
A Hoare Logic for Call-by-Value Functional

Programs

Yann Régis-Gianas1 and François Pottier2

1 INRIA Saclay - Île-de-France, ProVal, Orsay, F-91893
LRI, Université Paris-Sud, CNRS, Orsay, F-91405

2 INRIA Paris - Rocquencourt, Gallium - Domaine de Voluceau - F-78153

Abstract. We present a Hoare logic for a call-by-value programming
language equipped with recursive, higher-order functions, algebraic data
types, and a polymorphic type system in the style of Hindley and Milner.
It is the theoretical basis for a tool that extracts proof obligations out
of programs annotated with logical assertions. These proof obligations,
expressed in a typed, higher-order logic, are discharged using off-the-
shelf automated or interactive theorem provers. Although the technical
apparatus that we exploit is by now standard, its application to call-
by-value functional programming languages appears to be new, and (we
claim) deserves attention. As a sample application, we check the partial
correctness of a balanced binary search tree implementation.

1 Introduction

Hoare logic [1, 2, 3] is a discipline for annotating programs with logical formulae,
known as assertions, and for extracting logical formulae, known as proof obli-
gations, out of such annotated programs. The validity of the proof obligations,
which can be verified either manually or mechanically, entails the correctness
of the annotated program. That is, it guarantees that the assertions are correct
static predictions of the program’s dynamic behavior.

Hoare logic was originally designed for a “while language”, that is, a simple
imperative programming language, equipped with an iteration construct and a
fixed number of global, mutable variables. Recursive, higher-order procedures
were the subject of much attention in the late 1970’s and early 1980’s [4, 5, 6,
7, 8]. More recently, heap-allocated, mutable data structures, as well as object-
oriented features, have been deeply investigated. This has led to the development
of practical specification languages and tools targeting, for instance, Java [9, 10,
11], C [12] and C# [13].

We would like to put forth the thesis that this traditional focus on imperative
programming languages has been, to some extent, detrimental: it has consumed
a great amount of energy, while comparatively little effort was being devoted
to the key features that will be required in order for the methodology to scale
up, such as modularity and abstraction. We would also like to raise a question:
since functional programs are significantly easier to check for correctness, why
hasn’t this activity become routine in the functional programming community,
forty years after Floyd and Hoare’s seminal papers?

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, pp. 305–335, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

306 Y. Régis-Gianas and F. Pottier

On the cost of imperative programming. There are several reasons why functional
programming can be considered superior to imperative programming [14]. One
of them is that functional programs are easier to reason about. In other words,
there is a cost to reasoning about state.

In a typical modern imperative programming language, all heap-allocated
data is mutable. As a result, instead of reasoning in terms of high-level entities
such as, say, pairs, lists, trees, etc., programmers are forced to reason in terms of
a view of the heap as a graph. More concretely, they must write down and prove
formulae that involve mappings of memory addresses to memory blocks [12, 15].

The possibility of aliasing means that, whenever some memory block is writ-
ten, the memory that is accessible through every type-compatible pointer is
potentially affected. This makes it difficult to reason about the effects of a sin-
gle write operation, and creates the problem of representation exposure [16, 17].
In order to address this issue, researchers have developed linear types and
regions [18], ownership types [19], and separation logic [20], among other
approaches.

Our research agenda. We do not claim that the above issues are not worth in-
vestigating: on the contrary, they are quite fascinating. However, it is a pity
that we do not, today, have mature tools for checking the correctness of func-
tional programs. This explains why, in this paper, we study a Hoare logic for
(call-by-value) functional programs without state.

The programs that we are interested in checking rely heavily on (possibly
higher-order) functions, algebraic data structures, and type polymorphism. We
claim that it is quite easy to extract succinct and natural proof obligations out of
such programs, provided, of course, that they are annotated with specifications.

There are two benefits to be reaped by not reasoning about state. As far as
the user is concerned, this leads to simpler specifications and proof obligations.
As far as the implementor is concerned, this saves a large part of the “implemen-
tation budget”, which can then be spent on features such as type polymorphism,
type abstraction, and modularity. The importance of these features cannot be
overstated: in the end, the key to success is the ability to develop and check
program components independently.

Contribution. In this paper, we present the design of a typed, polymorphic,
higher-order programming language, where programs can be annotated with
assertions expressed in a typed, polymorphic, higher-order logic. We define a
procedure for extracting proof obligations out of programs, and show that it
is sound. A publicly available prototype tool [21] has been developed, which
works in conjunction with the interactive theorem prover Coq [22], with the
automated first-order theorem prover Alt-Ergo [23], or with both at once. This
tool has been used to check the partial correctness of several non-trivial data
structure implementations, including balanced binary search trees and purely
functional double-ended queues [24]. We hope to publish detailed accounts of
these implementations in the future.

A Hoare Logic for Call-by-Value Functional Programs 307

Highlights of our approach. Here are some of the key technical features of our
approach.

We focus on partial correctness. We do not require programs to terminate,
and do not generate proof obligations to ensure termination. It is up to the user
to determine which properties of the code are of sufficient interest to deserve
proof, and to insert assertions where desired. At one extreme, a program that
contains no assertions leads to no proof obligations. There is no cost to be paid
up front for using our methodology.

Our preconditions are prescriptive: it is impossible to call a function unless
its precondition F1 holds. A descriptive interpretation of preconditions can be
simulated by using the precondition true and the postcondition F1 ⇒ F2. This
allows unconditional invocation, and states that the function’s result must satisfy
F2 if its argument satisfies F1.

Values, programs, types, and logical formulae are distinct syntactic categories.
Proofs do not necessarily appear within programs: proof obligations are dele-
gated to an external theorem prover, which may or may not require or produce
explicit proof terms.

We do not embed values, programs, or formulae within types. Thus, our types
are first-order terms: they include type variables, parameterized algebraic data
types, and function types, just as in ML. As a result, type inference in the style
of Milner [25] is possible, and implemented in our tool [21]. Type inference does
not generate any proof obligations. We do not have dependent types, such as
lists indexed with an integer length [26], but simulate them as follows. Instead
of declaring that x has type list n, we declare that x has type list , and assert the
logical formula length(x) = n, where the function length is inductively defined
at the logical level.

Formulae can refer to values, but not to expressions. This is important, be-
cause values are pure, whereas expressions are potentially impure. Although our
logic cannot explicitly reason about state, it is nevertheless soundly applicable
to programs that involve non-termination, non-determinism, input/output, or
mutable state. (Reading an input stream, or dereferencing a pointer to mutable
storage, can be viewed as non-deterministic operations.) In that case, it allows
establishing properties that do not depend on the behavior of any impure op-
eration. This means, for instance, that we can prove the partial correctness of
a functional program even if it has been instrumented with possibly impure
debugging, profiling, or logging instructions.

In our programming language, functions, which are potentially impure, are
values, so they can appear within formulae. But what does it mean for a formula
to refer to a computational function f of type, say, τ1

.−→ τ2? Our answer
is to view f , at the logical level, as a pair of predicates, which represent f ’s
precondition and postcondition. In other words, when used within a formula, f
has type (roughly) (τ1 → prop)× (τ1 → τ2 → prop). The two pair projections,
written pre and post, can be used to refer to the pair components. That is,
pre(f) and post(f) offer lightweight notations for referring to f ’s precondition
and postcondition. When f is a known (let-bound) function, this mechanism can

308 Y. Régis-Gianas and F. Pottier

be viewed merely as offering abbreviations for known formulae. However, when
f is unknown (λ- or ∀-bound), it becomes key to writing natural specifications
for higher-order functions (§7.5).

In summary, although the technical apparatus that we exploit is by now
standard, we believe that it is worth drawing attention to the combination of
power and simplicity offered by our technical choices. If extended with a suitable
module system, and equipped with a compilation path down to, say, Objective
Caml [27], our tool could be used to construct correct purely functional program
components, possibly for use within larger, partly imperative programs.

Outline of the paper. The paper is laid out as follows. First, we briefly introduce
a higher-order logic, in which assertions and proof obligations are expressed (§2).
Then, we present the syntax and call-by-value semantics of a core functional pro-
gramming language whose expressions carry explicit assertions (§3). We describe
the type system, as well as the procedure for extracting proof obligations out
of programs (§4). We present a few extensions of the language (§5) and dis-
cuss how proof obligations are transformed for submission to external theorem
provers (§6). Last, we present a few excerpts of our balanced binary search tree
implementation (§7) and review related work (§8).

2 The Underlying Logic

2.1 Syntax

We rely on a mostly standard higher-order logic [28] whose types and terms
appear in Figure 1. Types θ include type variables α, parameterized inductive
types, function types, product types, and the type prop of logical propositions.
In the following, the syntax of terms is extended with standard syntactic sugar
for falsity, disjunction, implication, equivalence, existential quantification, etc.

The typing rules appear in Figure 2. In general, we write t for terms of ar-
bitrary type. We write F for formulae, that is, terms of type prop, and P for
predicates, that is, terms of type θ → prop. The binary operator #, used in
several definitions, expresses the fact that two objects have no common free
names.

