includes procedures that map the results of functions in the model to 
functions in the environment, etc. but in this paper we focus only on the mapping to 
individuals. 

By terminologically grounded model we mean that there are concepts, intensions 
and extensions represented as in a terminology-based model. An actively grounded 
model is one in which actors (computer codes with pragmatic intent) can establish the 
correspondence between symbols or terms in the model and the objects or concepts to 
which they correspond. We illustrate this below in Figure 2 with a model of a sugar 
molecule in which actors establish the correspondence between the model’s symbols 
for the concepts of atomic weights and the scientifically agreed upon values for those 
weights. 

Both terminologically and actively grounded models are types of grounded models 
where, grounding is the process of establishing, for every symbol in the model, some 
individual (or relationship) in the “real world” to which it corresponds. In modeling the 
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more formal term universe of discourse (or sometimes just universe) is often used. The 
grounded model is the software system’s environment. We will also utilize the 
Common Logic standard [1], which recognizes that relations and functions, while not 
strictly mapped to individuals, will still map to relations and functions in the 
environment that are useful. These make up a potentially larger realm called the 
universe of reference. A logic system thereby provides predicates and functions, which 
allow the representation in a model of relationships between elements in a system. The 
rules of logical inference ensure that the truth of these predicates is preserved; e.g., if I 
assert that dog(Spot) is true and then perform any number of logical transformations, a 
(consistent) system should never allow me to derive not dog(Spot). This is a necessary 
property of any system that is meant to preserve truth-values.  

The practical system developer must also consider what the predicates mean to the 
users or stakeholders of the system.  Logicians remind us that a predicate is assumed 
to be a primitive relation between symbols; a logical system’s only obligation is to 
preserve those relationships throughout its logical operations. The symbols 
themselves, however, are arbitrary, insofar as the logic operations are concerned. For 
the practical system builder, however, these symbols are not arbitrary at all!  Symbols 
used in a knowledge base stand for something, usually in the environment. We 
assume that the participants concur in at least partially establishing this sort of 
meaning and that these meanings act as bounds for the system to be developed. Figure 
1(a) reminds us that symbols in a model are put there for a particular reason, which 
must also be known when symbols are “pulled out” after any transformations. 

Hat: #6824Cat: Albert

int_decode

int_encode

Sitagent loc

int_encode

int_decode

(a) informal (b) formal  

Fig. 1. Interpretation of a conceptual graph 

Figure 1(a) also indicates how a model relates to its environment. Things in the 
environment are represented in a knowledge-based system (shown as the “sheet of 
assertion” containing a conceptual graph) where the arrows show a two-way mapping 
between the model and the environment. Things in the environment are represented in 
the model (“encoded”) using some procedure and are then available for 
representation, reasoning, or whatever operations are allowed in the conceptual graph 
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model. These operations may cause new representations to arise within the system. 
These new representations’ symbols can then be mapped back to the environment 
(“decoded”) to capture their interpretation. The “encode” and “decode” procedures 
may be independent of each other.  

There is a clear need to formalize models such as in Figure 1(a). We seek to create 
formal models in conceptual graphs, such as illustrated in Figure 1(b). Practical 
system builders require the system to preserve the symbols’ meanings as they exist in 
the environment. Conceptual graphs provide these formal operations through the use 
of active relations called actors. Actors labeled “encode” and “decode” represent this 
formalization: namely, the ability to “encode” objects in the environment into formal 
symbols and then “decode” the (possibly transformed) symbols into environment 
objects they denote. 

A more precise way of defining the relationship between a concept and its 
interpretation (i.e., its “counterpart” in the environment) is to use two actors for the 
interpretation procedure – one actor to provide the mapping from an individual in the 
environment to its concept in the graph; another actor to provide the reverse mapping 
from a concept in the graph to the individual(s) required by its interpretation. The 
formal structure is the “sheet” in Figure 1(b) where the actor decode provides the 
formal interpretation function, and the actor encode provides the inverse of the 
interpretation function. The actor’s procedure may be any process needed to establish 
the counterpart; e.g., a database query, URI or even human interaction. The actor’s 
presence pragmatically indicates that there is an anonymous procedure that will pick 
out “this item” where “this item” can be looked up. The lookup returns a “rigid 
designator” that is the same designator across all conceptualizations, contexts, 
microtheories, possible worlds etc. The actor tracks the handle through which the “real 
world” or “not a part of the formal system world” entity can be accessed. The practical 
system builder uses this handle to get the thing outside of the system’s direct control. 

An actively grounded concept is a concept that has fully specified both decode and 
encode actors. Once the actors have “fired” and established their groundings, the 
sheet of assertion comprises the basic knowledge model; i.e., the actors, the concepts 
and relations form a typical conceptual graph representing: A cat Albert is sitting on a 
hat. The identity of the referents is now known, since out of many cats named 
“Albert” the grounding actor will have established which one we mean. We can 
therefore perform the usual inferences, etc. within the formal model. 

An interesting analogy to this situation can be found in the short novel Flatland: A 
Romance of Many Dimensions [14] which tells the story of a two-dimensional world, 
whose inhabitants are all two-dimensional geometric shapes; they cannot comprehend 
anything that might lie outside the (literal) plane of their existence. In a similar 
fashion, a conceptual graph exists on a “plane” of assertion that is necessarily 
“unaware” of anything outside of itself. Actors provide that “third dimension” in 
connecting the sheet of assertion with an outside environment. 

The formalities of actor based interpretations are part of model theory and not 
within the scope of this paper (see [15] for the formal details). However, a key 
requirement for practical knowledge system developers and users is that the system 
has the capability to access its environment. Conceptual graphs [2] have this 
capability. A conceptual graph is considered an existential statement placed on a sheet 
of assertion. Within conceptual graphs, the capability to access the environment is 
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realized through the use of an actor, which is a special kind of active relation; i.e., a 
function that provides a mapping from input concepts to output concepts.  

The semantics of actors within a conceptual graph are well described in [2], with 
further elaborations in [11], [16] and [6]. In brief, an actor operates much as a node in 
a Petri Net [17]: when its input concepts are ready, the actor “fires”, possibly 
changing its output concepts’ referents (i.e., the individuals to which they refer). If the 
output concept is in fact a context (for an example, see Figure 4 and Figure 5 below), 
then the actor’s function is to create or modify the entire sub-graph within that 
context. In this situation, the context itself is treated as a single concept whose 
referent is its enclosed graph.  

A conceptual graph whose concepts denote values or identities obtained by actors 
in this way is called an actively grounded conceptual graph. Such graphs are a 
necessary ingredient in building true active knowledge systems. Figure 2 is an 
example of an actively grounded graph – in this case, a graph that represents the sugar 
molecule whose formula is C6H12O6. There is a particular relationship between a 
molecule and its molecular weight, a relationship that is determined by specific 
experimental values for the atomic weights of its constituent atoms. The significance 
of the example is that a knowledge system cannot determine these values logically – 
the atomic weight values have been empirically determined. Furthermore, while it 
appears deterministic, there may in fact be more than one procedure (outside the 
graph itself of course) that is capable of determining atomic weights, and those values 
may vary based on which procedure is used. 

Actors in a graph thereby provide “hooks” to things outside the sheet of assertion.  
Figure 2 shows several specific actors that may be used to provide meaning to the 
elements of a model. Some simple actors represent external procedures (i.e., in the 
environment) that provide behavior but require no access to specific individuals or 
other features from the environment. The plus actor represents a functional 
relationship between one or more input concepts’ referents and an output referent that 
is required to represent the mathematical sum obtained by adding the input referents 
together. The multiply actor operates similarly in representing a mathematical product.  

Other more interesting actors actually “hook” to more complicated external 
knowledge. Note the lookup actor, which performs the operations necessary to ensure 
that a particular concept referent will have a particular value obtained from a 
database. It contains aspects of both the decode operation (“find an individual record 
in a particular database”) and encode (“set a referent in the graph to correspond to 
terms found in that record”). Figure 2 also shows the notion of a context, a grouping 
construct in conceptual graphs. The concepts representing the atoms in the molecule 
are grouped together into a context labeled Molecule: Sugar. This construct allows 
relationships and features between entire groups of related concepts, and enables 
future work in representing “possible worlds” (in the sense of Kripke [18]) and in 
microtheories [19]. 

An interpretation must provide a mapping from symbols in the model to a domain 
(universe) of individuals. This is shown in Figure 1(b) where the large arrows indicate 
the mapping of an interpretation. Conceptual graphs provide for an individual marker 
in a concept box; e.g., given [Person: #3867], #3867 is an individual marker denoting 
a particular individual of type Person. The definition for individual markers in 
conceptual graphs states that there must be a way to associate each distinct marker  
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Fig. 2. Actively grounded conceptual graph for a sugar molecule 

with a specific individual; this is precisely what the encode/decode operations 
capture. The notion of an individual marker can be extended to include any kind of 
identifier; useful ones are the Universal Resource Identifier (URI) [20] and the Digital 
Object identifier (DOI)1. 

The practical system developer can use this extended conceptual graph structure to 
model the domain and provide both the pragmatic and semantic content required by a 
system that relies on the domain knowledge. The use of agents for encoding and 
decoding provides formal “hooks” for the practical developer to attach both the 
terminology of the domain and the real world objects in the domain that are 
represented in the model. 

4   Terminological Grounding of a Knowledge Model 

Active knowledge systems address the grounding problem through the dual processes 
of encoding and decoding a model’s interpretation. Since we are focusing on practical 
software development, we will assume that some subject field (domain) is being 
modeled for the purpose of communication and analysis and that there have been 
bounding and concurring processes conducted among developers and the stakeholders 

                                                           
1 http://www.doi.org, accessed 30 Nov 2007. 
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to establish some boundaries for what belongs in the subject field. (Note: we are well 
aware that this second assumption is substantial; in future work, we intend to explore 
and formalize theses processes as well.) 

We build upon existing terminology standards [12] [13] to build a conceptual 
model for subject fields. The conceptual graph in Figure 3 shows a framework for an 
example concept with three important relationships: its intension, its extension and its 
designator. These terms are taken from the definitions in [12]. Our purpose is to 
provide a framework whereby developers can formalize their model of the terms used 
in their software requirements, analysis, design and implementations 

 

Fig. 3. Terminological model for a concept 

The meaning of Figure 3 is that each concept is associated with the following: 

• a designation (in this case, the term “cat”) by which we refer to it. A concept 
may have more than one designation (e.g., an icon, terms/phrases in multiple 
languages) 

• an extension consisting of the set of objects to which the concept corresponds,  
• an intension consisting of the delimiting characteristics that define the 

concept.  