Our logic is not simply-typed. Because our computational language (§3) is
polymorphic, and because we wish to lift every computational value up to the
logical level, we need polymorphism at the logical level as well. For this reason,
we have logical type schemes ς ::= ∀ᾱ. θ, where ᾱ is a vector of distinct type
variables. Every occurrence of a variable x is explicitly applied to a type vector θ̄,
which states how the type scheme associated with x is instantiated. For this rea-
son also, we introduce universal quantification over type variables, and use facts
of the form ∀ᾱ.F . Facts are not formulae: they do not appear in Figure 1. Facts
appear only within computational-level type environments Γ (§3.1, Figure 3).
The extension of higher-order logic with this very simple form of explicit quan-
tification over types is embedded within the Calculus of Inductive Constructions
(§2.2).

A Hoare Logic for Call-by-Value Functional Programs 309

Logical Types
θ ::= α Variable

| d θ̄ Data
| θ → θ Function
| θ × θ Product
| prop Proposition

ς ::= ∀ᾱ. θ Scheme

Logical Type Environments
Δ ::= ∅ Nil

| Δ, (x : ς) Variable
| Δ, ᾱ Type Variables

Logical Terms
t, F, P ::= x θ̄ Variable

| D θ̄ (t, . . . , t) Data
| λ(x : θ).t Abstraction
| t(t) Application
| (t, t) Product
| π1 Projection (also written pre)
| π2 Projection (also written post)
| true Truth
| t = t Equality
| t ∧ t Conjunction
| ¬ t Negation
| ∀(x : θ).t Universal Quantification

Fig. 1. The logic (syntax)

The logic offers parameterized inductive types. We assume that each inductive
type constructor d carries a fixed integer arity, and that every application d θ̄ is
arity-consistent. We further assume that d comes with a finite number of data
constructors D, each of which is assigned a type scheme of the form:

∀ᾱ. θ1 × . . . × θn → d ᾱ

We impose a positivity condition [29], which is informally summed up as follows:
in the above type scheme, the type constructor d (or any type constructor whose
definition is mutually recursive with the definition of d) must not appear under
the left-hand side of an arrow within θ1, . . . , θn.

Although there is an introduction form for inductive types, namely the ap-
plication of a data constructor D, no elimination form is provided here. We can
get away with this omission because the process of extracting proof obligations,
which is the focus of the present paper, requires no such forms. Of course, when it
comes to discharging proof obligations, that is, proving theorems, then inductive
definitions and proofs become necessary.

310 Y. Régis-Gianas and F. Pottier

(Δ, (x : ς))(x) = ς
(Δ, (x1 : ς))(x2) = Δ(x2) if x1 # x2

(Δ, ᾱ)(x) = Δ(x) if ᾱ # Δ(x)

Δ(x) = ∀ᾱ. θ

Δ � x θ̄ : [ᾱ �→ θ̄]θ

D : ∀ᾱ. θ1 × . . . × θn → d ᾱ
∀i Δ � ti : [ᾱ �→ θ̄]θi

Δ � D θ̄ (t1, . . . , tn) : d θ̄

Δ, (x : θ1) � t : θ2

Δ � λ(x : θ1).t : θ1 → θ2

Δ � t1 : θ1 → θ2

Δ � t2 : θ1

Δ � t1(t2) : θ2

∀i Δ � ti : θi

Δ � (t1, t2) : θ1 × θ2

Δ � t : θ1 × θ2

Δ � πi(t) : θi Δ � true : prop

∀i Δ � ti : θ

Δ � t1 = t2 : prop

∀i Δ � ti : prop

Δ � t1 ∧ t2 : prop

Δ � t : prop

Δ � ¬ t : prop

Δ, (x : θ) � t : prop

Δ � ∀(x : θ).t : prop

Δ, ᾱ � t : prop

Δ � ∀ᾱ.t : prop

Fig. 2. The logic (type system)

2.2 Interpretation

Our higher-order logic is embedded within the Calculus of Inductive Construc-
tions [29, 30], abbreviated to CiC in the sequel. Indeed, each type of our logic
can be translated into a term of CiC whose type is Type0. This guarantees that
the translation of polymorphic quantification only introduces type variables of
type Type0 in CiC. Each construct of our logic is directly mapped to its coun-
terpart in CiC. This interpretation guarantees that our logic is consistent and
validates a number of laws that are used in establishing the soundness of our
system (§4.8).

3 The Computational Language

3.1 Syntax

The syntax of our programming language appears in Figure 3. It is equipped with
an ML-style type system [25], so types τ and type schemes σ are distinguished.
Types include type variables, parameterized algebraic data types, and function
types. We write .−→ for the computational function type constructor, so as to
distinguish it from the logical function type constructor, written → (Figure 1).

We impose a syntactic separation between values and expressions, and require
both operands of the function application operator, as well as case scrutinees,
to be values. This imposes a style, reminiscent of A-normal form [31], where the
result of every intermediate computation is named via a let construct. Of course,
such a style is quite user-unfriendly, so, in practice, we offer an unrestricted

A Hoare Logic for Call-by-Value Functional Programs 311

Computational Types
τ ::= α Variable

| d τ̄ Data
| τ

.−→ τ Function
σ ::= ∀ᾱ. τ Scheme

Computational Type Environments
Γ ::= ∅ Nil

| Γ, (x : σ) Variable
| Γ, ᾱ Type Variables
| Γ,∀ᾱ.F Assumption

Values
v ::= x τ̄ Variable

| D τ̄ (v, . . . , v) Data
| fun f(x : τ/F) : (x : τ/F) = e Recursive Function

Patterns
p ::= x τ̄ Variable

| D τ̄ (p, . . . , p) Data

Expressions
e ::= v Value

| v(v) Function Application
| let (x ᾱ : τ/F) = e in e Local Binding
| case v of c Pattern Matching

Cases
c ::= ∅ Nil

| (p �→ e) � c Cons

Fig. 3. The computation language (syntax)

surface language, and automatically translate it down to the kernel language
described here.

The language supports type inference in the style of Hindley and Milner.
However, in this paper, we are not concerned with type inference, so we work
with explicitly-typed programs. This is visible (i) in the syntax of values and
patterns, where variables and data constructors are annotated with vectors of
types that indicate how polymorphic type schemes are instantiated, (ii) at fun
and let constructs, where bound variables are annotated with types, and (iii) at
let constructs, where a vector of type variables ᾱ can be explicitly bound.

A function definition takes the general form:

fun f(x1 : τ1/F1) : (x2 : τ2/F2) = e

The symbol / should be read “where”. Every function is recursive, so that f
is bound within e. The formal parameter x1 is bound within the precondition

312 Y. Régis-Gianas and F. Pottier

F1, within the postcondition F2, and within e. The variable x2, which stands
for the result of the function, is bound within the postcondition F2. We require
every function to be annotated with an explicit precondition and postcondition
(if missing, true is assumed).

A local variable definition takes the general form:

let (x ᾱ : τ/F) = e1 in e2

The local variable x is bound within F and within e2. The type variables ᾱ are
bound within τ , F , and e1. The proposition F serves as a postcondition for e1.
If it is missing, a default postcondition is assumed, whose definition is deferred
to §3.3.

A case analysis takes the general form:

case v of c

Here, c is a possibly empty sequence of cases (i.e., branches). Each branch is of
the form (p �→ e), where the variables that appear in the pattern p are bound
within e. Patterns must be linear, that is, a pattern cannot bind a variable twice.

3.2 Lifting Computational Entities to the Logical Level

In a Hoare logic, formulae refer to values. That is, if x is bound, at the computa-
tional level, by a fun, let, or case construct, then it is possible for a formula F ,
embedded in the code within the scope of x, to refer to x. This raises two ques-
tions: first, if x has computational type τ , what is its logical type, to be used
when typechecking F? Second, if, for the purposes of evaluation, x is substituted
with a computational value v, what is the corresponding logical value, to be used
when interpreting F?

The problem of lifting types and values to the logical level is trivial in a
first-order language. Indeed, the type algebra only contains basic types which
are translated to type constants (int is mapped to int). Besides, computational
values are essentially first-order terms, interpreted as data in the logic. Yet, in
an higher-order language, functions are first-class values. What should be the
logical reflection of their code ?

We answer these questions by lifting both computational types and compu-
tational values up to the logical level (Figure 4). That is, to each computational
type τ , we associate a logical type �τ�, and to each computational value v, we
associate a logical term �v�, with the intended property that if v has compu-
tational type τ , then �v� has logical type �τ�. Patterns are lifted too. Because
patterns form a subset of values, no extra definitions are needed.

As announced (§1), computational functions are reflected, at the logical level,
as pairs of a precondition and postcondition. This is made explicit in the lifting
of computational function types:

�τ1
.−→ τ2� = (�τ1� → prop) × (�τ1� → �τ2� → prop)

A Hoare Logic for Call-by-Value Functional Programs 313

Types
�α	 = α

�d τ̄	 = d �τ̄	
�τ1

.−→ τ2	 = (�τ1	 → prop) × (�τ1	 → �τ2	 → prop)

Type schemes
�∀ᾱ. τ	 = ∀ᾱ. �τ	

Type environments
�∅	 = ∅

�Γ, (x : σ)	 = �Γ 	, (x : �σ)
�Γ, ᾱ	 = �Γ 	, ᾱ

�Γ, ∀ᾱ.F 	 = �Γ 	

Values
�x τ̄	 = x �τ̄	

�D τ̄ (v1, . . . , vn)	 = D �τ̄	 (�v1	, . . . , �vn)
�fun f(x1 : τ1/F1) : (x2 : τ2/F2) = e	 = (λ(x1 : �τ1).F1, λ(x1 : �τ1).λ(x2 : �τ2).F2)

Fig. 4. Lifting computational types and values to the logical level

The first component of the pair, which represents the function’s precondition,
is abstracted over the function’s argument, while the second component, which
represents the postcondition, is abstracted over both argument and result.

As a result of this definition, if f is bound, at the computational level, to a
function of type τ1

.−→ τ2, then a formula embedded within the code, in the
scope of f , views f as a pair of predicates, and can refer to pre(f) and post(f).
(Recall that, as per Figure 1, pre and post are sugar for the projections π1

and π2.) Note that f does not denote a logical function. Within a formula, an
application f(t) does not make sense: it is ill-typed.

Values of computational function type (that is, λ-abstractions) are lifted up to
the logical level in a way that is consistent with this definition. A function’s pre-
condition and postcondition alone determine how it is lifted: its code is ignored.
(The conformance of a function’s body to its declared pre- and postcondition is
checked, of course, via a proof obligation: see rule Fun in Figure 6.) This reflects
a philosophy in which the only way of reasoning about the behavior of a function
value is via its specification: code never appears within formulae.

In order to lift algebraic data types, we lift every algebraic data type definition
into an isomorphic inductive type definition. So, for every computational-level
algebraic data type constructor d, there must be a logical-level inductive type
constructor, also written d, of identical arity. For every computational-level data
constructor

D : ∀ᾱ. τ1 × . . . × τn → d ᾱ,

there must be a logical-level data constructor

D : ∀ᾱ. �τ1� × . . . × �τn� → d ᾱ.

314 Y. Régis-Gianas and F. Pottier

Due to the manner in which computational function types are lifted, the pos-
itivity condition (§2) requires the type constructor d to not appear under any
side of a computational arrow within τ1, . . . , τn. This can be a limitation (§9).

3.3 Inferring Strongest Postconditions

In order to simplify the definition of the procedure that extracts proof obliga-
tions, we have required every let construct to carry an explicit postcondition for
its left-hand sub-expression (§3.1). In practice, however, annotating every let
construct would be quite unpleasant, so it is desirable to construct a reasonable
postcondition when the user does not provide one.

Ideally, the formula that we should construct in such a situation is the strongest
postcondition of the left-hand sub-expression.Our logic is, in fact, sufficiently pow-
erful to express strongest postconditions for every construct in our programming
language. For instance, the strongest postcondition for a value v is λx.(x = �v�).
The strongest postcondition for a function application v1(v2) is post(�v1�)(�v2�).
We could go on and explain how to construct strongest postconditions for let and
case constructs. However, in these two cases, they would be complex formulae,
involving existential quantification and disjunction.

Eventually, the postconditions carried by let constructs become part of proof
obligations, where they appear as hypotheses. For this reason, we do not want
them to be too complex: we wish to produce simple, comprehensible proof obli-
gations.

Our answer to this issue is to construct strongest postconditions for values and
function applications, as suggested above, but not for let and case constructs:
instead, we rely on the user-provided postcondition, if there is one, or use the
trivial postcondition true, otherwise.

In practice, when is it necessary for the user to provide an explicit annotation?
The left-hand side of a let construct can be one of four expression forms: a value,
a function application, a let form, or a case form. In the first two cases, we do
use a strongest postcondition. The third case can be made to never happen, up
to a conversion to A-normal form [31]. Only the last case remains. In summary,
the only case where our simple-minded approach may call for an explicit, user-
provided annotation is that of a let construct whose left-hand sub-expression is
a case construct.

3.4 Notions of Substitution

Neither types nor formulae influence execution, but do appear in the syntax of
values and expressions, in order to allow stating subject reduction and proving
the soundness of our Hoare logic. So, the operational semantics reduces expres-
sions that contain explicit types and formulae. To ensure that these annotations
remain consistent as expressions are transformed, we must define a few slightly
non-standard notions of substitution.

A single type variable α can appear within logical types as well as within
computational types. Similarly, a single variable x can appear within formulae as

A Hoare Logic for Call-by-Value Functional Programs 315

well as within expressions. For this reason, we write [α �→ τ] for the substitution
that replaces every free occurrence of α at the computational level with τ and
every free occurrence of α at the logical level with �τ�. Similarly, we write [x �→ v]
for the substitution that replaces every free occurrence of x at the computational
level with v and every free occurrence of x at the logical level with �v�.

We have annotated let constructs with explicit type abstractions and occur-
rences of variables with explicit type applications. As a result, contracting a
let-redex requires contracting type-level β-redexes as well. In order to do so,
we write [x �→ Λᾱ.v] for a substitution that replaces every variable occurrence
of the form x τ̄ with [ᾱ �→ τ̄]v. Again, this replacement is performed at both
computational and logical levels, up to a lifting operation in the latter case.

Last, the notation [x �→ v], which denotes a substitution of a value for a
variable, is extended to the notation [p �→ v], which, when p does not match v,
is undefined, and, when p does match v, denotes a simultaneous substitution of
values for variables, as follows. The formal definition is:

[D τ̄ (p1, . . . , pn) �→ D τ̄ (v1, . . . , vn)]

stands for
[p1 �→ v1] ∪ . . . ∪ [pn �→ vn]

Because patterns are linear, this is a union of substitutions whose domains are
pairwise disjoint.

3.5 Operational Semantics

A standard small-step, call-by-value operational semantics appears in Figure 5.
There are three kinds of redexes (β, let, and case) and one evaluation context
(the left-hand side of a let construct). An expression is stuck if it is irreducible
and not a value. It is easy to check that an expression is stuck if and only if
it contains, within an evaluation context, a sub-expression of the form v1(v2),
where v1 is not a syntactic function, or of the form case v of ∅.

v1(v2) → [x �→ v2][f �→ v1]e
if v1 is fun f(x : τ/F) : (. . .) = e

let (x ᾱ : τ/F) = v in e → [x �→ Λᾱ.v]e

case v of (p �→ e) � c → [p �→ v]e
if [p �→ v] is defined

case v of (p �→ e) � c → case v of c
if [p �→ v] is undefined

let (x ᾱ : τ/F) = e1 in e2 → let (x ᾱ : τ/F) = e′1 in e2

if e1 → e′1

Fig. 5. Operational semantics

316 Y. Régis-Gianas and F. Pottier

4 The Type System and Proof System

We now equip the computational language with an ML-style type system and
with a proof system (a Hoare logic), which can be viewed as an algorithm for
extracting proof obligations out of well-typed programs. For the sake of succinct-
ness, both are described using a single set of judgements, which assert at once
that a program is well-typed and is annotated with consistent formulae.

In practice, our tool [21] first checks that the program is well-typed, and,
at the same time, infers any omitted type annotations. Then, a set of proof
obligations, expressed in our typed higher-order logic, is extracted. The fact
that the program (including embedded formulae) is well-typed guarantees that
the proof obligations are in turn well-typed.

4.1 Environments

The syntax of type environments Γ appears in Figure 3. As is standard, type
environments bind variables and type variables. Environments also contain as-
sumptions, that is, formulae that become hypotheses when proof obligations are
emitted. An environment of the form Γ, ∀ᾱ.F is well-formed when ∀ᾱ.F has type
prop under �Γ �.

4.2 Proof Obligations

A proof obligation is a judgement of the form Γ |= F , where F has type prop
under �Γ �. The semantics of the judgment is the validity of the interpretation
of F in CiC under the interpretation of the environment Γ , which is decided via
an external theorem prover.

4.3 Judgements

The proof system is defined via three judgements, which state properties about
values, patterns, and expressions, respectively:

Values Γ
 v : τ (Figure 6)
Patterns Γ
 p : τ (Figure 7)
Expressions Γ
 e : τ {P} (Figure 8)

4.4 Values

The judgement Γ
 v : τ (Figure 6) states that, under the type environment Γ ,
the value v has type τ . No precondition or postcondition appear in the judge-
ment. Indeed, because values require no computation, they never have a precon-
dition. Furthermore, because all values can be lifted up to the logical level, they
don’t need an explicit postcondition: the strongest possible postcondition of a
value v is simply equality with �v�.

A Hoare Logic for Call-by-Value Functional Programs 317

(Γ, (x : σ))(x) = σ
(Γ, (x1 : σ))(x2) = Γ (x2) if x1 # x2

(Γ, ᾱ)(x) = Γ (x) if ᾱ # Γ (x)
(Γ,∀ᾱ.F)(x) = Γ (x)

Var
Γ (x) = ∀ᾱ. τ

Γ � x τ̄ : [ᾱ �→ τ̄]τ

Data
D : ∀ᾱ. τ1 × . . . × τn → d ᾱ
∀i Γ � vi : [ᾱ �→ τ̄]τi

Γ � D τ̄ (v1, . . . , vn) : d τ̄

Fun
f # F1, F2

�Γ, (x1 : τ1)	 � F1 : prop �Γ, (x1 : τ1), (x2 : τ2)	 � F2 : prop
Γ, (f : τ1

.−→ τ2), f = �fun f . . .	, (x1 : τ1), F1 � e : τ2 {λ(x2 : �τ2).F2}
Γ � fun f(x1 : τ1/F1) : (x2 : τ2/F2) = e : τ1

.−→ τ2

Fig. 6. The computation language (proof system: values)

Rules Var and Data are straightforward. Rule Fun is more complex. Two
premises require the precondition F1 and postcondition F2 to be well-formed
formulae, under appropriate environments. The last premise checks that the
function’s body conforms to the function’s specification. In order to do so, the
type environment is extended with bindings for f and x1. It is also extended
with the hypothesis

f = �fun f . . .�,
which by definition of lifting (Figure 4) is synonymous for

f = (λ(x1 : �τ1�).F1, λ(x1 : �τ1�).λ(x2 : �τ2�).F2).