This formal model can serve several purposes: 

• An aid to communication and documentation 
• Use of the intensional definition for data mining in order to identify new (and 

possibly unexpected) objects that belong in the extension of the concept 
• Use of the extensional set to support graph matching and comparison 

processes that can identify delimiting characteristics. 
• Use of both the intension and extension to identify a complete set of 

characteristics for the concept. 
• When knowledge changes (designators, intension, or extension) use the others 

to validate (or invalidate) the changed knowledge. 

To provide these capabilities, the practical system developer must have ways to 
establish the various parts of the conceptual model in Figure 3. We call this process 
terminological grounding and provide for it through the use of actors. There are 
several actors needed to terminologically ground these parts of the model, depending 
on which parts are present or absent in a developer’s own initial model. 
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Fig. 4. Terminological grounding actors 

Three actors for terminological grounding are shown in Figure 4. All of the actors 
are inherently procedural and able to access knowledge outside the formal model. 
That knowledge may be in the form of external databases, data mining procedures or 
sensors.  The actors are: 

defineTerm For a given term, provide its definition and determine its 
delimiting characteristics. This might be as simple as consulting 
a dictionary, but since we assume a specialized domain of 
interest, their terms may appear in a domain-specific dictionary 
or glossary. 

defineObjects For a given set of objects, provide a set of delimiting 
characteristics that abstract them into a concept. An example 
procedure might be to perform formal concept analysis [21] on 
the perceived characteristics of the objects. To create the set of 
objects, this actor uses decode to find the actual objects, 
performs external procedures to determine their characteristics, 
and then uses encode to associate the resulting set of 
characteristics with intensions in the model, thus providing the 
active grounding described in the previous section. 

findObjects For a given set of characteristics, seek out a set of objects that 
possess those characteristics, in effect establishing a extensional 
description of the concept. This actor uses decode for the 
characteristics, then searches through some external universe of 
individuals (its “environment”) for objects that match them, so 
that it can use encode to associate the external individuals with 
particular concepts in the extension set. 

The terminological grounding process thereby provides a way to blend a subject 
field’s already defined terminology into the formal model.  

5   Completely Grounding a Knowledge Model 

Terminological grounding and active grounding actors together form the basis for 
grounding a complete knowledge model with respect to the system developer’s 
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domain. Combining the actors in Figure 4, it can be seen that from a single concept’s 
term, actors can generate a set of delimiting characteristics from which a set of objects 
(the concept’s extension) can be found. Our future work will further explore these 
actors and establish well-defined procedures for their operation. 

Further elaboration of the terminologically based model can be achieved by 
considering concepts as types, which have superordinate concepts as supertypes. 
These superordinate concepts are represented as any other concept would be 
represented in the terminologically grounded model. Combining the actively 
grounded concept notion with the terminological notion of concepts related as super- 
and sub-ordinate, results in the richer knowledge model shown in Figure 5. 

Figure 5 brings together all the actors into one framework. To eliminate clutter 
here, only a few encode and decode actors are shown, though they belong with every 
concept. The terminological grounding actors defineTerm, findObjects, and 
defineObjects are shown. Figure 5 also shows a findSubset actor, whose purpose is 
to discover a subset of the supertype’s extension that conforms to the delimiting 
characteristics for the subtype – in effect to discover new subtypes.  

 

Fig. 5. A more complete grounding model 

A complete terminologically and actively grounded knowledge model, constituted 
as we have outlined, could answer many interesting questions. Among these are: 

• Given a concept, can its superordinate concepts be identified? This could be 
answered by actors comparing the given concept’s intension and extension 
with other concepts’ intensions and extensions. 
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• Given a change in the individuals in a concept’s extension, is there a change 
in the concept’s intensional definition? 

• Given a change in a concept’s intensional definition, how does that change the 
makeup of the concept’s extension? 

In addition to these specific questions, the terminologically based model can also be 
used to validate its own parts – for example, intensional definitions can be used to 
find its corresponding extensional set, which can be compared with the actual set 
determined by developers. 

The next section gives several justifications for why developers are interested in 
the grounded model. 

6   Why Does Grounding Matter to System Developers? 

Given the generic view of a concept, the developer often finds himself in the position 
of lacking one or more of the pieces of the knowledge model puzzle. Our research is 
aimed at providing techniques for finding all the “pieces”. In particular the grounding 
model links the declarative part of knowledge (“knowing that”) to the pragmatic part 
of knowledge (“knowing how”) [22]. 

Grounding concepts is a complex topic that touches empirical, cognitive science 
and formal, logical analysis. Following Harnad, the symbol-grounding problem asks 
“How can the semantic interpretation of a formal symbol system be made intrinsic to 
the system, rather than just parasitic on the meanings in our heads? How can the 
meanings of the meaningless symbol tokens, manipulated solely on the basis of their 
(arbitrary) shapes, be grounded in anything but other meaningless symbols?” [23] The 
system developer confronts such questions in developing systems that have 
significant knowledge and domain semantic content. If the intent of the developer is 
to build a system that uses knowledge in more and less general ways, the developer 
must attempt to ground the conceptual structures provided by requirements analysis 
with both the domain terminology and the world the domain represents. While the 
proposed grounding model does not fully answer Harnad’s questions for all cases, it 
does provide a framework for a practical response: agents that implement the links to 
the domain terminology and the domain referents provide meaning that is reasonable 
and acceptable to the stakeholders.  

The assumption is that grounding is an essential part of rendering the meanings of 
the concepts and that grounding requires constraints to be provided within the 
conceptual structures and contacts to be made to the world that the domain presents. 
In relation to cognitive science this corresponds to notions of conceptual web 
grounding and external grounding where the external grounding is provided by both 
the domain terminology and references to the world presented by the domain. [24]. 

Grounding is one of three problems that the system developer must resolve. The 
other problems are bounding and concurring. The system developer must assist in 
establishing the bounds of the application, its knowledge and concepts. Such bounds 
may not be immediately obvious. For example, there may be time, language, and 
granularity bounds on the problem the software is to help solve. However there are 
also bounding problems that arise through the use of concepts and symbols in 
multiple ways by multiple domain experts. These conflicts must be negotiated so that 
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all can concur about the basic meaning of the concepts. In related ways the end user 
(the user of the developed software) will also engage in bounding and concurring. 
When the system is deployed, the end user will have some issue or topic in mind and 
the software must therefore allow the end user to bound the content to that issue or 
topic. This will require some degree of concurrence by the user to use concepts in a 
particular way. Thus the system developer can use the conceptual structures proposed 
here to build tools that allow users to bound the topics or issues of interest in 
appropriate ways. 

The system developer may also develop auxiliary tools that allow users to both 
actively ground and terminologically ground the models that are embedded in the 
software, disambiguating concepts where feasible and providing new individuals and 
concepts. In this way the users become part of the developmental process, expanding 
the content of the system using the conceptual structures presented here. 

The grounding model has provided some responses to the three questions posed 
earlier. 

• How do different users of knowledge deal with their different terminologies, 
domains and purposes? The knowledge grounding model provides explicit 
links to domain terminologies through actors that can mediate between the 
concepts as represented in the software system and the terminology used by 
the stakeholders. 

• How does the knowledge base ensure that the acquired knowledge is 
consistent (e.g., does not render previous conclusions invalid)? Although we 
have not directly addressed this issue, the use of conceptual graphs provides 
the logical foundation upon which consistency model checking can be built. 

• How does knowledge of the changing world become captured into the knowledge 
base’s representation? The knowledge grounding model provides a framework 
in which actors can actively determine changing values in the domain. 

7   Conclusion and Future Work 

The follow-on to this work consists of incorporating this framework into one or more 
existing CG tools, as well as further elaborating the relationship between terminology 
and system models. A larger set of problems occurs in the process of establishing the 
domain’s boundaries and gaining concurrence among the various stakeholders in a 
system to be developed. We will be pursuing both of these avenues. 

References 

[1] ISO/IEC, ISO/IEC 24707:2007 - Information technology - Common Logic (CL) - A 
framework for a family of logic-based languages, International Organization for 
Standardization, Geneva, Switzerland (2007), http://standards.iso.org/ittf/Publicly 
AvailableStandards/c039175_ISO_IEC_24707_2007E.zip 

[2] Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. 
Addison-Wesley, Reading, Mass (1984) 

[3] Sowa, J. F.: Knowledge Representation: Logical, Philosophical, and Computational 
Foundations: Brooks/Cole (2000) 



 Grounded Conceptual Graph Models 281 

[4] Devlin, K.: Modeling real reasoning. LNCS. Springer, Heidelberg (to appear, 2007), 
http://www.stanford.edu/~kdevlin/ModelingReasoning.pdf 

[5] Richards, J., Heuer, J.: Psychology of Intelligence Analysis: Lulu.com (1999)  
[6] Delugach, H.S.: Towards Building Active Knowledge Systems With Conceptual Graphs. 

In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS, vol. 2746, pp. 296–308. 
Springer, Heidelberg (2003) 

[7] Delugach, H.S.: Active Knowledge Systems. In: Hitzler, P., Schärfe, H. (eds.) Conceptual 
Structures in Practice. Chapman and Hall/CRC Press (2008) 

[8] Delugach, H.S.: CharGer - A Conceptual Graph Editor, Univ. of Alabama in Huntsville 
(2003), http://projects.sourceforge.net/charger 

[9] Genest, D. : CoGITaNT, LIRMM - Montpellier (2003), http://cogitant.sourceforge.net/ 
index.html 

[10] Kabbaj, A.: Development of Intelligent Systems and Multi-Agents Systems with Amine 
Platform. In: Øhrstrøm, P., Schärfe, H., Hitzler, P. (eds.) Conceptual Structures: 
Inspiration and Application, pp. 286–299. Springer, Heidelberg (2006) 

[11] Delugach, H.S.: Specifying Multiple-Viewed Software Requirements With Conceptual 
Graphs. Jour. Systems and Software 19, 207–224 (1992) 

[12] ISO, ISO 1087-1:2000 - Terminology work - Vocabulary. Part 1: Theory and application, 
International Organization for Standardization, Geneva, Switzerland (2000) 

[13] ISO, ISO 704:2000 - Terminology work - Principles and methods, International 
Organization for Standardization, Geneva, Switzerland (2000) 

[14] Abbott, E.A., Flatland: A Romance of Many Dimensions (1884): Penguin Classics (1998)  
[15] Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1997) 
[16] Raban, R., Delugach, H.S.: Animating Conceptual Graphs. In: Lukose, D., Delugach, 

H.S., Keeler, M., Searle, L., Sowa, J.F. (eds.) ICCS 1997. LNCS, vol. 1257, pp. 431–445. 
Springer, Heidelberg (1997) 

[17] Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall PTR, Upper 
Saddle River (1981) 

[18] Kripke, S.A.: Naming and Necessity. Blackwell Publishing, Malden (2003) 
[19] Guha, R.V.: Context: a formalization and some applications. In: Computer Science, 

Stanford University (1992)  
[20] Mealling, M., Denenberg, R.: RFC 3305 - Report from the Joint W3C/IETF URI 

Planning Interest Group: Uniform Resource Identifiers (URIs), URLs, and Uniform 
Resource Names (URNs): Clarifications and Recommendations (2002)  

[21] Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, 
Heidelberg (1999) 

[22] Rochowiak, D.: A pragmatic understanding of “knowing that” and “knowing how”: the 
pivotal role of conceptual structures. In: Lukose, D., Delugach, H.S., Keeler, M., Searle, 
L., Sowa, J.F. (eds.) ICCS 1997. LNCS, vol. 1257, pp. 25–40. Springer, Heidelberg 
(1997) 

[23] Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990) 
[24] Goldstone, R.L., Feng, Y., Rogosky, B.: Connecting concepts to the world and each 

other. In: Pecher, D., Zwaan, R. (eds.) Grounding cognition: the role of perception and 
action in memory, language and thinking, pp. 292–314. Cambridge Univ. Press, 
Cambridge (2005) 



P. Eklund and O. Haemmerlé (Eds.): ICCS 2008, LNAI 5113, pp. 282–296, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

 Scenario Argument Structure vs Individual Claim 
Defeasibility: What Is More Important for Validity 

Assessment?  

Boris A. Galitsky1 and Sergei O. Kuznetsov2 

1 Knowledge-Trail, Inc. 
9 Charles Str Natick MA 01760  

bgalitsky@searchspark.com 
2 Higher School of Economics, Moscow, Russia 

skuznetsov@hse.ru 

Abstract. We conduct comparative analysis of two sources of argumentation-
related information to assess validity of scenarios of interaction between agents.   
The first source is an overall structure of a scenario, which included communi-
cative actions in addition to attack relations and is learned from previous ex-
perience of multi-agent interactions. In our earlier studies we proposed a  
concept-based learning technique for this source. Scenarios are represented by 
directed graphs with labeled vertices (for communicative actions) and arcs (for 
temporal and attack relations). The second source is a traditional machinery to 
handle argumentative structure of a dialogue, assessing the validity of individ-
ual claims. We build a system where data for both sources are visually speci-
fied, to assess a validity of customer complaints. Evaluation of contribution of 
each source shows that both sources of argumentation-related information are 
essential for assessment of multi-agent scenarios. We conclude that concept 
learning of scenario structure should be augmented by defeasibility analysis of 
individual claims to successfully reason about scenario truthfulness.  

1   Introduction 

Understanding and simulating behavior of human agents, as presented in text or other 
medium, is an important problem to be solved in a number of decision-making and 
decision support tasks [3]. One class of the solutions to this problem involves learning 
argument structures from previous experience with these agents, from previous scenar-
ios of interaction between similar agents [8]. Another class of the solutions for this 
problem, based on the assessment of quality and consistency of argumentation of 
agents, has been attracting attention of the behavior simulation community as well [1].  

In the context of agent-based decision support systems, the study of dynamics of 
argumentation [14] has proven to be a major feature for analyzing the course of inter-
action between conflicting agents (e.g. in argument-based negotiation or in multiagent 
dialogues. The issue of argumentation semantics of communicative models has also 
been addressed in the literature (eg [15]). Formal models of valuables norms and 
procedures for rational discussion have been introduced ([12]). However, when there 
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is a lack of background domain-dependent information, the evolution of dialogues 
ought to be taken into account in addition to the communicative actions these argu-
ments are attached to. Rather than trying to determine the epistemic status of those 
arguments involved, in one of our previous studies [8] we were concerned with the 
emerging structure of such dialogues in conflict scenarios, based on inter-human 
interaction. The structure of these dialogues is considered in order to compare it with 
similar structures for other cases to mine for relevant ones for the purpose of assess-
ing its truthfulness and exploration of a potential resolution strategy.  

In our earlier studies we proposed a concept learning technique for scenario graphs, 
which encode information on the sequence of communicative actions, the subjects of 
communicative actions, the causal [4,], and argumentation attack relationships be-
tween these subjects [6,8]. Scenario knowledge representation and learning tech-
niques were employed in such problems as predicting an outcome of international 
conflicts, assessment of an attitude of a security clearance candidate, mining emails 
for suspicious emotional profiles, and mining wireless location data for suspicious 
behavior [7].  A performance evaluation in these domains demonstrated an adequate-
ness of graph-based representation in rather distinct domains and applicability in a 
wide range of applications involving multi-agent interactions. 

In this study we perform a comparative analysis of the two sources of argumenta-
tion-related information mentioned above to assess validity of scenarios of interaction 
between agents. The source 1) of information on argumentation is an overall structure 
of a scenario, which included communicative actions in addition to attack relations 
and is learned from previous experience of multi-agent interactions. Scenarios are 
represented by directed graphs with labeled vertices (for communicative actions) and 
arcs (for temporal and causal relationships between these actions and their  
parameters) [4]. The source 2) is a traditional machinery to handle argumentative 
structure of a dialogue, assessing the validity of individual claims, which has been a 
subject of multiple applied and theoretical AI studies.  

2   Learning Argumentation in Dialogue 

We approximate an inter-human interaction scenario as a sequence of communicative 
actions (such as inform, agree, disagree, threaten, request), ordered in time, with 
attack relation between some of the subjects of these communicative language. Sce-
narios are simplified to allow for effective matching by means of graphs. In such 
graphs, communicative actions and attack relations are the most important component 
to capture similarities between scenarios. Each vertex in the graph will correspond to 
a communicative action, which is performed by an (artificial) agent. As we are model-
ing dialogue situations for solving a conflict, we will borrow the terms proponent and 
opponent from dialectical argumentation theory [14] to denote such agents. An arc 
(oriented edge) denotes a sequence of two actions.  

In our simplified model of communication semantics [6] communicative actions 
will be characterized by three parameters: (1) agent name, (2) subject (information 
transmitted, an object described, etc.), and (3) cause (motivation, explanation, etc.) 
for this subject. When representing scenarios as graphs we take into account all these 
parameters. Different arc types bear information whether the subject stays the same or 
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not. Thick arcs link vertices that correspond to communicative actions with the same 
subject, whereas thin arcs link vertices that correspond to communicative actions 
with different subjects.  We will make explicit conflict situations in which the cause 
of one communicative action M1 “attacks” the cause or  subject of another communi-
cative action M2 via an argumentation arc A (or argumentation link) between the 
vertices for these communicative actions. This attack relationship expresses that the 
cause of first communicative action (“from”) defeats the subject or cause of the sec-
ond communicative action (“to”). Such defeat relationship is defeasible, as it may be 
subject to other defeats, as we will see later. 

A pair of vertices for a thick or thin arc may or may not be linked by the attack re-
lation: a subject of the first communicative action is supported by a cause for the same 
(respectively, different) subjects of the second communicative action. However, we 
are concerned with argumentation arcs which link other than consecutive vertices 
(communicative actions) as shown at Fig. 1. 

For the sake of example, consider the text given below representing a complaint 
scenario in which a client is presenting a complaint against a company because he 
was charged with an overdraft fee which he considers to be unfair (Fig. 1). We denote 
both parties in this complaint scenario as Pro and Con (proponent and opponent), to 
make clear the dialectical setting.  In this text communicative actions are shown in 
bold. Some expressions appear underline, indicating that they are defeating earlier 
statements. Fig. 2 shows the associated graph, where straight thick and thin arcs rep-
resent temporal sequence, and curve arcs denote defeat relationships.  

• (Pro) I explained that I made a deposit, and then wrote a check 
which bounced due to a bank error. 

• (Con)  A customer service representative confirmed that it usu-
ally takes a day to process the deposit.  

• (Pro) I reminded that I was unfairly charged an overdraft fee a 
month ago in a similar situation. 

• (Con)    They explained that the overdraft fee was due to insuffi-
cient funds  as disclosed in my account information. 

• (Pro) I disagreed with their fee because I made a deposit well in 
advance and wanted this fee back 

• (Con)  They denied responsibility saying that nothing can be 
done at this point and that I need to look into the account rules 
closer. 

Fig. 1. A conflict scenario with attack relations 

Note that first two sentences (and the respective subgraph comprising two vertices) 
are about the current transaction (deposit), three sentences after (and the respective 
subgraph comprising three vertices) address the unfair charge, and the last sentence is 
probably related to both issues above. Hence the vertices of two respective subgraphs 
are linked with thick arcs: explain-confirm and remind-explain-disagree. It must be 
remarked that the underlined expressions help identify where conflict among arguments 
arise. Thus, the company’s claim  as disclosed in my account information defeats the 
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client’s assertion due to a bank error. Similarly, the expression  I made a deposit well in 
advance defeats that it usually takes a day to process the deposit (makes it non-
applicable). The former defeat has the intuitive meaning “existence of a rule or criterion 
of procedure attacks an associated claim of an error”, and the latter defeat has the 
meaning “the rule of procedure  is not applicable to this particular case”. It can be 
noticed that  this complaint scenario is not sound because it seems that the complainant 
does not understand the procedure of processing the deposit nor distinguishes it from an 
insufficient funds situation (source 2). However, this scenario itself and its associated 
argumentation patterns do not have surface-level explicit inconsistencies, if one ab-
stracts from the domain-specific (banking) knowledge (source 1).  

Our task is to classify (for example, by determining its validity) a new complaint 
scenario without background knowledge, having a dataset of scenarios for each class. 
We intend to automate the above analysis given the formal representation of the graph 
(obtained from a user-company interaction in the real world, filled in by the user via a 
special form where communicative actions and argumentation links are specified). 

  explain 

 remind 

confirm 

 explain 

deny disagree 
 

Fig. 2. The graph for approximated scenario (Fig. 1) 

Let us enumerate the constraints for the scenario graph: 

1) Each vertex is either assigned with the proponent (drawn on the left side of 
each graph in Fig. 2) or to the opponent (drawn on the right side). 