This hypothesis gives meaning to occurrences of pre(f) and post(f) within the
body of the function, allowing recursive calls to f to be checked. Last, the envi-
ronment is also extended with the precondition F1, which means that, within the
body of the function, the precondition is assumed to hold. Under this extended
environment, the body of the function is required to produce a value that meets
the postcondition λ(x2 : �τ2�).F2.

It is not difficult to see that Γ
 v : τ implies �Γ �
 �v� : �τ�. This property
is required for the typing rules to construct only well-formed formulae.

4.5 Patterns

The judgement Γ
 p : τ (Figure 7) states that a value of type τ can safely be
matched against the pattern p, giving rise to (exactly) the bindings described
by Γ . As in ML, these bindings are monomorphic (see Pat-Var). Because pat-
terns are linear, the type environments Γ1, . . . , Γn in Pat-Data have disjoint
domains.

318 Y. Régis-Gianas and F. Pottier

Pat-Var
(x : τ) � x : τ

Pat-Data
D : ∀ᾱ. τ1 × . . . × τn → d ᾱ
∀i Γi � pi : [ᾱ �→ τ̄]τi

Γ1, . . . , Γn � D τ̄ (p1, . . . , pn) : d τ̄

Fig. 7. The computation language (proof system: patterns)

4.6 Expressions

The judgement Γ
 e : τ {P} (Figure 8) states that, under the type environment
Γ , the expression e has type τ and (if it terminates) produces a value whose
logical reflection satisfies the predicate P . In such a judgement, P has type
�τ� → prop under �Γ �.

Rule Value directly reflects this intended meaning: the judgement Γ
 v :
τ {P} holds if and only if v has type τ under Γ and its logical reflection �v�
provably satisfies P under the hypotheses found in Γ . The premise Γ |= P (�v�)
is a proof obligation.

Rule App requires the function v1 and its actual argument v2 to have matching
computational types. Furthermore, it emits two proof obligations, stating that
(i) the actual argument must satisfy the function’s precondition, and (ii) the
function’s postcondition must imply the desired postcondition P . In the last
premise, we write P ′ ⇒ P , where P ′ and P have type �τ2� → prop, for ∀(x :
�τ2�).(P ′(x) ⇒ P (x)), where x is fresh for P ′ and P .

Rule Let checks that e1 has type τ1 and that e1 complies with the postcondi-
tion F . Then, the rule performs type generalization, in the style of Milner [25], so

Value
Γ � v : τ

Γ |= P (�v)
Γ � v : τ {P}

App
Γ � v1 : τ1

.−→ τ2 Γ � v2 : τ1

Γ |= pre(�v1)(�v2)
Γ |= post(�v1)(�v2) ⇒ P

Γ � v1(v2) : τ2 {P}

Let
x # P

�Γ, ᾱ, (x : τ1)	 � F : prop
Γ, ᾱ � e1 : τ1 {λ(x : �τ1).F}

Γ, (x : ∀ᾱ. τ1),∀ᾱ.[x �→ x ᾱ]F � e2 : τ2 {P}
Γ � let (x ᾱ : τ1/F) = e1 in e2 : τ2 {P}

Case-Nil
Γ � v : τ Γ |= false

Γ � case v of ∅ : τ ′ {P}

Case-Cons
Γ � v : τ Γ ′ � p : τ p # v, P

Γ, Γ ′, �v	 = �p	 � e : τ ′ {P}
Γ, (∀Γ ′.�v	 �= �p) � case v of c : τ ′ {P}

Γ � case v of (p �→ e) � c : τ ′ {P}

Fig. 8. The computation language (proof system: expressions)

A Hoare Logic for Call-by-Value Functional Programs 319

that e2 is checked under the assignment (x : ∀ᾱ. τ1). The hypothesis F is changed
into ∀ᾱ.[x �→ x ᾱ]F , so as to reflect the fact that x now has polymorphic type.

In the operational semantics, a let construct behaves just like a β-redex. This
suggests that it could perhaps be treated as syntactic sugar, obviating the need
for the Let rule. However, this is not possible, for two reasons. One is that
let allows type generalization, as explained above, whereas a β-redex does not.
The other is that an appropriate postcondition for the function λx.e2 cannot
be determined prior to extracting proof obligations: indeed, it has to be λx.P ,
where P is computed only at extraction time.

Rule Case-Nil emits the proof obligation Γ |= false, which requires the
conjunction of hypotheses found within Γ to be inconsistent. This ensures that
a case construct with zero branches is never executed.

Rule Case-Cons requires the value v and the pattern p to have a common
type τ . The environment Γ ′ collects the variables bound by p, together with
their types. Under the hypothesis that a certain instance of p matches v, which
is expressed by extending Γ with Γ ′ and with the hypothesis �v� = �p�, the
branch e must have the desired type τ ′ and meet the desired postcondition P .
Furthermore, under the hypothesis that no instance of p matches v, which is
written ∀Γ ′.�v� �= �p�, the remaining branches must have type τ ′ and meet the
postcondition P . (Our use of �p� exploits the fact that patterns form a subset
of values, a welcome but unessential property.)

When checking a case construct with n branches, the (k + 1)-th branch is
checked under the assumption that none of the patterns p1, . . . , pk match the
value v. In particular, for k = n, the conjunction of all hypotheses of the form
(∀Γ ′

i .�v� �= �pi�) is required to be inconsistent. This ensures that control cannot
fall off the end of a case construct, or, in other words, that the case analyses are
exhaustive. Today’s ML and Haskell compilers implement a sound approximation
to this check, using a purely syntactic criterion. We also implement this syntactic
criterion: when it succeeds, emitting a proof obligation is unnecessary.

4.7 Algorithmic Reading

The judgement Γ
 e : τ {P} defines an algorithm for generating proof obliga-
tions. All four parameters of the judgement, namely Γ , e, τ , and P , are inputs of
the algorithm, which attempts to build a derivation of the judgement by starting
at the root of the expression e and working its way down into the sub-expressions
of e. As the algorithm descends, entering fun, let, and case constructs, the en-
vironment Γ grows, accumulating new bindings and assumptions. At the same
time, the postcondition P is propagated down, in a very straightforward pro-
cess. At let constructs, this propagation process relies on the (default or user-
provided, see §3.3) annotation in order to determine which postcondition must
be propagated into the left-hand sub-expression. The output of the algorithm
consists of the proof obligations, of the form Γ |= F , carried by the leaves of the
derivation (see Value, App, and Case-Nil).

320 Y. Régis-Gianas and F. Pottier

4.8 Soundness

The soundness of our type system and proof system is established in a standard,
syntactic manner. The proofs appear in the first author’s dissertation [32]. It
states that the types and logical assertions carried by a program are a sound
approximation of its dynamic semantics.

Lemma 1 (Environment Weakening). Γ1, F, Γ2
 e : τ {P} and Γ1 |= F
imply Γ1, Γ2
 e : τ {P}.

Lemma 2 (Postcondition Weakening). Γ
 e : τ {P1} and Γ |= P1 ⇒ P2

imply Γ
 e : τ {P2}.

Lemma 3 (Type Substitution). Let φ stand for [ᾱ �→ τ̄]. Then, Γ1, ᾱ, Γ2

e : τ {P} and ᾱ # dom(Γ2) imply

Γ1, φ(Γ2)
 φ(e) : φ(τ2) {φ(P)}

Lemma 4 (Value Substitution). Let ρ stand for [x �→ Λᾱ.v]. Then, Γ1, (x :
∀ᾱ. τ1), Γ2
 e : τ2 {P} and Γ1, ᾱ
 v : τ1 and x �∈ dom(Γ2) imply

Γ1, ρ(Γ2)
 ρ(e) : τ2 {ρ(P)}

Lemma 5 (Pattern Matching). Let ∅
 v : τ and Γ ′
 p : τ and p # v.
Then, [p �→ v] is defined if and only if the formula ∃Γ ′.�v� = �p� is valid.

Theorem 6 (Subject Reduction). Γ
 e : τ {P} and e → e′ imply Γ
 e′ :
τ {P}.

Theorem 7 (Progress). ∅
 e : τ {P} implies that e is either reducible or a
value v such that P (�v�) is valid.

5 A Few Extensions

Extra assertions. The following construct allows inserting an assertion at an
arbitrary point in the code:

assertF in e

This construct requires F to hold: a proof obligation is emitted. It has no
computational content: dynamically, it behaves like e. It is syntactic sugar for
let (x : unit/F) = () in e, where x is fresh. It is particularly useful when our tool
is used in conjunction with an automated theorem prover: if the theorem prover
fails to discharge a proof obligation, the user can use assert to cut the proof
into smaller, easier steps (if the proof obligation is in fact valid) or to find out
what is wrong with the specification (if the proof obligation is in fact invalid).

The construct absurd, which statically requires false to hold, marks a piece of
code as inaccessible. It is syntactic sugar for a case construct with zero branches.