2) Thin and thick arcs point from a vertex to the subsequent one in the temporal 
sequence (from the proponent to the opponent or vice versa); 

3) Curly arcs, staying for attack relations, jump over several vertices in either di-
rection. 

Similarity between scenarios is defined by means of maximal common subscenarios. 
Since we describe scenarios by means of labeled graphs, we outline the definitions of 
labeled graphs and domination relation on them (see [9,11]).Given ordered set G of 
graphs (V,E) with vertex- and edge-labels from the sets (,  and (, ). A labeled 
graph Γ from G is a quadruple of the form ((V,l),(E,b)), where V is a set of vertices, E 
is a set of edges, l: V →  is a function assigning labels to vertices, and b: E →  
is a function assigning labels to edges.  

The order is defined as follows: For two graphs Γ1:= ((V1,l1),(E1,b1)) and Γ2:= 
((V2,l2),(E2,b2)) from G we say that Γ1 dominates Γ2 or Γ2 ≤ Γ1 (or Γ2 is a subgraph of 
Γ1) if there exists a one-to-one mapping φ: V2 → V1 such that it respects edges: (v,w) 

œ E2 ⇒  (φ(v), φ(w)) œ E1, and fits under labels: l2(v l1(φ(v)), (v,w) œ E2 ⇒ b2(v,w) 
 b1(φ(v), φ(w)). 
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This definition allows generalization (“weakening”) of labels of matched vertices 
when passing from the “larger” graph G1 to “smaller” graph G2. 

Now, generalization Z of a pair of scenario graphs X and Y (or their similarity), 
denoted by X * Y = Z, is the set of all inclusion-maximal common subgraphs of X 
and Y, each of them satisfying the following additional conditions: To be matched, 
two vertices from graphs X and Y must denote communicative actions of the same 
agent, and each common subgraph from Z contains at least one thick arc. 

The following conditions hold when a scenario graph U is assigned to a class: 

1) U is similar to (has a nonempty common scenario subgraph of) a positive exam-
ple R+. It is possible that the same graph has also a nonempty common scenario sub-
graph with a negative example R- . This is means that the graph is similar to both 
positive and negative examples.  

2) For any negative example R-, if U is similar to R- (i.e., U * R-≠∅) then U * R- m 
U * R+.  

3   Assessing Defeasibility of Individual Claims 

In this section we consider a realistic complaint scenario (Fig. 3), represent it as a 
dialogue with communicative actions (italic) and attack relations (curly arcs) on their 
arguments [shown in brackets] in Fig. 4. Finally, the graph with two vertices for each 
dialogue step (communicative actions for receiving and sending). Respective commu-
nicative action can be shown as ‘*; if unknown (not shown in text), Figure 5. 

I have 2 loans through Huntington, both of which were automatically deducted at the 
appropriate times each month from my Huntington account. At the beginning of July, I began 
paying those loans by check from the non-Huntington account. Though I had attempted to stop 
Huntington from taking the funds directly from my Huntington account, they continued to do so 
resulting in a continuing negative balance, compounded by NSF and overdraft fees, as well as 
the initial debit for the loans. Calls to Huntington regarding the matter have had no effect. 
     I'm constantly bombarded with calls from Huntington about this so called delinquency 
which culminated in a threat from Huntington collections to repossess my truck and other 
vehicle (both loan items)  
    When I explained that I had been paying the loans by check AND that those checks had been 
debited from my other bank account, they continued to insist that no payments had been applied 
to either account and that Huntington was still going to repossess my vehicles. I've found 
corresponding checks that have posted from my primary, non-Huntington account.  
     It does appear, however, that one payment for $181.62 was never posted. After this, I again 
called Huntington and explained the situation. I was told that as long as Huntington had an open 
account for me, from which they'd already set up automatic withdraw, they could continue to 
withdraw funds for loan payment, even if the loan had already been paid by check!  I was also 
informed that the best way to rectify the situation was to close the Huntington account.  
Since getting my loan, I've had continuing trouble. The first payment was late, due to a mistake 
made by Huntington- which they acknowledged. Huntington told me that they'd take the late 
payment off my record but it appears they never did. 

 

Fig. 3. Full complaint scenario 
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Asked [do not withdraw] Ignored [kept withdrawing] 
Requested [explanation why NSF, over-
draft, etc.] 

Ignored[] 
Threatened [delinquency] 

Explained [ has been paying & debited] Disagreed[]                                                  
Insisted[ no payment applied] 
Threatened [repossession] 

Agree [one check was never posted] Informed [continue to withdraw funds 
Requested [close account] 

Ask[refund late payment fee] Promise [],  

 Ignore [never did] 

 
Fig. 4. Dialog structure of the Full complaint scenario with subjects of communicative actions 
and attack relation on them 

 

 

Fig. 5. Scenario graph for the above complaint 

4   Interactive form for Detection of Implicit Self-attack 

To verify the truthfulness of a complainant’s claim, we use the special form called 
Interactive Argumentation Form which assists in structuring a complaint. Use of this 
form enforces a user to explicitly indicate all causal and argumentation links between 
statements which are included in a complaint (compare with [17]) . The form is used 
to assess whether a particular scenario has valid argumentation pattern: does it contain 
self-attacks (explicit for the complainant). 
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The form includes eight input areas where a complainant presents a component-
based description of a problem (Fig. 6). At the beginning, the subject of the dispute is 
specified: an operation (or a sequence of operations) which are believed by a com-
plainant to be performed by a company in a different manner to what was expected 
<Where company got confused>. Then the essence of the problem is described, what 
exactly turned out to be wrong. In the section <Company wrongdoing> the complain-
ant sketches the way the company performed its duties, which caused the current 
complaint. The customer’s perception of the damage is inputted in section <How it 
harmed me>. In the fourth section <Why I think this was wrong> the customer backs 
up his beliefs concerning the above two sections,  <Where company got confused> 
and <Company wrongdoing>.  

Usually, customer dissatisfaction event is followed by negotiation procedure, which 
is represented by two sections, <What company accepted> and <How company ex-
plained>. The acceptance section includes the circumstances which are confirmed by 
the company (in the complainant’s opinion) to lead to the event of the customer’s dis-
satisfaction. The latter section includes the customer’s interpretation of how these 
issues are commented on by the company, the beliefs of its representatives on what 
lead to the event of the customer’s dissatisfaction and the consequences. <Unclear> 
section includes the issues which remain misunderstood and/or unexplained by the 
company, in particular, problems with providing relevant information to the customer. 
Finally, <Systematic wrongdoing> section includes customer’s conclusion about the 
overall business operation in similar situations, how in customer’s opinion her experi-
ence can serve as a basis to judge how other customers are treated in similar situations. 

Each section includes one or more sentences which provide information appropri-
ate for this section, providing background information and/or backing up claims in 
this or other sections from the standpoint of the customer. Each statement which par-
ticipates in (at least one) argumentation link is marked by a check box 

 
All possible causal and argumentation links are shown as arrows. Arrows denote 

the links between the sentences in the respective sections; some arrows go one way 
and other both ways (only the ending portion is shown in this case). If the user does 
not find an arrow between two sections for a pair of inputted sentences, it means that 
either or both of these sentences belong to a wrong section: the data needs to be modi-
fied to obey the pre-defined structure. End of each arrow is assigned by a check-box 
to specify if the respective link is active for a given complaint . Bold arrows de-

note most important links . 

Two sorts of links are specified via the Form:  

1) Supporting and causal links, by which the user backs up his claims; 
2) Defeating links, which are used by the user to demonstrate that certain 

claims of the opponent are invalid. A complainant may wish to defeat the 
opponents’ claims. The form does not provide means to express complain-
ant’s explicit defeating of her own statements, because those are not ex-
pected for a “reasonable” scenario.  
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The list box  is used to specify for a particular link (going either way) 

whether it is supporting or defeating. To specify supporting and defeating links for a 
number of statements for each section, multiple instances of the Interactive Argumen-
tation Forms may be required for a given complaint. 

The role of the Interactive Argumentation Form is a visual representation of  
argumentation, and intuitive preliminary analysis followed by the automated argu-
mentation analysis.  Since even for a typical complaint manual consideration of all 
argumentation links is rather hard, automated analysis of inter-connections between 
the complaint components is desired. We use the defeasible logic programming [10,2] 
approach to verify whether the complainant’s claims are valid (cannot be defeated 
given the available data), concluding with the main claim, Systematic wrongdoing.  

 

 

Fig. 6. Interactive Argumentation Form 

The role of the Interactive Argumentation Form is a visual representation of argu-
mentation, as well as its intuitive preliminary analysis. Since even for a typical com-
plaint manual consideration of all argumentation links is rather hard, automated 
analysis of inter-connections between the complaint components is desired. We use 
the defeasible logic programming approach to verify whether the complainant’s 
claims are valid (cannot be defeated given the available data).  

Applying reasoning to Interactive Argumentation Form, we attempt to confirm that 
the statements in <Company wrongdoing> section is not defeated by any other state-
ment, or the statement which supports  <Company wrongdoing>  (sections <Where 
company got confused>, <How it harmed me>, <Why I think this was wrong> or 
<What company accepted> are not defeated. It needs to be checked that the state-
ments by the company, which defeats complainants’ claims in the section <How 
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company explained> is in turn defeated  by either complainant (in the sections 
<Where company got confused>,<Systematic wrongdoing>,<How it harmed me>) or 
other company representatives <What company accepted>. 

To subject the available argumentation links to precise and accurate treatment in an 
automated manner, we form the defeasible logic program (de.l.p.) on the basis of 
these links. The defeasible logic program includes the classical clauses (including 
commonsense knowledge) which are always true, and the clauses which are typically 
true as long as they are not defeated [10]. In our approach all information specified by 
a complainant in the Interactive Argumentation Form may be unreliable; therefore all 
clauses have the form of defeasible rules where square brackets denote optional ex-
pressions:    [~]ClaimSectionTO >- [~]ClaimSectionFROM1(Statement11), 

                                         ClaimSectionFROM1(Statement12),… 
                                    [[~]ClaimSectionFROM2(Statement21), 

      ClaimSectionFROM2(Statement22),…]. 

5   Dialectic Trees for Implicit Self-attacks 

In this section we provide the definition and algorithm for building dialectic trees to 
discover implicit self attack in a defeasible logic program, specified by the Interactive 
Argumentation Form (Figure 6). 

Defeasible logic program (de.l.p.)  is a set of facts, strict rules Π of the form (A:-
B) , and a set of defeasible rules Δ of the form (A>-B).   