A Hoare Logic for Call-by-Value Functional Programs 321

Ghost variables and ghost parameters. It is sometimes desirable to explicitly
introduce a ghost variable, that is, a name for a witness to an existentially quan-
tified hypothesis. For this purpose, we suggest writing

let logic x : θ/F in e

This construct binds x within F and e. It requires the assertion ∃(x : θ).F
to hold, and introduces F as a new hypothesis into the context. Assertions
embedded within e can refer to x, and their proofs can exploit the hypothesis F .
However, occurrences of x at the computational level within e are forbidden,
since “let logic” has no computational content.

Similarly, it is sometimes desirable to abstract a function with respect to a
ghost parameter x, like this:

fun f [x : θ](x1 : τ1/F1) : (x2 : τ2/F2) = e

The brackets bind a ghost parameter x within F1, F2, and e. (Again, occurrences
of x at the computational level within e are forbidden.) Note that θ can be an
arbitrary logical type, so this extension allows explicitly abstracting a function
with respect to a proposition or predicate, if desired (see §7.5). Ghost variables
and ghost parameters can in principle be viewed as syntactic sugar and trans-
lated away [33]. In a realistic implementation, however, they should be primitive
notions.

6 Interfacing with External Theorem Provers

The overall verification process, implemented in our prototype tool, is composed
of three main steps. First, type inference translates an implicitly typed source
code into an explicitly typed internal language, very similar to the language
formalized in §3. Second, the rules of the proof system defined in §4 are applied,
producing a set of proof obligations. Third, these proof obligations are turned
into goals of the two external provers Coq [22] and Alt-Ergo [23]. We describe
this last step in the following.

6.1 Coq

Our typed, higher-order logic is easily embedded within the Calculus of Induc-
tive Constructions, which underlies Coq. As a result, exporting proof obliga-
tions to Coq is a simple matter of pretty-printing. Implicit type instantiations
are handled by Coq’s system of implicit arguments. We could have made type
instantiations explicit but this would have worsened readability.

Coq is an interactive theorem prover. In order to discharge a proof obligation,
the user writes a proof script. An open problem is how to maintain these scripts
as the source code of the program evolves. The location in the code where a proof
obligation arises might change. The statement of a proof obligation might change
as well. Perhaps a solution would be to allow only explicitly-stated, explicitly-
named, lemmas to be proved interactively, and to rely solely on an automated
theorem prover for discharging anonymous proof obligations, possibly by appeal
to an explicit lemma.

322 Y. Régis-Gianas and F. Pottier

6.2 Alt-Ergo

Alt-Ergo [23] is a fully automated theorem prover for a typed, polymorphic,
first-order logic. Its design is partly inspired by Simplify [34]. However, Alt-
Ergo’s logic is typed and polymorphic, whereas Simplify’s is untyped. This makes
Alt-Ergo superior, from our point of view, to Simplify. Indeed, provided our
proof obligations lie in the first-order fragment of our logic, they can be directly
exported towards Alt-Ergo. If, on the other hand, we wished to use Simplify,
we would have to encode our typed, polymorphic logic into Simplify’s untyped
logic. Such encodings have been studied [35], but are complex and costly. Of
course, the trivial encoding that erases all types is unsound.

In addition to first-order logic, Alt-Ergo has native support for linear arith-
metic and for the theory of constructors (that is, function symbols f such that
f(x) = f(y) implies x = y). The latter is useful for reasoning efficiently about
algebraic data structures.

In the general case, our proof obligations are most naturally expressed in a
higher-order logic, as shown in this paper. However, higher-order logic can be
encoded into first-order logic. A standard encoding introduces “apply” predicates
that help simulate β-conversion [36].

Perhaps surprisingly, in our case, this encoding can be made to look fairly
natural. The symbols pre and post, which so far have stood for the pair pro-
jections, can be turned into predicates and simulate not only projection, but
also application. Furthermore, we can make pre a binary predicate and post a
ternary predicate, avoiding curried function applications. That is, instead of the
higher-order formula:

f = (λ(x1 : �τ1�).F1, λ(x1 : �τ1�).λ(x2 : �τ2�).F2),

we can write:

∀(x1 : �τ1�).(pre(f, x1) ⇔ F1)
∧ ∀(x1 : �τ1�).∀(x2 : �τ2�).(post(f, x1, x2) ⇔ F2)

The pair and the three λ-abstractions have been η-expanded, and the projection
and application symbols have been fused into applications of pre and post.
Provided F1 and F2 are first-order formulae, this is a first-order formula.

Under this encoding, the definition of the lifting operation on computational
types is modified so that the computational function type constructor is no
longer interpreted:

�τ1
.−→ τ2� = �τ1� .−→ �τ2�

That is, we make .−→ an uninterpreted binary type constructor at the logical
level, so that the lifting of types becomes the identity. Thus, in the above formula,
f has logical type τ1

.−→ τ2. The type schemes assigned to pre and post are as
follows:

pre : ∀α1α2. (α1
.−→ α2) × α1 → prop

post : ∀α1α2. (α1
.−→ α2) × α1 × α2 → prop

A Hoare Logic for Call-by-Value Functional Programs 323

These declarations are admissible by Alt-Ergo. We believe that it should be
possible to go a long way with first-order logic alone, even when the program
exploits higher-order functions. However, at present, more practical experience
is needed in order to support this conjecture.

7 Application: Finite Sets as Binary Search Trees

As an initial benchmark for our tool [21], we have transcribed Objective Caml’s
library implementation of finite sets, represented as balanced binary search trees,
into our programming language. The code is presented in the concrete syntax of
our prototype implementation.

7.1 Parameters

In the following, we fix a type “elt” of elements. We assume that an algebraic
data type “bool”, whose data constructors are “true” and “false”, is available.
We assume that an equality check over elements, written “=”, is given. It is a
function of computational type elt × elt .−→ bool, whose specification could be
written as follows:

post(=, x1, x2, b) ⇔ (b = true ⇔ x1 = x2)

Similarly, we assume that an ordering relation, written “<”, of logical type
elt → elt → prop, is given, together with an ordering check, also written “<”,
of computational type elt× elt .−→ bool, such that the latter decides the former.

We assume that a type of sets of elements, written “set”, is available at the
logical level, together with the standard operations (empty set, singleton set,
union, membership, etc.) and a number of axioms or theorems that describe the
properties of these operations.

In a full-scale programming language, our balanced binary search tree imple-
mentation would be a functor, parameterized over the types “elt” and “set”, as
well as as their operations and axioms.

7.2 Definitions

Figure 9 contains the definition of the algebraic data type “tree”, of the logical-
level inductive function “elements”, and of the inductive predicate “bst”. (The
concrete syntax is provisional.) A binary tree is either empty or a binary node,
carrying a root element, left and right sub-trees, and a cached measure of the
tree’s height. Our binary search trees are intended to implement a finite set abs-
traction. The logical function “elements” maps a binary tree to the finite set
that it represents. It is defined by induction over the algebraic data type “tree”.
The property of being a binary search tree is defined by the inductive predicate
“bst”.

In the definition of “bst”, the types of the universally quantified variables “x”,
“l”, “r”, “h”, “y” are inferred. The types of the function “elements” and of the

324 Y. Régis-Gianas and F. Pottier

type tree =
Empty : tree
Node : (int × tree × elt × tree) → tree

fixpoint elements : tree → set =
Empty → empty
Node (h, l, x, r) → elements (l) ∪ singleton (x) ∪ elements (r)

inductive bst : tree → prop =
bst (Empty)
∀ (h, l, x, r).

bst (l) and bst (r) and sup (x, elements (l)) and inf (x, elements (r))
⇒ bst (Node (h, l, x, r))

Fig. 9. Definitions for binary search trees

predicate “bst” could also be inferred, if desired. In practice, type annotations
can always be omitted, except where polymorphic recursion is required.

The definition of “bst” constrains neither the shape of the tree nor the cached
height information. This is done by another inductive predicate, named “avl”
(not shown). In contrast with the “dependent types” [26, 37, 38] and “general-
ized algebraic data types” [39] schools, we favor a programming style in which
invariants are not necessarily hardwired into data structures at definition time.

7.3 Membership in a Binary Search Tree

Figure 10 shows a function, “member”, that checks whether an element “x” is
a member of a tree “t”. The precondition “bst(t)” requires “t” to be a binary
search tree, but does not require it to be balanced, since this is not necessary for
correctness. If one wished to (informally) ensure a logarithmic complexity bound,
one could strengthen the precondition by adding the requirement “avl(t)”. This
illustrates how a single data structure can be equipped with multiple invariants,
not all of which are necessarily enforced at all times. The postcondition states
that the Boolean result tells whether “x” is a member of the set implemented

let rec mem bst (t, x) where bst (t)
returns b where ((b = true) ⇔ (x ∈ elements (t)))
= match t with

Empty → false
Node (h, l, y, r) →
if (x = y) then true
else if (x < y) then mem bst (l, x)
else mem bst (r, x)

end

Fig. 10. Membership in a binary search tree

A Hoare Logic for Call-by-Value Functional Programs 325

by the tree “t”. No type annotations are needed in this definition. All types are
inferred.

7.4 First-Order Iteration

We now define and specify first-order, persistent iterators [40] over binary search
trees. Their expressive power surpasses that of “fold” (§7.5), yet their specifica-
tion is simpler.