Let P=(Π, Δ)  be a de.l.p. and L a ground literal. A defeasible derivation of L from 
P  consists of a finite sequence L1, L2, . . . , Ln = L of ground literals, and each literal 
Li is in the sequence because: 

(a) Li is a fact in Π, or 
(b) there exists a rule Ri in P (strict or defeasible) with head Li and body B1,B2, . . . ,Bk, 
every literal of the body is an element Lj of the sequence appearing before Lj (j < i) 

Let h be a literal, and P=(Π, Δ) a de.l.p.. We say that <A, h> is an argument 
structure for h, if A is a set of defeasible rules of Δ, such that: 

1. there exists a defeasible derivation for h from  =(Π ∪ A)  
2. the set (Π ∪ A) is non-contradictory, and 
3. A is minimal: there is no proper subset A0 of A such that A0 satisfies conditions (1) 
and (2). 

Hence an argument structure <A, h>  is a minimal non-contradictory set of defeasible 
rules, obtained from a defeasible derivation for a given literal h. 

We say that <A1, h1>  attacks <A2, h2> iff there exists a sub-argument <A, h> of 
<A2, h2> (A ⊆A1) so that h and h1 are inconsistent. Argumentation line is a sequence 
of argument structures where each element in a sequence attacks its predecessor. 
There is a number of acceptability requirements for argumentation lines (Garcoa and 
Simari 03). 
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We finally approach the definition of dialectic tree which gives us an algorithm to 
discover implicit self-attack relations in users’ claims. Let <A0, h0>   be an argument 
structure from a program P. A dialectical tree for <A0, h0>  is defined as follows: 

1. The root of the tree is labeled with <A0, h0>    
2. Let N be a non-root vertex of the tree labeled <An, hn>   and 
Λ=  [<A0, h0>, <A1, h1>, …, <An, hn>] the sequence of labels of the 
path from the root to N. Let [<B0, q0>, <B1, q1>, …, <Bk, qk>] all attack 
<An, hn>. For each attacker <Bi, qi> with acceptable argumentation line [Λ,<Bi, qi>], 
we have an arc between N and its child Ni . 

In a dialectical tree every vertex (except the root) represents an attack relation to its 
parent, and leaves correspond to non-attacked arguments. Each path from the root to a 
leaf corresponds to one different acceptable argumentation line. As shown in Fig.8, the 
dialectical tree provides a structure for considering all the possible acceptable argu-
mentation lines that can be generated for deciding whether an argument is defeated.  
 

systematic_wrongdoing1(X) -< why_wrng1(X). 
why_wrng1(X) -< how_it_harmed1(X). how_it_harmed1(‘reposses my track’). 
~ why_wrng1(X). -< how_it_harmed1(X1), company_accepted1 (X2). 
company_accepted 1(‘one check processed’). 
~ why_wrng1(X) -< comp_confused1(X).  comp_confused1(‘proc loan payment’). 
~ unclear1(X)-< company_accepted2 (X1),  company_wrongdoing2(X2). 
company_wrongdoing2(X) -< how_it_harmed2(X). 
how_it_harmed2(‘overdraft fees’).  
~ why_wrng1(X)-<  how_it_harmed1(X1), unclear1(X2).
unclear1(X)-< company_accepted2 (X). company_accepted2 (‘advised to close ac-
count’).   company_accepted3 (‘1st payment late - mistake’). 
~ unclear1(X)-<how_company_explained(X). how_company_explained(‘always use 
direct debit’). ~ company_wrongdoing2(X) -< company_accepted3 (X).  

Fig. 7. Defeasible logic program for a fragment of Interactive Argumentation Form on Fig. 6 

 <A, systematic_wrongdoing1> 

 <B1, ~why_wrng1> 

 <D1, ~company_wrongdoing2> 

 <C1, ~unclear1> 

 <B2, ~why_wrng1> 

 <B3,  ~why_wrng1> 

 <C2, ~unclear1> 

 
Fig. 8. Dialectic tree for the Defeasible Logic Program Figure 7 
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6   Evaluation 

To observe the comparative contribution of argumentation data of sources 1) and 2), 
we used the database of textual complaints which were downloaded from the public 
website PlanetFeedback.com during three months starting from March 2004 and used 
in a number of computational studies since then. For the purpose of this evaluation, 
each complaint was: 

1) manually assigned a validity assessment; 
2) manually represented as a source 1) for concept-based learning evaluation;  
3) manually represented as a source 2) for finding self-defeating claims. 

This complaint preprocessing resulted in 560 complaints, divided in fourteen banks 
(or datasets), each of them involving 40 complaints. In each bank 20 complaints were 
used for training and 20 complaints for evaluation.  

We performed the comparative analysis of relating scenarios to the classes of 
valid/invalid taking into account source 1), argument structure only; source 2),  defea-
sibility of individual claims only, and combined sources (1-2) . Such an analysis sheds 
a light on the possibility to recognize a scenario (1) without background knowledge, 
but reusing previous assigned argument structures, and (2) with partial background 
knowledge, expressed as a set of attack relations between claims. Furthermore, we 
evaluate a cautious approach combining a) and b), where scenario is valid if a) it  
is similar to a valid one or b) it does not contain self-defeated claims, and invalid 
otherwise. 

Classification results are shown in Tables 1 and 2. On the left, the first three col-
umns contain bank number, and the numbers of valid/invalid complaints as manually 
assessed by human experts. The middle light-grayed set of columns show the classifi-
cations results based on source1: the assessment for valid/invalid scenarios (including 
cases which are close to neither) with false positives and false negatives (as assigned 
by human experts). The columns on the right show classification results based on the 
source 2: valid scenarios where self-defeating is not found, invalid scenarios where it 
is found, and the number of false positives and negatives relatively to the same as-
sessment by human experts which was used for evaluation of source 1.  

The reader can observe that classification based on the combination of sources 
gives substantial increase in recognition accuracy: F(Source1)= 63%, F(Source2) = 
77%, and F(Source1+Source2)= 89%, which is a 26% of increase of accuracy for the 
source 1 and 12% increase of the accuracy for source 2. 

7   Results and Discussions 

In this study we observed how two sources of information on argumentation, overall 
argumentation pattern of a scenario and dialectic trees for individual claims, compli-
ment each other. Comparative computational analysis of scenario classification with  
respect to validity showed that both sources of argumentation (the former proposed in 
the current study,  and the latter well known in various reasoning domains) are essen-
tial to determine whether a scenario is plausible or not (contains misrepresentation or  
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Table 2. Results of  the combined classification 
 

R
ec

al
l v

al
id

Bank 1 8 12 8 11 0 1 100% 92% 100% 92% 96%
Bank 2 6 14 7 8 3 6 70% 57% 88% 57% 69%
Bank 3 7 13 9 11 2 2 82% 85% 82% 85% 83%
Bank 4 5 15 6 14 2 1 75% 93% 86% 93% 89%
Bank 5 8 12 8 10 0 2 100% 83% 100% 83% 91%
Bank 6 8 12 7 10 2 2 78% 83% 117% 83% 97%
Bank 7 11 9 11 9 0 0 100% 100% 100% 100% 100%
Bank 8 8 12 9 9 1 3 90% 75% 90% 75% 82%
Bank 9 7 13 7 11 0 2 100% 85% 100% 85% 92%
Bank10 9 11 10 10 3 1 77% 91% 91% 91% 91%
Bank11 10 10 10 8 0 2 100% 80% 100% 80% 89%
Bank12 5 15 6 13 1 2 86% 87% 86% 87% 86%
Bank13 10 10 10 9 0 1 100% 90% 100% 90% 95%
Bank14 8 12 9 11 1 1 90% 92% 90% 92% 91%
Average 7.86 12.1 8.4 10 1.071 1.857 89% 85% 95% 85% 89%
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self-contradiction). Hence we believe a practical argumentation management system 
should include scenario-oriented machine learning capability in addition to handling 
argumentation for individual claims.   

Graph-based concept learning benefits from argumentation information in the form 
of dialectic tree, because a representation graph G includes more sensitive data on 
how claims attacking each other: G = { Communicative_actions +  at-
tack_relations_on_their_subject + vertices of dialectic tree}. In our previous studies 
(Galitsky et al 08) we verified that using attack relationship in addition to Communi-
cative_actions as a way to express dialogue discourse indeed increases classification 
accuracy in a similar setting to the current study. Dialectic trees work well when all 
relevant background knowledge is available, and has been represented in a form suit-
able for reasoning. Since it is never the case in practical application, argumentation 
leverages concept learning as an additional mechanism of acquiring data for individ-
ual claims from previous experiences.  

We found an adequate application domain for computing dialectic trees such as as-
sessment of validity of customer complaints. On one hand, this domain is a good 
source of experimental data for evaluation of argumentation structures because of a 
high volume of nontrivial scenarios of multiagent interaction, yielding a wide variety 
of de.l.ps. On the other hand, it is an important set of long-waited features to be lever-
aged by customer relation management (CRM) systems. 
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We selected de.l.p. [10] as a most suitable approach to manage arguments in a dia-
logue, and employ dialectic trees to be integrated into scenario representation graph.  
[18] has proposed a very abstract and general argument-based framework, where he 
completely abstracts from the notions of argument and defeat. In contrast with ap-
proach [10] of defining an object language for representing knowledge and a concrete 
notion of argument and defeat, Dung’s approach [18] assumes the existence of a set of 
arguments ordered by a binary relation of defeat. In our case the source of this order is 
previous experience with involved agents. [13] have developed an argumentation 
system for legal reasoning, that uses the language of extended logic programming. 
However, since they are inspired by legal reasoning, the protocol for dispute is rather 
different from dialectical tree of [10]. A proof of a formula takes the form of a dia-
logue tree, where each branch of the tree is a dialogue between a proponent and an 
opponent, so communicative actions are not taken into account to express strength of 
a claim. We have not found an argumentation study concerned with matching the 
dialectic trees as a source of “global” structural information about scenarios. 
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Abstract. Griwes is an initiative to develop a common model and an open-
source freeware platform shared by different graph-based frameworks. We 
provide an overview of its objectives, architecture and specifications. We detail 
some of the basic mathematical structures that are used to characterize the 
primitives for graph-based knowledge representation. We then propose to 
factorize recurrent knowledge representation primitives that can be shared 
across specific graph-based languages and we provide a proof of concept by 
showing how two languages (Simple Conceptual Graphs and RDF) can be 
described in this framework. 

Keywords: graph-based languages, semantic web, platform. 