The implementation appears in Figure 11. An iterator is represented as a list
of trees, which can be thought of as a stack in a depth-first traversal of some
larger tree. (The definition of the type “list”, whose constructors are “Nil” and
“Cons”, is omitted.)

To an iterator “i”, there corresponds a set of elements, which we write
“remaining(i)”. Its inductive definition is simply the union of the sets of ele-
ments of the trees in the list.

An iterator is well-formed only if the trees that it contains have disjoint sets
of elements. This is expressed by the inductive predicate “ok”.

type iterator = list (tree)

fixpoint remaining : iterator → set =
Nil → empty
Cons (t, ts) → elements (t) ∪ remaining (ts)

inductive ok : iterator → prop =
ok (Nil)
∀ (t, ts).
(elements (t) ∩ remaining (ts)) ≡ empty and bst (t) and ok (ts)
⇒ ok (Cons (t, ts))

let iterator (t) where bst (t)
returns i where (ok (i) and remaining (i) ≡ elements (t)) =

Cons (t, Nil)

let rec next (i) where ok (i)
returns oix
where ((oix = None ⇒ remaining (i) ≡ empty)

and (∀ (i’, x). oix = Some ((i’, x))
⇒ (remaining (i) ≡ (singleton (x) ∪ remaining (i’))

and not (x ∈ remaining (i’)) and ok (i’))))
= match i with

Nil → None
Cons (Empty, ts) → next (ts)
Cons (Node (h, l, x, r), ts) → Some ((Cons (l, Cons (r, ts)), x))

end

Fig. 11. Iterators over binary search trees

326 Y. Régis-Gianas and F. Pottier

let eval cardinal (t) where bst (t)
returns n where (n = cardinal (elements (t))) =

let rec count (i, n)
where ok (i) and n + cardinal (remaining (i)) = cardinal (elements (t))
returns n’ where (n’ = cardinal (elements (t)))
= match next (i) with

None → n
Some ((i’, x)) → count (i’, n + 1)

end
in

count (iterator (t), 0)

Fig. 12. A sample client of the iterator abstraction

predicate hereditary (inv, s, f) =
∀ (x, s’, accu’).

((s’ ∪ singleton (x)) ⊆ s and not (x ∈ s’) and inv (accu’, s’ ∪ singleton (x))) ⇒
(pre (f) (accu’, x) and (∀ accu”. (post (f) (accu’, x) (accu”) ⇒ inv (accu”, s’))))

lemma hereditary subset : ∀ (s, s’, inv, f).
(s’ ⊆ s and hereditary (inv, s, f)) ⇒ hereditary (inv, s’, f)

let rec fold [s, inv] (accu, t, f)
where bst (t) and elements (t) ⊆ s and inv (accu, s) and hereditary (inv, s, f)
returns accu’ where inv (accu’, s \ elements (t))
= match t with

Empty → accu
Node (, l, x, r) →
let accu l = fold [s, inv] (accu, l, f) in
let accu x = f (accu l, x) in

fold [s \ (elements (l) ∪ singleton (x)), inv] (accu x, r, f)
end

Fig. 13. Higher-order iteration over binary search trees

The function “iterator” creates an iterator “i” out of a tree “t”, and satis-
fies the postcondition “ok(i) ∧ elements(t) ≡ remaining(i)”, where ≡ stands for
extensional equality of sets (which may, or may not, coincide with definitional
equality). This initial iterator is simply the singleton list [t].

The function “,”, when applied to an iterator “i”, returns either nothing or a
pair of a new iterator “i’” and an element “x”. The postcondition describes how
these values are related. (The definition of the type “option”, whose constructors
are “None” and “Some”, is omitted.)

Figure 12 shows how iterators are used. Here, the client is a function that
counts the number of elements in a tree. It does not depend on the internals of
the tree data structure: it only depends on the specification of iterators, which

A Hoare Logic for Call-by-Value Functional Programs 327

let incr (x, z) returns y where (y = x + 1) = x + 1

predicate cardinal inv (t) =
fun (accu, s) → (accu + cardinal (s) = cardinal (elements(t)))

lemma is hereditary cardinal inv :
∀ t. hereditary (cardinal inv (t), elements (t), incr)

let eval cardinal (t) where bst (t)
returns x where (x = cardinal (elements (t)))
= fold [elements (t), cardinal inv (t)] (0, t, incr)

Fig. 14. A sample client of the fold operator

is expressed in terms of abstract (logical-level) sets. So, this client code could be
placed in another module, without access to the definition of trees.

The “eval cardinal” function performs a loop, expressed as an internal recur-
sive function, with an integer accumulator n. It corresponds directly to a foreach
construct in Java or C#. The precondition of this internal function represents
the loop invariant: the number of elements counted so far, plus the number of
elements remaining to be seen, equals the total number of elements of the set.
The postcondition is simply the precondition, specialized to the case where no
elements remain.

The precondition of “count” must also state that “i” is an “ok” iterator, even
though it does not have to know about the definition of “ok”. This is somewhat
undesirable. In the future, we will want to allow defining a dependent sum type
of the form “i : iterator where ok(i)”, and exporting it as an abstract type.

The definition of “eval cardinal” is syntactically somewhat heavy, as it is
expressed in our core language. In a full-scale programming language, a more
palatable syntax for loops could be introduced, and desugared into recursive
functions and iterators. A single formula, the loop invariant, would have to be
written down, instead of two formulae in this low-level version of the code.

7.5 Higher-Order Iteration

We now present a specification of the classic “fold” higher-order function over
sets implemented as binary search trees. The specification is rather more complex
than that of first-order iterators, for at least two reasons. First, the specification
must mention the client’s state (the accumulator) and invariant. Second, because
the code is not tail-recursive, some information is implicitly encoded within the
stack, and a ghost parameter is used to make it explicit in the specification.

The function “fold” is parameterized over two ghost variables, namely the
client invariant “inv” and a set “s” of remaining elements. In the case of first-
order iterators, the former was unnecessary because the client retains control
over the desired invariant, and the latter was unnecessary because the set of
remaining elements was directly expressed as “remaining(i)”. Here, the set of

328 Y. Régis-Gianas and F. Pottier

remaining elements is implicit in the stack, so a ghost variable must be used in
order to refer to it.

The precondition of “fold” expresses the following requirements. First, “t”
must a binary search tree. Second, the elements of “t” must form a subset of “s”.
This reflects that, in general, “t” is a sub-tree of a larger tree over which iteration
is taking place. Third, the invariant must initially hold. Last, the invariant must
be hereditary: that is, at any time, if an element “x” is picked among the
remaining elements, the invariant guarantees that it is legal to apply “f” to the
current accumulator and to “x”, and guarantees that the new accumulator thus
obtained will still satisfy the invariant.

This definition is certainly somewhat overwhelming. It shows, at the same
time, that it is possible to specify and exploit higher-order functions in our
framework, and that there is a cost in complexity to be paid for doing so. More
experience is needed before we can tell how easily higher-order functions can be
defined and used in practice.

7.6 Quantitative Results

The binary search tree library contains 22 functions. The development is com-
posed of 108 lemmas, 603 lines of specification and 247 lines of code. The factor
of 3 in size between specification and code does not necessarily mean that spec-
ifications must be heavy: in a realistic system, a large part of the specification
would be imported from a standard library. 749 proof obligations are generated
and are proven automatically by Alt-Ergo [23]. Only one lemma, stating that the
height of a tree is nonnegative, requires an induction in Coq [22]; the other lem-
mas are proven automatically by Alt-Ergo. About 80% of the proofs require less
than 5 seconds to be proven by Alt-Ergo. Yet, about 10% of the proofs require
from 10 to 30 minutes. A forthcoming extension of Alt-Ergo with support for
reasoning modulo associativity and commutativity of some set operations (such
as set union) would perhaps improve these results.

8 Related Work

The roots of our work lie in Hoare logic [1, 2]. Extensions of Hoare logic with
support for recursive, higher-order procedures were heavily studied in the late
1970’s and early 1980’s [4, 5, 6, 7, 8]. In particular, the issue of completeness
received a lot of attention after Clarke [4] proved that there can be no sound
and complete Hoare logic for a programming language equipped with recursive,
higher-order procedures and global variables. Clarke’s result, however, is based
upon the assumption that formulae and proof obligations are expressed in a first-
order logic. Damm and Josko [6] point out that, by moving to higher-order logic,
it is possible to work around Clarke’s negative result. In this paper, we follow
Damm and Josko and allow specifications to be expressed in higher-order logic.
The intuitive justification for this approach is that, if functions can abstract over
functions, then specifications must abstract over specifications.

A Hoare Logic for Call-by-Value Functional Programs 329

Our work has been strongly inspired by several existing, practical tools for
checking imperative programs [10, 11, 12, 13, 41, 42]. This paper is an attempt
to exploit the strengths of these works while steering away from imperative
programming and placing renewed emphasis on polymorphism and modularity.

Our method for generating proof obligations is particularly straightforward:
it appears in its entirety in Figure 8. In comparison with the method used in
ESC/Java [43], we avoid a translation to “passive form” because we have no
assignments to begin with. We avoid the exponential explosion that could follow
from the interplay between sequences and alternatives by requiring sequences
(that is, let constructs) to carry user-provided postconditions (§3.3).

Our system is not sound with respect to a call-by-name dynamic semantics.
There are at least two reasons for this fact. First, some divergent expressions
admit false as a valid postcondition. If such an expression e1 is made the first
component of a sequence, as in “letx/false = e1 in e2”, then second compo-
nent e2 is checked under the assumption false. As a result, all of the the proof
obligations found within e2 are vacuously satisfied. This is sound under call-by-
value evaluation, because e2 is never executed. It is unsound under call-by-name
evaluation, because e2 is executed immediately (after binding x to a suspension).
The second reason is that, in a call-by-name semantics, every type is inhabited
by a bottom value, and some types are inhabited by infinite values. This is not
reflected in the way we lift computational values and types up to the logical
level.

Scott’s logic of computable functions [44] interprets λ-terms in a denotational
model, where equality implies, or coincides with, observational equivalence. It
comes with a set of sound deduction rules, and allows explicit reasoning about
divergence and equality of computations. It admits call-by-value and call-by-
name variants. It was implemented as early as 1972 by Milner [45]. More recent
implementations [46, 47, 48] embed Scott’s LCF within some form of higher-
order logic. In a somewhat similar vein, Longley and Pollack [49] embed the
functional core of Standard ML, via a fully abstract denotational semantics,
into higher-order logic.

Our approach is less elaborate: by focusing on partial correctness, by adopting
a call-by-value semantics, and by lifting only values, as opposed to expressions,
up to the logical level, we are able to ignore non-termination issues entirely, and
to work with value spaces that do not have bottom elements or definedness order-
ings. By contrast, tools or approaches that focus on lazy functional programs,
such as Programatica [50, 51] or the Cover translator [52], require reasoning
about non-termination, resulting in proof obligations that can become cluttered
with definedness side conditions. The simplicity of our approach comes at a cost:
our system can neither establish termination of an expression nor reason about
observational equality of expressions.

Honda and Yoshida [53] define a Hoare logic for call-by-value higher-order
functions, to which our system seems rather analogous. A technical difference
is that Honda and Yoshida allow expressions (including, in particular, function
applications) to appear within formulae, and interpret equality as observational

330 Y. Régis-Gianas and F. Pottier

equality; whereas we only lift values to the logical level, and interpret equality
as equality of values. Honda and Yoshida’s system does not seem to have been
implemented.

Smith [54, §4.4.1] defines a type theory with partial objects, where the type Ā
contains the possibly non-terminating computations that yield a result of type A.
Smith notes that the fixed point axiom, which has type (A → A) → A, is sound
only at admissible types. As an example of a non-admissible type, he offers a
type D whose definition can be read: “D is the type of the partial functions g
of naturals to naturals such that g diverges for at least one input”. It is easy
to construct a function of type D → D whose least fixed point is in fact a
total function: this shows that D is not admissible. A reviewer of an earlier
version of the present paper noted that “g diverges for at least one input” seems
expressible, in our system, as ∃x.∀y.¬post(g)(x)(y), and wondered if Smith’s
example could be adapted to show that our system is unsound. One should
note, first, that although this formula indeed represents a sufficient condition
for g to diverge for at least one input, it is not a necessary condition. Indeed, the
predicate post(g) denotes the programmer-provided postcondition of g; it does
not denote the actual semantics of g. Second, when the programmer supplies an
explicit definition of the predicate post(g) (which he must do), this definition
cannot refer to g itself. As a result, there is no way that the postcondition
associated with g can be the self-referent “g diverges for at least one input”.

ESC/Haskell [55] allows annotating Haskell programs with preconditions and
postconditions that are also expressed in Haskell. A special-purpose theorem
prover, based on symbolic evaluation of Haskell terms, is developed.

The theorem prover Coq [22] can be used as a programming language, in
which programs are both developed and proved correct. The Compcert certified
compiler [56] offers an example of a large program developed in this style. How-
ever, there is some agreement that Coq is not (yet) a convenient programming
language: for instance, it only allows writing pure, terminating functions.

The programming language Russell [38] extends Coq with facilities for defining
programs annotated with assertions, in the style of Hoare logic. There are many
similarities between Russell and our work. One important technical difference is
that we separate the typechecking process, which is performed first and remains
traditional, and the process of extracting proof obligations, which runs as a
second phase, whereas, in Russell, as in Coq, typechecking and proving are one
and the same activity. In particular, Russell encourages the use of indexed types,
like list n, so that typechecking can give rise to proof obligations: for instance,
supplying an actual argument of type list m to a function that expects a formal
parameter of type list n generates the proof obligation m = n. Another difference
is that Russell terms are elaborated into Coq terms, whereas we adopt a less
foundational approach and are happy to trust an external theorem prover.

Hoare Type Theory [33, 57] is somewhat similar to our system, insofar as it
offers decidable basic typechecking and decidable generation of proof obligations.
It also shares our use of higher-order logic and our emphasis on polymorphism
and abstraction. It is much more ambitious than our proposal, in that it attempts

A Hoare Logic for Call-by-Value Functional Programs 331

to deal not only with algebraic data types and higher-order functions, but also
with heap-allocated, mutable state. As a result, its design and metatheory are
considerably more involved.

Some authors [33, 55, 58, 59] allow code to appear in specifications. This
is motivated partly by a desire to make formulae executable, so as to allow
assertions to be checked at runtime, and partly by fear that, otherwise, a single
functionality might have to be implemented twice: once at the computational
level, once at the logical level. Our technical and philosophical choice is different:
we consider all code as potentially impure, and do not allow code to appear
within specifications. We do not check assertions at runtime: if the programmer
wishes to insert a runtime check, she must do so explicitly. Furthermore, we
believe that, in practice, opportunities for code sharing between computational
and logical levels are rare: the oft-cited case of lists is one of only a few situations
where implementation and specification coincide.

Indexed types [26, 60] and refinement types [61] rely on so-called indices. In-
dices are elements of some mathematical domain, such as an arbitrary finite
set, or the set of all natural numbers. Types are enriched with constraints over
indices, allowing invariants, preconditions, and postconditions to be expressed.
The syntax of constraints is carefully restricted so as to ensure that constraint en-
tailment is decidable. This allows proof obligations to be automatically checked.
Generalized algebraic data types [39] are also an instance of this idea, where
indices are types, that is, first-order terms. The appeal of this approach resides
in the high degree of automation that it allows. On the other hand, this comes
at the price of a restriction to a decidable logic. In fact, our decision of using a
highly expressive, hence undecidable, logic was motivated by our earlier study
of generalized algebraic data types [62, 63].

Going beyond indexed types, several programming languages offer full de-
pendent types [37, 64, 65, 66]. By exploiting the Curry-Howard isomorphism,
they allow code and proofs to be expressed and combined within a single lan-
guage. This allows programs to appear more self-contained, but means that a
fragment of the programming language must be a consistent logic, and requires
mechanisms to assist the user in building proofs. Our design, which relies on an
off-the-shelf theorem prover, is more modular.

9 Conclusion

We have presented a simple methodology for extracting proof obligations out of
call-by-value functional programs. Our proposed future work includes:

– extending our prototype implementation [21] and equipping it with a com-
pilation path down to Objective Caml;

– relaxing our positivity condition (§3.2), which restricts the use of functions
within data structures, preventing, for instance, the standard definition of
infinite streams;

– internalizing type equality, that is, introducing equations between types into
the syntax of formulae, together with suitable conversion rules for exploiting

332 Y. Régis-Gianas and F. Pottier

such equations; indeed, we, and other authors [33], have noticed that such
an extension would subsume generalized algebraic data types [39];

– studying the issues raised by modularity and mutable state.

Acknowledgement. The authors wish to thank the anonymous reviewers of a
previous version of this paper for contradicting a false claim and offering useful
comments and suggestions. Thanks are also due to Sylvain Conchon and Evelyne
Contejean for their great work on Alt-Ergo [23] that helped us demonstrate our
approach practically.

References

1. Floyd, R.W.: Assigning meanings to programs. In: Mathematical Aspects of Com-
puter Science. Proceedings of Symposia in Applied Mathematics, vol. 19, pp. 19–32.
American Mathematical Society (1967)

2. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (1969)

3. Cousot, P.: Methods and logics for proving programs. In: Formal Models and Se-
mantics. Handbook of Theoretical Computer Science, vol. B, pp. 841–993. Elsevier
Science, Amsterdam (1990)

4. Clarke, E.: Programming language constructs for which it is impossible to obtain
good Hoare axiom systems. Journal of the ACM 26(1), 129–147 (1979)

5. Apt, K.R.: Ten years of Hoare’s logic: A survey—part I. ACM Transactions on
Programming Languages and Systems 3(4), 431–483 (1981)

6. Damm, W., Josko, B.: A sound and relatively∗ complete axiomatization of Clarke’s
language L4. In: Clarke, E., Kozen, D. (eds.) Logic of Programs 1983. LNCS,
vol. 164, pp. 161–175. Springer, Heidelberg (1984)

7. German, S., Clarke, E., Halpern, J.: Reasoning about procedures as parameters. In:
Clarke, E., Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 206–220.
Springer, Heidelberg (1984)

8. Goerdt, A.: A Hoare calculus for functions defined by recursion on higher types. In:
Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 106–117. Springer,
Heidelberg (1985)

9. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M.,
Poll, E.: An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer 7(3), 212–232 (2005)

10. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: ACM Conference on Programming Language
Design and Implementation (PLDI), pp. 234–245 (2002)

11. Marché, C., Paulin-Mohring, C., Urbain, X.: The Krakatoa tool for certification
of Java/JavaCard programs annotated in JML. Journal of Logic and Algebraic
Programming 58(1–2), 89–106 (2004)