1   Introduction 

Graph-based knowledge representation formalisms are more and more common, from 
Conceptual graphs (CG) [19] which are historical descendants of semantic networks, 
to more recently proposed representations such as RDF1, SKOS1 or Topic Maps2. 

The web is playing an important role in the emergence of these new formalisms 
and in recent web architectures the RDF graph model became a core layer of the stack 
of standards3. Many knowledge representation frameworks are now used online 
(RDF, RDFS, SKOS, OWL, GRDDL, RDFa, µFormats, etc.)1 allowing human and 
artificial agents to weave graphs describing web resources or just any entity and the 
relations existing between them. In a recent post4 Tim Berners-Lee insisted on the 
                                                           
1 W3C Semantic Web Activity http://www.w3.org/2001/sw/ 
2 http://www.topicmaps.org/ 
3 One Web http://www.w3.org/Consortium/technology 
4 Giant Global Graph, Tim Berners-Lee, http://dig.csail.mit.edu/breadcrumbs/node/215 
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graph nature (Giant Global Graph) of the semantic web and the importance of this 
structure in developing and exploiting the semantic web (i.e. the web of data). 

Reasonings on these different graph formalisms are often very similar. We could 
share many operations and their implementation across frameworks and even within 
them on different levels of their models e.g. transitive closure in RDFS class 
hierarchy, in SKOS concept narrower / broader links, in instances of OWL transitive 
properties, in CG the concept type hierarchy, etc. In fact when we compare these 
different languages we can find many similarities. Consider for instance the 
similarities between RDF/S and CG as underlined in [5] and [1]: 

• both models consider assertions as positive, conjunctive and existential; 
• both models represent assertions as labeled graphs; 
• the class hierarchy (resp. property hierarchy) of RDFS is equivalent to the 

concept type (resp. relation type) hierarchy of CG; 
• properties in RDF/S are first class citizens, declared outside classes just like 

relations are first class citizens in CG; 
• subsumption in RDF/S is equivalent to projection in CG; 

The reasonings on these different graph-based frameworks are sometimes also shared 
with other non graph-based formalisms e.g., databases. [19] 

Tools designed and developed for these different graph-based frameworks are 
tailored to specific languages and/or scenarios and this criticism includes the tools we 
have been working on in the past years such as Cogitant [9] or Corese [5]. These 
experiences convinced us that it would be interesting to share these efforts and avoid 
re-designing and re-implementing the same structures and operators again and again. 
For this reason we started the project Griwes that stands for Graph-based 
Representations and Inferences for Web Semantics. The main objective of this 
initiative is to bootstrap an open-source platform, to share efforts on developing 
graph-based data structures and algorithms with anyone who wants to contribute. This 
also implies a proper definition of the considered graph structures shared by the 
different graph-based formalisms. 

In the rest of this article we give an overview of the objectives and architecture of 
Griwes and we position it w.r.t. other contributions in the field (section 2). We then 
give some details of the basic mathematical structures that are used to characterize the 
primitives for graph-based knowledge representation (section 3). We proceed with the 
layer factorizing recurrent knowledge representation primitives that can be shared 
across specific graph-based languages (section 4). Finally we provide a proof of 
concept by showing how two languages (Simple Conceptual Graphs and RDF) can be 
described in this framework (section 5). We conclude with a discussion on several 
difficulties and perspectives we identified. These sections are extracted from the 
working draft of a more detailed research report from Griwes available online5. 

2   Griwes Initiative 

This section is an introduction to the Griwes initiative to develop a common model 
and an open-source freeware platform shared by different graph-based frameworks. 

                                                           
5 http://www-sop.inria.fr/acacia/project/griwes/ 
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2.1   Objectives of the Griwes Initiative 

In order to develop a common model and an open-source freeware platform shared by 
different graph-based frameworks, the objectives of the Griwes initiative can be 
divided into four kinds of tasks: 

• Identification of users’ and developers’ profiles in the graph-based knowledge 
modeling communities and semantic web communities, and definition of usage 
scenarios for the platform; 

• Definition of a common representation model shared by different graph-based 
formalisms and of architectural principles for the organization of the toolkit, 
allowing the platform to federate contributions and extensions and fostering 
reuse across graph-based representation models; 

• Implementation of the API, interfaces and components in an open-source 
freeware platform. 

• Bootstrapping a community of contributors for this platform (users and 
developers). 

2.2   Architecture of the Griwes Toolkit 

As summarized in figure 1, the current vision of the framework distinguishes three 
layers of abstraction and one transversal component for interaction: 

• Structure layer: this layer gathers and defines the basic mathematical 
structures (e.g. oriented acyclic labeled graph) that are used to characterize the 
primitives for knowledge representation (e.g. type hierarchy) 

• Knowledge layer: this layer factorizes recurrent knowledge representation 
primitives (e.g. a rule) that can be shared across specific knowledge 
representation languages (e.g. RDF/S, Conceptual Graphs). 

• Language & Strategy: this layer is two-sided. One side gathers definitions 
specific to languages (e.g. RDF triple). The other side identifies the strategies 
that can be applied to these languages (e.g. validation of a knowledge base, 
completion of a fact by rules). 

The interaction and interfaces aspect was deemed transversal to these layers. It 
gathers events (e.g. additional knowledge needed) and reporting capabilities (e.g. 
validity warning) needed to synchronize conceptual representations and interface 
representations. In Griwes, we intend to analyze the requirements of that aspect for 
each layer as soon as the first draft of these layers is stable. 
 

 

Fig. 1. The three abstraction layers of the current architecture of Griwes 
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Before delving into some extracts of the Knowledge and Structure layers, the next 
section reviews a number of contributions that prefigured, inspired and justified this 
initiative. 

2.3   Related Work 

There exist a growing number of platforms to reason on graph-based knowledge 
formalisms, be they in the conceptual graph families or in the RDF graph family.  

On2Brocker [7] is an early ontology-based system to handle RDF annotations. 
Ontologies, queries and rules are expressed in Frame Logic. The query engine 
translates Frame Logic data into Horn Logic to answer a query. Triple [17] is a query 
language initially designed for RDF/S and DAML+OIL. Its core is an RDF query 
language based on Horn Logic extended with syntactical features supporting 
namespaces, resources and statements (triples). This core language is compiled into 
Horn Logic programs executed by a Prolog engine. The core Triple language is 
extended with rules for axiomatizing the semantics of RDFS; they can be used 
together with a Horn Logic based inference engine to derive additional knowledge 
from an RDF Schema specification. DAML+OIL or OWL DL cannot be mapped to 
Horn Logic directly and therefore Triple accesses a Description Logic classifier to 
handle these extensions. Triple has a layered architecture to handle different 
knowledge models. Both On2Brocker and Triple remain focused on logic-based 
engines not exploiting the graph structures of the RDF model. 

Sesame [3] is a generic architecture for persistent storing of RDF(S) data into Data 
Based Management Systems (DBMS) and querying of RDF(S) data with the RQL 
language. RQL [15] is an RDF query language defined by means of a set of core 
queries, a set of basic filters and a way to build new queries through functional 
composition and iterators. When parsing an RQL query, Sesame builds an optimized 
query tree model from this composition which is then evaluated through a set of calls 
to the storage and inference modules of Sesame. Sesame supports querying at the 
semantic level but does not support XML Schema Datatypes, nor does it support 
inference rules. 

DAMLJessKB [13], its successor OWLJessKB and the e-Wallet [8] are tools for 
reasoning with the Semantic Web and DAML or OWL-Lite. They map the RDF 
triples and the ontologies into facts of the CLIPS-like language of Jess6 and apply 
rules implementing the semantics of RDF, RDFS, XSD and DAML or OWL-Lite. 
These systems can perform class instance reasoning and terminological reasoning 
about the relationships among classes. In addition, the e-Wallet is able to run rules to 
complete the knowledge base, to invoke external services to obtain new knowledge, 
to answer queries and to control the precision and truthfulness of answers to preserve 
privacy. Here again these engines remain focused on production rule reasoning not 
exploiting the graph structure of the RDF model and relying on their internal logic 
language for query expression. 

Jena [4] is one of the most complete platforms offering persistence and reasoning 
for RDF as well as SPARQL querying. It includes a forward-chaining engine (RETE) 
and a backward-chaining engine to allow hybrid reasoning and to implement the 

                                                           
6 JESS engine http://herzberg.ca.sandia.gov/ 
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semantics of RDFS and OWL. Jena relies on a fixed database structure for large 
storage and on a custom data structure for main-memory storage. 

WebKB [14] is an early ontology server and Web robot based on Conceptual 
Graphs. WebKB interprets and automatically translates into CGs chunks of 
knowledge statements expressed in a CG linear notation and embedded in Web 
documents. It also provides commands to query lexical or structural properties of 
HTML documents or to display specializations or generalizations of a concept or a 
relation or a CG. OntoSeek [10] is another early system that relies on Conceptual 
Graphs for ontology-driven content matching. Queries and resource annotations are 
lexical conceptual graphs to match one against the other. Neither WebKB nor 
OntoSeek handle RDF(S) data or rules. Moreover they both focus on a specific family 
of web applications not aiming at allowing different mapping to their graph-based 
representations and not providing a generic expressive query language. 

With the OWL recommendation at W3C, Description Logics (DL) became 
especially important in the spectrum of logic-based systems on the web. Several 
systems exist here: Fact and its successor Fact++ [20], KAON2 [16], KAON that 
remains focused on RDFS, Racer [11] and Pellet [18]. These engines offer classical 
DL operations such as identification, classification and validation. Queries are usually 
limited to conjunctive queries and the graph structure of the RDF model is not 
exploited at the core of these engines. 

To summarize, none of these contributions is offering a pivot model and an open-
source platform to efficiently implement querying and reasoning on graph-based 
models. Most of them are tied to specific languages, logics or even applications. 

Members of Griwes also developed platforms of their own over the last decade. Let 
us mention two of them: Cogitant [9] dedicated to conceptual graph reasoning and 
Corese [5] dedicated to a conceptual graph operationalisation of RDF/S. 

Our own tools based upon CGs implementations and also contributions like Amine 
[12] relying on a combination of Prolog and CGs, suffer from their closed design 
preventing reuse and cross-pollination. The next section is a guided tour of some 
extracts of the specifications of Griwes as defined in the current working draft of its 
research report. 

3   Structure Layer 

The structure layer is the core layer of the architecture of Griwes. We extracted here 
some definitions of the basic mathematical structures that we chose to characterize the 
primitives for knowledge representation. 

3.1   ERGraphs: Entity-Relation Graphs 

Our core representation primitive is intended to describe a set of entities and 
relationships between these entities; it is called an Entity-Relation graph (ERGraph in 
short). An entity is anything that can be the topic of a conceptual representation. A 
relationship, or simply relation, might represent a property of an entity or might relate 
two or more entities. 
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The relations can have any number of arguments including zero and these 
arguments are totally ordered. In graph theoretical terms, an ERGraph is an oriented 
hypergraph, where nodes represent the entities and hyperarcs represent the relations 
on these entities. However, a hypergraph has a natural graph representation associated 
with it: a bipartite graph, with two kinds of nodes respectively representing entities 
and relations, and edges linking a relation node to the entity nodes arguments of the 
relation; the edges incident to a relation node are totally ordered according to the 
order on the arguments in the relation.  

The nodes (Entities) and hyperarcs (Relations) in an ERGraph have labels. At the 
structure level, they are just elements of a set L that can be defined in intension or in 
extension. Labels obtain a meaning at the knowledge level.  

Definition of an ERGraph: An ERGraph relative to a set of labels L is a 4-tuple 
G=(EG, RG, nG, lG) where 

• EG and RG are two disjoint finite sets respectively, of nodes called entities and 
of hyperarcs called relations. 

• nG : RG → EG
* associates to each relation a finite tuple of entities called the 

arguments of the relation. If nG(r)=(e1,...,ek) we note nG
i(r)=ei the ith argument 

of r. 
• lG : EG ∪ RG → L is a labelling function of entities and relations. 

In some knowledge representation primitives and some algorithms it is useful to 
distinguish some entities of a graph. For this purpose we define a second core 
primitive, called λ−ERGraph. 

Definition of a λ-ERGraph: A λ-ERGraph λG is a couple of an ERGraph G and a 
tuple of entities of G: λG = ((e1,…ek), G), ei∈ EG. We say that k is the size of λG and 
that (e1,…ek) are distinguished in G. 

Definition of an induced SubERGraph: Let G=(EG, RG, nG, lG) be an ERGraph. Let 
EG' be a subset of EG. The SubERGraph of G induced by EG' is the ERGraph G'=(EG', 
RG', nG', lG') defined by: (1) RG'= { r ∈ RG ⏐ ∀ 1≤i≤card(nG(r)) , nG

i(r) ∈ EG' } (2) nG' is 
the restriction of  nG  to RG' (3) lG' is the restriction of  lG  to EG' ∪ RG' 

Definition of a Merge: let G=((g1,…gk), G') et H=((h1,…hk), H') two λ-ERGraphs of 
same size, the merge of H in G modifies G' by adding a copy C(H') of H' to G' and 
then for 1≤i≤k by merging the entities C(hi) and gi. 

Note that the labels of the merged entities are obtained by applying a method defined 
at higher levels. 

3.2   Mapping between ERGraphs 

Intuitively, a Mapping associates entities of a query ERGraph to entities of an 
ERGraph in a knowledge base of ERGraphs. Mapping entities of graphs is a 
fundamental operation for comparing and reasoning with ERGraphs. 

Definition of an EMapping: Let G and H be two ERGraphs, an EMapping from H to 
G is a partial function M from EH to EG i.e. a binary relation that associates each 



 Griwes: Generic Model and Preliminary Specifications 303 

element of EH with at most one element of EG ; not every element of EH has to be 
associated with an element of EG. 

Definition of an ERMapping: Let G and H be two ERGraphs, an ERMapping from 
H to G is an EMapping M from H to G such that: Let H' be the SubERGraph of H 
induced by M-1(EG),∀r'∈RH' ∃r∈ RG such that card(nH'(r'))= card(nG(r)) and ∀ 
1≤i≤card(nG(r)), M(nH' 

i(r'))= nG 
i(r). We call r a support of r' in M and note r∈M(r') 

Mapping is a basic operation used in many more complex operations e.g. rule 
application. Let us note that by default an EMapping is partial. This enables us to 
manipulate and reason on EMappings during the process of mapping graphs. When 
this process is finished, the EMapping – if any – is said total: all the entities of the 
query graph H are mapped. In general we use specific mappings that preserve some 
chosen characteristics of the graphs (e.g., compatibility of labels, structural 
information etc.); figure 2 shows their hierarchy.  

In particular an ERMapping constrains the structure of the graphs being mapped 
and an EMapping<X> constrains the labelling of entities in the graphs being mapped. 
An ERMapping is an EMapping that leads to map each relation in H to a relation in 
G with the same arity. An EMapping<X> is an EMapping that satisfies a compatibility 
relation X on entities labels. An ERMapping<X> is both an ERMapping and an 
EMapping<X>. A Homomorphism is a total ERMapping. Other specializations 
include: injective mappings, surjective mappings, faithful mappings (preserve the 
absence of hyperarcs), etc. 

 

Fig. 2. EMapping specialization hierarchy 

In conceptual graph projections, many systems map not only entities, but relations 
as well. The notion of projection as defined in conceptual graphs corresponds to a 
Homomorphism<X> that is to say a total ERMapping<X>, where X is a preorder over the 
label set L. 

3.3   Proofs of a Mapping 

We define the proof of a mapping as a kind of "reification" of the mapping; a proof 
provides a static view over the dynamic operation of mapping, enabling thus to access 
information relative to the state of the mapping. Formally the proof of a mapping is 
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the set(s) of associations detailing the exact association from each entity and relation 
of the query graph H to entities and relations of G. 

We follow the hierarchy of mappings outlined in the previous section and associate 
with each kind of EMapping a notion of proof: EProof, ERProof and ERProof<X>. For 
instance the proof for a homomorphism corresponds to the proof of a total 
ERMapping<X> where X is a preorder over the label set L and defined as follows: 

Definition of an EProof: Let G and H be two ERGraphs, and M an EMapping from 
H to G. The EProof of M is a set ME = { (eH,eG) ∈ EH×EG | eG=M(eH) }. 

Definition of an ERProof: Let G and H be two ERGraphs, and M an ERMapping 
from H to G. Let H' be the SubERGraph of H induced by M-1(EG). An ERProof of M 
is a couple P=(ME,MR) where ME is the EProof of M and MR= {(r1,r'1),… (rk,r'k)} with 
{r1,…,rk}=RH' and ∀1≤i≤k  r'i∈M(ri). 

Definition of an ERProof<X>: Let G and H be two ERGraphs, and M an EMapping 
from H to G. An ERProof<X> of M is a couple P=(MEX,MRX) where MEX is the 
EProof<X> of M and MRX= {(r1,r'1,p1)… (rk,r'k,pK)} where {(r1,r'1)… (rk,r'k,)} is the 
second element of an ERProof of M and ∀1≤i≤k pi is a proof of (lG(M(r)), lH(r))∈ X. 

At this point we make no assumption on the structure of pi and the means to obtain it. 
A system for comparing labels should be able to produce such proofs, e.g. a chain of 
subsumption relations which transitive closure confirms the comparison of two labels. 
Note that several different ERProofs can be associated to a same ERMapping (e.g. 
when there are two twin relations in G that can support a same relation of H).  

3.4   Constraints System for Mappings 

An EMapping constraint system is a function C that sets additional conditions that an 
EMapping must satisfy in order to be correct.It takes the form of an evaluable 
expression which must evaluate to true for an EMapping to satisfy the constraint 
system.  

Definition of an EMapping Constraint System: An EMapping constraint system for 
an EMapping M from H to G is a function C(E) where E is the triple (H,P,V) called 
the environment, with P the proof of M and V a binary relation associating to 
variables vi a unique entity or relation of H. This function can evaluate to {true, false, 
unknown, error}. 

An EMapping M satisfies (resp. violates) a constraint system C if C(M)=true  (resp. if 
C(M)=false). 

This facet of the specifications was motivated by scenarios using expressive query 
languages such as SPARQL [6]. For instance, let us consider the following SPARQL 
query and in particular its FILTER clause (line 7): 

1. PREFIX inria: <http://www.inria.fr#> 
2. SELECT ?student ?name 
3. WHERE { 
4.  ?student rdf:type inria:Student 
5.  ?student inria:name ?name . 
6.  ?student inria:age ?age . 
7.  FILTER (xsd:integer(?age) > 22 && regex(?name, "A.*")) } 
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The triples of the query pattern can be seen as a graph pattern requesting students 
(line 4) with their name (line 5) and their age (line 6): 

 
[Student]- 
   (name)->[?name] 
   (age)->[?age]. 
 

Line 7 however is an additional constraint pattern that has to be satisfied in order for 
the matching to be correct; it specifies that the integer value of the age has to be 
greater than 22 and that the name should start with an "A".  

These kinds of constraints motivated the definition of constraint systems in our 
specifications but constraint systems are also envisaged to provide efficient access 
means to indexes of graphs, for instance to retrieve all the arcs of a graph satisfying a 
given constraint system.  

4   Knowledge Layer 

In our architecture, a knowledge base B is defined by a vocabulary, one or several 
bases of facts, optionally a base of rules and a base of queries. B= (Vocabulary, Fact 
Base +, Rule Base*, Query Base*). 

A vocabulary is a set of none necessarily disjoint named sets of elements called 
vocabulary subsets together with preorders on the union of these sets: 

Definition of a Vocabulary: A Vocabulary V is a tuple 
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⎞
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⎝

⎛ ≤≤==
≤≤

),...,(, 1
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q
ki

iVUV ∪  where Vi are k sets of elements and ≤i are q 

preorders on U. 

Definition of a Fact: A Fact is an ERGraph. 

Definition of a Base of Facts: A Base of Facts is a set of Facts. 

Let us note that every ERGraph G in a base of facts respects lG : EG ∪ RG → L where L 
is constructed from the set U of elements of the vocabulary V of the knowledge base. 

Definition of a Query: A Query is a couple Q=(q, C) of a λ-ERGraph q=((e1,…ek), 
G) and a Constraint system C. 

The answers to a query depend on the kind of EMapping used to query the base. In 
the next definitions, the letter X stands for a type of  EMapping;  

X-Answer to a Query: Let Q=(((e1,…ek), G), C) be a query and F be a Fact. 
A=(a1,…ak) is an X-Answer to Q in F iff there exists an EMapping M of type X from 
G to F satisfying C  such that M(ei)=ai . 

Note: the proof of an X-Answer is the proof of the EMapping associated to that X-
Answer. 

Definition of a Base of Queries: A Base of Queries is a set of Queries. 
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Definition of a Rule: A Rule is a couple R=(H,C) of a Query H=(G, C) and a λ-
ERGraph C of the same size as G. H is the hypothesis of the rule, and C is its 
conclusion.  