12. Filliâtre, J.C., Marché, C.: Multi-prover Verification of C Programs. In: Davies, J.,
Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 15–29. Springer,
Heidelberg (2004)

13. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An
Overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

A Hoare Logic for Call-by-Value Functional Programs 333

14. Hughes, J.: Why functional programming matters. Computer Journal 32(2), 98–
107 (1989)

15. Mehta, F., Nipkow, T.: Proving pointer programs in higher-order logic. Information
and Computation 199(1–2), 200–227 (2005)

16. Detlefs, D.L., Leino, K.R.M., Nelson, G.: Wrestling with rep exposure. Research
Report 156, SRC (July 1998)

17. Leino, K.R.M., Nelson, G.: Data abstraction and information hiding. ACM Trans-
actions on Programming Languages and Systems 24(5), 491–553 (2002)

18. Fähndrich, M., DeLine, R.: Adoption and focus: practical linear types for imper-
ative programming. In: ACM Conference on Programming Language Design and
Implementation (PLDI), pp. 13–24 (June 2002)

19. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protection.
In: ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pp. 48–64 (October 1998)

20. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
IEEE Symposium on Logic in Computer Science (LICS), pp. 55–74 (2002)

21. Régis-Gianas, Y.: A Hoare logic for call-by-value functional programs: Prototype
tool (January 2008), http://pangolin-programming-language.googlecode.com

22. The Coq development team: The Coq Proof Assistant (2006)
23. Conchon, S., Contejean, E.: The Alt-Ergo automatic theorem prover (2006),

http://alt-ergo.lri.fr/

24. Kaplan, H., Tarjan, R.E.: Purely functional, real-time deques with catenation.
Journal of the ACM 46(5), 577–603 (1999)

25. Milner, R.: A theory of type polymorphism in programming. Journal of Computer
and System Sciences 17(3), 348–375 (1978)

26. Xi, H.: Dependent Types in Practical Programming. PhD thesis, Carnegie Mellon
University (December 1998)

27. Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vouillon, J.: The Objective Caml
system (October 2005)

28. Andrews, P.B.: An introduction to mathematical logic and type theory: to truth
through proof. Academic Press, London (1986)

29. Paulin-Mohring, C.: Inductive definitions in the system Coq: rules and properties.
Research Report RR1992-49, ENS Lyon (1992)

30. Werner, B.: Une Théorie des Constructions Inductives. PhD thesis, Université Paris
7 (1994)

31. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: ACM Conference on Programming Language Design and Imple-
mentation (PLDI), pp. 237–247 (1993)

32. Régis-Gianas, Y.: Des types aux assertions logiques: preuve automatique ou as-
sistée de propriétés sur les programmes fonctionnels. PhD thesis, Université Paris
7 (November 2007)

33. Nanevski, A., Ahmed, A., Morrisett, G., Birkedal, L.: Abstract Predicates and
Mutable ADTs in Hoare Type Theory. In: De Nicola, R. (ed.) ESOP 2007. LNCS,
vol. 4421, pp. 189–204. Springer, Heidelberg (2007)

34. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. Journal of the ACM 52(3), 365–473 (2005)

35. Lescuyer, S.: Codage de la logique du premier ordre polymorphe multi-sortée dans
la logique sans sortes. Master’s thesis, Master Parisien de Recherche en Informa-
tique (2006)

36. Kerber, M.: How to prove higher order theorems in first order logic. In: Interna-
tional Joint Conferences on Artificial Intelligence, pp. 137–142 (1991)

http://pangolin-programming-language.googlecode.com
http://alt-ergo.lri.fr/

334 Y. Régis-Gianas and F. Pottier

37. Altenkirch, T., McBride, C., McKinna, J.: Why dependent types matter (unpub-
lished) (April 2005)

38. Sozeau, M.: Subset coercions in Coq. In: TYPES (2006)

39. Xi, H., Chen, C., Chen, G.: Guarded recursive datatype constructors. In: ACM
Symposium on Principles of Programming Languages (POPL), pp. 224–235 (Jan-
uary 2003)

40. Filliâtre, J.C.: Backtracking iterators. In: ACM Workshop on ML (September 2006)

41. Detlefs, D.L., Leino, K.R.M., Nelson, G., Saxe, J.B.: Extended static checking.
Research Report 159, Compaq SRC (December 1998)

42. Filliâtre, J.C.: Why: a multi-language multi-prover verification tool. Research Re-
port 1366, LRI, Université Paris Sud (March 2003)

43. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generating compact veri-
fication conditions. In: ACM Symposium on Principles of Programming Languages
(POPL), pp. 193–205 (2001)

44. Scott, D.S.: A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical
Computer Science 121(1–2), 411–440 (1993)

45. Milner, R.: Implementation and applications of Scott’s logic for computable func-
tions. In: Proceedings of the ACM conference on proving assertions about pro-
grams, pp. 1–6 (January 1972)

46. Agerholm, S.: A HOL basis for reasoning about functional programs. Technical
Report RS-94-44, BRICS (December 1994)

47. Bartels, F., von Henke, F., Pfeifer, H., Rueß, H.: Mechanizing domain theory. Ulmer
Informatik-Berichte 96-10, Universität Ulm, Fakultät für Informatik (1996)

48. Müller, O., Nipkow, T., von Oheimb, D., Slotosch, O.: HOLCF = HOL + LCF.
Journal of Functional Programming 9, 191–223 (1999)

49. Longley, J., Pollack, R.: Reasoning About CBV Functional Programs in Is-
abelle/HOL. In: Slind, K., Bunker, A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004.
LNCS, vol. 3223, pp. 201–216. Springer, Heidelberg (2004)

50. Kieburtz, R.B.: P -logic: Property verification for Haskell programs. Draft (August
2002)

51. Hallgren, T., Hook, J., Jones, M.P., Kieburtz, R.: An overview of the Programatica
toolset. In: High Confidence Software and Systems Conference (HCSS) (2004)

52. Abel, A., Benke, M., Bove, A., Hughes, J., Norell, U.: Verifying Haskell programs
using constructive type theory. In: Haskell workshop, pp. 62–73 (September 2005)

53. Honda, K., Yoshida, N.: A compositional logic for polymorphic higher-order func-
tions. In: International ACM Conference on Principles and Practice of Declarative
Programming (PPDP), pp. 191–202 (August 2004)

54. Smith, S.F.: Partial Objects in Type Theory. PhD thesis, Cornell University (Jan-
uary 1989)

55. Xu, D.N.: Extended static checking for Haskell. In: Haskell workshop, pp. 48–59.
ACM Press, New York (2006)

56. Leroy, X.: Formal certification of a compiler back-end or: programming a com-
piler with a proof assistant. In: ACM Symposium on Principles of Programming
Languages (POPL), pp. 42–54 (January 2006)

57. Nanevski, A., Morrisett, G., Birkedal, L.: Polymorphism and separation in Hoare
type theory. In: ACM International Conference on Functional Programming
(ICFP), pp. 62–73 (September 2006)

58. Barnett, M., Naumann, D.A., Schulte, W., Sun, Q.: 99.44% pure: Useful abstrac-
tions in specifications. In: Formal Techniques for Java-like Programs (2004)

A Hoare Logic for Call-by-Value Functional Programs 335

59. Gronski, J., Knowles, K., Tomb, A., Freund, S.N., Flanagan, C.: Sage: Hy-
brid checking for flexible specifications. In: Scheme and Functional Programming
(September 2006)

60. Zenger, C.: Indexed types. Theoretical Computer Science 187(1–2), 147–165 (1997)
61. Davies, R.: Practical refinement-type checking. Technical Report CMU-CS-05-110,

School of Computer Science, Carnegie Mellon University (May 2005)
62. Pottier, F., Régis-Gianas, Y.: Towards efficient, typed LR parsers. In: ACM Work-

shop on ML. Electronic Notes in Theoretical Computer Science, vol. 148(2), pp.
155–180 (March 2006)

63. Pottier, F., Régis-Gianas, Y.: Stratified type inference for generalized algebraic
data types. In: ACM Symposium on Principles of Programming Languages (POPL)
(January 2006)

64. Chen, C., Xi, H.: Combining programming with theorem proving. In: ACM Inter-
national Conference on Functional Programming (ICFP) (September 2005)

65. Sheard, T.: Putting Curry-Howard to work. In: Haskell workshop (2005)
66. Westbrook, E., Stump, A., Wehrman, I.: A language-based approach to functionally

correct imperative programming. In: ACM International Conference on Functional
Programming (ICFP), pp. 268–279 (2005)

	A Hoare Logic for Call-by-Value Functional Programs
	Introduction
	The Underlying Logic
	Syntax
	Interpretation

	The Computational Language
	Syntax
	Lifting Computational Entities to the Logical Level
	Inferring Strongest Postconditions
	Notions of Substitution
	Operational Semantics

	The Type System and Proof System
	Environments
	Proof Obligations
	Judgements
	Values
	Patterns
	Expressions
	Algorithmic Reading
	Soundness

	A Few Extensions
	Interfacing with External Theorem Provers
	Coq
	Alt-Ergo

	Application: Finite Sets as Binary Search Trees
	Parameters
	Definitions
	Membership in a Binary Search Tree
	First-Order Iteration
	Higher-Order Iteration
	Quantitative Results

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