X-applicable Rule: A rule R=(H,C) is X-applicable to a fact F iff there exists an X-
Answer to H in F. 

X-applying a Rule: Let R=(H,C) be a rule X-applicable to a fact F, and A be an X-
Answer to H in F. The X-Application of R on F with respect to A merges C in (A,F). 

Definition of a Base of Rules: A Base of Rules is a set of Rules. 

Definition of an ERFunction: An ERFunction F is a function associating to an 
ERProof P a label or an error. 

Definition of a functional ERGraph: A functional ERGraph is an ERGraph where 
some entities or relations are labelled with ERFunctions. 

Evaluation of a functional ERGraph: The evaluation of a functional ERGraph G 
with respect to an EProof P and an environment E is a copy G' of G where every 
functional label is replaced by the evaluation of the function against P. If any of the 
evaluations returns an error then G'=∅. 

Definition of a Functional Rule: A functional rule is a rule R=(H,C) where C is a 
functional λ-ERGraph. 

X-applying a Functional Rule: let R=(H,C) be a functional rule X-applicable to a 
fact F, and A be an X-Answer to H in F and P be a proof of that X-Answer. The X-
functional-Application of R on F with respect to P merges the evaluation of C with 
respect to P in (A,F). 

Definition of Co-Reference: A Co-Reference relation R is an equivalence relation 
over the set of entities of G.. 

Definition of a Normal Form: let G be an ERGraph with a co-reference relation R 
and a function fusion(E1,E2,…, En) that returns a new entity from a set of entities, the 
normal form of G is the graph NF(G) obtained by merging every entities of a same 
equivalence class defined by R as a new entity calculated by calling fusion on the 
entities of this class. 

Co-reference and fusion are abstract functions which must be specified at the 
language level. 

5   Validating Against Two Languages: Simple Graphs and RDF 

This article focuses on the structure layer and the knowledge layer of Griwes and does 
not include a description of the language and strategy layer still under discussions. 
However this section shows how the primitives of the pivot model defined in Griwes 
can be used to represent the semantics of two languages: Simple (conceptual) Graphs 
and RDF. This practice would, ultimately, be the objective of the language layer. 
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5.1   Representing Simple Graphs in the Griwes Model 

Non-surprisingly, the SG [2] graphs map smoothly to the core model of Griwes since 
this model was inspired by the conceptual graphs formalism. 

 
Primitive SG Griwes translation 

Primitive concept type Member of a specific finite vocabulary sub-set TC defined in extension. This 
finite vocabulary sub-set has a partial order ≤TC . 

Primitive relation type Member of a specific finite vocabulary sub-set TR defined in extension and 
providing a label l, an arity k, and a signature s ∈ (TCC)k. This finite 
vocabulary sub-set has a partial order ≤TR defined only for labels with the 
same arity. 

Conjunctive concept 
type 

Member of a specific vocabulary sub-set TCC defined in intension; sub-set of 
power set of Primitive concept types. This finite vocabulary sub-set has a 
partial order ≤TCC derived from ≤TC . NB: TC⊂TCC 

Individual marker and 
Generic marker * 

Member of a specific finite vocabulary sub-set M=I∪{*} defined in intension. 
This finite vocabulary sub-set has a partial order ≤M such that ∀i∈M  i ≤M *. 

Concept An entity where the label is a couple (t, m) with t ∈ TCC and m∈M. We 
define ≤C a partial order on these labels such that (t1, m1) ≤C (t2, m2) iff t1≤TCC 
t2 and m1≤M m2. 

Relation a relation where the label is a type t ∈ TR  
Fact A Fact. 
Simple Graph An ERGraph respecting labelling functions. 
Query A query Q=(q, C) with C =∅. 
Rule A rule R=(H, C) with C =∅. 
Banned concept type Member of a specific vocabulary sub-set BT sub set of power set of primitive 

concept types; members of this sub-set should never be used in other sets of 
the vocabulary, in facts, in queries or rules. 

Support the vocabulary V. 
Graph specialization Let ≤ be the partial order defined by ≤C when applied to two entities, by ≤TR 

when applied to two relations, and not holding for any other case. 
A graph G specializes a graph H if there exists a homomorphism≤  from H to 
G. 

Graph deduction H is deduced from G iff the normal form NF(G) specializes H or G is 
inconsistent; NF(G) is defined by corefSG and fusionSG. 

5.2   Representing RDF in the Griwes Model 

This section shows how the RDF graph model can be mapped to the core model of 
Griwes. Mappings given in the following table rely on the following preorder.  

Definition: let ≤RDF be a preorder over V such that 

- x ≤RDF y  if y ∈ Blanks 
- x ≤RDF y  if x, y ∈ Literals² and value(x)=value(y) 
- x ≤RDF y  if  x=y 

 
Primitive RDF Griwes translation 

Blank Member of a specific vocabulary sub-set defined in intension. 
Literal Member of a specific vocabulary sub-set defined in intension. 
Literal ^^datatype Member of a specific vocabulary sub-set defined in intension. 
Literal @lang Member of a specific vocabulary sub-set defined in intension. 
URI ref Member of a specific vocabulary sub-set defined in intension. 
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Triple: subject, predicate, object   (x p y) a relation in an ERGraph ; it would naturally be binary but 
additional coding information may be added with n-ary 
relations e.g. quadratic relations specifying the source and the 
property reified. 
The ERGraph G includes the relation Rp such that 
nG(Rp)=(ex,ep,ey)  

RDF graph G (i.e. a set of triples on a 
given vocabulary) 

An ERGraph such that for each distinct term t appearing in a 
triple of G the ERGraph E associated to G contains a distinct 
entity e(t) and for each triple (s,p,o) of G, E contains a relation 
r such that nE(r)=(e(s),e(p),e(o)).  
Remark : a well-formed RDF ERGraph: 
 - has no isolated entity; 
 - first element of relations must not be a Literal; 
 - a property name is only a URI ref;  
One may have to work on non-well-formed RDF ERGraph. 

RDF nodes Entities appearing in position 1 and 3 of a relation. 
Vocabulary (set of names) Vocabulary. 
RDF Vocabulary (rdf:Property, rdf:type) a specific vocabulary sub-set defined in extension for RDF. 
Simple RDF entailment H entails G iff there exists a Homomorphism≤RDF from G to 

the normal form NF(H) defined by corefRDF and fusionRDF. 
RDF axioms the ERGraph representation of the triples of the axiomatic 

triples of RDF are asserted in every base of facts. 
x rdf:type t as any other triple. (NB: t can be integrated in the label of the 

entity representing x) 
RULE 1 
IF x p y in RDF graph G  
THEN p rdf:type rdf:Property 

R=(H,C) where H=((e(y)),H') with H' is the graph associated 
with {(x,y,z)} where x, y and z are blanks and C=((e(u)),C') 
with C' the graph associated with {(u, rdf:type, rdf:Property)} 
where u is a blank and rdf:type and rdf:Property are URI refs 
of the RDF vocabulary.  

RULE 2 
IF x p y^^d  in RDF graph G 
     and y^^d well-typed 
THEN y^^d rdf:type d 

R=(Q,D) a functional rule, where Q=(H,C) with H=((e(z)),H') 
with H' is the graph associated with {(x,y,z)} where x, y and z 
are blanks, C is satisfied iff e(z) is labelled by a well-typed 
datatype literal. D=((e(a)),D') is the lambda functional 
ERGraph associated with  {(a, rdf:type, fun:getType(im(e(z))) 
), (x, fun:id(im(r(y)), fun:getNormalForm(im(e(z)))) , 
(fun:getNormalForm(im(e(z))), rdf:type, fun:getType(im(e(z))) 
)  } where a is a blank and rdf:type is a URI ref of the RDF 
vocabulary and fun:getType() is a function extracting the type 
from a literal. 

6   Discussion 

In this article we presented an initiative to design a common model and specify a 
platform to share state-of-the-art structures and algorithms across several graph-based 
knowledge representation frameworks such as RDF/S, Conceptual Graphs, Topic 
Maps or SKOS. This article is extracted from the working draft of a more detailed 
research report from Griwes available online7. 

We identified a number of limitations and problems that we intend to address in a 
near future: 

• Generalization of lambdas to relation labels: we may have to consider two tuples 
in lambda graphs, a tuple of entities and a tuple of relations (or a tuple of entities 
and relations) in order to use variables on relations as allowed in SPARQL. 

                                                           
7 http://www-sop.inria.fr/acacia/project/griwes/ 
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• Structure of proofs: at this point of the design, we made no assumptions on the 
structure of the proofs and the means to obtain them; this may have to be detailed in 
the future and extended to reasoning in general. 

• Index of graphs: in order to wrap different efficient accesses to graphs and also 
heterogeneous arc producers (e.g. database wrappers) we are currently working on 
introducing indexes as companion structures of graphs that provide constrained 
listing of the components of a graph to support efficient access mechanisms. 

• Relations with different arities: in the ERMapping, we may have to generalize the 
constraint on arity and matching for instance to map relations with different arities 
or different orders in their arguments. 

• Complex modifiers in queries: a query language like SPARQL introduces 
constructors for representing optional parts in queries, disjunctive parts, constraints 
with complex scopes, constraints between different answers to a query, etc. These 
extensions will require additional work. 

• Architectural choices: for instance there is an ongoing discussion on the status of 
queries and the fact they should or should not be linked to knowledge base. 

• Subtleties in domains of interpretations: the distinction between terms and values 
in SPARQL-RDF is full of complex cases that require us to find the right 
compromise between efficiency and size of data. 

To illustrate these questions, let us just detail this last example to consider the options 
one could have in representing datatyped literals and their value. Currently RULE 2 of 
the RDF mapping presented here does not cover coreference between a Literal Entity 
and its datatyped value representation. We identified three solutions to this problem: 

• Explicitly indicate coreference between these entities and handle them in the 
algorithms; 

• Consider composite labels representing sets of literals and modify preorders on 
labels and normalization so as to indicate original destinations of arcs on the 
arcs themselves; 

• Use hyperarcs containing the literal representation, its type and its value and 
modify ERMappings to handle a variable number of arguments in the arc. 

The current work in Griwes includes discussing these options and finding the right 
compromise between efficiency, generality and feasibility. 

To summarize, we now have a first draft of three layers of our architecture. We 
intend to refine and extend this architecture and, even more importantly, to start the 
open-source design of the corresponding APIs and their implementations. 
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